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Abstract
Nonlinear reformulations of the spectral clustering method have gained a lot of recent 
attention due to their increased numerical benefits and their solid mathematical back-
ground. We present a novel direct multiway spectral clustering algorithm in the p-norm, 
for p ∈ (1, 2] . The problem of computing multiple eigenvectors of the graph p-Laplacian, 
a nonlinear generalization of the standard graph Laplacian, is recasted as an unconstrained 
minimization problem on a Grassmann manifold. The value of p is reduced in a pseudo-
continuous manner, promoting sparser solution vectors that correspond to optimal graph 
cuts as p approaches one. Monitoring the monotonic decrease of the balanced graph cuts 
guarantees that we obtain the best available solution from the p-levels considered. We dem-
onstrate the effectiveness and accuracy of our algorithm in various artificial test-cases. Our 
numerical examples and comparative results with various state-of-the-art clustering meth-
ods indicate that the proposed method obtains high quality clusters both in terms of bal-
anced graph cut metrics and in terms of the accuracy of the labelling assignment. Further-
more, we conduct studies for the classification of facial images and handwritten characters 
to demonstrate the applicability in real-world datasets.
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1  Introduction and related work

The act of creating clusters by segmenting a set into several parts is ever present in 
every scientific domain that deals with interacting or interconnected data. The formation 
of clusters consists of distributing a group of objects into distinct subsets. This process 
generally aims to obtain parts of roughly equal size with strong internal and weak exter-
nal connections. Clustering using spectral methods is widely used, and can be applied 
to any kind of data with a suitable similarity metric between them forming a graphical 
structure. The theoretical background for this family of methods is based on the bal-
anced graph partitioning problem, with reformulations connecting it also with random 
walks  (Fountoulakis et  al., 2019; Mahoney, 2012) and perturbation theory  (Ng et  al., 
2001). As opposed to other popular clustering techniques, such as the k-means  (Mac-
Queen, 1967) and the expectation-maximization algorithm  (Dempster et  al., 1977), 
spectral methods perform well in nonconvex sample spaces, as they can avoid local 
minima (Bichot & Siarry, 2013). They have therefore been successfully applied in vari-
ous fields of data clustering, such as computer vision (Malik et al., 2001), load balanc-
ing  (Hendrickson & Leland, 1995), biological systems  (Pentney & Meila, 2005) and 
text classification (Aggarwal & Zhai, 2012), and are a field of active research (Ge et al., 
2021; Mizutani, 2021). Additionally, efficient variants employing multilevel techniques 
have been proposed (Dhillon et al., 2005, 2007). The authors refer to Jia et al. (2014) 
and Wierzchoń and Kłopotek (2018) for detailed overviews of various spectral graph 
clustering algorithms and recent advancements in the field.

Reformulating the spectral method from the traditional 2-norm to the p-norm has proven 
to lead to a sharp approximation of balanced cut metrics and improved clustering assign-
ments (Amghibech, 2006; Gajewski & Gärtner, 2001). Such reformulations result in a tight 
relaxation of the spectral clustering problem, with the resulting solutions approximating 
closely the solution of the original discrete problem. The graph cut theoretically converges 
to the optimal Cheeger cut  (Cheeger, 1969) for p → 1 , thus highlighting the superiority 
of p-spectral methods over their traditional 2-norm counterparts. These favorable prop-
erties have attracted a lot of recent attention. In  Bühler and Hein (2009) partitions are 
obtained by thresholding the eigenvector associated with the second-smallest eigenvalue 
of the graph p-Laplacian, a nonlinear generalization of the graph Laplacian. In  Jia et al. 
(2015), using the same objective function, a self-tuning p-spectral algorithm is proposed 
that determines the optimal value of p. The authors in  Luo et  al. (2010) generalize this 
approach to multiway partitioning by employing a modified gradient descent update that 
converges to multiple p-eigenvectors. The nodal properties of multiple eigenvectors of the 
graph p-Laplacian were investigated in Tudisco and Hein (2017). In Simpson et al. (2018) 
the authors introduce an explicit way to handle the constraints between the first two eigen-
vectors of the p-Laplacian, and propose a hybrid scheme to recursively partition large-scale 
graphs. Tight relaxations based on the concept of total variation, leading to similar sharp 
indicator eigenfunctions, have also been proposed for bi-partitioning  (Szlam & Bresson, 
2010; Bresson et al., 2012) and multiway problems (Bresson et al., 2013a; Hein & Setzer, 
2011; Rangapuram et al., 2014). A monotonically descending adaptive algorithm for the 
minimization of total variation was proposed in  Bresson et  al. (2013b), and in Bresson 
et  al. 2014), the concept of total variation was utilized in multiclass transductive learn-
ing problems. Reformulations of the spectral method in different p-norms have also been 
employed recently in local graph clustering methods  (Fountoulakis et  al., 2020; Liu & 
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Gleich, 2020), in hypergraph partitioning (Li et al., 2020), as well as in the clustering of 
signed graphs (Mercado et al., 2019).

The focus of our work is centered around developing a simple algorithm for direct mul-
tiway (or k-way) p-spectral clustering that effectively minimizes graph cuts. In doing so, 
we avoid problems that emerge from the greedy nature of recursive approaches and their 
lack of the global information of the graph  (Simon & Teng, 1997). The existing direct 
multiway p-spectral approach for p ∈ (1, 2)  (Luo et  al., 2010) relies on the computation 
of multiple eigenvectors of the graph p-Laplacian, which will subsequently be considered 
as the p-spectral coordinates of the nodes of the graph, by imposing mutual orthogonality 
between them. The constraint on the eigenvectors is enforced by means of a modified gra-
dient descent minimization that might lead to approximation errors, as demonstrated later. 
This mutual orthogonality constraint, combined with the fact that the final partitioning step 
takes place in the reduced space of p-spectral coordinates, suggests that recasting the prob-
lem as an optimization procedure over a subspace that adheres by definition to these con-
ditions, i.e., the Grassmann manifold, would be beneficial. The Riemannian structure of 
the Grassmann manifold and the development of robust optimization algorithms on it have 
been extensively researched (Edelman et al., 1999; Absil et al., 2007; Sato & Iwai, 2014).

1.1  Contributions and outline

This paper approaches spectral clustering from a different angle by reformulating it into a 
unconstrained minimization problem in the p-norm. We propose a new multiway p-spec-
tral clustering method, and recast the problem of finding multiple eigenpairs of the graph 
p-Laplacian as a Riemannian optimization problem on a Grassmann manifold. From here 
on, we refer to the introduced algorithm as “pGrass”. Our algorithm preserves the mutual 
orthogonality between the eigenvectors of the graph p-Laplacian (p-eigenvectors). We there-
fore succeed in reformulating a constrained minimization problem intro an unconstrained one 
on a manifold, a prevailing trend in optimization  (Antoniou & Wu-Sheng, 2017). Special 
emphasis is put in the minimization of the nonlinear objective function which is achieved by 
means of a Grassmannian Newton method, with a truncated conjugate gradient algorithm 
for the linear intermediate steps (Huang et al., 2018). We reduce the value of p from p = 2 
towards p ≈ 1 in a pseudocontinuous manner that ensures that the majority of the evaluations 
take place close to p ≈ 1 , where the optimal results are expected to be found. Our algorithms 
is guaranteed to find the best available clustering solution in all the p-levels that are consid-
ered, by monitoring the monotonic reduction of the balanced graph cut metrics.

We provide five sets of numerical experiments in a total of 80 graphs, and compare our 
method against several state-of-the-art clustering algorithms. We begin with (i) a study of the 
effect the reduction of the value of p has on synthetic datasets. Here we also demonstrate the 
effectiveness of monitoring the monotonic reduction of our discrete graph cut objectives, and 
their correlation with the minimization of the gradient norm of our continuous objective. We 
proceed with (ii) synthetic tests that highlight the effect an increasing number of clusters has on 
the quality of the clustering. Next, for an artificial graph, we present (iii) the differences between 
the embeddings achieved by pGrass and standard spectral clustering methods in the 2-norm. Fol-
lowing the tests on artificial graphs, we conduct numerical experiments where we highlight the 
applicability of pGrass for real-world datasets. For the first experiment (iv) the classification of 
images containing facial expressions is presented. Finally, in (v), we apply pGrass in the prob-
lem of classifying handwritten characters from various languages according to their labels. Both 
real-world studies highlight the fact that depending on the way the p-eigenvectors are clustered 
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in order to obtain the final discrete solution, our algorithm pGrass provides the best results either 
in terms of balanced graph cut metrics, or in terms of the accuracy of the labelling assignment.

In what follows, we recap the spectral graph clustering problem in Sect. 2. We initially 
define the metrics and matrices involved in spectral graph clustering. Then we outline the 
recursive bi-partitioning approach in the 2-norm and in the p-norm for p ∈ (1, 2] , and the 
traditional direct multiway spectral method. The process of solving an unconstrained mini-
mization p-norm problem on a Riemannian manifold is presented in Sect. 3. Here we moti-
vate our research for applying manifold minimization in order to find multiple eigenvectors 
of the graph p-Laplacian, we formulate our problem on the Grassmann manifold, and we 
present the key algorithmic components and optimization techniques of our algorithm. In 
Sect. 4 we present the performance of our algorithm in clustering artificial and real-world 
datasets with ground-truth labels, and, finally, in Sect.  5 we draw conclusions from this 
work and sketch future directions of research on the topic.

1.2  Notation

For the rest of this paper we denote scalar quantities with lower case, vectors by lower-case 
bold, sets by upper case, matrices with upper-case bold characters, and manifolds by upper-
case calligraphic. The p-norm of a vector is defined as ‖�‖p with p = 2 being the Euclidean 
norm. The cardinality of a set V is denoted by |V|, while for all other quantities | ⋅ | indicates 
their absolute value. The ith element of a vector � is denoted by vi . The ith column vec-
tor of a matrix � is denoted by either �i , or �i . The latter is used in case that the subscript 
is occupied by the element index number or the norm of the vector. For example, when 
comparing the ith eigenvector computed in the 2 and the p-norm, we denote them as �i

2
 and 

�i
p
 respectively. The (i, j)th entry of a matrix � is symbolized by vij . The all-ones vector is 

denoted as � , the identity matrix as � , and the element-wise multiplication between matri-
ces � and � as �⊙ �.

2  Spectral graph clustering background

Graph clustering aims to distinguish groups of points according to their similarities. If 
these data points are defined by a matrix describing pointwise similarities, the problem 
of grouping them in k parts is treated as a graph partitioning problem with an undirected 
weighted graph G(V ,E,W) being constructed. Its nodes V represent the data points, and the 
similarity between the connected edges E is encoded in the elements wij > 0 of the weight 
matrix � . Graph-theoretic approaches have proven to be highly successful in characteriz-
ing and extracting clusters. However, the resulting clustering problems frequently appear to 
be NP-hard (Wagner & Wagner, 1993).

Spectral clustering is a popular graph-based method due to the simplicity of its imple-
mentation, the reasonable computation time, and the fact that it overcomes the NP-hard-
ness of other graph-theoretic approaches by solving a relaxed optimization problem in 
polynomial time. Its idea is based on the eigendecomposition of matrices that describe the 
connectivity of a graph (Bichot & Siarry, 2013). The spectral clustering of the total number 
of nodes n = |V| into groups C1,… ,Ck is equivalent to a partitioning problem, usually with 
a dual objective: high intracluster similarity and low intercluster similarity is desired, while 
at the same time the vertex size |C| (cardinality) or the volume vol(C) =

∑
i∈C dii of the 

clusters should not differ excessively.
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2.1  Graphs, graph Laplacian, and graph cut metrics

The graph clustering objectives discussed previously are reflected in the balanced cut 
metrics presented below. When bisecting a graph G(V ,E,W) into two subsets C and its 
complement C ( = V�C ) the cut between them is defined as cut(C,C) =

∑
i∈C,j∈C

wij. As 
balanced graph cut criteria we consider the ratio (Hagen & Kahng, 1991) and normal-
ized cut (Shi & Malik, 2000), which in the case of bisection read

In the case of trying to identify k clusters C1,… ,Ck in the entire node set V, the expres-
sions are formalized as (Hagen & Kahng, 1992)

The graph cut criteria discussed here describe nearly optimal clusters when their value 
approaches zero.

In spectral methods, the connectivity of G is usually described by means of the 
2-norm graph Laplacian matrix �2 ∈ ℝ

n×n . The graph Laplacian matrix �2 is a symmet-
ric, positive semi-definite and diagonally dominant matrix whose spectral properties 
reveal a number of important topological properties of the graph (Bollobás, 1998; 
Chung, 1997). It is defined in terms of the adjacency matrix � ∈ ℝ

n×n and the diagonal 
degree matrix � ∈ ℝ

n×n
�
dii =

∑n

j=1
wij

�
 as �2 = � −� (Fig. 1). Its normalized random 

(1)RCut(C,C) =
cut(C,C)

|C| +
cut(C,C)

|C|

(2)NCut(C,C) =
cut(C,C)

vol(C)
+

cut(C,C)

vol(C)
.

(3)RCut(C1,… ,Ck) =

k∑
i=1

cut(Ci,Ci)

|Ci|

(4)NCut(C1,… ,Ck) =

k∑
i=1

cut(Ci,Ci)

vol(Ci)
.

Fig. 1  A simple, undirected, and connected graph G(V ,E,W) with 4 vertices and 5 edges, with its adjacency 
� , degree � , and graph Laplacian �2 matrices
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walk counterpart is scaled by the degrees of the nodes and defined as 
�
(n)

2
= �−1�2 = � − �−1�.1

For a simple and undirected graph we additionally consider that wii = 0 , and wij = wji . 
The graph Laplacian is often also realized as the linear operator whose action on a vector 
� ∈ ℝ

n induces the following quadratic form:

demonstrating the positive semidefiniteness of �2 . The eigenvalues of �2 can be ordered as 
�1 ≤ �2 ≤ ⋯ ≤ �n, with the eigenvector associated with �1 = 0 being the constant one, i.e., 
�(1) = c ⋅ � , where c ∈ ℝ.

In the following subsections we briefly describe three different spectral clustering meth-
ods. Section 2.2 discusses on the traditional spectral bi-partitioning approach, Sect. 2.3 on 
a p-norm extension of this bipartitioning method and finally Sect. 2.4 discusses on the mul-
tiway spectral clustering technique in the 2-norm.

2.2  Spectral bi‑partitioning

In the case of bipartitioning, i.e., k = 2 , we consider two complementary subsets C,C such 
that C ∪ C = V ,C ∩ C = ∅ . An indicator vector � =

(
u1,… , un

)T
∈ ℝ

n is defined for the 
vertex set V = {v1,… , vn} with

The ratio cut partitioning metric (1) can now be expressed in terms of the graph Laplacian 
�2 with RCut

(
C,C

)
=

�T�2�

�T�
 . Furthermore, it can be seen from (6) that the indicator vector 

of node assignments � is orthogonal to the constant vector � , i.e., �T ⋅ � = 0 . Therefore, the 
problem of minimizing the ratio cut (1) can be expressed as

This optimization problem is NP-hard, due to the discreteness of the indicator vector (6), 
thus a relaxation approach is followed by allowing � to attain values in all of ℝ , i.e., ui ∈ ℝ . 
The relaxed optimization problem now reads 

(5)⟨�,�2�⟩ = �T�2� =
1

2

n�
i,j=1

wij

�
ui − uj

�2
,

(6)ui =

⎧⎪⎨⎪⎩

�
�C�
�C� if vi ∈ C,

−

��C�
�C� if vi ∈ C.

(7)minimize
C,C∈V

�T�2�

�T�
.

(8a)minimize
�∈ℝn

�T�2�

�T�

(8b)subject to �T ⋅ � = 0.

1 In what follows we refer to �(n)

2
 as the normalized graph Laplacian. Note that it is different from the nor-

malized symmetric graph Laplacian, as defined in Luxburg (2007).
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 The objective function (8a) is the Rayleigh quotient of the graph Laplacian matrix �2 . The 
minimum of the quotient is attained by the smallest eigenvalue �1 = 0 of �2 , with the asso-
ciated eigenvector �(1) = c ⋅ � being the minimizer. However, this eigenpair corresponds to 
the trivial partition V = V ∪ � . Additionally, for nonconnected graphs, the multiplicity of 
�1 corresponds to the number of connected components. Therefore, taking into account the 
constraint  (8b) we seek the second-smallest eigenvalue, called the algebraic connectivity 
of the graph (Fiedler, 1973), and its associated eigenvector. For a connected graph G , this 
corresponds to �(2) , also termed Fiedler’s eigenvector. It enables the partitioning of G into 
the two complementary sets C,C by thresholding its entries around zero, or their median 
value for tightly balanced partitioning applications. For a detailed analysis of the properties 
of the eigenspectrum of �2 we refer the reader to Chung (1997). A computationally more 
expensive alternative, used more widely in clustering applications, is to perform a sweep 
cut on the Fiedler eigenvector by considering each of the n cuts possible from the entries of 
�(2) and selecting the one that minimizes the RCut (1). This process can be easily general-
ized to the normalized case �(n)

2
 (Luxburg, 2007), corresponding to a a minimization of the 

NCut (2).
Obtaining k-clusters from the spectral graph bisection method is possible by recursively 

bipartitioning the graph until the desired number of k clusters is reached. At each recursive 
step, the partition whose bisection leads to smaller values of the global ratio cut (3) is split 
into two. Alternatively, in order to directly realize multiple strongly connected components 
of G the procedure outlined Sect. 2.4 is followed.

2.3  Bi‑partitioning with the graph p‑Laplacian

Reformulating spectral graph partitioning in the p-norm, for p ∈ (1, 2] , is based on the fact 
that better theoretical bounds on the balanced partitioning metrics, introduced in Sect. 2.1, 
are achieved at the limit p → 1 . A p approaches one, the resulting bi-partition indicator 
vector � attains more discrete values and leads to nearly optimal balanced graph cut met-
rics and tighter partitionings  (Gajewski & Gärtner, 2001; Amghibech, 2003; Bühler & 
Hein, 2009). At the limit of p = 1 , solving the total variation problem (Szlam & Bresson, 
2010; Bresson et al., 2012) has also been proven to be a tighter relaxation for balanced dis-
crete graph cut metrics than the 2-norm relaxation (7).

The graph Laplacian operator �2 can be redefined in the p-norm. For a node i ∈ V  the 
p-Laplacian operator �p is defined as 

�
�p�

�
i
=
∑

j∈V wij�p

�
ui − uj

�
 and its normalized 

counterpart as 
�
�(n)
p
�
�
i
=

1

di

∑
j∈V wij�p

�
ui − uj

�
, with �p ∶ ℝ → ℝ being 

�p(x) = |x|p−1sign(x), for x ∈ ℝ . In what follows we focus on the standard graph p-Lapla-
cian case, but all concepts can be easily generalized to the normalized case. The p-Lapla-
cian operator is nonlinear, with �p(��) ≠ ��p(�) for � ∈ ℝ and p ∈ (1, 2) , and the linear 
counterpart �2 is recovered for p = 2 , as �2(x) = x and �2(⋅) = �p(⋅) . Therefore the action 
of the standard graph Laplacian operator on a vector � ∈ ℝ

n can be generalized in the 
p-norm as ⟨�,�p�⟩ = 1

2

∑n

i,j=1
wij

���ui − uj
���
p

.

Similar to the approach followed in Sect.  2.2, we wish to obtain the second-smallest 
eigenvector of the symmetric graph p-Laplacian �p ∈ ℝ

n×n in order to minimize the value 
of the RCut (1). The Rayleigh-Ritz principle, extended to the nonlinear case, states that a 
scalar value �p ∈ ℝ is called an eigenvalue of �p if there exists a vector solution � ∈ ℝ

n 
such that 

(
�p�

)
i
= �p�p

(
vi
)
 with i = 1,… , n . In order to obtain the smallest eigenpair of 
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the p-Laplacian operator, we reformulate the Rayleigh quotient minimization problem from 
the linear 2-norm case F2(�) ∶ ℝ

n
→ ℝ,

to the nonlinear one Fp(�) ∶ ℝ
n
→ ℝ as

with the p-norm defined as ‖�‖p = p

�∑n

i=1
�ui�p . A vector � ∈ ℝ

n is an eigenvector of �p if 
and only if it is a critical point of (10) (Bhatia, 1997). The associated p-eigenvalue is given 
by Fp(�) = �p . The functional Fp is nonconvex, and it is easy to notice that for some scalar 
� ∈ ℝ it is invariant under scaling, and thus Fp(��) = Fp(�).

Additionally, fundamental properties of the graph Laplacian in the linear case p = 2 , 
which relate the eigenspectrum of �2 to the algebraic connectivity of the graph (Fiedler, 
1973), can be extended to the nonlinear one with p ∈ (1, 2] . The multiplicity of the small-
est p-eigenvalue �(1)

p
= 0 corresponds to the number of connected components in the 

graph  (Bühler & Hein, 2009), and the associated eigenvector is constant. Therefore, for 
a connected graph, we are searching for the second eigenvalue �(2)

p
 of Fp and the associ-

ated eigenvector �(2) in order to obtain a bi-partition. Furthermore, any two eigenvectors 
�(�), �(�) , with � ≠ � , of the p-Laplacian operator associated with nonzero eigenvalues are 
approximately p-orthogonal (Luo et al., 2010), i.e., 

∑
i �p(v

(�)

i
)�p(v

(�)

i
) ≈ 0.

2.4  Direct multiway spectral clustering

Exploiting information from k eigenvectors of the graph Laplacian matrix �2 allows the 
direct k-way partitioning of a graph into C1,… ,Ck clusters, thus circumventing the need 
for a recursive strategy.

A relaxation approach is followed again for the minimization of RCut (3). We define k 
indicator vectors �j =

(
u1,j,… , un,j

)T such that for i = {1,… , n}, j = {1,… , k},

The matrix � ∈ ℝ
n×k contains these k orthonormal vectors in its columns, thus �T� = � . 

The expression for estimating the global ratio cut (3) is now
RCut

(
C1,… ,Ck

)
= Tr

(
�T�2�

)
 with Tr being the trace of a matrix. The discrete opti-

mization problem for the minimization of (3) reads 

 Finding globally optimum solutions for this expression is again a known NP-hard prob-
lem. The optimization problem is therefore relaxed by allowing the entries of matrix � to 
attain any value in ℝ , i.e., �j ∈ ℝ

n . The relaxed optimization problem now reads 

(9)F2(�) =
⟨�,�2�⟩
‖�‖2

2

=
1

2

∑n

i,j=1
wij

�
ui − uj

�2
‖�‖2

2

,

(10)Fp(�) =
⟨�,�p�⟩
‖�‖pp

=
1

2

∑n

i,j=1
wij

���ui − uj
���
p

‖�‖pp

(11)ui,j =

� 1√
�Cj�

if vi ∈ Cj,

0 otherwise.

(12a)minimize
C1,…,Ck

Tr
(
�T�2�

)
.



Machine Learning 

1 3

 Fan’s trace min/max principle (Bhatia, 1997) dictates that the solution to this minimization 
problem is given by a matrix � whose first k columns are spanned by the eigenvectors 
associated with the k smallest eigenvalues of �2 . In order to obtain discrete clusters from 
the resulting real valued eigenvectors we consider for the n nodes of the graph n vectors 
�i = �T

i
∈ ℝ

k ∀i ∈ [1, n] . These are considered the spectral coordinates of the graph and 
have to be divided into k-groups C1,… ,Ck . Similar to the bisection approach, this proce-
dure can be generalized to the normalized functional F(n)

2
 that minimizes the NCut (4). In 

this case the indicator vectors are defined as ui,j =

⎧
⎪⎨⎪⎩

1√
vol(Cj)

if vi ∈ Cj,

0 otherwise.
 With the relaxed 

constraint now reading �T�� = � , the k columns of the matrix solution � correspond to 
the eigenvectors spanned by the k smallest eigenvalues of �(n)

2
 . This is the normalized spec-

tral clustering approach introduced in Shi and Malik (2000).
As a final remark here, we note that the functional F2 is invariant under a change of 

basis, i.e., F2(��) = F2(�), for all � belonging to the group of k × k orthogonal matrices, 
O(k) = {� ∈ ℝ

k×k | �T� = �} . This property will enable the reformulation of our p-spec-
tral clustering problem into an unconstrained manifold minimization problem in Sect. 3.

3  A Grassmannian optimization approach to p‑spectral clustering

The following section is devoted to the introduction of our multiway p-spectral clustering 
algorithm on Grassmann manifolds. In Sect. 3.1 we present some practical evidence that 
motivate the development of our method. In Sect. 3.2 we introduce the formulation of the 
unconstrained minimization problem that leads to the clustering of graphs. In Sect. 3.3 we 
discuss the optimization techniques employed in the algorithm, and finally in Sect. 3.4 we 
present the different ways the final discretization of the p-eigenvectors is achieved. The 
entire algorithmic scheme is summarized in Sect. 3.5.

3.1  Motivation

Besides the theoretical advantages of performing spectral bipartitioning in the p-norm, briefly 
discussed in Sect. 2.3, we further show a practical consideration that motivates our research on 
p-spectral clustering. In order to demonstrate this we calculate the second eigenvector of the 
graph Laplacian �2 and the graph p-Laplacian �p for the graph of the 2-dimensional (2D) finite 
element mesh “grid1_dual” from the AG-Monien Graph Collection (Diekmann & Preis, 2018), 
with 224 nodes and 420 edges, and attempt to extract two clusters (k = 2) from the entries of 
the second eigenvector by thresholding it around zero. The results are illustrated in Fig. 2. We 
plot the mesh (graph) on the horizontal axis (x, y coordinates) and the eigenvector entries on the 
vertical one (z coordinate). Each eigenvector entry is visualized using the x and y coordinates 
of the associated node of the mesh in order to demonstrate the correspondence between graph 
Laplacian eigenvectors and graph clusters. In the standard spectral computations ( p = 2 ) the 

(13a)minimize
�∈ℝn×k

F2(�) = Tr
(
�T�2�

)

(13b)subject to �T� = �.
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entries of the Fiedler eigenvector �(2) are distributed uniformly around zero. The number of cut 
edges is 20 and the value of the RCut = 0.179 . In contrast, the entries of the second p-eigen-
vector �(2)

p
 for p = 1.1 are organized into two easily distinguishable partitions, while at the same 

time the size of the edge cut is reduced to 16, and the value of the RCut = 0.143 . The reason for 
this improved performance in the p-norm is the fact that as p → 1 , the cut obtained by thresh-
olding �(2)

p
 approaches its optimal value (Amghibech, 2006; Bühler & Hein, 2009). When con-

sidering multiple eigenvectors (k > 2) this tendency towards optimal cut values as p approaches 
one has been proven for graphs for which the number of strong nodal domains of the eigenvec-
tor corresponding to the k-th smallest eigenvalue �k is equal to k (Tudisco & Hein, 2017), e.g., 
the unweighted path graph. However, the application of p-Laplacian direct multiway clustering 
in more general graphs has shown promising results (Luo et al., 2010).

In order to motivate the computation of multiple p-eigenevectors we additionally 
consider the fact that recursive bisection is highly dependant on the decisions made dur-
ing the early stages of the process. Additionally, recursive methods suffer from the lack 
of global information as they do not optimize over the entire node set in order to find 
k optimal partitions, but instead focus on finding optimal bisections at each recursive 
step. Thus, they may result in suboptimal partitions (Simon & Teng, 1997). This neces-
sitates the further advancement of methods for direct multiway p-spectral clustering.

Fig. 2  Finding two clusters based on the entries of the second eigenvector of the graph Laplacian Δ2 and 
of the graph p-Laplacian Δp for a finite element mesh (see text for details). The two partitions are depicted 
in black and gray, while the cut edges are depicted in red. The z-axis represents the value of the entries of 
the eigenvector, with their coloring indicating their distance from zero. a Standard spectral computation 
(p = 2) . b Spectral computation in the p-norm for p = 1.1 . c The standard spectral clusters. d The p-spectral 
clusters for p = 1.1 . (Best viewed in color.)
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3.2  Direct multiway p‑spectral clustering

Taking into account the objective function for spectral bipartitioning in the p-norm (10), 
the relaxed optimization problem of estimating multiple eigenvectors of the graph Lapla-
cian (13) can be reformulated in the p-norm as 

 The cluster indices are denoted by l,m = 1, 2,… , k . The final number of clusters k is con-
sidered predetermined in this work. The matrix � =

(
�1,… , �k

)
 contains the eigenvectors 

associated with the smallest k eigenvalues of the p-Laplacian operator �p in its columns. In 
the case of normalized p-spectral clustering the normalized functional reads 
F(n)
p
(�) =

∑k

l=1

∑n

i,j=1

�
wij�uli − ul

j
�p
�
∕
�
2di‖�l‖pp

�
 . This scaling by the degree di of the cor-

responding row i results in the matrix � containing the eigenvectors of the normalized 
p-Laplacian operator �(n)

p
 (see Sect. 2.3) in its columns. For brevity we restrict our analysis 

in this section in the case of unnormalized p-spectral clustering.
The constraint for p-orthogonal eigenvectors  (14b) renders the optimization problem 

intractable. Therefore, we replace it with the traditional constraint �T� = � (13b), a tight 
approximation as shown in  Luo et  al. (2010). This constraint corresponds to the Stiefel 
manifold, which is composed of all orthogonal column matrices

That is, a point in the Stiefel manifold is a specific orthogonal matrix  (Edelman et  al., 
1999). Similar to standard direct k-way spectral clustering, we are interested in converging 
to some orthonormal basis of the eigenspace and not on the exact eigenvectors (Luxburg, 
2007). The final transformation of the p-spectral coordinates into clusters is performed by 

(14a)minimize
�∈ℝn×k

Fp(�) =

k�
l=1

n�
i,j=1

wij�uli − ul
j
�p

2‖�l‖pp

(14b)subject to

n∑
i=1

�p(u
l
i
)�p(u

m
i
) = 0 ∀ l ≠ m, p ∈ (1, 2], l ∈ [1, k], m ∈ [1, k].

(15)St(k, n) = {� ∈ ℝ
n×k | �T� = �}.

Fig. 3  Values of the entries of the first eigenvector �(1) of Δp for the E. coli graph (illustrated), after mini-
mizing the functional  (14a) over the Stiefel St and the Grassmann Gr manifold. The graph in question is 
connected and thus �(1) should be constant. This behavior is observed only on Gr (in red), as �(1) does not 
converge to a constant vector on St (in blue)
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either a flat algorithm like k-means or by rotating the normalized eigenvectors as shown 
in Yu and Shi (2003). Both algorithms are based on the relative distances between points 
and not on the exact values of their coordinates. However, every set of orthonormal eigen-
vectors forming the matrix � is considered to be unique on St , even if they correspond to 
the same basis. Therefore, optimizing our objective (14a) over the Stiefel manifold leads 
to the well known identifiability issue (Wang et al., 2017), with the redundantly big search 
space of the Stiefel manifold causing slow convergence and the increased probability of 
getting stuck in local minima for a nonconvex function. This behavior is illustrated in Fig. 3 
for the problem of finding the first constant eigenvector of the graph p-Laplacian Δp for a 
graph representing the Ecoli dataset from the UCI dataset collection (Dua & Graff, 2017). 
Optimizing over the Stiefel manifold (in cyan) leads to a failure to converge to the known 
constant solution �(1)

p
= c� (Bühler & Hein, 2009). Thus, in this case, additional constraints 

have to be imposed, i.e., the Stiefel gradient corresponding to the first eigenvector has to be 
set to zero in order for it to attain constant values. This gradient correction approach guides 
the algorithm towards the correct solution, but is not applicable to the rest of the k − 1 
eigenvectors of �p as there is no theoretical guarantee for the values they should attain.

We thus consider the group of all k × k orthogonal matrices O = {Q ∈ ℝ
k×k |�T� = �} . 

Searching for k nonspecific and mutually orthogonal vectors as the solution to (14a) means 
that two solutions �1 and �2 belonging to the Stiefel manifold are considered equivalent if 
there exists some � ∈ O(k) such that �� = �2� . This corresponds to the Grassmann mani-
fold, a quotient space of St(k, n) (Sato & Iwai, 2014), defined as

Points on Gr(k, n) are understood as linear subspaces represented by an arbitrary basis 
stored as an n-by-k orthonormal matrix (Edelman et al., 1999). The choice of the matrix 
� for these points is not unique, unlike for the ones on St(k, n) , with points on Gr being 
defined through the relationship

Optimizing our objective over the Grassmann manifold results in a reduced search space, 
with the solutions being an approximation of the orthonormal eigenvectors of �p , satis-
fying fundamental properties of spectral graph theory, as outlined in Sect.  2.3, without 
imposing additional constraints. This behavior can be observed in Fig. 3, where optimizing 
over the Grassmann manifold leads to the constant first eigenvector of Δp (in red) for the 
Ecoli dataset.

Thus, we approximate function  (14a) as being invariant to any choice of basis and only 
depending on the subspace spanned by the p-eigenvectors, i.e., the columns of � . The 

(16)Gr(k, n) ≃ St(k, n)∕O(k) = {span(�) ∶ � ∈ ℝ
n×k,�T� = �}.

(17)�Gr = {�� | ∀ � ∈ O(k)}, � ∈ ℝ
n×k, n ≫ k.
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optimization problem of (14a) can now be reformulated as an unconstrained problem on the 
Grassmann manifold as follows:

3.3  Optimization techniques

Section 3.2 revealed that the direct multiway p-spectral clustering problem can be approxi-
mated as an optimization problem on a Grassmann manifold. Manifold optimization has 
been extensively developed over the last couple of decades, with the intention of providing 
robust numerical algorithms for problems on subspaces with a Riemannian structure. The 
work of Absil et al. (2007) and Edelman et al. (1999) set the foundation to analyze such 
problems, with a focus on establishing a theory that leads to efficient numerical algorithms 
on the Stiefel St(k, n) and Grassmann Gr(k, n) manifolds. Specifically, they determine the 
Riemannian gradient and Hessian as the most critical ingredients in order to design first 
and second order algorithms on these subspaces. In particular, the Riemannian gradient 
and Hessian are projections of their Euclidean counterparts onto the tangent space of the 
manifold and the mapping between them is well established. Thus, in our case, the pri-
mary inputs to the manifold optimisation routines are the functional Fp (18) along with its 
Euclidean gradient and optionally Hessian when using second order algorithms.

The entries of the Euclidean gradient ( �k ) of Fp with respect to uk
m
 read2

The Hessian of the functional is not sparse and can cause storage and scaling problems for 
big problem sizes. Hence, we use a sparse approximation of the Hessian by discarding the 
low rank terms as shown in Bühler and Hein (2009). The Euclidean Hessian follows the 
sparsity pattern of � and is approximated as

Our objective function Fp(�)  (18) is nonconvex for p ∈ (1, 2) , and thus convergence to 
a global minimum cannot be guaranteed. Minimizing Fp directly for a small value of p 
results, in most cases, in convergence to a nonoptimal local minimum. Therefore, we take 

(18)minimize
�∈Gr(k,n)

Fp(�) =

k�
l

n�
i,j=1

wij�uli − ul
j
�p

2‖�l‖pp
, p ∈ (1, 2].

(19)gk
m
=

�Fp

�uk
m

=
p

‖�k‖pp

�
n�
j=1

wmj�p

�
uk
m
− uk

j

�
− �p

�
uk
m

� n�
i,j=1

wij�uki − uk
j
�p

2‖�k‖pp

�
.

(20)hk
ml

=
�gk

m

�uk
l

≈

⎧⎪⎨⎪⎩

p(p−1)

‖�k‖pp
∑n

j=1
wmj�ukm − uk

j
�p−2 if m = l,

−p(p−1)

‖�k‖pp wml�ukm − uk
l
�p−2 otherwise.

2 See “Appendix A” for the detailed derivation.
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advantage of the fact that our minimization problem (18) exhibits a convex behavior for 
p = 2 , and thus the global minimizer can be computed. The fact that Fp is also continuous 
in p suggests that for close values of p1, p2 , the solution of Fp1

(�),Fp2
(�) will be close 

as well  (Bühler & Hein, 2009). Accordingly, to find a solution at a given p ∈ (1, 2) we 
solve (18) by gradually reducing the value of p (starting from p = 2 ), with the solution at 
the current p serving as the initial iterate for the next p-level. In previous works (Bühler & 
Hein, 2009; Luo et al., 2010) the value of p was decreased linearly. We instead decrease 
p in a pseudocontinuous fashion, inspired by second order interior point methods and the 
way they handle the barrier parameter in order to achieve a superlinear rate of conver-
gence (Byrd et al., 1998). The update rule for the value of p reads:

with � ∈ (0, 1), � ∈ (1, 2), and tol = 10−1 . The lower bound of this update rule is 
p ≥ 1 + tol , thus avoiding numerical instabilities with the discontinuity at p = 1 . The value 
of p is decreased at a superlinear rate, with the majority of the evaluations taking place 
close to p = 1 , where the highest quality clusters are expected to be obtained.

In each level of p, we minimize our objective with a Grassmannian Newton’s method, as 
it has proven to have a superlinear convergence rate close to the local optima and quadratic 
elsewhere  (Absil et  al., 2007). The linear substeps within the Newton method are handled 
by a Grassmannian truncated conjugate gradient scheme  (Antoniou & Wu-Sheng, 2017). 
For sparse or banded adjacency matrices � with bandwidth 2q + 1 the computational cost 
per Newton iteration on the Grassmann is O(nq2k) + O(nk2) , assuming that k, q ≪ n . Such 
matrices are commonly encountered in practical real-world applications. If the bandwidth is 
significantly narrow, i.e. q2 ≈ k , or if � is tridiagonal then the cost becomes O(nk2) (Absil 
et al., 2004). This reduction in the cost per iteration suggests that for very large and sparse 
adjacency matrices one can exploit the benefits from reordering methods that reduce the band-
width size (Davis, 2006).

We use the Riemannian optimization software package ROPTLIB (Huang et al., 2018) to 
perform the Grassmannian Newton’s steps. The Newton’s minimization procedure is termi-
nated if the norm of the gradient ( ‖�k

m
‖ ) at iteration m is close to zero, i.e., ‖�k

m
‖∕‖�k

0
‖ < 10−6 . 

In addition to the stopping criteria for Newton’s method within each p level we also use an 
additional global stopping criterion based on cut values (RCut or NCut) at each p level. If the 
cut value increases by at least 5% compared to its value at the previous p level we terminate 
the algorithm and choose the cluster corresponding to the smallest cut value, thus ensuring the 
semi-monotonic descent of our discrete objective.

(21)p = 1 +max
(
tol, min

(
� ⋅ (p − 1), (p − 1)�

))
,
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3.4  Discretizing the p‑eigenvectors

Similar to multiway spectral clustering in 2-norm (see Sect. 2.4), the final clustering solution 
is obtained by discretizing the multiple p-eigenvectors, stored in the matrix � , obtained by 
solving the Grassmannian optimization problem (18). Various approaches have been proposed 
for this discretization in the 2-norm (Wierzchoń & Kłopotek, 2018; Verma & Meila, 2005).

We consider two different methods for the discretization of the p-eigenvectors. The first 
one is k-means, which is the most commonly used algorithm for the clustering of eigenvectors. 
However, the results of k-means depend heavily on the initial guess, and, therefore, in gen-
eral k-means is run multiple times with different initial guesses and the best result is picked. 
We follow the approach of Verma and Meila (2005) with multiple orthogonal and random 
initial guesses that generally lead to a stable result. The second algorithm that we employ for 
the clustering of the p-eigenvectors is applicable only when minimizing the NCut graph cut 
metric. It is based on the fact that the application of a rotation matrix � transforms the matrix 
� , containing the normalized p-eigenvectors in its columns, into a cluster indicator matrix 
containing only one nonzero entry per row that indicates the cluster index  (Wierzchoń & 
Kłopotek, 2018). We consider the set of indicator matrices J = {� ∈ {0, 1}n×k ∶ � ⋅ �k = �n} 
and search for the matrices � and � that minimize the functional

We follow the approach of Yu and Shi (2003) for the solution of this optimization prob-
lem, that iteratively computes this discretization using singular value decomposition and 
non-maximum supression. In what follows the clustering solutions obtained by employing 
k-means on the p-eigenvectors are denoted as pGrass-kmeans, and the ones obtained by the 
rotation of the normalized eigenvectors after solving (22) are denoted as pGrass-disc.

(22)
min

�T� = �

� ∈ J

f (�, �) = min
�T� = �

� ∈ J

‖�� − �‖F .
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3.5  Multiway p‑Grassmann clustering algorithm



Machine Learning 

1 3

A general summary of the algorithmic scheme employed for the unnormalized (RCut 
based) or normalized (NCut based) multiway p-Grassmann spectral clustering is offered in 
Algorithm 1. The inputs of the algorithm are the adjacency matrix � of the graph in ques-
tion, the number of the desired clusters k, the parameters � , � from (21), the final value of p 
denoted as pw , and whether the clustering will be based on the unnormalized (RCut) or the 
normalized (NCut) objective. As output we obtain the indices of the vertices forming the 
clusters and the discrete cut value obtained from the clustering. In steps 2–8 we solve the 
optimization problem for p = 2 and obtain k-eigenvectors stored in matrix � . Their discre-
tization, through the k-means algorithm or the solution of (22) is performed in step 9, and 
the cut value is initialized accordingly in step 10. The main loop of the algorithm in steps 
12–25 terminates if the value of p, which is initialized in 11 and reduced in a pseudocon-
tinuous fashion in 13, reaches the final value pw or the cut value stops decreasing mono-
tonically, with a tolerance of 5% on this monotonic reduction. The multiple unormalized 
or normalized p-eigenvectors are estimated on the manifold Gr(k, n) in steps 14–18, and the 
discrete solution is obtained in 19. Then the cut values are updated in steps 20–24 if they 
are smaller than their value in the previous iteration.

4  Numerical results

We demonstrate in what follows the effectiveness of the p-Grassmann spectral cluster-
ing method, summarized in Algorithm 1. In Sect. 4.1 we report the setup of our numeri-
cal experiments and in Sect. 4.2 we outline the external methods considered in our com-
parisons, and discuss on the key differences between our approach and the most closely 
related method considered. Our results on synthetic graphs are presented in Sect. 4.3 and 
on graphs emerging from facial image and handwritten characters classification problems 
in Sect. 4.4.

4.1  Experimental setup

For all test cases we report results concerning the quality of the cut in terms of RCut (3) 
and NCut  (4), unless specified otherwise. The corresponding accuracy of the labelling 
assignment is measured in terms of the unsupervised clustering accuracy ( ACC ∈ [0, 1] ) 
and the normalized mutual information ( NMI ∈ [0, 1]) (Dalianis, 2018). For both metrics 
a value of 1 suggests a perfect grouping of the nodes according to the true labels. To this 
end, we work strictly with graphs that have ground-truth labels, and set the number of clus-
ters k equal to the total number of labelled classes. However, our approach is directly appli-
cable to graphs with no ground-truth information for unsupervised community detection. 
We use MATLAB R2020a for our implementation, and run experiments on a total of 80 
graphs, organized in 2 sets. The first one comprises 27 artificial test cases, with the pur-
pose of demonstrating the impact of different optimization aspects of p-Grassmann spec-
tral clustering. The second one includes 53 graphs originating from image classification 
and text recognition applications. For all methods under consideration we report the mean 
results after 10 runs. In all numerical experiments the connectivity matrix � ∈ ℝ

n×n is cre-
ated from a k-nearest neighbors routine, with the number of nearest neighbors (NN) set 
such that the resulting graph is connected. The similarity matrix � ∈ ℝ

n×n between the data 
points is defined similarly to Zelnik-Manor and Perona (2005) as
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with �i standing for the Euclidean distance between the ith data point and its kth nearest 
neighbor. The adjacency matrix � is then created as

The maximum number of Newton iterations for our method is set to 20 for every 
p-level, and the final p-level is set to pw = 1.1 . We fix the parameters of  (21) 
at � = 0.9, � = 1.25 . This selection results in the following 8 total p-levels, i.e. 
p = {2, 1.9, 1.71, 1.539, 1.3851, 1.2466, 1.171, 1.1} . When using k-means for the discre-
tization of the p-eigenvectors (pGrass-kmeans) we run k-means with 10 orthogonal and 20 
random initial guesses. In order to select the best result out of the different k-means runs 
we use our objective, i.e., RCut or NCut (lower the better) as the primary ranking met-
ric. Then the labelling accuracy metrics (ACC, NMI) are calculated based on the clusters 
obtained from the minimization of the cut values. When solving (22) for the clustering of 
the p-eigenvectors (pGrass-disc) the solution is unique.

4.2  Methods under consideration

We compare our method against a diverse selection of state-of-the-art clustering 
algorithms: 

1. Spec (Luxburg, 2007): Traditional direct multiway spectral clustering. We consider the 
eigenvectors of the combinatorial graph Laplacian �2 for unnormalized clustering, and 
follow the approach of Yu and Shi (2003) with �(n)

2
 for the normalized case.

2. pSpec (Bühler & Hein, 2009): Recursive bi-partitioning with the unnormalized and 
normalized graph p-Laplacian, using a hybrid Newton-gradient descent scheme for the 
minimization of the nonlinear objective.

sij = max{si(j), sj(i)} with si(j) = exp

�
−4

‖xi − xj‖2
�2
i

�

(23)� = �⊙ �.

(b)(a)

Fig. 4  Analysis of key differences between (Luo et al., 2010) and our work. a The accuracy of the approxi-
mated gradient used in Luo et  al. (2010) compared against its numerical approximation using first order 
Taylor approximation. The x-axis denotes the different step size ( � ) used in the Taylor expansion (see text 
for details). The experiment is conducted using the UMIST dataset with a p value of 1.8 and k = 20 number 
of clusters. b The values of the first eigenvector �(1)

p
 of the graph p-Laplacian Δp for the UMIST dataset, 

estimated by the method in Luo et al. (2010) (pMulti) and by our approach (pGrass)
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3. kCuts (Rangapuram et al., 2014): A tight continuous relaxation for the balanced direct 
k-cut problem, using a monotonically descending algorithm for the minimization of the 
resulting sum of Rayleigh quotients. The method is applicable for the minimization of 
a variety of discrete graph cut metrics, including RCut and NCut. We use 12 starting 
initializations for the routine, as suggested by the authors.

4. Graclus  (Dhillon et al., 2007): A multilevel algorithm that optimizes for various 
weighted graph clustering objectives using a weighted kernel k-means objective, thus 
eliminating the need for eigenvector computations. We use the Kerhighan–Lin (Ker-
nighan & Lin, 1970) algorithm at the coarsest level clustering and 10 local searches 
at each level for increased accuracy. Graclus minimizes directly only the NCut, thus 
it is omitted from any comparisons in the computation of the RCut and the associated 
accuracy metrics.

5. pMulti (Luo et al., 2010): The first full eigenvector analysis of p-Laplacian leading to 
direct multiway clustering, and the most directly related method to our p-Grassmann 
approach. The discrete minimization objective for this approach is the RCut, thus we 
omit it from any NCut based comparisons.

The code for the methods outlined in 1–4 is available online.3 We implement method 
5, as described in  Luo et  al. (2010), and briefly outline here the key differences from 

(a) (b)

(c)

Fig. 5  Clustering the two-moons dataset (illustrated). a The estimation of RCut and of the associated ACC 
and NMI with the pGrass algorithm for p ∈ [1.1, 2] . b The estimation of NCut and of the associated ACC 
and NMI with the pGrass algorithm for p ∈ [1.1, 2] . c Comparative results for the clustering methods under 
consideration

3 The Spec code is available at: https:// github. com/ panji 530/ Ncut9. The pSpec code is available at: https:// 
www. ml. uni- saarl and. de/ code/ pSpec tralC luste ring. The kCuts code is available at: https:// www. ml. uni- saarl 
and. de/ code/ balan cedKC uts. The Graclus code is available at: https:// www. cs. utexas. edu/ users/ dml/ Softw 
are/ gracl us. html.

https://github.com/panji530/Ncut9
https://www.ml.uni-saarland.de/code/pSpectralClustering
https://www.ml.uni-saarland.de/code/pSpectralClustering
https://www.ml.uni-saarland.de/code/balancedKCuts
https://www.ml.uni-saarland.de/code/balancedKCuts
https://www.cs.utexas.edu/users/dml/Software/graclus.html
https://www.cs.utexas.edu/users/dml/Software/graclus.html
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our approach. The minimization of the constrained multiway p-spectral problem  (14) is 
achieved through an approximated gradient descent scheme which suffers from inaccura-
cies. This is illustrated in Fig. 4a where the ratio of directional derivative F′ obtained using 

(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 6  Clustering the LFR benchmark datasets with a noise component � . a NCut values and the associated 
ACC and NMI for � = 0.38 for a decreasing value of p. b Norm of the gradient ‖�k

m
‖ over Newton iterations 

m for � = 0.38 for three different p-levels. c–h Collective results of the fraction of times a method achieves 
the best and the strictly best metrics for the entire benchmark with � ∈ [0.1, 0.4]
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a first order Taylor expansion4 is compared to that of the computed gradient from Luo et al. 
(2010) and ours (19), for the UMIST dataset (Graham & Allinson, 1998) at p = 1.8 . The 
ratio of (F(� + �) − F(�))∕⟨�,∇F(�)⟩ should ideally approach one as the step size � in 
the Taylor expansion decreases. However, with the approximated gradient defined in Luo 
et al. (2010) this is not the case (see Fig. 4a). Due to this gradient inaccuracy, fundamental 
properties of the spectrum of �p are no longer valid. For example, the degeneracy of the 
eigenvalues, corresponding to the constant eigenvectors � = c ⋅ � , no longer indicates the 
number of connected components in the graph. In contrast, our p-Grassmann approach, 
referred to as pGrass, preserves this fundamental property of �p , as illustrated in Fig. 4b. 
Furthermore, since the functional F is nonconvex the modified gradient descent approach 
used in their work has a suboptimal convergence rate, as opposed to the properties of our 
method. Finally, the linear reduction rate of p in Luo et al. (2010) results in fewer evalua-
tions taking place close to p ≈ 1 , and their method consider only the minimization of the 
unnormalized p-spectral objective, associated with the RCut metric.

4.3  Artificial datasets experiments

In this subsection we focus on artificial datasets widely used as test cases for clustering 
algorithms, in order to display the behavior of our pGrassmann clustering algorithm in 
challenging scenarios. In particular, in Sect. 4.3.1 we are interested in studying the effect 
that the reduction of the value of p has on the clustering result for a graph corrupted by 
high-dimensional noise and for a set of 16 stochastic block model graphs. In Sect. 4.3.2, we 
shift our attention to Gaussian datasets, and study the impact of a large number of ground-
truth classes on the accuracy of our method. Last, in Sect. 4.3.3 we take a closer look at the 
eigenvectors of the graph p-Laplacian and the differences between standard spectral and 
p-spectral embedding on a synthetic dataset with three ground-truth classes. The results 
obtained by discretizing the p-eigenvectors with the k-means algorithm and by solving (22) 
are almost identical for these artificial datasets, therefore in what follows in this subsection 
only the results of pGrass-kmeans are presented, and are referred to as pGrass.

4.3.1  Reducing the value of p

We initially study the impact of the reduction of the value of p ∈ (1, 2] in  (18) on the 
high-dimensional two-moons dataset, which is commonly used in evaluating graph clus-
tering algorithms. It consists of two half-circles in ℝ2 embedded into a 100-dimensional 
space with Gaussian noise N(0, �2

�100) . This high-dimensional noise results in a complex 
edge formation, as illustrated in Fig. 5 for n = 2000 points and a variance of �2 = 0.02 . In 
Fig. 5a we show the effect of reducing p from 2 towards 1 on the resulting RCut and on the 
associated labelling accuracy metrics (ACC, NMI), and in Fig. 5b we show the accuracy 
results of the normalized p-Grassmann clustering variant with NCut as its objective. In 
both cases the monotonic descent of the graph cut metrics leads to nearly perfect accu-
racies at p = 1.1 . In Fig.  5c we present the results obtained by all the methods consid-
ered. Our algorithm performs significantly better than Spec, pMulti and Graclus, while it 
achieves almost identical cut and accuracy values to the pSpec and kCuts methods. The 

4 The first order Taylor expansion reads F(� + �) = F(�) + ⟨�,∇F(�)⟩ , where � is the step size.
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Fig. 7  A subset of the synthetic datasets used. a One of the Gaussian datasets considered in Sect.  4.3.2 
with k = 8 gound-truth clusters, n = 3200 nodes and m = 19319 edges. b The worms dataset, considered 
in Sect.  4.3.3, consists of n = 5967 points with three ground-truth communities. The resulting graph has 
m = 36031 edges. (Best viewed in color.)

(a) (b)

(d)(c)

Fig. 8  Clustering the Gaussian datasets with an increasing number of clusters k. a RCut values for all the 
methods under consideration. b NMI values for all the methods under consideration based on the RCut. c 
NCut values for all the methods under consideration. d NMI values for all the methods under consideration 
based on the NCut
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identical results with pSpec are expected in this case, as for a number of clusters k = 2 the 
minimization objective of Bühler and Hein (2009) is equivalent with ours (18).

We further demonstrate in Fig. 6 the effectiveness of the introduced Algorithm 1 in find-
ing the best available clusters even in scenarios where the discrete graph cut metrics are not 
monotonically descending for a decreasing value of p. To this end, we consider the LFR 
model (Lancichinetti et al., 2008), which is a stochastic block model whose nodes’ degrees 
follow the power law distribution with a parameter � controlling what fraction of a node’s 
neighbours is outside the node’s block. We follow the approach of  Fountoulakis et  al. 
(2020) and pick � ∈ [0.1, 0.4] , with this range giving rise to graphs that contain increas-
ingly noisy clusters for an increasing value of � . The number of clusters in this benchmark 
ranges from k = 17 to k = 20 . In Fig. 6a we show the value of NCut and of the associated 
accuracy metrics ACC and NMI for the case with � = 0.38 . The monotonic minimization 
of NCut, with a tolerance of 5% as specified in Algorithm 1, is interrupted at p = 1.539 . 
At this p-level the graph cut reaches a minimum value of NCut = 7.187 , with the corre-
sponding accuracy metrics being at their maximum values ACC = 0.9970, NMI = 0.9944 . 
Our algorithm stops the reduction of the value of p at this level, however we report the 
results of the optimization procedure up to the final level of p = 1.1 in order to demonstrate 
that the increasing nonlinearity close to p ≈ 1 may lead to unfavorable results. At the final 
p-level the value of the graph cut has ascended to NCut = 7.228 , with the values of the 
accuracy metrics being decreased at ACC = 0.9850 and NMI = 0.9737 . In Fig. 6b we plot 
the norm of the gradient ‖�k

m
‖ over the Newton iterations m for the levels p = 1.539 (best 

solution) and two subsequent levels closer to p ≈ 1 (p = 1.385, p = 1.171) . The monotonic 
minimization of ‖�k

m
‖ at the best p-level is followed by an increasingly oscillating behav-

ior as p → 1 . This showcases that the monotonic minimization of our discrete graph cut 
metric NCut is directly associated with the monotonic decrease of the gradient norm of 
our continuous objective (19). The proposed Algorithm  1 is guaranteed to find the best 
available solution from all p-levels under consideration. This is highlighted in Fig. 6c–h, 
where the results for all the LFR benchmark datasets (in total 16 cases) for all the meth-
ods under consideration are collected. We present the percentage of times a method found 
the best and the strictly best solution in terms of graph cut metrics (RCut, NCut), and the 
associated labelling accuracy values in ACC and NMI. Our p-Grassmann clustering rou-
tine outperforms the external methods Spec, pSpec, pMulti and Graclus in all the metrics 
under question, and achieves comparable scores with the kCuts algorithm. In particular, the 
unnormalized pGrass algorithm achieves the best—strictly best solutions in 75–37.5% of 
the cases when minimizing the RCut, in 68.75–0% when finding the associated ACC and in 
75–37.5% when finding the associated NMI. The corresponding percentages for the kCuts 
algorithm are 37.5–0% for RCut, 75–12.5% for ACC, and 50–12.5% for NMI. The normal-
ized pGrass algorithm achieves the best—strictly best solutions in 81.25–12.50% of the 
cases when minimizing the NCut, in 87.50–18.75% when finding the associated ACC, and 
in 81.25–25% when finding the associated NMI. The corresponding percentages for the 
kCuts algorithm are 81.25–12.5% for NCut, 81.25–6.25% for ACC, and 56.25–12.5% for 
NMI. The numeric values of the results for the LFR benchmark datasets are summarized in 
Table 2 in “Appendix B”.

4.3.2  Increasing the number of clusters (k)

In order to study the clustering quality of our algorithm as the number of clusters (k) 
increases we utilize a set of synthetic Gaussian datasets with an increasing number of 
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ground-truth clusters. Each dataset consists of k clusters containing 400 points each. The 
clusters are generated using a Gaussian distribution with a variance of �2 = 0.055 , with the 
mean of each cluster then placed equidistantly on a 2D square grid (see Fig. 7a). For the 
experiment we generated datasets with varying k = {2, 5, 8, 18, 25, 32, 41, 50, 61} , resulting 
in 9 graphs with an increasing number of nodes, edges and clusters.

In Fig. 8 we present the mean values and the standard deviation of the cut metrics and 
the associated accuracy metric NMI for the Gaussian datasets. In Fig.  8a we show the 
results obtained when minimizing RCut and in Fig. 8b the corresponding NMI. Our pGrass 
clustering routine finds the minimum RCut in 7/9 cases and the strictly minimum in 5/9 
cases. In terms of NMI, pGrass attains the maximum in 8/9 cases and the strictly maximum 
in 7/9 cases. The results obtained when attempting to minimize the NCut are shown in 
Fig. 8c, with the corresponding NMI values shown in Fig. 8d. Our algorithm finds the best 
NCut in 7/9 cases and the strictly best in 5/9 cases. In terms of NMI our algorithm fares the 
best in 7/9 cases and the strictly best in 6/9 cases. No significant deviations from the mean 
values are reported for pGrass.

We note that in both the normalized and unormalized experiments the benefits of our 
method are becoming more evident as the number of clusters k increases. In particular, 
for k ≥ 25 pGrass attains the strictly best results in terms of both graph cut and labelling 
accuracy. This behavior demonstrates that the p-Grassmann algorithm is favorable for 
clustering datasets with a large number of clusters not only from recursive approaches 

Fig. 9  Embedding results for the worms dataset. Starting from the left, the points of the dataset are illus-
trated using the entries of the second and third eigenvectors of the �2 in (a), and of �p for p = 1.1 in (b), as 
x and y coordinates. The heat maps that follow depict the density of the points from each of the three clus-
ters. (Best viewed in color.)
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(pSpec, Graclus), which is expected due to the recursive methods’ instabilities (Simon & 
Teng, 1997), but also from the direct multiway methods under consideration (Spec, kCuts, 
pMulti).

4.3.3  p‑spectral embedding.

In order to highlight the differences between the embeddings achieved using the eigenvec-
tors of the combinatorial graph Laplacian �2 and those of the graph p-Laplacian �p , we 
utilize the Worms2 dataset (Sieranoja & Fränti, 2019). This dataset is composed of three 
individual worm-like shapes that start from a random position and move towards a random 
direction. Points are drawn according to a Gaussian distribution with both low and high 
variance components that are gradually increasing as the points populate the 2D space. The 
direction of the generation of each worm-like shape is orthogonal to the previous one. The 
dataset consists of n = 5967 points with three ground-truth communities and the resulting 
graph has m = 36,031 edges (see Fig. 7b).

We visualize the embedding results obtained by standard spectral clustering (Spec) and 
our method (pGrass) in Fig. 9. There are three distinct clusters in the dataset. We utilize the 
second and third eigenvectors as the x- and y-axis, respectively. The p-spectral embedding 
(Fig. 9b) organizes the nodes of the dataset in clearly distinguishable groups, as opposed 
to the spectral embedding (Fig.  9a). The heat maps illustrate the density of points from 
each cluster in the two different embeddings (p = 2, p = 1.2) . We consider ten bins for 
each direction in order to measure the density for each cluster. The limits of the colorbar 
are set in both cases to the maximum density values obtained by our method, for a clear 
comparison.

Upon visual inspection, the pGrass algorithm performs superior to its the traditional 
Spec routine in the task of creating sharp cuts of the data. Since the last stage of both 
algorithms is to cluster these points according to their relative distances (see Sect. 3.4 on 
discretization), the p-spectral coordinates of Fig.  9b are expected to lead to clusters of 
higher quality. This hypothesis is supported by our numerical results. The quality of the cut 
achieved by our algorithm ( RCut = 0.0062 ) is 49.6% better compared to the one obtained 
by spectral clustering ( RCut = 0.0123 ). This improvement in terms of graph cut criteria 

Table 1  Clustering results for the facial image datasets of Sect. 4.4.1

Both variants of our algorithm, pGrass-kmeans and pGrass-disc are considered. For each dataset we report 
the mean value (in bold) of NCut, ACC and NMI achieved by the best method, and the percentage the 
remaining methods are inferior to that value

Method Olivetti Faces95 FACES

NCut ACC NMI NCut ACC NMI NCut ACC NMI

pGrass—
kmeans

3.984 − 4.15% − 2.28% 2.658 − 5.77% − 4.24% 29.42 − 3.58% − 2.41%

pGrass—
disc

− 4.50% 0.716 0.831 − 4.50% 0.609 0.758 − 6.08% 0.802 0.91

Spec (%) − 24.84 − 9.19 − 5.27 − 24.84 − 4.23 − 0.90 − 15.05 − 2.50 − 1.23
pSpec (%) − 8.04 − 7.41 − 3.06 − 8.04 − 6.86 − 6.02 − 4.34 − 6.73 − 2.71
kCuts (%) − 1.41 − 6.78 − 3.20 − 1.41 − 10.37 − 7.70 − 7.67 − 13.0 − 6.99
Graclus (%) − 23.10 − 6.36 − 2.25 − 23.11 − 9.25 − 2.38 − 9.98 − 3.70 − 2.56
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also leads to a slightly better labelling accuracy for this dataset, with our method achieving 
scores of ACC = 0.985, NMI = 0.93 as opposed to the traditional spectral routine which 
achieves scores of ACC = 0.981, NMI = 0.92.

4.4  Real‑world experiments

We now proceed with the application of our p-Grassmann spectral clustering, as outlined 
in Algorithm 1, in graphs emerging from real-world problems. In Sect. 4.4.1 we consider 
the problem of classifying facial images according to their labels and in Sect.  4.4.2 the 
problem of distinguishing handwritten characters. In both cases graphs are created accord-
ing to the procedure outlined in Sect. 4.1. We report the mean results, obtained after 10 
runs for each method under consideration, in minimizing the NCut and the corresponding 
labelling accuracies. We present here the both the results obtained after applying k-means 
for the clustering of the p-eigenvectors (pGrass-kmeans), and the results after solving (22) 
(pGrass-disc).

4.4.1  Classification of facial images

We consider the following publicly available5 datasets depicting facial expressions

– Olivetti  (Samaria & Harter, 1994): A set of 10 different facial images of 40 distinct 
subjects at resolution 64 × 64 pixels, taken at different times, varying lighting, facial 
expressions and facial details.

(a) (b) (c)

Fig. 10  Clustering the Omniglot database of handwritten digits. The red bar indicated the percentage of 
times that a method achieved the best solution and the green bar the percentage of times it achieved the 
strictly best solution. a NCut values, b ACC values based on NCut, c NMI values based on NCut

5 The Olivetti dataset is available at https:// cam- orl. co. uk/ faced ataba se. html. The faces95 is available at 
https:// cmp. felk. cvut. cz/ space lib/ faces/. The FACES dataset is available after registration at https:// faces. 
mpdl. mpg. de/ imeji/.

https://cam-orl.co.uk/facedatabase.html
https://cmp.felk.cvut.cz/spacelib/faces/
https://faces.mpdl.mpg.de/imeji/
https://faces.mpdl.mpg.de/imeji/
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– Faces95  (Hond & Spacek, 1997): A collection of 1440 pictures with resolution 
180 × 200 pixels from 72 individuals that were asked to move while a sequence of 20 
images was taken.

– FACES (Ebner et al., 2010): A set of images with resolution 2835 × 3543 pixels of nat-
uralistic faces of 171 individuals displaying 6 facial expressions. The database consists 
of 2 sets of pictures per person and per facial expression, resulting in a total of 2052 
images. We downsample the images at 20% of their initial resolution to decrease the 
problem size when creating the adjacency matrix �.

For these datasets the number of nearest neighbors needed for a connected graph is NN = 6 
for Olivetti faces and NN = 10 for both Faces95 and FACES. We summarize our results 
in Table 1. For each dataset we report the mean value (in bold) of NCut, ACC and NMI 
achieved by the best method, and the percentage the remaining methods are inferior to that 
value. Inferiority in percentage values is defined as I = 100 ⋅ � ⋅

(
eref − ebest

)
∕ebest, where 

ebest is the best value, eref the value it is compared against, and � = −1 for minimization 
scenarios (NCut) and � = 1 for maximization ones (ACC, NMI). Our algorithmic variant 
pGrass-kmeans finds the best NCut result in all three datasets. However, these minimum 
cut values do not correspond to a maximization of the labelling accuracy metrics. Instead, 
our algorithmic variant pGrass-disc, which discretizes the eigenvectors of the normal-
ized graph p-Laplacian Δ(n)

p
 with the orthonormal transformation described in Yu and Shi 

(2003), achieves the highest ACC and NMI values in all cases. Similarly to the numerical 
experiments on artificial datasets of Sect. 4.3.2, no significant deviations (< 1%) from the 
mean reported values are observed for pGrass.

4.4.2  Classification of handwritten characters

For the problem of classifying handwritten characters we consider the Omniglot data-
base6  (Lake et  al., 2015). It consists of 1623 different handwritten characters from 50 
alphabets. Each of the 1623 characters was drawn online via Amazon’s Mechanical Turk 
by 20 different people, with each drawing having dimensions of 105 × 105 pixels. For each 
of these 50 alphabets we consider the problem of grouping the symbols in their respective 
classes. The number of nearest neighbors is set to NN = 10 for all cases.

We present the percentage of times a method achieved the best and the strictly best solu-
tion in Fig. 10. In Fig. 10a we see that our variant pGrass-kmeans obtains the best NCut 
values in 80% of the cases, with the remaining methods pGrass-disc, Spec, pSpec, kCuts 
and Graclus obtaining 2%, 0%, 0%, 2%, and 16% respectively. There are no ties in the NCut 
results, thus best and strictly best percentages are identical. In terms of ACC, illustrated 
in Fig.  10b, our variant pGrass-disc find the best solution in 72% of the cases, and the 
strictly best in 56%. The remaining methods pGrass-kmeans, Spec, pSpec, kCuts, Graclus 
find the best-strictly best solution in 12–10%, 20–8%, 0–0%, 8.0–4.0% and 6.0–6.0% of the 
cases respectively. Finally, the NMI results of Fig. 10c indicate that the pGrass-disc variant 
finds the best solution in 74% of the cases, with the remaining methods pGrass-kmeans, 
Spec, pSpec, kCuts, Graclus achieving a score of 2%, 6%, 0%, 4%, and 14% respectively. 
Similarly to the NCut results all NMI solutions are unique, thus best and strictly best 

6 The Omniglot database is available at https:// github. com/ brend enlake/ omnig lot.

https://github.com/brendenlake/omniglot
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percentages are identical. The numeric values of the results for the Omniglot database are 
summarized in Table 3 in “Appendix B”.

4.5  Discussion of real‑world results

All real-world numerical experiments presented above demonstrate that clustering with the 
pGrass algorithm leads to either obtaining the best (minimum) graph cut values, or the 
best (maximum) labelling accuracy metrics. In particular, the pGrass-kmeans variant, that 
discretizes the resulting p-eigenvectors from the Grassmannian optimization problem (18) 
with the k-means algorithm, showcases superior results in terms of the balanced graph 
cut metric NCut (4). This variant (pGrass-kmeans) attains the minimum NCut value from 
all the methods under consideration in all three facial expression datasets under question 
in Sect. 4.4.1, and the minimum NCut value in 80% of the total 50 handwritten datasets 
of Sect.  4.4.2. All these solutions were unique, i.e., none of the external graph cluster-
ing methods under consideration reported the same cut. However, as reported in multiple 
related works (Bühler & Hein, 2009; Rangapuram et al., 2014; Fountoulakis et al., 2020) 
the minimization of balanced graph cut metrics does not necessarily lead to a increase in 
the accuracy of the labelling assignment for real-world data. The creation of the adjacency 
matrix plays a vital role in this discrepancy, and is an active field of research  (Egilmez 
et al., 2017; Kumar et al., 2020; Slawski and Hein 2015). We demonstrate that for widely 
used adjacency matrices (23), employing a different technique for the discretization of the 
p-eigenvectors (pGrass-disc) leads to favorable labelling accuracy assignments, even if the 
graph cut values are inferior than the ones by pGrass-kmeans. Rotating the eigenvectors in 
order to obtain discrete partitions has been reported to be particularly successful in maxi-
mizing the clustering accuracy metrics of labelled image data  (Zelnik-Manor & Perona, 
2005; Zhu et al., 2020), and our numerical experiments further support this observation. 
The algorithmic variant pGrass-disc minimizes  (22) as suggested in Yu and Shi (2003), 
and results in the maximum ACC and NMI for all three facial expressions datasets. In the 
classification of handwritten digits this variant finds the best ACC in 72%, the strictly best 
ACC in 56%, and the best NMI in 74% of the cases, with the NMI solutions being unique. 
This showcases that the p-spectral embeddings found by  (18) can lead to the minimiza-
tion of the balanced graph cut metric (pGrass-kmeans), which is the primary objective of 
graph partitioning applications, or to the maximization of the labelling assignment accu-
racy (pGrass-disc), which is the goal in classification problems.

5  Conclusions

In this work, we developed a new method for multiway p-spectral clustering that leverages 
recent advancements in Riemannian optimization. This was achieved by reformulating the 
problem of obtaining multiple eigenvectors of the graph p-Laplacian as an unconstrained mini-
mization problem on a Grassmann manifold. Our method reduces the value of p in a pseudo-
continuous manner, and ensures that the best result with respect to balanced graph cut metrics 
is retrieved from the various p-levels. Our method is compared against various state-of-the-art 
methods in a series of artificial and real-world tests, showcasing that the introduced algorithm 
offers significant gains in the majority of the cases in terms of the balanced graph cut met-
rics and in terms of the accuracy of the labelling assignment. For the high-dimensional two 
moons example we find that pGrass improves monototically the discrete graph cut metrics and 
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the labelling accuracies as the value of p tends to 1. Here pGrass performs equivalently to other 
p-spectral routines and outperforms traditional clustering methods. When clustering various 
graphs from the stochastic block model we observe that the monotonic minimization of the 
discrete metrics is not guaranteed close to p ≈ 1 , but pGrass selects the best solution from the 
available p-levels. Here our algorithm fares the best in the majority of the cases, and is compa-
rable only with the external method kCuts. When testing Gaussian datasets, both the unnormal-
ized and normalized pGrass clustering routines perform the best in all the metrics considered, 
with the benefits becoming more evident as the number of clusters increase. Furthermore, we 
saw how the spectral embeddings obtained by pGrass are more likely to lead to high quality 
clusterings than the embeddings achieved by traditional spectral methods in the 2-norm. Our 
results from the numerical experiments on real-world datasets highlight that the eigenvectors 
obtained by pGrass can lead to either superior graph cut values or labelling accuracy metrics, 
depending on the clustering method that transforms them into discrete partitions. The consist-
ency of these results, from the artificial tests to the real-world cases, highlights the effectiveness 
of the introduced clustering algorithm and the broad applicability of the presented work.

Appendix A

In this Appendix we show the derivation of the Euclidean gradient gk
m
 (introduced in (19)) and 

the approximate Hessian hk
mn

 (introduced in (20)) of the functional Fp.
The m-th entry of the Euclidean gradient ( �k ) of Fp with respect to uk is

(24)

gk
m
=

�Fp

�uk
m

=
�

�uk
m

n�
i,j=1

wij
���uki − uk

j

���
p

2‖��‖pp
=

�

�uk
m

A

B
,

gk
m
=

�Fp

�uk
m

=
�

�uk
m

n�
i,j=1

wij
���uki − uk

j

���
p

2‖��‖pp
where A =

n�
i,j=1

wij
���u

k
i
− uk

j

���
p

and B = 2‖��‖p
p
.

gk
m
=

1

B

�A

�uk
m

−
�B

�uk
m

A

B2
=

1

B

�
�A

�uk
m

−
�B

�uk
m

A

B

�
, and applying the product rule

(25)

�A

�uk
m

=
�

�uk
m

n∑
i,j=1

wij
|||u

k
i
− uk

j

|||
p

=

n∑
i,j=1

wijp
|||u

k
i
− uk

j

|||
p−1

sign(uk
i
− uk

j
)
�

�uk
m

(uk
i
− uk

j
)

�A

�uk
m

= p

n∑
i,j=1

wij�p(u
k
i
− uk

j
)
�

�uk
m

(uk
i
− uk

j
) , since �p(x) = |x|p−1 sign(x), with

(26)
�

�uk
m

(uk
i
− uk

j
) =

⎧⎪⎨⎪⎩

1 if i = m and j ≠ m

−1 if j = m and i ≠ m

0 else

⎫⎪⎬⎪⎭
.



 Machine Learning

1 3

The Euclidean Hessian of Fp with respect to uk is the matrix �� . Its m-th row and l-th col-
umn entry is

The Hessian matrix as in (30) is not sparse and will cause storage problems. Therefore, we 
neglect the lower rank updates (refer to Bühler and Hein (2009) for details). The existing 
higher rank term can then be simplified, in the same way with the gradient derivation seen 
above, to arrive at the approximated Hessian:

Appendix B

We present in this Appendix the numerical results for the experiments of Sects. 4.3.1 and 4.4.2 
on the LFR benchmark datasets and the Omniglot database of handwritten characters respec-
tively. For the number of times each method under consideration found the best and the strictly 
best solutions we refer to Figs. 6 and 10 for the LFR datasets and the Omniglot cases respec-
tively. The clustering methods under consideration are listed in Sect. 4.2 (see Tables 2, 3).
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