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In this article, we discuss the numerical solution of diffusion equations on random surfaces 
within the isogeometric framework. We describe in detail, how diffusion problems on ran-
dom surfaces can be modelled and how quantities of interest may be derived. In particular, 
we employ a low rank approximation algorithm for the high-dimensional space-time cor-
relation of the random solution based on an online singular value decomposition, cp. [7]. 
Extensive numerical studies are performed to validate the approach. In particular, we con-
sider complex computational geometries originating from surface triangulations. The latter 
can be recast into the isogeometric context by transforming them into quadrangulations 
using the procedure from [41] and a subsequent approximation by NURBS surfaces.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Many problems in science and engineering can be modelled by partial differential equations (PDEs). Especially, PDEs on 
surfaces appear in a variety of applications, such as computer graphics [14,44,46], chemical engineering [1,21,48] or biology 
[22,23,39] and there already exists a multitude of computational methods for their numerical solution. In [19,20], the surface 
finite element method has been developed aiming at explicit surface representations by means of meshes. Alternatively, a 
level set based PDE solver is discussed in [4,5] and the closest point method, addressing closest point representations of 
surfaces, is proposed in [36,37,42]. A general solver for PDEs on point clouds can be found in [33]. Due to the wide-spread 
use and the effectiveness of Non-Uniform Rational Basis Spline (NURBS) based surfaces in industry, an Isogeometric Analysis 
(IGA), see [13,30], based framework for the solution of PDEs on surfaces was introduced in [31].

The striking advantage of IGA over the classical finite element method is the use of an exact geometry representation. In 
particular, the same basis is chosen to represent the geometry and the solution. This way, in IGA, the apriori L2-error and 
H1-error satisfy the optimal convergence rates O(hp+1) and O(hp) respectively for elliptic PDEs on surfaces, cf. [2,15,45]. 
Herein, h and p are the mesh size and the polynomial order of the NURBS basis functions respectively. The L2-error for the 
IGA of the parabolic problems is explored in [49]. In this article, we shall adopt the IGA framework for solving diffusion 
PDEs on random surfaces.

As we have outlined, PDEs on deterministic surfaces are already well explored. In many applications, however, such as 
chemical engineering and biology, the computational domain can not be measured exactly or may be subject to manufactur-
ing tolerances. Indeed, within this article, we will employ an interpolation approach to recast arbitrary surface triangulations 
into the isogeometric framework, which might itself be considered a source of epistemic uncertainty. In such situations, the 
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Fig. 1. Realization of a randomly deformed surface.

computational domain is a major source of uncertainty that needs to be accounted for. Uncertainty quantification of PDEs on 
random domains and surfaces has previously been considered in [11,16,26,47] and in the context of IGA in [3,17]. To model 
random surfaces, we follow the approach presented in [26] based on the Karhunen-Loève expansion of random deformation 
fields and exploit that the knowledge of this field at the surface is sufficient for the modelling of the random surface itself, 
cp. [17]. Having the random deformation field at our disposal, quantities of interest (QoI), such as the expectation and the 
correlation, can be defined with respect to the reference configuration. As the computation of the expectation is straightfor-
ward, we will particularly focus here on the computation of the space-time correlation, whose size may easily exceed the 
memory of a modern computer. Therefore, we devise a suitable low rank approximation, based on the online singular value 
decomposition suggested in [7]. We remark that similar low rank approximation methods have already been studied in the 
context of reduced basis methods, see [12,32,43]. However, in contrast to these works, our goal is not to devise a surrogate 
model for the underlying PDE, but rather to find an efficient means to represent the correlation.

The rest of this article is structured as follows. In Section 2, we introduce the diffusion problem and the random model 
under consideration. In Section 3, we discuss the isogeometric representation of random domains and briefly recall the 
algorithm from [41] for transferring surface triangulations into quadrangulations. Section 4 then discusses the variational 
formulation. Especially, thanks to the isogeometric setting we can compute realizations of the solution directly in the spatial 
configuration. Section 4 is devoted to the computation of quantities of interest, particularly to the low rank approximation 
of the solution’s correlation. In Section 6, extensive numerical studies are presented and concluding remarks are stated in 
Section 7.

2. Problem formulation

Let (�, F , P ) denote a complete probability space, where � is the sample space, F denotes the σ -field of events, and 
P is a probability measure. As model problem, we consider the diffusion equation on a closed random surface, i.e.,{

∂t u(ω, x, t) − �S u(ω, x, t) = f (ω, x), x ∈ S(ω)

u(ω, x,0) = u0(ω, x), x ∈ S(ω)
for P -a.e. ω ∈ �. (1)

Herein, �S denotes the Laplace-Beltrami operator, f is a source on the surface, and u0 denotes the initial condition. As 
the surface is closed, we do not need to impose any boundary conditions. Uniqueness of the solution is then obtained by 
considering mean zero functions. For the treatment of non-trivial boundary conditions in the random domain case, we refer 
to [25].

For the modelling of the random surface, we assume the existence of a Lipschitz continuous reference surface S0 and a 
random deformation field

χ : � × S0 → R3

such that there exists a constant Cuni > 0 with

‖χ (ω)‖C1(S0;R3),‖χ−1(ω)‖C1(S(ω);R3) ≤ Cuni for P -a.e. ω ∈ � (2)

and

S(ω) = χ(ω, S0) for P -a.e. ω ∈ �.

We refer to Fig. 1 for a realization of such a random deformation field. Note that it would in principle also be possible 
to consider random space-time deformation fields, as they have recently been introduced in [24], in a similar fashion.

Remark 2.1. For a sufficiently smooth surface, e.g. Lipschitz continuous, the uniformity condition (2) guarantees that the 
Sobolev spaces H1

(
S(ω)

)
and H1

(
S0

)
are equivalent independently of the particular realization of the random parameter, 
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see for example [26]. A more general framework is considered in [16], where the bounds on the deformation field hold only 
pathwise. The latter particularly covers the situation of log-normal deformation fields.

For our model (1), we make the assumption that the initial condition and the heat source on the random surface are 
given in material coordinates and not subject to uncertainty themselves, i.e.,

u0(ω, x) := û0
(
χ−1(ω, x)

)
, f (ω, x) := f̂

(
χ−1(ω, x)

)
for two deterministic functions f̂ , ̂u0 : S0 → R. We remark that it is also possible to consider initial conditions and heat 
sources described in spatial coordinates. In this case, they need to be defined on the hold-all domain 

⋃
ω∈� χ(ω, S0). 

Furthermore, one may to consider the situation where the data are subject to uncertainty themselves, which typically 
results in a much higher dimensionality of the problem, see e.g. [38]. Finally, for a given solution u on S(ω), we denote the 
pulled back solution by

û(ω, x̂, t) := u
(
χ(ω, x̂), t

)
.

Based on the pulled back solution, we compute QoI’s, such as the expected solution and its space-time correlation. More 
precisely, for any fixed time points t and t′ , we define these quantities according to

E[û(ω, x̂, t)] =
∫
�

û(ω, x̂, t)dP (ω) ∈ H1(S0) (3)

and

Cor[û]((x̂, t), (x̂′
, t′)

) =
∫
�

û(ω, x̂, t)û(ω, x̂′
, t′)dP (ω) ∈ H1(S0) ⊗ H1(S0), (4)

respectively.

3. Isogeometric representation of random domains

3.1. Representation of random deformation fields

In this section we briefly recall the ideas presented in [17] and adapt them to our settings. As has been argued there, 
it is sufficient to compute the Karhunen-Loève expansion of the random deformation field exclusively with respect to the 
random surface and no volume discretization is required at all. Hence, given the expected deformation field

E[χ ] : S0 → Rd

and its matrix valued covariance function

Cov[χ ] : S0 × S0 → Rd×d,

we can compute the surface Karhunen-Loève expansion

χ(ω, x̂) = E[χ ](x̂) +
∞∑

k=1

√
λkχk(x̂)Yk(ω), x̂ ∈ S0. (5)

Herein, the tuples {(λk, χk)}k are the eigenpairs of the covariance operator

C : [L2(S0)]3 → [L2(S0)]3,

(Cv)(x̂) :=
∫
S0

Cov[χ ](x̂, x̂′
)v(x̂′

)dσx̂′ (6)

and, for λk 
= 0, the centred and uncorrelated random variables {Yk}k are given according to

Yk(ω) := 1√
λk

∫
S0

(
χ(ω, x̂) −E[χ ](x̂)

)ᵀ
χk(x̂)dσx̂.

The existence of the Karhunen-Loève expansion is guaranteed by the uniformity condition (2), which ensures χ ∈
L2

(
�; [L2(S0)]3

)
and Cov[χ ] ∈ [L2(S0)]3 ⊗ [L2(S0)]3 and thus gives rise to the Hilbert-Schmidt operator C from (6), see 

also [26]. For the numerical realization of the Karhunen-Loève expansion in the random domain case, we refer to [27,38].
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In practice, however, the random variables {Yk}k are not known explicitly and need to be estimated. We make the 
common model assumption that the random variables {Yk}k are independent and uniformly distributed with U(−1, 1) for 
all k. For numerical computations, the Karhunen-Loève expansion has to be truncated after m ∈ N terms, where m has to 
be chosen to meet the overall accuracy. Then, by identifying each random variable Yk by its image yk ∈ [−1, 1], we arrive 
at the parametric deformation field

χ(y, x̂) = E[χ ](x̂) +
m∑

k=1

√
λkχk(x̂)yk, y ∈ 	 := [−1,1]m. (7)

The parametric deformation field gives rise to the parametric surfaces

S(y) = {
χ(y, x̂) : x̂ ∈ S0

}
. (8)

In the next subsection, we define corresponding NURBS representations and the associated ansatz spaces.

3.2. Random NURBS surfaces

We start by recalling the basic notions of isogeometric analysis, restricting ourselves to function spaces constructed via 
locally quasi-uniform p-open knot vectors as in [8].

Definition 3.1. Let p and k with 0 ≤ p < k. A locally quasi uniform p-open knot vector is a tuple


 = [
ξ0 = · · · = ξp ≤ · · · ≤ ξk = · · · = ξk+p

] ∈ [0,1]k+p+1

with ξ0 = 0 and ξk+p = 1 such that there exists a constant θ ≥ 1 with θ−1 ≤ h j · h−1
j+1 ≤ θ for all p ≤ j < k, where h j :=

ξ j+1 − ξ j . The B-spline basis {bp
j }0≤ j<k is then recursively defined according to

bp
j (x) =

⎧⎨⎩
1[ξ j ,ξ j+1) if p = 0,

x−ξ j
ξ j+p−ξ j

bp−1
j (x) + ξ j+p+1−x

ξ j+p+1−ξ j+1
bp−1

j+1 (x) else,

where 1A refers to the characteristic function of the set A. The corresponding spline space is defined as S p(
) :=
span({bp

j } j<k).

Spline spaces in two spatial dimensions are obtained by a tensor product construction. More precisely, we define the 
spaces

S p := S p(
) ⊗ S p(
). (9)

With regard to the knot vector 
, sets of the form [ξi, ξi+1] ×[ξ j, ξ j+1] are referred to as elements. The corresponding mesh 
size will be denoted by h. For further details, we refer to [40] and the references therein.

In what follows, we shall adopt the usual isogeometric setting for the representation of the surface S0, i.e., we assume 
that S0 can be decomposed into several smooth patches S0 = ⋃M

i=1 S(i)
0 , where the intersection S(i)

0 ∩ S(i′)
0 consists at most 

of a common vertex or a common edge for i 
= i′ . Each patch S(i)
0 is represented by an invertible NURBS mapping

si : [0,1]2 → S(i)
0 with S(i)

0 = si([0,1]2) for i = 1,2, . . . , M. (10)

Herein, the functions si are of the form

si(x1, x2) :=
k1∑

0=i1

k2∑
0=i2

c i1,i2 bp
i1
(x1)b

p
i2
(x2)wi1,i2∑k1−1

j1=0

∑k2−1
j2=0 bp

j1
(x1)b

p
j2
(x2)w j1, j2

for control points c i1,i2 ∈R3 and weights wi1,i2 > 0. As a consequence, the resulting patches S(i)
0 are at most of class C p−1. 

In order to obtain a consistent surface representation, we moreover assume that parametrizations sharing a common edge 
coincide at this edge except for orientation.

The subdivision of the surface S0 into patches, directly induces a corresponding subdivision of the random surface 
according to S(y) = ⋃M

i=1 S(i)(y) with S(i)(y) := (
χ(y) ◦ si

)
([0, 1]2). By representing the mappings χ (y) ◦ si using NURBS, 

it can be achieved that S(i)(y) is again a NURBS surface, see [17]. As we typically have to compute many realizations of the 
parametric surface to obtain acceptable approximations of the QoI’s, it is in practice advisable to reinterpolate each patch 
and to compute the Karhunen-Loève expansion only with respect to a set of interpolation points on [0, 1]2, see [27].
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Fig. 2. Partitioning of the Stanford bunny into 179 quadrilateral patches.

As usual, we define the ansatz space on S0 by patchwise lifting the space S p to S0, i.e., Vh := {
v ∈ C(S0) :

(
v|

S(i)
0

◦ si
) ∈

S p
}

. Analogously, we introduce the parametric spaces Vh(y) := {
v ∈ C

(
S(y)

) : (v|
S(i)

0
◦χ(y) ◦ si

) ∈ S p(�)
}

. Given a B-spline 

basis �̂ := [ϕ̂1, ϕ̂2, . . . , ϕ̂N p,� ] of Vh , we denote the lifted basis in Vh(y) by

ϕi := (ϕ̂i ◦ χ−1) for i = 1,2, . . . , N p,�.

3.3. Partitioning surfaces into quadrilateral patches

In practice, the surface representation (10) is often not directly available for more complex geometries. However, the 
partitioning of surface meshes into conforming quadrilateral patches is well solved, see for example [6,10,34,35,41] and the 
references therein. The procedure suggested there is based on determining a suitable set of nodes called singularities and 
connecting these by a set of arcs called separatrices, such that the resulting partition consists of multiple valid conforming 
quadrilateral patches.

The initial quadrangulation for the Stanford bunny considered in this paper has been taken from [41]. The procedure 
there is described as follows: The input is a triangular surface mesh of the geometry endowed with a cross field, which 
consists of two orthogonal vectors lying on tangent space of each triangle. The singularities are determined by localizing 
points where no local parametrization can be constructed, see the nodes in Fig. 2. The separatrices are propagated by tracing 
geodesic paths directly on the triangular mesh starting from a singularity towards an incident singularity. By constraining the 
valence of all singularities to be neither 3 or 5 and avoiding tangential crossings, the separatrices automatically divide the 
surface into a conforming quad layout, see Fig. 2. Having quadrangulation and patches described in terms of separatrices at 
our disposal, we finally fit a NURBS surface by using the partitioned quadrangulation as control mesh for each patch. Because 
the control points match on the edges between any two incident quad patches, the parametric surface is C0 globally and 
C p−1 patchwise, where p is the order of the NURBS representation.

4. Variational formulation

For the discretization of the model problem, we employ the method of lines. Hence, for fixed t > 0, the discrete varia-
tional formulation of the diffusion problem on random surfaces reads:

find uh(y) ∈ Vh(y) such that∫
S(y)

∂uh(y)

∂t
vh(y)dσ +

∫
S(y)

〈∇S uh(y),∇S vh(y)〉dσ =
∫

S(y)

f (y)vh(y)dσ

for all test functions vh(y) ∈ Vh(y). Note that we have omitted here the dependency of uh on x and t . Now, inserting the 
basis representations of uh(y) and vh(y), respectively, this translates to the linear system

M(y)
∂

∂t
u(y, x, t) + A(y)u(y, x, t) = f (x, t), u(y, x,0) = u0.

Herein,

M(y) = [(ϕi,ϕ j)L2(S(y))]i, j
54
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denotes the finite element mass matrix, while

A(y) = [(∇Sϕi,∇Sϕ j)L2(S(y))]i, j

is the finite element stiffness matrix. Note that the mass matrix and the stiffness matrix are independent of the time, 
however, they depend on the random parameter y. Since we assume that the initial condition and the source term are 
given in material coordinates, their coefficients f (t) and u0 are independent of the random parameter y. Moreover, we 
remark that, due to the definition of the spline basis on the randomly deformed domain, the coefficient vector u in material 
and spatial coordinates coincides.

Next, we introduce an appropriate discretization for the time: we employ the θ -scheme with a uniform time discretiza-
tion of step size �t . Thus, we obtain the linear system

(M + �tθ A)u(ti+1) = (M − �t(1 − θ)A)u(ti) + �t(1 − θ) f (ti) + �tθ f (t j+1),

where we have dropped the parameter dependency for a more compact notation.
We close this paragraph by citing the corresponding error estimate. To this end, we recall that the surface S0 consists 

of M smooth patches. A uniform mesh is thus obtained by uniform refinement of the parameter domain [0, 1]2 for each 
patch and lifting the subdivided parameter domain to the surface. Hence, subdividing each patch j times yields to a mesh 
of mesh size h ∼ 2− j . For fixed y, we obtain the following convergence result from [49] under the IGA-θ stability condition 
introduced therein.

Theorem 4.1. For any fixed y ∈ [−1, 1]m, let T > 0, f ∈ C0
([0, T ]; L2

(
S(y)

))
, ∂ f

∂t ∈ L2
(

S(y)
)
, u(0, x) ∈ H p+1

(
S(y)

)
and the solu-

tion u is such that

u ∈ C0 ([0, T ]; H p+1(S(y)
))

and
∂u

∂t
∈ L1 ([0, T ]; H p+1(S(y)

))
.

The approximation uh(ti) satisfies ∂uh
∂t (0) ∈ L2

(
S(y)

)
. Then, the pointwise L2-error for the θ -scheme satisfies

‖u(ti) − uh(ti)‖L2(S(y))

≤ Cθ

[
hp+1

(
|u(0)|H p+1(S(y)) +

∥∥∥∥∂u

∂t

∥∥∥∥
L1([0,T ];H p+1(S(y)))

)
+ �t

(∥∥∥∥∂uh

∂t
(0)

∥∥∥∥
L2(S(y))

+
∥∥∥∥∂ f

∂t

∥∥∥∥
L2([0,T ];L2(S(y)))

)]
, Cθ > 0.

(11)

In the particular case of the Crank-Nicolson method, with additional assumptions ∂2 f
∂t2 ∈ L2

([0, T ] × S(y)
)

and ∂2uh
∂t2 ∈ L2

(
S(y)

)
we 

obtain

‖u(ti) − uh(ti)‖L2(S(y))

≤ C1/2

[
hp+1

(
|u(0)|H p+1(S(y)) +

∥∥∥∥∂u

∂t

∥∥∥∥
L1([0,T ];H p+1(S(y)))

)
+ (�t)2

(∥∥∥∥∂2uh

∂t2
(0)

∥∥∥∥
L2(S(y))

+
∥∥∥∥∂2 f

∂t2

∥∥∥∥
L2([0,T ];L2(S(y)))

)]
,

(12)

where u(ti) refers to the exact solution at time ti , uh ∈ Vh(y) is the Galerkin approximation and p is the minimum of p1 and p2 , cp. 
(9). Herein, Cθ and C1/2 are independent of �t and h.

5. Computation of quantities of interest

5.1. Quantities of interest

We consider quantities of interest that are defined with respect to the unperturbed reference surface S0. There holds for 
an arbitrary time dependent function uh(t) ∈ Vh(y) that

ûh(y, x̂, t) = (
uh(t) ◦ χ

)
(y, x̂) =

N p,�∑
i=1

ui(y, t)(ϕi ◦ χ)(y, x̂)

=
N p,�∑
i=1

ui(y, t)ϕ̂i(x̂) = �̂u(y, t)
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with the time and parameter dependent coefficient vector

u(y, t) := [u1(y, t), u2(y, t), . . . , uN p,�(y, t)]ᵀ.

This means that, by construction, the coefficients of the basis representations in Sp,�

(
S(y)

)
and Sp,�(S0) coincide. Conse-

quently, we obtain the following two equations for the expectation and correlation respectively,

E[ûh(t)](x̂) =
∫
�

�̂(x̂)u(y, t)dP (ω) = �̂(x̂)

∫
�

u(y, t)dP (ω) = �̂(x̂)E[u(t)],

and

Cor[ûh]
(
(x̂, t), (x̂′

, t′)
) = �̂(x̂)E[u(t)uᵀ(t′)]�̂ᵀ(x̂′

).

Hence, the quantities of interest under consideration can be approximated by computing the corresponding quantities of 
interest of the coefficient vectors, i.e., E[u(t)] and E[u(t)uᵀ(t′)]. Numerically, we approximate those quantities by applying 
suitable quadrature formulas in the parameter, such as the Monte Carlo method and the quasi-Monte Carlo quadrature based 
on Halton points, cf. [9]. Thus, we end up with approximations

E[ûh(t)] ≈ �̂

(
1

Nq

Nq∑
i=1

u(ξ i, t)

)
, (13)

and

Cor[ûh]
(
(x̂, t), (x̂′

, t′)
) ≈ �̂(x̂)

(
1

Nq

Nq∑
i=1

u(ξ i, t)u(ξ i, t′)ᵀ
)

�̂ᵀ(x̂′
), (14)

where ξ i ∈ 	m := [−1, 1]m , i = 1, . . . , Nq , are the sample points. Quantities of interest based on linear functionals of the 
solution can be dealt with in a similar fashion. In summary, we remark that the computation of quantities of interest 
amounts to high dimensional quadrature problems for the coefficient vector of the basis representation in Sp,�(S0).

For the computation of the expectation, we only need to store one coefficient vector for each desired time point. In total, 
the required memory size is thus O(Nt N p,�). In the case of the correlation, however, the situation is much worse, as we 
need to store an (Nt N p,�) × (Nt N p,�) matrix, resulting in a memory size of O(N2

t N2
p,�). This matrix easily exceeds the 

memory size of a large computer if Nt or N p,� is large. This motivates the low rank representation of the correlation, which 
is discussed in the subsequent paragraph.

5.2. Low rank approximation of the correlation

For the cost efficient storage of the correlation, we employ an online algorithm that keeps track of the most important 
directions for the storage of the correlation matrix. To this end, we consider the online singular value decomposition (SVD) 
suggested in [7]. Given the sequence of time-dependent coefficient vectors {u(ξ i, t)}Nq

i=1 defined by the evaluation at the 
sample points, we employ the online singular value decomposition for each discrete time step. To outline the algorithm, we 
define the matrices

W �(ti) := [u(1)(ti), . . . , u(�)(ti)] := [u(ξ1, ti), . . . , u(ξ �, ti)] ∈ RN p,�×�,

which contain the first � samples at time t = ti . The coefficient matrix of the correlation of the solution between the times 
ti and ti′ for the first � samples is thus given by

C �(ti, ti′) = 1

�
W �(ti)W ᵀ

� (ti′).

We denote the SVD of W �(ti) by

W �(ti) = U �(ti)��(ti)V ᵀ
� (ti).

In the �-th step, the vector u(�)(ti) is used to produce a potential new column vector of the matrix U �(ti). Accounting for 
the situation of limited memory, we only consider the first k ≤ Nq most important columns of U �(ti). Here, the importance 
is determined by the magnitude of the associated singular value stored in the matrix ��(ti). As we only wish to compute 
the correlation, we do not need to explicitly store the right-orthonormal matrices V �(ti). Instead, we rather store a low 
dimensional coefficient matrix L�(ti, ti′) := 1

�
V ᵀ

� (ti)V �(ti′ ) between the times ti and ti′ . Given that we only keep track of 
the first k most important vectors, the size of each L�(ti, ti′) is never larger than k × k.
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In what follows, we will discuss how to compute the low rank approximation of the space-time coefficient matrix in 
detail by adapting the idea from [7]. Given a new sample u(�)(ti) for i = 1, · · · , Nt , the first step is computing the coefficient 
vector and the residual at each discrete time ti by projecting the new sample solution onto the subspace spanned by the 
orthonormal basis U �−1(ti). This way, we obtain the coefficients

c(ti) = Uᵀ
�−1(ti)u(�)(ti)

and the remainder

r̂(ti) = u(�)(ti) − U �−1(ti)c(ti).

The associated normalized remainder is given by

r(ti) = r̂(ti)

r(ti)
with r(ti) := ‖r̂(ti)‖2.

Next, we pad U �−1(ti) by r(ti) and ��−1(ti) by adding c(ti) and r(ti) according to

Û �(ti) := [
U �−1(ti) r(ti)

]
and

�̂�(ti) :=
[
��−1(ti) c(ti)

0 r(ti)

]
.

Especially, we have W �(ti) = Û �(ti)�̂�(ti)V̂
ᵀ
� (ti), where

V̂ �(ti) :=
[

V �−1(ti) 0
0 1

]
.

In order to store the low rank approximation of the space-time coefficient matrix, we need to update the small matrix 
L�(ti, ti′) between ti and ti′ for i, i′ = 1, · · · , Nt . To this end, we pad it according to

L̂�(ti, ti′) := 1

�
V̂

ᵀ
� (ti)V̂ �(ti′) = � − 1

�

[
L�−1(ti, ti′) 0

0 1
�−1

]
.

In the final step, we diagonalize �̂�(ti), which amounts to the SVD of a low dimensional matrix according to �̂�(ti) =
P �(ti)��(tn) Q �

ᵀ(ti) and perform the updates

U �(ti) = Û �(ti)P �(ti), (15)

and

L�(ti, ti′) = Q �
ᵀ(ti)L̂�(ti, ti′) Q �(ti′).

If the rank of U �(ti) is larger than the maximally allowed number k, we truncate U �(ti) by choosing the left most k
columns, given that the singular values are stored in decreasing order. Moreover, we truncate ��(ti) by keeping the top-
left k × k block. Finally, we truncate L�(ti, ti′ ) by keeping the top most k rows if the rank of U �(ti) is larger than k and 
truncate L�(ti, ti′) by keeping the left most k columns if the rank of U �(ti′ ) is larger than k. The procedure is summarized 
in Algorithm 1.

We arrive at a tall-and-skinny matrix U �(ti) whose columns are used as low rank basis for time ti . In particular, the 
matrix of singular values ��(ti) gives us a means to track the importance of each basis vector. Moreover, the matrix L�(ti, ti′ )
represents the correlation structure between time points ti and ti′ in a compressed manner. In summary, we end up with 
the low rank approximation

C Nq (ti, ti′) ≈ C̃ Nq (ti, ti′) := U Nq (ti)�Nq (ti)LNq (ti, ti′)�
ᵀ
Nq

(ti′)Uᵀ
Nq

(ti′).

The corresponding low rank space time correlation is hence given by

Cor[ûh]
(
(x̂, ti), (x̂′

, ti′)
) ≈ �̂(x̂)C̃ Nq (ti, ti′)�̂

ᵀ(x̂′
).

We conclude this paragraph by discussing the computational cost of the low rank representation. Storing the matrices 
L(ti, ti′ ), i, i′ = 1, . . . , Nt results in cost of O(Ntk2), while the cost for storing the bases U (ti) is of cost O(Nt N p,�k). Assum-
ing k ≤ N p,� , the storage cost is hence of order O(Nt N p,�k), which is a huge reduction compared to the original cost of 
O(N2

t N2
p,�). The computational cost for obtaining the low rank approximation is comprised of the projection steps of cost 

O(Nq Nt N p,�k), while the cost of the required SVD in each step is O(Nq N2
t k3) and the cost of the update formula (15) is 

O(Nt N p,�Nqk2). This amounts to an overall computation cost of O(Nq Nt N p,�k2 + Nq N2
t k3), which for moderate k is again 

much smaller than the original cost of O
(

Nq(Nt N p,�)2
)
.
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Algorithm 1: Low rank approximation of the space time correlation.

Input: stream of solutions {u(t, ξ i)}Nq

i=1
Output: U (ti), �(ti) and L(ti , ti′ )
for j = 1 to Nq do

for i = 1 to Nt do
r̂(ti) = u(ti , ξ i);
if j = 1 then

[U (ti), �(ti), V (ti)] = SVD(r̂(ti));
else

c(ti) = Uᵀ(ti)r̂(ti)

r̂(ti) = ui(ti) − U (ti)c(ti)

r(ti) = ‖r̂(ti)‖2

r(ti) = r̂(ti)/r(ti)

Û (ti) = [U (ti), r(ti)];
�̂(ti) = [�(ti), c(ti); 0, r(ti)];
[P (ti), �(ti), Q (ti)] = SVD(�̂(ti));
U (ti) = Û (ti)P (ti);

end
end
for i = 1 to Nt do

for i′ = i to Nt do
if j = 1 then

L(ti , ti′ ) = V ᵀ(ti)V (ti′ );
else

L̂(ti , ti′ ) = j−1
j [L(ti , ti′ ), 0; 0, 1

j−1 ];
L(ti , ti′ ) = Q ᵀ(ti)L̂(ti , ti′ ) Q (ti′ );

end
if j > k then

L(ti , ti′ ) = L(ti , ti′ )(1 : k, 1 : k)

end
end
if j > k then

U (ti) = U (ti)(:, 1 : k)

�(ti) = �(ti)(1 : k, 1 : k)

end
end

end

6. Numerical experiments

6.1. Convergence of the spatial solver

All computations for this article have been performed with the Boundary Element Method Based Engineering Library 
(Bembel), see [18]. In particular, we have extended Bembel to also support local operators, like the Laplace-Beltrami oper-
ator, and added a class for the fast deformation of computational geometries. We numerically validate our implementation 
for the diffusion equation by showing that the theoretical convergence rates from Theorem 4.1 are obtained. At first, we 
consider a diffusion equation on the unit sphere, i.e.,{

∂t u(x, t) − �S u(x, t) = 0, x ∈ S2,

u(x,0) = x3, x ∈ S2.
(16)

The corresponding exact solution is u(x, t) = e−2t x3. Fig. 3 shows the corresponding convergence plot for a representation 
of the sphere with M = 6 patches and a uniform refinement up to level 4 and �t = 10−5, evaluated for the final time T = 1. 
For the time stepping we use the Crank-Nicolson method and we consider p = 1, 2, 3. It can be seen that the theoretical 
rate from Theorem 4.1 is achieved. Indeed, the observed rate appears to be even higher.

Next, in view of the previous numerical results and Theorem 4.1, we fix p = 2 and �t = 10−3, such that the convergence 
is not limited by the time discretization. We consider the diffusion problem{

∂t u(x, t) − �S u(x, t) = sin(πx1) sin(πx2) sin(πx3), x ∈ S,

u(x,0) = x3, x ∈ S,

for three different geometries. Namely, these are the unit sphere (bounding box: [−1, 1]3), a pipe geometry (bounding box: 
[0, 2.4] × [−0.3, 0.3]2) and the Stanford bunny (bounding box: [−0.95, 0.61] × [0.33, 1.86] × [−0.61, 0.59]). Vizualisations 
of the solutions for T = 1 can be found in Fig. 4.
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Fig. 3. L2-error versus the level j on the unit sphere.

Fig. 4. Visualization of the solutions at time T = 1.
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Fig. 5. Average L2-error decrease for p = 2 and the different geometries under consideration.

For the convergence study, we compute the average L2-error evaluated at the time grid t = 0.001, 0.002, . . . , 1, i.e.,

e( j)
L2 = 1

Nt

Nt∑
i=1

∥∥u J (ti) − u j(ti)
∥∥

L2(S)
, Nt = 1000,

where we use the numerical solution on level J = 5 as ground truth. The corresponding error plot can be found in Fig. 5. 
As can be seen, the error is almost divided by 8 when the level j increases by one, which reflects the expected convergence 
rate of h j ∼ 2−3 j .
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Fig. 6. Different realizations of the random deformation field for the three surfaces under consideration. The transparent red ones are the reference surfaces, 
while green ones are the deformed surfaces.

6.2. Convergence of the low rank approximation

In this part, we numerically test the convergence of the proposed algorithm with respect to the predefined rank k, the 
generalization error and the stability of the algorithm with respect to the magnitude of the domain perturbation. Now we 
consider the diffusion problem{

∂t u(y, x, t) − �S u(y, x, t) = sin(πx1) sin(πx2) sin(πx3), x ∈ S(y),

u(y, x,0) = x3, x ∈ S(y).

As before, we consider the randomly deformed sphere, pipe and Stanford bunny. For the time discretization, we use again 
the Crank-Nicolson method with time steps �t = 0.001 for the sphere and the pipe and �t = 0.01 for the Stanford bunny. 
For the spatial discretization, we set the level and the polynomial order of the basis functions with j = 4 for the sphere and 
the pipe and j = 3 for the Stanford bunny. Moreover, we always choose the polynomial degree p = 2. For the sphere and 
pipe, this setting results in an accuracy of 10−5, see Fig. 5. For the Stanford bunny, the computational cost is much larger 
than for the sphere and pipe because of the more complex geometry. Therefore, we reduce the level j by one, resulting in 
an accuracy of 10−4, see Fig. 5. In all cases, the choice of the time step ensures that the error is not dominated by the time 
discretization. This leads to N p,� = 1736, 6936, and 14501 for the sphere, pipe and the Stanford bunny, respectively, and 
results in a spatial discretization error about 10−4 for all (undeformed) geometries, cp. previous example.

For the random deformation field, we consider the covariance function

E[χ ](x̂) = x̂, Cov[χ ](x̂, x̂′
) = 10−2

⎡⎢⎣ e−50r2
0 10−4e−0.5r2

0 e−50r2
0

10−4e−0.5r2
0 e−50r2

⎤⎥⎦
with r := ‖x̂ − x̂′‖2. The random field is computed by the pivoted Cholesky decomposition, cf. [27–29], with an accuracy of 
10−4. This leads to the parameter dimensions 282, 252, 264 for the sphere, pipe and Stanford bunny, respectively. Different 
realizations of the random surfaces are depicted in Fig. 6.

The expectations and the standard deviations at the end of time T = 1 are displayed on the reference surfaces in Fig. 7.
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Fig. 7. Expectations of the solutions (left) and standard deviations (right) at time T = 1 for the three surfaces.

As can be seen, the ratio between the standard deviation and the expectation is around 13% for the sphere and the 
Stanford bunny, while it is about 40% for the pipe.

Next, we examine the convergence of the low rank representation. As we cannot store the full coefficient matrix of 
the space-time correlation as a reference, we only compute the diagonal blocks C Nq (ti, ti) for ti = 0.1i, i = 1, . . . , 10, and 
compare them to the low rank approximation C̃ Nq (ti, ti). We set the number of samples to Nq = 8192 for the Monte 
Carlo and the quasi-Monte Carlo method based on Halton points. For the assessment of the error, we measure the relative 
Frobenius norm of the difference between the ground truth and the low rank via

eF := 1

10

10∑
i=1

‖C(ti, ti) − C̃(ti, ti)‖F

‖C(ti, ti)‖F
.

The left hand side of Fig. 8 shows the error eF in case of the Monte Carlo method, while the right hand side provides 
it for the quasi-Monte Carlo method. In both cases, the error rapidly decays for increasing k. As can be seen, the errors for 
both methods are comparable, however, they are slightly smaller for the quasi-Monte Carlo method.

The availability of the full space-time correlation facilitates the visualization and analysis of the correlation between 
different time points. In particular, due to the particular structure of the low rank approximation, we can directly identify 
the principal components between any two evaluated times, i.e., U ᵀ

(ti)C̃(ti, ti′)U �(ti′ ), � ≤ k. For simplicity, we only show 
�
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Fig. 8. Convergence of the low rank approximation for the Monte Carlo method and the quasi-Monte Carlo method.

Fig. 9. Correlation coefficients for the first 5 principal components and the time points ti for the sphere (left), the pipe (middle) and the Stanford bunny 
(right) in case of the quasi-Monte Carlo method.

the upper triangular part of the correlation matrix for the coefficients of the first 5 principal components at each time in 
Fig. 9 for the case of the quasi-Monte Carlo method. The radii of the circles inside each small block stand for the absolute 
values of the corresponding correlation coefficients. From the figures, the correlation matrix within the same time step is a 
5 × 5 diagonal matrix (outlined by the black lines in the figures), since we use an orthogonal basis given by U (ti) at each 
evaluated time. On the other hand, the solution at different times are highly correlated to each other.

Next, we consider the generalization error given the low rank bases U (ti). To this end, we introduce the relative �2-error 
at the time point ti , i.e.,

e�2(ti) = 1

Nq

Nq∑
j=1

∥∥u(ξ̃ j, ti) − U (ti)U (ti)
ᵀu(ξ̃ j, ti)

∥∥
2∥∥u(ξ̃ j, ti)

∥∥
2

,

for independently drawn Monte Carlo samples u(ξ̃ j, ti), j = 1, . . . Nq , with Nq = 8192. As a measure for the generalization 
error, we consider now the average error

e�2 = 1

Nt

Nt∑
i=1

e�2(ti).

The generalization error is displayed in Fig. 10. Particularly for the sphere, the generalization error rapidly decreases for an 
increasing rank k, where the Monte Carlo method performs slightly better here. For k = 200 the average �2-error is lowest 
for the sphere and around 4 · 10−6 for both methods.

Finally, we examine the stability of the low rank approximation with respect to the magnitude of the random perturba-
tion. To this end, we introduce the parameter α which steers the impact of the random perturbation according to
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Fig. 10. Generalization experiments on 8192 test samples generated by the Monte Carlo method.
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Fig. 11. Low rank approximation error with respect to the magnitude of the random perturbation.

χ(y, x̂) = E[χ ](x̂) + α

m∑
k=1

√
λkχk(x̂)yk, y ∈ 	 := [−1,1]m.

We fix k = 200 and consider α = 1, 1.2, . . . , 2. This results in a maximal possible relative displacement between 20% and 
40% for the sphere, a maximal possible relative displacement between 21% and 42% for the pipe, and a maximal possible 
relative displacement between 27% and 54% for the Stanford bunny. Fig. 11 depicts the corresponding error eF for the 
covariance approximation.

As can be seen, both methods are rather robust with respect to the increase of the displacement, where the quasi-Monte 
Carlo method behaves slightly better.

The generalization error with respect to α is shown in Fig. 12.
As for the low rank error, the generalization error only moderately increases with an increase of the random perturbation, 

where here the Monte Carlo method performs slightly better.

7. Conclusion

In this article, we have presented an isogeometric approach to solving diffusion problems on random surfaces. Especially, 
we have described in detail, how diffusion problems on random surfaces can be modelled by means of random deforma-
tion fields in the isogeometric context and how quantities of interest may be derived. Moreover, we have employed an 
online low rank approximation algorithm for the high-dimensional space-time correlation of the random solution. Exten-
sive numerical studies on complex geometries have been performed. The numerical results corroborate the efficacy of the 
presented methodology. Finally, the solver for the Laplace-Beltrami operator will be added to the isogeometric boundary 
element library Bembel.
63



W. Huang and M. Multerer Applied Numerical Mathematics 179 (2022) 50–65
1 1.2 1.4 1.6 1.8 2
10−7

10−6

10−5

10−4

10−3

α

e �
2

Monte Carlo method

sphere
pipe
bunny

1 1.2 1.4 1.6 1.8 2
10−7

10−6

10−5

10−4

10−3

α

e �
2

quasi-Monte Carlo method

sphere
pipe
bunny

Fig. 12. Generalization error with respect to the magnitude of the randomness.
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