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1. INTRODUCTION 

 

1.1. Preface 

This is a cumulative thesis articulated in 5 different projects to show the potential use of 

sleep high-density EEG analysis in different in neuro-psychiatric disorders. 

Sleep is a recurring and rapidly reversible behavioural state characterized by altered 

consciousness and awareness, reduced muscle activity and almost absent interactions with 

the environment. Despite being a highly risky behaviour, sleep evolved ubiquitously 

throughout the animal kingdom due to its essential role for life. Indeed, sleep plays a crucial 

role in many physiological functions, such as brain development, neuroplasticity, memory, 

learning (Diekelmann and Born, 2010), tissue growth and repair (Bellesi et al., 2016), 

immune system (Imeri and Opp, 2010), autonomic and emotion regulation (Walker, 2009), 

and probably much more. 

The study of sleep has therefore implications not solely in the sleep-field but also for a wealth 

of other disciplines, like neuroscience, neurology, psychiatry, psychology, and even 

apparently more distant disciplines, like immunology or pneumology. Moreover, sleep 

studies offer several advantages over wake studies, like fewer muscular artifacts and no 

biases related to inattention. Last but not least, the growing knowledge on sleep circuits from 

animal studies, are destined to inform and guide human studies in many ways. Of specific 

interest for this thesis, the disruption of specific sleep oscillations in humans indirectly 

suggests the involvement of the underlying brain structures and networks responsible for 

their generation. Thus, sleep oscillations can be considered a proxy for brain connectivity 

and excitability. 

https://en.wikipedia.org/wiki/Consciousness
https://en.wikipedia.org/wiki/Muscle
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The general aim was to take advantage of sleep brain oscillations recorded non-invasively 

using scalp high density electroencephalography (hdEEG) to inform specific pathological 

processed in the field of sleep and psychiatry. To reach this goal, sophisticated signal 

processing techniques were used to build-up a hdEEG pipeline for sleep data analysis (pre-

processing and post processing) in the Matlab environment. The first project represents a 

first important methodological effort to develop a solid, structured and fluent hdEEG pipeline 

(Project 1). This effort was also meant as a necessary step to favour and implement the 

use of hdEEG, currently mainly used for research porpoises, into clinical practice. The 

hdEEG pipeline developed for this thesis was mainly tailored to study slow waves, sleep 

slow oscillations in the range of 0.5-4 Hz. I selected this specific frequency range because 

it represents the most prominent feature of “deeper” and more restorative sleep, which has 

been associated with many fundamental sleep functions, like experience-dependent 

plasticity (Huber et al., 2004; Massimini et al., 2009). As a second step, this pipeline was 

applied to study several slow wave properties in a group of healthy subjects (Project 2) 

composed of both young adolescents and young adults. As a third step, hdEEG slow wave 

analysis was applied to sleep and psychiatric disorders. More specifically, I selected 

Attention Deficit Hyperactivity (ADHD) disorder as a representative pathological condition in 

child psychiatry (Project 3), first-episode psychosis (FEP) as a representative pathological 

condition in adult psychiatry (Project 4), and Disorders of Arousal (DOA) as a representative 

pathological condition in sleep medicine (Project 5). Each project includes a short overview 

on the study sample, the study aim(s) and results, a copy of the related original paper(s) that 

resulted from each experiment, and a short discussion of possible future directions. 
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Before moving to the description of each project, key basic concepts on sleep and EEG will 

be reviewed in this first thesis chapter. 

 

1.2. EEG 

Invented in 1924 by a German psychiatrist, Hans Berger, EEG is one of the oldest 

technologies that measure neuronal activity in humans. Scalp EEG is now part of the clinical 

routine in the neurologic/epileptological field and the technique of choice to study sleep.  

(Figure 1).  

  

Figure 1. EEG models throughout history. EEG equipment used in 1934. Taken from  

(Stone and Hughes, 2013). Right: current high density EEG system used for research 

(https://www.philips.com.qa/). 

 

Contrary to other neuro-imaging techniques, like PET, SPECT and MRI, EEG offers a unique 

opportunity to image the brain with exquisite temporal resolution (sub-seconds) throughout 
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the entire sleep period and without restriction of normal or pathologic nocturnal movements. 

Furthermore, in contrast to other imaging procedures, EEG is relatively inexpensive, 

portable, and can be performed repeatedly. In addition, with digitalization and technological 

advancement, EEG signal analysis changed from pure visual inspection (still valuable and 

fundamental for clinical practice) to a comprehensive evaluation of the temporal and spatial 

dynamics of the recorded signals.  

Although EEG has been traditionally hampered by a low spatial resolution, the 

implementation of high-density EEG (hdEEG) for research purposes – meaning EEG 

systems with an increased number of scalp electrodes (up to 256) - marked the full title 

entrance of hdEEG in the list of neuroimaging modalities. hdEEG high spatial resolution 

allows to localize more precisely and more reliably the brain generators of the recorded 

activity at the scalp surface, using a combination of precise head anatomical information by 

magnetic resonance imaging (MRI) and sophisticated source localization algorithms (see 

Chapter 2). With 256 channels hdEEG systems, the current resolution is ~ 1-2 cm. This 

resolution is surely below the one offered by MRI (~1 mm, or even less with current ultra-

high magnetic field MRI scanners). The accuracy the EEG source reconstruction is affected 

by a number of factors including head-modelling errors, source-modelling errors and EEG 

instrumental or biological noise (Grech et al., 2008).  

 

Despites technological advantages, the physiology behind EEG recording did not change. 

EEG basically detects and amplifies the electrical activity of the brain using small, metal 

electrodes on the scalp. EEG systems are composed of recording electrodes, an amplifier, 
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analogical and/or digital filters, a system to acquire data, and a screen to visualize the signal. 

The signal is always compared to the signal recorded by an electrode chosen as reference.  

This signal measures the electrical activity of a living brain, and more in particular – if the 

measurement is performed on the scalp - it measures the sum of post-synaptic (dendritic) 

potentials produced by the pyramidal cells located in the brain cortex (Figure 2). 

 

Figure 2. Physiological mechanisms of EEG signal. Since these neurons are organized 

in columns which are located perpendicularly to the scalp, the sum of the potentials recorded 

by the electrode is different from zero. Taken from (Tatum et al., 2018). 

 

The measured activity is traditionally divided in multiple frequency bands: delta or slow wave 

activity (SWA, 0.5-4 Hz), theta (4-8 Hz), alpha (8-16 Hz), beta (16-30 Hz), gamma (>30 Hz). 
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When cells firing is desynchronized (during wakefulness, see Figure 3), scalp EEG is 

dominated by high frequency low voltage oscillations. The more neuronal firing is 

synchronized and coordinated (during specific phases of sleep), the higher is the EEG 

voltage and the slower are the rhythms that appear in sleep recordings.  

 

Figure 3. EEG during wakefulness. The upper panel illustrates one EEG trace during 

wakefulness, when eyes are open (left side) and when eyes are closed (right side). The 

lower panel shows the spectrogram of the signal (power in different frequency bands over 

time). When eyes are closed, a sharp increase of alpha rhythm could be appreciated, 

especially in occipital electrodes. Taken from (Bleichner and Debener, 2017). 

 

1.3. EEG in sleep 

During sleep the EEG is extremely different from wakefulness due to subtle but significant 

changes in the mechanisms that govern neuronal firing and excitability (Figure 4).  
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Figure 4. Recording of single neuronal units and local field potentials (LFP). The 

figure exemplifies the difference in firing between waking and sleep. During waking the 

firing is irregular but always present, instead during sleep there is an alternation of ON and 

OFF periods. During ON periods the firing is stronger or as strong as waking firing, during 

OFF periods there is almost no firing. Taken from (Timofeev and Chauvette, 2019). 

 

The identification of different sleep stages is based on the coordinated recording of EEG, 

electromyography (EMG), and electrooculography (EOG). All three are needed, reminding 

us that sleep is primarily a behavioral state, and EEG just a way to measure it under a 

particular perspective. 

NREM sleep (NREM) is composed of 3 stages (Figure 4) according to traditional scoring 

rules (Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, 2020): 

1) Stage 1 (N1) is the stage of transition from wake to sleep and it is characterized by a low 

voltage EEG activity and the attenuation of the alpha rhythm (produced by the brain activity 

when eyes are closed), so that less than 50 % of the waves are in the alpha range in every 

30 seconds epoch (sleep scoring is usually approximated to 30 secs epochs windows).  

2) Stage 2 (N2) typically presents two specific brain oscillations, meaning sleep spindles and 
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K-complexes. 

3) Stage 3 (N3) - which is often called Slow Wave Sleep (SWS), Delta Sleep or Deep Sleep 

– is characterized by a slow and synchronized activity, which occupies at least the 20% of a 

30 seconds epoch. During this stage sleep spindles can be a common finding, although slow 

waves are more typical and tend to mask them.  

REM (Rapid Eye Movement) sleep typically presents a desynchronized, fast, low voltage 

EEG activity, similar to waking EEG (Figure 5). In addition, it is characterized by muscle 

atony (low EMG voltage), and conjugated rapid eye movements usually initiated by an EOG 

deflection <500 milliseconds (ms).  

 

Figure 5. Graphic explicative representation of EEG during wakefulness and sleep. 

Taken from (Stangor and Walinga, 2014). 
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During the night, these stages rotate in around 90 minutes cycles, as described in the 

hypnogram below (Figure 6).  

 

Figure 6. Hypnogram of a typical night sleep of a healthy young adult. The 

hypnogram shows the typical alternation of NREM and REM sleep cycles (the average is 

4-5 cycles each night). Throughout the night there’s a progressive reduction of NREM (N3 

in particular), and an increase of REM. Taken from (Miller et al., 2015). 

 

While NREM sleep has long been connected to unconsciousness and synaptic downscaling 

(meaning the decrease of the strength of each synapsis by the same factor and the potential 

loss of less connected synapses) (Tononi and Cirelli, 2014), REM sleep has been typically 

connected to dreams and to the regulation of emotions and emotional memories 

(Ackermann and Rasch, 2014). 

However, several studies have now shown that sleep is not a global phenomenon (Nobili et 

al., 2012), and that small isles of neuros may locally produce sleep during wakefulness 
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(D’Ambrosio et al., 2019), or wake during sleep (Nobili et al., 2011) or while falling asleep  

(Magnin et al., 2010; Marzano et al., 2013; Sarasso et al., 2014), or NREM sleep into REM 

sleep (Baird et al., 2018; Bernardi et al., 2019; Funk et al., 2016), or probably even REM 

sleep in the context of NREM sleep (Nielsen, 2000; Siclari et al., 2017). Similarly, mental 

activity during sleep may occur independently of the sleep stage, as demonstrated in one 

third or more of the awakenings out of NREM sleep (Siclari et al., 2013). 

This physiological co-occurrence of different sleep and wake states is particularly evident 

during transitional states, like the arousal process (Peter-Derex et al., 2015; Ruby et al., 

2021). This may sometimes turn into pathology (Mahowald and Schenck, 2005, 2001, 1992; 

Siclari and Tononi, 2017) (see Figure 7 for a graphical representation of the concept), for 

example during NREM sleep parasomnia episodes (Castelnovo et al., 2018), where 

wakefulness largely intrudes into NREM sleep, in different brain regions or even in the same 

brain areas, as I will discuss in project 4. 

 

Figure 7. Areas of overlap among states of being. Taken from (Mahowald and Schenk, 

2001). 
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1.4. Sleep slow waves 

Slow waves are the most prominent electroencephalographic (EEG) signature of non-rapid 

eye movement (NREM) sleep. Slow waves are defined as slow EEG oscillations at a 

frequency of 0.5-4 Hz (Figure 8). For sleep scoring porpoises, slow wave negative peak 

amplitude should be equal or higher than 75 μV (as measured over the frontal cortex). Their 

rate of occurrence increases progressively after sleep onset, reaching almost once per 

second as sleep deepens.  

 Figure 8. Graphic representation of a 

slow wave and a spindle in a typical EEG 

recording and of their topographic 

distribution. Red indicates a higher 

density while blue indicates a lower density 

of these two elements. Taken from (Tononi 

et al., 2009). 

Slow waves are markers of, and probably have a direct role in a variety of fundamental 

functions, including the maintenance of disconnection from the external environment during 

sleep (Pigorini et al., 2015), synaptic plasticity and learning (de Vivo et al., 2017; González-

Rueda et al., 2018; Tononi, 2009), cellular restoration and the clearance of neurotoxic 

metabolites (Xie et al., 2013). Even more notably, extensive changes in slow waves have 

been also observed in association with brain maturation, from childhood through 

adolescence. Indeed, sleep depth measured as the absolute SWA power progressively 
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decreases, in parallel with massive synaptic remodeling (Buchmann et al., 2011b). Even 

more strikingly, SWA peak activity migrates along the postero-anterior axis during 

development (Kurth et al., 2010) (see Figure 9). 

 

Figure 9. EEG power during NREM sleep throughout development.  

Maps were normalized for each individual and then averaged for each age group. Values 

are color coded (maxima in red, minima in blue) and plotted on the planar projection of the 

hemispheric scalp model. At the top right of the maps, numbers indicate maxima and minima 

(in square microvolts) for each plot. Figure taken from (Kurth et al., 2010). 



 
 

17 

 

Slow waves derive from the summed activity of large ensembles of cortical neurons, whose 

membrane potentials during NREM sleep become “bistable”. Indeed, instead of firing 

tonically, cortical neurons start to fluctuate between hyperpolarized “silent” phases (or down-

states) and depolarized “active” firing phases (or up-states) (Steriade et al., 1993a, 1993b), 

due to the reduction of wake-promoting neuro-modulators. Thus, each time a slow wave is 

produced, cortical cells hyperpolarize and remain silent for a dozen or hundreds of 

milliseconds (corresponding to the wave down-state or negative peak). This is then followed 

by a tonic depolarization, which is often associated with an action potential generation 

(corresponding to the slow wave up-state). This process is almost synchronous over large 

cortical sections, so that sleep slow waves can be recorded using the scalp EEG. However, 

this process is not perfectly synchronous. Using hdEEG recordings in humans, Massimini et 

al. showed that there is a small delay (of few milliseconds) between the negative peak of 

each slow wave, meaning that, at a macroscale level, slow waves behave as traveling waves 

(Massimini et al., 2004). In other words, these slow bursts of neuronal excitation and 

depolarization spread across the cortex following specific patterns at an estimated speed of 

1.2–7.0 m/sec (Figure 10). The pattern of origin and propagation of sleep slow oscillations 

is reproducible across nights and subjects and provides a blueprint of cortical excitability 

and connectivity (Murphy et al., 2009). More specifically, in adults, slow waves seem to 

originate more frequently in orbitofrontal regions and tend to propagate mainly following 

antero-posterior direction. Such a long-range synchronization and propagation is assumed 

to reflect the structural integrity and maturation of cortico-cortical white matter connections 

(Buchmann et al., 2011a; Kurth et al., 2017; Murphy et al., 2009; Piantoni et al., 2013), 
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including the corpus callosum (Avvenuti et al., 2020; Bernardi et al., 2021), which is the main 

route responsible for cross-hemispheric slow wave propagation.  

 

Figure 10. Visual representations of slow wave traveling. Signal recorded from 256 scalp 

electrodes during 5 consecutive cycles of the slow oscillation and their corresponding delay 

maps. Each wave has a different origin and spreads over the scalp with a distinct pattern of 

propagation (from Massimini et al., 2004). 

 

Slow waves can be generated by the cortex when it is isolated from thalamic input (Steriade 

et al., 2001, 1993b). The excitatory cortical neurons located in the 5th layer may play a 

fundamental role in the generation and spread of cortical up states (Sanchez-Vives et al., 

2000; Wester et al., 2012; Beltramo et al., 2013), although a recent study clearly pointed 

also to the role of GABAergic somatostatin positive neurons - but not of parvalbumin positive 

ones (Funk et al., 2017). 
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Figure 11. Graphic representation of the complex interactions between pyramidal 

excitatory neurons and GABAergic interneurons.  Layer II: pyramidal (black, 

left), stellate (black, right). Layer III–V: pyramidal (black, bottom), PV+ interneuron (PV, 

blue), and SOM+ interneuron (SOM, red). Taken from (Kecskés et al., 2020).  

The most common (~70%) GABAergic SOM+ are the so-called cells of Martinotti. These 

cells are diffusely represented in every part of the cortex. Their somas are located in the 5th 

layer of the neocortex and their axons characteristically extend to the cortex surface (1st 

layer), which is the area where numerous cortico-cortical and TC connections converge. In 

layer 1 they create a kind of functional syncytium through complex synaptic arborizations 

and gap junctions. These cells activation comes as a consequence of the pyramidal cells 

synchronous firing that takes place at the end of the up states. Their activation causes a 

powerful and synchronous inhibition of the excitatory transmission across many pyramidal 

cells located over large brain sections. This mechanism is able to explain the OFF period 

and the down states that can be observed during NREM sleep, as well as the slow wave 

tendency to travel throughout the cortex (at least over short distances). 
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However, growing literature has shown that the thalamus can also generate slow waves, as 

suggested by the following observations:  

1) In vitro, both thalamo-cortical (TC) neurons and neurons in the thalamic reticular nucleus 

(TRN) show a strong rhythmic alternation of up and down states, when they are isolated 

from the rest of the central nervous system (Blethyn et al., 2006; Crunelli and Hughes, 

2010; Hughes et al., 2002); 

2) In vivo, TC neurons firing is strictly associated with EEG slow waves (and in specific 

thalamic nuclei, precede cortical up states) (Sheroziya and Timofeev, 2014; Slézia et al., 

2011).  

3) Moreover, the selective activation of TC neurons using optogenetic techniques can 

induce slow waves occurrence in mice and rats (David et al., 2013; Fernandez, 2012). 

More specifically, while the tonic activation of centro-medial thalamus induces 

wakefulness, its burst activation induces up-states in the cingulate cortex and finally in 

the cerebral cortex though the relay of the anterior thalamic nucleus (Gent et al., 2018b, 

2018a); 

4) Studies performed on rats and cats conclusively demonstrated the presence of 

significant slow waves alterations during anesthesia and physiologic sleep after 

optogenetic or pharmacologic thalamic inactivation (David et al., 2013; Lemieux et al., 

2014); 

5) In humans, thalamic nuclei lesions can impair slow waves slope renormalization 

(Jaramillo et al., 2021). 
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Taken together, these data show that both cortical and thalamic neurons can generate and 

influence slow rhythms.  

Thus, which come first: the chick or the egg? 

As neither the isolated cortex nor the isolated thalamus can express slow waves identical to 

those observed in vivo, slow wave full expression seems to require an intact thalamocortical 

network, although their full complex interplay is still not completely uncovered (Adamantidis 

et al., 2019; Crunelli et al., 2015). 
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2. PROJECT 1 

In this chapter, I describe step by step the pipeline for hdEEG sleep data acquisition, pre-

processing and post-processing procedures. The practical application of this pipeline is 

illustrated in the subsequent projects. 

 

2.1. Data acquisition 

HdEEG data were recorded using an EGI amplifier connected with a 256-channel head net 

(Electrical Geodesics Inc., Eugene, OR) in a controlled sleep laboratory setting. The signal 

was vertex-referenced (meaning that was referenced to the central electrode Cz at the 

head’s vertex), unfiltered and sampled at 250 Hz or higher. According to the Nyquist's 

theorem, a periodic signal must be sampled at more than twice the highest frequency 

component of interest. In practice, because of the finite time available, a sample rate 5 times 

higher is the typical choice.  

 

HdEEG was coupled with traditional Polysomnography (PSG) collected using the Embla 

system. PSG included the following channels: 

- electro-oculogram (electrodes placed 1 cm above the right outer cantus and 1 cm below 

the left outer cantus and referred to the left mastoid) 

- electromyogram of the submentalis muscle (electrodes placed 2 centimetres apart, 1 

centimetre below the mandibular edge) 

- electromyogram of the right and left tibialis anterior muscles (bipolar derivations with 2 

electrodes placed 3 cm apart on the belly of the tibialis anterior muscle of each leg) 
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- electrocardiogram (CM4 derivation: anode in position V4 and cathode attached to the 

manubrium of the sternum) 

- oral and nasal airflow thermistors and/or nasal pressure cannula 

- wearable piezo-electric thoracic and abdominal bands to detect respiratory movements 

- pulse-oxymetry 

- snoring sensor 

- position sensor 

-  

Sleep stages and sleep events were scored visually using the Embla ® RemLogic TM 

Software (Neurolite AG) by sleep medicine expert physicians according to international 

criteria (Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, 2020). 

HdEEG data were exported from the EGI system in the “.mff” format, which contains both 

raw data and meta information like the date of the recording, the sampling rate, the position 

and impedance of the EEG sensors. 

 

PSG raw data were used directly in the Remlogic “.ebm” format, while PSG meta data 

(essentially the sleep scoring files) were exported as “.txt” files. 

 

2.2. Data pre-processing 

Data pre-processing steps are summarized in Figure 1.  
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Figure 1. Summary of data pre-processing steps 

Each step of data pre-processing is briefly summarized below. 

 

2.2.1.  Data backup 

Mff, ebm and txt files were codified and stored in a protected Network Attached Storage 

(NAS) with 2 storage drives (10 TB each) arranged into redundant array of independent 

disks (RAID) to prevent data loss. The results of subsequent analyses were stored in the 

same drives. 

 

2.2.2.  Data import 

Coded data were imported in Matlab using custom scripts. HdEEG files were converted in 

the EEGlab format (.set files containing meta-data coupled with .fdt files containing the raw 
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data). Sleep scoring information from text files was extracted and converted from 30 second 

epoch format to a data-point format (one scoring information per each data point of the 

recording file). This information was appended to the set files. PSG data were instead added 

to the fdt files. 

 

2.2.3. Alignment  

hdEEG and PSG data were collected with 2 different systems. Thus, I aligned hdEEG and 

PSG data so that they started at the same exact time. However, this could not be achieved 

through a simple translation of the starting point of one of the 2 signals. Indeed, the clock in 

our computers is controlled by the vibration of crystal oscillators that are not all created 

equal. This adds up to seconds or milliseconds per day/night. Thus, I collected the same 

ECG signal with both recording systems (essentially creating a mechanical bridge). Then, I 

plotted both of the ECG signals in EEGLAB, visually identified specific ECG artifacts at the 

beginning and at the end of the night and marked the time difference for each ECG artifact 

between the 2 systems. Finally, I translated one of the 2 signals of the average time 

difference between the artifacts. The same process could be potentially repeated to align 

with 0 delay specific nocturnal events (e.g., parasomnias episodes). 

 

2.2.4. Central scoring 

Being an expert in sleep medicine, I personally supervised central scoring after data import, 

using an open-source Matlab toolbox (Figure 2, https://github.com/Mensen/swa-matlab). 

https://github.com/Mensen/swa-matlab
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Figure 2. Screenshot of the Matlab toolbox used for central sleep scoring.  

1: NREM stage 1, 2: NREM stage 2, 3: NREM stage 3, 5: REM, 0 wakefulness, 6: unscored 

epochs. In RED: artifacts. 

 

After sleep staging and the scoring of related events, I also scored sleep cycles using a 

custom-graphical user interface (GUI) that I created in Matlab (Figure 3). 
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Figure 3. Screenshot of the Matlab GUI used to identify sleep cycles. 

This GUI allows to mark the beginning of each NREM and REM cycle by clicking directly on 

the hypnogram edges. 

 

2.2.5. High-pass and band-pass filtering 

Filters are basically tools for spectral separation, which remove unwanted components or 

features from the EEG signal. This effect is obtained convolving the EEG signal and a 

reversed Kernel function (a wavelet or sine wave). Convolution basically works by computing 

the dot-product, meaning the sum of the products of the corresponding entries of the two 

functions. 

EEG filters can be divided in 2 groups: Finite Impulse Response (FIR) and Infinite Impulse 

Response (IIR), which main features are summarized in the following table. 

FILTERING TYPES 

 FIR IIR 

Method Multiply data with Kernel Multiply data with data 

Kernel Length Long Short 
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Speed Slower Faster 

Stability High Data dependent 

 

FIR filters have an impulse response for a finite duration, and produce equal delays at all 

frequencies. IIR filters have an infinite impulse response where part of the output of the filter 

is recursively used as feedback. This results in unequal delays at different frequencies, 

meaning that the output is shifted in time with respect to the input, with some frequency 

components shifted more than others.  In short, FIR filters are more accurate but 

computationally less efficient, while IIR filters create larger distortions but are 

computationally more efficient. 

Digital filtering is a complicate and delicate step in signal analysis. This step may cause a 

distortion of the shape/temporal structure of EEG signals and affect all subsequent analyses. 

Thus, it must be tailored for the specific planned analysis.  

In line with typical practice in EEG signal processing, for this thesis, each EEG signal was 

first-order high-pass filtered at 0.1 Hz (IIR filter reproducing a single resistor capacity) to filter 

out slow and large data drifts due to skin potentials. The EEG signal was subsequently band-

pass filtered (0.5 – 45 Hz, Kaiser window-based FIR with zero-phase distortion). 

 

2.2.6. Segmentation 

Data epochs corresponding to NREM sleep stage 3 and NREM stage 2 (and to REM sleep 

and wake for project 3) were extracted and cleaned separately. For the last project on NREM 

sleep parasomnia episodes, only specific short segments of 4-minute length were selected 
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(based on the motor onset of each event) and extracted (3 minutes before up to 1 minute 

after the motor onset of each episode). See project 6 for further details. 

 

2.2.7. Manual cleaning 

An interactive open-source tool for data visualization and data-cleaning 

(https://github.com/CSC-UW/csc-eeg-tools.git) was used to visually inspect data (Figure 4).  

 

Figure 4. EEG GUI used for manual cleaning. 

This tool allows to scroll quickly the hdEEG signal across channels and across time, and to 

interactively select bad channels and mark bad epochs (as the one between the 2 sky-blue 

triangles) by clicking directly on the data. The bar at the bottom allows to quickly visualize 

the marked artifacts across the time domain. 
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Channels with clear artifacts were removed, while data segments containing artifacts 

affecting the majority of channels were marked as “bad” and not considered in subsequent 

analyses.  

 

2.2.8. Spectra-based cleaning 

Furthermore, I removed channels with distinctly greater power (see paragraph 1.4.1 for a 

clarification on the concept of EEG power) relative to neighbouring channels upon visual 

inspection of power spectra and topographic power maps using a custom GUI. 

I created this GUI in order to interactively select individual channels from the EEG power 

spectrum, and mark them as bad when clearly different from the others. Topographical 

power maps were plotted before and after bad channels removal (Figure 5). 

I am currently developing a more sophisticated tool in the Python environment, in 

collaboration with the Department of Informatics of the University of Southern Switzerland 

(USI). This new tool allows to directly check at the same time the EEG raw signal, 

topographical power maps (in different frequency bands) and power spectrum, as well as to 

mark bad channels in red (see Figure 6). 
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Figure 5. Spectra-based GUI 

Upper panel: power spectrum of all 256 channels. One single bad channel is marked as bad 

(yellow dotted line). Lower left panel: power topography in 6 traditional frequency bands. 

This map is plotted before opening the spectra-based GUI. One single bad channel can be 

easily detected as a red spot over the right frontal area. Lower right panel: power topography 

plotted after the removal of the yellow dotted line with the GUI. 
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Figure 6. Spectra-based GUI 

Upper panel: EEG raw signal. It can be scrolled in the time-domain using the bar at the top, 

and across channels using the bar on the right. 

Lower left panel: power map in the delta range. A bad channel can be clearly identified over 

the left posterior area (red spot). Channels can be selected (green color) and visualized in 

the left right panel, and can be marked as bad (red color). Other frequency ranges can be 

visualized by clicking on the green button.  

Lower right panel: power spectrum. 

We are working to improve the graphical design and interactivity of the tool. We are also 

planning to add a spectrogram to represent the distribution of energy in both the time and 

frequency domain, and to add the possibility to easily visualize and mark bad epochs. 
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2.2.9. ICA-based cleaning 

Independent Component Analysis (ICA) is a special type of blind source separation that 

decomposes the signal into additive subcomponents. ICA works well on multi-channel 

hdEEG signal due to its realistic assumptions: 1) the observed multi-channel EEG signals 

are a linear mixture of unknown sources; 2) sources are linearly and mutually independent 

3) and non-Gaussian. To limit the intrinsic risk of removing sources that also carry 

information about real brain activity, I removed only ICA components with activity patterns 

and component maps characteristic of clear artifactual activity (see Figures 7 and 8). More 

specifically, only ocular, electrocardiographic, sweating, and residual muscular artifacts (or 

possible epileptic spikes in ADHD patients) were removed with ICA. For this step, I used 

both EEGLAB routines (to plot ICA components’ power) and the previously mentioned EEG 

data visualization GUI (to plot ICA components in the time domain).  

 

Figure 7. Example of a ‘good’ ICA component 
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Figure 8. Examples of a ‘bad’ ICA components. 

Upper panel: typical sweating artifact. Lower panel: typical ECG artifact. 

 

I am planning to create a specific GUI to improve ICA components visualization and 

cleaning, in collaboration with the USI department of informatics. 
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2.2.10. Bad-channel interpolation 

Subsequently, as a last pre-processing step, I replaced selected bad channels with virtual 

healthy channels created by the interpolation from neighbouring channels. Among different 

interpolation methods for channel reconstruction (spherical splines, higher-order 

polynomials, nearest-neighbour averaging and radial basis function), I selected the EEGLAB 

“pop_interpol” function, which uses as default method the spherical splines. This method 

allows for an accurate estimation of scalp potentials if the electrode mapping is sufficiently 

dense (Perrin et al., 1989). 

 

2.3.  Data post-processing 

 

2.3.1. Scalp spectral analysis 

From the earliest stages of EEG research, different EEG frequencies were believed to reflect 

different states of the brain, as suggested for example by the strong association between 

occipital alpha rhythm and eye-closure. Broadly speaking, lower frequency bands, which 

dominate during sleep or drowsiness, are believed to reflect subconscious states, while 

higher frequency bands have been connected to more alerted, active states and higher 

cognitive functions.  

Scalp spectral analysis is one of the most basic and widely used quantitative EEG analysis. 

Spectral analysis allows to decompose the signal from the time domain to the frequency 

domain thanks to the Fourier Transform (see Figure 9).  
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Figure 9. Fourier transform (FT). Taken from (Kalhara et al., 2018). 

 

The continuous Fourier transform (CFT) of a function x(t) is basically a correlation between 

the signal x(t) and the complex sinusoidal functions e−jωt = cos ωt − j sin ωt, where ω is the 

angular frequency corresponding to the linear frequency f (ω = 2πf). The highest is the 

correlation, the higher is the influence of the frequency ω in the original signal x(t). In other 

words, Fourier transform represents how similar the given signal is to the complex 

exponential of a given frequency. 

Contrary to CFT, the discrete Fourier transform (DFT) does not assume that the signal is 

infinite or continuous in time, but just that its input signal is one period of a periodic signal. 

Therefore, DFT is used for any modern EEG recording, where the signal is recorded for a 

relatively short time interval and stored digitally. 
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The fast Fourier transform (FFT), currently used in EEG signal analysis (Cox and Fell, 2020), 

is a particular implementation of the DFT that assumes that the signal is stationary and 

slowly varying and gives identical results with reduced calculations (from N2 to Nlog2(N)) and 

computational burden. 

FFT returns, for each frequency bin and for each electrode, a complex number from which 

the amplitude and phase of the signal at that specific frequency can be easily extracted. The 

amount of the specific frequency band included in the signal (usually reported as power 

spectral density or Welch’s periodogram, expressed in (micro)-Volts2 per Hertz) and its 

spatial distribution (over different brain areas) are the 2 most important factors considered 

in traditional EEG spectral analysis (see Figure 10). 

 

Figure 10. Different representation of the FFT output. 

Left: power spectrum (power versus frequency), taken from (Castelnovo et al., 2016). 

Middle: topo-plot (power topography), taken from (Castelnovo et al., 2016). Right: 

spectrogram (time versus frequency). Taken from (Kang et al., 2015). 
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2.3.2. Slow wave detection analysis 

Slow wave detection analysis refers to the identification of individual slow waves and to the 

analysis of their parameters. This analysis offers both more sensitivity and specificity 

compared to spectral analysis for the analysis of sleep oscillations in the 0.5-4 Hz range 

(Mensen et al., 2016a).  

The detection of slow waves is usually conducted via automatic algorithms, which may vary 

in terms of conceptual methodology or in terms of parameters used for slow wave detection. 

For example, using the “zero-crossing” method, slow waves can be detected at the single 

channel level by first band-pass filtering the EEG signal in the delta range, then identifying 

filtered EEG data-points that cross the zero line, and the positive and negative peaks as the 

second-derivative between the identified consecutive zero-crossings. In this context, 

amplitude can be evaluated as the distance between the negative peak and the 0 line along 

the y-axis (negative-peak amplitude) or as the distance between consecutive positive and 

negative peaks (peak-to-peak amplitude), while up- and down-slopes are computed as the 

amplitude of the most negative (or positive) peak (a) divided by the time until the next (or 

previous) zero-crossing (t) (see Figure 11, left panel). 

 

Figure 11. Simplified graphical representation of slow waves parameters.  

Left - Adjusted from (Kurth et al., 2010). Right – taken from (Bernardi et al., 2018). 
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Another common strategy consists in:  

1) identifying a “canonical” (most representative) signal or wave 

2) then individual slow waves within the canonical signal, and subsequently 

3) computing slow waves in individual channels. Finally, one can also decide whether or not  

4) to explore slow wave traveling properties (see chapter 1 for an introduction to this last 

concept). 

 

First step 

A canonical wave can be calculated according to conceptually distinct approaches:  

- a “regional” method, i.e., taking the mean activity over a specified brain region, or 

- a “negative envelope” method, i.e., examining the butterfly plot of overlaying 

channels, tracing its negative contour, and taking the most negative values (e.g., 

< 2.5%) at each data sample (Figure 13, right panel).  

The negative envelope has the advantage of not losing regional (local) slow waves and 

being computationally faster (the full detection criteria run once, on a single time series), 

but also has some limitations: 1) the waveform may be distorted and not closely 

correspond to any particular channel; 2) the peak-to-peak amplitude information is lost 

given that the positive portion of the signal is eliminated; 3) the negative peak amplitude 

is unpredictably altered as the negative envelope has rare zero-crossings and must be 

high-pass filtered or detrended to shift the mean activity to zero.  
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Second step 

The second step, after the creation of the canonical wave, is the definition of an “inspection 

point” to detect slow waves at individual channels. The choice is usually between the 0 line 

or the local minima/maxima. In the first case, the procedure is the same as the above 

mentioned “zero-crossing” method. This method can be affected by slow EEG drifts and 

could be unreliable when using the negative envelope. An alternative is to examine the local 

minima of the canonical wave and consider as the start and end points of that particular 

wave the nearest local maxima. Furthermore, some crucial thresholds on different 

parameters (e.g., minimum amplitude, minimum and maximum wavelength) are usually 

selected to make sure to retain only “real” slow waves. 

 

Third step 

The same set of criteria applied to the canonical wave can be applied to individual channels. 

One could also use stricter criteria for the canonical wave to maximize specificity, and more 

relaxed criteria at the channel level to maximize sensitivity. Afterwards, for each slow wave, 

the delays at the time point of the minimum peak are computed for each channel.  

An alternative is represented by the cross-correlation of the canonical wave with the 

individual channels over a specified time-window around each slow wave negative peak. 

This method is amplitude independent, and already implies the calculation of the temporal 

delay of the wave at each channel, in a way that it is robust to noise (as not only the negative 

peak but the entire waveform is considered for the calculation of the delay, see Figure 12).  
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Figure 12. Slow wave traveling analysis 

Left: Cross-correlation analysis allows to find: 1) whether a specific channel express a slow 

wave at the same time as the canonical slow wave (high positive correlation, in yellow); 2) 

what sampling delay they best fit giving an estimate of the channel origins of the wave and 

its propagation pattern. Right: graphical representation of a delay map created by 

interpolating on the scalp the delays of an individual slow wave, with over imposed 3 typical 

streamlines (see main text). Figure taken from (Mensen et al., 2016b). 

 

When using the envelope as canonical wave, it might be useful to cross-correlate each 

channel with the channel displaying the largest negative peak (as the negative envelope 

may not correlate well with any particular channel).  

Finally, to avoid “island channels”, not connected to the other channels, which are likely to 

be random artifacts, a cluster test can be performed on the active channel topography.  
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Fourth step 

Traveling slow wave properties of individual waves are computed on the interpolated scalp 

delay map created using the individual delays across ‘active’ channels. Channels with a 0 

or near zero delay are usually considered as slow wave origins. Slow wave streamlines are 

computed using a complex algorithm that defines the trajectory of each streamline based on 

each gradient of the delay map until a stopping condition is met: 1) the gradient at the next 

point does not exist or is equal to zero, 2) the change in gradient angle is greater than 90 

degrees. Usually, only the streamline with the longest displacement (the distance between 

the start and endpoints of each wave) is retained for subsequent analyses, but other 

selection criteria can be applied. For example, one can decide to consider the longest 

distance traveled (taking into account the cumulative sum of the streamline’s datapoints). 

As a last note, EEG data are traditionally average mastoid-referenced before slow-wave 

detection analysis, according to clinical sleep scoring criteria (Berry et al., 2013). It has to 

be noted that mastoid-reference may create a frontal bias (larger waves over frontal 

electrodes, being mastoids in a posterior-temporal position). However, this solution is likely 

better than average referencing, as this can invert the polarity for electrodes where the wave 

is smaller than the average and make the negative envelope of large, global slow waves 

especially tricky to interpret. 

A practical application of slow wave analysis is described in detail in the second and in the 

fourth projects of this thesis. 
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2.3.3. Source analysis 

Source imaging techniques (Song et al., 2015) try to overcome the limited EEG spatial 

resolution by reconstructing the cortical sources of the EEG signal. Source localization 

analysis can be broken down into 2 major parts called the “forward problem” and the “inverse 

problem” (see Figure 13). The forward problem consists of finding the scalp potentials that 

would result from a hypothetical model of currents/dipoles inside the head. The inverse 

problem consists in estimating brain activity sources that better fit the actual EEG data 

measured at specified scalp electrodes, using the hypothetical current models provided by 

the forward problem. 

 

Figure 13. The forward and inverse problems of EEG source analysis. 

Taken from (Bangera and Bhalchandra, 2008). 
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The forward model can be divided in 2 steps: 1) the identification of mathematical models 

of the head and 2) the assignment of appropriate properties to each layer. The head can be 

modeled as a single-layer homogenous, isotropic, conductive sphere. This oversimplified 

head model can be improved by establishing 3 (or 4) concentric, spherical regions 

representing the brain, (the cerebro-spinal fluid), the skull, and scalp and by assigning to 

each region an appropriate conductivity value (Figure 14, left panel). This 3-(4)-shell 

concentric spherical head model can be further improved by integrating a second imaging 

modality, typically in the form of an MRI scan, to create a realistic-head model through 

segmentation algorithms (Figure 14, central panel). MRI structural scans of the brain can be 

segmented into multiple closed triangular meshes with a finite number of nodes, preserving 

the structural integrity of the actual head (Figure 14, right panel).  

Figure 14. Head models 

Left panel: 3-shell model, taken from (Gaignaire et al., 2010). Central panel: realistic 4 shell-

model, taken from (Bangera and Bhalchandra, 2008). Right panel: plot of the head model 

with the three meshes (brain, skull and scalp), taken from 

https://www.fieldtriptoolbox.org/workshop/oslo2019/forward_modeling/.  
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The brain, skull, and skin surfaces are then used as boundary layers that encapsulate the 3 

(or 4) tissue volumes with homogeneous volume conductive properties. Of note, while the 

brain to skull conductivity is reported in the literature with consistency, the soft tissue to skull 

conductivity ratio remains a subject of debate and a remaining degree of uncertainty may 

significantly impact on the accuracy of the forward model. Taking into account this possible 

limitation, the potential at any node on the mesh scalp surface, generated by the dipoles in 

the brain compartment can be estimated using a complex numerical technique called the 

boundary element method (BEM). The number of nodes and triangle meshes used to 

represent 3 (or 4) compartment surfaces partially affect the accuracy of this estimation. 

Moreover, constant conductivity values are assumed for the spaces in between these 

boundaries. Thus, the BEM modelling of the human head volume conductor may fail to 

capture local inhomogeneities and the anisotropic properties of biological brain tissues. This 

issue can be solved using more complex algorithms, like the finite element method (FEM). 

The inverse problem is defined as “ill-posed” due to the non-uniqueness of its solution. 

Indeed, the number of unknown sources is much larger than the number of scalp 

measurements (Grech et al., 2008). There are 2 main mathematical optimization 

approaches to the EEG inverse problem: parametric and non-parametric optimization 

methods, which make different assumptions on the source space, and more specifically, on 

the number and/or the spatial distribution of the source current dipoles, and/or whether the 

positions, magnitudes, and orientations of potential dipoles are fixed or varied. 

In parametric methods, the source space usually comprises a single dipole or a few dipoles 

with unknown position(s), magnitude(s), and orientation(s) like in the non-linear least-

squares method or the beamformer method. The non-linear least-squares method finds 
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a solution for a single “equivalent dipole” with an unknown position and moment that result 

in a global minimization of the residual error between the estimated and observed EEG 

signals through an iterative process. The least-squares method has 3 significant limitations: 

1) when extended for multiple dipoles the computational demand is high; 2) the true number 

of dipoles (that are chosen a priori by the operator) is actually unknown and probably too 

large to be represented by a single dipole; 3) the minimum least-squares error solution is 

not necessarily the closest solution to the underlying physiological sources. The 

beamforming method is a technique introduced originally for radar applications. 

Beamformers estimate the contribution of a single dipole to the detected field (this way the 

number of dipoles is not assumed a priori) by applying a spatial filter. The spatial filter is 

arranged in a specific way so as to enhance the incoming or outgoing signals in a preferred 

direction and to suppress the contributions from all other sources. The same filter can be 

applied at any location and to each of the measurement vectors to obtain the time-course of 

activity. The main limitation of beamforming techniques is the possible presence of highly 

correlated spatially distinct sources, which can be partially handled introducing longer time 

windows. 

Non-parametric methods use cortically distributed source (CDS) models based on the 

assumption that the primary current sources are the cortical pyramidal neurons oriented 

normally to the brain surface. A current dipole is assigned at each of the mesh element of 

the cortical layer (so that the number of dipoles is of several thousands and the dipole 

locations are known). Dipole orientations are either fixed (normal to the local surface) or 

unknown. The minimum-norm estimates (MNE) solution produces (Pinto and Silva, 2007) 

the inverse solution that minimize the overall power of the estimated source activity. As MNE 
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is suitable for the estimation of superficially distributed sources but underestimate deeper 

sources, a weighted minimum-norm estimates (wMNE) algorithm was implemented to 

reduce the MNE depth-bias. The low-resolution electromagnetic tomography (LORETA) 

method (Pascual-Marqui et al., 2002) considers the physiological principle that neighboring 

neural sources are activated simultaneously. This is achieved by the implementation of a 

smoothing (Laplacian) operation on the source space. LORETA has superior deep source 

localization accuracy when compared to MNE or wMNE. 

The dynamic statistical parametric mapping (dSPM) (Dale et al., 2000) method and 

standardized low-resolution electromagnetic tomography (sLORETA) (Pascual-

Marqui, 2002) standardizes the solutions by the variance of the estimated current density. 

dSPM assumes that the source of variation in the estimated current is only from the 

measurement noise, while sLORETA also takes into account the variance within the actual 

source itself. sLORETA is claimed to be able to get the lowest localization error in noisy 

environments, but, as dSPM, usually results in much larger spatial dispersion than non-

standardized solutions. Moreover, while sLORETA yields best accuracy in a single point 

source, LORETA may perform better in cases where multiple distinct sources are active. 

In project 2 and 5, I used a 3-shell spherical BEM model for the forward problem and the 

sLORETA inverse model to model EEG sources in physiological and pathological states. 

distribution of the source activation given the observed scalp potentials. 

Last but not least, the probabilistic Bayesian methods is a recently developed approach 

to source localization that tries to solve for the inverse problem by identifying the probability 
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2.2.4. Connectivity analysis 

Consciousness and information processing seem to be sustained by self-organized 

functional connections between brain regions. Such functional interactions are driven by 

synchronized neuronal activity, both locally and over distant brain regions. During NREM 

sleep, information processing and consciousness apparently fade away progressively, and 

re-emerge periodically in the form of dreams. In the last project of this thesis, I used EEG 

connectivity inference, to explore consciousness during NREM sleep-related abnormal 

complex behaviours (known as NREM sleep parasomnias).  

Considering the intrinsic limited temporal resolution of fMRI, EEG is better suited for the 

dynamic connectivity analysis in the millisecond scale. The growing interest in connectivity 

among different brain areas lead to the development of a host of methods and models of 

connectivity measures (Cao et al., 2022; Sakkalis, 2011) summarized in Table 1.  

 

Table 1. Summary of main EEG connectivity methods. CCF: cross-correlation function, 

COH: coherence, PLV: phase locking value, PLI: phase lag index, MI: mutual information, 

GC: Granger’s causality, PDC: partial directed coherence, TE: transfer entropy, DCM: 

dynamic causal modelling. Taken from (Choi and Kim, 2018). 



 
 

54 

 

The first distinction to be made is between functional connectivity (FC) and effective 

connectivity (EC).  

FC is defined as the temporal coincidence of spatially distant neurophysiological events and 

is basically a statistical description of the relationship between the EEG activity recorded at 

different channels. FC is based on the intuitive notion that 2 events occurring together should 

be somehow related to each other. While FC represents a simple approach to the analysis 

of functional networks that requires few a priori assumptions, it suffers from biological and 

technical confounds. Indeed, FC is purely correlative in nature and does not imply any 

causal relationship or direct connection between 2 brain regions.  

On the other hand, EC relies on more complex assumptions regarding the 

underlying neurobiological substrates and models to estimate the causal effects that 

generate data, which are usually computational demanding (and partially unknown). The 

choice of a connectivity analysis method over another can dramatically affect the 

reconstructed brain networks and activity and is not always straightforward, as each method 

has its own pros and cons.  

Cross correlation function (CCF) method is the linear correlation between 2 signals in the 

time domain.  

Coherence (COH) is the linear correlation between 2 signals in the frequency domain. 

Several variants of coherence, inherently robust to volume conduction, have been 

developed, like the imaginary coherence (ImCHO).  
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Phase locking value (PLV) was designed to be independent from signal amplitude (unlike 

CCG and CHO) and measures the degree of phase synchrony between 2 signals over time. 

Phase locking is calculated after bandpass filtering, by averaging the phase angle difference 

over N time points between 2 signals, thus measuring the stability of phase differences 

across EEG time segments. Values ranges between 0 (no synchronization) and 1 (perfect 

synchronization).  

Phase lag index (PLI) quantifies the asymmetry of the distribution of phase differences 

between 2 signals. When considering phase asymmetry, the likelihood that the phase 

difference in the interval -π to 0 is considered as different from the likelihood in the interval 

0 to π. See Figure 15. 

 

Figure 15. Differences between PLV and PLI. In the left figure the distribution of phase 

differences is uniform around π and will thus give a PLI of 0, while in the right figure, the 

distribution of the phase differences between 0 and π, in this case more specifically entered 

around π/2, will give a PLI of 1. 

 

PLI values ranges between 0 and 1. Zero indicates either no coupling or coupling with a 

phase difference centered around 0 mod π (meaning around 0, π, 2π and so on). One 

indicates perfect phase locking at a value of phase difference different from 0 mod π. Thus, 
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PLI overcomes spurious phase locking synchrony from volume conduction or active 

reference electrodes by disregarding phase locking that is centered around 0 mod π phase 

differences (at the risk of ignoring true instantaneous interactions). The weighted PLI (wPLI) 

was suggested to take into account the magnitude as well as the distribution of the phase 

differences and to be less statistically biased for small sample sizes.  

Mutual information (MI) quantifies the amount of information that 2 signals share with each 

other, where information is computed with the Shannon entropy formula. MI is computed as 

the sum of the entropies of the 2 signals X and Y, minus their joint entropy. If X and Y are 

independent, the MI equals zero. Otherwise, the MI is positive (with unit in bits) and shows 

the maximum value when 2 signals are equal. CCF, COH, ImCOH, PLV, PLI, MI do not give 

any information about the direction of interaction. For this porpoise, other connectivity 

measures have been developed.  

Granger causality (GC) is a statistical hypothesis test that allows to determine whether one 

time series X can be used to predict another time series Y. Signal X is interpreted as causal 

of signal Y if the predictions of Y estimated by autoregressive (AR) modeling are significantly 

better (meaning that the prediction error is reduced) when based on past values of Y plus 

past values of X (joint bivariate AR modeling of X and Y) than when based only on past 

values of Y alone (univariate AR model of Y). If no causal influence of X to Y exists, GC is 

close to 0, and vice versa. GC is directional and interpreted as bidirectional if GCs of both 

directions are high.  

Partial directed coherence (PDC) is an equivalent of the GC in the frequency-domain, based 

on multivariate autoregressive (MVAR) modeling of multichannel signals.  
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Dynamic causal modeling (DCM) is a Bayesian model-comparison procedure designed to 

answer questions about the architecture of underlying hidden neuronal dynamics (Kiebel et 

al., 2009). The basic idea is to construct reasonably realistic “dynamic models”, meaning 

models of interaction between cortical regions or “sources”. In the EEG field, a source is 

described using a “neural mass model”, a sort of simplified macro‐column model. This model 

includes average post‐membrane potentials and average firing rates of 3 neuronal 

populations (spiny stellate cells in the granular layer, pyramidal cells and inhibitory 

interneurons in the infra-granular and supra-granular layers). Each neuronal population has 

intrinsic dynamics and internal connections with the other 2 populations. Moreover, each 

source receives extrinsic input, from other sources or from the external environment. 

Dynamic causal models, meaning the models of the dynamics of the sources and their 

interactions are specified by a set of first‐order differential equations. Bayesian model 

comparison is used to select the best model and its connected parameters, given the 

observed evidence (meaning the recorded EEG signal). DCM has not been used for full-

scale connectivity analyses, because of the high computational cost and the complexity in 

selecting the a priori model parameters and connections.  

Transfer entropy (TE) is an alternative measure of effective (directed) connectivity based on 

information theory that measures the amount of directed transfer of information (where 

information is calculated using Shannon entropy) between 2 random processes (Vicente et 

al., 2011). Like GC, TE estimates whether including the past of both source (X) and target 

(Y) time-series influences the ability to predict the future of the target time-series (Y). TE is 

model-free and makes no assumptions on signal or interaction structure but requires large 

amounts of continuous data. Phase TE (PTE) is a phase-based TE metric suitable for large-

http://www.scholarpedia.org/article/Bayesian
http://www.scholarpedia.org/article/Bayesian_statistics
https://en.wikipedia.org/wiki/Information
https://en.wikipedia.org/wiki/Random_process
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scale directed connectivity analysis, which is very robust with respect to noise and linear 

mixing typical of EEG data (Lobier et al., 2014). 

Finally, connectivity analyses can be conducted at the cortical source space. This provides 

time-series of cortical current densities at numerous vertices on cortical surface that allow 

for the better explanation of the connectivity results. Indeed, each connection has am 

anatomical interpretation and the effects of volume conduction are sensibly reduced (Choi 

and Kim, 2018).  

For these reasons, in project 4, I opted for using PTE on source data, using Brainstorm, a 

collaborative open-source Matlab-based software dedicated to the analysis of neuro-

physiological recordings, which has e very nice graphical interface and support both source 

and connectivity analyses, as well as complex statistical analyses with adjustments for 

multiple comparisons. 
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3. PROJECT 2 

 

3.1. Preface 

This project is entirely dedicated to sleep physiology. Herein, I describe a hdEEG sleep 

study on typically developing young adolescents and young adults. For this study, I fully 

developed the hdEEG pipeline for slow wave detection analysis. 

 

3.2. Adolescence 

Adolescence is a transitional phase of life characterized by specific and drastic 

phycological and physical changes that lead a child to adulthood. There is no agreement 

about the precise age span interested by these modifications and current more inclusive 

definitions encompass ages before 10 and after 20.  

While the most rapid and dramatic brain development occurs in the first few years of life, 

during adolescence the brain is still highly dynamic. White matter connections are locally 

strengthened or weakened in response to environmental stimuli, the overall white matter 

volume progressively increases, and at the same time the gray matter decreases 

asynchronously in different cortical regions due to neuronal loss (‘pruning’) and/or intra-

cortical myelination (Paus, 2005). Fronto-parietal associative brain regions are the most 

massively involved by these processes (Piekarski et al., 2017).  

Interestingly, the peak of incidence of onset for the most common psychiatric disorders 

occurs during adolescence. Thus, the understanding of what goes wrong in subjects who 
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develop a psychiatric condition during this age span is one of the most compelling 

questions in the field of psychiatry  (Galván, 2017). 

A recent longitudinal fMRI study (Kaufmann et al., 2017) has drawn attention to 

functional connections, rather than functional brain regions. Most specifically, the study 

showed that adolescence is the life period characterized by the most rapid 

transformation of the functional connectome distinctiveness (how well it discriminates an 

individual from the others) during which individuals develop their own stable connectivity 

fingerprint (Figure 1). Subjects with higher clinical symptoms (of ADHD, schizophrenia 

or even depression) displayed a delay in this fine network tuning and had less 

individualized connectomes compared to age-related peers. This and similar researches 

inspired the current and the next 2 projects. 

Figure 1. The human connectome.  

The brain connectome fingerprint, ill-defined in early 

childhood, progressively develops a clear signature 

(distinct to each person) during adolescence. Taken 

from (Galván, 2017). 

 

3.3.   Sleep during the transition between childhood and adolescence 

Adolescence is marked by significant changes in sleep habits (reduced sleep-time and 

phase-delay), in face of unchanged sleep-needs (Gradisar et al., 2011; Tarokh et al., 

2016). At EEG, the most striking change is a reduction in amplitude and power (up to 

40% pre- and post-puberty), across all EEG frequencies, during both wakefulness and 
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sleep (Campbell et al., 2012; Campbell and Feinberg, 2009a; Tarokh et al., 2011a; 

Tarokh and Carskadon, 2010a). This reduction is particularly marked for delta and theta 

and parallels a significant decline in cortical grey matter over a wide range of brain 

regions (Buchmann et al., 2011a). Even most notably, a separate study that used 

hdEEG to map cortical spectral activity pointed to a developmental progression of 

maximal sleep SWA from posterior to anterior scalp regions (Kurth et al., 2010b). Once 

again, this progression goes along with the trajectory of regional maximal cortical grey 

matter observed with longitudinal MRI studies (Shaw et al., 2008). Recent studies also 

suggested that sleep may play an active role in modeling our brain during adolescence. 

For example, synaptic spine elimination was found to be higher during sleep than 

wakefulness in adolescent but not adult mice (Maret et al., 2011). In humans, 

correlational studies pointed to an association between sleep duration and brain 

development of both local grey matter and white matter integrity (Taki et al., 2012; 

Telzer et al., 2015). 

 

3.4. Study aim 

Most sleep studies in children and adolescents focused on delta power (SWA), and 

rarely investigated specific individual slow waves properties (Jaramillo et al., 2020; 

Kurth et al., 2017, 2010a; Schoch et al., 2018; Spiess et al., 2018; Timofeev et al., 

2020). Thus, in this project, I investigated maturation-dependent changes in slow-wave 

traveling parameters, with a particular attention to the left-right and anterior-posterior 

slow wave asymmetry by comparing sleep hdEEG data (256 channels) of 21 young 

adolescents and 18 young adults.  
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3.5.   Original paper 

I enclose here the original article from this project, submitted to Sleep. 
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Abstract 

Study Objectives 

Slow waves undergo significant changes throughout development, mirroring changes in 

brain function and anatomy. However, most current knowledge on age-dependent slow-

wave changes is based on the analysis of delta power (<4 Hz). Here we aimed at 

characterizing individual slow wave properties such as origin, synchronization, and 

cortical propagation at the transition between childhood and adulthood. 

Methods 

We analyzed overnight high-density (256 electrodes) EEG recordings of healthy typically 

developing children (N=21, 10.3±1.5 years old) and young healthy adults (N=18, 31.1±4.4 

years old). All recordings were preprocessed to reduce artifacts, and NREM slow waves 

were detected and characterized using validated algorithms. The threshold for statistical 

significance was set at p=0.05. 

Results 

The slow waves of children were larger and steeper, but less widespread than those of 

adults. Moreover, they tended to mainly originate from and spread over more posterior 

brain areas. Relative to those of adults, the slow waves of children also displayed a 

tendency to more strongly involve and originate from the right than the left hemisphere. 

The separate analysis of slow waves characterized by high and low synchronization 

efficiency showed that these waves undergo partially distinct maturation patterns, 
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consistent with their possible dependence on different generation and synchronization 

mechanisms. 

Conclusions 

Changes in slow wave origin, synchronization, and propagation at the transition between 

childhood and adulthood are consistent with known modifications in cortico-cortical and 

subcortico-cortical brain connectivity. In this light, changes in slow-wave properties may 

provide a valuable yardstick to assess, track, and interpret physiological and pathological 

development. 

 
Keywords 

Development, maturation, slow wave activity, SWA, traveling 
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Introduction 

During childhood and adolescence, the human brain undergoes several significant 

structural and functional adaptations. White-matter volume increases with age till young 

adulthood (Keshavan et al., 2002) according to region-specific trajectories (Lynch et al., 

2020). Vice versa, starting after 7 years of age, gray matter volume declines massively 

and asynchronously, especially over fronto-parietal associative areas, following a 

posterior-anterior trajectory (Piekarski et al., 2017). This decline seems to result from the 

combination of selective synaptic pruning, programmed cell death, and progressive intra-

cortical myelination (Paus, 2005). Importantly, a derangement of such delicate and 

complex processes is supposed to underlie several psychiatric disorders that typically 

emerge during adolescence (Paus et al., 2008). 

Sleep electroencephalography (EEG) has been proposed as a reliable tool to track 

maturation-dependent brain adaptations occurring from infancy to young adulthood 

(Gorgoni et al., 2020; Ricci et al., 2021; Ringli and Huber, 2011; Schoch et al., 2018; 

Timofeev et al., 2020). Indeed, brain activity recorded during the sleep state is only 

marginally affected by confounds related to motivational, attentional, and contextual 

influences, thus allowing for an unbiased assessment of brain activity. Moreover, 

properties of sleep hallmarks such as NREM slow waves (<4 Hz) and spindles (10-16 Hz) 

appear to directly reflect brain organization and connectivity and may thus allow to track 

physiological and pathological maturational changes (Buchmann et al., 2011; Shaw et al., 

2008). Sleep slow waves are especially interesting in this respect because of their 

dependence on short- and long-range connectivity. Specifically, local changes in synaptic 

strength and efficiency are thought to affect neuronal synchronization and thus slow wave 
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properties such as amplitude, slope, and number of negative peaks (Esser et al., 2007; 

Riedner et al., 2007a; Vyazovskiy et al., 2007). Differently, long-range (e.g., transcallosal) 

connectivity seems to affect long-range slow wave traveling at the cortical level (Avvenuti 

et al., 2020; Massimini et al., 2004; Murphy et al., 2009).  

In line with these considerations, slow wave activity (SWA) - expressed as the mean EEG 

signal power within in the delta range (<4 Hz) - decreases progressively with age 

(Campbell and Feinberg, 2009; Jenni and Carskadon, 2004; Kurth et al., 2010), while its 

topographic distribution displays a shift from posterior to anterior scalp regions (Kurth et 

al., 2010). These changes occur in parallel with (micro)structural variations in regional 

myelination and cortical volume, as well as with the acquisition of region-specific skills 

(Kurth et al., 2012). In addition, changes in the myelination of longitudinal and 

interhemispheric fibers are associated with an increase in the speed and distance 

traveled by slow waves (Kurth et al., 2017). 

Interestingly, previous work suggested the existence of at least two slow wave sub-types 

that are presumably generated by distinct synchronization processes (Siclari et al., 

2014),(Bernardi et al., 2018) : 1) a likely subcortical-cortical, arousal-related process (type 

I) may be responsible for the emergence of widespread, large, and steep slow waves that 

predominate early in the falling asleep period and tend to originate from centro-frontal 

areas; 2) a cortico-cortical process may underlie the generation of more circumscribed, 

smaller, and shallower slow waves (type II) that predominate during stable NREM sleep 

and may originate everywhere in the cortex. The study of these slow wave sub-types 

across development could offer an important window on the maturation of both cortical 

and subcortical structures involved in sleep and slow-wave regulation. 
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While the above observations hint at a potential value of slow waves as markers of brain 

maturation, a detailed and comprehensive analysis of how topographic slow-wave 

characteristics and different slow-wave sub-types change from childhood to adulthood 

has never been performed. Notably, a better understanding of the mechanisms that 

regulate slow waves in relation to developmental processes could have more general 

implications for the use of slow waves as a marker of neurodevelopmental disorders. 

Therefore, here we analyzed and compared night-sleep high-density EEG data (256 

electrodes) collected in healthy children and young adults to investigate potential 

maturation-dependent changes in topographic slow-wave characteristics. In particular, 

we used automated methods to detect individual slow waves and analyzed their origin, 

regional synchronization, and propagation patterns. The following hypotheses were 

tested. First, both slow wave origin and involvement shift from posterior to anterior areas, 

thus reflecting changes in the ability of frontal areas to generate and be reached by 

traveling slow waves. Second, slow waves of children are less widespread and more 

asymmetric across the two hemispheres, as a possible consequence of an incomplete 

development of inter-hemispheric white-matter tracts 16,46 (Bernardi et al., 2018; Siclari et 

al., 2014; Spiess et al., 2018). Third, different slow waves sub-types present dissociable 

properties and maturation patterns in line with their predominant dependence on distinct 

synchronization mechanisms and brain structures (subcortical and cortical, respectively) 

(Bernardi et al., 2018; Siclari et al., 2014; Spiess et al., 2018). 

 

Methods 

2.1 Participants 
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For this observational, cross-sectional investigation, we studied healthy children and 

young adults recorded for one single night with the same EEG system and with similar 

procedures. Children were recruited at the Sleep Unit of the Civic Hospital of Lugano 

(Castelnovo et al., 2022; Miano et al., 2019), while young adults were drawn from a study 

conducted at the University of Wisconsin-Madison sleep laboratory (Dentico et al., 2016; 

Ferrarelli et al., 2013). 

Physicians board-certified in Sleep Medicine thoroughly interviewed children and adults 

to screen for any known sleep disorder, or any medical condition affecting sleep. Selected 

subjects were then referred to the sleep laboratory for a sleep video-PSG with extended 

EEG monitoring to screen for the presence of obstructive sleep apnea syndrome (OSAS) 

and periodic limb movements (PLM). 

Selection criteria were: 1) age between 7 and 14 for the pediatric group and between 20 

and 40 for the adult group; 2) negative personal history for sleep disorders; 3) good 

technical quality of the sleep recordings; 4) a respiratory disturbance index (RDI) < 5 

events/hour. 

The pediatric group was composed of 21 subjects (10.3 ± 1.5 years old, 9 females), while 

the adult group consisted of 18 subjects (31.1 ± 4.4, 11 females).  

All study procedures were reviewed and approved by the local Independent Ethics 

Committee ‘Comitato Etico Cantonale’ (02.26.2015 – n.2881) and by the University of 

Wisconsin Health Sciences Institutional Review Board. All participants provided written 

consent upon participation. All research activities were conducted in accordance with the 

Helsinki Declaration. 
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2.2 Sleep recordings 

All participants underwent an in-laboratory overnight hd-EEG recording (256 channels; 

Electrical Geodesics Inc., Eugene, OR) with a 250 Hz or 500 Hz sampling rate, coupled 

with traditional video-PSG (Berry RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, 

Marcus CL, 2020). Recordings performed at 500 Hz were down-sampled to 250 Hz before 

data preprocessing and analysis. Lights out was within one hour of the participants most 

consistently reported bedtime, and wake-up time was between 6 and 7 am for all 

participants.  

Sleep stages and sleep events were scored according to standard criteria by a board-

certified sleep physician using the Embla® Remlogic Software (Neurolite), based on 30-

second epochs for 6 bipolar re-referenced EEG channels (F3/M2, F4/M1, C3/M2, C4/M1, 

O1/M2, O2/M1), electrooculogram (EOG), and submental electromyogram (EMG) (Berry 

RB, Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, 2020). Supplementary 

Table S1 reports the sleep macrostructure of children and adults. 

2.3 EEG data preprocessing 

Before spectral analysis, we pre-processed the data according to standard routines for 

hd-EEG. We imported all EEG signals and other relevant information (including sleep 

scoring) and analyzed them in MATLAB (The MathWorks Inc., Natick, MA). We first-order 

high-pass filtered at 0.1 Hz (IIR filter reproducing a single resistor capacity) and 

subsequently band-pass filtered the EEG signal (0.5 – 45 Hz, Kaiser window-based FIR 

with zero-phase distortion). An interactive open-source tool for data visualization and 

data-cleaning (https://github.com/CSC-UW/csc-eeg-tools.git) was used to visually inspect 
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data in MATLAB and mark bad channels and artifactual signals. Data segments 

containing an arousal or artifacts affecting the majority of the channels were marked as 

‘bad’ and not considered for subsequent analyses. We additionally removed channels 

with distinctly greater power relative to neighboring channels upon inspection of power 

spectra and topographic power maps. An Independent Component Analysis (ICA) was 

performed to remove ocular, electrocardiograph, sweating, and muscular artifacts using 

EEGLAB routines (Delorme and Makeig, 2004). We excluded only ICA components with 

specific activity patterns and component maps characteristic of artifactual activity. Finally, 

we recovered removed bad channels using non-linear spherical interpolation. 

2.4 EEG signal power in NREM sleep 

Spectral analysis was performed on the average-referenced signal using artifact-free 6-

second epochs (Welch’s averaged modified periodogram with Hamming windows, 8 

segments, 50% overlap). For topographic analyses, we computed the average delta 

power across epochs (SWA; 1-4 Hz) and examined both absolute and normalized power 

(z-score across channels). 

2.5 Slow wave detection 

The EEG signals were referenced to linked-mastoids and slow waves were detected 

automatically using a validated method 24,33. First, we calculated the signal negative 

envelope by selecting for each time-point the fifth most negative sample across 191 

‘internal’ electrodes, i.e., after exclusion of channels placed on the face and neck. This 

approach minimizes the risk of including in the envelope potential residual high-amplitude 

oscillations of artifactual origin. 
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We then applied a negative half-wave detection procedure based on the identification of 

consecutive zero-crossings on the zero-mean centered signal envelope (Vyazovskiy et 

al., 2007). Only half-waves with a duration of between 0.25 and 1.0 s were retained for 

further analyses. No amplitude thresholds were applied (Bernardi et al., 2019, 2018; 

Castelnovo et al., 2020, 2016; D’Agostino et al., 2018; Mensen et al., 2016; Spiess et al., 

2018; Vyazovskiy et al., 2007). For all the detected slow waves, we computed and stored 

the following parameters of interest: duration (time between zero-crossings in seconds; 

s), amplitude of the maximum negative-peak (μV), down-slope (between the first zero-

crossing and the maximum negative peak; μV/s), up-slope (between the maximum 

negative peak and the second zero-crossing; μV/s), involvement (mean EEG signal 

calculated across all electrodes in a 40 ms window centered on the wave peak; μV). 

2.6 Slow wave origin and propagation  

For each detected slow wave, we computed its pattern of propagation by determining the 

topographic distribution of each local maximum negative peak relative delay (Massimini 

et al., 2004). We used a ‘likeness constraint’ method (Menicucci et al., 2009) to discard 

channels in which the negative wave was excessively dissimilar from a ‘prototype’ slow 

wave, defined as the wave with the largest negative peak at the time of the maximum 

wave peak detected on the signal negative envelope. This method is based on the cross-

correlation between the instantaneous phases (estimated using the Hilbert transform) of 

the prototype wave and the instantaneous phases of each EEG signal (within a 

symmetrical 300 ms time-window) (Menicucci et al., 2009). Events falling above the 25th 

percentile of the distribution of the maximal cross-correlation values were retained to 

create a scalp delay map. Then, we applied a spatiotemporal clusterization procedure to 
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exclude potential propagation gaps (islands of channels that likely reflect artifacts in the 

local EEG signal). According to this procedure, we considered the local peaks of two 

neighboring electrodes separated by less than 10 ms as part of the same propagation 

cluster. Finally, we identified the propagation cluster including the prototype wave, 

extracted the final delay map, and set to zero the minimum delay.  

The obtained delay maps were used to compute slow-wave density, globality, 

probabilistic origin and termination. Specifically, slow-wave density was defined for each 

channel as the number of times the considered channel participated in a slow wave per 

minute. This index was computed in each sleep epoch after exclusion of artifactual or 

non-physiological activity and then averaged across epochs. Slow-wave globality was 

computed as the number of channels involved by individual slow waves, as extracted 

from the delay map. Slow-wave origin and termination were respectively defined for each 

slow wave as the channels showing the lowest (i.e., 0 ms) or the highest propagation 

delay. Thus, the probabilistic origin/termination is the percentage of slow waves that 

originate/terminate in each electrode. 

In order to investigate whether slow waves originated with a different incidence across 

the two hemispheres, we classified individual slow waves as having a left (or right) 

hemisphere origin if 75% of the origin channels were located in the left (or right) 

hemisphere. Then, we determined the overall proportion of slow waves with a clear origin 

in the left or in the right hemisphere with respect to the total number of detected slow 

waves. Finally, we computed a ‘channel recruitment symmetry index’ (Avvenuti et al., 

2020), defined as the number of channels in the hemisphere with less involved 
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electrodes, divided by the total number of involved channels (%). A value of 50% indicates 

a symmetric distribution, while a value of 0% indicates a unilateral wave. 

2.7 Principal component analysis of slow wave involvement 

In adults, 95% of the variance related to slow-wave scalp involvement is explained by 3 

principal components (PCs) - with maxima in the centro-frontal area (~70% of total 

variance), anterior or posterior areas (~20%), and left or right hemispheres (~5%) 

(Bernardi et al., 2018). These PCs may reflect distinct modes of slow-wave expression 

depending on the involvement of different wave origins or propagation patterns. To 

investigate how maturational processes affect such modes of slow wave expression, here 

we analyzed the involvement distribution (across channels) of all slow waves using 

principal component analysis (PCA), as described in previous studies (Avvenuti et al., 

2020; Bernardi et al., 2018). First, we confirmed through visual inspection that the same 

3 main PCs observed in previous work were found in our samples of young adults and 

children. Then, the PC-space of each subject was rotated into a common PC space using 

the Procrustes transformation (Bernardi et al., 2018). The Procrustes transformation is an 

orthogonal transformation that minimizes the Euclidean distance between two sets of 

paired vectors. The reference space was selected by iteratively applying the 

transformation over pairs of subjects and then identifying the coordinate system (i.e., the 

subject) presenting the smallest distance with respect to the coordinate systems of all 

subjects (Haxby et al., 2011). Finally, we applied the Procrustes transformation to remap 

the original PC-space of each subject (adult and children subjects), into the new reference 

PC-space. This procedure allowed us to compare the explained variance of the PCs 

across individuals. 
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In addition, we performed source modeling of the first 100 slow waves that weighed the 

most on each PC using Brainstorm. For this, we selected age-appropriate MRI templates 

(Richards et al., 2016) segmented using the SPM12/CAT12 MATLAB toolbox (Tzourio-

Mazoyer et al., 2002). A symmetric Boundary Element Model (BEM) of the head having 

3 realistic layers (scalp, inner skull, outer skull)  

 (Maureen, 2010) and a standard co-registered set of electrode positions were used to 

construct the forward model. The inverse matrix was computed using the sLORETA 

Minimum Norm (Pascual-Marqui, 2002) with sources constrained to be perpendicular to 

the cortical surface and retaining only diagonal elements of the noise covariance matrix. 

2.7 Slow wave synchronization 

Previous work showed that, in adults, slow wave sub-types having distinct properties and 

regulation, and likely reflecting distinct synchronization mechanisms (type I/II), could be 

heuristically distinguished based on their synchronization efficiency (Bernardi et al., 

2018). Specifically, a ‘synchronization score’ was computed for each wave as the 

percentage of channels showing a negative averaged current value of <-5 µV multiplied 

by the wave mean slope (i.e., the mean of down-slope and up-slope). Based on evidence 

derived from animal and computational models, this index may be expected to depend 

on both the number of areas/neurons contributing to the slow waves and the rapidity of 

their synchronization 18,19. 

Here, the same approach was used to calculate the synchronization score of each 

detected slow wave. Then, in order to allow for interpretable comparisons between 

children and adults, we selected for each participant an identical number of slow waves 
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with high and intermediate synchronization efficiency, respectively assumed to be 

representative of type I and type II slow waves. From the whole distribution of 

synchronization scores, we identified those falling between the 90th and to the 100th 

percentile (top10% - putative type I), and those between the 45th and to the 55th percentile 

(mid10% - putative type II). We then computed the origin and scalp involvement of slow 

waves classified as mid10% or top10%. Involvement values of each slow wave were 

normalized through z-score transformation across electrodes to account for inevitable 

amplitude differences between slow wave sub-types. This analysis was performed only 

on data of the first NREM cycle to avoid possible confounds related to homeostatic 

changes in slow wave synchronization. 

2.8 Statistical Analysis 

Statistical between-group comparisons were performed using unpaired 2-tailed t-tests, 

Mann–Whitney U tests, or χ2 tests, as appropriate. Normality of data and homogeneity of 

variance were first assessed using the Shapiro/Wilk’s test and Levene’s test, respectively. 

Mixed model analyses of variance (ANOVA) were used to investigate interaction effects 

between group (children, adult) and within-group factors. 

For scalp topographic analyses, we corrected for multiple comparisons using a cluster-

based method (Nichols and Holmes, 2002), as described in previous work (Castelnovo 

et al., 2022). Specifically, for each performed t-test, a null distribution was generated by 

randomly shuffling subjects across groups. At each iteration of the permutation 

procedure, the test-statistics was computed for each electrode and the size of the largest 

significant electrode-cluster (uncorrected p<0.05) was stored in a frequency table. Given 

the impracticality of computing all possible data re-combinations, the full null distribution 
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was approximated using 50,000 iterations. Finally, the 95th percentile (5% significance 

level) was used as the critical cluster-size threshold. Correlations were performed using 

Spearman correlation.  

Alpha significance was set to p < 0.05. Partial Eta-squared (η2) and Cohen’s d were used 

as measures of effect size (Cohen, n.d.). All statistical analyses were performed in 

MATLAB. 

 

3. Results 

3.1 Slow wave activity 

The children group showed higher absolute NREM SWA than the adult group over the 

entire scalp (cluster size = 256, p < 0.05; Supplementary Figure S1). After normalization, 

though, SWA was higher over centro-posterior regions (cluster size = 30, p < 0.05) and 

lower over frontal regions (cluster size = 69, p < 0.05) in the children group compared to 

the adult group (Supplementary Figure S1). We obtained similar results in additional 

exploratory analyses focusing on N2 or N3 separately (Supplementary Figure S1), and 

on the first sleep cycle (data not shown). 

3.2 Slow wave density and involvement 

Absolute slow-wave density (cluster size = 158, p < 0.05) and involvement (cluster size = 

169, p < 0.05) were significantly higher in children than in adults (Figure 1, Supplementary 

Figure S2). After normalization across electrodes, we found significantly higher values of 

density and involvement over posterior regions (cluster size = 72, p < 0.05, cluster size = 

83, p < 0.05, respectively) and lower values over frontal regions (cluster size = 86, p < 
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0.05, cluster size = 98, p < 0.05, respectively) in children compared to adults. In addition, 

we found that slow-wave negative amplitude (2-tailed paired t-test, p < 0.001, |t(1,37)| = 

11.685; M children = 73.2 ± 10.2, M adult = 38.8 ± 7.7, mean difference = 34.4, C.I. = 

28.4 to 40.4, Eta-squared = 0.785), down-slope (p < 0.001, |t(1,37)| = 7.989; M children 

= 1846.6 ± 263.4, M adult = 1220.1 ± 219.4, mean difference = 626.5, CI = 467.7 to 785.5, 

Eta-squared = 0.63), and up-slope (p < 0.001, |t(1,37)| = 9.664; M children = 1620.1 ± 

206.8, M adult = 1035.8 ± 163.7, mean difference = 584.3, C.I. = 461.8 to 706.8, Eta-

squared = 0.72) were significantly higher in children compared to adults (Figure 1). On 

the other hand, slow-wave globality was lower in children than in adults (p < 0.001, 

|t(1,37)| = - 6.130; M children = 31.9 ± 1.9, M adult = 36.9 ± 3.1, mean difference = 6, C.I. 

= -6.7 to -3.4, Eta-squared = 0.504). Given that slow-wave slope and globality are thought 

to respectively reflect short-range and long-range synchronization efficiency, we further 

explored the relationship between these properties in the two age groups. When adjusted 

for age, slow wave down-slope positively correlated with globality in adults (p = 0.012, r 

= 0.594), but not in children (p = 0.665, r = 0.103), and the correlation coefficients differed 

significantly between groups (p = 0.049, Fisher’s z = 1.66; see Supplementary Figure S3). 
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Figure 1. Slow wave density, involvement, globality, amplitude and slopes 

Upper panel: Slow wave density and involvement topography. Values are color coded and plotted on the 

planar projection of the hemispheric scalp model. First row: slow wave density (waves/minute). Second 

row: slow wave involvement (μV). First and second column: average values for children and adults, 

respectively. Higher values are shown in red, lower in blue. Third and fourth column: t-value (two-tailed, 

unpaired) maps for the comparison between the two groups in terms of absolute and normalized (z-score 

across all electrodes) values, respectively. Blue: children < adult. Red: children > adult. White circles: 

significant electrodes (p < 0.05, cluster-size correction). 

Lower panel: Boxplots for specific slow-wave properties: top-left, maximum negative-peak amplitude (μV); 

top-right, slow wave globality (%); bottom-left, down-slope (μV/s), bottom-right: up-slope (μV/s). Orange 

dots: children. Blue dots: adults. The bottom and top of each boxplot are the 25th and 75th percentiles of 

the sample, respectively. The distance between the bottom and top of each box is the interquartile range. 

The green line in the middle of each box is the sample median. The whiskers extending above and below 

each box go from the end of the interquartile range to the furthest observation. The asterisks represent 

statistical significance at p<0.05. 

 

3.3 Principal component analysis of slow wave involvement 

In both children and adults, most of the variance related to slow-wave involvement was 

explained by 3 PCs, with maxima in the centro-frontal area (adult group: 72.4%; range 

63.0% - 84.0%; children group: 52.2%; range 36.4% - 67.1%), anterior or posterior area 

(adult group: 21.0%; range 12.5% - 31.2%; children group: 38.5%; range, 22.5% - 55.5%), 

and the left or right hemisphere (adult group: 6.7%, range: 3.5% - 10.6%; children group: 

9.3%; range, 5.4% - 11.4%), respectively (Figure 2, Supplementary Figure S4). Figure 3 

shows the cortical distribution of representative slow waves for each PC and group. Of 

note, all PCs were characterized by a maximal slow wave expression in inferior frontal 
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and inferior temporal areas, though they differed in terms of overall extent and relative 

distribution (also see Supplementary Figure S5-7). 

In the children group, compared to the adult group, we observed a significant increase in 

the variance explained by the second (anterior/posterior: p < 0.0001, Cohen’s d = 2.52) 

and third (left/right: p < 0.0001, Cohen’s d = -2.22) PCs, at the expense of the first PC 

(centro-frontal: p < 0.001, Cohen’s d = -1.60; Figure 2). Moreover, in children, the variance 

explained by the first and second PCs respectively showed a positive (p = 0.034, r = 

0.463) and a negative correlation with age (p = 0.027, r = - 0.482). No correlation with 

age was found for the third PC (p = 0.804, r = 0.058). In the adult group, none of the PCs 

were correlated with age (first PC: p = 0.343, r = -0.237; second PC: p = 0.670, r = 0.118; 

third PC: p = 0.282; r = 0.268; Figure 2). 

 

 



 
 

83 

Figure 2. PC-based analysis of slow-wave involvement.  

Left panel: The involvement distribution (mean EEG signal calculated across all electrodes in a 40 ms 

window centered on the wave peak) of all slow waves was entered in a PC analysis. The average variance 

explained is shown for each PC and group (after the Procrustes transformation computed to ‘align’ PCs 

across subjects and groups). PC1: first component; PC2: second component; PC3: third component. Right 

panel: correlation between age and variance explained by each PC. Orange dots: children. Blue dots: 

adults. Gray Line: least-squares regression line. 

 

 

Figure 3. Source modeling of representative slow waves for each PC 

First and second columns: children. Third and Fourth columns: adults. A: positive weights. B: negative 

weights. The figure represents the average peak of slow wave involvement (>75th percentile) in source 

space obtained from 3 most representative slow waves of each PC. Yellow: areas with larger overlap 

between subjects (>75% of subjects). The sources of PC1 included the orbito-frontal cortex and gyrus 

rectus, the occipital-temporal gyrus (lateral: fusiform gyrus and medial: para-hippocampus), the inferior 

temporal gyrus (right>left), and the temporal poles. The source of PC2 included the orbito-frontal cortex 
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and gyrus rectus. The source of PC3 included the rectus gyri, the para-hippocampus and the postero-

ventral cingulate or middle cingulate, anterior cingulate, and subcallosal gyrus. 

 

3.4 Recruitment symmetry index 

The left-right symmetry (channel recruitment symmetry index) was significantly different 

between children and adults (2-tailed unpaired t-test, p < 0.001, |t(1,37)| = -5.583; M 

children = 29.9 ± 1.2, M adult = 32.4 ± 1.6, mean difference = 2.5, C.I.: -3.5 to -1.6, Eta-

squared = 0.647; Figure 4). In addition, the symmetry index computed over anterior 

channels was significantly higher than the symmetry index computed for posterior 

channels in both groups (2-tailed paired t-tests; children: p < 0.001, |t(20)| = 10.262; M 

anterior = 28.7 ± 1.6, M posterior = 23.9 ± 1.6, mean difference = 4.8%, C.I. = -3.8 to 5.8, 

Eta-squared = 0.804; adults: p < 0.001, |t(17)| = 22.519; M anterior = 32.3 ± 1.8, M 

posterior = 23.9 ± 2.1, mean difference = 8.4, C.I. = 7.6 to 9.2, Eta-squared = 0.968).  

There was a significant interaction (Wilks-lambda = 0.510, F(1,37) = 35.489, p < 0.001, 

partial Eta squared = 0.490) between group (children, adults) and region (anterior, 

posterior). Indeed, the symmetry index computed for anterior channels was higher in 

adults relative to children (2-tailed unpaired t-test, p <0.001, |t(1,37)| = -6.565; M anterior 

= 28.7 ± 1.6, M posterior = 32.3 ± 1.8, mean difference = 3.6, C.I. = -4.7 to -2.5, Eta-

squared = 0.717), while no statistically significant difference emerged in the symmetry 

index computed over posterior channels (2-tailed unpaired t-test, p = 0.932, |t(1,37)| = 

0.086; M anterior = 23.9  ± 1.6, M posterior = 23.9 ± 2.1, mean difference = 0.0, C.I. = -

1.1 to 1.2, Eta-squared = 0.0002; Figure 4). Thus, anterior slow waves were more 
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asymmetric in children relative to adults, while the degree of hemispheric asymmetry was 

similar across groups for posterior areas. 

 

 

Figure 4. Slow wave channel recruitment symmetry index 

Left Panel: Symmetry index computed taking into account all channels involved in each slow wave. 

Right Panel: Symmetry index computed separately for channels posterior to Cz (ANT: anterior, POST: 

posterior). Orange dots: children. Blue dots: adults. The bottom and top of each boxplot are the 25th and 

75th percentiles of the sample, respectively. The distance between the bottom and top of each box is the 

interquartile range. The line in the middle of each box is the sample median. The whiskers extending above 
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and below each box go from the end of the interquartile range to the furthest observation. The asterisks 

represent statistical significance at p<0.05.  

 

3.5 Slow-wave origin and termination 

While the topographic distribution of slow-wave termination did not differ significantly 

between children and adults (p > 0.05), slow-waves appeared to originate significantly 

more often from frontal areas in adults relative to children (cluster size = 85, p < 0.05; 

Figure 5, Supplementary Figure S8-9). A complementary statistical trend was also 

observed in posterior electrodes, which showed a higher origin probability in children 

relative to adults (p < 0.05, uncorrected). In line with these observations, we found that 

the coordinates of the probabilistic origin peak on the anterior-posterior axis differed 

significantly between children and adults (2-tailed unpaired t test, p = 0.005, |t(1,37)| = -

3.007; M children = 2.1 ± 4.7, M adult = 2.7 ± 2.6, mean difference = 2.1, C.I.: -4.3 to -

0.8, Eta-squared = 0.227; Figure 5). 

There was a significant interaction (Wilks-lambda = 0.868, F(1,37) = 5.644, p = 0.023, 

partial Eta squared = 0.132) between group (children, adults) and hemispheric origin 

probability (left, right). In fact, the percentage of waves that originated in the right 

hemisphere was significantly higher than the percentage of waves that originated in the 

left hemisphere in children (2-tailed paired t-test, p = 0.029, |t(20)| = 2.351; M left = 43.0 

± 3.3, M right = 46.0 ± 3.5, mean difference = 3.0, C.I. = -0.3 to 5.6, Eta-squared statistic 

= 0.217) but not in adults (p = 0.386, |t(17)| = -0.889, M left = 43.3 ± 6.0, M right = 42.7 ± 

5.8, C.I.s = -2.0 to 0.8, mean difference = 0.6, partial-Eta-squared = 0.044). The 

percentage of slow waves that originated in the right hemisphere was higher in children 
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compared to adults (2-tailed unpaired t-test, p = 0.040, |t(20)| = 2.129; M children = 45.7 

± 3.5, M adult = 42.5 ± 3.3, mean difference = 3.2, C.I. = -0.2 to 6.3, Eta-squared = 0.185), 

while the percentage of slow waves that originated in the left hemisphere was similar 

between groups (p = 0.827, |t(17)| = -0.221; M children = 28.7 ± 1.6, M adult = 23.9 ± 1.6, 

mean difference = 0.33, C.I. = -3.4 to 2.7, Eta-squared = 0.003; Figure 5).  
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Figure 5. Slow wave origins and terminations 

Upper panel: Slow wave origin and termination. Values are color coded and plotted on the planar projection 

of the hemispheric scalp model. First row: distribution of slow-wave origins (% of the total). Second row:  

distribution of slow wave terminations (% of the total). First and second columns: average values for the 

children group and the adult group, respectively. Higher values are shown in red, lower in blue. Third 

column: t-value (two-tailed, unpaired) maps for the comparison between the two groups. Blue: children < 

adult. Red: children > adult. White circles: significant electrodes (p < 0.05, cluster-size correction).  

Lower panel: Slow-wave origin distribution along the antero-posterior axis (left lower panel) and in the right 

compared to the left hemisphere (right lower panel). Orange dots: children. Blue dots: adults. The bottom 

and top of each boxplot are the 25th and 75th percentiles of the sample, respectively. The distance between 

the bottom and top of each box is the interquartile range. The line in the middle of each box is the sample 

median. The whiskers extending above and below each box go from the end of the interquartile range to 

the furthest observation within the whisker length. Observations beyond the whisker length (more than 3 

times the interquartile range away from the bottom or top of the box) are marked as outliers (red crosses). 

The asterisks represent statistical significance at p<0.05. 

 

3.6 Slow waves with high and low synchronization efficiency 

For each slow wave, a synchronization score was computed based on the mean slope 

and proportion of involved electrodes. The synchronization score distribution was non-

Gaussian and right skewed in both groups (Figure 6). However, on average, children had 

higher synchronization scores (Median = 1.6, range = 0.3-4.5) compared to adults 

(Median = 0.9, range = 1.3-2.2; Mann-Whitney U Test, z = - 5.225, U = 174, p < 0.001, 

Eta-squared = 0.848). The synchronization score distributions remained similar across 

NREM cycles, but also showed a clear leftward shift compatible with the effects of 

homeostatic changes in slow-wave amplitude and globality (Figure 6). Thus, to avoid 

possible confounds related to homeostatic changes, we focused further analyses on the 
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first NREM cycle only. We then classified and separately analyzed slow waves with high 

(top10%) and intermediate (mid10%) synchronization efficiency. 

 

 

Figure 6. Slow wave synchronization score 

Left panel: The two curves represent the distribution of synchronization scores (group average) during the 

first NREM sleep cycle in children (orange) and adults (blue). Right panels: The three curves represent the 

average distribution of synchronization scores during the first, second and third NREM sleep cycle in 

children (upper right panel) and adults (right lower panel). 

 

Given that slow waves were classified based on their slope and globality, we first analyzed 

the relative contribution of these two parameters to synchronization efficiency 

(Supplementary Figure S10). We found no significant interaction between group (children, 

adults) and slow-wave sub-type (mid10%, top10%) for globality (Wilks- lambda = 0.988, 
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F(1,37) = 0.466, p = 0.499, partial Eta squared = 0.012). However, we identified a 

significant main effect of group (F(1,37) = 21.653, p < 0.001, partial Eta squared = 0.369) 

indicating that slow waves were overall more global in adults compared to children, and 

a main effect of wave sub-type (Wilks- lambda = 0.109, F(1,37) = 301.163, p < 0.001, 

partial Eta squared = 0.891), with both groups showing more global top10% slow waves 

than mid10% slow waves. 

We then analyzed slow-wave down-slope and found a significant interaction (Wilks-

lambda = 0.510, F(1,37) = 35.542, p < 0.001, partial eta squared = 0.490) between group 

(children, adults) and slow wave sub-type (mid10%, top10%). We also found a main effect 

of group (F(1,37) = 62.196, p < 0.001, partial Eta squared = 0.627), indicating that slow 

waves were overall steeper in children compared to adults (top10%: p <0.001, |t(37)| = -

7.475; M children = 4005.5 ± 645.1, M adults = 2564.7 ± 542.3, C.I.: -1831.3 to 1050.2, 

Eta-squared: 0.607; mid10%, p <0.001, |t(37)| = -8.347; M adults = 1210.3 ± 225.0, M 

children = 1973.6 ± 327.0, C.I.: -948.6 to -578.0, Eta-squared: 0.653), and a main effect 

of slow-wave sub-type (Wilks-lambda = 0.868, F(1,37) = 888.043, p < 0.001, partial Eta 

squared = 0.960), with both the adult (2-tailed paired t-test, p <0.001, |t(17)| = 17.156, 

C.I.: 1188.0 to 1521.0, Eta-squared: 0.946) and the children (tailed paired t-test, p <0.001, 

|t(20)| = 25.232, C.I.: 1863.9 to 2199.9, Eta-squared: 0.969) groups showing steeper 

top10% than mid10% slow waves.  

Slow waves with high and intermediate synchronization efficiency were then analyzed 

and compared for probabilistic origin and normalized scalp involvement (Figure 7). Both 

mid10% and top10% slow waves had a more posterior involvement in children than in 

adults. We found a significant interaction between group (children, adults) and wave type 
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(mid10%, top10%) for normalized involvement in a frontal (63 channels, p < 0.05) and a 

parieto-occipital cluster (77 channels, p < 0.05, Figure 7). Specifically, adults had higher 

involvement values compared to children in the frontal cluster for both top10% (2-tailed 

unpaired t-test, p < 0.001, |t(37)| = 7.466; M children = 0.4 ± 0.2, M adults = 0.8 ± 0.1, C.I. 

= from 0.1 to 0.2, Eta-squared = 0.601) and mid10% slow waves (2-tailed paired t-test, p 

< 0.001, |t(37)| = 6.171; M right = 0.4 ± 0.1, M adults = 0.6 ± 0.1, C.I. = from 0.3 to 0.5, 

Eta-squared = 0.507). Moreover, adults displayed significantly higher involvement values 

for top10% compared to mid10% slow waves within the same cluster (p < 0.001, |t(17)| = 

5.202; C.I. = from 0.1 to 0.2, Eta-squared = 0.615), while no difference emerged in 

children (p = 0.120, |t(20)| = -1.624; C.I. = from -0.1 to 0.0, Eta-squared = 0.113; Figure 

7C). Similar differences - though opposite in sign - were found in the posterior cluster 

(Supplementary Figure S10). 

Both mid10% and top10% slow waves showed a tendency to originate from central and 

frontal electrodes, but a clear origin hot-spot was evident only for top10% slow waves of 

adults. We found a significant interaction between group and wave sub-type for slow-

wave probabilistic origin in a central cluster of electrodes (14 channels, p < 0.05, Figure 

7). Post-hoc analyses showed that, within this cluster, adults had a higher origin 

probability compared to children for top10% (2-tailed unpaired t-test, p < 0.001, |t(37)| = 

4.807; M children = 3.0 ± 1.1, M adults = 4.9 ± 1.3, C.I. = from 1.1 to 2.6, Eta-squared = 

0.461) but not for mid10% slow waves (p = 0.9713, |t(37)| = -0.036; M children = 3.0 ± 

0.9, M adults = 3.0 ± 0.8, C.I. = from -0.6 to 0.5, Eta-squared = 0.00005). Moreover, adults 

were characterized by a significantly higher origin probability for top10% than mid10% 

slow waves within the same electrode cluster (p < 0.001, |t(20)| = 6.295, C.I. = from 1.2 
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to 2.5, Eta-squared = 0.665). A similar difference was not found in children (p = 0.935, 

|t(20)| = -0.0832; C.I. = from -0.5 to 0.4, Eta-squared = 0.0005; Figure 7, Supplementary 

Figures S11-12).  

Figure 7. Origin and involvement of slow waves with high and intermediate synchronization 

efficiency 

Involvement (top) and origin (bottom) of slow waves with high (top10%) and intermediate (mid10%) 

synchronization scores. Values are color coded and plotted on the planar projection of the hemispheric 

scalp model.  

A| Topographic analysis - Average distribution of involvement/origin values for slow waves with high 

(top10%; first row) and intermediate (mid10%; second row) synchronization efficiency. Higher values are 

shown in red, lower in blue. 
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B| Interaction effect of the mixed-model within/between groups ANOVA. Lower F-values are represented 

in dark-red/black, while higher F- values in yellow/white. White circles indicate significant electrodes (p < 

0.05, cluster-size correction).  

C| Dots represent the average of channels within significant clusters of electrodes in Figure B (as two 

clusters were significant for the involvement, only the frontal cluster is represented here, while the posterior 

cluster is represented in Supplementary Figure 11). Orange dots: children; blue dots: adults. The bottom 

and top of each boxplot are the 25th and 75th percentiles of the sample, respectively. The distance between 

the bottom and top of each box is the interquartile range. The line in the middle of each box is the sample 

median. The whiskers extending above and below each box go from the end of the interquartile range to 

the furthest observation within the whisker length. The asterisks represent statistical significance at p<0.05. 

 

Discussion 

In the present study, we examined changes in slow-wave origin, synchronization and 

propagation from childhood to early adulthood using sleep hd-EEG. We found that, from 

childhood to adulthood: i) both the origin and topographic distribution of slow waves move 

towards more anterior brain regions; ii) slow waves become more global and more 

symmetric across hemispheres; iii) slow waves characterized by intermediate and high 

synchronization efficiency (putative type I and type II slow waves) display partially 

dissociated maturational changes. 

 

Slow wave origin and involvement become more anterior from childhood to 

adulthood 

Previous work demonstrated a progressive anteriorization of the SWA (delta power) peak 

during normal development (Kurth et al., 2010). Such a change has been suggested to 
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reflect a relative variation in inter-regional slow wave synchronization/propagation related 

to the maturation of frontal brain areas and their connectivity. More recently, preliminary 

observations suggested that the regional propensity to generate slow waves might also 

change following a posterior-to-anterior gradient from childhood to adulthood (Timofeev 

et al., 2020). Consistent with previous data, our present results show that both slow wave 

cortical distribution (involvement) and tendency to generate slow waves (origin) are 

stronger in anterior areas in young adults relative to children. In addition, our PCA-based 

analysis revealed that slow-wave scalp topography tends to follow a specific set of 

patterns that is common to both children and adults, and that the relative ‘weight’ of these 

patterns changes across development. Indeed, regardless of age, 95% of the variance 

related to slow wave involvement can be explained by 3 PCs, with maxima located in the 

central-frontal area, anterior or posterior areas, and left or right hemispheres (Bernardi et 

al., 2021). However, the relevance of the central-frontal PC appears to increase from 

childhood to adulthood at the expense of the other two PCs. These observations suggest 

that while most slow waves of children and adults may involve specific, partly overlapping 

brain networks, their relative propensity to ‘reach’ more anterior areas changes during 

development. 

Together, our results indicate that in children, frontal areas have a lower propensity at 

both generating and being crossed by slow waves originating elsewhere relative to what 

is commonly observed in adults. Such modifications could reflect partially distinct 

maturational processes, such as local changes in microstructural organization and 

modifications in long-range connectivity, respectively (Spiess et al., 2018). 
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Slow wave interhemispheric asymmetry is more pronounced in children than in 

adults 

The PCA-based analysis and the inter-hemispheric involvement analyses revealed that 

slow waves of children are characterized by a greater tendency to remain unilateral or at 

least more asymmetric on the left-right axis than slow waves of adults. Moreover, the 

involvement asymmetry was found to be stronger in anterior than in posterior areas. 

Previous work showed that the degree of cross-hemispheric slow-wave propagation 

directly depends on the existence and integrity of interhemispheric (callosal) connections. 

Indeed, slow waves (but not spindles) of callosotomized epileptic adult patients typically 

remain circumscribed to the brain hemisphere in which they originate, while this is 

relatively uncommon in non-callosotomized individuals (Avvenuti et al., 2020; Bernardi et 

al., 2021). Based on this observation, our present results could be explained by an 

incomplete maturation of the corpus callosum in children (Giedd et al., 1999; Luders et 

al., 2010b). In fact, the size of the corpus callosum is known to increase throughout 

adolescence and up to the middle 20s (Keshavan et al., 2002), following a posterior-to-

anterior gradient of maturation (Danielsen et al., 2020; Giedd et al., 1999; Luders et al., 

2010a; Rajapakse et al., 1996; Thompson et al., 2000; Westerhausen et al., 2016) . 

In addition, here we found in children (and not in adults) a significant interhemispheric 

origin asymmetry, with more slow waves originating in the right than in the left 

hemisphere. This is, again, consistent with findings obtained in callosotomized patients. 

Indeed, while previous work observed a tendency for slow waves to originate more often 

in the right than in the left hemisphere in both non-callosotomized and callosotomized 

individuals, the asymmetry appeared to be stronger in the latter group (Bernardi et al., 
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2021). Interestingly, this effect could depend on an accentuation of otherwise small 

physiological asymmetries related to (micro)structural or functional factors due to a 

reduction in the synchronization between the two hemispheres. For instance, previous 

evidence indicates that the human brain may show lower SWA in the left than in the right 

hemisphere during the first night spent in a new environment (Tamaki et al., 2016), 

reminiscing the monitoring function of unihemispheric sleep in migratory birds and aquatic 

mammals (Mascetti, 2016). This relative asymmetry might become more pronounced 

when the coordination of activity between hemispheres is reduced. Alternatively, the 

observation of stronger origin asymmetries in individuals with an immature or absent 

corpus callosum could have a methodological explanation. Indeed, the reduced cross-

hemispheric propagation in these individuals may lead to a more accurate localization of 

slow wave origin in the presence of EEG volume conduction. However, other explanations 

not involving the corpus callosum cannot be ruled out based on our current data. Indeed, 

for instance, previous work described an asymmetric maturation of higher-order 

association cortices that may contribute explaining our results (Gogtay et al., 2004). 

Future investigation should combine the assessment of electrophysiological and brain 

structural changes to determine specific mechanisms underlying slow-wave asymmetries 

in children. 

 

Slow waves are larger but less widespread in children than adults 

Consistent with findings indicating that slow waves of children are more often 

asymmetrical or even unihemispheric in children than in adults, we found that the number 

of channels involved by each slow wave (i.e., globality) is on average smaller in children. 
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Therefore, while slow waves of children are typically larger and steeper than those of 

adults, they are also less widespread (Kurth et al., 2017),(Mensen et al., 2016). In 

addition, we found that slope and globality are positively correlated in adults but not in 

children, indicating a dissociation between these slow-wave properties early during 

development. 

We hypothesize that slow-wave slope and globality may reflect the (partially) independent 

maturation of local and long-range connectivity, respectively. Indeed, slow-wave slope is 

regarded as an electrophysiological marker for neuronal synchronization speed, which is 

in turn thought to depend on regional synaptic strength (Riedner et al., 2007b; Vyazovskiy 

et al., 2007). On the other hand, slow-wave globality likely reflects the efficacy of cortico-

cortical spreading, being directly related to traveled distance (Kurth et al., 2017). Thus, 

slow waves of children may be locally more synchronous due to a still incomplete synaptic 

pruning and refinement (and thus, greater synaptic strength (Kurth et al., 2010)), but they 

are globally less widespread, due to an immature white matter connectome. This 

interpretation is consistent with the previously described correlation between distance 

traveled by slow waves and myelin content in whole-brain/interhemispheric connections 

24, and between cortical involvement and myelin content in the superior longitudinal 

fascicle (Kurth et al., 2017). Moreover, our results are in line with the observation of an 

age-dependent increase in different functional and structural connectivity measures. For 

example, intra and inter-hemispheric delta and theta EEG coherence (a connectivity 

measure that was proposed to reflect white matter connectivity and myelination) (Kurth 

et al., 2013), as well as approximate entropy (an information-based connectivity measure) 

(Lee et al., 2013), positively correlate with age. Furthermore, local resting state functional 
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connectivity decreases with age as longer connections are formed (Kelly et al., 2009; 

Lopez-Larson et al., 2011), with a progressive increase in the strength of functional 

connectivity and in the extent of functionally connected regions (Jolles et al., 2011). 

 

Maturation of slow wave synchronization processes from childhood to adulthood 

Previous work demonstrated in adults that the transition to sleep is characterized by at 

least two main phases: i) an early phase dominated by large and widespread (type I) slow 

waves (likely including classically defined K-complexes) that originate around somatic 

sensory-motor areas and peak in frontal regions, and ii) a late phase characterized by the 

predominance of shallow, local (type II) slow waves that show variable origin and 

distribution (Siclari et al., 2014). This temporal dissociation was suggested to reflect the 

existence of distinct synchronization processes - an efficient, subcortical-cortical process 

and a less efficient cortico-cortical process - that come into play at different moments of 

the wake-sleep transition. Importantly, though, recent work revealed that the temporal 

dissociation between synchronization processes I and II at sleep onset is absent in 

children (Spiess et al., 2018). In line with this, here we found that slow waves 

characterized by a high synchronization efficiency (putative type I) do not present in 

children the same origin and distribution as those of adults. Specifically, putative type I 

slow waves of children do not present a clear origin hotspot in centro-frontal electrodes 

typically observed in adults and have a predominantly posterior rather than anterior 

involvement. In other words, while larger, steeper, and more global than most slow waves, 

highly synchronous slow waves of children are virtually indistinguishable in terms of origin 

and involvement from most other (type II) slow waves. 
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Overall, the above observations indicate that the process underlying the synchronization 

of type I slow waves might be largely immature in children. This conclusion is in line with 

previous evidence indicating that K-complexes, after their appearance at ~6 months of 

age, continue their maturation during childhood and reach their ‘adult shape’ only during 

adolescence (Spiess et al., 2018). Of note, while the origin and synchronization of type I 

slow waves is thought to be mediated by diffuse subcortico-cortical projections from 

arousal-related structures (Siclari et al., 2014) , their cortical spreading may still depend 

on the state and integrity of cortico-cortical connections. Therefore, in children, a relative 

immaturity of arousal-related structures or their connections to the cortex might explain 

the lack of a well-defined origin hot-spot as found in adults (Lynch et al., 2020), while the 

incomplete maturation of frontal connectivity may determine a preferential propagation to 

posterior areas (Gogtay et al., 2004). 

From a more general perspective, our results suggest that previous evidence indicating 

a centro-frontal origin for NREM slow waves (Avvenuti et al., 2020; Bernardi et al., 2019; 

Massimini et al., 2004; Menicucci et al., 2009; Murphy et al., 2009) was actually driven 

for the most part, if not exclusively, by type I waves. Indeed, type I slow waves appear to 

have a more stereotyped origin and propagation pattern relative to type II slow waves 

24,25, and their ‘contribution’ may thus emerge upon averaging even if they represent a 

relatively small percentage of all slow waves. 

 

Limitations 
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Some limitations of our study are worth noting. The observational and cross-sectional 

nature of our study does not allow us to prove causality or exclude mediating factors 

between age and slow wave properties, nor to show the development of EEG activity, 

which would require a longitudinal investigation. The lack of brain structural 

measurements also prevented us from investigating specific associations between EEG 

and brain and white matter changes. 

 

Conclusions and future directions 

Taken together, present results indicate that a detailed characterization of slow-waves 

properties may offer valuable information regarding morpho-functional brain adaptations 

across childhood and adolescence that extend and complement those derived from the 

simple assessment of SWA (delta power). In addition, we provide evidence supporting 

the existence of at least two slow-wave sub-types characterized by different levels of 

synchronization efficiency, and show that these waves undergo partially distinct 

maturational changes. In light of previous observations indicating that the generation of 

such slow-wave subtypes may depend respectively on subcortico-cortical and cortico-

cortical synchronization mechanisms, our present results suggest that their separate 

assessment could offer a valuable readout regarding the maturation of distinct anatomo-

functional brain networks.  

Overall, the present data support the view that sleep constitutes a unique window for 

observing and tracking brain physiological adaptations and their disruption and contribute 
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to the efforts aimed at providing an accurate yardstick to assess pathological 

development in clinical populations. 
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3.6. Supplementary Material 

      CHILDREN GROUP ADULT GROUP         COMPARISON  

      n = 21 n = 18   p Cohen's d   

                          

  TRT (min)   506.6 ± 41.56 452.8 ± 49.56   0.001 1.7   

  TST (min)   435.5 ± 50.71 373.2 ± 82.56   0.007 1.3   

  SOL (min)   23.1 ± 14.65 26.2 ± 17.94   0.555 -0.3   

  REML (min)   104.4 ± 34.51 100.7 ± 70.18   0.835 0.1   

  
WASO 
(min)   49.3 ± 44.02 53.4 ± 59.75   0.809 -0.1   

  SE (%)   86.2 ± 9.40 82.2 ± 14.76   0.315 0.5   

  N1 (min)   25.7 ± 10.53 26.0 ± 9.70   0.937 0.0   

  N1 (%)   6.0 ± 2.68 7.5 ± 4.59   0.228 -0.5   

  N2 (min)   160.5 ± 25.27 208.2 ± 52.47   0.001 -1.6   

  N2 (%)   36.9 ± 4.49 55.5 ± 7.04   0.000 -4.5   

  N3 (min)   148.9 ± 19.62 64.3 ± 21.61   0.000 5.8   

  N3 (%)   34.4 ± 4.12 18.1 ± 7.93   0.000 3.6   

  REM (min)   100.3 ± 28.50 74.8 ± 32.55   0.013 1.2   

  REM (%)   22.7 ± 4.84 18.9 ± 6.64   0.047 0.9   

  AI   12.8 ± 2.88 16.0 ± 6.70   0.056 -0.9   

 

Supplementary Table 1 | Sleep architecture 

TRT: total recording time. TST: total sleep time. SL: sleep onset latency. REML: REM latency. 

WASO: wake after sleep onset. SE: sleep efficiency. N1 (min): minutes spent in N1. N1 (%): 

percentage of total sleep time spent in N1; N2 (min): minutes spent in N2. N2 (%): percentage of 

total sleep time spent in N2. N3 (min): minutes spent in N3. N3 (%): percentage of total sleep time 

spent in N3. REM (min): minutes spent in REM. REM (%): percentage of total sleep time spent in 

REM. AI: arousal index (arousal count per hour of sleep).  



 
 

110 

 

 

Supplementary Figure 1 | Comparison of the topographical distribution of SWA (1-4 Hz) 

power during NREM sleep in the children group and in the adult group. 

Values are color coded and plotted on the planar projection of the hemispheric scalp model. First 

row: NREM sleep. Second row: N3. Third row: N2. First and second columns: average NREM 

sleep EEG topographies for children and adults, respectively. Higher values are shown in red, 

lower in blue. Third and fourth columns: single electrode t-value (two-tailed, unpaired) maps for 

the comparison between the two groups in terms of absolute and normalized (using the z-score 

across all electrodes) power. Blue: children < adult. Red: children > adult. White circles: significant 

electrodes (p < 0.05, cluster-size correction).  
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Supplementary Figure 2. Comparison of the topographical distribution of slow wave 

density and involvement during NREM sleep in the children group and in the adult group 

(effect size). 

Values are color coded and plotted on the planar projection of the hemispheric scalp model. First 

row: density (waves/minute). Second row: slow wave involvement (μV). First and second 

columns: average values for the children group and the adult group. Higher values are shown in 

red, lower in blue. Third and fourth columns: single electrode effect size (Cohen’s D) maps of the 

comparison between the two groups in terms of absolute and normalized (using the z-score 

across all electrodes) values. Blue: children < adult. Red: children > adult.  
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Supplementary Figure 3. Correlation between slow wave globality and slope. 

Orange dots: children. Blue dots: adults. X-axis = globality (channels involved in individual slow 

waves divided by the total number of channels, %). Y-axis: down-slope (steepness of the line 

connecting between the first zero-crossing and the maximum negative peak, in mV/s). Gray Lines: 

least-squares regression lines for both groups.  
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Supplementary Figure 4. Principal component analysis of slow-wave involvement.  

The involvement distribution (mean EEG signal calculated across all electrodes in a 40 ms 

window centered on the wave peak; in microvolts) of all slow waves was entered in a PC analysis. 

The plot shows the average variance explained by each of the three PCs in the template subject 

for the adult group and for the children group (after the Procrustes transformation computed for 

each group separately). PC1: first component; PC2:  second component; PC3:  third component. 
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Supplementary Figure 5. Source modeling of slow waves (bottom view). 

First and second columns: children. Third and Fourth columns: adults. A: positive weights. B: 

negative weights. First, second and third rows: horizontal plane (bottom) view of the brain cortex. 

The figure represents the average peak of slow wave involvement (>75th percentile) in source 

space obtained from 3 most representative slow waves of each PC. Yellow: areas with larger 

overlap between subjects (>75% of subjects).  
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Supplementary Figure 6. Source modeling of slow waves (left medial view). 

First and second columns: children. Third and Fourth columns: adults. A: positive weights. B: 

negative weights. First, second and third rows: sagittal plane, left hemisphere (medial) view of the 

brain cortex. 

The figure represents the average peak of slow wave involvement (>75th percentile) in source 

space obtained from 3 most representative slow waves of each PC. Yellow: areas with larger 

overlap between subjects (>75% of subjects).  
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Supplementary Figure 7. Source modeling of slow waves in the children group (right 

medial view). 

First and second columns: children. Third and Fourth columns: adults. A: positive weights. B: 

negative weights. First, second and third rows: sagittal plane, right hemisphere (medial) view of 

the brain cortex. 

The figure represents the average peak of slow wave involvement (>75th percentile) in source 

space obtained from 3 most representative slow waves of each PC. Yellow: areas with larger 

overlap between subjects (>75% of subjects).  
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Supplementary Figure 8. Comparison of the topographical distribution of slow wave 

origins and terminations during NREM sleep in the children group and in the adult group 

(effect size). 

Values are color coded and plotted on the planar projection of the hemispheric scalp model. First 

row: distribution of slow wave origins (channels with 0 delay, % of the total). Second row: 

distribution of slow wave terminations (channels with the maximum delay, % of the total). First 

and second columns: average values for children and adults. Higher values are shown in red, 

lower in blue. Third column: single electrode effect size (Cohen’s D) map for the comparison 

between the two groups. Blue: children < adult. Red: children > adult.  
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Supplementary Figure 9. Origin of slow waves with different involvement.  

The plot shows the origin distribution for the 100 slow waves that weighed more for each PC of 

the involvement. First column: average origin topography in the children group, Second column: 
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average origin topography in the adult group. Rows: PC1a: first component – positive weight; 

PC1b: first component – negative weight; PC2a:  second component – positive weight; PC2b:  

second component – negative weight; PC3a:  third component– positive weight; PC3b:  third 

component – negative weight. 

 

 

Supplementary Figure 10. Globality and slopes in top10% and mid10% slow waves. 

Left panel: globality (% of channels interest by individual slow waves). Right panel: down-slopes. 

Orange dots: children, blue dots: adults. The bottom and top of each boxplot are the 25th and 

75th percentiles of the sample, respectively. The distance between the bottom and top of each 

box is the interquartile range. The line in the middle of each box is the sample median. The 

whiskers extending above and below each box go from the end of the interquartile range to the 

furthest observation within the whisker length (more than 3 times the interquartile range away 

from the bottom or top of the box). The asterisks represent statistical significance at p<0.05.  
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Supplementary Figure 11. Top10% and mid10% slow wave involvement: interaction effect 

between groups (children vs adults) and conditions (top10% and mid10% slow waves), 

posterior cluster. 

Orange dots: children, blue dots: adults. The bottom and top10% of each boxplot are the 25th 

and 75th percentiles of the sample, respectively. The distance between the bottom and top of 

each box is the interquartile range. The line in the middle of each box is the sample median. The 

whiskers extending above and below each box go from the end of the interquartile range to the 

furthest observation within the whisker length (more than 3 times the interquartile range away 

from the bottom or top of the box). Observations beyond the whisker length are marked as outliers 

(red crosses). The asterisks represent statistical significance at p<0.05.  



 
 

121 

 

Supplementary Figure 12. Topographical analysis of involvement and origins in top10% 

and mid10% slow waves. 

Left panel: Involvement (μV). Right panel: Origins (%). Top10%: putative Type I slow waves, i.e., 

slow waves with a synchronization score within the 90 and 100th percentile. Mid10%: putative 

Type II slow waves, i.e., slow waves with a synchronization score between the 45th and the 55th 

percentile. Values are color coded and plotted on the planar projection of the hemispheric scalp 

model. First row: average topography of top10% slow waves. Second row: average topography 

of mid10% slow waves. Third row: single electrode t-value (two-tailed, paired) maps for the 

comparison between top10% and mid10% slow waves. Blue: top10% < mid10%. Red: top10% > 

mid10%. First and second columns: average topographies for the children and adults, 

respectively. Higher values are shown in red, lower in blue. Third column: single electrode t-value 

(two-tailed, unpaired) maps comparison between children and adults. Blue, children < adult. Red: 

children > adult. White circles: p < 0.05, cluster-size correction.  
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4. PROJECT 3 

 

4.1. Preface 

In this project, I will present a hdEEG study conducted on a group of ADHD 

children/adolescents and healthy control subjects. 

This paper represents the first and the simplest application of the hdEEG pipeline 

previously described in project 1. Indeed, I herein performed, as a first step, a sleep power 

analysis at the scalp level. I believe this type of analysis already conveys relevant 

information, and powerfully illustrates how the existing and consolidated background on 

sleep EEG during development can inform research in child psychiatry. Furthermore, this 

analysis provided meaningful hypothesis to be tested in future research. 

 

4.2. ADHD 

ADHD is the most common neurodevelopmental disorder, with an average world-wide 

prevalence of about 5% (Polanczyk et al., 2014). It has a strong genetic predisposition, a 

typical onset in childhood and a chronic evolution. ADHD is broadly characterized by a 

persistent pattern of inattention, hyperactivity and/or impulsivity, inconsistent with the 

developmental level of the affected child. This pattern must be appreciated during early 

childhood (before 6-12 years), and must have a clear impact on the subject’s functioning 

in two or more life settings (American Psychiatric Association, 2013). International 

diagnostic criteria are listed in Table 1. Due to these symptoms, often children with ADHD 
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struggle with education and social requirements, and/or develop other mental illness as 

adolescents and young adults. 

  ICD-10 DSM-V 

Name Hyperkinetic Disorder (F90) ADHD 

Age of onset By definition in childhood (more 
specifically, before the age of 7) 

By definition in childhood 
(more specifically, before 
the age of 12) 

Symptoms criteria for 
children 

Must have a combination of 
impaired attention AND 
overactivity.  
A minimum of 6 of 10 symptoms of 
hyperactivity, 5 of 9 symptoms of 
inattention and 1 of 3 symptom of 
impulsivity  

6 of 9 symptoms of 
inattention and/or 
hyperactivity/impulsivity 

Symptoms criteria for 
adolescents and adults 
aged ≥ 17 years 

 
5 of 9 symptoms of 
inattention and/or 
hyperactivity/impulsivity  

Setting Inattention and restlessness that 
are pervasive across situations at 
home and in school/nursery  

Several inattentive or 
hyperactive-impulsive 
symptoms are present in 
two or more settings  

Duration ≥ 6 months ≥ 6 months 

Impairment Clinically significant distress or 
impairment in social, academic, or 
occupational functioning 

Interference with social, 
academic, or 
occupational functioning; 
includes severity 
specifiers: mild, 
moderate, severe 

Subtypes None ("hyperkinetic conduct 
disorder" for those who meet 
criteria for both disorders) 

Three ADHD clinical 
presentations based on 
symptom profile: 
combined, 
predominantly inattentive 
and predominantly 
hyperactive/impulsive 
presentation  

Comorbidity Diagnosis of anxiety disorders, 
mood affective disorders, 
pervasive developmental disorders 
(autism) and schizophrenia must 
be excluded 

A comorbid diagnosis 
with autism spectrum 
disorders is allowed  
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Table 1. Comparison between ADHD (Diagnostic and Statistical Manual of Mental 

Disorders, 5th edition, DSM-5) and Hyperkinetic Disorder Diagnostic Criteria (International 

Classification of Diseases, 10th edition, ICD10). 

 

Despite being one of the most studied neurodevelopmental disorders in the last decades, 

pathogenetic hypotheses and clinical borderlands of ADHD remain poorly defined, as 

research on ADHD is severely hampered by clinical heterogeneity and the lack of unifying 

models. 

 

4.3. Sleep in ADHD 

Among other hypothesis, the connection between sleep and ADHD has been increasingly 

considered for the following reasons: 

1. Sleep disorders are common in children with ADHD 

In clinical practice, sleep alterations are reported in 25–55% of children with ADHD 

(Hvolby, 2015; Wajszilber et al., 2018). Sleep issues may range from delayed sleep–wake 

disorder, higher bedtime resistance, more sleep onset difficulties, insomnia, sleep-

disordered breathing (SDB), increased nocturnal motor activity, restless legs syndrome 

(RLS), sleep anxiety and teeth clenching (Bijlenga et al., 2019), sleep inertia and higher 

daytime sleepiness compared to typically developing children (Baddam, Canapari, van 

Noordt, et al., 2018; Cortese et al., 2009a; Lunsford-Avery et al., 2016a; Wajszilber et al., 

2018).  

2. ADHD symptoms resemble sleep-deprivation symptoms 
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Frontal lobes are particularly sensible to sleep deprivation and executive functions 

(attention, impulse control) are particularly compromised (Wu et al., 2006). 

Moreover, sleepy children become often hyperactive. Thus, it has been hypothesized that 

excessive motor activity could be a strategy used by children with to stay awake and alert 

(Konofal et al., 2010). 

3. Arousal-promoting are the most effective known-treatment for ADHD 

Pharmacological first-line agents approved for ADHD treatment (Caye et al., 2019; Faraone et 

al., 2015; Sharma & Couture, 2014) are psychostimulants like Methylphenidate or 

amphetamine and lis-dexamfetamine (that act through inhibition of DA and NE reuptake). 

Second/third line medications are Atomoxetine, Guanfacine or Clonidine, Bupropion, 

Imipramine, Modafinil. 

 

While many studies investigated sleep macro-structure with inconsistent findings 

(Baddam, Canapari, Noordt, et al., 2018; Cortese et al., 2009b; Díaz-Román et al., 2018; 

Gruber et al., 2009; Lunsford-Avery et al., 2016b), only few studies focused on sleep 

power in ADHD and mainly on SWA and theta (Gorgoni et al., 2020a) (see Table 2 and 

3 for more details).              

 

Author(s), Year Age (min-

max or 

mean±DS, 

y) 

N° 

(Comor

bi-

dities) 

Task-

related 

Sleep 

Stage 

SW / 

Delta 

Power 

Frequenc

ies (Hz) 

Power 

analys

is  

Results 

Prehn-Kristensen et al., 

2011 

 

ADHD: 10–

16; HC: 11–

14 

ADHD: 

12; HC: 

12 

(ODD: 

3) 

Declara

tive 

Memory 

Task 

(DMT) 

N2 Slow 

oscillatio

ns (SO) / 

Delta 

Power 

SO: 0,5 - 

1; Delta: 

1-3 

C3-A1 Positive correlations 

between sleep-

associated memory 

consolidation and 

slow oscillation 

power in HC, but not 
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in ADHD in the first 

sleep cycle 

Prehn-Kristensen et al., 

2013 

 

ADHD and 

healthy 

children: 9-

12; 

healthy 

adults:  

20-28 

ADHD: 

16; 

healthy 

children: 

16;  

healthy 

adults: 

20 

Emotion

al 

Memory 

Task 

(EMT) 

SWS 

(N3) 

Slow 

oscillatio

ns (SO) / 

Delta 

power 

SO: 0.6–

1; Delta: 

1–4 

F4 - 

(mean 

A1-A2) 

SO/delta power 

negatively correlated 

with memory 

performance in 

children with ADHD 

but not in HC 

Ringli et al., 201 3 

 

ADHD: 

9.7-13.4  

HC: 9.6-14.2 

* note: 

2 ADHD 

treated with 

methylphenid

ate 

ADHD: 

9; HC: 9 

 

 

 

No first 60 

min of 

N2 and 

N3 

SWA 

(normaliz

ed) 

1-4.5 128 

chann

els - 

Cz 

A local increase of 

SWA in a central 

cluster (6 

electrodes) in 

children with ADHD 

compared to HC. 

This group 

difference was 

stable across the 

night. 

Saletin et al., 2017, 

 

ADHD and 

HC: 10–12.9  

ADHD: 

7; HC: 

14 

Motor 

Sequen

ce Task 

(MST)  

N2 

 

 

SWA 1–4.6 Hz averag

e of 

C3/A2 

and 

C4/A1 

No significant 

differences in SWA 

between ADHD and 

HC 

Cremone et al., 2017 

No 

ADHD and 

HC: 4-8 

ADHD: 

14; HC: 

15 

Go/No-

go Task 

(2 

session

s) 

REM 

and 

NREM 

SWA 0.5-4  F4-A1 No SWA differences 

between groups in 

NREM sleep. Higher 

SWA in ADHD 

compared to HC 

during REM sleep 

but not correlated 

with morning 

inhibitory control in 

HC 

Furrer et al., 2019  

Yes 

 

ADHD and 

HC: 8-16 

*note: 28 

ADHD were 

treated with 

stimulants 

ADHD. 

50; HC: 

86 

No first 60 

min of 

N2 and 

N3 

SWA 

(absolute

) 

1-4.5  128 

chann

els - 

Cz 

Lower whole brain 

SWA in ADHD 

compared to HC. 

The decrease was 

not significant in 

patients who were 

taking stimulant 

medication on a 

regular basis 

Miano et al., 2019 

 

ADHD: 

10.1±2.1;  

HC: 

10.34±1.54 

ADHD: 

30; HC: 

25 

No first 

and 

last 60 

min of 

N2 and 

N3 

SWA 

(normaliz

ed) 

1-4 256 

chann

els- Cz 

Higher SWA over 

fronto–central 

channels in ADHD 

compared to HC 

during the first-60-

min of sleep 

Table 2. SWA/Delta power in children with ADHD. 
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ADHD, attention-deficit/hyperactivity disorder; DISC-IV, Diagnostic Interview Schedule 

for Children IV; HC, healthy controls; EEG, electroencephalography; MSLT, multiple 

sleep latency test; ODD, oppositional-defiant disorder; PSG, polysomnography; REM, 

rapid eye movement; SWA, slow wave activity. 

 

 Author(s), Year Age (min-

max or 

mean±DS, 

y) 

N° Task-

related 

Comorbi-

dities 

(n°) 

Sleep 

Stage 

Frequencies 

(Hz) 

Power 

analysis 

Results 

Prehn-Kristensen et al., 2013 ADHD and 

healthy 

children:   

9-12; 

healthy 

adults: 20-

28 

ADHD: 

16; 

healthy 

children: 

16; 

healthy 

adults: 

20 

Emotional 

Memory 

Task 

(EMT) 

ODD (5) REM 4-7 F4 - 

(mean 

A1-A2) 

Children with and 

without ADHD showed 

higher theta power 

than healthy adults; 

theta oscillations 

correlated negatively 

with memory 

performance in 

children with ADHD but 

positively in healthy 

individuals (both 

children and adults) 

Saletin et al., 2017 ADHD and 

HC: 10–

12.9 

ADHD: 

7; HC: 

14 

Motor 

Sequence 

Task 

(MST) 

- N2 4–8 average 

of C3/A2 

and 

C4/A1 

Theta activity was 

marginally higher in 

ADHD than HC, but 

this difference was not 

statistically significant.  

Cremone et al. 2017 ADHD and 

HC: 4-8 

ADHD: 

14; HC: 

15 

Go/No-go 

Task (2 

sessions) 

- REM 

and 

NREM 

4-7 F4-A1 Theta activity was 

significantly greater in 

the ADHD group 

compared to HC during 

REM sleep (but not 

during NREM sleep). 

Morning inhibitory 

control was positively 

correlated with REM 

theta activity only in 

HC. 

 

Table 3. Theta power in children with ADHD. 

ADHD, attention-deficit/hyperactivity disorder; HC, healthy controls; N2, non-rapid eye 

movement sleep stage 2; NREM, non-rapid eye movement; ODD, oppositional-defiant 

disorder; REM, rapid eye movement. 
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4.4. Study aims 

Tables 2 and 3 clearly show that published articles on sleep power in ADHD are sparce, 

mainly based on one or few channels, task-related and focused on NREM sleep and/or 

hampered by medications. My study aimed to fill previous gaps in the literature, 

systematically investigating sleep power topography in all traditional frequency bands, in 

all sleep stages and across sleep cycles using hdEEG in 30 drug-naïve 

children/adolescents with ADHD and 23 typically developing children, in order to provide 

further support to the hypothesis of sleep abnormalities in ADHD. 

 

4.5. Original paper 

I herein enclose the original paper that resulted from this thesis project, recently published 

in Children (Castelnovo et al., 2022). 
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Abstract: Objective: Recent years saw an increasing interest towards sleep microstructure abnormali-
ties in attention-deficit/hyperactivity disorder (ADHD). However, the existing literature on sleep
electroencephalographic (EEG) power in ADHD is still controversial, often based on single electrode
recordings, and mainly focused on slow wave activity (SWA) during NREM sleep. This study aimed
to systematically investigate sleep power topography in all traditional frequency bands, in all sleep
stages and across sleep cycles using high-density EEG (HD-EEG). Method: Thirty drug-naïve children
with ADHD (10.5 ± 2.1 years, 21 male) and 23 typically developing (TD) control participants (mean
age: 10.2 ± 1.6 years, 13 male) were included in the current analysis. Signal power topography was
computed in classical frequency bands during sleep, contrasted between groups and sleep cycles,
and correlated with measures of ADHD severity, cognitive functioning and estimated total sleep time.
Results: Compared to TD subjects, patients with ADHD consistently displayed a widespread increase
in low-frequency activity (between 3 and 10 Hz) during NREM sleep, but not during REM sleep and
wake before sleep onset. Such a difference involved a wide centro-posterior cluster of channels in the
upper SWA range, in Theta, and low-Alpha. Between-group difference was maximal in sleep stage
N3 in the first sleep cycle, and positively correlated with average total sleep time. Conclusions: These
results support the concept that children with ADHD, compared to TD peers, have a higher sleep
pressure and altered sleep homeostasis, which possibly interfere with (and delay) cortical maturation.

Keywords: EEG; spectral analysis; power; topography; sleepiness; maturation

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental
disorder broadly characterized by daytime symptoms of hyperactivity/impulsivity and
inattention [1]. ADHD estimated prevalence in children and adolescence is around 5%
worldwide [2–5]. ADHD high individual and societal impact have fueled intensive research
over the last decades [2]. Nonetheless, the exact etiology of ADHD still remains largely
unknown [6] and as a consequence, no objective/biological marker currently supports the
diagnosis. Sleep problems are commonly reported by children-adolescents with ADHD
and their parents in clinical settings [7]. This observation has led to a growing attention
towards sleep [8] and its electroencephalographic (EEG) microstructure in ADHD [9,10].
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Few quantitative EEG studies specifically investigated sleep power patterns in children
with ADHD [9,11]. Older studies, which commonly focused only on one arbitrarily selected
EEG channel, showed no abnormalities in the lower frequencies range (0.5–4.5 Hz) during
non-rapid eye movement (NREM) sleep [12–15]. However, three later studies [16–18] have
been performed in children with ADHD during sleep using high-density EEG (HD-EEG),
which allows a higher level of spatial resolution of electrocortical activity in comparison
to standard EEG. While two out of three studies found higher slow wave activity (SWA)
over a centro-posterior cluster of electrodes [16,17], one found a global decrease in SWA
in ADHD children compared to TD peers [18]. According to a recent meta-analysis, these
apparently discrepant results might be explained by the negative association between SWA
and both mean age and the use of medications [11].

Importantly, published results regarding frequency bands other than SWA were even
more limited and contradictory, and were typically based only on the evaluation of a
few scalp electrodes after cognitive demanding tasks. Previously mentioned HD-EEG
studies focused only on SWA (mean signal power in the frequency range 0.5/1 to 4/4.5 Hz)
during NREM sleep, since this parameter has a well-known role in synaptic, use-dependent
plasticity and memory consolidation. However, all frequency bands have been found
to undergo major modifications across typical development in both NREM and rapid
eye movement (REM) sleep [9,19], and could thus reflect developmental alterations in
children with ADHD. However, findings have been largely inconsistent across studies.
These inconsistencies may be related to methodological issues and to the complexity
and bidirectionality of the relationship between ADHD and sleep abnormalities [20,21].
Indeed, ADHD is a potential cause of sleep abnormalities per se [22,23], and sleep disorders
are a potential source of ADHD-like symptoms [7,24]. In this regard, it is of utmost
importance that quantitative EEG studies also consider PSG channels to assess major sleep
comorbidities in ADHD.

In light of the above considerations, the aim of this study was to cover the aforemen-
tioned gaps in the literature, extending the analysis of common markers of ADHD using
a previously collected dataset of overnight baseline HD-EEG/video-polysomnography
(v-PSG) recordings [17]. In particular, while our previous study [17] focused on SWA in the
first and last 60 min of NREM sleep, here we aimed to study all-night and all-frequency
band power topography across sleep states (during both NREM stage 2—N2 and NREM
stage 3—N3, REM sleep, and also pre-sleep-onset wakefulness), and across NREM sleep
cycles, in order to explore candidate markers of disease.

2. Materials and Methods

This is an observational, prospective case-control single-center study carried out at
the Neurocenter of Southern Switzerland on ADHD. All study procedures were reviewed
and approved by the local Independent Ethics Committee “Comitato Etico Cantonale”
(26 February 2015–n.2881), according to the regulatory requirements of Switzerland. All
participants provided written consent before the study.

2.1. Participants

Thirty children with a clinical diagnosis of ADHD and 23 healthy control peers were
included for analysis. This dataset overlaps with the one described in a recent publication
by our group [17]. Demographics and clinical information are summarized in Table 1.
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Table 1. Clinical and instrumental sleep data in the attention-deficit/hyperactivity disorder (ADHD)
group and in the healthy control group.

ADHD (n = 30) CONTROL (n = 23)

M ± SD Median Min–Max M ± SD Median Min–Max

Age (y) 10.48 ± 2.06 10.33 7.80–13.83 10.15 ± 1.56 10.00 7.92–13.67
BMI (kg/m2) 18.71 ± 4.43 17.05 13.60–34.20 17.43 ± 2.71 17.10 13.80–23.60
CPRS-R (tot) 76.11 ± 10.78 78 59–99
WISC-IV (tot) 100.19 ± 9.02 98 84–114

K-SADS-PL (tot) 2.93 ± 0.26 3 2–3

Sex Male n = 21 Male n = 12

ADHD Subtypes
Inattentive n = 6

Hyperactive n = 2
Combined n = 22

Sleep
Phenotypes

Epileptic EEG abnormalities n = 10
Sleep onset insomnia n = 5

PLMI > 5 events/hour n = 8
OSAS n = 15

Narcoleptic-like n = 4

v-PSG §

M ± SD Median Min–Max M ± SD Median Min–Max P ES
TIB (min) 493.40 ± 39.81 493.82 384.73–568.77 503.44 ± 41.04 506.55 390.00–567.80 0.377
TST (min) 408.96 ± 58.73 423.00 215.95–478.50 430.69 ± 52.02 440.42 275.27–499.93 0.17
SL (min) 29.72 ± 23.39 22.72 1.35–81.87 23.08 ± 14.32 23.98 3.29–58.58 0.578 *

REML (min) 135.47 ± 56.75 116.38 55.50–299.57 111.01 ± 45.55 93.08 57.40–252.39 0.066 *
WASO (min) 54.71 ± 55.31 28.58 7.24–216.45 50.84 ± 45.01 31.98 10.11–199.67 0.787

SE (%) 83.12 ± 11.73 86.23 48.49–97.45 85.74 ± 9.44 89.02 55.22–97.45 0.388
N1 (min) 23.16 ± 8.85 21.66 9.50–39.50 24.93 ± 10.48 23.70 11.00–56.01 0.512

N1 (%TST) 5.89 ± 2.84 5.28 2.03–15.03 5.86 ± 2.62 5.49 2.89–12.36 0.971
N2 (min) 151.47 ± 38.84 153.50 17.00–199.88 160.40 ± 24.71 165.48 93.00–199.70 0.343

N2 (%TST) 36.51 ± 7.97 37.07 7.87–49.67 37.31 ± 4.51 35.46 29.58–46.87 0.668
N3 (min) 141.45 ± 26.35 137.35 104.50–195.00 147.70 ± 19.14 144.50 109.50–181.96 0.345

N3 (%TST) 35.12 ± 7.34 33.38 24.65–56.49 34.52 ± 4.08 34.35 27.20–42.47 0.727
REM (min) 92.87 ± 23.56 97.25 44.50–129.13 97.66 ± 28.84 101.00 39.00–161.50 0.512

REM (%TST) 22.48 ± 3.68 22.20 15.18–28.30 22.30 ± 4.82 22.01 14.03–33.00 0.881
AI (n/h) 13.48 ± 3.44 13.90 7.42–19.67 12.74 ± 3.1 12.67 6.96–18.15 0.422

AHI (n/h) 2.04 ± 1.70 1.40 0.00–6.90 0.67 ± 0.8 0.40 0.00–3.10 0.002 −1.002
PLMI (n/h) 2.96 ± 2.81 2.80 0.00–9.60 2.74 ± 3.55 1.50 0.00–12.70 0.807

AI, arousal index; AHI, apnea-hypopnea index; BMI, body mass index; CPRS-R, Conners’ Parent Rating Scale—Revised;
K-SADS-PL, Schedule for Affective Disorders and Schizophrenia for School-Age Children Present and Lifetime
Version; N1, non-REM sleep stage 1; N2, non-REM sleep stage 2; N3, non-REM sleep stage 3; OSAS, Obstructive
sleep apnea syndrome (based on AHI >1 event/hour and at least one among snoring, labored sleep breathing
and sleepiness); PLMI, periodic limb movements index; REM, rapid eye movement; REML, REM latency; SE,
sleep efficiency; SL, sleep latency; TIB, time in bed; TST, total sleep time; WASO: wakefulness after sleep onset;
WISC-IV, Wechsler Intelligence Scale for Children—IV. ES: effect size; M: median, min: minutes n: number;
n/h: number/hour; P: p-value resulting from to 2-tailed independent t-test statistics unless otherwise specified
(* Mann-Whitney U Test); SD: standard deviation. § only 29 patients considered as for 1 child with ADHD only
the first sleep cycle was available.

2.1.1. Patient Group

Drug-naïve children with ADHD were recruited consecutively at the local Pediatric
Department (in Lugano and Bellinzona) from April 2015 to May 2016. Each patient was
evaluated by both a pediatrician and by a pediatric neuropsychiatrist (SM). The diagnostic
protocol included a detailed medical history with both children and their parents, a neuro-
logical examination, a semi-structured psychiatric interview, i.e., the Schedule for Affective
Disorders and Schizophrenia for School-Age Children Present and Lifetime Version (K-
SADS-PL) [25], a paper-and-pencil version of the Conners’ Parent Rating Scale—Revised
(CPRS-R) [26] filled in by parents, and the Wechsler Intelligence Scale for Children—IV
(WISC-IV) [27] and the Neuropsychological Developmental Assessment—Second Edition
(NEPSY-II, a standardized neuropsychological battery for children) [28], administered to
children with ADHD by a neuropsychologist and cognitive psychotherapist.

Inclusion criteria were: (1) a formal diagnosis of ADHD according to Diagnostic and
Statistical Manual of Mental Disorders—5th Edition (DSM-V) criteria [29]; (2) age between
8 and 14 years. Exclusion criteria were: (1) a comorbid diagnosis of autistic spectrum disor-
der (ASD); (2) an intelligence quotient <70; (3) other known major neurological conditions;
(4) previous treatment with stimulants or other medications used to treat ADHD.
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The final group included 30 Caucasic research participants (mean age: 10.5 ± 2.1 years,
range: 8–13 years, 21 male); of them, 22 were diagnosed with a combined ADHD pre-
sentation, 6 with a predominantly inattentive and 2 with a predominantly hyperactive
presentation [17].

All research participants underwent a complete sleep assessment, which included a
1-week actigraphy recording, a nocturnal video-polysomnography (v-PSG) with extended
EEG monitoring, and a multiple sleep latency test (MSLT) the day after the v-PSG. Good
quality, all-night recordings were available for 29 participants. For one subject only the
first cycle (NREM sleep plus a few epochs of REM sleep) was available and used for the
current analysis.

According to a previous classification of the same group of patients, children with
ADHD could be divided into 5 different phenotypes: (1) epileptic EEG abnormalities
(n = 10); (2) sleep onset insomnia (n = 5), based on a reported sleep latency >20 min, for
more than 3 times per week and more than three months; (3) periodic limb movements
(PLM) >5 events/hour with no associated restless leg syndrome (RLS) (n = 8); (4) ob-
structive sleep apnea-hypopnea syndrome (OSAS), based on an apnea-hypopnea index
(AHI) >1 events/hour and the presence of at least one of the following clinical features:
snoring, labored sleep breathing, excessive daytime sleepiness (n = 15); (5) narcoleptic-like
phenotype (n = 4), characterized by excessive daytime sleepiness as defined by an MSLT
<8 min, and/or 2 sleep-onset REM-sleep periods at MSLT. For more details on the clinical
features of this group, see Miano et al. [17].

2.1.2. Control Group

Twenty-five TD children were recruited by e-mail and word-of-mouth among all em-
ployees of the Civic Hospital of Lugano. A physician board-certified in both Pediatric Sleep
Medicine and Child Psychiatrist (SM) thoroughly interviewed children and their parents
to screen for any known sleep disorder, neuro-psychiatric comorbidity, or any medical
condition affecting sleep. Selected children were then referred to the sleep laboratory for a
sleep v-PSG with extended EEG monitoring.

Data collected from 2 participants were lost due to storage failure. Therefore, record-
ings from 23 participants were eventually used in the analysis (mean age: 10.2 ± 1.6 years,
range: 8–13 years, 13 male). The control group did not significantly differ from the pa-
tient group for age (t(51) = −0.66, p > 0.05, independent-samples 2-tailed t-test) and sex
(χ2

(1, n = 53) = 1.1, p > 0.05, Chi-square test for independence with Yates Continuity Correc-
tion). Healthy control participants were also screened for sleep breathing disorders and
PLM during sleep. None of them had symptomatic OSAS or an AHI >5 events/hour or
reached the criteria for a PLM disorder or RLS.

2.2. Sleep Recordings

All participants underwent an in-laboratory overnight HD-EEG recording (256 chan-
nels; Electrical Geodesics Inc., Eugene, OR, vertex-reference, 250 Hz), coupled with tradi-
tional v-PSG [30]. Lights out was consistent with the participants’ average bedtime, and
wake-up time was between 6 and 7 am for all participants.

Sleep stages and sleep events were scored according to standard criteria by two board-
certified sleep physicians using the Embla® Remlogic Software (Neurolite), based on 30-s
epochs for 6 bipolar re-referenced EEG channels (F3/A2, F4/A1, C3/A2, C4/A1, O1/A2,
O2/A1), electrooculogram (EOG), and submental electromyography (EMG) [30].

2.3. EEG Signal Power in NREM Sleep, in REM Sleep and Wake before Sleep Onset

Before spectral analysis, data were pre-processed according to standard routines
for HD-EEG. All EEG signals and other relevant information (including sleep scoring)
were imported and analyzed in MATLAB (The MathWorks Inc., Natick, MA, USA). Each
signal was first-order high-pass filtered at 0.1 Hz (IIR filter reproducing a single resistor
capacity) and subsequently band-pass filtered (0.5–45 Hz, Kaiser window-based FIR with
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zero-phase distortion). Data epochs corresponding to NREM sleep N3 and N2, REM sleep
and wake before sleep-onset (see below) were extracted and pre-processed separately. An
interactive open-source tool for data visualization and data-cleaning (https://github.com/
CSC-UW/csc-eeg-tools.git, accessed on 2 February 2021) was used to visually inspect data
in MATLAB. Channels with clear artifacts were removed (and later recovered through
interpolation; see below), while data segments containing artifacts affecting the majority
of channels were marked as “bad” and not considered in subsequent analyses. Channels
displaying a sharp difference in power relative to neighboring channels upon inspection of
power spectra and topographic power maps were additionally removed. Quiet windows
of wakefulness available in the time period between the end of electrode net setup and
the beginning of the overnight recording (from 10 to 50 min before actual sleep onset)
were selected. After the removal of artifactual data segments, a total of 8–16 min (M = 12.3,
SD = 3.6) of wakefulness was retained for 27 patients and 18 control subjects. Three patients
and 4 control subjects did not have artifact-free segments of wakefulness before sleep onset
longer than 5 min and were therefore excluded. Independent Component Analysis (ICA)
was performed on both sleep (REM and NREM) and wake data, in order to remove ocular,
electrocardiograph, sweating, epileptic spikes and remaining muscular artifacts using
EEGLAB routines [31]. Only ICA components with characteristic activity patterns typical
of these artifactual activities were removed. Subsequently, the removed, bad channels were
interpolated using spherical interpolation.

Spectral analysis was performed using all artifact-free 6-s epochs (Welch’s averaged
modified periodogram with a Hamming window, 8 segments with 50% of overlap) on
the average-referenced signal. For topographic analysis, average signal power (across
epochs) was computed for 6 classical frequency ranges [32]: delta/SWA (1–4 Hz), Theta
(4–8 Hz), Alpha (8–12 Hz), Sigma (12–16 Hz) Beta (16–25 Hz), low Gamma (25–40 Hz).
Both topographic maps of absolute average-referenced and normalized data (z-score across
channels of the same participant) were examined. NREM sleep (more specifically stages
N2 and N3, taken together and separately) and REM sleep all-night power maps as well
as wake before sleep onset power maps were compared across groups (ADHD versus TD
children) for all frequency bands.

2.4. NREM Sleep Homeostatic Regulation

Additional between-groups analyses were performed to compare the first, second and
third sleep cycles separately, for the range of frequencies that significantly differed between
groups in the all-night analysis. Of note, we specifically focused on the first three sleep
cycles because this was the maximum number of cycles represented in the majority of our
participants. In order to evaluate whether the physiological decline of low-frequency bands
was preserved or altered in ADHD versus TD children, we also compared power in these
frequencies across cycles and between groups.

2.5. Correlations between Power and Clinical Variables

The association between EEG power and clinical variables in the ADHD group was
investigated for the frequency range that showed a significant difference between ADHD
and TD children in the region of interest (ROI) of interest. Selected clinical variables were
age, habitual total sleep time (TST) as estimated by parents and average sleep latency at the
MSLT (as measures of sleep pressure), the global ADHD scores at the Conners Rating Scale,
and global intellectual ability measured with the WISC-IV.

2.6. Statistical Analysis

Statistical between-group comparisons of demographic and polysomnographic vari-
ables, as well as power spectra, were performed using unpaired 2-tailed t-tests, Mann–
Whitney U tests, or χ2 tests, as appropriate. Normality of data and homogeneity of variance
were evaluated using the Shapiro/Wilk’s test and Levene’s test, respectively. Comparisons
of scalp power maps were performed separately for each frequency band. At the scalp level,

https://github.com/CSC-UW/csc-eeg-tools.git
https://github.com/CSC-UW/csc-eeg-tools.git
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we corrected for multiple comparisons using a non-parametric cluster-based permutation
test [33], as described in previous work [34–39]. Specifically, for each performed test, a
null distribution was generated by randomly shuffling the group-label of each subject for
comparisons. At each iteration of the permutation procedure, the test-statistics was com-
puted for each electrode and the size of the largest significant electrode-cluster (uncorrected
p < 0.05) was stored in a frequency table. Given the impracticality of computing all possible
data re-combinations, the full null distribution was approximated using 10,000 iterations.
Finally, the 95th percentile (5% significance level) was used as the critical cluster-size dis-
tribution threshold. Given the possible impact of age on these variables, an additional
analysis was conducted with age introduced as a covariate. For the sake of simplicity,
only results without using the covariate are detailed, except for cases where a discrepancy
between the two analyses was observed. We did not correct for the issue of multiple testing
across different comparisons (across bands and stages) due to the exploratory nature of
this study.

In order to explore stage differences in average power comparisons, a mixed model
analysis of variance (ANOVA) was used to determine the interaction effect between groups
(ADHD and TD children) and sleep stages (N2 versus N3). In order to explore differences
in the homeostatic regulation of sleep microstructural features, a mixed model ANOVA
was used to assess the interaction effect between group (ADHD and TD children) and sleep
cycle (first, second and third cycle), for the average power ROI identified by the cluster
test analysis.

Correlation between power values and clinical variables in the patient group were
performed using Spearman’s correlation. As we performed 5 different correlations, the level
of significance was adjusted for multiple comparisons (Bonferroni’s correction, 0.05/5 = 0.01).

Statistical analyses were performed in MATLAB.

3. Results
3.1. EEG Signal Power in NREM Sleep, REM Sleep and Wake before Sleep Onset
3.1.1. NREM Sleep

During whole night NREM sleep children in the ADHD group showed a widespread,
significant increase in absolute Theta power (cluster size = 124, p < 0.05) relative to the
healthy control group (see Supplementary Figure S1). The increase was observed in most
electrodes, with the notable exception of frontopolar ones.

No significant differences between children with ADHD and control participants were
found in other frequency ranges and for normalized power except for a small frontal Beta
cluster (cluster size = 18, p < 0.05), which was not confirmed after the introduction of age
as covariate.

As there was a significant difference between the two groups (ADHD and TD) in
the AHI, we also performed an exploratory analysis within the ADHD group between
patients with (n = 15) and without (n = 15) the obstructive hypopneas/apneas phenotype.
We could not observe any difference between these two groups in any frequency band (see
Supplementary Figure S2).

In N2 sleep, many individual electrodes showed significantly higher absolute power
values in the ADHD group relative to the control group, especially in low-frequency ranges
(SWA, Theta, Alpha; p < 0.05, uncorrected). However, no significant effects were found for
both absolute and normalized power maps (see Figure 1) after multiple comparison correction.
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Figure 1. Topographical distribution of all frequency bands based on whole-night non-rapid eye
movement (NREM) sleep stage 2 (N2) in the attention-deficit/hyperactivity disorder (ADHD) group
and in the healthy control group. Values are color-coded and plotted on the planar projection of the
hemispheric scalp model. Rows: frequency bands of interest. First and second column: average N2
sleep EEG topographies across frequency bands for children with ADHD and healthy control matches,
respectively. Maxima are shown in red, minima in blue. Third and fourth column: single electrode
t-value (2-tailed, unpaired) maps for the comparison between patients with ADHD and control sub-
jects in terms of absolute and normalized (using the z-score across all electrodes) power, respectively.
Blue color: decrease in EEG power in patients with ADHD relative to healthy controls (ADHDs
< controls), red color: increase in EEG power in patients with ADHD relative to healthy controls
(ADHD > controls). White circles indicate significant electrodes (p < 0.05 cluster-size correction).

In N3 sleep, a widespread significant increase in absolute Theta (cluster size = 143,
p < 0.05) and Alpha (cluster size = 99, p < 0.05) was observed in the ADHD group relative
to the healthy control group (see Figure 2). Differences were again observed in most
central, parietal, temporal and occipital electrodes, and only spared frontopolar electrodes.
When age was introduced as covariate, also the SWA range remained significant after
multiple comparison correction (SWA range: cluster size = 134, p < 0.05, Theta range:
cluster size = 197, p < 0.05, Alpha range, cluster size = 46 p < 0.05).
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Figure 2. Topographical distribution of all frequency bands based on whole-night non-rapid eye
movement (NREM) sleep stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) group
and in the healthy control group. Values are color-coded and plotted on the planar projection of the
hemispheric scalp model. Rows: frequency bands of interest. First and second column: average N2
sleep EEG topographies across frequency bands for children with ADHD and healthy control matches,
respectively. Maxima are shown in red, minima in blue. Third and fourth column: single electrode
t-value (2-tailed, unpaired) maps for the comparison between patients with ADHD and control subjects
in terms of absolute and normalized (using the z-score across all electrodes) power, respectively. Blue
color: decrease in EEG power in patients with ADHD relative to healthy controls (ADHDs < controls),
red color: increase in EEG power in patients with ADHD relative to healthy controls (ADHD > controls).
White circles indicate significant electrodes (p < 0.05 cluster-size correction).

No significant differences between ADHD and control children were found in other
frequency ranges and for normalized power except for a small posterior Gamma cluster
(cluster size = 15, p < 0.05), which was not confirmed after the introduction of age as
covariate. It is however noteworthy that several individual posterior electrodes showed
relatively higher levels of normalized SWA in ADHD, compared with control children
(p < 0.05, uncorrected), in line with previous research.

Additional analyses were performed to better characterize the low-frequency in-
crease observed during N3 sleep in ADHD relative to control children. In particular, we
first compared the EEG power spectra (power spectral density averaged across all scalp
channels) of the two groups and found a significant difference between 2.7 and 9.8 Hz
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(Supplementary Figure S3). Consistent results also emerged from the analysis of topo-
graphical power maps when power was computed in 1 Hz bins (Figure 3). In particular,
we found significant clusters with higher power in ADHD relative to control children in
frequency bins from 3 to 10 Hz.
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Figure 3. Topographical distribution of the comparison (single electrode t-value, 2-tailed, unpaired)
between absolute power values of the attention-deficit/hyperactivity disorder (ADHD) group and of
the healthy control group during whole-night non-rapid eye movement NREM sleep stage 3 (N3),
represented per bin of frequency.

Each map represents the comparison for one bin of frequency centered on the value
indicated above each map. Values are color-coded and plotted on the planar projection of
the hemispheric scalp model. A lower EEG power in patients with ADHD relative to healthy
controls (ADHDs < controls) is represented in blue, a higher power (ADHD > controls) in
red. White circles indicate significant electrodes (p < 0.05 cluster-size correction).

Interestingly, observed differences involved most low-frequencies below 10 Hz, with
the notable exception of frequencies below 2.5 Hz (Supplementary Figure S4). When slow
(0.5–2.5 Hz) and fast SWA (2.5–4 Hz) were considered separately, a cluster of significance
could be observed only in the fast SWA range (cluster size = 31, p < 0.05).

We then defined as ROI the cluster of electrodes that survived multiple comparison
correction in the frequency range between 3 and 10 Hz. In order to investigate whether the
low-frequency difference observed in N3 sleep (3–10 Hz range) was specific for this stage
or also extended (and to which degree) to N2 sleep, we used an ANOVA model with group
(ADHD versus TD) and stage (N2 versus N3) as factors to analyze the average signal power
in the region of interest. There was a statistically significant two-way interaction between
group and stage: F(2, 50) = 6.139, p < 0.05, Huynh–Feldt correction for Epsilon > 0.75, partial
eta squared = 0.109, see Figure 4, left panel). As expected, there was a significant effect of
stage on power for both ADHD and TD groups (N3 > N2, p < 0.001, p Bonferroni-adjusted
< 0.001 for both groups). Group comparisons were significant for both N2 (ADHD > TD,
p Bonferroni-adjusted < 0.05) and N3 (ADHD > TD, p Bonferroni-adjusted < 0.05).



Children 2022, 9, 197 10 of 17

Children 2022, 9, x FOR PEER REVIEW 10 of 17 
 

 

We then defined as ROI the cluster of electrodes that survived multiple comparison 
correction in the frequency range between 3 and 10 Hz. In order to investigate whether 
the low-frequency difference observed in N3 sleep (3–10 Hz range) was specific for this 
stage or also extended (and to which degree) to N2 sleep, we used an ANOVA model with 
group (ADHD versus TD) and stage (N2 versus N3) as factors to analyze the average sig-
nal power in the region of interest. There was a statistically significant two-way interac-
tion between group and stage: F(2, 50) = 6.139, p < 0.05, Huynh–Feldt correction for Epsilon 
> 0.75, partial eta squared = 0.109, see Figure 4, left panel). As expected, there was a sig-
nificant effect of stage on power for both ADHD and TD groups (N3 > N2, p < 0.001, p 
Bonferroni-adjusted < 0.001 for both groups). Group comparisons were significant for 
both N2 (ADHD > TD, p Bonferroni-adjusted < 0.05) and N3 (ADHD > TD, p Bonferroni-
adjusted < 0.05). 

 
Figure 4. Left panel—Absolute spectral density averaged across channels within the significant 
Theta cluster in the attention-deficit/hyperactivity disorder (ADHD) and the control group in non-
rapid eye movement (NREM) sleep stage 3 (N3) and NREM sleep stage 2 (N2). Red dots represent 
N3, blue dots N2. The bottom and top of each boxplot are the 25th and 75th percentiles of the sample, 
respectively. The distance between the bottom and top of each box is the interquartile range. The 
green line in the middle of each box is the sample median. The whiskers extending above and below 
each box go from the end of the interquartile range to the furthest observation within the whisker 
length. Observations beyond the whisker length (more than 3 times the interquartile range away 
from the bottom or top of the box) are marked as outliers. The cross (+) represents an outlier. The 
mean difference was significant between the ADHD group (N3: M = 22.90, SD = 12.65, N2: M = 8.60, 
SD = 3.73) and the control group (N3: M = 15.77, SD = 5.22, N2: M = 6.54, SD = 1.81) for both N3 (p < 
0.05, also after the removal of the outlier in the ADHD group, Cohen’s d = 0.70, meaning a medium 
effect size, independent samples t-test) and in N2 (p = 0.018, Cohen’s d = 0.68, meaning a medium 
effect size, independent samples t-test). There was a significant interaction effect (p < 0.05) between 
stages (N3 versus N2) and groups (ADHD versus control) at a mixed between-within ANOVA 
model (not shown in the figure). Right panel—Absolute spectral density averaged across channels 
within the significant Theta cluster in the attention-deficit/hyperactivity disorder (ADHD) and the 
control group in different sleep cycles (first, second and third cycle). X-axes: time expressed in cy-
cles, Y-axes: average power values in selected frequency range of 3–10 Hz, expressed in µV/Hz2. 
Red bars: ADHD group. Blue bars: control group. C1: first cycle, C2: second cycle; C3: third cycle. 
There was a significant difference in 3–10 Hz power of the significant cluster of channels for the 
ADHD group (M = 28.55, SD = 16.97) and the control group (M = 20.63, SD = 7.06) in N3 of the first 
sleep cycle: t(51) = 2.10, ADHD > controls, p < 0.05, Cohen’s d = 0.61, meaning a medium effect size, 
independent-samples t-test, two tailed). N.s.: not significant. (*): significant comparison. 

3.1.2. REM Sleep Power 

Figure 4. Left panel—Absolute spectral density averaged across channels within the significant Theta
cluster in the attention-deficit/hyperactivity disorder (ADHD) and the control group in non-rapid
eye movement (NREM) sleep stage 3 (N3) and NREM sleep stage 2 (N2). Red dots represent N3,
blue dots N2. The bottom and top of each boxplot are the 25th and 75th percentiles of the sample,
respectively. The distance between the bottom and top of each box is the interquartile range. The
green line in the middle of each box is the sample median. The whiskers extending above and below
each box go from the end of the interquartile range to the furthest observation within the whisker
length. Observations beyond the whisker length (more than 3 times the interquartile range away
from the bottom or top of the box) are marked as outliers. The cross (+) represents an outlier. The
mean difference was significant between the ADHD group (N3: M = 22.90, SD = 12.65, N2: M = 8.60,
SD = 3.73) and the control group (N3: M = 15.77, SD = 5.22, N2: M = 6.54, SD = 1.81) for both N3
(p < 0.05, also after the removal of the outlier in the ADHD group, Cohen’s d = 0.70, meaning a
medium effect size, independent samples t-test) and in N2 (p = 0.018, Cohen’s d = 0.68, meaning a
medium effect size, independent samples t-test). There was a significant interaction effect (p < 0.05)
between stages (N3 versus N2) and groups (ADHD versus control) at a mixed between-within
ANOVA model (not shown in the figure). Right panel—Absolute spectral density averaged across
channels within the significant Theta cluster in the attention-deficit/hyperactivity disorder (ADHD)
and the control group in different sleep cycles (first, second and third cycle). X-axes: time expressed
in cycles, Y-axes: average power values in selected frequency range of 3–10 Hz, expressed in µV/Hz2.
Red bars: ADHD group. Blue bars: control group. C1: first cycle, C2: second cycle; C3: third cycle.
There was a significant difference in 3–10 Hz power of the significant cluster of channels for the
ADHD group (M = 28.55, SD = 16.97) and the control group (M = 20.63, SD = 7.06) in N3 of the first
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3.1.2. REM Sleep Power

No differences were found between groups (ADHD versus TD) in terms of absolute
or normalized power maps in REM sleep (see Supplementary Figure S5). No clusters of
significance were found after multiple comparison correction also when considering the
ROI emerged in NREM sleep analysis (data not shown).

3.1.3. Wake before Sleep Onset Power

No differences were found between groups (ADHD versus TD) in terms of absolute
or normalized power in wake before sleep onset except for a small posterior Gamma
cluster in normalized power maps (cluster size = 14, p < 0.05), which disappeared after the
introduction of age as a covariate (see Supplementary Figure S6). No significant clusters
were found after multiple comparison correction in 3–10 Hz power the ROI emerged from
NREM sleep analysis (data not shown).
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3.2. NREM Sleep Homeostatic Regulation

We first conducted separate group-level comparisons using 3–10 Hz power in the ROI
of interest during the first, second and third cycle of N3 sleep, separately. Four research
participants were removed from this analysis because they did not have N3 in the third cycle.

A 2-way mixed ANOVA used to investigate potential inter-group differences in
3–10 Hz power across cycles in the previously defined ROI revealed an interaction effect
between group (ADHD versus TD) and cycle (cycle 1, cycle 2, cycle 3), within our signifi-
cant cluster of channels: F(1, 46) = 3.318, p < 0.05 (Huynh-Feldt correction for Epsilon > 0.75,
partial eta squared = 0.066). Pairwise comparisons showed that power was significantly
different between groups in cycle 1 (ADHD >TD, p <0.05), but not in cycle 2 and 3 (although
this effect did not stand multiple comparison correction with Bonferroni’s adjustment, see
Figure 4, right panel). There was a statistically significant effect of cycle on power for each
group (p < 0.05 for both groups) which confirmed a physiological homeostatic decline in
N3 power in both ADHD and TD. The pairwise comparisons cycle 1 versus cycle 2 and
cycle 1 versus cycle 3 were significantly different for both groups (p < 0.05).

3.3. Correlation Analysis between Low-Frequency Activity and Clinical Variables

Given our observation of higher 3–10 Hz activity in ADHD relative to TD children
during N3 sleep, we investigated whether this low-frequency power in the ROI of interest
was correlated with demographic and clinical variables of children with ADHD. We found
a significant negative correlation between low-frequency power and age, so that older chil-
dren were characterized by lower signal power (p < 0.001, r = −0.515; Figure 5). In addition,
we observed a significant positive correlation with the total sleep time as estimated by the
parents (p < 0.001, r = 0.490). This correlation remained significant when the effect of age
was partialled-out. No significant correlations were found between signal power in the
3–10 Hz range and MSLT mean sleep latency, overall ADHD symptoms measured by the
Conners’ scale (p > 0.001, r = 0.14), and the WISC-IV (p > 0.001, r = 0.29).
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4. Discussion
4.1. General Overview

This study expands our previous findings on normalized sleep power topography in
ADHD children, which pointed to a relative increase of SWA power over centro–parietal–
occipital regions in these subjects compared to TD children [18]. Here, we investigated
systematically both absolute and normalized power density maps in all traditional fre-
quency bands and in all sleep stages in the same dataset of drug-naive children with ADHD
and healthy control peers, collected with HD-EEG coupled with a complete PSG monitor-
ing [17]. Of note, contrary to previous studies investigating quantitative EEG differences in
ADHD and TD children, this dataset was specifically tailored to investigate sleep problems
in ADHD children but additionally demonstrated a higher prevalence of past and/or cur-
rent sleep disorders in the ADHD children group compared to the control group. Despite
the heterogeneity of sleep disorders in this patient population [17], our results consistently
revealed a widespread increase in low-frequency activity, between 3 and 10 Hz, during
NREM sleep in ADHD compared to TD children, but not during REM sleep and wake
before sleep onset. We interpreted this effect as the common end-stage result of different
sleep disorders on brain development. Such a difference involved the upper SWA range
and peaked in the Theta range, encompassing a wide centro-posterior cluster of channels,
sparing only fronto-polar regions. In addition, the difference was maximal in stage N3,
although a similar trend could also be observed in N2 sleep. Between-group differences
were more marked in the first sleep cycle, suggesting an increased homeostatic pressure in
ADHD children. Average power values in the 3–10 Hz frequency range were positively
correlated with estimated average total sleep time.

Overall, current results widen the perspective from previous sleep HD-EEG studies
which focused exclusively on SWA in NREM sleep and clearly showed that all lower
frequency bands (and mainly Theta band) are altered in children with ADHD during
NREM sleep, paralleling findings during daytime “rested” wakefulness [40].

4.2. Interpretation of Results

This broad-band effect likely reflects the fact that the cut-offs of frequency bands,
although based on the visual inspection of EEG activity, frequently do not correspond
to the functional meaning of EEG rhythms [41]. Indeed, all lower EEG frequency bands
are all homeostatically regulated in humans [42], meaning that their power increases
with sleep deprivation and gradually dissipates during a good night of sleep [43,44].
Furthermore, the power of EEG slow frequencies during sleep varies significantly with brain
maturation [40]. More specifically, global SWA activity during NREM sleep significantly
increases in the first decade of life and then decreases during the second decade of life, both
in cross-sectional and longitudinal studies [19,45–47]. Theta activity undergoes a similar
trajectory, although its peak and decline begin significantly earlier compared to SWA
(starting approximately at 9 years of age) [45]. The Alpha band has been less investigated,
but the limited existing literature overall suggests a reduction in the Alpha band in the
second decade of life [19,47,48]. Taken together these data contrast with the maturational
trajectory of higher frequency bands [49] which seems to be less affected (Beta/Gamma)
by age or to be modulated differently, as in the case of Sigma activity, following a bimodal
curve with a first peak in the slow spindle range after the age of two years and a second,
centro-parietal peak at high-Sigma frequencies during adolescence [42,50,51].

Therefore, an abnormality of lower EEG frequency bands in ADHD might both reflect
a delay in brain maturation and/or an alteration in sleep homeostasis.

Delay in brain maturation—Higher power values from 3 to 10 Hz sparing more
frontal areas may be consistent with ADHD children presenting a “younger” (i.e., less
“mature”) power pattern compared to their peers. This hypothesis is reinforced by the
typical clinical evolution of the disorder, as symptoms tend to improve with age [52].
However, it should be noted that the results from previous longitudinal and cross-sectional,
low-density EEG studies [47,53], reported a significant decrease with age of EEG power in
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the delta/Theta/Alpha bands during both REM sleep and NREM sleep [47]. In this respect,
consistency with the maturation delay hypothesis would imply a dissociation between
NREM and REM sleep, with only maturational aspects reflected by NREM low-frequency
activity actually altered in ADHD relative to TD children.

Sleep homeostasis impairment—At the same time, high levels of low-frequency activ-
ity may reflect a higher sleep pressure and an abnormal homeostatic process in children
with ADHD. The homeostatic process is fundamental for brain plasticity [54] and is ex-
pressed by changes in the EEG power spectrum between the first and the second half of the
night, mainly in the 1–9 Hz range [55], in face of a stable power topography. Our ADHD
group displayed a specific increase in this frequency range, in the first sleep cycle, which
rapidly and progressively dissipated throughout subsequent cycles. Interestingly, our
results on SWA, the most commonly studied index of sleep pressure, are consistent with
recent findings in animal models showing that higher-frequency SWA (2.5–3.5 Hz) respond
to sleep loss with high initial power and fast, discontinuous decay during recovery sleep,
while lower-frequency SWA (0.5–2.75 Hz) seems unrelated to time-spent-awake [56]. The
increased sleep pressure in children with ADHD might be linked to the fact that subjective
sleep complaints are common in persons with ADHD. Sleep disturbances were indeed
confirmed objectively in our ADHD sample in a previously published paper [17]. It can be
further speculated, on the basis of a positive correlation between estimated total sleep time
and increased power in the 3–10 Hz range, that intrinsic abnormalities and/or underlying
sleep disorders prevent these children from obtaining a fully restorative sleep, leading to a
compensatory (but insufficient) increase in total sleep time. Finally, sleep abnormalities
may impair neurodevelopmental and cortical maturational processes that are associated
with sleep [57,58].

4.3. Limitations and Future Perspectives

To our knowledge, the analyzed dataset is the first that combined both quantitative
EEG analysis and a full sleep evaluation (clinical interview, actigraphy, PSG and MSLT).
This allowed us to discover an otherwise overlooked high prevalence of sleep disturbances
in children with ADHD (as sleep assessments are not required for a formal diagnosis of
ADHD). Notably, we found consistent results despite the heterogeneity of sleep disorders in
our population. However, this heterogeneity prevented the possibility to explore the specific
contribution of each sleep disorder to quantitative EEG findings. Although our sample
was larger than those considered in many previous EEG studies in children with ADHD,
increasing the sample size in future studies is warranted to investigate the impact of specific
individual variables, such as gender, pharmacological treatment or sleep disturbances.
Another potential limitation of this study was the lack of a detailed neuropsychological
assessment and objective evaluation of daytime sleepiness/total sleep time (using MSLT
and actigraphy) in the control group. This possible confounding bias should be ruled out
in future studies. However, it should be noted that all control subjects underwent a sleep
and neuropsychiatric screening interview and no sleep, cognitive or psychiatric complaint
emerged from this clinical assessment.

Protocols involving a parallel acquisition of neurophysiological (EEG), anatomical
(magnetic resonance imaging) and cognitive (executive functions) variables would ensure
a deeper understanding of the neurobiological underpinnings and meaning of the findings
we presented in this study. Furthermore, a longitudinal interventional study design (tar-
geting sleep problems and/or ADHD per se with methylphenidate), would also help to
elucidate both the causal relationship of sleep abnormalities on ADHD symptoms, as well
as the impact of treatment strategies on ADHD prognosis.

5. Conclusions

In summary, we described for the first time, sleep power topography in ADHD on a
broad range of frequencies during both NREM and REM sleep and across sleep cycles.
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We found a global increase in low frequencies (high SWA, Theta and low Alpha, from
3 to 10 Hz) in NREM sleep of drug-naïve children with ADHD compared to TD children.
This effect was specific for NREM sleep which could not be observed during REM sleep
and pre-sleep-onset wakefulness and was more prominent in N3 in the first sleep cycle.

These findings reinforce the link between sleep neurophysiological abnormalities and
ADHD. Moreover, our study found support for two recognized hypotheses regarding
ADHD pathogenesis and suggests that they might not be in open contradiction: on one
hand, cortical maturation seems to be delayed in children with ADHD, but on the other, a
higher sleep pressure likely plays a role in this disease. Although these two hypotheses
might appear to be independent from one another or even in open contradiction, upon
closer study, they may represent two faces of the same phenomena. Indeed, sleep disorders
during brain development, carefully evaluated and described in our dataset, might have
interfered with both sleep quality (causing an increased sleep pressure) and with brain
maturation, especially when chronic and early-onset. If confirmed, these results could
guide future clinical research in ADHD, favoring the investigation of sleep disorders and
their early therapeutic treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/children9020197/s1, Figure S1: Topographical distribution of all frequency bands based on
whole-night non-rapid eye movement (NREM) sleep stage 2 (N2) and stage 3 (N3) in the attention-
deficit/hyperactivity disorder (ADHD) group and in healthy control group, Figure S2: Topographical
distribution of all frequency bands based on whole-night non-rapid eye movement (NREM) sleep
stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) group with and without the
obstructive sleep apnea/hypo-apnea phenotype, Figure S3: Spectral power density average over all
artifact free epochs in the attention-deficit/hyperactivity disorder (ADHD) group and in the healthy
control group during whole-night non-rapid eye movement (NREM) sleep stage 3 (N3), Figure S4:
Topographical distribution of alternative frequency bands based on whole-night non-rapid eye
movement (NREM) sleep stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) group
and in the healthy control group, Figure S5: Topographical distribution of all frequency bands based
on whole-night rapid eye movement (REM) sleep in the attention-deficit/hyperactivity disorder
(ADHD) group and in healthy control group, Figure S6: Topographical distribution of all frequency
bands based on wake before sleep onset in the attention-deficit/hyperactivity disorder (ADHD)
group and in healthy control group.
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4.6. Supplementary material 

 

Supplementary Figure 1. Topographical distribution of all frequency bands based on whole-night non-rapid eye 

movement (NREM) sleep stage 2 (N2) and stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) 

group and in healthy control group.  

Values are color coded and plotted on the planar projection of the hemispheric scalp model. Rows represent frequency 

bands of interest as indicated: Slow wave activity (SWA, 1-4 Hz), Theta (4-8 Hz), Alpha (8- 12 Hz), Sigma (11-16 Hz), 

Beta (18-25 Hz), Gamma (25-40 Hz). First and second column: average NREM sleep electroencephalographic (EEG) 

topographies across frequency bands for children with ADHD and healthy control matches, respectively. Maxima are 
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shown in red, minima in blue. Third and fourth column: single electrode t-value (two-tailed, unpaired) maps for the 

comparison between ADHD and control subjects in terms of absolute and normalized (using the z-score across all 

electrodes) power, respectively. A decrease in EEG power in patients with ADHD relative to healthy controls (ADHDs 

< controls) is represented in blue, an increase (ADHD > controls) in red. White circles indicate significant channels 

(p < 0.05, cluster-size correction).  

 

 

Supplementary Figure 2. Topographical distribution of all frequency bands based on whole-night non-rapid eye 

movement (NREM) sleep stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) group with and 

without the obstructive sleep apnea/hypo-apnea phenotype.  
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Values are color coded and plotted on the planar projection of the hemispheric scalp model. Rows represent frequency 

bands of interest as indicated: Slow wave activity (SWA, 1-4 Hz), Theta (4-8 Hz), Alpha (8- 12 Hz), Sigma (11-16 Hz), 

Beta (18-25 Hz), Gamma (25-40 Hz). First and second column: average N3 sleep electroencephalographic (EEG) 

topographies across frequency bands for children with ADHD with and without an obstructive sleep apnea/hypo-

apnea phenotype, respectively. Maxima are shown in red, minima in blue. Third and fourth column: single electrode 

t-value (two-tailed, unpaired) maps for the comparison between ADHD and control subjects in terms of absolute and 

normalized (using the z-score across all electrodes) power, respectively. A decrease in EEG power in patients with 

ADHD with the apnea/hypo-apnea phenotype relative to in patients with ADHD without the apnea/hypo-apnea 

phenotype is represented in blue, an increase in red. White circles indicate significant channels (p < 0.05, cluster-

size correction).  

 

Supplementary Figure 3. Spectral power density average over all artifact free epochs in the attention-

deficit/hyperactivity disorder (ADHD) group and in the healthy control group during whole-night non-rapid eye 

movement (NREM) sleep stage 3 (N3). 
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Shaded area represents standard error of the mean (SEM). Bottom graph shows p-values, reaching statistical 

significance between 3 and 10 Hz. 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4. Topographical distribution of alternative frequency bands based on whole-night  

non-rapid eye movement (NREM) sleep stage 3 (N3) in the attention-deficit/hyperactivity disorder (ADHD) group 

and in the healthy control group.  

Values are color coded and plotted on the planar projection of the hemispheric scalp model. Rows represent frequency 

bands of interest as indicated on the left. The first two rows focused respectively on the low-delta (0.5-2.5 Hz) and 

high-delta (2.5-4 Hz) frequency ranges. The 3-10 Hz band was selected from the inspection of the average power 

spectra. First and second column: average N3 sleep EEG topographies across frequency bands for children with 

ADHD and healthy control matches, respectively. Maxima are shown in red, minima in blue. Third and fourth column: 

single electrode t-value (two-tailed, unpaired) maps for the comparison between ADHD and control subjects in terms 

of absolute and normalized (using the z-score across all electrodes) power, respectively. A lower EEG power in 

patients with ADHD relative to healthy controls (ADHDs < controls) is represented in blue, a higher power (ADHD 

> controls) in red. White circles indicate significant electrodes (p < 0.05, cluster-size correction).  
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Supplementary Figure 5. Topographical distribution of all frequency bands based on whole-night rapid eye 

movement (REM) sleep in the attention-deficit/hyperactivity disorder (ADHD) group and in healthy control group.  

Values are color coded and plotted on the planar projection of the hemispheric scalp model. Rows represent frequency 

bands of interest as indicated: Slow wave activity (SWA, 1-4 Hz), Theta (4-8 Hz), Alpha (8- 12 Hz), Sigma (11-16 Hz), 

Beta (18-25 Hz), Gamma (25-40 Hz). First and second column: average REM sleep electroencephalographic (EEG) 

topographies across frequency bands for children with ADHD and healthy control matches, respectively. Maxima are 

shown in red, minima in blue. Third and fourth column: single electrode t-value (two-tailed, unpaired) maps for the 
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comparison between ADHD and control subjects in terms of absolute and normalized (using the z-score across all 

electrodes) power, respectively. A lower EEG power in patients with ADHD relative to healthy controls (ADHDs < 

controls) is represented in blue, a higher power (ADHD > controls) in red. White circles indicate significant 

electrodes (p < 0.05 cluster-size correction).  

Given that the between-subject variability in the number of REM cycles and the fact that the first REM cycle was often 

very short, we repeated the same analysis on the second/third cycles in 27 patients and 23 control subjects, and again 

found no significant differences between groups. 

 

 

Supplementary Figure 6. Topographical distribution of all frequency bands based on wake before sleep onset in 

the attention-deficit/hyperactivity disorder (ADHD) group and in healthy control group.  
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A comparison of pre-sleep signal power between ADHD and control children was performed using all subjects who 

had a sufficient amount of artifact-free data in the interval comprised between 50 and 10 min before sleep onset 

(ADHD N = 26, HD N = 18). Three patients and 4 control subjects did not have artifact-free segments of wakefulness 

before sleep onset longer than 5 minutes and were therefore excluded. 

Values are color coded and plotted on the planar projection of the hemispheric scalp model. Rows represent frequency 

bands of interest as indicated: Slow wave activity (SWA, 1-4 Hz), Theta (4-8 Hz), Alpha (8- 12 Hz), Sigma (11-16 Hz), 

Beta (18-25 Hz), Gamma (25-40 Hz). First and second column: average wake before sleep onset 

electroencephalographic (EEG) topographies across frequency bands for children with ADHD and healthy control 

matches, respectively. Maxima are shown in red, minima in blue. Third and fourth column: single electrode t-value 

(two-tailed, unpaired) maps for the comparison between ADHD and control subjects in terms of absolute and 

normalized (using the z-score across all electrodes) power, respectively. A lower EEG power in patients with ADHD 

relative to healthy controls (ADHDs < controls) is represented in blue, a higher EEG power (ADHD > controls) in 

red. Significant electrodes indicate as white dots (p ≤ 0.05 using statistical nonparametric mapping suprathreshold 

cluster testing).  
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5. PROJECT 4 

 

5.1. Preface 

In this project, I will present the application of sleep slow wave detection and traveling 

analysis to the schizophrenia (SCZ) spectrum disorder. 

The general idea is to identify specific slow wave properties and traveling features to infer 

etiopathogenetic mechanisms and track pathology at its earlier stages.  

 

5.2. SCZ 

Psychotic Disorders are currently conceptualized as a spectrum of diagnoses, which 

includes SCZ, Schizotypal Personality Disorder, Delusional Disorder, Brief Psychotic 

Disorder, Schizophreniform Disorder, Schizoaffective Disorder, Substance/Medication-

Induced Psychotic Disorder, Psychotic Disorder Due to Another Medical Condition, 

Catatonic Disorders and other specified/unspecified Schizophrenia Spectrum Disorders. 

Moreover, “psychotic features” are considered a specifier for bipolar disorder and 

depressive disorders (American Psychiatric Association, 2013), highlighting the trans-

nosographic nature of psychosis. 

The core feature of psychosis is the partial or total impairment of reality testing, i.e., the 

cognitive function that allows us to distinguish the internal world of thoughts and feelings 

from the external world. We constantly use this process, for example, to give answer to 

apparently trivial questions, such as: “what am I seeing? is it really out there or I am just 

imagining it?”, “does the memory of that episode when I was a child reflect something that 
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occurred or is it just a by-product of my imagination?”. Doubts on the correct answers to 

these questions are often already observable in prodromal psychotic states. 

Hallucinations – perceptions without an object - and delusions - beliefs held with strong 

conviction despite superior evidence to the contrary - usually appear soon after the 

disruption of this function. 

Among psychotic disorders, SCZ is surely the most severe form, as it is by definition also 

characterized by a progressive decline of cognition and global functioning (Table 1). 

 

 

 

Table 1. SCZ in DSM-5. Right column: Diagnostic criteria. Left column: Course and 

severity specifiers. DSM-5 (American Psychiatric Association, 2013) includes specifiers 

to identify the observed status (absent, partial or full remission from the acute phase) and 

the course of illness.  
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SCZ has a relatively low prevalence (ranging from 0,3-0,66 to 1%) (Knapp et al., 2004; 

McGrath et al., 2008a, 2008b; Simeone et al., 2015), but it is ranked by the World Health 

Organization among the 10 leading causes of disability in adults, given its very high socio-

economic costs for patients, their families and the society as a whole (Lora et al., 2012). 

Thus, in the last 3 decades, increasing attention has been devoted to SCZ prodromal 

states, in the attempt to improve early-access service provision to those in need of help, 

clinical management, tailored treatment strategies and follow-up programs to improve the 

global outcome and decrease transition rates to SCZ (Fusar-Poli et al., 2013). 

Although not yet fully embedded within international criteria, the construct of clinical high-

risk for psychosis (CHR-P) state for psychosis (also known as the “at-risk mental state” 

[ARMS], “prodromal,” and “ultra-high-risk” [UHR] state) has been increasingly recognized 

to describing people that present with potentially prodromal symptoms. High-Risk subjects 

do not appear to be a homogeneous group and they can be divided in several 

subcategories as shown in Figure 1. Within the CHR-P group, 3 subgroups are usually 

recognized: patients at high genetic risk (as SCZ is multifactorial and polygenic with a 

heritability approaching 80%), attenuated psychotic symptoms (APS), and brief, limited, 

intermitting psychotic symptoms (BLIPS). Several objective criteria have been proposed 

over time for the early recognition of APS and BLIPS, although a clear consensus has yet 

to be reached. Among others, the “Basic Symptoms” (BS) concept is used to define 

disturbing subjective experiences that can be observed in early-prodromal stages, before 

and after a first psychotic episode (Gross, 1989), while the Comprehensive Assessment 

of at-Risk Mental State (CAARMS) was developed to include an evaluation of symptoms 
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duration and frequency to detect later prodromal stages closer to full-blown psychosis 

(Yung et al., 2016). 

 

Figure 1. Prodromal stages of Schizophrenia.  

During the prodromal stage, subjects can be subdivided according to the following criteria 

(i) Attenuated Psychotic Symptoms (APS) that must have occurred in the previous year 

with attenuated intensity (APSa) or frequency (APSb); (ii) Brief Limited Intermittent 

Psychotic symptoms (BLIP), i.e. symptoms that resolve spontaneously within a year of 

their onset; (iii) subjects with a SCZ trait carrying a hypothetic vulnerability to psychosis, 

i.e. an affected FDR and with low socio-functional status for at least a month of the 

previous year (Fusar-Poli et al., 2013). 
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5.3. Sleep in SCZ 

Sleep disturbances are often subjectively reported by patients with SCZ and other 

psychotic disorders (Laskemoen et al., 2019). Sleep issues can often be observed in 

CHR-P even prior to illness onset (Zanini et al., 2015).  

A recent meta-analysis concluded that patients with SCZ have consistent abnormalities 

of sleep continuity parameters such as total sleep time, sleep-onset latency, sleep 

efficiency. In terms of sleep architecture, patients have decreased slow wave sleep, 

increased light sleep, decreased REM duration and REM-latency and increased REMs 

density. Although significant, these results were highly heterogeneous across studies 

(Chan et al., 2017). Objective sleep abnormalities have also been reported in high-risk 

populations (Zanini et al., 2013) to the point that it has been suggested that disturbed 

sleep may help predict those who will develop psychosis among high–risk individuals.  

Furthermore, emerging evidence is pointing to more specific abnormalities of sleep 

spindles and slow waves, the 2 hallmarks of NREM sleep (Castelnovo et al., 2018, 2016). 

These oscillations have the advantage of being a much more specific target compared to 

sleep architecture or sleep power, and to be the expression of well characterized neural 

circuits (see Introduction). Since sleep spindle and slow wave abnormalities appear to be 

associated to the clinical and cognitive dysfunctions of SCZ, reversing such sleep 

abnormalities using pharmacological and non-pharmacological interventions, could also 

have a therapeutic potential. In line with the general goal of my thesis, I herein mainly 

focus on sleep slow waves. Lower slow wave number/density in NREM sleep in SCZ 

compared to matched control subjects was previously reported in 4 small-sized studies 

on drug-free and/or drug-naïve patients with SCZ (Ganguli et al., 1987; Hiatt et al., 1985; 
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Sekimoto et al., 2011, 2007), and in one larger study on unmedicated patients with a 

diagnosis of SCZ Spectrum Disorder (Keshavan et al., 1998). More recently, reduced slow 

wave power was also observed in a sample of 26 drug-naïve early course psychosis 

patients during NREM sleep stage 2 (Manoach et al., 2014), and reduced slow wave 

density in a sample of 20 (medicated and unmedicated) early course psychosis patients 

during NREM sleep (Kaskie et al., 2019). However, other studies failed to report 

differences in slow wave properties between patients with SCZ and control subjects 

(Genzel et al., 2015; Göder et al., 2015; Manoach et al., 2014, 2010; Wamsley et al., 

2012), perhaps due to the inclusion of a large number of patients treated with Second-

Generation Antipsychotics (SGA), which are known to affect slow wave power 

(Castelnovo et al., 2018). While slow wave power and slow wave density and 

morphological parameters could be biased by several factors, traveling slow waves 

properties have a strong potential as they directly reflect the integrity of white matter 

connections. 

 

5.4. Study aims 

Despite extensive research, the pathophysiology of SCZ remains elusive. Specific 

symptoms, like hallucinations, have been convincingly associated with specific brain 

structural and functional abnormalities (Dierks et al., 1999; Hubl et al., 2010, 2004). 

However, SCZ complex and heterogeneous symptomatology could not be localized to 

specific cortical regions (Andreasen et al., 1986), nor could be attributed to the abnormal 

activity of the brain cortex alone (Andreasen et al., 1998). Thus, the search of a unifying 

physio-pathogenetic mechanism to explain the many available and often contradictory 
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findings remains an open challenge (Castelnovo et al., 2015). The so-called 

“dysconnectivity hypothesis” (Friston, 1998) offered a possible solution by pointing to a 

defective integration among distributed brain regions. According to this hypothesis, signs 

and symptoms of SCZ could be explained by the aberrant connectivity within cortico-

cortical and reentrant thalamo-cortical loops, which physiologically integrate and 

coordinate the function of multiple cortical and subcortical structures. Based on Eugene 

Bleuler’s original conception of disturbed integration of higher cognitive functions as the 

core of SCZ, this hypothesis has now begun to receive partial confirmation from 

neuroimaging studies (Canu et al., 2015; Huang et al., 2019; Ramsay, 2019; Sheffield et 

al., 2020). Given that long-range sleep slow wave traveling seems to be mainly supported 

by cortico-cortical white matter tracts, I propose slow wave traveling as a candidate marker 

of aberrant cortico–cortical/thalamocortical connectivity in SCZ.  

 

5.5. Original paper 1 

I herein enclose the first original paper that resulted from the current project, published 

few years ago in Schizophrenia Research (Castelnovo et al., 2020). This article shows for 

the first time the potential use of slow wave traveling in a sample of 16 SCZ first degree 

relatives and matched controls. 
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Abnormal sleep oscillations have recently been proposed as endophenotypes of schizophrenia. However, optimi-
zation of methodological approaches is still necessary to standardize analyses of their microstructural character-
istics. Additionally, some relevant features of these oscillations remain unexplored in pathological conditions.
Among others, slowwave traveling is a promising proxy for diurnal processes of brain connectivity and excitabil-
ity. The study of slow oscillations propagation appears particularly relevant when schizophrenia is conceptual-
ized as a dys-connectivity syndrome. Given the rising knowledge on the neurobiological mechanisms
underlying slowwave traveling, thismeasuremight offer substantial advantages over other approaches in inves-
tigating brain connectivity.
Herein we: 1) confirm the stability of our previous findings on slow waves and sleep spindles in FDRs using dif-
ferent automated algorithms, and 2) report the dynamics of slow wave traveling in FDRs of Schizophrenia pa-
tients. A 256-channel, high-density EEG system was employed to record a whole night of sleep of 16 FDRs and
16 age- and gender-matched control subjects. A recently developed, open source toolbox was used for slow
wave visualization and detection. Slow waves were confirmed to be significantly smaller in FDRs compared to
the control group. Additionally, several traveling parameters were analyzed. Traveled distances were found to
be significantly reduced in FDRs, whereas origins showed a different topographical pattern of distribution from
control subjects. In contrast, local speed did not differ between groups.
Overall, these results suggest that slowwave travelingmight be a viablemethod to study pathological conditions
interfering with brain connectivity.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

At the turn of the 20th Century, Eugen Bleuler coined the term
schizophrenia (SCZ) from the greek σχίζω (schizo, divided) and φρήν
(phren, brain/mind), suggesting the presence of a dis-integration of

fundamental brain-mind functions in affected patients. Over the past
20 years, a growing number of authors returned to this original concep-
tualization and described SCZ as a network disorder (Tononi and
Edelman, 2000) for which neuroimaging findings are currently laying a
biological foundation (Giraldo-Chica and Woodward, 2017; Kambeitz
et al., 2016).

Non-Rapid Eye Movement (NREM) sleep brain oscillations, sleep
spindles and sleep slow waves, are thought to reflect the anatomical
and functional integrity of the thalamocortical system (Steriade, 2003)
and have been increasingly associated with neuronal plasticity mecha-
nisms (Diekelmann and Born, 2010). These sleep oscillations may rep-
resent a preferential window of observation for dynamic EEG brain
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connectivity, due to the absence offluctuating levels of attention and in-
terfering symptoms that are known to influence experimental out-
comes during wakefulness.

Sleep spindles typically appear on EEG recordings at the onset of
stage 2 NREM sleep (N2) as phasic, waxing-and-waning “spindle”-
shaped 12–16 Hz oscillations. These oscillations originate in the Reticu-
lar Thalamic Nuclei but are synchronized by a complex excitatory-
inhibitory interplay between the thalami and the cortex (von Krosigk
et al., 1993; Fuentealba and Steriade, 2005; Timofeev et al., 2000;
Bonjean et al., 2011; Piantoni et al., 2016).

Slow waves, the hallmark of NREM stage 3 (N3), are high voltage
1–4 Hz waves arising from the synchronous alternation between active
(up) and quiescent (down) firing states of large neuronal ensembles
(Steriade, 2003). Slow wave generation has typically been attributed
to the cortex (Steriade et al., 1993), although growing literature sug-
gests a role for the thalamus in their full expression (Lemieux et al.,
2014; Crunelli et al., 2015; Gent et al., 2018a). Slow waves propagate
across the scalp in highly reproducible patterns, typically along the
antero-posterior axis (Massimini et al., 2004). These oscillations and
their traveling have been linked to the integrity of white matter tracts
(Buchmann et al., 2011; Piantoni et al., 2013; Kurth et al., 2017;
Schoch et al., 2018) and increasing evidence suggests they might be a
fingerprint of brain connectivity (Kurth et al., 2017).

Sleep oscillations have been extensively explored in SCZ, and impaired
spindle density has been the most consistent finding (Castelnovo et al.,
2016, 2018; Zhang et al., 2019; Kaskie and Ferrarelli, 2019). However, re-
sults are not unanimous, especially among the few papers addressing
early-course psychosis. The literature on slow waves is less conspicuous
and findings lack consistency, perhaps due to pharmacological and/or
methodological confounding effects (see Castelnovo et al., 2018 for a dis-
cussion on this topic). One study of five unmedicated SCZ patients
reported reduced slow wave density and amplitude which was most
prominent in the first cycle, in the context of a loss of physiological
homeostatic decrease across cycles (Hiatt et al., 1985). Reduced delta
power, slow wave number and density (only in the first cycle)
were confirmed in a larger sample including 19 drug-naïve patients
(Keshavan et al., 1998). A trend towards reduced delta sleep was
also reported in another small sample of drug–naïve patients diag-
nosed with Schizophreniform Disorder (Poulin et al., 2008). A clear
slowwave sleep (SWS) deficit was found in 15 unmedicated, chronic
SCZ patients with profound disturbances of sleep continuity and ar-
chitecture (Yang and Winkelman, 2006). Reduced delta power was
also reported in a sample of early-course psychosis patients but it
did not significantly differentiate SCZ from other psychotic disorders
(Manoach et al., 2014). Furthermore, some authors attempted to clar-
ify the relationship between slow waves and cognitive processing in
SCZ. Reduced SWS was found to correlate with visuospatial memory
impairment in SCZ patients (Göder et al., 2004); the samegroup also re-
ported a reduction of delta power in the same population, restricted to
temporal and occipital channels (Göder et al., 2006).More recently, pre-
served slow wave densities and amplitudes were reported in chronic,
medicated patients who did, however, lack learning-dependent coordi-
nation of slowwave activity across the cortex (Bartsch et al., 2019). No-
tably, a reduced slow wave density in channels overlying a vast pre-
frontal area has been recently reported using high–density electroen-
cephalography (hdEEG) in early-course psychosis (Kaskie et al., 2019).

Sleep abnormalities have also been investigated in SCZ First-Degree
Relatives (FDRs) (D'Agostino et al., 2018; Schilling et al., 2016;Manoach
et al., 2014; Sarkar et al., 2010; Keshavan et al., 2004), who exhibit neu-
roanatomical (Capizzano et al., 2011), neurofunctional (Giraldo-Chica
and Woodward, 2017; Kambeitz et al., 2016; Whitfield-Gabrieli et al.,
2009), neurophysiological (Earls et al., 2016) and neurocognitive
(Sitskoorn et al., 2004; Snitz et al., 2005) profiles similarly to their af-
fected relatives. We previously reported subtle abnormalities of sleep
oscillations in this population that may represent a marker of suscepti-
bility to SCZ (D'Agostino et al., 2018).

Despite a generally positive progression, the field of sleep oscilla-
tions in the SCZ spectrum remains largely open to debate due to par-
tially inconsistent results. As with several other biomarkers, this might
be related to the intrinsic heterogeneity of the selected samples in
terms of clinical stage and presentation, genetic load and medication
regimens. Moreover, the majority of available studies employed differ-
ent analysis methods that somewhat limit the possibility of comparing
data (Castelnovo et al., 2018).

To address this methodological issue, here we aimed to confirm our
previous findings on sleep oscillation abnormalities in FDRs through a
standardized and easily reproducible approach which employs a novel
and accessible tool for the detection of sleep oscillations. We also
aimed to explore the feasibility of adopting slowwave traveling as an ef-
fective measure of brain dysconnectivity in SCZ by evaluating its use in
FDRs.

2. Materials and method

2.1. Participants

Sixteen adult healthy FDRs of patients diagnosed with SCZ (50%
males, age 48.5 ± 14.2) and sixteen age- and gender-matched control
subjects (50%males, age 49.8±12.7)with no personal or family history
of psychiatric disorders were included in the analyses. History of devel-
opmental, neurologic, psychiatric and sleep disorders and use of any
drug interferingwith CNS functioningwere excluded. The same popula-
tion was used in our previous publication on sleep spindles and slow
waves (D'Agostino et al., 2018), where further details on cognition, per-
ceptual experiences and general medical status are available. The study
was approved by the San Paolo Hospital ethics committee and by the
University of Wisconsin Health Sciences Institutional Review Board.

2.2. Sleep EEG data acquisition

All-night sleep recordings were acquired with a hd-EEG system
(Electrical Geodesic Sensor Net for long-term monitoring, 256 chan-
nels). Lights-out was within one hour of the participants' reported bed-
time, and subjects were allowed to sleep ad libitum. EEG recordings
were scored according to AASM criteria (Iber et al., 2007) and reviewed
by a sleep expert (AC). All EEG signals were collected at 500 Hz and
high-pass filtered at 0.1 Hz. Recording procedures and pre-processing
routines used to remove bad channels and artifacts were detailed else-
where (D'Agostino et al., 2018).

2.3. NREM sleep oscillations analysis

Microstructural sleep oscillatory activity was analyzed with an
open-source, Matlab-based user-friendly toolbox that offers the possi-
bility to standardize the detection procedure (Mensen et al., 2016).
The toolbox allows us to specify a large number of parameters for the
detection of slow waves (e.g. the amplitude threshold, the minimum
slow wave length or the minimum traveled distance to classify an EEG
oscillation as a slow wave). Thanks to the optimization of its Matlab
code, it also offers the possibility to rapidly compare outputs. Results
were consistent across methods as assessed by an exploratory prelimi-
nary analysis (see Fig. 1). Findings onmastoid-referenced data obtained
using parameters proposed as “default” by the toolboxwill be presented
here. The algorithm and the parameters employed to detect slowwaves
is detailed extensively elsewhere (Mensen et al., 2016) and will be
briefly summarized here.

The canonical wavewas derived from the calculation of the negative
envelope — i.e. the mean activity of the most negative 2.5% of channels
at each sample independently in the time series. Individual slow waves
in the canonical wavewere detected starting from its local minima, that
were also used as initial points to inspect further wave properties. Data-
driven, dynamic amplitude thresholds were applied (5 standards
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deviations of the median amplitude). Defaults for the minimum and
maximum wavelength for the canonical wave were 250 ms and
1250ms, respectively. A correlation method was used for the detection
of slow waves at each individual channel, i.e. slow waves at the single-
channel level were detected by cross-correlating the negative portion
of the canonical wave with the individual channels over a specified
time window.

Traveling properties of each slow wave were derived from a delay
map obtained interpolating individual delays over the scalp (across “ac-
tive” channels) on a 40 ∗ 40-unit grid. Although delaymaps already offer
meaningful information about traveling, average delay maps might be
influenced by a number of factors, as the direction of traveling and trav-
eled distance. Therefore, we decided to investigate three other traveling
parameters: origins, traveled distance and local speed.

All potential streamlines for each traveling wave were calculated
using each channel's coordinates as a seed to examine the optimal
streamlines to and from the channel. Only 3 streamlines are retained
by the toolbox: (1) the one with the longest linear displacement (the
distance between the starting and ending points of the wave), (2) the
one with the longest distance traveled (the cumulative sum of all coor-
dinates of the line) if different from the longest displacement, and
(3) the streamofmost angular deviation from the longest displacement.
Given the current lack of a standardized method or theoretical
background to choose a streamline over others, we used the first one
(1) in line with other authors that previously published on this topic

(Massimini et al., 2004; Kurth et al., 2017). All potentialwaves that trav-
eled for less than a minimum traveling time (set at 40 ms, i.e. approxi-
mately 0.8 cm considering a traveling speed of 2 m/s from previous
studies) were discarded.

Origins were calculated as the first point of each streamline. As
streamlines were calculated on a 40 ∗ 40 grid, in order to plot them
we then recalculated the number of origins at each electrode as the
sumof the origins in the grid fallingwithin a radius equal to the distance
between each neighboring electrode (stable in the system of coordi-
nates adopted for Electrical Geodesic Sensor Net).

To calculate the local speed (i.e. the speed of a wave at each particu-
lar electrode), the highest possible number of streamlines was needed
to cover the entire scalp. Therefore, we implemented the toolbox saving
all streamlines in the final output alongwith the three described above.
Local speed was estimated from the 40 ∗ 40 grid delay map, calculating
the space unit grid divided by the time gradient, i.e. the difference be-
tween two consecutive tiles of the grid, on the x and y axes.We than cal-
culated the local speed vector in units/s for each tile as the vector sum of
the x and y speed vectors.

Of note, we focused our analysis on whole-night stage 3 sleep and
repeated an exploratory analysis for sleep stage 3 in first cycle, because
this latter sleep period was comparable between the two groups in
terms of sleep architecture (see Supplementary Figs. 1 and 2).

Although the main focus of the study was on sleep slow waves,
we also performed a confirmatory analysis on sleep spindles (see

Fig. 1|.A comparison of two slowwave detectionmethods.Method 1 is based on the slowwave detection algorithmdescribedbyRiedner et al., 2007 (Riedner et al., 2007),whichwas used
in our previous work (D'Agostino et al., 2018). Method 2 is the output obtained with the novel toolbox (https://github.com/Mensen/swa-matlab) using default parameters described in
Methods section (A) and a set of parameters chosen to reproduce previous analysis as closer as possible to Method 1 (B). Intergroup-comparison results were comparable between the 2
methods. FDR: first degree relatives; Control: age and gender matched control group. Density: number of sleep slow waves over time (minutes). Amplitude: negative peak amplitude in
mcV.
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Supplementary Fig. 3). The toolbox allows to detect sleep spindles by
implementing a published Wavelet-based algorithm that has been
found to outperform other 4 (published) automated spindles detec-
tors, including the one reported in our previous study (Warby et al.,
2014).

For topographical analysis, we applied statistical nonparametric
mapping and a suprathreshold cluster analysis to control for multiple
comparisons (Nichols and Holmes, 2002) using an appropriate thresh-
old t-value (t= 2.042, corresponding to ɑ= 0.05 for the given degrees
of freedom) with fixed number of combinations (n = 50,000).

3. Results

Slowwave density duringwhole-night NREM sleepwas comparable
between FDRs and the control group, whereas slow wave amplitude
was reduced in FDRs with both slow wave detection algorithms (see
Fig. 1), validating our previous results. Findings on density (absence of
significant differences in absolute and normalized values) and ampli-
tude (a large cluster of 85 channels showing reduced absolute values,

p = 0.0152) were stable during sleep stage 3 (see Fig. 2). Likewise, we
were able to confirm the lack of spindle density deficits in FDRs com-
pared to control subjects, and the reduction of spindle power (see Sup-
plementary Fig. 1 for details) we previously found in the same sample
using a completely different algorithm.

Findings related to slowwave traveling during stage N3 are summa-
rized in Fig. 2. FDRs showed increasedmean delay values over the mid-
line from central to posterior regions and increased values over frontal
regions. However, when looking at absolute topographical maps these
findings only showed a trend towards significance (18 channels, p =
0.0907 after multiple-comparison correction). Normalized values (z-
scores obtained subtracting the mean and dividing for the standard de-
viation) reached significance over themidline cluster (25 channels, p=
0.0099, after multiple comparison correction). No correlation was ob-
served between mean delay and amplitude values.

The topographical map of origins, expressed as a percentage of the
sum of values across channels (a measure of normalization), showed a
significant increase over frontal regions (n = 13, p = 0.001) and a
strong decrease over midline central and posterior regions (9 channels,

Fig. 2|. Topographical maps of slowwave parameters duringwhole night sleep stage N3. FDR: schizophrenia first degree relatives. Control: age and gendermatched control group. t-Stats:
map showing the individual electrode t-value (two-tailed, unpaired) maps for the comparison between FDR and control subjects in terms of absolute values. First row: slowwave density
(number per hour ofN3 sleep) at each channel. Second row: slowwavemean amplitude (average of negative peaks values for each channel). Third to six rows: topographicalmaps of slow
wave traveling parameters. Third row: slow wave average delays (delays at individual channels obtained correlating the canonical wave to individual channel slow waves). Fourth row:
slow wave origins (expressed as density, i.e. number of slow waves per minute). Fifth row: local speed (the speed of a wave at each particular electrode). Blue: FDR b control. RED:
FDR N control. White dots: significance (p b 0.05) at the cluster level (after multi-comparison correction).
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p = 0.012 and 8 channels, p = 0.021, respectively). These results
paralleled the distribution of the delaymaps, that showedmuch shorter
delays in the front compared to the back. In contrast, local speedwas no
different between groups.

As shown in Fig. 3, traveled distance differed significantly between
FDRs and control subjects (2-tailed unpaired t-test, p = 0.043). As am-
plitude and traveled distance are known to be modulated by across-
night dynamics, we performed the same analyses during the first
NREM sleep cycle, where N3 activity is maximal. We were able to con-
firm similar findings when N3 sleep of the first NREM sleep cycle was
analyzed (see Supplementary Figs. 1 and 2).

4. Discussion

A significant reduction in slow wave amplitude combined with an
unaltered slow wave density confirmed our previous slow wave report
in SCZ FDRs (D'Agostino et al., 2018).We previously noticed that, unlike
the consistency of findings reported across SCZ samples for sleep spin-
dles, slow wave data remain controversial, possibly due to the diverse
methodological approaches employed by different groups (Castelnovo
et al., 2018). Conducting replication studies is critical to establish credi-
ble scientific evidence, even when converging lines of evidence and
solid theoretical hypotheses support original data (Nickerson, 2018).

We also observed a reduction of slowwave traveled distances in the
FDR sample compared to healthy individuals with a negative familiar
history. Shorter propagation distances likely reflect dysfunctional
long-range connectivity among distributed cortical regions. Evidence
suggest that slow wave propagation parameters are linked to white
matter microstructure (Kurth et al., 2017), whereas new research has
begun to unveil a role for the thalamus in the coordination of sleep os-
cillations (Gent et al., 2018a). Specifically, recent optogenetic research
revealed that burst activation of centro-medial thalamic neurons
mimics Up-states in the cingulate cortex and enhances diffuse synchro-
nization of cortical slow waves during sleep through a relay in the
antero-dorsal thalamus (Gent et al., 2018b).

We previously hypothesized that disrupted cortical synchronization
might increase the risk of developing SCZ, although thalamic dysfunc-
tion reflected by the well-established impairment of sleep spindle gen-
eration may be necessary for the disease onset. Current results do not
contradict this interpretation as it seems plausible that both cortico-
cortical and thalamocortical connectivity regulate slow wave traveling.

Although further research is needed, a larger impairment in slow
wave traveling associated with major abnormalities in sleep spindle
density is expected in patients with SCZ.

We also reported abnormality of slow wave origins in FDRs, with an
increase over frontal regions and a strong decrease over midline central
and posterior regions compared to control subjects. Should these prop-
erties of slow wave traveling be confirmed in SCZ patients, they might
reflect the connectivity impairment that has extensively been shown
during wakefulness. Although several hypotheses remain to be tested
and these preliminary results only support a speculative discussion,
we suggest that the increased number of slow wave frontal origins in
FDRs might be a compensatory mechanism for the relative lack of cen-
tral and posterior activity and the global reduction of speed and traveled
distance. Further studies exploring slow wave traveling and its origins
in SCZ patients are necessary to confirm this hypothesis.

Finally, SWS is crucial for the consolidation of memories (Stickgold,
2005) and has been specifically associated with the consolidation of de-
clarative memories (Marshall et al., 2006). Although sleep-dependent
consolidation was not tested in our sample, other studies have shown
FDRs share similar deficitswith patients during aword-pairs association
task (Denis et al., 2018) and in declarativememory (Whyte et al., 2005).
Future studies should assess whether reduced amplitude and propaga-
tion dynamics of slow waves in FDRs also reflect the specific abnormal-
ities of memory processing observed in this population.

The present study has some limitations. First, the sample size was
relatively small (N = 16 in each group), albeit in line with available
studies including whole-night sleep data in FDRs, which range from
13 to 19 (Sarkar et al., 2010; Manoach et al., 2014; Schilling et al.,
2016). Furthermore, this has been considered adequate to detect large
effect sizes, while desensitizing inference to small effect sizes, for classi-
cal inference based on α (Friston, 2012). Another potential limitation
was that the sleep macrostructure was found to differ between the
two groups. Altered parameters such as duration of stages N2 and N4,
reduced TST and low sleep quality have previously been reported in
FDRs compared to healthy control populations (Sarkar et al., 2010;
Manoach et al., 2014; Schilling et al., 2016). However, we have previ-
ously shown that differences in architecture are unlikely to affect
slow-wave analysis due to the lack of difference observed between
the two samples in terms of density (D'Agostino et al., 2018). In order
to control for this potential bias, similar results have been replicated
for the first cycle, within which sleep architecture parameters were
comparable between groups (see Supplementary Figs. 2 and 3). Finally,
although our analysis should be considered confirmatory, we acknowl-
edge that other results might be obtainedwith different samples even if
the same methods are applied. This limitation reflects the intrinsic var-
iability of the population studied, which putatively differs in terms of
genetic susceptibility to SCZ across samples.

Despite these limitations, the use of standardized and open source
methods for the analysis of sleep oscillations is critical to boost repro-
ducibility of results and comparability across studies. Overall, the results
of the current analysis on slow wave traveling are encouraging and
could unfold a novel path for future research in patients with SCZ and
related disorders. Although functional MRI measures have clearly
begun to dissect abnormal connectivity in SCZ, the slow temporal reso-
lution of hemodynamic responses is known to limit this technique
(Houck et al., 2017). EEG-based measures can complement imaging
findings to capture the full extent of functional connectivity abnormal-
ities in SCZ. In addition to the exquisite temporal resolution of all EEG
measures, sleep parameters reflect the spontaneous activity of a brain
detached from its environment, which reaches its peak of autonomous
“offline” processing during slow waves sleep. Along with several other
groups, we encourage access to this privileged window of enquiry to
further unravel the neural circuitry underlying SCZ. Emerging findings
will eventually allow us to design novel pharmacological and non-
pharmacological strategies to alleviate symptoms by targeting sleep ab-
normalities (Zhang et al., 2019; Kaskie et al., 2019).

Fig. 3|. Traveled slow wave distance during whole night sleep stage N3. Distance was
calculated as the line of longest displacement. Units of measurement are referred to a
grid of 40 ∗ 40 tiles. FDR: schizophrenia first degree relatives. Control: age and gender
matched control group.
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5. Conclusions

The study of slowwave traveling is rapidly evolving into a successful,
noninvasive analysis method of brain connectivity that might enhance
the understanding of neurodevelopmentally abnormal trajectories
(Kurth et al., 2017). This pattern has never been studied in disorders
typically associated with disrupted brain connectivity such as SCZ.

The refined spatiotemporal resolution of hd-EEG signal coupledwith
the lack of wake-related confounds during sleep make traveling slow
wave oscillations a highly promising candidate marker for SCZ. Future
studies will need to confirm the stability of our findings in larger sam-
ples of FDR, as well as to assess slow wave traveling deficits in SCZ pa-
tients, which may lead to the discovery of pathogenetic and prognostic
biomarkers for SCZ and related psychotic disorders.
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5.6. Supplementary material 

 
Supplementary Figure 1| A comparison of two sleep spindle detection methods. 

 

Method 1 is based on home-made algorithms by Ferrarelli et al., 2007. The corresponding figure is taken 

from our previous work (D’Agostino, Castelnovo et al., 2018). Method 2 is the output of the Toolbox by 

Mensen (https://github.com/Mensen/swa-matlab) using default parameters. This method represents an 

implementation of the Wavelet-based algorithm described by Warby et al, 2014. 

FDR: first degree relatives; Control: age and gender matched control group. Density: number of sleep 
spindles over time (minutes). ISAs: Integrated spindle activity, obtained by integrating spindle amplitude 
over time. Power: wavelet power in the 10-16 Hz spindle range – the equivalent of integrated spindle 
activity for the Wavelet-based algorithm. White dots (left) and white crosses (right) represent statistical 
significance at the single channel le 
Method 2 was able to detect a greater number of spindles, as expected from the literature (Warby et al. 
2014). However, overall, intergroup-comparison results were comparable between the 2 methods. 

 

 
Supplementary Figure 2| Topographical maps of slow wave parameters during the first cycle in sleep 
stage N3. FDR: schizophrenia first degree relatives. Control: age and gender matched control group. T-
stats: map showing the individual electrode t-value (two-tailed, unpaired) maps for the comparison 
between FDR and control subjects in terms of absolute values. First row: slow wave density (number per 
hour of N3 sleep) at each channel. Second row: slow wave mean amplitude (average of negative peaks 
values for each channel). Third to six rows:  topographical maps of slow wave traveling parameters.  
Third row: slow wave average delays (delays at individual channels obtained correlating the canonical 
wave to individual channel slow waves). Fourth row: slow wave origins (expressed as density, i.e. 
number of slow waves per minute). Fifth row: local speed (the speed of a wave at each particular 
electrode). BLUE: FDR < control. RED: FDR > control. White dots: significance (p<0.05) at the cluster level 
(after multi-comparison correction). 

https://www.frontiersin.org/articles/125229
https://www.frontiersin.org/articles/125229
https://github.com/Mensen/swa-matlab
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Figure 3| Travelled slow wave distance during the first cycle in sleep stage N3. Distance was calculated 
as the line of longest displacement. Units of measurement are referred to a grid of 40*40 tiles. FDR: 
schizophrenia first degree relatives. Control:  age and gender matched control group. 
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5.7. Original paper 2 

 

I herein also include a preliminary case-control analysis on early course SCZ, under 

submission, in order to show the potential application of slow wave traveling in early 

course SCZ. 
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Abstract 

As sleep slow waves travel across the brain, they represent an ideal paradigm to study 

pathological conditions affecting brain connectivity. Here, we provide proof–of–concept 

evidence for a novel approach to investigate slow wave traveling properties in First-

Episode Psychosis with high-density EEG. Slow wave traveled distance was 

significantly lower in drug-naïve patients who later developed schizophrenia compared 

to age- and gender-matched healthy control subjects. In a patient who was tested 

longitudinally during effective clozapine treatment, slow wave parameters partially 

recovered. These preliminary data suggest that slow wave traveling could be employed 

in larger samples to detect cortical dysconnectivity at psychosis onset to support early 

diagnosis and clinical management. 

 

Keywords 

electroencephalography; brain plasticity; early course psychosis; oscillations; 

antipsychotics; synchronization; schizophrenia; classification 
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Introduction 

 

Psychosis affects the way our brain processes information and cause to lose touch with 

reality. Schizophrenia (SCZ) is the most severe psychotic disorder (Knapp et al., 2004; 

McGrath et al., 2008a; Simeone et al., 2015) characterized by perceptive (hallucinations), 

cognitive (disorganized speech and behavior, delusions, progressive functional 

impairment) and subtle motor abnormalities (Poletti et al., 2019). According to the so-

called “dysconnectivity hypothesis” (Canu et al., 2015; Friston, 1998; Ramsay, 2019), 

signs and symptoms of SCZ can be explained by the aberrant connectivity within cortico-

cortical and thalamo-cortical loops.  

Among the many techniques to study brain connectivity in SCZ, sleep 

electroencephalographic (EEG) recordings offer four major advantages. First, the unique 

possibility to minimize confounding factors related to waking activities (e.g., the presence 

of active symptoms). Second, the possibility to relate specific EEG patterns to specific 

neural circuits and functions (Adamantidis et al., 2019), thanks to the fast-growing 

advancements in the field of sleep neurophysiology. Third, high-density EEG (hdEEG) 

techniques have recently advanced the possibility to image the sleeping brain non-

invasively, without restriction of nocturnal movements, and with high temporal and spatial 

resolution (1 cm). Fourth, several studies confirmed the presence of sleep abnormalities 

in SCZ (Castelnovo et al., 2018a; Ferrarelli, 2021; Lai et al., 2022). Specifically, slow 

waves, the hallmark of non-rapid eye movement (NREM) sleep, were reported to be 

reduced in unmedicated patients with SCZ, even at early stages of the disease (Kaskie 

et al., 2019a). Slow waves appear as continuous high amplitude (>75 µV) slow (1-4 Hz) 
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oscillations; they reflect the integrity of thalamocortical circuits (Adamantidis et al., 2019; 

Steriade, 2003), and are implicated in brain plasticity, memory consolidation and several 

other cognitive functions (Huber et al., 2004). More recently, subcortical white matter 

tracts (Avvenuti et al., 2020a) were shown to sustain the so-called traveling (Massimini et 

al., 2004a) of larger slow waves, which typically originate from a definite site and travel 

over the scalp at an estimated speed of 1.2–7.0 m/sec. The pattern of origin and 

propagation of slow waves is reproducible across nights and subjects and provides a 

blueprint of cortical connectivity.  

We recently showed that slow wave traveling is a viable method to study connectivity in 

SCZ first-degree relatives (Castelnovo et al., 2020b) and that slow wave properties are a 

candidate endophenotype for SCZ (D’Agostino et al., 2018a). Here we propose slow 

wave traveling as a candidate marker of aberrant cortico–cortical/thalamocortical 

connectivity at the onset of SCZ and we report an explorative case-control analysis on a 

small sample of patients as proof–of–concept. 

 

Methods 

 

Participants 

All patients who were hospitalized for a first episode of psychosis (FEP) in the psychiatric 

ward of the San Paolo University Hospital over a period of 1 year were asked to participate 

in a larger study on sleep EEG that was approved by the local ethics committee. During 

this time, five drug-naïve patients were recorded overnight with a 256–channel EEG 

system (Electrical Geodesics Inc., Eugene, OR; 500 Hz, vertex-reference). The diagnosis 
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of SCZ (American Psychiatric Association, 2013a) was confirmed for all subjects after a 

two-year follow-up period by at least two expert clinicians through direct interview and 

medical charts review. Control participants were good sleepers with a negative history of 

previous or current medical, neurological or psychiatric diagnoses. Written informed 

consent was provided by each participant. All participants were antipsychotic-naive and 

free from any other medication that could affect sleep for a minimum of 1 month before 

the recording. 

Patients (n = 5, 100% males, 24.4 ± 3.58 years old) were age– and gender–matched with 

healthy control individuals (n = 5, 100% males, 24.0 ± 3.32 years old).  

FEP clinical features are summarized in Table 1. 

 

Sleep EEG analysis 

All subjects underwent an overnight hdEEG recording at T0 or baseline, before starting 

any treatment. 

One patient (PT5), whose clinical history has been detailed elsewhere (Castelnovo et al., 

2020a), was assessed also at:  

- at T1, after 6 months of pharmacotherapy (3 months of titration and 3 months of 

clozapine 200 mg/day) 

- at T2, after 3 years (last 2 of clozapine at the maintenance dosage of 75 mg/day). 

Lights-out fell within 1 hour of the participants usual bedtime. Light-on varied as subjects 

were allowed to sleep ad libitum. All EEG signals were imported in MATLAB (The 

MathWorks Inc., Natick, MA) and high-pass filtered at 0.1 Hz, down-sampled to 128 Hz, 

band-pass filtered (2-way least-squares FIR, 1 – 40 Hz). Sleep staging was performed in 

Matlab (https://github.com/Mensen/swa-matlab), according to standard criteria (Berry RB, 
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Brooks R, Gamaldo CE, Harding SM, Lloyd RM, Marcus CL, 2020) by a physician certified 

in Sleep Medicine (AC). Semiautomatic artifact rejection procedures were utilized to 

remove channels and epochs with high frequency noise or interrupted contact with the 

scalp, as done in other recent studies (Castelnovo et al., 2020b, 2016b; D’Agostino et al., 

2018b).  

Spectral analysis in the slow wave activity range (SWA, 1-4 Hz) was performed using all 

clean 6-second epochs within NREM sleep (Welch’s averaged modified periodogram with 

a Hamming window) on average-referenced EEG signal. Sleep slow wave detection was 

conducted on mastoid-referenced signal using an open-source Matlab-based toolbox 

(Mensen et al., 2016). Parameters of interests were: density (count of slow waves per 

minute), negative peak amplitude, travelled distance (measured as the line of longest 

displacement). 

 

Statistical analysis 

Between-group statistical comparisons of demographic and sleep architecture variables 

were performed using unpaired 2-tailed t-tests, Mann–Whitney U tests, or χ2 tests, as 

appropriate. For slow wave topographical analysis, we applied non-parametric statistical 

mapping using a non-parametric suprathreshold cluster analysis to control for multiple 

comparisons (Nichols and Holmes, 2002), as previously described (Castelnovo et al., 

2022c, 2016c). 

 

Results 
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Sleep Architecture 

Sleep architecture parameters are summarized in Table 2.  

Topographical maps revealed a non-significant (p > 0.05) reduction in SWA power in FEP 

compared to control group (Figure 1A). The qualitative observation of topographical maps 

(Figure 2A), suggest lower SWA in PT5 at T0 compared to matched control, and the 

subsequent progressive normalization of SWA from T1 to T2.  

Slow wave analysis showed lower slow wave density at baseline in FEP versus control 

subjects (Figure 1B). This result remained significant after correction for multiple-

comparison. A similar trend was observed for slow wave amplitude (Figure 1B), although 

group difference was not statistically significant at the topographical level after correction 

for multiple comparison (Figure 1B). However, when observing channel average 

amplitude at different percentiles, we could detect a selective reduction of high amplitude 

slow waves (Figure 1C). Average traveled distance was significantly decreased in FEP 

vs control participants (p < 0.05), with almost no overlap between groups (Figure 1D). At 

baseline, slow wave density for PT5 was visually lower compared to healthy control 

subjects. There was a sharp increase at T1 and a return to levels comparable to the 

control participants at T2 (Figure 2B). Slow wave traveled distance for PT5 was lower 

compared to healthy control subjects. There was a progressive increase from baseline to 

T2, yet without a full normalization of this parameter at T2 compared to healthy subjects 

(Figure 2C). 

 

Discussion 
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The preliminary results offered by this case–control analysis provide first evidence on 

slow wave traveling impairment at the onset of psychosis. The lack of overlap between 

the two groups provides proof-of-concept for the reliability of sleep slow wave traveling 

as a marker of brain dysconnectivity in SCZ to be tested in large, systematic studies. 

Interestingly, our observation also raises the question whether the early administration of 

clozapine may partially reverse slow wave abnormalities after the first psychotic episode. 

Indeed, baseline traveled distance progressively increased but did not normalize over the 

course of effective treatment with clozapine in the only subject who was tested 

longitudinally. It could be speculated that this incomplete recover reflects the underlying 

white matter damage in early course SCZ (Szeszko et al., 2007) as long-range slow wave 

traveling is sustained by cortico-cortical connections (Avvenuti et al., 2020a; Bernardi et 

al., 2021a; Buchmann et al., 2011a; Kurth et al., 2017; Murphy et al., 2009; Piantoni et 

al., 2013). Instead, slow wave density time-course recorded for this patient seemed to 

relate more closely to active psychotic symptoms, clozapine dosage, and be partially 

reversible in SCZ early stages. 

Moreover, these preliminary data support the previous observation of an intrinsic deficit 

of slow wave generation in early course psychosis. Both density and amplitude appeared 

to be involved, with a significant shift in mean amplitude peak from 40-80 to 20-40 Hz. 

These observations are in line with the previous literature  (Ganguli et al., 1987; Hiatt et 

al., 1985; Kaskie et al., 2019b; Keshavan et al., 1998; Sekimoto et al., 2011, 2007). 

Last but not least, these findings confirm the utility o standardized algorithms and tools 

for sleep clinical studies as they were obtained using a standardized and open-source 

toolbox that can be readily employed in clinical contexts with expertise in sleep medicine 
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and hdEEG analysis. The use of comparable methodologies and tools across studies is 

critical to guarantee reproducibility of results, especially given the large heterogeneity 

observed in SCZ (Castelnovo et al., 2020b). 

The reported data was derived from a series of only five early-course SCZ patients. Brain 

connectivity measures may vary across patients, perhaps justifying variable clinical 

subtypes and the heterogeneity of SCZ.  

In conclusion, the preliminary results offered by this case report and case–control 

analysis: 1) support previous findings on slow wave deficit in early stages of SCZ; 2) 

provide first evidence on slow wave traveling impairment at the onset of psychosis; 3) 

raise the question whether the early administration of clozapine may partially reverse slow 

wave abnormalities after the first psychotic episode; 4) provide proof-of-concept for sleep 

slow wave traveling as a marker of brain dysconnectivity in SCZ; 5) confirm the utility of 

standardized algorithms and tools for sleep clinical studies; 6) encourage future 

systematic studies on larger cohorts of patients. 
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6. PROJECT 5 

 

6.1. Preface 

In this project, I present the last and more complex application of the hdEEG pipeline 

described in project 1 (see Chapter 2). More specifically, I refined an advanced whole-brain 

source connectivity analysis, which have been seldom used in the sleep field. This analysis 

was tested on a single drug-naïve young adolescent affected by sleepwalking (NREM 

sleep parasomnia), a subtype of the so-called disorders of arousal (DOA).  

 

6.2. DOA 

Parasomnias are “disorders characterized by abnormal behavioral, experiential, or 

physiological events occurring in association with sleep, specific sleep stages, or sleep–

wake transitions. The most common parasomnias – NREM sleep arousal disorders and 

rapid eye movement (REM) sleep behavior disorder – represent admixtures of wakefulness 

and NREM sleep and admixtures of wakefulness and REM sleep, respectively. These 

conditions serve as a reminder that sleep and wakefulness are not mutually exclusive and 

that sleep is not necessarily a global, whole brain phenomenon” (American Psychiatric 

Association, 2013a). Specifically, the disruption of the mechanisms underlying the 

transition between NREM sleep and wake has been proposed to account for the so-called 

“Disorders of Arousal” (DOA) (Table 1). Affected patients may exhibit waking behaviors 

arising abruptly out of NREM sleep, such as sitting-up in bed, screaming, or waking. 

Despite the variety of displayed behaviors, different subtypes are believed to belong to the 
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same family of disorders, on the basis of genetic, familiar, electrophysiological and clinical 

evidence (American Academy of Sleep Medicine, 2014). 

DSM-5 

Non-Rapid Eye Movement Sleep Arousal Disorders 

ICSD-3 

NREM-related parasomnias 

 

□ Recurrent episodes of incomplete awakening 
from sleep, usually occurring during the first third of the 
major sleep episode, accompanied by either one of the 
following: 

1. Sleepwalking: repeated episodes of rising from 
bed during sleep and walking about. While sleeping, the 
individual has a blank, staring face; is relatively 
unresponsive to the efforts of others to communicate 
with him or her; and can be awakened only with great 
difficulty. 

2. Sleep terrors: recurrent episodes of abrupt 
terror arousals from sleep, usually beginning with 
panicky scream. There is intense fear and signs of 
autonomic arousal, such as mydriasis, tachycardia, rapid 
breathing, and sweating, during each episode. There is 
relative unresponsiveness to efforts of others to comfort 
the individual during the episodes. 

Disorders of arousal 

 

□ Recurrent episodes of incomplete awakening 
from sleep. 
 

Notes: 

The events usually occur during the first third of the major 

sleep episode. 

The individual may continue to appear confused and 

disoriented for several minutes or longer following the 

episode. 

 

 □ Inappropriate or absent responsiveness to efforts 
of others to intervene ore redirect the person during the 
episode. 

□ No or little (e.g. only a single visual scene) dream 
imagery is recalled. 

□ Limited (e.g. a single visual scene) or no 
associated cognition or dream imagery. 

□ Amnesia for the episodes is present. □ Partial or complete amnesia for the episode. 

□ The episodes cause clinically significant distress 
or impairment in social, occupational, or other important 
areas of functioning. 

 

□ The disturbance is not attributable to the 
physiological effects of a substance (e.g. a drug of abuse, 
a medication). 
□ Coexisting mental and medical disorders do not 
explain the episodes of sleepwalking or sleep terrors. 

□ The disturbance is not better explained by another 
sleep disorder, mental disorder, medical condition, 
medication, or substance abuse. 

 

Subtypes:  

• Sleep terror type 

• Sleepwalking type 

              *  with sleep-related eating  

              *  with sleep-related abnormal  

                sexual behavior    

Subtypes: 

• Sleep Terror  

• Sleepwalking  

• Confusional Arousal  
 

Sleep-related eating disorder 

Table 1. International diagnostic criteria for DOA according to DSM-5 and ICSD-3 
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DSM-5: Diagnostic and Statistical Manual for Mental Disorders, 5th Edition (American 

Psychiatric Association, 2013b). ICSD-3: International Classification of Sleep Disorders, 

3rd Edition (American Academy of Sleep Medicine, 2014). 

 

6.3. Sleep in DOA 

Even during nights without episodes, patients with DOA have several microstructural sleep 

abnormalities, like an increased arousal sleep instability (Zucconi et al., 1995), abnormal 

across-night SWA build-up (Gaudreau et al., 2000), hypersynchronous delta-waves 

(Pressman, 2004), recurrent local activations as measured by stereo-EEG (Terzaghi et al., 

2009), an abnormal topographical distribution of SWA (Castelnovo et al., 2016). However, 

clear and easily usable objective EEG diagnostic markers to identify DOA in the absence 

of full-blown episodes during v-PSG recordings are still lacking. 

Furthermore, the literature on the neurophysiological correlates during episodes is limited, 

due to the aforementioned difficulty in catching episodes in laboratory settings and due to 

methodological issues (like the removal of movement artifacts). It has been hypothesized 

– and partially demonstrated - that local arousal in the motor and limbic areas, in the 

context of an otherwise sleeping brain, is at the root of the motor behaviors peculiar of 

DOA, as illustrated in Figure 1 (Castelnovo et al., 2018). This might represent an 

exaggeration of the physiological tendency of these networks to exhibit a lower arousal 

threshold (Nobili et al., 2012), which may have evolved to increase the chance of survival 

by favoring a prompt motor response in case of danger. 
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Figure 1. Graphical representation of the functional dissociation between brain 

regions during DOA episodes. Taken from (Castelnovo et al., 2018). 

Interestingly, while remaining largely unresponsive to the external environment, DOA 

patients are able to perform complex behaviors, like wandering around with eyes wide 

open without tumbling or falling, which imply at least a partial preservation of 

consciousness. Patients may occasionally report subjective mental experiences 

associated with their episodes (Oudiette et al., 2009). These experiences usually take the 

form of fragmentary images or even of complex dreams, sometimes of proper 

hallucinations where internally generated percepts are mixed with real elements of the 

external environment (Castelnovo et al., 2021a, 2021b), suggesting that, in parallel with 

the reactivation of specific brain structures, also consciousness partially re-emerges, 

although in an unstable form, different from wakefulness and closer to a dream and/or a 

psychotic state.  
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6.4. Study aims 

The study presented in this section aimed to characterize for the first time the whole brain 

source EEG activity (in terms of power and connectivity) before and during DOA episodes 

(n = 20, extracted from 2 consecutive in-laboratory hdEEG sleep recordings) of one single 

drug-naïve subject (a 12 years old young adolescent) with a long-lasting history of 

sleepwalking. More specifically, the goal was to find elements in support of the hypothesis 

that patients are conscious during DOA episodes. 

 

6.5. Original paper 

I herein enclose the original paper that resulted from this thesis project, recently published 

in Cortex (Castelnovo et al., 2022). 
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a b s t r a c t

Confusional arousal is the milder expression of a family of disorders known as Disorders of

Arousal (DOA) from non-REM sleep. These disorders are characterized by recurrent

abnormal behaviors that occur in a state of reduced awareness for the external environ-

ment. Despite frequent amnesia for the nocturnal events, when actively probed, patients

are able to report vivid hallucinatory/dream-like mental imagery. Traditional (low-density)

scalp and stereo-electroencephalographic (EEG) recordings previously showed a patho-

logical admixture of slow oscillations typical of NREM sleep and wake-like fast-mixed

frequencies during these phenomena. However, our knowledge about the specific neural

EEG dynamics over the entire brain is limited.

We collected 2 consecutive in-laboratory sleep recordings using high-density (hd)-EEG

(256 vertex-referenced geodesic system) coupled with standard video-polysomnography (v-

PSG) from a 12-year-old drug-naı̈ve and otherwise healthy child with a long-lasting history

of sleepwalking. Source power topography and functional connectivity were computed

during 20 selected confusional arousal episodes (from �6 to þ18 sec after motor onset), and

during baseline slow wave sleep preceding each episode (from e 3 to �2 min before onset).

We found a widespread increase in slow wave activity (SWA) theta, alpha, beta, gamma

power, associated with a parallel decrease in the sigma range during behavioral episodes

Abbreviations: BEM, Boundary Element Model; DOA, Disorders of Arousal; EEG, Electroencephalography/ic; FDR, False-discovery rate;
NREM, Non-rapid eye movement; PSD, Power Spectral Density; PTE, Phase Transfer Entropy; RDI, Respiratory Disturbance Index; SHE,
Sleep-related hyper-motor epilepsy; sLORETA, Standardized low resolution electromagnetic tomography; PLMSI, Periodic Limb Move-
ments Index during Sleep; SPECT, Single photon emission computed tomography; SWA, Slow Wave Activity; vPSG, Video-
polysomnography.
* Corresponding author. Via Tesserete 46, 6900 Lugano,
E-mail address: anna.castelnovo@eoc.ch (A. Castelnovo).
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compared to baseline sleep. Bilateral Broadman area 7 and right Broadman areas 39 and 40

were relatively spared by the massive increase in SWA power. Functional SWA connec-

tivity analysis revealed a drastic increase in the number and complexity of connections

from baseline sleep to full-blown episodes, that mainly involved an increased out-flow

from bilateral fronto-medial prefrontal cortex and left temporal lobe to other cortical re-

gions. These effects could be appreciated in the 6 sec window preceding behavioral onset.

Overall, our results support the idea that DOA are the expression of peculiar brain

states, compatible with a partial re-emergence of consciousness.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

DOA are Non-Rapid Eye Movement (NREM) sleep parasomnias

that are thought to derive from incomplete arousal out of

NREM sleep (Castelnovo, Lopez, Proserpio, Nobili, &

Dauvilliers, 2018; Zadra, Desautels, Petit, & Montplaisir,

2013). Indeed, DOA episodes are characterized by recurrent

abnormal sleep-related complex behaviors, lasting from a few

seconds to several minutes, associated with various degrees

of autonomic activation, and inappropriate or scarce respon-

siveness to the external environment. These behaviors may

range from sitting in the bed quietly with the eyes usually

wide open (confusional arousal) to screaming loudly and other

fear-related expressions (night terrors) and/or wandering

about in the house or even outdoor (sleepwalking). Patients

are often amnestic for their events, but when actively probed

they may report vivid mental images, thoughts and emotions

that are evocative of an hallucinatory/dreaming state (Baldini

et al., 2019; Castelnovo, Loddo, Provini, & Manconi, 2021;

Castelnovo, Loddo, Provini, Miano, & Manconi, 2021; Mwenge,

Brion, Uguccioni, & Arnulf, 2013; Oudiette et al., 2009; Rocha &

Arnulf, 2020; Uguccioni et al., 2013).

Severe cases are associated with sleep fragmentation,

daytime sleepiness, psychological distress and even with self-

harm or legal consequences (Ingravallo et al., 2014). None-

theless, little progress was made in the last decades in our

understanding of DOA neurobiological underpinnings. As a

consequence, the diagnosis of these complex manifestations

relies solely on clinical criteria.

Sparse evidence suggested that EEG changes precede by a

few seconds DOA abnormal behaviors (Desjardins et al., 2017;

Espa, Ondze, Deglise, Billiard, & Besset, 2000; Guilleminault,

Poyares, Abat, & Palombini, 2001; Jaar, Pilon, Carrier,

Montplaisir, & Zadra, 2010; Januszko et al., 2016; Perrault,

Carrier, Desautels, Montplaisir, & Zadra, 2014; Terzaghi

et al., 2009; Zadra & Nielsen, 1998). Moreover, according to

some old qualitative studies based on visual inspection

(Schenck, Pareja, Patterson, & Mahowald, 1998; Zadra, Pilon,

Joncas, Rompr�e, & Montplaisir, 2004), as well as quantitative

evidence based on one SPECT case report (Bassetti, Vella,

Donati, & Wielepp, 2000) and few stereo-EEG case report/se-

ries, DOA episodes are states of dissociation characterized by

an abnormal coexistence of local sleep-like and wake-like

features (Bassetti et al., 2000; Flamand et al., 2018; Sarasso

et al., 2014; Terzaghi et al., 2009, 2012). Despite offering

remarkable insights, all these studies suffer from limitations

connected to the technique they used to investigate these

phenomena. More specifically, SPECT low temporal resolution

does not allow study of the temporal dynamics of DOA epi-

sodes, while stereo-EEG spatial resolution is constrained by

the location of the suspected epileptogenic focus. High-

density (hd)-EEG is a well-established modern technique

that combines the high temporal definition of EEG, with a

reasonably high spatial resolution derived by the high-

number of scalp electrodes. Interestingly, a first high-density

(hd) EEG case report of DOA was reported by our group,

which suggested the potential role of the right hemisphere in

gating the spreading of abnormal slow wave activity over the

left hemisphere, mediating the occurrence of full-blown

clinical episodes (Ratti, Amato, David, & Manconi, 2018).

The current work aimed at mapping the EEG dynamics

prior and during clinical episodes, at both the scalp and source

level, applying spectral and connectivity analyses to 2-night

sleep hd-EEG recordings from a single patient with DOA.

2. Case report

2.1. Clinical history

The patient is a 12-year-old, Caucasian, right-handed male

with a history of DOA - sleepwalking and confusional arousal

sub-types (ICSD-3) since the age of 4 years. During his typical

sleepwalking episodes, usually about 30e90 min after sleep

onset, he quietly wandered around the house with a vacant

expression and was apparently unresponsive to his parents.

Less frequently, he approached his parents anxiously,

mumbling or yelling complex, out-of-context, agitated state-

ments like “You know it, oh, you know it verywell!”He usually

returned to bed spontaneously or guided by his parents after

1e5 min, falling back to sleep immediately. During minor

confusional arousal episodes, he sat up on his bed for few

seconds (<1 min), staring at the air or looking around, more

often calling his sister and/or talking to her (e.g., “We are

trapped in here!”) and pointing to non-existent objects in the

room. He was usually amnestic for the events, although dur-

ing the clinical interview he was able to recall 3 episodes

associated with dreamlike mental imagery (Castelnovo,

Loddo, Provini, Miano, & Manconi, 2021). The family history

was positive for NREM sleep parasomnias. The frequency of

the episodes had been stable over the years - on average 2e3
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major sleepwalking episodes per week and minor episodes

almost every night. His personal medical history was unre-

markable. Except for frequent sleep-talking and sleep hyper-

hidrosis, his sleep historywas not evocative of any other sleep

disorder. Medical and neurologic physical examination

showed no abnormalities. Routine hematology testing was

normal. The Child Behavior Checklist (Nakamura, Ebesutani,

Bernstein, & Chorpita, 2009) did not reveal any behavioral or

emotional problem (total score ¼ 11, none of the subscales

scored above the pathological threshold). Legal copyright re-

strictions prevent public archiving of the Child Behavior

Checklist, which can be obtained from the copyright holder in

the associated reference. Video-Polysomnography (v-PSG)

monitoring was planned to exclude mimics or comorbidities.

The patient was enrolled in the context of a larger observa-

tional, single-center study carried out at the Neurocenter of

Southern Switzerland. All study procedures were reviewed

and approved by the local Independent Ethics Committee

“Comitato Etico Cantonale” (2017-01788 e n.3282, approval

date: 15.12.2017), according to the regulatory requirements of

Switzerland. The child and his parents provided written con-

sent prior to the beginning of the study.

2.2. v-PSG recording

The patient underwent 2 overnight in-laboratory sleep re-

cordings at the Sleep Medicine Unit of the Neurocenter of

Southern Switzerland. A full montage with traditional video-

PSG channels (electro-oculogram, electromyogram of the

submentalis muscle and of the right and left tibialis anterior

muscles, electrocardiogram, oral and nasal airflow thermis-

tors, nasal pressure cannula, and wearable piezo-electric

bands for thoracic and abdominal movements) was coupled

with a high-density EEG system (256 channels; Electrical

Geodesics Inc., Eugene, OR, vertex referencing, sampling rate

of 500 Hz). Lights-out and light-on were within 1 h of the

participant's most consistently reported bedtime. Sleep stag-

ing was performed by a board-certified sleep physician, ac-

cording to standard AASM (Berry et al., 2020) criteria using the

EMBLA-RemLogic software based on 30-s epochs for 6 EEG

derivations extracted from the high-density EEG system, with

bipolar re-referencing (F3/M2, F4/M1, C3/M2, C4/M1, O1/M2,

O2/M1), EOG, and submental EMG.

Supplementary video related to this article can be found at

https://doi.org/10.1016/j.cortex.2022.05.021

Sleep-disorder breathing (RDI <1) and periodic limb

movements (PLMSI <5) were ruled out by concurrent v-PSG.

DOA episodes were selected according to the following in-

clusion/exclusion criteria, which were established before data

analysis: 1) episodes must be scored in line with international

criteria (Berry et al., 2020) and characterized according to

motor video-patterns (Loddo et al., 2018); 2) episodesmust not

be associated with Mayor Body Movements, as defined by in-

ternational criteria (Berry et al., 2020); 3) to increase the ac-

curacy and consistency of the evaluation of minor DOA

episodes, an episode could only be retained when classified as

confusional arousal by 3 independent raters looking at v-PSG,

or when an agreement between the raters could be reached

after discussion. Twenty behavioral events during sleep stage

3 (9 and 11 per night, respectively) were double-blindly iden-

tified by 3 different sleep medicine experts (AC, SR, MM).

Episode onset was defined as an abrupt, at least-twofold

amplitude increase in EMG channels (the first between chin

EMG, arm EMG or leg EMG). All episodes were characterized by

non-stereotyped motor behaviors - type I and type II patterns

(Loddo et al., 2018). Behaviors ranged from head flexion/

extension, limbmovements or partial trunk flexion/extension

in variable combinations to a complete trunk flexion with

patient sitting up in bed with a blind gaze or looking around

(see Supplementary Material for an explicative Videoclip).

Some episodes were associated with partially intelligible

speech. Episodes lasted from about 15 to 30 sec. After epi-

sodes, the patient rapidly fell asleep again except for a couple

of longer episodes endingwith a brief confusional phase and a

progressive re-emergence into wakefulness. The subsequent

morning the patient did not recall any of the events.

2.3. Hd-EEG data analysis

EEG data analysis was conducted with MATLAB (Mathworks

Inc., Natick, MA, USA) using the EEGLAB v13 (Delorme &

Makeig, 2004) and BRAINSTORM (Tadel, Baillet, Mosher,

Pantazis, & Leahy, 2011) toolboxes, and custom scripts. Re-

cordings were off-line high-pass filtered (.1 Hz IIR filter

reproducing a single resistor capacity), and subsequently

band-pass filtered (.5e45 Hz, Kaiser window-based FIR with

zero-phase distortion). From the all-night hd-EEG recordings,

segments commencing 3 min before and ending 1 min after

each episode onset were selected for further analysis. Data

channels and segments containing artifactual activity were

visually identified and marked as bad using the BRAINSTORM

graphical interface. The signal was then re-referenced to the

average of the scalp voltage for all 256 channels. Bad epochs

were rejected and the signal for bad channels was recon-

structed from the weighted average of neighboring channels

using spherical interpolation and with a maximal distance

between electrodes of 5 cm.

Source modeling was performed with Brainstorm using an

age-appropriate template (Richards, Sanchez, Phillips-Meek,

& Xie, 2016), segmented using SPM12/CAT12 Matlab toolbox

(Tzourio-Mazoyer et al., 2002). A symmetric BEM of the head

having three realistic layers (scalp, inner skull, outer skull)

(Maureen, 2010) and a standard co-registered set of electrode

positions were used to construct the forward model. The in-

verse matrix was computed using the sLORETA Minimum

Norm (Pascal-Marqui, 2002) with sources constrained to be

perpendicular to the cortical surface and retaining only diag-

onal elements of the noise covariance matrix.

PSD was computed at the scalp level and in source space

using Welch's modified periodogram method in 6-s Hamming

windows with 50% overlap. The magnitude of the complex

PSD was extracted for further analysis. The primary analysis

focused on average magnitude of PSD in the .5e4 Hz range,

which is associated with slow waves (SWA). A subsequent

analysis then explored between-state differences in oscilla-

tory power in theta (4e8 Hz), alpha (8e12 Hz), sigma

(12e16 Hz), beta (18e30 Hz) and low gamma (30e45 Hz) fre-

quency bands. For the scalp level both absolute average

referenced and subject-normalized (using z-score across

c o r t e x 1 5 5 ( 2 0 2 2 ) 6 2e7 464

https://doi.org/10.1016/j.cortex.2022.05.021
https://doi.org/10.1016/j.cortex.2022.05.021
https://doi.org/10.1016/j.cortex.2022.05.021


channels) topographic maps were examined, while in source

space only the normalized maps (using sLORETA based min-

imum norm estimates) were considered.

Moreover, Phase Transfer Entropy (PTE) (Lobier,

Siebenhühner, Palva, & Palva, 2014), a measure of directed

connectivity among neuronal oscillations, was computed at

the source level using the average source activity in brain re-

gions defined by the Destrieux atlas for cortical parcellation

(Destrieux, Fischl, Dale, & Halgren, 2010). The PTE was

normalized according to Hillebrand et al., 2016 (Hillebrand

et al., 2016).

The use of PTE as a metric for functional connectivity

analysis has several benefits over other methods, namely, it is

not biased by artificial zero-lag correlations and it allows

interference in the connectivity phase coupling directionality

(Hillebrand et al., 2016; Lobier et al., 2014). Thus, PTE is an

excellent exploratory method as it does not make any as-

sumptions about the data. Moreover, PTE can detect nonlinear

directed information flows, unlike other coherence-based

methods, and thus emerges as a very well-suited approach

to infer multiple-pathway functional connectivity patterns,

typical of brain networks.

Two behavioral states were selected: baseline stage 3 sleep

(�180 to �120 sec before onset) and DOA events (from �6

to þ 18 sec). DOA events were further subdivided into 3 time-

windows: 1) pre-episode (�6 sec from onset to onset), episode

T1 (from onset to 6 sec after onset), episode T2 (from6 to 12 sec

fromonset), and episode T3 (from 12 to 18 sec fromonset). Six-

second windows were chosen on the basis of a stereo-EEG

study that captured EEG activity changes 5 sec before the

start of the clinical onset (Terzaghi et al., 2009)e and to ensure

the stability of connectivity results (Fraschini et al., 2016).

Statistical comparisons for sensor and source topograph-

ical analysis were made within-subjects and used 2-sided

paired t-tests between behavioral states. Group level ana-

lyses on the average PSD valueswere performed separately for

each frequency band. Whole cortex analyses were conducted

correcting for multiple comparisons using a nonparametric

cluster based permutation test (Nichols & Holmes, 2001) with

10000 permutations for scalp power topography and using

topological cluster false-discovery rate (FDR) for source power

topography and connectivity. Cluster-size tests were used to

test for significant regions using a cluster-forming threshold

of p ¼ .05 and a cluster size threshold of p < .05 (cluster

corrected).

3. Results

Scalp power analysis. Pre-episode, compared to baseline, was

associated with a widespread significant increase in absolute

power in SWA. At an exploratory analysis, a similar increase

involved theta (Fig. 1, column 1). Normalizedmaps displayed a

significant cluster of relative decrease in sigma and a pattern of

relative decrease over frontal areas in lower frequency bands

(Supplementary Figure 1, column 1). Episode T1, compared to

baseline, was associated with a diffuse increase of absolute

power in all frequency bands (Fig. 1, column 2), which

decreased over time for lower frequencies in Episode T2 and T3

(Fig. 1, column 3 and 4). The only exception was sigma, which

Fig. 1 e Scalp power analysis in all frequency bands. Rows: frequency bands of interest as indicated: SWA (.5e4 Hz), theta

(4e8 Hz), alpha (8e12 Hz), sigma (12e16 Hz), beta (18e25 Hz), gamma (25e45 Hz). Columns: comparison between absolute

power at baseline and pre-episode, episode T1, episode T2, episode T3. The horizontal black arrow at the bottom defines

time in seconds. Baseline: average power from ¡3 to ¡2 min before behavioral onset. Pre-episode (column 1): average

power from¡6 sec prior to onset to onset. Episode T1 (column 2): from onset to 6 sec after onset. Episode T2 (column 3): from

6 to 12 sec after onset. Episode T3 (column 4): from 12 to 18 sec after onset. Blue values: a decrease in absolute EEG power in

pre-episode relative to baseline (pre-episode < baseline). Red values: an increase (pre-episode > baseline). White dots:

channels that belong to a statistically significant cluster of electrodes (p ≤ .05) using statistical nonparametric mapping

suprathreshold cluster testing. Black dots: individual channels with p < .05 (uncorrected). Note: Electrodes on the face and

outer ring of the sensor net were eliminated entirely for all participants due to excessive artifacts, yielding a final scalp

montage of 186 channels.
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displayed a stable decrease over midline brain regions, with a

distribution resembling sleep spindle topography in both ab-

solute and normalized power maps (Fig. 1, column 2 to 4).

Of note, in the SWA range, a central cluster of channels

was spared by the global power increase (Fig. 1, column 2).

This effect became progressively more accentuated over time

(Fig. 1, column 3 and 4) and emerged more clearly in

normalizedmaps (Supplementary Figure 1, column 4, 6 and 8).

A similar pattern could also be observed in normalized theta

values, with amore accentuated antero-posterior discrepancy

(Supplementary Figure 1, column 2 to 4).

Cortical source power analysis. No significant differences in

band power between pre-episode and baseline were observed

in any frequency band at the source level (Fig. 2, column 1).

Relative higher SWApower could be observed at the beginning

of the episodes (T1) in almost all brain regions except for a

centro-posterior zone mainly represented by the precuneus

and the superior parietal lobe, bilaterally (Fig. 2, column 2).

This increased activity could still be observed mainly over the

left hemisphere at T2 in the orbital frontal cortex and gyrus

rectus, temporal pole, the anterior, mid and ventral posterior

cingulate, the insula, and occipital visual areas (inferior and

superior occipital gyri, occipital pole) (Fig. 2, column 3), but not

in later stages of the episodes (T3) (Fig. 2, column 4). Compared

to baseline, Episode T3was associatedwith significantly lower

SWA over the right supramarginal and angular gyri, bilateral

precuneus (right > left), bilateral paracentral lobule and su-

perior parietal lobule (Fig. 3, column 4).

Exploratory comparisons for other frequency bands are

summarized in Supplementary Figure 2, Supplementary

Figure 3 and Supplementary Figure 4. Shortly, theta showed

a pattern similar to delta, alpha and sigma displayed a rela-

tive decrease over midline brain structures and a relative

increase over lateral regions, which remained stable over

time (from T1 to T2). Finally, beta and gamma source power

values were globally and stably increased compared to

baseline (from T1 to T2).

3.1. Connectivity analysis

The PTE analyses in the SWA range during baseline sleep

(Fig. 3A) revealed a rather simple, stereotyped and poorly

differentiated pattern of connectivity where almost all infor-

mation stemmed from 3 main frontal hubs (right middle and

inferior frontal gyri > right orbito-lateral frontal cortex > left

middle and inferior frontal gyri) and was directed towards

almost all brain regions. A disruption of this pattern could be

already observed in the pre-episode period (Fig. 3B) that

Fig. 2 e SWA source power analysis. Columns: comparison between absolute power at baseline and pre-episode, episode

T1, episode T2, episode T3. The horizontal black arrow at the bottom defines time in seconds. Baseline: from ¡3 to ¡2 min

before behavioral onset. Pre-episode: from¡6 sec prior to onset to onset. Episode T1: from onset to 6 sec after onset. Episode

T2: from 6 to 12 sec after onset. Episode T3: from 12 to 18 sec after onset. Gray color: non-significant differences after

correction for multiple comparison using topological cluster false-discovery rate (FDR). Blue color: a significant decrease in

source power in pre-episode or episode relative to baseline (pre-episode/episode < baseline) using FDR. Red color: a

significant increase in source power in episode relative to baseline (pre-episode/episode > baseline) using FDR. First row:

Horizontal plane (top); second row: sagittal plane, right hemisphere (lateral), third row: sagittal plane, left hemisphere

(lateral), fourth row: sagittal plane, right hemisphere (medial), fifth row: sagittal plane, left hemisphere (medial), sixth row:

horizontal plane (bottom).
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displayed a more scattered, integrated and differentiated

network of connections originating mainly from: (i) the left

temporal lobe: left anterior insula, left temporal pole, left

parahippocampal gyrus > (ii) the left frontal lobe (with hubs

distributed more anteriorly than during baseline): left orbito-

frontal cortex and left gyrus rectus, left orbito-lateral frontal

sulcus and to a lesser extent left inferior frontal gyrus (orbital

and triangular part) > (iii) the right temporal lobe: lateral

inferior, middle and superior temporal gyri as well as para-

hippocampal gyrus > (iv) right orbito-lateral frontal sulcus

and right inferior temporal lobe (triangular part).

During the episode, PTE connectivity hubs involved the

entire orbitofrontal cortices, bilaterally, the left temporal pole,

while the right temporal lobe hub was progressively lost, with

the concomitant emergence of more scattered connections

over parieto-occipital bilateral brain regions (Fig. 3C D and E).

Absolute SWA connectivity (sum of input and output

connections from each brain area) was globally increased in

pre-episode and during the episode compared to baseline

(Fig. 4, upper rows), while net connectivity (meaning the dif-

ference between output and input) basically reflected what

described for circular plots (Fig. 4, lower rows). At the very

beginning of the episode there was a bilateral higher outflow

of information from left and right orbitofrontal and inferior

lateral frontal brain regions as well as polar and infero/medial

temporal areas, and a higher inflow in almost all other brain

regions compared to baseline. Subsequently, the increase in

outflow persisted bilaterally over basal frontal regions but was

skewed towards the left temporal lobe while the increase in

inflow displayed the opposite effect.

4. Discussion

This is the first study investigating broad-band brain EEG

scalp/source power topography and connectivity prior to and

during clinical DOA episodes using hd-EEG, which allowed for

a precise analysis of local changes in the space and time

domains.

20 confusional arousal episodes (from �6 sec before

to þ 8 sec after motor onset) were extracted from 2-night re-

cordings in the same subject (a 12-year-old male). The hd-EEG

activity in 4-time windows (pre-episode: �6 to 0 sec, episode

t1: 0 to þ 6 sec, episode t2: from þ6 to þ12 sec, episode t3: þ12

to þ18 sec) was extracted and compared to stable slow wave

sleep (baseline: �2 to �3 min before onset).

At the scalp level, we found a widespread increase of scalp

SWA and theta in pre-episode compared to baseline and an

increase in SWA, theta, alpha, beta, gamma, associated with a

parallel decrease in sigma during episode compared to base-

line. Notably, the increase in SWA power displayed a specific

regional pattern that spared bilaterally Broadman area 7 and

right Broadman areas 39 and 40.

Functional connectivity in the SWA range underwent

drastic changes from pre-episode to episode compared to

baseline, with a significant increase in the number and in the

distribution of connections. Importantly, the key areas

implicated seemed to be the frontal lobes (mainly right infero-

lateral prefrontal cortex during baseline and bilateral ventro-

medial pre-frontal cortex during clinical episodes) and the

left anterior insula/left anterior temporal lobe (mainly infero-

Fig. 4 e Hd-EEG source connectivity analysis (3D representation of mean strength connectivity for each brain region).

Columns: comparison between outflow-inflow functional connectivity at baseline and pre-episode, episode T1, episode T2,

episode T3. The horizontal black arrow at the bottom defines time in seconds. Baseline: from ¡3 to ¡2 min before

behavioral onset. Pre-episode: from ¡6 sec prior to onset to onset. Episode T1: from onset to 6 sec after onset. Episode T2:

from 6 to 12 sec after onset. Episode T3: from 12 to 18 sec after onset. Upper rows: statistical comparison of global PTE

connectivity (sum of input and output) in each brain region/node. Bottom rows: statistical comparison of global PTE

connectivity (different of input and output) in each brain region/node.

Fig. 3 e Hd-EEG SWA source functional connectivity analysis (circular plots). Circular plots for average functional

connectivity (PTE: phase transfer entropy) at A) Baseline: from ¡3 to ¡2 min before behavioral onset, B) Pre-episode: from

¡6 sec prior to onset to onset, C) Episode T1: from onset to 6 sec after onset, D) Episode T2: from 6 to 12 sec after onset, E)

Episode T3: from 12 to 18 sec after onset. The direction of the arrow indicates the direction of functional connectivity. Ant:

anterior. Post: posterior. Sup: superior. Inf: Inferior. Transv: transverse. G: gyrus. S: Sulcus. L: left. R: right.
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lateral, ventral and medial). Overall, during DOA episodes

compared to baseline sleep, connectivity seemed to mainly

flow from ventral to dorsal, and from left to right brain areas.

4.1. Comparison with the literature

Our power results for pre-episode versus baseline are in line

with the sparse existing literature, add relevant topographic

information and support a consistency of findings in children,

previously investigated only by Espa et al. (2000).

At the turn of last century, Zadra and Nielsen reported for

the first time a specific increase in SWA prior to night terrors

from a single subject compared to average slow wave sleep

from a control group (Zadra & Nielsen, 1998). This effect was

larger over fronto-central channels and asymmetrically

distributed (left > right, 19 channel montage). Subsequently, 4

studies conducted on small groups of patients with sleep-

walking and/or sleep terrors (n ¼ 11e22), confirmed an in-

crease in SWA at central or midline leads, with some

discrepancies related to the pattern of increase: a progressive

increase over the preceding several minutes in a group of

children (Espa et al., 2000) versus a clear-cut increase in the

few preceding (from 30 to 12) seconds in adults (Desjardins

et al., 2017; Guilleminault et al., 2001; Jaar et al., 2010).

The parallel increase in theta prior to episodes compared to

baseline was previously described by Desjardins at al., who

reported an increase in delta and theta (but not in alpha and

beta) in the 20 sec preceding episodes compared to baseline

(n ¼ 27, 3 midline leads).

Sigma power - which indirectly represents sleep spindles -

tended to decrease just prior to DOA episodes compared to

baseline, although at a non-significant level, once again in line

with a previous observation of a trend-significance by Des-

jardin et al. (Desjardins et al., 2017). In our case, the decrease

was localized in a central parietal cluster of electrodes

resembling the typical distribution of fast spindles.

Finally, beta and gamma tended to be higher in pre-episode

versus baseline, reaching significance in the 2-s window prior

to onset (data not shown). To the best of our knowledge,

gamma activity has not been reported by previous studies,

while Januszko et al. found a similar increase in high beta

(24e30 Hz), localized at the level of the cingulate motor area

when comparing �8 to �4 sec segments to �4 sec to onset

segments (Januszko et al., 2016).

At the source level, no significant difference emerged in the

power maps of any frequency band during the pre-episode

compared to baseline. The only previous hd-EEG study (Ratti

et al., 2018) e a case report on a young man suffering from

sleepwalking e found an increase of low SWA power in the

5 sec prior to behavioral onset in the right prefrontal cortex

(Brodmann's areas 10 and 11). The instability of source find-

ings in the pre-episode periodmight be related to the different

definition of behavioral onset: in the current case report, it

was defined as the first EMG movement of chin, legs, or arms,

while the previous case report only used chin EMG.

Subsequently, during DOA episodes, absolute SWA power

remained globally higher compared to baseline at the scalp

level and this effect also turned out to be significant at the

source level. Moreover, source analysis revealed a specific

regional pattern, not previously described, where parietal

higher order associative brain regions (bilateral precuneus

and paracentral lobules and right temporo-parieto-occipital

junction) were relatively spared by an overwise widespread

increase. The previously mentioned hd-EEG case report by

Ratti et al. also reported that SWA power, after an initial in-

crease over the right prefrontal cortex just prior to behavioral

onset, spread bilaterally and involved the left prefrontal and

left temporal cortices in the 0 to 10 sec-span after onset (Ratti

et al., 2018). These areas displayed the maximal increase in

SWA power in our current analysis. However, Ratti et al. could

not detect areas of local relative decrease in SWA power,

probably because this latter finding emerged progressively

and became significant only between 12 and 18 sec after onset,

a time-window not previously investigated. Of note, from 6 to

12 sec after onset, we only found a lateralized effect over the

left hemisphere, as in Zadra et al. (Zadra & Nielsen, 1998).

Despite the interesting possibility that inter-hemispheric

asymmetry plays a role in the development of clinical DOA

episodes, the degree of lateralization may vary in different

episodes or in different patients.

The scalp and source analysis of other frequency bands

during DOA episodes (after behavioral onset) is novel and

therefore can't be compared to previous works. It yielded a

significant, stable absolute decrease in sigma during DOA

episodes compared to baseline, and an absolute increase in

theta, alpha, beta and gamma. This increase remained con-

stant throughout the episodes for beta and gamma, while it

progressively disappeared for theta and alpha. Beta and

gamma were less interpretable because of possible temporal

and neck muscle artifacts. However, even considering this

limitation, it is interesting to note that central channels (with

no artifacts) showed a diffuse increase in high frequencies

both at the source and scalp level.

To the best of our knowledge, no previous work investi-

gated EEG connectivity during DOA episodes. Only one study

explored connectivity prior to DOA episodes using the imagi-

nary part of the coherence over a longer period of time (20 sec)

prior to episode onset, compared to the 20 sec of baseline slow

wave sleep occurring 2 min before the episodes (Desjardins

et al., 2017). This work revealed a decrease in delta EEG func-

tional connectivity in parietal and occipital regions and in

increase of long-range connectivity in alpha and beta range.

The use of the imaginary part of coherence (Nolte et al., 2004),

as opposed to methods such as Coherency or Phase Locking

Value, for evaluating phase coupling between signals, allows

circumvention of artificial zero-lag correlations, such as those

induced by source leakage (volume conduction problem).

However, in general all methods based on coherence esti-

mates, contrary to nonlinear measures of frequency depen-

dence, such as PTE, can be affected by changes in amplitude.

Therefore, phase correlated channels, which are not corre-

lated in amplitude, may be lost using a coherence-based

approach (Greenblatt, Pflieger, & Ossadtchi, 2012; Pereda,

Quiroga, & Bhattacharya, 2005).

4.2. Interpretation of results

Current power results during the pre-episode period share

similarities with known EEG modifications prior to physio-

logical arousal. More specifically, an increase in fronto-central
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SWA and theta activities was previously observed during the

2 sec before arousal onset (Sforza, Jouny, & Ibanez, 2000).

Moreover, arousal is known to be associated with a blockage

of sleep spindles (Naitoh, Antony-Baas, Muzet, & Ehrhart,

1982; Peter-Derex, Magnin, & Bastuji, 2015), which have been

connected with the preservation of sleep continuity

(Fernandez & Lüthi, 2020).

The aforementioned similarities between the pre-arousal

period and pre-DOA period, on one hand, support a common

background, and on the other hand raise concerns about

where, when, and how a physiological arousal response be-

comes dysfunctional in patients with DOA. To date, only 2

studies, based on a limited number of patients (n¼ 11e12) and

channels (C3 and/or C4) explored differences between

arousals and DOA episodes. These studies found greater SWA

and slow oscillation density prior to DOA episodes compared

to NREM arousals (Espa et al., 2000) or non-behavioral awak-

enings (Perrault et al., 2014). However, it remains unclear

whether the difference is only related to a different degree of

motor activation, as these studies did not make a distinction

between motor and non-motor arousals/awakenings. In this

regard, our results suggest that an initial arousal-like pattern

during pre-DOA episodes later on evolves into a highly dis-

rupted state, different from physiological arousal, leaving our

patient “trapped” in a state between sleep and wakefulness.

Indeed, while sigma power decreased over a centroparietal

cluster of electrodes as during N3 arousal (Peter-Derex et al.,

2015), all other frequency bands showed an effect in the

opposite direction, meaning a massive global increase. This

effect could not be observed during N3 arousal based on the

limited available literature. More specifically, a stereo-EEG

study (Peter-Derex et al., 2015) detected an overall decrease

in delta power in all recorded cortical areas in about 60% of the

cases, no changes in the majority of the remaining cases, and

a rare paradoxical increase in high-amplitude rhythmic slow

wave activity (mainly in frontal but also in parietal dorsolat-

eral cortices). An interesting, although yet speculative hy-

pothesis, could be that DOA episodes arise from an

exaggeration or/and an abnormal distribution and persistence

of this latter physiological SWA activity.

Taken together, our broad-spectrum power results support

the notion of an abnormal and state-specific coexistence of

wake-like and sleep-like EEG activity, even in the same brain

regions (Flamand et al., 2018).

Another insight is offered by a different aspect of regional

dissociation, meaning the observation of brain regions rela-

tively spared by the massive increase in SWA power during

episodes (bilateral precuneus and right supramarginal and

bilateral angular gyri).

Patients with DOA might be predisposed to this state-

specific dissociation, due to a trait-like abnormal distribution

of power (relatively lower SWA power over centro-parietal

brain regions), as shown in a previous hd-EEG study

(Castelnovo et al., 2016). Notably, these trait-like abnormalities

in SWA power could be detected also during REM sleep,

possibly justifying the occasional description of similar state-

dissociations during REM sleep (Bhat, Patel, Rosen, &

Chokroverty, 2012; Futenma et al., 2022).

More specifically, the right supramarginal and bilateral

angular gyri are cross-modal associative areas implicated in

visuo-spatial attention, reorientation of attention towards

relevant stimuli, and manipulation of mental representations

(Pedrazzini & Ptak, 2019). All these functions are essential to

patients in order to navigate through space during clinical

episodes. Precuneus, is instead known to be involved in

episodic memory, visuospatial processing, reflections upon

selfhttps://en.wikipedia.org/wiki/Self_(psychology) (Cavanna

& Trimble, 2006), and aspects of conscious experience inde-

pendently from memory retrieval (Siclari et al., 2017). Thus,

the relative decrease in SWA power, typically associated with

unconscious states like slow wave sleep or coma, in these

brain regions, supports the idea that consciousness reemerges

during DOA episodes, although probably in an altered form,

during clinical episodes. This hypothesis goes in line with

growing evidence pointing to the presence of some form of

mental activity during DOA episodes (Baldini et al., 2019;

Castelnovo, Loddo, Provini, Miano, & Manconi, 2021; Oudiette

et al., 2009). PTE analysis further supports this hypothesis,

revealing an increase in integrated and differentiated con-

nectivity from baseline to episodes, typical of wakefulness

(Tononi, 2004).

Interestingly, SWA connectivity during baseline sleep dis-

played an asymmetric frontal right-dominant and antero-

posterior pattern. This pattern recalls that observed by

studies on slow wave traveling, an indirect measure of brain

connectivity during slow wave sleep: larger slow waves are

more likely to originate from the right hemisphere (Avvenuti

et al., 2020) and to travel antero-posteriorly (Massimini,

Huber, Ferrarelli, Hill, & Tononi, 2004). Notably, a bilateral

involvement at the beginning of the episode, along with the

major involvement of the left temporal lobe, seems to be an

essential feature associated with DOA episodes, as in Ratti

et al. (2018).

Furthermore, the all-brain and fine-grained connectivity

analysis conducted in the source space in this current work

allowed for the identification of specific out-flow hubs

involved in DOA episodes. Curiously, these hubs mainly

involved the ventromedial prefrontal cortex, the left temporal

pole, and the left anterior insula, whose function seems to

remain deactivated (“sleepier”) during DOA episodes. Indeed,

the ventromedial prefrontal cortex is thought to represent

emotion and reward in decision making as well as facial

emotion recognition, theory-of-mind ability processing self-

relevant information (Dixon, Thiruchselvam, Todd, &

Christoff, 2017; Hiser & Koenigs, 2018), functions that are

likely shared with the left temporal pole (Olson, Plotzker, &

Ezzyat, 2007). Similarly, the left anterior insula is activated

by all valence categories of emotions, and is involved in social

emotions, emotional awareness, and switching between the

central executive network and the default mode network (Gu,

Hof, Friston, & Fan, 2013; Lamm & Singer, 2010). Notably, the

right insula was not involved in SWA connectivity (meaning

that it is probably more ‘active’ during DOA episodes). Right

insula is specifically involved in the processing of negative

emotions (Gu et al., 2013), which are dominantly expressed

during clinical behavioral events (Oudiette et al., 2011).

Overall, the knowledge of specific EEG dynamics during

DOA episodes provides a plausible explanation for some of the

observed behavioral andmental features associatedwith DOA

episodes.
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4.3. Strengths, limitations and future directions

Of note, we only captured confusional arousal and minor

events and not sleep terrors or sleepwalking episodes. This is

in line with data from the literature, which suggests that it is

difficult to capture major events during vPSG recordings

(Loddo et al., 2009). However, although some differences may

exist between different DOA manifestations, it is known that

they all belong to the same family of disorders and can also

coexist in the same subject or family (Petit et al., 2015).

Moreover, confusional arousal and minor episodes are those

that pose greater issues of differential diagnosis with SHE in

clinical practice (Derry, Harvey, Walker, Duncan, & Berkovic,

2009; Zucconi & Ferini-Strambi, 2000). Therefore, the anal-

ysis of minor events is essential for the development of

objectivemethods and tools to support the diagnostic process.

The data reported came from the analysis of DOA episodes

from one single subject, and therefore they cannot be gener-

alized to the entire DOA population. It is possible that brain

activity during clinical episodes varies from patient to patient,

justifying different clinical subtypes and the heterogeneity of

DOA semeiology. However, this case report clearly demon-

strated that hd-EEG analysis of DOA episodes is feasible, and

due to its high spatial and temporal resolution could reveal

essential pieces of information to clarify these mysterious

phenomena. Future studies should strive to collect DOA epi-

sodes in a fairly large clinical sample.

Last but not least, functional connectivity results, despite

providing the first detailed insight into brain functioning

during clinical DOA episodes, are undermined by the lack of

literature on physiological data during both sleep and wake-

fulness. Our case report calls for the urgent need of studies to

cover these gaps in our understanding of brain networks

across different brain states.

5. Conclusions

DOA events analyzed for this case report were associated with

a drastic decrease of sigma activity compared to average slow

wave sleep, likely reflecting a suppression of sleep spindles, as

in physiological arousal. On the other hand, all other fre-

quency bands displayed a diffuse absolute increase, suggest-

ing a divergence with normal arousal. Interestingly, in the

SWA range, a centro-posterior region encompassing pre-

cuneus, paracentral parietal lobule and right supramarginal

and angular lobule, seemed to be significantly less involved by

this massive increase in power. Functional connectivity in the

SWA range displayed a clearcut switch from poorly to highly

integrated networks where bilateral orbitofrontal and left

ventro-medial temporal lobe were the main output hubs.

Overall, these results parallel the observable behavioral

expression of DOA episodes, support the idea that DOA are the

expression of peculiar brain states, possibly intermediate be-

tween sleep and wakefulness, and point to key patterns sub-

serving a partial re-emergence of consciousness.

We envisage that the systematic analysis of DOA episodes

and of other sleep events in potential differential diagnosis,

such as SHE, will foster the development of specific tools to

support the diagnostic process in most difficult and complex

cases.
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6.6. Supplementary material 

Supplementary Figure 1 | Scalp power analysis in all frequency bands (normalized values) 

Rows: frequency bands of interest as indicated: SWA (0.5-4 Hz), theta (4-8 Hz), alpha (8- 12 Hz), sigma 

(12-16 Hz), beta (18-25 Hz), gamma (25-45 Hz). Columns: comparison between spatially normalized power 

at baseline and pre-episode, episode T1, episode T2, episode T3. The horizontal black arrow at the bottom 

defines time in seconds. Baseline: average power from -3 to -2 minutes before behavioral onset. Pre-

episode (column 1): average power from -6 seconds prior to onset to onset. Episode T1 (column 2): from 

onset to 6 seconds after onset. Episode T2 (column 3): from 6 to 12 seconds after onset. Episode T3 

(column 4): from 12 to 18 seconds after onset. Blue values: a decrease in absolute EEG power in pre-

episode relative to baseline (pre-episode < baseline). Red values: an increase (pre-episode > baseline). 

White dots: channels that belong to a statistically significant cluster of electrodes (P ≤ 0.05) using statistical 

nonparametric mapping suprathreshold cluster testing. Black dots: individual channels with P < 0.05 

(uncorrected). Note: Electrodes on the face and outer ring of the sensor net were eliminated entirely for all 

participants due to excessive artifacts, yielding a final scalp montage of 186 channels. 
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Supplementary Figure 2 | Source power analysis in all frequency bands: Baseline versus Episode 

T1 

Columns: frequency bands of interest as indicated: SWA (0.5-4 Hz), theta (4-8 Hz), alpha (8- 12 Hz), sigma 

(12-15 Hz), beta (15-25 Hz), gamma (25-45 Hz).  First row: Horizontal plane (top); second row: sagittal 

plane, right hemisphere (lateral), third row: sagittal plane, left hemisphere (lateral), fourth row: sagittal plane, 

right hemisphere (medial), fifth row: sagittal plane, left hemisphere (medial), sixth row: horizontal plane 

(bottom). Baseline: from -3 to -2 minutes before behavioral onset. Pre-episode: from -6 seconds prior to 

onset to onset. Episode T1: from onset to 6 seconds after onset. Episode T2: from 6 to 12 seconds after 

onset. Episode T3: from 12 to 18 seconds after onset.  Gray color: non-significant differences after 

correction for multiple comparison using topological cluster false-discovery rate (FDR). Blue color: a 

significant decrease in source power in pre-episode relative to baseline (pre-episode < baseline) after FDR. 

Red color: a significant increase in source power in pre-episode relative to baseline (pre-episode > baseline) 

after FDR.  
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Supplementary Figure 3 | Source power analysis in all frequency bands: Baseline versus Episode 

T2 

Columns: frequency bands of interest as indicated: SWA (0.5-4 Hz), theta (4-8 Hz), alpha (8- 12 Hz), sigma 

(12-15 Hz), beta (15-25 Hz), gamma (25-45 Hz). First row: Horizontal plane (top); second row: sagittal 

plane, right hemisphere (lateral), third row: sagittal plane, left hemisphere (lateral), fourth row: sagittal plane, 

right hemisphere (medial), fifth row: sagittal plane, left hemisphere (medial), sixth row: horizontal plane 

(bottom). Baseline: from -3 to -2 minutes before behavioral onset. Pre-episode: from -6 seconds prior to 

onset to onset. Episode T1: from onset to 6 seconds after onset. Episode T2: from 6 to 12 seconds after 

onset. Episode T3: from 12 to 18 seconds after onset.  Gray color: non-significant differences after 

correction for multiple comparison using topological cluster false-discovery rate (FDR). Blue color: a 

significant decrease in source power in pre-episode relative to baseline (pre-episode < baseline) after FDR. 

Red color: a significant increase in source power in pre-episode relative to baseline (pre-episode > baseline) 

after FDR.  
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Supplementary Figure 4 | Source power analysis in all frequency bands: Baseline versus Episode 

T3 

Columns: frequency bands of interest as indicated: SWA (0.5-4 Hz), theta (4-8 Hz), alpha (8- 12 Hz), sigma 

(12-15 Hz), beta (15-25 Hz), gamma (25-45 Hz). First row: Horizontal plane (top); second row: sagittal 

plane, right hemisphere (lateral), third row: sagittal plane, left hemisphere (lateral), fourth row: sagittal plane, 

right hemisphere (medial), fifth row: sagittal plane, left hemisphere (medial), sixth row: horizontal plane 

(bottom). Baseline: from -3 to -2 minutes before behavioral onset. Pre-episode: from -6 seconds prior to 

onset to onset. Episode T1: from onset to 6 seconds after onset. Episode T2: from 6 to 12 seconds after 

onset. Episode T3: from 12 to 18 seconds after onset. Gray color: non-significant differences after correction 

for multiple comparison using topological cluster false-discovery rate (FDR). Blue color: a significant 

decrease in source power in pre-episode relative to baseline (pre-episode < baseline) after FDR. Red color: 

a significant increase in source power in pre-episode relative to baseline (pre-episode > baseline) after 

FDR.  

 



 
 

218 

6.7. References 

American Academy of Sleep Medicine. (2014). International Classification of Sleep Disorders. 

Darien, IL: American Academy of Sleep Medicine. 

American Psychiatric Association. (2013a). American Psychiatric Association: Diagnostic and 

Statistical Manual of Mental Disorders Fifth Edition. In Arlington. 

American Psychiatric Association. (2013b). Diagnostic and statistical manual of mental 

disorders (5th ed.). Washington, DC: American Psychiatric Association. 

Castelnovo, A., Amacker, J., Maiolo, M., Amato, N., Pereno, M., Riccardi, S., Danani, A., 

Ulzega, S., & Manconi, M. (2022). High-density EEG power topography and connectivity 

during confusional arousal. Cortex; a Journal Devoted to the Study of the Nervous System 

and Behavior, 155, 62–74. https://doi.org/10.1016/J.CORTEX.2022.05.021 

Castelnovo, A., Lopez, R., Proserpio, P., Nobili, L., & Dauvilliers, Y. (2018). NREM sleep 

parasomnias as disorders of sleep-state dissociation. Nature Reviews. Neurology, 14(8), 

470–481. https://doi.org/10.1038/s41582-018-0030-y 

Castelnovo, A., Riedner, B. A., Smith, R. F., Tononi, G., Boly, M., & Benca, R. M. (2016). Scalp 

and Source Power Topography in Sleepwalking and Sleep Terrors: A High-Density EEG 

Study. Sleep, 39(10), 1815–1825. https://doi.org/10.5665/sleep.6162 

Gaudreau, H., Joncas, S., Zadra, A., & Montplaisir, J. Y. (2000). Dynamics of slow-wave activity 

during the NREM sleep of sleepwalkers and control subjects. Sleep, 23(6), 755–760. 

Nobili, L., de Gennaro, L., Proserpio, P., Moroni, F., Sarasso, S., Pigorini, A., de Carli, F., & 

Ferrara, M. (2012). Local aspects of sleep: observations from intracerebral recordings in 

humans. Progress in Brain Research, 199, 219–232. https://doi.org/10.1016/B978-0-444-

59427-3.00013-7 

Oudiette, D., Leu, S., Pottier, M., Buzare, M. A., Brion, A., & Arnulf, I. (2009). Dreamlike 

mentations during sleepwalking and sleep terrors in adults. Sleep, 32(12), 1621–1627. 

https://doi.org/10.1093/sleep/32.12.1621 

Pressman, M. R. (2004). Hypersynchronous delta sleep EEG activity and sudden arousals from 

slow-wave sleep in adults without a history of parasomnias: clinical and forensic 

implications. Sleep, 27(4), 706–710. https://doi.org/10.1093/SLEEP/27.4.706 

Terzaghi, M., Sartori, I., Tassi, L., Didato, G., Rustioni, V., LoRusso, G., Manni, R., & Nobili, L. 

(2009). Evidence of dissociated arousal states during nrem parasomnia from an 

intracerebral neurophysiological study. Sleep, 32(3), 409–412. 

https://doi.org/10.1093/sleep/32.3.409 

Zucconi, M., Oldani, A., Ferini-Strambi, L., & Smirne, S. (1995). Arousal fluctuations in non-rapid 

eye movement parasomnias: the role of cyclic alternating pattern as a measure of sleep 

instability. In Journal of Clinical Neurophysiology (Vol. 12, Issue 2, pp. 147–154). 

https://doi.org/10.1097/00004691-199503000-00005 

 



 
 

219 

7. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

7.1. Introduction 

This is a methodological cumulative thesis that aims to interrogate sleep in different 

physiological and pathological conditions to add new pieces of knowledge to the 

intriguing puzzle of brain development and function.  

In this last chapter, I summarize the results of 5 projects conducted for this PhD 

thesis (described in chapter 2-6) and depict the near-future projects and 

perspectives derived from the current work. 

 

7.2. Project 1 

The Matlab-based hdEEG pipeline created for data pre- and post- processing is 

currently complete and works smoothly. Working on this pipeline greatly improved 

my programming skills and my performance in generating efficient algorithms for 

hdEEG signal analysis. 

The following step is to improve the current pipeline in a more user-friendly format, 

by implementing it with intuitive graphical interfaces able to guide users step by step 

into the analysis process. In collaboration with the Faculty of Informatics, we planned 

to create a fast-cleaning toolbox for the manual and automatic detection of artifacts 

based on spectral analysis. We are applying for grant awarded by the Hasler 

Foundation to cover up the expenses of this project. Finally, our laboratory will soon 
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host students from USI to implement the visualization of ICA components (see 

chapter 2). 

 

7.3. Project 2 

Sleep related slow waves originate more posteriorly and have a stronger posterior 

involvement in young adolescents compared to young adults. While slow waves of 

adolescents are larger in amplitude and locally more synchronous, they also involve 

a smaller proportion of electrodes relative to adults. This probably reflects an 

incomplete synaptic pruning and still immature development of local and long-range 

white matter connections. Moreover, slow waves tend to originate more often in the 

right compared to the left hemisphere, and express a higher inter-hemispheric 

involvement asymmetry, probably due to an incomplete maturation of the corpus 

callosum. A final proof-of-concept will only be offered by large longitudinal studies 

combining hdEEG sleep recordings and MRI scans that will require dedicated 

fundings. 

In the near future, I will use the same dataset to explore the unsolved issue of 

physiological arousal. Technically speaking, an arousal is a brief sleep perturbation 

defined as an abrupt shift of electrocortical activity into higher frequencies (including 

alpha, theta, and/or frequencies greater than 16 Hz), with a duration ranging between 

3 and 15 seconds. Arousals are considered transient states in between sleep and 

wakefulness, in which brain undermines sleep continuity and decides to preserve or 

interrupt sleep depending on the relevance of internal or external stimuli. In particular, 
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I am planning to use both power and connectivity analytic tools (see project 5) to 

better explore this transitional state. The detailed characterization of physiological 

arousal may pave the way to understand pathological arousals. This study will be 

supported by the EOC Young Researchers Grant 2022. 

 

7.4. Project 3 

Children/adolescents with ADHD display higher low-frequency EEG activity during 

NREM sleep, but not during REM sleep and wakefulness, compared to typically 

developing peers. Such a difference involves a wide centro-posterior cluster of 

channels in the 3-10 Hz range (low-alpha, theta and high delta). Between-group 

differences are maximal in slow wave sleep of the first sleep cycle. Moreover, 

spectral differences are positively correlated with average total sleep time. These 

results can be explained by 2 alternative hypotheses: 1) a delay in brain maturation, 

as suggested by the more posterior distribution of normalized SWA and/or 2) an 

alteration in sleep homeostasis, as suggest by the increase in absolute SWA, 

selective for the upper SWA (2.5-4 Hz), which is known to be homeostatically 

regulated, as opposed to lower SWA (0.5-2.5 Hz). These 2 hypotheses are not 

mutually exclusive, as sleep abnormalities in ADHD patients (primary or secondary 

to underlying sleep disorders), can in turn interfere with (and delay) cortical 

maturation, especially during early developmental phases. 

I am currently supervising the thesis of a student in Medicine on the same topic with 

the aim of providing further support to this framework of interpretation. We are 

performing a detailed slow wave detection analysis (as described in project 2) on the 
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same ADHD dataset. I showed in project 2 that in typically developing children/young 

adolescents, slow wave density, amplitude, origin, synchronization, and distribution 

is age dependent. According to the maturational delay hypothesis, ADHD subjects, 

compared to typically developing peers, should have, not only more, higher, more 

local, and less synchronous slow waves (as also expected by sleep deprivation 

(Plante et al., 2016)), but also more posterior and right-sided origins and distributions. 

 

7.5. Project 4 

SCZ first-degree relatives (FDRs), meaning subjects at SCZ high-genetic risk (who 

share similar neuro-anatomical, neurofunctional, and neurophysiological profiles to 

their affected relatives), have significantly smaller slow waves compared to subjects 

with no family history for psychotic disorders. Additionally, traveled distances is 

significantly reduced in FDRs. Furthermore, slow wave amplitude and slow wave 

traveling distance, as well as slow wave density, might reduce in young patients 

hospitalized at their first psychosis episode. Long–term effective antipsychotic 

treatment may be associated with an almost complete recover of slow wave density 

and amplitude, and to a partial normalization of slow wave traveling. The residual 

deficit in slow wave traveling may reflect the persistent disruption of long-range white 

matter connections. Taken together, these data offer preliminary but encouraging 

evidence that slow wave traveling properties could be effectively used in early SCZ. 

Slow wave traveling could help to interpret anatomical abnormalities, support the 

early recognition of SCZ patients and definition of their prognosis, and on a wider 

perspective, to develop new treatment strategies. 
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To further progress in this direction, larger cohorts of drug-naïve early course 

psychosis patients are obviously required to confirm current preliminary results. In 

collaboration with the University of Milan, I am planning to analyse 20 drug-naïve first 

episode psychosis patients and 20 age and gender matched control subjects 

recorded with a 64 channel hdEEG system. However, only much larger, longitudinal 

studies of CHR patients combining MRI and hdEEG will be able to fully assess the 

prognostic and clinical value of the sleep slow wave deficit and its connection with 

anatomical white (and grey) matter abnormalities.  

Another under investigated area of research that I foresee to explore, is the 

presence, prevalence, clinical impact and possible negative pathogenetic effect of 

sleep disorders in patients with psychotic disorders. I will explore this interesting topic 

if I will obtain the funding from a young researchers grant proposal that I wrote in 

collaboration with San Raffaele Hospital. 

  

7.6. Project 5 

Brain activity at the onset of DOA episodes is characterized by the suppression of 

sigma activity and by the increase of power in other frequency bands, in line with a 

recent study we conducted on a larger papulation of DOA patients (N = 53) using 

traditional low-density EEG (Mainieri et al., 2022). This pattern qualitatively 

resembles that previously observed at the onset of physiological arousal. This 

suggests that both physiological and pathological arousals originate by the activation 

of a common pathway. However, during DOA episodes, bilateral Broadman area 7 
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and right Broadman areas 39 and 40 are relatively are spared by an otherwise 

massive and widespread SWA increase. Functional connectivity analysis in the same 

frequency range reveals a drastic increase in the number, differentiation and 

complexity of brain networks from baseline sleep to full-blown episodes, in line with 

the hypothesis that consciousness partially re-emerge during DOA episodes. 

Of note, a recently published hdEEG study from another Swiss group revealed no 

difference between DOA episodes and simple awakenings in adult patients with DOA 

(Cataldi et al., 2022), The study only found higher delta and lower beta power in the 

1-minute window preceding DOA episodes compared to the 1-minute window 

preceding simple awakenings. It is possible that variability between subjects and 

episodes reduced the sensitivity of the study to detect differences between the 2 

conditions (awakenings vs DOA episodes) and/or that the awakening process itself 

is altered in patients with DOA. 

In this respect, I am planning to conduct two new studies: 

First, thanks to a fruitful ongoing collaboration with the Sleep Center of the Bellaria 

Hospital in Bologna, I will have access to a large dataset of patients with DOA and 

to age and gender matched healthy subjects, collected with a 20-channel portable 

EEG system. Thus, I will be able to analyze and compare awakenings from both 

populations, to explore the possibility of an intrinsic derangement of the 

arousal/awakening process in patients with DOA. 

Second, I will apply the same systematic analysis used in project 5 to study one 

single case (see chapter 6), on several episodes from different patients that we are 

currently collecting at the Sleep Medicine Unit in Lugano. The main goal will be to 
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verify whether the reported results could be generalized to DOA population. In will 

explore intra and inter-subject statistical variability, as the previous study by Cataldi 

et al. (Cataldi et al., 2022) did not. Moreover, the current pipeline allows me to study 

not only EEG power but also more complex measures of brain connectivity, which 

may add relevant complementary information. This complex analysis will be possible 

thanks to a collaboration with the University of Applied Sciences of Zurich (ZHAW), 

which will provide support for the complex and computational demanding source 

connectivity analyses required for the project. 

Finally, I am also planning to study in more detail brain functional connectivity (and 

more specifically phase transfer energy) during different states of being, meaning 

during wakefulness, sleep onset, NREM and REM sleep (taking into account different 

times of the night and sleep cycles), and physiological arousal, in order to have a 

solid background to interpret results in DOA patients. 

 

7.7. Conclusions 

This thesis should be considered as a first step towards the creation of a solid bridge 

between clinical medicine (in the fields of sleep and psychiatry), and new 

technological advances employed in the field of neuroscience. 

In particular, I implemented the use of advanced technique (hdEEG) in the clinical 

routine of a sleep medicine unit. HdEEG is a feasible and informative magnifying 

glass to define with a superlative temporal and good spatial resolution both 

physiological and pathological brain processes, especially if applied in the stable and 
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noise-less condition of sleep, where the most crucial neuroplastic events stand out 

in their clearest purity over the silence of the night.       

The hdEEG pipeline that I developed for this thesis works properly, is flexible and 

user-friendly, and can be successfully used to test specific hypotheses on the 

pathophysiology of clinical populations. 
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