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Abstract

An important takeaway of Bell’s famous theorem is that the notion of informa-
tion is intrinsically dependent on its physics. To expose this idea, I first analyze
a colourful game, the Red-Green-Blue no-signalling game, which is a strikingly
simple and instructive illustration of Bell nonlocality and of its underlying frame-
work of Local Operation and Shared Randomness (LOSR). I then extend the set-
ting to more parties in a network, and approach the natural question of how to
define nonlocality that is genuinely tripartite. I use the inflation method to de-
vise a thought experiment demonstrating in a device-independent way that the
quantum states GHZ and W are genuinely tripartite nonlocal. I also show that
this statement can be generalized to more parties in order to reach the conclusion
that “there are correlations in Nature that are genuinely N -partite nonlocal, for
any N”. This claim has been recently verified by three independent experimental
teams, up to N = 4.

Turning towards another fundamental theory of physics, I examine the crypto-
graphic possibilities offered by the second law of thermodynamics. I find that
unconditionally secure cryptography is, in principle, possible in a model where
the only limited resource is free energy. More precisely, I build proof-of-principle
protocols for secret-key establishment and multi-party computation that are se-
cure against adversaries whose bound in free energy is exponentially larger than
the amount required by the honest players. While impractical, the model probes
the limits of reversible computing and gives rise to an “almost-no-cloning” theo-
rem that is reminiscent but different from the quantum no-cloning theorem.
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Prologue

Quantum mechanics has the folkloric reputation of being incomprehensible. This
is mainly because quantum mechanics is a radical departure from previous phys-
ical theories. The latest manifestation of this departure is Bell nonlocality: The
fact that quantum mechanics transcends the class of local hidden-variable mod-
els that we would have once thought sufficient to explain (albeit in a very re-
ductionist way) all of the observable world. Maybe surprisingly, the demonstra-
tion of this counter-intuitive property, the violation of Bell inequalities, can now
be concisely illustrated through the modern concept of nonlocal game. Let us
present the idea with the following thought experiment (the RGB no-signalling
game) imagined by Claude Crépeau and of which I have found the quantum
solution ([CRC19]).

The colourful story of nonlocality

Alice and Bob are two actors in a strange game. They start with a choice
of three colours (Red, Green, Blue), and are forbidden one colour each
(the choice is from their point of view completely random). Alice and
Bob each answer one of their remaining two colours, and win if those
answers are different; otherwise, if they are the same, they lose.

And there is one more crucial detail — Alice and Bob are on two different
planets, and because there is a limit to the speed of light, which applies
to any type of information transmission, communication between them
is impossible, or rather, it is too slow to be useful; if Alice were to send
Bob a message, it would arrive to Bob long after the game is over.

1



2 A) “Classical” models

A) “Classical” models

Before the advent of quantum mechanics, in accordance with classical ways of
thinking, which posited by default that local hidden variables were the only sensi-
ble fundamental models, the behaviour of Alice and Bob would have been tenta-
tively modelled by a set of deterministic instructions such as the ones illustrated
in Fig. 1a and Fig. 1b. Those instructions assign a definite answer to each possible
question 1.

(a) An example of a local hidden-variable
model for Alice.

(b) An example of a local hidden-variable
model for Bob.

Figure 1. When following a local hidden-variable model, Alice and Bob sepa-
rately prepare answers for each question they could receive.

The Bell inequality of the RGB game

Let us compute the Bell inequality of the RGB game, that is, let us prove that
Alice and Bob can only win with probability up to 8/9 by following a classical
model such as the one described above.

Proof. An important remark is that since each colour can be forbidden, there

1A slightly more general class of local hidden-variable models would be to allow the players to
draw a deterministic model at random from a set of many deterministic models, but we skip over
such probabilistic models because picking a strategy at random is never better than choosing the
best strategy (the argument is called convexity).



3 B) Quantum models

will always be at least 2 different colours in the set of Alice’s possible answers
(above, it is Blue and Red) and at least 2 different colours in the set of Bob
possible answers (above, it is Green and Red) .

It then follows that since there are only 3 different colours in total (Red, Green,
Blue), those 2 different colours of Alice cannot be both different from the 2 dif-
ferent colours of Bob. One must appear as a possible answer in both sets of
instructions (above, it is Red, which is answered by both players if Alice is asked
not-Blue while Bob is asked not-Green).

Hence, because at least one pair of Alice–Bob questions leads to a loss, and be-
cause all 9 pairs of questions are equally probable, no local hidden-variable strat-
egy can win with probability more than 8/9. The model illustrated in Fig. 1a and
Fig. 1b does achieve 8/9; it is, therefore, optimal.

Of course, an instructive way to assimilate the limits of such classical strategy is
to actually play the game.

B) Quantum models

The relevance of the RGB game comes when we can experimentally observe that
Alice and Bob win with probability more than 8/9, because it means that Alice
and Bob are doing something that escapes the traditional intuition. As a matter
of fact, it is possible for Alice and Bob to win up to probability 11/12 by building
devices that exploit the quantum-mechanical phenomenon called entanglement
(see Fig 2, and the explanation below). And it is not because Alice and Bob cheat
through hidden communication or through prior knowledge of the forbidden
colours — the nature of quantum information itself is what steps beyond the
classical boundary; it cannot be captured by the so-called classical models.

The explicit quantum strategy

The better-than-classical quantum strategy which wins with probability 11/12 is
the following. We use the quantum-information formalism (braket notation) on
the Bloch sphere.

Alice and Bob share a singlet state |ψ−〉AB. They use the same measurement
strategy2. According to their own input colour, Alice and Bob choose their mea-

2This comes in contrast with the quantum strategy for the CHSH game, which is asymetric in



4 The explicit quantum strategy

|0〉

|1〉

|+〉|−〉

Figure 2. For those familiar with the Bloch sphere, the above figure illustrates
Alice and Bob’s best quantum strategy: Making the represented projective
measurement (interestingly, it is the same) on their respective half of a max-
imally entangled pair of qubits. The choice of basis (rectangle) depends on
their own input colour. Their output is the colour of the measured arrow.

surement from the following list:

ΠRed = |0〉〈0| ,ΠGreen =
�

�v+
�


v+
�

� ,ΠBlue =
�

�v−
�


v−
�

� , (1)

where
�

�v±
�

=
1
2
|0〉 ±

p
3

2
|1〉 . (2)

These 3 projectors are located in the same plane equidistantly (like the Mercedes-
Benz logo). The colour names can be permutated freely as long as Alice and Bob
do the same projection for the same colour.

If the output of their measurement is positive, they output the colour that comes
after their input colour in the cycle RGB. Otherwise, they output the previous
colour. They never output their own input colour as it leads to a sure loss.

For example, if Alice’s input is Green and she measures a positive result when
applying the projector ΠGreen, then a = G and x = G+1= B (the colour addition
is modulo 3). Figure 2 explains the protocol graphically.

Proof. We prove that this quantum strategy only loses with probability 1/12. We
first need to introduce some notation: a, b ∈ {Red,Green, Blue} are the inputs
to Alice and Bob, respectively, and x , y ∈ {previous, next} are their outputs. The
notation refers to the relation with the input colour in reference to the cyclic

Alice and Bob.



5 The explicit quantum strategy

order (Red→Green→Blue→Red). For example, on the input a = Red, the output
x = previous means Blue. Alice and Bob lose in the following cases:

x = y if a = b ,
x = previous∧ y = next if a (immediately) precedes b ,
x = next∧ y = previous if a (immediately) follows b .

(all losing cases)

The probability of error E only depends on the relation between a and b and is
given by

Ea=b = tr
��

�ψ−
�


ψ−
�

�

AB
·
�

(Πa ⊗Πb) + (Π
⊥
a ⊗Π

⊥
b )
��

= 0 , (3)

Ea precedes b = tr
��

�ψ−
�


ψ−
�

�

AB
· (Π⊥a ⊗Πb)
�

=
1
8

, (4)

Ea follows b = tr
��

�ψ−
�


ψ−
�

�

AB
· (Πa ⊗Π⊥b )
�

=
1
8

. (5)

And the winning probability of this quantum strategy is (with uniformly random
inputs):

PQ(win) = 1−
3Ea=b + 3Ea precedes b + 3Ea follows b

9
=

11
12

. (6)

The game is therefore won with probability 11/12 using this quantum strategy.

In Appendix A figures the complete and rigorous analysis of the RGB game, in
which I also prove, using semi-definite programming, that the quantum strategy
presented above is optimal. 11/12 is, therefore, the Tsirelson bound of the RGB
game. Interestingly, this Tsirelson bound is rational (Tsirelson bounds are usu-
ally irrational numbers. For example, for the CHSH game, the optimal quantum
strategy wins with probability 2+

p
2

4 .)

Takeaway of this introduction

The simplicity of the RGB game formulation, the clarity of its Bell inequal-
ity, the rationality of its Tsirelson bound, and the symmetry of its best
quantum solution all make it an excellent pedagogical tool to learn the
basic concepts of Bell nonlocality and to familiarize oneself with quantum
measurements on the Bloch sphere.



6 C) Structure of this thesis

C) Structure of this thesis

This thesis investigates the nature of information. It focuses on two ideas: net-
work nonlocality (quantum mechanics of information) and reversible computing
(thermodynamics of information).

As it is my epistemological conviction that too many initial details hinder compre-
hension, I have tried to incorporate multiple levels of explanations in my thesis,
starting from high-level content (which I aspire one day to turn into blog posts)
and progressing to standard article format, with most of the dry technical details
only in the appendices. I hope that such incremental structure helps the reader
to better understand the content.

• The present prologue introduced the concept of Bell nonlocality through the
RGB no-signalling game, which rigorous analysis figures in Appendix A.

• The first chapter — Correlations — is the logical continuation of the prologue.
In that chapter, I extend the concept of Bell nonlocality to causal networks of
many players. After a gentle introduction of the inflation method, I exhibit a
thought experiment on the |GHZ〉 quantum state whose conclusion is that “Na-
ture’s nonlocality cannot be merely bipartite." This statement that constrains
the set of physical models that could one day replace quantum mechanics,
and it has now been verified experimentally. In Appendix B, I generalize the
proof to more parties (concluding from measurements on |GHZN 〉 that “Na-
ture’s nonlocality is boundlessly multipartite nonlocal") and give the proof that
the |W〉 quantum state also exhibits genuinely tripartite nonlocality.

• The second chapter — Security — is self-contained. It explores the crypto-
graphic consequences of perfect reversible computing and of the second law
of thermodynamics. I offer protocols for two of the main tasks of cryptography
— namely, secret key establishment and secure two-party computation — that
are information-theoretically secure against adversaries that are bounded in
free energy.

• I conclude with an epilogue containing some remarks, open questions, and
comments about the present research.



Chapter 1

Correlations

• Section 1.1 describes the principles around network nonlocality and Section 1.2
the inflation method. They aim to be accessible.

• Section 1.3 ([CRWR21b]) is work with Marc-Olivier Renou and Elie Wolfe.
It explains the main result — the prediction by quantum theory of genuinely
tripartite nonlocality — in a concise manner.

• Appendix B ([CRWR21a]), also with Marc-Olivier Renou and Elie Wolfe, han-
dles the technical details, and extends the result to more states and more par-
ties: “Nature is boundlessly multipartite nonlocal.”

• Section 1.4 refers to recent experimental demonstrations of these results.

1.1 Network nonlocality

In the prologue, the RGB two-player game highlighted the distinction between
shared randomness and quantum entanglement. Network nonlocality is a gen-
eralization of that basic scenario. Formally, a causal network is represented by
a directed acyclic graph (DAG) whose nodes are players (Section 1.1.1) and re-
sources of different kinds (Section 1.1.2), and whose edges pair the resources to
the players (Section 1.1.3).

One of the main topics studied in this thesis — genuinely tripartite nonlocality
— is the contrast of the two causal scenarios illustrated in Figure 1.1 (whose
meaning we clarify in the next sections). Further, simpler examples of causal
network are drawn in Figure 1.2 and Figure 1.3a.

7



8 1.1 Network nonlocality

(a) Tripartite quantum resource. (b) Triangle scenario with arbitrary no-
signalling resources plus shared random-
ness.

Figure 1.1. We prove in Section 1.3 ([CRWR21b]) that some behaviours
P(ABC |X Y Z) possible in the network on the left are not compatible with the
network on the right.

1.1.1 Players

Players are nodes representing deterministic devices that take a classical input
(the questions) and produce a classical output (the answers) by performing local
operations (LO) on certain resources. The allowed set of local operations depend
on the type of resources and theory considered (see below).

Players are probed in a device-independent manner, meaning that the only quan-
tity of interest is the (classical) conditional probability distribution over all play-
ers, which represents their input–output relation (their behaviour).

1.1.2 Resources

This thesis is concerned with three types of resources and their associated local
operations.

i. Shared randomness (SR — also called local hidden variables or classical re-
sources) and post-processing.

ii. Quantum entanglement and quantum channels (completely positive maps).

iii. Wildcard resources in any causal theory — these are unspecified resources
that obey the device-replication condition (see below) and the no-signalling



9 1.1 Network nonlocality

Figure 1.2. For example, in the RGB game presented in the prologue, the
quantum players perform local operations corresponding to quantum measure-
ments on a shared maximally entangled state (bottom), while the local-hidden-
variable players are restricted to post-processing of shared randomness (top).
By analyzing the conditional probability distribution P(AB|X Y ) of their re-
spective answers (now A, B) given their respective questions (now X , Y ), one
concludes that certain input–output behaviours are possible in the first sce-
nario but not in the second — they violate a Bell inequality.

principle (also below): They can be, for example, quantum entangled states,
nonlocal boxes (such as the Popescu-Rohrlich box), or any kind of resources
described by some generalized probabilistic theory (GPT) and which could, for
example, allow for local operations that generalize entangled measurements.

1.1.3 Causal relations

Those different flavours of players and resources are also studied in the bipar-
tite case. The novelty of network nonlocality is to restrict the causal relations
between players and resources: Not all players are connected to all resources
— some pairs are assumed to be independent. For example, in the triangle sce-
nario plus shared randomness (featured in Figure 1.1b), the shared randomness
is common to all players, but the unspecified no-signalling resources are shared
only by pairs of players (no tripartite “nonlocal” resource is allowed).
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1.2 The inflation method

Inflation is central to the study of network nonlocality. Inflation is a thought ex-
periment that relies on imagining multiple copies of the players and resources,
connected in various manners. Its interest comes from the fact that the exis-
tence of a behaviour in the inflated scenarios allows us to constrain the set of
distributions in the original causal scenario. We first describe how these inflated
scenarios are constructed (Section 1.2.1). Then we describe the core rules to
derive constraints from inflated scenarios (Section 1.2.2) and give a simple ex-
ample of a proof made through inflation (Section 1.2.3). At last, we explain how
inflation can be taken as fundamental (Section 1.2.4).

1.2.1 Types of inflation

Since inflation is based on the duplication of players and resources, it relies on
the following assumption.

Device-replication principle

Identical independent copies of any players and of any resources can exist.

Note the weakness of this assumption; the principle does not, for example, con-
tradict the quantum no-cloning principle because it does not require that the
actual copying of unknown states be possible. For instance, a (|00〉+ |11〉)/

p
2

state can be obtained in quantum mechanics by a device (a laser + a crystal)
exploiting spontaneous parametric down-conversion (SPDC). A duplicate of the
device would consist of another, identical laser plus another, identical crystal.

There are three different flavours of inflation, depending on how the resources
are copied.

1 Non-fanout inflation allows fewer inflation possibilities than fanout inflation.
In the kth-level inflation, there are exactly k copies of each player and of each
resource, and they are connected so as to be locally undistinguishable from
the original connections. The global structure, however, need not be identical
to k copies of the original scenario. The wheel in Figure 1.3b is an example of
non-fanout inflation. Note how each resource is connected to the two players
corresponding to her “type”, and each player is connected to two resources of
the appropriate “type”.

2 Fanout inflation is more permissive in its cloning: it allows clones of a same
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player to be connected to the same instance of a resource. This can only be ap-
plied to classical resources (shared randomness) because nonlocal resources
cannot be in general copied in this way (for example, copying half of a max-
imally entangled state would allow to signal faster than light). Pure fanout
inflation is not used in this work.

3 Mixed inflation is the mixed use of fanout inflation for the (classical) shared
randomness and non-fanout inflation for the additional (non-classical) resources.
Mixed inflation is applied in Section 1.3 to the triangle scenario with shared
randomness (Figure 1.1b).

(a) The triangle scenario
without shared randomness.

(b) The wheel — a possible second-order non-fanout
inflation of the triangle scenario.

Figure 1.3. Illustrative example considered in Section 1.2.3.

1.2.2 The principles of inflation

Besides from device replication, inflation relies on two major principles [CDP11;
GBC+20; CRWR21a].



12 1.2 The inflation method

Causality I (independence principle)

If two players do not share a common resource, they exhibit statistically
independent behaviours.

Causality II (no-signalling principle)

If two (sub)groups of players and resources from the original or inflated
scenarios are isomorphic to each other, they exhibit identical behaviours.

We illustrate their use in the next section.

Note that in the context of the LOSR framework, where all players share a com-
mon random variable λ, the independence principle and the no-signalling prin-
ciple apply individually for each value λi of the shared randomness.

1.2.3 Inflation as a proof method

We give an example of how inflation can be used as a proof technique to rule out
causal models.

Example (3-way coin flip). We use as an example the causal structure of the
triangle network without shared randomness, represented in Figure 1.3a.

We then use the second-level inflation of Figure 1.3b to show that the 3-way
coin flip, 1

2[000] + 1
2[111], is a distribution that is incompatible with that causal

structure.

P(A=B=C=0) = P(A=B=C=1) = 1/2 . (3-way coin flip)

The result was first proven in [HLP14].

Proof. We assume by contradiction that 1
2[000] + 1

2[111] can be realized by the
causal scenario of Figure 1.3a.

On one hand, we have by no-signalling that

P(Ã=B̂) = P(A=B) = 1 , (no-signalling)

P(B̂=Ĉ) = P(B=C) = 1 , (no-signalling)

=⇒ P(Ã=Ĉ) = 1 . (transitivity)
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On the other hand, we have by causality that

P(Ã, Ĉ) = P(Ã) · P(Ĉ) , =⇒ P(Ã=Ĉ) = 1/2 . (independence)

We conclude from this contradiction that the 3-way coin flip cannot be produced
in the triangle scenario without shared randomness, in any causal theory gener-
alizing quantum theory.

1.2.4 Inflation as a foundation

In our works [CRWR21b; CRWR21a] (Section 1.3, Appendix B), our use of the
inflation method goes beyond its use as a proof method: we use it as a definition
of genuinely tripartite (and N -partite) nonlocality.

Definition 1 (LOSR genuinely tripartite nonlocality). A no-signalling1 tripartite
behaviour P(ABC |X Y Z) is genuinely tripartite nonlocal if and only if it is not com-
patible with all levels (an infinite hierarchy) of mixed inflation applied to the tri-
angle scenario (Figure 1.1b).

The necessity for a LOSR definition of genuinely tripartite nonlocality arose be-
cause previous definitions of the concept (namely, in [Sve87] and in [BBGP13])
were based on the local operations and classical communication framework (LOCC).
A striking example of the inadequacy of this framework when doing causal anal-
ysis is the following.

Example (parallel hack). Consider the tripartite probability distribution PABC =
PAB1
·PB2C obtained by the parallel composition of a bipartite nonlocal distribution

PAB1
between Alice and Bob and of an independent bipartite nonlocal distribution

PB2C between Bob and Charlie. This distribution PABC is genuinely multipartite
nonlocal according to Svetlitchny’s criterion. It is, however, clearly produced
from bipartite-nonlocal resources.

Our redefinition solves this operational problem2.

1A behaviour cannot signal to Alice if for every subset, P(A|X Y Z) = P(A|X ). A behaviour
is said to be no-signalling when this condition holds, mutatis mutandis, for all players and all
coalitions of players. In [CRC19], we give an alternative, but equivalent, formulation of the class
of no-signalling behaviours.

2A similar problem existed with the LOCC definition of genuinely multipartite entangle-
ment [SU08], which implies, for example, that the 4-qubit state |ψ−〉AB ⊗ |ψ−〉B′C is genuinely
tripartite entangled. A more operationally sound, LOSR definition was introduced in [NWRPK20]
to remedy to the problem.
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1.3 No bipartite-nonlocal causal theory can explain Na-
ture’s correlations ([CRWR21b])

The following is a full retranscription of my work ([CRWR21b]) with Marc-
Olivier Renou and Elie Wolfe.

Abstract.— We show that some tripartite quantum correlations are inexplicable
by any causal theory involving bipartite nonclassical common causes and un-
limited shared randomness. This constitutes a device-independent proof that
Nature’s nonlocality is fundamentally at least tripartite in every conceivable phys-
ical theory — no matter how exotic. To formalize this claim we are compelled
to substitute Svetlichny’s historical definition of genuine tripartite nonlocality
with a novel theory-agnostic definition tied to the framework of Local Opera-
tions and Shared Randomness (LOSR). A companion article [PRA. 104, 052207
(2021)] generalizes these concepts to any N ≥ 3 number of parties, providing
experimentally amenable device-independent inequality constraints along with
quantum correlations violating them, thereby certifying that Nature’s nonlocality
must be boundlessly multipartite.

Introduction.— Nonlocality is one of the most common-sense challenging, but
nevertheless well-established, properties of quantum physics [EPR35; Bel64].
Two or more parties measuring a shared entangled quantum state can obtain
correlated outputs which resist explanation in terms of any local hidden-variable
model. Understanding of the concept of nonlocality and of its manifestations
has captivated the attention of hundreds of researchers spanning decades, see
Ref. [BCP+14] and references therein. Seminal milestones include the devel-
opment of tasks inaccessible with only classical resources such as the CHSH
game [CHSH69], celebrated experimental demonstrations [FC72; AGR81; TBZG98;
H+15; S+15; G+15; RBG+17], and the device-independent certification of ex-
perimental apparatuses taken as black boxes [MY98; AGM06; ABG+07; P+10;
RAF16].

The bipartite scenario is arguably the most studied. However, scenarios with
more that two parties exhibit certain valuable features which are qualitatively
distinct from those of the bipartite scenario. For instance, tripartite quantum
scenarios can demonstrate a stronger version of Bell’s theorem [GHSZ90]. More
generally, the nonlocality of multipartite chains of bipartite Bell inequalities de-
cays to zero as the number of party increases (the gap between the local and
no-signalling bounds collapses), whereas genuinely multipartite Bell inequalities
allow for non-decaying witnesses of nonlocality [WW01; CAF06; CCAA12].
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Any bipartite scenario can be artificially lifted to a tripartite scenario by adding
an extra spectating party [Pir05]. To exclude such uninteresting cases, it is crit-
ical to find an appropriate criterion for whether a setup in a tripartite scenario
is genuine, i.e., exploits possibilities not present in scenarios involving only two
parties. One avenue to highlight tripartiteness is to focus on entanglement —
the property of quantum states that enables nonlocal correlations. This is the
proposal of Ref. [SFK+20] which relates nonlocality to the notion of tripartite
entanglement formalized in Ref. [NWRPK20]. Such genuinely tripartite entan-
glement resists any explanation in terms of local operations applied to networks
of bipartite quantum states.

This letter proposes instead a theory-agnostic avenue. We consider any causal
description of Nature — including classical and quantum physics, and beyond —
and ask the following fundamental question: Could our physical world be com-
prised of merely bipartite nonlocal causal constituents? That is, does there exist
any description of quantum theory’s operational predictions, perhaps very ex-
otic, built upon bipartite nonclassical common causes? It is already well known
that bipartite resources are not enough to reproduce all tripartite phenomena.
For instance, perfect correlations between three parties cannot be obtained from
bipartite resources, even in a theory-agnostic analysis [HLP14].3 However, that
result is predicated on the absence of shared randomness, which is arguably not
realistic. Shared classical randomness can be obtained by pre-agreement on a
common classical phenomenon to observe, or with preestablished shared ran-
domness stored in local memories. It is also known that boxworld [Jan12], an
alternative theory for correlations based on no-signalling boxes [Bar07], can-
not reproduce all quantum correlations even when allowing for shared random-
ness [CR17; Bie20]. This result is restricted to a precise alternative to classical
and quantum mechanics, and may not encompass all possible causal theories of
correlations [CDP11; Chi14].

Accordingly, in this letter we focus on the (non)simulability of certain tripar-
tite correlations in setups allowing for the local composition of any bipartite re-
sources with global access to common shared randomness. We adopt a theory-
agnostic perspective that applies to any causal theory [CDP11; Chi14] compatible
with device replication [CRWR21a]— however exotic it might be. This includes
the classical theory and quantum theory as specific causal theories, but also more
generally any hypothetical Generalized Probabilistic Theory (GPT) such as box-
world [Jan12]. Our approach is closely related to the concept of network non-

3The proof is given in Section 1.2.3.
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locality which has been extensively studied in the past decade [TPKLR21; Fri12;
BGP10; RBB+19; WPKG+21].

It is natural to name genuinely tripartite nonlocal those correlations which re-
sist explanation in terms of arising from bipartite resources and shared random-
ness. That denotation, however, conflicts with a historical term of art due to
Svetlichny [Sve87]. We will explain why Svetlichny’s definition is not suitable
for causal analysis, leading us to propose an alternative definition (see Defini-
tion 2), which constitutes the main conceptual result of this letter.

Subsequently, we prove that |GHZ〉 := (|000〉+ |111〉)/
p

2 is a resource that can
manifest correlations which are genuinely tripartite nonlocal according to our
novel definition. This is the subject of Proposition 3, the main technical result
of this letter. The formal characterization of such correlations, along with our
proof of the quantum realizability of such correlations, together constitute a pro-
found implication: The operational predictions of the quantum theory preclude
— in the strongest possible sense — any future description of Nature built upon
bipartite common causes, regardless of how exotic or nonclassical they could be.

We conclude this letter by contrasting our no-go theorem with previous works
aiming to exclude physical theories limited to 2-way nonclassical common causes.
We also recognize the desideratum of certifying Nature’s genuine multipartite-
ness without presupposing the operational validity of quantum theory, and ac-
cordingly discuss considerations for the experimental verification of our results.

Although this letter focuses mainly on the tripartite case for pedagogical sim-
plicity, we note that all of our introduced concepts and most of our results are
valid in the generalized multipartite case, beyond three parties. We develop
the N -partite case in an extended version of this work [CRWR21a], which in-
cludes extending the result regarding the |GHZ〉 state to any number of parties
N (see Proposition 5) as well as a result regarding the resourcefulness of the
|W〉 := (|001〉+ |010〉+ |100〉)/

p
3 state (see Proposition 4). These generaliza-

tions of our main results to any number of parties imply that, for any fixed k, any
theory based on subjecting k-way multipartite resources to local operations can-
not reproduce the operational predictions of quantum theory for N>k spacelike-
separated parties.

A causally meaningful notion of genuine tripartite nonlocality.— We seek to dis-
tinguish those correlations which admit causal explanation in terms of bipartite
nonclassical sources from correlations which resist any such causal explanation.
Furthermore, in order to claim that Nature’s nonlocality is necessarily tripartite
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λABC
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Figure 1.4. A tripartite distribution is genuinely tripartite nonlocal according
to our definition if it cannot be realized by the above scenario, where the output
of each player is determined by local operations (such as joint measurements)
on 1) their input, 2) the 3-way randomness, and 3) 2-way GPT resources.

without a priori assuming the correctness of quantum causal explanations, we
must be careful to apply the label “genuinely tripartite” only to those correla-
tions which resist bipartite causal explanations in any physical theory.

One might ask if Svetlichny’s historically accepted definition of genuine tripar-
tite nonlocality [Sve87] is suitable for capturing such causal distinction. But no,
it is easily hacked: the correlations obtained from CHSH violations in parallel
between Alice and Bob as well as between Bob and Charlie fulfill Svetlichny’s
criterion for genuine tripartite nonlocality [CTPdV21]. Such correlations, how-
ever, are facially achievable in quantum theory restricted to bipartite states. What
Svetlichny’s definition is suitable for is as device-independent witness of genuine
tripartite entanglement. Note that the traditional definition of genuine tripartite
entanglement due to [SU01] is susceptible to precisely the same sort of hacking:
A 4-qubit state composed of a singlet shared between Alice and Bob as well as a
singlet shared between Bob and Charlie satisfies Seevinck’s criterion for genuine
tripartite entanglement, despite factorizing into bipartite constituents.

The reasons why the historical definitions of tripartiteness for both nonlocality
and entanglement are ill-suited for causal analysis is because they were moti-
vated by quantifying resourcefulness relative to Local Operations and Classical
Communication (LOCC). When analysing Bell-inequality violations, however, we
presume that the parties involved may be spacelike separated, which enforces the
No-Signalling condition. When classical communication is forbidden, the only
form of processing of nonclassical resources that remains is via Local Operations
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and Shared Randomness (LOSR) [WSS+20; SFK+20; SZCG20].

Therefore, it is critical to employ the LOSR resource-theoretic framework instead
of LOCC when quantifying the nonclassicality of a common cause in a Bell ex-
periment. Ironically, Svetlichny’s [Sve87] definition was specifically tailored to
the task of witnessing LOCC tripartite entanglement, which is irreconcilably in
tension with quantifying nonlocality, as nonlocality is only meaningfully studied
in the LOSR paradigm.

A notion of genuine tripartiteness relative to LOSR entanglement has been formu-
lated in Refs. [NWRPK20; SFK+20]. Ref. [SFK+20] seamlessly extends that no-
tion to provide a definition of genuine tripartite nonlocality based on the concept
of a correlation resisting explanation in terms of bipartite quantum states acted
upon by LOSR. Our main conceptual contribution here is to provide an LOSR-
motivated definition for genuine tripartite nonlocality that is theory-agnostic, in
that it imagines that LOSR could be applied to any sort of bipartite nonclassical
resource, not just quantum entanglement.

λABC

Local

A1X1 ∈ {0, 1} C1 Z1 = 1

B1Y 1 ∈ {0, 1}

ω1
AB

GPT

ω1
BC

GPT

ω1
AC

GPT

A2X2 = 0 C2 Z2 = 0

B2 Y 2 = 2

ω2
AB

GPT

ω2
BC

GPT

ω2
AC

GPT

ω′2
AC

GPT

Bell Same

Figure 1.5. The inflation technique consists of duplicating and rearranging
players, sources, and input distributions. Here we inflate the (non genuinely
tripartite-nonlocal) triangle scenario of Figure 1.4 as to have the players play
two parallel games (Bell and Same). It leads to a contradiction with the statis-
tics of measurements on |GHZ〉, and therefore to the conclusion that the |GHZ〉
quantum state is a genuinely tripartite-nonlocal resource. The duplicated play-
ers constitute indistinguishable copies of the same abstract process, hence Alice,
on input X=0, could be playing either game (A1 and A2 must have the same
behaviour). The only condition on the random inputs is that they be indepen-
dent from all of the sources. The figure represents a cut of a larger inflation of
order 3, consisting of a triangle and a hexagon.
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We appeal to the GPT formalism to formally define local operations on “any” sort
of bipartite nonclassical resource. In brief, we allow for any exotic physical theory
that can extend (or restrict) the bipartite resource of quantum entanglement
(including all nonsignalling nonlocal boxes such as the PR box [PR94]), and that
can extend (or restrict) the process of combining subsystems via entangled joint
quantum measurement [BGP10; BRGP12]. Quantum theory itself is merely one
of an infinite spectrum of such hypothetical physical theories [CDP11; Chi14;
SB09; SB10; Bar07; Jan12].

Definition 2 (Genuine LOSR tripartite nonlocality). A tripartite nonsignalling
correlation P is said to be genuinely LOSR tripartite nonlocal if and only if it
cannot be obtained by local operations over any 2-way GPT resources along with
3-way shared randomness between all parties. That is, P is said to be genuinely
LOSR tripartite nonlocal when it cannot be realized via the abstract causal process
depicted in Figure 1.4.

Equipped with this new definition, let us now provide examples of quantum tri-
partite resources which are genuinely tripartite nonlocal. We also assume that
every causal theory allow for device replication, i.e. one can make independent
and identical copies of resources, to draw inferences from the nonfanout-inflation
technique [WSF19] (see Ref. [CRWR21a] for an extended formal treatment of
these ideas).

Genuinely tripartite nonlocal correlations exist in Nature.— We now prove that
|GHZ〉 := |000〉+ |111〉/

p
2 generates quantum correlations which are genuinely

LOSR tripartite nonlocal. As in [CR17], the basic idea is to split the problem into
two intertwined games, respectively detecting that some party’s measurement
must depend on both (1) some nonclassical resource, albeit possibly bipartite,
and (2) some tripartite resource, albeit possibly classical. Performing well at
both (1) and (2) would require dependence on a genuinely LOSR tripartite non-
classical (entangled) resource. More precisely, we introduce

(1) A bipartite nonlocal game (conditioned on the third’s player output), which
rewards nonclassical randomness.

This first task is the standard CHSH game between Alice and Bob, with the partic-
ularity that it is scored only when Charlie outputs C=1. The function to maximize
is (the observables take value in {−1,+1})

IC1=1
Bell := 〈A0B0〉C1=1 + 〈A0B1〉C1=1

+ 〈A1B0〉C1=1 − 〈A1B1〉C1=1 . (1.1)
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(2) A tripartite consistency game that rewards no-randomness or tripartite ran-
domness.

Here, the players are asked to output the same result (which can take either of
the two values ±1), and are scored according to the function

ISame :=〈A0B2〉+ 〈B2C0〉 . (1.2)

Because A0 := AX=0 belongs to both games, on that input Alice is oblivious as
to which of the two games she is partaking in. This prevents her from playing
the two games separately; rather, her strategy for X = 0 must be optimized in
respect to both games simultaneously. The impossibility of Alice decoupling the
two games leads to our central argument:

“(1.1)+ (1.2) rewards only genuinely tripartite nonlocality.”

More precisely, in the |GHZ〉 case, we combine IC1=1
Bell and ISame into an inequality:

Proposition 3 (GHZ3). In the absence of any 3-way nonclassical cause, if 〈C1〉= 0,

IC1=1
Bell + 4ISame ≤ 10 . (1.3)

Measurements on the |GHZ〉 quantum state can violate the above by reaching IC1=1
Bell +

4ISame = 2
p

2+8> 10. The maximal GPT violation reaches the algebraic maximum
of 12.

For a better presentation, we focus on explaining why reaching the algebraic
maximum of 12 leads to a contradiction. The quantified proof of Ineq. (1.3) is
done in [CRWR21a], where we also explain how to remove the 〈C1〉= 0 assump-
tion (this assumption is experimentally problematic).

Proof of equation (1.3), main ideas. Let us assume by contradiction the existence
of three black-box devices that satisfy the causal structure of the triangle scenario
(Figure 1.4), but that can nevertheless reach the perfect scores IC1=1

Bell = 4 and
ISame = 2.

Inspired by inflation-technique ideas, we now imagine an inflated scenario where
the devices and resources are duplicated and rearranged; see Figure 1.5. Note
that the same instance of the shared randomness λ can be infinitely copied and
hence be distributed to all parties, but that the (2-way) GPT resources cannot;
it is possible, however, to have multiple independent instances of each of those
resources by device replication. In our scenario, some of the 2-way resources
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are inputted only to a single player; their second halves can be considered never
measured.

First, on the left-hand side of the figure, the devices take the Bell test and inherit
exactly the behaviour of the original devices (if we ignore the right-hand side of
the inflated scenario, the left-hand side is precisely the original scenario).

An important property of Bell inequalities is that any violation implies true ran-
domness [P+10; BMP18]. In our case, A1B1 reaches the maximal algebraic vi-
olation of CHSH, which implies that A1 (and also B1) is totally unpredictable.
Hence, in particular,

A1
X=0C2

X=0 are perfectly uncorrelated. (1.4)

Second, on the right-hand side, the devices perform the Same test. As we do
not know the inner workings of the black boxes, we cannot describe their whole
tripartite joint behaviour. However, note that A2B2 and B2C2 inherit the joint
statistics of their respective original counterparts, because they see the same en-
vironment. This means that they achieve perfect correlations at the Same test:
A2

X=0 = B2
X=0 = C2

X=0. Finally, from the structure of the graph, A1C2 and A2C2 also
see the same environment and share the same statistics, so

A1
X=0C2

X=0 are perfectly correlated. (1.5)

The contradiction between (1.4) and (1.5) ends our demonstration. In [CRWR21a]
we explain how all the ingredients of this proof can be made quantitative to ob-
tain the trade-off described by Eq. (1.3).

Proof of violation. The quantum violation is achieved using |GHZ〉: On inputs
corresponding to the Same game (X Y Z=020), all players measure in the recti-
linear basis. On input Z=1, Charlie measures his state in the Hadamard basis and
obtains marginal 〈C1〉= 0; when he obtains C1=1 (corresponding to a measure-
ment result |+〉C), the state of Alice and Bob is steered towards the maximally
entangled state |φ+〉AB and they can play the Bell game using the standard opti-
mal strategy for CHSH.

Note that the maximal algebraic violation is achieved by the nonsignalling dis-
tribution Ax :=(−1)r0⊕r1·x , By :=(−1)r0⊕x ·y , Cz:=(−1)rz , where r0 and r1 are uni-
formly random bits, and ⊕ denotes addition modulo 2.

Generalization.— In [CRWR21a], we show how these ideas can be used to prove
a similar result for the |W〉 := |001〉+ |010〉+ |100〉/

p
3 state.
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Proposition 4 (W). Appropriate measurements on the |W〉 quantum state lead to
genuinely LOSR-tripartite-nonlocal correlations.

We also explain how to generalize our work to scenarios with arbitrary num-
ber of parties, in which |GHZ〉 straightforwardly generalizes to an N -partite state
|GHZN 〉. Indeed, our definition 2 can be generalized to the multipartite case [CRWR21a],
introducing the concept of genuine LOSR multipartite nonlocality for which we
have:

Proposition 5 (GHZN ). For any N, genuinely LOSR N-multipartite nonlocal cor-
relations can be obtained through appropriate measurements on the quantum state
|GHZN 〉.

Discussion.— We have proven that the correlations of |GHZ〉 can only be ob-
tained using genuinely LOSR-tripartite-nonlocal resources. Our work implies,
under the (reasonable) hypothesis that quantum mechanics’ predictions for lo-
cal measurements over |GHZ〉 are exact, that Nature cannot be merely bipartite.
In [CRWR21a], our generalization implies that it cannot even be N -partite for
any fixed N .

In our introduction, we intentionally kept the concept of combining any exotic
GPT bipartite resources, together with tripartite shared randomness, vague. Let
us now clarify it, based on the nonfanout-inflation technique [WSF19, Sec. 5.4],
which is used in our proof (see also other related frameworks [HLP14; Chi14;
CDP11; GBC+20; BG21; BR21; Pir21]). It relies on two postulates. First, we ad-
mit the possibility of device replication: Any device distributing local resources,
or locally operating resources, can be duplicated in independent copies, and one
can reorder these replicated devices to form a new setup. Second, we admit
causality. It implies that any two identical subsets of the initial or new setups
must have the same behaviour (more than a consequence of causality, this can
be seen as an operational definition of what is causality). Moreover, for any fixed
value of the shared randomness, any marginal correlation of two disjoint subsets
of a setup must factorize. With inflation, these two postulates provide the defini-
tion of theory-agnostic correlations in networks, which are all correlations P which
do not lead, in any inflated scenario, to any contradiction. See Ref. [CRWR21a]
for the formalized definition.

Let us conclude this letter with experimental considerations. In [CRWR21a],
we relax our experimentally unrealistic constraint 〈C1〉 = 0 for inequality (1.3)
to a generalized inequality valid for all C1. Moreover, remark that for a mix-
ture of the |GHZ3〉 state with white noise, of fidelity f , our inequality is vio-
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lated for f ≳ 93%. In [CRWR21a], we propose an algorithm based on inflation
able to witnesses infeasibility down to f ≳ 85%. This shows that an experi-
mental proof that Nature is not merely bipartite is accessible to current tech-
nologies [HSH+14]. The experimental feasibility for larger N values is an open
question [ZHW+15; ZBH+19].

1.4 Experiments

Genuinely tripartite nonlocality (as proposed theoretically in the previous sec-
tion) has been experimentally demonstrated by three independent teams ([CRZ+22;
MLYF22; HGJ+22]) by making measurements on the |GHZ〉 state.

In Appendix B, we make a similar claim about the quantum state |W〉 (it also
exhibits genuinely tripartite nonlocality). At the time of this writing, it has not
been experimentally tested.

In Appendix B, we also prove the stronger claim that “Nature is boundlessly mul-
tipartite nonlocal” by extending the thought experiment on |GHZ〉 to the gener-
alized quantum states |GHZ〉N . This has also been partially verified by the experi-
ments in [CRZ+22] and [MLYF22], which confirm that |GHZ〉4 exhibits genuinely
4-partite nonlocality.
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Chapter 2

Security

This chapter is self-contained.

Key agreement and oblivious transfer from free-energy
limitations ([CRW22])

Abstract. We propose one of the very few constructive consequences of the sec-
ond law of thermodynamics. More specifically, we present protocols for secret-
key establishment and multiparty computation the security of which is based
fundamentally on Landauer’s principle. The latter states that the erasure cost
of each bit of information is at least kBT ln2 (where kB is Boltzmann’s constant
and T is the absolute temperature of the environment). Albeit impractical, our
protocols explore the limits of reversible computation, and the only assumption
about the adversary is her inability to access a quantity of free energy that is
exponential in the one of the honest participants. Our results generalize to the
quantum realm.

2.1 Introduction

2.1.1 Motivation

In the past decades, several attempts were made to achieve cryptographic secu-
rity from physical properties of communication channels: Most prominently, of
course, quantum cryptography [BB84; Eke91]; other systems made use of noise in

25
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communication channels [Wyn75] or bounds on the memory space accessible by
an adversary [Mau92]. These schemes have in common that no limit is assumed
on the opponent’s computational power: They are information-theoretically se-
cure.

Our schemes for achieving confidentiality (key agreement or, more precisely, key
expansion) as well as secure coöperation (multiparty computation, i.e., oblivious
transfer) rely solely on a bound on the accessible free energy1 of an adversary.
More specifically, we propose schemes the security of which follows from Lan-
dauer’s principle, which is a quantification of the second law of thermodynamics:
In a closed system, “entropy” does not decrease (roughly speaking).

Landauer’s principle states that the erasure of information unavoidably costs free
energy, the amount of which is proportional to the length of the string to be
erased. On the “positive” side, the converse of the principle states that the all-0
string of length N has a free-energy value proportional to N . More precisely, the
erasure cost and work value are both quantified by kBT ln 2 ·N , where kB is Boltz-
mann’s constant (in some sense the nexus between the micro- and macroscopic
realms), and T is the absolute temperature of the environmental heat bath.

Our result can be seen as one episode in a series of results suggesting information-
theoretic security to be, in principle, achievable under the assumption that at
least one in a list of physical theories, such as quantum mechanics or special rel-
ativity, is accurate: We add to this list the second law of thermodynamics — to
which not much glamour has been attached before.

2.1.2 Contributions

We base the “free-energy-bounded model” of information-theoretic cryptogra-
phy upon the observation that the second law of thermodynamics has a crypto-
graphically useful corollary: “Copying information has a fundamental cost in free
energy.” Bounding the free energy of an adversary forces them into picking parsi-
moniously what to copy, and that can be exploited in a reversible-computing con-
text to ensure information-theoretic security. Our secret-key establishment pro-
tocol demonstrates how bounds in free energy can lead to cryptographic mecha-
nisms similar to the ones used in quantum-key distribution and in the bounded-
storage model, while our oblivious-transfer protocol exemplifies the novelty of
our model.

1Free energy is “free” in the sense that it can be used to do work — it is not “entrapped” in a
system.
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This is an overview of our article: In Section 2.2, we review the subjects of
information-theoretic cryptography and of reversible computing. In Section 2.3,
we introduce, based on reversible computing, a novel model of computation and
interaction that captures the consumption and the production of free energy in
Turing machines. In Section 2.4, we establish some prerequisites: we prove a
version of Landauer’s principle in our framework, and construct a game that is
basically equivalent to a thermodynamical “almost-no-cloning theorem,” which
we later use in our security proofs. In Sections 2.5 and 2.6, we offer protocols
for secret-key establishment and oblivious transfer, respectively; their information-
theoretical security is based fundamentally on Landauer’s principle. It is assured
against adversaries whose bound in free energy is exponential compared to the
one of the honest players. While the present work focuses on classical infor-
mation, we sketch in Section 2.7 how all our results generalize in presence of
quantum adversaries.

2.2 State of the Art

2.2.1 Information-theoretic cryptography from physical assump-
tions

In parallel to the development of computationally secure cryptography — and
somewhat in its shadow —, attempts were made to obtain in a provable fashion
stronger, information-theoretic security, based not on the hardness of obtaining
the (uniquely determined) message in question, but on the sheer lack of infor-
mation. Hereby, the need for somehow “circumventing” Shannon’s pessimistic
theorem of perfect secrecy is met by some sort of physical limitation. The latter
can come in the form of simple noise in a communication channel, a limitation
on accessible memory, the uncertainty principle of quantum theory, or the non-
signalling postulate of special relativity.

The first system of the kind, radically improving on the perfectly secret yet im-
practical one-time pad, has been Aaron Wyner’s wiretap channel [Wyn75]: Here,
information-theoretic secret-key establishment becomes possible — under the as-
sumption, however, that the legitimate parties already start with an advantage,
more specifically, that the adversary only has access to a non-trivially degraded
version of the recipient’s pieces of information. A broadcast scenario was pro-
posed by Csiszár and Körner [CK78] — where, again, an initial advantage in
terms of information proximity or information quality was required by the legit-
imate partners versus the opponent. A breakthrough was marked by the work
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of Maurer [Mau93], who showed that the need for such an initial advantage on
the information level can be replaced by interactivity of communication: Mau-
rer, in addition, conceptually simplified and generalized the model by separating
the noisily correlated data generation from public yet authenticated communi-
cation, the latter being considered to be for free. The model shares its commu-
nication setting with both public-key as well as quantum cryptography. Maurer
and Wolf [MW96] have shown that in the case of independent-channel access to
a binary source, key agreement is in fact possible in principle in all non-trivial
cases, i.e., even when Eve starts with a massive initial advantage in information
quality.

In the same model, it has also been shown that multiparty computation becomes
possible, namely bit commitment and (the universal primitive of) oblivious trans-
fer [CK88; Cré97]. More generally, oblivious transfer has also been achieved
from unfair noisy channels, where the error behaviour is prone to be influenced
in one way or another by the involved, distrusting parties willing to coöperate.

The public-randomizer model by Maurer [Mau92] has generally been recognized
as the birth of the idea of “memory-bounded models,” based on the fact that the
memory an opponent or cheater (depending on the context) can access is lim-
ited. Specifically, Maurer assumes the wire-tapper can obtain a certain fraction
of the physical bits. This was generalized to arbitrary types of information by
Dziembowski and Maurer [DM02]. Analogously, also oblivious transfer has been
shown achievable with a memory-bounded receiver [CCM98; DHRS04]. The
main limitation to the memory-bounded model, for both secret-key establish-
ment and multiparty computation, is that the memory advantage of the honest
participants over the adversaries is at most quadratic [DM04].

The idea to use quantum physics for cryptographic ends dates back to Wiesner,
who, for instance, proposed to use the uncertainty principle to realize unforge-
able banknotes. His “conjugate coding” [Wie83] resembles oblivious transfer;
the latter — even bit commitment, actually — we know now to be unachievable
from quantum physics only [May97; LC98]. A breakthrough has been the now
famous “BB84” protocol for key agreement by communication through a channel
allowing for transmitting quantum bits, such as an optic fibre, plus a public yet
authenticated classical channel [BB84].

A combination of the ideas described is the “bounded quantum-storage model”
[DFSS08]: Whereas no quantum memory is needed at all for the honest players,
a successful adversary can be shown to need more than n/2 of the communicated
quantum bits. The framework has been unified and generalized to the “noisy”
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model by König, Wehner, and Wullschleger [KWW12].

Very influential has been a proof-of-principle result by Barrett, Hardy, and
Kent [BHK05]: The security in key agreement that stems from witnessing quan-
tum correlations can be established regardless of the validity of quantum the-
ory, only from the postulate of special relativity that there is no superluminal
signalling. The authors combined Ekert’s [Eke91] idea to obtain secrecy from
proximity to a pure state, guaranteed by close-to-maximal violation of a “Bell in-
equality,” with the role this same “nonlocality” plays in the argument that the
outcomes of quantum measurements are, in fact, random and not predeter-
mined: In the end, reasoning results that are totally independent of the com-
pleteness of quantum theory. Later, efficient realizations of the paradigm were
presented [HRW; MPA11]. Conceptually, an interesting resulting statement is
that information-theoretic key agreement is possible if either quantum mechanics
OR relativity theory are complete and accurate “descriptions of nature.” Another
point of interest is that trust in the manufacturer is not even required: “device
independence” [VV14].

Kent also demonstrated that bit commitment can be information-theoretically
secure thanks to special relativity alone [Ken99]. On the other hand, oblivi-
ous transfer cannot be information-theoretically secure even when combining
(without further assumptions) the laws of quantum mechanics and special rela-
tivity [Col07].

Now — the free-energy-bounded model:

We add to this list the novel free-energy-bounded model. Unlike the assumptions in
memory-bounded models, thermodynamics does not in principle prohibit free-
energy-bounded players from computing on memories of exponential size (in
some security parameter), but it does prohibit those players from erasing a signif-
icant portion of such memories. If the players only have access to memories in
initial states of maximal entropy, as is assumed in equilibrium in thermodynamics,
the erasing restriction becomes a copying restriction (because one cannot copy
without a blank memory to write the copy onto) and opens the way to a novel
foundation of physics-based information-theoretic security that is different from
the bounded-storage model.2

2In particular, the free-energy-bounded model offers fresh mechanisms, coming from re-
versible computing, to build information-theoretic protocols (e.g., our oblivious-transfer pro-
tocol). Another important difference is that in our protocols, the advantage of honesty in free-
energy consumption is exponential in the security parameter, while in the bounded-storage model
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2.2.2 Reversible computing

The cost of computation.

Security in cryptography relies on a cost discrepancy between honest and ma-
licious actors. While fundamental thermodynamical limits to the cost of com-
putation have been well-studied (for example, see [FDOR15] for a quantum-
informational analysis and [BW19] for an algorithmic-information-theoretical
analysis), they have never before3 been considered as a means for cryptography
— we address that.

The second law of thermodynamics.

The modern view of the second law of thermodynamics is due to Ludwig Boltz-
mann, who defined the entropy of a macrostate — roughly speaking, the natural
logarithm of the number of microstates in the macrostate in question — and
stated that the entropy of a closed system does not decrease with time. The
second law has constantly been subject to discourse, confusion, and dispute; its
most serious challenge was “Maxwell’s demon” who apparently violates the law
by adaptive acts, i.e., by a sorting procedure. Charles Bennett [Ben87] explained
that Maxwell’s paradox actually disappears when the demon’s internal state (its
“brain”) is taken into consideration. More specifically, the erasure of the stored
information requires free energy that is then dissipated as heat to the environ-
ment. This is Landauer’s principle [Lan61]; it did not only help to resolve the
confusion around Maxwell’s demon, but turned out to be an important manifes-
tation of the second law with respect to information processing in its own right:
Erasure of information — or, more generally, any logically irreversible comput-
ing step, has a thermodynamic cost. Logical irreversibility (information is lost)
implies thermodynamic irreversibility (free energy is “burnt” to heat up the envi-
ronment).

Landauer’s principle.

Erasing n random bits requires to transform at least n · kBT ln2 J/K of free
energy into heat, which is dissipated into the environment.

(which is not based on reversible computing but arguably more practical), it is polynomial.
3Let us mention the (questionable) conjecture in [HS03] that the heat-flow equation of ther-

modynamics is a computational one-way function.
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Energy-neutral (thermodynamically reversible) computation.

Landauer’s principle serves as a strong motivation to ask for the possibility whether
computing can always be (made) reversible, i.e., forced to not “forget” along the
way any information about the past (previous computation). More specifically,
can every Turing-computable function also be computed by a reversible Turing
machine (the latter was introduced in [? ]; see Chapter 5 of [? ] for a more
modern account)? In the early 1970s, Charles Bennett answered this question to
the affirmative; the running time is also at most doubled, essentially — a very
encouraging result [Ben73]: The imperative reversibility of microphysics can, at
least in principle, be carried over to macrocomputing. Bennett’s idea was that
the reversible Turing machine would allocate part of its tape to maintain a history
of its computation. While the latter needs to be gotten rid of in order to have
the whole be “sustainable,” that cannot be done by “crude” erasure of that his-
tory — all won would be lost again. It can, however, be done by un-computing:
After copying the output, the reversible Turing machine reverts step by step the
original computation, undoing its history tape in a “controlled” and reversible
way until the output is computed back to the input. An idea similar to Bennett’s
elegant trick also works for circuits: Any irreversible circuit can be transformed
into a reversible one, computing the same function, and having essentially only
double depth.

All in all, this means that logical reversibility — which Landauer tells us to be a
necessary condition for thermodynamic reversibility — can be achieved; remains
the question whether it is also a sufficient condition for energy-neutral computa-
tion. The answer is yes, as exemplified by Fredkin and Toffoli [FT82] and their
Gedankenexperiment of a “ballistic computer” which carries out its computations
through elastic collisions between balls and balls, and balls and walls.

In the end, we get an optimistic picture for the future of computing: Any com-
putable function can be computed also without the transformation of free energy
into heating of the environment. (Clearly, a “loan” of free energy is necessary
to start the computation, but no law of physics prevents its complete retrieval,
alongside the result of the computation, when the latter concludes.)

Reversible computing.

Any logically reversible computation can be done at zero free-energy cost
by a reversible Turing machine.
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Reversible computing is at the core of our model.4

The energy value of redundancy.

The converse of Landauer’s principle states that all physical representations of the
all-0 string have work value. More generally, all redundant (i.e., compressible
in a lossless fashion) strings have work value, which is essentially their length
minus their best compression [Ben82]. A bound in free energy is therefore a
bound on the redundancy of information; a principle we use in this work to
construct cryptographic protocols.

Figure 2.1. Given the existence of thermodynamical heat baths, there is a
fundamental equivalence between free energy and redundancy (i.e., the absence
of randomness).

The converse of Landauer’s principle.

It is possible to extract an amount n · kBT ln 2 of free energy from an envi-
ronment by randomizing n blank bits.

In the light of Landauer’s principle and of its converse, the all-0 string can be
used as a proxy for free-energy (see Fig. 2.1). This allows us to abstract the
thermodynamics completely from the model we present in Section 2.3, which is
then formulated purely in terms of (logically reversible) Turing machines.

4Reversible computing is of paramount importance in the context of Moore’s and Koomey’s
laws about the future of computation, because their continuation is threatened by physical walls
and the most important one comes from thermodynamics (and not quantum mechanics). Re-
versible computing can in principle solve the problem completely by enabling computation with-
out dissipation of heat.
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2.3 Turing Machines with Polynomial Free-Energy Con-
straints

In the following, we have this classical5 setting in mind: Alice, Bob, and Eve
have their own secure labs, where they can store and manipulate exponentially
long (in some security parameter ν) bit strings. Those strings start in uniformly
random6 states; we can think of them as the information about the specific mi-
crostate that describes the position and momentum of an exponential number of
particles floating in their labs. We assume that technology is advanced enough to
consider these exponentially long bit strings as static (even if the system starts in
a random state, it does not get re-randomized at every time step), either because
their evolution is tractable (it evolves according to the logically reversible laws
of physics) or because the players can act on them quickly enough that it does
not matter. The physical restriction on the honest and malicious players concerns
their available free energy: For some security parameter ν, malicious players are
bounded exponentially (more precisely, by 2ν), while honest players need only
an asymptotically O (ν) amount. These bounds are constraining because any
computation that is not logically reversible has a free-energy cost; a malicious
agent cannot for example erase a 2 · 2ν-long segment of random information —
by Landauer’s principle, doing so would cost a quantity of free energy exceeding
their free-energy bound. We formalize this computation model in Section 2.3.1.

Communicationwise, the players are allowed to broadcast O (ν)-length bit strings
in the traditional sense using a public authenticated channel, or to transfer O (2ν)-
long bit strings through a private-but-insecure7 SWAP channel, This channel,
which swaps two bit strings at no energy cost, can also be substituted by an
insecure physical channel. Both views are informationally equivalent, and are
defined in Section 2.3.2.

In particular, our model differs from the bounded-storage model — both the
players and the adversary have more power.

2.3.1 Computation model

The fundamental laws of physics are logically reversible. We hence base our
formal notion of player (or adversary) on reversible Turing machines.

5The classical setting is used for all sections but Section 2.7, which approaches the quantum
generalization.

6This randomness is motivated by the equipartition assumption of classical thermodynamics.
7By “insecure,” we mean here that it is vulnerable to Eve-in-the-middle attacks.
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Definition 6 (TTM). A thermodynamical Turing machine (TTM) is a logically
reversible, deterministic, universal, prefix-free Turing machine with the following
semi-infinite tapes:

1 An input-only instruction tape.

2 An initially blank computation tape that must be returned blank when the
machine halts.

3 An initially random memory tape.

4 An initially blank free-energy tape.

The free-energy tape of a TTM imitates a “reservoir” of free energy:

Definition 7 (consumption). The free-energy input win is quantified8, when the
machine halts, by the distance, on the initially blank free-energy tape, between the
extremity and the last cell with a 1 (after this cell, the tape contains only 0s).

For example, if a machine always manages to return the free-energy tape as
blank as it was — it uses no free energy and computes both logically and ther-
modynamically reversibly; if a machine writes, and leaves, some information on
the first n cells of the initially blank free-energy tape, we say it consumes an
amount win = n of free-energy. (In this work we have set kBT ln2 := 1.)

Our security proofs will rely on a concept we name proof-of-work.

Definition 8 (production). We say a TTM produces a proof-of-work of value wout

if it halts with a number wout of 0s at the beginning of its (initially random) memory
tape.

We consider agents (TTMs) with bounds, in the security parameter ν, on the
free-energy input.

Definition 9 (BFE). An f (ν)-BFE agent — an agent who is bounded in free energy
by the function f (ν), where ν is a security parameter — is modelled by a TTM that
can only consume a quantity f (ν) of free energy.

In other words, every time a f (ν)-BFE agent reaches a halting state, the non-
blank portion of its free-energy tape ends at a distance at most f (ν) from the
extremity, by definition.

In our protocols, the honest players are asymptotically O (ν)-BFE, while the ad-
versary is assumed exactly 2ν-BFE. An important limitation of f (ν)-BFE agents

8More precisely, it is bounded from below.
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is given by the following theorem, to which the security of our protocols will be
reduced.

Theorem 10. For all k > 0, an f (ν)-BFE player cannot produce an f (ν) + k
proof-of-work, except with probability 2−k.

The theorem is a consequence of the logical-reversibility characteristic imposed
by the second law of thermodynamics. The proof is done in Section 2.4.2, based
on Definitions 6 and 9 (i.e., with no further references to thermodynamics).

2.3.2 Communication and reversible transfer

Our cryptographic model can be formalized further by integrating BFE parties
into a multi-round interactive protocol that uses reversible computing. Let us,
however, focus on how Alice and Bob can exchange information. There are of
two distinct resources:

• Standard communication for messages of length O (ν).

• Reversible transfer for longer messages, up to length O (2ν).

Standard communication.

We consider that Alice and Bob have access to a public authenticated commu-
nication channel in the traditional sense: Alice broadcasts a message (making,
therefore, inevitably many copies of its information content) and Bob receives it.
Because Alice and Bob are O (ν)-BFE, this information-duplicating channel can
only be used for messages of length O (ν).

Reversible transfer.

To send states of length more than O (ν), Alice and Bob have to resort to reversible
computing. Reversible transfer differs from standard communication in the sense
that, in order to implement the process at no free energy cost, the sender must
forget the information content of the message they send. (They could, of course,
preëmptively make a partial copy of that information, but copying is not free and
is thus limited by the free energy assumption.) There are two different physical
ways to picture such reversible transfer.

The first way is to implement, over a given distance, a reversible SWAP: In
essence, this operation simply swaps two bit strings of equal length in a logically
and thermodynamically reversible way — Alice gets Bob’s string and Bob gets
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Alice’s string. Since we are only interested in the string that Alice (the sender)
sends, Bob (the receiver) can input junk in exchange. The SWAP allows O (ν)-
BFE players to transfer between themselves O (2ν) bits of information (without
copying them).

The second way to implement reversible communication is to simply consider
that Alice is sending the whole physical system encoding her string (e.g., she
puts a canister of gas with entropy 2ν on a frictionless cart and pushes it toward
Bob). For the cart as for the SWAP channel, since the information is never copied,
it can be transferred from Alice to Bob at no thermodynamical cost. This is not
dissimilar to how it is in practice cheaper to send hard drives directly by mail
rather than to send their content through a cable.

These two pictures (the SWAP channel and the physical channel) are from an
information point of view equivalent — we adopt the SWAP channel for this
work.

2.4 Technical Preliminaries

We introduce some notation and introduce some of the techniques used later in
the security proof of our main protocols.

2.4.1 Smooth min-entropy

Most of our formal propositions rely on the variational distance.

Definition 11. The variational distance between two random variables X and Y is
defined as

δ(X , Y ) :=
1
2

∑

i∈X∪Y

|p(X = i)− p(Y = i)| . (2.1)

It is operationally very useful because it characterizes the impossibility to distinguish
between X and Y — using any physical experiment whatsoever. More precisely, given
either X or Y with probability 1/2, the optimal probability to correctly guess which
one it is is (1+δ(X , Y ))/2.

Definition 12. The conditional min-entropy H∞(X |Y ) is defined as

H∞(X |Y ) := − log
∑

y

P(Y = y)max
x

P(X = x |Y = y) . (2.2)

It is the optimal probability of correctly guessing X given side information Y .
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Smoothing entropies [RW04; RW05] is done to ignore events that are typically
unlikely. We will typically use smoothing with a parameter ε = negl(ν). We
denote by negl(ν) the functions that are negligible in ν, meaning asymptotically
bounded from above by the inverse of every function that is polynomial in ν.

Definition 13. The smooth conditional min-entropy Hε
∞(X |Y ) is defined as

Hε
∞(X |Y ) := max

ω∈Ω s.t. P(ω)≥1−ε
min

y
min

x
(− log P(X = x |Y = y,ω)) , (2.3)

where Ω is the set of all events.

Smooth conditional min-entropy is used mainly for privacy amplification.

2.4.2 Proof of Theorem 10

We define and prove formally a version of Landauer’s principle (Theorem 10),
which is the claim in Section 2.3 that BFE players modelled as thermodynamical
Turing machines cannot produce more free energy than they consume, except
with exponentially vanishing probability. The theorem follows from the logical
reversibility of a TTM — the existence of a thermodynamically free logically irre-
versible physical process would be a violation of the second law of thermodynam-
ics. We introduce some algorithmic-information-theory notation along the way;
a more exhaustive introduction is the excellent book by Li and Vitányi [LV+08].

Theorem 14 (technical). Given infinite tapes {x , y}, a f (ν)-BFE TTM Up(x , y)
cannot produce a f (ν) + k proof-of-work, except with probability 2−k.

{p, x , y} are, respectively, the representation of the instruction, memory, and
(blank) free-energy tapes, at the beginning of the computation.

We start with the simpler case of assuming that all of these tapes are finite (but
arbitrarily long), and then generalize our analysis to the infinite case.

The finite case.

Let Up(x , y) be a thermodynamical Turing machine as described in Definition 6:
universal, prefix-free, deterministic and logically reversible. The program p is
taken from the read-only instruction tape (which can be taken long but finite);
the (initially random) memory tape starts in x ∈R {0,1}len(x), with len(x) taken
arbitrary but finite; the free-energy tape starts with blank content y = 0len(y),
where len(y) is also finite.



38 2.4 Technical Preliminaries

The logical-reversibility condition means Up(x , y) = Up(x ′, y ′) if and only if
(x , y) = (x ′, y ′).

We use a counting argument. We consider the set S of all couples (x , y) of lengths
fixed. There are #S = 2len(x) of them and they are all equally probable. We then
consider the subset

S(win, wout) :=

¨

x , y s.t. Up(x , y) = x̃ , ỹ with

¨

x̃ = 0wout || ∗
ỹ = ∗ ||0len(y)−win

«

, (2.4)

where ∗ is an arbitrary padding string of appropriate length, and || denotes a
concatenation. Intuitively, win bounds the free-energy input and is the minimum
number of bits that get randomized on the initially blank free-energy tape y;
wout bounds the free-energy output and is the maximum number of erased bits
on the initially random memory tape x . (Those erased bits constitute the proof-
of-work.)

Lemma 15.

#S(win, wout)≤ 2len(x)−wout+win . (2.5)

Proof. Because of logical reversibility, the input-couples (x , y) ∈ S are at most9

as numerous as the output-couples ( x̃ , ỹ) s.t.

¨

x̃ = 0wout || ∗
ỹ = ∗ ||0len(y)−win

. We count the

maximum number of such output-couples by summing the lengths of all “∗ posi-
tions”; there are at most 2(len(x)−wout)+win of them.

The probability of drawing at random such a couple (x , y) is therefore

P(x , y ∈ S(win, wout))≤ #S(win, wout)/#S = 2win−wout . (2.6)

Proposition 16. Given finite len(x) and len(y), a f (ν)-BFE TTM Up(x , y) (there-
fore with free-energy input win = f (ν)) is limited in its production of free energy
wout by

∀k > 0, P (wout > win + k)≤ 2−k . (2.7)

9“At most” because not all programs halt and some output-couples might not be in the image
of Up.



39 2.4 Technical Preliminaries

The infinite case.

We now reduce the infinite case to the finite case that we just analyzed.

We take again a TTM. Let us consider x ∈R {0, 1}∞, where each bit is perfectly
random. Let us also set y = 0∞. Since p is fixed, it is enough to again consider
it finite. The prefix-free condition implies that the behaviour of Up(x , y) is well
defined even on infinite tapes because its programs10 are self-delimited.

Definition 17. Let

ΩUp
:=
∑

effective(x) s.t. Up(x ,y) halts

2−len(effective(x)) (2.8)

be the halting probability of Up (i.e, Chaitin’s constant [Cha75]), where the sum
is over all self-delimited programs effective(x) ∈ {0, 1}∗ 11.

We also define its partial sum.

Definition 18.

ΩUp
(n) :=

∑

effective(x) s.t. Up(x ,y) halts and len(effective(x))≤n

2−len(effective(x)). (2.9)

Note first that since ΩUp
(n) is a monotonically increasing function that converges

to ΩUp
, it holds that

∀ε > 0,∃N ′ s.t. ΩUp
−ΩUp

(N ′)< ε . (2.10)

Definition 19. Let BBUp
(n) be the time-busy-beaver function, which returns the

maximum running time that a halting program effective(x) of length ≤ n can take
before halting.

Observe that it implies that, for all halting programs of length ≤ n, the infinite
part of each tape that comes after the (BBUp

(n))th bit is never read or modified
by the TTM (moving there is by definition too long).

Proposition 20. A TTM with infinite tapes (x , y) behaves with arbitrarily high
probability exactly as if these infinite tapes were (extremely long but) finite:
∀ε > 0, ∃N such that

P
�

Up(x , y) =
�

Up(x[≤N], y[≤N]) || (x[>N], y[>N])
��

≥ 1− ε , (2.11)

where the subset notation is used to split x = x[≤N] || x[>N] and y = y[≤N] || y[>N].

10“Program” is taken here in the general sense and includes arguments p and x .
11We assume p to be fixed; by “program” we mean the random input x .
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Proof. Taking Eq. 2.10 with N := BBUp
(N ′), with the consideration about busy

beaver above (any machine that halts affects only a finite amount of tape).

Finally, Theorem 14 is obtained by combining Proposition 16 and Proposition 20,
with ε→ 0:

∀k > 0, P (wout > f (ν) + k)≤ 2−k , (2.12)

where wout is the value of the proof-of-work.

2.4.3 The exhaustive and sampled memory games

We detail here in a game format a reduction that we later use in our security
proofs. Our memory games involve an adversary against a verifier. The adver-
sary sends, using a reversible channel SWAP, an exponentially long string to the
verifier, but is also asked to try to keep a copy of it; the verifier then interrogates
the adversary about either all of that string (in the exhaustive variant), or about a
random linear-size subset of it (in the sampled variant); we show that the adver-
sary has limited advantage in guessing as compared to a trivial strategy, unless
they made an accurate copy of the whole string of exponential length — a process
that requires, in light of Landauer’s principle, an exponential amount of either
luck or free energy. We formalize this intuition, starting with the non-sampled
version of the game.

Definition 21. The exhaustive
�k·2ν

k·2ν
�

memory game is defined as follows for security
parameters ν and k:

1 The adversary isolates (by taking it from the environment of their lab for ex-
ample) a system X ∈ X = {0, 1}k·2ν . All the rest of their available information
is modelled as E.

2 The adversary (modelled as a TTM) makes some computation on the systems
X , E.

3 Through a noiseless reversible channel (e.g., SWAP), the adversary sends X to
the verifier.

4 The verifier provides the adversary a blank tape of length k · 2ν, and asks the
adversary to correctly print on it all of X .

Proposition 22. For any 2ν-BFE adversary, the advantage at the exhaustive
�k·2ν

k·2ν
�

memory game, compared to a trivial coin-flip strategy, is bounded by

H∞(X |E)≥ (k− 1)2ν . (2.13)
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Proof. We reduce a violation of Theorem 1 (i.e., Landauer’s principle) to a large
advantage at the exhaustive

�k·2ν
k·2ν
�

memory game. During the game, instead of
sending X to the verifier, the adversary deviates and XORs onto X their best guess
for X given side information E. If the adversary guesses correctly, it turns X into
an all-0 string. This proof-of-work of length k · 2ν violates Theorem 1 if it is
created with probability higher than 2−(k−1)2ν; therefore, it does not.

The constraint also holds if the adversary is quizzed only on a random subset of
positions.

Definition 23. The sampled
�k·2ν

t

�

memory game is defined as follows for free-
energy bound 2ν, security parameter k, and sample size t:

1 The adversary isolates (by taking it from the environment of their lab for ex-
ample) a system X ∈ X = {0,1}k·2ν . All the rest of their available information
is modelled as E.

2 The adversary (modelled as a TTM) makes some computation on the systems
X , E.

3 Through a noiseless reversible channel (e.g., SWAP), the adversary sends X to
the verifier.

4 The verifier chooses at random t sample positions⊂X and sends a description
of these positions to the adversary, who must correctly guess X[sample].

Theorem 24. For any 2ν-BFE adversary, the advantage at the sampled
�k·2ν

t

�

mem-
ory game, compared to a trivial coin-flip strategy, is bounded, for all δ > 0, by

Hnegl(t)
∞ (X[sample]|E)≥

t · (k− 1)
k

− t ·δ . (2.14)

Proof. Lemma 6.2 in [Vad04] states that, under random sampling, the min-entropy
per bit is with high probability approximately conserved. In our case, this implies
that, for all δ > 0,

H2−Ω(tδ
2 log2 δ)+2−Ω(k2νδ)

∞ (X[sample]|E)≥
t

k · 2ν
H∞(X |E)− t ·δ , (2.15)

given which Theorem 24 follows from Proposition 22.

2.4.4 Universal hashing

Universal hashing is useful for both privacy amplification and authentication.
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Definition 25 (2-universal hashing [CW79; WC81]). LetH be a set of hash func-
tions from {0,1}n → {0,1}m. H is 2-universal if, given any distinct elements
x1, x2 ∈ {0,1}n and any (not necessarily distinct) elements y1, y2 ∈ {0, 1}m, then

#{h ∈H |y1=h(x1)∧ y2=h(x2)}= #H /22m . (2.16)

Lemma 26 (Leftover hash lemma [BBR88; ILL89; HILL93; BBCM95]). Let h :
S ⊗X → {0,1}m be a 2-universal hash function. If H∞(X )≥ m+ 2ε, then

δ
�

(h(S, X ), S), U ⊗ S
�

≤ 2−ε . (2.17)

S is a short uniformly random seed and X is the variable whose randomness is to
be amplified. U is the uniform distribution of appropriate dimension. The symbol
⊗ is used to represent the joint probability of independent distributions.

2.5 Secret-Key Establishment

Secret-key establishment (SKE) is a fundamental primitive for two-way secure
communication because it allows for a perfectly secure one-time-pad encryption
between Alice and Bob about which Eve knows nothing (otherwise the protocol
aborts).

2.5.1 Definitions (SKE)

Definition 27. A secret-key-establishment scheme is sound if, at the end the proto-
col, Alice and Bob possess the same key with overwhelming probability in the security
parameter η:

P(KA ̸= KB)≤ negl(η) . (2.18)

Definition 28. A secret-key-establishment scheme is information-theoretically se-
cure (i.e., almost perfectly secret) if the key KB is uniformly random even given all
of the adversary’s side information E, except with probability at most negligible in
the security parameter ν:

δ
�

(KB, E), U ⊗ E
�

≤ negl(ν) . (2.19)

In what follows, the variables (A, B) ∈ (A ,B) are strings from registers of length
roughly O (ν logν), while (X , Y ) ∈ (X ,Y ) denote strings from registers of length
O (2ν).
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2.5.2 Protocol (SKE)

Theorem 29. The following secret-key-establishment protocol is information-
theoretically sound and secure against any eavesdropper whose free energy is bounded
by 2ν. Alice and Bob need a quantity of free energy that is asymptotically O (ν).

Soundness is analyzed in Section 2.5.3, and security in Section 2.5.4.

Secret-key-establishment protocol:

1 Alice starts a with X ∈ X = {0, 1}k·2ν in a uniformly random state (ex-
tracted from the equidistributed environment of her lab). She draws
uniformly at random a subset ⊂ {1, . . . , k · 2ν} of s + t positions rawkey
and copies (rawkey, X[rawkey])→ A to her memory.

2 Alice sends X → Y to Bob using a reversible channel (e.g., a SWAP
channel); it is possibly intercepted by Eve.

3 Bob announces the receipt to Alice on an authenticated public channel.
In case of no receipt, they abort.

4 Alice publishes the subset positions rawkey on the (noiseless) authenti-
cated public channel so that Bob can select Y[rawkey]→ B. Alice and Bob
draw a test sub-subset of t bits that they sacrifice to estimate the error
rate perror between A and B.

5 If the estimated perror is too large, they abort. Otherwise, Alice and Bob
apply information reconciliation (detailed in Section 2.5.3) on the re-
maining s bits A[test] and B[test].

6 Alice and Bob apply privacy amplification (detailed in Section 2.5.4) and
obtain a shared secret key of length ≈ ((k− 1)/k− hb(perror)) · s.
aThe main parameters are

- ν, from the 2ν bound in free energy of Eve;
- k, which determines the tolerated error rate between Alice and Bob;
- t, the number of test bits to estimate the above error rate;
- s, the length of the raw key (before processing).

hb(p) := −p log2 p− (1− p) log2(1− p) is the binary entropy.

Note that for any fixed perror (as long as it is not trivially 1/2), Alice and Bob
can choose a security parameter k for which the protocol will be secure for that
value of perror. That is unlike, for example, the BB84 quantum-key-distribution
protocol, which only tolerates error rates less than 1/4 (any more and Eve can
intercept the whole quantum state).
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The intuition.

Because she is 2ν-bounded in free energy, Eve cannot copy to her memory the
whole k · 2ν-long string Y that she sends to Bob, on which Bob will later base
the raw key. Alice circumvents this limitation by already knowing the raw-key
positions at the moment she sends X (X becomes, after Eve’s potential tampering,
Y ) and thus need not store more than an asymptotically O (ν)-long segment of
the k ·2ν-long string. As in quantum key distribution, Eve can force the protocol
to abort.

2.5.3 Soundness analysis (SKE)

Parameter estimation.

We first estimate (using upper bounds) between Alice and Bob the global error
rate perror and the non-tested rawkey error rate ptest

error. The former quantity is im-
portant for the privacy amplification analyzed in Section 2.5.4, while the second
is needed to analyze information reconciliation.

Proposition 30. Alice and Bob can accurately estimate the error rate perror by sam-
pling on the t test positions the error rate ptest

error:

P
�

perror ≤ ptest
error + ε
�

≥ 1− e−2ε2 t . (2.20)

Proof. ptest
error is computed from the Hamming weight ω(A[test] ⊕ B[test]) = t(1 −

ptest
error). Chernoff’s inequality bounds perror.

Proposition 31. Alice and Bob can accurately estimate ptest
error from ptest

error:

P
�

ptest
error ≤ ptest

error +
s · ε
s+ t

�

≥ 1− e−2ε2 t . (2.21)

Proof. We insert perror = (s·ptest
error+t ·ptest

error)/(s+t) in Eq. 2.20 and isolate ptest
error.

Information reconciliation (error correction).

Once they have a good estimate of ptest
error, Alice and Bob achieve information rec-

onciliation by applying error correction on that unused subset test of s bits.

Note that it is important that the established key be based on Bob’s string, rather
than on Alice’s, because the reasoning (see the security analysis in Section 2.5.4)
using the sampled memory game only directly bounds from above the mutual
information between Bob and Eve, not the one between Alice and Eve.
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Proposition 32. For any non-trivial constant ptest
error ̸= 1/2, Alice and Bob can trans-

form the samples A[test], B[test] into the (non-necessarily secret) keys K ′A, K ′B for which

P
�

K ′A = K ′B
�

≥ 1− negl(η) . (2.22)

They can do so with w≈ hb(ptest
error) ·s (the exact value is given below) bits of authen-

ticated public communication.

We present one standard construction to correct an arbitrary error rate on the s
bits of rawkey that were not used during the parameter-estimation phase.

Asymptotically optimal protocol for information reconciliation [BS93]:

Let w := ⌈s · hb(ptest
error +δ

′) +η⌉;

1 Bob picks at random a hash function h : {0,1}s → {0,1}w from a 2-universal
familyH and computes h(B[test]).

2 Bob communicates h and h(B[test]) to Alice, using the authenticated public
channel.

3 Alice computes Ã[test] := argmin
x∈{0,1}len(s)

�

ω(x , A[test])|h(x)=h(B[test])
�

.

Here, ω(·, ·) is the Hamming distance; δ′ determines efficiency and η is the se-
curity parameter.

Proof. We first count, in the uniform distribution, the smooth number of strings
with length s that contains approximately ptest

error: Let M := {x ∈ {0,1}s | ptest
error −

δ′ ≤ ptest
error(x)≤ ptest

error +δ
′}; from the asymptotic equipartition property, we have

∀δ′ > 0,
P
�

#M ≤ 2s·hb(ptest
error+δ

′)
�

≥ 1− 2−Θ(η) . (2.23)

BecauseH is 2-universal, the probability of obtaining a correct hash from a non-
correct candidate in M is bounded by 2−w. By the union bound, the protocol is
therefore sound except with probability at most 2−w ·#M , which is negl(η).

While the above ideal information reconciliation protocol is optimal, it offers
no (known) efficient way (in the computational complexity sense) for Alice to
decode Bob’s codeword. While we are in this work only concerned with ther-
modynamic (rather than computational) efficiency, we refer to [BS93], or to the
theory of Shannon-optimal efficient algebraic codes, such as convoluted codes,
for asymptotically ideal information-reconciliation protocols that are also com-
putationally efficient.
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2.5.4 Security analysis (SKE)

If the protocol does not abort, Eve has negligible information about the key KB

at the end. This security resides on the fact that even if Eve intercepts X (which
was sent from Alice to Bob) and replaces it with Y , she cannot keep roughly more
than a fraction 1/k of the information about Y . Thus, since the key is based on
Y , Eve has limited knowledge about it.

Formally, this can be analyzed with the sampled
�k·2ν

s

�

memory game in Sec-
tion 2.4.3. Theorem 24 thereat guarantees a good starting point — Eve (who is
2ν-BFE) must have limited information about Bob’s raw key of length s:

∀δ > 0, Hnegl(ν)+negl(s)
∞ (Y[test]|E, rawkey, test) = s ·

k− 1
k
− s ·δ . (2.24)

The next step is to go from low information to essentially no information.

Privacy amplification.

Privacy amplification turns a long string about which the adversary has poten-
tially some knowledge into a shorter one about which the adversary has essen-
tially none.

In secret-key establishment, Eve’s partial information can come from eavesdrop-
ping (and as shown, this quantity is roughly a fraction 1/k) or from the public
information leaked by the information reconciliation protocol, which is easily
characterized.

Privacy amplification can be realized in an information-theoretically secure man-
ner with 2-universal hashing (see Section 2.4.4).

Proposition 33. After privacy amplification, KB is approximately of length≈ ((k−
1)/k− hb(perror)) · s, and Eve has essentially no knowledge about it.

Proof. Let w quantify the number of bits about B[test] exchanged publicly dur-
ing the information-reconciliation (IR) protocol. We note that H∞(KB|EpreIR) ≤
H∞(KB|EpostIR)−w, hence

∀δ > 0, Hnegl(ν)+negl(s)
∞ (KB|EpostIR) = s ·

k− 1
k
− s ·δ−w . (2.25)

Therefore, taking m := s · k−1
k − s · δ − w− ε guarantees after hashing (ε is the

security parameter for the Leftover hash lemma; see Section 2.4.4) information-
theoretic security on those remaining m bits.
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Note that for any fixed perror, the parameters s and k can be selected as to make
m a positive quantity when the protocol does not abort (as a result of too many
errors). Also note that the parameters ν and s must not be too small.
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2.6 1-out-of-2 Oblivious Transfer

Oblivious transfer (OT) is a cryptographic primitive that is universal for two-
party computation [Rab81; Kil88]. It comes in many flavours, but they are all
equivalent [Cré87]. We concern ourselves with 1-out-of-2 OT (or 1–2 OT). Infor-
mally: Alice sends two envelopes to Bob; Bob can open one to read the message
in it, but he cannot open both; Alice cannot know which message Bob read. To
have simple formal security definitions, we, however, concern ourselves with a
variant of 1–2 OT where the choices are made uniformly at random by Alice and
Bob.

2.6.1 Definitions (OT)

Definition 34. A 1–2 OT protocol is perfectly sound if, when Alice and Bob are
honest, the message B(i) received by Bob is with certainty the message mi sent by
Alice, for a uniform choice of i ∈R {0, 1}:

P (B(i) = mi) = 1 . (2.26)

Definition 35. A 1–2 OT protocol is information-theoretically secure-for-Alice if
Bob cannot learn something non-negligible about both of Alice’s messages simulta-
neously: For any 2ν-BFE Bob, ∃ random variable j ∈ {0,1} such that

δ
�

(m j, EB), (U ⊗ EB)
�

≤ negl(η) . (2.27)

EB denotes all of (a potentially malicious) Bob’s side information. And similarly
for EA in regards to Alice.

Definition 36. A 1–2 OT protocol is information-theoretically secure-for-Bob if
Alice cannot learn anything non-negligible about Bob’s random choice i ∈r {0,1}:
For any 2ν-BFE Alice,

δ
�

(i, EA), U ⊗ EA

�

≤ negl(η) . (2.28)

An OT protocol is information-theoretically secure when it is information-
theoretically secure for both Alice and Bob.
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2.6.2 Protocol (OT)

Theorem 37. The following 1–2 OT protocol is perfectly sound and information-
theoretically secure against 2ν-BFE adversaries. The free-energy requirement of the
honest players is asymptotically O (ν).

The perfect soundness is straightforward. Security is analyzed in Section 2.6.3.

1–2 oblivious-transfer protocol:

(The variable η is a security parameter.)
1 Alice chooses random messages m0 and m1 of length n.
2 Alice starts with the exponentially long bit strings X (0), X (1) ∈ X =
{0,1}4·2ν in uniformly random states. She picks a random subset ⊂
{1, . . . , 4 · 2ν} of n + η positions raw and stores (raw, X (0)[raw], X (1)[raw]) in
her memory.

3 Alice sends (X (0), X (1)) to Bob using the reversible channel SWAP.
4 Bob chooses i ∈R {0,1} and computes reversibly (X (0), X (1)) →
(X (i), X (0⊕1)), where we define X (0⊕1) := X (0) ⊕ X (1). Then, Bob keeps
X (i) and sends back X (0⊕1) reversibly to Alice using SWAP.

5 Alice receives X̃ (0⊕1) and checks whether X̃ (0⊕1)
[raw]=X (0⊕1)

[raw] . If they differ,
Alice aborts.

6 Alice chooses at random a 2-universal hash function h : {0, 1}n+η →
{0, 1}n and communicates h, raw, m0 ⊕ h(X (0)[raw]), m1 ⊕ h(X (1)[raw]) to Bob.

7 Bob computes the hash h(X (i)[raw]) and recovers mi.

The intuition.

In addition to the previously exploited impossibility to copy exponential quantities
of information without using corresponding quantities of free energy or violating
Landauer’s principle, the oblivious-transfer protocol makes use of another key
feature of reversible computing: As long as Bob is in possession of X (0⊕1) := X (0)⊕
X (1), the maximally random variables X (0) and X (1) have conditionally exactly
the same information content; but once X (0⊕1) is returned to Alice, X (0) and X (1)

revert to being uncorrelated. In other words, although sending X (0⊕1) back to
Alice forces Bob to forget information about the couple X (0), X (1) (enabling 1-
out-of-2 transfer), it does not uniquely specify which information he forgot (Alice
remains oblivious).
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2.6.3 Security analysis (OT)

Security for Bob.

From Alice’s point of view, Bob’s behaviour (i.e., sending X (0⊕1) back to Alice)
is identical whether he chooses message i=0 or message i=1; the scheme is
therefore perfectly secure for Bob.

Security for Alice.

We prove that a malicious Bob cannot learn anything non-negligible about a sec-
ond message as soon as he learns something non-negligible about a first message.

Proof. We pose without a loss of generality that ω is the event corresponding to
“Bob learns something non-negligible about m0.” Because he is 2ν-bounded in
free energy, a malicious Bob’s success at the sampled

�4·2ν
n+η

�

memory game (on
state X̃ (0⊕1) and sample raw) is bounded by Theorem 24:

∀δ > 0, Hnegl(ν)+negl(η)
∞ (X̃ (0⊕1)

[raw] |EB,ω)≥ (n+η)/2− (n+η) ·δ . (2.29)

By subadditivity, we have

Hnegl(ν)+negl(η)
∞ (X̃ (0⊕1)

[raw] |EB,ω) (2.30)

≤ Hnegl(ν)+negl(η)
∞ (X (0)[raw], X (1)[raw]|EB,ω) (2.31)

≤ Hnegl(ν)+negl(η)
∞ (X (0)[raw]|EB,ω) +Hnegl(ν)+negl(η)

∞ (X (1)[raw]|EB,ω) . (2.32)

We apply the Leftover hash lemma (Lemma 26) with ε := η/12−3n/8. The two
privacy-amplification steps succeed (except by the union bound with probability
negl(ν) + negl(η)) if, respectively,

Hnegl(ν)+negl(η)
∞ (X (0)[raw]|EB,ω)≥ n/4+η/6 , (2.33)

Hnegl(ν)+negl(η)
∞ (X (1)[raw]|EB,ω)≥ n/4+η/6 . (2.34)

We assume by contradiction that they are both unsuccessful with non-negligible
probability. It implies

Hnegl(ν)+negl(η)
∞ (X̃ (0⊕1)

[raw] |EB,ω)< n/2+η/3 , (2.35)

which contradicts Eq. 2.29 for small δ ≤ η/(6(n+η)).
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2.7 From classical adversaries to quantum adversaries

Up to here, the notion of information that has been used — in the protocols for
secret-key establishment and oblivious transfer, as well as in their analyses — is
purely classical. But as scrutinised by thorough experiments (notably, the exten-
sive serie of Bell experiments [FC72; ADR82; HBD+15; GVW+15; SMSC+15]),
nature is quantum-physical. The aim of this section is to bring our work one
step closer to the quantum realm. Namely, we investigate whether our (classi-
cal12) protocols are secure against quantum adversaries. We find that our SKE
protocol (Section 2.5.2) is secure against a quantum Eve as it is. On the other
hand, to retain security against a malicious quantum Alice, our OT protocol (Sec-
tion 2.6.2) has to be slightly updated — the patched protocol presented below
in Section 2.7.4 is quantum-safe but remains classical for honest players. Our
work’s conclusion, therefore, fully extends to the quantum world of Maxwell
demons (given arbitrarily large but random environments): It is — on paper
— information-theoretically cryptographically friendly.

2.7.1 The setting made quantum

Our model described in Section 2.3 is based on Alice, Bob, and Eve being classical
computers with thermodynamical restrictions (we call them Thermodynamical
Turing Machines) interacting through classical channels (a standard authenti-
cated channel and a SWAP channel).

In a quantum setting, Alice, Bob, and Eve are upgraded to universal quantum
computers [Deu85] and their communication channels can carry states in quan-
tum superposition. A quantum computer cannot compute more than a classical
computer could (given exponential computational time, a classical computer can
simulate a quantum computer). Quantum computing cannot either be used to
evade Landauer’s principle [FDOR15]. As such, once all elements are properly
defined, a quantum version of our Theorem 10 holds.

Proposition 38 (Thm. 10 in the quantum realm (sketch)). For all k > 0, a player
modelled by a quantum computer with a bound f (ν) in free energy cannot erase
more than f (ν) + k initially completely mixed qubits, except with probability 2−k.

The ability to send and receive quantum states does enable new possibilities for
both honest and malicious agents — we investigate next how this affects the

12All classical operations can be viewed as quantum operations restricted to diagonal density
matrices.
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security of our previous SKE and OT protocols.

2.7.2 The quantum exhaustive and sampled memory games

We extend the proof method developed in Section 2.4.3 to the quantum world.

First, the bound on the success of an adversary at the exhaustive
�k·2ν

k·2ν
�

memory
game (Proposition 22) is unaffected by the transition from classical to quantum
information.

Proposition 39 (Prop. 22 with quantum side-information). For any quantum
adversary with a bound 2ν in free energy, the advantage at the exhaustive

�k·2ν
k·2ν
�

memory game, compared to a trivial coin-flip strategy, is bounded by

H∞(X |E)≥ (k− 1)2ν . (2.36)

Proof. X is here still classical, but E represents side information that is possi-
bly quantum. Since the operational meaning of conditional min-entropy is the
same whether the side information is quantum or not [KRS09], the argument
presented in Section 2.4.3 is unchanged.

The next step is to sample from X (Theorem 24).

Proposition 40 (Thm. 24 with quantum side-information). For any quantum ad-
versary with a bound 2ν in free energy, the advantage at the sampled

�k·2ν
t

�

memory
game, compared to a trivial coin-flip strategy, is bounded, for all δ > 0, by

Hnegl(t)
∞ (X[sample]|E)≥

t · (k− 1)
k

− t ·δ . (2.37)

Proof. The result by Vadhan [Vad04] that we used in the classical case has been
generalized in presence of quantum side information by König and Renner in [KR11].
Apart from the exact parameter values hidden behind negl(t), our proof is,
hence, unchanged by the addition of quantum side information.

2.7.3 The classical SKE protocol is already quantum-resistant

The information-theoretical security of the SKE protocol from Section 2.5 de-
pends uniquely on the one of privacy amplification and on Theorem 24.
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Since in presence of quantum side information, universal-2 hashing (Lemma 26)
remains a universally composably secure way of achieving privacy amplifica-
tion [RK05; TSSR11], and that, as we just argued, so is the case of Theorem 24,
the SKE scheme presented in Section 2.5.2 is secure against quantum adversaries.

Fundamentally different from standard quantum key distribution, the result is
nevertheless an information-theoretically secure key distribution scheme for a
quantum world in which entropy is exponentially cheaper than free energy.

2.7.4 A quantum-resistance patch for the OT protocol

Given that the above SKE protocol is quantum-resistant, and that the same ar-
gument applies to the security-for-Alice part of our oblivious-transfer protocol,
it would be natural for our previously detailed scheme to be also quantum-
resistant. But it is not: The security-for-Bob, which is trivial in the classical case
(because x+ y = y+x , see Fig. 2.2), can be broken by a malicious quantum Alice.
The reason is that if Alice acts maliciously and sends the superposed quantum
states X (0) = H |x〉 and Y (0) = |y〉 to Bob (for some random x and y), she can

discriminate between the state sent back by Bob when he does H |x〉
CNOT
−→ |y〉 (to

keep X (0)) compared to when he does |y〉
CNOT
−→ H |x〉 (to keep Y (0)). This attack

is illustrated in Fig. 2.3.

Figure 2.2. If Bob receives a classical state, the top state, x + y, that he will
return to Alice during the OT protocol will be the same no matter whether he
chooses to decrypt the first (left) or second message (right).

But there is a simple patch for this attack, or, in fact, for all quantum attacks by
a malicious Alice. Alice’s extra power comes from the fact she can send states
in superposition, but Bob can in return preëmptively “classicize” the possibly
quantum states X (0) and X (1) by CNOT-ing each bit to a different bit of the totally
mixed environmentsπ0 andπ1. Given control of a large enough environment (of
dimension 2len(X (0))+len(X (1))), Bob can do so at no free energy cost. The resulting
state, when traced over that environment, is then undistinguishable from a (pos-
sibly noisy) state sent by a malicious-but-classical Alice. Even if misbehaviour
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Figure 2.3. A malicious Alice can send to Bob one of the quantum states in the
Hadamard basis. In that case, the upper state sent back to Alice by an honest
Bob will be |+〉 or |−〉 if he wants to keep the first message, but half of one of
the four Bell states {

�

�βx y

�

}x y if he wants to keep the second message. Since
Alice can distinguish between those two cases, the OT scheme is not secure for
Bob. Below, we explain how Bob can prevent this quantum attack.

from Alice’s part might affect the protocol’s correctness (which is allowed for a
malicious Alice), it leaves the perfect security intact: a quantum Alice can still
not gain any information about Bob’s choice.

Quantum-safe 1–2 oblivious-transfer protocol

Steps 1–3 and 5–7 are the same as in the previous classical protocol. Step 4
is changed to
4’. Bob chooses i ∈ {0,1} and computes reversibly

(X (0), X (1),π0,π1)→ (X (i), X (0⊕1),π0 ⊕ X (1),π1 ⊕ X (2)) ,

where π0 and π1 are completely mixed states of appropriate size taken
from Bob’s environment, and where we define X (0⊕1) := X (0) ⊕ X (1).
Then, Bob keeps everything but X (0⊕1), which he sends back (thermody-
namically reversibly) to Alice using SWAP.

The above step reduces the security for Bob in the quantum case to the one of
the classical case. The updated protocol does not require the honest players to
make any quantum operations per se.

2.8 Concluding remarks

We propose a free-energy-bounded model of cryptography, in which we have de-
rived information-theoretically secure protocols for secret-key establishment and
oblivious transfer.
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Even if the rationale behind its security is totally different: Our secret-key-establishment
protocol is similar to standard quantum key distribution. Our oblivious-transfer
protocol, on the other hand, is novel in itself: The mechanism that allows Alice
to check that Bob honestly forgets information is proper to reversible computing.

Our schemes are not practical at this point: Current technology is still far from
computing with memories that are large enough for Landauer’s principle to be-
come the main obstacle (it is worth noting that Boltzmann’s constant, which we
have in this work conveniently set to kB := 1/T, is in fact ≈ 1.38 · 10−23JK−1);
and whereas no laws of physics forbid it, implementing reversible computation
on such states is for now science fiction. Our result is rather to be seen as part
of the quest of distinguishing what physical phenomena allow for realizing cryp-
tographic functionalities in principle, and which do not. In this spirit, our pro-
tocols add another element to the longer and longer list of physical laws from
which cryptographic security can directly be derived: We can now claim that
information-theoretic key agreement is theoretically possible as soon as one of
the fundamental limits conjectured by either quantum theory or special relativity
or the second law of thermodynamics is correct. Concerning the novel appear-
ance of a thermodynamic law in this list, we remark first that according to Albert
Einstein, thermodynamics is the only physical theory that will survive future de-
velopment in Physics. Second, the second law is rather pessimistic in nature, and
to see it being linked to a constructive application is refreshing. We are, in fact,
not aware of many uses, besides our protocols, of the law. In summary, we can
say, somewhat ironically: One small step for cryptography — one giant leap for the
second law.
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Epilogue

Bell’s theorem is a profound result. Similarly to how Gödel’s incompleteness
theorem affected the field of mathematics and ended the programme of making
mathematics mechanistic, the violation of Bell inequalities revealed13 the empti-
ness of the reductionist programme of explaining physics, and by extension, all of
science, through hidden variables. It launched the quest towards new informa-
tion models, highlighting the importance of scientific creativity. It is fascinating
that we pose and solve problems today, whose sense, not so long ago, was com-
pletely obfuscated, or simply did not even exist.

Yet, after almost 90 years of progress, quantum nonlocality is still frequently
misunderstood. From the outset, even the name itself stems from a misconcep-
tion — nonlocality can arise from local–realist processes, as explained by the
parallel-lives model ([BRR13]). With irony, we could blame the second law of
thermodynamics: when scientific knowledge piles up, without purposeful inter-
vention, it grows more chaotic. In today’s academia, this work, of simplification,
of capturing of the essence, of tracing out the superfluous and the contingent,
is undervalued. It is in that context my honour to have worked with Claude
Crépeau on the RGB no-signalling game — to have contributed in illustrating
quantum nonlocality in a pedagogical way. The analysis in the prologue is equiv-
alent in its conclusion to Bell’s theorem and to Tsirelson’s bound. I believe the
game should be taught alongside the CHSH game, in most introductory classes
to quantum computing.

One lesson from the violation of Bell inequalities (such as exhibited in the RGB
game) is that it is hard to make predictions about future scientific theories. Physi-
cists of the early-19th century could only see local hidden variables (ironically),
they missed the richness of quantum information. Will we find, one day, correla-
tions that are even more “nonlocal” than quantum entanglement? What will the

13Although I know some would disagree.
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successor of quantum mechanics look like? The first question is an unfalsifiable
statement; and the second calls for a prophecy. Yet formidably, we can tangi-
bly approach the spirit of such interrogations, with post-Gödelian answers such
as “If maximally nonlocal bipartite correlations were to exist, they would make
communication complexity trivial ([VD13])”, or, in our case, the experimental-
metaphysics conclusion “If the predictions of quantum mechanics are correct (but
possibly incomplete), there are no bounds to the multipartite character of nonlo-
cality — any future causal theory needs to include N -partite nonlocal resources,
for any N (Chapter 1).”

An interesting research direction, to close the “Correlations” part of this thesis,
is to compare the concept of genuinely multipartite entanglement (GME) and
the one of genuinely multipartite nonlocality (GMNL). Are all pure GME states
GMNL? (It would be a counterpart to Gisin’s theorem.) Can we find a GME mixed
state that is not GMNL? (Some entangled mixed states do not violate any Bell
inequalities.)

In Chapter 2, I approached cryptography. One central (anti-)dogma in cryptog-
raphy, or in security in general, is that a system can never be simply said to be
secure. It is always secure in regard to some model of adversary. The quest for
unconditional security seems ill founded; even the one-time pad, which is the
perfect encryption method, is insecure against Prof. X as he can read one’s mind
(Prof. Xavier is a fictional character in the X-Men franchise).

This has not prevented the fruitful growth of the field of information-theoretic
cryptography, it merely oriented it towards finding the minimal sets of assump-
tions guaranteeing security. The strongest links in such sets are arguably the
ones based on fundamental laws of physics, because their violation would imply
a total re-imagination of our physical world. As such, quantum cryptography,
and, more recently, device-independent cryptography and relativistic cryptogra-
phy, offer strong promises of concrete security, even in a post-quantum world
where quantum technologies are ubiquitous.

But the study of cryptography as a discipline of physics goes beyond the making
of commercial cryptographic devices — the cryptography developed in Chapter 2
is certainly technologically unthinkable today — it has more as endeavour the
goal of unveiling the “principles of cryptography.” One of those principles is that
cryptography thrives in the presence of constraints: Cryptography is impossible
under conditions of available-to-all, perfect information. A celebrated example is
quantum cryptography, born from the impossibility of cloning unknown quantum
states. Chapter 2 is a new illustration of the intimate link between the abstract
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notion of security and the physical notion of information, and also it offers a no-
cloning theorem, or rather an effective “almost-no-cloning” theorem, from which
the pessimism of the second law of thermodynamics can be, in principle, over-
thrown. A little sarcastically, we could call the concept introduced in Chapter 2
pre-heat-death cryptography.

In the inverse direction (in quantum mechanics, information always flows in
both ways, because of phase kickback), studying the security of physics-based
models is interesting for it turns cryptography into a lens for physics. Since de-
tails matter in cryptography — one modification can make or break a scheme —
cryptography offers an angle to contrast the details and implications of different
physical assumptions. I hope that by taking Maxwell’s demon seriously (going
as far as to propose cryptography built from it), I contributed in expanding the
universe of “Thermodemonics” and its promises of extending thermodynamics
beyond equilibrium.

Interestingly, my oblivious-transfer protocol (Section 2.6) is secure through the
use of a 1-out-of-2 proof of erasure based on Landauer’s principle. Proofs of era-
sure in quantum mechanics ([CRW19]) cannot be done in that 1-out-of-2 way.
The reason is that while the (large but classical) variables {X , Y, X⊕Y } are simul-
taneously all well defined in a thermodynamical model, the quantum information
{X , Z , X Z} is not, because of Heisenberg’s uncertainty principle (but not because
of quantum no-cloning, they are in this case two distinct concepts). There is also
a nuance regarding Landauer’s erasure principle that was left open in the cryp-
tographic analysis of Chapter 2: What would be the implications of the existence
of a hypothetical device that can store N bits but out of which only 1 bit can be
retrieved, and whose erasure cost is kBT ln 2?

At last, this thesis analyzed different facets of information — in Chapter 1 its
quantum-mechanical nature, and in Chapter 2 its thermodynamical nature — as
well as their links with cryptography. This analysis featured different frameworks
and it would be interesting to unify their core concepts under a common abstract
framework such as constructor theory. A constructor theory of cryptography.
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Appendix A

The RGB no-signalling game ([CRC19],
full version)

The following is the complete retranscription of my work ([CRC19]) with Claude
Crépeau.

Abstract. Introducing the simplest of all No-Signalling Games: the RGB Game
where two verifiers interrogate two provers, Alice and Bob, far enough from each
other that communication between them is too slow to be possible. Each prover
may be independently queried one of three possible colours: Red, Green or Blue.
Let a be the colour announced to Alice and b be announced to Bob. To win the
game they must reply colours x (resp. y) such that a ̸= x ̸= y ̸= b.

This work focuses on this new game mainly as a pedagogical tool for its simplicity
but also because it triggered us to introduce a new set of definitions for reduc-
tions among multi-party probability distributions and related non-locality classes.
We show that a particular winning strategy for the RGB Game is equivalent to
the PR-Box of Popescu-Rohrlich and thus No-Signalling. Moreover, we use this
example to define No-Signalling in a new useful way, as the intersection of two
natural classes of multi-party probability distributions called one-way signalling.
We exhibit a quantum strategy able to beat the classical local maximum winning
probability of 8/9 shifting it up to 11/12. Optimality of this quantum strategy is
demonstrated using the standard tool of semidefinite programming.
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A.1 The Game

Claude started this research trying to find the simplest example he could think
of to illustrate multi-party distributions achievable via entanglement and No-
Signalling in general. His interest started from the following question on Quora:
“Could someone explain quantum entanglement to me like I’m 5 years old?” Jon
Hudson [Hud18], a former Stanford QM student, had given an answer involving
friends choosing to have pizza (or not) on the Moon and on Earth but he did not
quite come up with a crisp No-Signalling situation. Claude cooked up the RGB
example after reading Jon’s answer.

The canonical examples in this area are the Magic Square Game [Mer90; Per90]
and the so-called PR-box [PR94] of Popescu-Rohrlich, both of which require some
basic notions of arithmetics to be introduced, or at least some basic logic as a
common background. The purpose now is to present an example so simple that
even a five year old would understand it!

The RGB game is as follows:

“ Two people, Alice and Bob, play a game with friends Albert and
Boris. Alice and Albert are on the moon, while Bob and Boris stay on
earth. Albert and Boris each independently picks at random a colour
out of three possibilities: Red, Green or Blue, and locally tells it to
Alice or Bob.

Right away Alice and Bob choose a colour different from the one
provided by their local counterpart. For instance, if Albert tells Green
to Alice, she may choose Red or Blue, while if Boris tells Red to Bob,
he may choose Blue or Green.

Alice and Bob win the game if they never answer the same colour,
either Red-Blue, Red-Green or Blue-Green in the example above. ”

Figure 1 summarizes the input/output relation that Alice and Bob must satisfy.
a is the colour given to Alice and b is the colour given to Bob. Their answers are
x and y respectively. The condition they are trying to achieve is simply a ̸= x ̸=
y ̸= b.

a //
RGB

boo

x //oo y

Figure A.1. The RGB-box such that a ̸= x ̸= y ̸= b
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Such boxes are a standard way of representing the possible behaviours of Al-
ice and Bob. Indeed we can think of this box as a channel precisely describing
the distribution of x , y given fixed values of a, b. The box of Figure 1 does not
specify the probabilities exactly and thus the name of the box is in calligraphic
letters representing the set of all the distributions that satisfy the given condi-
tions. There are many distinct ways of fulfilling the conditions of the game and
many distributions that will win the game 100% of the time.

A.1.1 Winning Strategies

Let’s first consider a deterministic strategy for Alice and Bob’s behaviour as de-
scribed by the box of Figure A.2.

a //
RGB0

boo

x := a+ 1 //oo y :=

¨

a if b = a− 1

a− 1 if b ̸= a− 1

Figure A.2. A deterministic RGB0-box

In this example we assume the colours are labelled 0,1 or 2 and that arithmetic
operations are performed modulo 3. When a and b are the same colour u it
produces

a = u, x = u+ 1, y = u− 1, b = u.

The values u+ 1 and u− 1 are the other two colours, distinct from u. However,
when a and b are the distinct colours u, v it produces either

a = u, x = u+ 1, y = u, b = v

when the third colour is u+ 1= v − 1 or

a = u, x = u+ 1, y = u− 1, b = v

when the third colour is u− 1= v + 1.

This deterministic strategy defines completely the probability distribution of the
outputs x , y given a, b: Pr(x , y|a, b) is zero except when x = a + 1 and y =
¨

a if b = a− 1

a− 1 if b ̸= a− 1
in which case it is precisely one. Therefore we name this

box RGB0 with bold characters because it precisely defines a unique probability
distribution Px ,y|a,b. This box achieves the prescribed condition a ̸= x ̸= y ̸= b
in a unique deterministic way for each a, b.
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After complete examination of this condition one realizes that when a = b is a
single colour u the conditions can be satisfied in exactly two ways

a = u, x = u± 1, y = u∓ 1, b = u

whereas when a and b are distinct colours u, v the conditions can be satisfied in
exactly three ways

a = u, x = v, y = u, b = v

a = u, x = u± 1, y = v ± 1, b = v.

From this we conclude that out of the 9 possible a, b pairs, three of them (a = b)
may have two solutions and six of them (a ̸= b) may have three solutions. This
yields a total of 2336 = 183 = 5832 distinct deterministic winning strategies. The
above RGB0 strategy is only one of these.

We can completely parametrize all the winning strategies as a function of 15
real parameters p0, p1, p2, p01, p02, p10, p12, p20, p21, q01, q02, q10, q12, q20, q21 in the
interval [0,1] such that puv + quv ≤ 1 as follows

Pu+1,u−1|u,u = pu and Pu−1,u+1|u,u = 1− pu, for u ∈ {0,1, 2} (A.1)

Pw,u|u,v = puv, Pv,w|u,v = quv and Pv,u|u,v = 1− puv − quv, for {u, v, w}= {0,1, 2}.
(A.2)

All the winning strategies to this game are among these probability distributions.
They are all the valid convex combinations of the 5832 distinct deterministic
winning strategies.

The deterministic strategy RGB0 of Figure A.2 is the special case

p0 = p1 = p2 = p02 = p20 = q01 = q10 = q12 = q21 = 1

p01 = p10 = p12 = p21 = q02 = q20 = 0.

The rest of this paper is going to focus on exactly one of these strategies with a
very remarkable property: it does not require Alice and Bob to signal to implement
it (whereas all the others actually do). This strategy is going to be named RGR

BGB1

and is specified by the parameters

p0 = p1 = p2 = p01 = p10 = p02 = p20 = p12 = p21 =

q01 = q10 = q02 = q20 = q12 = q21 =
1
2

.
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a //
RGR

BGB
boo

x //oo y

Figure A.3. The RGR
BGB-box such that a ̸= x ̸= y ̸= b, and (x , y) ̸= (b, a),

uniformly among solutions

In Figure 3, RGR
BGB is made precise by enforcing extra conditions on top of a ̸= x ̸=

y ̸= b. We force Pv,u|u,v = 0 by adding (x , y) ̸= (b, a). Uniformity finally imposes
that all the remaining non-zero probabilities be exactly 1

2 .

a //
PR

boo

x //oo y

Figure A.4. The PR-box satisfying the CHSH condition, that a ∧ b = x ⊕ y,
uniformly among solutions

A.1.2 Our Results

The contributions of the paper are

1 Novel notion of reducibility among strategies

2 Novel definitions of basic notions such as locality, signalling, one-way sig-
nalling and no-signalling

3 A proof that our notion of no-signalling is equivalent to the generally accepted
one

4 A proof of equivalence between RGR
BGB and the well-known Popescu-Rohrlich

Non-Local (yet No-Signalling) PR-box (see Figure 4). This Implies that RGR
BGB

is also complete for the set of No-Signalling (two-party) distributions

5 A proof that RGR
BGB is the ONLY No-Signalling distribution winning the RGB

game

6 A deterministic (and local) strategy with winning probability 8/9

7 A proof of optimality of this local strategy

8 Quantum strategy with winning probability 11/12

1The name is a reminder that this strategy has the feature that whenever a and b are distinct,
ax y b is abcb or acab (c being the third colour) but never abab. RGR

BGB is a combined string of
types abcb, acab.
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9 A proof of optimality of this quantum strategy using semidefinite programming

10 Some related open problems

A.2 Definitions

In this section we solely focus on the two-party single-round games and strate-
gies that are sufficient to discuss and analyze the strategies for the RGB game.
Definitions and proofs for complete generalizations to multi-party multi-round
games and strategies will appear in a forthcoming paper with co-authors Adel
Magra and Nan Yang.

A.2.1 Strategies: Two-Party Channels

Games:

Let V be a predicate on A×B×X ×Y (for some finite sets A, B, X , and Y ) and let
π be a probability distribution on A× B. Then V and π define a (single-round)
game G as follows: A pair of questions (a, b) is randomly chosen according to
distribution π, and a ∈ A is sent to Alice and b ∈ B is sent to Bob. Alice must
respond with an answer x ∈ X and Bob with an answer y ∈ Y . Alice and Bob
win if V evaluates to 1 on (a, b, x , y) and lose otherwise.

Strategies:

A strategy for Alice and Bob is simply a probability distribution P(x ,y|a,b) describing
exactly how they will answer (x , y) on every pair of questions (a, b). We now
breakdown the set of all possible strategies for Alice and Bob according to their
degree of non-locality.

Deterministic and Local Strategies:

A strategy P(x ,y|a,b) is deterministic if there exists functions fA : A→ X , fB : B→ Y
such that

P(x ,y|a,b) =

¨

1 if x = fA(a) and y = fB(b)

0 otherwise
.

A deterministic strategy corresponds to the situation where Alice and Bob agree
on their individual actions before any knowledge of the values a, b is provided
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to them. In this case they use only their own input to determine their individual
output.

A strategy P(x ,y|a,b) is local if there exists a finite set R, functions fA : A× R →
X , fB : B × R→ Y and a probability distribution πr , r ∈ R, such that

P(x ,y|a,b) =
∑

r∈R:x= fA(a,r) and y= fB(b,r)

πr .

A local strategy corresponds to the situation where Alice and Bob agree on a
deterministic strategy selected uniformly among |R| such possibilities. The choice
r of Alice and Bob’s strategy, and the choice of inputs (a, b) provided to Alice and
Bob are generally agreed to be statistically independent random variables.

A.2.2 Local Reducibility

We now turn to the notion of locally reducing a strategy to another, that is how
Alice and Bob limited to local strategies but equipped with a particular (not nec-
essarily local) strategy U ′ are able to achieve another particular (not necessarily
local) strategy U . For this purpose we introduce a notion of distance between
strategies in order to analyze strategies that are approaching each other asymp-
totically.

Several distances could be selected here as long as their meaning as it approaches
zero are the same. In the definitions below, U , U ′ are strategies andU ′ is a finite
set of strategies.

Definition 41. |U , U ′|=
∑

a,b,x ,y |PU(x , y|a, b)− PU ′(x , y|a, b)|.

Definition 42. |U ,U ′|= min
U ′∈U ′

|U , U ′|.

For natural integer n, we define the set LOCn(U) of strategies that are local ex-
tensions (of order n) of U to be all the strategies Alice and Bob can achieve using
local strategies where strategy U may be used up to n times as sub-routine calls2.

Definition 43. We say that U ′ Locally Reduces to U (U ′ ≤LOC U) iff lim
n→∞
|U ′, LOCn(U)|=

0.

Definition 44. We say that U ′ is Locally Equivalent to U (U ′ =LOC U) iff U ′ ≤LOC U
and U ≤LOC U ′.

2Done by selecting functions f 0
A : A× R→ A, f 1

A : A× X × R→ A, ..., f n−1
A : A× X n−1 × R→ A,

f n
A : A×X n×R→ X to determine the input of each sub-routine from input a and previous outputs.
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Note: a similar notion of reducibility has been previously defined by Dupuis,
Gisin, Hasidim, Méthot, and Pilpel [DGH+07] but without taking the limit to
infinity. In their model they have previously showed that n instances of the PR-
box modulo p cannot be used to replicate exactly the PR-box modulo q, for any
distinct primes p, q. However, Forster and Wolf [FW11] have previously proved
that PR is complete for No-Signalling distributions under a similar (asymptotic)
definition.

A.2.3 Locality and Non-Locality

We now define the lowest of the non-locality classes LOC. We could define it
directly from the notion of local strategies as defined above, but for analogy with
the other classes we later define, LOC is defined as all those strategies locally
reducible to a complete strategy we call ID (see Figure A.5) for obvious reasons.
Of course, any strategy is complete for this class.

a //
ID

boo

a //oo b

Figure A.5. The ID-box

Definition 45. LOC= {U |U ≤LOC ID}.

Note: LOC is the class of strategies that John Bell [Bel64] considered as classical
hidden-variable theories and that he opposed to entanglement. It is also the class
of strategies that BenOr, Goldwasser, Kilian and Wigderson [BOGKW19] chose
to define classical Provers in Multi-Provers Interactive Proof Systems.

A.2.4 One-Way Signalling

We now turn to One-Way Signalling which allows communication from one side
to the other. We name the directions arbitrarily Left and Right. We define R-SIG
(resp. L-SIG) as all those strategies locally reducible to a complete strategy we
call R-SIG (see Figure A.6) (resp. L-SIG (see Figure A.7)). These classes are
useful to define what it means for a strategy to signal as well as the notion of
No-Signalling strategies.

Definition 46. R-SIG= {U |U ≤LOC R-SIG}.

Definition 47. We say that U Right Signals (is R-SIG-verbose3) iff R-SIG≤LOC U.
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a //
R-SIG

boo

a //oo a

Figure A.6. The R-SIG-box

a //
L-SIG

boo

b //oo b

Figure A.7. The L-SIG-box

Definition 48. L-SIG= {U |U ≤LOC L-SIG}.

Definition 49. We say that U Left Signals (is L-SIG-verbose) iff L-SIG≤LOC U.

Definition 50. We say that U Signals iff U Right Signals or Left Signals.

We prove a first result that is intuitively obvious. We show that the complete
strategy R-SIG cannot be approximated in L-SIG and the other way around.

Theorem 51. R-SIG ̸∈ L-SIG and L-SIG ̸∈ R-SIG.

Proof. Follows from a simple capacity argument. For all n, all the channels in
LOCn(R-SIG) have zero left-capacity, while L-SIG has non-zero left-capacity. And
vice-versa.

A.2.5 Signalling

We are now ready to define the largest of the non-locality classes named SIG.
Indeed every possible strategy is in SIG.

Definition 52. SIG= {U |U ≤LOC SIG}.

a //
SIG

boo

b //oo a

Figure A.8. The SIG-box

Definition 53. We say that U Fully Signals (is SIG-verbose) iff U Right Signals
and Left Signals.

3We define the notion of L-verbose in analogy to NP-hard: it means “as verbose as any distri-
bution in non-locality class L”. In consequence, a distribution U is L-complete if U ∈ L and U is
L-verbose.
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A.2.6 No-Signalling

We finally define the less intuitive non-locality class NOSIG in relation to classes
defined above.

Definition 54. NOSIG= R-SIG
⋂

L-SIG.

A similar characterization may be found in [AFLS15] Section 3 and [BFRW05]
Corollary 3.5.

Theorem 55. The above definition of NOSIG exactly coincides with the traditional
notion of No-Signalling [BLM+05a].

Proof. If U is signalling then it is verbose for at least one of R-SIG or L-SIG.
Without loss of generality, assume it is verbose for R-SIG. Then by theorem 51,
U ̸∈ L-SIG, thus U ̸∈ R-SIG

⋂

L-SIG.

If U is no-signalling then Alice’s marginal distribution is independent from Bob’s
input b. Therefore, she can sample an output x according to her input a only
as PX |A=a deduced from PX ,Y |A,B. Alice can now communicate a, x to Bob. Bob
given a, b, x can select y according to the distribution PY |A=a,B=b,X=x deduced
from PX ,Y |A,B. The produced x , y will have distribution PX ,Y |A=a,B=b as expected.
This proves U ∈ R-SIG. Membership to L-SIG is proven similarly.

Figure A.9 shows the relation of these classes as well as the case obtained via
quantum entanglement (|LOC〉) as considered by Bell [Bel64] and via commuting-
operators (COMOP) as defined by Ito, Kobayashi, Preda, Sun, and Yao [IKP+08].

Definition 56. We say that U does not Signal iff U does not Right Signal nor Left
Signal iff U ∈ NOSIG.

Theorem 57. If U ∈ R-SIG (or U ∈ L-SIG) and U is symmetric then U does not
Signal.

Proof. U ∈ R-SIG and U is symmetric imply that U ∈ L-SIG as well. Thus U ∈
R-SIG
⋂

L-SIG.

Theorem 58. RGR
BGB ∈ NOSIG.

Proof. RGR
BGB ∈ R-SIG and RGR

BGB is symmetric.

Theorem 59. RGR
BGB=LOC PR.
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L-SIG R-SIG!"#

$%ℂ

ℕ%!"#

|$%ℂ⟩
ℂ%)%ℙ

L-!"# R-!"#

SIG
ID

R BGR
BG

PR, ??
??

Figure A.9. Non-locality Hierarchy and complete (two-party) distributions in
certain classes.

Proof. First we show how PR may be achieved from RGR
BGB, more precisely that

PR ∈ LOC1(RGR
BGB). All arithmetic operations are performed modulo 3. Let a′ :=

f 1
A (a) := a, and b′ := f 1

B (b) := 2b. The possible pairs for (a′, b′) are therefore
(0, 0), (0, 2), (1,0), (1, 2). Let (x ′, y ′)← RGR

BGB(a′, b′). Let x := f 2
A (a, x ′) := 2(x ′−

a+ 1), and y := f 2
B (b, y ′) := 2(y ′ − 2b+ 1). We leave it as an exercice to check

that (x , y) indeed satisfy the CHSH condition that x ⊕ y = a ∧ b.

Secondly, we show how RGR
BGB may be achieved from PR, more precisely that

RGR
BGB ∈ LOC2(PR). Again, all arithmetic operations are performed modulo 34.

The intuition in this case is that if a = b then (x , y) should be either (a+1, b−1)
or (a − 1, b + 1) at random. If a ̸= b then (x , y) should be either (a + 1, b + 1)
or (a − 1, b − 1) at random. The following computations achieve precisely this
using the identity a = b iff (¬a′ ⊕ b′) ∧ (¬a′′ ⊕ b′′), where a primed variable
is the corresponding most significant bit and a double-primed variable is the
corresponding the least significant bit.

The first pair of functions compute the negation of the most significant bit of
their inputs: let a′ := f 1

A (a) := 1− 2(a − 1)a, and b′ := f 1
B (b) := 1− 2(b − 1)b.

Let (x ′, y ′)← PR(a′, b′).

4Therefore modulo 2 for the exponents according to Fermat’s little theorem.
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The second pair of functions compute the negation of the least significant bit of
their inputs: let a′′ := f 2

A (a, x ′) := 1 − 2(a − 1)(a + 1), and b′′ := f 2
B (b, y ′) :=

1− 2(b− 1)(b+ 1). Let (x ′′, y ′′)← PR(a′′, b′′).

The third pair of functions compute a ± 1, b ± 1 according to the intuitive rule
above: let x := f 3

A (a, x ′, x ′′) := a + 2a1∗a2+x ′+x ′′ , and y := f 3
B (b, y ′, y ′′) := b +

2b1∗b2+y ′+y ′′ .

Corollary 59.1. RGR
BGB is NOSIG-Complete.

Proof. Since PR was previously provedNOSIG-Complete by Forster and WolfÙ[FW11],
then so is RGR

BGB .

Theorem 60. RGR
BGB is the ONLY strategy winning the RGB game that is also No-

Signalling.

Proof. Using the notation of Equations (A.1) – (A.2), for No-Signalling on Alice’s
side we need

Pu+1,u−1|u,u = pu = Pu+1,u−1|u,u+1+Pu+1,u|u,u+1 = 1−pu u+1 = Pu+1,u|u,u−1 = puu−1, 0≤ u≤ 2

and symmetrically on Bob’s side

Pu−1,u+1|u,u = 1−pu = Pu−1,u+1|u+1,u+Pu,u+1|u+1,u = 1−qu+1 u = Pu,u+1|u−1,u = qu−1 u, 0≤ u≤ 2.

Using all 6 sets of equalities we can get rid of all the variables but p0, p1, p2 by
setting

pu u−1 = qu+1 u = pu and puu+1 = qu−1 u = 1− pu, 0≤ u≤ 2.

It follows that

Pu+1,u|u,u+1 = pu + pu+1 − 1= −Pu,u+1|u+1,u, 0≤ u≤ 2

and since both Pu+1,u|u,u+1 and Pu,u+1|u+1,u must be greater or equal to zero we
conclude

Pu+1,u|u,u+1 = Pu,u+1|u+1,u = 0 and pu = 1− pu+1, 0≤ u≤ 2.

It results that p0 = 1− p1 = p2 = 1− p0 = p1 = 1− p2 and thus

p0 = p1 = p2 = p01 = p10 = p12 = p21 = p20 = p02 = q01 = q10 = q12 = q21 = q20 = q02 = 1/2

is the only solution as claimed.
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Theorem 61. The maximum local winning probability pwin
local to the RGB game is

8/9.

Proof. Consider f (R) = B and f (G) = f (B) = R as well as g(R) = g(B) = G
and g(G) = B. By inspection of these functions we conclude pwin

deterministic ≥ 8/9
because for all inputs a, b we have f (a) ̸= a and g(b) ̸= b and 8 out of 9 input
pairs (a, b) are such that f (a) ̸= g(b). Since it is a well known fact that pwin

local =
pwin

deterministic, it suffices to show that pwin
deterministic ≤ 8/9 as well.

To prove this, consider any pair of functions f , g. To obtain f (a) ̸= a for all a,
the image of f must contain at least 2 colours. Similarly for the image of g.
Since both f and g can only take 3 values, their images must have a common
colour. Therefore, there exists an a and a b such that f (a) = g(b). We conclude
pwin

deterministic ≤ 8/9, and therefore pwin
local = pwin

deterministic = 8/9.

Note: somewhat surprisingly Theorem 59 is not good enough to surpass pwin
local in

the quantum case. Since RGR
BGB ∈ LOC2(PR) (and not in LOC1(PR)), an optimal

quantum approximation to a PR-box (known to succeed with probability 2+
p

2
4 )

used instead of the perfect one only yields a 3
4 approximation to an RGB-box.

A natural question is therefore to find a quantum strategy that is better than the
local one.

A.3 A Better-than-Local Quantum Strategy

There is indeed a better-than-local quantum strategy which wins with probability
11/12:

Alice and Bob share a singlet state |ψ−〉AB. According to their own input colour,
they choose their measurement from the following list:

ΠRed = |0〉〈0| ,ΠGreen =
�

�v+
�


v+
�

� ,ΠBlue =
�

�v−
�


v−
�

� , (A.3)

where
�

�v±
�

=
1
2
|0〉 ±

p
3

2
|1〉 . (A.4)

These 3 projectors are located in the same plane equidistantly (like the Mercedes-
Benz logo). The colour names can be permutated freely as long as Alice and Bob
do the same projection for the same colour.
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|0〉

|1〉

|+〉|−〉

Figure A.10. Alice and Bob’s best quantum strategy is to each make the above
projective measurement on their half-singlet. The basis (rectangle) depends on
their own input colour. Their output is the colour of the measured arrow.

If the output of their measurement is positive, they output the colour that comes
after their input colour in the cycle RGB. Otherwise, they output the previous
colour. They never output their own input colour as it leads to a sure loss.

For example, if Alice’s input is Green and she measures a positive result when
applying the projector ΠGreen, then a = G and x = G+1= B (the colour addition
is modulo 3). Figure A.10 explains the protocol graphically.

A.3.1 Proof of Winning Probability

We look at the probability of losing as it is simpler. To simplify notation, we call
directly x = a−1↔ x = 0 and x = a+1↔ x = 1 as well as y = b−1↔ y = 0
and y = b+ 1↔ y = 1. Alice and Bob lose in the following cases:

x = y if b = a ,
x = 0∧ y = 1 if b = a+ 1 mod 3 ,
x = 1∧ y = 0 if b = a− 1 mod 3 .

(losing cases)

The probability of error E only depends on the relation between a and b and is
given by

Ea=b = tr
��

�ψ−
�


ψ−
�

�

AB
·
�

(Πa ⊗Πb) + (Π
⊥
a ⊗Π

⊥
b )
��

= 0 , (A.5)

Ea+1=b = tr
��

�ψ−
�


ψ−
�

�

AB
· (Π⊥a ⊗Πb)
�

=
1
8

, (A.6)

Ea−1=b = tr
��

�ψ−
�


ψ−
�

�

AB
· (Πa ⊗Π⊥b )
�

=
1
8

. (A.7)
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And the winning probability of this quantum strategy is (with uniformly random
inputs):

p(win) = 1−
3Ea=b + 3Ea+1=b + 3Ea−1=b

9
=

11
12

. (A.8)

The game is therefore won with probability 11/12 using this quantum strategy.

A.4 The Bell Inequality Associated to the RGB Game

The above quantum strategy is optimal among quantum strategies. To prove it
in Section A.5, we now analyze a Bell inequality associated to the RGB game.
Bell game and Bell inequalities are equivalent formulations of the same phe-
nomenon. We quickly recall how to translate from one paradigm to the other
before defining the inequality and stating the corresponding bounds for quan-
tum and No-Signalling strategies.

A.4.1 Bell Game vs Bell Inequality Notations

Up to now, we have analyzed the RGB game in the modern game context, mean-
ing we treated strategies as probability distributions of the form Px ,y|a,b and
showed strategies in different non-locality classes (i.e., local, quantum or No-
Signalling) can achieve different win rates. To finetune our analysis, we ex-
cluded without losing generality the output colour that always lose (i.e., x = a
and y = b) and treated the remaining outputs as binary (i.e., 0 := u − 1 and
1 := u + 1). In the next subsections, we will use the notation p(x ,y|a,b) for the
individual conditional probabilities.

However, another way to see this problem is through Bell inequalities. Instead
of looking at a game with binary outputs, one consider the properties of observ-
ables with values in {−1,1}. An observable is simply a physical quantity one can
decide to measure. In physics, Bell inequalities (e.g., the CHSH inequality) are
usually specified by a function of the expected correlations of different observ-
ables. This function defines a quantity to which classical mechanics (i.e., local
hidden-variable models) imposes a limit that can be broken using quantum me-
chanics. We remark that all of Alice’s observables need to commute (meaning
the order in which they are measured don’t affect their results) with all of Bob’s
observable to respect the No-Signalling condition shared by LOC, |LOC〉 and
NOSIG.



76 A.4 The Bell Inequality Associated to the RGB Game

The canonical example of a Bell inequality is the CHSH inequality. This Bell
inequality also has a quantum limit: it is Tsirelson’s bound. As we are about to
see, there exists a similar bound for the RGB Bell-inequality.

The relevant point is that one can translate between the two formulations by ex-
pressing the conditional probabilities of the Bell game paradigm as expectancies
of correlations in the Bell-inequality paradigm, and vice versa. We will in fact
only need the following conversion equation:

p(x=y|a,b) =
1+ 〈AaBb〉

2
, (A.9)

where we noted 〈AaBb〉 the expected correlation between the measurement out-
comes of Alice’s observable Aa and Bob’s observable Bb.

A.4.2 Intermediate Step: Rewriting the Probability of Winning as
a Function of Expected Correlations

The following lemma will make the subsequent Bell-inequality formulation sim-
ple.

Lemma 62. The probability of a given strategy distribution winning the game is
given by

pwin =
1
9

2
∑

u=0

2− p(x=y|u,u) +
p(x=y|u,u+1)

2
+

p(x=y|u,u−1)

2
. (A.10)

It depends only on the correlations between Alice’s and Bob’s outputs, not on their
marginals.

Proof. By looking at the three losing cases above (see Section A.3), we obtain
the probability of a distribution winning the game:

pwin =
1
9

2
∑

u=0

�

3− p(0,0|u,u) − p(1,1|u,u) − p(0,1|u,u+1) − p(1,0|u,u−1)

�

.

(winning probability equation)
We rewrite it in terms of the marginals and correlations {p(x=0|a), p(y=0|b), p(x=y|a,b)}.
Here is how we can transform each term:

p(0,0|a,b) =
p(x=0|a) + p(y=0|b) + p(x=y|a,b) − 1

2
, (A.11)

p(1,1|a,b) = p(x=y|a,b) − p(0,0|a,b) , (A.12)

p(0,1|a,b) = p(x=0|a) − p(0,0|a,b) , (A.13)

p(1,0|a,b) = p(y=0|b) − p(0,0|a,b) . (A.14)
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Replacing them into the winning probability equation gives

pwin =
1
9

2
∑

u=0

3− p(0,0|u,u) − p(1,1|u,u) − p(0,1|u,u+1) − p(1,0|u,u−1) (A.15)

=
1
9

2
∑

u=0

3− p(0,0|u,u) − p(x=y|u,u) + p(0,0|u,u) − p(x=0|a=u) + p(0,0|u,u+1) − p(y=0|b=u−1) + p(0,0|u,u−1)

(A.16)

=
1
9

2
∑

u=1

3− p(x=y|u,u) − p(x=0|a=u) +
p(x=0|a=u) + p(y=0|b=u+1) + p(x=y|u,u+1) − 1

2

− p(y=0|b=u−1) +
p(x=0|a=u) + p(y=0|b=u−1) + p(x=y|u,u−1) − 1

2
(A.17)

=
1
9

2
∑

u=0

2− p(x=y|u,u) +
p(x=y|u,u+1)

2
+

p(x=y|u,u−1)

2
.

A.4.3 The RGB Bell-Inequality

We show a new simple case of a Bell inequality which we call the RGB Bell-
inequality. We define it by reformulating the bound on the local winning proba-
bility of the RGB game.

Proposition 63. The following quantity is related to the RGB game:

R :=

�

�

�

�

�

2
∑

i=0

−2 〈AiBi〉+ 〈AiBi+1〉+ 〈AiBi−1〉

�

�

�

�

�

. (RGB Bell-quantity)

and allows us to express the RGB Bell-inequality:

Rlocal ≤ 8 . (RGB Bell-inequality)

Proof. We first rewrite the equation describing the probability of winning the
RGB game into a Bell-inequality notation by taking Lemma 62 and making the
simple substitution given in Eq. A.9. We obtain

pwin =
1

36

2
∑

i=0

8− 2 〈AiBi〉+ 〈AiBi+1〉+ 〈AiBi−1〉 . (A.18)

We then define the interesting part as the RGB Bell-inequality:

R := 36 · pwin − 24=

�

�

�

�

�

2
∑

i=0

−2 〈AiBi〉+ 〈AiBi+1〉+ 〈AiBi−1〉

�

�

�

�

�

. (A.19)
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Finally, from Theorem 61 we have pwin
local ≤

8
9 , which by the last equation implies

Rlocal ≤ 8.

As we showed in Section A.3, quantum mechanics allows for better-than-local
strategies, but we will soon show that there is also a limit to how good quantum
strategies can be. In fact, the quantum strategy we described earlier is optimal.

Theorem 64. The RGB Bell-inequality can be broken by quantum distributions, but
there exists for the RGB game an analogue to Tsirelson’s bound.

Rquantum ≤ 9 . (quantum bound)

The inequality is tight.

Proof. The value Rquantum = 9 is possible. It follows directly from the quantum
strategy achieving a win rate of 11

12 (as described in Section A.3.) The proof one
cannot do better is shown next in Section A.5.

While quantum strategies cannot reach the trivial upper bound, No-Signalling
strategies can.

Proposition 65. No-Signalling physics (i.e., access to RGR
BGB) could break maximally

the RGB Bell-inequality.

RNo-Signalling ≤ 12 . (trivial No-Signalling bound)

The inequality is tight.

Proof. The value RNo-Signalling = 12 is possible by using the No-Signalling strategy
described in Section 1 because it achieves a win rate of 1. The inequality is tight
as all expected correlation terms are here bounded by {−1, 1}.

A.5 Tsirelson’s-like Bound and Proof of Optimality of
the Quantum Strategy

We now prove the optimality of the quantum strategy described in Section A.3
by finding a Tsirelson’s-like bound for the RGB Bell-inequality.
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A.5.1 The Optimization Problem

We want to prove that for any |ψ〉, any {Aa} and any {Bb}, the quantum limit for
the RGB Bell-inequality holds:

Rquantum =

�

�

�

�

�

2
∑

u=0

−2 〈AuBu〉+ 〈AuBu+1〉+ 〈AuBu−1〉

�

�

�

�

�

≤ 9 . (quantum bound)

We call the value associated to our known quantum strategy R′ = 9 and the
optimal value R∗.

A.5.2 Solving the Bell Inequality Using Semidefinite Programming

We closely follow Wehner’s semidefinite programming technique [Weh06]. The
idea is first to transform the Bell-inequality problem from the quantum realm
to the real-vector space using a result by Tsirelson. Then we use semidefinite
programming with Lagrangian duality. The key point is that the Lagrangian dual
problem upper bounds the primal problem. So by guessing a solution to the dual
problem which have the same value as R′, we prove that R′ is optimal.

A.5.3 A Bell Inequality as a Real Vector Problem

We will use an important theorem by Tsirelson5 [Cir80].

Theorem 66 (Tsirelson). Let A1, . . . , An and B1, . . . , Bn be observables with eigen-
values in the interval {−1, 1}. Then for any state |ψ〉 ∈ A ⊗B , there exist real
unit vectors x⃗1, . . . , x⃗n, y⃗1, . . . , y⃗n ∈ R2n such that for all s, t ∈ {1, . . . , n}:

〈ψ|As ⊗ Bt |ψ〉= x⃗s · y⃗t . (A.20)

Conversely, let x⃗s, y⃗t ∈ RN be real unit vectors. Let |ψ〉 ∈ A ⊗B be any maximally
entangled state where dim(A ) = dim(B) = 2⌈N/2⌉. Then for all s, t ∈ [n] there
exist observables As onA and Bt onB with eigenvalues ±1 such that

x⃗s · y⃗t = 〈ψ|As ⊗ Bt |ψ〉 . (A.21)

Applying it to our case, we reduce our Bell-inequality problem to maximizing the
following real-vectorial expression:

5We write it as formulated in [Weh06], but fix a small mistake in the quantifiers order (it was
correct in the original paper).
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R=
2
∑

i=0

−2 x⃗ i · y⃗i + x⃗ i · y⃗i+1 + x⃗ i · y⃗i−1 (A.22)

under the constraints ∀i, || x⃗ i||= || y⃗i||= 1.

Proof of Quantum Optimality

A.5.4 The Primal Problem

We re-write the last statements in a matrix form.

G =

















x⃗1

x⃗2

x⃗3

y⃗1

y⃗2

y⃗3

















·
�

x⃗1 x⃗2 x⃗3 y⃗1 y⃗2 y⃗3

�

. (A.23)

We note G can have this form if and only if it is semidefinite positive and that its
diagonal elements are equal to 1 because of the normalization constraints. We
also define the matrix W in a way that 1

2 tr GW = RG where RG is the R defined
in Eq. A.22 associated to this strategy G.

W =

















0 0 0 −2 1 1
0 0 0 1 −2 1
0 0 0 1 1 −2
−2 1 1 0 0 0

1 −2 1 0 0 0
1 1 −2 0 0 0

















. (A.24)

Then the semidefinite optimization primal problem is

maximize
1
2

tr GW subject to G ≥ 0 and ∀i, gii = 1 . (primal problem)
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The Primal Solution

The quantum strategy we found previously is associated with the value R′ = 9.
For the sake of completeness, we prove again here this value is achievable.

G′ =

















1 −1
2 −1

2 −1 1
2

1
2

−1
2 1 −1

2
1
2 −1 1

2
−1

2 −1
2 1 1

2
1
2 −1

−1 1
2

1
2 1 −1

2 −1
2

1
2 −1 1

2 −1
2 1 −1

2
1
2

1
2 −1 −1

2 −1
2 1

















. (primal solution)

We check that G′ ≥ 0 by looking at its eigenvalues: they are indeed {3, 3,0,0, 0,0}.
G′ is therefore a feasible solution whose primal value is 9.

A.5.5 The Dual Problem

We now turn to the dual problem with Lagrange multipliers. The idea is to pose
an objective functionL (G,Λ)which will be equal to RG if G is a feasible solution
(i.e., G is semidefinite positive and all the normalization constraints are satisfied)
and whose dual can be evaluated in a non-trivial way.

L (G,Λ) =
1
2

tr GW − trΛ(G − I6) , (objective function)

where Λ is the diagonal matrix of Lagrange multipliers {λ1, . . . ,λ6}. Note that
L (G,Λ) = RG for a valid solution because when the constraints are satistifed:
G − I6 = 0̂.

We can associate a dual function to the objective function:

λ(Λ) = max
G is feasible

L (G,Λ) = max
G is feasible

tr G(
1
2

W −Λ) + trΛ . (dual function)

The crucial fact about this dual function λ(Λ) is that it upper bounds L (G,Λ),
so for any feasible quantum strategy it also upper bounds RG (and therefore R∗).
This is because [BV04]:

λ(Λ) = max
G is feasible

L (G,Λ)≥L (G∗,Λ) =L (G∗) = R∗ . (A.25)



82 A.6 Conclusion and Open Questions

A.5.6 The Dual Solution

We simply exhibit one matrix Λ such that this upper bound λ(Λ) is 9. Since we
can reach it, then it will be tight.

We observe that λ(Λ) evaluates to infinity if −1
2W +Λ ̸≥ 0, and that otherwise,

the G maximizing L (G,Λ) is the null matrix. This leads to the following dual
problem:

minimize trΛ subject to −
1
2

W +Λ≥ 0 . (dual problem)

We try the solution

Λ′ =
3
2

I6 . (dual solution)

The eigenvalues of −1
2W + Λ′ are {3,3, 3

2 , 3
2 , 0, 0}, confirming it is semidefinite

positive and thus a feasible solution (it does not lead to the trivial bound). The
associated dual value is 9 and confirms the optimality of our quantum solution.

A.6 Conclusion and Open Questions

We have defined a new game, the RGB Game, that is very simple and there exists
a No-Signalling strategy winning it with probability one. In the sense we have
defined, this strategy is equivalent to the winning strategy to the PR game. We
showed the RGB game can be won with probabilities

pwin
local =

8
9

, pwin
quantum =

11
12

, pwin
No-Signalling = 1 .

Our main open question is whether there exist |LOC〉-complete and COMOP-
complete distributions. Another is to generalize our work to distributions over
more than two parties.



Appendix B

Any physical theory of Nature must be
boundlessly multipartite nonlocal
([CRWR21a])

The following is a full retranscription of my work ([CRWR21a]) with Marc-
Olivier Renou and Elie Wolfe.

Abstract. We introduce the class of Genuinely Local Operation and Shared Ran-
domness (LOSR) Multipartite Nonlocal correlations, that is, correlations between
N parties that cannot be obtained from unlimited shared randomness supple-
mented by any composition of (N − 1)-shared causal Generalized-Probabilistic-
Theory (GPT) resources. We then show that noisy N -partite GHZ quantum states
as well as the 3-partite W quantum state can produce such correlations. This
proves, if the operational predictions of quantum theory are correct, that Na-
ture’s nonlocality must be boundlessly multipartite in any causal GPT. We develop
a computational method which certifies that a noisy N = 3 GHZ quantum state
with fidelity 85% satisfies this property, making an experimental demonstration
of our results within reach. We motivate our definition and contrast it with pre-
existing notions of genuine multipartite nonlocality. This work extends a more
compact parallel letter [Phys. Rev. Lett. 127, 200401 (2021)] on the same sub-
ject and provides all the required technical proofs.
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B.1 Introduction

Correlated events are ubiquitous. A fundamental objective of science is to under-
stand the causal links between these events, behind correlations. Bell’s seminal
theorem [Bel64] demonstrated the failure of classical causal theories [Pea09] to
reproduce the predictions of quantum theory. A natural interpretation of Bell’s
theorem is that the structural links between non-observed underlying variables
(also called sources or resources) and observed variables (also called parties) in
a network causal model are not sufficient to delimit all possible correlations that
might be observed between them: the physical nature of the sources is also im-
portant [WSS+20]. Indeed, even in a simple Bell scenario involving one source
and several observed variables, a source producing quantum signals allows for
“nonlocal” correlations that cannot be modelled classically [CHSH69]. Simply
put, the correlations achievable with quantum common causes are richer than
those achievable with purely classical sources.

The existence of nonclassical quantum correlations inspired the study of even
more general causal theories, capable of explaining quantum correlations and
even stronger-than-quantum correlations [PR94]. The explanatory power of
such exotic theories is so strong that one might wonder if such a theory might
describe all the correlations that may be observed in Nature while at the same
time never exceeding some measure of complexity. In this article, we focus on the
following question: Do there exist causal theories able to model all observable
correlations based on finite-size nonclassical resources? More precisely, could
Nature’s correlations be explained by N -partite resources, for some finite N?

Unsurprisingly, even some classical correlations would be inexplicable in the ab-
sence of universal (N -way) shared randomness. In particular, no causal the-
ory restricted to sharing bipartite resources of any physical nature could accom-
modate perfect correlations between three parties [H+15] (We will show that
this no-go result readily generalizes to N parties restricted to (N−1)-partite re-
sources). Accordingly, the “No Shared Randomness” hypothesis is far too strong
an assumption in general. Shared randomness is facially an accessible resource:
Indeed, N parties can share randomness by simply agreeing on a common stochas-
tic phenomenon to observe, such as the weather. Alternatively, pre-established
high-entropy shared randomness can be stored indefinitely in local memories
through the use of any number of digital technologies.

As such, in the following we consider shared randomness to always be accessible.
We focus on the (non)simulability of certain N -partite correlations in scenarios
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allowing for the local composition of (N−1)-shared nonclassical resources and
Local Operations and Shared Randomness (LOSR) between N parties. N -partite
correlations which cannot be simulated in such a scenario are hereafter deemed
genuinely LOSR multipartite nonlocal.

Some causal theories of correlations generalizing quantum mechanics have al-
ready been introduced. In particular, boxworld is an alternative theory for corre-
lations motivated by nonsignalling boxes [Jan12]. Although boxworld produces
some correlations which are strictly beyond the scope of the predictions of quan-
tum theory, it should also be noted that boxworld cannot reproduce all quan-
tum correlations in scenarios with independent sources even when allowing for
shared randomness [CR17; WC20; Bie20]. Here we aim to derive an argument
in a theory-agnostic perspective, so that it be compatible with any causal theory.
This includes classical; quantum; nonsignalling boxes; and, more generally, any
hypothetical causal theory that can be defined in networks. In the following,
we refer to such theories as causal Generalized Probabilistic Theories (GPT) in
networks, or more shortly as GPTs. It is the role of these theories to define the
resources, or states, emitted by each source, as well as the measurements made
by each party. In our theory-agnostic approach, however, we do not refer to, nor
rely on, any concrete formalism for GPTs; different ones [Bar07; SB10] can be
used. Our unique requirements for the considered theory is to be causal, and to
allow for device replication. (These requirements are formalized in Section B.2.)
We call theory-agnostic any correlation which can be obtained from such causal
theory (equivalent notions are already introduced in [HLP14; GBC+20], see also
related work [CDP11; Chi14; BG21; BR21; Pir21]). The present text extends a
more compact parallel letter on the same subject [CRWR21b] and furnishes all
the required technical proofs.

The question of the (non)simulability of certain N -partite correlations in setups
allowing for the local composition of any (N−1)-shared GPT resources and N -
shared randomness is intuitively clear. Nevertheless, it requires a technical def-
inition of what are genuinely LOSR N-multipartite nonlocal correlations — i.e.,
the correlations which can be obtained through such a process. In the following
Section B.2, we base this definition on a causality principle and device replica-
tion, through the inflation paradigm. Then, in Section B.3 we prove that the
N -partite quantum states |GHZN 〉 can create genuinely N -partite nonlocal cor-
relations. This proves Theorem 70, the main result of this paper: Nature is not
merely N -partite, for any N . Our result is noise tolerant. We also generalize this
result to the tripartite state |W〉. In Section B.4, we provide a linear-programming
(LP) method to generate certificates of genuine multipartite nonlocality, based on
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the inflation technique. We illustrate it over the |GHZ3〉 state, obtaining better
noise-robust results accessible to current technologies. Such improvements illus-
trate the practical importance of this LP method for experimental realizations.
Since there already exist several definitions of the concept of genuinely mul-
tipartite nonlocal correlations, we discuss in Section B.5 the adequacy of ours:
an LOSR theory-agnostic framework which optimally accommodates an intuitive
concept of genuinely multipartite nonlocal correlations. In particular, we com-
pare our definition to the historically accepted notion due to Svetlichny [Sve87].

B.2 Definition of genuinely LOSR-multipartite-nonlocal
correlations

In this section, we provide a definition of genuinely LOSR N -partite nonlocal cor-
relations. Our approach is closely related to the concept of network nonlocality,
which has been a subject of extensive study in the past decade [TPKLR21; Fri12;
BGP10; RBB+19]. By specializing to the case of N = 3, the definition herein will
precisely formalize the more informal Definition 2 of Ref. [CRWR21b].

As prelude to defining genuine LOSR multipartite nonlocality, we first provide
a definition of (N−1)-partite LO theory-agnostic correlations, that is, of correla-
tions which can be obtained from causal GPT limited entirely to (N−1)-partite re-
sources. Then, we extend it to a definition of (N−1)-partite LOSR theory-agnostic
correlations, allowing for N -partite shared randomness in addition to (N−1)-
partite GPT resources. Lastly, we define genuinely LOSR N -partite nonlocal cor-
relations as the correlations that are not (N−1)-partite LOSR theory-agnostic.

Recall that standard Bell scenarios involve a single common cause accessible to
all parties. In the absence of any particular physical restriction on the nature of
that common cause the only a priori constraints over such theory-agnostic corre-
lations in a Bell scenario are the No Signalling equalities [Bar07]. By contrast, in
our case theory-agnostic correlations are restricted by nontrivial inequality con-
straints in addition to the equality constraints coming from No Signalling. We will
show how these inequalities are consequences of the scenario being composed
of several independent theory-agnostic sources available only to N−1 parties.

In the following, we base ourselves on a causality principle (formalized below, see
also its definition in the framework of operational probabilistic theories [CDP11;
Chi14]) that consists in accepting the causal structure of the scenario. We also
assume that any device distributing a resource, or locally operating on resources,
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can be replicated in independent copies which can be reordered to form a new
setup. These two ingredients — causality and device replication — are all that are
needed in order to draw inferences from the nonfanout-inflation technique [WSF19];
the latter also powers the analytic and computational results in this article.

B.2.1 Notations

Let us introduce NN , the N -partite network scenario in which every N =
� N

N−1

�

subset of N−1 parties is connected to an arbitrary causal GPT resource. Let
A1, ...,AN be its parties and S1, . . . , SN its sources, such that Ai is connected to
every source except for Si and similarly Si is connected to every party except
for Ai. For N = 3, this corresponds to the triangle network (without shared
randomness).

Consider now a nonzero integer K . We call K th-order nonfanout inflation of N
any network I composed out of K copies S1

i , . . . , SK
i of each source Si and K

copies A1
j , . . . , AK

j of each party A j, such that the following inflation-compatibility
rules are satisfied:

• In I , any party Ak
j is connected to the same number and same types of sources

as in NN ,

• In I , any source Sk
i connects the same number and same types of parties as

in NN .

There exist several nonfanout inflations of a given order. For instance, the case
of the triangle (N = 3) admits two distinct inflations of order K = 2: one is two
copies of the triangle, and the second is a hexagon. The case of the tetrahedron
(N = 4) has six classes of inflations of order K = 2 (defined up to graph isomor-
phism, see Figure ??). Our arguments will often be based on the correlations
shared in a sub-network of some large inflation. We call such sub-network an
inflation cut. In this paper, most of our figures represent inflation cuts. In the
following, sub-network isomorphisms are of particular interest. A sub-network
G of the network N or of its inflation I consists in a subgroup of parties with
all the sources these parties are connected to.

We say that (G1, G2), two sub-networks of (N ,I ) or of (I ,I ), are isomorphic if
they are isomorphic under the dropping of the indices of the parties and sources
(because even if two copies of a same party or source have different indices, they
are otherwise indistinguishable). A sub-network is defined by an ordered list of
parties. The ordering means that a nontrivial isomorphism may exist between
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two sub-networks of I even if both sub-networks refer to precisely the same
unordered set of parties. Hence, an inflated network can be a sub-network of
itself in a nontrivial way. See Figure B.1 for an illustration.

In the following, when R denotes a correlation — that is, a probability distribu-
tion of some outputs given some inputs — in some network J , and if G denotes
a sub-network of J , then R|G represents the marginal distribution of R over the
parties in G. If G1, G2 are two non-overlapping (that is, sharing no parties) sub-
networks of J , we write G1 ∪· G2 the sub-network of J composed of the parties
of G1, G2 and of the sources they are connected to. We write R|G1∪· G2

= R|G1
· R|G2

to indicate that the marginal distribution can be factorized.

B.2.2 Genuinely LO-multipartite-nonlocal correlations

We now formalize our causality principle. It first leads to a definition of LO
theory-agnostic correlations, which we then extend to LOSR theory-agnostic cor-
relations in Section B.2.3.

Definition 67 ((N−1)-LO theory-agnostic correlation). Consider an N-partite
nonsignalling correlation P. P is said to be an (N−1)-LO theory-agnostic cor-
relation if, for every nonfanout inflation I of NN (of any order), there exists a
nonsignalling correlation Q of the parties in I such that:

(C1) For all two (G1, G2) sub-networks of (I ,NN ), if the two are isomorphic, then
Q|G1

= P|G2
.

(C2) For all two (G1, G2) sub-networks of (I ,I ), if the two are isomorphic, then
Q|G1

=Q|G2
.

(C3) For all two non-overlapping (G1, G2) sub-networks of (I ,I ), if the two have
no sources in common, then Q|G1∪· G2

=Q|G1
·Q|G2

.

Note that (C1) is a compatibility condition of Q with P, whereas (C2) and(C3) are
self-consistency conditions of Q with itself.

Note that the set of correlations in NN singled out by this definition has already
been introduced in other works, under different names. In particular, it is the set
of the generalized Markov correlations in NN , introduced in [HLP14]. It is also
equivalent to the correlations restricted by the No Signalling and Independence
principles of [GBC+20]. There, (C1) is seen as a consequence of an (extended)
No Signalling principle, (C3) is called the Independence principle, and (C2) is
implicit. In our paper, we view (C1), (C2), and (C3) as consequences of causality.
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More precisely, more than a consequence of causality, these three conditions can
actually be seen as the technical definition of the intuitive notion of causality, once
device replication is allowed.

Before introducing shared randomness, let us first remark that a random bit
shared between three parties is not a 2-LO theory-agnostic correlation, as proven
in [H+15]. The proof can be easily extended to show that for any N , N -partite
shared randomness is not an (N − 1)-LO theory-agnostic correlation: see Fig-
ure B.2. As we justified, however, in our introduction, the concept of LO theory-
agnostic correlation is not appropriate to discuss the simulability of Nature’s cor-
relations, as classical shared randomness is easily accessible. Hence, we now
adapt this definition to take into account a shared source of classical random-
ness λ.

B.2.3 Genuinely LOSR-multipartite-nonlocal correlations

Consider an N -partite correlation P which is obtained from a physical process
in a scenario involving arbitrary causal GPT resources distributed in NN , com-
plemented by shared randomness. For any given randomness outcome λ0, we
obtain a distribution Pλ0

, which is a (N−1)-LO theory-agnostic correlation (note
that, a priori, it does not have the same marginal as P). Writing dµ(λ0) the
probability density of a given λ0, P can then be written as P =

∫

dµ(λ)Pλ. This
discussion motivates the following definition:

Definition 68 ((N−1)-LOSR theory-agnostic correlation). P is said to be an (N−1)-
LOSR theory-agnostic correlation if it is a convex mixture of (N−1)-LO theory-
agnostic correlations. More precisely, the latter implies that there exists a random
variable λ of density dµ(λ) such that P =

∫

dµ(λ)Pλ, and that for every any-order
nonfanout inflation I of NN , there exists nonsignalling correlations Qλ of the par-
ties in I such that for all λ, Qλ satisfies (C1) with respect to Pλ, as well as (C2)
and (C3) with respect to I .
Note that if we introduce Q :=

∫

dµ(λ)Qλ, the above conditions imply that Q satis-
fies (C1)with respect to P and that Q itself satisfies (C2) via linearity of integration.

We can now define genuinely LOSR-multipartite-nonlocal correlations.

Definition 69 (Genuine LOSR multipartite nonlocality). An N-partite nonsignalling
correlation P is said to be genuinely LOSR multipartite nonlocal if and only if it is
not an (N−1)-LOSR theory-agnostic correlation.

Note that Definition 68 and 69 are quite difficult to manipulate, in particular
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because (C3) is a nonlinear constraint. In Section B.4, we propose a relaxation
of this set in which we drop this condition. There we show that a weaker —
but more practical — notion of factorization survives, related to the De Finetti
theorem.

B.3 |GHZN〉 and |W〉 create genuinely LOSR-multipartite-
nonlocal correlations

In order to explore constraints on (N−1)-LOSR theory-agnostic correlations, we
are required to move beyond the case of no-input networks. This is a conse-
quence of the fact that in the presence of shared randomness any correlation is
compatible with every no-input network. Consequently, hereafter we consider
exclusively networks with inputs.

In the following Section B.3.1, we show that |GHZ3〉 can create genuinely 3-
partite nonlocal correlations. We also prove a similar result for |W〉 in Sec-
tion B.3.3. Most importantly, we extend this first result in Section B.3.2 to show
that |GHZN〉 can create genuinely N -partite nonlocal correlations. This is the
main result of this paper, which proves:

Theorem 70 (Nature is not merely N -partite). Under the hypothesis that quan-
tum mechanics’ predictions for local measurements over |GHZN 〉 are correct, Nature
is not merely N-local. More precisely, there exist correlations which cannot be ex-
plained by any N-partite causal resources and shared randomness.

Proof. This theorem is proven by Proposition 72 below. Note that this proof is
noise tolerant.

B.3.1 The |GHZ3〉 quantum state produces genuinely LOSR-tripartite-
nonlocal correlations

In this section, we prove that the state |GHZ3〉 can produce genuinely LOSR-
tripartite-nonlocal correlations. To this end, we first prove the following proposi-
tion, which states a constraint for all 2-LOSR theory-agnostic correlations. Then,
we show that appropriate local measurements of |GHZ3〉 violate this constraint.
It generalizes Proposition 3 of [CRWR21b] to any value of 〈C1〉. This generaliza-
tion is of particular interest from an experimental perspective.
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Proposition 71 (GHZ3, technical). In the absence of any 3-way nonclassical cause,

IC1=1
Bell +

4ISame

1+ 〈C1〉
≤ 6+

4− 4〈C1〉
1+ 〈C1〉

. (P71)

Measurements on the |GHZ3〉 quantum state can violate the above by reaching
IC1=1
Bell +

4ISame
1+〈C1〉

= 2
p

2+ 8> 10.

In the above, IC1=1
Bell ≤ 4 and ISame ≤ 2 are respectively defined through the fol-

lowing two tasks:

i. The standard CHSH game between Alice and Bob, with the particularity that
it is scored only when Charlie outputs C=1 (the observables take value in
{−1,+1}):

IC1=1
Bell := 〈A0B0〉C1=1 + 〈A0B1〉C1=1

+ 〈A1B0〉C1=1 − 〈A1B1〉C1=1 . (B.1)

ii. A game whose goal is for all players to output the same result (i.e., either all
+1 or all −1):

ISame :=〈A0B2〉+ 〈B2C0〉 . (B.2)

Note that A0 := AX=0 belongs to both games; Alice is oblivious on that input and
thus she cannot adopt a different strategy for the first and second task. In the
following, we first prove the inequality P71. Then, we show that the |GHZ3〉 state
violates it.

Proof of Eq. (P71). The proof is based on the inflation argument illustrated in
Figure B.4. There are four main steps to the proof:

First is the idea behind device-independent randomness certification: True ran-
domness is a necessary condition to the violation of Bell inequalities — if a third
party Charlie can guess Alice’s input, then Alice and Bob can only win Bell’s
game with limited success (i.e., Bell rewards nonclassical resources). This true
randomness is quantified by Theorem 1 of Ref. [ADP+14, Eq. (2)], which states
in our case (note that the inequality remains valid when conditioned on C1

1 = 1
because C1 is space-time separated from A1B1C21) that

1Note also that the original theorem in Ref. [ADP+14, Eq. (2)] is formulated for (amongst
others) the IBKP2

Barrett-Kent-Pironio [BKP06] correlations of parameters M=2 and d=2, but
they are equivalent (up to a relabelling symmetry) to the standard CHSH quantity.



92 B.3 |GHZN 〉 and |W〉 create GMNL correlations

I
C1

1=1
Bell ◦ {A

1B1}+ 2〈A1
0C2

0 〉C1
1=1 ≤ 4 . (B.3)

The ◦ notation is here used to specify that the I
C1

1=1
Bell quantity is computed over

the players Alice-1 and Bob-1, which are the players on the left-hand side of the
inflated graph in Figure B.4 .

Second, we bound 〈A1
0C2

0 〉C1
1=1 with 〈A1

0C2
0 〉: For any two events {E1, E2}, the law

of total probability implies the bound

P(E1, E2) = P(E1)− P(E1,¬E2) , (B.4a)

∴ P(E1|E2) =
P(E1)− P(E1,¬E2)

P(E2)
≥

P(E1)− P(¬E2)
P(E2)

. (B.4b)

(¬E2 represents the negation of event E2, so P(E2) = 1− P(¬E2).) In our case,
we apply the reasoning of Eq. (B.4b) to the probabilities P(A1

0 = C2
0 |C

1
1=1) =

(1 + 〈A2
0C2

0 〉C1
1=1)/2 and P(C1

1 = ±1) = (1 ± 〈C1
1 〉)/2. It leads to the worst-case

bound

1+ 〈A1
0C2

0 〉C1
1=1

2
≥

1+〈A1
0C2

0 〉
2 − 1−〈C1

1 〉
2

1+〈C1
1 〉

2

(B.5)

⇐⇒ 〈A1
0C2

0 〉C1
1=1 ≥

2〈A1
0C2

0 〉+ 2〈C1
1 〉

1+ 〈C1
1 〉

− 1 . (B.6)

We use Ineq. (B.6) to rewrite Ineq. (B.3),

I
C1

1=1
Bell ◦ {A

1B1}+
4〈A1

0C2
0 〉+ 4〈C1

1 〉
1+ 〈C1

1 〉
≤ 6 . (B.7)

Third, we enter ISame into the equation: We remark that A1
0C2

0 ∼ A2
0C2

0 (∼ denotes
that the two joint distributions are similarly distributed). This can be seen by
observing the inflation in Figure B.4: The view of the couple {Alice-1, Charlie-2}
is exactly the same as the one of the couple {Alice-2, Charlie-2}; namely, the joint
distributions of all their input resources are identical. One conclusion is hence
that

〈A1
0C2

0 〉= 〈A
2
0C2

0 〉 . (B.8)

We then use an algebraic argument applied to inflation; we find from reformu-
lating Ref. [NWRPK20, App. A, Eq. (3)] that
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〈A2
0C2

0 〉 ≥ 〈A
2
0B2

2〉+ 〈B
2
2C2

0 〉 − 1= ISame ◦ {A2B2C2} − 1 . (B.9)

We now link Ineq. (B.7) and Eq. (B.9), thanks to Ineq. (B.8), and obtain

I
C1

1=1
Bell ◦ {A

1B1}+
4ISame ◦ {A2B2C2}

1+ 〈C1
1 〉

≤ 6+
4− 4〈C1

1 〉
1+ 〈C1

1 〉
. (B.10)

At last, fourth, we apply the standard lemmas of the inflation technique to rec-
ognize that

A1B1C1X 1Y 1Z1 ∼ ABCX Y Z , (B.11a)

A2B2X 2Y 2 ∼ ABX Y and B2C2Y 2Z2 ∼ BCY Z , (B.11b)

such that respectively

I
C1

1=1
Bell ◦ {A

1B1}= IC1=1
Bell and 〈C1

1 〉= 〈C1〉 , (B.12a)

and ISame ◦ {A2B2C2}= ISame . (B.12b)

As such, Eq. (B.10) — which applies to the specific inflated-scenario experiment
of Figure B.4 — is transformed into the general statement of Proposition 71.

Proof of violation. The quantum violation is achieved using |GHZ〉: On inputs
corresponding to the Same game (X Y Z=020), all players measure in the rec-
tilinear basis. On input Z=1, Charlie measures his state in the Hadamard ba-
sis and obtains marginal 〈C1〉 = 0; when he obtains C1=1 (corresponding to
|+〉C), the state of Alice and Bob is steered towards the maximally entangled
state |φ+〉AB and they can play the Bell game using the standard optimal strategy
for CHSH.

B.3.2 The |GHZN〉 quantum state produces genuinely LOSR N -
multipartite nonlocal correlations

We now generalize Proposition 71 to all N -party scenarios in Eq. (P72) of the
following proposition. The violation of this inequality by the |GHZN 〉 state (see
below) provides the proof of Theorem 70 and of Proposition 5 of [CRWR21b].
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Proposition 72. In the absence of any N-way nonclassical common cause,

I C̃1=1
Bell +

4ISameN

1+ 〈C̃1
1 〉
≤ 6+

4(N − 2)− 4〈C̃1
1 〉

1+ 〈C̃1
1 〉

, (P72)

where the game scores I C̃1=1
Bell and ISameN

are defined below in (B.13) and (B.14).
Measurements on the |GHZN 〉 quantum state can violate the above inequality.

Proof of Eq. (P72). This is done by adding, to the two-player argument, extra
players whose collective role is similar to Charlie’s role in the three-player case.
For this reason we name Charlie[i] (i ∈ {1, . . . , N−2}) the players that are neither
Alice nor Bob. In Figure B.5 we illustrate, for the 4-player case, the inflation
scenario on which the following argument is based.

We start by defining the generalization of the two previous, three-player games.
The game that necessitates nonclassical resources to be won maximally is

I C̃1=1
Bell :=〈A0B0〉C̃1=1 + 〈A0B1〉C̃1=1

+ 〈A1B0〉C̃1=1 − 〈A1B1〉C̃1=1 ,
(B.13)

where the difference with the three-player game IC1=1
Bell is that C̃ := C1[1] · C1[2] ·

[. . . ] · C1[N−2] is defined over the collective of Charlies (i.e., C̃1=1 indicates that
all Charlie players had input 1 and an even number of them outputted −1);
the game that favours no randomness or genuine tripartite resources (including
classical shared randomness) is

ISameN
:= 〈A0B2〉+〈B2C0[1]〉+ 〈C0[1]C0[2]〉

+ [. . . ] + 〈C0[N−3]C0[N−2]〉 .
(B.14)

The proof closely follows the one given in Section B.3.1 for three parties:

First, as in the three-player case, we use, mutatis mutandis, Theorem 1 of Ref. [ADP+14,
Eq. (11)],

I
C̃1

1=1
Bell ◦ {A

1B1}+ 2〈A1
0C2

0[N−2]〉C̃1
1=1 ≤ 4 . (B.15)

Second, we bound 〈A1
0C2

0[N−2]〉C̃1
1=1 with 〈A1

0C2
0[N−2]〉 and obtain (see Eqs.(B.4a)–

(B.6))

〈A1
0C2

0[N−2]〉C̃1
1=1 ≥

2〈A1
0C2

0[N−2]〉+ 2〈C̃1
1 〉

1+ 〈C̃1
1 〉

− 1 . (B.16)
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Therefore,

I
C̃1

1=1
Bell ◦ {A

1B1}+
4〈A1

0C2
0[N−2]〉+ 4〈C̃1

1 〉

1+ 〈C̃1
1 〉

≤ 6 . (B.17)

Third, we remark from the inflation technique that A1
0C2

0[N−2] ∼ A2
0C2

0[N−2], so

〈A1
0C2

0[N−2]〉= 〈A
2
0C2

0[N−2]〉 . (B.18)

We find from applying the recursive algebraic argument of Ref. [NWRPK20, App. A,
Eq. (27)] that

〈A2
0C2

0[N−2]〉 ≥ 〈A
2
0B2

2〉+ 〈B
2
2C2

0[1]〉+ 〈C
2
0[1]C

2
0[2]〉

+ [. . . ] + 〈C2
0[N−3]C

2
0[N−2]〉 − N + 2 ,

(B.19)

or, equivalently,

〈A2
0C2

0[N−2]〉 ≥ ISame ◦ {A2B2C2
[0] . . . C2

[N−2]} − N + 2 . (B.20)

Combining the above (Eqs (B.17), (B.18) and (B.20)), we get

I
C̃1

1=1
Bell ◦ {A

1B1}+
4ISameN

◦ {A2B2C2
[0] . . . C2

[N−2]}

1+ 〈C̃1
1 〉

≤ 6+
4(N − 2)− 4〈C̃1

1 〉
1+ 〈C̃1

1 〉
.

(B.21)

At last, fourth, we recognize using the inflation technique that

I
C̃1

1=1
Bell ◦ {A

1B1}= I C̃1=1
Bell , (B.22)

〈C̃1
1 〉= 〈C̃1〉 , (B.23)

ISameN
◦ {A2B2C2

[1] . . . C2
[N−2]}= ISameN

; (B.24)

we conclude the robust statement generalized to N parties:

I C̃1=1
Bell +

4ISameN

1+ 〈C̃1
1 〉
≤ 6+

4(N − 2)− 4〈C̃1
1 〉

1+ 〈C̃1
1 〉

. (P72)
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Proof of violation. Eq. (P72) admits a violation using measurements on the N -
partite quantum state |GHZN 〉 := (|01 . . . 0N 〉 + |11 . . . 1N 〉)/

p
2. The strategy is

straightforward — on inputs corresponding to the Same game, all players mea-
sure in the rectilinear basis; on inputs corresponding to the Bell game, the Char-
lie players measure in the Hadamard basis (if their product is positive, they have
then successfully steered Alice and Bob to the maximally entangled state |φ+〉AB),
while Alice and Bob use optimal measurements for the standard Bell game, cen-
tred on Alice measuring in the rectilinear basis on input X = 0. The resulting
value for the left-hand side of Eq. (P72) is then 2

p
2+ 4(N−1), while the right-

hand side is 4N−2, hence smaller. This proves that |GHZN 〉 can produce corre-
lations that are genuinely LOSR N -partite nonlocal.

B.3.3 The |W〉 quantum state produces genuinely LOSR-tripartite-
nonlocal correlations

In this section, we prove that some measurements on |W〉 lead to correlations
that are LOSR genuinely tripartite nonlocal. We use a technique that is similar to
the one that we use with |GHZ〉: a multi-game format analyzed through inflation.
It provides the proof of Proposition 4 of [CRWR21b]. As opposed to the previous
examples, our proof is not noise tolerant.

Proposition 73 (W). In the absence of any 3-way nonclassical cause, there are
quantum measurements on the quantum state |W〉 that cannot be simulated exactly.

The global construction rest on a fourth-order inflation (a triangle plus a third-
order ring). In the rest of this section, we detail the proof by examining various
relevant cuts.

Preliminaries

For ease of notation, in this section we take the convention to denote the binary
outputs as {0,1} rather than as {±1}.

BKP Inequalities. The argument presented in the present section is based on
the Barrett–Kent–Pironio correlations of parameter d=2 [BKP06], which are equiv-
alent to the chained Bell inequalities of Refs. [Pea70; BC90] and can be defined
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as

IBKPM
:= P(A=B|X=1, Y=M)

+ P(A̸=B|X=M , Y=M)

+
∑

i∈{1,...,M−1}
j∈{0,1}

P(A̸=B|X=i + j, Y=i) .
(B.25)

The inputs have values X , Y ∈ {1, . . . , M}. All outputs are binary (i.e., 0 or 1).
The algebraic minimum is IBKPM

= 0 but local resources cannot reach less than 1.

The BKP inequalities concern two players, but as for the |GHZ〉 case, we consider
the lifted case where we condition on the outcome C=0 of a third, space-like
separated player (the same local and algebraic minima then apply).

IC=0
BKPM

:= P(A=B|X=1, Y=M , C=0)

+ P(A̸=B|X=M , Y=M , C=0)

+
∑

i∈{1,...,M−1}
j∈{0,1}

P(A̸=B|X=i + j, Y=i, C=0) .
(B.26)

Key results concerning BKP correlations are that, in the asymptotic limit M →∞,
the optimal violation allowed by a maximally entangled state |φ+〉 is the algebraic
minimum IC=0

BKPM
= 0 [BKP06, Eq. (9)], while for all λ for which the output of Alice

is completely determined given output C , the classical bound of IBKPM
≥ 1 applies

(corollary of Theorem 1 in Ref. [ADP+14, Eq. (11)]).

A multi-game which can be won with perfect probability using a |W〉-state
quantum strategy. Similarly to the proof presented for the |GHZ〉 case, the
proof here also follows a multi-game format. Here we define three games which
can all be won at the same time using a quantum strategy.

I On inputs X ∈ {1, . . . , M}, Y ∈ {1, . . . , M}, Z=1, the players are asked (in the
asymptotic limit) to reach lim

M→∞
IC=0
BKPM

= 0, while having P(C=0|Z=1) = 2/3.

II A game identical to B.3.3 but with the roles of Alice and Charlie swapped.

III On inputs X Y Z=101 the players must collectively output exactly one “1” and
two “0”s (i.e., ABC ∈ {001,010, 100}).

An important fact is that on input X=1 (or Z=1), Alice (or Charlie) does not
know which one of the three games she (or he) is playing.
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The quantum strategy to win maximally all three games with the |W〉 := (|001〉+
|010〉+ |100〉)/

p
3 state is straightforward. On inputs X = 1, Y = 0 and Z = 1,

the players measure in the rectilinear basis and by doing so always win the third
game of outputting exactly one 1. On input Z=1, Charlie obtains 0 with probabil-
ity 2/3 and in that case the state at Alice–Bob is steered towards a maximally en-
tangle state |01〉+ |10〉/

p
2. Alice and Bob can then on inputs X , Y ∈ {1, . . . , M}

apply the strategy described in Ref. [BKP06] to violate maximally the BKP in-
equality, achieving asymptotically lim

M→∞
IAB|C=0
BKPM

→ 0. The strategy is symmetric

in Alice–Charlie and thus the players also violate the BKP inequality when the
roles of Alice and Charlie are switched.

“Nonlocal sharing-of-the-one.” Our proof relies on a concept that we call “non-
local sharing-of-the-one.” (Note that, without a loss of generality, we consider
any private randomness as also part of Λ.)

Definition 74. The nonlocal–sharing-of-the-one indicators are defined for distri-
butions that simulate perfectly (on inputs X Y Z = 101) the classical W distribution
(i.e., game (iii)); they are

f λAB :=











1 if P(A=1|X=1,Λ=λ)> 0

AND P(B=1|Y=0,Λ=λ)> 0 ,

0 otherwise ,

(B.27)

f λBC :=











1 if P(B=1|Y=0,Λ=λ)> 0

AND P(C=1|Z=1,Λ=λ)> 0 ,

0 otherwise ,

(B.28)

f λAC :=











1 if P(A=1|X=1,Λ=λ)> 0

AND P(C=1|Z=1,Λ=λ)> 0 ,

0 otherwise .

(B.29)

Intuitively f λAB, for any fixed λ, is 0 if Alice or Bob (or both) automatically out-
put “0” for that λ without considering the GPT sources (on inputs X = 1 and
Y = 0). It equals 1 if both players need the result of manipulations involving
GPT resources before ruling out the output “1.” The two other indicators have a
similar interpretation.
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The proof by contradiction

We show that the players are not able to complete all three tasks perfectly us-
ing shared randomness and merely bipartite resources (while they were able to
do so using measurements on the quantum state |W〉). More precisely, in the
triangle scenario (see Figure B.3) succeeding perfectly at all tasks implies two
contradictory statements:

a. Eλ( f λAB + f λBC)≤ 1.
b. Eλ( f λAB + f λBC)≥ 4/3.

We prove those two contradictory statements in the subsections below.

Proof that winning perfectly Game B.3.3 implies Eλ( f λAB + f λBC) ≤ 1. We look
exclusively at the third game and show that simulating perfectly the image of the
classical W distribution in the LOSR framework with bipartite resources leads to
the upper bound Eλ( f λAB + f λBC)≤ 1. In fact, we prove a stronger statement:

Proposition 75 (Monogamy of the nonlocal one). In the triangle scenario (see
Figure B.3), when sampling perfectly from the image {001, 010,100}, the following
bound must hold.

f λAB + f λBC + f λAC ≤ 1 . (B.30)

In other words, for each instance λ of the shared randomness, at least one player
disregards its GPT sources and deterministically outputs 0.

Proof. Each term in the sum is by definition either 0 or 1. We first prove that,
for any value λ for which “sometimes Alice outputs 1; and sometimes Charlie
outputs 1,” then “one of them will output 1,” hence Bob can never output 1 for
this λ. In other terms, we prove:

∀λ :
�

f λAC = 1 =⇒ f λAB = f λBC = 0
	

. (B.31)

Our proof use two inflated scenarios. It is a direct corollary of Lemma 77 (be-
low), which uses Lemma 76 (also below). Then, the full proposition results from
repeating the argument with permuted players (e.g., by replacing ABC and inputs
X Y Z=101 with BAC and inputs Y X Z=100).

Lemma 76. In the short-line inflation illustrated in Figure B.6, ∀λ such that f λAC=1,

P(A1C1 ∈ {01,10}|B1B2=00, Y 1Y 2=00,Λ=λ) = 1 . (B.32)
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Proof. Considerλ such that f λAC = 1. Remark first that we have P(B=1|Y=0,Λ=λ)<
1 because if Bob were to always output 1 for that λ, then to reproduce the image
{001,010, 100} neither Alice nor Charlie could ever output 1 for that λ.

We use the line inflation depicted in Figure B.6, and we condition, given λ,
on B1 = B2 = 0 (it has non-zero weight by the previous remark and because
B1 ∼ B ∼ B2). In what follows, all probabilities are conditioned on the inputs
X Y Z=101; we omit them to ease notation.

From inflation, we have

{A1B1} ∼ {AB} ,
{B2C1} ∼ {BC} ,
{A1C1} ∼ {AC} .

Because there is exactly one “1,” we have both

P(A=1|BC=00) = 1 ,

P(A=1|BC=01) = 0 .

It also holds that

P(A=1|B=0) =P(C=0|B=0)P(A=1|BC=00)

+P(C=1|B=0)P(A=1|BC=01) .

Taken all together, we obtain

P(A1=1|B1=0) + P(C1=1|B2=0) = 1 .

Moreover, we have

1=P(A1C1=00|B1B2=00) + P(A1C1=01|B1B2=00)

+ P(A1C1=10|B1B2=00) + P(A1C1=11|B1B2=00) .

As the two middle terms are2

P(A1C1=01|B1B2=00) + P(A1C1=10|B1B2=00)

=P(C1=1|B1B2=00) + P(A1=1|B1B2=00)

=P(C1=1|B2=0) + P(A1=1|B1=0)

=1 ,

2The second equality holds because B1 and B2C2 are space-like separated, as well as B2 and
A1B1, and because P(B1=0|B2=0)> 0 and vice versa have non-zero probabilities.



101 B.3 |GHZN 〉 and |W〉 create GMNL correlations

we have that

P(A1C1=00|B1B2=00) = 0= P(A1C1=11|B1B2=00) .

In conclusion, for any λ for which the conditioning on B=0 is possible (e.g., all
λs for which f λAC = 1), we have

P(A1C1=00|B1B2=00,Λ= λ) = 0

P(A1C1=11|B1B2=00,Λ= λ) = 0 .

Therefore Lemma 76 holds.

Lemma 77. In the triangle scenario (see Fig B.3), when sampling perfectly from
the image {001,010, 100}, ∀λ such that f λAC=1,

P(B=1|Y=0,Λ=λ) = 0 . (B.33)

Proof. We consider the slightly extended line inflation of Figure B.7. We again
consider any λ for which P(A=1|λ) > 03 and P(C=1|λ) > 0 (i.e., f λAC=1). Note
that {C2A2|Λ=λ} ∼ {C2|Λ=λ}{A2|Λ=λ} (i.e., they are independent given λ). We
use that opportunity to condition on A2 = 1 = C2. Because we are reproducing
the image of the W distribution and because {A2B2} ∼ {AB} and {B1C2} ∼ {BC},
we have

P(B2=0|A2=1) = 1 ,

P(B1=0|C2=1) = 1 .

By Lemma 76, we end up with

P(A1C1∈{01,10}|A2C2=11,Λ=λ)

=P(A1C1∈{01,10}|B1B2=00,Λ=λ)

=1

for all λ. Finally, the inflation tells us that

{A1C1|A2C2=11,Λ=λ} ∼ {A1C1|Λ=λ} ∼ {AC |Λ=λ} .

Hence we can remove the conditioning on A2C2=11 and obtain that 1= P(A1C1∈{01, 10}|Λ=λ)
(remember that we are assuming f λAC=1). Eq. (B.33) follows.

3The inputs X Y Z = 101 are still omitted.
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Proof that winning perfectly all games imply Eλ( f λAB+ f λBC)≥ 4/3. We look at
the first two games — violating BKP inequalities conditioned on C=0, or A=0,
respectively — and prove a lower bound that contradicts the upper bound found
in a.

Proposition 78. In all nonsignalling LOSR GPT scenarios, if the players succeed
perfectly at both Game B.3.3 and Game B.3.3, and also at Game B.3.3, then

E
λ
( f λAB + f λBC)≥ 4/3 . (B.34)

The proof follows from Corollary 79.1.

We start with a lemma.

Lemma 79. If the players win perfectly Game B.3.3, then ∀λ such that f λAB = 0,
∀M,

IC=0
BKPM

(λ)≥ 1 . (B.35)

Note that a similar statement holds when Alice and Charlie are switched.

Proof. On inputs X Y Z = 101: Given any λ, if f λAB = 0, at least either Alice or
Bob outputs deterministically 0. If it is Alice, then her strategy for Game B.3.3 is
local, and (pre-processing on C=0 or not) the local bound IC=0

BKPM
(λ)≥ 1 applies.

If it is Bob that always output 0 for that λ, then Alice must irremediably output 1
whenever C = 0. Her strategy for Game B.3.3 is therefore also local in reference
to Bob when conditioned on C = 0, and the local bound IC=0

BKPM
(λ) ≥ 1 also

applies.

Corollary 79.1. If the players win perfectly Game B.3.3 (i.e., limM→∞ IC=0
BKPM

= 0
and P(C=0|Z=1) = 2/3) and Game B.3.3,

E
λ
( f λAB)≥ 2/3 . (B.36)

Note that the equivalent for Game B.3.3 (replacing Game B.3.3) holds, when Alice
and Charlie are switched.

Proof. By contradiction from combining Lemma 79 and limM→∞ IC=0
BKPM

= 0, we
have that ∀λ such that P(C=0|Z=1,Λ=λ) ̸= 0, f λAB = 1. To have P(C=0|Z=1) =
2/3, the summed weight of these λs must be at least 2/3. Therefore, Eλ( f λAB) ≥
2/3.
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B.4 A computational method to prove the genuineness
of LOSR multipartite nonlocality

In the previous section, we exhibited several genuinely LOSR-multipartite-nonlocal
correlations. We proved that the quantum states |GHZN 〉 and |W〉 can produce
such correlations. We obtained some (limited) noise-tolerant results for the
|GHZN 〉 state. In this section, we provide a linear-programming method to ob-
tain certificates of genuine LOSR multipartite nonlocality based on the inflation
technique. We show that this method improves the noise tolerance that we ob-
tained in the previous section for |GHZ3〉. The improved noise tolerance makes
within experimental reach a demonstration that Nature is not merely bipartite.
This method consists in a hierarchy of linear-programming (LP) problems able
to characterize a relaxation of the set of LOSR-theory-agnostic correlations.

We first introduce the set of weakly (N−1)-LOSR theory-agnostic correlations
which we then show can be freely strengthened, and from which we then de-
fine an explicit hierarchy.

Definition 80 (Weakly (N−1)-LOSR theory-agnostic correlation). Consider an
N-partite nonsignalling correlation P. We say that P is a Weakly (N−1)-LOSR
theory-agnostic correlation if for every any-order nonfanout inflation I of NN ,
there exists a nosignalling correlation Q of the party of I such that Q satisfies (C1)
with respect to P, and (C2) with respect to I .

Note first that due to the comment at the end of Definition 68, the set of Weakly
(N−1)-LOSR theory-agnostic correlations is clearly a relaxation of the set of
(N−1)-LOSR theory-agnostic correlations.

One can readily anticipate an implementation in terms of linear programs (see
Section B.4.2), as the conditions over Q are linear for any fixed inflation I . In
the following, using De Finetti’s theorem, we first show that a looser version of
the nonlinear condition (C3) can be derived from the relaxed definition.

B.4.1 A free strengthening of the defining conditions for weakly
(N−1)-LOSR theory-agnostic correlations

The following Proposition shows that a looser version of the nonlinear condition
(C3) is implied by Definition 80.

Proposition 81 (Weakly (N−1)-LOSR theory-agnostic correlation). Consider an
N-partite nonsignalling correlation P. P is a Weak (N−1)-LOSR theory-agnostic
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correlation if and only if, for every any-order nonfanout inflation I of NN , there
exists a random variable λ of density dµ(λ) and nonsignalling correlation Qλ such
that, with Q =
∫

dµ(λ)Qλ:

1 Q satisfies (C1) with respect to P: for all two (G1, G2) sub-networks of (I ,NN ),
if the two are isomorphic, then

∫

dµ(λ)Qλ|G1
= P|G2

.

2 Q satisfies (C2) with respect to I : for all two (G1, G2) sub-networks of (I ,I ),
if the two are isomorphic, then

∫

dµ(λ)Qλ|G1
=
∫

dµ(λ)Qλ|G2
.

3 Q satisfies a loosening of (C3) with respect to I : For all two non-overlapping
(G1, G2) sub-networks ofI , if the two have no sources in common, then

∫

dµ(λ)Qλ|G1∪· G2
=

∫

dµ(λ)Qλ|G1
·Qλ|G2

.

Remark that in Definitions 68, the conditions (C1), (C2), (C3) were imposed for
every fixed λ. This proposition replaces all these conditions by weaker versions
in which one first integrate over λ before imposing the constraint.

Proof. Consider a P satisfying the proposition’s conditions. Consider an inflation
I ofNN . We need to find a correlation Q of the parties inI which decomposes as
Q =
∫

dµ(λ)Qλ such that the conditions 1., 2., 3. of the proposition are satisfied.
For this, we introduce a larger (infinite) inflation J = {Ip}p∈N of both NN and
I , which consists of infinitely many independent copies of I . As P satisfies
the proposition’s conditions, there exists a nonsignalling correlation R= R|{Pp}p∈N

over all the parties in J such that R satisfies 1. and 2..

Remark first that as 2. is satisfied, for any permutation σ of N, the inflation
J σ = {Iσ(p)}p∈N which consists in a reordering of the copies of I is isomorphic
to J . Hence, R is invariant under any permutation σ of the parties: R|{Pp}p∈N

=
R|{Pσ(p)}p∈N

. By the De Finetti theorem, this implies that R is a mixture of indepen-
dent and identically distributed probability distributions over the {Pp}:

R=

∫

dµ(λ)(Qλ)
⊗∞ (B.37)

We consider the marginal of R over I0, a sub-network of J = {Ip}p∈N, which
can be written Q = R|I0

=
∫

dµ(λ)Qλ. Q can also be seen as a distribution over
the parties of I . As R satisfies 1. and 2., Q clearly satisfies 1. and 2.. Moreover,
consider two sub-networks G1, G2 of I which have no sources in common. Then,
there exist two ways to see the network (G1, G2) as a sub-network of J :
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• (G1, G2) is a sub-network of I0, hence of J : we call it G ⊂ I0 ⊂ J . Note that
G can also be seen as a sub-network of I .

• We can also see (G1, G2) as a sub-network of I1 × I2 where G1 ⊂ I1 and
G2 ⊂ I2. In this case (G1, G2) can be seen as a different sub-network of J : we
call it G′ ⊂ I1 ×I2 ⊂ J .

Remark that, as G1, G2 have no sources in common, the two sub-networks G and
G′ of J are isomorphic.

Then, we have
∫

dµ(λ)Qλ|G1G2
= Q|G = R|G = R|G′ =

∫

dµ(λ)Qλ|G1
·Qλ|G2

, where
we used the fact that R satisfies 2. in the third equality and Eq. (B.37) in the fifth
equality.

B.4.2 A Linear Programming Hierarchy

Definition 80 leads to a natural algorithmic way to prove that a nonsignaling
correlation P is not a weakly (N−1)-LOSR theory-agnostic correlation. As this
notion is a relaxation, the success of the algorithm directly implies that P is not
a (N−1)-LOSR theory-agnostic correlation, hence that P is genuinely LOSR N -
partite nonlocal.

Our hierarchy is based on enumerating all K th-order inflations I1, ...,IpK
of NN ,

requiring a Q satisfying Definition 80 for each of them, but also imposing cross-
inflation compatibility constraints, which would normally only show up at a
higher-order inflation. Nevertheless, adding these extra constraints does not re-
quire any increase in the number of variables in the linear program, and hence
it would be wasteful in practice not to include them.

Definition 82 (The K th-order inflation test for evaluating if P might be a weakly
(N−1)-LOSR theory-agnostic correlation). Consider an N-partite nonsignalling
correlation P. Then, a necessary condition for P to be a weakly (N−1)-LOSR theory-
agnostic correlation is that for every nonfanout inflation I of NN (up to order K),
there exists a nonsignalling correlation Q(I ) of N × K parties such that:

(C1) For all two (G1, G2) sub-networks of (I ,NN ), if the two are isomorphic, then
Q(I )|G1

= P|G2
.

(C2+) For all two (G1, G2) sub-networks of a pair of K th-order inflations (I1,I2),
including but not limited to the special case I1 = I2, if G1 and G2 are isomorphic,
then Q(I1)

|G1
=Q(I2)

|G2
.
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This algorithm is a direct adaptation of the algorithms presented in the original
papers on the inflation technique [WSF19; NW20], hence we only sketch it.

Algorithm 1 The K th-order inflation test for evaluating if P might be a weakly
(N−1)-LOSR theory-agnostic correlation

1: INPUT: An N-partite nonsignalling correlation P and an integer K specifying
the hierarchy order

2: Enumerate all K th-order inflations I1, ...,IpK
of NN .

3: for i = 1, . . . , pK do
4: Find A(i)1 , B(i)1 such that the linear-compatibility conditions (C1) between

the unknown correlation Q(Ii) and the distribution P can be written as
A(i)1 ·Q

(Ii) = B(i)1 .
5: for j = i, . . . , pK do
6: Find A(i)2 , A( j)3 such that for every pair of isomorphic subgraphs of Ii

and I j the linear-compatibility conditions (C2+) between the un-

known marginal correlations Q(I1)
|G1

and Q(I2)
|G2

can be captured by con-

straints A(i)2 ·Q
(Ii) = A( j)3 ·Q

(I j).
7: end for
8: end for
9: Solve the Linear Program (LP) regarding the existence of vectors 0 ≤

Q(I1), ...,Q(IpK ) ≤ 1 such that
• for all i ∈ {1, . . . , pK}, each Q(Ii) is a correlation;
• and for all i ∈ {1, . . . , pK}, the correlation satisfies A(i)1 ·Q

(Ii) = B(i)1 ;
• and for all i, j ∈ {1, . . . , pK} such that i ≤ j, the pairs of correlations

satisfy A(i)2 ·Q
(Ii) = A( j)3 ·Q

(I j).
10: if LP is infeasible (i.e., the constraints cannot be simultaneously satisfied)

then
11: Output “P is not a Weakly (N−1)-LOSR theory-agnostic Correlation.”
12: end if

Details of the practical technicalities involved with formulating the appropriate
A matrices and B vectors can be found in Ref. [WSF19]. Infeasibility of the LP in-
dicates that P is not a weak (N−1)-LOSR theory-agnostic correlation, and hence
that P is genuinely LOSR N -partite nonlocal.

Note that in finite time one can only ever test K th-order inflations up to some finite
K . Hence, in finite time, the algorithm cannot prove that P is a weakly (N−1)-
LOSR theory-agnostic correlation (but it can prove it is not). In other words, this
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algorithm is only useful in proving the genuine LOSR N -partite nonlocality of a
distribution; happily, this is precisely our goal.

B.4.3 A better noise tolerance for |GHZ3〉

Our proposition 71 in Section B.3.1, which generalizes Proposition 3 of [CRWR21b],
proves that the state |GHZ3〉 can produce genuinely LOSR-tripartite-nonlocal cor-
relations. In this section, we focus on the noise tolerance of this claim: With a
noisy source of |GHZ3〉 states, can one still observe genuinely LOSR-tripartite-
nonlocal correlations? This question is of particular interest for experimental
concerns.

For simplicity, we focus on the case of white noise, for a state measured with
optimal measurements operators (the following can be generalized to other noise
models). We consider a source emitting a mixture of |GHZ3〉 with the maximally
mixed state,

ρp = p |GHZ3〉 〈GHZ3|+ (1− p)1/8 , (B.38)

and look for conditions on p ensuring that ρp can demonstrate genuinely LOSR-
tripartite-nonlocal correlations. The fidelity ofρp with |GHZ3〉 is f = 〈GHZ3|ρp |GHZ3〉=
(1+ 7p)/8, i.e., p = (8 f − 1)/7.

Remark first that Proposition 71 already allows to find a first noise-tolerant bound:
with ρp, performing the same measurements as in the ideal protocol, IC1=1

Bel l [ρp] =
p · 2
p

2, ISame[ρp] = p · 2 and 〈C1〉 = 0, hence (P71) is violated as long as
p · (2

p
2 + 8) > 10. Hence, we obtain a first proof of genuine LOSR tripartite

nonlocality for p ≳ 92%, corresponding to a fidelity f ≳ 93%. This bound is
experimentally challenging. For instance, recent experimental work could prove
a violation of Mermin and Svetlichny inequalities with a three-photon |GHZ3〉
state of fidelity ∼ 86% [HSH+14].

To improve the noise tolerance of our result, we implemented Algorithm 1 using
Mathematica and evaluated it for the inflation test of order K=2. Considering
again the correlation obtained by measuring ρp with the same measurements
as in the ideal protocol of Proposition 71, we obtained a certificate of LOSR
tripartite nonlocal genuiness for all state with p > 2

p

(2) − 2 ≈ 83%, i.e., of
fidelity f ≳ 85%.

This improvement shows the importance of the computation approach for ex-
perimental proofs of the claim that Nature is not merely N -partite for low N
(see [HSH+14; ZHW+15; ZBH+19; PPG+19] for experimental capabilities up to
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N = 6). Considering higher order inflation tests may result in better noise-
tolerant results. We also emphasize that Algorithm 1 can also be applied to the
|GHZN 〉 and |W〉 cases, possibly with alternative quantum measurements.

B.5 On LOCC vs LOSR and everything in between

B.5.1 A generalization of (N−1)-theory-agnostic correlations to
k-theory-agnostic correlations

In Section B.2, we introduced Definition 68, namely (N−1)-LOSR theory-agnostic
correlations, for describing the set of N -partite correlations that can be obtained
by local composition with any GPT (N−1)-partite resources as well as as N -
partite shared randomness.

Here we firstly note, in an informal way, that this definition can easily be altered
to characterize instead the N -partite theory-agnostic correlations that can be ob-
tained by allowing for shared randomness alongside GPT k-partite resources, for
some k < N . To do this, one needs simply consider the N -party network sce-
nario in which every subset of k parties is connected to an arbitrary causal GPT
resource. One can then proceed, as before, by considering K th-order nonfanout
inflation of this network scenario.

B.5.2 Several definitions of genuine multipartite nonlocality

We defined as genuinely LOSR N -multipartite nonlocal the correlations which
are not (N−1)-theory-agnostic. One can, however, consider a variety of related
definitions of genuinely multipartite-nonlocal distributions, and of associated
k−theory-agnostic correlations. Here we enumerate some of them, and discuss
on how they interrelate to one another.

In the following, we consider various physical causal theories for correlations
such as the classical, quantum and boxworld theories, or the signalling-boxes the-
ory, which allows for signalling distributions. We consider the set of all k−partite
R-like boxes, that is, all correlations which can be obtained in a k−party scenario
in a theory R . We call P≤k

R this set of correlations. Given R , one can define a
notion of LOCC nonclassicality as follows:

Definition 83 (Genuine LOCC-R tripartite nonlocality). A tripartite nonsignalling
correlation P is said to be LOCC-R tripartite producible if P can be decomposed
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into a convex mixture of products of onepartite and bipartiteR-like boxes, i.e., cor-
relations in P≤2

R .
A distribution which is not LOCC-R bipartite producible is said to be genuinely
LOCC-R tripartite nonlocal.

In this definition, the term LOCC indicates that one is allowed to perform lo-
cal operation over the classical inputs and output of R-like boxes, such as post-
processing or wiring. Local operations over the physical states in theory R are
not allowed. In particular, whenR →Q is quantum theory, entanglement swap-
ping is not an allowed operation as it cannot be performed via local operation
on some quantum measurement classical outputs.

This definition specializes to the standard Svetlichny notion of multipartite non-
locality (Definition 2 of [CRWR21b]) upon taking P≤2

R to be the set of all (onepar-
tite and bipartite) correlations, including signalling correlations, i.e. ,R →S 〉}.
One can also take R → N S to be the set of all (onepartite and bipartite)
nonsignalling boxes, such as in Refs. [CGL15; BTF+19]. Additional significant
choices for R include the R → Q — obtaining P≤2

Q , the set of all quantum
(onepartite and bipartite) correlations — as well as R → T OBL — obtaining
P≤2
T OBL , the set of all (onelocal and bilocal) time-ordered (TOBL) correlations,

see Refs. [GWAN12; BBGP13].

Ref. [CGL15] provides a quantitative generalization of these LOCC-centric defi-
nitions of multipartite nonlocality to more than three parties:

Definition 84 (LOCC-R minimal group size). An N-partite correlation P is said
to be LOCC-R k-partite producible if P can be decomposed into a convex mixture
of products of at most k-partite R-like boxes, i.e., correlations in P≤k

R .
The LOCC-R minimal group size of a correlation P is the smallest k such that P is
LOCC-R k-partite producible.

A plurality of definitions can similarly be encompassed within a spectrum of no-
tions of LOSR multipartite nonlocality.

It is important to keep in mind that in the LOCC-R sub-definitions, one is limited
to the type “R ”boxes, producing the correlations P≤k

R , to find a convex decom-
position of P. By contrast, in the following LOSR-S sub-definitions, one can
use some family of k-way sources ω≤k

S that are comprising the elementary con-
stituents of a physical network.

For any class of type-S sources which can serve as nonclassical resources in a
physical network we have:
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Definition 85 (Genuine LOSR-S tripartite nonlocality). A tripartite nonsignalling
correlation P is said to be LOSR-S tripartite producible if P can be obtained by
local operations over any 2-way S -type resources ω≤k

S along with 3-way shared
randomness between all parties.
A distribution which is not LOSR-S tripartite producible is said to be genuinely
LOSR-S tripartite nonlocal.

We define bipartite GPT states as the states which allow to recover our defini-
tion of genuinely LOSR-multipartite-nonlocal correlations for N = 2, that is, the
states ω≤2

GP T recovers Definition 69. Alternatively, one could take the 2-way re-
sources to be the quantum states ψ≤2

Q . This quantum causal notion of LOSR
multipartite nonlocality is equivalent to the definition of 3-way nonlocality given
in Ref. [SFK+20]. One could also imagine explicit nonclassical theories distinct
from quantum theory, such as explicit variants of the boxworld GPT [Jan12].

The multipartite generalization is as follows:

Definition 86 (LOSR-S minimal group size). An N-partite correlation P is said
to be LOSR-S k-partite producible if P can be obtained via local operations acting
on some network consisting of various k-way S -type sources along with N-way
classical randomness shared between all parties.
The LOSR-S minimal group size of a correlation P is the smallest k such that P is
LOSR-S k-partite producible.

B.5.3 Networks with sources distributing nonlocal boxes instead
of entangled states

To assess LOSR multipartite nonlocality, we are imagining N -partite networks
wherein every size k subset of parties shares a nonclassical source. Accordingly,
every individual party is connected to

�N−1
k−1

�

distinct sources. (For the triangle we
have N=3 and k=2, and every party is connected to two sources.)

This manuscript is concerned with GPT sources ωGP T , i.e., sources which dis-
tribute GPT entanglement. We have also alluded to sources which distribute
quantum entanglement ψQ . In all such cases, we are considering the sources
themselves to be described as multipartite entangled states. One can, however,
imagine a network in which the k-way sources connecting noncommunicating
parties are taken to be nonlocal boxes instead of entangled states.

That is to say, in addition to possibly consideringω≤k
GP T andψ≤k

Q we can imagine
to consider S → P≤k

N S (resp. S → P≤k
Q ), that is to consider correlations in P≤k

N S
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(resp. P≤k
Q ) as our sources.

When the sources in a network are themselves multipartite entangled states, then
the local operations performed by a single party (say, Alice) are described by
entangled measurements applied to Alice’s subspaces within her

�N−1
k−1

�

connected
sources. By contrast, when the sources in a network are themselves nonlocal
boxes, then the local operations performed by Alice are described by wirings that
she applies to her portions of the

�N−1
k−1

�

nonlocal boxes that she is connected to.

Entangled measurements are more general than wirings. Accordingly, the set of
correlations realizable using a network of k-way quantum sources (ψ≤k

Q ) includes
the set of correlations realizable using a network of k-way quantum-correlation
boxes (S → P≤k

Q ).

It is worth emphasizing that the inclusion is strict however.

Proposition 87. The set of tripartite correlations which are LOSR-producible us-
ing sources ψ≤2

Q is a strict superset of the tripartite correlations that are LOSR-
producible using S → P≤2

Q .

Proof. The following proof makes use of the entanglement swapping, which is
the paradigmatic advantage of sharing bipartite entanglement compared to shar-
ing bipartite nonlocal correlations. The closest analog of entanglement swapping
is nonlocal coupling [SB09; SB10], but nonlocality coupling is not possible in a
paradigm where local operations on boxes are limited to classical wirings. Con-
sider a tripartite correlation with two settings for Alice and Charlie and three
settings for Bob, (x ∈ {0,1}, y ∈ {0,1, 2}, z ∈ {0, 1}). Alice and Charlie al-
ways measure according to mutually unbiased bases. Bob, however, will ignore
the singlet shared with Charlie for his first two settings, choosing instead mea-
surements which lead to maximal violation of the CHSH inequality with Alice.
For Bob’s third setting, he performs a Bell-state measurement on the two singlets,
coarse graining the outcome of that measurement to be 0 if the postselected state
on Alice and Charlie is the singlet, and 1 otherwise. Thisψ≤2

Q based strategy pro-
duces a correlation of the form:

P(abc|x yz) =

¨

2+(−1)a⊕b⊕x yp2
16 y ∈ {0,1}

4−2(−1)b+(−1)a⊕b⊕c⊕xzp2
32 y=2

(B.39)

We now argue that this correlation is not LOSR-producible usingS → P≤2
Q . From

the maximal CHSH-inequality violation between Alice and Bob achieved when
y ∈ {0,1}, we conclude that the measurements performed by Alice cannot de-
pend in any way on the source that she shares with Charlie. On the other hand,
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we observe significant (maximal) CHSH-inequality violation between Alice and
Charlie when we condition on y=2 and b=0. This Alice–Charlie nonlocality
induced by postselection on Bob’s measurement can only be explained by en-
tanglement swapping, since we have eliminated the possibility that P(abc|x yz)
utilizes any Alice–Charlie source.

Let us conclude this section with a conjecture. Remark first that the set of correla-
tions realizable using a network of k-way GPT sources (ω≤k

GP T ) naturally includes
the set of correlations realizable using a network of k-way nonsignalling boxes
(S → P≤k

N S ). We conjecture that here too, the inclusion is strict.

Conjecture 1. The set of tripartite correlation which are LOSR-producible using
ω≤2
GP T is a strict superset of the tripartite correlations that are LOSR-producible

using S → P≤2
N S .

Our conjecture is based on the extremal-class #4 of the set of extremal nonsignalling
tripartite correlations, as enumerated in Ref. [PBS11]. These correlations are
known to be incompatible with a triangle network of typeS → P≤2

N S per Ref. [Sca06,
Sec. 5-A]. Hence it is sufficient to prove they are LOSR-producible using ω≤2

GP T ,
that is, that they are 2-LOSR theory-agnostic. We found evidence that the linear
constraint given by all the triangle inflations cannot rule out these correlations,
suggesting they are at least weakly 2-LOSR theory-agnostic correlations.

B.5.4 Comparing and contrasting LOCC and LOSR producibility

If a correlation P is in P≤k
R , i.e., LOCC-R k-producible, then P is also LOSR-

producible usingS → P≤k
R . The LOSR network which realizes the LOCC-relevant

convex decomposition utilizes the shared randomness as a switch variable. Ac-
cordingly, if P is genuinely LOSR-GP T multipartite nonlocal, then P is also
certainly genuinely LOCC k-partite nonlocal relative to R → N S . From the
well-known containment of PQ ⊂ PN S , we further establish that if P is genuinely
LOSR-GP T multipartite nonlocal, then P is also certainly genuinely LOCC k-
partite nonlocal relative to Q.

It is worth emphasizing that the implications about LOCC multipartite nonlo-
cality from LOSR multipartite nonlocality run strictly one way. That is, there are
correlations which are genuinely LOCC-N S multipartite nonlocal which are not
genuinely LOSR-N S multipartite nonlocal. Perhaps the most famous example
is the Svetlichny box; see Ref. [BLM+05b, Fig. 5]. Another simple example is the
parallel composition of two distinct bipartite Tsirelson boxes, one for Alice–Bob
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and another for Bob–Charlie, as discussed in [CRWR21b]. The resulting tripartite
correlation (involving a 2-bit setting variable and 2-bit outcome variable for Bob)
is genuinely LOCC-N S multipartite nonlocal [CTPdV21], but, by construction,
not genuinely LOSR-N S multipartite nonlocal.

It is also critical to recognize that Svetlichny genuine multipartite nonlocality is
not implied by LOSR multipartite nonlocality. This is readily evident by noticing
that inequality (P71) is strongly violated by nonsignalling correlations gener-
ated via causal models wherein a is allowed to functionally depend on b and y
(hidden signalling from Bob to Alice). Consider the following fine-tuned (hid-
den signalling) local hidden-variable model (LHVM): Let λ indicate the value of
the globally shared classical hidden random variable, such that λ is uniformly
distributed amongst the dichotomous values {+1,−1}. Let c=λ always, i.e., for
both z ∈ {0, 1}; similarly, let b=λ always, i.e., for all cases y ∈ {0, 1,2}. Finally,
let Alice’s outcome depend on y such that a = b × (−1)x y , an effect of which is
that a=b=c with unit probability for y=2.

For a further example, consider Box #8 in the set of extremal nonsignalling tri-
partite correlations as enumerated in Ref. [PBS11]. Such correlations are known
to be LOCC-producible using correlations in P≤2

S 〉}. Nevertheless, one can use non-
fanout inflation to readily prove that such correlations are not LOSR-producible
within triangle networks using sources of type ω≤2

GP T . As such, Box #8 is gen-
uinely LOSR multipartite nonlocal yet not Svetlichny genuinely multipartite.

B.6 Conclusion

In this paper, we focused on correlations that cannot be obtained from arbitrary
(N −1)-partite causal GPT resources and N -shared randomness, for any fixed N ,
which we called genuinely LOSR-multipartite-nonlocal correlations. We proved
that the (noisy) |GHZN 〉 states and the |W〉 state can produce such correlations.
This proves Theorem 70, the main result of this paper: Nature is not merely N-
partite, for any N . As this definition relies on an infinite hierarchy of nonlinear
existence problems involving linear- and nonlinear- equality constraints of fac-
torization, it is hard to manipulate in practice. Using De Finetti’s theorem, we ob-
tained a nontrivial relaxation of the set of genuinely LOSR-multipartite-nonlocal
correlations, which can be characterized by an infinite hierarchy of LP existence
problems. We illustrated its usefulness by improving the noise tolerance of our
analysis of |GHZ3〉, making an experimental proof accessible to current technolo-
gies. At last, we compared our introduced concept to already-existing definitions
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of genuine multipartite nonlocality. We finish this paper with some comments
and open questions.

Note that in our introduction, we argued that N -partite resource models of cor-
relations should include classical shared randomness. This is motivated by the
fact that, for instance, pre-established shared randomness can be stored in clas-
sical local memories. We now remark that more general forms of randomness
can a priori be shared in the same way: For instance, pre-stored quantum states
in quantum local memories can, in principle, also simulate a “live" shared ran-
dom quantum source. Certainly such unlimited quantum local memories are
fundamentally more technologically demanding. Nevertheless, we also want
to appeal to more foundations arguments for why the storage of many-partite
GPT resources should be treated as costly; see, for example, the resource the-
ory of quantum memory developed in Ref. [RBL18]. The trade-off between
nonclassical-memory capacity and the resource value of genuinely LOSR mul-
tipartite theory-agnostic correlations is a topic we highlight for future research.

The connections between our own definition of causal GPT in networks, which
is based on the concepts of causality and device replication, and the standard
GPT framework [SB09; SB10; Bar07; CDP11; Jan12] are also left for future
work [Pir21].

Motivated by a desire to concretely formulate computational algorithms, we re-
laxed the set of LOSR theory-agnostic Correlations into the set of weakly LOSR
theory-agnostic correlations. The question of the differences between these two
sets remains open. It might be that a refined version of the argument based
on De Finetti’s theorem could prove that the two coincide. It might also be
that our relaxation is strict and that there exists a correlation that is in the re-
laxed set without being in the original one. We expect that such approaches
will allow to find better noise-tolerant results for practical experimental demon-
strations that Nature is not merely genuinely LOSR N -partite nonlocal for low
N [ZHW+15; ZBH+19; PPG+19], and will allow to extend our analytical proofs
to more quantum states, such as the generalization of the tripartite |W〉 state.
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Figure B.1. All nonfanout inflations of order K = 2 for the tetrahedron network
N4 (i.e., the network with four 3-way sources). N4 is composed of parties A
(red), B (blue), C (yellow), D (green) and sources of colours (red, blue, green,
yellow) such that each party is connected to each source except for the one of
his own colour. We represent above the six non-isomorphic inflations I1, ...,I6

(which are of respective multiplicity 1, 3,3, 1,12, 12). Let P be a nonsignalling
correlation over A, B, C , D. For P to be a 3-LO theory-agnostic correlation,
Definition 67 requires the existence of a correlation Q(1), ...,Q(6) for each inflated
I1, ...,I6 such that (C1), (C2) and (C3) are satisfied. For example:
(C1) implies that Q(1)|A1B1C1D1 = P and Q(2)|A1D2 = P|AD, but not that Q(2)|A1B1C1D1 =

P.
(C2) implies that every inflation is invariant under the exchange of all copy in-

dices, e.g., Q|A1,B1,C1,D1,A2,B2,C2,D2 =Q|A2,B2,C2,D2,A1,B1,C1,D1 .
(C3) implies that Q(3)|A1B1A2B2 =Q(3)|A1B1 ·Q(3)|A2B2 .

Note that one can in principle also consider J = I1, ...,I6, which is a valid
inflation of N4 (but of order K = 12) and which implies the existence of a cor-
relation Q of the parties over J that factorizes as the product Q(1) · ... ·Q(6) and
satisfies the compatibility conditions imposed by (C2): for instance, it implies
Q(3)|A1B1C1A2B2C2 =Q(6)|A1B1C1A2B2C2 .
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A1 A2 A3
. . . AN

ω2
GPT

ω3
GPT . . . ωN

GPT

ω′1
GPT

ω′2
GPT . . . ω′N−1

GPT

Figure B.2. In this inflation I , each party Ai is connected to the original
sources ω j for j > i and to the cloned sources ω′j for j < i. Assume by
contradiction that there exists an arbitrary setup, with some causal GPT, that
allows us to simulate a shared random bit in NN . In I , (C1) imposes that two
consecutive parties A j, A j+1 share an identical random bit. This implies that any
chain of consecutive parties should all together share the same random bit. In
particular, (A1, AN ) share the same random bit, which is in contradiction with
(C2) as they do not have any sources in common.

λABC

Local

AX C Z

BY

ωAB

GPT

ωBC

GPT

ωAC

GPT

Figure B.3. A tripartite distribution is genuinely tripartite nonlocal according
to our Definition 69 if it is not a 2−LOSR theory-agnostic correlation, that is
if it cannot be realized by the above scenario, where the output of each player
is determined by local operations (such as joint measurements) on 1) its input,
2) the 3-way randomness and 3) 2-way GPT resources.
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Figure B.4. The inflation technique consists of duplicating and rearranging
players, sources, and input distributions. Here we inflate the (non genuinely
tripartite-nonlocal) triangle scenario of Figure B.3 as to have the players play
two parallel games (Bell and Same). It leads to a contradiction with the statis-
tics of measurements on |GHZ〉, and therefore to the conclusion that the |GHZ〉
quantum state is a genuinely tripartite-nonlocal resource. The duplicated play-
ers are indistinguishable copies of the same abstract process, hence Alice, on
input X=0, could be playing either game (A1 and A2 must have the same be-
haviour). The only condition on the random inputs is that they be independent
from all of the sources. The figure represents a cut of a larger inflation of or-
der 3, consisting of a triangle and a hexagon (three parties of the hexagon are
here fully ignored and only the input values relevant for the contradiction are
featured).
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Figure B.5. This 4-party nonfanout inflation cut exposes that the quantum
state
�

�GHZ4

�

:= (|0000〉+|1111〉)/
p

2 is a genuinely 4-partite nonlocal resource.
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Figure B.6. Sufficient for Lemma 76, this line inflation is in fact a cut of the
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Figure B.7. Representing the second step of the proof of Proposition 75, this
line inflation is in fact a cut of the third-order ring inflation. Given λ, we
condition on the output C2
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, which, to simulate without error a

distribution in {001, 010,100}, forces B1
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= 0= B2
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