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a b s t r a c t

Complexity involved in operating modern power and energy systems is constantly increasing given the
volatility induced by the rapid integration of intermittent renewable energy sources. In order to operate
the power grid in secure and reliable way, a plethora of uncertain parameters need to be considered
and hundreds of thousands of different power grid scenarios need to be rapidly evaluated. This works
analyzes the computational aspects in massively parallel simulations from the perspective of efficient
hardware utilization. A method for efficiently managing and processing the computational tasks is
presented, carefully considering the level of parallelism in order to avoid computational bottlenecks
and efficiently utilizing modern multicore architectures with deep memory hierarchies. An extensive
set of numerical experiments is presented, considering multiple aspects of the computational pipeline.
The numerical experiments are performed using mathematical models typically used in the power
grid problems, including linear and quadratic programs as well as the models containing the discrete
variables. The optimized high-throughput computation strategy has been shown to significantly reduce
response times by preventing the memory bottlenecks for various computational models.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent trends in the power grid operations and integration
f intermittent renewable energy sources (RES) impose great
emand on computational resources. The large number of power
rid scenarios that need to be analyzed require not only parallel
rocessing algorithms but also efficient execution strategies for
large number of loosely coupled tasks. These can improve

tilization of the computational infrastructure required by indi-
idual jobs that need to be scheduled on the available computing
esources.

.1. Motivation and background

In order to operate the power grid in a secure and reliable
ay, a plethora of parameters need to be considered. These are
arameters such as weather, fuel prices, and available trans-
ission capacity between market zones [1]. The difficultly of
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accurately modeling these systems is constantly increasing given
the volatility induced by the rapid integration of intermittent RES
into grids. Additional challenges are associated with uncertainty
quantification of the model parameters and their sensitivity anal-
ysis. All these factors contribute to a large number of power grid
scenarios that need to be rapidly solved in order to provide power
grid operators tools required to control the complex power grid
systems and manage the associated uncertainty.

Most of these problems can benefit from parallel processing,
often built into the simulation frameworks or available in the
off the shelf solvers such as HiOP [2], PIPS [3], or Beltistos [4].
Nonetheless, the question of the optimal level of parallelism
arises and is left up to the end user to decide. This decision,
however, requires the knowledge of the underlying architecture,
since the excessive level of parallelism might introduce many
bottlenecks on the hardware level and result in a significant
slowdown of the overall processing time. This work provides an
analysis of the computational setup that could guide users of such
parallel tools and help to achieve high-throughput data analytics.

1.2. Research context

Power grid dynamics are typically modeled as multistage
stochastic unit commitment (UC) problems [5–7], optimal power

flow (OPF) [8,9] problems, or economic dispatch (ED) [10,11].
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Nomenclature

CS, CG Storage device and generator connectiv-
ity matrices

G Set of generation units
θ Bus voltage angles
pD Active power demands
pG Active power injections, including con-

ventional generators and storages
pgen Active power injections from conven-

tional generators
pG
min, p

G
max Active generation box bounds

pG,on, pG,off Ramp up and down of conventional
generators

∆up,∆lo Ramp up and down limits
pS Composite vector of the storage injec-

tions including discharge and charge
powers

pSd, pSc Storage discharge and charge power
injections

pS
min, p

S
max Minimum and maximum active storage

power output
nv Zone power flows — import/export
pB Bus power flows
smax
L Branch power flow limits

c f Cost coefficients in LP
f (·) Objective function in QP and MIP
cε(·) DC power flow balance constraints
c I (·) Line flow constraints
u On-line status of the generators
v,w Startup and shutdown states
τ u, τ d Minimum up/down times of generator

units
ϵmax
S Capacity of the storage devices

ϵ0 Initial state of charge of the storage
devices

ϵ State of charge of the storage devices
ηd, ηc Discharging and charging efficiency
BS Storage efficiency matrix
T ,N Set of time periods and its cardinality
NS Number of storage devices
δt Time period length
n Number of overall jobs to process
c Number of concurrent workers
tcavg Average time of processing a single job

when running c workers simultaneously
t∗n Lower bound on processing time of n

jobs
tn Expected processing time of n jobs
ψ Slowdown of tcavg relative to single

worker execution t1

φ Smoothed rate of change of ψ
[·] Operator representing concatenation

of column vectors
[
x1, x2, . . . , xn

]
=[

xT1, x
T
2, . . . , x

T
n

]T

Uncertainty is incorporated using stochastic programming tech-
niques based on scenario trees in which the uncertainty is known
at each node. After applying various scenario generation schemes
2

based either on expert knowledge, artificial intelligence, or Monte
Carlo simulation, the stochastic UC becomes a large optimiza-
tion problem. Due to the large-scale nature of the problem, the
computational complexity is addressed by decomposing the prob-
lem into smaller subproblems and utilizing parallel processing.
Benders decomposition, Lagrangian relaxation, augmented La-
grangian methods, or progressive hedging are usually among the
methods of choice [12,13], since parallelization of these solution
algorithms is straightforward.

Stochastic UC is a risk-neutral model that is concerned with
the optimization of expected payoff. In order to enable risk
modeling, individual stochastic trajectories, represented by a
single UC problem, are analyzed independently. Similarly as be-
fore, a large number of model evaluations are required. With
this method one can obtain all possible price trajectories re-
sulting from the selected scenarios. The resulting price distribu-
tions inform the risk management processes that are crucial to
applications such as energy trading [14].

Additionally, many model parameters are determined experi-
mentally, using the expert knowledge or based on historical data,
with the exact values not available. In order to properly evaluate
the effects of the uncertain parameters, one needs to perform an
uncertainty quantification [15–17]. It quantifies the confidence of
the model output given the uncertainty in the model parameters.
Sensitivity analysis is tightly linked to uncertainty quantification
and is the process of quantifying the fraction of the output uncer-
tainty that can be explained by individual parameters. However,
global sensitivity analysis presents computational challenges due
to the large number of input–output samples needed to estimate
the uncertainty contributions. In order to perform the sensitivity
analysis, parallel and high-throughput processing techniques are
essential.

Similarly to the continuous counterparts, the mixed integer
linear programming (MIP) models are used in the stochastic
frameworks. Many aspects of real-life problems are modeled
using discrete variables, including on-line status of generator
units [6,7], transformer tap ratios [18], models of the storage de-
vices [7], or demand flexibility models [19,20]. The resulting MIP
problems are solved using algorithms usually based on the dual
simplex (DS) or interior point (IP) method extended by heuristics
to deal with the integrality constraints, including branch and
cut, cutting planes, or many advanced presolving techniques. As
such, these algorithms have different memory access patterns and
might behave differently compared to the underlying algorithm
for the continuous variables.

High-throughput processing is usually supported by an appro-
priate software tool, either classical job schedulers such as SLURM
[21] or the workload meta schedulers. These include FireWorks
[22], supporting also dynamic workflows, failure-detection rou-
tines, and built-in tools and execution modes for running high-
throughput computations at large computing centers. Launcher
[23] is a utility for performing simple, data parallel,
high-throughput computing workflows on clusters, massively
parallel processor systems, workgroups of computers, and per-
sonal machines. GREASY [24] meta scheduler is used to manage
high-throughput simulations and to simplify the execution of
embarrassingly parallel simulations in any environment. It was
primarily designed to run serial applications. GREASY is used in
this work due to its architectural simplicity, ease of use, and the
fact that it is a tool already used at multiple supercomputing
centers.

1.3. Relevant literature

Massively parallel simulations that exploit modern multi-core
central processing units (CPUs) introduce pressure on various
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ubsystems, particularly main memory. Existing literature on ef-
icient utilization of the available computational resources and
voidance of the bottlenecks is very sparse and scattered across
arious scientific domains. Sources of bottlenecks for parallel
rotocol processing and high-speed data transfers are identified,
.g., in [25,26]. The work in [25] studies the impact of different
rocess affinity strategies, considering affinity using cores within
he same or different sockets. The authors conclude that affini-
ization has a significant impact on parallel protocol processing
fficiency, and that the performance bottleneck changes signif-
cantly with different affinitization strategies. The focus is put
n the communication patterns as opposed to computationally
eavy tasks which do not require any interprocess communica-
ion, which is the main focus of this work.

The study [26] quantifies cache memory limitations on nonu-
iform memory access multicore platforms arising during parallel
ptimization of simulation models governed by partial differen-
ial equation (PDE). Many parallel tasks are generated within the
DE model calibration problems which seek to find the model
arameters that minimize the error between the PDE model and
bserved reality. Typically, many simulations are run in parallel,
ach on its own core. Affinity scheduling strategy for parallel
omputation is proposed, such that the computational efficiency
mproves due to improved utilization of the memory hierarchy.
t is acknowledged that utilizing excessive parallelism does de-
eriorate the cache utilization, especially when the processes can
igrate across the cores. However, the study does not provide
ny discussion on how to determine the level of parallelism
inimizing the memory bottlenecks on top of enforcing the CPU
ffinity. Additionally, it does not consider the scheduling of the
ndividual jobs on large computational clusters.

.4. Contributions and organization

This work analyzes high-throughput scheduling techniques
nd addresses the computational challenges of the massive paral-
elism associated with stochastic models, uncertainty analysis, or
imilar applications that rely on a large number of computational
asks which commonly arise in smart grid operations. The main
ontributions of this paper can be summarized as follows:

• Introduce a technique that mitigates the bottlenecks of em-
barrassingly parallel simulations by maximizing the utiliza-
tion of available computational resources and thus reducing
the processing time.

• Investigate the proposed technique on various mathemati-
cal programs including market based ED, OPF, and UC and
experimentally validate the predictions.

• Perform the benchmarks using the ED models of the con-
tinental Europe and OPF models of the Swiss transmission
network.

his work is based on a previous study of LP problems [14],
xtending the proposed concepts to additional problem types
ypically encountered in power grid analysis.

The rest of this paper is organized as follows. Power grid mod-
ls are introduced in Section 2. The solution, based on both DS and
P methods, is briefly sketched and analyzed from the perspective
f computational resource requirements in Section 3. A proce-
ure for determining the optimal level of parallelism is proposed
n Section 4. Finally, Section 5 presents numerical experiments
nalyzing individual stages of the solution algorithms, including

omputations and data analysis, at a large and distributed scale.

3

2. Power grid models

Energy markets and operations of the power grid devices are
modeled on different levels of abstraction, capturing different
aspects of the underlying physical equipment. Some of the most
commonly used mathematical models are (i) an ED problem
modeled as LP, (ii) direct current (DC) OPF formulated as QP, and
(iii) the UC considering also the discrete aspects of the problem
modeled as MIP.

2.1. Zone-based market model

The European electricity market is based on bidding zones,
which are modeled as one node. Lossless ED considers a problem
where the objective is to find the set of generator dispatch points
pG that minimize the total cost of meeting a specified demand
pD, without modeling any network infrastructure. The problem
onsists of several zones, where each zone contains several gen-
rators G and energy that can be imported or exported. Similarly,
he problem is defined over a multiperiod time horizon T . The LP
model in this work represents a simplified UC problem formu-
lated as a continuous problem in order to have certain guarantees
about the convergence and optimality of the solution, as well as
reducing the computation time. The LP model reads

minimize
pG

∑
t∈T

∑
g∈G

c fg,tp
G
g,t (1a)

subject to ∀t ∈ {1, 2, . . . ,N} :

pgen
g,t = pgen

g,t−1 + pG,on
g,t − pG,off

g,t , (1b)∑
g∈G

pgen
g,t + nvt + pSd

t = pD
t + pSc

t , (1c)

pG
min ≤ pG

t ≤ pG
max, (1d)

min
S ≤ ϵt ≤ ϵmax

S , (1e)
G,off
g,t ≤ ∆lo, pG,on

g,t ≤ ∆up. (1f)

The objective (1a) is to minimize the energy cost, where
he cost coefficients c f represent marginal cost and approximate
tart-up costs of each conventional generation unit g ∈ G . The
ower injection variables pG

=
[
pgen, pS

]
consists not only of

he conventional generator outputs pgen but also includes the
njections pS incurred by the storage devices. The conventional
ower output is represented recursively with respect to the previ-
us time instance and the power increment pG,on

g,t and decrement
G,off
g,t in the current time period, as expressed in (1b). Consider-
ng this representation, minimum up-/down-time and generation
amp constraints can be easily approximated by additional linear
onstraints. The demand balance constraint (1c) states that the
um of all generation components (power plants, net import,
nd storage discharge) should be equal to the sum of all load
omponents (demand and storage charging) for all time instances
∈ T . The net import nvt is simply a sum of the power imports
nd exports for the given zone of interest. Additional constraints
re imposed for the links between the zones, such as maximum
apacity or flow-based constraints [27].
Energy storage devices are modeled using charging and dis-

harging efficiencies and technical limitations of the state of
harge, similar to the model in [28–30]. NS energy storage units
re considered, where the vector of the storage power injections
onsists of discharging and charging injections,
S
=

[
pSd
1 , . . . , p

Sd
NS
, pSc

1 , . . . , p
Sc
NS

]
. (2)

The evolution of the state of charge levels ϵt ∈ RNS follows the
pdate equation

= ϵ + BS pS,t t = 1, . . . ,N, (3)
t t−1
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nd introduces a coupling between the individual time periods.
he energy level in each period needs to honor the storage
apacity, as expressed by the constraint (1e). The initial storage
evel is denoted ϵ0 and the constant matrix BS

∈ RNS×2NS models
ischarging and charging efficiencies of the storage devices,

S
= −δt

⎛⎜⎝η
−1
d,1 ηc,1

. . .
. . .

η−1
d,NS

ηc,NS

⎞⎟⎠ (4)

ith the discharging and charging efficiencies ηd,i and ηc,i, i =

, 2, . . . ,NS.

.2. Optimal power flow model

An extension of the ED, considering also the transmission
etwork and DC power flow equations cε as a function of bus
oltage angle variables θ, along with limits on the branch power
lows c I , becomes the DC OPF problem. The DC OPF is formulated
s

minimize
θ, pG

∑
t∈T

∑
g∈G

fg (pG
g,t ) (5a)

ubject to ∀t ∈ {1, 2, . . . ,N} :

c tε(θt , pG
g,t ) = 0, (5b)

c tI (θt ) ≤ pSmax
L , (5c)

pG
min ≤ pG

g,t ≤ pG
max, (5d)

ϵmin
S ≤ ϵt ≤ ϵmax

S , (5e)

− ∆lo
≤ pG

g,t − pG
g,t−1 ≤ ∆up. (5f)

The objective function fg is a quadratic cost defined for each
generation unit g ∈ G . Other cost components might also include
the wear and tear of load-following ramping and value of the
initial and expected leftover stored energy in the storage devices.
At each network bus, the external power injections must equal
the injections from the connected generators, storages, and load
components, resulting in the power balance constraint (5b)

c tε := CGpgen
t + CSpS

t − pD
t − pB

t (θt ), (6)

where CG, CS are the generator and storage connectivity matrices,
respectively. The power flow in the transmission lines is limited,
as expressed by the constraint (5c). The intertemporal coupling
is introduced by energy storage devices (5e) and generator ramp
limits (5f). Additional modeling aspects are described in more
detail in [30–32].

2.3. Unit commitment

The LP and QP problems in the previous sections have been
restricted to continuous optimization variables. The real-life de-
cision problems also consist of discrete UC decisions, modeled by
integral variables. The problems include additional startup and
shutdown costs associated with changes in on-line status from
a prior commitment state. In multiperiod problems, these states
are coupled through time, not only by the startup and shutdown
costs, but also by minimum up and down time constraints.

The MIP problem formulation is an extension of the problem
from Section 2.2. Additional sets of binary variables u, v,w ∈

{0, 1} are introduced, where ug,t represents the on-line status of
the generation unit g in time period t , while the binary startup
and shutdown states are represented by vg,t and wg,t variables,
respectively.
4

The constraints are either extended by the new binary vari-
ables, e.g., the injection limits (5d) are replaced by

ug,tpG
min ≤ pG

g,t ≤ ug,tpG
max, (7)

or the new constraints are added, such as the minimum up and
down times of the dispatchable units∑
n=t−τu+1

vg,n ≤ ug,t , (8)∑
n=t−τd+1

wg,n ≤ 1 − ug,t , (9)

and a set of the constraints modeling startup and shutdown
events

ug,t − ug,t−1 = vg,t − wg,t . (10)

The full UC model formulation is available in the MOST frame-
work [30–32].

2.4. Swiss grid benchmark model

For the purpose of benchmarking the models introduced in
the previous sections, two power models were set up. The LP ED
problem was run using the proprietary model of the continental
Europe, while the QP and MIP problems were applied to the
model of the Swiss transmission grid introduced next. The topol-
ogy of the grid, including the external nodes abroad, is illustrated
in Fig. 2, consisting of 231 nodes and 439 transmission lines.
The external nodes are used in order to model the imports and
exports of the power. The load is evenly distributed across the
nodes inside Switzerland up to a small random perturbation up to
100 MW with the net zero sum. The load data are 15 min samples
collected by the national transmission system operator SwissGrid
[34]. Fig. 1(a) illustrates the overall load during the first 15 days
of January and June of 2020. The grid model also includes RES,
namely, wind and solar energy, with the historical data shown
in Figs. 1(b) and 1(c). The overall RES input is evenly distributed
across the selected nodes in the network.

On top of the RES, the Swiss grid example also contains energy
storage devices. For all LP models the length of the time period
δt is set to 1 h, while in the QP and MIP simulations, the length
of the time period δt is set to 15 min. The energy storage devices
are located at the first NS buses sorted according to the largest
positive active load demand specified in the case file. The storage
size ϵmax

S is chosen to contain up to 10 MWh. The initial state
of charge is 70%, which represents ϵ0 = 0.7ϵmax

S . The storage
device power ratings are limited to allow a complete discharging
and charging within three hours and two hours, respectively.
Therefore, pSd,max

=
1
3ϵ

max
S and pSc,min

= −
1
2ϵ

max
S . All storage

evice discharging and charging efficiencies are chosen as ηd =

.95 and ηc = 0.93.

. Solution strategy

The resulting LP models are solved by both the DS and IP
lgorithms, while the QP and MIP models are solved by the IP
lgorithm. Historically, the DS was considered superior but this
roposition has been challenged by advancements in IP methods,
hich outperform the DS, especially for large-scale problems.
he computational complexity of the DS algorithm lies in the
ombinatorial nature of the search space defined by vertices
f the feasible region, which grows very quickly for large LP
roblems. On the other hand, the computational bottleneck of
he IP algorithm is the solution of a large sparse linear system in
ach IP iteration, which can be effectively mitigated by efficient
irect sparse linear algebra routines [28,35]. When it comes to
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Fig. 2. Topology of the Swiss grid with the external nodes in the neighboring
countries.

Table 1
Computational requirements of forecasting electricity prices on a typical day.

Short-term Long-term
forecasts forecasts

(a) Forecast horizon (days) 45 700
(b) # of runs per day 15 1
(c) # of weather scenarios 52 45
(d) # of fuel & econ shocks 25 25

# of optimizations per daya 68850 66500
CPU time per optimizationb 164 164
CPU hours per day 3137 3029

aa × b × (c + 2d).
bAverage time in seconds using the DS algorithm with the naive dispatch strategy.

memory requirements, DS solves asymmetric linear systems of
the size of the basis, which is much smaller compared to linear
systems in the IP algorithms. Additionally, only a single column
changes in every iteration, thus updating the factors is usually
done rather than refactoring the whole matrix, which is recom-
puted only occasionally for numerical stability reasons. In the IP
algorithm, the factorization is computed in every iteration and
storing the factors requires a significant amount of memory [36].
The performance and memory requirements of both algorithms
are compared in Section 5.

Additional challenges lie in processing the large number of
cenarios associated with the highly dynamic nature of electricity
arkets. The LP models must be solved for a large number of
quiprobable scenarios in order to get a reasonable estimation of
he electricity prices distribution. This challenge is compounded
y the fact that expectations of input variables are always chang-
ng. In the real-world trading environment, this means optimiza-
ion of the entire problem set is done 15 times per day with the
atest available input values. Table 1 shows the number of LP
 m

5

solves required per day in order to achieve acceptable prediction
accuracy, which is 135 350 LPs at a cost of 6166 h of CPU time.

Given the large quantity of optimizations that must be com-
pleted on a continual basis, effective parallelization strategies
are critical. Parallelization on the level of individual LPs is not
considered, given its relatively small size. Instead, parallelization
across the set of LPs offers far greater benefit. Thus, each LP solve
is executed serially using a single CPU core. The main objectives
of an effective computational strategy are optimizing the data
pipeline such that the required data remain as close to the CPU
registers as possible, and ensuring that when a core finishes
processing its LP, there is another job assigned to it with minimal
delay.

3.1. SLURM workload manager

SLURM Workload Manager is an open-source Linux utility that
provides access to available computational resources for some
duration of time required to perform computation in the con-
text of heterogeneous multiuser, multinode clusters. SLURM is
designed for scheduling massively parallel jobs, which usually
take significant time to complete. If the program running time
is small, on the order of less than one minute, and the number
of scheduled tasks is very large, the SLURM scheduler will incur
oticeable overhead. Such tasks should not be submitted as in-
ividual allocations, but rather packed into a single allocation
ontaining multiple job steps. The disadvantage of this strategy
s that it becomes difficult to keep all cores saturated with work
hen individual job steps finish. This difficulty stems from in-
dequate tools available in shell scripts and SLURM to detect job
tep completion, idle resources within an allocation, or specific
ependencies between the individual job steps.

.2. GREASY meta scheduler

GREASY is an open-source meta scheduler that works on top of
LURM to maximize resource utilization and minimize account-
ng overhead in embarrassingly parallel applications. GREASY is
aunched with a list of tasks to run, which are executed using
he resources within a SLURM allocation. For each task, GREASY
ispatches a job step if resources are available, otherwise it
orms a queue and dispatches tasks as soon as resources become
vailable. Additionally, users can control the compute resource
tilization by adjusting the number of ‘‘workers’’ to adapt the
cheduler to the character of various applications, whether mem-
ry or compute bound. A worker is an abstraction that GREASY
ses to control the execution flow of job steps within the task
ist. Conceptually, a worker takes a task off the queue and runs it
n the compute node such that each worker is always busy. The
ser may specify the number of workers in order to control how

any processes will run concurrently on the allocated resources.
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Fig. 3. GREASY CPU binding strategy for maximal scattering, Node 1 uses 5
workers while Node 2 uses 10.

As detailed in Section 5, undersubscribing nodes and executing
on maximally scattered cores can substantially ease bottlenecks
in memory bound applications.

The vanilla GREASY implementation dispatches job steps with
inimal SLURM specifications, leveraging the process control of
ither SLURM or the underlying Unix kernel. The schedulers on

the level of the operating system may shift processes to different
cores during their lifetimes. This can improve throughput for
CPU-bound applications, because while the process is waiting for
input/output it gets evicted from the core so that another process
can use the otherwise lost CPU cycles. Once the process is ready
to continue, it is assigned to the next available core. For memory
bound applications, however, this has dire performance conse-
quences because data in cache memory is completely lost when a
process is assigned to a different core. Scheduling processes such
that they are executed on the same processor during their lifetime
can dramatically improve performance by reducing the number of
time-consuming cache misses.

We have extended GREASY such that it provides CPU affinity
ontrol [37], a feature that is not available in the original source
ode. An additional benefit of CPU affinity is that it also allows
ontrol over the load balance between the two CPU sockets. To
chieve load balance, workers are spread out across maximally
ispersed CPU cores based on CPU number as shown in Fig. 3.

. Parallelism treatment

The stochastic scenarios representing different market devel-
pments are processed by running individual LP, QP, and MIP
odel instances (see Section 2) in parallel. Modern many-core
PUs allow multiple solves to be run simultaneously on a given
ompute node, however, this imposes greater congestion on the
ode’s memory controller as the available bandwidth is shared
cross cores. Greater congestion in turn adversely impacts solu-
ion times.

Considering the increase in runtime of individual solves as the
evel of parallelism increases, it might be beneficial to reduce the
mount of parallelism in favor of reducing the memory bottle-
eck. It is not obvious, however, howmuch the parallelism should
e reduced in order to achieve the optimal hardware utilization.
n empirical procedure proposed in this section may be used
o determine the optimal level of parallelism. By following the
rocedure prior to the execution of subproblems on a given
rchitecture, power grid practitioners can improve utilization of
omputational resources by avoiding the memory bottlenecks
nherent in modern many-core CPUs. Consequently, significantly
aster execution can thus be achieved for models comprising
any independent subproblems.
In order to determine the optimal level of parallelism for a

iven model, it is important to find the average run time tcavg at
each level of parallelism c. The model of interest is simply run
multiple times, each time with a different number of instances
 q

6

running simultaneously, utilizing a different number of cores of
the multicore CPU on a given compute node, as demonstrated in
Fig. 4.

The performance of two different solution algorithms (DS and
IP) on instances of the LP model are shown in Fig. 4(a). Given
that the DS algorithm outperforms the IP algorithm across the
entire range of solve concurrency, the choice between algorithms
clearly favors the DS algorithm. This relationship between the
number of concurrent solves and tcavg carries information not only
about which algorithm will solve the problem faster, but also
about the optimal level of parallelism with which to execute the
given solution method. This difference can be mostly attributed
to the difference in dynamic random access memory (DRAM) read
volume. With c = 128 LPs running concurrently on the compute
node, the IP executions will require a combined 7.2 TB of data
from memory, while the DS executions will require only 1.7 TB. A
similar measure is shown in Fig. 4(b) for the MIP and QP models.

The optimal level of parallelism, i.e. the number of concurrent
model solves c , can be determined by finding the minimum
expected processing time tn of n model solves with respect to c.
An approximation of this measure is given by

tn ≈
n
c
tcavg . (11)

The expected processing time tn represents a lower bound
or processing n model solves since it assumes no scheduling
verhead or idle CPU time. However, since it depends on the ex-
erimental quantity tcavg , its numerical value bears some inherent
rror.
The theoretical processing times t1000 for a batch of n = 1000

obs are shown in Fig. 4(a). The batch size n was set such that it
eflects a realistic batch size encountered in practice. The point
t which the minimum tn is attained is relatively unaffected by
hanging batch size n except for very small batch sizes (n < 320)
hich do not arise in practice.
A substantial difference in the behavior of the algorithms can

e observed with respect to parallelism, exhibiting two modes
f model behavior. While the overall processing time t1000 using
he IP algorithm reaches a minimum by exploiting the maximum
evel of parallelism, that is c = 128, with the DS algorithm the
odels are expected to be processed in the most efficient way by
ecreasing the level of parallelism to c = 64, utilizing only half of
he available cores. A similar pattern is observed for the MIP and
P models in Fig. 4(b). While the QP model can efficiently utilize
he maximum level of parallelism, the MIP model’s performance
mproves by reducing the parallelism to c = 64.

Eq. (11) is an approximation of tn, since it implies that partial
atches, i.e., batches of solves that are less than the chosen level
f parallelism, c , will be executed at a fraction of tcavg correspond-
ng to the batch fraction. This would imply that a batch of 1 job,
ith c = 128, would be processed at 1

128 ∗ t128avg which is not
he case. To eliminate this effect an alternative estimation of tn
is proposed:

tn ≈

⌈n
c

⌉
tcavg . (12)

The ceiling function ⌈·⌉ implies that the compute node pro-
esses the jobs in batches of size c , and that the last batch
ust be processed at a cost of tcavg , irrespective of how many
olves are remaining. This however represents a simplification
n two accounts: (i) first it implicitly assumes that solve time
s deterministic, so that each process in each batch of size c
tarts and ends at the same time. In reality, the solve time is a
andom variable, with a variance that increases as c increases.
his suggests that as c increases, some processes will finish before
thers, and the cores will immediately start on a new job in the
ueue. (ii) Second, there is the observation that tc decreases
avg
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Fig. 4. Average runtime tcavg as a function of c and expected processing time t1000 for a batch of n = 1000 problems.
Fig. 5. IP and DS memory characteristics.

s c decreases. Thus, when there are no remaining jobs in the
ueue, the effective c will rapidly decrease as it approaches 1,
ausing the remaining processes to speed up until all jobs finish.
iven this, (11) gives a reasonable approximation for tn from
theoretical perspective. The comparison of both predictions

re evaluated and compared with actual measurements in the
ollowing section.

. Numerical experiments

In this section, the computational nature of the power grid
odels is analyzed, focusing on the hardware–software interac-

ion resulting from the application of optimization methods to
olve the models. Multiple aspects of the solution process pipeline
re analyzed, including (i) a choice of the solution algorithm
ased on its performance and impact on memory resources, and
ii) scheduling techniques responsible for allocation of computa-
ional resources to the individual model instances in massively
arallel settings. The experiments were carried out on two Linux
ased compute clusters with different architectures: the 4-node
‘DXT Cluster’’, and the 41-node ‘‘ICS Cluster’’.1

In the numerical experiments, the performance of the solution
ethods is compared using the metric ‘‘solve time’’, which is
efined as the wall time of the optimize function of the Mosek
olver called for a single LP, QP, or MIP problem, which excludes
he problem assembly and setup.

.1. Performance analysis of the optimization algorithms

Performance and memory requirements of the DS and the IP
lgorithms are studied considering serial execution for LP models

1 The DXT Cluster uses nodes with two 64-core AMD EPYC 7702 1.5GHz
PUs and 640GB of memory, SLURM version 18.08.8, GREASY version 2.2.2, and
OSEK version 9.2.21. The ICS Cluster uses nodes with two 10-core Intel Xeon
5-2650 v3 CPUs and 64GB of memory, SLURM version 20.02.4, GREASY version
.2.2, and MOSEK version 9.2.29.
7

Table 2
Properties of the LP instances and data access characteristics of the solution
algorithms.
Time period (days) 1 2 3 4

# of variables 71 120 113 792 156 464 199 136
# of constraints 104 480 167 376 229 721 292 116

Dual simplex algorithm
Data load ops (×109) 38 118 246 422
L1 cache hit rate (%) 95.5 95.9 96.0 96.1
Cache miss rate (%) 2.3 2.1 2.1 2.0

Interior point algorithm
Data load ops (×109) 32 87 190 346
L1 cache hit rate (%) 96.5 96.5 96.6 96.8
Cache miss rate (%) 1.9 1.9 1.9 1.8

of increasing size, as shown in Table 2. First, the memory footprint
of each algorithm is analyzed, since this imposes the main bot-
tleneck in massively parallel simulations. Memory performance
measurements are made using the LIKWID framework [38], ac-
cessing the performance counters on the Intel architecture.

From a memory perspective, Table 2 shows that the IP algo-
rithm dispatches fewer data load requests (32 billion) compared
to the DS algorithm (38 billion), and exhibits slightly better
cache locality (1.9% miss rate) compared to DS (2.3%). As seen
in Fig. 5, however, this economy of data load requests does not
translate to economy of data transfers. Although fewer data load
requests combined with a better overall cache hit rate results in
a significant advantage in the number of DRAM load operations,
these operations have far greater average data volume, resulting
in a larger DRAM data transfer volume for the IP algorithm. This
difference is most significant for the small problem size, where
the IP algorithm reads 4.3× more data from DRAM (56GB) than
the DS algorithm (13GB). These two examples serve as a baseline
to show how the memory requirements can change significantly
depending on the solution algorithm. Similarly, the memory foot-
print will be different for each model given differences in the
problem structure.

To establish a baseline, solve times are measured with only a
single model instance running in single-core mode on an other-
wise idle compute node. Under these conditions, the solve time
for a typical single-day LP is on the order of 20 s on either the
DXT Cluster or the ICS Cluster. With these relatively small problem
sizes and nonconcurrent execution, the speed difference between
the algorithms is minimal. However, the IP algorithm exhibits
superior scaling as the problem size grows in the multiday sim-
ulations, as seen in Fig. 6. The increase from 1 to 4 days results
in a 7.8× increase in constraint matrix size. This causes an 8.7×
increase in the solve time using the IP algorithm, compared to
16.5× for the DS algorithm. While the IP algorithm is clearly the
better performer from a solve time perspective with large prob-
lem sizes, the advantage is less clear with the small problem size.
With the introduction of parallelism in the following section, the
superior memory performance of the DS algorithm will clearly

shift the balance.
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Fig. 6. IP and DS scaling for increasing problem size.

Table 3
Optimization problem sizes in terms of the number of variables and constraints.
For MIP the continuous and integer variables are listed separately.
Grid model Variables Constraints

LP 71120 104480
MIP 57429/3744 74181
QP 180117 213717

5.2. Node-Level parallelism and memory bottleneck

The many-core CPUs of the DXT Cluster are exploited in order to
un multiple model solves simultaneously on the given compute
ode. The optimization problems associated with the power grid
odels are summarized in Table 3. The memory bandwidth on

he node becomes saturated and eventually congested as the
egree of parallelism increases, since the available bandwidth
s shared across the cores. This congestion adversely impacts
he solution times, as shown in Fig. 7. All models and solu-
ion methods experience significant slowdown as the number of
olves running concurrently increases (controlled by the number
f GREASY workers). The mean slowdown when increasing from
2 to 128 concurrent solves ranges from 2.80× for the QP model,
o 4.12× for the LP with the DS algorithm.

Another memory congestion indicator on the node is the run-
ime variance of individual processes. Fig. 7 shows how this
ariance increases substantially as the number of solves run-
ing concurrently increases. When increasing from 32 to 128
oncurrent solves the standard deviation of runtime increases
rom 24.13× for the LP IP, to 46.31× for the MIP. This variance
s caused by the memory controller scheduling the processes
ompeting for the bandwidth as it becomes constrained. The
ubstantial increase in variance indicates that memory bandwidth
s relatively unconstrained for the lower level of concurrency, and
everely constrained for the higher level of concurrency.

.3. Analysis of parallelism modes

In order to better analyze different modes of the optimal
arallelism determined by a procedure introduced in Section 4,
erived metrics for the measured tcavg are provided in Fig. 8. In
ig. 8(a) the slowdown of tcavg , ψ is defined as

(c) =
tcavg
t1avg

, (13)

hile in Fig. 8(b), the smoothed rate of change of tcavg , φ is defined
s

(c) =
1
6

∑
j∈K

t javg − t j−4
avg

4
,

K = {c − 4x | x ∈ {0, . . . , 5}}.

(14)

The processing time was observed to attain a minimum by
ither utilizing the full compute node with c = 128 or utilizing
8

nly half of the cores, c = 64, depending on the solution
lgorithm or the power grid model examined. The slowdown
f tcavg with increasing level of parallelism relative to the single
rocess execution t1avg is shown in Fig. 8(a). The two groups are
isible by analyzing the rate of the slowdown, i.e., the slope of
he slowdown curves, shown in Fig. 8(b). The LP with the DS
lgorithm and the MIP models both have generally increasing
lopes throughout the entire range of c , while the slopes of the
ther two models stabilize around c = 64. This suggests that
he slope is a more important factor than the total amount of
lowdown since the LP with the IP algorithm and the QP both
low down a similar amount as the LP with the DS algorithm. The
ext subsection demonstrates how the predicted tn translates to
xperimental results in massively parallel execution setup.

.4. Massively parallel execution

Average runtime of c model solves running concurrently, tcavg ,
as been determined experimentally, as shown in Section 4. In
he large-scale experiment considering n = 1000 model solves,
both the LP model with DS and the MIP model are expected
to achieve a minimum runtime t1000 at running 64 concurrent
solves. On the other hand, the other two models are not expected
to reach no decisive minimum before 128 concurrent solves, as
shown in Fig. 4. Running the LP model with the DS algorithm with
64 concurrent processes results in an average solve time of 26 s
and an average setup time of 5 s. Thus, expected processing time
is

t∗1000 =
1000
64

(26 + 5) s = 484 s (15)

on a single compute node. To achieve such processing time, the
assumption that all cores are fully utilized 100% of the time with
no delays between individual LP solves running on a given core
would have to be met.

Keeping all cores occupied is one responsibility of the work-
load manager such as SLURM. However, centralized schedulers
such as SLURM are fundamentally designed for the traditional
paradigm where there are a few large, long-running jobs, rather
than ensembles of small, short-running tasks [39]. The strategy
of submitting each individual model solve as a job batch to
SLURM thus incurs extra overhead as the scheduler identifies and
matches jobs to idle resources, accounts for user priority, pre-
pares the environment, creates temporary directories, performs
some sanity or health checks, etc. Considering the example with
n = 1000 for the LP model with the DS algorithm, SLURM
needs significantly more time to finish processing all LP solves,
compared to the established expected processing time t∗1000. The
average processing time across 7 trials for SLURM is tslurm1000 = 787 s
seconds, as shown in Fig. 9a. These experimental results were
obtained using a strategy that submits each LP solve to SLURM as a
separate job batch, which maximizes the administrative overhead
mentioned above. Multiple LP solves could be grouped into job
batches, however, while such a strategy reduces administrative
overhead, it becomes difficult to balance the batches to keep
available CPUs fully saturated with jobs. Experimentally it was
found that the administrative overhead of SLURM is much less
than the idle CPU overhead that such job grouping strategies
incur. To eliminate SLURM overhead while minimizing idle time
across CPU cores, the meta scheduler GREASY is used.

5.5. Massively parallel execution with meta scheduling

The primary goal of the meta scheduler is to eliminate the
overhead incurred by SLURM. Considering a GREASY configura-
tion using all 128 cores (128 workers), the execution of GREASY
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Fig. 7. Histograms of individual problem run times with CPU affinity (n = 3000), y-axis cropped at 1000. Vertical lines represent mean runtime.
Fig. 8. Derived metrics for the average run time tcavg for all models.
Fig. 9. Performance of GREASY for various numbers of workers with and without CPU affinity control.
and SLURM are equivalent from a perspective of the number of
solves that are running concurrently and the utilized resources.
Fig. 9a illustrates that for the LP with the DS algorithm GREASY
was able to achieve an average execution time tgreasy1000 = 715 s
without CPU affinity control and tgreasy1000 = 745 s with CPU affinity
control, which represents decrease of 9% and 5%, respectively,
compared to tslurm1000 on a single compute node of the DXT Cluster.
The main benefit from using GREASY for data-intensive applica-
tions, however, arises from the ability to control the level of
compute resources saturation. Since the memory bottleneck is
9

exacerbated as the number of concurrent jobs increases, dispatch-
ing fewer concurrent solves to the compute node should benefit
the overall processing time as established by (11). To control
this parameter, GREASY uses the ‘‘worker’’ abstraction introduced
in Section 3.2. Fig. 9 illustrates the effect of undersubscribing
the DXT Cluster node consisting of 128 cores on a batch of 1000
model solves. These experimental measurements confirm the
predictions of (11) that the optimal processing time t∗1000 = 484 s
and thus optimal throughput should be achieved at 64 concurrent
processes. The experimental measurement t1000 = 487 s differs

from the predicted result by less than 1%, and represents a time
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eduction of 38% compared to using the plain SLURM strategy,
emonstrating how effective the reduction of parallelism is at
educing memory bottlenecks.

For models which are optimally executed with an undersub-
cribed node, controlling the CPU affinity is essential to achiev-
ng the optimal processing time, although the magnitude of the
mpact depends on the specific model. The comparison of experi-
ents with and without such control is illustrated in Fig. 9. For a
ode employing at least 75% of the available cores, the difference
s modest, but a gap of almost a factor of two occurs for the
ndersubscribed node of the LP DS, especially for the point at
hich the optimal throughput was established. This is the effect
f the Unix kernel scheduler intervening with the affinity of the
rocesses, effectively eliminating the benefit of data locality and
hus losing the advantage brought by the cache hierarchy.

.6. Verification of the optimal parallelism degree prediction

The correspondence between the experimental measurements
f t1000 using GREASY, and the tn predicted by (11) and (12)
s discussed in this section. The two equations are compared
gainst the experimental results obtained by running batches of
000 jobs using GREASY with CPU affinity. The predicted values,
ntroduced in Fig. 4, are qualitatively similar to the experimental
alues, as can be seen in Fig. 10. This demonstrates the fact
hat the predictions correspond well with experimental results
n terms of determining the optimal level of parallelism that
eeds to be used in order to minimize the impact of mem-
ry bottlenecks. In this way, the processing throughput of the
omputational tasks is maximized.
The gap between the predicted and the measured t1000 may

e attributed to further memory congestion introduced by the
ntroduction of massive parallelism, as well as GREASY overhead.
t can be also seen that the ceiling function in (12) introduces
ome nonlinearities to the predicted t1000 that do not appear con-
istently in the measured t1000. However, the predictions do not
hange qualitatively using both formulations of the tn prediction,
hus the optimal level of parallelism can be found using either
redictor.
 p

10
. Conclusions

For many time critical applications that consist of a large
umber of subproblems the usual approach to decrease compu-
ation time is to improve the solver. This, however, is often very
xpensive in terms of development time or license fees. Signifi-
ant improvements can be achieved by optimizing the hardware
tilization, either by selecting a method which reduces the bottle-
ecks or by adopting scheduling techniques better suited for the
omputational nature of the problem at hand. In the real-world
rading environment, the careful management of the resources
uring the execution of embarrassingly parallel LP simulations
mproved the throughput of computations by 38%. This type of
peedup is significant considering the computational demands of
35 350 optimizations per day, reducing daily computation time
rom 6166 CPU hours to about 2280 CPU hours.

This work proposed a simple procedure that can be used to
etermine the optimal level of node-level parallelism by power
rid practitioners. The proposed procedure for parallel processing
f a large number of simulations is based on a simple benchmark
f empirical measurements. As such, it does not require any
reliminary knowledge about the hardware architecture (e.g., the
emory hierarchy properties) or characteristics of the solution
lgorithm (such as its memory access patterns). The limitation
f this approach is such that the conclusions from one hardware
rchitecture are not, in general, transferable to other architec-
ures. The same applies to the particular problem at hand, where
he conclusions are not transferable across the different problem
ypes. Also the solution method needs to be considered, where
arious solution strategies might behave differently. Additionally,
t is assumed that the problems included in the job pool are
omogeneous from the computational perspective, i.e., having
imilar memory and time complexity, as well as the data access
atterns. On top of this, the jobs are assumed to be independent,
.e., no interaction occurs between them.

Future work directions could focus on applying the proposed

arallel computation schemes to additional problem instances
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n the smart grid analysis, e.g., nonconvex nonlinear AC OPF.
he methodology is production ready, and can be integrated in
he tools such as GREASY, or other pilot job mechanisms as a
reprocessing or analysis step suggesting to the user runtime
arameters aiming to improve the hardware utilization. Addition-
lly, before applying the procedure to the parallel decomposition
chemes such as Benders, one should study how does the process
ynchronization (communication between the processes) impact
he prediction.
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