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A B S T R A C T

In this paper, we introduce a machine learning methodology for localising the seizure onset zone in subjects
with epilepsy. We represent brain states as functional networks obtained from intracranial electroencephalog-
raphy recordings, using correlation and the phase-locking value to quantify the coupling between different
brain areas.

Our method is based on graph neural networks (GNNs) and the attention mechanism, two of the most
significant advances in artificial intelligence in recent years. Specifically, we train a GNN to distinguish between
functional networks associated with interictal and ictal phases. The GNN is equipped with an attention-based
layer that automatically learns to identify those regions of the brain (associated with individual electrodes)
that are most important for a correct classification. The localisation of these regions does not require any prior
information regarding the seizure onset zone.

We show that the regions of interest identified by the GNN strongly correlate with the localisation of the
seizure onset zone reported by electroencephalographers. We report results both for human patients and for
simulators of brain activity. We also show that our GNN exhibits uncertainty for those patients for which the
clinical localisation was unsuccessful, highlighting the robustness of the proposed approach.
1. Introduction

Epilepsy is a neurological disorder characterised by recurrent
episodes of excessive neuronal firing (Stafstrom & Carmant, 2015).
In approximately a third of the patients, epilepsy cannot be treated
with anti-seizure drugs and resective surgery can be considered as a
possible treatment (Kwan & Brodie, 2000). The outcome of surgery is
crucially dependent on the successful localisation of the seizure onset
zone (SOZ) (Burns et al., 2014; Van Mierlo et al., 2014).

Electroencephalography (EEG) is the mainstay for studying and
diagnosing epilepsy, and it is widely used to detect, classify, and
localise seizures by recording and processing the electrical activity of
groups of neurons (Nunez, Srinivasan, et al., 2006). However, due to
their low spatial resolution, scalp EEG recordings in some cases are
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not informative enough to successfully localise seizures (Shah & Mittal,
2014). In these cases, intracranial EEG recordings (iEEG), in which
electrodes are placed directly on or within the brain, provide better
spatio-temporal resolution to capture the dynamics of seizure gener-
ation and propagation (Hashiguchi et al., 2007). However, the high
temporal resolution of iEEG and the complex functional interaction of
distant brain areas, especially during seizures, make the interpretation
and processing of raw iEEG data a non-trivial task for clinicians. For
this reason, a significant branch of epilepsy research is concerned with
summarising iEEG data by considering the pairwise (statistical) depen-
dencies between the activity of different brain areas over time (Van
Mierlo et al., 2014). These dependencies are usually represented by
functional networks (FNs), in which each node represents a sensor and
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edges are weighted by a functional connectivity (FC) metric (Bastos &
choffelen, 2016).

FNs are a widespread tool to study seizure localisation, with early
pproaches dating back to the 1970s (Brazier, 1972; Gersch & Goddard,
970). Seizures have been observed to affect the functional organisa-
ion of brain activity at the mesoscale, both from a node-centric (Burns
t al., 2014) and an edge-centric (Khambhati et al., 2015) perspective.
n particular, Burns et al. (2014) identified sets of brain states that
merge by clustering FNs, consistent in interictal and ictal periods
or individual patients. They observed that changes in node centrality
n FNs accurately predict the SOZ. Khambhati et al. (2015) observed
tronger FC in the SOZ during seizures, also coinciding with a topolog-
cal tightening of the connections (i.e., strong connections also become
hysically closer). Khambhati, Davis, Lucas, Litt, and Bassett (2016)
roposed virtual cortical resection, i.e., the removal of nodes from FNs, in
rder to study changes in network synchronizability, which is a known
redictor for the spread of seizures (Schindler, Bialonski, Horstmann,
lger, & Lehnertz, 2008). Lopes et al. (2017) also observed that the
esection of brain areas associated with rich-club hubs in FNs correlates
ith a good postoperative outcome. Seizure localisation has also been

tudied in FNs obtained from functional magnetic resonance imaging
fMRI) (Lee et al., 2014; Weaver et al., 2013) and scalp EEG (Stal-
anssens et al., 2017) data. Recent work by Covert et al. (2019) used
patio-temporal graph convolutional networks (ST-GCNs) (Yu, Yin, &
hu, 2017) to perform seizure detection. They conducted an ex-post
nalysis similar to that of Khambhati et al. (2016) to quantify the
mportance of a node by observing the effect of its removal on the
ownstream detection accuracy. Gadgil et al. (2020) also proposed a
ethodology based on ST-GCNs to identify high-interest areas in fMRI

y learning to estimate edge importance, although they did not apply
t to seizure localisation. For a more in-depth review of approaches to
eizure localisation with FNs, we refer the reader to Van Mierlo et al.
2014).

This paper aims to use the representation of brain states as FNs
o automate the localisation of seizures using deep learning. Advances
n deep learning techniques over the past decade have revolutionised
ow high-dimensional, high-volume data can be used in the context
f artificially intelligent systems. In particular, deep learning tech-
iques for computer vision have shown how artificial intelligence can
e successfully adopted in clinical settings to aid human experts in
heir decision making (Litjens et al., 2017). Despite these successes,
raditional deep learning methods are limited to processing regular
tructures like images and time series, and cannot naturally consider
he relations that exist in a complex system with multiple interacting
omponents, such as those described by FNs evolving over time. For this
eason, recent literature has seen the rise of Graph Neural Networks
GNNs) (Battaglia et al., 2018; Bronstein, Bruna, LeCun, Szlam, &
andergheynst, 2017) as a generalisation of deep learning techniques

o process data represented as arbitrary graphs. For other works that
nvestigate medical imaging and graph neural networks, we refer the
eader to Chen, Li, Li, Yu and Zeng (2021), Chen, Li, Wei, Zhou and
eng (2021), Liu, Yang, Chen, Yu, and Li (2022) and Pu, Li, Li, and
hu (2021).

In this paper, we introduce a GNN-based methodology for seizure
ocalisation, using FNs to efficiently represent brain states. The core
f our algorithm is a GNN equipped with an attention-based readout.
y training the GNN to perform seizure detection, the readout auto-
atically learns to pay more attention to those nodes that are more

mportant for a correct classification. Then, we propose a simple and
ast way of analysing the attention coefficients over time, so that we
btain a ranking of the nodes based on their overall importance in
etecting a seizure. Crucially, our methodology does not require a priori
nformation regarding the SOZ, but only weak supervision in the form
f annotated seizure onsets and offsets. A schematic representation of
2

ur approach is shown in Fig. 1. v
We validate the proposed methodology on clinical iEEG data col-
ected from eight human subjects and show that the electrode rankings
omputed with our localisation procedure are highly correlated with
he true SOZs. We also validate our algorithm on simulated data, using
simple model of seizure initiation (Benjamin et al., 2012) and a more

omplex brain simulator (Sanz Leon et al., 2013) based on the Epileptor
odel (Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014). Our main

ontributions and results are summarised as follows:

• We present a new algorithm for seizure localisation based on
GNNs, which uses FNs to represent brain states in a compact form
and requires no explicit supervision on the SOZ;

• We show that the attention coefficients learned by the GNN
correlate with clinically-identified SOZs and accurately predict
the presence of ictal activity;

• We show that, when electroencephalographers were not able
to identify the SOZ from the iEEG data, the GNN also shows
uncertainty in the localisation;

• Finally, we show that our methodology performs well on very
imbalanced datasets, achieving a good localisation accuracy even
on patients for which we observe as few as five seizures during
training.

. Methods

Notation. We denote a time series 𝑥𝑖(𝑡) to represent the 𝑖th iEEG
channel at time 𝑡. We define a graph as a tuple  = ( , ), where
 = {𝐯1,… , 𝐯𝑁} represents the set of attributed nodes with attributes
𝑖 ∈ R𝐹 , and  = {𝐞𝑖→𝑗 |𝐯𝑖, 𝐯𝑗 ∈ } represents the set of attributed
dges with attributes 𝐞𝑖→𝑗 ∈ R𝑆 indicating a directed edge between

the 𝑖th and the 𝑗th node. We indicate the neighbourhood of node 𝑖
with  (𝑖) = {𝐯𝑘|𝐞𝑘→𝑖 ∈ }. We say that a graph is undirected if
𝑖→𝑗 ∈  ⟺ 𝐞𝑗→𝑖 ∈  . Note that in the text, for simplicity, we refer
o nodes using their index, e.g., node 𝑖.

.1. Functional networks

Choosing a suitable FC metric to model the pairwise interaction
etween brain areas is a non-trivial challenge, as there exist a large
ariety of methods with their advantages and disadvantages. FC met-
ics can be characterised according to several properties, including
hether they are in the time or frequency domain, whether they are
irected or undirected (i.e., if they model asymmetric or symmetric
ouplings), or whether they are model-free or model-based (Bastos &
choffelen, 2016). Here, we focus on undirected FC metrics to simplify
he GNN computation, and on model-based approaches to reduce the
omputational costs of estimating the FC metrics directly from data. We
o, however, consider two different metrics to highlight the practical
ifferences that emerge between time- and frequency-domain metrics.

FNs are generated by computing a FC value for each pair of iEEG
hannels 𝑥𝑎(𝑡) and 𝑥𝑏(𝑡) over a time window of length 𝑇 . For the
ime-domain metric, we consider Pearson’s correlation coefficient:

𝑎→𝑏 = 𝐞𝑏→𝑎 =
∑𝑇

𝑡=1(𝑥𝑎(𝑡) − 𝑥̄𝑎)(𝑥𝑏(𝑡) − 𝑥̄𝑏)
√

∑𝑇
𝑡=1(𝑥𝑎(𝑡) − 𝑥̄𝑎)2

√

∑𝑇
𝑡=1(𝑥𝑏(𝑡) − 𝑥̄𝑏)2

, (1)

where 𝑥̄𝑎 = 1
𝑇
∑𝑇

𝑡=1 𝑥𝑎(𝑡) and analogously for 𝑥̄𝑏. Correlation allows
to quantify symmetric linear interactions, it is easy to compute and,
as such, it is often used in the literature. For the frequency domain,
we consider the phase-locking value (PLV) (Lachaux, Rodriguez, Mar-
tinerie, & Varela, 1999):

𝐞𝑎→𝑏 = 𝐞𝑏→𝑎 =
|

|

|

|

|

|

1
𝑇

𝑇
∑

𝑡=1
𝑒𝑖(𝜑𝑎(𝑡)−𝜑𝑏(𝑡))

|

|

|

|

|

|

, (2)

here 𝜑𝑎(𝑡) indicates the instantaneous phase of signal 𝑥𝑎(𝑡) obtained

ia Hilbert transform (and similarly for 𝜑𝑏(𝑡)). A significant advantage
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Fig. 1. Schematic view of our GNN-based pipeline for seizure detection and localisation. Starting from raw iEEG data, we compute a functional network to represent the
spatio-temporal dynamics of the signals compactly. The FN is then given as input to a GNN composed of an edge-aware message passing operation followed by an attention-based
readout to compute a graph-level embedding. The embedding is then classified to perform seizure detection, while the attention scores are analysed to perform seizure localisation.
of PLV over correlation is that it is less sensitive to artefacts in the
iEEG signals (such as those caused by the patient’s movements). After
computing the FC metrics for each pair of channels, we sparsify the
resulting FNs by removing those edges for which |𝐞𝑖→𝑗 | < 0.1, i.e.,
those indicating weak coupling. The choice of sparsification threshold
is generally an important hyperparameter when studying FNs. For
example, a principled way of computing a dynamic sparsification for
each individual FN is described in the work of Kramer, Eden, Cash,
and Kolaczyk (2009). However, in this case, we are not interested
in fine-tuning the threshold nor do we wish to devise a dynamic
sparsification scheme to process each FN independently. As long as the
same threshold is consistently used for different FNs, then the GNN
will learn to deal with the resulting distribution of FNs. We report an
additional discussion regarding the threshold in Appendix.

We generate a dataset of FNs for each patient, dividing the FNs into
ictal and interictal classes and proceeding in a per-seizure fashion. Let
𝑓𝑠 be the sampling rate of the iEEG signal, 𝐿 the duration of a seizure,
𝑡0 the time indicating the seizure onset, 𝑘 ≥ 1 a subsampling factor, and
𝑇 the length of the time windows. Additionally, let 𝑦(𝑡) ∈ {0, 1} be a
binary signal indicating whether the patient is having a seizure at time
𝑡 (i.e., 𝑦(𝑡) = 1 if 𝑡 ≥ 𝑡0 and 0 otherwise). Note that we consider each
seizure to end at time 𝑡0 + 𝐿 and we do not compute FNs for the data
immediately following a seizure offset.

Given a time window [𝑡 − 𝑇 ,… , 𝑡], we compute a FN (𝑡) and label
it with class

 (𝑡) =

{

1, if ∑𝜏
𝜏=𝑡−𝑇 𝑦(𝜏) > 𝑇 ∕2

0, otherwise.
(3)

To generate the FNs associated with seizures (class 1), we consider
the data interval [𝑡0 − 𝑇 ∕2,… , 𝑡0 +𝐿] and take overlapping windows of
size 𝑇 with a stride of 1∕𝑓𝑠. For the interictal FNs (class 0), instead, we
consider a longer period preceding the seizure onset, [𝑡0 − 𝑘𝐿,… , 𝑡0 +
𝑇 ∕2], and we take windows at a larger stride of 𝑘∕𝑓𝑠. In this work, we
consider 𝑘 = 10 and 𝑇 = 1 s for all experiments, although other values
are possible.

This procedure to generate the FNs (summarised in Fig. 2) results
in a balanced dataset and has two advantages. First, it allows us to
fully use all the available (and rare) ictal events. Second, it allows us
to consider a more diverse sample for the interictal class. The small
differences between consecutive FNs of the positive class, due to the
small stride at which windows are taken, can be seen as a form of
sample weighting to account for the class unbalance characterising the
problem.

In order to have initial node features that can be processed by the
GNN, we consider dummy attributes set to 1 for all nodes. Other choices
that depend on the actual iEEG signals are possible (e.g., the signal
power or wavelet coefficients) but were not explored in this work.

2.2. Attention mechanism

Attention (Bahdanau, Cho, & Bengio, 2014; Vaswani et al., 2017) is
a processing technique for neural networks to learn how to selectively
3

focus on parts of the input. Originally developed for aligning sen-
tences in neural machine translation (Bahdanau et al., 2014; Vaswani
et al., 2017), the attention mechanism has been used to achieve state-
of-the-art results on different tasks like language modelling (Brown
et al., 2020), image processing (Xu et al., 2015), and even learning on
graphs (Velickovic et al., 2018).

In this paper, we focus on the concept of self -attention, which indi-
cates a class of attention mechanisms that learn to attend to the output
of a layer using the output itself (in contrast to classical attention,
which uses the output of one layer to focus on the output of another
– e.g., the sentence of the source language is used to focus on the
target language). At its core, self-attention consists of computing a
compatibility score 𝛼𝑖𝑗 ∈ [0, 1] between two vectors 𝐡𝑖,𝐡𝑗 ∈ R𝐹 (both
part of the same sequence, image, graph, etc.):

𝛼𝑖𝑗 = Softmax𝑗 (𝑒𝑖𝑗 ) =
exp

(

𝑒𝑖𝑗
)

∑𝑁
𝑘=1 exp

(

𝑒𝑖𝑘
)
, (4)

where

𝑒𝑖𝑗 = 𝑎(𝐡𝑖,𝐡𝑗 ) (5)

and 𝑎 is called an alignment model, which is usually learned end-
to-end along with the other parameters of the neural network. The
compatibility score is then used to compute a representation of element
𝑖 as:

𝐳𝑖 =
∑

𝑗
𝛼𝑖𝑗𝐡𝑗 . (6)

Intuitively, the attention mechanism learns the importance of element
𝑗 to describe element 𝑖, and computes score 𝛼𝑖𝑗 to quantify this im-
portance. The alignment model can be seen as a similarity function
between the two elements, which is then normalised via the Soft-
max function. Different implementations of the alignment model are
possible, although often it is implemented as a multi-layer perceptron.

Attention mechanisms are usually trained without direct supervision
and automatically learn to focus on different parts of the data according
to the loss of the given task. By optimising the overall task loss, the
attention layers in a neural network learn to compute the optimal
compatibility scores. This is a key aspect of our proposed methodology,
where we use self-attention to automatically detect those brain areas
(monitored via different iEEG channels) that are important to detect a
seizure. We stress that, crucially, using attention allows us to perform
localisation without ever providing our neural network with ground
truth information on the SOZ.

2.3. Graph neural networks For seizure localisation

Graph Neural Networks (GNNs) are a class of neural networks
designed to perform inference on graph-structured data (Battaglia et al.,
2018). At their core, GNNs learn to represent the nodes of a graph
by propagating information between connected neighbours, whereas a
global representation of the entire graph is usually obtained by com-
puting a readout of the nodes, like a sum, average, or component-wise
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Fig. 2. Schematic representation of the procedure used to generate FNs. For each seizure of length 𝐿 starting at 𝑡0 (marked in red), we consider an interictal interval of length
𝑘𝐿. Interictal FNs are generated taking windows of length 𝑇 at stride 𝑘∕𝑓𝑠, while ictal windows are taken with stride 1∕𝑓𝑠 (in green). For each window and each pair of electrodes
𝑖 and 𝑗, we compute the FC value 𝐞𝑖→𝑗 (in blue) to obtain the full FN. This figure is only meant to represent the procedure and is not shown in any physical temporal scale.
maximum vector. In this work, we focus on the family of message-
passing networks (Gilmer, Schoenholz, Riley, Vinyals, & Dahl, 2017),
in which the 𝑙th layer maps the attributes 𝐡(𝑙−1)𝑖 ∈ R𝐹 (𝑙−1) of the 𝑖th
node to:

𝐡(𝑙)𝑖 = 𝛾
(

𝐡(𝑙−1)𝑖 ,□𝑗∈ (𝑖) 𝜙
(

𝐡(𝑙−1)𝑖 ,𝐡(𝑙−1)𝑗 , 𝐞𝑗→𝑖

))

, (7)

where 𝐡(𝑙)𝑖 ∈ R𝐹 (𝑙) , 𝐡(0)𝑖 = 𝐯𝑖, and 𝜙 and 𝛾 are differentiable functions
equivariant to node permutations, respectively called the message and
update functions, while □ is a permutation-invariant function (such as
the sum or the average) to aggregate incoming messages.

Many recent papers have introduced methods for graph representa-
tion learning based on this general scheme, with different implementa-
tions ranging from polynomial (Defferrard, Bresson, & Vandergheynst,
2016) or rational (Bianchi, Grattarola, Livi, & Alippi, 2021) graph con-
volutional filters, to attentional mechanisms (Velickovic et al., 2018). In
most of these works, the creation of messages is only dependent on the
node attributes, although some methods have been proposed that also
explicitly take edge attributes into account (Schlichtkrull et al., 2018;
Simonovsky & Komodakis, 2017). In particular, the Edge-Conditioned
Convolutional (ECC) operator proposed by Simonovsky and Komodakis
(2017) incorporates edge attributes into the message-passing scheme
by using a kernel-generating network 𝑓 (𝑙)(⋅) that dynamically computes
messages between each pair of connected nodes. An ECC layer is thus
defined as:

𝐡(𝑙)𝑖 = 𝐡(𝑙−1)𝑖 ⋅𝐖(𝑙)
root +

∑

𝑗∈ (𝑖)
𝐡(𝑙−1)𝑗 ⋅ 𝑓 (𝑙)(𝐞𝑗→𝑖), (8)

where 𝐖(𝑙)
root ∈ R𝐹 (𝑙−1)×𝐹 (𝑙) is a learnable kernel applied to the root

node itself and the kernel-generating network is usually a multi-layer
perceptron 𝑓 (𝑙) ∶ R𝑆 → R𝐹 (𝑙−1)×𝐹 (𝑙) .

Our method for seizure localisation can be summarised as follows.
First, we train a GNN with an attention-based readout to detect seizures
from FNs. This is a graph-level classification problem where a label
(ictal or interictal) is assigned to each FN. Then, we analyse the com-
patibility scores learned by the attentional mechanism to identify those
nodes that the model consistently considers to be important. Although
we train the GNN to do seizure detection in a supervised way, i.e., it
requires manually-annotated seizure onsets and offsets, the localisation
is fully unsupervised. This is one of the main strengths of the proposed
method, as significantly less manual work is required to annotate the
temporal boundary for each seizure, rather than the SOZ.

There are two main components in our GNN architecture. First,
the connectivity information is propagated to the node attributes via
an edge-aware message-passing operation like ECC. A single layer is
sufficient because the input FNs are densely connected, and most nodes
will receive information from the whole graph in a single step of
message passing.

Then, we use a self-attentional mechanism to compute the graph
readout:

𝐳 = Attn-RO(𝐡) =
𝑁
∑

𝛼𝑗𝐡𝑗 (9)
4

𝑗=1
where

𝛼𝑗 =
exp

(

𝐡𝑗 ⋅ 𝐚
)

∑𝑁
𝑘=1 exp

(

𝐡𝑘 ⋅ 𝐚
)
, (10)

𝐡𝑗 ∈ R𝐹 𝑜𝑢𝑡 is the embedding of the 𝑗th node computed by the ECC layer,
and 𝐚 ∈ R𝐹 𝑜𝑢𝑡 is a vector of learnable weights. Note that, compared
to Eq. (6), here index 𝑖 is left implicit as the attention is only computed
once for all nodes, to reduce the graph to a vector. This is also reflected
in the fact that the alignment model is a function of only one node at
a time, e.g., 𝐡𝑗 ⋅ 𝐚. For a more general way of applying attention to
every possible pair of nodes (while maintaining the graph structure),
see Velickovic et al. (2018).

Finally, a multi-layer perceptron MLP(⋅) with sigmoid activation
computes the probability that the input FN represents an ictal window
of iEEG data.

The full architecture is written as:

𝑦̂ = MLP(Attn-RO(ECC())) (11)

where  represents an input FN (cf. Fig. 1).
By training the GNN to correctly distinguish the ictal FNs from the

non-ictal ones, we also implicitly train the attentional readout Attn-RO
to assign higher attention to those nodes of the FNs that maximise the
confidence in the prediction. We then analyse how the attention scores
assigned to nodes change over time, and rank the nodes according to
the overall amount of attention that they receive before and during a
seizure. The localisation procedure is described in the following section.

2.4. Localising the seizure onset zone

For each seizure in the data, we consider symmetric intervals of
length 2𝐿 centred at the seizure onset, so that the first 𝐿 timesteps
are pre-ictal and the remaining 𝐿 cover the beginning of the seizure.
For each of the 2𝐿 timesteps, we compute a FN (𝑡) from a 𝑇 = 1s
window ending at time 𝑡, obtaining a sequence of FNs [(1),… ,(2𝐿)]
(this is equivalent to how we generate the training datasets, except
that the subsampling is set at 𝑘 = 1). For each FN in the sequence,
we use the GNN to compute the attention scores over the nodes
according to Eq. (10). We thus compute a sequence of attention scores
[𝛼(1)𝑖 ,… , 𝛼(2𝐿)𝑖 ] for each node 𝑖.

We then sum the sequence of attention scores to obtain the overall
importance of the node over the considered time interval:

𝜎𝑖 =
2𝐿
∑

𝑡=1
𝛼(𝑡)𝑖 , (12)

and normalise the importance scores to the [0, 1] interval as:

𝑠𝑖 =
𝜎𝑖 − min𝑗∈ 𝜎𝑗

max𝑗∈ 𝜎𝑗 − min𝑗∈ 𝜎𝑗
. (13)

Finally, we rank the nodes according to their importance and predict
the SOZ accordingly.
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Table 1
Summary of the patients considered for this study. The columns indicate (left-to-right):
the number of recorded seizures, the number of implanted electrodes, the presence
of ictal activity (IA) marked by electroencephalographers on one or more channels,
whether the patient had surgery, and the outcome of the surgery.

Patient Seizures Electrodes IA identified Surgery Outcome

1 15 100 Yes, low confidence No –
2 9 96 Yes Yes Seizures reduced
3 10 23 Yes No –
4 5 74 No No –
5 11 38 Yes Yes Seizures reduced
6 18 45 Yes, poorly defined No –
7 5 45 Yes No –
8 16 69 Yes No –

3. Results

We report the results obtained on real iEEG data collected from
eight patients. Additional results on two brain activity simulators (a
simple network model Benjamin et al., 2012 and The Virtual Brain
simulator Sanz Leon et al., 2013) and all experimental details regarding
the GNN are reported in the Appendix.

3.1. Data collection and pre-processing

We used iEEG data recorded from eight human subjects with med-
ically refractory epilepsy, the recordings obtained as part of their
standard clinical pre-surgical investigations. The patients were selected
among a larger pool of patients based on certain criteria, chiefly having
at least 5 clinical seizures recorded in our database and having a
recorded clinical history of at least 2 years.

The study was approved by the Research Ethics Board at the Uni-
versity Health Network (ID number 12–0413) and written consent
for data collection was obtained from all participants. Each patient
had a varying number of recorded clinical seizures and the number
of electrodes also varied from patient to patient (cf. Table 1). The
data was recorded from subdural or intracerebral depth electrodes at
𝑓𝑠 = 500 Hz over the course of several days per patient, and seizures
were manually annotated by electroencephalographers, inspecting both
raw iEEG and video recordings of the patient. The iEEG signal was
notch-filtered at 60 Hz and related harmonics to remove powerline
trends, and then filtered with an order-3 low-pass filter at 100 Hz to
remove any high-frequency noise. Then, each electrode channel was
independently re-referenced to have zero mean and rescaled to have
unit variance.

Before pre-processing, we visually inspected the raw data of each
patient and each seizure to assess the presence of bad channels: we
considered symmetric windows around each labelled seizure onset and
we removed from the data any channels that exhibited abnormal (i.e.,
either flat or excessive) activity in at least one seizure.

3.2. Per-patient analysis of the SOZ

This section reports the available clinical data for the patients
considered in our study. For all patients, both the seizure onset time
instants and the SOZ annotations were provided by electroencephalog-
raphers.

Patient 1 demonstrated ictal activity in both the left and right
posterior interhemispheric regions (Fig. 3(a)), with interictal epilepti-
form discharges recorded independently from the left anterior frontal
and right middle frontal lobes. The patient did not undergo resective
surgery due to low confidence in the identification of the SOZ. Patient
2 showed clear seizures originating in the right posterior insular region
(Fig. 3(b)). The patient underwent laser interstitial thermal therapy
targeting a focal cortical dysplasia in the area. The patient continued
to have some post-operative seizures, although these were reduced
5

in frequency and intensity, indicating that the SOZ was identified
correctly. Patient 3 had seizure onsets recorded independently from
both temporal lobes and thus was not a candidate for surgery. Patient
4 had no clear ictal activity identified by electroencephalographers in
the iEEG recordings and was thus not a candidate for surgery, the
SOZ evidently not captured by the intracranial electrode placements.
Patient 5 demonstrated ictal activity in the left hippocampal body and
underwent a left anterior temporal resection. The patient continued to
have seizures after the surgery, but of reduced frequency and intensity,
indicating a successful localisation of the SOZ. Patient 6 had multiple
seizures recorded with poorly defined, inconsistent ictal onsets over
the temporoparietal sensory cortex and was deemed not a candidate
for surgical resection due to uncertainty on the SOZ. Patient 7 had
seizures recorded in the left hemisphere, with onsets involving a broad
region of the temporal lobe neocortex. The patient was not subject
to resection due to the epileptogenic zone being too large, and near
eloquent language cortex. Patient 8 exhibited abnormal activity in the
left amygdala and hippocampus. The patient had already undergone
contralateral right anterior temporal resective surgery years prior to
the collection of the iEEG data and was not a candidate for further
resections.

Table 1 summarises the relevant details of the eight patients. In
particular, six patients had clinically identified, well-defined informa-
tion regarding the SOZ, whereas in two patients the SOZ could not
be clearly identified in the iEEG data by electroencephalographers.
Despite not having ground truth information related to the SOZ for
these two patients, we still included them as part of our study to analyse
the behaviour of our algorithm in such cases of high uncertainty. The
question that we aim to answer with this analysis is: what does the
GNN see when professional electroencephalographers are uncertain
about the SOZ? A strong attention score in such cases would raise
concerns about the soundness of our method. Instead, we observe in
the following Section that the GNN shows uncertainty in those cases
where professionals are also uncertain. This is a valuable result that, in
our opinion, strengthens the contributions of the paper.

3.3. Results on seizure detection and localisation

Table 2 reports the Area Under the Receiver Operating Charac-
teristic Curve (ROC–AUC) and the Area Under the Precision–Recall
Curve (PR–AUC) obtained by the GNN on the seizure detection task.
We report the results obtained using both FC metrics (correlation and
PLV) to generate the FNs. We also report the detection performance of
a baseline convolutional neural network for time series classification
(details in the Appendix). We repeat each experiment five times and,
where appropriate, report the average and standard deviation of the
results.

The GNN achieved an average ROC–AUC score of 79.56 and an
average PR–AUC of 81.24 (the average is computed over all patients)
when using correlation as FC metric. These results are aligned with the
performance of the baseline, which our method slightly outperformed
on average, and indicate that (1) our choice of architecture was reason-
able and (2) using graph-structured data is an interesting direction for
future research on efficient seizure detection. We also recall that the
detection task is only meant to provide weak supervision for the more
interesting challenge of localisation, and that better detection results
could be achieved by increasing the capacity of the GNN or collecting
more training data.

Tables 3 and 4 report the performance of the model on the patients
with a known SOZ, respectively using correlation and PLV to generate
FNs. In particular, we report three main performance measures:

(a) the average precision at 𝐾 (AP@𝐾) (Sanderson, Manning, Ragha-
van, & Schütze, 2010) obtained by the GNN when computing an
average ranking of the electrodes. Each electrode is re-ranked
by considering five models trained on the same data and taking
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Fig. 3. Examples of raw iEEG traces for patients 1 and 2. The two plots show the activity of electrodes that were identified as SOZs by electroencephalographers. The vertical
ine marks the seizure onset, as reported in the patients’ clinical records.
Table 2
Average ROC–AUC score and average PR–AUC score for seizure detection on unseen test data. These scores represent the model’s ability to
correctly classify the FNs as interictal or ictal. The last row reports the average score over all patients. The highest ROC–AUC and PR–AUC
scores are reported in bold for each patient. We report the average and standard deviation over all test seizures and all repetitions.
Patient Baseline GNN Corr. GNN PLV

ROC PR ROC PR ROC PR

1 62.54 ± 22.5 70.06 ± 17.8 68.63 ± 11.43 75.20 ± 10.30 75.68 ± 23.3 77.51 ± 20.1
2 80.19 ± 15.5 85.96 ± 10.6 86.87 ± 9.07 89.04 ± 9.35 65.36 ± 20.1 72.91 ± 14.8
3 82.32 ± 14.19 87.25 ± 9.24 93.35 ± 3.12 94.34 ± 2.72 71.50 ± 14.8 71.02 ± 16.3
4 67.81 ± 8.75 69.83 ± 13.12 60.40 ± 14.41 61.11 ± 14.82 53.83 ± 6.6 51.67 ± 6.4
5 76.18 ± 15.41 80.42 ± 14.26 77.04 ± 11.98 76.39 ± 13.03 71.46 ± 12.1 71.45 ± 12.9
6 76.32 ± 17.2 80.94 ± 13.5 73.72 ± 17.14 76.02 ± 14.53 63.81 ± 17.2 71.06 ± 12.4
7 76.46 ± 11.24 81.22 ± 7.65 85.52 ± 10.95 85.92 ± 13.65 69.32 ± 2.6 65.55 ± 1.8
8 85.60 ± 14.6 89.29 ± 10.7 90.97 ± 5.51 91.89 ± 3.49 77.69 ± 11.5 78.32 ± 11.3

Avg. 75.93 ± 7.06 80.62 ± 6.86 79.56 ± 10.82 81.24 ± 10.37 68.58 ± 7.08 69.94 ± 7.86
the average score assigned to each electrode over all models
and all seizures. This measure quantifies the GNN’s ability to
correctly identify the SOZ for a patient in general, which is the
most clinically relevant scenario.

(b) The mean AP@𝐾 (MAP@𝐾) obtained by the GNN on different
individual seizures. In this case, the ranking for each seizure is
compared to the ground truth independently of the others (i.e.,
without averaging the scores), and the scores are averaged a
posteriori (also considering five repetitions of the experiments).
This measure quantifies the GNN’s ability to correctly identify
target electrodes in a given seizure.

(c) The MAP@𝐾 obtained by the GNN on different individual
seizures, but considering groups of electrodes belonging to the
same strip (implying spatial locality of the electrodes). This
allows us to evaluate the performance of the model at a coarser
scale.

From the results, we see that, while correlation was a clearly better
metric for the task of seizure detection, the localisation performance
can vary depending on the particular FC metric used. In particular,
the localisation for patients 1 and 5 was better when using correlation
networks, but PLV yielded better results for patients 3, 7, and 8.

In general, however, we note that the (M)AP@5 score is positive
for both FC metrics, for all performance measures and for all patients,
meaning that at least one SOZ-associated electrode was ranked in the
top five every time. We also note that the GNN achieves a perfect AP@2
6

score (average rankings) in six out of eight cases when using PLV,
indicating a high chance of localising at least two relevant electrodes
per patient.

Remarkably, we see that these results were obtained even when
considering small datasets, e.g., down to only five seizures for patient
7 (cf. Table 1). While this result is encouraging and highlights the
sample efficiency of our approach, we stress that a higher amount of
training data can only improve the detection and, likely, localisation
performance of our method, as well as giving a higher statistical
certainty about the results.

3.4. Comparison with clinical information

Fig. 5 shows a graphical visualisation of the scores and rankings
used to compute the values in Tables 3 and 4. The figure summarises
our results and provides an overview of the importance scores, their
variability across different models and seizures, and their agreement
with the ground truth. For every electrode, we report the average score
and its standard deviation over all test seizures and all repetitions.

The results for patient 5 can be considered a complete success,
with the highest AP@𝐾 scores among all patients and very little
uncertainty in the ranking by the GNN. Crucially, the successful post-
operative outcome confirms that the localisation of the SOZ for this
patient was accurate and points to a strong localisation ability of the
GNN. For patient 2, ictal activity was evident and well-localised on a
specific depth electrode placed in the right insular complex (RINS1).
The clinical localisation of the SOZ was therefore likely accurate, even

if the outcome of the surgery was not completely successful. More
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Table 3
Localisation performance for patients with a known SOZ, when using Pearson’s correlation as FC metric. We report: (a) the average precision
at 𝐾 for averaged rankings, which evaluates the localisation for the patient overall; (b) the mean average precision at 𝐾 for single rankings,
which evaluates the localisation for a given seizure; (c) the mean average precision at 𝐾 for single rankings and groups of electrodes, which
is equivalent to (b) but at a coarser scale. We report scores for 𝐾 = 2, 5, 10. Bold indicates that the results are better than the ones obtained
with PLV as FC metric (cf. Table 4).
Patient (a) AP@𝐾 - Avg. rank (b) MAP@𝐾 - Single (c) MAP@𝐾 - Groups

𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 2 𝐾 = 5 𝐾 = 10

1 50.00 20.00 12.50 22.31 12.0 7.24 26.92 21.48 31.64
2 100.00 100.00 100.00 51.11 54.8 56.71 53.33 58.48 60.73
3 0.00 16.67 38.96 20.37 26.51 28.98 36.11 45.09 50.07
5 100.00 55.00 55.00 97.73 48.55 54.71 99.09 99.09 99.09
7 25.00 20.00 10.00 22.00 20.56 16.76 78.00 72.03 82.70
8 0.00 6.67 5.56 19.69 13.00 7.42 20.00 36.43 44.07
Table 4
Localisation performance for patients with a known SOZ, when using PLV as FC metric. Bold indicates that the results are better than the ones
obtained with correlation as FC metric (cf. Table 3).
Patient (a) AP@𝐾 - Avg. rank (b) MAP@𝐾 - Single (c) MAP@𝐾 - Groups

𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 2 𝐾 = 5 𝐾 = 10 𝐾 = 2 𝐾 = 5 𝐾 = 10

1 0.00 5.00 5.83 8.67 5.97 4.67 16.67 18.82 31.78
2 100.00 100.00 100.00 50.00 54.33 56.65 50.00 58.04 60.21
3 100.00 55.00 45.46 60.00 40.82 32.58 66.88 45.16 51.36
5 100.00 40.00 48.57 66.82 38.28 45.27 91.82 93.48 93.48
7 100.00 40.00 35.71 70.00 43.84 30.45 82.00 74.22 84.22
8 50.00 20.00 10.00 15.62 9.15 6.43 16.56 20.07 32.30
importantly, we notice that the GNN was strongly aligned with the
human analysis given the same information, and similarly focused on
the same electrode (which is ranked first using either of the FC metrics).
Our methodology also confirms the conclusions reached by electroen-
cephalographers for patients 3, 7 and 8, although further studies would
be required to give a more precise interpretation of the results (includ-
ing, possibly, the outcome of future surgeries). The results for patient 8
are particularly uncertain, despite the GNN achieving a good detection
accuracy (cf. Table 2). In general, however, the rankings provided by
the GNN show a high agreement with the medical assessment in those
cases where the SOZ was successfully identified.

For patients with no known SOZ (4, 6) the GNN has a low detection
performance and the average attention scores assigned by the GNN are
uniformly distributed across all electrodes around an average score of
0.5. On the contrary, patients with a known SOZ have a few electrodes
that are assigned a majority of the attentional budget. This difference
between the two cases is more clearly visualised in Fig. 4, which shows
the distribution of the scores given to different electrodes at the seizure
onset (patient 5 is taken as representative of the case in which the SOZ
is known).

For patient 1, the GNN did not identify any particularly important
regions despite there being some clinical evidence of ictal activity in
the posterior interhemispheric region. Two posterior interhemispheric
electrodes are indeed ranked in the top ten (averaged rankings) by the
GNN when using correlation FNs, although with very high uncertainty.
We note, however, that the uncertainty showed by the GNN was also
reflected clinically in the electroencephalographers’ interpretations and
in the final decision to not operate on this patient.

Our analysis for patients 1, 4, and 6 shows that the uncertainty
of the GNN correlates with uncertainty or inability on the part of
electroencephalographers to identify the SOZ in iEEG, and can still be
useful to support their decision making (e.g., deciding to not operate a
atient can be just as valuable as a successful localisation).

. Discussion

Our work introduces a methodology for automated seizure local-
sation using graph-based machine learning. Our approach does not
equire any manual annotation of the SOZ in order to work, making
t cheaper to train and easier to scale to a larger number of patients.
7

ur method is also data-efficient: we were able to provide a good – and
clinically verified – localisation using as few as five annotated seizures
per patient.

The goal of the proposed approach is to provide a support tool
for clinicians to allocate precious resources in the analysis of iEEG
data, and to improve the efficiency of the decision-making process.
Crucially, in this regard, we note that our algorithm is conservative in
scoring potential SOZ candidates. When the SOZ was not identifiable
by electroencephalographers, the GNN also showed uncertainty in the
scoring (rather than making high-confidence predictions). Contrarily, a
high importance score consistently correlated with clinically-identified
SOZs. With this premise, we believe that our approach could have
practical value if deployed to epilepsy monitoring units to provide
real-time analysis of iEEG recordings.

4.1. Future work

There are several directions for future research that could stem from
this work. First, we note that by (1) increasing the capacity of the
network (in terms of parameters and depth), (2) performing a patient-
specific hyperparameter search, and (3) having more seizures on which
to train the model, it is likely that both the detection and localisation
performance would significantly improve. Also, a possible extension
of the proposed methodology could be to explicitly introduce a su-
pervised objective to train the attentional readout using the available
information on the SOZ. This would require a per-seizure annotation
of every electrode (or, even better, an annotation over time), but could
lead to a more accurate localisation. An interesting application of this
methodology could also be to provide a patient-agnostic localisation,
by training the GNN concurrently on seizures of different patients.

Our current study focuses on eight patients, six of which have an
identifiable SOZ. For two of these, we have post-surgical confirmation
of the SOZ. Our results are encouraging, but studies on a larger sample
(with possibly longer-term clinical information on the patients) are
required before recommending our approach for clinical practice.

Future work could also explore more in-depth the use of differ-
ent or combined FC metrics and their impact on the detection and
localisation performance. For example, we have observed that using
correlation leads to a better detection performance, while we had better
localisation results when using PLV. Correlation is the simplest mea-
sure for non-directed model-based interactions and is more sensitive

to outliers. This sensitivity may result in less uniform FNs between
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Fig. 4. Histograms of the attention scores over a 2-s window starting from a seizure onset. Each bin represents the frequency with which the corresponding attention score is
assigned to ten randomly-selected electrodes. Figure (a) shows a patient with a known SOZ, while Figures (b) and (c) show patients without a known SOZ. For Figure (a), the
contribution to each bin of those electrodes that are part of the SOZ ground truth are highlighted in orange. Note how the score distribution for SOZ-associated electrodes is
spread out towards higher values, while for patients with no known SOZ the scores are similar for all channels.
Fig. 5. Top ten electrodes when considering the averaged rankings. We report the ranking obtained with the best-performing FC metric for each patient, according to the AP@10
score for average rankings reported in Tables 3 and 4. The two plots in red indicate those patients for which the SOZ was not identified clinically. Bold labels indicate that the
corresponding electrode was marked as a potential SOZ by electroencephalographers. For every electrode, we report the average score and its standard deviation over all test
seizures and all repetitions. We refer the reader to the Appendix for an extended version of this figure.
interictal and ictal periods, making it easier for the GNN to detect
seizures. However, we argue that it is also this lack of robustness
that makes correlation FNs less suitable for localising the SOZ. On the
other hand, frequency-domain functional measures like PLV are better
for describing whether different brain areas have a preferred phase
difference when engaging in oscillatory coupling (Bastos & Schoffelen,
2016). Due to the synchronous nature of ictal activity, we can assume
that PLV will also better highlight those regions of the brain with
consistent coupling during seizures and therefore the GNN will be able
to assign a high importance score to those regions. Another reason why
PLV could be more suitable for localisation is that the SOZ displays
internal synchronous activity but also a desynchronisation from the
surrounding areas of the brain, possibly making it easier to identify the
SOZ. This is discussed in-depth in a study by Le Van Quyen, Martinerie,
Navarro, Baulac, and Varela (2001). A way to identify a priori the best
8

FC metric to build FNs for a specific patient could bring significant
benefits.

Finally, we note that additional improvements could be obtained
by exploring ideas in the fields of zero-shot events detection (Li et al.,
2019) and graph clustering (Li et al., 2018, 2018).

5. Conclusion

We presented a methodology for unsupervised seizure localisation
based on GNNs with an attention mechanism. Our approach takes
advantage of a compact representation of brain states as FNs, and uses
machine learning methods for graph-structured data to automatically
detect those regions of the brain that are important for localising
seizure onsets. The main advantage of our approach is that it does not
require any a priori knowledge of the SOZ. The GNN is not forced to
focus on any part of the input FNs but, remarkably, learns to focus
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Fig. A.6. Top: a clip showing the generated activity of a 3-node simulator, compared to the attention coefficient assigned by the GNN at each node over time. Colours indicate
he same node in both plots.
f
i

w

t
s
s
t

i
m
a
d

A
r
n
T
b
a
s
t
w
b
0
f

n areas of the brain that correlate strongly with the true SOZ. We
howed the effectiveness of our method in localising the SOZ on real-
orld data consisting of iEEG recordings from eight human subjects,
sing two different FC metrics to compute FNs. Our results show very
igh accuracy in localising the SOZ. However, we also observed that
he GNN exhibits uncertainty in those cases where human analysis
as also uncertain, indicating a reliable and safe behaviour to support
ecision-making.

We believe that this work represents a step towards AI-aided analy-
is of iEEG data and could potentially lead to faster and more accurate
reatment of epilepsy.
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Appendix A. Seizure generator from Benjamin et al. (2012)

In this experiment we considered a simple network model of seizure
initiation presented by Benjamin et al. (2012), and also used by Lopes
et al. (2017) and Lopes, Junges, Woldman, Goodfellow, and Terry
(2020) to study the effect of network structure on the generation of
seizures. The model consists of a network of 𝑁 bi-stable oscillators

̇ = 𝑓 (𝑧) = (𝜆 − 1 + 𝑖𝜔)𝑧 + 2𝑧|𝑧|2 − 𝑧|𝑧|4 (A.1)
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Table A.5
Configuration used for the simulator by Benjamin et al. (2012).

Parameter Value

𝑁 3
𝜔 20
𝜆 0.5
𝛽 0.1
𝛼 0.05

where 𝑧 ∈ C. Eq. (A.1) describes a dynamical system with a stable
ixed point at the origin of the complex plane (which we consider as
nterictal), and an oscillating attractor with frequency 𝜔 (which we

consider as ictal). Parameter 𝜆 controls the location of the oscillator
in phase space. Nodes are interconnected in a graph described by
adjacency matrix 𝐀 with a coupling factor 𝛽, such that the dynamic
of a single node reads:

𝑑𝑧𝑖(𝑡) =
(

𝑓 (𝑧𝑖) + 𝛽
∑

𝑗≠𝑖
𝐀𝑗𝑖(𝑧𝑗 − 𝑧𝑖)

)

+ 𝛼 𝑑𝑊𝑖(𝑡)

here 𝑊𝑖(𝑡) is a stochastic Wiener process rescaled by a factor of 𝛼.
All nodes in the model are initialised at the fixed point and, due

o the presence of noise and the interaction between nodes, eventually
witch to the oscillation state. We identify the activity of the whole
ystem as ictal if any of the nodes meets the condition |Re(𝑧𝑖)| > 1, and
he SOZ as the first node that escapes the fixed regime.

We consider a complete graph without self-loops to describe the
nteraction of the nodes. The configuration of the parameters is sum-
arised in Table A.5. The hyperparameters used for creating the FNs

nd training the GNN are the same ones that we used for the real iEEG
ata, and we only report results obtained using PLV as FC metric.

The GNN achieves an almost perfect detection score with a ROC–
UC of 99.61 ± 0.0 and a PR–AUC of 99.69 ± 0.0 (averaged over five
uns, evaluated on hold-out test data). Fig. A.6 compares the generated
ode activity with the attention scores assigned by the GNN over time.
he SOZ channel (green) is assigned the highest attention since the
eginning of the seizure until all nodes are simultaneously oscillating,
t which point the attention scores converge to be evenly distributed. A
imilar even distribution is observed in the interictal state, indicating
hat the network has correctly learned to identify the SOZ electrode
ithout defaulting to assign a high score to just one electrode. This
ehaviour is confirmed by the spikes in attention assigned to channels
and 1, which happen as soon as the node dynamics escape the

ixed-point attractor.
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Fig. B.7. A virtual seizure generated with TVB. The vertical line denotes the annotated seizure onset in time.
Fig. B.8. Top-10 electrodes with averaged rankings. Bold labels indicate that the
corresponding electrode showed ictal activity. As desired, electrode 33 shows strong
epileptogenic activity.

Appendix B. The virtual brain simulator

In this experiment we use The Virtual Brain simulator (TVB) (Sanz
Leon et al., 2013) to model a patient with temporal lobe epilepsy.

We follow the same approach described in TVB’s documentation
to configure the simulator.1 We assign the Epileptor neural mass
model (Jirsa et al., 2014) to all the controllable brain regions of TVB.
We set the epileptogenicity of the right limbic areas (rHC, rPHC and
rAMYG) to −1.6, the superior temporal cortex (rTCI) and the ventral
temporal cortex (rTCV) to −1.8, while for all other areas to −2.2. The
remaining parameters are kept as default. The hyperparameters used
for creating the FNs and training the GNN are the same ones that we
used for the real iEEG data.

We select a subset of 34 sEEG virtual sensors among the ones
provided for the default subject of TVB. Of this subset, electrode 33
shows strong epileptogenic activity, while electrodes 18, 19, and 20
show mild activity. We generate clips of roughly 1 min at 20 Hz so
that there is a simulated onset in the middle of each clip. An example
of a generated clip is shown in Fig. B.7.

The GNN achieved an average detection ROC–AUC of 98.87 ± 0.18
and an average PR–AUC of 99.18 ± 0.07 (averaged over five runs,
evaluated on hold-out test data). The electrode with a strong ictal
activity is consistently assigned a maximum score of 1 by all models
and electrode 19 is also ranked in the top-5 electrodes (see Fig. B.8).

1 https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_
documentation.
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Appendix C. Algorithm pseudocode

We report in Algorithms 1 and 2 the pseudocode for the proposed
algorithm.

Algorithm 1 Training procedure for the GNN
Input: IEEG training data for one patient; onset time and duration
for every seizure; subsampling factor 𝑘; window length 𝑇 ; sampling
frequency 𝑓𝑠.
for every seizure with onset time 𝑡0 and length 𝐿 do

Get iEEG data in [𝑡0 − 𝑘𝐿,… , 𝑡0 + 𝑇 ∕2] (class 0);
Get iEEG data in [𝑡0 − 𝑇 ∕2,… , 𝑡0 + 𝐿] (class 1);
Get overlapping windows of length 𝑇 with stride 𝑘∕𝑓𝑠 for class 0;
Get overlapping windows of length 𝑇 with stride 1∕𝑓𝑠 for class 1;
Compute training pairs ((𝑡), (𝑡)) from every window ending at

time 𝑡;
end for
Split data into training and validation sets;
repeat

Sample random mini-batch;
Update weights of GNN with gradient descent;
Compute validation loss and accuracy;

until early stopping criterion is reached.

Algorithm 2 Procedure for seizure localisation
Input: seizure with onset time 𝑡0 and length 𝐿; window length 𝑇 ;
sampling frequency 𝑓𝑠.
Get IEEG data in [𝑡0 − 𝐿,… , 𝑡0 + 𝐿];
Get overlapping windows of length 𝑇 with stride 1∕𝑓𝑠;
Compute (𝑡) from every window ending at time 𝑡;
for every node 𝑖 do

Compute sequence of attention scores: [𝛼(𝑡0−𝐿)𝑖 ,… , 𝛼(𝑡0+𝐿)𝑖 ];

Compute node importance: 𝜎𝑖 =
𝑡0+𝐿
∑

𝑡=𝑡0−𝐿
𝛼(𝑡)𝑖 ;

end for
Normalise importance scores: 𝑠𝑖 =

𝜎𝑖−min𝑗∈ 𝜎𝑗
max𝑗∈ 𝜎𝑗−min𝑗∈ 𝜎𝑗

;
Rank nodes according to 𝑠𝑖.
Return: node ranking.

Appendix D. GNN training details

We consider each patient separately and train a GNN from scratch
to build patient-specific models. The GNN architecture is the one given

https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_documentation
https://github.com/the-virtual-brain/tvb-root/blob/master/tvb_documentation
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Fig. F.9. Example of the detection score outputted by the GNN, for all patients with a known SOZ. We show a window of 50 s around the marked onset for random test seizures.
The darker line is a smoothed trendline of the true prediction, shown in lighter colour.
Table D.6
Caption.

Patient Runtime Epochs Time/epoch

1 18 m 18 s 10 1 m 49 s
2 6 m 12 s 7 53 s
3 32 m 0 s 25 1 m 16 s
4 8 m 41 s 7 1 m 14 s
5 1 h 8 m 57 s 11 6 m 16 s
6 1 h 16 m 55 s 7 10 m 59 s
7 9 m 41 s 11 52 s
8 1 h 5 m 21 s 20 3 m 16 s

in Eq. (11). The ECC layer has 32 output units with ReLU activation and
a kernel-generating network 𝑓 (⋅) consisting of a two-layer MLP with
32 hidden units and ReLU activation. All parameters of the layer are
regularised with an 𝐿2 penalty with a factor of 10−5.

The MLP classifier following the Attn-RO readout has 2 layers, with
the hidden one having 32 units and ReLU activation and with 25%
dropout in-between. Both layers are regularised with an 𝐿2 penalty
with factor 10−5.

The model is trained using Adam, with a learning rate of 10−3 and
a batch size of 32 graphs. The model is trained to convergence with
10 epochs of patience, using the data from ⌈0.1 ⋅ 𝑛⌉ seizures selected
randomly (𝑛 being the overall number of seizures) for early stopping.
We then test the model on a held-out set of ⌈0.1 ⋅ 𝑛⌉ seizures. The
remaining seizures are used for training. All experiments are repeated
5 times using different random data splits.

Table D.6 reports the training times for randomly selected experi-
ments for all patients. This includes the computation of the FNs and
the training of the GNN. There is high variability between the training
times due to the number of electrodes and lengths of the training clips.

Appendix E. Baseline training details

The baseline is a simple 1D convolutional neural network (CNN)
based on the architecture described by Wang, Yan, and Oates (2017).
The CNN operates directly on iEEG time series and hence does not take
into account any graph-based representation for the data. Similarly to
how we create the input–output pairs for the GNN, here we consider
windows of size 𝑇 taken at a stride of 𝑘∕𝑓𝑠 for the interictal class and
stride 1∕𝑓𝑠 for the ictal class, and we associate to each window a class
label corresponding to the majority class of 𝑦(𝑡) in the corresponding
11

window.
Fig. F.10. Average detection and localisation performance as a function of the
sparsification threshold. We report the average over all metrics and all patients, as
reported in Tables II and III of the manuscript.

In particular, we shrink the model to make it comparable in terms
of number of parameters and depth to the GNN one, and also to pre-
vent overfitting (which we experimentally encountered as a significant
problem with the model). We consider a single convolutional layer with
a kernel of size 3, 8 output channels, and ReLU activations, followed
by a global average pooling and a single-layer MLP to output the
classification decision. We train the model using Adam with learning
rate 0.001, batch size of 32 and early stopping with a patience of 5
epochs.

Appendix F. Additional results

Detection A notable behaviour of the GNN can be observed from
Fig. F.9, which shows the output of the GNN (i.e., the detection score
outputted by the model) on a symmetrical window around the onset,
for randomly sampled seizures of the six patients with a known SOZ.
We empirically observed that the model is robust to the onset labelling
provided by electroencephalographers. Notably, by analysing the pre-
diction of the GNN in the time instants prior to the seizure onset, we can
see that the confidence with which the GNN detects a seizure starts to
gradually increase towards the seizure onset, but does not always peak
at the onset time marked by electroencephalographers. This suggests
that the GNN is learning to detect the anomalous brain activity rather
than overfitting to the known onset labels.

Localisation We show in Figs. F.11 and F.12 the top 10 electrodes by
AP@10 score for all patients, respectively when using correlation and

PLV as FC metrics.
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Fig. F.11. Top ten electrodes by AP@10 score for the average rankings, using correlation as FC measure. The two plots in red indicate those patients for which the SOZ was not
identified clinically. Bold labels indicate that the corresponding electrode was marked as a potential SOZ by electroencephalographers.
Fig. F.12. Top ten electrodes by AP@10 score for the average rankings, using PLV as FC measure. The two plots in red indicate those patients for which the SOZ was not identified
clinically. Bold labels indicate that the corresponding electrode was marked as a potential SOZ by electroencephalographers.
Threshold To demonstrate that our approach is robust to the choice of

sparsification threshold for the FNs, as argued in Section 2.1, We report

in Fig. F.10 the average localisation performance over all patients and
12
all metrics for different thresholds (that is, we average all the values

reported in Table 3 after re-computing the tables with different spar-

sification thresholds). While this is a coarse-grained analysis, it shows
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that there are no significant differences in the downstream performance
for thresholds up to 0.7, with two-sided t-tests over all pairs yielding
𝑝-value 𝑝 ≫ 0.05 up until threshold 0.7. Above this value, we see a
ignificant performance degradation.

While this is a coarse-grained analysis, it indicates that the most
eaningful edges to perform seizure localisation are those that in-
icate a strong functional connectivity, with values higher than 0.7.
t the same time, a higher sparsification threshold can improve the
omputational cost of the GNN, which is linear in the number of edges.
owever, it is beyond the scope of this work to provide a biological

nterpretation of this threshold and we do not make claims regarding
he generality of this threshold. Our general recommendation, if com-
utational cost is not a priority, is to keep the threshold conservatively
ow so as to not remove potentially informative edges from the FNs. The
alue of 0.1 that we use in our experiments appears to be a reasonable
hoice, although we leave further exploration of this matter as future
ork.
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