
1

Automated Documentation of Android Apps
Emad Aghajani, Student Member, IEEE, Gabriele Bavota, Member, IEEE,

Mario Linares-Vásquez, Member, IEEE, Michele Lanza, Senior Member, IEEE

Abstract—Developers do not always have the knowledge needed to understand source code and must refer to different resources (e.g.,
teammates, documentation, the web). This non-trivial process, called program comprehension, is very time-consuming. While many
approaches support the comprehension of a given code at hand, they are mostly focused on defining extractive summaries from the code
(i.e., on selecting from a given piece of code the most important statements/comments to comprehend it). However, if the information
needed to comprehend the code is not there, their usefulness is limited.
We present ADANA, an approach to automatically inject comments describing a given piece of Android code. ADANA reuses the
descriptions of similar and well-documented code snippets retrieved from various online resources. Our evaluation has shown that
ADANA is able to aid the program comprehension process.

Index Terms—Program Comprehension, Documentation, Android.

F

1 INTRODUCTION

SOFTWARE developers do not always possess the knowl-
edge needed to comprehend the source code they are

handling. This is especially true when code lacks documen-
tation and comments [1], or when code and documentation
do not co-evolve [2], [3], [4]. To make up for the lacking
knowledge, developers often refer to teammates and other
sources of information found on the Internet [5], such as Q&A
websites like Stack Overflow. However, what developers
often obtain are higher-level pieces of information, which
are certainly useful, but do not always help to answer the
question of what a specific chunk of source code is doing.
This question has been tackled by automated summarization
approaches [6], [7], [8], [9], [10], [11], [12], [13], and by
creating extractive or abstractive summaries [14]. While in the
former a subset of code/comment elements is selected from
the code chunk to describe it, the latter includes information
which is not explicit in the original document [14]. However,
if the information to comprehend the code is simply not
there, these approaches fall short.

We present ADANA, an approach to automatically
generate and inject comments that describe a given piece of
Android-related code. ADANA reuses the descriptions of
similar and well-documented code snippets and is powered
by a knowledge base of 64k well-described code snippets
automatically retrieved and processed from Github Gist and
Stack Overflow. ADANA also benefits from ASIA, a clone
detector we tailored to identify Android-related code clones.

We evaluated ADANA in three studies. Results show
that (i) ADANA can, on average, automatically document
with code comments one third of the code composing a
mobile app; (ii) the ASIA clone detector can find similar code
snippets with good precision (⇠70%); and (iii) the comments
injected by ADANA help in code comprehension both in
terms of time needed and comprehension level.

• E. Aghajani, G. Bavota and M. Lanza are with the Università della Svizzera
italiana (USI), Switzerland. E-mail: firstname.lastname@usi.ch

• M. Linares-Vásquez is with the Universidad de los Andes, Colombia. Email:
m.linaresv@uniandes.edu.co

2 ADANA

ADANA is implemented as a framework that includes
an Android studio plug-in, a set of backend services for
analyzing and extracting data from online repositories, and
a knowledge base for storing snippets and descriptions.
ADANA works as depicted in Figure 1. Dashed arrows
represent dependencies (i.e., 1 and 7), full arrows indicate
flows of information between components. Black arrows (i.e.,
1 to 4) indicate operations performed with the goal of

building the ADANA knowledge base; red arrows represent
actions triggered by a request to document a selected piece
of code through the ADANA Android Studio plug-in.

ADANA mines from the Web pairs composed of code
snippets related to Android development and their descrip-
tion, which illustrates the task/feature implemented through
a snippet (1). Quality checks 2 are performed on the mined
data to remove noise, such as pairs including non-Java code
or unlikely to contain a meaningful description (e.g., a single
word description). The selected pairs are provided to the
description standardizer 3 to convert the mined descriptions
into a format suitable to document the related snippet of code
and to store the processed pairs in the ADANA database 4
to form the knowledge base.

The developer using the ADANA Android Studio plug-
in can select any snippet of code in the IDE and ask ADANA
to describe it 5 . The developer can also tune the “granularity
level” of the description she desires (e.g., describing every
single block in the selected code, or getting an overall
description of it). ADANA looks in the knowledge base
for clones of the code snippet selected in the IDE by using
ASIA (Android SImilarity Assessment).

ASIA is a clone detection approach tailored for Android
6 - 8 that we have designed to support ADANA. Once the

code clones and their related descriptions are collected, the
descriptions ranker component selects the best description(s)
for the selected piece of code (9 - 10). Finally, the selected
descriptions are pushed back to the IDE 11 where the
developer can integrate them as code comments.

2

stackoverflowGitHubGist

code
miner

ADANA Server

1

2

private void copyFile(File source,
File dest) {
 InputStream input = null;
 OutputStream output = null;
 [...]
}

Description

Code

How to
programmatically
copy a file

private void copyFile(File source,
File dest) {
 InputStream input = null;
 OutputStream output = null;
 [...]
}

Description

Code

How to
programmatically
copy a file

private void copyFile(File source,
File dest) {
 InputStream input = null;
 OutputStream output = null;
 [...]
}

Description

Code

How to
programmatically
copy a file

quality
checker

3

3

descriptions
standardizer

100k

4

ADANA
db
64k

ASIA
clone detector ~

Android Studio plug-in

5

7 Descriptions
ranker

ADANA
Web service

68

2

9 10

11

private void copyFile(File source,
File dest) {
 InputStream input = null;
 OutputStream output = null;
 [...]
}

Description

Code

How to
programmatically
copy a file

private void copyFile(File source,
File dest) {
 InputStream input = null;
 OutputStream output = null;
 [...]
}

Description

Code

How to
programmatically
copy a file

64k

Fig. 1: The ADANA architecture.

2.1 Building the ADANA Knowledge Base

The ADANA knowledge base aims at containing snippets of
code accompanied by their description (e.g., “downloads a file
and shows the progress in a ProgressDialog”). The knowledge
base contains pairs of hcode, descriptioni. We instantiated
ADANA to the specific problem of documenting Android
apps. We populate the knowledge base with code snippets
(and related descriptions) relevant for Android apps.

Mining code snippets and related descriptions.
ADANA’s code miner component mines GitHub Gist [15]
and Stack Overflow [16] to identify snippets of code with
their related description to populate the knowledge base
with pairs of hcode, descriptioni.

Gist. A Gist can be a set of code files, a single code
file, or a code snippet. Gists are particularly suited for our
approach due to the fact that most of them are accompanied
by a short description explaining their purpose (e.g., the
RestartWifi Gist [17] is accompanied by the description
“Code snippet to restart wifi interface (Android)”). To iden-
tify relevant hcode, descriptioni pairs in Gist, we mined
from the official Android documentation [18] all packages
available in the Android APIs (e.g., android.bluetooth

or android.support.v4.net). Then, for each of the mined
packages Pi, we used the Gist search feature to identify all
code snippets containing an import statement import Pi.⇤,
where the .⇤ acts as a wildcard (i.e., it can represent a single
class imported as well as the whole package).

We filter out all Gists not written in Java by using the
filter provided by GitHub Gist. While the adopted search
heuristic does not identify snippets of code not containing
any import statement even if they are relevant to Android
(false negatives), it is unlikely to select Gists that are not
relevant to Android (false positives). In ADANA, we favor
quality of data over quantity in the construction of the
knowledge base. This has the drawback of limiting the
amount of data available, reducing the number of code
snippets that can be automatically documented.

Given a retrieved Gist, we create one knowledge base
entry (i.e., one pair hcode, descriptioni) for every Java file
composing it (remember that a Gist may have multiple

files), using the Java file as the code, and the description
provided by the user who shared the Gist as the description.
By using this search heuristic, we extracted 22,864 pairs of
hcode, descriptioni from Gist.

Stack Overflow (SO) is a well-known Q&A website. Besides
mining the Q&A posts in SO, we also mined SO documen-
tation, an initiative aimed at creating reference material for
developers, collecting code examples showing how to deal
with common tasks. Note that the SO documentation was
recently shut down. However, we mined it (as detailed in the
following) to extract the pairs hcode, descriptioni needed in
the ADANA knowledge base when it was still online (May
2017). Since the extracted pairs still represent a precious
source of information, we decided to keep them.

SO documentation is a straightforward resource from
where to mine code snippets and their description since it
includes pages related to a given topic (e.g., device display
metrics) showing snippets (and related descriptions) aimed
at dealing with common tasks related to the topic (e.g.,
programmatically capturing the size of the device display).

The code miner scrapes all Android-related topics that
were already grouped together in the SO documentation.
Each topic contains one or more examples (i.e., pairs of
hcode, descriptioni), showing how to deal with tasks related
to the topic (e.g., the “Intent” topic, contained 19 pairs).

Some preprocessing was needed to identify in each
example the related code and description. As for the code,
we identify it as the text delimited by the < pre >< code >

HTML tags. These tags are used in SO to format the code
elements in the questions/answers and, in this case, in the
examples reported in the SO documentation.

If multiple Java code snippets were present in the exam-
ple, we merged them together to create the final code related
to the example. Note that since we are focusing on Android,
the related SO documentation posts could contain posts
mixing code snippets written in Java, C++, and XML as well
as makefiles. Since ADANA only supports the automatic
documentation of Java code, we used a keywords-based
heuristic to identify Java snippets. In particular, given a code
snippet, we checked whether any of the regular expressions
reported in Table 1 matched.

3

TABLE 1: The heuristic to identify Java code snippets.

Regular expression Language
1 "^\s*@Override" Java
2 "^\s*<|>\s*" XML
3 "^\s*\w+\s+:=" Makefile
4 "^\s*#ifdef|^\s*#ifndef|^\s*#include

|^\s*#define|^\s*extern "C"|^\s*
public:|^\s*private:|^\s*protected:"

C++

5 otherwise Java

The regular expressions were checked in the exact order
reported in Table 1 and the process was stopped as soon
as the first regular expression was matched. The basic
idea behind this keywords-based approach is to exploit
the unique features of each language (e.g., the @Override
keyword is only available in Java). A manual analysis of 660
code snippets from our knowledge base (details to follow)
confirmed the validity of this simple filtering heuristic, since
no non-Java snippets were found.

For the description, we extracted the text contained in the
HTML tag having class = “doc� example� link”. This
text represented a short description of the code shown in the
example (e.g., “Open a URL in a browser”), and it is a good fit to
concisely document similar snippets of code a developer will
select in the Android Studio plug-in. Overall, we extracted
885 hcode, descriptioni pairs from SO documentation.

Concerning SO Q&A discussions, we mined the SO
database dump dated June 2017, retrieving all questions:

1) Tagged with a tag containing the word “android”;
2) Containing the word “how” in the title. We use the question

title as the description of the code snippets we mine from
the answers. A sentence like “How to pass an object from
one activity to another on Android” is easily converted
into a short description to document a piece of code (e.g.,
“Passes an object from one activity to another”);

3) Having at least one answer positively rated and/or accepted.
In SO, users can up- or down-vote answers. Also, the
person who asked the question can “accept” a specific
answer. Since we will use the code snippets reported in
the answers as code documented by the question title,
we want to make sure that the selected questions have
at least one positively judged answer.

Once extracted the set of questions satisfying these con-
straints, we compose the pairs hcode, descriptioni; the title of
each question is used as the description (e.g., “How to disable
WiFi in Android”). The descriptions, as for the ones mined
from the other repositories, are cleaned and standardized.
As for the code, from each accepted/positively rated answer,
we extract the code exploiting the < pre >< code > HTML
tags, and use the same keywords-based approach exploited
in SO documentation to only consider java code snippets (see
Table 1). Thus, from a single question we can extract multiple
implementations of the same task reported in different
accepted/positively rated answers (e.g., different snippets
showing how to disable WiFi in Android). We extracted
76,769 hcode, descriptioni pairs by mining SO Q&A.

The overall mining process resulted in ⇠100k
hcode, descriptioni pairs coming from Gist (⇠22k), SO Doc-
umentation (⇠1k), and SO (⇠77k) discussions. The larger
amount of data coming from SO Q&A discussions is no
surprise, considering its popularity.

TABLE 2: Original & standardized descriptions examples

Original Description Standardized Description
How to pass an object from one activ-
ity to another on Android - API level
23+

Passes an object from one activity
to another

Programmatically download a file
with Android, and showing the
progress in a ProgressDialog

Downloads a file and shows the
progress in a ProgressDialog

A simple wrapper for Scalpel (https:
//github.com/JakeWharton/scalpel)
that includes toggle controls accessible
from a right-side navigation drawer.

A simple wrapper for Scalpel that
includes toggle controls accessi-
ble from a right-side navigation
drawer

Checking the quality of the mined data. The
quality checker assesses the suitability of the collected
hcode, descriptioni pairs for the ADANA knowledge base
in two steps. The first one aims at removing from the
descriptions unnecessary parts. In particular, in this step:

1) New lines are replaced with a space;
2) References to URLs are removed (see e.g., 3rd description

in Table 2);
3) Common adverbs indicating the need for performing a

task programmatically are removed; these adverbs are
often present in questions in which developers ask for
help on Stack Overflow (e.g., how do I programmatically
[...])—see 2nd description in Table 2;

4) Expressions clarifying the Java and/or Android context
of the task are removed (see 1st description in Ta-
ble 2), since the mined descriptions certainly document
Java/Android code thanks to the previous filters.

All the four steps described above are performed by using
regular expressions. Table 3 reports the regular expressions
used for the steps 2), 3), and 4). Note that the regular
expression defined for step 4) uses other regular expressions
we report in Table 4. For example, the first regular expression
in Table 4, named semanticVersion, is used indirectly in the
step 4) (last row in Table 3) to remove expressions clarifying
the Java and/or Android context of the task.

After the cleaning process, the quality checker excludes all
hcode, descriptioni pairs not satisfying a set of three require-
ments we defined to ensure the quality of the data stored
in the ADANA knowledge base. The three requirements
have been defined by the first author by manually analyzing
a 99%±5% statistically significant sample (computed by
using the Student’s t-distribution) of the collected data (660
hcode, descriptioni pairs), looking for possible heuristics to
discard low-quality descriptions/code snippets.

This process led to the exclusion from the knowledge
base of all hcode, descriptioni pairs in which:

1) The description is composed of less than four words. We aim
at removing code snippets accompanied by meaning-
less/useless descriptions (e.g., “sample”, “miniproject”,
“my application”, etc.). In the manually analyzed sample
(i.e., the 660 instances), we found 110 descriptions having
a description composed of less than four words, and only
five of them were potentially useful for documenting
the related code snippet (e.g., “simple webview”). In
the remaining 95.45% of cases, the descriptions were
classified as useless to document the code.

2) The description does not contain at least one verb. Descrip-
tions without verbs are unlikely to represent useful
explanations and are too generic to properly document

4

TABLE 3: Regular expressions used by description quality checker for cleaning descriptions

Step Regular expression Goal
2) "(?:at|in|on|here|@|see|check|check out|look|look at)?\s*[^a-zA-

Z0-9_\]})]?\s*https?://\S+\s*[^a-zA-Z0-9_\[{(]?"
Removing references to an external resource
(e.g., url)

3) "[(\[]?\s*,?\s*(?:programmatically|dynamically|through code|by
code|using code|in code)\s*,?\s*[)\]]?"

Removing common unnecessary adverbs (e.g.,
programmatically, through code, using code)

4) "\s*(?:"+ android_pattern_withParentheses + "|"+
android_pattern_withoutParentheses + "|"+ java_pattern + "|"+
api_pattern_withParentheses + "|"+ api_pattern_withoutParentheses
+ "|"+ other_pattern + ")\s*,?\s*"

Removing expressions clarifying the Java
and/or Android context of the task

code. In the 660 descriptions in our sample, we found
145 of them do not meet this requirement, and only
19 were classified as potentially useful (i.e., 86.90% of
descriptions with no verb were classified as not useful
to document the code snippet). Thus, we defined this
second heuristic, and use the Stanford CoreNLP toolkit
[19] to identify the presence of verbs.

3) The code snippet contained less than 50 characters (excluding
white spaces) or more than 50 effective code lines (blank
lines and comments excluded). This removes very short
and very long code snippets unlikely to represent the
implementation of a well defined task. Indeed, in our
manually analyzed sample we found 62 “too short” or
“too long” snippets, with only 7 classified by the first
author as implementing a well defined task. Moreover,
not surprisingly, we observed that long snippets usually
come with too generic descriptions such as “Custom
DigitalClock” which makes them inappropriate for our
purpose, i.e., documenting a fine-grained piece of code.

During the manual analysis of the 660 hcode, descriptioni
pairs, we also checked for the presence of non-Java snippets,
to verify whether our keyword-based approach to isolate
Java snippets works (see Table 1). All the 660 inspected
snippets were in Java, confirming the validity of the de-
fined approach. After cleaning the dataset by removing all
hcode, descriptioni pairs matching one or more of the three
above heuristics, we obtained 63,558 hcode, descriptioni
pairs that represent the ADANA knowledge base.
Standardizing code descriptions. Before adding the
hcode, descriptioni pairs to the ADANA knowledge base,
the description standardizer converts, using the Stanford
CoreNLP toolkit [19], the mined descriptions in a format
suitable to document source code. We defined this process
after manually analyzing the previously mentioned sample
of 660 descriptions. Table 2 reports three example of code
descriptions before and after the standardization process.

The description standardizer starts by splitting the descrip-
tion into sentences [19]. Then, it converts all the instances of
how-to and howto (if any) to how to. For all sentences starting
with how (e.g., how to implement [...], how do you manage [...],
etc.), it: (i) removes the first two words (e.g., how to, how
do, etc.) and (ii) removes the 3rd word if it is a personal
pronoun (I, you, he, etc.). Then, in all sentences the description
standardizer (iii) converts each infinitive verb not following a
modal verb to third person, to give the developer the feeling
that the description is referring to “the code” she selects in
the IDE (see e.g., the first description in Table 2); and (iv)
converts each gerund verb following a conjunction to third
person (2nd description in Table 2). Once the descriptions
are standardized, they are stored together with the related

code in the ADANA knowledge base (see Figure 1).

2.2 The ADANA Web Service
ADANA provides a Web service that can be exploited by
a REST client, such as the ADANA Android Studio plug-
in. The Web service expects from the client an HTTP post
request containing a snippet of code. Then, it accesses the
knowledge base to look for clones of the provided code
snippet, to identify a suitable description provided to the
client as an HTTP response. We detail the main steps behind
this process as follows (red arrows in Figure 1).
The ASIA clone detector. The identification of code clones
for the code snippet provided by the client is performed by
running our ASIA clone detector on the knowledge base.
It is worthwhile to explain why we decided to devise our
own clone detector rather than reusing one of those existing
in the literature [20], [21], [22]. We needed a clone detector
able to run on incomplete, uncompilable code. Indeed, most
of the code snippets we mined from SO are not complete
compilation units. This excludes the use of efficient and
well-known tree-based clone detectors such as Deckard [23].
The obvious choice in these cases is to use text-based clone
detectors exploiting Information Retrieval (IR) techniques
such as Simian [24], that can work on any given piece of code,
compilable or not. However, they do not take advantage of
the peculiar characteristics of Android code: native Android
apps are highly dependent on the Android APIs [25], [26],
[27]. This can substantially help in identifying whether two
snippets of code implement the same feature (i.e., whether
they are clones). Indeed, snippets of code implementing the
same feature in Android (e.g., identifying the GPS location of
the device) are basically “forced” to exploit the same APIs.

For these reasons, we defined ASIA, an approach built on
top of standard IR clone detection and tailored for identifying
clones in Android-related code. We show in Section 3.2 that
ASIA achieves a better accuracy as compared to Simian [24].

ASIA is designed to detect not only exact clones (type-
1 clone), but also clones differing for variable renaming
(type-2), for the addition/deletion of few lines of code
not changing the main feature implemented in the code
(type-3), or even totally different implementations of the
same functionality (type-4). Indeed, given the main goal of
ADANA (i.e., documenting a piece of code to explain what
it implements), any type of code clone represents a valuable
source of information.

To explain how ASIA computes the similarity between
two code snippets Si and Sj we introduce two similarity
measures. The first is the standard Vector Space Model
(VSM) cosine similarity [28] between the two vectors of
words representing Si and Sj . When applying VSM we (i)

5

TABLE 4: Regular expression used by the ones in Table 3

Pattern name Regular expression (python regex) Description
semanticVersion "\d+(?:[.]\d+)*(?:[.]X|[.][*])*[\b\W]" Semantic versioning format, e.g., 4.*, 5.0, or

3.7.x
semanticVersion_widthOptionalParentheses "(?:"+semanticVersion+"|[(\[]\s*"+

semanticVersion+"\s*[)\]])"
Semantic versioning with optional parenthe-
ses, e.g., (4.*), 5.x.x, or [3.7.x]

semanticVersion_withOptionalRange semanticVersion + "(?:\s*\+|\s*and above|\s*and
later|\s*and higher|\s*and below|\s*and lower|\

s*and up|\s*and further|\s*(?:-|to|and|or)\s*"+
semanticVersion+")?"

Semantic versioning with optional range, e.g.,
3.4+, 4.x and above, 3.0-6.x, or 4.* and 5.*.

android_names "(?:pre-)?(?:Cupcake|Donut|Eclair|Froyo|
Gingerbread|Honeycomb|Ice Cream Sandwich|
IceCream Sandwich|ICS\b|Jelly Bean|JB\b|KitKat
|Lollipop|android l\b|Marshmallow|android m\b|
Nougat|android n\b|android tv\b)"

List of Android Code names and their abbre-
viations, e.g., Nougat, pre-Cupcake, or JB.

prefixWords "(?:^|-|\bin|\bon|\bwith|\bfor|\bfrom|\bor|\band
|&)"

A set of common prefix words, e.g., “from” in
“from android JB”.

suffixWords "(?:beta|versions|version|application|app|
devices|device|emulators|emulator|studio)"

A list of words might appear after referring
to an Android version to add more contextual
information, e.g., version, application, or em-
ulator

android_fullname "(?:android(?!’s)|android\s*"+
semanticVersion_widthOptionalParentheses+"|(?:
android)?\s*"+android_names+")\s*"+suffixWords+"
?"

The usual way to refer to a specific Android
versions, e.g., Android 3.*, android honey-
comb, or android Icecream emulators

android_fullname_withOptioanlRange android_fullname + "(?:\s*\+|\s*(?:\band|\bor
|/|&|\bto|-|)\s*(?:higher|above|later|upper|up
|further|below|lower|low|(?:android)?\s*(?:"+
semanticVersion_widthOptionalParentheses+"|"+
android_names+")))*\s*"+suffixWords+"?"

Referring to a range of Android versions, e.g.,
Android 3.x emulators and higher, Android
JB or higher devices, or Android 3.x and 4.x

android_pattern_withParentheses "[(\[]\s*"+prefixWords+"?\s*(?:"+
android_fullname_withOptioanlRange+"|android)\
s*[)\]](?:\s*[|\-:])?"

e.g., [Android 3.x and 4.x]:, [Android], or (in
android JB or higher)

android_pattern_withoutParentheses prefixWords+"\s*"+android_fullname_
withOptioanlRange+"(?:\s*[|\-:])?"

Similar to android_pattern_withParentheses, but
without parentheses, e.g., in Android ICS:,
for android N or higher devices-, or with
Android 3.x and 4.x

api_pattern "(?:android)?\s*(?:api|sdk)\s*(?:
level)?\s*\:?\s*(?:>|<|>=|<=)?"+
semanticVersion_withOptionalRange+"\s*"+
suffixWords+"?"

e.g., Android API level >= 10.x, API level 23+,
or Android SDK 21 emulators

api_pattern_withParentheses "[(\[]\s*"+prefixWords+"?\s*"+api_pattern+"\s*[)
\]]"

e.g., (from Android API level >= 10.x), [in
API level 23+], or (With Android SDK 21
emulators)

api_pattern_withoutParentheses prefixWords+"?\s*"+api_pattern+"\s*" e.g., from Android API level >= 10.x, in API
level 23+, or With Android SDK 21 emula-
tors

java_pattern "[(\[]\s*(?:in|for|by|using|with)?\s*java\s*[)
\]]"

e.g., (java), [using java], or (in java)

other_pattern "(?:[(\[]\s*"+suffixWords+"\s*[)\]]|/java|with
java|at runtime|during runtime)"

e.g., [emulator], /java, or during runtime

normalized the snippets’ text using identifier splitting (we
also kept original identifiers), (ii) removed English words
and reserved programming language keywords (used stop
word lists available in [29]), and (iii) used the tf-idf weighting
schema [28].

The second measure, that we named Android Similarity
(AS), is a Jaccard similarity [30] between the Android-specific
“objects” used in Si and Sj .

We extracted from the Android documentation [31]
the complete list of Android classes (e.g., Location), API
methods (e.g., distanceTo(Location)), and constants (e.g.,
FORMAT_DEGREES) in the Android framework API. We refer
to the set of these Android-specific “objects” as ASO. We
compute the AS between the two snippets as:

AS(Si, Sj) =
ASOSi \ASOSj

ASOSi [ASOSj

(1)

AS represents the percentage of Android-specific objects
used by both snippets over the whole set of such objects they

use. Given two snippets Si and Sj , ASIA computes their
similarity as:

sim(Si, Sj) =

⇢
↵ · V SM(Si, Sj) + � ·AS(Si, Sj) if |ASO| > 0
V SM(Si, Sj) otherwise

(2)
If the two snippets do not contain ASO, their similarity is

computed by relying on the VSM, otherwise it is calculated
as a weighted sum of their VSM and AS similarity, both
defined in [0, 1]. The two weights, ↵ and �, are also both
defined in [0, 1] and their sum must be equal to one, thus
ensuring that sim(Si, Sj) is also in [0, 1]. ASIA detects the
pair of snippets (Si, Sj) as clones, if sim(Si, Sj) > t. The
tuning of ↵, �, and t is reported in Section 3.2.
Ranking descriptions. Once the list of clones for a code
snippet is provided, three scenarios are possible. First, no
clones have been found: the client is notified that ADANA
is not able to document the snippet of code. Second, only
one clone is identified: its description is returned to the client
that will use it to document the code. Third, more than one

6

1

2

Fig. 2: ADANA GUI

clone is retrieved: ADANA uses the descriptions ranker to
identify the top clone with the most suitable description for
documenting the selected code snippet.

The descriptions ranker assigns to the descriptions asso-
ciated to each code clone a Quality Score (QS) indicating
their suitability to document a code snippet. The QS for
a description D of a clone C (QSD,C) is computed by
combining together three measures.

The first measure is the similarity (i.e., the sim function
in Equation 2) computed by ASIA between C (i.e., the code
described by D) and the selected snippet S. The higher the
similarity between C and the code snippet S selected in
the IDE, the higher the likelihood that D represents a good
description for such a snippet.

The second measure is the Comments Readability (CR)
proposed by Scalabrino et al. [32]. Extending the Flesch-
Kincaid readability index [33], it captures the readability of
code comments. We assume that descriptions having a high
CR should be preferred over descriptions having a low CR,
since the latter might be difficult to comprehend.

The third measure is the Comments and Identifiers Con-
sistency (CICsyn), proposed by Scalabrino et al. [32] to
assess code readability. It computes the overlap of terms
used in comments (in our case the description) and code
identifiers (in our case, the code that we want to document).
A high overlap of terms indicates that the comment describes
the code well. CICsyn takes into account synonyms (e.g.,
“display” and “monitor”). CICsyn computation is based on

the Jaccard distance of terms used in the description and in
the selected snippet.

Since the three measures can be all expressed in [0, 1],
given a snippet Si selected in the IDE, the descriptions ranker
computes the Quality Score (QSD,C) for a pair hD,Ci (i.e.,
hdescription, codei) as:

QSD,C =
sim(Si, C) + CR(D) + CICsyn(D,Si)

3
(3)

Once computed QSD,C for all clones retrieved for the
selected snippets, the ADANA Web service returns to the
client the description having the highest QSD,C value.
ADANA Android Studio plug-in. Figure 2 depicts the
ADANA Android Studio plug-in. A developer using
ADANA selects a snippet of code she is interested in
comprehending, and then invokes ADANA by using the
context menu (right click). ADANA requires the developer
to select at least three code statements to automatically
document (comment) it, to ensure that the ASIA clone
detector has sufficient information to reliably identify code
clones.

ADANA shows a granularity slider 1 to set the granu-
larity of the comments one is interested in retrieving: If the
slider is to the left, ADANA looks for clones of the whole
code selection and, in case of successful retrieval, only injects
a single comment describing the selected code (i.e., a single
request is sent to the ADANA Web service). Moving the

7

slider to the right, ADANA decomposes the selected code
on the basis of the indentation level, as identified by parsing
the AST representing the selection, and looks for clones
of (i) the whole code selection, and (ii) the smaller code
snippets obtained by decomposing the selection on the basis
of the indentation levels. Each of the parts ADANA tries to
document is shown in a different color. The maximum value
of the granularity slider depends on the maximum indentation
level of the selected code. Once the developer picks the
granularity, she clicks on the “Retrieve Code Description”
button close to the slider, obtaining the descriptions retrieved
by ADANA for each of the highlighted code portions (see the
bottom part of Figure 2). By using the code markers added
by ADANA in the IDE 2 , she can either accept it as is,
modify and accept it, or reject it. If she accepts (before/after
changing it), both code snippet and the associated comment
are added to the ADANA knowledge base.

3 STUDY DESIGN

The study addresses the following research questions (RQs):
RQ1: What percentage of Android apps’ code can be automatically

documented by ADANA?
RQ2: What is the accuracy of ASIA in identifying clones for a

given code snippet?
RQ3: Does ADANA help developers during code comprehension

activities performed on Android apps?

3.1 Context Selection and Data Analysis
We describe for each research question its context, the data
we collected, and the process adopted to analyze the collected
data. The study dataset and the ADANA plug-in are publicly
available [29].

3.1.1 What percentage of Android apps’ code can be auto-
matically documented by ADANA?
The focus of RQ1 is not the correctness/usefulness of the
provided comments, but on the commented code coverage. We
expect the ADANA coverage to improve over time with the
increase of data present in its knowledge base.

We selected 16 open source Android apps from the
open-source-android-apps [34] GitHub project. The apps were
randomly selected from 16 categories from Google Play,
ensuring there is one app per category. The list of selected
apps is available in Table 5. On average, the 16 apps have
⇠10k ELOC (i.e., Effective Lines Of Code, excluding blank
and comment lines)—min=600, max=37k.

For each app, we simulate a developer selecting snippets
of code and invoking the ADANA Web service to document
them: given a class C implementing a set of methods M , we
use a sliding window of length l to select snippets composed
of l contiguous ELOC from the body of each method in M ,
until all the lines are covered by the sliding window. For
example, given a method’s body composed of six lines of
code and assuming l = 3, we automatically extract four
snippets of code Si containing the following lines: S1={1,
2, 3}, S2={2, 3, 4}, S3={3, 4, 5}, S4={4, 5, 6}. This simulates
a developer selecting snippets with three lines of code and
asking ADANA to document them. Then, we keep track of
the percentage of generated code snippets we were able to

TABLE 5: The 16 apps selected for RQ1

Category Selected app (GitHub repository name)
Android TV XiaoMi/android_tv_metro
Android Wear romannurik/FORMWatchFace
Business openshopio/openshop.io-android
Communication VideoFly/VideoFly
Education derekcsm/hubble_gallery
Finance nothingmagical/coins-android
Game snatik/memory-game
Health&Fitness meghalagrawal/NightSight
LifeStyle forezp/banya
Multi-Media dkim0419/SoundRecorder
News kinneyyan/36krReader
Personalization ashutoshgngwr/10-bitClockWidget
Productivity abhijith0505/CarbonContacts
Social Network Jeffmen/Git.NB
Tools cdeange/github-status
Travel Swati4star/Travel-Mate

document by using ADANA. We experiment with values
of l varying between 3 and 21 at steps of 3 (i.e., 3, 6, . . .,
21). Our approach does not support selections shorter than
three statements. While there is not always a correspondence
between ELOC and number of statements, the three ELOC
lower-bound ensures valid selections in most of the cases.
Note that if a method in the apps considered in our study
has less than three statements, we do not consider it.

We are assuming that the developer is not using the
granularity slider (i.e., she only wants an overall comment
for the selected snippet of code). Indeed, given the various
granularities we considered (from 3 to 21 ELOC), simulating
the usage of the granularity slider is not needed, since
the small snippets extracted from a method m (e.g., those
composed by 3 or 4 ELOC) are clearly contained into the
larger snippets extracted from m (e.g., those composed of 21
ELOCs). We ignore code not present in the method bodies
(e.g., import statements) since this is unlikely a real usage
scenario for our approach.

To answer RQ1 we show boxplots of the distribution of
the commented code coverage obtained in the 16 apps for the
considered values of l. Moreover, we present the commented
code coverage in terms of (i) percentage of ELOC commented,
and (ii) percentage of code snippets of length l commented.

3.1.2 What is the accuracy of ASIA in identifying clones for
a given code snippet?
We randomly selected from our knowledge base 40 code
snippets having between three and twenty ELOCs. We made
sure that our approach was able to identify at least one clone
for each of the selected snippets, otherwise we replaced it
with another snippet from the knowledge base until all of
them met the requirement.

Then, we asked study participants to assess whether the
code clones identified by ASIA for each snippet were true or
false positives. The choice of the upper-bound in the snippets’
size was driven by the will of considering code snippets
that are not too complex and, thus, limit the difficulty and
effort required to participants in assessing the correctness of
the identified clones. On average, our approach identified
4.8 clones per snippet (min=1, max=9). The set of 40 code
snippets and the identified 192 clones are available in our
replication package [29].

The participants were identified by using convenience
sampling among the personal contacts of the authors. We
invited developers and CS students/professors to take part

8

in our study by using a Web application we developed to
perform the following steps. First, we collected demographic
data about participants (years of experience in programming,
in Java, and in Android, their current position, etc.). Each
participant was then required to assess the correctness of
all clones identified by ASIA for eight snippets randomly
selected from the 40 objects of this study. The Web applica-
tion was designed to automatically balance the number of
evaluations for each of the 40 snippets (i.e., the number of
participants assessing the correctness of each identified clone
was roughly the same).

The eight snippets were presented individually (i.e., each
snippet in a different page) to participants, and each clone
identified by ASIA for it was shown below the snippet with
two radio buttons allowing the participant to express her
assessment as: it is a clone or it is not a clone. We instructed
participants to consider all types of clones (i.e., from type-1
to type-4) as valid.

In total, we collected 534 evaluations across the 192 clones
of the 40 snippets. We then removed the answers we collected
from two participants with zero Android experience, and this
resulted in (i) one snippet having no evaluations for its clones,
and (ii) one snippet evaluated by only one participant. This
latter had 11 clones reported by ASIA for which, only one
was not assessed as a true positive. We removed these two
snippets and corresponding clones from the analysis to have
only clones that were evaluated by at least two participants.
Thus, our analysis involves 490 evaluations related to 171
clones of 38 snippets. Each clone was evaluated, on average,
by 2.87 participants (median = 2, Q3 = 3).

We analyzed questionnaires completed by 22 participants
(11 professional developers, 4 PhD, 3 MSc, and 4 BSc
students). Table 6 presents demographic information about
the participants.

TABLE 6: Demographic of study participants (RQ2)

#years experience in Avg. Median
Programming 7.7 7.0

Java programming 6.1 5.5
Android programming 1.9 1

We answer RQ2 by reporting the percentage of true
and false positives classified by the participants1 as well
as by discussing example cases of true and false positives,
to highlight strengths and weaknesses of the ASIA clone
detector (Section 4.2).

3.1.3 Does ADANA help developers during code compre-
hension activities performed on Android apps?
We asked 10 professional developers to comprehend a set of
snippets of code with and without the help of the comments
automatically injected by ADANA. Note that the scenario
we aim at simulating in this study is that of developers
comprehending code for which comments are not available.

We started by randomly selecting from the 16 mobile
apps used in RQ1 16 methods (one per app) meeting the
following criteria:

1. The percentage of true positives is equivalent to the precision
measure (a.k.a., clone detection rate) used by previous papers on clone
detection [23], [35].

1) Having between 10 and 50 ELOC, to exclude methods that
are too trivial or too complex to comprehend.

2) Having at least one clone identified, to ensure that ADANA
added at least one comment to the methods.

3) Being self-contained. One of the authors manually analyzed
the selected methods to ensure they were self-contained,
i.e., they could be comprehended without navigating
additional source code (if not those of the Android
API framework, available online). This resulted in the
replacement of 3 methods.
We ran ADANA on each of the selected methods to have

them with and without automatically injected comments.
We moved the granularity slider to the right to add as
many comments as possible. Also, we removed the original
comments (if any) from the methods, to avoid a possible
confounding factor and isolating the effect of the injected
comments. Also, this is in line with our goal of simulating
the real-life scenario in which the developer uses ADANA to
understand a method which lacks comments. The comments
removal was needed for 4 of the 16 methods (no comments
were present in the remaining 12). We refer to the 16
original methods as the uncommented dataset, and to the
16 augmented with ADANA comments as the adana dataset.

We invited 10 participants via convenience sampling
and ran this study via a Web application we developed.
Demographic information about the participants are shown
in Table 7.

TABLE 7: Demographic of participants (RQ3)

#years experience in Avg. Median Min.
Programming 8.4 7.5 1+

Java programming 7.0 6.5 1+
Android programming 2.1 2 1+

Each participant was required to comprehend a subset of
eight methods randomly selected from the starting 32. Four
of the eight snippets were selected from the uncommented
dataset, and four from the adana dataset. We made sure that
each participant comprehended eight different methods (i.e.,
she did not comprehend twice the same method with and
without the ADANA comments). The Web application was
in charge of balancing the number of evaluations for each
of the 32 methods. We collected 80 evaluations across the 32
methods (2.5 evaluations per method, on average).

The eight methods were presented individually and in
a randomized order to mitigate learning and tiring effect.
Participants were allowed to browse the Web to collect
information about the types, APIs, data structures etc., used
in the methods. This was done to simulate the typical
understanding process performed by developers. We asked
participants to carefully read and fully understand each
method. We clarified that “fully understand” can be read as
“being able of explaining the method to another developer”.
Then, they were required to answer three verification questions
about the method they inspected. The questions were defined,
independently, by two of the authors for different sets of
methods, with the goal of covering different areas of the
method under analysis. This resulted in questions targeting
both parts of the method commented and not commented
by ADANA, and could represent a confounding factor.
We preferred to focus our questions on the whole method

9

rather than only on the parts commented by ADANA
to not introduce a strong bias in our evaluation. Of the
48 formulated questions (3 questions ⇥ 16 methods), 23
questions explicitly targeted parts of the code commented
by ADANA. This also includes wrong comments injected
by ADANA and not just good comprehension hints, as we
discuss in the results section. An example of a comprehended
method together with its verification questions is provided
in the result section (4.3).

The Web app we developed tracked the time needed by
each participant to comprehend each of the eight methods
and answer the three verification questions. Clearly, this
included time spent by participants in browsing the Web
looking for information needed to comprehend the snippet.
We explicitly asked the participants to not interrupt the
comprehension task in order to not introduce a bias in the
tracked comprehension time and to report to us in case
unexpected interruptions happened. None of the participants
reported issues of this type.

To verify if ADANA helps developers in comprehending
the code, we used the following two measures for code
understandability, defined by Scalabrino et al. [36]:

Actual Understandability (AU). It is computed as the
percentage of correct answers the participant provided to the
three verification questions. Thus, the metric is defined in [0,
1] range, where 1 indicates high understanding.

Timed Actual Understandability (TAU). It is computed
as:

TAU = AU

✓
1� T ime

maxT ime

◆
(4)

where T ime is the time needed to comprehend the method
and answer the verification questions. The higher the AU
is (i.e., the percentage of correct answers), the higher is the
TAU; and the higher the T ime is (i.e., the time needed to
understand the method), the lower is the TAU. Also, TAU is
defined in [0, 1]. As done in [36], we considered the relative
time (Time

maxTime) so that TAU gives the same importance to
both the correctness achieved (AU) and the time needed
(T ime).

We computed these two proxies for each of the 80 evalua-
tions by participants. Then, we compare their distributions
for methods belonging to the uncommented and to the adana
dataset. A normality check using the Shapiro-Wilk test
indicated a statistically significant deviation from normal
distribution (p-value< 0.05); hence we use non-parametric
statistics. For all tests we consider a significance level ↵ = 5%.
We compare the results using the Wilcoxon signed-rank
test. Since we do not know a priori in which direction the
difference should be observed, we use a two-tailed test. We
also assess the magnitude of the observed difference using
Cliff’s delta (d) effect size [37], suitable for non-parametric
data. Cliff’s d ranges in the interval [�1, 1] and is negligible
for |d| < 0.148, small for 0.148  |d| < 0.33, medium for
0.33  |d| < 0.474, and large for |d| � 0.474.

Note that participants had no information about the
purpose of the study and of the fact that comments were
injected automatically. We revealed this information at the
end of the experiment, and asked to comment their perceived
usefulness in an (optional) open question. We report some of
the representative comments left by participants.

3.2 Experimental Setting

To run our study we have to tune the ADANA’s parameters
and, in particular, the ↵, �, and t parameters used by the
ASIA clone detector (see Section 2.2). To calibrate these
parameters we created an oracle reporting true and false
positive clones for a set of snippets. We randomly selected
eight code snippets from the official Android development
guide [38], making sure that the snippets:

• Were implementations of a well-defined task (e.g., acti-
vate the WiFi network);

• Were implemented in Java, not involving any usage of
files written in other languages (e.g., XML files); and

• Made use of at least one “Android-specific object” (see
Section 2.2).

The last rule was needed for the tuning of the ↵ and �

parameters. To properly set the weights of the V SM and
of the AS similarities (Equation 1), we need to consider
cases in which the AS can be computed. Then, we took
the two longest snippets, and extracted from each of them
one “sub-snippet”, to simulate the situation in which the
developer uses the granularity slider to obtain more fine-
grained descriptions of the code. Thus, in total, we included
in our oracle ten code snippets.

We identified in the ADANA knowledge base composed
of 63,558 hcode, descriptioni pairs, clones of each selected
snippet. In particular, for each snippet we created a set of
candidate clones to manually validate by randomly selecting:

1) Twelve candidate clones from the top-50 results returned by
using the VSM similarity. Thus, 12 clones that are in the top
positions when using only textual information to identify
clones. Selecting from the top of the ranked list, we expect
to increase the likelihood of including true positives in
our oracle.

2) Twelve candidate clones from the top-50 results returned
by using the AS similarity. Thus, 12 clones that are in
the top positions on the ranked list when using only
information related to Android-specific objects (i.e., classes,
API methods, and constants of the Android framework).
We made sure to not select in this stage candidate clones
that were previously selected when looking at the top-50
results returned by the VSM similarity.

3) Twelve candidate clones returned in position 51-to-500 by
the VSM similarity or by the AS similarity (six for each
similarity score). We expect these candidates to have a lower
likelihood of being true positives, thus allowing us to
obtain in our oracle a good mix of true and false positives
for each snippet. We decided to not randomly pick from
the whole ranked list (we considered up to position 500)
to not make the classification of true and false positives
trivial (i.e., true positives have a very high similarity value,
while false positives have very low similarity values), and
thus to ensure a good tuning of the t parameter.

Our oracle includes 10 snippets and 36 candidate clones
for each of them. Thus, we performed the tuning on a set of
360 candidate clones that represents a statistically significant
sample of the 63,558 snippets present in the ADANA
knowledge base with 95%±5% confidence interval (Student’s
t-distribution). This explains the choice of targeting 36
candidate clones per snippet. Once he obtained the dataset,

10

the first author manually went through all the candidate
clones marking each of them as a true or false positive.

The oracle we built is publicly available [29], and it
includes 95 true positives and 265 false positives.

Finally, we run the ASIA clone detector on the built
dataset, testing all 220 combinations of ↵, �, and t obtained
varying ↵ and � between [0, . . ., 1] at steps of 0.1 ensuring
↵ + � = 1.0 and t between [0.05, . . ., 1] at steps of 0.05.
We evaluate each configuration in terms of (i) its precision,
meaning the percentage of correct clones it identifies out
of the returned clones, and (ii) its coverage, meaning the
percentage of snippets for which it is able to identify at
least one correct clone. Before discussing the results some
clarifications are needed. First, we did not use recall, since
for our specific application (i.e., automatically identifying a
description for a given code snippet) what we really care is to
find at least one suitable description. This is why we rely on
the snippets’ coverage. Second, ADANA is the classic appli-
cation in which precision is much more important than recall.
Indeed, the scenario in which our tool will be used is that
of a developer experiencing difficulties in comprehending a
piece of code and, thus, asking for help to ADANA. In such
a scenario it is better to just report to the developer a void
result (i.e., “I am not able to document this code”) rather than
providing a wrong description confounding the developer
even more.

Figure 3 shows the results of the tuning process for (i)
V SM similarity (i.e., ↵ = 1 and � = 0), red line and bars
(ii) AS similarity (i.e., ↵ = 0 and � = 1), blue line and bars,
and (iii) the best combination (in terms of high precision,
good coverage compromise) of the two (i.e., ↵ = 0.5 and
� = 0.5) we identified. The results are shown for precision
(y-axis, lines) and coverage (y-axis, bar chart) when varying
the t threshold (x-axis). The results for all experimented
combinations are available in our replication package [29].

10%

pr
ec

is
io

n

20%
30%
40%
50%
60%
70%
80%
90%

100%

t
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

ASIA VSM AS

snippets’ coverage

Fig. 3: Tuning of the ↵, �, and t ASIA parameters.

The V SM exhibits the lowest precision, with good values
(100%) exhibited only when the coverage drops at 10%,
meaning that it is able to identify true positives code clones
for only one of the ten snippets in our oracle. The Android
Similarity (AS) performs better, while still obtaining very low
coverage (30%) when the precision values become acceptable
(> 75%). Finally, the best combination we identified for the
ASIA clone detector is able to reach very high values of

precision (93%) when the coverage still exhibits a good 60%
(i.e., we should be able to automatically document six out of
ten snippets with such a level of precision) by using t = 0.65.
↵ = 0.5, � = 0.5, and t = 0.65 is the default ADANA
configuration, and the one we will use in our study.

On the performance of the Simian [24] clone detector.
As explained in Section 2.2, the obvious alternative to using
ASIA in ADANA would have been to exploit a clone
detector based on IR techniques. This is due to the need
for running the clone detection on incomplete, uncompilable
code. For this reason, before finalizing our decision of using
ASIA, we also ran the Simian clone detector on the same
dataset we used for the ASIA’s tuning. Simian does not have
a “similarity threshold” to tune, but simply returns the set
of clones it is able to identify in a given dataset. However, it
has a number of parameters to set (see [29] for the complete
configuration we used). We set those parameters to make sure
that Simian did not only look for exact (type-1) clones (e.g.,
we ignore differences related to the name of the variables,
constant values etc.). Simian was able to identify a correct
clone for 50% of the 10 snippets (i.e., coverage=50%) with
a precision of 77%. ASIA, in the configuration we adopted,
achieves a higher coverage (60%) accompanied by a higher
precision (93%).

4 RESULTS & DISCUSSION

In the following sections we answer the three research
questions formulated in Section 3.

4.1 What percentage of Android apps’ code can be
automatically documented by ADANA?
Figure 4 reports the commented code coverage achieved by
ADANA on the 16 subject apps. The white box plots show
the percentage of ELOC that were automatically documented
by ADANA, while the grey ones report the percentage of
automatically selected code snippets for which the ASIA
clone detector was able to identify at least one clone. The
results are shown when varying the length of the selected
code snippet (l) between 3 and 21 at steps of 3 (x-axis).
Finally, the black box plots show the average number of
clones retrieved by ADANA for the snippets of code it was
able to document. In total, this evaluation involved 114,499
code snippets of different length.

Looking at Figure 4, the first noteworthy finding is the
stable coverage trend when varying the length of the selected
snippets. Indeed, the median percentage of documented
ELOC varies between 30% and 36%, while the percentage
of documented code snippets between 38% and 45%. On
the negative side, this indicates that ADANA generally
cannot help developers in comprehending almost two-thirds
of the apps’ source code. While this might look like a
negative result, it is worth remembering that the approach is
fully automated and it is unrealistic to expect much higher
coverage. Also, these percentages represent a lower-bound
that is likely to increase over time with the growth in the size
of the ADANA knowledge base.

Similar observations can be made for the average number
of clones retrieved by ADANA for snippets it was able
to document, with the median ranging between 14 and 18,

11

0.2

0.4

0.6

0.8

1.0

3 6 9 12 15 18 21co
m

m
en

te
d

co
de

 c
ov

er
ag

e

l

% ELOCs commented
% code snippets commented

3 6 9 12 15 18 21
l

av
g.

 #
re

tr
ie

ve
d

cl
on

es

6

12

18

24

30

Fig. 4: Commented code coverage (left) and average number of retrieved clones (right)

indicating that ADANA is often able to retrieve several
descriptions for a given snippet. This justifies the need for
the descriptions ranker in our approach.

The app on which ADANA achieves the lowest coverage
(⇠7% ELOC and ⇠12% snippets coverage) is FORM Watch
Face for Android Wear [39]. It is developed for Android wear-
able devices (i.e., watches) and, in the ADANA knowledge
base, we only have 54 hcode, descriptioni pairs containing
the word “wear”: ADANA does not have enough relevant
entries in its knowledge base. The code ADANA is able to
document for this app is mostly standard Android code that
can also be found in mobile phone apps.

10-bitClockWidget [40] is instead the app for which
ADANA achieves highest coverage levels (⇠48% ELOC
and ⇠50% snippets coverage). It implements a clock wid-
get that can be embedded in the home screen. Android
widgets strongly rely on the classes implemented in the
android.appwidget package of the Android API framework,
that does only contain five classes, thus promoting the use
of similar code across different widgets.

Summarizing, the achieved results show a good coverage
level exhibited by ADANA on the 16 subject apps, with al-
most one-third of the apps ELOC that could be automatically
documented. Clearly, we did not focus on the correctness of
the identified clones and, as a consequence, on the usefulness
of the retrieved documentation, which is the object of the
next research questions.

4.2 What is the accuracy of ASIA in identifying clones
for a given code snippet?
As previously said, we collected 490 clones evaluations
related to 171 clones of 38 code snippets. 381 of the 490
evaluations were marked as true positive, which accounts
for a percentage of true positives (a.k.a., precision) of 77,76%.

Concerning the participants’ agreement, for 118 clones
out of 171 at least two-thirds of the evaluators classified
the candidate clone as a true positive, while for 18 cases
at least two-thirds of the evaluators agreed on classifying
the candidate as a false positive. This means that moving
the focus on the single code clones, by adopting a majority-
voting schema (i.e., by considering a clone as a true positive
only if the majority of the evaluators classify it as a true
positive), we obtain a precision of 69.00% (118/171). In more
detail, for 99 out of 171 clones, all the participants evaluating
the candidate clone agreed with ASIA (i.e., answered “Yes,

it is a clone”), while in 14 cases all the evaluators disagreed
with our approach (i.e., answered “No, it is not a clone”).

We also investigated the types of code clones detected
by ASIA. The first author manually analyzed the 118 clones
classified by the majority of participants as true positives
with the goal of classifying each of them as a type-1, type-2,
type-3, or type-4 clone. We found no instances that can be
considered as type-1 clones, four type-2 clones, 102 type-
3 clones, and 12 type-4 clones. Thus, most of the clones
identified by ASIA differ for the addition/deletion of few
lines of code not changing the main feature implemented in
the given code snippet.

Listing 2 reports an example of a type-3 clone detected by
ASIA for the code snippet shown in Listing 1 classified by all
participants as a true positive. The snippet and corresponding
clone create a Bitmap object from a URL; note that the clone
implements the same feature of the code snippet, but it has
additional statements and there are changes in the identifiers.

URL url = new URL("http://www.yourdomain/your/path/
image.jpg");

HttpURLConnection connection = (HttpURLConnection)
url.openConnection();

connection.setDoInput(true);
connection.connect();
final InputStream input = connection.getInputStream

();
Bitmap yourpic = BitmapFactory.decodeStream(input);

Listing 1: Code snippet creating a bitmap object from a URL

public Bitmap getBitmapfromUrl(String imageUrl)
{ try {

URL url = new URL(imageUrl);
HttpURLConnection connection = (

HttpURLConnection) url.openConnection();
connection.setDoInput(true);
connection.connect();
InputStream input = connection.getInputStream

();
Bitmap bitmap = BitmapFactory.decodeStream(

input);
return bitmap;

} catch (Exception e) {
e.printStackTrace();
return null;

} };

Listing 2: Detected (true positive) clone for Listing 1

12

Conversely, Listing 4 depicts an example of a clone
detected by ADANA for the snippet in Listing 3, classified
by all the evaluators as false positive.

btn.setTag(textView.getText().toString());
btn.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View v) {

// TODO Auto-generated method stub
String s =(String)v.getTag();

} });

Listing 3: Code snippet declaring a listener for a button

textViewField.setOnLongClickListener(new
OnLongClickListener() {

@Override
public boolean onLongClick(View v) {

// TODO Auto-generated method stub
return false;

} });

Listing 4: Detected (false positive) clone for Listing 3

The snippet in Listing 3 (i) declares a click listener for a
button and the corresponding onClick method, and (ii)
shows how to set and get the button tag. Instead, the
clone (Listing 4) implements a long click listener for a
text view. This false positive is due to the extremely high
V SM between the candidate clone and the snippet (i.e.,
0.79). Such a high value is due to several shared terms
between the two snippets (e.g., click, listener, text, view, auto,
generated etc.). Some of these terms are due to the comment
automatically generated by the IDE (i.e., TODO [...]). These
comments should be removed by matching them with regular
expressions before computing the clones’ similarity. This is
something we implemented in ADANA after the results of
this study and thanks to this example.

Another example of candidate clone classified by all
participants as false positive is related to a code snippet
which converts pixels to DIPs (Density Independent Pixels)
for which ASIA identified a clone doing the opposite (i.e.,
converting DIPs to pixels). Also, the identification of this
false positive clone is partially due to the high V SM

similarity between the candidate clone and the snippet,
due to several terms shared between the two methods,
as well as to the co-usage of Android constants such
as DisplayMetrics.DENSITY_DEFAULT, needed in both
methods.

Finally, for 35 clones the participants did not reach an
agreement (i.e., the answers were distributed equally towards
true and false positives). For example, we had a snippet
showing how to create a context menu and add items to it
and a clone identified by ASIA for it implementing the same
feature. However, in the snippet the items were statically
added using String variables (e.g., menu.add(“Option1”)),
while in the clone the menu items were added dynamically
according to an item selected on a list view. While at high-
level the snippet and the clone implement the same feature
(i.e., create a context menu), the implementation differs in
how the menu is populated.

Participants did not reach an agreement also for the code
shown in Listing 6, reporting a clone detected by ASIA for
Listing 5. While the two code snippets focus on very similar

tasks, i.e., writing/reading into/from SharedPreferences,
the exact actions they perform on the SharedPreferences
object are different. Three out of the six participants involved
in the assessment of this clone marked it as a false positive.

SharedPreferences pref = PreferenceManager.
getDefaultSharedPreferences(YourActivityName.
this);

Editor edit1 = remembermepref.edit();
edit1.putInt(totalbalance_key,totalBalance);
edit1.commit();;
SharedPreferences pref = PreferenceManager.

getDefaultSharedPreferences(YourActivityName.
this);

int totalbalance = pref.getInt(totalbalance_key);

Listing 5: Code snippet writing/reading an int value
into/from shared SharedPreferences

PreferenceManager.getDefaultSharedPreferences(this).
edit().putInt(your_key, <Your_value>).commit();;

PreferenceManager.getDefaultSharedPreferences(this).
getInt(your_key, <Default_value>);

Listing 6: Clone detected for Listing 5

Note that in this study we did not consider the false
negatives (i.e., clones of the considered code snippets that
were present in our knowledge base but were not retrieved
by ADANA) and, as a consequence, the ADANA’s recall
for two reasons. First, given a code snippet, it is practically
impossible to manually identify all its clones in a database of
64k snippets. Thus, without having a complete oracle, it is not
possible to identify false negatives. Second, considering the
goal of our approach (i.e., identifying clones to “reuse” code
descriptions), what we care about is that the clones identified
by ADANA are true positives, to avoid the injection of
wrong comments in the code to document.

In summary, ADANA is able to detect clones for Android
code snippets with a precision of ⇠ 70%, by relying on
lightweight textual analysis. Further work should be devoted
to improving the precision of ADANA with static analysis
techniques that might resolve the issues in the aforemen-
tioned examples.

4.3 Does ADANA help developers during code com-
prehension activities performed on Android apps?
Figure 5 reports the understandability (i.e., correctness
achieved in the verification questions—left side) and the TAU
(i.e., Timed Actual Understandability, taking both correctness
and time needed for the comprehension into account—right
side) achieved by developers when comprehending methods
commented (adana group) and not commented (uncommented
group) by our approach.

Participants obtained a better understanding of the
method under analysis when comments injected by ADANA
were present. Indeed, the average understandability was 0.92
(median = 1.00) in the adana group, and 0.77 (median =
0.83) in the uncommented group. This difference is statistically
significant (p-value=0.03) with a medium effect size (d=-0.33).

The difference is even more marked when assessing the
comprehension level by also considering the time partici-
pants spent understanding the methods and answering the
verification questions. The average TAU is 0.66 in the adana

13

0.2

0.4

0.6

0.8

1.0

Ac
tu

al
 U

nd
er

st
an

da
bi

lit
y

ADANA UNCOMMENTED

X

X

0.2

0.4

0.6

0.8

1.0

TA
U

X

X

ADANA UNCOMMENTED

Fig. 5: Participants’ understandability for methods com-
mented (adana) and not (uncommented) by ADANA. The
red x represents the average of distribution, while the circles
show the outliers.

group (median=0.75), and 0.45 in the uncommented group
(median=0.44). Such a strong difference is due in part to the
higher understandability achieved by participants thanks
to the comments injected by ADANA, but mostly to the
time developers saved in comprehending the methods when
working in the adana group. Indeed, on average, participants
spent 99 seconds (median=87) per method when comments
by ADANA were present as compared to 140 (median=126)
when they were not present. Also, in this case, the difference
is statistically significant (p-value<0.01) but with a large effect
size (d=-0.48).

While ⇠100 seconds looks insufficient to comprehend
a method, it is worth remembering that we also had in
our sample methods composed of only 10 ELOC. Also, the
participants were all professional developers with Android
experience, and we asked them to perform the comprehen-
sion activity in the shortest time possible to make sure they
did not stop while performing a task (thus, introducing bias
in the collected data). Given the maximum comprehension
time we registered for a single method (i.e., 318 seconds), we
are confident that the developers did their best to understand
the code and answer our questions in the shortest time
possible.

public void onTextChanged(CharSequence s, int start,
int before, int count){

// Shows a Clear button after the first character
pressed and hides it when the text is empty

if(s.length() > 0){
clear_button.setVisibility(View.VISIBLE);
searchText = s.toString();

}
}

Listing 7: Example of useful injected comment

Listing 7 shows (part of) one of the methods the de-
velopers were asked to understand. The comment in the
method is automatically injected by ADANA and helped
the participants in quickly understanding under which
circumstances the clear button is visible on the screen (When
is the clear_button shown to the user? was the first question we
asked about this code snippet). While developers were able
to fully comprehend and correctly answer all verification
questions for this code snippet both with and without the

injected comments, they saved, on average, two minutes of
comprehension activity thanks to the ADANA comments.

// Resizes image before decoding it to bitmaps.
float widthRatio = ((float) rotatedWidth) / ((float)

MAX_IMAGE_DIMENSION);
float heightRatio = ((float) rotatedHeight) / ((

float) MAX_IMAGE_DIMENSION);
float maxRatio = Math.max(widthRatio, heightRatio);
BitmapFactory.Options options = new BitmapFactory.

Options();
options.inSampleSize = (int) maxRatio;
srcBitmap = BitmapFactory.decodeStream(is, null,

options);
[...]
// Rotates a bitmap.
Matrix matrix = new Matrix();
matrix.postRotate(orientation);
srcBitmap = Bitmap.createBitmap(srcBitmap, 0, 0,

srcBitmap.getWidth(), srcBitmap.getHeight(),
matrix, true);

Listing 8: Example of useful injected comment

Listing 8 reports another example of correct and useful
comments injected by ADANA. In particular, Listing 8
shows two parts of a method subject of our study for which
ADANA injected two comments (i.e., “//Resizes image
before decoding it to bitmaps” and “//Rotates
a bitmap”) both correctly describing the method behavior,
helping participants to increase their average actual under-
standability (AU) by 22%, while still saving, on average, one
minute of comprehension activity.

Interesting insights were also provided by participants
when answering to the last open question in which we
revealed that the comments were automatically injected
and asked participants to provide their thoughts. One of
the participants wrote “comments were useful to comprehend
at least parts of the snippets”, confirming the potential use-
fulness of ADANA. Another one said “I noticed one case
in which the comment was partially wrong, since it referred to
loading JSON from a webpage, while the method was parsing
the webpage but not as a JSON, other comments were good”.
The developer is referring to a method in which ADANA
injected this comment “//JSON parser from web page”
in a method that stored the output of an HTTP request into
a String for further analysis.

This clearly represents a case of “false positive” com-
ment. We did not observe any strong impact of this com-
ment on the participants’ performance, likely due to the
fact that it was compensated by the still useful context
hint (i.e., parsing a web page). A case in which the par-
ticipants performed equally both with and without the
comments injected by ADANA is represented by code
snippet #8 (see replication package [29]). This case is
interesting since, despite the fact that the injected com-
ment (“//Reads Distinct Contacts with Contact
Number and Names”) correctly describes the snippet, it
did not benefit the correctness achieved by participants nor
the time they spent comprehending the code. Our conjecture
is that the complexity of the code snippet, including two
while loops, three if statements, and one switch-case
statement, probably pushed the developers to carefully
inspect the whole code in both scenarios, thus reaching a
similar comprehension level in roughly the same amount of

14

time (⇠200 seconds) when working with the two treatments.
Summarizing, ADANA seems to help developers in code

comprehension activities performed on originally uncom-
mented code snippets. This especially results in time saved
for the code comprehension.

5 THREATS TO VALIDITY
Construct validity. In RQ1 we mimic developers selecting
snippets of code to assess the ADANA code coverage. While
we experimented with code snippets of different length, our
simulation might not be realistic of typical snippets selected
by developers. Also, we considered the “coverage” of all
apps’ ELOC as equally important, which is questionable (e.g.,
the code implementing the application logic is likely the one
most important to document).

Internal validity. To avoid bias in the experiments
performed to answer RQ2 and RQ3, we made sure that
participants were neither aware of the investigated research
questions nor of the general goal of the tasks we required
them to perform. Also, we decided not to include in our stud-
ies participants without Android experience to have a more
homogeneous population and to avoid a strong influence of
the participants’ knowledge/skills as a confounding factor.
Finally, we made sure to have multiple evaluators for each
candidate clone (RQ2) and for each method participants had
to comprehend (RQ3).

The three requirements used in the quality checker to
exclude hcode, descriptioni pairs likely having a low quality
have been defined by the first author, thus introducing
possibly subjectivity bias. However, the requirements he
defined have been discussed among all authors, also looking
at the pairs discarded thanks to their application.

Also, in RQ3 we limit our analysis to methods having a
size between 10 and 50 ELOC, with the goal of excluding
from our study methods that were too trivial or too com-
plex to understand. However, these thresholds have been
defined based on the authors’ development experience, and
experimenting with methods of different size could lead to
different findings.

Conclusion validity. We address threats to conclusion
validity by using appropriate statistical tests and effect
size measures to support our claims. While we observed
a positive effect of ADANA on code comprehension activ-
ities performed on uncommented code snippets, we are not
claiming its usefulness in a scenario in which the code is
commented, since a different study design would be needed
to assess this.

External validity. The generality of our results is bounded
by the limited number of apps (RQ1), snippets (RQ2), and
methods (RQ3) used in our study, as well as by the number
of participants (RQ2 and RQ3). For example, it is possible
that the coverage level observed on the apps selected for RQ1

does not generalize to other apps.

6 RELATED WORK
ADANA is related to other approaches for automatic
documentation of software artifacts and mining of source
code snippets/examples with recommendation purposes.
Previous automatic documentation approaches rely on sum-
marization techniques [14], [41], stereotypes [42], [43], [44],

and mining of repositories with developers communications
and Q&A Websites [45], [46]. These approaches automatically
generate documentation at different granularities and for
software artifacts such as unit test cases [13], [44], [47], [48],
changes/commits [9], [49], [50], [51], database usages [12],
release notes [52], [53], classes [6], [54], methods [11], [55],
[56], code fragments [7], [10], [57], bug reports [58], software
concerns [59], and mailing lists [60].

The closest work to ADANA, in terms of granularity,
is the one by Ying et al. [7], [10], which also focus on
automatic documentation of source code snippets. Ying et al.
explored the usage of machine learning for selecting lines
in a code fragment that should be in an extractive summary.
As opposed to that, ADANA “freely” documents a snippet
with descriptions mined from the Web. Wong et al. [57] also
exploits the use of existing code comments for automated
code comments generation with an approach called ColCom.
It is not limited to Android, but it only works with type-
1 and 2 clones found in a limited set of projects given as
an input of the approach. Unlike ADANA, ColCom does
not rely on a central persistent database which can improve
over time and its performance depends on the input projects.
Moreover, since the code comments are extracted from source
code, ColCom relies on a set of heuristics to identify the code
comments associated to a code snippet.

Automated extraction/recommendation of API usage ex-
amples is also related to ADANA. Such approaches [61], [62],
[63], [64], [65], [66], [67], [68], [69], [70], [71] mine software
repositories to find representative API usage examples for
assisting developers when trying to use a class or method, or
when finding code examples showing how to implement a
given task/feature. For instance, MUSE by Moreno et al. [66]
uses static analysis techniques and clone detection methods
for providing developers with usage examples for a given
method. Compared to previous approaches, ADANA does
not rely on source code repositories of software systems
and does not generate code examples. Instead, it mines
fragments that are in SO discussions and GitHub Gists
to inject code comments in a given snippet. ADANA is
therefore complementary to approaches like MUSE.

Finally, automatic documentation of source code based
on examples from the crowd has been explored by Vassallo
et al. [46] and Rahman et al. [45]. Both these works mine
SO discussions to re-document a Java software system
but at different granularities: method and code fragment
respectively. The approach by Vassallo et al. searches on
Stack Overflow for sentences related to the method the
developer is interested in documenting. For example, if the
developer is working on the Apache Lucene project (one of
the two used in the evaluation), and she wants to document
a method implemented in a class, the approach searches in
SO using as search keys project name + class name + method
name. This means that this approach can only support
the documentation of very well known systems widely
discussed on SO, while it cannot support the documentation
of unknown software projects, like mobile apps still to be
published on the Google Play store. ADANA can instead
document, in part (see RQ1 results), any Android mobile
app. Concerning the work by Rahman et al. [45], the authors
present CodeInsight, a tool pioneering the mining of insight-
ful comments about a snippet of code from SO. CodeInsight

15

looks for comments discussing bugs or improvement tips for
code, while ADANA retrieves complementary information,
mined from multiple sources, aimed at explaining what a
snippet of code does.

7 CONCLUSION
We presented ADANA, an online-resources-mining ap-
proach and a tool to collect hcode, descriptioni pairs that can
be reused to automatically document similar pieces of code
— given a target snippet to inspect —, which are identified
by using the ASIA clone detector we devised. ADANA
is currently tailored to work on Android apps but could
be adapted/extended to support the documentation of any
software system. For example, assuming the will to extend
the ADANA support to C++ systems, this would mostly
require extensions to the (i) clone detector, by adding a
detector designed to work on C++ code, and (ii) knowledge
base, mining C++ code snippets.

While the results achieved in the performed evaluation
are already encouraging, we believe that the strength of
ADANA lies in the always increasing amount of data that it
will be able to exploit in the mined online resources, making
ADANA better and better over time.

Future work will be devoted to enlarging the ADANA
knowledge base. This will be mainly due by defining
techniques able to identify well-commented code snippets in
open source software repositories (e.g., by mining the change
history to identify commits in which a snippet of code and
its comments are added to the system), thus dramatically
increasing the amount of information in our knowledge base.
Our long-term vision is that of a tool able to exploit as
much crowdsourced knowledge as possible to automatically
document software systems. Also, we want to enlarge the
ADANA support to Java applications in general. Finally,
we are planning larger, more robust evaluations, and in
particular, controlled experiments/case studies aimed at
deeply investigating the usefulness of our approach during
code comprehension activities.

ACKNOWLEDGMENTS
The authors would like to thank the participants involved
in the reported empirical studies. We gratefully acknowl-
edge the financial support of the Swiss National Science
Foundation for the project PROBE (SNF Project No. 172799).

REFERENCES
[1] D. Spinellis, “Code documentation,” IEEE Software, vol. 27, no. 4,

pp. 18–19, July 2010.
[2] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-

evolve? on the relation between source code and comment changes,”
in Proceedings of the 14th Working Conference on Reverse Engineering,
2007, pp. 70–79.

[3] B. Fluri, M. Würsch, E. Giger, and H. C. Gall, “Analyzing the
co-evolution of comments and source code,” Software Quality
Journal, vol. 17, no. 4, pp. 367–394, Dec. 2009. [Online]. Available:
http://dx.doi.org/10.1007/s11219-009-9075-x

[4] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “How
do developers document database usages in source code?” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov 2015, pp. 36–41.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of ICSE
2006. ACM, 2006, pp. 492–501.

[6] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language
summaries for java classes,” in 2013 21st International Conference on
Program Comprehension (ICPC), May 2013, pp. 23–32.

[7] A. T. T. Ying and M. P. Robillard, “Code fragment summarization,”
in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2013. New York,
NY, USA: ACM, 2013, pp. 655–658. [Online]. Available:
http://doi.acm.org/10.1145/2491411.2494587

[8] J. Fowkes, P. Chanthirasegaran, R. Ranca, M. Allamanis, M. Lapata,
and C. Sutton, “Autofolding for source code summarization,” IEEE
Transactions on Software Engineering, vol. 43, no. 12, pp. 1095–1109,
2017. [Online]. Available: https://arxiv.org/abs/1403.4503v5

[9] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshy-
vanyk, “On automatically generating commit messages via sum-
marization of source code changes,” in 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, Sept
2014, pp. 275–284.

[10] A. T. T. Ying and M. P. Robillard, “Selection and presentation
practices for code example summarization,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 460–471. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635877

[11] P. W. McBurney and C. McMillan, “Automatic source code summa-
rization of context for java methods,” IEEE Transactions on Software
Engineering, vol. 42, no. 2, pp. 103–119, Feb 2016.

[12] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk,
“Documenting database usages and schema constraints in database-
centric applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. New
York, NY, USA: ACM, 2016, pp. 270–281. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931072

[13] B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in 2016 IEEE
International Conference on Software Testing, Verification and Validation
(ICST), April 2016, pp. 341–352.

[14] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source
code,” in 2010 17th Working Conference on Reverse Engineering, Oct
2010, pp. 35–44.

[15] “https://gist.github.com,” 2017.
[16] “https://stackoverflow.com,” 2017.
[17] “https://gist.github.com/MBtech/37f2f3df5dfe5805adfd,” 2017.
[18] “https://developer.android.com/,” 2017.
[19] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and

D. McClosky, “The stanford corenlp natural language processing
toolkit,” in Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL’14), 2014, pp. 55–60.

[20] R. Koschke, “Survey of research on software clones,” in Duplication,
Redundancy, and Similarity in Software, ser. Dagstuhl Seminar
Proceedings, R. Koschke, E. Merlo, and A. Walenstein, Eds.,
no. 06301. Dagstuhl, Germany: Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2007. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2007/962

[21] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions
on Software Engineering, vol. 33, no. 9, pp. 577–591, 2007.

[22] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evalu-
ation of code clone detection techniques and tools: A qualitative
approach,” Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May
2009.

[23] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in 29th International
Conference on Software Engineering (ICSE’07), 2007, pp. 96–105.

[24] S. Harris, “http://www.harukizaemon.com/simian/,” 2003.
[25] I. Mojica Ruiz, M. Nagappan, B. Adams, and A. Hassan, “Under-

standing reuse in the Android market,” in 20th IEEE International
Conference on Program Comprehension (ICPC’12), 2012, pp. 113–122.

[26] R. Minelli and M. Lanza, “Software analytics for mobile applica-
tions – insights & lessons learned,” in 17th European Conference on
Software Maintenance and Reengineering, 2013, p. To appear.

[27] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and
D. Poshyvanyk, “Revisiting android reuse studies in the context
of code obfuscation and library usages,” in Working Conference on
Mining Software Repositories (MSR’14), 2014, pp. 242–251.

16

[28] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison-Wesley, 1999.

[29] “Replication package for “automatic documentation of android
apps". http://adana.si.usi.ch/,” 2018.

[30] P. Jaccard, “Étude comparative de la distribution florale dans une
portion des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp.
547–579, 1901.

[31] “https://developer.android.com/reference/packages.html,” 2017.
[32] S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto,

“Improving code readability models with textual features,” in 2016
IEEE 24th International Conference on Program Comprehension (ICPC),
2016, pp. 1–10.

[33] R. Flesch, “A new readability yardstick.” Journal of applied psychol-
ogy, vol. 32, no. 3, p. 221, 1948.

[34] “https://github.com/pcqpcq/open-source-android-apps,” 2017.
[35] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep

learning code fragments for code clone detection,” in 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), Sept 2016, pp. 87–98.

[36] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vasquez,
D. Poshyvanyk, and R. Oliveto, “Automatically assessing code
understandability: How far are we?” in Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’17. IEEE Press.

[37] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach, 2nd ed. Lawrence Earlbaum Associates, 2005.

[38] “https://developer.android.com/samples,” 2017.
[39] “https://github.com/romannurik/FORMWatchFace,” 2017.
[40] “https://github.com/ashutoshgngwr/10-bitClockWidget,” 2017.
[41] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and

S. D’Mello, “Improving automated source code summarization
via an eye-tracking study of programmers,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014.
New York, NY, USA: ACM, 2014, pp. 390–401. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568247

[42] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in 2006 22nd IEEE International Conference on
Software Maintenance, Sept 2006, pp. 24–34.

[43] ——, “Automatic identification of class stereotypes,” in 2010 IEEE
International Conference on Software Maintenance, Sept 2010, pp. 1–10.

[44] B. Li, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk,
“Aiding comprehension of unit test cases and test suites with
stereotype-based tagging,” in Proceedings of the 26th Conference
on Program Comprehension, ser. ICPC ’18. ACM, 2018, pp. 52–63.

[45] M. M. Rahman, C. K. Roy, and I. Keivanloo, “Recommending
insightful comments for source code using crowdsourced knowl-
edge,” in 2015 IEEE 15th International Working Conference on Source
Code Analysis and Manipulation (SCAM), Sept 2015, pp. 81–90.

[46] C. Vassallo, S. Panichella, M. Di Penta, and G. Canfora, “Codes:
Mining source code descriptions from developers discussions,”
in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014,
pp. 106–109.

[47] M. Kamimura and G. C. Murphy, “Towards generating human-
oriented summaries of unit test cases,” in 2013 21st International
Conference on Program Comprehension (ICPC), May 2013, pp. 215–218.

[48] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance:
An empirical investigation,” in Proceedings of the 38th International
Conference on Software Engineering, ser. ICSE ’16. ACM, 2016, pp.
547–558.

[49] M. Kim, D. Notkin, D. Grossman, and G. Wilson, “Identifying and
summarizing systematic code changes via rule inference,” IEEE
Transactions on Software Engineering, vol. 39, no. 1, pp. 45–62, Jan
2013.

[50] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshy-
vanyk, “Changescribe: A tool for automatically generating commit
messages,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 2, May 2015, pp. 709–712.

[51] S. Jiang and C. McMillan, “Towards automatic generation of short
summaries of commits,” in 2017 IEEE/ACM 25th International
Conference on Program Comprehension (ICPC), May 2017, pp. 320–323.

[52] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York, NY, USA: ACM,
2014, pp. 484–495.

[53] L. Moreno, G. Bavota, M. D. Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Arena: An approach for the automated generation of
release notes,” IEEE Transactions on Software Engineering, vol. 43,
no. 2, pp. 106–127, Feb 2017.

[54] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsum-
marizer: An automatic generator of natural language summaries
for java classes,” in 2013 21st International Conference on Program
Comprehension (ICPC), 2013, pp. 230–232.

[55] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for java methods,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 43–52. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859006

[56] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,”
in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014,
pp. 279–290. [Online]. Available: http://doi.acm.org/10.1145/
2597008.2597149

[57] E. Wong, T. Liu, and L. Tan, “CloCom: Mining existing source code
for automatic comment generation,” in Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference
on. IEEE, 2015, pp. 380–389.

[58] S. Rastkar, G. C. Murphy, and G. Murray, “Automatic summa-
rization of bug reports,” IEEE Transactions on Software Engineering,
vol. 40, no. 4, pp. 366–380, April 2014.

[59] S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating natural
language summaries for crosscutting source code concerns,” in 2011
27th IEEE International Conference on Software Maintenance (ICSM),
Sept 2011, pp. 103–112.

[60] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining source code descriptions from developer communications,”
in 2012 20th IEEE International Conference on Program Comprehension
(ICPC), 2012, pp. 63–72.

[61] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live
api documentation,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 643–652. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568313

[62] S. Jiang, A. Armaly, C. McMillan, Q. Zhi, and R. Metoyer, “Docio:
Documenting api input/output examples,” in Proceedings of the
25th International Conference on Program Comprehension, ser. ICPC
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 364–367.

[63] C. Treude and M. P. Robillard, “Augmenting api documentation
with insights from stack overflow,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 392–403.

[64] M. P. Robillard and Y. B. Chhetri, “Recommending reference
api documentation,” Empirical Softw. Engg., vol. 20, no. 6, pp.
1558–1586, Dec. 2015. [Online]. Available: http://dx.doi.org/10.
1007/s10664-014-9323-y

[65] R. P. L. Buse and W. Weimer, “Synthesizing api usage examples,” in
Proceedings of the 34th International Conference on Software Engineering,
ser. ICSE ’12. IEEE Press, 2012, pp. 782–792.

[66] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus,
“How can i use this method?” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE ’15, 2015, pp.
880–890.

[67] R. Holmes and G. C. Murphy, “Using structural context to recom-
mend source code examples,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New York, NY,
USA: ACM, 2005, pp. 117–125.

[68] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging usage
similarity for effective retrieval of examples in code repositories,”
in Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE ’10.
New York, NY, USA: ACM, 2010, pp. 157–166. [Online]. Available:
http://doi.acm.org/10.1145/1882291.1882316

[69] C. Mcmillan, D. Poshyvanyk, M. Grechanik, Q. Xie, and C. Fu,
“Portfolio: Searching for relevant functions and their usages in
millions of lines of code,” ACM Trans. Softw. Eng. Methodol., vol. 22,
no. 4, pp. 37:1–37:30, Oct. 2013.

[70] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the ide into a self-confident program-
ming prompter,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, ser. MSR 2014. New York, NY, USA:
ACM, 2014, pp. 102–111.

17

[71] L. Ponzanelli, S. Scalabrino, G. Bavota, A. Mocci, R. Oliveto,
M. Di Penta, and M. Lanza, “Supporting software developers
with a holistic recommender system,” in Proceedings of the 39th

International Conference on Software Engineering, ser. ICSE ’17, 2017,
pp. 94–105.

18

Emad Aghajani is a Ph.D. student in the Faculty
of Informatics at the Universitá della Svizzera
italiana (USI), Switzerland. He received his M.S.
in Software Engineering from Sharif University of
Technology, Iran. His research interests lie in the
field of software evolution, software maintenance,
and mining software repositories.

Gabriele Bavota is an Assistant Professor at the
Universitá della Svizzera italiana (USI), Switzer-
land. He received the PhD degree in computer
science from the University of Salerno, Italy, in
2013. His research interests include software
maintenance, empirical software engineering,
and mining software repository. He is the author
of over 100 papers appeared in international jour-
nals, conferences and workshops. He received
four ACM SIGSOFT Distinguished Paper awards
at ASE 2013, ESEC-FSE 2015, ICSE 2015, and

ASE 2017, the best paper award at SCAM 2012, and three distinguished
reviewer awards at WCRE 2012, SANER 2015, and MSR 2015. He
served as a Program Co-Chair for ICPC’16, SCAM’16, and SANER’17.
He also serves and has served as organizing and program committee
member of international conferences in the field of software engineering,
such as ICSE, FSE, ASE, ICSME, MSR, SANER, ICPC, SCAM, and
others.

Mario Linares-Vásquez is an Assistant Profes-
sor at Universidad de los Andes in Colombia,
where he leads The Software Design Lab. He
received his Ph.D. degree in Computer Science
from the College of William and Mary in 2016. He
received his B.S. in Systems Engineering from
Universidad Nacional de Colombia in 2005, and
his M.S. in Systems Engineering and Computing
from Universidad Nacional de Colombia in 2009.
His research interests include software evolution
and maintenance, software architecture, mining

software repositories, application of data mining and machine learning
techniques to support software engineering tasks, and mobile develop-
ment.

Michele Lanza is a full professor in the Faculty
of Informatics at the Universitá della Svizzera
italiana (USI), where he founded the REVEAL
research group in 2004. He co-authored over
150 journal and conference publications and the
book Object-Oriented Metrics in Practice. His
activities span various international software engi-
neering research communities. He has served on
the program committees of ICSE, FSE, ICSME,
ICPC, MSR and many other conferences, and as
program co- chair of ICSM 2010, VISSOFT 2009,

MSR 2008, IWPSE 2007, and MSR 2007. He was keynote speaker at
MSR 2010, CBSOFT/SBES 2011, BENEVOL 2011, CSMR 2013, and
SCAM 2016. He is a board member of CHOOSE (Swiss Group for Object-
Oriented Systems and Environments), and vice-president of the Moose
association.

