
Computational Tools for Cardiac Simulation

GPU-Parallel Multiphysics

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Toby Simpson

under the supervision of

Rolf Krause

January 2022



Dissertation Committee

Steven Niederer King’s College London
Gernot Plank Medical University of Graz
Piotr Didyk Università della Svizzera italiana
Michael Multerer Università della Svizzera italiana

Dissertation accepted on 9 January 2022

Research Advisor PhD Program Director

Rolf Krause Walter Binder

i



I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted
previously, in whole or in part, to qualify for any other academic award; and the
content of the thesis is the result of work which has been carried out since the
official commencement date of the approved research program.

Toby Simpson
Lugano, 9 January 2022

ii



Abstract

Cardiovascular disease affects millions of people worldwide and its social and
economic cost clearly motivates scientific research. Computer simulation can
lead to a better understanding of cardiac physiology, and for pathology presents
opportunities for low-cost and low-risk design and testing of therapies, includ-
ing surgical and pharmacological intervention as well as automated diagnosis
and screening.

Currently, the simulation of a whole heart model, including the interaction of
electrophysiology, solid mechanics and fluid dynamics is the subject of ongoing
research in computational science. Typically, the computation of a single heart-
beat requires many processor hours on a supercomputer. The financial and ul-
timately environmental cost of such a computation prevents it from becoming
a viable clinical or research solution.

We re-formulate the standard mathematical models of continuum mechanics,
such as the Bidomain Model, Finite Strain Theory and the Navier-Stokes Equa-
tions, specifically for parallel processing and show proof-of-concept of a compu-
tational approach that can generate a complete description of a human heart-
beat on a single Graphics Processing Unit (GPU) within a few minutes.

The approach is based on a Finite Volume Method (FVM) discretisation which
is both matrix- and mesh-free, ideally suited to voxel-based medical imaging
data. The solution of nonlinear ordinary and partial differential equations pro-
ceeds via the method of lines and operator-splitting. The resulting algorithm
is implemented in the OpenCL standard and can run on almost any platform.
It does not perform any CPU processing and has no dependence on third-party
software libraries.

The implementation is simple and computationally cheap enough to be used
as the kernel of more complex software. Used iteratively and in parallel across
an array of GPUs, it would allow movement through a solution space of pa-
rameterised hearts in optimisation problems for parameter estimation, patient-
specific fitting, or in the training of Artificial Neural Networks (ANN). The al-
gorithm presents new opportunities in research and clinical practice and is
readily extensible as a simulation tool for a broad range of multiphysics prob-
lems.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular disease affects millions of people worldwide, reducing both qual-
ity and duration of life. The high social and economic cost of the disease clearly
motivate research into its treatment.

Computer simulation can replace physical procedures, reducing cost and re-
moving associated risks. When simulation is performed accurately and cheaply
with respect to the key computational resources of energy and time, then it
can increase efficiency across a wide range of scientific and industrial disci-
plines.

In medical research and and clinical practice this advantage becomes even more
apparent, since an in-silico medical intervention can be repeated and refined
iteratively in a way that is not possible in the physical world. Similarly, the
insight gained from experiment can be shared and re-used more effectively
through repositories of standardised results. As technology improves such re-
sources may be used to inform the automation of diagnosis and clinical decision-
making.

1.2 Review

Even in its simplest form the simulation of a human heartbeat represents a sig-
nificant computational challenge. We first try to define what constitutes a whole
heart simulation by summarising some of the features that it might contain,
most of which are common to the literature review which follows:

• Geometry that includes the torso, myocardium, four chambers of the heart,
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6 1.2 Review

proximal blood vessels and the valves that connect them. It may be ex-
tended to include pericardium and coronary blood supply although this
is rarely present. The geometry may be schematic or generated from seg-
mented medical imaging data.

• Microscopic Electrophysiology representing the cell membrane and ion
channels that support a travelling wave of transmembrane potential through
the myocardium, with anisotropic conductivity determined by tissue fibre
directions. Models for this behaviour include the Bidomain and Mon-
odomain reaction-diffusion equations [Keener and Sneyd, 2010] and ionic
membrane currents described by the comprehensive [TenTusscher and
Panfilov, 2006] or simplified Fitzhugh-Nagumo (FHN) [FitzHugh, 1955]
[Nagumo et al., 1962] Ordinary Differential Equations (ODEs).

• Macroscopic Electrophysiology includes behaviour of larger electrophysi-
ological structures such as the Sino-Atrial (SA) node, the Purkinje network
and the Bundles of Bachmann and His.

• Excitation-Contraction (EC) coupling linking the action potential to actin
and myosin filaments via intracellular Calcium (Ca2+) dynamics that lead
to contractile stress in the mechanically active myocardium. Models in-
clude [Nash and Panfilov, 2004] and [Courtemanche et al., 1998][O’Hara
et al., 2011]. Mechano-Electric feedback also leads to additional ionic
currents dependent upon extension and velocity [Trayanova et al., 2004].

• Hyperelastic Material models for the stress-strain relations of the my-
ocardium include Mooney-Rivlin model [Mooney, 1940] [Rivlin and Rideal,
1948], Guccione [Guccione et al., 1995] Ogden [Ogden and Hill, 1972]
[Holzapfel, 2000]. These are generally modified to include passive anisotropy
and active contraction related to tissue fibre directions, as well as incom-
pressibility, in accordance with experimental data.

• Fluid Dynamics of the blood modelled via the incompressible Navier-
Stokes equations, sometimes modified to be non-Newtonian in small cap-
illaries.

• Fluid-Structure Interaction (FSI) allowing changes in pressure and ve-
locity to drive blood flow, which in turn feeds back onto solid tissue of
the heart, valve leaflets and blood vessels. The problem may be strongly
coupled with two-way feedback or weakly coupled in only one direction,
usually with a prescribed solid motion. For the strongly-coupled dynamics
there are two common approaches: firstly the Arbitrary Lagrangian Eule-
rian (ALE) [Hughes et al., 1981] formulation, and secondly the Immersed
Boundary (IB) method [Kohl et al., 2001].

• Circulatory System has a significant effect on the behaviour of the heart
with distal blood flow regulating pressure and velocity at the blood ves-
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sels connected to the heart. The closed-loop systemic arterial tree and
pulmonary system is usually modelled as a windkessel [Westerhof et al.,
1971]. Some researchers use a similar system of ODEs within the heart
chambers as a 0D substitute for the Fluid dynamics and FSI problems out-
lined above.

The following literature review considers some of the many publications that in-
dicate the progress made towards the objective of whole heart simulation:

[Watanabe et al., 2004] Describes an idealised left ventricle and proximal aorta,
with FHN electrophysiology, EC coupling, anisotropic Guccione constitutive re-
lation, strongly coupled FSI via ALE form of the Navier-Stokes equations, and
windkessel circulation. The problem is discretized and solved via the Galerkin
Finite Element Method (FEM) on a tetrahedral mesh ( 100k DOF), to give a full
description of fluid velocity, pressure and volume.

[Tang et al., 2007] Models left and right ventricles with respect to inflow and
outflow after surgery. Using Navier-Stokes, ALE, FEM with a modified anisotropic
Mooney-Rivlin model. Dynamic material parameters simulate systolic and di-
astolic tissue mechanics.

[Lee et al., 2009] Provides a review of multi-physics and coupled models, in-
cluding strongly and weakly coupled FSI and gives results for an idealised ven-
tricle at low and high resolution. He notes the computational intractability
of fine model and considers the tradeoff between accuracy and computational
cost.

[Formaggia, 2009] A book with very complete derivation of solid and fluid dy-
namics, and their coupling through the ALE formulation. The formulation and
notation guides much of this work. Solution is via FEM and is subject to many
simplifying assumptions. There is an anecdotal description of a stable algorithm
for FSI time iteration.

[Nordsletten et al., 2011a] Studies an idealised ventricle with Finite elastic-
ity, anisotropic fibre directions, parameters from ex-vivo studies, a model for
calcium transfer, and a Lagrange multiplier form of ALE FSI coupling. FEM dis-
cretisation is solved with nonlinear Newton-Raphson iteration, no timings are
given.

[Nordsletten et al., 2011b] is a key review paper for continuum mechanics, the
ALE formulation, fibre directions giving the Guccione material model and elec-
tromechanical transfer, illustrated over single ventricle, discretised and solved
with ALE FEM.

[Trayanova and Winslow, 2011] presents a review focussed mainly on elec-
trophysiology and some electro-mechanical feedback for arrhythmias. Appli-
cations are given with respect to clinical, research and therapeutic applica-
tions.
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[Khalafvand et al., 2011] Another review paper, considering Computational
Fluid Dynamics (CFD) for valve leaflets. The work considers strongly and weakly
coupled approaches including prescribed geometry with one-way coupling, ALE
and fictitious methods such as the IB approach. There is no consideration of
computational performance.

[Niederer et al., 2011a] Provodes a key benchmark study comparing the results
of 11 submitted codes over the same electrophysiology problems. It forms the
basis for the validation of electrophysiology in this work (see Chapter 6) and
several others.

[Niederer et al., 2011b] A Bidomain electrophysiology study over a whole ven-
tricle made with view to clinical use. The publication includes timings, intro-
ducing the metric of real-time computational lag (computation time divided by
simulation time). The study uses a FEM tetrahedral mesh with width 0.25mm
and 26 million Degrees of Freedom (DOF), a preconditioned Conjugate Gradi-
ent (CG) solver processed in parallel using the PETSc library [Balay et al., 1998]
with Message Passing Interface (MPI) over 16384 cores. The result is a value
of 240, or 1 second in 5 minutes and the authors note that 50% of the time is
used for communication.

[Neic et al., 2012] gives the first consideration of GPU acceleration. An elec-
trophysiology problem equivalent to the previous paper is accelerated at the
lowest level, unrolling parallel loops within the PETSc library and passing to
them to CUDA Fortran kernels. The strong scaling study reports a speedup of
of 10 times using 20 GPUs on the coarsest grid. The authors note that this is
achieved while ‘minimally perturbing the code base’.

[Sugiura et al., 2012] A prototype FEM ALE study with fine heart mesh with
coarse torso mesh for ECG, Calcium and sarcomere dynamics via explicit ODE,
automatic re-meshing for valves. Gives physiological values for ejection frac-
tions, pressure and volume. RIKEN/Fujitsu k-computer with 88,128 CPUs, 6
hours per heartbeat.

[Land et al., 2015] Another key benchmark study which aggregates and 11
submitted mechanics code for simple problems. It is the basis for validation of
the mechanics calculation in this work (see Chapter 6).

[Zhang et al., 2016] A review of multi-scale simulation including fluid me-
chanics. It specifies the different problems but does not demonstrate any so-
lution.

[Quarteroni et al., 2017] A large and comprehensive paper gives full details
of models and assembly and time integration for electrophysiology, electro-
mechanical coupling, solid dynamics and FSI. Studies reproduce benchmarks
electrophysiology, and mechanics test problems. An idealised ventricle is shown
but without fully-coupled FSI, using pre-determined structure and 0D fluid rather
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than a two-way solution. It focuses on convergence rather than performance
concluding that a full model at all scales is ‘still far beyond reach’.

[Niederer et al., 2018] A broad overview of research and clinical applications
written for a wide audience with many useful references.

[Santiago et al., 2018] A fully-coupled heart model including fluid mechanics
over a complete geometry including atria and aortae and sliding pericardium.
There is no Purkinje network, valves or atrial contraction. The ALE formulation
refers to the prior literature for electrophysiology, solid and fluid models. Dis-
cretisation via in-house FEM code, with a mixture of forward, backward Euler
and Newmark schemes, Generalized Minimal Residual (GMRES) method Picard
method for velocity-pressure, FSI stabilised with quasi-Newton iterations. MPI-
parallel solver alternates between CFD and electrophysiology/solid mechanics
with 800k DOFs. The authors show qualitative results and a scaling study up to
4800 cores with speedup of 0.85, but do not publish wall clock timings, noting
that this is a validation of the first instance of their model.

[Kaboudian et al., 2019] A GPU Lattice Bolzmann electrophysiology simulation
based on WebGL Javascript API, demonstrating 2D/3D spiral waves, and low
resolution rabbit ventricle at 1/3 real-time, also examples of fluid dynamics,
and crystal formation. This is the first published attempt to re-formulate the
problem specifically for GPU processing.

[Viola et al., 2020] Studies an idealised left heart with atrium, ventricle, aorta
and mitral valve. Navier-Stokes is treated with a Finite Difference Method
(FDM) on a cartesian mesh with circulatory effects prescribed as boundary con-
ditions. FSI is via interpolated IB onto valve leaflets modelled as 2D mass-spring
membranes with Adams-Bashforth integration for strong coupling. There is a
Fung mechanical model [Fung, 1981] with fibre anisotropy, full bidomain with
FHN for atria and TenTusscher-Panfilov electrophysiology for ventrcle. Bach-
man and His effects are prescribed as timed stimuli. The simulation is timed at
1500 CPU Hours per heartbeat (850ms of simulation).

[Gerach et al., 2021] Model a four-chamber geometry with a 0D closed-loop
circulation, with the effects of ablation scar, solving Bidomain with EC and
anisotropic Guccione material. The FEM discretisation mixes of implicit and
explicit schemes, with activation of atria and ventricles prescribed via exter-
nal stimulus. They note that experimentally derived parameters from litera-
ture must be adjusted to give physiological results. The mechanics mesh has
136k DOFs (Authors note that it is too coarse), but is finer for Electrophysi-
ology 0.6mm. Results include PV loops for atria and ventricles, using a 2019
Apple iMac with 8 MPI processes requires 20-24 hours per heart beat.

[Augustin et al., 2021] Simulate a whole canine heart with a 0D lumped ODE
circulation over 25 heartbeats. Electrophysiology uses Reaction Eikonal [Neic
et al., 2017] approach. Mechanics via FEM with Newton-Raphson using GM-
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RES on PETSc framework. Results include PV loops, activation maps and EGC.
The mesh has 156k nodes at 1.25mm resolution and is processed on 256 cores
requiring 30 minutes per heartbeat.

[Viola et al., 2022] Updates prior work on an idealised heart with GPU accelera-
tion. The study includes a complete Fluid-Structure-Electrophysiology Interac-
tion (FSEI) simulation using an in-house FEM library. An MPI-parallel in-house
FEM library is processed with OpenACC-type compiler directives for CUDA For-
tran acceleration. Weak and strong scaling studies are performed on 8 NVIDIA
A100 cards showing 1-2 orders of magnitude speedup with respect to prior se-
rial code. A single heartbeat requires 3-10 hours of processing depending on
mesh resolution.

[Del Corso et al., 2022] is a similar paper from the same group as [Viola et al.,
2022] which presents electrophysiology only, discretised with Finite Volume
Model (FVM) and CUDA Fortran GPU acceleration of the GNRES solver. A
Bidomain simulation at 0.5mm mesh width using the approach of [Rush and
Larsen, 1978], requires 8 hours per heartbeat, with an equivalent monodomain
requiring 1.5 hours.

[Verzicco, 2022] The most recent publication in the field is a comprehensive
review paper giving the history of the field, with a focus on the inclusion of
strongly-coupled FSI and its relevance for pathology. It serves as an ideal and
modern introduction to the subject giving a fair representation of the state-of-
the-art. It concludes with the following remark:

‘The high computational cost of complex multiphysics heart models and the need
of trained researchers to run them constitutes an insurmountable barrier to the
use of digital twins in clinical practice. Furthermore, they rely on massive parallel
supercomputers, have a time-to-solution of the order of days and produce terabytes
of data which need extensive post-processing to extract relevant information; this
is totally incompatible with clinical decisions that must be taken, at most, within
hours and obtained by commodity computers.’

As research has progressed, research groups have reached a broad consensus
on the mathematical formulation of the models that represent the features of
a whole heart simulation and on the computational approach taken to solve
them. The general method is summarised below:

• Model parameters are estimated from experiments carried out on small
tissue samples, usually ex-vivo, from a variety of species.

• Medical imaging data is segmented and used to generate a tetrahedral
mesh of the heart and surrounding tissue.

• The various differential operators related to the mathematical formula-
tion are assembled into large in-memory linear systems via Finite Element
discretisation.
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• Integration in time is accomplished via a mixture of explicit and implicit
methods. The hardest and most nonlinear part of the problem, fluid-
structure interaction, is usually solved as a saddle-point sub-problem us-
ing Newton-type iterations.

• The solution of the many linear systems required for integration is carried
out using well-established High Performance Computing (HPC) libraries
implementing algorithms such as preconditioned CG or GMRES, amongst
others.

• The computation of these algorithms requires the use of large supercom-
puting resources, dividing and balancing the problem over many (thou-
sands) of processors.

From the review above, a generous estimate of processing time for complete
simulation of a single heartbeat may be about an hour. Another rough estimate
of the financial cost of computation is 1 US Dollar per node hour. The HPC sim-
ulations described in the publications above are therefore consuming (approx-
imately) tens-of-thousands of Dollars per second of cardiac simulation.

Modern computer chip design has already hit the ‘Power Wall’ in which power
consumption and heat dissipation are the limiting factors for processing speed.
Parallel computing is thus standard and the cost-of-communication between
processors has become the bottleneck for performance. Attempts to accelerate
per-core performance via the addition of GPUs has shown some speedup but
ultimately does not overcome this limitation.

Fitting a heart simulation to an idealised reference subject would potentially
require the simulation of thousands of heartbeats. To then reproduce simula-
tions for single pathologies would require thousands more. To do this on a per-
patient basis for diagnosis would incur thousands more and thousands again for
treatment. The turnaround time between and admission and a decision about
treatment could not be met. We therefore conclude that the economic and envi-
ronmental cost of energy consumption associated with current approaches does
not make them feasible for clinical use. We also do not expect to see improve-
ments in processor design that will allow for their practical application in the
foreseeable future.

1.3 Objectives

The motivation for this work is therefore to re-design tools for cardiac simula-
tion that can be applied in clinical or research situations. We therefore aim to
provide proof-of-concept of a computational approach that is sufficiently accu-
rate to give insight at a clinical or academic level but which is not prohibitive
in terms of computational cost.
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This work will deliver a piece of software that is designed to meet the following
objectives:

• Provide a complete description of a heartbeat, representing Electrophysi-
ology, Solid and Fluid dynamics and their interaction via FSI, as described
above.

• Run on a geometry that represents the whole heart, which can be assim-
ilated directly from medical imaging data.

• Allow for computation on a single small device, which is low-cost in terms
of acquisition and energy consumption.

• Make use of a novel dual grid discretisation that allows for matrix-free
computation and makes optimal use of GPU memory access.

• Run within seconds or minutes, allowing for repeated use over many
heartbeats, or as the objective function for parameter estimation or pa-
tient model fitting.

• Apply the well-established mathematical formulations as above, without
requiring new or unproven mathematical approaches.

• Provide results and biological indicators that are qualitatively similar to
those of the studies outlined above.

• Be simple enough in design to achieve the required performance, but ex-
tensible to allow the inclusion of more complex mathematical models and
features.

• Have no software dependency and thus give freedom of design to future
developers and users.

• Be simple enough to be configured and run by third parties such as clini-
cians and researchers, or incorporated into more complex software. This
document is designed to serve both as a thesis and software documenta-
tion.

The approach therefore starts from first principles, taking the simplest and most
well-established models of solid and fluid dynamics and re-formulating them
for parallel computation on a single small device, namely a Graphics Process-
ing Unit (GPU). The formulation itself is based upon the Finite Volume Method
combining the Lagrangian solid and Eulerian fluid formulations via the Arbi-
trary Lagrangian-Eulerian method (ALE).

Geometry is encoded on a deforming structured grid via a Signed Distance
Function (SDF), and as such the approach can be considered mesh-free. The
algorithm also uses a matrix-free approach, with each GPU process assembling
the various linear operators by row as required. Nonlinearity is handled via
operator-splitting in which the differential operators that drive the state of the
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system are solved separately and in turn. The removal large linear systems and
operator splitting allow the use of a self-dual grid which is ideal for both the
FVM discretisation and the fast memory access of the GPU.

Since the design objectives are guided by constraints and compromise, then
it follows that it can not fully reproduce the accuracy or completeness of the
existing studies in the literature. The results are general in their nature since
this is the first prototype of the software. They demonstrate the validity of the
algorithm rather than the model itself. Some features are not present:

• Electro-mechanical coupling is simplified, with contraction coupled di-
rectly to the action potential. The correct model for Calcium dynamics
can be added in future in a straightforward way.

• There is no model for the circulation or proximal blood vessels. The ef-
fects can be modelled modelled directly by adding them to the geometry
with similar results.

• The current schematic heart does not include fully functioning valves.
Their action requires an extra model for structure-structure interaction
which is not currently present. This would is the subject of future work.

Given the objectives above, the work hopes in future to deliver software for
practical use, rather than for purely academic investigation.

1.4 Overview

This document is laid out as follows:

Chapter 2 gives details of the mathematical models that will be employed, all of
which are based upon the principles of continuum mechanics. The electrophys-
iology simulation includes the Mitchell-Schaffer ionic membrane model and
the diffusive Bidomain and Monodomain models for the movement of charge
through the myocardium and torso. Solid mechanics, including the deformation
of tissue and muscle contraction, is formulated via Finite Strain theory using
various stress-strain relationships for hyperelastic materials. The fluid mechan-
ics of blood flow is described by the incompressible Navier-Stokes equations.
Fluid-stucture interaction is makes use of the Arbitrary Lagrangian-Eulerian for-
mulation.

Chapter 3 contains a brief introduction to GPU computing. Its aim is to show
how architecture specialized for parallel processing can give advantages in com-
putational efficiency. It will also to make clear the restrictions upon code design
that arise as a result. This in turn guides the design of the algorithm.
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Chapter 4 shows how the geometry and continuous differential operators re-
quired by the mathematical models of Chapter 2 are expressed in the discrete
setting of a computational mesh, leading to the assembly and solution of the
linear systems resulting from these operators.

Chapter 5 describes how the continuum mechanics models of Chapter 2 and dis-
crete operators of Chapter 4 are arranged for parallel computation, under con-
sideration of the design constraints of Chapter 3. It details the relationships be-
tween computational kernels and the mathematical formulation as well as mem-
ory use and therefore serves as documentation for the computer code.

Chapter 6 details the numerical experiments which are used to validate the
quality of the discretisation of the operators in Chapter 4 and their combination
and integration in Chapter 5. These include numerical convergence studies
with respect to analytic solutions for the differential operators and the repro-
duction of benchmark studies for the simulation of electrophysiology and solid
mechanics.

Chapter 7 demonstrates the application of the software to cardiac simulation.
It includes qualitative studies of whole heart function as well as quantitative
results such as a synthetic Electrocardiogram (ECG) and Pressure-Polume (PV)
loop.

Chapter 8 provides a review of the work, considering its strengths and weak-
nesses and provides an outlook for future improvement and applications.



Chapter 2

Cardiac Multiphysics

During the normal heartbeat a wave of membrane depolarisation propagates
at the Sino-Atrial (SA) node in the Right Atrium (RA) and travels through the
myocardium in an orderly fashion, first to the Left Atrium (LA) and then to
the Right and Left Ventricles (RV, LV). The tissue has a property of anisotropic
conductivity that is dependent upon both the orientation of the muscle fibres
and the presence of tissues of varying conductivity such as the Pukinje Fibre
network and the Bundle of His.

As this travelling wave of membrane depolarisation passes through the heart,
changes in ion channels and receptor proteins within the membranes of the
myocites mediate intracellular ionic changes that lead to a sequence of co-
ordinated muscle contraction.

The deformation resulting from movement of the contractile tissue results in
forces that change the pressure in the chambers of the heart. These pressure
changes, together with viscous forces and advection cause the movement of
blood through the heart and into surrounding vessels. The unidirectional flow
and hence circulation of blood is maintained by the sequential contraction of
the chambers and by valves within the heart and circulatory system that prevent
the reversal of flow.

This chapter gives a mathematical description of the processes outlined above.

2.1 Electrophysiology

Membrane depolarisation initiated at the SA node is propagated as a travelling
wave through the myocardium via two mechanisms:

Firstly, active processes maintain chemical potential gradients across the mem-

15
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branes of myocardial cells. Changes in charge, and hence transmembrane po-
tential, cause the opening and closing of voltage-dependent channels that allow
ions (Na+, K+, Ca+, Cl-) to flow across the membrane, further depolarising it on
a feedforward manner, until the ionic potential gradients have reached an equi-
librium. Thereafter there is a refractory period during which the membrane can
not be excited until the potential gradient has been restored by the pumping of
ions back across the cell membrane.

Secondly, the changes in potential caused by membrane depolarisation cause
the diffusion of electrical charge between an excited cell and its neighbours.
This in turn stimulates ion channels as described above and causes ionic exci-
tation to spread. The refractory period ensures that a recently excited cell is
unresponsive to further depolarisation and thus the unidirectional progress of
the travelling wave is maintained.

The Partial Differential Equation (PDE) that models the spreading cycle of de-
polarisation and repolarisation is a reaction-diffusion equation. We consider the
reactive Mitchell-Schaeffer membrane model and the diffusive Bidomain and
Monodomain equations.

2.1.1 Mitchell-Schaeffer Model

The model of [Mitchell and Schaeffer, 2003] describes a uniformly polarized
membrane patch representing an action potential in a spatially clamped ventric-
ular myocite. It considers a a pair of coupled time-dependent Ordinary Differ-
ential Equations (ODE)s with time t ∈ R+, for a dimensionless transmembrane
voltage v ∈ [0,1] and gating variable w ∈ [0, 1]. The voltage v is determined
by the first ODE

dv
d t
= Jin(v, w) + Jout(v) + Jstim(t) (2.1.1)

where the three currents J are defined as follows: The inward current Jin com-
bines ionic movements (Na+, Ca+) that raise the membrane voltage v. The
feedforward nature of the ion channels gives it a cubic dependence on the mem-
brane voltage v and a linear dependence on the gating variable w, scaled by a
constant time parameter τin:

Jin(v, w) =
1
τin

v2(1− v)w. (2.1.2)

The outward current Jout combines those ions that lower membrane voltage
(primarily K+) and depends negatively on v but is not gated, scaled by a time
constant τout

Jout(v) = −
1
τout

v. (2.1.3)

The stimulus current Jstim can applied by the experimenter.



17 2.1 Electrophysiology

The second ODE for the gating variable w is as follows:

dw
dt
=











1−w
τopen

, if v < vgate

1−w
τclose

, if v ≥ vgate

(2.1.4)

where τopen and τclose are time constants and vgate is a threshold voltage for
activation. The nonlinear and opposing nature of the equations for v and w
place the system into the class of activator-inhibitor ODEs.

The authors note the relationships between their model and those of [Fenton
and Karma, 1998] , [Luo and Rudy, 1994] and [FitzHugh, 1955] [Nagumo
et al., 1962], and point out two improvements: Firstly it contains four physically
meaningful constants, corresponding to the four phases of the action potential:
initiation, plateau, decay and recovery. Secondly, that it avoids the non-physical
voltage overshoot of its predecessors. It is also simpler than the more compre-
hensive [ten Tusscher et al., 2004]. The parameters used by the model have
been experimentally fitted into a physical range [Ngoma et al., 2017].

An example of a numerical solution of the system is shown in Figure 2.1. It is
worth noting that the equations are highly nonlinear or stiff, given the steep rise
in onset membrane voltage. As such they illustrate a key point in the design of
this work. The nonlinearity makes it too costly to solve the system implicitly.
It is acceptable therefore to perform an explicit time integration and accept a
maximum time step for stability.
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Figure 2.1: Mitchell-Schaeffer action potential, Explicit Euler ∆t = 0.5ms.
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2.1.2 Bidomain Model

Given a description of the action potential in time we next consider the move-
ment of the traveling wave in space. The Bidomain model considers a small
region of tissue as a single point x ∈ Rd where d ∈ N is the dimension, that con-
tains both intra- and extra-cellular spaces, along with variables for the potential
differences and current flows between them. The propagation of electrical ac-
tivity from one cell to another is represented as a diffusion of ionic charge.
This construction leads to a system of PDEs which govern the movement of
charge both through the intracellular and extracellular spaces of the heart and
also into the surrounding torso (underlined characters correspond to variable
subscripts). For this reason the Bidomain model was instrumental in the devel-
opment of defibrillation. The standard reference for this material is the book of
[Keener and Sneyd, 2010].

The model is derived as follows, we consider a point in space x ∈ Rd , an ele-
ment of the following sets:

H heart tissue with boundary ∂H
T surrounding tissue of the body with boundary ∂T

For a point in H:

v ∈ R transmembrane voltage
vi , ve ∈ R intracellular and extracellular voltage
Σi ,Σe ∈ Rd×d intracellular and extracellular conductivity tensors
Ji , Je, Jt ∈ Rd intracellular, extracellular and transmembrane current density
Cm ∈ R membrane capacitance per unit area
Gm ∈ R membrane conductivity per unit area
χm ∈ R membrane surface area to volume ratio
Im ∈ R ionic current over membrane per unit area

For a point in T:

Jo ∈ Rd tissue current density
vo ∈ R tissue voltage
Σo ∈ Rd×d tissue conductivity tensor

2.1.2.1 Derivation

First apply the current-voltage relationship over the intracellular and extracel-
lular domains using Ohm’s law:

Ji = −Σi∇vi (2.1.5)

Je = −Σe∇ve (2.1.6)
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Then require that there is no accumulation of charge in H, setting the current
densities equal and opposite in sign:

−∇ · Ji =∇ · Je = χm Im (2.1.7)

Substituting gives the first model equation, which states that all current exiting
one domain must enter the other:

∇ · (Σi∇vi) +∇ · (Σe∇ve) = 0 (2.1.8)

By convention, the transmembrane current Jt and voltage v are measured with
respect to the intracellular domain:

Jt = ∇ · (Σi∇vi) = −∇ · (Σe∇ve) (2.1.9)

v = vi − ve (2.1.10)

The model for transmembrane current depends on the dynamic behaviour of
the membrane and is based on the cable equation:

Jt = χm

�

Cm
∂ v
∂ t
+ Im

�

(2.1.11)

The ionic current Iion is where the Mitchell-Schaeffer model enters the Bido-
main equations. Scaled by membrane conductivity χm it models the dynamic
properties of the transmembrane voltage. The expressions for Jt are combined
for the second model equation:

∇ · (Σi∇vi) = χm

�

Cm
∂ v
∂ t
+ Im

�

(2.1.12)

2.1.2.2 Boundary Conditions

We next repeat a similar process with the body tissue domain T, first applying
Ohm’s law for the current-voltage relationship:

Jo = −Σo∇vo (2.1.13)

then preventing the accumulation of charge in T:

∇ · (Σo∇vo) = 0 (2.1.14)

Next, we electrically isolate the body tissue T by setting current flow to zero in
the unit normal direction n ∈ Rd normal to ∂T:

(Σo∇vo) · n= 0, x ∈ ∂T (2.1.15)
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Couple the extracellular voltage ve to the tissue voltage vo on the boundary of
the heart ∂H:

ve = vo, x ∈ ∂H (2.1.16)

Couple the current flow from the extracellular to the tissue domain on ∂H:

(Σe∇ve) · n= (Σo∇vo) · n, x ∈ ∂H (2.1.17)

Isolate the intracellular domain from the body tissue:

(Σi∇vi) · n= 0, x ∈ ∂H (2.1.18)

Grouping these equations gives the fully determined Bidomain system:

∇ · (Σi∇vi) = χm

�

Cm
∂ v
∂ t + Im

�

x ∈H
∇ · (Σi∇vi) +∇ · (Σe∇ve) = 0 x ∈H

∇ · (Σo∇vo) = 0 x ∈ T
n · (Σo∇vo) = 0 x ∈ ∂T

n · (Σe∇ve)− n · (Σo∇vo) = 0 x ∈ ∂H
(Σi∇vi) · n = 0 x ∈ ∂H

(2.1.19)

2.1.3 Monodomain Model

The Monodomain model is a simplification of the Bidomain model with a single
anisotropy field for both the intra and extracellular spaces. Continuing from
the definition of the Bidomain model (2.1.19) it makes the assumption that the
intracellularΣi and extracellularΣe conductivity tensors are equal up to scaling.
The two anisotropy fields are thus combined via a constant λ ∈ R which gives
the intracellular to extracellular conductivity ratio:

Σe = λΣi (2.1.20)

From the derivation of the Bidomain model we take expressions (2.1.9) for
transmembrane current Jt and transmembrane voltage v:

Jt = ∇ · (Σi∇vi) = −∇ · (Σe∇ve) (2.1.21)

v = vi − ve (2.1.22)

Combining them via the conductivity ratio λ and re-arranging gives the formu-
lation of the Monodomain model:

λ

1+λ
∇ · (Σ∇v) = χm

�

Cm
∂ v
∂ t
+ Im

�

. (2.1.23)

The equation (5.3.2) calculates the change in membrane potential difference v
with respect to time t. The reaction term on the right is the transmembrane
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current Iion generated by the membrane potential difference. The diffusion
term on the left is the flow of current into neighbouring regions, where Σ is
the anisotropic diffusivity tensor that relates potential gradients ∇v to current
flow. There are also constants χm, a surface area to volume ratio for the cell
membrane, and Cm the membrane capacitance.

It remains to quantify the conductivity tensor Σ. In practice our model defines
a vector field f ∈ Rd of unit length fibre directions as well as longitudinal and
transversal conductivities σL ,σT ∈ R respectively, from which the conductivity
tensor is derived via an outer product as follows,

Σ= σT I+ (σL −σT )f⊗ f. (2.1.24)

The same field of fibre directions also determines the stresses arising from mus-
cular contraction.

2.2 Continuum Mechanics

2.2.1 Deformation

The movement and interaction of both the solid and fluid materials of the heart
are described within the formalism of continuum mechanics, effectively a set of
scalar, vector and tensor fields defined over time in physical space. This brief
introduction follows [Gonzalez and Stuart, 2008], [Reddy, 2013] and [Formag-
gia, 2009].

bΩ

Ω(t)

ϕ(bx, t)

bx

x

Figure 2.2: The reference bΩ and deformed Ω(t) configurations, with a material
point bx and its current image x under the motion ϕ(bx, t).

Figure 2.2 shows a body in its reference configuration bΩ ⊂ Rd , described by
material coordinates bx ∈ Rd which undergoes a smooth admissible deformation
over time t ∈ R, called a motion ϕ : Rd ×R 7→ Rd , into a current configuration
Ω(t) = Ωt ⊂ Rd described by spatial coordinates x ∈ Rd .
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This allows the definition of the following fields:

Motion x= ϕ(bx, t)

Velocity v=
∂ ϕ

∂ t
(bx, t) =

∂ x
∂ t

Deformation gradient F=
∂ ϕ

∂ bx
(bx, t) =

∂ x
∂ bx

Jacobian determinant J = detF(bx, t).

(2.2.1)

The Lagrangian description gives a field with respect to the material coordinates
and the Eulerian description is made with respect to the spatial coordinates. The
motion gives the relationship between the two descriptions, for instance for the
density ρ : Rd ×R 7→ R,

ρ(x, t) = bρ
�

ϕ−1(x, t), t
�

. (2.2.2)

Key to the formulation are the deformation gradient F and its determinant J .
Due to its regularity we can express the motion as a Taylor series for some vector
dbx:

ϕ(bx+ dbx, t) = bx+ F(bx, t)dbx+O (dbx2). (2.2.3)

The change in length of a vector under the motion is thus approximated by:

‖dbx‖2 ≈
Æ

dbx>F(bx, t)>F(bx, t)dbx. (2.2.4)

For a subvolume bΩ ⊂ Rd and its image Ωt the determinant J = det(F(bx, t))
gives a relationship for volume between the reference and deformed configura-
tions.

|Ω|=
∫

Ω

dx=

∫

bΩ

Jdbx (2.2.5)

Nanson’s formula relates surface area in the reference and deformed configura-
tions, where bn and n are the two unit normals respectively:

|∂Ω|=
∫

∂Ω

n dA=

∫

∂ bΩ

JF−>bn d bA. (2.2.6)

It combines the two previous results, effectively dividing volume by length for
surface area. Transposition arises since normals are orthogonal to the surface
and integration thus involves a dot product.

2.2.2 Conservation Laws

A complete description of a continuum body is based upon a set of conservation
laws for mass, momentum and energy, as well as laws for intertia and thermo-
dynamics. In order to continue we give expressions for the conserved quantities
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of mass m ∈ R and linear momentum l ∈ Rd for a body Ω ⊂ Rd .

m =

∫

Ω

ρ(x, t) dV (2.2.7)

l =

∫

Ω

ρ(x, t)v(x, t) dV. (2.2.8)

2.2.3 Cauchy’s Theorem

A body in a continuum can be subject to two types of force: body forces b(x) ∈ Rd

such as gravity, act per unit volume, whereas traction forces t(n,x) ∈ Rd act per
unit area across surfaces that may form the exterior surface of the body itself
or pass through its interior. Cauchy’s Theorem shows the existence of a second
order tensor field and the dependence of the traction force upon it:

t(n,x) = σ(x)n(x), (2.2.9)

where σ(x), as defined in the Eulerian description, is known as the Cauchy
Stress tensor. The resultant force r ∈ Rd acting on a body Ω ⊂ Rd is thus a
combination of surface and volume integrals:

r(x, t) =

∫

∂Ω

σ(x, t)n(x, t) dA+

∫

Ω

ρ(x, t)b(x, t) dV, (2.2.10)

where ρ(x, t) is the density at a given spatial point. It can be shown that the
symmetry of the Cauchy stress tensor σ ensures conservation of angular mo-
mentum.

2.2.4 Newton’s Second Law

Newton’s second law [Newton, 1687] expresses a change in linear momentum
(2.2.8) in terms of resultant force (2.3.7):

d
d t

∫

Ω

ρ(x, t)v(x, t) dV =

∫

∂Ω

σ(x, t)n(x, t) dA+

∫

Ω

ρ(x, t)b(x, t) dV,

(2.2.11)
giving the basis for the description of both solid and fluid dynamics.

2.3 Solid Dynamics

In a solid body forces arise from deformation. The material or constitutive
model relates a measure of deformation or strain to a potential function for
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strain energy density. The derivative of strain energy with respect to deforma-
tion gives a tensor field for stress. Conservation of linear momentum and the
stress-strain relation give the Elastodynamics equation, from which the time
evolution of a deforming solid can be determined.

2.3.1 Constitutive Models

The expression for the change in length under deformation (2.2.4) leads to the
Right Cauchy-Green strain tensor C. It contains information about stretching
but removes rotation. The Green-Lagrange strain tensor E measures how much
C varies from the identity tensor I.

C = F>F (2.3.1)

E =
1
2
(F>F− I) (2.3.2)

A hyperelastic material is one in which a strain energy density function W can
be defined in terms of the three measures of strain F,C and E. This family
of models include those of Saint Venant-Kirchhoff [Holzapfel, 2000], Mooney-
Rivlin [Mooney, 1940], [Rivlin and Rideal, 1948], Ogden [Ogden and Hill,
1972].

We take as an example the St. Venant Kirchoff material model, which defines
strain energy as quadratic in relation to the the Green-Lagrange strain:

W (bx, t) =
λ

2
tr(E)2 +µ tr(E2). (2.3.3)

Lamé constants λ and µ, quantify the material’s resistance to compression and
shear respectively and are determined experimentally.

Taking derivatives with respect to strain gives expressions for the First and Sec-
ond Piola-Kirchhoff stress tensors, and applying the inverse Piola Transform
gives the Cauchy stress.

Second Piola-Kirchhoff stress S = ∂W
∂ E = λ tr(E)I+ 2µE

First Piola-Kirchhoff stress P = ∂W
∂ F = FS

Cauchy stress σ = J−1PF>
(2.3.4)

The material models are extended to allow for muscle contraction coupled to
the monodomain equation (5.3.2) by the addition of contractile stress to the ma-
terial model corresponding to fibre directions bf in the reference configuration.
Other models will be introduced as needed, such as [Guccione et al., 1995] and
[Tang et al., 2007] which allow for passive isotropy due to the fibre orientation
of the myocardium.
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2.3.2 Elastodynamics Equation

Until now these results have been given in their Eulerian form, but we now
combine them in their Lagrangian form.

Taking the reference configuration at t = 0 we have x = ϕ(bx, 0) = bx, thus
(2.2.7) and (2.2.5) imply that mass is conserved over time:

∫

Ω

ρ(x, t) dV =

∫

bΩ

J(bx, t)ρ(ϕ(bx, t), t) dbV (2.3.5)

=

∫

bΩ

ρ(bx, 0) dbV . (2.3.6)

We convert the Eulerian description of resultant force (2.2.10) into its Lagrangian
form using integral relations (2.2.6) and (2.2.5) and substitute mass conser-
vaiton (2.3.6):

r(x, t) =

∫

∂ bΩ

J(bx, t)σ(ϕ(bx, t), t)F(bx, t)−>
︸ ︷︷ ︸

P(bx,t)

bn(bx) d bA+

∫

bΩ

ρ(bx, 0)b(ϕ(bx, t), t)dbV

(2.3.7)
The tensor field P(bx, t) is the First Piola-Kirchhoff stress tensor which encodes
the stress-strain relation.

Substituting into Newton’s Second Law (2.2.11) relates the change in linear
momentum (2.2.8) to body and traction forces.

d
d t

∫

Ω

ρ(x, t)v(x, t) dV =

∫

∂ bΩ

P(bx, t)bn(bx) d bA+

∫

bΩ

ρ(bx, 0)b(ϕ(bx, t), t)dbV

(2.3.8)
This is the Elastodynamics equation, which we will integrate in time for the
solution of the solid body dynamics problem.

2.4 Fluid Dynamics

We model blood as an incompressible Newtonian fluid and apply conservation
of mass and linear momentum as before. The fluid flow is naturally expressed
in its Eulerian form and calculation of the time derivative leads to a transport
term. Fluids do not support shear forces, and thus Cauchy stress depends upon
strain rate and pressure. The combination of transport, stress and body forces
result in the Navier-Stokes equations for incompressible flow.

This section is based upon the previous texts in continuum mechanics as well
as [Versteeg and Malalasekra, 1996] and [Patankar, 1980].
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2.4.1 Continuity Equation

The Eulerian description of a fluid flow is spatial velocity field v(x, t). Change
in density is equivalent to the accumulation of mass by velocity. Conservation
of mass can thus be expressed in differential form as follows:

∂ ρ

∂ t
+∇ · (ρv) = 0. (2.4.1)

For an incompressible fluid, density ρ is constant and the expression reduces to
the continuity equation:

∇ · v= 0. (2.4.2)

2.4.2 Advection

Consider a scalar function q : Rd ×R 7→ R, of a spatial point q(x, t) in motion
such that x = ϕ(bx, t). The total time derivative of q has a contribution from
changes in both space and time. Applying the Chain Rule recovers the inner
product of velocity v and spatial gradient ∇q:

Dq
Dt

=
∂ q
∂ t
+
∂ q
∂ ϕ
·
∂ ϕ

∂ t
(2.4.3)

=
∂ q
∂ t
+ v · ∇q. (2.4.4)

The value of q is thus transported by velocity. For the fluid q is replaced by v,
and the velocity field transports itself by advection:

Dv
Dt
=
∂ v
∂ t
+ (v · ∇)v. (2.4.5)

It is worth noting that if the velocity v of the fluid is known, then its evolution
can be described without knowledge of its motion ϕ.

2.4.3 Cauchy Stress

In an incompressible fluid, forces arise from changes in velocity and pressure.
The Cauchy stress tensor is thus a function of spherical pressure field p(x, t)
and the strain rate tensor for viscous stress:

σ(p,v) = −pI+µ
�

∇v+∇v>
�

(2.4.6)

where µ is the dynamic viscosity, considered constant in the Newtonian case
and I is an identity matrix.
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2.4.4 Navier-Stokes Equations

The expression for Newton’s Second Law (2.2.11) is written in its integral form
over an arbitrary set Ω. Since the balance of momentum holds for any Ω and
density ρ is constant, the law can be expressed in its differential form as fol-
lows:

ρ
D
Dt

v(x, t) =∇ ·σ(x, t) +ρb(x, t). (2.4.7)

We substitute for advection (2.4.5) on the left and fluid Cauchy stress (2.4.6)
on the right

ρ

�

∂ v
∂ t
+ (v · ∇)v

�

=∇ ·
�

−pI+µ
�

∇v+∇v>
��

+ρb, (2.4.8)

then make use of the following calculus identities,

∇ · pI = (∇p)I+ p(∇ · I) =∇p, (2.4.9)

∇ · (∇v) = ∆v, (2.4.10)

∇ · (∇v>) = ∇(∇ · v) = 0, (2.4.11)

where, in the last case, ∇ · v = 0 by continuity (2.4.2) . The resulting mo-
mentum equation, along with continuity are the Navier-Stokes equations for
incompressible flow:

∇ · v = 0 (2.4.12)

ρ

�

∂ v
∂ t
+ (v · ∇)v

�

= −∇p+µ∆v+ρb. (2.4.13)

The integration of these equations in time will give the solution of the fluid
dynamics problem.

2.5 Fluid-Structure Interaction

Given the continuum description of solid and fluid dynamics it now remains
to define the dynamics at their interface. The combined description of the La-
grangian properties of the solid and the Eulerian properties of the fluid lead
to the Arbitrary Lagrangian-Eulerian framework (ALE). This material follows
[Formaggia, 2009] and [?].

2.5.1 ALE Formulation

Figure 2.3 shows solid bΩs and fluid bΩ f domains in the reference configura-
tion with their images Ωs(t) and Ω f (t) under deformation. Their boundaries
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bxc xc

ϕc

bxs xs

ϕs

bΩs

bΓ

bΩ f

vs

vc

v f

Figure 2.3: Solid, Fluid and Computational domains, velocities and motions in
the ALE formulation.

∂ bΩs and ∂ bΩ f allow the definition of boundary conditions in the normal way.
The fluid-structure interface or surface Γ (t) is defined by their common bound-
ary:

Γ (t) = Ωs(t)∩Ω f (t) (2.5.1)

The current position xs and velocity vs of a point on the interior of the solid
domain bxs can be described via the elastodynamics equation (2.3.8) via the
solid motion ϕs(bxs, t).

As noted in Section 2.4.2, for a point on the interior of the fluid domain, flow
velocity v f is an Eulerian field described by the Navier-Stokes equations (2.4.13)
without the need for a reference position or motion.

2.5.2 Computational Domain

In order to couple the conservation of mass and momentum on the solid and
fluid domains the ALE formulation requires an extra definition. The computa-
tional domain Ωc ⊂ Rd represents both the solid and the void through which
fluid flows.

Ωc = Ωs ∪Ω f (2.5.2)

It thus occupies the same space as Ω but carries Lagrangian information about
the current position xc and velocity vc of any point in the reference configuration
bx via the computational motion ϕc(bxc , t).

In the solid domain the solid and computational motions are equal but on the
fluid domain the computational motion ϕc is independent of the fluid.

ϕc = ϕs, ∀x ∈ Ωs (2.5.3)
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The purpose of Ωc is to encode the coupling conditions between the solid and
fluid domains on the surface Γ . The computational motion does not have any
physical meaning in itself and does not influence the solution. It is updated by
any means that ensures the admissibility of the deformation.

Since it has velocity on the fluid domain, this velocity vc must be subtracted
from fluid velocity v f so that only relative velocity is used in the calculation of
advection (2.4.5), hence:

ρ

�

∂ v f

∂ t
+
�

(v f − vc) · ∇
�

v f

�

= −∇p+µ∆v f +ρb (2.5.4)

It is now possible to apply the coupling conditions to the solid, fluid and com-
putational domains.

2.5.3 Coupling Conditions

Firstly, in the reference configuration the images of solid and computational
deformation coincide for all points in the domain bΩ= bΩs ∪ bΩ f .

ϕs(bx, 0) = ϕc(bx, 0), ∀bx ∈ bΩ (2.5.5)

Secondly, the solid and computational motion of each point on the surface bΓ
coincides at all times. This gives continuity of position.

ϕs(bx, t) = ϕc(bx, t), ∀bx ∈ bΓ (2.5.6)

Thirdly, the velocity of each point on the surface Γ coincides at all times. This
applies a no-slip boundary condition to the fluid-structure interface.

vs(x, t) = v f (x, t) = vc(x, t), ∀x ∈ Γ (2.5.7)

Finally, traction forces are set equal and opposite on the surface Γ . This gives
continuity of stress:

σsns +σ f n f = 0, ∀x ∈ Γ (2.5.8)

In this way a point on the surface is subject to forces arising from the motion of
both solid and fluid.

2.5.4 Fluid-Structure Summary

With the inclusion of Dirichlet and Neumann boundary conditions f,g on the
solid and fluid domains, ignoring body forces, the coupled FSI problem can be
written as follows [Formaggia, 2009]:
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Solid:

ρs,0
dvs

d t
−∇ ·σs = 0, x ∈ Ωs (2.5.9)

vs = fs, x ∈ ∂Ωs,D (2.5.10)

σsns = gs, x ∈ ∂Ωs,N (2.5.11)

Fluid:

∇ · v f = 0, x ∈ Ω f (2.5.12)

ρ f

�

∂ v f

∂ t
+ [(v f − vc) · ∇]v f

�

+∇p−µ∆v f = 0, x ∈ Ω f (2.5.13)

v f = f f , x ∈ ∂Ω f ,D (2.5.14)

σ f n f = g f , x ∈ ∂Ω f ,N (2.5.15)

FSI:

xs = x f = xc , x ∈ Γ (2.5.16)

vs = v f = vc , x ∈ Γ (2.5.17)

σ f n+σsn = 0, x ∈ Γ (2.5.18)

We have thus defined a set of coupled problems in electrophysiology, solid and
fluid dynamics. In order to solve them we next consider the computational tools
at our disposal.
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Chapter 3

GPU Computation

3.1 Introduction

This chapter will briefly introduce GPU architecture and show how parallel pro-
cessing can increase computing performance. The cost of this improved perfor-
mance is a set of constraints upon code design. If these constraints are not
followed carefully then the benefits of parallel computing may be lost.

It is common for practitioners to parallelize or accelerate existing code by porting
it to GPU, and then to show speedup with respect to their CPU implementation.
There also exist frameworks and libraries which can be applied to standard
problems, but without considering parallel processing in the design of a mathe-
matical algorithm there is a limit to what these approaches can achieve.

The aim of this thesis is to re-consider existing mathematical and computational
approaches and to show proof-of-concept for a multi-physics solver with parallel
computing at the centre of its design. As such it is important to make clear
the objectives and compromises that must be made, since they will guide the
subsequent work.

This chapter is based largely upon the OpenCL language specification [Khronos
OpenCL Working Group, 2022], programming [NVIDIA Corporation, 2012],
and performance guides [NVIDIA Corporation, 2011]. There are many guide
books including [Scarpino, 2012].

3.2 GPU Architecture

Originally, the Graphics Processing Unit (GPU) was a specialised piece of com-
puter hardware designed to manipulate and alter memory for output to the
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screen buffer for display. The specialism arose because frequently required
tasks, such as interpolation, were often parallel in their nature, usually with
respect to pixels, and required low latency, specifically the screen buffer should
be refreshed at the frame rate of the display.

Once present, the use of the units was extended to include other computation-
ally intensive and parallel tasks, such as linear operations on polygonal meshes
and texture mapping in graphics rendering, as well as video and sound pro-
cessing. Success in these tasks, drew interest for scientific applications and
languages were developed that permitted General Purpose (GPGPU) comput-
ing.

One such language is OpenCL [Khronos OpenCL Working Group, 2022], which
is a based upon set of agreed standards for functionality agreed by the GPU ven-
dors and consumers, comprising the Khronos Working Group, and implemented
separately by vendors. The group is also responsible for other standards includ-
ing OpenGL shader language, widely used in computer graphics. The adoption
of these standards was beneficial to the growth of GPU computing since it al-
lowed elasticity of supply and demand. Since then however GPGPU has become
a large and very significant market which now includes multimedia processing
transforms, the training and forward evaluation of neural networks and cryp-
tocurrency mining. Vendors have extended functionality into proprietary lan-
guages such as NVIDIA’s CUDA, Apple’s Metal Shader Language and Microsoft’s
DirectCompute Extensions, claiming improved programming flexibility and per-
formance, largely for business purposes. Increasing competition has reduced
the vendors’ enthusiasm for open standards such as OpenCL, but it is still pre-
installed and supported on almost all new and existing machines.

At the same time that GPU languages have evolved, so have the units them-
selves. Starting as specialised circuits they became larger off-chip devices with
their own DRAM memory. Now that their benefits have been demonstrated
both in terms of speed and power consumption, there has been some focus on
improving the integration of CPU and GPU memory, which is a significant bot-
tleneck, and is discussed later in this chapter.

OpenCL 3.0 includes instructions that allow simultaneous co-processing of mem-
ory by both CPU and GPU.

We start by introducing the main aspects of GPU computation then consider
how this determines code design.

3.2.1 Hardware Multi-threading

Both CPU and GPU execution pipelines make use of threads. A four quad-core
CPU can process 16 threads in parallel (or 32 with hyperthreading). There may
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OpenCL Program

Block 6 Block 7 Block 8

Block 3 Block 4 Block 5

Block 0 Block 1 Block 2

GPU with 4 Cores
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Block 8

Compile

Execute

Figure 3.1: Thread blocks in a program are processed independently and in
parallel by a multicore GPU.

be a delay while the results of a floating point operations (FLOPs) or memory
access becomes available in register memory. For FLOPs this may be as much
as 24 cycles while for off-chip memory access 400-800 cycles. If this latency
causes the pipeline to stall, then the environment can switch to another to keep
the processor busy. The pipeline is thus filled via multi-threading. The cost of
switching threads on a CPU may be high, since each is fully independent and
carries with it a large amount context and register information stored both on
and off-chip.

Figure 3.1 gives a schematic representation of an OpenCL program. The pro-
gram consists of a large number of threads, grouped into thread blocks (or
work groups). Each block contains as many as 1024 threads and is allocated
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to a compute unit (or core) at compile time. At execution the thread blocks
are processed sequentially but independently by the compute units. It is worth
noting that the order in which the blocks are processed may not have a close
physical relation to their layout in the program, as shown in the figure.

The execution context, counters and register information are preserved on-chip
for all threads for the entire life of the block. Within the block there are thread
groups with a minimum size of 32 threads. If any thread group is stalled the
processor can switch to another and continue execution at zero cost. As a result
the register latency for floating point operations and memory access can, in
theory, be hidden.

This architecture is known as Single Instruction Multiple Thread (SIMT). In ad-
dition the GPU may have vector processing units, which can perform concurrent
floating point operations (usually four) in the same number of cycles as a single
FLOP, thus implementing a Single Instruction Multiple Data (SIMD) architec-
ture. GPU languages have vector and matrix data types for this purpose.

A good GPU may have 100 compute units and can thus support the concurrent
processing of 100,000 threads, with billions scheduled at any one time. Thus
the GPU gives an opportunity for a huge increase in computing performance.
For this improvement to be achieved, the action of the program must be parallel,
that is the design of the program should allow the threads to operate on a large
number of data elements at the same time.

3.2.2 Memory

3.2.2.1 Host/Device Memory Transfer

In general, CPU memory is not directly accessible to the GPU. The original model
for computation involved populating a memory buffer on the CPU host, copying
it via the Peripheral Component Interconnect (PCI) bus to GPU device for pro-
cessing and rendering, then filling the screen buffer for the display. The one-
way nature of this process allowed for read-only and write-only buffers which
removes the need for cache management.

With the advent of GPGPU, users generally need to copy results back to the
CPU to store results as files, requiring another pass through the PCI bus. If
procedures require intermediate processing or memory access then there must
be further transfers and cache management.

The bandwidth of the PCI bus between CPU and GPU memory is around 8GBps,
compared to 128GBps between GPU memory and processor, or 100GBps be-
tween CPU memory and processor. The cost of memory transfer is therefore a
key bottleneck for GPU computation.
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3.2.2.2 Device Memory Spaces

Table 3.1 shows features of GPU device memory spaces. They are ordered
roughly by preference, with Register and Shared memory being ideal but limited
in size and scope. Constant memory is cached and therefore has zero latency
on second read and can be considered as good as a register. Thereafter Texture
memory, which is discussed later, benefits from caching and optimised memory
memory access.

Memory On-chip Cached Access Scope Lifetime
Register yes - read/write thread thread
Shared yes - read/write block block
Constant no yes read all all
Texture no yes read/write* all all
Local no yes/no* read/write thread thread
Global no no read/write all all

Table 3.1: Principle features of GPU memory spaces, reproduced from [NVIDIA
Corporation, 2011]. *Texture memory write access and Local memory caching
are version and vendor-dependent.

The vast majority of memory is Global, where large working buffers reside and
latency is roughly 100 times that of registers. During execution the programmer
can actively manage the movement of data from Global to Shared memory and
as such it is a user-controlled cache. Some devices will cache data into Shared
memory directly. When Global memory is accessed, however, it is not possible
to avoid the cost of one read or write per kernel execution.

When memory requirements exceed the number of available registers, the pro-
cessor will first make use of on-chip Shared then off-chip Global memory, with
associated performance reduction called register spill. If a kernel requires more
resources than are available then it will fail to launch.

3.2.2.3 Texture Memory

Texture mapping is the process in computer graphics rendering by which 2D
bitmap images are applied to the surfaces of 3D polygonal meshes. It is a fun-
damental part of the graphics pipeline which makes multiple reads of many such
bitmaps and various techniques such as interpolation, reflection and repetition,
all of which are ideal for GPU processing. As such there is a special portion
of cached memory available for these operations which has several hardware
optimisations for fast access.
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(a) Canonical (b) Z-Ordered

Figure 3.2: Canonical and Z-Ordered memory indexing in 3D, and correspond-
ing sparsity patterns for 7-point stencil.

Space-filling curves map high dimensional spaces into one-dimension. Texture
memory uses this technique to re-index memory addresses. When assembling a
stencil operation, [Morton, 1966] showed that the technique is equivalent to re-
ordering a sparse matrix such that bandwidth is optimally reduced. An example
for a 3D cube with a 7-point stencil operation is shown in Figure 3.2.

The canonical scheme in 2D generates a scalar memory index from zero-based
row and column indices by taking the row index multiplied by the row size
plus the column index. Z-ordering takes the row and column indices as binary
numbers and interleaves their digits in alternating fashion. The method extends
naturally into higher dimensions resulting in the distinctive z-shaped curves that
give the method its name.

In addition to this, texture memory has some other attractive features. Firstly,
Row and column indices can be normalised into the range [0,1]d and called
using floating point coordinate values. There is specialised hardware that cal-
culates memory addresses for the surrounding values and performs bilinear or
trilinear interpolation. This is equivalent to storing a scalar, vector or even ten-
sor field in a bi- or tri-linear Lagrangian basis. The GPU can be set to handle
out-of-bounds either returning zero, fixed, repeated or reflected values as nec-
essary.
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Secondly, Bitmap data in RGBA format is stored as a vector of four floating
point values which is ideal for storing vector fields. The values can be stored as
half, single, or double precision values or unsigned integers. When queried the
values can be returned as higher precision floating point or integer types.

These two features allow data fields stored at different spatial resolutions and
precision to be combined seamlessly into the same calculation. This is important
for multigrid methods, since a problem can be completely reconstructed at any
scale.

3.3 Design Objectives

As discussed in the previous sections, the performance benefits of the SIMT
and SIMD architectures, as well as optimised memory access of the GPU offer
a potentially huge increase in performance over CPU processing. In order to
benefit from these advantages, the computer program must have the following
characteristics:

• The action of the program should be parallel, that is that action of the
threads can be performed on a large number of data elements at the same
time.

• Traffic over the PCI bus between the CPU host and the GPU device should
be minimised.

• There should be coherence in data access, that is there should be spatial
and temporal locality in both read and write memory operations which
allows the device to coalesce memory operations.

The following sections describe some strategies by which these objectives can
be achieved.

3.3.1 Parallel Execution

Maximising parallel execution starts with structuring the algorithm in a way
that exposes as much data parallelism as possible.

The floating point dot product Rd × Rd 7→ R is a fundamental operation in
linear algebra. It comprises a product which can be computed in parallel and
a sum which is inherently serial. For the product both CPU and GPU can use
independent threads. As discussed in previous sections, there would be a cost
in PCI memory transfer from host to device but for large vectors this would be
outweighed by the increased thread count of the GPU (10k threads) compared
to the CPU (32 threads).
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For the sum, the CPU compiler would use loop unrolling to accelerate the op-
eration, allocating memory for subtotals which could be computed in parallel.
The GPU would use a similar parallel reduction operation in which vectors of
subtotals would hold results of parallel sums. In both cases, speedup would
thus be a tradeoff between parallel computation and memory use, as well as
the cost of memory transfer for the GPU. For operations more complex than the
dot product, algorithms and strategies grow in complexity, and a large quantity
of literature and software exists that attempts to solve these problems.

The alternative is to remove the dot product from the algorithm entirely, and
this is the approach taken here. At all stages the operations used by the solvers
are data parallel. The threads behave like stencil operations reading from their
near neighbours, and writing to a single location in memory. There is no CPU
calculation in the algorithm at all, and no data transfer between device or host
during calculation except for the writing of output files.

3.3.2 Control Flow

Branching keywords (if, for, do, while, switch) cause threads to follow different
execution paths. A CPU handles code branching in a straightforward way, exe-
cuting only paths that are required. The SIMT architecture of the GPU relies on
all multiprocessors carrying out the same instructions at any given time. As a
result code divergence is serialised by the compiler. Where conditional logic is
used within a kernel, both branches are calculated and one value is discarded.
It is therefore important to design the algorithm such that this code branching
contains a minimal amonut of processing.

For example, an if control condition will be allocated a per thread control pred-
icate, which stores the result of the logical evaluation. The code block within
the if statement will execute for all threads, but any resulting operations such
as register writes will only take place where the control predicate is true. This
is known as bit-masking.

When there is an if...else condition, the compiler will execute both code branches
for all threads, applying bit-masking to the results, effectively serialising the di-
vergence. This serialisation removes the advantage of parallel processing and
greatly reduces performance. Therefore, the algorithm and code design in this
work removes all branching statements.

3.3.3 Memory Throughput

For both CPU and GPU memory access represents the key limit to computational
performance.
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The first and most obvious optimisation is the use of single precision floating
point variables. GPUs were not developed for high numerical precision and
while some offer extensions for double precision calculations, most have single
precision floating point registers and arithmetic units. As such single precision
calculations halve instruction and memory throughput.

The range of values and accuracy of single precision floats is sufficient for the
calculation physiological information that our model requires. In some cases
(such as fibre fields) half precision data is sufficient.

3.3.3.1 PCI Bus

As mentioned earlier, the relatively low bandwidth of the PCI bus (8MBps)
compared to GPU the Global memory (128MBps) space is a key performance
bottleneck. There are several strategies which minimise transfer over the PCI
bus:

Memory should be allocated and persisted on the GPU wherever possible. Rou-
tines that allocate device memory allow flags that control read and write access
by both host and device allowing the compiler to optimise cache use. Memory
transfers should coalesced into a few bulk operations rather than many smaller
ones.

Data transfer can be avoided by re-calculation of values rather than storage.
This is especially true with reference to CPU and GPU where a kernel that is
slower on GPU than CPU may be preferable as it avoids transfer. It is also rele-
vant to device-only storage where calculation may be faster than retreival.

Memory transfer can be achieved in a straightforward way by the allocation
of resources on both host and device followed by a memory copy from one
to the other. Another method that is available is the use of pinned memory.
Implemented in different ways by different vendors it is effectively a region of
cache that is in the address space of both device and host and not subject to
paging. As such there are routines that will return a pointer to GPU memory
that can be read or written by the CPU at a higher bandwidth than a traditional
copy operation.

In addition, pinned memory can be read in a synchronous or asynchronous fash-
ion. Once a pointer is allocated, the application can either perform a blocking
transfer in which the GPU processing is paused until IO is complete, or a non-
blocking transfer in which the GPU continues its execution. In the second case
the latency of memory transfer is hidden but its contents may change during
the operation. This must be considered as part of the program design.

As discussed above, the continuing integration of CPU and GPU memory has led
to Shared Virtual Memory in which memory is accessible to both host and device
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and can be operated upon in a synchronous and asynchronous way, with out the
need for explicit transfers. For example, Apple’s recent M1 processor has 64GB
of shared memory for exactly this purpose and demonstrates that manufacturers
are accepting data parallelism as a fundamental part of processor design.

As a result the design considerations outlined above, the code implementation
in this work does not create any memory or perform any calculations on the on
the CPU. All allocations and calculations are carried out directly on the GPU.
The only memory transfer over PCI bus is the reading of buffers to generate
output files. This is performed asynchronously via pinned memory and is thus
optimal with respect to memory transfer.

3.3.3.2 Device Memory

There are several considerations which relate to the efficient use of the GPU
device memory spaces:

The use of shared memory should be maximised. An example of blocked matrix
multiplication is usually given, in which the block size allows multiple threads
to share local memory access. In this case data is loaded into shared memory
manually.

In general however, it can be assumed that the device will make one cached read
and/or write per kernel execution. Thus it is important that the kernel does not
require multiple access to global memory. Atomic writes are serialised, that is
multiple writes to the same memory address will be carried out separately but
the order of their execution is not defined, this results in a race condition for
both read and write. It is important that code either avoids race conditions
or is robust to them. For instance, when using Jacobi iteration to solve a lin-
ear system, a race condition would lead in some instances to a Gauss-Seidel
iteration instead. In this case the race condition is actually beneficial to the
speed of convergence and the solvers in this work will take advantage of this
behaviour.

Originally it was a requirement that a memory location was either read-only or
write-only per kernel access, thus removing the need for cache coherence. Mod-
ern languages and processors allow for read/write operations within a kernel
but it is still beneficial to observe this design constraint. Memory can be flagged
as read or write only per kernel for increased performance.

The features of texture memory indicate the way in which coherent memory
access patterns allow for coalesced memory access. The SIMT architecture blocks
threads on to multiprocessor cores which use and cache Shared memory. It
is important that all threads in a block are accessing memory from the same
or similar cache lines. For this reason random or strided memory access will
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destroy the benefits of device caching. The next chapter describes the structured
grid on which the problem is discretised and this design decision is made with
coherent memory access in mind.

Register spill should be avoided by separating large complex kernel in to smaller
units. If a kernel requires more memory than the available registers then it will
be allocated from Global resources, which introduces hundreds of clock cycles
of latency. There is a low cost in launching a kernel (estimated around 300µs)
and so decomposition may be a better option.

As already mentioned, the kernels in this work will make multiple local reads
per kernel and only write to a single unique location per memory buffer. This
coherent access pattern takes full advantage of spatial locality and cached global
memory access.

3.3.4 Instruction Usage

The final design considerations take place at the register and processor level
with the aim of maximising processor throughput:

As mentioned before, the floating point operations of a GPU are naturally single
precision and the macroscopic nature of the work allows for their use.

As with any good code, slow functions such as division and numerical root
finding should be avoided. Similarly most GPUs do not have dedicated in-
teger processing units and integer division and modulo operations should be
avoided.

The OpenCL language has compiler directives which coalesce floating multiply-
add operations which can achieve significant speedup with a small cost in ac-
curacy. There are also options for relaxed and fast mathematics calculations.
These are implemented with geometric operations on meshes with only visual
quality in mind and thus should be avoided

The following Chapters 4 and 5 describe respectively the discrete formulation
and GPU parallel solution of the continuous problem outlined in Chapter 2.



Chapter 4

Discretization and Solver

In general, the various continuous spatial differential operators specified in
Chapter 2 are discretized onto a computational mesh, and integrated in time
via the method of lines. The use of the dual mesh combined with the Finite Vol-
ume Method for GPU assembly and processing is original to this work.

This Chapter has three sections, the first of which describes the discrete oper-
ators that will be required, first on the regular structured grid, and then in the
deformed configuration. The next section explains how a signed distance func-
tion is used to encode geometry relating solid and fluid domains into the mesh.
Finally, we show how a linear Laplacian solver is assembled with respect to both
the geometry and deformation.

4.1 Operators

We consider the problem as described in Chapter 2 on a domain Ω ⊂ Rd as a set
of scalar Rd → R, vector Rd → Rd and second-order tensor Rd → Rd×d fields
on a regular structured grid.

Some information is stored at mesh vertices xi ⊂ Rd while other values relate
to the enclosed volumes Vi and is stored at their centres. As such both the mesh
and its dual are used in the solution of the problem and this is illustrated in
Figure 4.1.

The fields will be stored for optimised memory access and processed in parallel
in a per-vertex or per-volume manner. This is in line with the design consider-
ations for GPU processing and memory access outlined in Chapter 3.

The mesh will deform according to the motions ϕs,ϕc of the solid and computa-
tional subdomainsΩs,Ωc as described in section 2.5.1. Throughout this Chapter
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δx

δx

Ω
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Figure 4.1: A regular structured grid over the domain Ω ⊂ R2 with mesh width
δx , vertices xi and face dual at the centres of enclosed volumes Vj .

the calculations will be illustrated in R2 for simplicity, although everything de-
scribed extends naturally into R3 and by the orthogonality of the coordinate
system.

All of the operations in the following section are SIMT parallel in elements or
vertices and SIMD parallel for vector and tensor fields. The first part of Chapter
6 will demonstrate their convergence properties.

4.1.1 Reference Volume

We consider a reference volume bV ⊂ R2 as a unit square, with local coordinate
system for a point bx = [x1, x2]> ∈ [0, 1]2. The continuously differentiable
vector field u : R2 → R2 is defined over bV . Discrete differential operators will
be derived for u but are also needed for scalar u : R2→ R and tensor U : R2→
R2×2 fields. Where necessary definitions will be expanded accordingly. These
definitions are equivalent to the reference element in FEM and are summarised
in Figure 4.2.

4.1.1.1 Interpolation

The value of u(bx) can be approximated by bilinear interpolation. We use an
abbreviated notation for the values at the vertices u(0,1) = u01 etc, as shown
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u(bx)

u00 u10

u01 u11

Figure 4.2: The reference volume bV ∈ R2, showing function evaluation of u at
at the vertices and a notional point bx.

in Figure 4.2:

u(bx)≈ (1− x2) [(1− x1)u00 + x1u10] + x2 [(1− x1)u01 + x1u11] (4.1.1)

This is equivalent to applying a set of linear Lagrange basis functions to the
vertices of bV and weighting u by bx. At the centre of the volume, where bx =
[0.5, 0.5]> the formula reduces as follows:

u(bx)≈
1
4
(u00 + u10 + u01 + u11) . (4.1.2)

The interpolation operation is the same for the scalar u and tensor U fields.

4.1.1.2 Gradient

Taking the gradient of the Lagrange basis functions yields a difference formula
for the discrete gradient of u, equivalent to interpolating differences along the
edges of the volume. Vertex values and difference weights are assembled into
matrix form giving an expression for the Jacobian matrix:

∂ u
∂ bx
≈
�

u00 u10 u01 u11
�







−1+ bx2 −1+ bx1
+1− bx2 −bx1
−bx2 +1− bx1
+bx2 +bx1






∈ R2×2 (4.1.3)

It is worth noting that the gradients are piecewise constant in their respective
dimensions. At the centre of bV the formula reduces as follows:

∂ u
∂ bx
≈

1
2

�

u00 u10 u01 u11
�







−1 −1
+1 −1
−1 +1
+1 +1






(4.1.4)
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For a scalar field u the expression gives a row vector approximating the gradient
transposed ∇u(bx)>. For the tensor field U, the operator yields a second order
tensor in R2×2×2:

∂U
∂ bx
≈
�

∂U
∂ bx1

∂U
∂ bx2

�

. (4.1.5)

4.1.1.3 Divergence

The divergence of a vector or tensor field is defined as the limit of outward flux
per unit volume.

∇ · u= lim
bV→0

1

|bV |

∮

∂ bV
u · bn dA (4.1.6)

Using the FVM approach, the discrete integral is the sum over j faces of the
face midpoint values u j , interpolated via (4.1.1), dotted with the exterior nor-
mals bn j . The values at the face centres are the averages of the values at their
incident vertices and thus the inner products represent average flux across each
face. Since side lengths (face areas in R3) and volume bV have unit value in the
reference configuration the divergence can be stated simply as:

∇ · u≈
4
∑

j

u j · bn j . (4.1.7)

For a scalar field u, this operation is not defined, although in FVM the discrete
application of Green’s theorem to a scalar field gives the Green-Gauss gradi-
ent. On the reference volume this is equal to both the standard FDM and FEM
gradient approximations.

For a tensor field U in the reference volume, the inner product is replaced by
a matrix-vector product and the expression for discrete divergence is as fol-
lows:

∇ · u≈
4
∑

j

U j · bn j . (4.1.8)

4.1.1.4 Laplacian

Due to the piecewise constant nature of the discrete gradient on the reference
volume, its divergence is zero by definition. For the Laplacian it is necessary to
consider both the primal and dual in two steps, meshes as shown in Figure 4.3.
We make use of the fact that a regular structured grid is a self-dual mesh.

The field u is stored at each of the primal mesh vertices (black dots). In the first
step, (4.1.4) is used to calculate a discrete gradient at the centre of each of the
four volumes (white dots) adjacent to the central vertex bx.
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bx∇u j
︸︷︷︸

Step 1
4
∑

j=1

∇u j · bn j =∆u(bx)

︸ ︷︷ ︸

Step 2

Figure 4.3: The Discrete Laplacian operator uses nine values of u at the vertices
(black dots) to calculate four values of the gradient field ∇u j at the volume
centres (white dots). It then calculates the divergence of the gradients at the
centre of the dual, which is the Laplacian at vertex bx itself.

The volume centres are the vertices of the dual mesh. In the second step, the
divergence of the gradients is calculated via (4.1.8). Since the centre of the dual
volume is a vertex of the primal mesh, this gives the Laplacian at the central
vertex bx.

It is important to note that an identical procedure can be used to find the Lapla-
cian for a field on the dual mesh, stored at the centre of the volumes, via gradi-
ents the vertices of the primal mesh. The algorithm will make use of both the
primal and dual Laplacian operators.

Again, in the reference configuration these definitions are equivalent to both
those of FEM and FDM.

4.1.2 Deformed Volume

In the deformed configuration, a Lagrangian description of position and velocity
is provided by the solid ϕs and computational ϕc motions, as defined in section
2.5.1. We will derive expressions for discrete operators at the centre of a volume
under an admissible deformation ϕ : R2→ R2. Figure 4.4 shows the reference
volume bV and its image V under deformation.

4.1.2.1 Interpolation

The interpolation operator at the centre of the deformed volume is the same as
for the undeformed volume (4.1.1).
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ϕ(bx)

(0,0) (1, 0)

(1,0) (1, 1)

x00

x10

x01

x11

bx
x

bV
V

Figure 4.4: The reference and deformed volume showing vertices, an interior
point bx and its image x.

4.1.2.2 Deformation Gradient

We now consider the deformed image x= ϕ(bx) of a point bx in the reference vol-
ume bV and apply the discrete gradient operator (4.1.3) to the deformation itself.
The resulting discrete approximation to the deformation gradient F ∈ R2×2 and
its determinant J are key to the continuum mechanics definitions of (2.2.1). At
the centre of the volume (4.1.4) gives the following expression:

F=
∂ x
∂ bx
=
∂ x i

∂ bx j
≈

1
2

�

x00 x10 x01 x11
�







−1 −1
+1 −1
−1 +1
+1 +1






(4.1.9)

It will frequently be necessary to calculate the inverse of the deformation gra-
dient in various, such as JF−> in Nanson’s relation (2.2.6).

In practice we work in R3 and calculate a transposed inverse and determi-
nant using the vector cross product. For a matrix A ∈ R3×3 with columns
A= [a1 a2 a3] we have:

A−> =
1

detA

�

a2 × a3 a3 × a1 a1 × a2
�

(4.1.10)

detA = a1 · (a2 × a3) (4.1.11)

The cost is three cross products, for which OpenCL has a built-in function.

4.1.2.3 Gradient

For the gradient operator in the deformed configuration, we consider the func-
tion u under the coordinate transformation ϕ:

u(x) = u(ϕ(bx)). (4.1.12)
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Applying the chain rule and recognising the deformation gradient F:

∂ u
∂ bx
=
∂ u
∂ x
∂ x
∂ bx
≈
∂ u
∂ x

F. (4.1.13)

The gradient in the deformed configuration can thus be calculated via the ref-
erence gradient (4.1.4) and the deformation gradient (4.1.9), inverted as per
(4.1.10).

∂ u
∂ x
=
∂ u
∂ bx
∂ bx
∂ x
≈
∂ u
∂ bx

F−1 (4.1.14)

4.1.2.4 Divergence

Starting from the discrete integral for divergence in the reference volume (4.1.7),
the expression for deformed divergence takes into account the effect of the de-
formation on the volume (2.2.5) and the face normals (2.2.6).

∇ · u≈
1
J

4
∑

j

u j · J jF
−>
j bn j (4.1.15)

where J is the determinant at the centre of the volume. The relevant deforma-
tion gradients can be calculated from vertex positions and since the multiplica-
tion J jF

−>
j bn j simply selects columns, it is not necessary to perform full matrix

inversion. The relevant column can be calculated directly via (4.1.10) at the
cost of one cross product.

For a tensor field U the process is similar, applying (4.1.8) in the deformed
configuration gives:

∇ ·U≈
1
J

4
∑

j

J jU jF
−>
bn j , (4.1.16)

4.1.2.5 Laplacian

Calculation of the Laplacian follows the same steps as for the reference volume,
making use of the self-dual grid as shown in Figure 4.5. First, the vertex coordi-
nates and values (black dots) are used to calculate the coordinates (4.1.1) and
gradient (4.1.14) at the centres of the volumes (white dots) adjacent to the ver-
tex x. The values at the volume centres are then used to calculate the deformed
divergence of the resulting tensor field at the vertex x itself via (4.1.16).

Under deformation however, the centre of the dual volume may not coincide
with the vertex x. There are various approaches to this problem: Firstly, to cal-
culate the position of the vertex in the reference volume (by solving a quadratic
equation) and calculate the gradient and deformation at this point via (4.1.3).



50 4.2 Linear Solver

ϕ xbx

∂ u
∂ bx

∂ u
∂ bx

F−1 =
∂ u
∂ x

∇ ·
∂ u
∂ x
=∆u

Figure 4.5: Calculation of the deformed Laplacian operator. First vertex values
and coordinates (black dots) are used to calculate deformed gradients at the
volume centres (white dots), then these are used to calculate the deformed
divergence at vertex x.

Secondly, the position of the vertex can be moved to centre of the dual volume.
This is effectively a form of damping, which is in line with the continuum as-
sumption. Thirdly, the deformed Laplacian can be applied without adjustment,
which is in line with the assumption that the deformation is constant over the
volume. In practice, all three approaches are reasonable.

4.2 Linear Solver

The algorithm described in the following Chapter requires the solution of vari-
ous linear systems which arise from the discretisation of differential operators.
We thus give a brief description of the matrix-free assembly and solution of a
deformed vector Laplacian operator as defined in Section 4.1.2.5.

This solver serves as a prototype for all of the linear solvers used in the algo-
rithm, and is applied both to the primal mesh and its dual. That is the Laplacian
may be solved both with respect to vertex properties, such as velocity in the ap-
plication of viscosity, or with repect to volumes as in the case of pressure or
electrical charge.

4.2.1 Jacobi Method

The linear solver is based on the standard Jacobi method, which is parallel in
its execution. As discussed in Chapter 3, race conditions in GPU memory will
cause the solver to degenerate into a Gauss-Seidel smoother, which has faster
convergence, but when this occurs depends upon the scheduler of the GPU and
can not be controlled. Many discussions of iterative solvers include [Golub,
2013], [Briggs et al., 2000], and [Trottenberg et al., 2000].

The Jacobi method solves the linear system Au = b where A ∈ Rn×n and u,b ∈
Rn. The method considers the lower triangular, diagonal and upper triangular
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parts of A:
A= L+D+U. (4.2.1)

Given some k-th approximation uk the following update step

uk+1 = D−1
�

b− (L+U)uk
�

, (4.2.2)

converges to the solution under the following condition on the spectral radius
ρ of the iteration matrix:

ρ(D−1 [L+U])< 1. (4.2.3)

It is sometimes preferable to apply a damped Jacobi update according to the
parameter α ∈ R, usually chosen such that α ∈ [0,1] generates a convex com-
bination of the current and previous iterates:

uk+1 = (1−α)uk + (α)D−1
�

b− (L+U)uk
�

. (4.2.4)

4.2.1.1 Implicit Euler

When the Jacobi iteration is employed with respect to the Implicit Euler time
integration method there is an outer iteration over time ut → ut+1, and in inner
iterate for the solution of the system uk → uk+1. We derive the Jacobi step as
follows, with operator A and generic constant α= ν δt

δx2 :

ut+1 = ut +αAut+1 (4.2.5)

(I−αA)ut+1 = ut (4.2.6)

[I−αD−α(L+U)]ut+1 = ut (4.2.7)

Separating the diagonal gives an expression for the update to uk, the iterative
the solution of ut+1 which is used frequently in the algorithm:

uk+1 = [I−αD]−1 �ut +α(L+U)uk
�

. (4.2.8)

It is worth noting that the operator includes the identity matrix I and the value
α decreases with decreasing time step length. As a result, the operator is diag-
onally dominant and thus well-conditioned for small time steps and the Jacobi
iteration converges relatively quickly.

4.2.2 Matrix-Free Assembly

The iterative solver is applied in a matrix-free form that is parallel in matrix
rows. Thus, each GPU thread updates a single element of the solution vector, in
accordance with good practice for memory access. It must therefore generate
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V0 V1

V2 V3

x0 x1 x2

x3 x4 x5

x6 x7 x8

Figure 4.6: Node numbering for assembly of the Laplacian operator.

the coefficients corresponding to a single row of the Laplacian matrix. We begin
by considering the assembly of the Laplacian operator on paper and show that
its implementation reduces to a computationally efficient calculation of stencil
weights which can be expressed in closed form.

As per the Figure 4.5 the discrete formulation of the Laplacian operator in Ω ⊂
R2 makes use of nine vertices with a point x at their centre. The implementation
in R3 follows the same basic construction using 27 mesh points.

For a vector function u : R2 → R2 as defined earlier, the vertices and volume
centres are numbered according to Figure 4.6. The the coefficients correspond-
ing to the row of a matrix can be synthesised by concatenating the 9 function
evaluations {u0 . . .u8} at vertices {x0 . . .x8} into a matrix U ∈ R2×9. The el-
ements of U are the only values that change from one Jacobi iteration to the
next:

U=
�

u0 . . . u8
�

=

�

u11 · · · u19
u21 · · · u29

�

. (4.2.9)

The undeformed gradient operator as per (4.1.4) is applied as a difference
matrix D1 ∈ R9×8 to the vertex values, resulting in a matrix of four blocks
corresponding to the four reference Jacobians at the centre of each volume
{V0, . . . , V3}.

�

u0 · · · u8
� 1

2























−1 −1 0 0 0 0 0 0
+1 −1 −1 −1 0 0 0 0

0 0 +1 −1 0 0 0 0
−1 +1 0 0 −1 −1 0 0
+1 +1 −1 +1 +1 −1 −1 −1

0 0 +1 +1 0 0 +1 −1
0 0 0 0 −1 +1 0 0
0 0 0 0 +1 +1 −1 +1
0 0 0 0 0 0 +1 +1























︸ ︷︷ ︸

D1

=
�

∂ u
∂ bx

�

�

�

V0

∂ u
∂ bx

�

�

�

V1

∂ u
∂ bx

�

�

�

V2

∂ u
∂ bx

�

�

�

V3

�

(4.2.10)
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Next, the four inverse deformation gradients at each volume centre F−1
V , calcu-

lated via (4.1.9) are applied in block form F1 ∈ R8×8 for the deformed Jacobians
at the volume centres:

�

∂ u
∂ bx

�

�

�

V0

· · ·
∂ u
∂ bx

�

�

�

V3

�









F−1
V0

0 0 0
0 F−1

V1
0 0

0 0 F−1
V2

0
0 0 0 F−1

V3









︸ ︷︷ ︸

F1

=
�

∂ u
∂ x

�

�

�

V0

. . .
∂ u
∂ x

�

�

�

V3

�

(4.2.11)
An interpolation operator D2 ∈ R8×8 as per (4.1.1) is then applied which gives
four gradients interpolated at the face midpoints x j = {x0 . . .x4}. Here, I ∈ R2×2

is the identity matrix.

�

∂ u
∂ x

�

�

�

V0

. . .
∂ u
∂ x

�

�

�

V3

�

1
2







I 0 I 0
0 I I 0
I 0 0 I
0 I 0 I







︸ ︷︷ ︸

D2

=
�

∂ u
∂ x

�

�

�

x0

. . .
∂ u
∂ x

�

�

�

x4

�

(4.2.12)

Finally, the products of the gradients and the deformed normals are summed to
give the divergence of the gradient. This is achieved by arranging the deformed
face normals into a column vector, given by the product of the four deformation
gradients at the face midpoints F2 ∈ R8×8 divided by the volume determinant
J , and the reference outer normal vectors N1 ∈ R8×1 :

�

∂ u
∂ x

�

�

�

x0

. . .
∂ u
∂ x

�

�

�

x4

�

1
J









J0F−>0 0 0 0
0 J1F−>1 0 0
0 0 J2F−>2 0
0 0 0 J3F−>3









︸ ︷︷ ︸

F2







bn0
bn1
bn2
bn3







︸ ︷︷ ︸

N1

≈∆u(bx)

(4.2.13)
In summary, the forward evaluation of the discrete deformed Laplacian is a
composition of matrix products:

∆u≈ UD1F1D2F2N1. (4.2.14)

We recall that the only values that change per Jacobi iteration are the elements
of U, while D1 and D2 are static difference and interpolation coefficients. The
elements of F1 and N1 depend upon deformation gradients which only change
per time step. Taking the product of all these static matrices gives a vector
c ∈ R9×1 of coefficients:

D1
︸︷︷︸

9×8

F1
︸︷︷︸

8×8

D2
︸︷︷︸

8×8

F2
︸︷︷︸

8×8

N1
︸︷︷︸

8×1

= c
︸︷︷︸

9×1

(4.2.15)
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These are the entries of the row of the discrete Laplacian matrix, and are applied
as weights to the columns of U.

The assembly and multiplication of these matrices can be largely avoided if sys-
tem is evaluated by composition from right to left, rather than left to right.

U
︸︷︷︸

2×9

D1 F1 D2 F2N1
︸︷︷︸

8×1
︸ ︷︷ ︸

8×1
︸ ︷︷ ︸

8×1
︸ ︷︷ ︸

9×1

= ∆u
︸︷︷︸

2×1

(4.2.16)

As a result it is reduced to a small number of signed sums of difference quotients
and entries of deformation matrices, which are easily hard-coded into compu-
tational kernels. This is both computationally intensive and low in memory
bandwidth, ideal for GPU computation.

4.3 Geometry

4.3.1 Signed Distance Function

The geometry in the model is encoded via Signed Distance Functions (SDF).
This includes not only the solid and fluid domains, but regions of differing fibre
direction and electrical conductivity, amongst others. Although the SDF is used
here, the voxels that are used in the solution algorithm can be obtained directly
from segmented medical imaging data.

The SDF is a scalar function s : Rd → R over the domain that evaluates to a
negative value on the interior of some subdomain and a positive value on its
exterior. The boundary or surface is the set of points for which the function
evaluates to zero. Figure 4.7 gives an example of a signed distance function for
an intersecting circle and square, showing the positive and negative values of
the function, as well as the boundary.

The use of SDFs originated in computer graphics since they have the important
property that the gradient of the function on the boundary of the object is the
exterior normal to the surface ∇s(x)|s(x)=0 = n. This is extremely useful when
rendering scenes because it allows for the calculation of the paths of reflected
light rays, during the application of lighting and surface effects, but is also ideal
for the calculation of surface flux.

Mathematically the function derives from a norm. Consider a point c ∈ Rd .
The Euclidean distance from c to any point x ∈ Rd is given by the 2-norm
‖x− c‖2. If a scalar radius r ∈ R is subtracted from this distance the resulting
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Figure 4.7: 2D and 3D contour plots of the same Signed Distance Function
s(x , y). The function takes negative values on the interior of an object and
positive values on its exterior. The surface (blue line) is defined as the set of
points for which the value of the function is zero.

function s(x,c, r) = ‖x− c‖2− r, defines a d-sphere with centre c and radius r.
It is possible to define other functions based upon norms that define different
shapes, for instance the 1-norm ‖x− c‖1 defines a d-cube.

SDFs have several properties which are valuable in computation:

They can be evaluated at any point and thus any resolution. This allows the GPU
to combine information stored at different resolutions in a straightforward man-
ner, as outlined in section 3.2.2. It is also ideal for multigrid solvers, since the
entire problem can be fully reconstructed automatically on coarse grids.

They can be easily derived from medical imaging data, either by thresholding
or by standard algorithms applied to voxel data files which are the output of
MRI or CT scanners.

SDFs degrade to circles at long distances. This allows the approximation of
shapes which is useful for clipping (the exclusion of distant objects) or for col-
lision detection and multi-body problems.

4.3.2 Primitives

Signed distance fields can be derived for various shapes and combined alge-
braically, allowing for the construction of complex shapes from simple objects.
Much of this section is derived from the website https://iquilezles.org,
although the functions have been adapted for simplicity.

Some examples of simple shapes, or primitives are shown in Figure 4.8 with
code in Listing 4.3.2. In each case the vector argument p is the coordinate of
the point to be tested, and the function returns a scalar value (positive, negative

https://iquilezles.org


56 4.3 Geometry

Figure 4.8: Cuboid, Ellipsoid, Cone and Cylinder primitives.

or zero) dependent upon the location of the point with respect to the shape. The
functions are mathematically simple and SIMT/SIMD parallel.

1 //cuboid , p=point , r=radius (per axis)
2 float sdf_cub(float3 p, float3 r)
3 {
4 float3 q = fabs(p/r) - 1.0f;
5

6 return max(q.x,max(q.y,q.z));
7 }
8

9 //ellipsoid , p=point , r=radius (per axis)
10 float sdf_ell(float3 p, float3 r)
11 {
12 return length(p/r) - 1.0f;
13 }
14

15 //cylinder , p=point , r=radius , h=height
16 float sdf_cyl(float3 p, float r, float h)
17 {
18 return max(length(p.xy) - r, fabs(p.z) - h);
19 }
20

21 //cone , p=point , r=radius , h=height , a=angle
22 float sdf_con(float3 p, float r, float h, float a)
23 {
24 return max(length(p.xy) - a*p.z - r, fabs(p.z) - h);
25 }

Any affine or nonlinear transformation can be applied to the point p and thus
the shape can be translated and deformed as required. It is also possible to
apply modulo functions to the coordinate to allow tiling.

The combination of primitive shapes is achieved by the implementation of sim-
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ple set operations. We consider the two shapes S1,S2 and their respective SDFs
s1, s2 ∈ R and implement the following set operations as follows:

Union: S1 ∪ S2 ≡ min(s1, s2)
Intersection: S1 ∩ S2 ≡ max(s1, s2)
Complement: S1\S2 ≡ max(s1,−s2)

(4.3.1)

It is also possible to define hollow shapes thresholding the absolute value of the
SDF. Figure 4.9 shows set operations acting on a hollow cube S1 and sphere
S2. The code required to generate complex shapes and subregions is extremely
simple.

(a) S1 (b) S2 (c) S1 ∪ S2

(d) S1 ∩ S2 (e) S1\S2 (f) S2\S1

Figure 4.9: Set operations on Signed Distance Functions for a hollow cube S1
and sphere S2.

A smoothed minimum function can be used to blend together two SDFs leading
to more natural surfaces that better represent organic objects. An example is
shown in Figure 4.10, with a varying smoothness parameter k.
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(a) k = 0.0 (b) k = 0.25 (c) k = 0.5

Figure 4.10: Smoothed minimum function for increasing values of parameter
k.

4.3.3 Encoding

Having generated or captured a geometry it is now possible to encode it onto
the mesh as detailed at the beginning of this chapter. Since the computational
model makes use of both vertices and volumes, it important that the geometry
has integrity with respect to these objects. As such a mesh volume V can only
belong to either the solid Ωs or fluid Ω f domains. A vertex, however, has no
volume and can belong to one or the other, or both if it is on the fluid-structure
interface.

Ωs Ω f

(a) Volume Pass

Ωs Ω f

(b) Vertex Pass

Figure 4.11: The SDF is encoded into the mesh in two stages. In the first pass the
SDF is evaluated at the volume centres. In the second, vertices count incident
volumes and are assigned as solid (black), fluid (white) or surface (green).

The algorithm that applies the SDF to the mesh thus makes two passes, in par-
allel over the mesh as follows:

1. A kernel runs per volume, evaluating the SDF at the centre point of each.
As such the volumes V are assigned to either the solid or fluid subdomains.
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2. The next kernel runs per vertex x and iterates through all subvolumes V
incident to it. If all the adjacent subvolumes are in the solid subdomain
the vertex is assigned as solid, similarly if all are fluid then the vertex
is assigned as fluid. If the vertex is incident upon both solid and fluid
subvolumes it is assigned as surface.

Figure 4.11 illustrates the relationship between the SDF and the mesh.

A discussed in Chapter 3, GPU memory access is SIMD parallel and it is efficient
to store a 3-dimensional vertex coordinate x ∈ R3 in a float4 vector variable1.
The fourth float in the vector is populated with the value of the SDF and it is thus
available to test during any kernel execution that calls the vertex coordinates
into register without cost.

The geometry kernels also populate any other spatially-dependent data fields,
such as the fibre directions, conductivity and varying tissue properties needed
by the calculation.

Having assigned volumes and vertices, the geometry is encoded as voxel data
in a regular structured grid. This is illustrated in 3D in Figure 4.12. When the
input data is voxel data from a medical scan, this reflects the incoming data
exactly. It would also be possible at this stage to fit the mesh precisely to the
SDF. This would be achieved by deforming the mesh, such that surface vertices
were moved to the root of the SDF. This would generate a smooth surface. Then
the application of a Laplacian to the non-surface vertex coordinates would regu-
larise the volumes. This has been successfully tested but is not yet implemented,
since subsequent calculations would require extra storage and reference to the
pre-deformed mesh.

Figure 4.12: A Signed Distance Function and its encoding into the mesh.

1In OpenCL there is a float3 variable, but it is an alias to float4.



Chapter 5

Algorithm Details

5.1 Overview

As described in Chapter 4, the discrete problem is processed in space on a regu-
lar structured grid with mesh width δx ∈ R and iterated over time t ∈ R+. The
memory for the calculation is a set of three-dimensional buffers of the OpenCL
data type float4, which are vectors of four single-precision floating point val-
ues. Some of the buffers correspond to values at the vertices while others con-
tain information relating to volumes.

The C program instantiates OpenCL objects, including the memory buffers on
the GPU and their contents at time t = 0 are initialised according to input data,
which includes the geometry and initial conditions. A main loop then iterates
over a time step δt ∈ R and applies a sequence of computational kernels which
operate in parallel on the buffers, updating values relevant to the different steps
of the algorithm. Kernels such as iterative solvers are applied in sub-loops to
the main loop.

At prescribed intervals, the contents of the buffers are copied from the CPU to
GPU and written into output files. These files are post-processed and visualised
as frames of video or plots of time series data.

5.2 Electophysiology

The Monodomain equation (5.3.2) is a PDE consisting of both reactive and diffu-
sive terms, which are handled separately via operator-splitting. The ODE corre-
sponding to the Mitchell-Scheaffer Model (2.1.1) for transmembrane potential
is first updated via a step of Explicit Euler time integration, and this value is
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then used to update the diffusive part of the Monodomain equation via a step
of Implicit Euler time integration. The regime is detailed below.

5.2.1 Reaction

First, a single kernel integrates the Mitchell-Scheaffer ODE with a step of Ex-
plicit Euler time integration, acting on the coupled scalar variables for trans-
membrane voltage v in (2.1.1) and the gating variable w in (2.1.4), which are
stored as average values per volume:

v t+1
i = v t

i +δt
dvi

d t
(5.2.1)

wt+1
i = v t

i +δt
dwi

d t
, (5.2.2)

where in general, the discrete evaluation vi of a continuous variable v is given
a suffix i ∈ N which enumerates a vertex or, in this case Volume. The memory
buffer contains a flag which indicates whether a volume is electrically active or
not, in which case its value is preserved.

5.2.2 Diffusion

Next a kernel applies an Implicit Euler step to the left hand side of (5.3.2) cor-
responding to the diffusion of charge through the intracellular and extracellu-
lar domains. The resulting linear system is solved with a Jacobi iteration as
described in Section 4.2.1.1, again acting on the average value of vi per vol-
ume.

v t+1
i = v t

i +δtAv t+1
i (5.2.3)

The solver must take into account the conductivity tensor Σ calculated from
the fibre directions f as in (2.1.24). Since the conductivity tensor acts on the
eight discrete gradients ∇v surrounding vi , it is derived from interpolated val-
ues of f at the corresponding points and appears in the assembly described in
Section 4.2.2 as an additional block diagonal matrix S1 of eight conductivity
tensors:

∇ · (Σ∇vi)≈ viD1S1F1D2F2N1, (5.2.4)

where vi is a row vector of the 27 values surrounding vi that are used by the
stencil. The buffer of fibre directions uses all four elements of the float4 vari-
able such that the unit direction vector f ∈ R3 and the longditudinal σL and
transverse σT conductivities can be stored uniquely per volume Vi of the do-
main.

The model assumes that the fibres f, and thus the conductivity field Σ, deform
with the mesh. The deformation gradients F1,F2 therefore need only to take
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into account the scaling and are thus the product of mesh width δx and an
identity matrix I ∈ R3×3. Since they are applied twice during assembly they can
be removed and appear as the familiar scalar term 1

δx2 . For the generation of
the ECG, the elliptic part of the problem in the second line of (2.1.19) is solved
on the heart and torso via Jacobi iteration.

5.3 Solid Dynamics

5.3.1 Stress

In Section 5.3.1 it was shown that the principles of conservation of mass and
momentum, along with a constitutive model for a solid continuum lead to the
Elastodynamics equation (2.3.8). The resultant force acting on an enclosed
volume V , is thus the sum of traction and body forces, given by surface and
volume integrals respectively.

In the discrete case, these integrals are calculated in parallel per vertex as shown
in Figure 5.1.

σs σ f

xi

Vi
bi

Figure 5.1: Spatial integration of the Elastodynamics equation at surface point
xi lying on the fluid structure interface Γ (blue line), showing the volume of in-
tegration Vi (enclosed by dotted lines), and examples of the domain dependent
stress tensors σs and σ f (black and white dots respectively) and body forces bi .

Body forces bi may be prescribed as averages over Vi and thus sum directly into
the integral. Traction forces are given by the negative divergence of Cauchy
stress. The stress tensors surrounding a vertex xi may be derived in one of two
different ways:

1. If the adjacent volume is part of the solid domainΩs then the tensorσs de-
rives from the deformation gradient F in (4.1.9) and solid material model
such as Saint Venant-Kirchhoff (2.3.4).

2. If the volume is in the fluid domain Ω f then Cauchy stress σ f is given by
the pressure p and strain-rate tensor as in the Navier-Stokes fluid (2.4.6).
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In practice the kernels loop the volumes adjacent to the vertex and read the
geometry information from the coordinate buffer as outlined in Section 4.3.3.
The numerical calculation of the stress tensors in the deformed configuration is
performed as per (4.1.16). As a result, the coupling conditions for continuity
of stress in the ALE formulation (2.5.8) are satisfied.

5.3.2 Muscle Contraction

If tissue is mechanically active the Cauchy Stress tensor must include an addi-
tional component to represent muscle contraction. This is calculated by taking
the unit vector for fibre direction f and multiplying it by a constant to repre-
sent the strength of contraction and the dimensionless value of transmembrane
potential as given by (). The components of the resulting vector are added to
the diagonal of the Second Piola-Kirchhoff stress in the reference configuration
(2.3.4). In this way the fibres and resulting contraction forces deform with the
tissue as expected.

This is the simplest possible implementation of Excitation-Contraction coupling
and can be refined in future work.

5.3.3 Leapfrog Integration

Once the forces in the Elastodynamics equation are resolved, conservation of
momentum allows the change in velocity to be calculated by consideration of
mass, the integral of density over volume Vi . Integration in time is then achieved
with the Leapfrog method. This explicit method has been derived separately
across many disciplines and is, most importantly, symplectic in phase plane,
that is it conserves angular momentum. It is therefore suitable for the wave-
like solutions of the Elastodynamics equation.

For position, velocity and acceleration x,v = ẋ,a = ẍ ∈ Rd , in a classical dy-
namic system of differential equations, Leapfrog integration at time t ∈ R is as
follows:

vt+ 1
2
= vt− 1

2
+δtat (5.3.1)

xt+1 = xt +δtvt+ 1
2

(5.3.2)

It is worth noting that the position and velocity are given at different times,
which gives the method its name. Also that the system is started from rest,
which does not require any spcific management of the velocity half-step. The
first step (5.3.1) only is applied at this stage.
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5.3.4 Damping

Solid damping can be applied as the diffusion of momentum via an Implicit Eu-
ler iteration on momentum as per Section 4.2.1.1. Damping and fluid viscosity
can be applied to the whole domain separately or via the same kernel, taking
care to use the correct coefficients for dynamic viscosity, damping and density.
The fluid viscosity can also be applied in the mechanics kernel as the strain rate
in the Cauchy stress tensor σ f of (2.4.6), and natural damping is achieved via
the interpolation of vertex position, as described in Section 5.3.1.

5.4 Fluid Dynamics

5.4.1 Helmholz Projection

The projection method that is at the core of most modern fluid dynamics solvers
was pioneered by Chorin [Chorin and Marsden, 2013] and is the basis for the
well-known SIMPLE algorithm [Patankar, 1980] and its subsequent variations.
This section outlines the technique, following a useful introductions by [Harris,
2005] and [Griebel, 1997], and those following show how it must be adapted
to incorporate the deforming fluid-structure interface.

Helmholz-Hodge decomposition theorem states that a vector field w on domain
Ω, can be uniquely decomposed into the sum of two orthogonal fields:

w= u+∇p, (5.4.1)

where ∇p is the gradient of a scalar field, and u is parallel to ∂Ω and has zero
divergence, that is:

∇ · u = 0, on Ω (5.4.2)

u · n = 0, on ∂Ω. (5.4.3)

The unknown fields u and p can be obtained from w by taking the divergence
of (5.4.1) and applying condition (5.4.2) to give a Poisson problem for pres-
sure:

∇ ·w = ∇ · u
︸︷︷︸

∇·u=0

+∇ ·∇p (5.4.4)

⇒∆p = ∇ ·w (5.4.5)

which can be solved up to the addition of a constant with the zero-Neumann
boundary condition (5.4.3). Taking the gradient of the solution p and substi-
tuting into (5.4.1) completes the solution:

u=w−∇p. (5.4.6)
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The continuity equation (2.4.2) requires that fluid velocity must be divergence-
free for conservation of mass. The decomposition method is applied to the dis-
crete time formulation of the Navier-Stokes equations (2.4.13) as follows.

We start by considering a discrete time step δt, where ν = µ
ρ is the kinematic

viscosity and body forces b are ignored:

vt+1 = vt +δt
�

(v · ∇)v+ ν∆v−
1
ρ
∇p
�

. (5.4.7)

The discrete advection and viscosity operators are applied in an explicit fashion
to give an intermediate velocity field w with non-zero divergence:

w= vt +δt
�

(vt · ∇)vt + ν∆vt
�

. (5.4.8)

The velocity at the next time step, which must be divergence-free by continuity,
is expressed as a sum representing the Helmholz decomposition of w, equivalent
to (5.4.1):

w= vt+1 +
δt
ρ
∇pt+1 (5.4.9)

Taking the divergence as above and using ∇ · vt+1 = 0 as in (5.4.4) yields
a Poisson equation for pressure, with divergence of intermediate velocity as
data:

∆pt+1 =
ρ

δt
∇ ·w. (5.4.10)

Finally, the intermediate field w can be corrected by the subtraction of the gra-
dient of the calculated pressure field pt+1 as in (5.4.6):

vt+1 =w−
δt
ρ
∇pt+1. (5.4.11)

The explicit integration of advection and viscosity with the implicit solution of
the Poisson pressure equation constitutes another operator-splitting approach,
and the update of the intermediate field into its divergence-free form is a predictor-
corrector method.

5.4.2 Advection

The discrete advection operator must also consider the computational mesh of
the ALE formulation as described in (2.5.4). It follows the conservation form of
the advection operator and applies the deformed divergence as in (4.1.16).

∂ v f

∂ t
+∇ · (v f ⊗ (v f − vc)) = 0, (5.4.12)
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where ⊗ indicates an outer product. This is a sum of matrix vector products
with outer normals.

vt+1
f = vt

f −
1
J

4
∑

j

J j(v
t
f ⊗ (v

t
f − vt

c))F
−>
bn j , (5.4.13)

At the same time as the computation we test the sign of the product vt
f ·n j > 0

and remove from the sum those instances where it is true. This results in an
upwind scheme for the advection operator.

5.4.3 Viscosity

Similarly to damping, viscosity can be applied as via an implicit Euler step
4.2.1.1 for momentum on the fluid and surface domains. In situations where
the Reynolds number is relatively low, viscosity can be applied explicitly in the
fluid strain rate tensor as part of the fluid Cauchy stress σ f as given in (2.4.6).
The discrete deformed gradients of fluid velocity are calculated as per (4.1.14)
and weighted by the constant of dynamic viscosity. The stress tensor is applied
conditionally as outlined in Section 5.3.1.

5.4.4 Pressure

The Helmholz projection method of Section 5.4.1, requires only the gradient
of pressure to correct fluid velocity. The definition of fluid Cauchy stress σ f as
given in (2.4.6) requires an absolute value for pressure. The Dirichlet boundary
conditions necessary for the correct solution of the Poisson pressure equation.
as thus contained in ghost cells at the perimiter of the domain. They are set at
the beginning of the time iteration and can represent actual values or simply a
ground state against which relative pressure is measured.

The application of the Helmholz projection method proceeds in four stages:

1. Given an initial velocity v f , the advection and viscosity operators are ap-
plied as described above, to gain an intermediate velocity field.

2. The discrete divergence of velocity is calculated as per (4.1.15), taking
values at the mesh vertices and returning an average divergence at the
volume centres.

3. The divergence is given as data to the right hand side of a Jacobi itera-
tion (4.2.2) for the solution of the poisson pressure (5.4.11) on the fluid
domain.

4. The resulting value of p is used in the fluid Cauchy stress tensor (4.2.2)
and applied to solid or fluid as necessary. In this way the continuity of
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stress between the solid and fluid (2.5.8) is enforced as well as the fluid
pressure correction (5.4.6).

In the derivation of the Helmholz projection method, the zero-Neumann bound-
ary condition on u · n = 0 on ∂Ω in 5.4.3 is applied to the fluid velocity in the
Poisson pressure equation. In the ALE formulation the velocity may not be zero,
since the no-slip condition (2.5.7) allows for the coupled movement of solid and
fluid on ∂Ω. As a result a non-zero Neumann boundary condition is applied to
the Poisson pressure equation as per [Chorin and Marsden, 2013]:

∂ p
∂ n
=w · n, on ∂Ω. (5.4.14)

In practice the pressure field from the previous time step is used as the initial
guess for the Jacobi iteration. The resulting pressure field is also under-relaxed
aiding stability on the fluid-structure interface.

5.5 Computational Mesh

The computational mesh does not play any physical role in the computation but
it must deform with the solid structures in order to maintain the admissibility if
the motion as mentioned in Section 2.2.1. Effectively the determinant J of the
deformation gradient F should be greater than zero on Ωc .

The motion of the computational mesh is resolved by applying Jacobi iteration
(4.2.2) of a Laplace equation to the computational velocity vc , using the solid
velocity at the surface and ghost cells as Dirichlet boundary conditions. This is
in line with the coupling condition for velocity on the fluid-structure interface
(2.5.7).

At this point in the algorithm the second step of the Leapfrog iteration is applied
(5.3.2), updating the position of the solid and computational mesh, and the
main loop returns for its next iteration.
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Results
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Chapter 6

Numerical Experiments

6.1 Convergence Studies

6.1.1 Overview

We start by validating the discretization as introduced in Chapter 4. Conver-
gence studies in the L2 error norm with respect to mesh width δx are carried
out for the forward action of the various discrete differential operators, as well
as the iterative solution of a discretized Laplace operator. All of the operations
are found to be quadratically convergent as expected.

The single precision arithmetic introduces a lower bound to the mesh width,
below which results become numerically unstable. This is because the definition
of the divergence operator (4.1.15) includes a division by the measure of the
control volume, J ≈ 1

δx3 , which quickly tends to machine zero in single precision
arithmetic.

We consider the vector-valued objective function u : R3 → R3, where x =
[x , y, z]> as follows:

u(x) =





sin(x) cos(y)
cos(y)ez

atan (z)



 (6.1.1)

To reference domain bΩ = [−1,+1]3 ⊂ R3, the following deformation ϕ : R3→
R3 was applied:

x= ϕ(bx) =





x + cos(πz)
y + sin(πz)
z + sin(z)



 (6.1.2)

The objective function is shown in reference u(bx) and deformed u(ϕ(bx))configurations
in Figure 6.1. For each of the operators the error e ∈ Rd is the difference be-
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(a) Reference (b) Deformed

Figure 6.1: Objective function u(x) for the convergence study in reference and
deformed configurations, n= 32.

tween analytic and numeric solutions unum,uana ∈ Rd , which may be scalar or
vector. The L2 norm is calculated in the ususal way as the sum of the integral
of squared errors over each of the control volumes Vi in the the domain, where
J is the determinant of the deformation gradient as in (2.2.1):

e = unum − uana (6.1.3)

‖e‖L2
=

� Vtot
∑

i=1

Ji(e
>e)

�

1
2

(6.1.4)

It is important to note that since Ji is only an approximation of the actual volume
measure |Vi|, this introduces an error in to the norm itself. Despite this error it
is still possible to draw the most important conclusions from the convergence
studies below. Examples of the error norm in the reference and deformed con-
figurations are shown in Figure 6.2.

(a) Reference (b) Deformed

Figure 6.2: Sample L2 error norm for the convergence study in reference and
deformed configurations, n= 32.



71 6.1 Convergence Studies

6.1.2 Discrete Operators

6.1.2.1 Interpolation

The discrete interpolation operator as given in (4.1.1) shows quadratic conver-
gence with respect to mesh width. The calculation is not susceptible to any
numerical instability, indeed this task represents much of the work for which
the GPU is designed. Figure 6.3 shows the results in reference and deformed
configurations.
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Figure 6.3: L2 error vs. mesh width δx for the discrete interpolation operator.

6.1.2.2 Gradient

The gradient operator as given in (4.1.14) again shows quadratic convergence
with respect to mesh width. The results of the convergence study are shown in
Figure 6.4.

In this case, since the result ∂ u
∂ x ∈ R

3×3 is a matrix, we use the Frobenius norm
e = tr(A>A) to calculate a scalar error, which is then integrated as per (6.1.4)
for the L2 norm.

In the reference configuration we see the beginning of some numerical insta-
bility. The calculation (4.1.14) involves multiplication by the inverse of the de-
formation gradient F−1, and hence division by its determinant J . As the mesh
width δx becomes small, the determinant tends to machine zero. The resulting
division is close to zero and as a result we see an increase in the error as mesh
width becomes small. In the deformed configuration there is sufficient error in
the representation of the deformation itself to mask this effect.
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In general the convergence of the discrete operator is quadratic, and as long as
the mesh width is not too small the calculation is valid and numerically stable.

10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

δx

L2 error

δx2

(a) Reference

10−3 10−2 10−1 100
10−6

10−5

10−4

10−3

10−2

10−1

100

δx

L2 error

δx2

(b) Deformed

Figure 6.4: L2 error vs. mesh width δx for the discrete gradient operator.

6.1.2.3 Divergence

The discrete divergence operator is given in (4.1.16) and the results of the
convergence study are shown in Figure 6.5. Again, the approximation shows
quadratic converge with mesh width and for similar reasons (the multiplication
by F−>) it is susceptible to numerical instability for small δx .
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Figure 6.5: L2 error vs. mesh width δx for the discrete divergence operator.
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6.1.2.4 Laplacian

The derivation of the discrete Laplacian operator is given in Section 4.1.2.5 and
it shows the expected quadratic convergence with respect to mesh width. The
results of the convergence study are shown in Figure 6.6.

Again the approximation is subject to numerical instability for small mesh widths,
but now it is more pronounced. This is because the Laplacian requires the
application of both gradient and divergence operators, and thus division by
J2 ≈ δx6. As a result it is important to design actual simulations with units
that result in a mesh width within stable bounds. For this reason, in the simu-
lations that follow, normal SI units are converted such that values stay within
reasonable range, distances are in millimetres, rather than metres, for instance.
This is an important insight from the study.
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Figure 6.6: L2 error norm vs. mesh width δx for the discrete Laplacian operator.

6.1.3 Jacobi Solver

The details of the assembly and iterative solution of the discrete Laplace opera-
tor are given in Section 4.2. In this case we give the analytic values as data on
the right hand side and solve for the objective function.

Figure 6.7 shows the convergence of the Jacobi solver with respect to iterations.
This well-known result shows how the number of iterations required to reach
convergence increases with. the number of degrees of freedom. The accuracy
of the converged result with respect to mesh width is shown in Figure 6.8. As
before the convergence is quadratic but there is numerical instability for small
δx due to the division by J2 as for the forward operator. The effect is masked
by the error introduced by the deformation but is still present, and the Jacobi
solver must also be damped as per 4.2.4 which requires more iterations.
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Again it is important to recognise the lower bound on mesh width, which can
be mitigated by careful choice of units.

The Jacobi iterative solver is used four times during the algorithm described in
Chapter 5. In the case of Electrophysiology, Damping and Viscosity it is used to
solve for a step of implicit Euler time integration as per 4.2.8 and, as discussed
in Section 4.2.1.1, it is well conditioned converges in relatively few iterations
for small time steps. When used for the Poisson Pressure equation as discussed
in Section 5.4.4, it is important to use the pressure solution from the last time
step as the initial guess in order to minimise the number of iterations.
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Figure 6.7: L2 error norm vs. iterations for the Laplacian Jacobi solver.
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Figure 6.8: L2 error norm vs. mesh width δx for the Laplacian Jacobi solver.
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6.2 Benchmark Studies

6.2.1 Electophysiology

The implementation of the Electrophysiology simulation was validated against
the benchmark study of [Niederer et al., 2011a]. The study defines a problem
in anisotropic electrophysiology and compares the results of 11 different codes
for its solution, each submitted by different research groups.

The problem considers a cuboid of 20mm × 7mm × 3mm of myocardial tissue
with an active electrophysiology in accordance with the monodomain equation
(5.3.2), repeated here:

λ

1+λ
∇ · (Σ∇v) = χm

�

Cm
∂ v
∂ t
+ Im

�

. (6.2.1)

Instead of the Mitchell Schaeffer model (2.1.1) for the transmembrane potential
Im, the study uses the more detailed model of [ten Tusscher et al., 2004], which
consists of 11 coupled ODEs and describes all major ion channels as well as
intracellular calcium dynamics.

The cuboid is anisotropic, having greater conductivity along its long axis, and
receives an initial stimulus in a cubic region of 1.5mm × 1.5mm × 1.5mm at its
corner. With all parameters of the model fully specified, the experiment records
the activation time in milliseconds throughout the cuboid generated by each of
the submitted codes. An example result is shown in Figure 6.9.

Figure 6.9: Sample results for the eletrophysiology benchmark experiment,
showing activation times in ms through the cuboid. The stimulus is applied
in the lower left corner and the latest activation is in the top right corner.

The results were compared for different spatial δx ∈ {0.5mm, 0.2mm, 0.1mm}
and temporal δt ∈ {0.05ms, 0.01ms, 0.005ms} resolutions by plotting activa-
tion time (ms) vs. distance (mm) along the long diagonal of the cuboid from
the stimulus to the opposite corner. Figure 6.10 reproduces the results from the
paper for the 11 submitted codes.
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Cardiac physiology simulator benchmark 4341
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Figure 2. Activation times along the blue line depicted in figure 1b between points P1 and P8 for
solutions with Dt = 0.005 ms and Dx = 0.1 mm (red line), 0.2 mm (green line) and 0.5 mm (blue
line). Plot labels correspond to code indexing listed in table 4.

codes showing less dependence on the spatial resolution. Also for code A the blue
line (Dx = 0.5 mm) is below the red line (Dx = 0.1 mm). Thus, as the mesh was
refined, the conduction velocity of the activation wave decreased slightly for this
code but increased for all other codes.

The simulations were performed with a transversely isotropic conduction
tensor. To show the impact of changing spatial resolution on activation wave
curvature, and propagation along and across the preferential fibre direction,
we evaluated activation times in the plane shown in figure 1b. Figure 4 shows
activation times for the highest and lowest spatial resolution with Dt = 0.005 ms.
These data show that codes A and H were better able to capture off-fibre
conduction velocities at courser spatial resolutions, and that codes C, E and
F had far greater boundary effects at coarser resolutions.

All of the benchmark simulations were performed using either the finite element
method (FEM) or the finite difference method (FDM). Codes that use the
same underlying method would be expected to be more similar than codes that
use an alternative method. To evaluate quantitatively the difference between
simulation results, we determined the L2 norm of the difference in activation times
between simulations with the highest spatial and temporal resolution (table 5).
Interestingly, in a number of cases, the simulation results were closest when the
simulations were performed using different numerical methods. Specifically, code
A, solved using the FEM, was closest to code G, which used the FDM. Similarly,
code B, which used tetrahedral finite elements, was closest to code I, which used
a regular grid FDM.

Phil. Trans. R. Soc. A (2011)

Figure 6.10: Reproduction from [Niederer et al., 2011a], showing activation
time (ms) vs. distance (mm) along the diagonal of the cuboid, with δt =
0.005ms and δx = 0.1mm (red), δx = 0.2mm (green) and δx = 0.5mm (blue).

The discussion in the paper notes that the results are broadly similar, but subject
to a variation of around 10% even at high-resolution convergence. Some of the
results also exhibit mesh-dependent variation.

The equivalent plot using the algorithm as defined in this work is shown in
Figure 6.11. It is worth noting that the y-axis range is zero to 50ms, and so
the plot most closely resembles subplot (A) in Figure 6.10. As such the result
of our experiment is broadly in line with the result at the finest resolution for
the benchmarking results and shows little mesh-dependent variation. The pa-
per gives the high-resolution convergence result at the top corner as between
42.5-43ms, and our result is within that range for the finer resolutions. This
is despite the fact that our implementation uses the simpler model of [Mitchell
and Schaeffer, 2003].

Furthermore, we consider the results of the simulation at coarser resolutions
in both space and time. The results are shown in Figure 6.12(a) where δx =
0.2mm and 6.12(b) where δx = 0.5mm. In both cases there is a reduction in
overall accuracy for the activation time with respect to mesh width. This can be
seen by a higher activation time overall, but the solution is not sensitive to time
resolution. This is very useful since it allows for a longer timestep and fewer
iterations.
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Figure 6.11: Results for the experiment in [Niederer et al., 2011a], using our
model, showing activation time (ms) vs. distance (mm) along the diagonal of
the cuboid, with δt = 0.005ms and δx as shown.

In conclusion, the CFL condition determines a maximum time step δt. Since
the size, and therefore resolution δx , of the domain is limited by the memory
capacity of the processor, careful consideration can allow for an efficient com-
promise between spatial and temporal resolution and time to solution.
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Figure 6.12: A comparison or activation time vs. distance for coarser meshes.
The overall accuracy is reduced with increasing δx but is less sensitive to δt
and thus requires far fewer iterations.
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6.2.2 Solid Mechanics

For the verification of the solid mechanics simulation we reproduce some re-
sults from the benchmark study of [Land et al., 2015]. The paper sets bench-
mark problems for the simulation of deformation which occurs in a solid body
with varying spatial characteristics under a fluid pressure, either as a passive
response or with active stress corresponding to muscle contraction.

The problems were solved by code submitted by 11 different research groups
and arrived at consensus solutions using differing approaches to formulation,
discretisation and processing. We will reproduce the two experiments corre-
sponding to the response of an idealised ventricle under passive expansion and
active contraction.

6.2.2.1 Geometry

The two experiments both make use of the same geometry, given in its reference
configuration and shown in Figure 6.13. An idealised ventricle is modelled as
a truncated ellipsoid, fixed on its upper plane. The solid part of the geome-
try contain a vector field corresponding to fibre directions which vary spatially
through the tissue in a spiral fashion. The dimensions and properties of the
ventricle are given as algebraic expressions which can be easily reproduced in
our model via signed distance functions and stored vector fields.

Figure 6.13: Model geometry of [Land et al., 2015], representing an idealised
ventricle in its reference configuration showing fibre directions.

A static spherical pressure field was set on the interior of the ventricle, corre-
sponding to the fluid pressure of the blood. On the exterior of the ventricle no
boundary conditions were applied, except at the top plane, which was fixed in
space.



79 6.2 Benchmark Studies

6.2.2.2 Material Model

For the material model, the study makes use of the transversely isotropic con-
stitutive law of [Guccione et al., 1995]. The strain energy function includes the
parameterisation of an anisotropic material response determined by the fibre
field within the tissue. This model has been widely used both in the determina-
tion of model parameters and in the simulation of tissue behaviour, see [Tang
et al., 2007],[Hassaballah et al., 2013] amongst others.

We reproduce the results using a different material formulation, the Hyperelas-
tic solid model of [Mooney, 1940] and [Rivlin and Rideal, 1948] for the stress
strain relationship, which is passively isotropic and incompressible, and add an
anisotropic stress determined by the vector field of fibre directions. We briefly
summarise the model as it will be used again in cardiac simulation.

The strain energy density function of a Mooney-Rivlin material is given as:

W = c1(I1 − 3) + c2(I2 − 3), (6.2.2)

where c1 and c2 are empirically determined material constants and I1 and I2 are
the first and second invariants of B the unimodular part of the left Cauchy-Green
deformation tensor B:

B = FF> (6.2.3)

B = det(B)−
1
3 B (6.2.4)

The unimodular part of B has a determinant det(B) = 1. The material model is
thus formulated directly in the deformed configuration and separates deforma-
tion from change in volume. The invariants are defined as follows and can be
calculated quickly from the invariants I1, I2 of B.

I1 = J−
2
3 I1 (6.2.5)

I2 = J−
4
3 I2, (6.2.6)

where the standard tensor invariants are defined as follows:

I1 = tr(B) (6.2.7)

I2 =
1
2

�

tr(B)2 − tr(B2)
�

, (6.2.8)

and J = det(F) is the determinant of the deformation gradient as usual.

For an incompressible Mooney-Rivlin material J = 1 and thus B = B. The
Cauchy stress σ can therefore be expressed as:

σ = −p∗I+ 2(c1B− 2c2B−1) (6.2.9)
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Where p∗ represents a corrective pressure given by:

p∗ =
2
3
(c1 I1 − c2 I2) (6.2.10)

As a result the highly nonlinear behaviour of an incompressible solid can be
modelled using a stable, explicit iteration. This the reason for the choice of
the Mooney-Rivlin material and a key part of the design of the cardiac simula-
tion.

For the anisotropic contraction a synthetic deformation is introduced, equiva-
lent to an extension in the longditudinal fibre direction f ⊗ f, as per (2.1.24).
The extension is added to the existing deformation gradient F and flows into
the calculation of stress, resulting in a contractile response that is equivalent
to muscle contraction, but without affecting the incompressible response of the
material model. Again this is an important part of the design, in maintaining
the integrity and stability of the mechanical simulation.

6.2.2.3 Passive Expansion

In the first experiment a pressure of 10kPa was applied to interior surface of
the solid in its reference configuration and the ventricle is allowed to inflate.
The contributors to the paper solve a static problem but we run the dynamic
solution until it reaches equilibrium, as shown in Figure 6.14.

(a) Reference (b) Passive expansion

Figure 6.14: The reference configuration (a) and passive expansion (b) of an
idealised ventricle.

The simulation was run on a three-dimensional regular structured grid of 1003

cells. The mesh width δx = 0.5mm, and time step δt = 0.005ms. The com-
putation output a file completely describing the state of the model every 500
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iterations, producing 100 files in total. The simulation time was thus 100 ×
500 × 0.005 = 250ms, which was sufficient for the solid to reach a station-
ary equilibrium. The GPU processor used was an NVIDIA A100 PCI with 40GB
memory and the processing time was around 160 seconds.

The paper reports the final position of the midline of the solid. The experiment
was repeated and the Mooney-Rivlin parameters updated until the results were
in agreement with the consensus solution, as shown in Figure 6.15. The values
of c1 and c2 were thus both set to 0.5. These values were retained for subsequent
experiments.
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(b) Land et al. 2015

Figure 6.15: The reference configuration and passive deformation of an ide-
alised ventricle with (a) generated by this work and (b) an extract from [Land
et al., 2015], showing comparable results.
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6.2.2.4 Active Contraction

In the second experiment a pressure of 15KPa was applied to interior surface
of the solid in its reference configuration as well as a contractile Piola Kirkhoff
stress of 60kPa orientated along the fibre directions in the solid. Again, the con-
tributors solve a static problem and we run a dynamic solution to equilibrium,
as shown in Figure 6.16.

(a) Reference (b) Active contraction

Figure 6.16: The reference configuration (a) and active deformation (b) of an
idealised ventricle under muscle contraction.

The simulation was run on the same three-dimensional regular structured grid
of 1003 cells with mesh width δx = 0.5mm, but the larger forces required a
shorter time step δt = 0.001ms. The computation output a file every 1000 iter-
ations, producing 100 files in total for a simulation time of 100×1000×0.01=
100ms, again reaching a static equilibrium. The same NVIDIA A100 processor
completed the calculation in 160 seconds. This illustrates an important point,
that despite the model making twice as many iterations (50,000 in the first case
and 100,000 in the second) there is no difference in the computation time. This
is because the time to solution is completely dominated by traffic across the PCI
bus and IO on the CPU. This is in line with the observations in Chapter 3.

The experiment was repeated until the synthetic expansion parameter for mus-
cle contraction was identified as 1.0, and it is retained for future experiments.
The results for the final position of the midpoint are shown in Figure 6.17.
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(a) Problem 1
Figure 3 shows the maximal deflection of the beam across different solutions plotted against the
number of degrees of freedom used, with the deformed position of a specific line at maximal
deflection shown in figure 4. Figure 5 shows a comparison of strain measures in the submitted
solutions. For both the strain measures and the deformed solution, only the solutions with most
refined discretizations were used.

(b) Problem 2
Figure 6 shows the location of the endocardial and epicardial apex plotted against the number
of degrees of freedom used. Figure 7 shows the deformed position of a line in the midwall from
apex to base for all the submitted solutions, with details of the apex and inflection point. Figure 8
shows a comparison of strain measures for the submitted solutions.

(c) Problem 3
Figure 9 shows the location of the endocardial and epicardial apex plotted against the number of
degrees of freedom used. Figure 10 shows the deformed position of a line in the midwall from
apex to base for all the submitted solutions, and figure 11 shows the position of this same line
as viewed from the top, comparing results for the twisting motion of the ventricle under active
contraction. Details are provided of several key regions to highlight small differences between
solutions. Figure 12 shows a comparison of strain measures for the submitted solutions.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 Ju

ne
 2

02
1 

(b) Land et al. 2015

Figure 6.17: The reference configuration and active deformation of an idealised
ventricle under muscle contraction, with (a) generated from this work and (b)
an extract from [Land et al., 2015], showing comparable results, δx = 0.5mm.



Chapter 7

Cardiac Simulation

7.1 Overview

In this section we combine all of the elements of the work into a single whole
heart simulation. The objective is to provide a complete set of descriptive data,
including position x, solid vs and fluid velocity v f , membrane depolarisation u
and fluid pressure p over the course of a single heartbeat. The simulation time
is thus one second (t = 1000ms) with 100 data files, each corresponding to a
frame of video output at 10ms intervals. The results are generated at at spatial
resolutions of δx = 1.0mm and δt ∈ [0.05,0.001]ms respectively. This allows
the algorithm to make many iterations between each use of the PCI Bus, hiding
latency as discussed in Chapter 3.

The resulting data can be sampled over subsets of the domain and post-processed
to generate synthetic analogues to physiological recordings. The transmem-
brane voltage is sampled at three positions and used to simulate the output
of a three-lead Electrocardiogram (ECG). Position data and pressure within a
ventricle will be used to generate a synthetic Pressure-Volume (PV) loop.

It is important to note that the code is a first prototype and this simulation
serves as a proof-of-concept for the algorithm itself, rather than presenting the
experiment and its results as a state-of-the-art simulation. Validation and the
addition of richer models is left as future work.

The following sections will outline the construction of the cardiac geometry
using the signed distance functions of Section 4.3, and the adaptation of the
solvers and algorithm of Chapters 4 and 5 respectively. Finally, we display and
discuss some of results.

84
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7.2 Geometry

7.2.1 Myocardium

Figure 7.1: The schematic whole heart in signed distance function and voxel
representation.

The geometry of a schematic heart is shown in Figure 7.1. It is constructed
around a central origin and is comprised of several elements defined by their
own SDFs, which are combined according to the set algebra of Section 4.3.
The myocardium is a combination of four SDFs, two half-spheres above the
origin and two ellipsoids below it, as shown in Figure 7.2a. The intra-ventricular
septum is and a horizontal septum are defined as elliptic discs as in Figure 7.2b.
Hollow vertical cylinders representing the veins and aorta entering the atria and
leaving the ventricles respectively are shown in Figure 7.2c. Finally the mitral
and tricuspid valves are represented as hollow elliptic cones which penetrate
the horizontal septum as shown in Figure 7.2d. The geometry does not include
any other blood vessels or valves at the entrance of the atria or ventricles, and as
such their action is significantly absent from the results of the simulation.

7.2.2 Fibre Directions

Fibres are present in the the tissue of the myocardium (Figure 7.2a) which de-
termine both the conductivity of the myocardial tissue as well as the axis along
which it contracts. The fibre field is stored a set of vectors, shown in Figure
7.3. The conductivity is determined via (2.1.24), where f ∈ R3 is the stored
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(a) Myocardium (b) Septum

(c) Blood vessels (d) Valves

Figure 7.2: Geometric elements comprising the whole heart geometry

fibre direction. The values of londitudinal σL and transverse σT conductivity
are given as follows:

σL = 0.20 mS mm−1

σT = 0.05 mS mm−1
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Where S indicates Siemens, the SI unit of conductivity, given as 1S = µA mV−1

mm−1. Where no fibres are present the conductivity in all directions is set equal
to σT . The form of the fibre direction is constructed as a unit vector lying ini-
tially in the horizontal (xy) plane, initially orthogonal to the position vector of
the point in the myocardium at which the fibre is set. The vector is then rotated
by 0.4π in the axis of its position vector to give the generally accepted helical
form for the fibres [Land et al., 2015] [Potse et al., 2006] [Tang et al., 2007],
among others. It is possible to set the angle of fibre rotation with a transmu-
ral parameter, but this did not affect the results for either electrophysiology or
mechanics and it is not used at this stage.

Figure 7.3: Cardiac geometry showing the vector field of fibre directions.

In addition to the fibres of the myocardium there is a fibre running vertically
through the centre of the heart which represents the higher conductivity of the
Purkinje network. The fibre has twice the longditudinal conductivity of the
regular fibres. It works in cunjuction with the horizontal septum (Figure 7.2b)
which has its conductivity set to zero. Since the fast fibre is the only point at
which electrical stimulation can pass from the atria to ventricle the movement of
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depolarisation through the centre of the heat reproduces the action of the atrio-
ventricular node, separating the contraction of the upper and lower sections of
the heart into two distinct events.

7.3 Algorithm

7.3.1 Electrophysiology

The heart receives a stimulus of 20mV at a position near its apex located in
the left atrium, equivalent to the SA node. The Mitchell Schaeffer and Mon-
odomain models are used to model calculate the electrophysiology, as defined
earlier in this work and implemented in the reproduction of the benchmark
paper of [Niederer et al., 2011a] in Chapter 6. The diffusive behaviour of the
Monodomain model includes a Laplacian operator which can be iterated in time
either with an Implicit Euler integration, using a Jacobi or Richardson iteration.
The time step δt = 0.001ms is sufficiently short to allow for an Explicit Euler
integration at a spatial resolution δx = 1.0mm. In this case the implicit and
explicit results are equivalent. If an ECG is required the elliptic problem on the
second line of (2.1.19) is solved via a Jacobi or Richardson iteration.

7.3.2 Solid Mechanics

For the solid mechanics the incompressible Mooney Rivlin model is used with
the same parameters as in the reproduction of the benchmark study of [Land
et al., 2015] in Chapter 6. As described in Section 6.2.2.2, a synthetic extension
of the tissue is coupled to the transmembrane voltage. This induces a contractile
stress in the tissue which does not interfere with the incompressible dynamics
of the material model. As a result the contraction is stable under explicit itera-
tion.

7.3.3 Fluid Dynamics

The behaviour of the fluid is as described in 5. For the solution of the Poisson
pressure equation resulting from the Helmholz projection of Section 5.4.1, ei-
ther a Jacobi or Richardson iteration is used. The current pressure field is used
as the initial guess for the iterative solve and a small number of iterations are
performed such that the solution is incomplete. This is equivalent to the semi-
implicit solution given in [Formaggia, 2009] but takes advantage of the Finite
Volume discretisation. Since the solution is incomplete, the corrected fluid ve-
locity is not entirely divergence-free and the gradient of the pressure field is
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under-estimated. This in turn enters the fluid structure interaction as Cauchy
stress as shown in Figure 7.4.
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Ω f
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Figure 7.4: The contribution of solid and fluid Cauchy stress tensors to the
velocity of solid, fluid and surface vertices.

Due to the conservative nature of FVM this error is retained in the solution
and remains at the next solution of the Poisson equation. As such the pres-
sure correction is applied over more than one time step. The resulting error
in the solution is equivalent to a fluid that is both compressible and damped.
This is not entirely physically incorrect and contributes to the stability of the
fluid-structure interaction, which otherwise is the main source of error in the
model.

7.4 Results

7.4.1 Electrophysiology

The simulation of the electrophysiology alone can be performed with a slightly
longer time step of δt = 0.05ms. The results are shown in Figure 7.5 and
reproduce an approximation on the cardiac action potential. The transport of
the depolarisation through the fast fibre on the central axis of the geometry
can be seen. The computational cost is quite low, and the computation can
be performed quickly on a desktop computer. In this case we used an iMac
with its native Radeon Pro 580 8GB GPU and the simulation with 1 million
degrees of freedom took 66 seconds. Many repeated simulations are therefore
possible, and as such the model can be considered as the objective function of
an optimisation problem. This allows for richer iterative experiments such as
parameter estimation, neural network training and the testing of surgical or
drug therapies. A more complex ionic model can also be substituted into the
calculations.
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Figure 7.5: The evolution of the cardiac action potential at intervals of 50ms
(δx = 1.0mm).

7.4.1.1 ECG

In order to reconstruct the output of a synthetic three-lead Electrocardiogram
(ECG), the transmembrane voltage was allowed to diffuse out of the heart and
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Figure 7.6: The six standard outputs of a 3-lead Electrocardiogram.

into the surrounding tissue. The conductivity of the tissue was set to a high
value and thus mimicked the movement of charge through the torso.

The values at diametrically opposite corners of the domain were extracted from
the data to represent the left arm (LA), right arm (RA) and left leg (LL) elec-
trodes. The standard calculations were applied to generate the six outputs, as
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per the following formulae:

I = LA− RA

I I = LL − RA

I I I = LL − LA

aVR = RA−
1
2
(LA+ LL)

aV L = LA−
1
2
(RA+ LL)

aV F = LL −
1
2
(RA+ LA)

The results are shown in Figure 7.6. They do not appear to contain much de-
tail and are certainly open to interpretation. They do however contain peaks
corresponding to the P and T waves, and the QRS complex is present but not
pronounced. The output depends upon both the choice of conductivity through
the torso and the position of the recording points and is greatly affected by the
small domain on which the problem is solved. These parameters can be chosen
by experimenters, and since the ECG can be generated within around 3 minutes
per heartbeat, there is much room for refinement.

7.4.1.2 Simulation Times

The following tables summarise electrophysiology simulation times for various
resolutions and processors. In each case the total simulation time was 1000ms
(1 second) and the software output a set of files containing a complete de-
scription of the heart at 10ms intervals (100 sets of files in total). The sim-
ulation is stable at the longer time step of 0.05ms, but the runs with shorter
time step 0.01ms are shown for comparison with the whole heart timing data.
File input/output (IO) and PCI bus operations dominate the calculation time
for smaller simulations. When the ECG is required the iterative solution of the
elliptic problem increases the total time depending on the resolution required.
For example on the iMac the solution time for the heart at a resolution of 100
increases to around 3.5 minutes.
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Dimensions Elements δx(mm) δt(ms) Time(mm:ss)

50×50×75 187,500 2.0 0.01 00:19

100×100×150 1,500,000 1.0 0.01 01:58

200×200×300 12,000,000 0.5 0.01 21:32

50×50×75 187,500 2.0 0.05 00:07

100×100×150 1,500,000 1.0 0.05 01:54

200×200×300 12,000,000 0.5 0.05 12:00

Table 7.1: AMD Radeon Pro 580 (2017 iMac).

Dimensions Elements δx(mm) δt(ms) Time(mm:ss)

50×50×75 187,500 2.0 0.01 00:10

100×100×150 1,500,000 1.0 0.01 00:52

200×200×300 12,000,000 0.5 0.01 05:15

50×50×75 187,500 2.0 0.05 00:06

100×100×150 1,500,000 1.0 0.05 00:30

200×200×300 12,000,000 0.5 0.05 03:39

Table 7.2: NVIDIA A100 PCIE 40GB (USI ICS Cluster).

When the output is ECG only there is no need to write files, only to copy the elec-
trophysiology buffer to the CPU for post-processing. These timings are shown
below:
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Dimensions Elements δx(mm) δt(ms) Time(mm:ss)

50×50×75 187,500 2.0 0.01 00:16

100×100×150 1,500,000 1.0 0.01 01:30

200×200×300 12,000,000 0.5 0.01 16:22

50×50×75 187,500 2.0 0.05 00:04

100×100×150 1,500,000 1.0 0.05 00:20

200×200×300 12,000,000 0.5 0.05 03:19

Table 7.3: ECG only: AMD Radeon Pro 580 (2017 iMac).

Dimensions Elements δx(mm) δt(ms) Time(mm:ss)

50×50×75 187,500 2.0 0.01 00:04

100×100×150 1,500,000 1.0 0.01 00:12

200×200×300 12,000,000 0.5 0.01 01:33

50×50×75 187,500 2.0 0.05 <00:01

100×100×150 1,500,000 1.0 0.05 00:04

200×200×300 12,000,000 0.5 0.05 00:22

Table 7.4: ECG only: NVIDIA A100 PCIE 40GB (USI ICS Cluster).

7.4.2 Whole Heart

The whole heart simulation includes a fully-coupled representation of electro-
physiology, solid and fluid dynamics. The algorithm was executed on a single
NVIDIA A100 PCIE 40GB GPU at resolution δx = 1.0mm and δt = 0.001ms.
The simulation time was 6081 seconds or approximately 100 minutes. The
results are shown in Figure 7.7, with streamlines indicating the fluid velocity
field.

The output files contain a complete description of position, velocity, membrane
voltage and pressure throughout the rectangular domain. They capture the
basic elements of the heartbeat, specifically a two-stage contraction of atria,
followed by ventricles, and the resulting unidirectional flow of blood through
the heart. Due to the absence of valve functionality there is a considerable
reverse flow of blood from ventricle to atrium during ventricular systole.
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Figure 7.7: The evolution of the whole heart simulation at intervals of 50ms
(δx = 1.0mm).

7.4.2.1 PV Loop

For the calculation of Pressure and Volume in the ventricle, a region of voxels
were selected and tagged within the left ventricle. As the software generated
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data the voxels were counted and the pressure and volumes extracted. The
volume was then divided by the number of voxels to give average values.
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Figure 7.8: Deviation in Average Pressure and Relative Volume over a 1000ms
simulation of the heartbeat.

The results are shown plotted against time in Figure 7.8 over 100 frames, each
representing 10ms of simulation. They were then combined to plot a PV loop as
shown in Figure 7.9. From the plot it can be seen that the PV loop displays the
basic characteristics of the behaviour of the ventricle. An increase in pressure
followed by an increase in volume corresponds to the filling of the ventricle
from the atrium. Then the decrease in volume coupled to an increase in pres-
sure associated with ventricular contraction and expulsion. The results are by
no means physiologically accurate. This is partly due to the absence of valve
function from the simulation, and also due to the damped and compressible
fluid behaviour which results form the incomplete solution of the Poisson pres-
sure equation.
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Figure 7.9: Pressure-Volume Loop derived from the data in Figure 7.8.

Again, the simulation was computed on a single NVIDIA A100 PCIE 40GB GPU
at resolution δx = 1.0mm and δt = 0.001ms. The simulation time was 6081
seconds or approximately 100 minutes.

7.4.2.2 Simulation Times

The following tables summarise whole heart simulation times for various reso-
lutions and processors. In each case the total simulation time was 1000ms (1
second) and the software output a set of files containing a complete description
of the heart at 10ms intervals (100 sets of files in total). The column labelled k
is the number of poisson iterations per time step δt.

We also performed a simulation on a single node Piz Daint at the Swiss national
supercomputing centre. The machine has a faster file system but less power-
ful NVIDIA Tesla P100 16GB GPUs. The timings were slightly slower than the
NVIDIA A100 of the USI ICS cluster and so the results are not shown.
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Dimensions Elements δx(mm) δt(ms) Poisson k Time(mm:ss)

50×50×75 187,500 2.0 0.01 10 11:21

100×100×150 1,500,000 1.0 0.01 10 68:02

Table 7.5: AMD Radeon Pro 580 (2017 iMac).

Dimensions Elements δx(mm) δt(ms) Poisson k Time(mm:ss)

50×50×75 187,500 2.0 0.010 10 01:16

100×100×150 1,500,000 1.0 0.010 10 09:57

Table 7.6: NVIDIA A100 PCIE 40GB (USI ICS Cluster).
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Chapter 8

Review & Outlook

8.1 Review

We have given details of a mathematical model and computational algorithm
that can provide a complete description of a single heartbeat, along with phys-
iological metrics such as and ECG and PV loop. The computational results are
available within seconds for a small model of electrophysiology up to around
one hour for a complete model, using only a single GPU processor.

The design of the mathematical model and its discretisation is made with com-
putational constraints in mind. It is based upon classically valid mathemati-
cal approaches and principles, present in textbooks rather than journal papers.
There is a deliberate avoidance of complicated mathematics which gives a ben-
efit in simplicity, both to the user and the processor. The algorithm is both mesh
and matrix-free, relying on assembly per vertex or element as required. As a
result the design is readily configurable and extensible to include more complex
geometry or mathematical models in future.

The code is extremely short, and has no software or hardware dependence.
There is no make file, and the compile line:

gcc mesh.c ocl.c main.c -lOpenCL -lm (8.1.1)

references only the C source code, OpenCL and the native C mathematics library.
There are functions for data retrieval, calculus and linear algebra, as well as the
signed distance functions of the geometry. For each of the operators there is
a single computational kernel, such as for the update of membrane potential,
diffusion of electrical charge, the calculation of divergence of stress etc.

The simplicity of the code contributes to speed of execution and low consump-
tion of computational and human resources, and ultimately time and money. As
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a result it can be used iteratively by a single competent user, for repeated exper-
iments, parameter fitting or the training of Artificial Neural Networks (ANN).
It thus has application to both academic research and clinical use. The config-
urable and extensible nature allows it to be adapted to different pathologies,
interventions and ultimately individual subjects.

The result of this work is therefore a proof of concept of a novel computational
approach to cardiac simulation which is practical, not theoretical.

8.2 Assesment

The work is at a very early stage. The aim was to arrive at a complete working
model, accepting compromises along the way, without losing sight the ultimate
objective. As a result there are many sources of error, but the process of com-
pleting the model allows us to consider these errors and to make judgements
about the relative costs and benefits associated with their correction.

Again it is important to note that we are not presenting the cardiac simula-
tion itself as state-of-the-art, but showing that it is possible to make a cardiac
simulation with this novel computational and algorithmic approach.

The following sections give a brief discussions of the strengths and weaknesses
of the work, grouping them together according to the structure of the algo-
rithm.

8.2.1 Electrophysiology

The electrophysiology problem is a reaction-diffusion equation handled via op-
erator splitting. The Mitchell-Schaeffer ionic membrane model is highly non-
linear and as a result is updated using an Explicit Euler time integration. The
diffusive mono- and bi-domain models are integrated with Implicit Euler time
integration.

The stiffness of the explicit problem demands a relatively short time step, and
as a result the linear system for the implicit integration is dominated by the
mass matrix. Thus it is extremely well-conditioned and thus suitable for an
iterative solver such as a Jacobi or Richardson iteration. The properties of these
solvers are well-known, removing high frequencies quickly and efficiently, but
effectively failing for low frequencies.

At this point it is important to reconsider the reactive part of the equation.
Charge diffuses to neighbouring tissue and will fire an action potential if it is
over the stimulation threshold of the model. Thereafter the problem is com-
pletely changed and dominated by the newly depolarised region. As a result
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the diffusion of charge at a distance, corresponding to the low-frequency solu-
tion is no longer relevant. The short time step and local nature of the problem
lead to a well-conditioned system, requiring few iterations to reach a solution
accurate in high frequencies.

This is an example of how consideration of the dynamic nature of the problem
guides the design and efficiency of the algorithm.

8.2.2 Mechanics

The solid mechanics problem is again handled via operator-splitting. A Cauchy
stress tensor field dependent upon both solid deformation via the nonlinear
Finite Strain Theory, as well as fluid pressure is assembled. The divergence of
the field is then calculated to give a resultant force which is used to update both
solid and fluid velocity via the first step of a Leapfrog time integration scheme.
This is a semi-implicit step, because it contains the implicit pressure correction
provided by the fluid dynamics model. The Leapfrog is symplectic in the phase
plane and as such conserves angular momentum, but the time step is limited by
stability considerations.

The solid damping and fluid viscosity operators are then applied via an Implicit
Euler scheme as for the diffusive part of the electrophysiology problem. Again,
they benefit in exactly the same way. The sort time step and local behaviour of
the dynamic problem allow for relatively few iterations of a Jacobi or Richard-
son solver.

8.2.3 Fluid-Stucture Interaction

There is a theme emerging in the design of the solver. If we accept that the non-
linear parts of the mathematical model are to be solved in an explicit manner,
then we must in turn accept a short time step. The matrix- and mesh-free na-
ture of the discretisation, combined with the suitability of the GPU for parallel
iteration make this feasible. This in turn benefits the solution of the linear parts
of the model.

The fluid-structure interaction problem takes this to its extreme. In order to
know the movement of the surface it is necessary to solve the entire fluid dy-
namics problem to gain a reaction force. This in turn requires a knowledge of
the solid velocity. As such there is a huge, highly nonlinear problem right at the
centre of the entire cardiac simulation. Its solution dominates all other compu-
tational effort. The decision in design was to handle this problem in an explicit
manner. This in turn limits the maximum time step for the entire model.
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There is a benefit which comes from the the choice of Chorin projection in
combination with Finite Volume Method. Since we update the solution with
an explicit step then solve the Poisson Pressure equation, we are applying a
predictor-corrector method. Firstly, the short time step provides and excellent
initial guess for the pressure field from the previous iteration, and reduces the
number of iterations to reach a reasonable solution. Secondly, if we do not
make a complete solve of the pressure equation the error in the corrected so-
lution is not lost, but remains due to the conservative nature of FVM into the
next time step. Rather than a uniform pressure field we see a pressure wave
travelling through the fluid as the tissue around it contracts. This is the speed
of sound, a synthetic compressibility which enters the fluid model. Other meth-
ods, including the half stepping of the semi-implicit formulation of [Formaggia,
2009] have the same effect. Since the fluid does not correctly store the energy
of compression, this is the largest source of error in our work. We hope to ad-
dress this problem through the application of multi-resolution methods which
are discussed in Section 8.3.

The advection kernel uses an interpolated gradient, and as such is subject to
the well-known problem of ’false diffusion’, where the solution of the advection
problem also contains some mesh-dependent diffusion. In this case the diffusion
is some artificial viscosity, which can be dealt with by underestimating the true
viscosity. At higher mesh resolutions the problem is less significant.

8.2.4 GPU Processing

The use of the GPU itself brings with it some sources of compromise. In general,
single precision arithmetic is the standard for graphics processing. This brings
with it the obvious reduction in numerical precision, but also require care in
the design calculation to avoid overflow. This can be seen in the convergence
studies, where a finer mesh leads to division by a machine-zero volume. This
problem can be overcome but is left in the work to demonstrate that whilst
invisible it is always present.

Conversely there is a benefit in speed of processing and memory access associ-
ated with the smaller sized single precision variables. The design process aims
to provide a tool of practical use, and thus the benefit in performance is seen
to outweigh absolute numerical precision, especially since part of its objective
is to determine the largely unknown parameters of the model.

The memory capacity of a single GPU processor limits the total size and reso-
lution of the simulation. Since there is a minimum spatial mesh width δx in
space, there follows an absolute minimum time step δt.

The cost of communication across the PCI bus from GPU to CPU is too high
to allow multi-processing per time step via MPI. There have been advances in
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shared memory GPU multiprocessors, such as NVIDIA’s NVLINK, but they are
also limited in bandwidth. It is better to consider that it would be possible
to run thousands of cardiac simulations in parallel on a supercomputer. As
mentioned earlier, this makes the entire simulation an objective function for a
set of optimisation problems, most notably parameter estimation.

8.3 Future Work

The title of the work states its aim, to provide a set of tools for cardiac simula-
tion. The extensibility and simplicity of the code should allow for researchers
in this field and others to adapt these techniques to their own work.

The development of the software has given insight into the behaviour of the tis-
sue surrounding the heart and its potential contribution to AF and tachycardia.
This will be investigated.

The entire design of the discretisation and solver make them ideal for multi-
level solution. The current problem can be decomposed into many resolutions
on both space and time. The representation of geometry via signed distance
functions and the mesh-free assembly allow the entire problem to be recon-
structed fully at any mesh size.

In order to generate a more physiologically accurate PV loop the design of valves
must be improved. This can be done either physically or through the introduc-
tion of diodes into the fluid dynamics calculation.

The software allows for extension and refinement to include richer and more
precise mathematical models. It should be possible in future to validate the
simulation itself against physiological indicators. At this point the tools may be
able to make a valid contribution to research and clinical practice.
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