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Abstract: Inhibitors of phosphatidylinositol 3-kinase (PI3K) and Bruton tyrosine kinase (BTK) rep-
resent a recognized option for the treatment of patients affected by indolent B cell lymphomas.
However, small molecules as single agents show limited success in their ability in inducing complete
responses, with only partial remission achieved in most patients, suggesting the need for combination
therapies. IRAK4 is a protein kinase downstream of the Toll-like receptor signaling (TLR), a driver
pathway of secondary tumor◦ resistance in both hematological and solid tumor malignancies. Acti-
vation of IRAK4 upon TLRs and IL-1 receptor (IL-1R) stimulation and through the adaptor protein
MYD88 initiates a signaling cascade that induces cytokine and survival factor expression mediated
by the transcription factor NF-κB. MYD88-L265P encoding mutations occur in diffuse large B-cell
lymphomas, in lymphoplasmacytic lymphomas and in few marginal zone lymphomas (MZL). The
IRAK4 inhibitor emavusertib (CA-4948) has shown early safety and clinical activity in lymphoma
and leukemia patients. In this preclinical study, we assessed emavusertib effectiveness in MZL, both
as single agent and in combination with targeted agents, with a particular focus on its capability
to overcome resistance to BTK and PI3K inhibitors. We showed that the presence of MYD88 L265P
mutation in bona fide MZL cell lines confers sensitivity to the IRAK4 inhibitor emavusertib as single
agent. Emavusertib-based combinations improved the sensitivity of MZL cells to BTK and PI3K
inhibitors, including cells with a secondary resistance to these agents. Emavusertib exerted its activity
via inhibition of NF-κB signaling and induction of apoptosis. Considering the early safety data
from clinical trials, our study identifies the IRAK4 inhibitor emavusertib as a novel compound to be
explored in trials for patients with MYD88-mutated indolent B cell lymphomas as single agent and as
combination partner with BTK or PI3K inhibitors in unselected populations of patients.
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1. Introduction

The introduction of inhibitors of phosphatidylinositol 3-kinase (PI3K) and Bruton
tyrosine kinase (BTK) has represented a big step forward in the treatment of patients
affected by indolent B cell lymphomas, including marginal zone lymphoma (MZL) and
lymphoplasmacytic lymphoma (LPL) [1–7]. Idelalisib was the first-in-class PI3Kδ inhibitor
to be approved by the U.S. Food and Drug Administration (FDA), in combination with
the anti-CD20 monoclonal antibody rituximab, for the treatment of indolent B cell lym-
phoma [4]. Additional PI3K-inhibitors such as copanlisib, a pan-class I PI3K inhibitor
with predominant activity against PI3Kα/PI3Kδ, and umbralisib, the first-in-class dual
phosphatidylinositol 3-kinase delta (PI3Kδ) and casein kinase 1 epsilon (CK1ε) inhibitor,
also showed clinical activity in patients affected by indolent lymphomas [1,5,6]. Bruton’s
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Tyrosine Kinase (BTK) inhibitors, such as ibrutinib, are also effective in treating MZL and
LPL patients [2,3,7]. However, these small molecules as single agents have shown limited
success in their ability in inducing complete responses, with only partial remission achieved
in most patients, suggesting the need for combination therapies [8].

IRAK4 is a protein kinase downstream the Toll-like receptor signaling (TLR), a known
driver of secondary tumor resistance in both hematological and solid tumor malignan-
cies [9]. Activation of IRAK4 upon TLRs and IL-1 receptor (IL-1R) stimulation and through
the adaptor protein MYD88 initiates a signaling cascade that induces cytokine and survival
factor expression mediated by the transcription factor NF-κB. Mutations of proteins within
the TLR/IL-1R pathway can lead to an increased NF-κB activity and the promotion of
cancer. For example, MYD88-L265P encoding mutations are known to occur in a fraction of
the activated B cell (ABC) diffuse large B-cell lymphomas (DLBCL), in the vast majority of
LPL, and in rare MZL, with differences based on the primary anatomical site [2,10–17]. In
ABC DLBCL, MYD88-L265P leads to oncogenic activation of NF-κB through TLR-MYD88-
IRAK1/4-TRAF6, independent of B cell receptor (BCR)–BTK activity and establishes a
pathway for potential ibrutinib resistance [10]. Furthermore, in a large cohort of splenic
MZL patients, mutations of NF-κB pathway in combination with an “immune-suppressive”
phenotype define a cluster of patients with inferior relative survival [17].

To date, efforts to directly target MYD88 have largely been unsuccessful, and efforts
have been so far focused on targeting IRAK4 [18–23]. Emavusertib (CA-4948) is a small
molecule able to inhibit IRAK4 and to block TLR signaling. Emavusertib has shown
single agent antitumor activity in ABC DLBCL, mantle cell lymphoma (MCL), and acute
myeloid leukemia (AML) models [23–27], and in combination with ibrutinib (in ABC
DLBCL, MCL), venetoclax and azacytidine (in AML) [24–28]. Early safety and clinical
activity have been reported in both lymphoma and AML patients [29,30] and phase 1/2
trials are active for patients with hematologic cancers (NCT05178342, NCT04278768,
NCT03328078).

In this preclinical study, we assessed emavusertib in MZL, both as single agent and
in combination with targeted agents, with a particular focus on its capability to overcome
resistance to BTK and PI3K inhibitors.

2. Methods
2.1. Cell Lines

Cell lines were cultured according to the recommended conditions, as previously
described [31,32]. Cell line identity was periodically authenticated by short tandem repeat
(STR) DNA profiling [33]. Cells were periodically tested to confirm Mycoplasma negativity
using the MycoAlert Mycoplasma Detection Kit (Lonza, Visp, Switzerland).

2.2. Treatments

Response to single or drug combination treatments was assessed upon 72 h of expo-
sure to increasing doses of drug followed by MTT assay, as previously described [34,35].
Idelalisib, copanlisib, umbralisib, ibrutinib were purchased from Selleckchem (Houston,
TX, USA). Emavusertib was kindly provided by Curis (Lexington, MA, USA). To measure
emavusertib effectiveness, IC50 was calculated using the four-parameter logistic regression.
The beneficial effect of the combinations compared to the single agents was considered
both as synergism according to the Chou-Talalay combination index [36] and as potency
and efficacy according to the MuSyC algorithm [37]. The expected additivity was estimated
based on the Bliss statement for drugs’ independence [38]. The parameter called “Benefit”
was calculated as the difference between cell viability of the best single agent and the
expected additivity (Bliss). The “Synergy” parameter was then calculated as the difference
between the expected additivity values (Bliss) and the cell viability of each combination.
Each parameter was calculated per each single combination of the two drugs. A given
combination was considered “beneficial” with values of Benefit > 0; combinations with
Benefit > 0 and Synergy ≈ 0 were considered “additive”; and combinations with Benefit
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> 0 and Synergy > 0 as “synergistic”. Antagonistic effect of a combination was given to
values of Benefit < 0.

2.3. Flow Cytometry

Cell cycle was evaluated as previously reported [39]. Apoptosis assay was performed
after 72 h treatment of emavusertib alone or in combination with ibrutinib by using eBio-
science Annexin V Apoptosis Detection Kit (Thermo Fisher Scientific, Basel, Switzerland).
Apoptosis induction and cell cycle distribution after the treatment were evaluated with
flowCore R package from Bioconductor.

2.4. Immunofluorescence and Confocal Microscopy

Immunofluorescence and confocal microscopy were conducted as already reported [40];
cells were treated for 6 h and coated on a poly-L-lysine matrix then fixed 20 min with
Paraformaldehyde (PFA) 4% at room temperature (RT). Cells were permeabilized with PBS
+ 0.1% Triton X-100 10 min at RT. To block unspecific staining, samples were blocked for 1 h
with 5% BSA (TBST) at RT before staining. Antibodies were diluted in 5% Bovine Serum
Albumin (BSA) (TBST). Samples were incubated overnight at 4 ◦C with primary antibody
rabbit monoclonal anti human NF-κB p65 (D14E12) (1/100; Cell Signaling). Secondary goat
antibody anti-rabbit IgG labelled with Alexa 568 (Thermo Fisher Scientific) 1 h at RT in the
dark. Slides were counterstained after 3 washes of PBS with 0.3µg/mL 4,6-diamidino-2-
phenylindole (Sigma-Aldrich, Buchs, Switzerland). Images were acquired on a Leica SP5
with an objective with ×63 magnification. Protein quantification and NF-κB1/p65 were
evaluated by ImageJ software.

3. Results
3.1. The IRAK4 Inhibitor Emavusertib Is Beneficial in MYD88 Mutated Lymphoma Cells

The IRAK4 inhibitor emavusertib was tested in two marginal zone lymphoma models
(VL51 and Karpas1718) [41,42] and their derivatives with secondary resistance to PI3K and
BTK inhibitors [32,43–45]. Emavusertib determined a dose-dependent reduction in cell
proliferation in all the cells. The most sensitive cell line was the parental Karpas1718 cell
line, a bona fide MZL cell line bearing the MYD88 L265P mutation, with an IC50 of 3.72 µM.
Conversely, IC50 values were only in the range of 21–38 µM in the VL51 cell line and its
three derivatives, as well as in the Karpas1718 derivative (Figure 1). Overall, emavusertib
did not show a significant increased activity in MZL cell lines resistant compared to parental
condition (Figure 1).

3.2. Emavusertib Increases Sensitivity to PI3K and BTK Inhibitors in Resistant Models of MZL

We then assessed emavusertib in combination with BTK and PI3K inhibitors in the
parental cells and in their derivatives with secondary resistance. Emavusertib was strongly
synergistic with ibrutinib especially in the VL51 ibrutinib resistant model compared to
the parental one (Figure 2A–C). The addition of emavusertib (from 1 to 5 µM) restored
the sensitivity to ibrutinib in the ibrutinib-resistant cells reaching IC50 values compa-
rable to the parental counterpart (Figure 2D). A strong anti-proliferative activity of the
emavusertib-ibrutinib combination was also observed in the ibrutinib-sensitive Karpas1718
parental line (Figure 2E–F). Similarly, emavusertib was also synergistic in combination
with idelalisib (Figure 3A–C) and restored sensitivity to idelalisib in idelalisib-resistant
VL51 cells (Figure 3D). Comparably to what was observed with the ibrutinib combination,
emavusertib doses from 1 to 5 µM were able to revert resistance and increase sensitivity to
idelalisib in the idelalisib-resistant VL51 model (Figure 3D). The combination with idelalisib
in Karpas1718 model, although beneficial, revealed no major advantages in the resistant
model compared to the already sensitive parental counterpart (Figure 3A–C). The addition
of emavusertib to copanlisib was more beneficial in the VL51 parental compared to resistant
copanlisib-resistant derivative, but the increase in the efficacy was limited (Figure 4A–C).
The combination of emavusertib with umbralisib was synergistic in VL51 parental and
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idelalisib-resistant, and in the parental Karpas1718, while exhibited no benefit in copanlisib-
resistant VL51 and in idelalisib-resistant Karpas1718 (Figure 4D–F). Synergy, according
to the Chou-Talalay index (CI < 0.9), and an increased synergistic efficacy, based on the
MuSyC algorithm (syn eff > 1), were achieved in 86% (n = 12/14) and 93% (n = 13/14),
respectively, of the MZL models tested (Figure 5). In summary, the addition of the IRAK4
inhibitor emavusertib was beneficial to the anti-tumor activity of PI3K and BTK inhibitors
and it can also overcome the acquired resistance in MZL models.
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Figure 1. IRAK4 inhibitor emavusertib as single agent in MZL models. Dose–response curves
(from three independent experiments), error bars and IC50 values of emavusertib in Karpas1718
(K1718) and VL51 parental cell lines or resistant models to idelalisib (IDE-RES) ibrutinib (IBR-RES) or
copanlisib (COP-RES). Cells were exposed (72 h) to increasing doses of emavusertib as single agent
followed by MTT assay. IC50 values were calculated using the four-parameter logistic regression.
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Figure 2. IRAK4 inhibitor emavusertib in Karpas1718 parental (K1718) and VL51 parental (PAR) and
ibrutinib-resistant line (IBR). Cells were exposed (72 h) to increasing doses of ibrutinib alone or in
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combination with emavusertib followed by MTT assay. (A) Chou-Talalay index (CI). Each dot
represents the CI value for a single ratio of ibrutinib/emavusertib. syn, synergism (CI < 0.9); add,
additive effect [0.9 < CI < 1.1]; ant, antagonism/no benefit (CI > 1.1). (B) Synergistic efficacy (syn eff)
calculated according to MuSyC algorithm. Each dot represents the syn eff value for a single ratio
of ibrutinib/emavusertib. syn, synergism (syn eff > 1); add, additive effect [-1 < syn eff < 1]; ant,
antagonism/no benefit (syn eff < -1). (C) Summary plot of benefit in terms of additivity or synergy as
described in the method section. (D) Drug-response curves in VL51 ibrutinib-resistant cells upon
emavusertib combination with ibrutinib. (E) Chou-Talalay index (CI) and (F) Drug-response curves
in K1718 parental line treated (72 h) with ibrutinib alone or in combination with increasing doses of
emavusertib.
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Figure 3. IRAK4 inhibitor emavusertib in VL51 and Karpas1718 (K1718) parental (PAR) and idelalisib-
resistant (IDE) lines. Cells were exposed (72 h) to increasing doses of idelalisib alone or in combination
with emavusertib followed by MTT assay. (A) Chou-Talalay index (CI). Each dot represents the CI
value for a single ratio of idelalisib/emavusertib. syn, synergism (CI < 0.9); add, additive effect [0.9 <
CI < 1.1]; ant, antagonism/no benefit (CI > 1.1). (B) Synergistic efficacy (syn eff) calculated according
to MuSyC algorithm. Each dot represents the syn eff value for a single ratio of idelalisib/emavusertib.
syn, synergism (syn eff > 1); add, additive effect [−1 < syn eff < 1]; ant, antagonism/no benefit (syn
eff < −1). (C) Summary plot of benefit in terms of additivity or synergy as described in the method
section. (D) Drug-response curves in VL51 idelalisib-resistant and parental lines upon emavusertib
and idelalisib combination.
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Figure 4. IRAK4 inhibitor emavusertib in combination with copanlisib and umbralisib in MZL
cell lines. Upper panel: combination of emavusertib and copanlisib in VL51 parental (PAR) and
copanlisib-resistant (COP13) line. Lower panel: combination of emavusertib and umbralisib in VL51
and K1718 parental (PAR) and resistant models to copanlisib (COP13), idelalisib (IDE) or ibrutinib
(IBR). In both panels, cells were exposed (72 h) to increasing doses of PI3K inhibitors alone and in
combination with emavusertib followed by MTT. (A,D): syn, synergism (CI < 0.9); add, additive
effect [0.9 < CI < 1.1]; ant, antagonism/no benefit (CI > 1.1). (B,E): syn, synergism (syn eff > 1); add,
additive effect [−1 < syn eff < 1]; ant, antagonism/no benefit (syn eff < −1). Each dot represents
the CI value for a single ratio of copanlisib/emavusertib (upper panel) or umbralisib/emavusertib
(lower panel). (C,F): Summary plot of benefit in terms of additivity or synergy, as described in the
method section, for the combinations of emavusertib with copanlisib (upper panel) or umbralisib
(lower panel).
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Figure 5. Combination of IRAK4 inhibitor emavusertib and BCR-signaling targeting agents is
beneficial (synergistic or additive) in 12/14 models tested. Summary plots of all combinations tested
in MZL parental and resistant lines. Cells were exposed (72 h) to increasing doses of idelalisib,
ibrutinib, copanlisib or umbralisib alone or in combination with increasing doses of emavusertib
followed by MTT assay. Synergy scores from Chou-Talalay (A) and MuSyc (Efficacy, B) models
identified beneficial effects on the addition of emavusertib to inhibitors of downstream BCR signaling.
(C) Summary of synergy models for all combinations.

3.3. Emavusertib Affects Proliferation and Induces Apoptosis in Both Sensitive and Resistant
Marginal Zone Lymphoma Models

Based on drug-response results of the combinations, we further investigated the
beneficial effect of combining emavusertib with the BTK inhibitor ibrutinib, being the
most promising combination. We focused on the VL51 ibrutinib-resistant model, which
demonstrated the higher advantage from the combination compared to the parental cell
line, and on Karpas1718 parental cell line which was the most sensitive model to both
emavusertib and ibrutinib. We further determined whether the pharmacological inhibition
of IRAK4 affected cell cycle distribution using flow cytometry. Emavusertib treatment (10
µM) for 72 h decreased the percentage of proliferating cells and induced a moderate increase
in the sub-G0 fraction, especially in the combination compared to single treatments (p <
0.05) (Figure 6A,B). Accumulation of cells in sub-G0 indicates DNA fragmentation and cell
death possibly driven by apoptotic processes. Indeed, emavusertib (10 µM, 72 h) induced
significant increase in apoptotic cell population, particularly when combined to ibrutinib
compared to the single agents (Figure 7A,B). Decreased viability upon treatment was
paired with a significant increase in apoptotic cells (p < 0.05) in both parental Karpas1718
(Figure 7A) and ibrutinib resistant VL51 (Figure 7B).
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Figure 7. Addition of emavusertib to ibrutinib induces apoptosis. Apoptosis induction after
emavusertib (10 µM) alone or in combination with ibrutinib (72 h) in (A) K1718 and (B) VL51
ibrutinib resistant line. Ibrutinib doses were selected based on the IC50 values in the parental lines
(50 nM in K1718, 1 µM in VL51). Data represent the average of two independent experiments. Error
bars for standard deviation of the mean. p for nominal p-value from t-test comparing each treatment
to control (DMSO).

3.4. Emavusertib Reduces Total and Nuclear REL-A in MZL Cells

Both emavusertib and ibrutinib have already demonstrated the capability to modulate
and decrease the activation of NF-κB signaling pathway which is known to be responsible
for proliferation and tumorigenesis [23]. We investigated the mechanism underlying the
observed synergy focusing on NF-κB signaling cascade by emavusertib (10 µM) and/or
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ibrutinib (50 nM) exposure in the parental Karpas1718. By immunofluorescence, we
observed a consistent reduction in total p65/REL-A in the combination already after 6 h of
ibrutinib and emavusertib combination (Figure 8A,B).
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Figure 8. Combination of emavusertib with ibrutinib reduces p65/REL-A. (A) Representative im-
munofluorescence pictures and (B) Violin plot showing mean fluorescence quantification by confocal
microscopy using specific anti-RELA/p65 (Magenta) and DAPI (4′-6-diamidino-2-phenylindole).
Images were acquired on a Leica SP5 with an objective with ×63 magnification. Emavusertib (10
µM) was used alone or in combination with ibrutinib (50 nM) (6 h) in K1718 parental model. Data
represent the mean fluorescence values. Scales of grey represent different experiments.

4. Discussion

Here, we showed that the presence of MYD88 L265P mutation, in bona fide MZL cell
lines, confers sensitivity to the IRAK4 inhibitor emavusertib as single agent, emavusertib-
based combinations can improve the sensitivity of MZL cells to BTK and PI3K inhibitors,
also after acquisition of a secondary resistance to these agents, and emavusertib exerts its
activity via inhibition of NF-κB signaling and induction of apoptosis.

Driven by the central role of NF-κB signaling and MYD88 in MZL, we studied the phar-
macological inhibition of IRAK4 with emavusertib in two MZL cell lines and their deriva-
tives with acquired resistance to FDA approved PI3K and BTK inhibitors. Emavusertib
showed the strongest dose-dependent anti-proliferative activity in the Karpas1718 cell line
bearing mutated MYD88. Albeit a fraction of MZL patients present MYD88 abnormali-
ties [2,10–14], the prevalence of these mutations, in particular the L265P, is much higher in
LPL, [2,10–17] and we cannot rule out the possibility that the cell line derives from a LPL
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rather than from MZL. Nonetheless, our results are in line with the previously reported
activity of emavusertib in MYD88 L265P mutated ABC DLBCL cell lines [26], and they
indicate that emavusertib as single agent could be explored in the population of patients
with MYD88 mutated LPL or MZL.

The activity of the IRAK4 inhibitor decreased in the Karpas1718 derivative cells
which, after long exposure to the PI3Kδ inhibitor idelalisib, activated an ERBB4-mediated
signaling leading to acquired resistance to multiple BTK and PI3K inhibitors [43]. No
relevant differences were observed in the VL51 MZL cell line between parental and its three
derivatives obtained by long exposure to idelalisib, ibrutinib or copanlisib and driven by
overexpression of IL6, IL16 and IL1, respectively [32,44,45].

When given in combination with BTK (ibrutinib) and PI3K inhibitors (idelalisib,
copanlisib and umbralisib), emavusertib increased the sensitivity of MZL cells to the
targeted agents both in the parental and resistant clones. The beneficial effect of adding
the IRAK4 inhibitor was particularly striking in the ibrutinib-resistant model we studied
(VL51). In this cell line, nor emavusertib nor ibrutinib alone were able to induce an anti-
proliferative response while the combination of the two compounds proved to be beneficial.
Our data extend the reported preliminary data combining emavusertib with ibrutinib in
ABC-DLBCL and MCL and with venetoclax and azacytidine in AML [24–28] that led to the
early combination clinical trials [29,30].

As a whole, the addition of the IRAK4 inhibitor appeared to improve the efficacy
(i.e., maximal effect) rather than the potency (i.e., minimal active dose) of the combination
partners. The fact that benefit was achieved without increase in the potency may have
positive implication in enhancing the therapeutic efficacy keeping the off-target effects
low [37].

Considering the early safety data from clinical trials [29,30], our study identifies the
IRAK4 inhibitor emavusertib as a novel compound to be explored as single agent in trials
for patients with MYD88-mutated indolent B cell lymphomas and as combination partner
with BTK or PI3K inhibitors in unselected populations of patients.
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