
Towards Unsupervised Multi-Object Perception in
Neural Networks

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Klaus Greff

under the supervision of

Prof. Jürgen Schmidhuber

August 2022





Dissertation Committee

Prof. Cesare Alippi Università della Svizzera italiana, Switzerland
Prof. Rolf Krause Università della Svizzera italiana, Switzerland

Prof. Mike Mozer University of Colorado, USA
Prof. Wolf Singer Max-Planck-Institut Frankfurt, Germany

Dissertation accepted on 29 August 2022

Prof. Jürgen Schmidhuber
Research Advisor

Università della Svizzera italiana, Switzerland

Walter Binder, and Silvia Santini
PhD Program Director

i



I certify that except where due acknowledgement has been given, the work presented in
this thesis is that of the author alone; the work has not been submitted previously, in whole or
in part, to qualify for any other academic award; and the content of the thesis is the result of
work which has been carried out since the official commencement date of the approved research
program.

Klaus Greff
Berlin, 29 August 2022

ii



Abstract

By decomposing the world in terms of objects, humans are able to recombine their existing
knowledge in a virtually unbounded number ways to understand unfamiliar situations, make
novel inferences, or generate new behavior. This ability to form meaningful entities from un-
structured sensory information is of central importance for our impressive ability far beyond our
direct experience. Contemporary neural networks still fall short of human-level generalization,
which we argue is due to their inability to dynamically and flexibly bind information that is
distributed throughout the network. This binding problem affects their capacity to acquire a
compositional understanding of the world in terms of symbol-like entities (like objects), which is
crucial for generalizing in predictable and systematic ways. We focus in particular on the process
of perceptually grouping raw sensory inputs into meaningful objects. Importantly, we aim to
enable neural networks to learn about objects in an unsupervised fashion, because their required
scope and flexibility, renders adequate supervision or engineering infeasible. To that end, we
propose a functional definition of objects in terms of predictive modularity, and use it to derive
a formalization of perceptual grouping as a particular form of clustering. We demonstrate the
feasibility of this approach by developing several neural network models that learn to segment
and represent meaningful objects without supervision. Using simple synthetic datasets, we show
that these representations are useful for prediction and semi-supervised classification tasks, and
that they facilitate certain kinds of systematic generalization. The resulting representations are
also more interpretable than non-object centric representations. We believe that a compositional
approach to AI, in terms of grounded symbol-like representations, is of fundamental importance
for realizing human-level generalization, and we hope that this thesis may contribute towards
that goal.

iii



iv



Acknowledgements

First, I would like to thank my supervisor Jürgen Schmidhuber for his guidance and support,
and for inspiring and challenging me to think about artificial intelligence at the highest level
that I am capable of. I am very grateful to my colleagues Jan Koutnìk, Faustino Gomez, Bas
Steunebrink, Paulo Rauber, Imanol Schlag, Sohrob Kazerounian, Marijn Stollenga, Johnathan
Masci, Varun Raj Kompella, Matthew Luciw and everyone else at IDSIA for making it such a
stimulating and fun place to work. I thank Rupesh Kumar Srivastava and Sjoerd van Steenkiste
in particular, for our many fruitful and inspiring collaborations. I would also like to thank Harri
Valpola, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, and the others at the Curious AI
Company in Helsinki, for a fantastic collaboration. I am also grateful to Alex Lerchner, Matt
Botvinick, Loic Matthey, Chris Burgess, Raphael Rishabh Kabra, Lopez Kaufman, Nick Watters,
Daniel Zoran and many others at DeepMind for a stimulating research internship. Furthermore,
I would like to specifically thank Sjoerd van Steenkiste, Boyan Beronov, Bas Steunebrink, and
Rupesh Kumar Srivastava for countless in-depth discussions that have profoundly shaped my
understanding of artificial intelligence. I would also like to thank the members of my dissertation
committee – Mike Mozer, Wolf Singer, Michael Bronstein and Rolf Krause – for taking the time
to review my work. Finally I am infinitely grateful for my family and the many friends who have
always supported me and allowed me to be my best self. I am especially grateful for the decades
long friendship with Pina Merkert that has shaped and enriched my life in more ways than I
could ever tell.

v



vi



vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Binding Problem 5
2.1 The Representation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Representational Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Representational Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Segregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Segregation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Background 35
3.1 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Correlation and Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.5 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.6 Common Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.7 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Multi-Layer Perceptrons (MLPs) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Reconstruction Clustering 53
4.1 What is an Object? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Gestalt Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Grouping by Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 Denoising Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 Spatial Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



viii

4.2.4 Reconstruction Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.5 Putting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.3 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 Loss vs Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.5 Training on Multiple Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.6 Generalization to Unfamiliar Images . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Relationship to other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Neural Expectation Maximization 71
5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Parametrized Spatial Mixture Model . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Expectation Maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.3 Unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.4 Training Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Static Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Flying Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Flying MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Iterative Amortized Grouping 83
6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Group Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.2 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.3 Parametric mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.4 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.5 The Tagger: Combining TAG and Ladder Network . . . . . . . . . . . . . . 88

6.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.2 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.3 Unsupervised Perceptual Grouping . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.5 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



ix

7 Variational Iterative Multi-Object Representation Learning 99
7.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.1.1 Multi-Object Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.1.2 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3.2 Architecture and Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.4 Representation Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3.5 Robustness & Ablation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.3.6 Multi-Modality and Multi-Stability . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.7 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8 Conclusion 123

Bibliography 125

List of List of Figures 152

List of List of Tables 159

Acronyms 161



x



Chapter 1

Introduction

1.1 Motivation

The human capacity to comprehend reaches far beyond our direct experiences. We can reason
causally about unfamiliar scenes, understand novel sentences with ease, and use models and
analogies to make predictions about entities far outside the scope of everyday reality, like atoms,
and galaxies. This seemingly infinite expressiveness and flexibility of human cognition has long
fascinated philosophers, psychologists, and AI researchers alike. The best explanation for this
remarkable cognitive capacity revolves around symbolic thought: the ability to form, manipulate,
and relate mental entities that can be processed like symbols. By decomposing the world in
terms of abstract and reusable ‘building blocks’, humans are able to understand novel contexts
in terms of known concepts, and thereby leverage their existing knowledge in near-infinite ways.
This compositionality underlies many high-level cognitive abilities such as language, causal
reasoning, mathematics, planning, analogical thinking, etc.

The underlying compositionality of such symbols is equally potent for AI, and numerous
methods that model intelligence as a symbol manipulation process have been explored. Early
examples included tree-search over abstract state spaces (eg. General Problem Solver [275]) for
theorem proving, or chess [45]; Expert systems that made use of decision trees to perform narrow
problem solving for hardware design [359] and medical diagnosis [348]; Natural language
parsers that used a dictionary and a fixed set of grammatical rules to interpret written English;
And knowledge bases such as semantic networks (networks of concepts and relations) that could
be used to answer basic questions [407], solve basic algebra word problems [36], or control
simple virtual blocks worlds [416]. All of these examples of symbolic AI relied on manually
designed symbols and rules of manipulation, which allowed them to generalize in predictable
and systematic ways. Since then, many of these approaches have become part of the standard
computer-science toolbox1.

Connectionism takes a different, brain-inspired, approach to Artificial Intelligence that
stands in contrast to symbolic AI and its focus on the conscious mind [276, 88]. Rather than
relying on hand-crafted symbols and rules, connectionist approaches such as neural networks
focus on learning suitable distributed representations directly from low-level sensory data. The

1They are hardly called AI anymore since it is now well understood how to solve the problems that they address.
This redefinition of what constitutes AI is sometimes called the AI effect, summarized concisely by Douglas Hofstadter as
“AI is whatever hasn’t been done yet”.

1



2 1.1 Motivation

promise of connectionism has always been as a computational model of human intelligence,
and under the right conditions, they have indeed shown a remarkable capacity for learning and
modeling complex statistical structure in real-world data. Neural networks have resolved many
of the problems that haunted symbolic AI, including their brittleness when confronted with
inconsistencies or noise, and the prohibitive amount of human engineering and interpretation
that would be required to apply these techniques on more low-level perceptual tasks. Importantly,
the distributed representations learned by neural networks are directly grounded in their input
data, unlike symbols whose connection to real-world concepts is entirely subject to human
interpretation (see symbol grounding problem [132]). Modern neural networks have proven
highly successful and superior to symbolic approaches in perceptual domains, such as in visual
object recognition [56, 204] or speech recognition [114, 328], and even in some inherently
symbolic domains such as language modeling (GPT2 [300], BERT[72]), translation ([418]),
board games ([350]), and symbolic integration ([221]).

On the other hand, it has become increasingly evident that neural networks fall short in
many aspects of human-level generalization, including those that symbolic approaches exhibit by
design. They require large amounts of data, struggle with transfer to novel tasks, and are fragile
under distributional shift. For example, it is difficult for neural language models to generalize
syntactic rules such as verb tenses or embedded clauses in a systematic manner [196, 217, 238,
162]. Similarly, in vision, neural approaches often learn overly specialized features that do not
easily transfer to different datasets or held-out combinations of attributes [424, 12, 331]. In
reinforcement learning, where the use of neural networks has led to superhuman performance
in gameplay [261, 350, 32], it is found that agents are fragile under distributional shift [189,
430, 95] and require substantially more training data than humans [379]. Importantly, they
seem to lack the ability to efficiently recombine their knowledge these failures suggest that the
knowledge representation learned by neural networks is not compositional in the same way that
human knowledge is. This limits their applicability in many areas of artificial intelligence, where
limited amounts of supervised data are available, or where the ability to react to unforeseen
circumstances is critical.

This raises the question as to why existing neural networks, despite their widespread success
and considerable effort to address this issue, still fail at human-level generalization. We believe
that the root cause of this problem is an intrinsic inability to effectively form, represent, and
relate symbol-like entities. Importantly, this impedes the ability of neural networks to decompose
their inputs in terms of meaningful object representations (perceptual grouping). In some cases,
such as in vision, it may appear that object-level abstractions can emerge naturally as a byproduct
of learning [434]. However, it has repeatedly been shown that such features are best understood
as “a texture detector highly correlated with an object”[283, 372, 6, 39, 99]. In general, evidence
indicates that neural networks learn mostly about surface statistics (eg. between textures and
classifications in images) in place of the underlying concepts [180, 191, 216]. Most work on
representation learning focuses on feature learning without even considering multiple objects or
treats segmentation as an (often supervised) preprocessing step. In contrast, we argue for the
importance of jointly learning to segment and represent objects in an unsupervised fashion. This
unsupervised perceptual grouping, if successful, could help to bridge the gap between raw input
data and symbolic reasoning, and thereby provide the foundation for compositional reasoning
and systematic generalization in neural networks.



3 1.2 Contributions

1.2 Contributions

The contributions of this thesis towards this goal are organized into two parts: The first part is
dedicated to developing a better understanding of the problem and to building a corresponding
conceptual framework for thinking about this important issue. We argue that the underlying
cause for these problems is related to the binding problem. The binding problem originated in
neuroscience, where it refers to an explanatory gap of how dynamic information processing is
organized in the brain. In the context of neural networks, this lack of understanding translates
into an inherent limitation of existing neural networks: Their inability to dynamically and flexibly
bind information that is distributed throughout the network, while also keeping it separate from
other unrelated information. We discuss how the binding problem affects the ability of current
neural networks to form meaningful entities from unstructured sensory inputs (segregation), to
maintain their separation at a representational level (representation), and to use these entities to
construct new inferences, predictions, and behaviors (composition). We carefully analyze each
of these three aspects, connect them to findings from cognitive psychology and neuroscience,
and survey the machine learning literature for promising approaches.

Based on these insights, the second part of the thesis presents a series of methods that
we have developed to tackle the segregation problem in neural networks. Our goal is to
build a system that can learn to structure its input into meaningful object representations in
a completely unsupervised manner. To that end, we first propose an unsupervised notion of
objects in terms of mutual predictability of the individual inputs (i.e. pixels). We then develop a
proof-of-concept method called Reconstruction Clustering (RC; 122), that implements perceptual
grouping as a simple clustering procedure using the reconstruction quality from a Denoising
Autoencoder (DAE; 27, 391) as the distance metric. RC is able to recover the objects from
synthetic binary images of simple shapes without supervision. Next, we further develop this
idea into a corresponding mathematical framework called Neural Expectation Maximization (N-
EM; 123), and show how it can be implemented as a recurrent neural network architecture.
The resulting system improves upon the results obtained by RC, and can also be trained end-
to-end by backpropagation. It can also be applied to video data and is able to make use of the
temporal information of simple moving shapes, but the system is still restricted to very simplistic
synthetic datasets. To help scale perceptual grouping to more realistic images, we then propose
the iTerative Amortized Grouping (TAG; 120) framework that incorporates direct dependencies
between the object segmentation and their representations into the model. The resulting system
(Tagger) can deal with more complex tasks, such as texture segmentation, and even demonstrates
superior performance regarding a challenging semi-supervised classification task. Finally, we
focus on improving the object representations by developing a method for perceptual grouping
based on the successful Variational Autoencoder (VAE; 313, 199) framework. This system, which
we call Iterative Object Decomposition Inference NEtwork (IODINE; 119), can learn meaningful
disentangled object representations completely unsupervised from semi-realistic synthetic data.

1.3 Organization

The rest of this thesis is organized as follows: In Chapter 2 we present our perspective on the
binding problem and its importance in connectionism. This chapter develops the conceptual
framework for the rest of this thesis, which is centered around object representations. It also
discusses the challenges and surveys relevant approaches regarding the efficient formation,



4 1.3 Organization

representation, and combination of multi-object representations. Chapter 3 then briefly reviews
the relevant mathematical background in probability theory, machine learning and neural net-
works. The following four chapters present a series of four methods for unsupervised perceptual
grouping: Chapter 4 introduces an unsupervised notion of objects based on predictability and
the corresponding Reconstruction Clustering (RC; 122) method. Chapter 5 further develops the
Neural Expectation Maximization framework and its implementation as a form of recurrent
neural network. In Chapter 6 we present an alternative approach called Tagger, which directly
learns the process of segmentation and demonstrates the usefulness of perceptual grouping for
semi-supervised classification. Chapter 7 introduces a further improved system for unsupervised
perceptual grouping called IODINE, and demonstrates the high quality of its learned object
representations. Finally, Chapter 8 closes the thesis with a summary and a brief discussion of
some important open problems.



Chapter 2

The Binding Problem

We claim that there exists an underlying cause for the lack of emergent symbolic processing in
neural networks, which we refer to as the binding problem. The binding problem is about the
inability to dynamically and flexibly combine (bind) information that is distributed throughout
the network, which is required to effectively form, represent, and relate symbol-like entities.
In regular neural networks, information routing is largely determined by the architecture and
weights, both of which are fixed at training time. This limits their ability to dynamically route
information based on a particular context and thereby accommodate different patterns of
generalization.

The binding problem originates from neuroscience, where it is about the explanatory gap in
our understanding of information processing in the brain. It includes perceptual binding problems
such as visual binding (color, shape, texture), auditory binding (a voice from a crowd), binding
across time (motion), cross-modal binding (sound and vision into joint event), motor-behavior
(an action), and sensorimotor binding (hand-eye coordination) [377, 319, 86]. Another class—
sometimes referred to as cognitive binding problems—includes binding semantic knowledge to
a percept, memory reconstruction, and variable binding in language and reasoning1. Several
theories have been proposed as to how binding may be accomplished in the brain. The most
basic explanation is that it happens on an architectural level through conjunction cells (also
known as cardinal cells, line coding, grandmother neurons). That means for each distinguishable
pattern of activity that needs to be bound, there is a separate neuron. This strategy is common
in the brain, and well known especially at the lower layers of visual processing. But the number
of neurons required for this strategy grows exponentially with the complexity of the patterns
and becomes intractably large for higher level processing. Furthermore, when to encode a
novel object (or novel appearance of a known object), a new neuron would have to be instantly
recruited. To generalize correctly, this new neuron would have to be appropriately connected and
with synaptic weights already calibrated. This is obviously impossible, which is why conjunction
cells are clearly an inadequate explanation for the dynamic binding at the level of objects.

Synchronization provides an elegant alternative (or complementary) explanation for the
dynamic binding of neuronal activity (Temporal correlation hypothesis; [257, 395]). The idea is
that neurons can dynamically bind together through temporal synchronization of their firing
patterns. Consider the example of simultaneously representing a “red square” and a “blue

1The term binding problem has also been used in the context of consciousness, as the problem of how a single unitary
experience arises from the distributed sensory impressions and processing in the brain [352]

5



6

triangle”: The neurons for “red” and “square” would fire in sync (oscillating phase-locked) to
indicate that they belong to the same objects. The same would be true for the neurons for “blue”
and “triangle”, while at the same time both objects would remain out of sync (and thus remain
separated). Grouping neuronal activity based on synchrony offers a degree of freedom separate
from the firing rate (see also Section 2.1.3). Synchrony can easily be detected by other neurons,
because they are very sensitive to the relative timing of incoming (pre-synaptic) spikes. A neuron
sensitive to the combination of “red” and “square” is thus activated much more strongly, when
both features belong to the same object (and are thus synchronized). Binding by synchrony
scales and generalizes much better than conjunction codes and is potentially fast enough to
support the dynamic creation and destruction of bindings in the timeframe of single saccade. It
also seems plausible due to the ubiquity of oscillators in the brain, and the well-known large-
scale rhythmic patterns found in neuronal activity. Finally, it is also physiologically plausible,
since both neuronal firing and synaptic learning are sensitive to the timing of incoming spikes
(Spike-Timing Dependent Plasticity (STDP; 48)). There is diverse experimental data to support
this interpretation [see eg. 354, 382]), but the extent to which the brain uses synchrony for
binding is still under debate.

In the case of neural networks, the binding problem is not just a gap in understanding
but rather characterizes a limitation of existing neural networks. Hence, it poses a concrete
implementation challenge to address the need for binding neurally processed information, which
we believe is common to all of the above subproblems. On the other hand, although we are
convinced that this problem can be addressed by incorporating a general dynamic information
binding mechanism, it is less clear how this can be implemented. Indeed, the search for an
adequate mechanism for binding (in one form or another) is a long-standing problem, not
just in neuroscience and cognitive psychology, but also in machine learning [355, 356, 371].
Rather than focusing on a particular subproblem, here we propose to tackle the binding problem
in its full generality, which touches upon all these related areas of research. In this way, we
can connect ideas from otherwise disjoint areas, and thus draw upon a large body of research
towards developing a general binding mechanism. Inspired by Treisman [378], we organize
our analysis along a functional division into three aspects pertaining to the role of binding for
symbolic information processing in neural networks: 1) representation, 2) segregation, and 3)
composition, each of which takes a different perspective on the binding problem.

• The Representation Problem is about encoding relevant information in a way that
combines the richness of neural representations with the compositionality of symbols.

• The Segregation Problem is about the process of forming grounded object representations
from raw unstructured inputs, and is the main focus of this thesis.

• The Composition Problem is about leveraging the modularity of object representations
to build structured models for inference, prediction and behavior that generalize in
predictable and systematic ways.

This chapter provides an in-depth analysis of these aspects of the binding problem from
a functional perspective, and surveys relevant approaches for addressing them in the context
of neural networks. It is based on the paper Greff et al. [124] which is the result of a tight
collaboration with Sjoerd van Steenkiste, and both authors contributed substantially.



7 2.1 The Representation Problem

Unstructured Input

Segregation Representation Composition

on top

le
an

s 
on

sm
aller

next to

Dynamic Information Binding

Task / Context

Figure 2.1. The binding problem in artificial neural networks can be understood from the
perspectives of segregation, representation, and composition. Each of these subproblems
focuses on a different functional aspect of dynamically binding neurally processed information
with the aim of facilitating more symbolic information processing.

2.1 The Representation Problem

The Representation Problem is concerned with binding together information at a representa-
tional level that belongs to separate symbol-like entities. It revolves around so-called object
representations, which act as basic building blocks for neural processing to behave symbolically.
Like symbols, they are self-contained and separate from one another such that they can be
related and assembled into structures without losing their integrity. But unlike symbols, they
retain the expressive distributed feature-based internal structure of connectionist representations,
which are known to facilitate generalization [144, 29]. Hence, object representations encode
relevant information in a way that combines the richness of neural representations with the
compositionality of symbols. We chose the term “object” representation because it is evocative
of physical objects, which are processed as symbols in many important cognitive tasks. However,
we emphasize that object representations are also meant to encode non-visual entities such
as spoken words, imagined or remembered entities, and even more abstract entities such as
categories, concepts, behaviors, and goals2.

Interestingly, even the seemingly basic task of incorporating object representations in neural
networks faces several problems, such as the “superposition catastrophe” [396] portrayed in
Figure 2.2. It suggests that fully-connected neural networks suffer from an “inherent tradeoff
between distributed representations and systematic bindings among units of knowledge” [160].
A general treatment of object representation in neural networks involves addressing the super-
position catastrophe, along with several other challenges.

Consider for example Figure 2.3, where you are able to distinguish between five different
objects. You can readily describe each object in terms of its shape, color, material, and other
properties, despite most likely never having encountered them before. Notice also how these
properties relate to individual objects as opposed to the entire scene, which is also evident from
the fact that you can tell that the color green occurs multiple times for different objects. Finally,

2We have considered several other terms for “object” representations, including entity, gestalt, icon, and concept,
which perhaps better reflect their abstract nature but are also less accessible at an intuitive level. The fact that objects
are more established in the relevant literature gave them the final edge.



8 2.1 The Representation Problem

red
green
yellow

apple
pear

red
green
yellow

apple
pear

red
green
yellow

apple
pear

a) b) c)

Figure 2.2. Illustration of the superposition catastrophe: A distributed representation in terms
of disentangled features like color and shape (a, b) leads to ambiguity when confronted with
multiple objects (c): The representation in (c) could equally stand for a red apple and a green
pear, or a green apple and a red pear. It leads to an indiscriminate bag of features because
there is no association of features to objects. A simple form of this problem in neural networks
was first pointed out in Rosenblatt [318], and has been debated in the context of neuroscience
since [257, 395].

Figure 2.3. Example of several unfamiliar objects, that can nonetheless be described in terms of
their features.

notice how you are readily able to perform comparisons, for example, to tell that the shape of
the blue object is the same as that of the green one in the back, but that they differ in color.

In this section we take a closer look at the format of object representations (Section 2.1.1).
We work towards a format that separates information about objects and is general enough to
accommodate unfamiliar objects in a meaningful way so that they can readily be compared.
Additionally, we will also consider the representational dynamics that are required to support
stable and coherent object representations over time (Section 2.1.2). Towards the end, we
survey relevant approaches from the literature that may help incorporate these aspects of object
representations into neural networks (Section 2.1.3).



9 2.1 The Representation Problem

Man

Woman

King

Queen

Uncle

Aunt

Semantic structure in word embeddingsEdges 
(layer conv2d0)

Textures
(layer mixed3a)

Patterns
(layer mixed4a)

Parts 
(layers mixed4b&c)

“Objects”
(layers mixed4d&e)

Figure 2.4. Left: Interpretable features learned on ImageNet as observed in Olah et al. [284].
Right: Learned word embeddings have been demonstrated to capture some of the semantic
structure of text [255], although to a lesser extent than was initially reported [280].

2.1.1 Representational Format

We seek a representational format that distinguishes objects, while retaining the advantages of
learned distributed representations. These representations have proven highly successful [eg. 55,
143, 211] and are known to partially capture the semantic structure of a task (Figure 2.4), such
as interpretable image features [427, 283], or the semantic structure of text (255; but compare
280). In this way learned object representations can also benefit from known inductive biases that
focus on feature hierarchies, invariances, and spatio-temporal coherence [25], sparsity [285], or
non-Euclidean feature spaces [278].

Separation

To support the construction of structured models, object representations need to act as modular
building blocks. This requires information about individual objects to remain separated at a
representational level, such that their features do not interfere with one another, even when
composed. Additionally, the features that belong to an object must be able to act as a unit, which
implies strong dependencies between its features. For example, when an object representation
appears or ceases to exist, all of its features are equally affected.

The separation of information has to be flexible enough to ensure that objects can be formed
from novel (unseen) feature combinations. Hence, it is important that it is not purely determined
by the representational content of the objects, but rather acts as an independent degree of
freedom. Regarding capacity, it may suffice to represent only a few objects simultaneously, despite
the fact that a typical scene potentially contains a large number of objects. Indeed, the capacity
of the human working memory is generally believed to only be around 3–9 objects [93, 256].

Common Format

To be able to efficiently relate and compare a wide variety of object representations, they must
be described in a common format. Recall how in Figure 2.3 you were able to freely compare a
number of unfamiliar objects in terms of their properties, such as their size, shape, and location.
On the one hand, this is possible because you have acquired a number of general relationships,
such as “bigger than”, “left of”, etc., which we will discuss in detail in Section 2.3. What is more
important here is that such relations can only be applied if object representations provide a



10 2.1 The Representation Problem

shared interface. More generally, a common format helps to ensure that any learned relation,
transformation, or skill (like grasping) transfers between similar objects independent of context.
Similarly, a common set of features helps carry over experiences between objects during learning.

Disentanglement

Individual object representations need to be able to describe a large variety of (possibly unseen)
objects in terms of attributes that are useful for down-stream problem-solving. This requires
focusing on factors of variation in the data, that are sufficiently expressive, but also compact
and reusable (i.e. they can be varied independently). Indeed, humans arguably manage to
accomplish this by focusing on a relatively small, but consistent set of attributes such as color,
shape, etc. [71].

A disentangled representation aims to make these attributes explicit by establishing a local cor-
respondence between (independent) factors of variation and features [19, 338, 141, 140, 314].
In this case, information about a specific factor can be readily accessed and is robust to un-
related changes in the input, which improves sample efficiency and down-stream generaliza-
tion [142, 387]. In the context of object representations, disentanglement implies a factorized
feature space that captures salient properties of objects. Together with a common format, it fa-
cilitates generalization to unseen feature combinations and enables useful comparisons between
objects and other meaningful relations to be formed.

2.1.2 Representational Dynamics

When interacting with the real world, the stream of sensory information continuously evolves
over time. It is therefore important to consider not only instantaneous representations, but also
their dynamics over time.

Temporal Dynamics

An object representation requires ongoing updates across time for a number of reasons: Firstly,
with objects constantly moving and transforming in the real world, their corresponding rep-
resentations need adjustments to remain accurate. Secondly, certain temporal attributes such
as movement or behavior can only be estimated when considering the history of information.
Finally, with the limited amount of information that can be observed about an object at any given
time, accumulating information over multiple partial views can help produce more informative
object representations.

An important aspect among all these cases is the need for an object representation to consider
not only the input but also its own history (recurrence). This requires a stable identity to help
ensure that information across time-steps is associated with the correct object representation.
Note that the identity of an object cannot be tied exclusively to its visible properties, as illustrated
by the extreme example of a fairytale prince that is transformed into a frog [245, 18].

Reliability

Structured mental models depend on object representations to provide a stable foundation for
reasoning and other types of information processing [182]. The reliability of this foundation is
especially important for more abstract computations to which object representations provide
the only connection to the world. However, perfect reliability is unattainable since sensory



11 2.1 The Representation Problem

information about the world is noisy and incomplete, and the capacity of any model is inherently
limited.

Explicitly quantifying uncertainty can help mitigate this issue and prevent noise and errors
from accumulating undetectably. In addition, certain small amounts of noise in an object
representation may be continually corrected by leveraging dependencies among its features
(i.e. through the features of an object acting as a unit). An important source of uncertainty
accumulation is due to objects that are temporarily not perceived (eg. as a result of occlusion).
In this case, a ‘self-correcting’ representation may help maintain a stable object representation,
even in the absence of sensory input (object permanence).

Uncertainty about object representations may also arise due to ambiguous inputs that allow
for several distinct but coherent interpretations (for example see Figure 2.8 on page 15). The
ability to (at least implicitly) encode multi-modal uncertainty is crucial to effectively treat
such cases. Top-down feedback may then help disambiguate different interpretations (see also
Sections 2.2.2 and 2.3.2).

2.1.3 Methods

In order to fulfill the desiderata outlined above, we require a number of specialized inductive
biases. Indeed, it should now also be clear that a simple Multi-Layer Perceptron (MLP; 171, 170)
falls short at adequately representing multiple objects simultaneously: If it attempts to avoid
the superposition catastrophe by learning features that are specific to each object, then they
lack a common format and become difficult to compare3. Therefore, in the following we will
review several approaches for representing multiple objects in neural networks. We will focus
on common format, temporal dynamics, reliability, and in particular on separation, which thus
far has received little attention in the main-stream neural networks literature.

Slots

 Sequential Slots  Instance Slots    Spatial Slots   Category Slots

Figure 2.5. Illustration of the four different types of slot-based representations.

The simplest approach to separation is to provide a separate representational slot for each
object. This provides a (typically) fixed capacity working memory with independent object
representations that can all be accessed simultaneously. Weight sharing can then be used to
ensure a common format among the individual slots.

3Others have suggested ways in which MLPs could in principle circumvent this problem [287, 299]. However, neither
of these offer a solution that can convincingly fulfill all of the above desiderata simultaneously. In fact, even for plain
Recurrent Neural Networks (RNNs; 250, 368, 316, 410) it was found that when they are trained to remember multiple
objects internally, they resort to a localist representation [37].



12 2.1 The Representation Problem

Instance Slots In the most general form, which we call instance slots, all slots share a common
format and their information can be kept separate, independent of their representational con-
tent. Instance slots are very flexible and general in that they have no preference for content
or ordering. However, this generality introduces a routing problem when a common format is
enforced via weight sharing: with all slots being identical, bottom-up information processing
needs to break this symmetry to avoid assigning the same content to each one. Hence, the
allocation of information to each slot must be determined by taking the other slots into account,
which complicates the process of segregation (see also Section 2.2.2). Instance slots have
been used in several approaches to learning object representations, including Masked Restricted
Boltzman Machine (MRBM; 223), Neural Expectation Maximization (N-EM; 123), and Iterative
Object Decomposition Inference NEtwork (IODINE; 119). They can also be found in the memory
of memory-augmented neural networks [185, 117], in self-attention models [388, 66, 236], in
Recurrent Independent Mechanisms (RIMs; 111), albeit without having a common format, in all ap-
proaches presented in this thesis (see Chapters 4 to 7), and in certain graph neural networks [20],
where they are treated as internal representations that can be accessed simultaneously.

Sequential Slots Sequential slots break slot symmetries by imposing an order on the repre-
sentational slots, typically across time. They are commonly found in RNNs and, when paired
with an attention mechanism that attends to a different object at each step, can serve as ob-
ject representations. With weights typically being shared across (time)steps, sequential slots
naturally share a common format and unlike other slot-based representations can dynamically
adjust their representational capacity. Sequential slots in RNNs have been used as object rep-
resentations, for example in Attend Infer Repeat (Attend Infer Repeat (AIR; 84); 84) and to a
lesser degree in DRAW [125]. However, due to recurrence, these slots may not always be fully
independent, which impedes their function as modular building blocks. Recent approaches,
such as Multi-Object Network (MONet; 43) and GENESIS [83], alleviate this by using recurrence
only for information routing, but not for the object representations themselves. In general, a
potential limitation of sequential slots is that they are not simultaneously accessible at any given
(time) step for down-stream processing. This can be addressed via a set function over sequential
slots, such as the attention mechanism in certain neural machine translation methods [16] or in
pointer networks [393].

Spatial Slots In spatial slots, each slot is associated with a particular spatial coordinate (eg.
in an image), which helps to break slot symmetries and simplifies information routing. They
can still accommodate a common format through weight-sharing, but lack generality because
their content is tied to a specific spatial location. Because location and separation are entangled,
changes to the location of an object potentially correspond to a change of slot, which complicates
maintaining object identity across time. Spatial slots are commonly found in Convolutional
Neural Networks (CNNs), where multiple convolutional layers share filter weights across the
spatial dimensions to yield a spatial map of representational slots. Although they are not usually
advertised as object representations in this way, several recent approaches, such as Relation
Networks [332], the Multi-Entity VAE [273], or the works by Zambaldi et al. [425], Stanić
et al. [366] explicitly treat each spatial position in the filter-map of a CNN as a candidate
object representation. Even more recent approaches, such as SPAIR [58], SPACE [231], and
SCALOR [179], expand on this by incorporating explicit features for the presence of an object
and its bounding box into each spatial slot. Nonetheless, a current limitation of these approaches



13 2.1 The Representation Problem

Temporal Codes  Complex Codes

Figure 2.6. Illustration of the two main aug-
mentation based approaches to object represen-
tations. Left: Neural activity over time for a
temporal code, where synchronization is em-
phasized using color. Right: Complex valued
activations are represented by arrows and col-
ored according to their direction.

is that their spatial slots are typically tailored towards objects that are reasonably well separated,
and whose size is compatible with the corresponding receptive field (or the bounding box) in
the image.

Category Slots A related approach is to allocate slots according to some categorization of
objects based on properties other than location. This too can serve to break slot symmetries for
the purpose of information routing, and is further expected to mitigate the dependence of spatial
slots on spatially separated inputs. In this case, however, because now category and separation
are entangled, it is then no longer possible to represent multiple objects of the same category4.
The main example of category slots are capsules [145, 146], although other approaches such as
Recurrent Entity Networks [138] can also be viewed from this perspective.

Augmentation

Augmentation based approaches, unlike slot based ones, keep a single set of features shared
among all object representations and instead augment each feature with additional grouping
information. This grouping information is usually continuous, which may help to encode
uncertainty about the separation. Object representations based on augmentation will trivially be
in a common format, although extracting information about individual objects now requires first
processing the grouping information. An important limitation of augmentation is that it requires
substantial deviations from standard connectionist systems and is thus more difficult to integrate
with state of the art systems. Due to features being shared, augmentation may also suffer from
capacity and ambiguity problems when a feature is active in multiple object representations at
the same time (eg. two red objects), similar to when representing multiple objects of the same
category using category slots footnote 4.

Temporal Codes An early approach to object representation using augmentation in neural
networks made use of the temporal structure of spiking neurons for separation (temporal codes).
Here, the activation of a feature encoded by the firing rate is augmented with grouping informa-
tion encoded by the temporal correlation between firing patterns [353]. In other words, the
features that form an object are represented by neurons that fire in synchrony (257, 395, 351).
Rather than using unrestricted spiking networks, most work on object representation using tem-
poral codes focuses on oscillatory networks, where the firing pattern takes the form of a regular
frequency rhythm (for an overview see [402]). Because temporal codes rely on spiking neurons,
they are non-differentiable and also require simulating the dynamics of each neuron even for

4 There is some evidence that humans struggle with feature overlap too and show reduced working memory capacity
in these cases [266].



14 2.1 The Representation Problem

Tensor Product Representation

Figure 2.7. Illustration of a Tensor
Product Representation (matrix on the
right) that is formed through combin-
ing a role vector (horizontal) and a
filler vector (vertical) for each object.

static inputs. This makes them incompatible with gradient-based training, and necessitates a
completely different training framework [eg. 75, 76] typically based on Hebb’s rule [195], or
Spike-Timing Dependent Plasticity (STDP; 48).

Complex-Valued Codes An alternative approach to augmentation uses complex-valued neurons
(features) in place of oscillatory neurons. Hence, instead of explicitly simulating the temporal
behavior of an oscillator, its activation and grouping information can now be described as the
absolute value and angle of a complex-valued neuron. Similar to before, the grouping is implicit
and smooth with neurons that “fire at similar angles” being grouped together. Complex-valued
neurons are differentiable and more compatible with existing gradient-based learning techniques.
On the other hand, they require specialized activation functions that consider both real and
imaginary parts5, which tend to be difficult to integrate with existing methods. Successful
integrations include complex-valued Boltzmann Machines [309, 429] and complex-valued RNNs
that could be trained either with backpropagation [269] or via Hebbian learning [304].

Tensor Product Representations

A Tensor Product Representation (TPR; 357) consists of a real-valued matrix (tensor) that is the
result of combining distributed representations of fillers with distributed representations of roles.
Tensor Product Representations (TPRs; 357) can be used for representing multiple objects by
associating fillers with object representations and using roles to encode grouping information.
A TPR is formed by combining each filler with a corresponding role via an outer product
(“binding operation”), which are then composed to accommodate multiple object representations
(“conjunction operation”). When the role representations are linearly independent, then the
object representations can be retrieved from the TPR via matrix multiplication (“unbinding
operation”). Notice that, when the role-vectors are one-hot encodings, the TPR reduces to
instance slots. However, the additional freedom afforded by a general distributed role vector
can be used to encode structural information or uncertainty about the separation of objects.
TPRs always assume that the object representations are described in a common format. But
note that, similar to augmentation, extracting information about individual objects first requires
processing the grouping information (in this case via the unbinding operation). TPRs were first
introduced in [357] and several modifications have since been proposed that consider different
binding, unbinding, and conjunction operations (298, 187, 98; see 193 for an overview). In
the recent literature, TPR-like mechanisms have been incorporated into neural networks using
fast-weights [335] or self-attention [336] to perform reasoning in language.

5In some sense, complex codes can be seen as an instance of a more general – yet unexplored – class of vector-valued
activations that use the additional degrees of freedom for grouping.



15 2.2 Segregation

Cube A

Cube BFlat Hexagon

Figure 2.8. Correspon-
dence of attractor states
to visual interpretations for
a tri-stable variant of the
Necker cube. The vector
field illustrates the (input-
dependent) inference dy-
namics in feature space,
with one attractor for each
stable interpretation.

Attractor Dynamics

Up until this point, we have focused on methods that address the representational format of
object representations. Now we consider attractor dynamics as an approach for addressing their
representational dynamics (Section 2.1.2). Robust object representations are well described by
a stable attractor state in a larger dynamical system that models the representational dynamics
based on a given input. In this case, inferring a coherent object representation corresponds to
running the dynamical system forward until it converges to an attractor state. A stable attractor
is naturally self-correcting, and multiple competing interpretations (from ambiguous inputs) can
easily be described by separate attractor states. Top-down feedback can then be used to switch
interpretations by pushing the state of the system enough to cause it to cross over to a different
basin of attraction. By adapting the system dynamics to changing inputs, they allow for moving
attractors (changes of the object) or bifurcations (creation or vanishing of interpretations).

Attractor Networks incorporate attractor dynamics in neural networks and have a long
history in connectionist research. Early work includes Hopfield networks [153], Boltzmann
machines [3]6, and associative memory [203]. Attractor states were also found to occur naturally
in RNNs, especially when using symmetric recurrent weights [5, 297]. In recent years, however,
they have received little attention (but see [268, 169]), which might be in part because they
can be difficult to train. In particular, the fact that each weight participates in the specification
of many attractors can lead to spurious (unintended) attractors and ill-conditioned attraction
basins [274]. Localist attractor networks [428] and flexible kernel memory [281] are two
approaches that address this issue by introducing a separate representation for each attractor.
However, note that spurious attractors that correspond to novel feature combinations may also
be advantageous for generalization.

2.2 Segregation

The segregation problem is about the process of structuring raw sensory information into
meaningful entities. It is concerned with the information binding required for dynamically
creating object representations, as well as the characteristics of objects as modular building
blocks for guiding this process. Unlike in Section 2.1, where we focused on the need for
binding at a representational level to maintain a separation of information for given entities,
here we focus on the process of creating object representations through binding previously

6Boltzmann machines build upon work on the dynamics of the Ising model in the physics of Spin-Glass [106, 346].



16 2.2 Segregation

Figure 2.9. Photo of two leaf-tailed geckos — “young and old” © 2015 by Paul Bertner.

unstructured (raw) sensory information. Humans effortlessly perceive the world in terms of
objects, yet this process of perceptual organization is surprisingly intricate [399]. Even for
everyday objects like a mirror, a river, or a house, it is difficult to formulate precise boundaries or
a definition that generalizes across multiple different contexts. The incredible variability among
objects makes it intractable to resolve the segregation problem purely through supervision.
Nonetheless, we argue that an important aspect common to all objects is that they may act as
stable and self-contained abstractions of the raw input. The segregation problem relates to the
problem of instance segmentation in that it also produces a division of the input into meaningful
parts, but it is complicated by the fact that it is concerned with objects in their most general
form. Consequently, the segregation problem is about enabling neural networks to acquire an
appropriate, context-dependent, notion of objects in a mostly unsupervised fashion.

Consider for example Figure 2.9, which demonstrates several challenges for segregation
that must be overcome. To recognize the two geckos sitting on a branch you have to segment
out two unfamiliar objects (zero-shot) even though they belong to the same class (instance
segmentation) and their use of camouflage (texture similarity). Both the large gecko and the
branch are visually disconnected due to occlusion, and yet you perceive them as independent
wholes (amodal completion). Beyond separating these objects, you have also formed separate
representations for them that enable you to efficiently relate, describe, and reason about them.

In the following„ we take a closer look at this process of segregation7. We first work towards
a general notion of an object built around modularity and hierarchy (Section 2.2.1). Next, we
focus on the process of forming object representations based on this notion (Section 2.2.2).
Unlike segmentation, which is typically only concerned with a static split at the input-level,
segregation is inherently task-dependent and aims to produce stable object representations
that are grounded in the input and which maintain their identity over time. Towards the end,
we survey relevant approaches from the literature that may help neural networks perform
segregation (Section 2.2.3).

7We refer to this process as segregation rather than binding, to emphasize the fact that it typically requires a separation
of the inputs and features into meaningful parts.



17 2.2 Segregation

A

C

B

Figure 2.10. For partial
objects (A) or only back-
ground (B), the occluded
regions can be inpainted
reasonably well, while in
the case of full object oc-
clusion (C) that is usually
impossible.

2.2.1 Objects

The question of what constitutes a meaningful object (i.e. for building structured models of
the world) is central to segregation. However, despite long-standing debates in many fields
including philosophy, linguistics, and psychology, there exists no general agreed-upon definition
of objects [118, 46]. Here, we take a pragmatic stance that focuses on the functional role of
objects as compositional building blocks. Hence, we are not interested in debating the “true”
(i.e. metaphysical) nature of objects, but rather consider object representations as components
of a useful representational “map” that refers to (but is not identical to) parts of the “territory”
(world)8.

Modularity

From a functional perspective, the defining quality of an object is that it is modular, i.e. it is
self-contained and reusable independent of context. While this suggests choosing objects with
minimal information content (to improve reusability), it is equally important that objects can
be represented efficiently based on their internal predictive structure. We argue that this trade-
off induces a Pareto front of valid decompositions into objects that have both strong internal
structure, yet remain largely independent of their surroundings. By organizing information in
this way, objects are expected to capture information that is due to independent causes, which
matches our intuitive notion of objects in the real world [118, 51].

Consider the example of three balloons in front of a forest as depicted in Figure 2.10. When
a balloon is partially occluded (as in A), you are still able to make a reasonable guess about the
occluded part purely based on its internal predictive structure. On the other hand, when an
entire balloon is occluded (as in B) it is impossible to infer its presence from the (unoccluded)
context, and the most reasonable reconstruction is to fill in based on the background (as in C).
Notice that each balloon is modular in the sense that it is possible to reuse them in many different
contexts (eg. when placed in a different scene). In contrast, this would not be possible if an
object were to be formed from the background and the balloon. Hence, by carving up perception
at the “borders of predictability”, objects allow for an approximate divide and conquer (i.e. a
compositional) approach to modeling the world.

8“A map is not the territory it represents, but, if correct, it has a similar structure to the territory, which accounts for its
usefulness.” [207].



18 2.2 Segregation

Hierarchical

Objects are often hierarchical in the sense that they are composed of parts that can themselves be
viewed as objects. Consider, for example, a house consisting of a roof and walls, which themselves
may consist of several windows and a door, etc. Depending on the desired level of detail, a
scene can therefore be decomposed in terms of coarser or finer scale objects, corresponding to
different solutions on the Pareto front. In most cases, these decompositions relate to each other
in the sense that they correspond to different levels in the same part-whole hierarchy. However,
in rare cases, two decompositions may also consider incompatible parts, as, for example, in
a page of text that can be decomposed either into lines or sentences9. Notice that there is a
difference between this part-whole hierarchy and the feature hierarchy typically found in neural
networks. Here, parts are themselves objects, which are the result of dynamically separating
information into object representations (segregation). Hence, a part-whole hierarchy can be
viewed in terms of a number of general “is-part-of” relations that can be reused between objects
(see also Section 2.3.1).

Multi-Domain

It is worth emphasizing that objects (as referred to in the context of this paper) are not restricted
to vision, but also span sensory information from other domains such as audio or tactile10 (and
even be entirely abstract, although this is not the focus of segregation). For example, auditory
objects may correspond to different sources of sound, such as speakers talking simultaneously
in the same room (cocktail-party problem; 54). Objects in the tactile domain are perhaps less
obvious, but consider the example of writing on a piece of paper with a pen, where you can
clearly separate the sensations that arise from your fingers touching each other, touching the pen,
and touching the paper [see also 190]). Notice how you are likely to associate the sensations of
touching the pen and its visual perception with a common cause and therefore with the same
object. This implies that objects can be simultaneously grounded in sensory information from
multiple domains, which may help resolve ambiguities (eg. McGurk Effect; 251).

2.2.2 Segregation Dynamics

Segregation needs not only infer a decomposition into objects, but also corresponding object
representations. As is evident from our previous discussion, there is no universal choice of
objects that is appropriate in all circumstances, which requires segregation to consider both
context- and task-dependent information. Together with the need for a stable outcome, this has
several consequences for the segregation dynamics which we will consider next.

Multistability

Most scenes afford many different useful decompositions that either stem from choosing different
levels of granularity (i.e. levels of hierarchy) or from ambiguous inputs that allow for multiple
distinct but coherent interpretations (see multi-modal separation uncertainty Section 2.1.2).
Together, these result in a massive number of potential object representations (eg. ≥ 3000

9A unique hierarchy is favored by modularity because in the case of incompatible decompositions (i.e. not correspond-
ing to the same part-whole hierarchy) their objects cross “borders of predictability”, which implies a weaker internal
structure.

10It is even discussed whether humans are capable of object perception in the olfactory domain [22].



19 2.2 Segregation

a) b) c)

Figure 2.11. Human perception is multistable, which is often demonstrated using visual illusions
as in (a), yet it is also often encountered in the real world, eg. for different groupings of tiles (b).
To steer segregation towards a useful decomposition it is important to incorporate contextual
information, for example to decide between a decomposition based on chairs or based on
stacks in (c).

letters per page of text). Simultaneously representing all of them is not only intractable, but
also undesirable, as the majority of object representations will not be useful for any particular
situation. A practical solution to this problem is a dynamical segregation process that has multiple
stable equilibria that each correspond to a particular decomposition of a given scene. Indeed,
humans resolve this problem via multistable perception, which allows us to seamlessly switch
back and forth between different interpretations [10]. This effect is often demonstrated with
visual illusions as in Figure 2.11a, but is in fact much more common than these constructed
examples suggest. For example, a simple tile pattern (as in Figure 2.11b) can easily be perceived
in several ways, including rows or columns of tiles. Multistability can also be observed in
other sensory modalities such as audio, tactile, and even olfaction [345]. Notice that it is
possible to simultaneously perceive multiple objects from the same decomposition, but not from
different decompositions (eg. perceiving 13 and B simultaneously in Figure 2.11a). This inherent
limitation of multistable segregation can also act as an advantage, since it ensures a single
coherent decomposition of the input and avoids mixing objects from different incompatible
decompositions. It implies that the process of segregation also has to be able to efficiently resolve
conflicts from competing decompositions (explaining away).

Incorporating Top-Down Feedback

Certain decompositions lead to a set of building blocks (objects) that are more useful than
others for a given task or situation. For example, when moving a stack of chairs to another
room it is useful to group information about the individual chairs together as a single object
(see Figure 2.11c). On the other hand, when the goal is to count each of the individual chairs,
a more fine-grained decomposition is preferred (and perhaps when repairing a chair an even
more fine-grained decomposition is needed). These building blocks underlie the structure of
downstream models that can be used for inference, prediction, and behavior, and the choice
of decomposition therefore affects the ability to generalize in predictable and systematic ways.
Hence it is important that the outcome of the segregation process can be steered towards the most
useful decomposition, based on contextual information. One of the main sources of contextual
information is top-down feedback, for example in the form of task-specific information (eg. to
guide visual search) or based on a measure of success at performing the given task. Memory
could act as another source of contextual information, for example by recalling a decomposition



20 2.2 Segregation

that has previously proven useful in the given situation.

Consistency

It is important that the grounding of object representations, as provided by the segregation
process, is both stable and consistent across time (i.e. it maintains object identity). This helps to
correctly accumulate partial information about objects, to infer temporal attributes from prior
observations (Section 2.1.2), and to ensure that the outcome of more abstract computations in
terms of object representations remain valid in the environment (Section 2.1.2). It may also
help to avoid “double-counting” of evidence (eg. during learning)11. Object identity depends on
a reliable mechanism for re-identification i.e. a mechanism for identifying an object as being the
same despite changes in appearance, perspective, or temporary absence of sensory information.
Consider, for example, a game of cups and balls, which involves tracking a ball hidden under
one of three identical cups that are being moved around. In this case, a stable object identity
requires maintaining separate identities for the cups despite their identical appearance, as well
as re-identifying the ball as it reappears from under the cup. When an object is re-encountered
after a prolonged period, re-identification may require interfacing with some form of long-term
memory.

2.2.3 Methods

To succeed at segregation (in the sense outlined above) a neural network must acquire a compre-
hensive notion of objects and incorporate mechanisms to dynamically route their information.
Due to the prohibitive amount of potentially useful objects, it is unlikely that an adequate notion
can be engineered directly or taught purely through large-scale supervision. Therefore, in the
following, we will review a wide range of approaches, including more classic non-neural ap-
proaches that have produced promising results despite incorporating domain-specific knowledge
only to a lesser degree. By also discussing the latter, we aim to provide inspiration for the
development of neural approaches that can learn about objects directly from raw data (eg. by
focusing on modularity).

Clustering Approaches to Image Segmentation

Image segmentation is concerned with segmenting the pixels [or edges 9] belonging to an image
into groups (eg. objects) and therefore provides a good starting point for segregation. A common
approach to image segmentation is to cluster the pixels of an image based on some similarity
function [173]. One particularly successful approach is the spectral graph-theoretic framework
of normalized cuts [347], which treats image segmentation as a graph-partitioning problem
in which nodes are given by pixels and weighted edges reflect the similarity between pairs of
(neighboring) pixels. Partitioning is performed by trading-off the total dissimilarity between
different groups with the total similarity within the groups. To the extent that the similarity
function is able to capture the predictive structure of the data, this is then analogous to the
trade-off inherent to modularity. It is straightforward to achieve a hierarchical segmentation in

11Consider the example from Marcus [245] about owning a three-legged dog. Despite the fact that you will likely
see your dog much more often than other dogs, this series of observations does not affect your overall belief about the
number of legs that dogs typically have, since these observations are all associated with the same dog.



21 2.2 Segregation

Illustration of Spectral Clustering Example PMI based Image Segmentation

Figure 2.12. Left: An illustration of (spectral) clustering approaches, which treat image segmen-
tation as a graph-partitioning problem. Right: Corresponding instance segments as obtained by
Isola et al. [166].

Illustration of Neural Image Segmentation Example Image Segmentations by Mask R-CNN

Figure 2.13. Left: An illustration of neural approaches that learn to directly output an image
segmentation. Right: Corresponding bounding boxes and instance segments as obtained by He
et al. [136].

this graph clustering framework, either via repeated top-down partitioning [347] or bottom-up
agglomerative merging [263, 152].

In the context of segregation, a central challenge is to define a good similarity function be-
tween pixels that leads to useful objects. As we have argued, a hardwired similarity function [eg.
as in 347, 242] has little chance at facilitating the required flexibility, although different initial
seedings of the clustering may still account for multiple different groupings (i.e. multistability).
Labeled examples can be used to address this challenge in a multitude of ways, eg. to learn a
similarity function between segments [312, 82, 206] or discrete graphical patterns [239], to
learn boundary detection [248, 152], or as a means of top-down feedback [263]. Unsupervised
approaches (based on self-supervision) provide a more promising alternative. One approach
is to learn a similarity function between pairs of pixels, eg. based on their point-wise mutual
information using kernel-density estimation [166] or based on self-supervised prediction using
a neural network [167]. Alternatively, one can attempt to steer the clustering process based on
the unsupervised principle of compressibility (minimum description length; 263).

Notice that, since clustering-based approaches to image segmentation focus on low-level
similarity structures, their understanding of objects at a more high-level is limited (i.e. at the
level of object representations, but see 23).

Neural Approaches to Image Segmentation

An alternative approach to image segmentation that leverages the success of end-to-end learning,
is to directly output the segmentation with a deep neural network. Unlike clustering-based
approaches, which focus on the similarity structure between pixels (or small segments), learning



22 2.2 Segregation

Illustration of an Attention Mechanism Example Attention Windows by AIR

Figure 2.14. Left: An illustration of attention-based approaches, which sequentially attend to
individual objects. Right: Corresponding attention windows as obtained by Eslami et al. [84].

now takes place at the (global) image level, which allows objects to be modeled at multiple
levels of abstraction. On the other hand, due to the one-to-one (feedforward) mapping from
image to segmentation, it may now be more difficult to provide multiple different segmentations
(multistability) or a hierarchical segmentation, for a given input.

Recent approaches based on supervised learning from ground-truth segmentation have
produced high-quality instance segmentations of real-world images12. For example, approaches
based on R-CNN [105] decompose the instance segmentation problem into the discovery of
bounding boxes using region-proposal networks [311] and mask prediction [62, 136] to provide
instance segmentations. The more recent DEtection TRansformer (DETR; 49) was able to
integrate these stages into a single Transformer-based network using a bipartite matching loss.
Other approaches output an energy function from which the segmentation is easily derived, eg.
based on the Watershed transformation [17]. Instance segmentation has also been phrased as
an image-to-image translation problem using conditional generative adversarial networks [262].
Approximate instance segments can also be obtained as a by-product of performing some
other task, such as learning to interpolate between multiple images [8] or minimizing mutual
information between image segments [422].

Unsupervised approaches that directly infer the segmentation (and that do not require large-
scale supervision) are more relevant in the context of segregation, but have received far less
attention. [177] propose to train a neural network to directly output the segment that an input
belongs to by maximizing the mutual information between paired inputs in representational
space (although it operates at the level of patches as opposed to the global image). In the context
of video, motion segmentation often produces segments that correspond to instances (provided
that they move, eg. 61), which can for example be learned through unsupervised multi-task
learning [302].

Sequential Attention

In the context of segregation, attention mechanisms provide a means to selectively attend to dif-
ferent objects sequentially. Compared to image segmentation, this does not require exhaustively
partitioning the image but instead allows one to focus only on the relevant locations in the image
(eg. as a result of top-down feedback). Here we focus mainly on hard attention mechanisms
that attend to a strict (i.e. spatially delineated) subset of the available information in the form

12We would like to emphasize the distinction between instance segmentation and semantic segmentation. In the
context of segregation we are more interested in the former, which is concerned with the more general notion of each
segment being an object (instance). In contrast, semantic segmentation associates a particular semantic interpretation
(in the form of a label) with each segment, and therefore can not segregate multiple objects belonging to the same class.



23 2.2 Segregation

of an attention window, eg. in the shape of a bounding-box [367] or a fovea [343]. Their strong
spatial bias (due to the shape of the attention window) makes them particularly relevant for
the domain of images, but more difficult to adapt to modalities in which meaningful objects
are not characterized by spatial closeness. On the other hand, the rigid shape of the attention
window may interfere with modularity due to potential difficulties in extracting information
about objects with incompatible shapes or that are subject to occlusion.

The main challenge for incorporating attention mechanisms is in correctly placing the window.
Early approaches by-pass this problem by evaluating a fixed attention window exhaustively at
each possible image location, or using several of many heuristics [220, 4, 383]. A classifier
can then be trained to determine which window contains an object [322, 394, 133]. Other
approaches compute a two-dimensional topographical saliency map that reflects the presence
of perceptually meaningful structures at a given location. This facilitates an efficient control
strategy to direct an attention window in an image by visiting image locations in order of
decreasing saliency [168]. Salient regions can be learned based on bottom-up information,
such as the self-information of local image patches [42]. Alternatively, they can be derived by
also incorporating top-down information, eg. by highlighting locations that are (maximally)
informative with respect to a discriminative task [96, 47, 433]. Recently, there has been renewed
interest in saliency-based approaches through the discovery of keypoints [174, 212, 258, 109].

It is also possible to directly learn the control strategy for placing the window of attention,
which naturally accommodates top-down feedback. For example, learning the control strategy
can be viewed as a reinforcement learning problem, in which the actions of an “agent” determine
the location of the window. A policy for the agent (frequently implemented by a neural network)
can then be evolved [367], trained with Q-learning [288], or via Policy Gradients [44]. Alterna-
tively, it can be incorporated as a separate action in an agent trained to perform some task (eg.
classification) or to interact with an environment [260, 15]. Attend Infer Repeat (AIR; 84) and
its sequential extension SQAIR [209] deploy a similar strategy for an unsupervised learning task
with the purpose of extracting object representations. They make use of an attention mechanism
that is fully differentiable based on spatial transformer networks [172], but see also DRAW [125]
for an alternative mechanism. Similarly, [375] incorporates a window of attention in a deep
belief network to extract object representations by performing (stochastic) inference over the
window parameters alongside the belief states.

Soft attention mechanisms implement attention as a continuous weighing of the input (i.e.
a mask) and can be seen as a generalization of hard attention. For example, in Multi-Object
Network (MONet; 43) [43], GENESIS [83], and ECON [398] a recurrent neural network is trained
to directly support the learning of object representations by outputting a mask that focuses on
different objects at each step13. A similar soft-attention mechanism has also been used to facilitate
supervised learning tasks such as caption generation [420], instance segmentation [310], or
(multi-)object tracking [208, 92]. Soft attention mechanisms have also been applied internally
(self-attention) to support segregation. For example, Mott et al. [265] incorporates a form of
dot-product attention [388] in an agent to attend to the internal feature maps of a bottom-up
convolutional neural network that processes the input image. A similar self-attention mechanism
was also used to support image classification [435].



24 2.2 Segregation

Illustration of a Generative Model

ba c d

e f hg

Example Object Decomposition by IODINE

Figure 2.15. Left: An illustration of generative approaches to segregation that model an image
as a mixture of components. Right: A corresponding decomposition in terms of individual
objects as obtained by Greff et al. [119].

Probabilistic Generative Approaches

A probabilistic approach to segregation is via inference in a generative model that models the
observed data in terms of multiple components (objects) 14. An advantage of explicitly modeling
the constituent objects is that it is easy to incorporate assumptions about their structure, including
modularity and hierarchy. This then enables inference (segregation) to go beyond low-level
similarities or spatial proximity, and recover object representation based on their high-level
structure as implied by the model. On the other hand, as we will see below, inference usually
becomes more difficult as the complexity of the generative model increases, and especially when
considering multi-modal distributions (i.e. for multistability).

The most basic assumption to incorporate in a generative model, for the purposes of segre-
gation, is to assume that the input is directly composed of multiple parts (objects) that are each
modeled individually. Inference in such models then allows one to recover a partitioning of the
input in addition to a description of each part (object representation). Early approaches model
images with a mixture model that treats the color values of individual pixels as independent data
points that are identically distributed [329, 91]. Alternatively, the decomposition can be based
on other features such as optical flow [176] or the coefficients of a wavelet transform [128].
Mixture models can also be biased towards spatial coherence to explicitly account for the spatial
structure of visual objects [406, 35]. Independent Component Analysis (ICA) models the observed
data as linear combinations (mixtures) of unobserved random variables (sources) that are
statistically independent [163]. This approach has been particularly successful at blind source
separation (segregation) in the auditory domain (eg. the cocktail party problem 54), although it
has also seen application in the context of images [226].

To more accurately model complex data distributions, it is possible to incorporate domain-
specific assumptions in the generative model (and thereby improve the result of inference).
For example, a generative model that captures the geometry of 3D images of indoor scenes
as well as the objects that are in it “[. . . ] integrates a camera model, an enclosing room ‘box’,
frames (windows, doors, pictures), and objects (beds, tables, couches, cabinets), each with their
own prior on size, relative dimensions, and locations” [67]. The results that can be obtained
by incorporating domain-specific knowledge are impressive [432, 67, 68, 380, 381]. However,
performing inference in highly complex generative models of this type is problematic and

13Notice, however, that these particular methods enforce an exhaustive partition of the image similar to image
segmentation methods.

14Human perception is also said to be generative in the sense that we often perceive objects as coherent wholes even
when they are only partially observed (amodal completion; 254).



25 2.3 Composition

heavier

? ?

a) b) c) d)

he
av

ie
r

Figure 2.16. Three different objects (■, •,Æ) appear in different pairings on a scale (a) and (b).
By evaluating their relationships (d), it can be inferred how the scale will tip in (c).

frequently relies on custom inference methods tailored to this particular task (eg. Markov Chain
Monte Carlo using jump moves to remove or add objects or specific initialization strategies). In
recent years, probabilistic programming languages have emerged as a general-purpose framework
to simplify the design of complex generative models and the corresponding inference process.
For example, they have enabled the use of symbolic graphic renderers as forward models [243]
and incorporated deep neural networks to help make inference more tractable [213, 317].
Nonetheless, in the context of segregation, the amount of domain-specific engineering that is
still required limits their generality and applicability to other domains (similar to overly relying
on supervised labels from a particular domain).

An alternative approach to more accurately modeling complex data distributions is to incor-
porate fewer assumptions, and rather parameterize the generative model with a neural network
that can learn a suitable generative process from many different observations. For example,
[386] demonstrates how a (spatial) mixture model that combines the output of multiple deep
neural networks is able to learn to generate images as compositions of individual objects and
a background [see also 277, 80, 279]. However, in order to perform segregation, we must
also be able to perform inference in these models, which can be very challenging. This has
been addressed by simultaneously learning an amortized iterative inference process based
on de-noising [120], generalized expectation-maximization [123], iterative variational infer-
ence [119], slot attention [236], or parallel spatial (bounding-box) attention [231, 178]. Further
improvements can be made by assuming access to multiple different views to explicitly model
3D structure at a representational level [52, 272]. Even though these methods still struggle at
modeling complex real-world images, they are capable of learning object representations that
incorporate many of the previously mentioned desiderata (eg. common format, disentangled,
modular), in a completely unsupervised manner.

2.3 Composition

In this section, we look at the binding problem from the perspective of composition: building
structured models of the world that are compositional. These structured models leverage the
modularity of objects to support different patterns of generalization, and are the means by which
more systematic ‘human-like’ generalization can be accomplished. Here we encounter the need
for variable binding: the ability to combine object representations and relations without losing
their integrity as constituents (as is needed for compositionality). Compositionality is a core
aspect of human cognition and underlies our ability to understand novel situations in terms of
existing knowledge. Similarly, in the context of AI, it supports the systematic reuse of familiar



26 2.3 Composition

factor

relation

role

bi
nd

in
gs

Figure 2.17. Three different ways in
which structure can be defined in
terms of relations between objects:
As a factor graph, a directed graph,
or as nested role-filler bindings.

objects and relations to dynamically construct novel inferences, predictions, and behaviors, as
well as the ability to efficiently acquire new concepts in relation to existing knowledge. However,
this relies on the ability to learn abstract relations that can be arbitrarily and recursively applied
to object representations, and requires a form of binding, not unlike the way variables can be
bound to placeholder symbols in a mathematical expression. Moreover, the desired structure is
often not known in advance and has to be inferred or adapted to a given context or task.

Consider the sequence of observations in Figure 2.16, which allows you to infer the relative
weights of the three depicted objects (■, • and Æ). Several interesting observations can be
made. For example, from panel (a) you can tell that • is heavier than ■, and likewise, thatÆ
is heavier than • from panel (b). This information does not describe a property of any of the
individual objects, but rather a relation between them. On the other hand, it can still be used
to update the properties of the participating objects in response to new information (eg. the
precise weight of ■) or to respond to generic queries, such as answering which of the objects is
the heaviest. The latter, in this case, also requires comparing the weights of ■ andÆ (panel
(c)). Notice how this is only possible through transitivity of the “heavier than” relation, which
allows you to combine the relations from panels (a) and (b) to infer thatÆ is heavier than ■.

In the following, we take a closer look at how to enable neural networks to dynamically
implement structured models for a given task, with the ultimate goal of generalizing in a more
systematic (human-like) fashion. First, we focus on incorporating a compositional structure
that combines relations and object representations without undermining their modularity (Sec-
tion 2.3.1). Next, we consider how a neural network can dynamically infer the appropriate
structure and leverage it for the purpose of reasoning (Section 2.3.2). Towards the end, we survey
relevant approaches from the literature that address these aspects of composition (Section 2.3.3).

2.3.1 Structure

To implement structured models, a neural network must organize its computations to reflect the
desired structure in terms of objects and their relations. This structure is generally described by
a graph where nodes correspond to objects and edges to relations15. By representing relations
separately (independent of object representations) it is possible to freely compose relations and
objects to form arbitrary structures (i.e. corresponding to different graphs). However, certain
types of relations may also impose constraints on the structure to ensure internal consistency
between relations (eg. symmetry, transitivity).



27 2.3 Composition

Relations

Relations encode the different computational interactions between the object representations in
a structured model. Many different types of relations are possible, including causal relations
(eg. “collides with”), hierarchical relations (“is part of”), or comparative relations (eg. “bigger
than”). Moreover, these general relations can often be specialized to include the nature or
strength of an interaction (eg. “elastic collision”, “much bigger than”). To efficiently account
for this variability and support learning, relations are best encoded using flexible (neural)
representations. Similar to object representations, it may then also be desirable to use a common
format that provides a measure of similarity between relations and ensures that they can be used
interchangeably16. The way structure is defined in terms of relations may also have implications
for their corresponding representations. When the structure is given by a regular (directed) graph
or a factor graph (see Figure 2.17 a & b), then each relation is encoded by a single representation
corresponding to either an edge or a factor. Alternatively, it is possible to encode a relation with
multiple representations that correspond to the different roles that the participating objects play
(see Figure 2.17 c). Finally, it is important that relations are represented separate from and
independent of the object representations (see also role-filler-independence; 161). This enables
relations and objects to be composed in arbitrary ways to form a wide variety of (potentially
novel) structures.

Variable Binding

To enable a single neural network to implement different structured models, it requires a suitable
‘variable binding’ mechanism17 that can dynamically combine modular object representations
and relations. Consider the classic example of Mary and John adapted from Fodor and Pylyshyn
[89]: Depending on a given task or context it may be more important to consider that “Mary
loves John”, that “John is taller than Mary”, or that “Mary hit John”. In general, the number of
possible structures that can be considered is potentially very large, and it is, therefore, intractable
to represent all of them simultaneously. Apart from being dynamic, a suitable variable binding
mechanism should also preserve the modularity of individual object representations. This is
critical to implement structured models that are compositional, which ensures that the neural
network generalizes systematically and predictably with respect to the underlying objects.

In many cases, only a single level of variable binding that directly combines individual object
representations and relations is needed. However, in certain other cases (eg. “Bob knows that
Mary loves John”) it may be required to first build composite structures that can themselves act
as ‘objects’, and that can then be combined recursively. When using a role-based representation
for relations, multiple levels of variable binding are also needed to avoid ambiguity when a
low-level object representation plays the same role in multiple relations.

15In our discussion, we focus mainly on binary relations (eg. A is bigger than B) that are well represented by individual
edges. However, keep in mind that it is also possible to represent higher-order relations (eg. A divides B from C), either
by using a higher-order graph (eg. a factor graph) or with the help of auxiliary nodes (eg. by adding a ‘division node’
with binary relations to A, B, and C).

16Doumas et al. [75] even argues that objects and relations should in fact use a shared ‘feature pool’ with which both
can be described.

17The term variable binding is adapted from mathematics, where it refers to binding the free variables in an expression
to specific values. In our case, variables correspond to object representations that are bound to the structure determined
by the relations.



28 2.3 Composition

Linear Ordering

bigger than

mousehouse colors

Hierarchy

Clustering

Lattice

Circular

table

Causal Graph

sprinkler rain

season

grass
wet

street
wet

birds fishmammals

shoes

handbags

hats

animals

carpsharkhorse catpanda

cat

Figure 2.18. Examples of different structural forms [194] that each can be used to define relations
among objects and imply different patterns of generalization.

Relational Frames

Each type of relation focuses on a particular aspect of the broader interaction among objects,
and thereby defines a particular relational frame that is internally consistent. Consider again the
example in Figure 2.16, which was concerned with the “heavier than” relation. This corresponds
to a relational frame of comparison that induces an ordering among the objects in terms of their
weight. In this case, an internally consistent ordering requires the relation to be transitive (i.e.
A> B ∩ B > C ⇒ A> C) and anti-symmetric (i.e. A> B⇒ B ̸> A). More generally, a relational
frame is characterized by a particular type of relation, and by the logical consequences (i.e.
different entailments) that are implied by having (multiple) relations of this type within the
structure. We adopted the term relational frame from Relational Frame Theory (RFT; 135), which
distinguishes two types of entailment that humans primarily use to derive (unobserved) relations:
mutual entailment and combinatorial entailment. Mutual entailment is used to derive additional
relations between two objects based on a given relation between them, eg. anti-symmetry for a
frame of comparison, or symmetry for a frame of coordination (i.e. deriving B = A from A= B).
Analogously, combinatorial entailment is used to derive new relations between two objects,
based on their relations with a shared third object, eg. transitivity for a frame of coordination
(i.e. deriving A= C from A= B and B = C).

Many different types of relational frames can be distinguished, which can be organized into
a number of general classes [159], including ‘coordination’ (eg. same as) , ‘comparison’ (eg.
larger than), ‘hierarchy’ (eg. part of) , ‘temporal’ (eg. after), or ‘conditional’ (eg. if then). Their
corresponding rules for entailment give rise to different structural forms [194] among their
relations, such as trees, chains, rings, and cliques (see Figure 2.18). In this way, each relational
frame can also be seen as encoding a particular (systematic) pattern of generalization among
the objects. Multiple different relational frames may co-occur within the same structure, which
allows for rules of entailment to interact across different frames to facilitate more complex
generalization patterns (eg. A= B and B > C implies A> C).



29 2.3 Composition

The old man the boat. The old man the boat.

NP VP

S

Adj N Det N

Nom V Det N V NP

NP VP

S

Det

Figure 2.19. Two parse-trees of a
garden-path sentence: The intu-
itive parsing (on the left) fails, even
though the sentence is grammati-
cally correct (see parse-tree on the
right).

2.3.2 Reasoning

The appropriate structure for a model depends on the task and context, and should therefore be
dynamically inferred by the neural network to focus only on relevant interactions between the
objects. Likewise, it is important to consider the computational interactions between relations
and object representations, in order to make use of the inferred structure for prediction and
behavior.

Relational Responding

To leverage a given structure in terms of relations between object representations, a neural
network must be able to organize its computations accordingly. A common use case involves
adjusting the (task-specific) response to an object based on its relation to other objects (relational
responding). For example, if it is known that ■ is heavier than •, then learning that • is too
heavy for a particular purpose (task) also changes your behavior concerning ■. More generally,
relational responding of this kind may involve evaluating multiple (derived) relations between
objects and combining information across different relational frames. Another use case is in
implementing so-called structure sensitive operations [89] that require responding directly to the
structure given by the relations (independent of the object representations). This is especially
important for solving abstract reasoning tasks, eg. when applying the distributive law to a given
mathematical expression (i.e. turning a · (b+ c) into a · b+ a · c).

A natural choice for facilitating relational responding in a neural network is to organize its
internal information flow (i.e. computations) in a way that reflects the graph structure of relations
and objects. This ensures that newly available information affects the object representations in
accordance with the dependency structure implied by the relations (and therefore also with the
generalization patterns due to the relational frames). Most information processing of this kind
can then be implemented in terms of only local interactions between objects representations and
relations, which maximally leverages their modularity. These local interactions, which can either
be instantaneous (eg. collides with) or persistent (eg. is part of), can facilitate both directed
(eg. for causal relations) and bidirectional (eg. for comparison) information flow. On the other
hand, local interactions are ill-suited for implementing structure sensitive operations that require
simultaneously considering multiple different parts of the larger structure.

Inferring Structure

Inferring the most desirable structure is an inherently difficult task, which requires making many
individual choices at the level of relations that all have to be coordinated to ensure that the
structure as a whole is useful. One important guiding constraint is the internal consistency of
the structure with respect to the rules of entailment as implied by the choice of relational frames.



30 2.3 Composition

Inconsistencies between the observed information and predictions by the structured model are
another indicator of a wrong or incomplete structure. The ‘garden-path’ sentence “The old man
the boat.” (see Figure 2.19) provides a good example for a violation of expectations, which
then triggers a revision of the structure. Upon first reading, “The old man” is likely parsed as
the subject of the sentence, which implies a structure where the next word is expected to be a
verb. However, since “the boat” is not a verb (and therefore does not match this expectation),
the sentence cannot be parsed in this way. The problem is resolved by revising the structure so
that it takes “The old” as the subject and “man” as the verb of the sentence. This example also
illustrates the need for collaboration between composition and segregation: It was the initial
grouping of “The old man” as a single object that gave rise to inconsistencies at the level of
structure, which could only be resolved by also changing the outcome of the segregation process.
Hence, it is vital that the process of inferring structure is able to provide (top-down) feedback to
help guide the process of segregation.

Inferring structure at the level of individual relations between objects involves making choices
about the type of relation, or which of the properties of an object to relate. These decisions
can be guided by contextual cues from the environment, such as the scales in Figure 2.17 that
trigger a comparison of the objects in terms of their masses (as opposed to eg. their relative
position or shape). Inferring a relation between objects may also be triggered upon discovering
their relation to other objects (eg. due to combinatorial entailment). However, for the sake
of efficiency it may not always be desirable to explicitly represent such relations, but rather
model their effect implicitly due to appropriately organizing the computations of the network
(i.e. relational responding). More generally, the process of inferring structure has to interface
closely with the mechanism for variable binding (i.e. for dynamically combining modular object
representations and relations in a way that preserves their modularity).

2.3.3 Methods

To succeed at composition, a neural network requires a mechanism for organizing its internal
computations in a way that facilitates relational responding based on the desired structure. A
natural approach is to incorporate the structure at an architectural level by focusing directly
on the local interactions between objects representations and relations. Alternatively, one can
also use a more generic (recurrent) neural network “processor” that (sequentially) operates
on a representation of the desired structure. In the following we will review both of these
different approaches, focusing in particular on relational responding and the difficulty of inferring
structure18.

Graph Neural Networks

Graph Neural Networks (GNNs; 334, 299, 362) are a promising approach for composition that
incorporates the desired structure for relational responding at an architectural level (see Wu et al.
419 for an overview). At a high level, a GNN is a neural network that is structured according
to a graph whose edges determine how information is exchanged among the nodes. In the

18We note that the problem of inferring structure has also received considerable attention in the causality literature,
often specifically focusing on cause-effect discovery (eg. see Hoyer et al. [155], Lopez-Paz et al. [237], Peters et al. [294]
or Peters et al. [295] for an overview). Generally, we expect structural causal models to become highly relevant for
composition, due to their robustness under intervention and utility for reasoning about hypothetical or unobserved
scenarios [293, 344].



31 2.3 Composition

context of composition, nodes correspond to object representations and edges to relations, which
together form the structure, i.e. using (static) variable binding at the architectural level. A GNN
fundamentally distinguishes two kinds of information processing, one that requires evaluating
the relations between the object representations, and another that is concerned with combining
(aggregating) the effect of the incoming relations to update the object representations [20]. By
implementing these in a general way that applies equally to different objects and relations, a
GNN can accommodate many different structures. In general, the local information processing
in a GNN ensures that information affects the object representations in a way that follows the
dependency structure implied by the relations (relational responding).

Graph Convolutional Networks Graph Convolutional Networks (GCNs) are a type of GNN
based on a generalization of convolutional neural networks (which operate on grids) to non-
Euclidean geometries such as graphs [40]. A GCN consists of several layers that each produce
an updated set of node representations by applying graph-convolutions to a local neighborhood
in the graph. They have been successfully applied to a wide variety of graph-structured data
including social networks [130], citation networks [201], 3D surfaces [233], knowledge base
completion tasks [337], and bio-chemical modeling [11]. However, while they excel at modeling
large-scale graphs, one disadvantage of GCNs in the context of composition is that they assume
a given graph in the form of an adjacency matrix and node representations as input. For the
purpose of composition, scalability is less important since we are most interested in relatively
small graphs (restricted by working memory) that are composed dynamically. On the other
hand, some GCNs [eg. 137, 225] have used a mechanism for coarsening (down-sampling) the
graph between layers, to reduce computational complexity, which could provide a mechanism
for refining the structure (i.e. structure inference).

Message Passing Neural Networks Message Passing Neural Networks (MPNNs; 103) iteratively
update the node representations of a given graph by exchanging messages along its edges (until
convergence)19. Compared to GCNs, both the graph structure and weights are shared across
layers (iterations), and the messages (corresponding to the incoming relations) are typically
implemented as a pairwise non-linear function of both adjacent node representations. Hence,
edges play a more prominent role in information processing and by explicitly considering pair-
wise interactions it is easier to model comparative relations between objects. MPNNs were
initially conceived as a generalization of RNNs to graph-structured inputs [362, 110] and have
since been adapted to consider modern deep neural networks [228]. A more general framework
that accommodates both MPNNs and GCNs was proposed in [20], which additionally includes a
global representation of the graph that interacts with all the nodes and edges (and may thereby
more easily provide for structure-sensitive operations).

MPNNs have been shown to generalize more systematically (compared to standard neural
networks) on many different tasks that require relational responding in terms of objects, including
common-sense physical reasoning [50, 21, 175], hierarchical physical reasoning [270, 227,
366], visual question answering [332, 289], abstract visual reasoning [7], natural language
processing [373], physical construction [131] or multi-agent interactions [370]. Similar to
GCNs, the desired structure may either be specified directly or inferred dynamically based on
some heuristic, eg. based on proximity [50, 270] or a language parser [373]. Alternatively,
MPNNs have been used to implement a relational inductive bias based on a generic structure,

19Recently, Message Passing Neural Networks (MPNNs; 103) were extended to allow for continuous updates [70, 234].



32 2.3 Composition

eg. by assuming it to be fixed and fully connected (as in Relation Networks; 332). In this case,
information can still be exchanged among all the nodes, although the generalization implied by
having the correct structural dependencies is lost (eg. for entailment).

A more desirable approach is to (dynamically) infer the desired structure, although this
is challenging due to the discreteness of graphs and difficulties in comparing them efficiently.
One approach is to first learn a continuous embedding for all possible graph structures and
then optimize for the right structure in the corresponding space, eg. using Variational Autoen-
coders (VAEs; 313, 199) [215, 431], or Generative Adversarial Networks (GANs) [421]. The other
approach is to directly infer the connectivity between nodes iteratively based on message passing,
eg. for a fixed number of nodes as in Neural Relational Inference (NRI; 200) or adaptively as in
Graph Recurrent Attention Networks (GRANs; 230).

Approaches based on Self Attention Graph Neural Networks based on self-attention are closely
related to MPNNs. The main difference to MPNNs is that they use self-attention to compute
a weighted sum of the incoming messages (based on the relations) for updating the node
representations. This provides a useful mechanism for dynamically adapting the information
routing (here a kind of soft variable binding) and thereby infer the desired structure for a fixed
set of nodes. However, note that this may be computationally inefficient because it still requires
computing all possible messages and only affects which of them end up being used in the final
summation. Wang et al. [404] makes use of a kind of (learned) dot-product attention to infer
relations between spatial slots. In this case, the attention coefficients are computed for pairs of
nodes while the messages are based only on a single node, which may make it more difficult
to implement multiple different relations. The use of multiple attention heads [i.e. as in 388]
may help mitigate this issue and has been successfully applied for relational reasoning about
objects [425, 386, 111, 330], citation networks [389], question answering [66], and language
modeling [72, 41]. Indeed, Transformers themselves may already be viewed as a kind of graph
network [20]. Alternatively, multiple different relations could be learned by also conditioning the
message on the receiving object representation when using attention eg. as in Relational Neural
Expectation Maximization (R-NEM; 385). The idea of using (self-)attention as a mechanism
for inferring structure (and dynamic information routing) has also been applied outside the
scope of graph neural networks, eg. in pointer networks [393], energy-based models [264], and
capsules [326, 210].

Neural Computers

Neural computers offer an alternative approach to composition by learning to perform reason-
ing operations sequentially on some appropriate representation of the desired structure. In
this case, the ‘processor’ is typically given by an RNN that interfaces with other components,
such as a dedicated memory, via a prescribed set of differentiable operations. Compared to a
GNN, the architecture of a neural processor is more generic and does not directly reflect the
desired dependency structure in terms of relations between object representations. Instead,
by considering structure at a representational level, it can more easily be adjusted depending
on task or context. Similarly, by having a central processor that is responsible for relational
responding (as opposed to a distributed GNN) it is easier to support operations that require
global information (eg. structure-sensitive operations). On the other hand, the ability of neural
computers to learn more general algorithms comes at the cost of a weaker inductive bias for
relational reasoning specifically. Hence, it is often necessary to incorporate more specialized



33 2.4 Summary

mechanisms to efficiently learn algorithms for relational responding that generalize in agreement
with the desired structure.

The most common type of neural computer consists of an RNN (the processor) that interfaces
with an external differentiable memory component. A dedicated memory component provides
an interface for routing information content (now stored separately) to the variables that take
part in processing (i.e. the program executed by the RNN processor). Indeed, while an RNN
can in principle perform any kind of computation using only its hidden state as memory [349],
its dual purpose for representing structure and information processing makes it difficult to
learn programs that generalize systematically [216, 60]. Early examples of memory-augmented
RNNs [63, 267] use a continuous adaptation of stacks based on the differentiable push and
pop operations introduced by Giles et al. [102] (cf. 185 for an alternative implementation).
Although a stack-based memory has proven useful for learning about the grammatical structure
of language[eg. 63]), its utility for more general reasoning tasks is limited by the fact that only
the top of the stack is accessible at each step.

The addressable memory used in the Neural Turing Machine (NTM; 116) offers a more pow-
erful alternative, which can be accessed via generic read and write operations (but see memory
networks for a read-only version; 414, 369). In this case, all memory slots (and thereby all parts
of the structure) are simultaneously accessible through an attention mechanism (responsible for
variable binding) that supports both content- and location-based addressing. Together, these
operations have shown to provide a useful inductive bias for learning simple algorithms (eg. copy-
ing or sorting) that generalize to longer input sentences (i.e. more systematically). Additional
memory addressing operations, eg. based on the order in which memory locations are accessed
(DNC; 117), based on when they were last read [271], or based on a key-value addressing
scheme [59] may confer additional generalization capabilities that are especially relevant for
relational reasoning. For example, the DNC has shown capable of learning traversal and shortest
path algorithms for general graphs by writing an input sequence of triples (‘from node’, ‘to node’,
‘edge’) to memory, and iteratively traverse this structure using content-based addressing [117].
Moreover, given a family tree consisting of ancestral relations between family members, the
DNC can successfully derive relationships between distant members, which demonstrates a form
of combinatorial entailment.

Other memory-based approaches take a step towards GNNs by updating each memory location
in parallel [138, 186] or incorporate specialized structure for reasoning into the processor, eg.
for the purpose of visual question answering using a read-only memory (knowledge base; see
158). Alternatively, certain (Hebbian) forms of fast weights [339] can be viewed as a type of
internal associative memory based on previous hidden states [13]. TPR-RNN [335] extends this
idea by equipping a fast-weight memory with specialized matrix operations inspired by Tensor
Product Representations (TPRs; 357), which makes it easier to respond to relational queries. In
contrast, Reed and de Freitas [307] and Kurach et al. [214] take a step towards modern computer
architectures by, respectively, incorporating a call-stack with an explicit compositional structure
or a mechanism for manipulating and dereferencing pointers to a differentiable memory tape.

2.4 Summary

We have analyzed the binding problem of connectionism in terms of three aspects: 1. The ability
to simultaneously represent multiple objects in a common format, without interference (repre-
sentation), 2. the process of forming grounded object representations from raw unstructured



34 2.4 Summary

inputs (segregation problem), and 3. the capacity to dynamically relate and compose object
representations into structured models (composition). In this work we will focus on the first
two problems, and mostly ignore the problem of composition. This is because we believe that
the problem of segregation is the most neglected and yet also the most critical aspect of the
binding problem. It corresponds to the transition from unstructured sensory data to meaningful
symbol-like representations, and therefore essentially concerns the symbol-grounding prob-
lem [132]. Bridging this gap between physical sensory data and discrete mental representations,
may therefore enable the integration and use of many sophisticated symbolic algorithms.

The main challenge tackled in this thesis is segregation, and thus in coping with the immense
variability of useful objects that may depend on both task and context. We have argued that this
effectively precludes solutions that overly rely on supervision, or domain-specific engineering.
This raises the question of how a useful notion of an object can be discovered mainly via
unsupervised learning (and later refined based on task specific information). A key part of the
answer is to focus on the modularity of objects, which only depends on the statistical structure
of the observed data and interfaces directly with the functional role of objects as compositional
building blocks. Indeed, evidence suggests that human object perception is based on similar
principles [286, 51]. This consideration is the basis for the notion of objects that we propose
in Chapter 4, and variations of this theme for the basis for our following methods too. Several
other approaches from the machine learning literature have also shown to be able to successfully
leverage modularity to learn about objects, for example either by using image segmentation [166]
or by attention [43].

Regarding segregation dynamics, we have seen that it is important to provide architectural
inductive biases that help with dynamic information routing, eg. in the form of attention or
masking specific parts of the input. Consistency and top-down feedback are mostly affected by
the interplay between segregation, representation, and composition, and it is difficult to evaluate
these properties in isolation. However, in order to facilitate this interaction, it is critical that
segregation is part of a fully-differentiable neural approach, which may be most problematic
for clustering-based approaches to image segmentation and probabilistic programs based on
symbolic models. In the following chapters we adopt the clustering framework in that we rely
on iteratively inferred masks at the input level that dynamically route information to a fixed set
of (identical) object-slots. And the integration of this clustering-based approach with neural
networks is a major theme among Chapters 5 to 7.

Object representations are the product of segregation and the foundation upon which com-
positional reasoning is built. To effectively connect high-level abstract reasoning with low-level
sensory data they must be learned jointly, together with segregation. We have argued that
learning object representations requires incorporating architectural inductive biases to ensure
a common format and to provide enough flexibility for dynamically separating information.
Regarding separation, slot-based approaches offer a simple and minimal approach, while aug-
mentation and TPRs are more difficult to incorporate, yet support more sophisticated use
cases. Therefore, we will focus on instance-slot based representations for the work presented in
Chapters 4 to 7.



Chapter 3

Background

This chapter reviews some of the mathematical foundations required for the rest of this thesis.
Section 3.1 establishes notation and reviews some fundamentals of probability theory and
statistics, while Section 3.2 discusses machine learning, and finally Section 3.3 gives a brief
introduction to the basics of neural networks. However, a comprehensive treatment of any of
these fields is beyond the scope of this thesis. For an excellent introduction to probability theory
we refer the reader to [321]. A thorough introduction to machine learning can be found in [34],
and regarding neural networks and modern deep learning, we refer the reader to [342] for a
detailed survey of its history, or [107] for a general introduction.

3.1 Probability Theory

Probabilty theory is a mathematical framework for reasoning under uncertainty. It plays a central
role in machine learning, where sensory information about the world is inherently incomplete
and noisy, and the knowledge of any system is limited. We use probability to formally model the
task of perceptual grouping, and as a guide for designing systems that operate effectively under
uncertainty. This section provides a brief introduction to the relevant concepts and tools.

A probability space consists of a sample space (a set Ω of all possible atomic events ω) and a
probability measure P. Anything that can happen within our model, corresponds to one element
of the sample space, and typically we are interested in a set of outcomes that we call an event.
The probability measure quantifies how likely each event is by assigning it a real number between
0 (impossible) and 1 (certain). Formally, a probability space is a triplet (Ω,F , P) consisting of
three parts:

1. The sample space Ω is an arbitrary non-empty set.

2. A σ-Algebra F ⊆ ℘(Ω).
3. A probability measure P : F → [0, 1].

From this definition it immediately follows that the probabilty of Ω is 1 (certain event),
and that the probability of ∅ is 0 (impossible event). The probability of two events A and B
happening simultaneously is also called their joint probability and we write P(A, B) as a shorthand
for P(A∩ B).

35



36 3.1 Probability Theory

3.1.1 Random Variables

A random variable is a function X : F → X that maps events to some measurable quantity in
X (eg. a real value). Often this is more useful than working directly with the elements ω ∈ Ω.
If X takes only finitely or countably many values, then X is called a discrete random variable.
If, on the other hand, X can take on uncountably many values (eg. if X = R), then we call X a
continuous random variable.

We write P(X = x) or PX (x) as a shorthand for P({ω ∈ Ω | X (ω) = x}) and we call the
function PX : X 7→ [0,1] the probability distribution of X . If X is discret, then PX is called a
discrete probability distribution or probability mass function. If X is continuous, then PX (x) = 0
for all x ∈ X (which is not very useful). In this case we instead consider the probability density
function written as pX : X 7→ R which satisfies PX (x ∈ A) =

∫

x∈A pX d x for any measurable set A.
For the case of two random variables X and Y we write their joint distribution as PX Y (x , y).

Restricting a joint distribution to a subset of their variables can be done by summing over all
values of the ignored variables:

PX (x) =
∑

i

PX Y (x , yi) or pX (x) =

∫

y

pX Y (x , y) d y.

The resulting destribution is also called the marginal distribution of X .

3.1.2 Conditional Probabilities

An important concept for dealing with partial information, is that of conditional probabilities:
The probability of some event A, given that we know another event B has happened. Formally,
the conditional probability of A given B is defined as:

P(A | B) :=
P(A, B)
P(B)

.

Here P(A) is called the a priori (or prior) probability of A, and P(A | B) is called the a posteriori
(or posterior) probability of A given B. Analogously, for two probability distributions PX and PY

with PY > 0, the conditional distribution of X given Y is defined as:

PX |Y (x | y) :=
PX Y (x , y)

PY (y)
.

From this definition we immediately get the important product rule:

P(A, B) = P(B)P(A | B),

and its generalization the chain rule of probabilities:

P(
N
⋂

i=1

Ai) = P(A1)P(A2 | A1)P(A3 | A1, A2) · · · P(AN |
N−1
⋂

i=1

Ai).

Another important corollary is Bayes’ theorem, which states that for events A and B the
following equality holds:

P(A | B) =
P(B | A)P(A)

P(B)
.



37 3.1 Probability Theory

Analogously for random variables X and Y :

PX |Y (x , y) =
PY |X (y | x) PX (x)

PY (y)
for all x , y .

An important application of this theorem is to reverse causal knowledge (A causes B) into a
belief update based on observed consequences (how does seeing B affect the likelihood of A?).

3.1.3 Expectation and Variance

The expected value (or expectation) of a random variable X is the probability-weighted average
of all its possible values. It is defined as:

E[X ] :=
∑

i

x i PX (x i),

for discrete random variables, and analagously for continuous random variables as:

E[X ] :=

∫

x

x pX (x) d x .

Intuitively the expected value represents the average value X takes over a large number of
independent realizations.

It is worth pointing out that the expectation operator E is linear in the sense that

E[aX + bY ] = aE[X ] + bE[Y ],

for any pair of random variables X and Y and constants a and b1.
The expectation of a random variable X only describes the mean value of a random variable,

and does not contain any information about how much its value can vary. To describe the spread
of random variable X with expectation µ= E[X ], we use its variance which is defined as:

Var[X ] := E
�

(X −µ)2
�

.

The variance is always non-negative (Var[X ]≥ 0), and invariant to constant offsets:

Var[X + a] = Var[X ].

If the values of a random variable X are scaled by a constant amount a, then its variance is
scaled by the square of a:

Var[aX ] = a2 Var[X ].

The square root of the variance is also called standard deviation and denoted by σX :=
p

Var[X ].

3.1.4 Correlation and Independence

An important part of probabilistic modeling is to capture the dependencies between events
and random variables. Intuitively, this captures the influence that the outcome of one random
variable has on another. If two events or random variables do not depend on each other, that

1Note that this is a slight abuse of notation because the multiplication and summation on the left operates on
functions, while on the right it operates on scalars ∈ X .



38 3.1 Probability Theory

simplifies the model substantially. We say that two events A and B are independent (written as
A⊥ B) if their joint probability factorizes:

P(A, B) = P(A) P(B).

Analogously, we say that two random variables X and Y are independent iff

PX Y (x , y) = PX (x) PY (y) for all x and y .

If two random variables are independent that implies PX |Y (x | y) = PX (x) provided that
PY > 0. Furthermore the expectation of their product also factorizes E[X Y ] = E[X ]E[Y ].
Independence between random variables is very useful, but in many cases it is too strong of an
assumption. An important and less restrictive notion is that of conditional independence (written
as X ⊥ Y | Z):

PX Y |Z(x , y | z) = PX |Z(x | z) PY |Z(y | z) for all x , y , and z.

Sometimes, instead of assuming independence, it is more useful to quantify the degree to
which they are dependent. To measure the simplest case of linear interactions we generalize
the notion of variance to pairs of random variables: Let X and Y be two random variables with
expectations µX = E[X ] and µY = E[Y ]. Then their covariance is defined as:

Cov[X , Y ] := E[(X −µX )(Y −µY )].

Note that the covariance of a variable with itself is just its variance: Cov[X , X ] = Var[X ].

3.1.5 Graphical Models

Graphical Models are a visual representation of the dependency structure of multiple random
variables. This representation offers a clear and intuitive representation and is often helpful for
understanding large models. It consists of a directed graph where each node corresponds to a
random variable, and every edge represents a dependency. For example, the joint distribution
which factorizes as PX Y Z(x , y, z) = PX (x)PY (y)PZ |X Y (z | x , y) could be depicted as:

Z

X Y

In general, the distribution corresponding to a graphical model with random variables
X = {X i}Ni is given by:

PX (x1, . . . , xN ) =
N
∏

i=1

PX (x i | Xpa(i)),

where pa(i) denotes the parents of the node i.

3.1.6 Common Distributions

Bernoulli The Bernoulli distribution B(µ) is the distribution of a discrete random variable that
takes on a value of 1 with probability µ and 0 with probability 1−µ. It has an expected value of



39 3.1 Probability Theory

µ and a variance of µ(1−µ). We write X ∼ B(µ) as a shorthand for X is distributed according
to Bernoulli distribution with parameter µ.

B(x;µ) =

¨

µ x = 1

1−µ x = 0

Categorical A categorical distribution C(K ,µ) is the distribution of a discrete random variable
X that can take one of K different values. It has two parameters: the number of categories K
and their probabilities µ= {µk}Kk=1 which have to sum to one. The probability distribution of X
is thus:

C(x; K ,µ) =



















µ1 x = 1

µ2 x = 2

. . .

µK x = K

Uniform A continuous uniform distribution describes the distribution of a real-valued random
variable that takes only values within a certain interval each with equal probability. It has two
parameters a < b which specify the endpoints of the interval, and we write X ∼ U(a, b). Its
probability density function is given by:

U(x; a, b) =

¨

1
b−a x ∈ [a, b]

1−µ otherwise

Its expectation is E[X ] = 1
2 (a+ b) and its variance is Var[X ] = 1

12 (b− a)2.

Normal The Normal (or Gaussian) distribution may be the most important continuous distri-
bution for a real-valued random variable. It is written as N (µ,σ2) and has two parameters: its
mean µ and its variance σ2. The corresponding probability density function is given by:

N (x;µ,σ2) =
1

p
2πσ2

e−
(x−µ)2

2σ2

Mixture Distributions Mixture distributions are probability distributions formed from two or
more component distributions. Intuitively, they represent the case where each sample is drawn
from one of the component distributions, but it is not observed which one. Formally this consists
of a latent (unobserved) categorical random variable C ∼ C(K ,π) and a collection of component
random variables

�

X (k)
	K

k=1. The resulting distribution then corresponds to a weighted mixture
of the component distributions:

PX (x) =
K
∑

k=1

PC(k)PX |C(x | k) =
K
∑

k=1

πk PX (k)(x),

where the component probabilities πk are also called mixing coefficients. An important example
are Gaussian mixture models for which the components are distributed according to Normal
distributions:

PX (x) =
K
∑

k=1

πk N (x;µk,σ2
k)



40 3.1 Probability Theory

3.1.7 Information Theory

Information theory is a branch of probability theory concerned with the quantification, storage
and communication of information. Information in this context is defined as the ability to
distinguish different outcomes of some (probabilistic) process and is usually measured in bits.
Formally it is measured as the so-called self-information of an outcome of a discrete random
variable X , and can be thought of as the surprise associated with observing the outcome:

IX (x) := − log2 PX (x)

Intuitively the self-information corresponds to the number of bits of additional information
gained by observing X = x assuming knowledge only about its distribution. This leads to the
important concept of Shannon Entropy of a random variable, which describes the expected
information gain from observing this variable:

H[X ] := E [IX ] = −
∑

x

PX (x) log2 PX (x)

A useful application of information theory is measuring how different a probability distri-
bution Q is from a reference distribution P: Let P and Q be two separate probability measures
defined on the same probability space. Then the Kullback-Leibler divergence between P and Q is
defined as:

DKL[P ∥Q] :=
∑

x

P(x) log
P(x)
Q(x)

Intuitively, it corresponds to the expected amount of information required to encode outcomes
x , if one assumes them to be generated with probabilities Q(x) but in reality they occur with
probability P(x). The KL-divergence is non-negative (DKL[P ∥ Q] ≥ 0) and is exactly 0 only
if P and Q are equal. Note that, in general, the KL-divergence is not a metric because it
is not symmetric (DKL[P ∥ Q] ̸= DKL[Q ∥ P]) and does not satisfy the triangle inequality
(DKL[P ∥ Q] + DKL[Q ∥ R] ≱ DKL[P ∥ R]). A related concept that is often used in machine
learning is the so-called cross-entropy between two distribution:

H[P;Q] = −
∑

x

P(x) logQ(x) = H[P] + DKL[P ∥Q]

Information can also be used to quantify all the dependencies (including non-linear, unlike
covariance) between two random variables X and Y . Given two random variables X and Y , their
mutual-information corresponds to the KL-divergence between their actual joint distribution,
and the factorized distribution which would correspond to them being independent:

I[X ; Y ] := DKL[PX Y ∥ PX PY ].

The mutual information non-negative and is zero if and only if X and Y are independent:

I[X ; Y ] = 0 ⇔ X ⊥ Y

We note that there is an important generalization of information theory called Algorithmic
Information Theory [205]. Rather than defining information in terms of random variables
and communication, it centers around computational complexity, and is thus able to define
information and randomness for individual observations rather than for distributions. The core
concepts of AIT, including Kolmogorov complexity [127] and Solomonoff probability [360] are
extremely elegant, but also unfortunately uncomputable, and have to be approximated. For the
purpose of this thesis, only probabilistic (Shannon) information theory is relevant, and we defer
the extension to algorithmic information theory to future work.



41 3.2 Machine Learning

3.2 Machine Learning

An often quoted definition of machine learning is:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T , as measured
by P, improves with experience E.” – Tom Mitchell [259]

Machine learning is a large field that spans many very diverse subdisciplines, that each make
different assumptions about the domain of experiences, tasks, and performance measures, as
well as about the structure of the computer program. Reinforcement Learning (RL), for example,
considers the very general case of an agent that observes and acts in an environment and
occasionally receives a reward signal. Here, the class of tasks may include any possible sequence
of actions in the environment, the experience is considered to be the past sequence of perceptions
and actions of the agent, and the performance measure is the accumulated reward. In contrast,
the focus of this thesis will be on supervised learning and on unsupervised (or self-supervised)
learning, both from a statistical perspective. This means, that the experience is assumed to
consist of a training-set of random samples drawn independent independent and identically
distributed (iid) from an unknown distribution. This is in sharp contrast to the RL setting, where
observations can be influenced by all past actions of the agent, and other changes that may
happen in the environment.

3.2.1 Supervised Learning

In supervised learning the task is to map an input x i to a corresponding output yi , and the
experience takes the form of a training-set of pairs {[x i , yi]}Ni=1, which are assumed to be drawn
independent and identically distributed (iid) from an unknown distribution PX Y :

[x i , yi]
iid∼ PX Y .

A common example of this would be the case of image classifcation, where each x ∈ RW∗H∗3

represents an input image, and y ∈ {1,2, . . . , K} is the corresponding label (one of K classes).
The formulation in terms of a probabilty distribution allows us to use the tools of Bayesian

inference to address the learning problem. The idea is to define a parametric class of conditional
distributions PY |XΘ along with a prior distribution over parameters PΘ(θ ). The process of learning
then corresponds to updating the distribution over parameters based on training examples [x i , yi].
This new and updated distribution over parameters is called the posterior distribution and can
be computed using Bayes’ theorem:

PΘ|Y X (θ | yi , x i) =
PY |XΘ(yi | x i ,θ ) PΘ(θ )

PY |X (yi | x i)
(3.1)

=
PY |XΘ(yi | x i ,θ ) PΘ(θ )
∑

θ ′ PY |XΘ(yi | x i ,θ ′)PΘ(θ ′)
. (3.2)

For a sequence of independent and identically distributed observations x = {x i}Ni=1 and y = {yi}N

this becomes:

P(θ | y,x) =
P(y | x,θ ) PΘ(θ )
∑

θ ′ P(y | x,θ ′)PΘ(θ ′)
,



42 3.2 Machine Learning

where, due to the independence of the training examples, the likelihood term can be written as:

P(y | x,θ ) =
N
∏

i=1

PY |XΘ(yi | x i ,θ ).

Maximum A-Posteriori Estimate

In general, evaluating the posterior PΘ|X is difficult and often impossible to do analytically. But
in many circumstances, we do not need a full posterior distribution, and it is enough to know the
most likely value for the parameters θ ∗ given the observations. This is much easier to compute
because the integral term in the denominator of the posterior does not depend on θ and can
thus be ignored in the maximization:

θ ∗ = argmax
θ

P(θ | y,x) = argmax
θ

P(y | x,θ ) PΘ(θ ) = argmax
θ

N
∏

i=1

PY |XΘ(yi | x i ,θ )PΘ(θ ).

This point-estimate θ ∗ is called a maximum a-posteriori (MAP) estimate for θ , the term P(y | x,θ )
is also known as the likelihood function, and PΘ is called the prior distribution over parameters.
Instead of directly maximizing the posterior, we can equivalently maximize its logarithm without
affecting the result, because the logarithm function is monotonically increasing. For independent
observations {[x i , yi]}Ni=1 this turns the product of likelihoods into a sum:

θ ∗ = argmax
θ

N
∑

i=1

log PY |XΘ(yi | x i ,θ ) + log PΘ(θ ),

which is much easier to work with in practice and has the added benefit of working with log-
likelihood terms, that are also much simpler for many important distributions. Consider, for
example, a Gaussian log-likelihood with fixed variance:

log PX |Θ(x | µ) = logN (x;µ,σ2) = log
�

1
p

2πσ2
e−

(x−µ)2

2σ2

�

= −
1
2

log 2π− logσ−
(x −µ)2

2σ2

By also ignoring constant terms the MAP estimate for µ can then be computed simply as:

µ∗ = argmax
µ

N
∑

i=1

− logσ−
(x −µ)2

2σ2
+ log PΘ(µ),

which, for a sufficiently simple prior PΘ, corresponds to a quadratic optimization problem, that
can be efficiently solved.

Maximum Likelihood Estimate

In the context of machine learning, we often do not wish to, a priori, express any preferences
for the parameters. In Bayesian terms this corresponds to an uninformative prior (eg. uniform
over all possible values2). We can then ignore its contribution when estimating the optimal
parameters, resulting in a so-called maximum likelihood estimate (MLE):

θ ∗ = argmax
θ

log P(y | x,θ ) = argmax
θ

N
∑

i=1

log PY |XΘ(yi | x i ,θ ).

2Note that such a prior is technically improper since there is no well-defined uniform distribution over the interval
(−∞,∞). But this technicality can be ignored as long as the posterior remains well-defined.



43 3.2 Machine Learning

This approach of maximum likelihood estimation is an extremely common and powerful paradigm
and forms the basis of much of machine learning.

3.2.2 Unsupervised Learning

In the case of unsupervised learning, the training data consists only of inputs x = {x i}Ni=1
which are modelled as independent and identically distributed (iid) samples from an (unknown)
distribution PX :

x i
iid∼ PX .

Usually the goal is to discover interesting structure in the data (eg. clustering) and/or to learn
a representation of the data that will be useful to various (though yet unknown) future tasks.
Here, we are particularly interested in the generative approach, where the data distribution
PX is assumed to be the marginal of a joint distribution PX Z that includes latent variables Z
(unobserved local parameters). Their joint can be specified in terms of a generative model PX |Z
and a prior over latents PZ :

PX (x) =
∑

z

PX Z(x , z) =
∑

z

PX |Z(x | z)
︸ ︷︷ ︸

generative model

PZ(z)
︸ ︷︷ ︸

prior

.

The task of representation learning then corresponds to finding a function that maps each x to a
suitable value for the latent variable z (i.e. in approximating the posterior PZ |X ). Superficially,
this task looks very similar to the supervised setting, where we wanted to learn the distribution
over labels given the input data PY |X . However, the crucial difference here is that the z are
unobserved and we thus do not have access to any example values for z.

Variational Inference

Variational inference is a framework for efficiently approximating the posterior distribution PZ |X
over the latent variables z given the observations x . The main idea is to introduce a family of
distributions Q over latent variables, parametrized by a set of parameters θ : QZ |Θ. We then
find the value for the parameters θ , that makes QZ |Θ approximate the desired posterior PZ |X as
closely as possible. To measure “closeness” of these two distributions we use their KL divergence
(see Section 3.1.7):

DKL[QZ |Θ ∥ PZ |X ] =
∑

z

QZ |Θ(z | θ ) log
QZ |Θ(z | θ )
PZ |X (z | x)

(3.3)

= E
Q

�

log
QZ |Θ(z | θ )
PZ |X (z | x)

�

(3.4)

= E
Q

�

logQZ |Θ(z | θ )
�

−E
Q

�

log PZ |X (z | x)
�

(3.5)

= −
�

E
Q
[log PX Z(x , z)]−E

Q

�

logQZ |Θ(z | θ )
�

�

︸ ︷︷ ︸

ELBO

+ log PX (x), (3.6)

where the first term in the last line is known as the Evidence Lower BOund (ELBO). To see
where the name Evidence Lower Bound comes from, one can simply rearange the terms in
Equation (3.6) to obtain:

log PX = ELBO+ DKL[QZ |Θ ∥ PZ |X ].



44 3.3 Neural Networks

in
pu

ts

weights ac�va�on
func�on

neuron

output

Figure 3.1. Schematic illustra-
tion of an artificial neuron.

Remember that the KL-divergence cannot be negative, so the ELBO is indeed a lower bound for
log PX (x) which is also called the evidence. Since the log PX term does not depend on θ , it is
enough to maximize the ELBO in order to minimize the KL-divergence between P and Q. This is
important, because evaluating log PX (x) is usually intractable due to the required summation
over all possible values of z. The joint distribution PX Z , on the other hand, avoids this problem
and is therefore much easier to compute. The family of distributions QZ |Θ can be chosen such
that EQ

�

logQZ |Θ(z | θ )
�

is tractable too. We have thus turned an intractable Bayesian inference
problem, into a tractable optimization problem: namely that of maximizing the ELBO. Variational
inference is a powerful framework, which has many important uses in machine learning, including
Expectation Maximization (EM; 69) and Variational Autoencoders (VAEs; 313, 199), both of which
are of particular interest in this thesis (see Sections 4.2.3, 5.1.2 and 7.1.2)

3.3 Neural Networks

Artificial Neural Networks (ANNs; or NNs for short) originated as computational models of in-
formation processing in biological brains [250, 318, 325] (see [342] for a detailed overview).
Broadly speaking, biological brains consist of large network of neurons that communicate elec-
trically via weighted connections called synapses. Similarly, an Artificial Neural Network (ANN)
consists of many simple computational nodes that are interconnected with weighted connections
(also called the weights of the network). The network is activated by stimulating a set of input
nodes, and this activation then spreads throughout the network along the weighted connections.
However, apart from these superficial similarities, modern ANNs bear little resemblance to
their biological counterparts. Importantly, instead of discrete electrical ‘spikes’, the activation
of an ANN node is represented by a continuous numerical value that was originally intended
to represent the average firing rate of such spikes over a brief interval. Nonetheless, ANNs
enjoy continuing popularity as pattern classifiers and have been proven to work suprisingly
well despite, or maye because of, their many simplifications and idealizations. Their focus on
learning and parallel computation, have enabled them to benefit optimally from the exponential
increase in computational power and available data.

3.3.1 Multi-Layer Perceptrons (MLPs)

Multi-Layer Perceptrons (MLPs; 171, 170) are the simplest type of ANNs and consist of layers
of neurons arranged in a linear (feed-forward) topology. Inputs are used to set the activation
of the first layer, and this activity is then propagated through the subsequent layers up to the
final layer in a process known as the forward pass of the network. Each neuron receives as
input all the activations from the previous layer, which it then accumulates as a weighted
sum according to the strength of the corresponding connections. The result is then passed
through a non-linear activation function (or squashing function) f (see Figure 3.1). Typical
choices of activation function include the logistic sigmoid, the hyperbolic tangent, Rectified Linear



45 3.3 Neural Networks

3 2 1 0 1 2 3
1.0

0.5

0.0

0.5

1.0

1.5

2.0
ELU
ReLU
sigmoid
softplus
tanh

Figure 3.2.
Common activations:

sigmoid(x) = 1/(1+ e−x)

tanh(x) =
e2x − 1
e2x + 1

softplus(x) = ln(1+ ex)

ReLU(x) =max(x , 0)

ELU(x) =

¨

x if x > 0

ex − 1 if x ≤ 0

Unit (ReLU), softplus, and Exponential Linear Unit (ELU; 57) (see Figure 3.2). The activation hi

of neuron i is therefore a function of its inputs x and the corresponding weights w j,i and usually
an additive bias term bi:

hi = f (
∑

j

w j,i x j + bi).

Each layer k > 0 has its own set of parameters θ (k) that consists of a matrix of connection weights
W (k) and a bias vector b(k). Using matrix notation we can write each layer k as a vector-valued
function that maps its inputs x(k) and parameters θ (k) to its output activations:

h(k) = g(k)(x(k);θ (k)) = f (W (k)x(k) + b(k)).

Here g(0) = x is called the input layer, the intermediate layers 0< k < K are called hidden
layers, and the final layer y = g (K) is called the output layer. The entire MLP can then be written
as the composition of all the layer functions, where the output of each layer becomes the input
of the next:

y=MLP(x;θ ) = g(K) ◦ g(K−1) ◦ . . . ◦ g(1)(x,θ ) = g(K)(g(K−1)(. . . g(1)(x,θ (1)),θ (2)) . . . ,θ (K)).

Depending on their weights, an MLP can implement a large variety of different functions. In
that sense, MLPs are effectively a way to parametrize a rich class of smooth non-linear functions
that map input vectors x to output vectors y = h(K). In fact, it has been shown that they are
universal function approximators, in the sense that an MLP with a single (sufficiently large)
hidden layer can approximate any continuous function to arbitrary precision [154], given the
right set of weights. However, in practice it is often the case that deeper networks are far more
efficient in representing the relevant class of functions than shallow networks (eg. [129, 33]).

3.3.2 Training

The fact that neural networks can, in principle, implement any continuous function depending
on their weights allows them to be used for a wide variety of tasks. In that way, Neural
Networks (NNs) convert the problem of searching for a target function, into the problem of
finding the right set of weights for a desired task. Typical examples include predicting the
(continuous) price of a house based on its features (regression) or categorizing images into cats,



46 3.3 Neural Networks

dogs, cars etc. (classification). Importantly, for our purposes, they can be used to parametrize
families of probability distributions such as the posterior over the latent variables QZ |XΘ needed
for variational inference. Unfortunately, we cannot directly compute the right set of weights, so
we instead cast our search as an optimization problem. Neural Networks are trained by adjusting
their weights in a way that it minimizes a objective (or loss) function.

Loss Functions

The loss is a scalar function that plays an important role in the training, because it has to evaluate
how well the neural network performs its task in a single number. Often this objective function
is based on the Maximum Likelihood Estimate (MLE) approach Section 3.2.1 and assumes a
probabilistic model parametrized by the neural network. In the case of supervised classification,
where the training data consists of pairs of inputs x (eg. images) and associated categorical
labels t ∈ 1, . . . , K (eg. corresponding to dog, cat, etc.). the underlying probabilistic model is:

P(C = k|x) = yk = NN(x)k.

This means that the neural network has K neurons in its output layer and is used to parametrize
a conditional categorical distribution over the K possible output classes. In this case a softmax
activation function is typically used at the output layer to ensure a valid distribution:

yk = softmax(hk) =
ehk

∑

j eh j
.

The corresponding log-likelihood function for classification is given by the average (negative)
categorical cross-entropy error:

L(y, t) =
1
N

N
∑

i=1

log P(C = t i |x i) = −
1
N

N
∑

i=1

K
∑

k=1

t ik log(yik),

where the target labels ti are assumed to be one-hot vectors with t ik = 1 for the correct class k
and zero elsewhere. Note that the average cross-entropy error is the same as the KL-divergence
between the output by the network y = NN(x) and the true distribution PC |x, but with the
analytical expectation replaced by an (empirical) average.

For continuous outputs, a common choice is to assume the output of the network to corre-
spond to the mean of a Gaussian distribution µ= NN(x) with fixed variance σ2:

P(Y = t | x) =N (t;µ,σ2) =N (t;NN(x),σ2).

The corresponding MLE-based loss function is the well-known Mean-Squared-Error (MSE):

L(µ, t) =
1
N

N
∑

i=1

(µ− t)2,

where σ and other constants have been omitted, since they do not affect the optimization.

Gradient Descent

Given a scalar loss function that measures how well the NN performs on the desired task for set
of parameters, we now turn to finding the set of parameters θ ∗ that minimizes this loss:

θ ∗ = argmin
θ

L(y, t) = argmin
θ

L (NN(x,θ ), t) .



47 3.3 Neural Networks

This optimization can be performed automatically by many different methods from random
search, and evolution, gradient descent, higher order optimization methods such as newtons
method, to line search methods, and interior points methods. Here, we will focus on gradient
descent, an iterative local optimization algorithm for finding a (local) minimum of a loss function.
The general idea is to start with a random set of parameters θ , and then repeatedly take small
steps in the opposite direction of the gradient of the loss function:

θ (t+1)← θ (t) −η
∂ L(y, t)
∂ θ

,

either for a fixed number of steps, or until some threshold is reached. For sufficiently small
learning rates η, this procedure is guaranteed to converge to a local minimum of the loss
function.

For large datasets, gradient descent becomes very inefficient, because it has to processes the
entire training set before each update step. Therefore, in practice, a variant called stochastic
gradient descent (SGD) is much more common. Instead of using the the average gradient for
the entire training set, it uses only the gradients from a small (random) subset of examples
(a minibatch) for each update. It can be shown that this minibatch-gradient is an unbiased
estimate of the full (batch) gradient. In expectation, and with a sufficiently small learning rate,
SGD will therefore find the same optimum as batch gradient descent, while being being much
faster to compute. Many variations of gradient descent have been developed including SGD
with momentum, RPROP [315], AdaGrad [252, 78], and importantly Adam [198].

Backpropagation

Note that the log-likelihood based losses take the form of an average over many per-example-
losses, and therefore its derivative too can be written as an average of individual per-example-
derivatives:

∂ L(y, t)
∂ θ

=
1
N

N
∑

i=1

∂ L(yi , t i)
∂ θ

In the following, we will therefore focus on computing the gradient for a single example [x , t]
and the corresponding output of the neural network y = NN(x ,θ ).

To efficiently compute the gradient of the loss with respect to the weights of a neural network,
we use an approach called backpropagation of error (or backprop for short [409]). It is based
on the insight, that both the loss and the NN are compositions of many simple differentiable
functions. This makes it possible to use the chain rule of derivatives to compute the partial
derivatives of the loss wrt. the parameters θ in terms of many component-wise derivatives. The
chainrule has been known for centuries and had been used in earlier work [232, 77, 192], it
was Werbos [409] that first developed the neural network specific version of backprop, which
later became popular through the work of Rumelhart et al. [324]3.

Applied to the loss, the chain rule gives us:

∂ L(y, t)
∂ θ

=
∂ L
∂ y

∂ y
∂ θ
=
∂ L
∂ y

∂NN(x ,θ )
∂ θ

.

Further applications to the neural network result in a long chain of multiplicative terms, one for
each constituent function such as the linear projections and activation functions used in MLPs.

3See Schmidhuber [342] for a more detailed discussion of the history of backpropagation



48 3.3 Neural Networks

Each parameter θm may contribute to a different layer and thus require a slightly different chain
of derivates, where each of the terms may reappear for many different parameters. The key
to the computational efficiency of backpropagation is to systematically store the intermediate
values of shared prefixes, instead of recomputing them. In particular, the derivative of the loss
with respect to the pre-activations (before the non-linearity) of each layer, play an important
role and are known as deltas. In the case of an MLP, for example, where the pre-activations a(l)

of the l-th layer are given as:

a(l) =Wh(l−1) + b(l), (3.7)

h(l) = f (l)(a(l)), (3.8)

the deltas correspond to ∂ L
∂ a(l) and can be recursively computed from the deltas of layer l + 1:

δ(l) :=
∂ L
∂ h(l)

∂ h(l)

∂ a(l)
=
∂ L
∂ h(l)

f ′(a(l)) = δ(l+1)W T f ′(a(l)).

The gradient wrt. the weights W (l) is then simply:

∂ L
∂W (l)

= δ(l)
∂ a(l)

∂W (l)
= δ(l) ⊗ h(l−1),

where ⊗ denotes the outer product. The resulting algorithm has the same computational
complexity as a forward-pass that propagates the input-activations through the network to
compute its output. As the name suggests, backpropagation operates in a backward fashion,
that starts at the loss and propagates the errors backwards through the layers towards the input.
Modern neural networks are usually implemented using auto-differentiation software such
as Tensorflow [1], Pytorch [291], or JAX [38], which can automatically construct an efficient
backward pass for any specified computational graph composed of differentiable building blocks.

3.3.3 Architectures

So far, the only neural network architecture we have discussed is the MLP, which is simply a
linear chain of fully connected layers. However, it is worth noting that, in general, ANNs are not
restricted to a linear (chain-like) architecture, but can be formed from arbitrary directed acyclic
graphs (DAGs). A vast multitude of different architectures have been proposed and studied in
the literature. Far too many to list them here, but it is worth mentioning a few important layer
types from which architectures can be constructed.

Recurrent Neural Network

Recurrent neural networks (RNNs; 81, 184, 222) are an extension of normal (feed-forward)
neural networks for sequential data. They introduce recurrent connections that allow the
activations of a particular timestep to depend on the activations of the previous timestep. In its
simplest form, which we will call Simple Recurrent Network (SRN; 316), it takes the shape of a
fully connected recurrent layer:

ht = f (Wxt + Rht−1 + b),

where ht and xt are the hidden activation and input at timestep t respectively, f is the activation
function, W and R are weight matrices and b are the biases. This construction turns out to



49 3.3 Neural Networks

be far more powerful than a simple MLP layer, due to the fact that it can use h as an internal
memory. In principle, this allows Recurrent Neural Networks (RNNs; 250, 368, 316, 410) to
model temporal dependencies of arbitrary length, and in fact, Siegelmann and Sontag [349]
have shown that a sufficiently large RNN can perform arbitrary computations (i.e. that RNNs are
Turing-complete). However, in practice it is difficult to train them to discover dependencies that
span more than a few timesteps, due to the so-called vanishing gradient problem [148, 151].

Recurrent neural networks are trained with a temporal extension of backprop called backprop
trough time (BPTT) [316, 410, 415]. The basic idea is to mentally “unfold the RNN in time”,
by (virtually) turning each timestep into its own layer and thus converting the RNN into a very
deep feed-forward neural network. Backpropagation can then be applied as usual to this new
very deep network to compute the gradient of the loss with respect to the weights. The only
difference is that each weight now appears at many places in the same network (weight-sharing),
and thus the contributions from each of those occurrences have to be summed up to receive the
final gradient.

Long Short-Term Memory

Recurrent neural networks with Long Short-Term Memory (Long Short-Term Memorys (LSTMs; 149))
have emerged as an effective and scalable alternative to SRNs. LSTMs are both general and ef-
fective at capturing long-term temporal dependencies. They do not suffer from the optimization
hurdles that plague SRNs [151] and have been used to advance the state of the art for many
difficult problems. This includes handwriting recognition [113, 296, 73] and generation [112],
language modeling [426] and translation [240], acoustic modeling of speech [327], speech
synthesis [85], protein secondary structure prediction [361], analysis of audio [244], and video
data [74] among others.

The central idea behind the LSTM architecture is a memory cell which can maintain its state
over time, and non-linear gating units which regulate the information flow into and out of the
cell. Most modern studies incorporate many improvements that have been made to the LSTM
architecture since its original formulation [149, 150]. The LSTM setup most commonly used in
literature was originally described by Graves and Schmidhuber [115]. We refer to it as vanilla
LSTM and use it as a reference for comparison of all the variants. The vanilla LSTM incorporates
changes by Gers et al. [101] and Gers and Schmidhuber [100] into the original LSTM [150]
and uses full gradient training. A schematic of the vanilla LSTM block can be seen in Figure 3.3.
It features three gates (input, forget, output), block input, a single cell (the Constant Error
Carousel), an output activation function, and peephole connections. The output of the block
is recurrently connected back to the block input and all of the gates. However, LSTMs are
now applied to many learning problems which differ significantly in scale and nature from
the problems that these improvements were initially tested on. In Greff, Srivastava, Koutník,
Steunebrink and Schmidhuber [121] we conducted a systematic study of the utility of various
computational components which comprise LSTMs (see Figure 3.3).

Let xt be the input vector at time t, N be the number of LSTM blocks and M the number of
inputs. Then we get the following weights for an LSTM layer:

• Input weights: Wz , Ws, W f , Wo ∈ RN×M

• Recurrent weights: Rz , Rs, R f , Ro ∈ RN×N

• Peephole weights: ps, p f , po ∈ RN

• Bias weights: bz , bs, b f , bo ∈ RN



50 3.3 Neural Networks

unweighted connection

Legend

weighted connection

connection with time-lag

mutliplication

+ sum over all inputs

branching point

gate activation function
(always sigmoid)

+

+

+

+

forget gate

input gate

block input

cell
+

output gate

peepholes

LSTM block

g

h

...

input

...

...

...

...

...

...

...

...

recurrent

...

input

recurrent

input

recurrent

input

recurrent

output
recurrent

+

g

SRN
unit

...

input

...
recurrent

...

...
output

recurrent

g input activation function
(usually tanh)

h
output activation function
(usually tanh)

block output

Figure 3.3. Detailed schematic of the SRN unit (left) and a Long Short-Term Memory block
(right) as used in the hidden layers of a recurrent neural network.

Then the vector formulas for a vanilla LSTM layer forward pass can be written as:

z̄t =Wzx
t +Rzy

t−1 + bz

zt = g(z̄t) block input

īt =Wix
t +Riy

t−1 + pi ⊙ ct−1 + bi

it = σ(̄it) input gate

f̄t =W f xt +R f yt−1 + p f ⊙ ct−1 + b f

ft = σ(̄ft) forget gate

ct = zt ⊙ it + ct−1 ⊙ ft cell

ōt =Woxt +Royt−1 + po ⊙ ct + bo

ot = σ(ōt) output gate

yt = h(ct)⊙ ot block output

Here, functions σ, g and h are point-wise non-linear activation functions. The logistic sigmoid
(σ(x) = 1

1+e−x ) is used as activation function of the gates and the hyperbolic tangent (g(x) =
h(x) = tanh(x)) is usually used as the block input and output activation function. The operator
⊙ denotes the point-wise multiplication of two vectors.

Highway and Residual Networks

Training of very deep neural networks with dozens or hundreds of layers, suffers from the same
vanishing gradient problem as SRNs. Both Highway and Residual networks address this problem
by improving the error flow via identity skip connections that allow units to copy their inputs on
to the next layer unchanged. This design principle was originally introduced in Long Short-Term
Memory (LSTM) recurrent networks [150] and mathematically these architectures correspond
to a simplified LSTM network, "unrolled" over time.

In Highway Networks, for each unit there are two additional gating units, which control how
much (typically non-linear) transformation is applied (transform gate T) and how much to just



51 3.3 Neural Networks

copy of the activation from the corresponding unit in the previous layer (carry gate C). Let H(x)
be a nonlinear parametric function of the inputs, x, (typically an affine projection followed by
pointwise non-linearity). Then a traditional feed-forward network layer can be written as:

y(x) = H(x). (3.9)

By adding two additional units, T (x) and C(x) a Highway layer can be written as:

y(x) = H(x) · T (x) + x · C(x). (3.10)

Usually this is further simplified by coupling the gates, i.e. setting C(x) = 1− T (x):

y(x) = H(x) · T (x) + x · (1− T (x)). (3.11)

ResNets simplify the Highway networks approach by reformulating the desired transformation
as the input plus a residual F(x). The rationale behind this is that it is easier to optimize the
residual form than the original function. For the extreme case where the desired function is the
identity, this amounts to the trivial task of pushing the residual to zero:

y(x) = F(x) + x. (3.12)

As with Highway networks, Residual networks can be viewed as unfolded recurrent neural
networks of the particular mathematical form (one with an identity self-connection) of an LSTM
cell. This has been explicitly pointed out by [229], who also argue that this could allow Residual
networks to emulate recurrent processing in the visual cortex and thus adds to their biological
plausibility. Setting F(x) = T(x)[H(x)− x] converts Equation 3.12 to Equation 3.11 showing
that both formulations differ only in the precise functional form for F . Alternatively, Residual
networks can be seen as a particular case of Highway networks where C(x) = T (x) = 1 and are
not learned.



52 3.3 Neural Networks



Chapter 4

Reconstruction Clustering

We are interested in learning object representations in an unsupervised fashion. That is to split
a given image into objects, each of which should be described by a distributed representation.
This is unlike most work on segmentation, because we do not want to provide any supervision
on what or where the objects are. But that raises an important question: What could be an
unsupervised notion of an object? And is there even such a thing? In this chapter I argue for an
information theoretic notion of objects and develop a simple proof-of-concept system that learns
in an unsupervised way to segregate an image into objects, based only on the statistics of the
training images. The goal here is to provide some intuition as well as lay the foundation for a
formal framework. It is based on the publication [122].

4.1 What is an Object?

Figure 4.1. Picture of a “Greeble” [97].

Most work on object detection with neural networks
relies on supervision through a combination of class
labels, bounding boxes, and/or segmentation masks.
But humans can detect and segment objects which
they have never seen before. Consider, for example
the made-up object called Greeble shown in Figure 4.1:
You can not only segment it from its background, but
also say something about its properties (color, shape,
texture, etc.). The fact that you are able to generalize
your object perception to this unfamiliar object means
that it cannot rely on explicit supervision. Rather, you
had to rely on general cues like the ones studied in
Gestalt Psychology.

4.1.1 Gestalt Psychology

Gestalt Psychology was arguably the first systematic investigation of human object perception.
Inspired by the seminal work of Wertheimer [412], they argue that the perception of wholes
(or Gestalten1) can not be described as a simple composition of more primitive percepts. This

1“Gestalten” is plural of the German word “Gestalt” meaning “form” or “shape”.

53



54 4.1 What is an Object?

Similarity

Closure

Proximity

Continuation

Enclosure

Symmetry

Figure 4.2. Illustration of
several Gestalt laws of vi-
sual perception. Note how
the different cues influ-
ence which elements are
perceived as belonging to-
gether.

holistic view of perception, was later summarized by Kurt Koffka as: “The whole is other than
the sum of its parts” [202]2, Their concept of a Gestalt closely resembles our notion of object.
For an excellent in-depth overview of Gestalt Psychology we encourage the reader to refer to
[400, 401].

The best-known results of Gestalt research are their principles of perceptual grouping (also
known as Gestalt Laws; see Figure 4.2 for an overview). They describe which stimulus cues
influence the perceived grouping of a set of discrete elements [413, 400]. They include among
others: law of proximity (closeby pieces tend to be grouped together), the law of similarity
(similar pieces tend to be grouped together), the law of closure (grouping prefers to form closed
contours), the law of symmetry (grouping prefers to form symmetric objects) and the law of
common fate (what moves together groups together). Several other Gestalt laws have been
found over the years. While Gestalt Psychology initially focussed on the visual domain only, it
has later been extended to other sensory modalities including audio, tactile and even olfaction.

Note that the laws of proximity and common fate can be seen as special cases of the law of
similarity (with position and movement resp. being the compared attributes). Similarly, some
have argued that the Gestalt Laws are all special cases of a single information theoretic grouping
principle [134]. The idea is that a good Gestalt is one with a lot of internal redundancy [10],
and thus that the likelihood of a particular grouping is inversly proportional to the amount
of information required to describe it [147]. There is disagreement about how to quantify
information and the issue of simplicity vs likelihood has been debated extensively, though they
might turn out to be identical [51]. For our purpose the existence of these general principles,
and their prevalence in multiple sensory domains is very interesting. It makes plausible the idea
of a general segregation mechanism that can generalize to novel objects.

4.1.2 Grouping by Predictability

Here we use mutual predictability (also called pointwise mutual information) of the pixels to
formalize this notion of “internal redundancy”. Intuitively, knowing about some pixel values that
belong to an object helps in predicting the other pixels of the same objects, but not with predicting
other objects (see Figure 4.3). Knowledge about the predictability structure is precisely what is

2Frequently misquoted as “The whole is greater than the sum of its parts”.



55 4.2 Method

A

C

B

(a) (b)

Figure 4.3. An illustration of intra-object predictability. a) Notice that when a ballon is partially
occluded (A) the rest of it can still be inferred, but not when it is fully occluded (B). b) The
same holds for corrupted pixels: The missing pixels of the square can easily be predicted using
its remaining pixels, but not from pixels constituting other objects.

needed in order to remove corruption from an image. An example can be seen in Figure 4.3b
where the corrupted pixels in the bottom left corner of the square can be reconstructed from
knowledge about the rest of the square, but not from any of the triangles. So we define an object
as a group of pixels that help in predicting each other, but do not carry information about pixels
outside of that group.

Based on this insight, we propose to use a Denoising Autoencoder (DAE; 27, 391) to measure
predictability. The DAE is trained to remove corruption from images of single objects and thus
learns a local model of the data generating distribution [391, 31].

4.2 Method

With this unsupervised notion of an object, we are now ready to set up our perceptual grouping
system. The idea is to use the predictability of pixels to divide them into several groups. We
start from a random split of the input image, and then use an iterative clustering method to
group pixels together that help predict each other. At the end the resulting clusters will then
(hopefully) correspond to objects. We measure predictability of pixels using a DAE that was
trained on images of the desired objects, and formalize the clustering as a variation of Expectation
Maximization (EM; 69). Thus predictability, as we use it here, is derived from the structure of
the underlying data-distribution. The representation computed by the encoder of the DAE serves
as the object representation and thus as the parameters of the corresponding cluster.

4.2.1 Denoising Autoencoder

Let g be the encoder and f be the decoder of a Denoising Autoencoder (DAE; 27, 391), such that
z = g(x) is the encoded representation of input x. The decoded output µ = f (z) corresponds to
the means of a pixel-wise Bernoulli distribution B. The DAE is trained to remove corruption from
images of single objects and thus learns a local model of the data generating distribution [391, 31].
After training the same DAE is used for each of the clusters to get predictions µi for pixel i,
where the object is represented by z. This corresponds to the following likelihood:



56 4.2 Method

PX |Z(x | z) =
D
∏

i=1

PX |Z(x i | z) =
D
∏

i=1

B(x i;µi) =
D
∏

i=1

µ
x i
i (1−µi)

1−x i (4.1)

Here the x i ’s are assumed to be independent given µ.

4.2.2 Spatial Mixture Model

We model the input as a spatial mixture model: Each pixel x i of the input image x is generated
by one of K independent objects with representations zk according to Equation (4.1). The pixels
are independent (given z), but not identically distributed (unlike a regular mixture model). We
introduce a latent pixel-wise categorical random variable Ci ∈ {1, 2, . . . , K} determines which of
the K objects the pixel belongs to. Let the Ci ’s be independent and identically distributed and its
prior distribution be given by3:

πk := P(Ci = k) =
1
K

, for all 1≤ k ≤ K and 1≤ i ≤ D. (4.2)

The (complete data) log likelihood for the image x is then

L(z;x, c) := log PX |Z,C (x | z, c) =
D
∑

i=1

log PX |Z,C(x i | z, ci) =
D
∑

i=1

K
∑

k=1

δci=k log PX |Z(x i | zk), (4.3)

where δ is the indicator function:

δci=k =

¨

1 ci = k

0 else
.

Given an image x, we would like to to use maximum likelihood estimation to infer the
object representations zk. Unfortunatly the assignment to pixels c is unknown, so we need
to marginalize over all possible values of c. With that we get that the (incomplete) data
log-likelihood L(z | x) is a pixel-wise mixture model with mixing coefficients πk:

L(z | x) = log PX |Z(x | z) (4.4)

=
D
∑

i=1

log PX |Z(x i | z) (4.5)

=
D
∑

i=1

log
K
∑

k=1

P(Ci = k)PX |Z(x i | zk) (4.6)

=
D
∑

i=1

log
K
∑

k=1

πk PX |Z(x i | zk) (4.7)

(4.8)

3For the sake of simplicity we are assuming a fixed uniform prior for the Ci ’s (mixing coefficients), but it is straight-
forward to adjust the framework to other choices and even iteratively updating the mixing coefficients.



57 4.2 Method

4.2.3 Expectation Maximization

Direct maximization of L wrt. z is difficult due to the summation inside the logarithm, so we turn
to the iterative EM algorithm. It is based on the observation that if we knew the values of either
z or c, optimizing the complete log likelihood from Equation (4.3) with respect to the other
would be straight-forward. So it divides the optimization into two steps that alternate between
optimizing z (M-Step) and c (E-Step) where in ech step we use our current best estimate for the
other quantity.

E-Step In the E-Step we assume a given estimate for z and use it to calculate the posterior for
the assignment:

mi,k := PC |X ,Z(k | x i ,z) (4.9)

=
PX |Z ,C(x i | z, k)PC |Z(k | z)

PX |Z(x i | z)
(4.10)

=
PX |Z(x i | zk)πk

K
∑

k=1

πk PX |Z(x i | zk)

(4.11)

=
PX |Z(x i | zk)

K
∑

k=1

PX |Z(x i | zk)

(4.12)

(4.13)

Here, the second line is just an application of Bayes’ rule, the third line follows from the fact
that C is assumed to be independent of Z , and the final line is a simplification using the fact
that all πk = 1/K .

M-Step Now we need the Q value used in EM which is defined as the expectation of the
complete data log-likelihood with respect to the posterior of C given the data and a previous
estimate for the parameters z′:

Q(z,z′) = E
C|X ,Z ′

[L(z;x, c)] (4.14)

=
D
∑

i=1

K
∑

k=1

E
C |X ,Z ′

[δci=k log PX |Z(x i | zk)] (4.15)

=
D
∑

i=1

K
∑

k=1

PC |X ,Z(ci | x,z′k) log PX |Z(x i | zk) (4.16)

=
D
∑

i=1

K
∑

k=1

mi,k log PX |Z(x i | zk) (4.17)

The maximum of Q with respect to µ would be trivially obtained by setting µi,k = x i for
all k. This is due to the fact that the problem is actually ill-posed in the sense that we have K



58 4.2 Method

(a)

DAE DAE DAE

(b)

Figure 4.4. (a) The assumed probabilistic structure. (b) A schematic illustration of one iteration
of the RC algorithm.

parameters to fit for each pixel. So there are infinitely many settings of µ which achieve the
optimal log likelihood of the data, and we depend on the encoder f to sufficiently restrict our
modelling capacity.

So in the M-step of EM we aim to maximize Q(z,z′) over all choices of z:

znew = argmax
z

Q(z,z′) (4.18)

Unfortunately this maximization is intractable due to the non-linear dependence of µ on z.

4.2.4 Reconstruction Step

At this point we deviate from the EM formulation, and instead of maximizing Q wrt. z, we use
the encoder g of the DAE. We compute a partial image x̃k =mk ⊙ x for each cluster k by (soft)
masking out all pixels that are not assigned to it. The R-step then applies the encoder g to this
partial image to infer an updated object representation for each cluster. The intuition is that
DAE then denoises the “corruption” caused by the cluster assignments. The R-Step is thus given
by the following formula, where ⊙ denotes point-wise multiplication:

znew
k = g(mk ⊙ x), (4.19)

Unfortunately this step can not be guaranteed to increase the expected log-likelihood, because
only in expectation does the DAE map from regions of low likelihood to regions of higher
likelihood. Moreover, this property only holds for the whole image and not for all subsets of
pixels. Thus, convergence can’t be proven and Reconstruction Clustering (RC; 122) is not a
proper Expectation Maximization (EM; 69) algorithm. Nevertheless, empirical results show that
convergence does occur reliably (Section 4.4.2).



59 4.3 Experiments

In
pu

t I
m

ag
e

Simple Superposition Bars Corners Shapes MNIST+Shape Multi MNIST
G

ro
un

d
T

ru
th

 G
ro

up
in

g

Figure 4.5. One example from each of the six datasets. The input images are shown on the top
row with the corresponding ground-truth grouping below.

4.2.5 Putting it together

The full Reconstruction Clustering (RC; 122) thus starts by training a DAE to denoise corrupted
images of single objects on a dataset. Then, for each multi-object image we perform the following
steps:

1. Randomly initialize m

2. (R-step) Apply the autoencoder to the each of the K images that are assigned to the clusters
to get a new estimate of zk object representations.

3. (E-step) Re-assign the pixels to the clusters according to their reconstruction accuracy.

4. repeat steps 2 and 3 until convergence

4.3 Experiments

We evaluated RC on a series of artificially generated datasets consisting of binary images of
varying complexity. For each dataset, a DAE was trained to remove salt&pepper noise on
images with single objects. The autoencoders used were fully-connected feed-forward Neural
Networks (NNs) with a single hidden layer and sigmoid output units. A random search was used
to select appropriate hyperparameters (see Appendix for details). The best DAE obtained for
each dataset was used for reconstruction clustering on 1000 test images containing multiple
objects, and the binding performance was evaluated based on groud-truth object identities. All
the code for these experiments (including the creation of the datasets and figures) is available
online at GitHub.com/Qwlouse/Binding.

4.3.1 Datasets

We evaluate RC using six simple datasets (see Figure 4.5):

Simple Superposition A collection of simple pixel patterns two of which are superimposed.
Taken from [304]. This is a simple dataset with no translations, but significant overlap
between patterns.

https://github.com/Qwlouse/Binding


60 4.3 Experiments

Shapes Taken from [309]. Three shapes (△▽□) are randomly placed in an image (possibly
with overlap). This dataset tests binding of shapes under translation invariance and
varying overlap.

Bars Introduced by [90] to demonstrate unsupervised learning of independent components of
an image. We use the variant from [309] which employs 6 horizontal, and 6 vertical lines
placed in random positions in the image.

Corners This dataset consists of 8 corner shapes placed in random orientations and positions,
such that 4 of them align to form a square. It was introduced by [309] to demonstrate
that spatial connected-ness is not a requirement for binding.

MNIST+Shape Another dataset from [309], which combines a random shape from the shapes
dataset with a single MNIST digit. This dataset is useful to investigate binding multiple
types of objects.

Multi-MNIST Three random MNIST digits are randomly placed in a 48×48 image. It provides
a more challenging setup with multiple complex objects.

4.3.2 Evaluation

Since the data is generated, a ground-truth segmentation for each image is available. We
evaluated performance by measuring the Adjusted Mutual Information (AMI; 392) score between
the true segmentation and the result of RC. This score measures how well two cluster assignments
agree and takes a value of 1 when they are equivalent, and 0 when their agreement corresponds
to chance level. For evaluation we count only those pixels that unambiguously belong to a single
object and ignore background pixels and regions of overlap.

4.3.3 Training Details

All experiments have been performed with the brainstorm library and were organized and logged
using sacred. The code for this paper can be found on GitHub.

For the DAEs we use a simple 3 layer fully connected neural network, with sigmoid activation
at the output layer. The network was trained with Stochastic Gradient Descent (SGD) at a
minibatch size of 100 to remove salt& pepper noise added to inputs. Training was stopped
when the validation loss didn’t decrease for more than 10 consequtive epochs. We performed a
random search with 100 runs for each dataset to determine a good set of hyperparameters. For
each run we randomly sampled from the following parameters:

• learning rate log-uniform from [10−3, 1]

• Amount of Salt& Pepper Noise from [0.0,0.1, . . . , 0.9]

• hidden layer size from [100,250, 500,1000]

• hidden layer activation function from [rel, sigmoid, tanh]

The best network configurations found by that search can be found in Table 4.1.

https://github.com/IDSIA/brainstorm
https://github.com/IDSIA/Sacred
https://github.com/Qwlouse/Binding


61 4.4 Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score

bars

shapes

simple_superpos

corners

multi_mnist

mnist_shape

Figure 4.6. Summary of the scores achieved
during the random search

Dataset learning rate # hidden units activation salt&pepper score

bars 0.768015 100 ReL 0.0 0.951809
corners 0.001920 100 ReL 0.0 0.853866
multi_mnist 0.011362 1000 ReL 0.6 0.651657
mnist_shape 0.031685 250 sigmoid 0.6 0.545559
shapes 0.083147 500 tanh 0.4 0.928792
simple_superpos 0.366627 100 ReL 0.1 0.890472

Table 4.1. Configuration of the best network for each dataset as found by the random search.

4.4 Results

4.4.1 Scores

Figure 4.7a shows the mean scores obtained using RC for each dataset averaged over 100 runs.
Scores obtained with different choices of the number of clusters K . Results are consistent across
runs, hence the standard deviations are very low and barely visible. The optimal number of
clusters is two for Simple Superposition and MNIST+Shape, three for Multi MNIST and Shapes,
five for Corners, and 12 for Bars. Scores are higher than 0.5 for all datasets and higher than
0.8 for four out of the six datasets demonstrating the ability of RC to successfully bind objects
together.

4.4.2 Convergence

Figure 4.7b shows the convergence of the mean log-likelihood over RC iterations on the shapes
dataset. Convergence is quick, typically within 5-10 iterations, depending on the chosen number
of clusters K and the dataset (not shown). As expected, the final likelihood is highest when the
number of clusters equals the number of objects in the shapes dataset (3), matching the results
from Figure 4.7a. The likelihood is much lower for k = 2 than for k = 3 and drops again slightly
if we choose k = 5. The likelihood for k = 12 is significantly lower. In some cases the correct
choice of k did not result in the highest likelihood, but in general this correspondence appeared
to hold. If the number of objects is unknown, this trend can be used to determine the correct
number of clusters.



62 4.4 Results

0.0 0.2 0.4 0.6 0.8 1.0
mean(AMI Score)

Bars

Corners

Shapes

Multi MNIST

MNIST+Shape

Simple Superposition

# Clusters
12
5
3
2

(a) Overall Scores

0 1 2 3 4 5 6 7 8 9
Iteration

350

300

250

200

150

100

50

0

Lo
g 

Li
ke

lih
oo

d

# Clusters
12
5
3
2

(b) Convergence

Figure 4.7. Left: Mean AMI score over 1000 test samples for all datasets and various number of
clusters K . Right: Convergence of the log-likelihood on the shapes dataset for different numbers
of clusters, showing test set mean (line) and standard deviation (shaded) over the test set.

4.4.3 Qualitative Analysis

Figures 4.8 to 4.10 show a few example RC runs for qualitative evaluation. The initial cluster
assignments are random, therefore all observed structure is due to the clustering process. The
final clustering corresponds well to the ground truth even for cases with significant overlap.
Again, it is notable that RC converges quickly (within 5 iterations).

4.4.4 Loss vs Score

RC utilizes autoencoders trained with the denoising objective for binding. Therefore, it is
instructive to examine the relationship between denoising performance and the final RC binding
score. For this purpose, we trained 100 DAEs with the same architecture on each dataset with
random learning rates and initializations, and then performed RC using each of them. Figure 4.11
shows the relationship between the denoising loss and binding score for each dataset. It can
be observed that lower loss correlates positively with higher score for all datasets, indicating
that denoising is a suitable surrogate training objective. We added a regression line to indicate
that relation for each dataset, even though for MNIST+Shape and Multi MNIST it doesn’t look
even remotely linear. Instead, the individual points are approximately arranged on a curve. This
suggests that there is a direct but complex interplay between the denoising performance and the
score.

4.4.5 Training on Multiple Objects

So far the DAEs were trained on single-object images, then used to bind objects in multi-object
images. In general it is desirable to not require single-object images for training, and be able to
directly use any image without this restriction. This would remove the last bit of supervision
and make RC a truly unsupervised method. To test this we performed a separate random
search to tune DAE hyperparameters for the case of multi-object training. The only difference is
the training data and that for determining the final score we use K-means-like (hard) cluster



63 4.4 Results

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Test Samples Sorted by Score

score
confidence

In
pu

t I
m

ag
e

A B C D E F

C
lu

st
er

 A
ss

ig
nm

en
ts

G
ro

un
d

T
ru

th

600
500
400
300
200
100 0

log Likelihood

10

9

8

7

6

5

4

3

2

1

0

Iteration nr

A
B
C
D
E
F

22 20 18 16 14 12 10 8
Z

oom
ed

Figure 4.8. The top plot shows the score and confidence for each of the 1000 test images
from the shapes dataset, sorted by score. The confidence is the average value of maxk mi,k for
each evaluated pixel (non-background, non-overlap). The central part of the figure shows six
examples (columns) along with the cluster assignments (indicated by different colors) over RC
iterations. The corresponding ground-truth is shown at the bottom. The right vertical plot shows
the log-likelihood over the RC iterations corresponding to the displayed cluster assignments.



64 4.4 Results

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Test Samples Sorted by Score

score
confidence

In
pu

t I
m

ag
e

A B C D E F

C
lu

st
er

 A
ss

ig
nm

en
ts

G
ro

un
d

T
ru

th

1000
800
600
400
200 0

log Likelihood

10

9

8

7

6

5

4

3

2

1

0

Iteration nr

A
B
C
D
E
F

110
100
90 80 70 60 50 40 30

Z
oom

ed

Figure 4.9. The top plot shows the score and confidence for each of the 1000 test images
from the corners dataset, sorted by score. The central part of the figure shows six examples
(columns) along with the cluster assignments (indicated by different colors) over RC iterations.
The corresponding ground-truth is shown at the bottom. The right vertical plot shows the
log-likelihood over the RC iterations corresponding to the displayed cluster assignments.



65 4.4 Results

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Test Samples Sorted by Score

score
confidence

In
pu

t I
m

ag
e

A B C D E F

C
lu

st
er

 A
ss

ig
nm

en
ts

G
ro

un
d

T
ru

th

1800
1600
1400
1200
1000

800
600
400
200 0

log Likelihood

10

9

8

7

6

5

4

3

2

1

0

Iteration nr

A
B
C
D
E
F

140
120
100
80 60 40 20

Z
oom

ed

Figure 4.10. The top plot shows the score and confidence for each of the 1000 test images from
the Multi-MNIST dataset, sorted by score. The central part of the figure shows six examples
(columns) along with the cluster assignments (indicated by different colors) over RC iterations.
The corresponding ground-truth is shown at the bottom. The right vertical plot shows the
log-likelihood over the RC iterations corresponding to the displayed cluster assignments.



66 4.4 Results

101 102

Binomial Cross Entropy Error

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
dj

us
te

d 
M

ut
ua

l I
nf

or
m

at
io

n 
S

co
re

Corners
Multi MNIST
Shapes
MNIST+Shape
Simple Superposition
Bars

Figure 4.11.
Relationship be-
tween the DAE loss
and the AMI score.
All networks have 250
hidden units and were
trained with random
learning rates and
initializations. A few
networks that failed
to train were removed
from the plot for
better visualization.

Shapes Corners Bars Multi
MNIST

MNIST+
Shape

0.0

0.2

0.4

0.6

0.8

1.0

m
ea

n(
A

M
I S

co
re

)

Training
single
multi

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Score

bars

shapes

corners

multi_mnist

mnist_shape

(b)

Figure 4.12. (a) RC scores obtained when training DAEs on multi-object images vs. single
object images. (b) Summary of the scores achieved during the random search for training with
multiple objects.



67 4.4 Results

0.0

0.2

0.4

0.6

0.8

1.0
Test Samples Sorted by Score

score
confidence

In
pu

t I
m

ag
e

A B C D E F

C
lu

st
er

 A
ss

ig
nm

en
ts

G
ro

un
d

T
ru

th

550
500
450
400
350
300
250
200
150
100

log Likelihood

10

9

8

7

6

5

4

3

2

1

0

Iteration nr

A
B
C
D
E
F

120
118
116
114
112
110
108
106
104
102

Z
oom

ed

Figure 4.13. Example iterations of RC when using hard assignments and a DAE that has been
trained only on images with multiple objects.



68 4.4 Results

Dataset learning rate # hidden units activation salt&pepper score

bars 0.012192 100 sigmoid 0.8 0.851777
corners 0.026035 100 ReL 0.7 0.704285
mnist_shape 0.033200 1000 ReL 0.6 0.259646
multi_mnist 0.001786 250 sigmoid 0.9 0.614277
shapes 0.049402 100 sigmoid 0.9 0.776656

Table 4.2. Configuration of the best network trained on multiple objects for each dataset as
found by the random search.

assignments in RC. Note also that we didn’t include the Simple Superposition dataset, since it
only consists of 120 images with multiple objects available, and no separate test set. Similar to
the single-object case, we then used the best obtained DAEs to perform RC on test examples.

When training the DAEs on images with multiple objects, it is less obvious why running RC
should lead to a segregation of the objects. Intuitively it seems that the autoencoder should
always try to reconstruct the whole image including all the objects. However, even if each
cluster tries to reconstruct every object, there will be small asymmetries due to the difference in
inputs they see. Since no object carries any information about the shape and position of another
object in our datasets, this will lead to differences in prediction quality of the objects. We found
that with soft-assignments to the clusters, the differences were too small and would even out
over several iterations, leading to uniform cluster assignments. By changing the E-step to hard
(K-Means-like) assignments, we were able to amplify these changes enough to eliminate this
stable state, and force the clusters to compete more for the pixels. Together with the fact that
in our datasets objects don’t carry any information about other objects this leads to a stronger
amplification of the initial differences in reconstruction quality. Figure 4.12a shows that DAEs
trained on multi-object images can indeed be used for binding via RC with hard assignments,
although they lead to lower scores in comparison. In Figure 4.13 this process can be seen on
the shapes dataset. Note that the hard RC converges even faster, but generally leads to worse
performance.

4.4.6 Generalization to Unfamiliar Images

Figure 4.14. Binding novel objects via RC. The DAE used was trained on the Multi MNIST
dataset.

A central intuition behind our approach to binding is that the low-level structures learned by
the model will generalize to new and unseen configurations. Evaluation on unseen test sets
demonstrated this to be true, but we can take it one step further. We can test what happens
when we confront our method with novel objects that the auto-encoders have not been trained
on.



69 4.5 Relationship to other Methods

We ran RC on several images with non-digits using a DAE trained on the Multi-MNIST dataset.
Figure 4.14 shows that RC “correctly” binds letters and circles together. We also show images for
which the resulting binding differs from our expectation. It appears that the network has mainly
learned to bind based on spatial proximity with a slight bias towards vertical proximity. This
can be expected since that it has only seen digits of roughly the same size so far, and because
the used autoencoder is very limited. Nevertheless, it is very interesting that a fully-connected
network which is permutation invariant learns the preference for spatial proximity entirely from
data. It is reasonable to speculate that it in the future it may be possible to recover other Gestalt
Principles such as continuity and similarity with a similar procedure.

4.5 Relationship to other Methods

Recently, the ideas of neural synchronization for dynamic binding were implemented using
complex valued activations in neural networks to jointly encode firing rate and phase [304, 309].
Such binding mechanisms are close to their biological inspiration, clustering only implicitly
through synchronization. In contrast, RC is based on a mathematical framework which explicitly
incorporates binding.

The core ideas of RC are similar to Masked Restricted Boltzman Machine (MRBM; 223). They
model an image as being composed of multiple layers (clusters) and also add a corresponding
latent variable for each pixel. Similar to the DAEs used for RC each layer is modelled by a
separate Restricted Boltzman Machine (RBM) all of which share weights. Le Roux et al. [223]
further parameterize the model for the shape of masks (cluster assignments) and explicitly model
occlusion. The main difference is that for RC we use DAEs together with a simple clustering
mechanism instead of RBMs to perform inference. This simplifies training and seems to speed
up convergence.4

Structurally, RC resembles a model introduced by [408]. They too split the image represen-
tation into competing feature layers (objects). Inter-object predictability is modelled by lateral
connections that represent compatibility between features. These connections are trained from
labelled samples using Hebbian learning. After training, the clustering for an input is obtained
by finding a fixed point of the energy function defined over the layers using the Gauss-Seidel
method.

In some aspects, RC is also similar to segmentation algorithms. The main difference is that
RC learns the segmentation from the data in a largely unsupervised manner. In this sense, it
is more similar to superpixel methods (see eg. [2] for an overview). However, these methods
impose a handcrafted similarity measure over pixels or pixel regions, whereas RC learns a
non-linear similarity measure from the data, parameterized by a DAE.

4.6 Conclusion and Future Work

We adopted a notion of object-ness based on mutual predictability of their constituent pixels.
Based on that we introduced the Reconstruction Clustering framework to explicitly model data
as a composition of objects. This work should be considered a proof-of-concept, since it still

4Since the datasets used for evaluation differ this comparison isn’t very informative. That being said, Le Roux et al.
[223] report results for 5000 steps of Gibbs sampling, while our model typically converges within 10 iterations. This
speedup is also in line with the observations of [309], whose model also builds upon RBMs and typically takes 100 steps
to converge.



70 4.6 Conclusion and Future Work

has many limitations, including the simplistic datasets, and missing integration between the
DAE object models and the segregation process. But compared to previous approaches to
perceptual grouping, our framework is completely unsupervised and integrates well with neural
representation learning methods. While a typical representation learning method (such as a
DAE) learns a static binding of features, Reconstruction Clustering utilizes it to iteratively perform
dynamic binding for every input example by introducing interaction between the statically bound
features extracted by the autoencoder. In particular, this interaction enables dynamic binding of
feature combinations never seen before by the autoencoder. It demonstrates that the task of
perceptual grouping can plausibly be learned in a completely unsupervised fashion.



Chapter 5

Neural Expectation Maximization

In the previous chapter we have introduced Reconstruction Clustering (RC; 122): a proof-of-
concept system which learns to segregate an image into objects in an unsupervised manner. It
showed that this challenging task can plausibly be tackled with a clustering approach built around
a neural network. But RC has several shortcomings: Firstly, its Denoising Autoencoder (DAE; 27,
391) is trained separatly outside of the clustering iterations which means that the object model
is ignorant of the perceptual grouping process. Secondly, the mathematical basis of RC is shaky
due to the ad-hoc substitution of the M-Step with a pass through the encoder of the DAE. Finally,
the networks used are not very powerful and show poor denoising performance even on the
simplistic toy datasets that we investigated.

In this chapter, we develop a formal framework that mitigates these issues. It is still based on
Expectation Maximization (EM; 69) to do inference in a (pixel-wise) spatial mixture, where each
component is parametrized by a Neural Network (NN). But unlike in Chapter 4, we integrate
them into a unified differentiable clustering method which can be trained end-to-end. We
call this framework Neural Expectation Maximization (N-EM; 123), and show that it is able to
simultaneously learns how to group and represent individual entities. We evaluate our method
on the (sequential) perceptual grouping task and find that it is accurately able to recover the
constituent objects. We demonstrate that the learned representations are useful for predictive
coding. This chapter is based on the publication Greff et al. [123], and is joint work with my
shared first-author Sjoerd van Steenkiste. Due to the nature of our close collaboration it is
impossible to attribute parts of the work to either of us individually.

5.1 Method

Our goal is to train a system in an unsupervised fashion to produce separate representations
for the individual conceptual entities (objects) contained in a given input (here: image). We
will use the same predictability-based notion of objects as in Chapter 4. Moreover, we are
interested in representing each such entity (object) k with some vector zk that captures all
the structure of the affected pixels, but carries no information about the rest of the image.
This modularity is a powerful invariant, since it allows the same representation to be reused
in different contexts, which enables generalization to novel combinations of known objects.
Having all possible objects represented in the same format makes it easier to work with these
representations. Finally, having a separate zk for each object (as opposed to for the entire image)

71



72 5.1 Method

allows zk to be distributed and disentangled without running into the binding problem.
We treat each image as a composition of K objects, where each pixel is determined by exactly

one object. Which objects are present, as well as the corresponding assignment of pixels to
objects, varies from input to input. Assuming that we have access to the family of distributions
PX |Z (x | zk) that corresponds to an object level representation as described above, we can model
each image as a mixture model. Then EM can be used to simultaneously compute a Maximum
Likelihood Estimate (MLE) for the individual zk-s and the grouping we are interested in.

The central problem we consider in this work is therefore how to learn such a PX |Z(x | zk)
in a completely unsupervised fashion. We accomplish this by parametrizing this family of
distributions by a differentiable function fφ(z) (a neural network with weights φ). We show that
in that case, the corresponding EM procedure also becomes fully differentiable, which allows us
to backpropagate an appropriate outer loss into the weights of the neural network. In the rest of
this section we formalize and derive this method which we call N-EM.

5.1.1 Parametrized Spatial Mixture Model

Figure 5.1. The probabilistic
graphical model for N-EM.

We model each image x ∈ RD as a spatial mixture of K compo-
nents parametrized by vectors z1, . . . ,zK ∈ RH . A differentiable
non-linear function fφ (a neural network) is used to transform
these representations zk into parameters ψi,k = fφ(zk)i for sep-
arate pixel-wise distributions. These distributions are typically
Bernoulli or Gaussian in which case ψi,k would be a single prob-
ability or a mean and variance respectively. This parametrization
assumes that given the representation, the pixels are independent
but not identically distributed (unlike in standard mixture mod-
els). A set of categorical latent variables C ∈ {0, . . . K}D encodes
the unknown true pixel assignments, such that ci = k iff pixel i
was generated by component k. A graphical representation of
this model can be seen in Figure 5.1, where π= (π1, . . .πK) are
the mixing coefficients (or prior for C). The full likelihood for
x given z= (z1, . . . ,zK) is given by:

PX |Z(x | z) =
D
∏

i=1

∑

ci

PX ,C |Ψ(x i , ci |ψi) (5.1)

=
D
∏

i=1

K
∑

k=1

PC(ci = k)
︸ ︷︷ ︸

πk

PX |Ψ,C(x i |ψi,k, Ci = k). (5.2)

5.1.2 Expectation Maximization

Directly optimizing log PX |Ψ(x | ψ) wrt. z is difficult due to marginalization over c, while for
many distributions optimizing log PX ,C |Ψ(x, c |ψ) is much easier. EM takes advantage of this and
instead optimizes a lower bound given by the expected log likelihood:

Q(z,zold) = E
C |X ,Ψold

�

log PX ,C |Ψ(x, c |ψ)
�

. (5.3)



73 5.1 Method

Figure 5.2. Illustration of the computations for two steps of N-EM.

Iterative optimization of this bound alternates between two steps: in the E-step we compute
a new estimate of the posterior probability distribution over the latent assignments given zold

from the previous iteration, yielding a new soft-assignment of the pixels to the components
(clusters):

mi,k := PC |X ,Ψold(ci = k | x i ,ψ
old
i ). (5.4)

In the M-step we then aim to find the configuration of z that would maximize the expected
log-likelihood using the posteriors computed in the E-step. In our case, there exists no analytical
solution to argmaxz Q(z,zold) due to the non-linearity of fφ . However, since fφ is differentiable,
we can improve Q(z,zold) by taking a gradient ascent step 1:

znew = zold +η
∂Q
∂ z

where
∂Q
∂ zk
∝

D
∑

i=1

mi,k(ψi,k − x i)
∂ψi,k

∂ zk
. (5.5)

The resulting algorithm belongs to the class of generalized EM algorithms and is guaranteed
(for a sufficiently small learning rate η) to converge to a (local) optimum of the data log
likelihood [417].

5.1.3 Unrolling

In our model the information about statistical regularities that is required for clustering the pixels
into objects is encoded in the neural network fφ with weights φ. So far we have considered
fφ to be fixed and have shown how we can compute a MLE for z alongside the appropriate
clustering. We now observe that by unrolling the iterations of the presented generalized EM,
we obtain an end-to-end differentiable clustering procedure based on the statistical model
implemented by fφ . This enables us to train the weights φ by means of Backpropagation Through
Time (BPTT; eg. 410). We refer to this trainable procedure as N-EM, an overview of which can
be seen in Figure 5.2.

Upon inspection of the structure of N-EM we find that it resembles K copies of a recurrent
neural network with hidden states zk that, at each timestep, receive m:,k ⊙ (ψ:,k − x) as their
input. Each copy generates a new ψ:,k, which is then used by the E-step to re-estimate the
soft-assignments m. In order to accurately mimic the M-Step (5.5) with an Recurrent Neural
Network (RNN; 250, 368, 316, 410), we must impose several restrictions on its weights and

1Here we assume that PX |C ,Ψ(x i | Ci = k,ψi,k) is given by N (x i ;µ=ψi,k ,σ2), yet a similar update arises for many
typical parametrizations of the pixel distributions.



74 5.1 Method

Figure 5.3. Illustration of the compu-
tations for a single step of RNN-EM.

structure. Instead we introduce a new algorithm, named Recurrent Neural Network Expectation
Maximization (RNN-EM; 123), when substituting that part of the computational graph of N-EM
with an actual RNN (without imposing any restrictions). Although RNN-EM can no longer
guarantee convergence of the data log likelihood, its recurrent weights increase the flexibility
of the clustering procedure. Moreover, by using a fully parametrized recurrent weight matrix
RNN-EM naturally extends to sequential data. Figure 5.3 presents the computational graph of a
single RNN-EM (time) step.

5.1.4 Training Objective

N-EM is a differentiable clustering procedure, whose outcome relies on the statistical model fφ .
We are interested in a particular unsupervised clustering that corresponds to grouping entities
based on the statistical regularities in the data. In order to train our system we therefore require
a loss function that teaches fφ to map from representations z to parameters ψ that correspond
to pixelwise distributions for such objects.

We accomplish this with a two-term loss function that guides each of the K networks to
model the structure of a single object independently of any other information in the image:

L(x) = −
D
∑

i=1

K
∑

k=1

mi,k log PX ,C |Ψ(x i , Ci = k |ψi,k)
︸ ︷︷ ︸

Term 1

+(1−mi,k)DKL[PX (x i) ∥ PX |Ψ,C(x i |ψi,k, Ci = k)]]
︸ ︷︷ ︸

Term 2

.

(5.6)
The first term corresponds to the same expected data log-likelihood Q as is optimized by

N-EM. It is analogous to a standard reconstruction loss used for training autoencoders, weighted
by the cluster assignment. Similar to autoencoders, this objective is prone to trivial solutions in
case of overcapacity, which prevent the network from modelling the statistical regularities that
we are interested in.

Standard techniques can be used to overcome this problem, such as making z a bottleneck
or using a noisy version of x to compute the inputs to the network. Furthermore, when RNN-EM
is used on sequential data we can use next-step prediction loss.

Weighing the loss pixelwise is crucial since it allows for specializing the predictions of each
z to an individual object. However, it also introduces a problem: the loss for out-of-cluster
pixels (mi,k = 0) vanishes. This leaves the network free to predict anything and does not yield
specialized representations. Therefore, we add a second term which penalizes the KL divergence
between out-of-cluster predictions and the pixelwise prior of the data. Intuitively this tells each



75 5.2 Related work

representation zk to contain no information regarding non-assigned pixels x i:

PX |Ψ,C(x i |ψi,k, Ci = k) = PX (x i).

A disadvantage of the interaction between m and ψ in (5.6) is that it may yield conflicting
gradients. For any zk the loss for a given pixel i can be reduced by better predicting x i , or by
decreasing mi,k (i.e. taking less responsibility) which is (due to the E-step) realized by being
worse at predicting x i . A practical solution to this problem is obtained by stopping the m
gradients, i.e. by setting ∂ L

∂m = 0 during backpropagation.

5.2 Related work

The Binding problem was first considered in the context of Neuroscience [257, 395] and has
sparked some early work in oscillatory neural networks that use synchronization as a grouping
mechanism [397, 403, 304]. Later, complex valued activations have been used to replace the
explicit simulation of oscillation [303, 309]. By virtue of being general computers, any RNN can
in principle learn a suitable mechanism. In practice however it seems hard to learn, and adding
a suitable mechanism like competition [411], fast weights [339], or our N-EM seems necessary.

Unsupervised Segmentation has been studied in several different contexts [339], from
random vectors [164] over texture segmentation [128] to images [188, 167]. Early work in
unsupervised video segmentation [183] used generalized Expectation Maximization (EM) to
infer how to split frames of moving sprites. More recently optical flow has been used to train con-
volutional networks to do figure/ground segmentation [292, 390]. A related line of work under
the term of multi-causal modelling [333] has formalized perceptual grouping as inference in a
generative compositional model of images. Masked Restricted Boltzman Machines (MRBMs; 223)
for example extend Restricted Boltzman Machines (RBMs) with a latent mask inferred through
Block-Gibbs sampling.

Gradient backpropagation through inference updates has previously been addressed in the
context of sparse coding with (Fast) Iterative Shrinkage/Tresholding Algorithms ((F)ISTA; [64,
323, 24]). Here the unrolled graph of a fixed number of ISTA iterations is replaced by a recurrent
neural network that parametrizes the gradient computations and is trained to predict the sparse
codes directly [126]. We derive RNN-EM from N-EM in a similar fashion and likewise obtain a
trainable procedure that has the structure of iterative pursuit built into the architecture, while
leaving tunable degrees of freedom that can improve their modeling capabilities [363]. An
alternative to further empower the network by untying its weights across iterations [139] was
not considered for flexibility reasons.

5.3 Experiments

We evaluate our approach on the perceptual grouping task for generated static images and video.
By composing images out of simple shapes, we have control over the statistical structure of the
data, as well as access to the ground-truth clustering. This allows us to verify that the proposed
method indeed recovers the “correct” grouping and learns representations corresponding to
these objects. In particular we are interested in studying the role of next-step prediction as
a unsupervised objective for perceptual grouping, the effect of hyperparameter K, and the
usefulness of the learned representations.



76 5.3 Experiments

in
pu

ts
N

-E
M

a

R
N

N
-E

M

b c d e f

Figure 5.4. Groupings by RNN-EM (bottom row), N-EM (middle row) for six input images (top
row). Both methods recover the individual shapes accurately when they are separated (a, b, f),
even when confronted with the same shape (b). RNN-EM is able to handle most occlusion (c,
d) but sometimes fails (d). The exact assignments are permutation invariant and depend on γ
initialization compare (a) and (f).

In all experiments we train the networks using Adaptive Moment Estimation (Adam; 198)
with default parameters, a batch size of 64 and 50000 train + 10000 validation + 10000
test inputs. Consistent with earlier work [122, 120], we evaluate the quality of the learned
groupings with respect to the ground truth while ignoring the background and overlap regions.
This comparison is done using the Adjusted Mutual Information (AMI; 392) score, which provides
a measure of clustering similarity between 0 (random) and 1 (perfect match). We use early
stopping when the validation loss2 has not improved for 10 epochs. All reported results are
averages computed over five different runs.3

5.3.1 Static Shapes

To validate that our approach yields the intended behavior we consider a the simple perceptual
grouping task of grouping three randomly chosen regular shapes (△▽□) located in random
positions [309] of a 28×28 binary image. The goal is to cluster the pixels in each image into the
individual shapes and in doing so obtain a separate representation for each shape. This simple
setup serves as a test-bed for comparing N-EM and RNN-EM, before moving on to more complex
scenarios.

We implement fφ by means of a single layer fully connected neural network with a sigmoid
output for each pixel that corresponds to a Bernoulli distribution with mean ψi,k. The repre-
sentation zk is a real-valued 250-dimensional vector squashed to the (0, 1) range by a sigmoid
function before being fed into the network. Similarly for RNN-EM we use a recurrent neural
network with 250 sigmoidal hidden units and an equivalent output layer. Both networks are
trained with K = 3 for 15 EM steps, and the outer-loss is only injected at the final EM-step.

As shown in Figure 5.4, we observe that both approaches are able to recover the individual
shapes as long as they are separated, even when confronted with identical shapes. N-EM performs

2Note that we do not stop on the AMI score as this is not part of our objective function and only measured to evaluate
the performance after training.

3Code to reproduce all experiments is available at https://github.com/sjoerdvansteenkiste/Neural-EM

https://github.com/sjoerdvansteenkiste/Neural-EM


77 5.3 Experiments

Type Size Act. Func. Comment

Input: x 28× 28× 1
Conv 4× 4 14× 14× 32 ELU stride 2 & layernorm
Conv 4× 4 7× 7× 64 ELU stride 2 & layernorm
MLP 512 ELU layernorm
recurrent: 100 sigmoid layernorm on the output
MLP 512 ReLU layernorm
MLP 7× 7× 64 ReLU layernorm
rescale 14× 14× 64 nearest-neighbour
Conv 4× 4 14× 14× 32 ReLU layernorm
rescale 28× 28× 32 nearest-neighbour
Conv 4× 4 28× 28× 1 sigmoid

Table 5.1. Architecture for the network used for flying shapes.

worse if the image contains occlusion, and in we find that RNN-EM is in general more stable
and produces considerably better groupings. This observation is in line with findings for Sparse
Coding [126]. Similarly we conclude that the tunable degrees of freedom in RNN-EM help
speed-up the optimization process resulting in a more powerful approach that requires fewer
iterations. The benefit is reflected in the large score difference between the two: 0.826± 0.005
AMI compared to 0.475± 0.043 AMI for N-EM.

5.3.2 Flying Shapes

We consider a sequential extension of the static shapes dataset. Each input consists of a sequence
of binary 28 × 28 images containing a fixed number of shapes (△▽□) that start in random
positions and “fly” across randomly sampled trajectories and bounce off the walls of the image
for 20 steps. An example sequence with 5 shapes can be seen in the bottom row of Figure 5.5.
We use a convolutional encoder and decoder with Rectified Linear Unit (ReLU) and Exponential
Linear Unit (ELU; 57) activation functions inspired by the discriminator and generator networks
of infoGAN [53], with a recurrent neural network of 100 sigmoidal units as seen in Table 5.1

Instead of using transposed convolutions (to implement the “de-convolution”) we first reshape
the image using the default nearest-neighbour interpolation followed by a normal convolution
in order to avoid frequency artifacts [282]. Note that we do not add layer norm on the recurrent
connection.

At each timestep t we feed m:,k(ψ
(t−1)
:,k − x̃(t)) as input to the network, where x̃ is the input

with added bitflip noise (p = 0.2). RNN-EM is trained with a next-step prediction objective
implemented by replacing x with x(t+1) in (5.6), which we evaluate at each time-step. A single
RNN-EM step is used for each timestep. The prior for each pixel in the data is set to a Bernoulli
distribution with p = 0. We prevent conflicting gradient updates by not back-propagating any
gradients through m.

For three shapes we observe that the produced groupings are close to perfect (AMI: 0.970±
0.005). Even in the very cluttered case of five shapes the network is able to separate the
individual objects in almost all cases (AMI: 0.878± 0.003).

These results demonstrate the adequacy of the next step prediction task for perceptual
grouping. However, we also find that the converse holds: the corresponding representations



78 5.3 Experiments

ga
m

m
as

m
u_

0
m

u_
1

m
u_

2
m

u_
3

m
u_

4

Step 1

in
pu

ts

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17 Step 18 Step 19 Step 20

Figure 5.5. A sequence of 5 shapes flying across random trajectories in the image (bottom row
1). The next-step prediction of each copy of the network (rows 2 to 5) and the soft-assignment
of the pixels to each of the copies (top row). Observe that the network learns to separate the
individual shapes as a means to efficiently solve next-step prediction. Even when many of
the shapes are overlapping, as can be seen in time-steps 18-20, the network is still able to
disentangle the individual shapes from the clutter.

are useful for the prediction task. In Figure 5.6 we compare the next-step prediction error of
RNN-EM with K = 1 (which reduces to a recurrent autoencoder that receives the difference
between its previous prediction and the current frame as input) to RNN-EM with K = 5 on this
task. Note that RNN-EM produces significantly lower errors, especially when the number of
objects increases.4

Finally, in Table 5.3 we also provide insight into the impact of choosing the hyper-parameter
K , which is unknown for many real-world scenarios.

Surprisingly we observe that training with too large K is in fact favourable, and that the
network learns to leave the excess groups empty. When training with too few components we
find that the network still learns about the individual shapes and we observe only a slight drop in
score when correctly setting the number of components at test time. We conclude that RNN-EM
is robust towards choices of K , and specifically that choosing it to be too high is not detrimental.

5.3.3 Flying MNIST

In order to incorporate greater variability among the objects we consider a sequential extension of
MNIST. Here each sequence consists of gray-scale 24× 24 images containing two down-sampled
MNIST digits that start in random positions and “fly” across randomly sampled trajectories within
the image for T timesteps. An example sequence can be seen in the bottom row of Figure 5.8.
We deploy a slightly deeper version of the architecture shown in Table 5.2.

Since the images are gray-scale we now use a Gaussian distribution for each pixel with fixed
σ2 = 0.25 and µ =ψi,k as computed by each copy of the network. The training procedure is
identical to flying shapes except that we replace bitflip noise with masked uniform noise: we
first sample a binary mask from a multi-variate Bernoulli distribution with p = 0.2 and then use
this mask to interpolate between the original image and samples from a Uniform distribution

4To evaluate RNN-EM on next-step prediction we computed its loss using PX |Ψ(x i | ψi) = PX |Ψ(x i | maxkψi,k) as
opposed to PX |Ψ(x i |ψi) =

∑

k mi,k PX |Ψ(x i |ψi,k) to avoid including information from the next timestep.



79 5.3 Experiments

3 4 5
# objects

0

20

40

60

80

100

BC
E

method
RNN-EM
Recurrent AE

Figure 5.6. Binomial Cross Entropy Er-
ror obtained by RNN-EM and a recur-
rent autoencoder (RNN-EM with K = 1)
on the denoising and next-step predic-
tion task. RNN-EM produces signifi-
cantly lower BCE across different num-
bers of objects.

0 10 20 30 40 50
Steps

0.0

0.2

0.4

0.6

0.8

1.0

AM
I

trained until

Figure 5.7. Average AMI score (blue line) measured
for RNN-EM (trained for 20 steps) across the test-set
and corresponding quartiles (shaded areas), com-
puted for each of 50 time-steps. The learned group-
ing dynamics generalize to longer sequences and
even further improve the AMI score.

Type Size Act. Func. Comment

Input: x 24× 24× 1
Conv 4× 4 12× 12× 32 ELU stride 2 & layernorm
Conv 4× 4 6× 6× 64 ELU stride 2 & layernorm
Conv 4× 4 3× 3× 128 ELU stride 2 & layernorm
MLP 512 ELU layernorm
recurrent: 250 sigmoid layernorm on the output
MLP 512 ReLU layernorm
MLP 3× 3× 128 ReLU layernorm
rescale 6× 6× 128 nearest-neighbour
Conv 4× 4 6× 6× 64 ReLU layernorm
rescale 12× 12× 64 nearest-neighbour
Conv 4× 4 12× 12× 32 ReLU layernorm
rescale 24× 24× 32 nearest-neighbour
Conv 4× 4 24× 24× 1 linear

Table 5.2. Architecture for the network used for flying shapes.



80 5.4 Discussion

ga
m

m
as

m
u_

0
m

u_
1

m
u_

2

Step 1

in
pu

ts

Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17 Step 18 Step 19 Step 20

Figure 5.8. A sequence of 3 MNIST digits flying across random trajectories in the image (bottom
row). The next-step prediction of each copy of the network (rows 2 to 4) and the soft-assignment
of the pixels to each of the copies (top row). Although the network was trained (stage-wise) on
sequences with two digits, it is accurately able to separate three digits.

between the minimum and maximum values of the data. We use a learning rate of 0.0005 (from
the second stage onwards in case of stage-wise training), scale the second-loss term by a factor
of 0.2 and find it beneficial to normalize the masked differences between the prediction and the
image (zero mean, standard deviation one) before passing it to the network.

We train with K = 2 and T = 20 on flying MNIST having two digits and obtain an AMI score
of 0.819± 0.022 on the test set, measured across 5 runs. In early experiments we observed that,
given the large variability among the 50 000 unique digits, we can boost the model performance
by training in stages using 20, 500, 50 000 digits. Here we exploit the generalization capabilities
of RNN-EM to quickly transfer knowledge from a less varying set of MNIST digits to unseen
variations. We used the same hyper-parameter configuration as before and obtain an AMI score
of 0.917± 0.005 on the test set, measured across 5 runs.

We study the generalization capabilities and robustness of these trained RNN-EM networks
by means of three experiments. In the first experiment we evaluate them on flying MNIST
having three digits (one extra) and likewise increase K to three. Even without further training
we are able to maintain a high AMI score of 0.729± 0.019 (stage-wise: 0.838± 0.008) on the
test-set. A test example can be seen in Figure 5.8. In the second experiment we are interested in
whether the grouping mechanism that has been learned can be transferred to static images. We
find that using 50 RNN-EM steps we are able to transfer a large part of the learned grouping
dynamics and obtain an AMI score of 0.619± 0.023 (stage-wise: 0.772± 0.008). As a final
experiment we evaluate the directly trained network on the same dataset for a larger number of
timesteps. Figure 5.7 displays the average AMI score across the test set as well as the range of
the upper and lower quartile for each timestep.

The results of these experiments confirm our earlier observations for flying shapes in that
the learned grouping dynamics are robust and generalize across a wide range of variations.
Moreover we find that we can improve the AMI score at test time even further when increasing
the sequence length.

5.4 Discussion

The experimental results indicate that the proposed Neural Expectation Maximization framework
can indeed learn how to group pixels according to constituent objects. In doing so the network
learns a useful and localized representation for individual entities, which encodes only the



81 5.5 Conclusion

Train Test Test Generalization

# obj. K AMI # obj. K AMI # obj. K AMI

3 3 0.969 ± 0.006 3 3 0.970 ± 0.005 3 5 0.972 ± 0.007
3 5 0.997 ± 0.001 3 5 0.997 ± 0.002 3 3 0.914 ± 0.015
5 3 0.614 ± 0.003 5 3 0.614 ± 0.003 3 3 0.886 ± 0.010
5 5 0.878 ± 0.003 5 5 0.878 ± 0.003 5 3 0.981 ± 0.003

Table 5.3. AMI scores obtained by RNN-EM on flying shapes when varying the number of
objects (# obj.) and number of components K, during training and at test time.

information relevant to it. Each entity is represented separately in the same space, which avoids
the binding problem and makes the representations usable as efficient symbols for arbitrary
entities in the dataset. We believe that this is useful for reasoning in particular, and a potentially
wide range of other tasks that depend on interaction between multiple entities. Empirically we
find that the learned representations are already beneficial in predictive coding with multiple
objects, a task in which overlapping objects are problematic for standard approaches but can be
handled efficiently when learning a separate representation for each object.

As is typical in clustering methods, in N-EM there is no preferred assignment of object to
groups and so the grouping numbering is arbitrary and only depends on initialization. This
property renders our results permutation invariant and naturally allows for instance segmentation,
as opposed to semantic segmentation where groups correspond to pre-defined categories. RNN-
EM learns to segment in an unsupervised fashion, which makes it applicable to settings with
little or no labeled data. On the downside this lack of supervision means that the resulting
segmentation may not always match the intended outcome. This problem is inherent to this
task since in real world images the notion of an object is ill-defined and task dependent. We
envision future work to alleviate this by extending unsupervised segmentation to hierarchical
groupings that are dynamically conditioned on the task at hand.

5.5 Conclusion

We have argued for the importance of separately representing conceptual entities contained in the
input, and suggested clustering based on statistical regularities as an appropriate unsupervised
approach for separating them. We formalized this notion and derived a novel framework that
combines neural networks and generalized EM into a trainable clustering algorithm. Unlike the
RC algorithm presented in Chapter 4 this framework fully integrates the neural object model
with the clustering process into a system that can be trained end-to-end. The datasets we
used are still very simplistic, but we have shown how this method can be trained in a fully
unsupervised fashion to segment its inputs into entities, and to represent them individually.
Using synthetic images and video, we have empirically verified that our method can recover
the objects underlying the data, and represent them in a useful way. N-EM framework still
assumes that the latent assignments are independent of the object representations, which is
clearly unrealistic and may be an important limitation.



82 5.5 Conclusion



Chapter 6

Iterative Amortized Grouping

In the previous chapters we have introduced an unsupervised notion of objects based on mutual
predictability of their pixels. We used it to build a proof-of-concept system for unsupervised
perceptual grouping called Reconstruction Clustering (RC; 122) in Chapter 4. And in Chapter 5
we showed how to integrate all the parts into a unified differentiable clustering system that can
be trained end-to-end. However, thus far we were only able to successfully apply these methods
to simplistic datasets that consist of white objects on a black background. One reason for this
limitation is the assumption that the segmentation of the pixels is independent of the object
representations.

In this chapter we pursue a slightly different approach, and instead of explicitly modelling
objects and assignments as latent random variables, we leave them implicit and up to a neural
network to learn. By directly integrating more powerful denoising networks with a differentiable
grouping mechanism, we obtain a system that can be trained end-to-end and learns to efficiently
perform perceptual grouping as a byproduct. We achieve very fast convergence by allowing the
system to amortize the joint iterative inference of the groupings and their representations. We
call this framework iTerative Amortized Grouping (TAG; 120), and while it works completely
unsupervised, it can also be combined with supervised learning for classification or segmentation.
We use this to evaluate the usefulness of perceptual grouping on multi-digit classification of very
cluttered images that require texture segmentation. Remarkably our method achieves improved
classification performance over convolutional networks despite being fully connected, by making
use of the grouping mechanism. Furthermore, we observe that our system greatly improves
upon the semi-supervised result of a baseline Ladder network on our dataset. These results
provide important evidence that grouping is useful and a powerful tool that can help to improve
sample efficiency. This chapter is based on the publication [120].

6.1 Method

Our goal is to enable neural networks to split inputs and internal representations into coherent
groups that can be processed separately. Like before, each pixel of the input is assigned to one
of K different groups which are processed and represented separately by a neural network. The
task of perceptual grouping then again amounts to simultaneous inference over two sets of
variables: the latent group assignments and the individual group representations. But unlike
in RC we want our model to learn to infer not only the representation of each group but also

83



84 6.1 Method

the the group assignments. As before we tackle the resulting mixture model using a iterative
inference, but rather than deriving and then running an inference algorithm, we now train a
parametric mapping to arrive at the end result of inference as efficiently as possible [126].

This approach of leaving latent variables implicit and directly learning the inference is known
as amortized inference [365]. This situation is analogous to normal supervised deep learning,
which can also be viewed as amortized inference [30]. Rather than specifying all the hidden
variables that are related to the inputs and labels and then deriving and running an inference
algorithm, a supervised deep model is trained to arrive at an approximation q(class | input)
of the true posterior P(class | input) without the user specifying or typically even knowing
the underlying generative model. It is also used for representation learning in variational
autoencoders where the encoder learns to amortize the posterior inference required by the
generative model represented by the decoder. Here we instead build on the framework of
denoising autoencoders [94, 224, 391] which are trained to reconstruct original inputs x from
corrupted versions x̃. By designing the network architecture in a way that mimics iterative
inference in a spatial mixture model, we bias the model towards performing perceptual grouping
as a by-product of approximating the (unknown) data-generating distribution P(X ). This
encourages the network to implement useful amortized posterior inference without ever having
to specify or even know the underlying generative model.

A high-level illustration of the TAG framework is presented in Figure 6.1: We train a network
with a learnable grouping mechanism to iteratively denoise corrupted inputs x̃. The output
at each iteration is an approximation q(t)(x) of the true probability P(x | x̃), which is refined
over iterations indexed by t. If the model can improve the estimates in each step, then it will
converge to an approximate solution.

6.1.1 Group Structure

Internally, we divide the network into K separate but identical subnetworks each of which
independently processes one of the groups. This can be thought of as running K separate copies
of the same network, where each network only sees a subset of the inputs. At the image level, we
again introduce a mask m to encode which of the K groups each input element x i is assigned to.
It mimics the structure of a spatial mixture model, where the mask element mi,k corresponds to
the (approximate) probability q(Ci = k) of pixel x i being assigned to group k. Each network then
outputs µk = q(x|C = k) (the expected value of the input for that group), and a mk = q(C = k)
(the group assignment probabilities). Each µk and mk has the same dimensionality as the input,
and they are both iteratively updated. The group assignment probabilities mk are forced to
be non-negative and sum up to one over k (enforced by using a softmax over groups on the
outputs):

mk,i ≥ 0,
K
∑

k=1

mk,i = 1. (6.1)

In the binary case we assume q(x i = 1 | C = k) = sigmoid(µk,i), and in the continuous
case we take µk,i to represent the mean of a Gaussian distribution with variance σ2. This way
inference is split into K groups, and we can write the approximate posterior assuming a Gaussian
input distribution as follows:

q(t)(x) =
∑

k

q(t)(x|C = k) q(t)(C = k) =
∑

k

N (x;µ(t)k ,σ2I)m(t)k . (6.2)



85 6.1 Method

PA
RA

M
ETRIC M

A
PPIN

G

PARAMETRICMAPPING

PARAMETRICMAPPING

PARAMETRICMAPPING

iteration 1 iteration 2 iteration 3

L(m0)

L(m )

L(m1) L(m2)

t-1

Figure 6.1. Illustration of the TAG framework used for training. Left: The system learns
by denoising its input over iterations using several groups to distribute the representation.
Each group, represented by several panels of the same color, maintains its own estimate of
reconstructions µ(t) of the input, and corresponding masks m(t), which encode the parts of the
input that this group is responsible for representing. These estimates are updated over iterations
by the same network, that is, each group and iteration share the weights of the network and only
the inputs to the network differ. In the case of images, µ contains pixel-values. Right: In each
iteration µ(t−1) and m(t−1) from the previous iteration, are used to compute a likelihood term
L(m(t−1)) and modeling error δµ(t−1). These four quantities are fed to the parametric mapping
to produce µ(t) and m(t) for the next iteration. During learning, all inputs to the network are
derived from the corrupted input as shown here. The unsupervised task for the network is to
learn to denoise, i.e. output an estimate q(x) of the original clean input.



86 6.1 Method

Throughout this work we assume a constant global variance of the Gaussian distribution but
which is learned from the data.

6.1.2 Inputs

In contrast to a normal denoising autoencoder which receives the corrupted x̃, we instead feed
the output estimates m(t−1)

k and µ(t−1)
k from the previous iteration along with two additional

quantities: the remaining modeling error δµ(t−1)
k and the group assignment likelihood ratio

L(m(t−1)
k ) which carry information about how the estimates can be improved: The latter two

are functions of the previous groupwise m(t−1)
k and µ(t−1)k and the corrupted x̃ They provide

additional information that is easy to compute, but very useful for improving the estimates. A
parametric mapping (here a neural network) then produces the new estimates m(t)k and µ(t)k .

Corrupted Image. For each input image x we produce a corrupted version x̃ by applying a
certain kind of noise. In the case of binary inputs we use bitflip noise for corruption:

x̃= x⊕B(β),

where ⊕ denotes componentwise XOR, and B(β) is Bernoulli distributed noise with probability
β which we set to β = 0.2. In the case of real-valued inputs add Gaussian noise:

x̃= x+N (0,σ2
x),

where σx is the standard deviation of the input noise which we also set to σx = 0.2.

Initialization. Similar to expectation maximization, the initial values for m(0)k are randomized,

and µ(0)k is set to the data mean for all k:

mk,i =
em̂k,i

∑K
h=1 em̂h,i

, where m̂k,i ∼N (0, 1). (6.3)

µk,i = µx = E

�

1
D

D
∑

i=1

x i

�

. (6.4)

(6.5)

In our experiments µx = 0.5 for the TextureMNIST datasets and µx = 0.26 for the Shapes
dataset.

Modelling Error. Intuitively, the auxiliary input δµk carries information about how far away
the reconstruction µk is from the input image x. During training as a denoiser, we can only allow
information about the corrupted x̃ as inputs but not about the original clean x. Therefore, we
use the derivative of the the gradient of the negative log likelihood of the corrupted input wrt.
µk as information about the remaining modelling error. Assuming a Gaussian input distribution
this amounts to 1:

δµk,i = mk,i( x̃ i −µk,i)∝
∂

∂ µk,i

�

− log(
∑

h

q( x̃ i | µh,i , C = h))

�

. (6.6)

1Refer to the appendix of [120] for the case of binary inputs.



87 6.1 Method

Assignment Likelihood. Intuitively, the term L(mk) describes how well each group reconstructs
the individual input elements relative to the other groups. Again, to avoid leaking information
of the clean input x we look at the group assignment likelihood of the corrupted input. Unlike
µk,i the m:,i ’s correspond to categorical distributions, so we treat them slightly differently:

L(m(t)k,i ) ∝
q(t)( x̃ i | C = k)
∑

h q(t)( x̃ i | C = h)
. (6.7)

Note that we normalize L(mk,i) over k such that it sums up to one for each value of i. This
amounts to providing each group information about how likely each input element belongs to
them rather than some other group. In other words, this is equivalent to likelihood ratio rather
than the raw likelihood.

6.1.3 Parametric mapping

The final component needed in the TAG framework is the parametric model, which does all the
heavy lifting of inference. This model has a dual task: first, to update the denoising estimates
µk of what each group predict about the input, and second, to update the group assignment
probabilities mk of each input element. The the remaining modeling error input is based on
the corrupted input x̃; thus, the parametric network has to denoise this and in effect implement
posterior inference for the estimated quantities. The mapping function is the same for each
group k and for each iteration. In other words, we share weights and in effect have only a single
function approximator that we reuse.

The denoising task encourages the network to iteratively group its inputs into coherent groups
that can be modeled efficiently. The trained network can be useful for a real-world denoising
application, but typically, the idea is to encourage the network to learn interesting internal
representations. Therefore, it is not q(x) but rather mk, µk and the internal representations of
the parametric mapping that we are typically concerned with.

6.1.4 Training

An overview of the whole system is given in Figure 6.1. By using the log likelihood as the objective
function, we train our system to compute an approximation q(t)(x) of the true denoising posterior
PX |X̃ (x|x̃) at each iteration t:

L(x) =
T
∑

t=0

log q(t)X (x), (6.8)

where the summation is over iterations t. From here on we mostly omit t from the equations
for readability. Since this cost function does not require any class labels or intended grouping
information, training can be completely unsupervised, though additional terms for supervised
tasks can be added too.

The trainable part of the TAG framework is given by a parametric mapping that operates
independently on each group k and is used to compute both µ(t)k and m(t)k (which is afterwards
normalized using an elementwise softmax over the groups). This parametric mapping is usually
implemented by a neural network and the whole system is trained end-to-end using standard
backpropagation through time.



88 6.2 Experiments and Results

Figure 6.2. An example of how Tagger would
use a 3-layer-deep Ladder Network as its para-
metric mapping to perform its iteration i + 1.
Note the optional class prediction output y (t)k
for classification tasks.

6.1.5 The Tagger: Combining TAG and Ladder Network

We chose the Ladder network [305] as the parametric mapping because its structure reflects
the computations required for posterior inference in hierarchical latent variable models. This
means that the network should be well equipped to handle the hierarchical structure one might
expect to find in many domains. We call this Ladder network wrapped in the TAG framework
Tagger. This is illustrated in Figure 6.2 and the corresponding pseudocode can be found in
algorithm 1. Only the forward pass for a single example is shown, but derivatives of the cost L
wrt. parameters σ, Wh, Wu and Θ are computed using regular backpropagation through time.

We mostly used the specifications of the Ladder network as described by Rasmus et al. [305],
but there are some minor modifications we made to fit it to the TAG framework. We found that
the model becomes more stable during iterations when we added a sigmoid function to the
gating variable v [305, Equation 2] used in all the decoder layers with continuous outputs. None
of the noise sources or denoising costs were in use (i.e., λl = 0 for all l in Eq. 3 of Rasmus et al.
[305]), but Ladder’s classification cost (Cc in Rasmus et al. [305]) was added to the Tagger’s
cost for the semi-supervised tasks.

All four inputs (µ(t)k , m(t)k , δµ(t)k , and L(m(t)k )) were concatenated and projected to a hidden
representation that served as the input layer of the Ladder Network. Subsequently, the values
for the next iteration were simply read from the reconstruction (x̂ in Rasmus et al. [305]) and
projected linearly into µ(t+1)

k
2 and via softmax to m(t+1)

k to enforce that they correspond to a
categorical distribution.

6.2 Experiments and Results

We explore the properties and evaluate the performance of Tagger both in fully unsupervised
settings and in semi-supervised tasks in two datasets3. Although both datasets consist of images

2For the binary case, we used a logistic sigmoid activation for µ(t+1)
k .

3The datasets and a Theano [376] reference implementation of Tagger are available at http://github.com/

CuriousAI/tagger

http://github.com/CuriousAI/tagger
http://github.com/CuriousAI/tagger


89 6.2 Experiments and Results

Data: x, K , T,σx,µx

Trainable Parameters: Wh, Wu,Θ,σ
Result: µ(T ),m(T ),L
begin Initialization:

x̃ ← x+N (0,σ2
x I);

m0← softmax(N (0, I));
µ0 ← µx;

end
for t = 0 . . . T − 1 do

µ̃k
k
←N (x̃;µ(t)k , (σ2 +σ2

x)I);

δµ(t)k
k
← (x̃−µ(t)k )m

(t)
k µ̃k;

L(m(t)k )
k
← µ̃k
∑

h µ̃h
;

h(t)k
k
← f (Wh

�

µ(t)k ,m(t)k ,δµ(t)k , L(m(t)k )
�

);

u(t)k
k
← Ladder(h(t)k ,Θ);

[µ(t+1)
k , m̂(t+1)

k ]
k
←Wuu(t)k ;

m(t+1) ← softmax(m̂(t+1));
q(t+1)(x)←
∑K

k=1 N (x;µ(t+1)
k ,σ2I)m(t+1);

end

L←
∑T

t=1 log q(t)(x);

Algorithm 1: Pseudocode for running Tagger on a single real-valued example x, where
f (x) = max(x , 0) is the rectified linear function followed by BN. Note that

k
← refers to a

parallel assignment using all values of 1≤ k ≤ K . For a binary-input version please refer to
supplementary material of [120].



90 6.2 Experiments and Results

and grouping is intuitively similar to image segmentation, there is no prior in the Tagger model
for images: our results (unlike the ConvNet baseline) generalize even if we permute all the
pixels .

6.2.1 Datasets

Shapes. We use the simple Shapes dataset [308] to examine the basic properties of our system.
It consists of 60,000 (train) + 10,000 (test) binary images of size 20x20. Each image contains
three randomly chosen shapes (△▽□) composed together at random positions with possible
overlap.

Textured MNIST. We generated a two-object supervised dataset (TextureMNIST2) by sequen-
tially stacking two textured 28x28 MNIST-digits, shifted two pixels left and up, and right and
down, respectively, on top of a background texture. The textures for the digits and background
are different randomly shifted samples from a bank of 20 sinusoidal textures with different
frequencies and orientations. Some examples from this dataset are presented in the column
of Figure 6.4. We use a 50k training set, 10k validation set, and 10k test set to report the results.
The dataset is assumed to be difficult due to the heavy overlap of the objects in addition to the
clutter due to the textures. We also use a textured single-digit version (TextureMNIST1) without
a shift to isolate the impact of texturing from multiple objects.

6.2.2 Training and evaluation

We train Tagger in an unsupervised manner by only showing the network the raw input example
x, not ground truth masks or any class labels, using 4 groups and 3 iterations. We average the
cost over iterations and use Adaptive Moment Estimation (Adam; 198) with a batch-size of 100
for optimization. On the Shapes dataset we trained for 100 epochs with a bit-flip probability of
0.2, and on the TextureMNIST dataset for 200 epochs with a corruption-noise standard deviation
of 0.2. The models reported in this paper took approximately 3 and 11 hours in wall clock time
on a single Nvidia Titan X GPU for Shapes and TextureMNIST2 datasets respectively.

To understand how model size, length of the iterative inference, and the number of groups
affect the modeling performance, we evaluate the trained models using two metrics: First, the
denoising cost on the validation set, and second we evaluate the segmentation into objects using
the Adjusted Mutual Information (AMI; 392) score and ignore the background and overlap regions
in the Shapes dataset (consistent with Greff, Srivastava and Schmidhuber [122]). Evaluations
of the AMI score and classification results in semi-supervised tasks were performed using
uncorrupted input. The system has no restrictions regarding the number of groups and iterations
used for training and evaluation. The results improved in terms of both denoising cost and AMI
score when iterating further, so we used 5 iterations for testing. Even if the system was trained
with 4 groups and 3 shapes per training example, we could test the evaluation with, for example,
2 groups and 3 shapes, or 4 groups and 4 shapes.

6.2.3 Unsupervised Perceptual Grouping

Table 6.1 shows the median performance of Tagger on the Shapes dataset over 20 seeds. Tagger
is able to achieve very fast convergences, as shown in Table 6.1a. Through iterations, the
network improves its denoising performances by grouping different objects into different groups.



91 6.2 Experiments and Results

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

Denoising cost 0.094 0.068 0.063 0.063 0.063
AMI 0.58 0.73 0.77 0.79 0.79

Denoising cost* 0.100 0.069 0.057 0.054 0.054
AMI* 0.70 0.90 0.95 0.96 0.97

(a) Convergence of Tagger over iterative inference

AMI

RC [122] 0.61 ± 0.005
Tagger 0.79 ± 0.034

Tagger* 0.97 ± 0.009

(b) Method comparison

Table 6.1. Table (a) shows how quickly the algorithm evaluation converges over inference
iterations with the Shapes dataset. Table (b) compares segmentation quality to previous work
on the Shapes dataset. The AMI score is defined in the range from 0 (guessing) to 1 (perfect
match). The results with a star (*) are using LayerNorm (LN; 14) instead of BN.

Comparing to Greff, Srivastava and Schmidhuber [122], Tagger performs significantly better in
terms of AMI score (see Table 6.1b).

Figure 6.3 and Figure 6.4 qualitatively show the learned unsupervised groupings for the
Shapes and textured MNIST datasets. Tagger uses its TAG mechanism slightly differently for
the two datasets. For Shapes, µk represents filled-in objects and masks mk show which part
of the object is actually visible. For textured MNIST, µk represents the textures and masks mk

texture segments. In the case of the same digit or two identical shapes, Tagger can segment
them into separate groups, and hence, it performs instance segmentation. We used 4 groups
for training even though there are only 3 objects in the Shapes dataset and 3 segments in the
TexturedMNIST2 dataset. The excess group is left empty by the trained system but its presence
seems to speed up the learning process.

The hand-picked examples A-C in Figure 6.3 illustrate the robustness of the system when
the number of objects changes in the evaluation dataset or when evaluation is performed using
fewer groups.

Example E is particularly interesting; E1 shows how the normal evaluation looks like but
E2 demonstrates how we can remove the topmost digit from the scene and let the system fill
in digit below and the background. We do this by setting the corresponding group assignment
probabilities mk to a large negative number just before the final softmax over groups in the last
iteration.

To solve the textured two-digit MNIST task, the system has to combine texture cues with
high-level shape information. The system first infers the background texture and mask which
are finalized on the first iteration. Then the second iteration typically fixes the texture used
for topmost digit, while subsequent iterations clarify the occluded digit and its texture. This
demonstrates the need for iterative inference of the grouping. Another evidence to support
that the system has the high-level information and not just local cues is visible in hand-picked
example D which shows how the system can use long-distance correlations to construct the
occluded digit from three disjoint parts, even though it would have a fourth group available to
represent them separately. This is further supported by semi-supervised experiments.

6.2.4 Classification

To investigate the role of grouping for the task of classification, we evaluate Tagger against four
baseline models on the textured MNIST task. As our first baseline we use a fully connected



92 6.2 Experiments and Results

t=0 t=1 t=2 t=3 t=4 t=5

re
co
ns
t

1.
00

1.
00

1.
00

1.
00

1.
00

0.
85

0.
6

A
B

C

original reconstr.

Figure 6.3. Results for Shapes dataset. Left column: 7 examples from the test set along with
their resulting groupings in descending AMI score order and 3 hand-picked examples (A, B,
and C) to demonstrate generalization. A: Testing 2-group model on 3 object data. B: Testing a
4-group model trained with 3-object data on 4 objects. C: Testing 4-group model trained with
3-object data on 2 objects. Right column: Illustration of the inference process over iterations for
four color-coded groups; mk and µk.



93 6.2 Experiments and Results

Class

t=0 t=1 t=2 t=3 t=4 t=5

re
co

ns
t

0.
95

0.
92

0.
90

0.
89

0.
87

0.
86

0.
85

D
E

E

original reconstr.

1
2

Pr
ed

: n
o 

cl
as

s
Pr

ed
: 0

Pr
ed

: 2
Pr

ed
: n

o 
cl

as
s

Figure 6.4. Results for the TextureMNIST2 dataset. Left column: 7 examples from the test set
along with their resulting groupings in descending AMI score order and 3 hand-picked examples
(D, E1, E2). D: An example from the TextureMNIST1 dataset. E1-2: A hand-picked example
from TextureMNIST2. E1 demonstrates typical inference, and E2 demonstrates how the system
is able to estimate the input when a certain group (topmost digit 4) is removed. Right column:
Illustration of the inference process over iterations for four color-coded groups; mk and µk.



94 6.2 Experiments and Results

network (FC) with Rectified Linear Unit (ReLU) activations and BN after each layer. Our second
baseline is a ConvNet (Conv) based on Model C from [364], which has close to state-of-the-art
results on CIFAR-10. We removed dropout, added BN after each layer and replaced the final
pooling by a fully connected layer to improve its performance for the task. Furthermore, we
compare with a fully connected Ladder [305] (FC Ladder) network.

All models use a softmax output and are trained with 50,000 samples to minimize the
categorical cross entropy error. In case there are two different digits in the image (most examples
in the TextureMNIST2 dataset), the target is p = 0.5 for both classes. We evaluate the models
based on classification errors, which we compute based on the two highest predicted classes
(top 2) for the two-digit case.

For Tagger, we first train the system in an unsupervised phase for 150 epochs and then add
two fresh randomly initialized layers on top and continue training the entire system end to
end using the sum of unsupervised and supervised cost terms for 50 epochs. Furthermore, the
topmost layer has a per-group softmax activation that includes an added “no class” neuron for
groups that do not contain any digit. The final classification is then performed by summing the
softmax output over all groups for the true 10 classes and renormalizing it.

As shown in Table 6.2, Tagger performs significantly better than all the fully connected
baseline models on both variants, but the improvement is more pronounced for the two-digit
case. This result is expected because for cases with multi-object overlap, grouping becomes
more important. Moreover, it confirms the hypothesis that grouping can help classification and
is particularly beneficial for complex inputs. Remarkably, Tagger is on par with the convolutional
baseline for the TexturedMNIST1 dataset and even outperforms it in the two-digit case, despite
being fully connected itself. We hypothesize that one reason for this result is that grouping
allows for the construction of efficient invariant features already in the low layers without losing
information about the assignment of features to objects. Convolutional networks solve this
problem to some degree by grouping features locally through the use of receptive fields, but
that strategy is expensive and can break down in cases of heavy overlap.

6.2.5 Semi-Supervised Learning

The TAG framework does not rely on labels and is therefore directly usable in a semi-supervised
context. For semi-supervised learning, the Ladder [305] is arguably one of the strongest baselines
with SOTA results on 1,000 MNIST and 60,000 permutation invariant MNIST classification.
We follow the common practice of using 1,000 labeled samples and 49,000 unlabeled samples
for training Tagger and the Ladder baselines. For completeness, we also report results of the
convolutional (ConvNet) and fully-connected (FC) baselines trained fully supervised on only
1,000 samples.

From the results in Table 6.2, it is obvious that all the fully supervised methods fail on this
task with 1,000 labels. The best result of approximately 52 % error for the single-digit case is
achieved by ConvNet, which still performs only at chance level for two-digit classification. The
best baseline result is achieved by the FC Ladder, which reaches 30.5 % error for one digit but
68.5 % for TextureMNIST2.

For both datasets, Tagger achieves by far the lowest error rates: 10.5 % and 24.9 %, respec-
tively. Again, this difference is amplified for the two-digit case, where the Tagger with 1,000
labels even outperforms the Ladder baseline with all 50k labels. This result matches our intuition
that grouping can often segment out objects even of an unknown class and thus help select the
relevant features for learning. This is particularly important in semi-supervised learning where



95 6.3 Related work

Dataset Method Error 50k Error 1k Model details

TextureMNIST1 FC MLP 31.1 ± 2.2 89.0 ± 0.2 2000-2000-2000 / 1000-1000

FC Ladder 7.2 ± 0.1 30.5 ± 0.5 3000-2000-1000-500-250

FC Tagger (ours) 4.0 ± 0.3 10.5 ± 0.9 3000-2000-1000-500-250

ConvNet 3.9 ± 0.3 52.4 ± 5.3 based on Model C [364]

TextureMNIST2 FC MLP 55.2 ± 1.0 79.4 ± 0.3 2000-2000-2000 / 1000-1000

FC Ladder 41.1 ± 0.2 68.5 ± 0.2 3000-2000-1000-500-250

FC Tagger (ours) 7.9 ± 0.3 24.9 ± 1.8 3000-2000-1000-500-250

ConvNet 12.6 ± 0.4 79.1 ± 0.8 based on Model C [364]

Table 6.2. Test-set classification errors for textured one-digit MNIST (chance level: 90 %) and
top-2 error on the textured two-digit MNIST dataset (chance level: 80 %). We report mean and
sample standard deviation over 5 runs. FC = Fully Connected

the inability to self-classify unlabeled samples can easily mean that the network fails to learn
from them at all.

To put these results in context, we performed informal tests with five human subjects. The
task turned out to be quite difficult and the subjects needed to have regular breaks to be able to
maintain focus. The subjects improved significantly over training for a few days but there were
also significant individual differences. The best performing subjects scored around 10 % error
for TextureMNIST1 and 30 % error for TextureMNIST2. For the latter task, the test subject took
over 30 seconds per sample.

6.3 Related work

Attention models have recently become very popular, and similar to perceptual grouping they
help in dealing with complex structured inputs. These approaches are not, however, mutually
exclusive and can benefit from each other. Overt attention models [343, 84] control a window
(fovea) to focus on relevant parts of the inputs. Two of their limitations are that they are mostly
tailored to the visual domain and are usually only suited to objects that are roughly the same
shape as the window. But their ability to limit the field of view can help to reduce the complexity
of the target problem and thus also help segmentation. Soft attention mechanisms [340, 65, 423]
on the other hand use some form of top-down feedback to suppress inputs that are irrelevant for
a given task. These mechanisms have recently gained popularity, first in machine translation [16]
and then for many other problems such as image caption generation [420]. Because they re-
weigh all the inputs based on their relevance, they could benefit from a perceptual grouping
process that can refine the precise boundaries of attention.

Our work is primarily built upon a line of research based on the concept that the brain
uses synchronization of neuronal firing to bind object representations together. This view was
introduced by [395] and has inspired many early works on oscillations in neural networks (see
the survey [395] for a summary). Simulating the oscillations explicitly is costly and does not mesh
well with modern neural network architectures (but see [253]). Rather, complex values have been
used to model oscillating activations using the phase as soft tags for synchronization [304, 309].



96 6.4 Conclusion

In our model, we further abstract them by using discretized synchronization slots (our groups).
It is most similar to the models of Wersing et al. [411], Hyvärinen and Perkiö [164] and Greff,
Srivastava and Schmidhuber [122]. However, our work is the first to combine this with denoising
autoencoders in an end-to-end trainable fashion.

Another closely related line of research [333, 320] has focused on multi-causal modeling of
the inputs. Many of the works in that area [223, 374, 358, 156] build upon Restricted Boltzmann
Machines. Each input is modeled as a mixture model with a separate latent variable for each
object. Because exact inference is intractable, these models approximate the posterior with some
form of expectation maximization [69] or sampling procedure. Our assumptions are very similar
to these approaches, but we allow the model to learn the amortized inference directly (more in
line with Goodfellow et al. [108]).

Since Recurrent Neural Networks (RNNs; 250, 368, 316, 410) are general purpose computers,
they can in principle implement arbitrary computable types of temporary variable binding [339,
340], unsupervised segmentation [339], and internal [340] and external attention [343]. For
example, an RNN with fast weights [340] can rapidly associate or bind the patterns to which
the RNN currently attends. Similar approaches even allow for metalearning [341], that is,
learning a learning algorithm. Hochreiter et al. [151], for example, learned fast online learning
algorithms for the class of all quadratic functions of two variables. Unsupervised segmentation
could therefore in principle be learned by any RNN as a by-product of data compression or any
other given task. That does not, however, imply that every RNN will, through learning, easily
discover and implement this tool. From that perspective, TAG can be seen as a way of helping
an RNN to quickly learn and efficiently implement a grouping mechanism.

The recurrent architecture most similar to the Tagger is the Neural Abstraction Pyramid (NAP;
[26]) – a convolutional neural network augmented with lateral connections which help resolve
local ambiguities and feedback connections that allow incorporation of high-level information.
In early pioneering work the NAP was trained for iterative image binarization [28] and iterative
image denoising [27], much akin to the setup we use. Being recurrent, the NAP layers too, could
in principle learn a perceptual grouping as a byproduct. That does not, however, imply that every
RNN will, through learning, easily discover and implement this tool. The main improvement
that our framework adds is an explicit mechanism for the network to split the input into multiple
representations and thus quickly and efficiently learn a grouping mechanism. We believe this
special case of computation to be important enough for many real-world tasks to justify this
added complexity.

6.4 Conclusion

In this chapter we have developed another approach for unsupervised perceptual grouping
based on the idea of amortized inference. The Tagger learns the iterative inference required
for grouping directly as a byproduct of trying to denoise the inputs. We have demonstrated
the benefits of this mechanism for a heavily cluttered classification task, in which our fully
connected Tagger even significantly outperformed a state-of-the-art convolutional network.
More impressively, we have shown that our mechanism can greatly improve semi-supervised
learning, exceeding conventional Ladder networks by a large margin. This is evidence, that
the ability to group input elements and internal representations is a powerful tool that can
improve a system’s ability to handle complex multi-object inputs. A key contributor to this
success compared to the previous chapters is the fact that the group assignments are also inferred



97 6.4 Conclusion

by the network. This allows the system to model dependencies between the representation of an
object and its segmentation, and to learn an efficient inference for both. One downside of the
Tagger is that objects representations are no longer conveniently localized. While the Ladder-like
structure of the network is very beneficial for denoising, it also disperses the information about
the image throughout all the layers.



98 6.4 Conclusion



Chapter 7

Variational Iterative Multi-Object
Representation Learning

Human perception is structured around objects which form the basis for our higher-level cognition
and impressive systematic generalization abilities. Yet recent breakthroughs in unsupervised
representation learning [141, 241, 53] tend to focus on data where a single object of interest is
placed in front of some background (eg. dSprites, 3D Chairs, CelebA) without even considering
multiple objects. In contrast, most visual scenes contain a variable number of objects arranged in
various spatial configurations, and often with partial occlusions (eg., CLEVR, Johnson et al. 181;
see Figure 7.1). Here we argue for the importance of learning to segment and represent objects
jointly, maintain that discovery of objects in a scene should be considered a crucial aspect of
representation learning, rather than treated as a separate problem. Similar to Chapters 4 to 6, we
approach the problem from a spatial mixture model perspective [123] and use iterative inference
to learn perceptual grouping. As with the iTerative Amortized Grouping (TAG; 120) framework
we construct a network that amortizes an iterative inference of latent object representations
and groupings simultaneously. However, here we will focus on the object representation aspect
and use the successful Variational Autoencoder (VAE; 313, 199) framework [313, 199] to learn
meaningful and disentangled representations for each object. We name the resulting architecture
IODINE, and demonstrate that, starting from the simple assumption that a scene is composed
of multiple entities, it is possible to learn to segment images into interpretable objects with
disentangled representations. Our method learns – without supervision – to inpaint occluded
parts, and extrapolates to scenes with more objects and to unseen objects with novel feature
combinations on datasets like CLEVR [181], Objects Room [43]. This highlights the benefits of
multi-object representation learning by comparison to a VAEs single-slot representations. We
also show that, due to the use of iterative variational inference, our system is able to learn
multi-modal posteriors for ambiguous inputs and extends naturally to sequences.

7.1 Method

We first express multi-object representation learning within the framework of generative mod-
elling (Section 7.1.1). Then, building upon the successful VAE framework, we leverage variational
inference to jointly learn both the generative and inference model (Section 7.1.2). There we also

99



100 7.1 Method

Figure 7.1. Object decomposition of
an image from the CLEVR dataset
by Iterative Object Decomposition
Inference NEtwork (IODINE; 119).
The model is able to decompose the
image into separate objects in an
unsupervised manner, inpainting oc-
cluded objects in the process (see
slots (d), (e) and (h)).

discuss the particular challenges that arise for inference in a multi-object context and show how
they can be solved using iterative amortization. Finally, in Section 7.1.3 we bring all elements
together and show how the complete system can be trained end-to-end.

7.1.1 Multi-Object Representations

Flat vector representations as used by standard VAEs are inadequate for capturing the combinato-
rial object structure that many datasets exhibit. To achieve the kind of systematic generalization
that is so natural for humans, we propose employing a multi-slot representation where each slot
shares the underlying representation format, and each would ideally describe an independent
part of the input. Consider the example in Figure 7.1: by construction, the scene consists of
8 objects, each with its own properties such as shape, size, position, color and material. To
split objects, a flat representation would have to represent each object using separate feature
dimensions. But this neglects the simple and (to us) trivial fact that they are interchangeable
objects with common properties.

Generative Model We represent each scene with K latent object representations zk ∈ RH that
collaborate to generate the input image x ∈ RD (see Figure 7.2b). The zk are assumed to be
independent and their generative mechanism is shared such that any ordering of them produces
the same image (i.e. entailing permutation invariance). Objects distinguished in this way can
easily be compared, reused and recombined, thus facilitating combinatorial generalization.

The image x is modeled with a spatial Gaussian mixture model where each mixing component
(slot) corresponds to a single object. That means each object vector zk is decoded into a pixel-wise
mean µik (the appearance of the object) and a pixel-wise assignment mik = PC |Z (Ci = k | zk) (the
segmentation mask; see Figure 7.2c). Assuming that the pixels i are independent conditioned



101 7.1 Method

(a) VAE (b) Multi-object VAE

m

(c) IODINE

(d) IODINE neural architecture.

Figure 7.2. Generative model illustrations. (a) A regular VAE decoder. (b) A hypothetical multi-
object VAE decoder that recomposes the scene from three objects. (c) IODINEs multi-object
decoder showing latent vectors (denoted z) corresponding to K objects refined over T iterations
from images of dimension D. The deterministic pixel-wise means and masks are denoted µ and
m respectively. (d) The neural architecture of the IODINEs multi-object spatial mixture decoder.



102 7.1 Method

on z, the likelihood thus becomes:

PX |Z(x | z) =
D
∏

i=1

K
∑

k=1

mikN (x i;µik,σ2), (7.1)

where we use a global fixed variance σ2 for all pixels.

Decoder Structure Our decoder network structure directly reflects the structure of the genera-
tive model. See Figure 7.2d for an illustration. Each object latent zk is decoded separately into
pixel-wise means µk and mask-logits m̂k, which we then normalize using a softmax operation
applied across slots such that the masks mk for each pixel sum to 1. Together, µ and m parame-
terize the spatial mixture distribution as defined in Equation (7.1). For the network architecture
we use a broadcast decoder [405], which spatially replicates the latent vector zk, appends two
coordinate channels (ranging from −1 to 1 horizontally and vertically), and applies a series of
size-preserving convolutional layers. This structure encourages disentangling the position across
the image from other features such as color or texture, and generally supports disentangling.
All slots k share weights to ensure a common format, and are independently decoded, up until
the mask normalization.

7.1.2 Inference

Similar to VAEs, we use amortized variational inference to get an approximate posterior qλ(z | x)
parameterized as a Gaussian with parameters λ = {µz ,σz}. However, our object-oriented
generative model poses a few specific challenges for the inference process: Firstly, being a
(spatial) mixture model, we need to infer both the components (i.e. object appearance) and the
mixing (i.e. object segmentation). This type of problem is well known, for example in clustering
and image segmentation, and is traditionally tackled as an iterative procedure, because there are
no efficient direct solutions. A related second problem is that any slot can, in principle, explain
any pixel. Once a pixel is explained by one of the slots, the others don’t need to account for it
anymore. This explaining-away property complicates the inference by strongly coupling it across
the individual slots. Finally, slot permutation invariance induces a multimodal posterior with
at least one mode per slot permutation. This is problematic, since our approximate posterior
qλ(z | x) is parameterized as a unimodal distribution. For all the above reasons, the standard
feed-forward VAE inference model is inadequate for our case, so we consider a more powerful
method for inference.

Iterative Inference The basic idea of iterative inference is to start with an arbitrary guess for
the posterior parameters λ, and then iteratively refine them using the input and samples from the
current posterior estimate. We build on the framework of iterative amortized inference [247],
which uses a trained refinement network fφ . Unlike Marino et al., we consider only additive
updates to the posterior and use several salient auxiliary inputs a to the refinement network
(instead of just ∇λL). We update the posterior of the K slots independently and in parallel
(indicated by

k
← and

k∼), as follows:

z(t)k
k∼ qλ(z

(t)
k | x) (7.2)

λ(t+1)
k

k
← λ(t)k + fφ(z

(t)
k ,x,ak) , (7.3)



103 7.1 Method

Figure 7.3. Illustration of the iterative inference procedure.

Thus the only place where the slots interact are at the input level. As refinement network fφ we
use a convolutional network followed by an LSTM. Instead of amortizing the posterior directly
(as in a regular VAE encoder), the refinement network can be thought of as amortizing the
gradient of the posterior [246]. The alternating updates to qλ(z | x) and PX |Z(x | z) are also akin
to message passing.

Input: image x, hyperparamters K , T , σ2

Input: trainable parameters λ(1), θ , φ
Initialize: h(1)k

k
← 0

for t = 1 to T do
z(t)k

k∼ qλ(z
(t)
k | x) // Sample

µ(t)k , m̂(t)k
k
← gθ (z

(t)
k ) // Decode

m(t)← softmaxk(m̂
(t)
k ) // Masks

PX |Z(x | z(t))←
∑

k m(t)k N (x;µ(t)k ,σ2) // Likelihood
L(t)← DKL[qλ(z(t) | x) ∥ P(z)]− log P(x | z(t))
ak

k
← inputs(x,z(t)k ,λ(t)k ) // Inputs

λ(t+1)
k ,h(t+1)

k
k
← fφ(ak,h(t)k ) // Refinement

end for
Algorithm 2: IODINE Pseudocode.

Inputs For each slot k we feed a set of auxiliary inputs ak to the refinement network fφ which
then computes an update for the posterior λk. Crucially, we include gradient information about
the ELBO in the inputs, as it conveys information about what is not yet explained by other slots.
Omitting the superscript (t) for clarity, we divide the auxiliary inputs ak into image-sized inputs
which are concatenated and fed to the corresponding convolutional network, and flat vector
inputs which serve as inputs to the refinement LSTM. The following are the image-sized inputs
where LN means Layernorm and SG means stop gradients:



104 7.1 Method

Description Formula LN SG Ch.

image x 3
means µ 3
mask mk 1
mask-logits m̂k 1
mask posterior P(mk | x,µ) 1
gradient of means ∇µk

L ✓ ✓ 3
gradient of mask ∇mk

L ✓ ✓ 1
pixelwise likelihood P(x | z) ✓ ✓ 1
leave-one-out likelih. P(x | zi ̸=k) ✓ ✓ 1
coordinate channels 2

total: 17

The posterior parameters λ and their gradients are flat vectors, and as such we concatenate
them with the output of the convolutional part of the refinement network and use the result as
input to the refinement LSTM. The approximate gradient ∇λk

L is computed using the reparam-
eterization trick by a backward pass through the generator network. This is computationally
quite expensive, but we found that this information helps to significantly improve training of the
refinement network. Like Marino, Yue and Mandt [247] we found it beneficial to normalize the
gradient-based inputs with LayerNorm [14]. See Section 7.3.5 for an ablation study on these
auxiliary inputs.

Description Formula LN SG

gradient of posterior ∇λk
L ✓ ✓

posterior λk

7.1.3 Training

We train the parameters of the decoder (θ ), of the refinement network (φ), and of the initial
posterior (λ(1)) by gradient descent through the unrolled iterations. In principle, it is enough to
minimize the final negative ELBO LT , but we found it beneficial to use a weighted sum which
also includes earlier terms:

Ltotal =
T
∑

t=1

t
T
L(t). (7.4)

Each refinement step of IODINE uses gradient information to optimize the posterior λ. Unfortu-
nately, backpropagating through this process leads to numerical instabilities connected to double
derivatives like ∇Θ∇zL. We found that this problem can be mitigated by dropping the double
derivative terms, i.e. stopping the gradients from backpropagating through the gradient-inputs
∇µk

L, ∇mk
L, and ∇λk

L.

Initialization of Posterior IODINE iteratively refines an initial posterior λ(1) which is indepen-
dent of the input data. Initially we set this initial value to match the prior (i.e. qλ(z

(1)
k ) =N (0,1)).

But we found that this poses problems for the model, because of the competing requirements it
poses for structuring the latent space wrt. the prior: On the one hand, samples from the prior



105 7.2 Related Work

need to be good starting values for iterative refinement. On the other hand, the prior should
correspond to the accumulated posterior (KL term). For this reason we decided to simply make
the parameters λ(1) of the initialization distribution trainable parameters which are optimized
alongside the weights of the decoder (θ ) and of the refinement network (φ). This lead to faster
training, and improved the visual quality of reconstructions from prior samples.

7.2 Related Work

Representation learning [29] has received much attention and has seen several recent break-
throughs. This includes disentangled representations through the use of β -VAEs [141], adversar-
ial autoencoders [241], Factor VAEs [197], and improved generalization through non-euclidean
embeddings [278]. However, most advances have focused on the feature-level structure of
representations, and do not address the issue of representing multiple, potentially repeating
objects, which we tackle here.

Another line of work is concerned with obtaining segmentations of images, usually without
considering representation learning. This has led to impressive results on real-world images,
however, many approaches (such as “semantic segmentation” or object detection) rely on
supervised signals [104, 136, 306], while others require hand-engineered features [347, 87].
In contrast, as we learn to both segment and represent, our method can perform inpainting
(Figure 7.1) and deal with ambiguity (Figure 7.17), going beyond what most methods relying
on feature engineering are currently able to do.

Works tackling the full problem of scene representation are rarer. Probabilistic programming
based approaches, like stroke-based character generation [218] or 3D indoor scene rendering
[67], have produced appealing results, but require carefully engineered generative models,
which are typically not fully learned from data. Work on end-to-end models has shown promise
in using autoregressive inference or generative approaches [84, 125] Few methods can achieve
similar comparable with the complexity of the scenes we consider here.

Two other methods related to ours are Neural Expectation Maximization (N-EM; 123) (along
with its sequential and relational extensions [385]) and Tagger [120]. N-EM uses recurrent
neural networks to amortize expectation maximization for a spatial mixture model. However,
N-EM variants fail to cope with colored scenes, as we note in our comparison in Section 7.3.3.
Tagger also uses iterative inference to segment and represent images based on a denoising
training objective. We disregard Tagger for our comparison, because (1) its use of a Ladder
network means that there is no bottleneck and thus no explicit object representations, and (2)
without adapting it to a convolutional architecture, it does not scale to larger images (Tagger
would require ≈ 600M weights for CLEVR).

MONet The Multi-Object NETwork (MONet; Burgess et al. 43) is a complementary method
for unsupervised object representation learning also developed recently. It learns to sequentially
attend to individual objects using a masking network and a VAE. In each step the masking
network segments out a yet unexplained part of the image (the next object) which is then fed to
the VAE which has to reconstruct that object and the mask. Thus, in contrast to IODINE, MONet
uses one iteration per object and doesn’t adjust an object once it has been covered.

Both methods focus on the representation learning aspect and both ensure that all objects are
encoded in the same format by sharing weights across objects. In our preliminary experiments
MONet produced results very similar to IODINE on CLEVR both in terms of segmentation and



106 7.3 Results

regarding the quality of object representations, and also learns to inpaint occluded parts of
objects. See Section 7.3.3 shows a preliminary comparison between MONet and IODINE.

Since MONet only visits each object once, it is a more lightweight method that requires
less computation and memory to train and run. Recurrently iterating over objects also has
the benefit that the model can dynamically vary the number of objects, whereas in IODINE
the maximum number of objects is a hyperparameter that has to be fixed manually (though
it can be changed at test time). The usage of a separate masking network which isn’t directly
subject to a representational bottleneck likely leads to less regularization for the segmentation
mask. This could potentially allow MONet to better deal with complex segmentation shapes.
But it also has to use that ability to directly produce masks that respect occlusion, whereas
IODINE tends to produce masks for full unoccluded objects and leverages the softmax to resolve
overlap. For more complex scenes, we also expect iterative refinement to be advantageous for
resolving difficult cases. There, IODINE could start with a rough segmentation and then use the
progressively better understanding of the constituent objects for refining the boundaries.

The segmentation process of MONet is deterministic which induces an order on the objects,
which might be useful because it naturally prioritizes salient objects. We observed that it typically
starts with the background, then processes large frontal objects, and finally smaller or farther
away objects. But this approach does break symmetry between objects, and we prefer keeping
such a bias out of the object segmentation learning as much as possible.

Another disadvantage of a deterministic segmentation is that it cannot directly deal with
ambiguous cases like the one shown in Section 7.3.6 and Figure 7.17. The iterative message-
passing-like approach of IODINE might also lend itself well for incorporating top-down feedback
to bias the segmentation towards one that is useful for a given task. It is less clear how to do that
in MONet, though adding a way for conditioning the masking network could potentially serve a
similar purpose. Finally the iterative refinement of IODINE naturally extends to sequential data
(see Section 7.3.7) which would be less straightforward for MONet.

In summary, it is not at all clear yet which approach will work better and under which
circumstances. If the data is sequential or contains ambiguity, IODINE presents a better choice.
For other data that is not visually more complex than CLEVR, both methods will likely produce
similar results making MONet the simpler and less computationally intensive choice. For more
complex data it is unclear yet which approach would be the better choice, and in fact a hybrid
approach might be the most promising. Sequentially attending to objects and iterative refinement
are not mutually exclusive and might support each other. We consider this a very attractive
research direction and are excited to explore its possibilities.

7.3 Results

Unless otherwise specified all the models are trained with the Adaptive Moment Estimation (Adam; 198)
optimizer, with default parameters, a learning rate of 0.0003, and a batch size of 32 (4×8GPUs).
We used gradient clipping as recommended by [290]: if the norm of global gradient exceeds
5.0 then the gradient is scaled down to that norm. Note that this is virtually always the case
as the gradient norm is typically on the order of 105, but we nonetheless found it useful to
apply this strategy. We always use σ = 0.1 for the global scale of the output distribution
p(x | z(t)) = N (x;µ(t)k ,σ2). We varied several hyperparameters, including: number of slots,
dimensionality of zk, number of inference iterations, number of convolutional layers and their
filter sizes.



107 7.3 Results

Figure 7.4. Samples from CLEVR6.
The first column is the scene, the sec-
ond column is the background mask
and the following columns are the
ground-truth object masks.

7.3.1 Datasets

We evaluate our model on three main datasets: 1) CLEVR [181] and a variant CLEVR6 which
uses only scenes with up to 6 objects, 2) a multi-object version of the dSprites dataset [249],
and 3) a dataset of multiple “Tetris”-like pieces that we created.

CLEVR We regenerated the CLEVR dataset [181] using the authors’ open-source code, because
we needed ground-truth segmentation masks for evaluation purposes. The dataset contains
70 000 images with a resolution of 240× 320 pixels, from which we extract a square center
crop of 192× 192 and scale it to 128× 128 pixels. Each scene contains between three and ten
objects, characterized in terms of shape (cube, cylinder, or sphere), size (small or large), material
(rubber or metal), color (8 different colors), position (continuous), and rotation (continuous).
The subset of images which contain 3-6 objects (inclusive) served as the training set for our
experiments; we refer to it as CLEVR6. Unless noted otherwise, we evaluate models on the full
CLEVR distribution, containing 3-10 objects. All references to CLEVR refer to the full distribution.
We do not make use of the question answering task. Figure 7.4 shows a few samples from the
dataset.

Multi-dSprites This dataset, based on the dSprites dataset [249], consists of 60 000 images
with a resolution of 64× 64. Each image contains two to five random sprites, which vary in
terms of shape (square, ellipse, or heart), color (uniform saturated colors), scale (continuous),
position (continuous), and rotation (continuous). Furthermore the background color is varied
in brightness but always remains grayscale. Figure 7.5 shows a few samples from the dataset.
We also used a binarized version of Multi-dSprites, where the sprites are always white, the
background is always black, and each image contains two to three random sprites.

Tetris We generated this dataset of 60 000 images by placing three random Tetrominoes without
overlap in an image of 35× 35 pixels. Each Tetromino is composed of four blocks that are each
5× 5 pixels. There are a total of 17 different Tetrominoes (counting rotations). We randomly
color each Tetromino with one of 6 colors (red, green, blue, cyan, magenta, or yellow). Figure 7.6
shows a few samples from the dataset.

Shapes We use the same shapes dataset as in [309]. It contains 60 000 binary images of size
28× 28 each with three random shapes from the set {△,▽,□}.



108 7.3 Results

Figure 7.5. Samples from the Multi-
dSprites dataset. The first column is
the full image, the second column
is the background mask and the fol-
lowing columns are the ground-truth
object masks.

Figure 7.6. Samples from the Tetris
dataset. The first column is the full
image, the second column is the
background mask and the following
columns are the ground-truth object
masks.

Objects Room For the preliminary sequential experiments we used a sequential version of the
Objects Room dataset [43]. This dataset consists of 64x64 RGB images of a cubic room, with
randomly colored walls, floors and objects randomly scattered around the room. The camera
is always positioned on a ring inside the room, always facing towards the centre and oriented
vertically in the range (−25◦, 22◦). There are 3 randomly shaped objects in the room with 1-3
objects visible in any given frame. This version contains sequences of camera-flights for 16 time
steps, with the camera position and angle (within the above constraints) changing according to
a fixed velocity for the entire sequence (with a random velocity sampled for each sequence).

7.3.2 Architecture and Hyperparameters

All layers use the ELU [57] activation function and the Convolutional layers use a stride equal to
1, unless mentioned otherwise.

CLEVR All models were trained on scenes with 3-6 objects (CLEVR6) with K = 7 slots and
T = 5 iterations, and a latent object dimension of size dim(zk) = 64. When evaluating on the
full CLEVR dataset, we increased the number of slots to K = 11. For some of the analysis, we
varied T and K as mentioned in the text. The architecture and hyperparameters are described
in the following tables:

Multi-dSprites Models were trained with K = 6 slots, and used T = 5 iterations.



109 7.3 Results

Decoder

Type Size/Ch. Act. Func. Comment

Input: z 64
Broadcast 66 + coordinates
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 64 ELU
Conv 3× 3 4 Linear RGB + Mask

(a)

Refinement Network

Type Size/Ch. Act. Func. Comment

MLP 128 Linear
LSTM 256 Tanh
Concat [λ,∇λL] 512
MLP 256 ELU
Avg. Pool 64
Conv 3× 3 64 ELU stride 2
Conv 3× 3 64 ELU stride 2
Conv 3× 3 64 ELU stride 2
Conv 3× 3 64 ELU stride 2
Inputs 17

(b)

Table 7.1. Network architectures used for CLEVR dataset.

Deconv Decoder

Type Size/Ch. Act. Func. Comment

Input: z 64
MLP 512 ELU
MLP 512 ELU
Reshape 8 8× 8× 8
Conv 5× 5 64 ELU stride 2
Conv 5× 5 64 ELU stride 2
Conv 5× 5 64 ELU stride 2
Conv 5× 5 64 ELU stride 2
Conv 5× 5 64 ELU
Conv 5× 5 4 Linear RGB + Mask

Table 7.2. Deconv-based decoder architecture used in Section 7.3.5.

Decoder

Type Size/Ch. Act. Func. Comment

Input: λ 32
Broadcast 34 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 Linear RGB + Mask

(a)

Refinement Network

Type Size/Ch. Act. Func. Comment

MLP 32 Linear
LSTM 128 Tanh
Concat [λ,∇λL] 192
MLP 128 ELU
Avg. Pool 32
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Inputs 17

(b)

Table 7.3. Network architectures used for Multi-dSprites dataset.



110 7.3 Results

Decoder

Type Size/Ch. Act. Func. Comment

Input: λ 64
Broadcast 66 + coordinates
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 4 Linear RGB + Mask

(a)

Refinement Network

Type Size/Ch. Act. Func. Comment

MLP 64 Linear
Concat [λ,∇λL] 256
MLP 128 ELU
Avg. Pool 32
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Conv 5× 5 32 ELU
Inputs 17

(b)

Table 7.4. Network architectures used for Tetris dataset.

Tetris Models were trained with K = 4 slots, and used T = 5 iterations. For Tetris, in contrast
to the other models, we did not use an LSTM in the refinement network.

7.3.3 Decomposition

IODINE can provide a readily interpretable segmentation of the data, as seen in Figure 7.7.
These examples clearly demonstrate the models ability to segmenting out the same objects
which were used to generate the dataset, despite never having received supervision to do so.
To quantify segmentation quality, we measure the similarity between ground-truth (instance)
segmentations and our predicted object masks using the Adjusted Rand Index (ARI; 301, 157).
ARI is a measure of clustering similarity that ranges from 0 (chance) to 1 (perfect clustering)
and can handle arbitrary permutations of the clusters. We apply it as a measure of instance
segmentation quality by treating each foreground pixel (ignoring the background) as one point
and its segmentation as cluster assignment. As shown in Table 7.5, IODINE achieves almost
perfect ARI scores of around 0.99 for CLEVR6, and Tetris as well as a relatively good score of
0.77 for Multi-dSprites. The lower scores on Multi-dSprites are largely because IODINE struggles
to produce sharp boundaries for the sprites, and we are uncertain as to the reasons for this
behaviour.

We compare with Multi-Object Network (MONet; 43), following the CLEVR model imple-
mentation described in the paper except using fewer (7) slots and different standard deviations
for the decoder distribution (0.06 and 0.1 for σbg and σfg, respectively), which gave better
scores. With this, MONet obtained a similar ARI score (0.96) as IODINE on CLEVR6, and on
Multi-dSprites it performed significantly better with a score of 0.90 (using the unmodified
model). We also attempted to compare ARI scores to N-EM, but neither Relational Neural
Expectation Maximization (R-NEM; 385) nor the simpler Recurrent Neural Network Expectation
Maximization (RNN-EM; 123) variant could cope well with colored images. As a result, we
could only compare with those methods on a binarized version of Multi-dSprites and the Shapes
dataset. These scores are summarized in Table 7.5.

7.3.4 Representation Quality

Information Content The object-reconstructions in Figure 7.7 show that their representations
contain all the information about the object. But in what format, and how usable is it? To answer



111 7.3 Results

Figure 7.7. IODINE segmentations and object reconstructions on CLEVR6 (top), Multi-dSprites
(middle), and Tetris (bottom). The individual masked reconstruction slots represent objects
separately (along with their shadow on CLEVR). Border colours are matched to the segmentation
mask on the left.

Figure 7.8. Prediction accuracy / R2

score for the factor regression on
CLEVR6. Position is continuous; the
rest are categorical with 8 colors, 3
shapes, and 2 sizes. IODINE (de-
conv) does not use spatial broadcast-
ing in the decoder.

IODINE R-NEM MONet

CLEVR6 0.988 ∗ 0.962± 0.006
M-dSprites 0.767± 0.056 ∗ 0.904± 0.008
M-dSprites bin. 0.648± 0.172 0.685± 0.017
Shapes 0.910± 0.119 0.776± 0.019
Tetris 0.992± 0.004 ∗

Table 7.5. Summary of IODINEs segmentation performance in terms of ARI (mean ± stddev
across five seeds) versus baseline models. For each independent run, we computed the ARI
score over 320 images, using only foreground pixels. We then picked the best hyperparameter
combination for each model according to the mean ARI score over five random seeds.



112 7.3 Results

Figure 7.9. Disentanglement in regular VAEs vs IODINE. Rows indicate traversals of single
latents, annotated by our interpretation of their effects. (Left) When a VAE is trained on single-
object scenes it can disentangle meaningful factors of variation. (Center) When the same VAE
is trained on multi-object scenes, the latents entangle across both factors and objects. (Right)
In contrast, traversals of individual latents in IODINE vary individual factors of single objects,
here the orange cylinder. Thus, the architectural bias for discovering multiple entities in a
common format enables not only the discovery of objects, but also facilitates disentangling of
their features.

this question we associate each ground-truth object with its corresponding zk based on the
segmentation masks. We then train a single-layer network to predict ground-truth factors for each
object. Note that this predictor is trained after IODINE has finished training (i.e. no supervised
fine-tuning). It tells us if a linear mapping is sufficient to extract information like color, position,
shape or size of an object from its latent representation, and gives an important indication
about the usefulness of the representation. Results in Figure 7.8 clearly show that a linear
mapping is sufficient to extract relevant information about these object attributes from the latent
representation to high accuracy. This result is in contrast with the scene representations learned
by a standard VAE. Here even training the factor-predictor is difficult, as there is no obvious way
to align objects with features. To make this comparison, we chose a canonical ordering of the
objects based on their size, material, shape, and position (with decreasing precedence). The
precedence of features was intended as a heuristic to maximize the predictability of the ordering.
We then trained a linear network to predict the concatenated features of the canonically ordered
objects from the latent scene representation. As the results in Figure 7.8 indicate, the information
is present, but in a much less explicit/usable state.

Disentanglement Disentanglement is another important desirable property of representations
[29] that captures how well learned features separate and correspond to individual, interpretable
factors of variation in the data. While its precise definition is still highly debated [140, 79,
314, 235], the concept of disentanglement has generated a lot of interest recently. Good
disentanglement is believed to lead to both better generalization and more interpretable features
[219, 142]. Interestingly, for these desirable advantages to bear out, disentangled features seem
to be most useful for properties of single objects, such as color, position, shape, etc. It is much
less clear how to operationalize this in order to create disentangled representations of entire
scenes with variable numbers of objects. And indeed, if we train a VAE that can successfully
disentangle features of a single-object dataset, we find that that its representation becomes
highly entangled on a multi-object dataset, (see Figure 7.9 left vs middle, and Figure 7.10).
IODINE, on the other hand, successfully learns disentangled representations, because it is able to



113 7.3 Results

Figure 7.10. Latent traversal of IODINE on CLEVR (like right side of Figure 7.9), for a randomly
chosen example and randomly chosen slot. Here the brown cylinder in the back is changing.
Occlusion handling shows several flaws, that could be fixed by adjusting another latent (not
shown) that encodes the depth ordering.



114 7.3 Results

Figure 7.11. Each row shows the t-SNE of the latent distribution for the CLEVR6, Multi-dSprites,
and Tetris datasets respectively. Each dot represents one object latent and in each column is
colored according to a single ground truth factor. Note that representations of the background
do not include a position and thus appear as large black areas.

first decompose the scene and then represent individual objects (Figure 7.9 right). In Figure 7.9
we show traversals of the most important features (selected by KL) of a standard VAE vs IODINE.
While the standard VAE clearly entangles many properties even across multiple objects, IODINE
is able to neatly separate them.

Projections of Object Latents Another way of of qualitatively evaluating the structure of the
object representations is by visualizing the embedding space. Figure 7.11 shows how object
latents are clustered when projected using t-SNE [384].

Generalization Finally, we can ask directly: Does the system generalize to novel scenes in
a systematic way? Specifically, does it generalize to scenes with more or fewer objects than
ever encountered during training? Slots are exchangeable by design, so we can freely vary
the number of slots during test-time (more on this in Section 7.3.5). So in Figure 7.12 we
qualitatively show the performance of a system that was trained with K = 7 on up to 6 objects,
but evaluated with K = 10 on 9 objects. In Figure 7.14a the orange boxes show, that, even
quantitatively, the segmentation performance decreases little when generalizing to more objects.

A more extreme form of generalization involves handling unseen feature combinations. To
test this we trained our system on a subset of CLEVR that does not contain green spheres (though
it does contain spheres and other green objects). And then we tested what the system does



115 7.3 Results

Figure 7.12. IODINEs iterative inference process and generalization capabilities. Rows indicate
steps of iterative inference, refining reconstructions and segmentations when moving down
the figure. Of particular interest is the explaining away effect visible between slots 6 and 7,
where they settle on different objects despite both starting with the large cylinder. The model
was only trained with K = 7 slots on 3-6 objects (excluding green spheres), and yet is able to
generalize to K = 10 slots on a scene with 9 objects, including the never seen before green
sphere (9th slot).

when confronted with a green sphere. In Figure 7.12 it can be seen that IODINE is still able to
represent green spheres, despite never having seen this combination during training.

7.3.5 Robustness & Ablation

Now that we’ve established the usefulness of the object-representations produced by IODINE,
we turn our attention to investigating its behavior in more detail.

Iterations The number of iterations is one of the central hyperparameters to our approach.
To investigate its impact, we trained four models with 1, 2, 4 and 6 iterations on CLEVR6,
and evaluated them all using 15 iterations (see Figure 7.13). The first thing to note is that
the inference converges very quickly within the first 3-5 iterations after which neither the
segmentation nor reconstruction change much. The second important finding is that the system
is very stable for much longer than the number of iterations it was trained with. The model even
further improves the segmentation and reconstruction when it is run for more iterations, though
it eventually starts to diverge after about two to three times the number of training iterations as
can be seen with the blue and orange curves in Figure 7.13.

Slots The other central parameter of IODINE is the number of slots K, as it controls the
maximum number of objects the system can separate. It is important to distinguish varying K
for training vs varying it at test-time. As can be seen in Figure 7.14, if the model was trained
with sufficiently many slots to fit all objects (K = 7, and K = 9), then test-time behavior
generalizes very well. Typical behavior (not shown) is to leave excess slots empty, and when
confronted with too many objects it will often completely ignore some of them, leaving the other
object-representations mostly intact. Given enough slots at test time, such a model can even



116 7.3 Results

(a) ARI (b) MSE (c) KL

Figure 7.13. The effect of varying the number of iterations, for both training and at test time.
(a) Median ARI score, (b) MSE and (c) KL over test-iterations, for models trained with different
numbers of iterations on CLEVR6. The region beyond the filled dots thus shows test-time
generalization behavior. Shaded region from 25th to 75th percentile.

(a) ARI (b) MSE (c) KL

Figure 7.14. IODINE trained on CLEVR6 with varying numbers of slots (columns). Evaluation
of (a) ARI, (b) MSE, and (c) KL with 7 slots on 3-6 Objects (blue) and 11 slots on 3-9 objects
(orange).



117 7.3 Results

Figure 7.15. Ablation study for the model’s total loss (left) and ARI (right) on the CLEVR6 dataset.
Each curve denotes the result of training the model without a particular input.

Figure 7.16. Ablation study for the model’s total loss (left) and ARI (right) on the Tetris dataset.
Each curve denotes the result of training the model without a particular input.

segment and represent scenes of higher complexity (more objects) than any scene encountered
during training (see Figure 7.12 and the orange boxes in Figure 7.14). If on the other hand, the
model was trained with too few slots (K = 3 and K = 5), its performance suffers substantially.
This happens because, here the only way to reconstruct the entire scene during training is to
consistently represent multiple objects per slot. And that leads to the model learning inefficient
and entangled representations akin to the VAE in Figure 7.9 (also apparent from their much
higher KL in Figure 7.14c). Once learned, this sub-optimal strategy cannot be mitigated by
increasing the number of slots at test-time as can be seen by their decreased performance in
Figure 7.14a.

Input Ablations We ablated each of the different inputs to the refinement network described
in Section 7.1.2. Broadly, we found that individually removing an input did not noticeably affect
the results (with two exceptions noted below). See Figures 7.15 and 7.16, which demonstrate
this lack of effect in terms of the model’s loss and the ARI segmentation score on both CLEVR6
and Tetris. A more comprehensive analysis could ablate combinations of inputs and identify
synergistic or redundant groups, and thus potentially simplify the model. We didn’t pursue this
direction since none of the inputs incurs any noticeable computational overhead and at some
point during our experimentation each of them contributed towards stable training behavior.

The main exceptions to the above are ∇λL and x. Computing the former requires an entire
backward pass through the decoder, and contributes about 20% of the computational cost of
the entire model. But we found that it often substantially improves performance and training
convergence, which justifies its inclusion. A somewhat surprising finding was that for the Tetris
dataset, removing x from the list of inputs had a pronounced detrimental effect, while for CLEVR



118 7.3 Results

Figure 7.17. Multi-stability of segmentation when presented with an ambiguous stimulus. Left:
Depending on the random sampling during iterative refinement, IODINE can produce different
permutations of groups (row 2 vs 3), a different decomposition (row 1) or sometimes an invalid
segmentation and reconstruction (row 4). Right: PCA of the latent space, coloured by which
slot corresponds to the background. Paths show the trajectory of the iterative refinement for the
four examples on the left.

it was negligible. At this point we do not have a good explanation for this effect.

Broadcast Decoder Ablation We use the spatial broadcast decoder [405] primarily for its
significant impact on the disentanglement of the representations, but its continuous spatial
representation bias also seems to help decomposition. When replacing it with a deconvolution-
based decoder the factor regression scores on CLEVR6 are significantly worse as can be seen in
Figure 7.8. Especially for shape and size it now performs no better than the VAE which uses
spatial broadcasting. The foreground-ARI scores also drop significantly (0.67± 0.06 down from
0.99) and the model seems less able to specialize slots to single objects. Note though, that
these discrepancies might easily be reduced, since we haven’t invested much effort in tuning the
architecture of the deconv-based decoder.

7.3.6 Multi-Modality and Multi-Stability

Standard VAEs are unable to represent multi-modal posteriors, because qλ(z | x) is parameterized
using a unimodal Gaussian distribution. However, as demonstrated in Figure 7.17, IODINE
can actually handle this problem quite well. How is that possible? It turns out that this is
an important side-effect of iterative variational inference, that to the best of our knowledge



119 7.3 Results

(a) Textured MNIST (b) ImageNet

(c) Grayscale CLEVR

Figure 7.18. Segmentation challenges a) IODINE did not succeed in capturing the foreground
digits in the Textured MNIST dataset. b) IODINE groups ImageNet not into meaningful objects
but mostly into regions of similar color. c) On a grayscale version of CLEVR, IODINE still
produces the desired groupings.



120 7.4 Discussion and Future Work

has not been noticed before: The stochasticity at each iteration, which results from sampling
z to approximate the likelihood, implicitly acts as an auxilliary (inference) random variable.
This effect compounds over iterations, and is amplified by the slot-structure and the effective
message-passing between slots over the course of iterations. In effect the model can implicitly
represent multiple modes (if integrated over all ways of sampling z) and thus converge to
different modes (see Figure 7.17 left) depending on these samples. This does not happen in
a regular VAE, where no stochasticity enters the inference process. If we had an exact and
deterministic way to compute the likelihood and its gradient, this effect would vanish.

A neat side-effect of this is the ability to elegantly capture ambiguous (aka multi-stable)
segmentations such as the ones shown in Figure 7.17. We presented IODINE with an ambiguous
arrangement of Tetris blocks, which has three different yet equally valid "explanations" (given
the data distribution). When we evaluate a trained model on this image, we get different
segmentations on different evaluations. Some of these correspond to different slot-orderings
(1st vs 3rd row). But we also find qualitatively different segmentations (i.e. 3rd vs 4th row)
that correspond to different interpretations of the scene. This is an impressive result given that
multi-stability is a well-studied, pervasive feature of human perception that is important for
handling ambiguity, and that is not modelled by any standard image recognition networks.

7.3.7 Sequences

The iterative nature of IODINE lends itself readily to sequential data, by, eg., feeding a new frame
at every iteration, instead of the same input image x. This setup corresponds to one iteration
per timestep, and using next-step-prediction instead of reconstruction as part of the training
objective. An example of this can be seen in Figure 7.19 where we show a 16 timestep sequence
along with reconstructions and masks. When using the model in this way, it automatically
maintains the association of object to slot over time (i.e, displaying robust slot stability). Thus,
object tracking comes almost for free as a by-product in IODINE. Notice though, that IODINE has
to rely on the LSTM that is part of the inference network to model any dynamics. That means
none of the dynamics of tracked objects (eg. velocity) will be part of the object representation.

7.4 Discussion and Future Work

We have introduced IODINE, a novel approach for unsupervised representation learning of multi-
object scenes, based on amortized iterative refinement of the inferred latent representation.
We analyzed IODINE’s performance on various datasets, including realistic images containing
variable numbers of partially occluded 3D objects, and demonstrated that our method can
successfully decompose the scenes into objects and represent each of them in terms of their
individual properties such as color, size, and material. IODINE can robustly deal with occlusions
by inpainting covered sections, and generalises beyond the training distribution in terms of
numerosity and object-property combinations. Furthermore, when applied to scenes with
ambiguity in terms of their object decomposition, IODINE can represent – and converge to –
multiple valid solutions given the same input image.



121 7.4 Discussion and Future Work

Figure 7.19. IODINE applied to Objects Room sequences by setting N , the number of refinement
iterations, equal to the number of timesteps in the data.

7.4.1 Limitations

More Complex Data We also probed the limits of our current setup by applying IODINE to
the Textured MNIST dataset [120] and to ImageNet, testing how it would deal with texture-
segmentation and more complex real-world data (Figure 7.18). Trained on ImageNet data,
IODINE segmented mostly by color rather than by objects. This behavior is not unexpected:
ImageNet was never designed as a dataset for unsupervised learning, and likely lacks the richness
in poses, lighting, sizes, positions and distance variations required to learn object segmentations
from scratch. Trained on Textured MNIST, IODINE was able to model the background, but mostly
failed to capture the foreground digits. Together these results point to the importance of color as a
strong cue for segmentation, especially early in the iterative refinement process. As demonstrated
by our results on grayscale CLEVR (Figure 7.18c) though, color is not a requirement.

Beyond more diverse training data, we want to highlight three other promising directions to
scale IODINE to richer real-world data. First, an extension to sequential data is attractive, because
temporal data naturally contains rich statistics about objectness both in the movement itself, and
in the smooth variations of object factors. IODINE can readily be applied to sequences feeding
a new frame at every iteration, and we have done some preliminary experiments described
in Section 7.3.7. As a nice side-effect, the model automatically maintains the object to slot
association, turning it into an unsupervised object tracker.

Physical interaction between objects is another common occurrence in sequential data.
IODINE in its current form has limited abilities for modelling dynamics. Even statically placed
objects commonly adhere to certain relations between each other, such as cars on streets. IODINE
currently assumes objects to be placed independently of each other; relaxing this assumption
will be important for modelling physical interactions. Yet there is also a need to balance this
with the independence assumption required to split objects, since the system should still be able
to segment out a car floating in space. Thus we believe integration with some form of graph
network to support relations while preserving slot symmetry is another promising direction.

Finally, object representations have to be useful, such as for supervised tasks, or for agents



122 7.4 Discussion and Future Work

in reinforcement learning setups. Whatever the task, it should provide important feedback
about which objects matter and which are irrelevant. Complex visual scenes can contain an
extremely large number of potential objects (think of sand grains on a beach), which can make
it unfeasible to represent them all simultaneously. Allowing task-related signals to bias selection,
for what and how to decompose, may enable scaling up unsupervised scene representation
learning approaches like IODINE to arbitrarily complex scenes.

Memory It is worth pointing out that memory consumption presents an important limiting
factor to scaling IODINE. To allow training by backpropagation, each slot and each refinement
step require the storage of activations for an entire decoder and refinement network. Memory
consumption during training thus scales linearly with both K and T . This is particularly restrictive
for sequential data, where the number of steps can grow very large. In our experiments from
Section 7.3.7, we found that 16 timesteps with a batch-size of 4 was the upper limit on GPUs
with 12GB of RAM. Of course this also depends on the size of the input and the size of the
network. Note also that at inference time there is no need to keep the activations of previous
timesteps, so the dependence on T can be eliminated there.

Conceptual So far we’ve assumed the groups to represent independent objects or events.
However, this assumption is unrealistic in many cases. Assuming only conditional independence
would be considerably more reasonable, and could be implemented using a separate set of global
latents that is used by all decoder slots. Alternatively, a relational mechanism could be added
like in van Steenkiste et al. [385] to directly model interdependencies between objects.

The TAG framework assumes just one level of (global) groups, which does not reflect the
hierarchical structure of the world. Therefore, another important future extension is to rather
use a hierarchy of local groupings, by using our model as a component of a bigger system. This
could be achieved by collapsing the groups of a Tagger network by summing them together at
some hidden layer. That way this abstract representation could serve as input for another tagger
with new groupings at this higher level. We hypothesize that a hierarchical Tagger could also
represent relations between objects, because they are simply the couplings that remain from the
assumption of independent objects.”

Movement is a strong segmentation cue and a simple temporal extensions of the TAG
framework could be to allow information to flow forward in time between higher layers, not just
via the inputs. Iteration would then occur in time alongside the changing inputs. We believe
that these extensions will make it possible to scale the approach to video.



Chapter 8

Conclusion

Humans naturally and effortlessly structure their perception and mental models in terms of
discrete entities (objects). By decomposing the world in this way, humans are able to recombine
their existing knowledge in a virtually unbounded number ways to understand unfamiliar
situations, make novel inferences, or generate new behavior. This compositionality is at the
heart of the impressive productivity and generalization ability of human reasoning, which
reaches far beyond their direct experience. The ability to efficiently form, represent and relate
modular object representations is thus critical to achieving human level generalization. In this
work we have argued, that standard neural networks fail in this regard due to an inherent
inability to dynamically and flexibly combine distributed information about one object, while
simultaneously keeping it separate from the other information. This binding problem, we claim,
is the underlying cause for many of the weaknesses of current neural networks, including their
need for large amounts of labeled data, their lack of systematic generalization, and their fragility
under distributional shift. We believe that addressing this problem is among the most important
open challenges on the path to general artificial intelligence.

We have analyzed the binding problem of connectionism in terms of three aspects: Firstly, the
ability to simultaneously represent multiple object representations in a common format, without
interference between them (the representation problem). This aspect was first recognized
in neuroscience, and has sparked decades of fascinating research and debate about potential
mechanisms by which the brain might accomplish this. Fortunately, in the context of artificial
neural networks, the space of possible solutions is less restricted, and we reviewed several
promising approaches for addressing this problem. Secondly, the capacity to dynamically relate
and compose modular object representations to build structured models for inference, prediction
and behavior that generalize in predictable and systematic ways (composition problem). This
aspect is strongly related to variable binding and the discussion of productivity and systematicity
in linguistics. The expressiveness of compositional systems was recognized and leveraged
already early on by symbol-based AI systems. Early symbol-based AI systems, already recognized
and leveraged the expressiveness of compositional systems. However, their symbols had to be
designed by humans, and the way in which they refer to and arise from reality still remains
largely mysterious. The final aspect of the binding problem is thus the process of forming
grounded object representations from raw unstructured inputs (segregation problem). Humans
possess a remarkable ability to organize the unstructured stream of sensory information into
meaningful entities, and even infants as young as four months old, have been shown to already

123



124

posess at least a rudimentary understanding of objects. Working towards a solution to this
problem in the context of neural networks has been the main focus of this thesis, and in our
estimation, it is the most neglected and most important of the three aspects.

Perceptual grouping requires a proper treatment of the dynamic and hierarchical nature
of objects. This implies a vast number of potentially useful objects, only a subset of which
is relevant in any given situation. Furthermore, the most useful decomposition in terms of
objects (and the associated level of abstraction) depends not only on the task, but also on the
abstractions, relations, and general problem solving capabilities available to the entire system.
Therefore, we believe that the ability to segregate must largely be learned in an unsupervised
fashion, which is still often overlooked in the current literature.

In this thesis we have taken several steps towards this goal: We have proposed to understand
“objects” from a functional (pragmatic) perspective, and argued that their defining quality of an
object is that it is modular, i.e. it is self-contained and reusable independent of context. This
information-based notion of objects is independent from any human supervision, and defined
purely in terms of the (statistical) structure of the data and the predictive capacities of the
model. This approach has allowed us to formalize the process of perceptual grouping as a form
of clustering, using approximated mutual information as a distance metric (Chapter 4). Starting
from an initial proof-of-concept, we were able to develop several frameworks for unsupervised
perceptual grouping with neural networks based on generalized expectation maximization Chap-
ter 5, denoising autoencoders Chapter 6, and iterative variational inference Chapter 7. Using
simple synthetic datasets, we have demonstrated that it is possible to learn object representa-
tions and segmentation without supervision, that these representations help with prediction and
semi-supervised tasks, and that they help with interpretability.

Perceptual grouping in neural networks is far from solved, and many important problems
remain open. The main challenge is in scaling and improving methods to tackle real-world
data, rather than the simplified synthetic datasets which we have used here. We expect that the
extension from static images to video will be instrumental in this regard, because motion plays
such a pivotal role in the perception of objects. Further challenging extensions of perceptual
grouping include, the support of hierarchy, temporal grouping into events, other modalities such
as audio or tactile, the support of abstract groupings towards categorization and concepts, and
the integration with language models, to name but a few. Another open problem is to integrate
segregation, representation, and composition into a single system in a way that resolves these
dependencies (eg. via top-down feedback). Addressing these open problems may pave the way
for an integrated system that can learn to dynamically construct structured models for prediction,
inference, and behavior in a way that generalizes similarly to humans.



Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y. and Zheng, X. [2016]. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems, arXiv:1603.04467 [cs] .

[2] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. and Susstrunk, S. [2012]. SLIC
superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal.
Mach. Intell. 34(11): 2274–2282.

[3] Ackley, D. H., Hinton, G. E. and Sejnowski, T. J. [1985]. A learning algorithm for Boltzmann
machines, Cogn. Sci. 9: 147–169.

[4] Alexe, B., Deselaers, T. and Ferrari, V. [2010]. What is an object?, Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference On, ieeexplore.ieee.org, pp. 73–80.

[5] Almeida, L. B. [1987]. A learning rule for asynchronous perceptrons with feedback in
a combinatorial environment, Proceedings, 1st First International Conference on Neural
Networks, Vol. 2, ci.nii.ac.jp, pp. 609–618.

[6] Ancona, M., Ceolini, E., Öztireli, C. and Gross, M. [2017]. A unified view of gradient-based
attribution methods for deep neural networks, NIPS Workshop on Interpreting, Explaining
and Visualizing Deep Learning-Now What?(NIPS 2017), ETH Zurich.

[7] Andreas, J. [2019]. Measuring compositionality in representation learning, arXiv preprint
arXiv:1902.07181 .

[8] Arandjelović, R., Zisserman, A., Luo, Y., Hu, C., Lu, X. and Yu, X. [2019]. Object discovery
with a copy-pasting GAN, arXiv preprint arXiv:1905.11369 .

[9] Arbeláez, P., Maire, M., Fowlkes, C. C. and Malik, J. [2011]. Contour detection and hierar-
chical image segmentation, IEEE transactions on pattern analysis and machine intelligence
33(5): 898–916.

[10] Attneave, F. [1971]. Multistability in perception, Scientific American 225(6): 62–71.

[11] Atwood, J. and Towsley, D. [2016]. Diffusion-convolutional neural networks, Advances in
Neural Information Processing Systems, pp. 1993–2001.

125



126 Bibliography

[12] Atzmon, Y., Berant, J., Kezami, V., Globerson, A. and Chechik, G. [2016]. Learning to
generalize to new compositions in image understanding.

[13] Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. and Ionescu, C. [2016]. Using fast weights
to attend to the recent past, in D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon and
R. Garnett (eds), Advances in Neural Information Processing Systems 29, Curran Associates,
Inc., pp. 4331–4339.

[14] Ba, J., Kiros, J. R. and Hinton, G. E. [2016]. Layer normalization, arXiv:1607. 06450 [cs,
stat] .

[15] Ba, J., Mnih, V. and Kavukcuoglu, K. [2014]. Multiple object recognition with visual
attention.

[16] Bahdanau, D., Cho, K. and Bengio, Y. [2014]. Neural machine translation by jointly
learning to align and translate, arXiv preprint arXiv:1409.0473 .

[17] Bai, M. and Urtasun, R. [2017]. Deep watershed transform for instance segmentation,
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–
5229.

[18] BamBini, V., Chesi, C. and Moro, A. [2012]. A conversation with Noam Chomsky: New
insights on old foundations, Phenomenology and Mind (3): 166–178.

[19] Barlow, H. B., Kaushal, T. P. and Mitchison, G. J. [1989]. Finding minimum entropy codes,
Neural Comput. 1(3): 412–423.

[20] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, H. F., Ballard,
A., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K., Nash, C., Langston, V., Dyer, C., Heess, N.,
Wierstra, D., Kohli, P., Botvinick, M., Vinyals, O., Li, Y. and Pascanu, R. [2018]. Relational
inductive biases, deep learning, and graph networks, arXiv preprint arXiv:1806.01261 .

[21] Battaglia, P. W., Pascanu, R., Lai, M. and Rezende, D. J. [2016]. Interaction networks for
learning about objects, relations and physics, Advances in Neural Information Processing
Systems, pp. 4502–4510.

[22] Batty, C. [2014]. Olfactory objects, Perception and its modalities pp. 222–224.

[23] Bear, D., Fan, C., Mrowca, D., Li, Y., Alter, S., Nayebi, A., Schwartz, J., Fei-Fei, L. F., Wu, J.,
Tenenbaum, J. and Yamins, D. L. [2020]. Learning physical graph representations from
visual scenes, Advances in Neural Information Processing Systems 33.

[24] Beck, A. and Teboulle, M. [2009]. A fast iterative shrinkage-thresholding algorithm with
application to wavelet-based image deblurring, Acoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference On, IEEE, pp. 693–696.

[25] Becker, S. and Hinton, G. E. [1992]. Self-organizing neural network that discovers surfaces
in random-dot stereograms, Nature 355(6356): 161–163.

[26] Behnke, S. [1999]. Hebbian learning and competition in the neural abstraction pyramid,
Neural Networks, 1999. IJCNN’99. International Joint Conference On, Vol. 2, IEEE, pp. 1356–
1361.



127 Bibliography

[27] Behnke, S. [2001]. Learning iterative image reconstruction in the neural abstraction
pyramid, Int. J. Comput. Intell. Appl. 1(04): 427–438.

[28] Behnke, S. [2003]. Learning iterative binarization using hierarchical recurrent networks,
Cell 2: 2i.

[29] Bengio, Y., Courville, A. and Vincent, P. [2013]. Representation learning: A review and new
perspectives, IEEE transactions on pattern analysis and machine intelligence 35(8): 1798–
1828.

[30] Bengio, Y., Laufer, E., Alain, G. and Yosinski, J. [2014]. Deep generative stochastic networks
trainable by backprop, pp. 226–234.

[31] Bengio, Y., Yao, L., Alain, G. and Vincent, P. [2013]. Generalized denoising auto-encoders
as generative models, Advances in Neural Information Processing Systems, pp. 899–907.

[32] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi, D., Fischer,
Q., Hashme, S. and Hesse, C. [2019]. Dota 2 with large scale deep reinforcement learning,
arXiv preprint arXiv:1912.06680 .

[33] Bianchini, M. and Scarselli, F. [2014]. On the complexity of neural network classifiers: A
comparison between shallow and deep architectures, IEEE Trans Neural Netw Learn Syst
25(8): 1553–1565.

[34] Bishop, C. [2006]. Pattern Recognition and Machine Learning, Information Science and
Statistics, Springer-Verlag, New York.

[35] Blekas, K., Likas, A., Galatsanos, N. P. and Lagaris, I. E. [2005]. A spatially constrained
mixture model for image segmentation, IEEE Trans. Neural Netw. 16(2): 494–498.

[36] Bobrow, D. G. [1964]. Natural language input for a computer problem solving system.

[37] Bowers, J. S., Vankov, I. I., Damian, M. F. and Davis, C. J. [2014]. Neural networks
learn highly selective representations in order to overcome the superposition catastrophe,
Psychological Review 121(2): 248–261.

[38] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne, S. and Zhang, Q. [2018]. JAX: Composable
transformations of Python+NumPy programs.

[39] Brendel, W. and Bethge, M. [2019]. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet, arXiv preprint arXiv:1904.00760 .

[40] Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A. and Vandergheynst, P. [2016]. Geometric
deep learning: Going beyond Euclidean data.

[41] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G. and Askell, A. [2020]. Language models are few-shot learners, arXiv
preprint arXiv:2005.14165 .

[42] Bruce, N. D. B. and Tsotsos, J. K. [2006]. Saliency based on information maximization,
in Y. Weiss, B. Schölkopf and J. C. Platt (eds), Advances in Neural Information Processing
Systems 18, MIT Press, pp. 155–162.



128 Bibliography

[43] Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I., Botvinick, M. and Lerchner,
A. [2019]. MONet: Unsupervised scene decomposition and representation, arXiv preprint
arXiv:1901.11390 .

[44] Butko, N. J. and Movellan, J. R. [2009]. Optimal scanning for faster object detection, IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2751–2758.

[45] Campbell, M., Hoane Jr, A. J. and Hsu, F.-h. [2002]. Deep blue, Artificial intelligence
134(1-2): 57–83.

[46] Cantwell-Smith, B. [1998]. On the Origin of Objects, A Bradford Book, 1st paperback ed
edn, MIT Press, Cambridge, Mass.

[47] Cao, C., Liu, X., Yang, Y., Yu, Y., Wang, J., Wang, Z., Huang, Y., Wang, L., Huang, C., Xu, W.,
Ramanan, D. and Huang, T. S. [2015]. Look and think twice: Capturing top-down visual
attention with feedback convolutional neural networks, pp. 2956–2964.

[48] Caporale, N. and Dan, Y. [2008]. Spike timing–dependent plasticity: A Hebbian learning
rule, Annual Review of Neuroscience 31: 25–46.

[49] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A. and Zagoruyko, S. [2020].
End-to-end object detection with transformers, arXiv preprint arXiv:2005.12872 .

[50] Chang, M. B., Ullman, T., Torralba, A. and Tenenbaum, J. B. [2016]. A compositional
object-based approach to learning physical dynamics, arXiv preprint arXiv:1612.00341 .

[51] Chater, N. [1996]. Reconciling simplicity and likelihood principles in perceptual organiza-
tion., Psychological review 103(3): 566–581.

[52] Chen, C., Deng, F. and Ahn, S. [2020]. Object-centric representation and rendering of 3D
scenes, arXiv preprint arXiv:2006.06130 .

[53] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I. and Abbeel, P. [2016].
InfoGAN: Interpretable representation learning by information maximizing generative
adversarial nets, arXiv:1606.03657 [cs, stat] .

[54] Cherry, E. C. [1953]. Some experiments on the recognition of speech, with one and with
two ears, The Journal of the acoustical society of America 25(5): 975–979.

[55] Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. and Schmidhuber, J. [2011]. Flexible,
high performance convolutional neural networks for image classification, International
Joint Conference on Artificial Intelligence, pp. 1237–1242.

[56] Cireşan, D. C., Meier, U., Masci, J. and Schmidhuber, J. [2012]. Multi-column deep neural
network for traffic sign classification, Neural Networks 32: 333–338.

[57] Clevert, D.-A., Unterthiner, T. and Hochreiter, S. [2015]. Fast and accurate deep network
learning by exponential linear units (ELUs).

[58] Crawford, E. and Pineau, J. [2019]. Spatially invariant unsupervised object detection with
convolutional neural networks, Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, pp. 3412–3420.



129 Bibliography

[59] Csordás, R. and Schmidhuber, J. [2019]. Improved addressing in the differentiable neural
computer.

[60] Csordás, R., van Steenkiste, S. and Schmidhuber, J. [2020]. Are neural nets modu-
lar? Inspecting functional modularity through differentiable weight masks, arxiv preprint
arXiv:2010.02066 .

[61] Cucchiara, R., Grana, C., Piccardi, M. and Prati, A. [2003]. Detecting moving objects,
ghosts, and shadows in video streams, IEEE transactions on pattern analysis and machine
intelligence 25(10): 1337–1342.

[62] Dai, J., He, K. and Sun, J. [2016]. Instance-aware semantic segmentation via multi-
task network cascades, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3150–3158.

[63] Das, S., Giles, C. L. and Sun, G.-Z. [1992]. Learning context-free grammars: Capabilities
and limitations of a recurrent neural network with an external stack memory, Proceedings
of The Fourteenth Annual Conference of Cognitive Science Society. Indiana University, p. 14.

[64] Daubechies, I., Defrise, M. and De Mol, C. [2004]. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. 57(11): 1413–
1457.

[65] Deco, G. [2001]. Biased competition mechanisms for visual attention in a multimodular
neurodynamical system, Emergent Neural Computational Architectures Based on Neuroscience,
Springer, pp. 114–126.

[66] Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J. and Kaiser, Ł. [2019]. Universal
transformers, International Conference on Learning Representations.

[67] Del Pero, L., Bowdish, J., Fried, D., Kermgard, B., Hartley, E. and Barnard, K. [2012].
Bayesian geometric modeling of indoor scenes, 2012 IEEE Conference on Computer Vision
and Pattern Recognition, ieeexplore.ieee.org, pp. 2719–2726.

[68] Del Pero, L., Bowdish, J., Kermgard, B., Hartley, E. and Barnard, K. [2013]. Understanding
Bayesian rooms using composite 3d object models, IEEE Conference on Computer Vision
and Pattern Recognition, cv-foundation.org, pp. 153–160.

[69] Dempster, A. P., Laird, N. M. and Rubin, D. B. [1977]. Maximum likelihood from incomplete
data via the EM algorithm, J. R. Stat. Soc. Series B Stat. Methodol. pp. 1–38.

[70] Deng, Z., Nawhal, M., Meng, L. and Mori, G. [2019]. Continuous graph flow, arXiv preprint
arXiv:1908.02436 .

[71] Devereux, B. J., Tyler, L. K., Geertzen, J. and Randall, B. [2014]. The centre for speech,
language and the brain (CSLB) concept property norms, Behavior Research Methods
46(4): 1119–1127.

[72] Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. [2019]. BERT: Pre-training of deep
bidirectional transformers for language understanding, arXiv:1810.04805 [cs] .



130 Bibliography

[73] Doetsch, P., Kozielski, M. and Ney, H. [2014]. Fast and robust training of recurrent neural
networks for offline handwriting recognition, 14th International Conference on Frontiers in
Handwriting Recognition.

[74] Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K.
and Darrell, T. [2014]. Long-term recurrent convolutional networks for visual recognition
and description, arXiv:1411. 4389 [cs] .

[75] Doumas, L. A. A., Hummel, J. E. and Sandhofer, C. M. [2008]. A theory of the discovery
and predication of relational concepts., Psychological Review 115(1): 1–43.

[76] Doumas, L. A. A., Puebla, G., Martin, A. E. and Hummel, J. E. [2019]. Relation learn-
ing in a neurocomputational architecture supports cross-domain transfer, arXiv preprint
arXiv:1910.05065 .

[77] Dreyfus, S. [1973]. The computational solution of optimal control problems with time lag,
IEEE Transactions on Automatic Control 18(4): 383–385.

[78] Duchi, J., Hazan, E. and Singer, Y. [2011]. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization, p. 39.

[79] Eastwood, C. and Williams, C. K. I. [2018]. A framework for the quantitative evaluation of
disentangled representations.

[80] Ehrhardt, S., Groth, O., Monszpart, A., Engelcke, M., Posner, I., Mitra, N. and Vedaldi, A.
[2020]. RELATE: Physically plausible multi-object scene synthesis using structured latent
spaces, Advances in Neural Information Processing Systems 33.

[81] Elman, J. L. [1988]. Finding structure in time, Cogn. Sci. 211(CRL Technical Report
8801): 1–28.

[82] Endres, I. and Hoiem, D. [2010]. Category independent object proposals, European
Conference on Computer Vision, pp. 575–588.

[83] Engelcke, M., Kosiorek, A. R., Jones, O. P. and Posner, I. [2019]. Genesis: Generative
scene inference and sampling with object-centric latent representations, arXiv preprint
arXiv:1907.13052 .

[84] Eslami, S. M. A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Kavukcuoglu, K. and Hinton,
G. E. [2016]. Attend, infer, repeat: Fast scene understanding with generative models,
Advances In Neural Information Processing Systems, pp. 3225–3233.

[85] Fan, Y., Qian, Y., Xie, F. and Soong, F. K. [2014]. TTS synthesis with bidirectional LSTM
based recurrent neural networks, Proc. Interspeech.

[86] Feldman, J. [2013]. The neural binding problem(s), Cognitive neurodynamics 7(1): 1–11.

[87] Felzenszwalb, P. F. and Huttenlocher, D. P. [2004]. Efficient graph-based image segmentation,
Int. J. Comput. Vis. 59(2): 167–181.

[88] Fodor, J. A. [1975]. The Language of Thought, Vol. 5, Harvard university press.



131 Bibliography

[89] Fodor, J. A. and Pylyshyn, Z. W. [1988]. Connectionism and cognitive architecture: A
critical analysis, Cognition 28(1-2): 3–71.

[90] Földiák, P. [1990]. Forming sparse representations by local anti-Hebbian learning, Biol.
Cybern. 64(2): 165–170.

[91] Friedman, N. and Russell, S. [1997]. Image segmentation in video sequences: A prob-
abilistic approach, UAI’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
pp. 175–181.

[92] Fuchs, F. B., Kosiorek, A. R., Sun, L., Jones, O. P. and Posner, I. [2019]. End-to-end recurrent
multi-object tracking and trajectory prediction with relational reasoning, arXiv preprint
arXiv:1907.12887 .

[93] Fukuda, K., Awh, E. and Vogel, E. K. [2010]. Discrete capacity limits in visual working
memory, Current opinion in neurobiology 20(2): 177–182.

[94] Gallinari, P., LeCun, Y., Thiria, S. and Fogelman-Soulie, F. [1987]. Mémoires associatives
distribuées: Une comparaison (Distributed associative memories: A comparison), Cesta-
Afcet.

[95] Gamrian, S. and Goldberg, Y. [2019]. Transfer learning for related reinforcement learning
tasks via image-to-image translation, arXiv:1806.07377 [cs] .

[96] Gao, D. and Vasconcelos, N. [2005]. Discriminant saliency for visual recognition from
cluttered scenes, in L. K. Saul, Y. Weiss and L. Bottou (eds), Advances in Neural Information
Processing Systems 17, MIT Press, pp. 481–488.

[97] Gauthier, I. and Tarr, M. J. [1997]. Becoming a "Greeble" expert: Exploring mechanisms
for face recognition, Vision Res. 37(12): 1673–1682.

[98] Gayler, R. W. [1998]. Multiplicative binding, representation operators & analogy, Cogprints
.

[99] Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A. and Brendel, W.
[2018]. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness, arXiv preprint arXiv:1811.12231 .

[100] Gers, F. A. and Schmidhuber, J. [2000]. Recurrent nets that time and count, Neural Net-
works, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference
On, Vol. 3, IEEE, pp. 189–194.

[101] Gers, F. A., Schmidhuber, J. and Cummins, F. [1999]. Learning to forget: Continual
prediction with LSTM, Artificial Neural Networks, 1999. ICANN 99. Ninth International
Conference on (Conf. Publ. No. 470), Vol. 2, pp. 850–855.

[102] Giles, C. L., Sun, G.-Z., Chen, H.-H., Lee, Y.-C. and Chen, D. [1990]. Higher order
recurrent networks and grammatical inference, Advances in Neural Information Processing
Systems, pp. 380–387.

[103] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. and Dahl, G. E. [2017]. Neural
message passing for quantum chemistry, International Conference on Machine Learning,
Vol. 70, International Convention Centre, Sydney, Australia, pp. 1263–1272.



132 Bibliography

[104] Girshick, R. B. [2015]. Fast R-CNN, CoRR abs/1504.08083.

[105] Girshick, R. B., Donahue, J., Darrell, T. and Malik, J. [2014]. Rich feature hierarchies for
accurate object detection and semantic segmentation, IEEE Conference on Computer Vision
and Pattern Recognition, cv-foundation.org, pp. 580–587.

[106] Glauber, R. J. [1963]. Time-Dependent Statistics of the Ising Model, Journal of Mathe-
matical Physics 4(2): 294–307.

[107] Goodfellow, I., Bengio, Y. and Courville, A. [2016]. Deep Learning, MIT press.

[108] Goodfellow, I., Bulatov, Y., Ibarz, J., Arnoud, S. and Shet, V. [2013]. Multi-digit number
recognition from street view imagery using deep convolutional neural networks, arXiv
preprint arXiv:1312.6082 .

[109] Gopalakrishnan, A., van Steenkiste, S. and Schmidhuber, J. [2020]. Unsupervised object
keypoint learning using local spatial predictability, arXiv preprint arXiv:2011.12930 .

[110] Gori, M., Monfardini, G. and Scarselli, F. [2005]. A new model for learning in graph
domains, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.,
Vol. 2, ieeexplore.ieee.org, pp. 729–734 vol. 2.

[111] Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio, Y. and Schölkopf, B.
[2019]. Recurrent independent mechanisms, arXiv preprint arXiv:1909.10893 .

[112] Graves, A. [2013]. Generating sequences with recurrent neural networks, arXiv preprint
arXiv:1308. 0850 .

[113] Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H. and Schmidhuber, J.
[2009]. A novel connectionist system for unconstrained handwriting recognition, IEEE
Trans. Pattern Anal. Mach. Intell. 31(5): 855–868.

[114] Graves, A., Mohamed, A. and Hinton, G. E. [2013]. Speech recognition with deep
recurrent neural networks, ICASSP, pp. 6645–6649.

[115] Graves, A. and Schmidhuber, J. [2005]. Framewise phoneme classification with bidirec-
tional LSTM networks, Neural Networks, 2005. IJCNN’05. Proceedings. 2005 IEEE Interna-
tional Joint Conference On, Vol. 4, IEEE, pp. 2047–2052.

[116] Graves, A., Wayne, G. and Danihelka, I. [2014]. Neural Turing machines, arXiv preprint
arXiv:1410.5401 .

[117] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A.,
Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M.,
Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P., Kavukcuoglu, K.
and Hassabis, D. [2016]. Hybrid computing using a neural network with dynamic external
memory, Nature 538(7626): 471–476.

[118] Green, E. J. [2018]. A theory of perceptual objects, Philos. Phenomenol. Res. 106: 7345.

[119] Greff, K., Kaufman, R. L., Kabra, R., Watters, N., Burgess, C. P., Zoran, D., Matthey, L.,
Botvinick, M. and Lerchner, A. [2019]. Multi-object representation learning with iterative
variational inference, ICML.



133 Bibliography

[120] Greff, K., Rasmus, A., Berglund, M., Hao, T. H., Valpola, H. and Schmidhuber, J. [2016].
Tagger: Deep unsupervised perceptual grouping, in D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon and R. Garnett (eds), NeurIPS, pp. 4484–4492.

[121] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R. and Schmidhuber, J. [2015].
LSTM: A search space odyssey, IEEE TNNLS 28(10): 2222–2232.

[122] Greff, K., Srivastava, R. K. and Schmidhuber, J. [2015]. Binding via reconstruction
clustering, arXiv:1511.06418 [cs] .

[123] Greff, K., van Steenkiste, S. and Schmidhuber, J. [2017]. Neural expectation maximization,
in I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett
(eds), NeurIPS, Curran Associates, Inc., pp. 6694–6704.

[124] Greff, K., van Steenkiste, S. and Schmidhuber, J. [2020]. On the binding problem in
artificial neural networks, arXiv preprint arXiv:2012.05208 .

[125] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. and Wierstra, D. [2015]. DRAW:
A recurrent neural network for image generation, International Conference on Machine
Learning, Lille, France, pp. 1462–1471.

[126] Gregor, K. and LeCun, Y. [2010]. Learning fast approximations of sparse coding, Proceed-
ings of the 27th International Conference on Machine Learning (ICML-10), pp. 399–406.

[127] Grunwald, P. and Vitanyi, P. [2004]. Shannon Information and Kolmogorov Complexity,
arXiv:cs/0410002 .

[128] Guerrero-Colón, J. A., Simoncelli, E. P. and Portilla, J. [2008]. Image denoising using mix-
tures of Gaussian scale mixtures, Image Processing, 2008. ICIP 2008. 15th IEEE International
Conference On, IEEE, pp. 565–568.

[129] Håastad, J. [1987]. Computational limitations of small-depth circuits.

[130] Hamilton, W., Ying, Z. and Leskovec, J. [2017]. Inductive representation learning on
large graphs, Advances in Neural Information Processing Systems, pp. 1024–1034.

[131] Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J. B. and Battaglia,
P. W. [2018]. Relational inductive bias for physical construction in humans and machines,
arXiv preprint arXiv:1806.01203 .

[132] Harnad, S. [1990]. The symbol grounding problem, Physica D 42(1): 335–346.

[133] Harzallah, H., Jurie, F. and Schmid, C. [2009]. Combining efficient object localization
and image classification, IEEE International Conference on Computer Vision, pp. 237–244.

[134] Hatfield, G. and Epstein, W. [1985]. The status of the minimum principle in the theoretical
analysis of visual perception, Psychological Bulletin 97(2): 155–186.

[135] Hayes, S. C., Barnes-Holmes, D. and Roche, B. (eds) [2001]. Relational Frame Theory: A
Post-Skinnerian Account of Human Language and Cognition, Springer US.

[136] He, K., Gkioxari, G., Dollár, P. and Girshick, R. [2017]. Mask R-CNN, Proceedings of the
IEEE International Conference on Computer Vision, pp. 2961–2969.



134 Bibliography

[137] Henaff, M., Bruna, J. and LeCun, Y. [2015]. Deep convolutional networks on graph-
structured data, arXiv preprint arXiv:1506.05163 .

[138] Henaff, M., Weston, J., Szlam, A., Bordes, A. and LeCun, Y. [2016]. Tracking the world
state with recurrent entity networks.

[139] Hershey, J. R., Roux, J. L. and Weninger, F. [2014]. Deep unfolding: Model-based
inspiration of novel deep architectures, arXiv preprint arXiv:1409.2574 .

[140] Higgins, I., Amos, D., Pfau, D., Racanière, S., Matthey, L., Rezende, D. J. and Ler-
chner, A. [2018]. Towards a definition of disentangled representations, arXiv preprint
arXiv:1812.02230 .

[141] Higgins, I., Matthey, L., Pal, A., Burgess, C. P., Glorot, X., Botvinick, M., Mohamed, S. and
Lerchner, A. [2017]. Beta-VAE: Learning basic visual concepts with a constrained variational
framework, In Proceedings of the International Conference on Learning Representations (ICLR).

[142] Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell,
C. and Lerchner, A. [2017]. DARLA: Improving zero-shot transfer in reinforcement learning,
ICML .

[143] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P. and Sainath, T. N. [2012]. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups, IEEE Signal processing
magazine 29(6): 82–97.

[144] Hinton, G. E. [1984]. Distributed representations, Technical report.

[145] Hinton, G. E., Krizhevsky, A. and Wang, S. D. [2011]. Transforming auto-encoders,
International Conference on Artificial Neural Networks, Springer Berlin Heidelberg, pp. 44–
51.

[146] Hinton, G. E., Sabour, S. and Frosst, N. [2018]. Matrix capsules with EM routing.

[147] Hochberg, J. and McAlister, E. [1953]. A quantitative approach to figural "goodness",
Journal of Experimental Psychology 46(5): 361–364.

[148] Hochreiter, S. [1991]. Untersuchungen zu dynamischen neuronalen Netzen, Masters Thesis,
Technische Universität München, München.

[149] Hochreiter, S. and Schmidhuber, J. [1995]. Long short term memory, Technical report,
Technische Universität München, München.

[150] Hochreiter, S. and Schmidhuber, J. [1997]. Long short-term memory, Neural Comput.
9(8): 1735–1780.

[151] Hochreiter, S., Younger, A. S. and Conwell, P. R. [2001]. Learning to learn using gradient
descent, Proc. International Conference on Artificial Neural Networks, Springer, pp. 87–94.

[152] Hoiem, D., Efros, A. A. and Hebert, M. [2011]. Recovering occlusion boundaries from an
image, International Journal of Computer Vision 91(3): 328–346.



135 Bibliography

[153] Hopfield, J. J. [1982]. Neural networks and physical systems with emergent collective
computational abilities, Proceedings of the national academy of sciences 79(8): 2554–2558.

[154] Hornik, K., Stinchcombe, M., White, H. et al. [1989]. Multilayer feedforward networks
are universal approximators., Neural networks 2(5): 359–366.

[155] Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J. and Schölkopf, B. [2009]. Nonlinear
causal discovery with additive noise models, Advances in Neural Information Processing
Systems, pp. 689–696.

[156] Huang, J. and Murphy, K. [2015]. Efficient inference in occlusion-aware generative
models of images, arXiv preprint arXiv:1511.06362 .

[157] Hubert, L. and Arabie, P. [1985]. Comparing partitions, J. Classification 2(1): 193–218.

[158] Hudson, D. A. and Manning, C. D. [2018]. Compositional attention networks for machine
reasoning, arXiv [cs.AI] .

[159] Hughes, S. and Barnes-Holmes, D. [2016]. Relational frame theory: The basic account,
The Wiley Handbook of Contextual Behavioral Science p. 129.

[160] Hummel, J. E. and Holyoak, K. J. [1993]. Distributing structure over time, Behavioral
and Brain Sciences 16(3): 464–464.

[161] Hummel, J. E., Holyoak, K. J., Green, C., Doumas, L. A. A., Devnich, D., Kittur, A. and
Kalar, D. J. [2004]. A solution to the binding problem for compositional connectionism,
Compositional Connectionism in Cognitive Science: Papers from the AAAI Fall Symposium, Ed.
SD Levy & R. Gayler, vvvvw.aaai.org, pp. 31–34.

[162] Hupkes, D., Dankers, V., Mul, M. and Bruni, E. [2019]. The compositionality of neural
networks: Integrating symbolism and connectionism, arXiv preprint arXiv:1908.08351 .

[163] Hyvärinen, A. and Oja, E. [2000]. Independent component analysis: Algorithms and
applications, Neural networks 13(4-5): 411–430.

[164] Hyvärinen, A. and Perkiö, J. [2006]. Learning to segment any random vector, The 2006
IEEE International Joint Conference on Neural Network Proceedings, IEEE, pp. 4167–4172.

[165] Ioffe, S. and Szegedy, C. [2015]. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, arXiv preprint arXiv:1502.03167 .

[166] Isola, P., Zoran, D., Krishnan, D. and Adelson, E. H. [2014]. Crisp boundary detection
using pointwise mutual information, European Conference on Computer Vision, pp. 799–814.

[167] Isola, P., Zoran, D., Krishnan, D. and Adelson, E. H. [2015]. Learning visual groups from
co-occurrences in space and time, arXiv:1511. 06811 [cs] .

[168] Itti, L., Koch, C. and Niebur, E. [1998]. A model of saliency-based visual attention for
rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20(11): 1254–1259.

[169] Iuzzolino, M., Singer, Y. and Mozer, M. C. [2019]. Convolutional bipartite attractor
networks, arXiv preprint arXiv:1906.03504 .



136 Bibliography

[170] Ivakhnenko, A. G. [1968]. The group method of data of handling; a rival of the method
of stochastic approximation, Soviet Automatic Control 13: 43–55.

[171] Ivakhnenko, A. and Valentin, G. [1966]. Cybernetic predicting devices, Technical report.

[172] Jaderberg, M., Simonyan, K., Zisserman, A. and Kavukcuoglu, K. [2015]. Spatial trans-
former networks, in C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and R. Garnett (eds),
Advances in Neural Information Processing Systems 28, Curran Associates, Inc., pp. 2017–
2025.

[173] Jain, A. K., Dubes, R. C. et al. [1988]. Algorithms for Clustering Data, Vol. 6, Prentice hall
Englewood Cliffs, NJ.

[174] Jakab, T., Gupta, A., Bilen, H. and Vedaldi, A. [2018]. Unsupervised learning of object
landmarks through conditional image generation, Advances in Neural Information Processing
Systems, pp. 4016–4027.

[175] Janner, M., Levine, S., Freeman, W. T., Tenenbaum, J. B., Finn, C. and Wu, J. [2018].
Reasoning about physical interactions with object-oriented prediction and planning.

[176] Jepson, A. D. and Black, M. J. [1993]. Mixture models for optical flow computation, IEEE
Conference on Computer Vision and Pattern Recognition, pp. 760–761.

[177] Ji, X., Henriques, J. F. and Vedaldi, A. [2018]. Invariant information distillation for
unsupervised image segmentation and clustering.

[178] Jiang, J. and Ahn, S. [2020]. Generative Neurosymbolic Machines, Advances in Neural
Information Processing Systems, Vol. 33.

[179] Jiang, J., Janghorbani, S., de Melo, G. and Ahn, S. [2020]. SCALOR: Generative world
models with scalable object representations, p. 22.

[180] Jo, J. and Bengio, Y. [2017]. Measuring the tendency of CNNs to learn surface statistical
regularities.

[181] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick, C. L. and Girshick,
R. B. [2017]. CLEVR: A diagnostic dataset for compositional language and elementary
visual reasoning, Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference
On, openaccess.thecvf.com, pp. 1988–1997.

[182] Johnson-Laird, P. N. [2010]. Mental models and human reasoning, Proceedings of the
National Academy of Sciences 107(43): 18243–18250.

[183] Jojic, N. and Frey, B. J. [2001]. Learning flexible sprites in video layers, Computer Vision
and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference On, Vol. 1, IEEE, pp. I–I.

[184] Jordan, M. I. and Jacobs, R. A. [1990]. Learning to control an unstable system with
forward modeling, Advances in Neural Information Processing Systems, pp. 324–331.

[185] Joulin, A. and Mikolov, T. [2015]. Inferring algorithmic patterns with stack-augmented
recurrent nets, Advances in Neural Information Processing Systems, pp. 190–198.



137 Bibliography

[186] Kaiser, \. and Sutskever, I. [2015]. Neural gpus learn algorithms, arXiv preprint
arXiv:1511.08228 .

[187] Kanerva, P. [1996]. Binary spatter-coding of ordered K-tuples, Artificial Neural Networks
— ICANN 96, Springer Berlin Heidelberg, pp. 869–873.

[188] Kannan, A., Winn, J. and Rother, C. [2006]. Clustering appearance and shape by learning
jigsaws, Advances in Neural Information Processing Systems, pp. 657–664.

[189] Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou, X., Dorfman, N.,
Sidor, S., Phoenix, D. S. and George, D. [2017]. Schema networks: Zero-shot transfer
with a generative causal model of intuitive physics, International Conference on Machine
Learning, Sydney, NSW, Australia, pp. 1809–1818.

[190] Kappers, A. M. L. and Tiest, W. M. B. [2015]. Tactile and haptic perceptual organization,
The Oxford handbook of perceptual organization pp. 621–638.

[191] Karpathy, A., Johnson, J. and Fei-Fei, L. [2015]. Visualizing and understanding recurrent
networks, arXiv:1506.02078 [cs] .

[192] Kelley, H. J. [1960]. Gradient theory of optimal flight paths, Ars Journal 30(10): 947–954.

[193] Kelly, M. A., Blostein, D. and Mewhort, D. J. K. [2013]. Encoding structure in holographic
reduced representations, Can. J. Exp. Psychol. 67(2): 79–93.

[194] Kemp, C. and Tenenbaum, J. B. [2008]. The discovery of structural form, Proceedings of
the National Academy of Sciences 105(31): 10687–10692.

[195] Kempter, R., Gerstner, W. and Van Hemmen, J. L. [1999]. Hebbian learning and spiking
neurons, Physical Review E 59(4): 4498.

[196] Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S., Momchev, N.,
Sinopalnikov, D., Stafiniak, L., Tihon, T., Tsarkov, D., Wang, X., van Zee, M. and Bousquet,
O. [2020]. Measuring compositional generalization: A comprehensive method on realistic
data, p. 38.

[197] Kim, H. and Mnih, A. [2018]. Disentangling by factorising.

[198] Kingma, D. P. and Ba, J. [2015]. Adam: A method for stochastic optimization, CBLS.

[199] Kingma, D. P. and Welling, M. [2013]. Auto-encoding variational Bayes, arXiv preprint
arXiv:1312.6114 .

[200] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M. and Zemel, R. [2018]. Neural relational
inference for interacting systems, arXiv preprint arXiv:1802.04687 .

[201] Kipf, T. N. and Welling, M. [2016]. Semi-supervised classification with graph convolutional
networks, arXiv preprint arXiv:1609.02907 .

[202] Koffka, K. [1935]. Principles of Gestalt Psychology, Vol. 44, Routledge.

[203] Kohonen, T. [1989]. Self-Organization and Associative Memory, third edn, Springer.



138 Bibliography

[204] Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S. and Houlsby, N. [2020].
Big Transfer (BiT): General Visual Representation Learning, in A. Vedaldi, H. Bischof, T. Brox
and J.-M. Frahm (eds), Computer Vision – ECCV 2020, Vol. 12350, Springer International
Publishing, Cham, pp. 491–507.

[205] Kolmogorov, A. N. [1965]. Three approaches to the quantitative definition ofinformation’,
Problems of information transmission 1(1): 1–7.

[206] Kong, S. and Fowlkes, C. C. [2018]. Recurrent pixel embedding for instance grouping,
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9018–9028.

[207] Korzybski, A. [1958]. Science and Sanity: An Introduction to Non-Aristotelian Systems and
General Semantics, Institute of GS.

[208] Kosiorek, A., Bewley, A. and Posner, I. [2017]. Hierarchical attentive recurrent tracking,
Advances in Neural Information Processing Systems, pp. 3053–3061.

[209] Kosiorek, A., Kim, H., Teh, Y. W. and Posner, I. [2018]. Sequential attend, infer, repeat:
Generative modelling of moving objects, Advances in Neural Information Processing Systems,
pp. 8606–8616.

[210] Kosiorek, A., Sabour, S., Teh, Y. W. and Hinton, G. E. [2019]. Stacked capsule autoencoders,
Advances in Neural Information Processing Systems, pp. 15486–15496.

[211] Krizhevsky, A., Sutskever, I. and Hinton, G. E. [2012]. ImageNet classification with
deep convolutional neural networks, in F. Pereira, C. J. C. Burges, L. Bottou and K. Q.
Weinberger (eds), Advances in Neural Information Processing Systems 25, Curran Associates,
Inc., pp. 1097–1105.

[212] Kulkarni, T. D., Gupta, A., Ionescu, C., Borgeaud, S., Reynolds, M., Zisserman, A. and
Mnih, V. [2019]. Unsupervised learning of object keypoints for perception and control,
Advances in Neural Information Processing Systems, pp. 10723–10733.

[213] Kulkarni, T. D., Kohli, P., Tenenbaum, J. B. and Mansinghka, V. K. [2015]. Picture: A
probabilistic programming language for scene perception, IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4390–4399.

[214] Kurach, K., Andrychowicz, M. and Sutskever, I. [2016]. Neural random-access machines,
International Conference on Learning Representations.

[215] Kusner, M. J., Paige, B. and Hernández-Lobato, J. M. [2017]. Grammar variational
autoencoder, arXiv:1703.01925 [stat] .

[216] Lake, B. and Baroni, M. [2018]. Generalization without systematicity: On the compo-
sitional skills of sequence-to-sequence recurrent networks, International Conference on
Machine Learning, pp. 2873–2882.

[217] Lake, B. M. and Baroni, M. [2017]. Still not systematic after all these years: On the
compositional skills of sequence-to-sequence recurrent networks.

[218] Lake, B. M., Salakhutdinov, R. R. and Tenenbaum, J. B. [2015]. Human-level concept
learning through probabilistic program induction, Science 350(6266): 1332–1338.



139 Bibliography

[219] Lake, B. M., Ullman, T. D., Tenenbaum, J. B. and Gershman, S. J. [2017]. Building
machines that learn and think like people, Behavioral and brain sciences 40: e253.

[220] Lampert, C. H., Blaschko, M. B. and Hofmann, T. [2008]. Beyond sliding windows: Object
localization by efficient subwindow search, 2008 IEEE Conference on Computer Vision and
Pattern Recognition, ieeexplore.ieee.org, pp. 1–8.

[221] Lample, G. and Charton, F. [2019]. Deep learning for symbolic mathematics, arXiv
preprint arXiv:1912.01412 .

[222] Lang, K. J., Waibel, A. H. and Hinton, G. E. [1990]. A time-delay neural network
architecture for isolated word recognition, Neural Networks 3(1): 23–43.

[223] Le Roux, N., Heess, N., Shotton, J. and Winn, J. [2011]. Learning a generative model of
images by factoring appearance and shape, Neural Comput. 23(3): 593–650.

[224] LeCun, Y. [1987]. Modèles Connexionnistes de l’apprentissage, Ph.D. Thesis, Paris 6.

[225] Lee, J., Lee, I. and Kang, J. [2019]. Self-attention graph pooling, arXiv:1904.08082 [cs,
stat] .

[226] Lee, T.-W. and Lewicki, M. S. [2002]. Unsupervised image classification, segmentation, and
enhancement using ICA mixture models, IEEE Transactions on Image Processing 11(3): 270–
279.

[227] Li, Y., Lin, T., Yi, K., Bear, D., Yamins, D., Wu, J., Tenenbaum, J. and Torralba, A. [2020].
Visual grounding of learned physical models, International Conference on Machine Learning,
pp. 5927–5936.

[228] Li, Y., Tarlow, D., Brockschmidt, M. and Zemel, R. [2016]. Gated graph sequence neural
networks, In Proceedings of the International Conference on Learning Representations (ICLR).

[229] Liao, Q. and Poggio, T. [2016]. Bridging the gaps between residual learning, recurrent
neural networks and visual cortex, arXiv:1604.03640 [cs] .

[230] Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., Urtasun, R. and Zemel,
R. [2019]. Efficient graph generation with graph recurrent attention networks, Advances
in Neural Information Processing Systems, pp. 4257–4267.

[231] Lin, Z., Wu, Y.-F., Peri, S. V., Sun, W., Singh, G., Deng, F., Jiang, J. and Ahn, S. [2020].
SPACE: Unsupervised object-oriented scene representation via spatial attention and de-
composition, arXiv:2001.02407 [cs, eess, stat] .

[232] Linnainmaa, S. [1970]. The Representation of the Cumulative Rounding Error of an
Algorithm as a Taylor Expansion of the Local Rounding Errors, PhD thesis, Univ. Helsinki.

[233] Litany, O., Bronstein, A., Bronstein, M. and Makadia, A. [2018]. Deformable shape
completion with graph convolutional autoencoders, IEEE Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, pp. 1886–1895.

[234] Liu, J., Kumar, A., Ba, J., Kiros, J. and Swersky, K. [2019]. Graph normalizing flows,
in H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox and
R. Garnett (eds), Advances in Neural Information Processing Systems 32, Curran Associates,
Inc., pp. 13578–13588.



140 Bibliography

[235] Locatello, F., Bauer, S., Lucic, M., Rätsch, G., Gelly, S., Schölkopf, B. and Bachem, O.
[2018]. Challenging common assumptions in the unsupervised learning of disentangled
representations.

[236] Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G., Uszkoreit, J.,
Dosovitskiy, A. and Kipf, T. [2020]. Object-centric learning with slot attention, Advances in
Neural Information Processing Systems, Vol. 33.

[237] Lopez-Paz, D., Muandet, K., Schölkopf, B. and Tolstikhin, I. [2015]. Towards a learning
theory of cause-effect inference, International Conference on Machine Learning, pp. 1452–
1461.

[238] Loula, J., Baroni, M. and Lake, B. M. [2018]. Rearranging the familiar: Testing composi-
tional generalization in recurrent networks, arXiv preprint arXiv:1807.07545 .

[239] Lun, Z., Zou, C., Huang, H., Kalogerakis, E., Tan, P., Cani, M.-P. and Zhang, H. [2017].
Learning to group discrete graphical patterns, ACM Trans. Graph. 36(6): 225:1–225:11.

[240] Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O. and Zaremba, W. [2014]. Addressing the
rare word problem in neural machine translation, arXiv preprint arXiv:1410. 8206 .

[241] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I. and Frey, B. J. [2015]. Adversarial
autoencoders.

[242] Malik, J., Belongie, S., Leung, T. and Shi, J. [2001]. Contour and texture analysis for
image segmentation, International journal of computer vision 43(1): 7–27.

[243] Mansinghka, V. K., Kulkarni, T. D., Perov, Y. N. and Tenenbaum, J. B. [2013]. Approximate
Bayesian image interpretation using generative probabilistic graphics programs, in C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger (eds), Advances in
Neural Information Processing Systems 26, Curran Associates, Inc., pp. 1520–1528.

[244] Marchi, E., Ferroni, G., Eyben, F., Gabrielli, L., Squartini, S. and Schuller, B. [2014]. Multi-
resolution linear prediction based features for audio onset detection with bidirectional
LSTM neural networks, 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2164–2168.

[245] Marcus, G. F. [2003]. The Algebraic Mind: Integrating Connectionism and Cognitive Science,
MIT press.

[246] Marino, J., Cvitkovic, M. and Yue, Y. [2018]. A general method for amortizing variational
filtering, in S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Gar-
nett (eds), Advances in Neural Information Processing Systems 31, Curran Associates, Inc.,
pp. 7868–7879.

[247] Marino, J., Yue, Y. and Mandt, S. [2018]. Iterative amortized inference, in J. Dy and
A. Krause (eds), Proceedings of Machine Learning Research, Vol. 80, PMLR, Stockholmsmäs-
san, Stockholm Sweden, pp. 3403–3412.

[248] Martin, D. R., Fowlkes, C. C. and Malik, J. [2004]. Learning to detect natural image
boundaries using local brightness, color, and texture cues, IEEE Trans. Pattern Anal. Mach.
Intell. 26(5): 530–549.



141 Bibliography

[249] Matthey, L., Higgins, I., Hassabis, D. and Lerchner, A. [2017]. dSprites: Disentanglement
testing sprites dataset, https://github.com/deepmind/dsprites-dataset/.

[250] McCulloch, W. S. and Pitts, W. [1943]. A logical calculus of the ideas immanent in nervous
activity, The bulletin of mathematical biophysics 5(4): 115–133.

[251] Mcgurk, H. and Macdonald, J. [1976]. Hearing lips and seeing voices, Nature
264(5588): 746.

[252] McMahan, H. B. and Streeter, M. [2010]. Adaptive Bound Optimization for Online Convex
Optimization, arXiv:1002.4908 [cs] .

[253] Meier, M., Haschke, R. and Ritter, H. J. [2014]. Perceptual grouping through competition
in coupled oscillator networks, Neurocomputing 141: 76–83.

[254] Michotte, A., Thinès, G. and Crabbé, G. [1991]. Amodal completion of perceptual
structures, Michotte’s experimental phenomenology of perception pp. 140–167.

[255] Mikolov, T., Chen, K., Corrado, G. and Dean, J. [2013]. Efficient estimation of word
representations in vector space, arXiv:1301.3781 [cs] .

[256] Miller, G. A. [1956]. The magical number seven, plus or minus two: Some limits on our
capacity for processing information., Psychological review 63(2): 81.

[257] Milner, P. M. [1974]. A model for visual shape recognition, Psychol. Rev. 81(6): 521.

[258] Minderer, M., Sun, C., Villegas, R., Cole, F., Murphy, K. P. and Lee, H. [2019]. Unsupervised
learning of object structure and dynamics from videos, Advances in Neural Information
Processing Systems, pp. 92–102.

[259] Mitchell, T. M. [1997]. Machine Learning, McGraw-Hill Series in Computer Science,
international ed., [reprint.] edn, McGraw-Hill, New York, NY.

[260] Mnih, V., Heess, N., Graves, A. and Kavukcuoglu, K. [2014]. Recurrent models of visual
attention, Advances in Neural Information Processing Systems, Vol. 27, pp. 2204–2212.

[261] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K. and Ostrovski, G. [2015]. Human-level control through
deep reinforcement learning, Nature 518(7540): 529–533.

[262] Mo, S., Cho, M. and Shin, J. [2018]. Instagan: Instance-aware image-to-image translation,
arXiv preprint arXiv:1812.10889 .

[263] Mobahi, H., Rao, S. R., Yang, A. Y., Sastry, S. S. and Ma, Y. [2011]. Segmentation of
natural images by texture and boundary compression, International journal of computer
vision 95(1): 86–98.

[264] Mordatch, I. [2019]. Concept learning with energy-based models, in A. K. Goel, C. M.
Seifert and C. Freksa (eds), Proceedings of the 41th Annual Meeting of the Cognitive Science
Society, CogSci 2019: Creativity + Cognition + Computation, Montreal, Canada, July 24-27,
2019, cognitivesciencesociety.org, pp. 58–59.



142 Bibliography

[265] Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D. and Jimenez Rezende, D. [2019].
Towards interpretable reinforcement learning using attention augmented agents, in H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox and R. Gar-
nett (eds), Advances in Neural Information Processing Systems 32, Curran Associates, Inc.,
pp. 12350–12359.

[266] Mozer, M. C. [1989]. Types and tokens in visual letter perception, Journal of experimental
psychology: Human perception and performance 15(2): 287–303.

[267] Mozer, M. C. and Das, S. [1993]. A connectionist symbol manipulator that discovers
the structure of context-free languages, Advances in Neural Information Processing Systems,
pp. 863–870.

[268] Mozer, M. C., Kazakov, D. and Lindsey, R. V. [2018]. State-denoised recurrent neural
networks, cs.colorado.edu .

[269] Mozer, M. C., Zemel, R. S. and Behrmann, M. [1992]. Learning to segment images using
dynamic feature binding, in J. E. Moody, S. J. Hanson and R. P. Lippmann (eds), Advances
in Neural Information Processing Systems 4, Morgan-Kaufmann, pp. 436–443.

[270] Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L., Tenenbaum, J. B. and Yamins, D.
L. K. [2018]. Flexible neural representation for physics prediction.

[271] Munkhdalai, T. and Yu, H. [2017]. Neural semantic encoders, Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, Vol. 1, pp. 397–407.

[272] Nanbo, L., Eastwood, C. and Fisher, R. [2020]. Learning object-centric representations of
multi-object scenes from multiple views, Advances in Neural Information Processing Systems
33.

[273] Nash, C., Eslami, S. M. A., Burgess, C. P., Higgins, I., Zoran, D., Weber, T. and Battaglia,
P. W. [2017]. The multi-entity variational autoencoder, Neural Information Processing
Systems (NeurIPS) Workshop on Learning Disentangled Representations: from Perception to
Control .

[274] Neto, C. R. and Fontanari, J. F. [1999]. Multivalley structure of attractor neural networks,
Journal of Physics A: Mathematical and General 30(22): 7945.

[275] Newell, A., Shaw, J. C. and Simon, H. A. [1959]. Report on a general problem solving
program, IFIP Congress, Vol. 256, Pittsburgh, PA, p. 64.

[276] Newell, A. and Simon, H. A. [1981]. Computer science as empirical inquiry: Symbols
and search, Mind design p. 4l.

[277] Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.-L. and Mitra, N. [2020]. BlockGAN:
Learning 3D object-aware scene representations from unlabelled images, arXiv preprint
arXiv:2002.08988 .

[278] Nickel, M. and Kiela, D. [2017]. Poincaré embeddings for learning hierarchical represen-
tations, Advances in Neural Information Processing Systems, Vol. 30, pp. 6338–6347.



143 Bibliography

[279] Niemeyer, M. and Geiger, A. [2020]. GIRAFFE: Representing scenes as compositional
generative neural feature fields, arXiv preprint arXiv:2011.12100 .

[280] Nissim, M., van Noord, R. and van der Goot, R. [2019]. Fair is better than sensational:
Man is to doctor as woman is to doctor, arXiv:1905.09866 [cs] .

[281] Nowicki, D. and Siegelmann, H. T. [2010]. Flexible kernel memory, PLoS One
5(6): e10955.

[282] Odena, A., Dumoulin, V. and Olah, C. [2016]. Deconvolution and checkerboard artifacts,
Distill .

[283] Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M. and Carter, S. [2020]. Zoom
in: An introduction to circuits, Distill 5(3): e00024.001.

[284] Olah, C., Mordvintsev, A. and Schubert, L. [2017]. Feature visualization, Distill 2(11): e7.

[285] Olshausen, B. A. and Field, D. J. [1996]. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images, Nature 381(6583): 607–609.

[286] Orbán, G., Fiser, J., Aslin, R. N. and Lengyel, M. [2008]. Bayesian learning of visual
chunks by human observers, Proc. Natl. Acad. Sci. U. S. A. 105(7): 2745–2750.

[287] O’Reilly, R. C. and Busby, R. S. [2002]. Generalizable relational binding from coarse-coded
distributed representations, Adv. Neural Inf. Process. Syst. 1: 75–82.

[288] Paletta, L., Fritz, G. and Seifert, C. [2005]. Q-learning of sequential attention for visual
object recognition from informative local descriptors, International Conference on Machine
Learning, New York, NY, USA, pp. 649–656.

[289] Palm, R. B., Paquet, U. and Winther, O. [2018]. Recurrent relational networks,
arXiv:1711.08028 [cs] .

[290] Pascanu, R., Mikolov, T. and Bengio, Y. [2012]. Understanding the exploding gradient
problem, CoRR, abs/1211. 5063 .

[291] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani,
A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chintala, S. [2019]. PyTorch: An
imperative style, high-performance deep learning library, in H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché-Buc, E. Fox and R. Garnett (eds), Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., pp. 8024–8035.

[292] Pathak, D., Girshick, R. B., Dollár, P., Darrell, T. and Hariharan, B. [2016]. Learning
features by watching objects move, arXiv:1612.06370 [cs, stat] .

[293] Pearl, J. [2019]. The seven tools of causal inference, with reflections on machine learning,
Communications of the ACM 62(3): 54–60.

[294] Peters, J., Bühlmann, P. and Meinshausen, N. [2016]. Causal inference by using invariant
prediction: Identification and confidence intervals, Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 78(5): 947–1012.



144 Bibliography

[295] Peters, J., Janzing, D. and Schölkopf, B. [2017]. Elements of Causal Inference: Foundations
and Learning Algorithms, MIT press.

[296] Pham, V., Bluche, T., Kermorvant, C. and Louradour, J. [2013]. Dropout improves recurrent
neural networks for handwriting recognition, arXiv:1312. 4569 [cs] .

[297] Pineda, F. J. [1987]. Generalization of back-propagation to recurrent neural networks,
Physical review letters 59(19): 2229–2232.

[298] Plate, T. A. [1995]. Holographic reduced representations, IEEE Trans. Neural Netw.
6(3): 623–641.

[299] Pollack, J. B. [1990]. Recursive distributed representations, Artificial Intelligence 46(1-
2): 77–105.

[300] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D. and Sutskever, I. [2019]. Language
models are unsupervised multitask learners, OpenAI Blog 1(8): 9.

[301] Rand, W. M. [1971]. Objective criteria for the evaluation of clustering methods, J. Am.
Stat. Assoc. 66(336): 846–850.

[302] Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J. and Black, M. J. [2019].
Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical
flow and motion segmentation, IEEE Conference on Computer Vision and Pattern Recognition,
pp. 12240–12249.

[303] Rao, A. R. and Cecchi, G. A. [2010]. An objective function utilizing complex sparsity for
efficient segmentation in multi-layer oscillatory networks, Int. J. Intell. Comput. Cybern.
3(2): 173–206.

[304] Rao, A. R., Cecchi, G. A., Peck, C. C. and Kozloski, J. R. [2008]. Unsupervised segmentation
with dynamical units, IEEE Trans. Neural Netw. 19(1): 168–182.

[305] Rasmus, A., Berglund, M., Honkala, M., Valpola, H. and Raiko, T. [2015]. Semi-supervised
learning with ladder networks, NIPS, pp. 3532–3540.

[306] Redmon, J. and Farhadi, A. [2018]. YOLOv3: An incremental improvement, CoRR
abs/1804.02767.

[307] Reed, S. and de Freitas, N. [2015]. Neural programmer-interpreters, International
Conference on Learning Representations.

[308] Reichert, D. P., Seriès, P. and Storkey, A. J. [2011]. A hierarchical generative model of
recurrent object-based attention in the visual cortex, ICANN, Springer, pp. 18–25.

[309] Reichert, D. P. and Serre, T. [2013]. Neuronal synchrony in complex-valued deep networks,
arXiv:1312. 6115 [cs, q-bio, stat] .

[310] Ren, M. and Zemel, R. S. [2017]. End-to-end instance segmentation with recurrent
attention, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE,
Honolulu, HI, pp. 293–301.



145 Bibliography

[311] Ren, S., He, K., Girshick, R. B. and Sun, J. [2015]. Faster R-CNN: Towards real-time
object detection with region proposal networks, in C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama and R. Garnett (eds), Advances in Neural Information Processing Systems 28,
Curran Associates, Inc., pp. 91–99.

[312] Ren, X. and Malik, J. [2003]. Learning a classification model for segmentation, Proceedings
Ninth IEEE International Conference on Computer Vision, ieeexplore.ieee.org, pp. 10–17
vol.1.

[313] Rezende, D. J., Mohamed, S. and Wierstra, D. [2014]. Stochastic backpropagation
and approximate inference in deep generative models, in E. P. Xing and T. Jebara (eds),
Proceedings of Machine Learning Research, Vol. 32, PMLR, Bejing, China, pp. 1278–1286.

[314] Ridgeway, K. and Mozer, M. C. [2018]. Learning deep disentangled embeddings with the
F-statistic loss.

[315] Riedmiller, M. and Braun, H. [1993]. A direct adaptive method for faster backpropagation
learning: The RPROP algorithm, IEEE International Conference on Neural Networks, pp. 586–
591 vol.1.

[316] Robinson, A. J. and Fallside, F. [1987]. The utility driven dynamic error propagation
network, Technical report, Cambridge University Engineering Department.

[317] Romaszko, L., Williams, C. K. I., Moreno, P. and Kohli, P. [2017]. Vision-as-inverse-
graphics: Obtaining a rich 3D explanation of a scene from a single image, Proceedings of
the IEEE International Conference on Computer Vision Workshops, pp. 851–859.

[318] Rosenblatt, F. [1961]. Principles of neurodynamics. perceptrons and the theory of brain
mechanisms, Technical report, DTIC Document.

[319] Roskies, A. L. [1999]. The binding problem, Neuron 24(1): 7–9, 111–25.

[320] Ross, D. A. and Zemel, R. S. [2006]. Learning parts-based representations of data, J.
Mach. Learn. Res. 7: 2369–2397.

[321] Ross, S. M. [2014]. A First Course in Probability, ninth edition edn, Pearson, Boston.

[322] Rowley, H. A., Baluja, S. and Kanade, T. [1998]. Neural network-based face detection,
IEEE Transactions on pattern analysis and machine intelligence 20(1): 23–38.

[323] Rozell, C. J., Johnson, D. H., Baraniuk, R. G. and Olshausen, B. A. [2008]. Sparse coding
via thresholding and local competition in neural circuits, Neural computation 20(10): 2526–
2563.

[324] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. [1986]. Learning internal repre-
sentations by error propagation, in D. E. Rumelhart and J. L. McClelland (eds), Parallel
Distributed Processing, Vol. 1, MIT Press, pp. 318–362.

[325] Rumelhart, D. E., McClelland, J. L. and Research Group, P. [1987]. Parallel Distributed
Processing, MIT press Cambridge, MA, USA.



146 Bibliography

[326] Sabour, S., Frosst, N. and Hinton, G. E. [2017]. Dynamic routing between capsules, in
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Gar-
nett (eds), Advances in Neural Information Processing Systems 30, Curran Associates, Inc.,
pp. 3856–3866.

[327] Sak, H., Senior, A. and Beaufays, F. [2014]. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling, Proceedings of the Annual Conference
of International Speech Communication Association (INTERSPEECH).

[328] Sak, H., Vinyals, O., Heigold, G., Senior, A., McDermott, E., Monga, R. and Mao, M.
[2014]. Sequence discriminative distributed training of long short-term memory recurrent
neural networks, Interspeech.

[329] Samadani, R. [1995]. A finite mixtures algorithm for finding proportions in SAR images,
IEEE Trans. Image Process. 4(8): 1182–1186.

[330] Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski, M., Weber, T., Wierstra, D.,
Vinyals, O., Pascanu, R. and Lillicrap, T. [2018]. Relational recurrent neural networks,
Advances in Neural Information Processing Systems, pp. 7299–7310.

[331] Santoro, A., Hill, F., Barrett, D. G. T., Morcos, A. and Lillicrap, T. [2018]. Measuring
abstract reasoning in neural networks, in J. Dy and A. Krause (eds), Proceedings of Machine
Learning Research, Vol. 80, PMLR, Stockholmsmässan, Stockholm Sweden, pp. 4477–4486.

[332] Santoro, A., Raposo, D., Barrett, D. G. T., Malinowski, M., Pascanu, R., Battaglia, P. W. and
Lillicrap, T. [2017]. A simple neural network module for relational reasoning, in I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett (eds),
Advances in Neural Information Processing Systems 30, Curran Associates, Inc., pp. 4967–
4976.

[333] Saund, E. [1995]. A multiple cause mixture model for unsupervised learning, Neural
Comput. 7(1): 51–71.

[334] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. and Monfardini, G. [2009]. The
graph neural network model, IEEE Transactions on Neural Networks 20(1): 61–80.

[335] Schlag, I. and Schmidhuber, J. [2018]. Learning to reason with third order tensor products,
Advances in Neural Information Processing Systems, pp. 9981–9993.

[336] Schlag, I., Smolensky, P., Fernandez, R., Jojic, N., Schmidhuber, J. and Gao, J. [2019].
Enhancing the transformer with explicit relational encoding for math problem solving,
arXiv preprint arXiv:1910.06611 .

[337] Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I. and Welling, M. [2018].
Modeling relational data with graph convolutional networks, in A. Gangemi, R. Navigli,
M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai and M. Alam (eds), The Semantic
Web, Lecture Notes in Computer Science, Cham, pp. 593–607.

[338] Schmidhuber, J. [1992a]. Learning factorial codes by predictability minimization, Neural
Comput. 4(6): 863–879.



147 Bibliography

[339] Schmidhuber, J. [1992b]. Learning to control fast-weight memories: An alternative to
dynamic recurrent networks, Neural Comput. 4(1): 131–139.

[340] Schmidhuber, J. [1993a]. Reducing the ratio between learning complexity and number
of time varying variables in fully recurrent nets, ICANN’93, Springer, pp. 460–463.

[341] Schmidhuber, J. [1993b]. A "self-referential" weight matrix, ICANN’93, Springer, pp. 446–
450.

[342] Schmidhuber, J. [2015]. Deep learning in neural networks: An overview, Neural Netw.
61: 85–117.

[343] Schmidhuber, J. and Huber, R. [1991]. Learning to generate artificial fovea trajectories
for target detection, Int. J. Neural Syst. 2(01n02): 125–134.

[344] Schölkopf, B. [2019]. Causality for machine learning, arXiv preprint arXiv:1911.10500 .

[345] Schwartz, J.-L., Grimault, N., Hupé, J.-M., Moore, B. C. J. and Pressnitzer, D. [2012]. Mul-
tistability in perception: Binding sensory modalities, an overview, Philosophical Transactions
of the Royal Society B 367(1591): 896–905.

[346] Sherrington, D. and Kirkpatrick, S. [1975]. Solvable Model of a Spin-Glass, Physical
Review Letters 35(26): 1792–1796.

[347] Shi, J. and Malik, J. [2000]. Normalized cuts and image segmentation, IEEE Transactions
on pattern analysis and machine intelligence 22(8): 888–905.

[348] Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C. and Cohen,
S. N. [1975]. Computer-based consultations in clinical therapeutics: Explanation and
rule acquisition capabilities of the MYCIN system, Computers and biomedical research
8(4): 303–320.

[349] Siegelmann, H. T. and Sontag, D. [1991]. Turing computability with neural nets, Applied
Mathematics Letters 4(6): 77–80.

[350] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre,
L., Kumaran, D. and Graepel, T. [2017]. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm, arXiv preprint arXiv:1712.01815 .

[351] Singer, W. [1999]. Neuronal synchrony: A versatile code for the definition of relations?,
Neuron 24(1): 49–65, 111–25.

[352] Singer, W. [2001]. Consciousness and the binding problem, Annals of the New York
Academy of Sciences 929(1): 123–146.

[353] Singer, W. [2009]. Distributed processing and temporal codes in neuronal networks,
Cognitive neurodynamics 3(3): 189–196.

[354] Singer, W. [2018]. Neuronal oscillations: Unavoidable and useful?, European Journal of
Neuroscience 48(7): 2389–2398.

[355] Smolensky, P. [1987]. Analysis of distributed representation of constituent structure in
connectionist systems, Neural Information Processing Systems, pp. 730–739.



148 Bibliography

[356] Smolensky, P. [1988]. On the proper treatment of connectionism, Behav. Brain Sci.
11(1): 1–23.

[357] Smolensky, P. [1990]. Tensor product variable binding and the representation of symbolic
structures in connectionist systems, Artificial intelligence 46(1): 159–216.

[358] Sohn, K., Zhou, G., Lee, C. and Lee, H. [2013]. Learning and selecting features jointly with
point-wise gated Boltzmann machines, Proceedings of The 30th International Conference on
Machine Learning, pp. 217–225.

[359] Sollow, E. [1987]. Assessing the maintainability of XCQN-in-RIME: Coping with the
problems of a VERY large rule-base.

[360] Solomonoff, R. [1964]. A formal theory of inductive inference i, Information and Control
7: 1–22.

[361] Sønderby, S. K. and Winther, O. [2014]. Protein secondary structure prediction with long
short term memory networks, arXiv:1412. 7828 [cs, q-bio] .

[362] Sperduti, A. and Starita, A. [1997]. Supervised neural networks for the classification of
structures, IEEE Transactions on Neural Networks 8(3): 714–735.

[363] Sprechmann, P., Bronstein, A. M. and Sapiro, G. [2015]. Learning efficient sparse and
low rank models, IEEE Trans. Pattern Anal. Mach. Intell. 37(9): 1821–1833.

[364] Springenberg, J. T., Dosovitskiy, A., Brox, T. and Riedmiller, M. [2014]. Striving for
simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806 .

[365] Srikumar, V., Kundu, G. and Roth, D. [2012]. On amortizing inference cost for structured
prediction, EMNLP-CoNLL ’12, Association for Computational Linguistics, Stroudsburg, PA,
USA, pp. 1114–1124.

[366] Stanić, A., van Steenkiste, S. and Schmidhuber, J. [2020]. Hierarchical relational inference,
Proceedings of the AAAI Conference on Artificial Intelligence.

[367] Stanley, K. O. and Miikkulainen, R. [2004]. Evolving a roving eye for go, Citeseer .

[368] Stephen, C. [1956]. Kleene. Representation of events in nerve nets and finite automata,
Automata studies .

[369] Sukhbaatar, S., szlam, a., Weston, J. and Fergus, R. [2015]. End-to-end memory networks,
in C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama and R. Garnett (eds), Advances in
Neural Information Processing Systems 28, Curran Associates, Inc., pp. 2440–2448.

[370] Sun, C., Karlsson, P., Wu, J., Tenenbaum, J. B. and Murphy, K. [2019]. Stochastic prediction
of multi-agent interactions from partial observations, arXiv preprint arXiv:1902.09641 .

[371] Sun, R. [1992]. On variable binding in connectionist networks, Connection Science
4(2): 93–124.

[372] Sundararajan, M., Taly, A. and Yan, Q. [2017]. Axiomatic attribution for deep networks,
arXiv:1703.01365 [cs] .



149 Bibliography

[373] Tai, K. S., Socher, R. and Manning, C. D. [2015]. Improved semantic representations
from tree-structured long short-term memory networks, arXiv preprint arXiv:1503.00075 .

[374] Tang, Y., Salakhutdinov, R. R. and Hinton, G. E. [2012]. Robust Boltzmann machines for
recognition and denoising, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference On, IEEE, pp. 2264–2271.

[375] Tang, Y., Srivastava, N. and Salakhutdinov, R. R. [2014]. Learning generative models
with visual attention, in Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K. Q.
Weinberger (eds), Advances in Neural Information Processing Systems 27, Curran Associates,
Inc., pp. 1808–1816.

[376] The Theano Development Team [2016]. Theano: A python framework for fast computa-
tion of mathematical expressions, arXiv:1605.02688 [cs] .

[377] Treisman, A. [1996]. The binding problem, Current opinion in neurobiology 6(2): 171–178.

[378] Treisman, A. [1999]. Solutions to the binding problem: Progress through controversy
and convergence, Neuron 24(1): 105–10, 111–25.

[379] Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B. and Gershman, S. J. [2017]. Human
learning in Atari, 2017 AAAI Spring Symposium Series.

[380] Tu, Z., Chen, X., Yuille, A. L. and Zhu, S.-C. [2005]. Image parsing: Unifying segmentation,
detection, and recognition, Int. J. Comput. Vis. 63(2): 113–140.

[381] Tu, Z. and Zhu, S.-C. [2002]. Image segmentation by data-driven Markov chain Monte
Carlo, IEEE Trans. Pattern Anal. Mach. Intell. 24(5): 657–673.

[382] Uhlhaas, P., Pipa, G., Lima, B., Melloni, L., Neuenschwander, S., Nikolić, D. and Singer,
W. [2009]. Neural synchrony in cortical networks: History, concept and current status,
Frontiers in integrative neuroscience 3: 17.

[383] Uijlings, J. R. R., van de Sande, K. E. A., Gevers, T. and Smeulders, A. W. M. [2013].
Selective search for object recognition, International journal of computer vision 104(2): 154–
171.

[384] van der Maaten, L. and Hinton, G. E. [2008]. Visualizing data using t-SNE, Journal of
machine learning research 9(Nov): 2579–2605.

[385] van Steenkiste, S., Chang, M., Greff, K. and Schmidhuber, J. [2018]. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions, ICLR.

[386] van Steenkiste, S., Kurach, K., Schmidhuber, J. and Gelly, S. [2019]. Investigating object
compositionality in generative adversarial networks, arXiv:1810.10340 [cs] .

[387] van Steenkiste, S., Locatello, F., Schmidhuber, J. and Bachem, O. [2019]. Are disentangled
representations helpful for abstract visual reasoning?, arXiv:1905.12506 [cs, stat] .

[388] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and
Polosukhin, I. [2017]. Attention is all you need, Advances in Neural Information Processing
Systems, pp. 5998–6008.



150 Bibliography

[389] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P. and Bengio, Y. [2018]. Graph
Attention Networks, International Conference on Learning Representations.

[390] Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthankar, R. and Fragkiadaki, K. [2017].
SfM-net: Learning of structure and motion from video, arXiv:1704.07804 [cs] .

[391] Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. [2008]. Extracting and com-
posing robust features with denoising autoencoders, Proceedings of the 25th International
Conference on Machine Learning, ACM, pp. 1096–1103.

[392] Vinh, N. X., Epps, J. and Bailey, J. [2010]. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance, J. Mach. Learn.
Res. 11: 2837–2854.

[393] Vinyals, O., Fortunato, M. and Jaitly, N. [2015]. Pointer networks, in C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama and R. Garnett (eds), Advances in Neural Information
Processing Systems 28, Curran Associates, Inc., pp. 2692–2700.

[394] Viola, P. and Jones, M. J. [2001]. Rapid object detection using a boosted cascade of simple
features, IEEE Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. I–511–I–
518 vol.1.

[395] von der Malsburg, C. [1981]. The correlation theory of brain function, MPI .

[396] Von Der Malsburg, C. [1986]. Am I thinking assemblies?, Brain Theory, Springer, pp. 161–
176.

[397] von der Malsburg, C. [1995]. Binding in models of perception and brain function, Curr.
Opin. Neurobiol. 5(4): 520–526.

[398] von Kügelgen, J., Ustyuzhaninov, I., Gehler, P., Bethge, M. and Schölkopf, B. [2020].
Towards causal generative scene models via competition of experts, International Conference
on Learning Representations (ICLR) Workshop on "Causal learning for decision making" .

[399] Wagemans, J. [2015]. The Oxford Handbook of Perceptual Organization, Oxford University
Press.

[400] Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M. and von
der Heydt, R. [2012]. A century of Gestalt psychology in visual perception: I. Perceptual
grouping and figure-ground organization, psycnet.apa.org .

[401] Wagemans, J., Feldman, J., Gepshtein, S., Kimchi, R., Pomerantz, J. R., van der Helm,
P. A. and van Leeuwen, C. [2012]. A century of Gestalt psychology in visual perception: II.
Conceptual and theoretical foundations, Psychol. Bull. 138(6): 1218–1252.

[402] Wang, D. [2005]. The time dimension for scene analysis, IEEE Trans. Neural Netw.
16(6): 1401–1426.

[403] Wang, D. and Terman, D. [1995]. Locally excitatory globally inhibitory oscillator networks,
IEEE Trans. Neural Netw. 6(1): 283–286.

[404] Wang, X., Girshick, R., Gupta, A. and He, K. [2018]. Non-local neural networks, IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) .



151 Bibliography

[405] Watters, N., Matthey, L., Burgess, C. P. and Lerchner, A. [2019]. Spatial broadcast decoder:
A simple architecture for learning disentangled representations in VAEs.

[406] Weiss, Y. and Adelson, E. H. [1996]. A unified mixture framework for motion segmenta-
tion: Incorporating spatial coherence and estimating the number of models, Proceedings
CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, ieeex-
plore.ieee.org, pp. 321–326.

[407] Weizenbaum, J. [1966]. ELIZA—a computer program for the study of natural language
communication between man and machine, Communications of the ACM 9(1): 36–45.

[408] Weng, S., Steil, J. J. and Ritter, H. J. [2006]. Learning lateral interactions for feature
binding and sensory segmentation from prototypic basis interactions, IEEE Trans. Neural
Netw. 17(4): 843–862.

[409] Werbos, P. J. [1982]. Applications of advances in nonlinear sensitivity analysis, in R. F.
Drenick and F. Kozin (eds), System Modeling and Optimization, Lecture Notes in Control
and Information Sciences, Springer, Berlin, Heidelberg, pp. 762–770.

[410] Werbos, P. J. [1988]. Generalization of backpropagation with application to a recurrent
gas market model, Neural Netw. 1(4): 339–356.

[411] Wersing, H., Steil, J. J. and Ritter, H. J. [2001]. A competitive-layer model for feature
binding and sensory segmentation, Neural Comput. 13(2): 357–387.

[412] Wertheimer, M. [1912]. Experimentelle Studium uber das Sehen von Bewegung, Z.
Psychol. 61(3): 161–265.

[413] Wertheimer, M. [1923]. Untersuchungen zur Lehre von der Gestalt II, Psychol. Forsch.
4(1): 301–350.

[414] Weston, J., Chopra, S. and Bordes, A. [2014]. Memory networks.

[415] Williams, R. J. and Zipser, D. [1989]. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks, Neural Computation 1(2): 270–280.

[416] Winograd, T. [1971]. Procedures as a representation for data in a computer program
for understanding natural language, Technical report, MASSACHUSETTS INST OF TECH
CAMBRIDGE PROJECT MAC.

[417] Wu, C. F. J. [1983]. On the convergence properties of the EM algorithm, The Annals of
statistics pp. 95–103.

[418] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y.,
Gao, Q. and Macherey, K. [2016]. Google’s neural machine translation system: Bridging
the gap between human and machine translation, arXiv preprint arXiv:1609.08144 .

[419] Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P. S. [2019]. A comprehensive
survey on graph neural networks, arXiv preprint arXiv:1901.00596 .

[420] Xu, K., Ba, J., Kiros, J. R., Courville, A., Salakhutdinov, R. R., Zemel, R. S. and Bengio,
Y. [2015]. Show, attend and tell: Neural image caption generation with visual attention,
arXiv preprint arXiv:1502.03044 .



152 Bibliography

[421] Yang, C., Zhuang, P., Shi, W., Luu, A. and Li, P. [2019]. Conditional structure generation
through graph variational generative adversarial nets, Advances in Neural Information
Processing Systems, pp. 1338–1349.

[422] Yang, Y., Chen, Y. and Soatto, S. [2020]. Learning to manipulate individual objects in an
image, arXiv:2004.05495 [cs] .

[423] Yli-Krekola, A., Särelä, J. and Valpola, H. [2009]. Selective attention improves learning,
Artificial Neural Networks–ICANN 2009, Springer, pp. 285–294.

[424] Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. [2014]. How transferable are features in
deep neural networks?, Advances in Neural Information Processing Systems, pp. 3320–3328.

[425] Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls, K., Reichert,
D., Lillicrap, T., Lockhart, E., Shanahan, M., Langston, V., Pascanu, R., Botvinick, M., Vinyals,
O. and Battaglia, P. [2018]. Deep reinforcement learning with relational inductive biases,
International Conference on Learning Representations.

[426] Zaremba, W., Sutskever, I. and Vinyals, O. [2014]. Recurrent neural network regulariza-
tion, arXiv:1409. 2329 [cs] .

[427] Zeiler, M. D. and Fergus, R. [2014]. Visualizing and understanding convolutional networks,
European Conference on Computer Vision, Springer, pp. 818–833.

[428] Zemel, R. S. and Mozer, M. C. [2001]. Localist attractor networks, Neural Comput.
13(5): 1045–1064.

[429] Zemel, R. S., Williams, C. K. I. and Mozer, M. C. [1995]. Lending direction to neural
networks, Neural Netw. 8(4): 503–512.

[430] Zhang, C., Vinyals, O., Munos, R. and Bengio, S. [2018]. A study on overfitting in deep
reinforcement learning, arXiv:1804.06893 [cs, stat] .

[431] Zhang, M., Jiang, S., Cui, Z., Garnett, R. and Chen, Y. [2019]. D-VAE: A variational
autoencoder for directed acyclic graphs, arXiv preprint arXiv:1904.11088 .

[432] Zhao, Y. and Zhu, S.-C. [2011]. Image parsing with stochastic scene grammar, in J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K. Q. Weinberger (eds), Advances in Neural
Information Processing Systems 24, Curran Associates, Inc., pp. 73–81.

[433] Zhmoginov, A., Fischer, I. and Sandler, M. [2019]. Information-bottleneck approach to
salient region discovery, arXiv preprint arXiv:1907.09578 .

[434] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A. [2014]. Object detectors
emerge in deep scene CNNs.

[435] Zoran, D., Chrzanowski, M., Huang, P.-S., Gowal, S., Mott, A. and Kohl, P. [2019]. Towards
robust image classification using sequential attention models, arXiv:1912.02184 [cs] .



List of Figures

2.1 The binding problem in artificial neural networks can be understood from the
perspectives of segregation, representation, and composition. Each of these sub-
problems focuses on a different functional aspect of dynamically binding neurally
processed information with the aim of facilitating more symbolic information
processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Illustration of the superposition catastrophe: A distributed representation in terms
of disentangled features like color and shape (a, b) leads to ambiguity when
confronted with multiple objects (c): The representation in (c) could equally
stand for a red apple and a green pear, or a green apple and a red pear. It leads
to an indiscriminate bag of features because there is no association of features
to objects. A simple form of this problem in neural networks was first pointed
out in Rosenblatt [318], and has been debated in the context of neuroscience
since [257, 395]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Example of several unfamiliar objects, that can nonetheless be described in terms
of their features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Left: Interpretable features learned on ImageNet as observed in Olah et al. [284].
Right: Learned word embeddings have been demonstrated to capture some of
the semantic structure of text [255], although to a lesser extent than was initially
reported [280]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Illustration of the four different types of slot-based representations. . . . . . . . . 11

2.6 Illustration of the two main augmentation based approaches to object representa-
tions. Left: Neural activity over time for a temporal code, where synchronization
is emphasized using color. Right: Complex valued activations are represented by
arrows and colored according to their direction. . . . . . . . . . . . . . . . . . . . . 13

2.7 Illustration of a Tensor Product Representation (matrix on the right) that is formed
through combining a role vector (horizontal) and a filler vector (vertical) for each
object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Correspondence of attractor states to visual interpretations for a tri-stable variant
of the Necker cube. The vector field illustrates the (input-dependent) inference
dynamics in feature space, with one attractor for each stable interpretation. . . 15

2.9 Photo of two leaf-tailed geckos — “young and old” © 2015 by Paul Bertner. . . . 16

2.10 For partial objects (A) or only background (B), the occluded regions can be
inpainted reasonably well, while in the case of full object occlusion (C) that is
usually impossible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

153



154 List of Figures

2.11 Human perception is multistable, which is often demonstrated using visual illu-
sions as in (a), yet it is also often encountered in the real world, eg. for different
groupings of tiles (b). To steer segregation towards a useful decomposition it is
important to incorporate contextual information, for example to decide between
a decomposition based on chairs or based on stacks in (c). . . . . . . . . . . . . . . 19

2.12 Left: An illustration of (spectral) clustering approaches, which treat image seg-
mentation as a graph-partitioning problem. Right: Corresponding instance
segments as obtained by Isola et al. [166]. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Left: An illustration of neural approaches that learn to directly output an image
segmentation. Right: Corresponding bounding boxes and instance segments as
obtained by He et al. [136]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.14 Left: An illustration of attention-based approaches, which sequentially attend
to individual objects. Right: Corresponding attention windows as obtained by
Eslami et al. [84]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.15 Left: An illustration of generative approaches to segregation that model an image
as a mixture of components. Right: A corresponding decomposition in terms of
individual objects as obtained by Greff et al. [119]. . . . . . . . . . . . . . . . . . . 24

2.16 Three different objects (■, •,Æ) appear in different pairings on a scale (a) and
(b). By evaluating their relationships (d), it can be inferred how the scale will tip
in (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.17 Three different ways in which structure can be defined in terms of relations
between objects: As a factor graph, a directed graph, or as nested role-filler
bindings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.18 Examples of different structural forms [194] that each can be used to define
relations among objects and imply different patterns of generalization. . . . . . . 28

2.19 Two parse-trees of a garden-path sentence: The intuitive parsing (on the left)
fails, even though the sentence is grammatically correct (see parse-tree on the
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Schematic illustration of an artificial neuron. . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Common activations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Detailed schematic of the Simple Recurrent Network (SRN; 316) unit (left) and a

Long Short-Term Memory block (right) as used in the hidden layers of a recurrent
neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Picture of a “Greeble” [97]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Illustration of several Gestalt laws of visual perception. Note how the different

cues influence which elements are perceived as belonging together. . . . . . . . . 54
4.3 An illustration of intra-object predictability. a) Notice that when a ballon is

partially occluded (A) the rest of it can still be inferred, but not when it is fully
occluded (B). b) The same holds for corrupted pixels: The missing pixels of the
square can easily be predicted using its remaining pixels, but not from pixels
constituting other objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 (a) The assumed probabilistic structure. (b) A schematic illustration of one
iteration of the Reconstruction Clustering (RC; 122) algorithm. . . . . . . . . . . . 58

4.5 One example from each of the six datasets. The input images are shown on the
top row with the corresponding ground-truth grouping below. . . . . . . . . . . . 59



155 List of Figures

4.6 Summary of the scores achieved during the random search . . . . . . . . . . . . . 61

4.7 Left: Mean Adjusted Mutual Information (AMI; 392) score over 1000 test samples
for all datasets and various number of clusters K. Right: Convergence of the
log-likelihood on the shapes dataset for different numbers of clusters, showing
test set mean (line) and standard deviation (shaded) over the test set. . . . . . . 62

4.8 The top plot shows the score and confidence for each of the 1000 test images
from the shapes dataset, sorted by score. The confidence is the average value of
maxk mi,k for each evaluated pixel (non-background, non-overlap). The central
part of the figure shows six examples (columns) along with the cluster assignments
(indicated by different colors) over RC iterations. The corresponding ground-truth
is shown at the bottom. The right vertical plot shows the log-likelihood over the
RC iterations corresponding to the displayed cluster assignments. . . . . . . . . . 63

4.9 The top plot shows the score and confidence for each of the 1000 test images
from the corners dataset, sorted by score. The central part of the figure shows six
examples (columns) along with the cluster assignments (indicated by different
colors) over RC iterations. The corresponding ground-truth is shown at the
bottom. The right vertical plot shows the log-likelihood over the RC iterations
corresponding to the displayed cluster assignments. . . . . . . . . . . . . . . . . . . 64

4.10 The top plot shows the score and confidence for each of the 1000 test images
from the Multi-MNIST dataset, sorted by score. The central part of the figure
shows six examples (columns) along with the cluster assignments (indicated by
different colors) over RC iterations. The corresponding ground-truth is shown at
the bottom. The right vertical plot shows the log-likelihood over the RC iterations
corresponding to the displayed cluster assignments. . . . . . . . . . . . . . . . . . . 65

4.11 Relationship between the Denoising Autoencoder (DAE; 27, 391) loss and the AMI
score. All networks have 250 hidden units and were trained with random learning
rates and initializations. A few networks that failed to train were removed from
the plot for better visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.12 (a) RC scores obtained when training DAEs on multi-object images vs. single
object images. (b) Summary of the scores achieved during the random search for
training with multiple objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Example iterations of RC when using hard assignments and a DAE that has been
trained only on images with multiple objects. . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Binding novel objects via RC. The DAE used was trained on the Multi MNIST
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 The probabilistic graphical model for Neural Expectation Maximization (N-EM; 123). 72

5.2 Illustration of the computations for two steps of N-EM. . . . . . . . . . . . . . . . . 73

5.3 Illustration of the computations for a single step of RNN-EM. . . . . . . . . . . . . 74

5.4 Groupings by Recurrent Neural Network Expectation Maximization (RNN-EM; 123)
(bottom row), N-EM (middle row) for six input images (top row). Both methods
recover the individual shapes accurately when they are separated (a, b, f), even
when confronted with the same shape (b). RNN-EM is able to handle most
occlusion (c, d) but sometimes fails (d). The exact assignments are permutation
invariant and depend on γ initialization compare (a) and (f). . . . . . . . . . . . . 76



156 List of Figures

5.5 A sequence of 5 shapes flying across random trajectories in the image (bottom
row 1). The next-step prediction of each copy of the network (rows 2 to 5) and
the soft-assignment of the pixels to each of the copies (top row). Observe that the
network learns to separate the individual shapes as a means to efficiently solve
next-step prediction. Even when many of the shapes are overlapping, as can be
seen in time-steps 18-20, the network is still able to disentangle the individual
shapes from the clutter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Binomial Cross Entropy Error obtained by RNN-EM and a recurrent autoencoder
(RNN-EM with K = 1) on the denoising and next-step prediction task. RNN-EM
produces significantly lower BCE across different numbers of objects. . . . . . . . 79

5.7 Average AMI score (blue line) measured for RNN-EM (trained for 20 steps) across
the test-set and corresponding quartiles (shaded areas), computed for each of 50
time-steps. The learned grouping dynamics generalize to longer sequences and
even further improve the AMI score. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 A sequence of 3 MNIST digits flying across random trajectories in the image
(bottom row). The next-step prediction of each copy of the network (rows 2 to 4)
and the soft-assignment of the pixels to each of the copies (top row). Although
the network was trained (stage-wise) on sequences with two digits, it is accurately
able to separate three digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Illustration of the TAG framework used for training. Left: The system learns by
denoising its input over iterations using several groups to distribute the represen-
tation. Each group, represented by several panels of the same color, maintains its
own estimate of reconstructions µ(t) of the input, and corresponding masks m(t),
which encode the parts of the input that this group is responsible for representing.
These estimates are updated over iterations by the same network, that is, each
group and iteration share the weights of the network and only the inputs to the
network differ. In the case of images, µ contains pixel-values. Right: In each
iteration µ(t−1) and m(t−1) from the previous iteration, are used to compute a
likelihood term L(m(t−1)) and modeling error δµ(t−1). These four quantities are
fed to the parametric mapping to produce µ(t) and m(t) for the next iteration.
During learning, all inputs to the network are derived from the corrupted input
as shown here. The unsupervised task for the network is to learn to denoise, i.e.
output an estimate q(x) of the original clean input. . . . . . . . . . . . . . . . . . . 85

6.2 An example of how Tagger would use a 3-layer-deep Ladder Network as its
parametric mapping to perform its iteration i+1. Note the optional class prediction
output y (t)k for classification tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Results for Shapes dataset. Left column: 7 examples from the test set along
with their resulting groupings in descending AMI score order and 3 hand-picked
examples (A, B, and C) to demonstrate generalization. A: Testing 2-group model
on 3 object data. B: Testing a 4-group model trained with 3-object data on 4
objects. C: Testing 4-group model trained with 3-object data on 2 objects. Right
column: Illustration of the inference process over iterations for four color-coded
groups; mk and µk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



157 List of Figures

6.4 Results for the TextureMNIST2 dataset. Left column: 7 examples from the test set
along with their resulting groupings in descending AMI score order and 3 hand-
picked examples (D, E1, E2). D: An example from the TextureMNIST1 dataset.
E1-2: A hand-picked example from TextureMNIST2. E1 demonstrates typical
inference, and E2 demonstrates how the system is able to estimate the input when
a certain group (topmost digit 4) is removed. Right column: Illustration of the
inference process over iterations for four color-coded groups; mk and µk. . . . . 93

7.1 Object decomposition of an image from the CLEVR dataset by Iterative Object
Decomposition Inference NEtwork (IODINE; 119). The model is able to decompose
the image into separate objects in an unsupervised manner, inpainting occluded
objects in the process (see slots (d), (e) and (h)). . . . . . . . . . . . . . . . . . . . 100

7.2 Generative model illustrations. (a) A regular Variational Autoencoder (VAE; 313,
199) decoder. (b) A hypothetical multi-object VAE decoder that recomposes the
scene from three objects. (c) IODINEs multi-object decoder showing latent vectors
(denoted z) corresponding to K objects refined over T iterations from images of
dimension D. The deterministic pixel-wise means and masks are denoted µ and
m respectively. (d) The neural architecture of the IODINEs multi-object spatial
mixture decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.3 Illustration of the iterative inference procedure. . . . . . . . . . . . . . . . . . . . . 103
7.4 Samples from CLEVR6. The first column is the scene, the second column is the

background mask and the following columns are the ground-truth object masks. 107
7.5 Samples from the Multi-dSprites dataset. The first column is the full image,

the second column is the background mask and the following columns are the
ground-truth object masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6 Samples from the Tetris dataset. The first column is the full image, the second
column is the background mask and the following columns are the ground-truth
object masks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.7 IODINE segmentations and object reconstructions on CLEVR6 (top), Multi-dSprites
(middle), and Tetris (bottom). The individual masked reconstruction slots repre-
sent objects separately (along with their shadow on CLEVR). Border colours are
matched to the segmentation mask on the left. . . . . . . . . . . . . . . . . . . . . . 111

7.8 Prediction accuracy / R2 score for the factor regression on CLEVR6. Position is
continuous; the rest are categorical with 8 colors, 3 shapes, and 2 sizes. IODINE
(deconv) does not use spatial broadcasting in the decoder. . . . . . . . . . . . . . . 111

7.9 Disentanglement in regular VAEs vs IODINE. Rows indicate traversals of single
latents, annotated by our interpretation of their effects. (Left) When a VAE is
trained on single-object scenes it can disentangle meaningful factors of variation.
(Center) When the same VAE is trained on multi-object scenes, the latents entangle
across both factors and objects. (Right) In contrast, traversals of individual latents
in IODINE vary individual factors of single objects, here the orange cylinder. Thus,
the architectural bias for discovering multiple entities in a common format enables
not only the discovery of objects, but also facilitates disentangling of their features.112

7.10 Latent traversal of IODINE on CLEVR (like right side of Figure 7.9), for a randomly
chosen example and randomly chosen slot. Here the brown cylinder in the back
is changing. Occlusion handling shows several flaws, that could be fixed by
adjusting another latent (not shown) that encodes the depth ordering. . . . . . . 113



158 List of Figures

7.11 Each row shows the t-SNE of the latent distribution for the CLEVR6, Multi-
dSprites, and Tetris datasets respectively. Each dot represents one object latent
and in each column is colored according to a single ground truth factor. Note
that representations of the background do not include a position and thus appear
as large black areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.12 IODINEs iterative inference process and generalization capabilities. Rows indicate
steps of iterative inference, refining reconstructions and segmentations when
moving down the figure. Of particular interest is the explaining away effect visible
between slots 6 and 7, where they settle on different objects despite both starting
with the large cylinder. The model was only trained with K = 7 slots on 3-6
objects (excluding green spheres), and yet is able to generalize to K = 10 slots
on a scene with 9 objects, including the never seen before green sphere (9th slot). 115

7.13 The effect of varying the number of iterations, for both training and at test time.
(a) Median ARI score, (b) MSE and (c) KL over test-iterations, for models trained
with different numbers of iterations on CLEVR6. The region beyond the filled
dots thus shows test-time generalization behavior. Shaded region from 25th to
75th percentile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.14 IODINE trained on CLEVR6 with varying numbers of slots (columns). Evaluation
of (a) ARI, (b) MSE, and (c) KL with 7 slots on 3-6 Objects (blue) and 11 slots on
3-9 objects (orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.15 Ablation study for the model’s total loss (left) and ARI (right) on the CLEVR6
dataset. Each curve denotes the result of training the model without a particular
input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.16 Ablation study for the model’s total loss (left) and ARI (right) on the Tetris dataset.
Each curve denotes the result of training the model without a particular input. . 117

7.17 Multi-stability of segmentation when presented with an ambiguous stimulus. Left:
Depending on the random sampling during iterative refinement, IODINE can
produce different permutations of groups (row 2 vs 3), a different decomposition
(row 1) or sometimes an invalid segmentation and reconstruction (row 4). Right:
PCA of the latent space, coloured by which slot corresponds to the background.
Paths show the trajectory of the iterative refinement for the four examples on the
left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.18 Segmentation challenges a) IODINE did not succeed in capturing the foreground
digits in the Textured MNIST dataset. b) IODINE groups ImageNet not into
meaningful objects but mostly into regions of similar color. c) On a grayscale
version of CLEVR, IODINE still produces the desired groupings. . . . . . . . . . . 119

7.19 IODINE applied to Objects Room sequences by setting N , the number of refinement
iterations, equal to the number of timesteps in the data. . . . . . . . . . . . . . . . 121



List of Tables

4.1 Configuration of the best network for each dataset as found by the random search. 61
4.2 Configuration of the best network trained on multiple objects for each dataset as

found by the random search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Architecture for the network used for flying shapes. . . . . . . . . . . . . . . . . . . 77
5.2 Architecture for the network used for flying shapes. . . . . . . . . . . . . . . . . . . 79
5.3 AMI scores obtained by RNN-EM on flying shapes when varying the number of

objects (# obj.) and number of components K , during training and at test time. 81

6.1 Table (a) shows how quickly the algorithm evaluation converges over inference
iterations with the Shapes dataset. Table (b) compares segmentation quality to
previous work on the Shapes dataset. The AMI score is defined in the range
from 0 (guessing) to 1 (perfect match). The results with a star (*) are using
LayerNorm (LN; 14) instead of BatchNorm (BN; 165). . . . . . . . . . . . . . . . . 91

6.2 Test-set classification errors for textured one-digit MNIST (chance level: 90 %)
and top-2 error on the textured two-digit MNIST dataset (chance level: 80 %).
We report mean and sample standard deviation over 5 runs. FC = Fully Connected 95

7.1 Network architectures used for CLEVR dataset. . . . . . . . . . . . . . . . . . . . . . 109
7.2 Deconv-based decoder architecture used in Section 7.3.5. . . . . . . . . . . . . . . 109
7.3 Network architectures used for Multi-dSprites dataset. . . . . . . . . . . . . . . . . 109
7.4 Network architectures used for Tetris dataset. . . . . . . . . . . . . . . . . . . . . . . 110
7.5 Summary of IODINEs segmentation performance in terms of ARI (mean ± stddev

across five seeds) versus baseline models. For each independent run, we computed
the ARI score over 320 images, using only foreground pixels. We then picked
the best hyperparameter combination for each model according to the mean ARI
score over five random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

159



160 List of Tables



Acronyms

Adam Adaptive Moment Estimation. 76, 90, 106, 124

AIR Attend Infer Repeat. 12, 23, 124

AMI Adjusted Mutual Information. 60, 62, 66, 76, 77, 80, 81, 90, 91, 124, 155, 159

ANN Artificial Neural Network. 44, 48, 124

ARI Adjusted Rand Index. 110, 124

BN BatchNorm. 89, 91, 94, 124, 159

BPTT Backpropagation Through Time. 73, 124

CNN Convolutional Neural Network. 12, 124

DAE Denoising Autoencoder. 3, 55, 58, 59, 60, 62, 66, 67, 68, 69, 70, 71, 124, 155

ELU Exponential Linear Unit. 45, 77, 79, 124

EM Expectation Maximization. 44, 55, 57, 58, 71, 72, 73, 75, 76, 81, 124

FIT Feature Integration Theory. 124

GAN Generative Adversarial Network. 32, 124

GCN Graph Convolutional Network. 31, 124

GNN Graph Neural Network. 30, 31, 32, 33, 124

GRU Gated Recurrent Unit. 124

ICA Independent Component Analysis. 24, 124

IODINE Iterative Object Decomposition Inference NEtwork. 3, 4, 12, 99, 100, 101, 103, 104,
105, 106, 110, 111, 112, 114, 115, 116, 118, 119, 120, 121, 122, 124, 157, 158, 159

LN LayerNorm. 91, 124, 159

LSTM Long Short-Term Memory. 49, 50, 124

161



162 Acronyms

MLE Maximum Likelihood Estimate. 46, 72, 73, 124

MLP Multi-Layer Perceptron. 11, 44, 45, 48, 124

MONet Multi-Object Network. 12, 23, 110, 124

MPNN Message Passing Neural Network. 31, 32, 124

MRBM Masked Restricted Boltzman Machine. 12, 69, 75, 124

N-EM Neural Expectation Maximization. 3, 12, 71, 72, 73, 74, 75, 76, 77, 81, 105, 110, 124,
155

NN Neural Network. 45, 46, 47, 59, 71, 124

NTM Neural Turing Machine. 33, 124

RBM Restricted Boltzman Machine. 69, 75, 124

ReLU Rectified Linear Unit. 44, 77, 79, 94, 124

R-NEM Relational Neural Expectation Maximization. 32, 110, 124

RC Reconstruction Clustering. 3, 4, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 81, 83,
124, 154, 155

RFT Relational Frame Theory. 28, 124

RIM Recurrent Independent Mechanism. 12, 124

RNN Recurrent Neural Network. 11, 12, 14, 15, 31, 32, 33, 49, 73, 74, 75, 96, 124

RNN-EM Recurrent Neural Network Expectation Maximization. 74, 75, 76, 77, 78, 80, 81, 110,
124, 155

RTRL Real Time Recurrent Learning. 124

SGD Stochastic Gradient Descent. 60, 124

SRN Simple Recurrent Network. 48, 49, 50, 124, 154

STDP Spike-Timing Dependent Plasticity. 6, 14, 124

TAG iTerative Amortized Grouping. 3, 83, 88, 91, 94, 96, 99, 124

TPR Tensor Product Representation. 14, 33, 34, 124

VAE Variational Autoencoder. 3, 32, 44, 99, 100, 101, 102, 103, 105, 112, 114, 117, 118, 120,
124, 157


	Introduction
	Motivation
	Contributions
	Organization

	The Binding Problem
	The Representation Problem
	Representational Format
	Representational Dynamics
	Methods

	Segregation
	Objects
	Segregation Dynamics
	Methods

	Composition
	Structure
	Reasoning
	Methods

	Summary

	Background
	Probability Theory
	Random Variables
	Conditional Probabilities
	Expectation and Variance
	Correlation and Independence
	Graphical Models
	Common Distributions
	Information Theory

	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Neural Networks
	Multi-Layer Perceptrons (MLPs)
	Training
	Architectures


	Reconstruction Clustering
	What is an Object?
	Gestalt Psychology
	Grouping by Predictability

	Method
	Denoising Autoencoder
	Spatial Mixture Model
	Expectation Maximization
	Reconstruction Step
	Putting it together

	Experiments
	Datasets
	Evaluation
	Training Details

	Results
	Scores
	Convergence
	Qualitative Analysis
	Loss vs Score
	Training on Multiple Objects
	Generalization to Unfamiliar Images

	Relationship to other Methods
	Conclusion and Future Work

	Neural Expectation Maximization
	Method
	Parametrized Spatial Mixture Model
	Expectation Maximization
	Unrolling
	Training Objective

	Related work
	Experiments
	Static Shapes
	Flying Shapes
	Flying MNIST

	Discussion
	Conclusion

	Iterative Amortized Grouping
	Method
	Group Structure
	Inputs
	Parametric mapping
	Training
	The Tagger: Combining TAG and Ladder Network

	Experiments and Results
	Datasets
	Training and evaluation
	Unsupervised Perceptual Grouping
	Classification
	Semi-Supervised Learning

	Related work
	Conclusion

	Variational Iterative Multi-Object Representation Learning
	Method
	Multi-Object Representations
	Inference
	Training

	Related Work
	Results
	Datasets
	Architecture and Hyperparameters
	Decomposition
	Representation Quality
	Robustness & Ablation
	Multi-Modality and Multi-Stability
	Sequences

	Discussion and Future Work
	Limitations


	Conclusion
	Bibliography
	List of List of Figures
	List of List of Tables
	Acronyms

