
Journal of Computational Physics 471 (2022) 111616
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Samplets: Construction and scattered data compression

Helmut Harbrecht a,1, Michael Multerer b,∗,2

a Universität Basel, Departement für Mathematik und Informatik, Spiegelgasse 1, Basel, 4051, Switzerland
b Università della Svizzera italiana, Istituto Eulero, Via la Santa 1, Lugano, 6962, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 February 2022
Received in revised form 12 June 2022
Accepted 8 September 2022
Available online 15 September 2022

Keywords:
Multiresolution analysis
Unstructured data
Kernel methods
Data compression

We introduce the concept of samplets by transferring the construction of Tausch-White
wavelets to scattered data. This way, we obtain a multiresolution analysis tailored to dis-
crete data which directly enables data compression, feature detection and adaptivity. The
cost for constructing the samplet basis and for the fast samplet transform, respectively,
is O(N), where N is the number of data points. Samplets with vanishing moments can
be used to compress kernel matrices, arising, for instance, in kernel based learning and
scattered data approximation. The result are sparse matrices with only O(N log N) remain-
ing entries. We provide estimates for the compression error and present an algorithm that
computes the compressed kernel matrix with computational cost O(N log N). The accu-
racy of the approximation is controlled by the number of vanishing moments. Besides the
cost efficient storage of kernel matrices, the sparse representation enables the applica-
tion of sparse direct solvers for the numerical solution of corresponding linear systems.
In addition to a comprehensive introduction to samplets and their properties, we present
numerical studies to benchmark the approach. Our results demonstrate that samplets mark
a considerable step in the direction of making large scattered data sets accessible for mul-
tiresolution analysis.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multiresolution methods and wavelet techniques in particular have a long standing tradition and are a versatile tool
in many different fields. Applications comprise nonlinear approximation, image analysis, signal processing and machine
learning, see for instance [7,11,16,17,33,34] and the references therein. Starting from a signal, the pivotal idea of wavelet
techniques is the splitting of this signal into its contributions relative to a hierarchy of scales. Such a multiresolution ansatz
starts from an approximation on a coarse scale and successively resolves details, that have not been captured so far, at finer
scales. Therefore, multiresolution methods naturally accommodate data compression and adaptivity. The transformation of
a signal into its wavelet representation and the backward transformation can be performed with linear cost in terms of the
size of the wavelet basis, see for instance [9]. The classical construction of wavelets is based on dilations and translations
of a given mother wavelet. This way, a nested sequence of approximation spaces is obtained, where the elements of this
sequence are scaled copies of each other. As a consequence, the classical construction of wavelets is limited to structured

* Corresponding author.
E-mail addresses: helmut.harbrecht@unibas.ch (H. Harbrecht), michael.multerer@usi.ch (M. Multerer).

1 Helmut Harbrecht was funded in parts by the Swiss National Science Foundation through the grant “Adaptive Boundary Element Methods Using
Anisotropic Wavelets” (200021_192041).

2 Michael Multerer was funded in parts by the Swiss Federal Office of Energy SFOE as part of the SWEET project SURE.
https://doi.org/10.1016/j.jcp.2022.111616
0021-9991/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jcp.2022.111616
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111616&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:helmut.harbrecht@unibas.ch
mailto:michael.multerer@usi.ch
https://doi.org/10.1016/j.jcp.2022.111616
http://creativecommons.org/licenses/by/4.0/

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
data, such as uniform subdivisions of the real line. Adaptions to deal with intervals have been suggested in [2,8,13], while
wavelet constructions on manifolds are the topic of [15,28,43]. An extension to (surface) triangulations, has been suggested
in [41], where (multi-)wavelets are constructed as linear combinations of functions at a fixed fine scale. The stability of
the resulting basis, which is known as Tausch-White wavelets, is a direct consequence of its orthonormality. A different
approach to obtain a multiresolution analysis on unstructured data, for example on graphs, are diffusion wavelets, see [10].
However, there is no linear cost bound for the computation of a diffusion wavelet basis.

In this article, we generalize the concept of Tausch-White wavelets towards scattered data. To this end, we modify the
construction from [1,41] and construct a multiresolution analysis which consists of localized and discrete signed measures.
Inspired by the term wavelet, we call such signed measures samplets. Samplets are tailored towards the underlying data set
and can be constructed such that their associated measure integrals vanish for polynomial integrands. If this is the case
for all polynomials of total degree less or equal to q, we say that the samplets have vanishing moments of order q + 1.
Lowest order samplets, i.e. q = 0, have been considered earlier for data compression in [37]. The construction of samplets is,
however, not limited to the use of polynomial vanishing moments. Indeed, it is easily be possible to adapt the construction
to other primitives with different desired properties. We present a general construction template for samplets with an
arbitrary number of vanishing moments. This construction can always be performed with linear cost for a balanced cluster
tree, even for non-quasi-uniform data. The obtained basis is always orthonormal and hence stable. Representing scattered
data by samplets, there is a fast decay of the samplet coefficients with respect to the support size if the data are smooth,
due to the vanishing moments. This straightforwardly enables data compression. In contrast, non-smooth regions in the
data are indicated by large samplet coefficients. This, in turn, enables feature detection and extraction. As examples, we
shall consider time-series data, images and unstructured point clouds in three spatial dimensions. Furthermore, we provide
rigorous estimates for the decay of the samplet coefficients based on the local regularity of the underlying signal.

In addition to the construction of samplets and signal compression, we consider the compression of kernel matrices,
as they arise in kernel based learning and scattered data approximation, compare [18,29,38,44–46]. Kernel matrices are
typically densely populated, since the underlying kernels are nonlocal. Nonetheless, these kernels are usually asymptoti-
cally smooth, meaning that they behave like smooth functions apart from the diagonal. Cluster methods, such as the fast
multipole method, see [23,35,47], or hierarchical matrices, cf. [6,24], exploit this asymptotical smoothness to obtain a data-
sparse representation of the kernel matrix by means of blockwise low-rank approximations. Vice versa, the discretization
of asymptotical smooth kernels employing a samplet or a wavelet basis with vanishing moments results in quasi-sparse
kernel matrices, i.e. they can be compressed such that only a sparse matrix remains, compare [5,12,14,40,42], where this
has been shown for the wavelet case. We derive corresponding compression error estimates for samplets and present an
algorithm with almost linear runtime to compute the compressed matrix. In [27], it has been numerically demonstrated
that nested dissection, see [19,32], is applicable to obtain a fill-in reducing reordering of such compressed matrices in the
standard form. This reordering allows for the rapid factorization of the compressed matrix by the Cholesky factorization
without introducing additional errors. A reordering approach based on operator adapted wavelets, cf. [36], is discussed in
[39]. The latter is, however, only proven to work for Green’s functions with homogenous boundary conditions on Lipschitz
domains. The approximate Cholesky factorization was also computed for matrices given in wavelet coordinates by means of
the non-standard form in [21] and with the aid of hierarchical matrices, see for instance [24].

The rest of this article is organized as follows. In Section 2, the concept of samplets is introduced. The subsequent
Section 3 is devoted to the construction of samplets and to their properties. The change of basis by means of the fast
samplet transform is the topic of Section 4. Section 5 deals with the samplet compression of kernel matrices. Especially,
we recapitulate certain H2-matrix techniques and leverage them to efficiently compute the compressed kernel matrix. In
Section 6, we numerically demonstrate the capabilities of samplets for data compression and the compression of kernel
matrices. Numerical results in up to four dimensions are provided. Finally, in Section 7, we state concluding remarks.

Throughout this article, in order to avoid the repeated use of generic but unspecified constants, by C � D we indicate
that C can be bounded by a multiple of D , independently of parameters which C and D may depend on. Moreover, C � D
is defined as D � C and C ∼ D as C � D and D � C .

2. Samplets

Let X := {x1, . . . , xN } ⊂ � denote a set of points within some bounded or unbounded region � ⊂ Rd . Associated to each
point xi , we introduce the Dirac measure

δxi (x) :=
{

1, if x = xi

0, otherwise.

We define the point evaluation functional according to

(f , δxi)� =
∫
�

f (x)δxi (x)d x :=
∫
�

f (x)δxi (d x) = f (xi),

where (·, ·)� denotes the L2(�)-duality pairing and f ∈ C(�) is a continuous function.
2

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Next, we define the space X := span{δx1 , . . . , δxN } as the N-dimensional vector space of all discrete and finite signed
measures supported at the points in X . An inner product on X is given by

〈u, v〉X :=
N∑

i=1

ui vi, where u =
N∑

i=1

uiδxi , v =
N∑

i=1

viδxi .

Indeed, the space X is isometrically isomorphic to RN endowed with the canonical inner product. To construct a multires-
olution analysis, we introduce the spaces X j := span � j with

� j := {ϕ j,k : k ∈ I j}.
Herein, I j denotes a suitable index set with cardinality |I j | = dimX j and j ∈N is referred to as level. Moreover, each basis
element ϕ j,k is a linear combination of Dirac measures such that

〈ϕ j,k,ϕ j,k′ 〉X = 0 for k 	= k′.
In what follows, we shall identify bases by row vectors, such that, for v j = [v j,k]k∈I j , the corresponding measure can simply
be written as a dot product according to

v j = � j v j =
∑
k∈I j

v j,kϕ j,k. (1)

Rather than using only a single scale of the multiresolution analysis corresponding to the hierarchy

X0 ⊂ X1 ⊂ · · · ⊂ X ,

the idea of samplets is to keep track of the increment of information between two consecutive levels j and j + 1. Since we
have X j ⊂X j+1, we may decompose

X j+1 = X j
⊥⊕ S j (2)

by using the detail space S j . Of practical interest is the choice of the basis of the detail space S j in X j+1. This basis is
assumed to be orthonormal as well and will be denoted by

� j = {
σ j,k : k ∈ I�j := I j+1 \ I j

}
.

Recursively applying decomposition (2), we notice that the set

� J = �0 ∪
J−1⋃
j=0

� j

forms a basis of X J :=X , which we call a samplet basis. In view of data compression, an essential ingredient is the vanishing
moment condition, meaning that

(p,σ j,k)� = 0 for all p ∈ Pq(�), (3)

where Pq(�) denotes the space of all polynomials with total degree at most q. We say then that the samplets have q + 1
vanishing moments.

Remark 2.1. For quasi-uniform points, i.e. if the separation radius qX := 1
2 mini 	= j ‖xi − x j‖2 of X is similar to the fill

distance hX,� := supx∈� minxi∈X ‖x − xi‖2 in the sense that qX ∼ hX,� , we obtain bases which satisfy diam(suppϕ j,k) :=
diam({xi1 , . . . , xip }) ∼ 2− j/d and, likewise,

diam(suppσ j,k) ∼ 2− j/d. (4)

These properties are favorable with regard to the compression of data and the compression of kernel matrices. However, we
stress that this is not a requirement in our construction.

Remark 2.2. The concept of samplets has a very natural interpretation in the framework of reproducing kernel Hilbert
spaces, compare [3]. If (H, 〈·, ·〉H) is a reproducing kernel Hilbert space with reproducing kernel K, then there holds
(f , δxi)� = 〈K(xi, ·), f 〉H . Hence, the samplet σ j,k =∑p

�=1 β�δxi�
can be identified with the function

σ̂ j,k :=
p∑

�=1

β�K(xi� , ·) ∈ H.

Especially, there holds 〈σ̂ j,k, h〉H = 0 for any h ∈H which satisfies h|suppσ ∈Pq(suppσ j,k).
j,k

3

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
3. Construction and properties of samplets

3.1. Cluster tree

To construct samplets with the desired properties, especially vanishing moments, cf. (3), we shall transfer the wavelet
construction from [41] into our setting. The first step is to construct a hierarchy subspaces of signed measures. To this end,
we perform a hierarchical clustering of the set X .

Definition 3.1. Let T = (V , E) be a tree with vertices V and edges E . We define its set of leaves as L(T) := {ν ∈
V : ν has no sons}. The tree T is a cluster tree for the set X = {x1, . . . , xN}, iff X is the root of T and all ν ∈ P \ L(T)

are disjoint unions of their sons.
The level jν of ν ∈ T is its distance from the root, i.e. the number of edges that are required for traveling from X to ν .

The depth J of T is the maximum level of all clusters. We define the set of clusters on level j as T j := {ν ∈ T : ν has level j}.
Finally, the bounding box Bν of ν is the smallest axis-parallel cuboid that contains all its points.

There exist several choices for the construction of a cluster tree for the set X . Within this article, we will exclusively
consider binary trees and remark that other options, such as 2d-trees, are possible with the obvious modifications. Defini-
tion 3.1 provides a hierarchical cluster structure on the set X . Even so, it does not provide guarantees for the cardinalities
of the clusters. Therefore, we introduce the concept of a balanced binary tree.

Definition 3.2. Let T be a cluster tree for X with depth J . T is called a balanced binary tree, if all clusters ν satisfy the
following conditions:

(i) The cluster ν has exactly two sons if jν < J . It has no sons if jν = J .
(ii) There holds |ν| ∼ 2 J− jν , where |ν| denotes the number of points contained in ν .

A balanced binary tree can be constructed by cardinality balanced clustering. This means that the root cluster is split into
two son clusters of identical (or similar) cardinality. This process is repeated recursively for the resulting son clusters until
their cardinality falls below a certain threshold. For the subdivision, the cluster’s bounding box is split along its longest
edge such that the resulting two boxes both contain an equal number of points. Thus, as the cluster cardinality halves with
each level, we obtain O(log N) levels in total. The total cost for constructing the cluster tree is therefore O(N log N). Finally,
we remark that a balanced tree is only required to guarantee the cost bounds for the presented algorithms. The error and
compression estimates we shall present later on are robust in the sense that they are formulated directly in terms of the
actual cluster sizes rather than the introduced cluster level.

3.2. Construction of samplet bases

Having a cluster tree at hand, we shall now construct a samplet bases on the resulting hierarchical structure. We begin by
introducing a two-scale transform between basis elements on a cluster ν of level j. To this end, we create scaling distributions
�ν

j = {ϕν
j,k} and samplets �ν

j = {σν
j,k} as linear combinations of the scaling distributions �ν

j+1 of ν ’s son clusters. This results
in the refinement relations

ϕν
j,k =

nν
j+1∑

�=1

qν
j,
,�,kϕ

ν
j+1,� and σν

j,k =
nν

j+1∑
�=1

qν
j,�,�,kϕ

ν
j+1,� with nν

j+1 := |�ν
j+1|,

which may be written in matrix notation as

[�ν
j ,�

ν
j] := �ν

j+1 Q ν
j = �ν

j+1

[
Q ν

j,
, Q ν
j,�

]
, (5)

cf. (1).
In order to provide both, vanishing moments and orthonormality, the transformation Q ν

j has to be appropriately con-
structed. For this purpose, we consider an orthogonal decomposition of the moment matrix

Mν
j+1 :=

⎡
⎢⎢⎣

(x0,ϕ j+1,1)� · · · (x0,ϕ j+1,nν
j+1

)�

...
...

(xα,ϕ j+1,1)� · · · (xα,ϕ j+1,nν
j+1

)�

⎤
⎥⎥⎦= [(xα,�ν

j+1)�]|α|≤q ∈Rmq×nν
j+1 ,

where
4

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
mq :=
q∑

�=0

(
� + d − 1

d − 1

)
=
(

q + d

d

)
≤ (q + 1)d (6)

denotes the dimension of Pq(�).
In the original construction by Tausch and White, the matrix Q ν

j is obtained from a singular value decomposition of
Mν

j+1. For the construction of samplets, we follow the idea from [1] and rather employ the QR decomposition, which
results in samplets with an increasing number of vanishing moments. There holds

(Mν
j+1)

ᵀ = Q ν
j R =: [Q ν

j,
, Q ν
j,�

]
R (7)

Consequently, the moment matrix for the cluster’s own scaling distributions and samplets is given by

[
Mν

j,
, Mν
j,�

]=
[
(xα, [�ν

j ,�
ν
j])�

]
|α|≤q

=
[
(xα,�ν

j+1[Q ν
j,
, Q ν

j,�])�
]
|α|≤q

= Mν
j+1[Q ν

j,
, Q ν
j,�] = Rᵀ.

(8)

As Rᵀ is a lower triangular matrix, the first k − 1 entries in its k-th column are zero. This corresponds to k − 1 vanishing
moments for the k-th distribution generated by the transformation Q ν

j = [Q ν
j,
, Q ν

j,�]. By defining the first mq distribu-
tions as scaling distributions and the remaining ones as samplets, we obtain samplets with vanishing moments at least up
to order q + 1. If we choose a minimum leaf size for the cluster tree such that |ν| ≥ mq̂ ≥ 2mq for all ν ∈ L(T) and some
polynomial degree q̂ > q, we can even construct samplets with an increasing number of vanishing moments from order
q + 1 up to order q̂ + 1 without additional cost. This is advantageous since more vanishing moments typically improve the
a-posteriori compression ratios of a given signal.

Remark 3.3. The samplet construction using vanishing moments is inspired by the classical wavelet theory. However, it is
easily possible to adapt the construction to other primitives than polynomials.

Remark 3.4. Each cluster has at most a constant number of scaling distributions and samplets. For a given cluster ν , their
number is identical to the cardinality of �ν

j+1. For leaf clusters, this number is bounded by the leaf size. For non-leaf
clusters, it is bounded by the number of scaling distributions from its son clusters. As there are at most two son clusters
with a maximum of mq scaling distributions each, we obtain the bound 2mq for non-leaf clusters. If �ν

j+1 has less than
mq + 1 elements, there are no samplets and all distributions are considered as scaling distributions.

For leaf clusters, we define the scaling distributions by the Dirac measures supported at the points xi ∈ X , i.e. �ν
J := {δxi :

xi ∈ ν}. The scaling distributions of all clusters on a specific level j then generate the spaces

X j := span{ϕν
j,k : k ∈ Iνj , ν ∈ T j}, (9)

while the samplets span the detail spaces

S j := span
{
σν

j,k : k ∈ I�,ν
j , ν ∈ T j

}= X j+1
⊥�X j . (10)

Combining the scaling distributions of the root cluster with all clusters’ samplets gives rise to the samplet basis

�N := �X
0 ∪

⋃
ν∈T

�ν
j . (11)

Writing �N = {σk : 1 ≤ k ≤ N}, where σk is either a samplet or a scaling distribution at the root cluster, we obtain a
unique indexing of all the signed measures comprising the samplet basis. The indexing induces an order for the set �N .
We choose this order to be level-dependent, i.e. the samplets of a cluster are grouped together, with those on finer levels
having larger indices.

Remark 3.5. The present construction of samplet bases on a balanced cluster tree can always be performed with linear cost
O(N), we refer to [1] for a proof of this statement.

3.3. Properties of samplets

By construction, samplets satisfy the following properties, which can be inferred by adapting the corresponding results
from [26,41].
5

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Theorem 3.6. The spaces X j defined in equation (9) form a multiresolution analysis

X0 ⊂ X1 ⊂ · · · ⊂ X J = X ,

where the corresponding complement spaces S j from (10) satisfy S j+1 = X j
⊥⊕ S j for all j = 0, 1, . . . , J − 1. The associated samplet

basis �N defined in (11) is an orthonormal basis in X . In particular, there holds:

(i) The number of all samplets on level j behaves like 2 j .
(ii) The samplets have q + 1 vanishing moments.
(iii) Each samplet is supported in a specific cluster ν .

Remark 3.7. In the situation of Theorem 3.6, if the points in X are even quasi-uniform, then the diameter of the cluster
satisfies diam(ν) ∼ 2− jν/d and there holds (4).

Remark 3.8. Due to S j ⊂ X and X0 ⊂ X , we conclude that each samplet is a linear combination of the Dirac measures
supported at the points in X . Especially, the related coefficient vectors ω j,k in the representations

σ j,k =
N∑

i=1

ω j,k,iδxi and ϕ0,k =
N∑

i=1

ω0,k,iδxi (12)

are pairwise orthonormal with respect to the inner product on RN .

Later on, the following bound on the samplets’ coefficients ‖ · ‖1-norm will be essential:

Lemma 3.9. The coefficient vector ω j,k = [
ω j,k,i

]N
i=1 of the samplet σ j,k on the cluster ν fulfills

‖ω j,k‖1 ≤√|ν|. (13)

The same bound holds for the coefficient vectors of the scaling distributions ϕ j,k.

Proof. There holds ‖ω j,k‖2 = 1. Hence, the assertion follows immediately from the Cauchy-Schwarz inequality

‖ω j,k‖1 ≤√|ν|‖ω j,k‖2 =√|ν|.

The key for data compression and feature detection is the following estimate which shows that the samplet coefficients
decay with respect to the samplet’s support size provided that the data result from the evaluation of a smooth function.
Hence, in case of smooth data, the samplet coefficients are small and can be set to zero without compromising the accuracy.
Vice versa, a large samplet coefficient indicates that the data are singular in the region of the samplet’s support.

Lemma 3.10. Let f ∈ Cq+1(�). Then, it holds for a samplet σ j,k supported on the cluster ν that

|(f ,σ j,k)�| ≤
(

d

2

)q+1 diam(ν)q+1

(q + 1)! ‖ f ‖Cq+1(�)‖ω j,k‖1. (14)

Proof. For x0 ∈ ν , a Taylor expansion of f yields

f (x) =
∑
|α|≤q

∂ |α|

∂xα
f (x0)

(x − x0)
α

α! + Rx0(x).

Herein, the remainder Rx0(x) reads

Rx0(x) = (q + 1)
∑

|α|=q+1

(x − x0)
α

α!
1∫

0

∂q+1

∂xα
f
(
x0 + s(x − x0)

)
(1 − s)q d s.

In view of the vanishing moments, we conclude
6

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 1. Visualization of the fast samplet transform.

|(f ,σ j,k)�| = |(Rx0 ,σ j,k)�| ≤
∑

|α|=q+1

max
x∈ν

‖x − x0‖|α|
2

α! max
x∈ν

∣∣∣∣∂q+1

∂xα
f (x)

∣∣∣∣‖ω j,k‖1

≤
(

d

2

)q+1 diam(ν)q+1

(q + 1)! ‖ f ‖Cq+1(�)‖ω j,k‖1.

Here, we used the identity

∑
|α|=q+1

2−(q+1)

α! = 2−(q+1)

(q + 1)!
∑

|α|=q+1

(q + 1)!
α! = 1

(q + 1)!
(

d

2

)q+1

,

which is obtained by choosing x0 as the cluster’s midpoint and the multinomial theorem.

4. Fast samplet transform

In order to transform between the samplet basis and the basis of Dirac measures, we introduce the fast samplet transform
and its inverse. To this end, we assume that the data (x1, y1), . . . , (xN , yN) result from the evaluation of some (unknown)
function f : � →R, i.e.

yi = f

i = (f , δxi)�.

Hence, we may represent the function f on X according to

f =
N∑

i=1

f

i δxi .

Our goal is now to compute the representation

f =
N∑

i=1

f �
i σi

with respect to a samplet basis. For the sake of a simpler notation, let f
 := [f

i]N

i=1 and f � := [f �
i]N

i=1 denote the
associated coefficient vectors. Then, the samplet transform amounts to a change of basis f � = T f
 with an orthogonal
matrix T ∈RN×N . The actual implementation of this change of basis is, however, recursive.

To implement the fast samplet transform, we recursively apply the refinement relation (5) to the point evaluations

(f , [�ν
j ,�

ν
j])� = (f ,�ν

j+1[Q ν
j,
, Q ν

j,�])� = (f ,�ν
j+1)�[Q ν

j,
, Q ν
j,�]. (15)

On the finest level, the entries of the vector (f , �ν
J)� are exactly those of f
 . Recursively applying Equation (15) therefore

yields all the coefficients (f , �ν
j)� , including (f , �X

0)� , required for the representation of f in the samplet basis, see Fig. 1
for a visualization of the resulting fish bone scheme. The complete procedure is formulated in Algorithm 1.

Algorithm 1: Fast samplet transform.

Data: Data f
 , cluster tree T and transformations [Q ν
j,
, Q ν

j,�].
Result: Coefficients f � stored as [(f , �X

0)�]ᵀ and [(f , �ν
j)�]ᵀ .

begin
store [(f , �X

0)�]ᵀ := transformForCluster(X)
end
7

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
The inverse transformation is obtained by reversing the steps of the fast samplet transform: For each cluster, we compute

(f ,�ν
j+1)� = (f , [�ν

j ,�
ν
j])�[Q ν

j,
, Q ν
j,�]ᵀ

to either obtain the coefficients of the son clusters’ scaling distributions or, for leaf clusters, the coefficients f
 . The proce-
dure is summarized in Algorithm 2.

Function transformForCluster(ν).

begin
if ν = {xi1 , . . . , xi|ν| } is a leaf of T then

set f ν
j+1 := [

f

ik

]|ν|
k=1

else
for all sons ν ′ of ν do

execute transformForCluster(ν ′)
append the result to f ν

j+1

end
end
set [(f , �ν

j)�]ᵀ := (Q ν
j,�)ᵀ f ν

j+1

return (Q ν
j,
)ᵀ f ν

j+1

end

Algorithm 2: Inverse samplet transform.

Data: Coefficients f � , cluster tree T and transformations [Q ν
j,
, Q ν

j,�].
Result: Coefficients f
 stored as [(f , �ν

j)�]ᵀ .

begin
inverseTransformForCluster(X , [(f , �X

0)�]ᵀ)
end

Function inverseTransformForCluster(ν , [(f , �ν
j)�]ᵀ).

begin

[(f , �ν
j+1)�]ᵀ := [Q ν

j,
, Q ν
j,�]

[
[(f ,�ν

j)�]ᵀ
[(f ,�ν

j)�]ᵀ
]

if ν = {xi1 , . . . , xi|ν| } is a leaf of T then

set [f

ik

]|ν|
k=1 := [(f , �ν

jν+1)�]ᵀ
else

for all sons ν ′ of ν do
assign the part of [(f , �ν

j+1)�]ᵀ belonging to ν ′ to [(f , �ν ′
j′)�]ᵀ

execute inverseTransformForCluster(ν ′ , [(f , �ν ′
j′)�]ᵀ)

end
end

end

The fast samplet transform and its inverse can be performed in linear cost. This result is well known in case of wavelets
and was crucial for their rapid development.

Theorem 4.1. The runtime of the fast samplet transform and the inverse samplet transform are O(N), each.

Proof. As the samplet construction follows the construction of Tausch and White, we refer to [41] for the details of the
proof.

5. Compression of kernel matrices

5.1. Kernel matrices

The second application of samplets we consider is the compression of matrices arising from positive (semi-)definite
kernels, as they arise in kernel based learning and scattered data approximation, see for example [29,38,44,46] and the
references therein. We start by recalling the concept of a positive kernel.
8

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Definition 5.1. A symmetric kernel K : � × � → R is called positive (semi-)definite on � ⊂ Rd , iff [K(xi, x j)]N
i, j=1 is a sym-

metric and positive (semi-)definite matrix for all {x1, . . . , xN } ⊂ � and all N ∈N .

Given the set of points X = {x1, . . . , xN }, many applications require the assembly and the inversion of the kernel matrix

K := [K(xi, x j)]N
i, j=1 ∈RN×N

or an appropriately regularized version K + μI , μ > 0, thereof. In case that N is a large number, already the assembly and
storage of K can easily become prohibitive. For the solution of an associated linear system, the situation is even worse.
Fortunately, the kernel matrix can be compressed by employing samplets. To this end, the evaluation of the kernel function
at the points xi and x j will be denoted by

(K, δxi ⊗ δx j)�×� := K(xi, x j).

Hence, in view of X = span{δx1 , . . . , δxN }, we write the kernel matrix as

K = [
(K, δxi ⊗ δx j)�×�

]N
i, j=1.

5.2. Asymptotically smooth kernels

We base the samplet compression of kernel matrices on the asymptotical smoothness property of the kernel K, that is∣∣∣∣ ∂ |α|+|β|

∂xα∂ yβ
K(x, y)

∣∣∣∣≤ cK
(|α| + |β|)!

ρ|α|+|β|‖x − y‖|α|+|β|
2

, cK,ρ > 0. (16)

Remark 5.2. A particular class of positive definite kernels which are asymptotically smooth are the Matérn kernels given by

kλ(r) := 21−λ

�(λ)

(√
2λr

�

)λ

Kλ

(√
2λr

�

)
, r ≥ 0, � > 0.

Herein, Kλ is the modified Bessel function of the second kind of order λ and � is the gamma function. The parameter λ
controls the smoothness of the kernel function, see for example [45]. In particular, we have

k1/2(r) = exp

(
− r

�

)
, k∞(r) = exp

(
− r2

2�2

)
.

A positive definite kernel in the sense of Definition 5.1 is obtained by K(x, y) := kλ(‖x − y‖2).

Based on the asymptotical smoothness property (16), we obtain the following result, which is the basis for the matrix
compression introduced thereafter.

Lemma 5.3. Consider two samplets σ j,k and σ j′,k′ , exhibiting q +1 vanishing moments with supporting clusters ν and ν ′ , respectively.
Assume that dist(ν, ν ′) > 0. Then, for kernels satisfying (16), there holds

(K,σ j,k ⊗ σ j′,k′)�×� ≤ cK
diam(ν)q+1 diam(ν ′)q+1

(dρ dist(ν j,k, ν j′,k′))2(q+1)
‖ω j,k‖1‖ω j′,k′ ‖1. (17)

Proof. Let x0 ∈ ν and y0 ∈ ν ′ . A Taylor expansion of the kernel with respect to x yields

K(x, y) =
∑
|α|≤q

∂ |α|K(x0, y)

∂xα

(x − x0)
α

α! + Rx0(x, y),

where the remainder Rx0 (x, y) is given by

Rx0(x, y) = (q + 1)
∑

|α|=q+1

(x − x0)
α

α!
1∫

0

∂q+1

∂xα
K
(
x0 + s(x − x0), y

)
(1 − s)q d s.

Next, we expand the remainder Rx0 (x, y) with respect to y and derive
9

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Rx0(x, y) = (q + 1)
∑

|α|=q+1

(x − x0)
α

α!
∑
|β|≤q

(y − y0)
β

β!

×
1∫

0

∂q+1

∂xα

∂ |β|

∂ yβ
K
(
x0 + s(x − x0), y0

)
(1 − s)q d s + Rx0,y0(x, y).

Here, the remainder Rx0,y0 (x, y) is given by

Rx0,y0(x, y) = (q + 1)2
∑

|α|,|β|=q+1

(x − x0)
α

α!
(y − y0)

β

β!

×
1∫

0

1∫
0

∂2(q+1)

∂xα∂ yβ
K
(
x0 + s(x − x0), y0 + t(y − y0)

)
(1 − s)q(1 − t)q d t d s.

We thus arrive at the decomposition

K(x, y) = p y(x) + px(y) + Rx0,y0(x, y),

where p y(x) is a polynomial of degree q in x, with coefficients depending on y, while px(y) is a polynomial of degree q in
y, with coefficients depending on x. Due to the vanishing moments, we obtain

(K,σ j,k ⊗ σ j′,k′)�×� = (Rx0,y0 ,σ j,k ⊗ σ j′,k′)�×�.

In view of (16), we thus find

|(K,σ j,k ⊗ σ j′,k′)�×�| = |(Rx0,y0 ,σ j,k ⊗ σ j′,k′)�×�|

≤ cK

(∑
|α|,|β|=q+1

(|α| + |β|)!
α!β!

)
(‖ · −x0‖q+1

2 , |σ j,k|)�(‖ · −y0‖q+1
2 , |σ j′,k′ |)�

ρ2(q+1) dist(ν, ν ′)2(q+1)
.

Now, we have by means of multinomial coefficients that

(|α| + |β|)! =
(|α| + |β|

|β|
)(|α|

α

)(|β|
β

)
α!β!,

which in turn implies that

∑
|α|,|β|=q+1

(|α| + |β|)!
α!β! =

(
2(q + 1)

q + 1

) ∑
|α|,|β|=q+1

(|α|
α

)(|β|
β

)

=
(

2(q + 1)

q + 1

)
d2(q+1) ≤ d2(q+1)22(q+1).

Moreover, we use

(‖ · −x0‖q+1
2 , |σ j,k|)� ≤

(
diam(ν)

2

)q+1

‖ω j,k‖1,

and likewise

(‖ · −y0‖q+1
2 , |σ j′,k′ |)� ≤

(
diam(ν ′)

2

)q+1

‖ω j′,k′ ‖1.

Combining all the estimates, we arrive at the desired result (17).

5.3. Matrix compression

Lemma 5.3 immediately suggests a compression strategy for kernel matrices in samplet representation. This compression
differs from the wavelet matrix compression introduced in [12], since we do not exploit the decay of the samplet coeffi-
cients with respect to the level in case of smooth data. This enables us to also cover the case of non-quasi-uniform data.
Consequently, we use on all levels the same accuracy, which is similar to the setting in [5].
10

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Theorem 5.4. Set all coefficients of the kernel matrix

K � := [
(K,σ j,k ⊗ σ j′,k′)�×�

]
j, j′,k,k′

to zero which satisfy the admissibility condition

dist(ν, ν ′) ≥ η max{diam(ν),diam(ν ′)}, η > 0, (18)

where ν is the cluster supporting σ j,k and ν ′ is the cluster supporting σ j′,k′ , respectively. Then, there holds∥∥K � − K �
ε

∥∥
F ≤ cK

√
csum(ηdρ)−2(q+1)mq N

√
log(N),

for some constant csum > 0, where mq is given by (6).

Proof. Fix the levels j and j′ . In view (17), we can estimate any coefficient which satisfies (18) by

|(K,σ j,k ⊗ σ j′,k′)�×�| ≤ cK

(
min{diam(ν),diam(ν ′)}
max{diam(ν),diam(ν ′)}

)q+1

(ηdρ)−2(q+1)‖ω j,k‖1‖ω j′,k′ ‖1.

If we next set

θ j, j′ := max
ν∈T j,ν ′∈T j′

{
min{diam(ν),diam(ν ′)}
max{diam(ν),diam(ν ′)}

}
,

then we obtain

|(K,σ j,k ⊗ σ j′,k′)�×�| ≤ cKθ
q+1
j, j′ (ηdρ)−2(q+1)‖ω j,k‖1‖ω j′,k′ ‖1

for all coefficients such that (18) holds. In view of (13) and the fact that there are at most mq samplets per cluster, we
arrive at∑

k,k′
‖ω j,k‖2

1‖ω j′,k′ ‖2
1 ≤

∑
k,k′

|ν| · |ν ′| = m2
q N2.

Thus, for a fixed level-level block, we arrive at the estimate∥∥K �
j, j′ − K �

ε, j, j′
∥∥2

F ≤
∑

k,k′: dist(ν,ν ′)
≥η max{diam(ν),diam(ν ′)}

|(K,σ j,k ⊗ σ j′,k′)�×�|2 ≤ c2
Kθ

2(q+1)

j, j′ (ηdρ)−4(q+1)m2
q N2.

Finally, summation over all levels yields∥∥K � − K �
ε

∥∥2
F =

∑
j, j′

∥∥K �
j, j′ − K �

ε, j, j′
∥∥2

F ≤ c2
K(ηdρ)−4(q+1)m2

q N2
∑
j, j′

θ
2(q+1)

j, j′

≤ c2
Kcsum(ηdρ)−4(q+1)m2

q N2 log N,

which is the desired claim.

Corollary 5.5. In case of quasi-uniform points xi ∈ X, we have
∥∥K �

∥∥
F ∼ N. Thus, we immediately obtain∥∥K � − K �

ε

∥∥
F∥∥K �

∥∥
F

≤ cK
√

csum(ηdρ)−2(q+1)mq

√
log N,

where the compressed matrix has O(m2
q N log N) remaining coefficients.

Proof. We fix j, j′ and assume j ≥ j′ . In case of quasi-uniform points, there holds diam(v) ∼ 2− jν/d . Hence, for the cluster
ν j′,k′ , there exist only O([2 j− j′]d) clusters ν j,k from level j, which do not satisfy the admissibility condition (18). Since each
cluster contains at most mq samplets, we arrive at

J∑
j=0

∑
j′≤ j

m2
q(2 j′ 2(j− j′))d = m2

q

J∑
j=0

j2 jd ∼ m2
q N log N,

which implies the assertion.

Remark 5.6. The admissibility condition (18) is a multilevel version of the admissibility condition used by hierarchical
matrices, see e.g. [24].
11

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
5.4. Compressed matrix assembly

For a given pair of clusters, we can now determine whether the corresponding entries need to be calculated. As there
are O(N) clusters, naively checking the admissibility condition for all pairs would still take O(N2) operations. Hence, we
require smarter means to determine the non-negligible cluster pairs. For this purpose, we first state the transferability of
the admissibility condition to son clusters, compare [12] for a proof.

Lemma 5.7. Let ν and ν ′ be clusters satisfying the admissibility condition (18). Then, for the son clusters νson of ν and ν ′
son of ν ′ , we

have

dist(ν, ν ′
son) ≥ η max{diam(ν),diam(ν ′

son)},
dist(νson, ν ′) ≥ η max{diam(νson),diam(ν ′)},

dist(νson, ν ′
son) ≥ η max{diam(νson),diam(ν ′

son)}.

The lemma tells us that we may omit cluster pairs whose father clusters already satisfy the admissibility condition.
This will be essential for the assembly of the compressed matrix. The computation of the compressed kernel matrix can
be sped up further by using H2-matrix techniques, see [20,25]. This idea was used earlier in [1,26,30] in case of Tausch-
White wavelets. H2-matrices approximate the kernel interaction for sufficiently distant clusters ν and ν ′ in the sense
of the admissibility condition (18) by means of a polynomial interpolant, see [6]. More precisely, given a suitable set of
interpolation points {ξν

t }t for each cluster ν with associated Lagrange polynomials {Lν
t (x)}t , we introduce the interpolation

operator

Iν,ν ′ [K](x, y) =
∑
s,t

K(ξν
s , ξν ′

t)Lν
s (x)Lν ′

t (y)

and approximate an admissible matrix block via

K

ν,ν ′ = [(K, δx ⊗ δy)�×�]x∈ν,y∈ν ′

≈
∑
s,t

K(ξν
s , ξν ′

t)[(Lν
s , δx)�]x∈ν [(Lν ′

t , δy)�]y∈ν ′ =: V ν

 Sν,ν ′

(V ν ′

)ᵀ. (19)

Herein, the cluster bases are given according to

V ν

 := [(Lν

s , δx)�]x∈ν, V ν ′

 := [(Lν ′

t , δy)�]y∈ν ′ , (20)

while the coupling matrix is given by Sν,ν ′ := [K(ξν
s , ξν ′

t)]s,t .

Remark 5.8. Different from the H2-matrix setting, we shall consider the expansion (19) also when the clusters ν and ν ′ are
located on different levels of the cluster tree.

Directly transforming the cluster bases into their corresponding samplet representation results in a log-linear cost. This
can be avoided by the use of nested cluster bases, as they have been introduced for H2-matrices. For the sake of simplicity,
we assume from now on that a fixed polynomial degree p is used for the kernel interpolation at all different cluster
combinations. Therefore, the Lagrange polynomials of a father cluster can exactly be represented by those of the son clusters.
Introducing the transfer matrices T νson := [Lν

s (ξ
νson
t)]s,t , there holds

Lν
s (x) =

∑
t

T νson
s,t Lνson

t (x), x ∈ Bνson .

Exploiting this relation in the construction of the cluster bases (20) leads to the recursive refinement relation

V ν

 =

[
V

νson1

 T νson1

V
νson2

 T νson2

]
.

Combining this refinement relation with the recursive nature of the samplet basis, results in the variant of the fast samplet
transform summarized in Algorithm 3.

Having the multiscale cluster bases at our disposal, the next step is the actual assembly of the compressed kernel matrix.
The computation of the required matrix blocks is exclusively build upon the two refinement relations[

K
,

ν,ν ′ K
,�

ν,ν ′
K �,

ν,ν ′ K �,�
ν,ν ′

]
=
⎡
⎣K
,

ν,ν ′
son1

K
,

ν,ν ′
son2

K �,

ν,ν ′ K �,

ν,ν ′

⎤
⎦[

Q ν ′
j,
, Q ν ′

j,�

]

son1 son2

12

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Algorithm 3: Recursive computation of the multiscale cluster basis.
Data: Cluster tree T , transformations [Q ν

j,
 , Q ν
j,�], nested cluster bases V ν

 for leaf clusters and transformation matrices T νson1 , T νson2 for
non-leaf clusters.

Result: Multiscale cluster basis matrices V ν

 , V ν

� for all clusters ν ∈ T .
begin

computeMultiscaleClusterBasis(X);
end

Function computeMultiscaleClusterBasis(ν).

begin
if ν is a leaf cluster then

store
[

V ν

V ν
�

]
:= [

Q ν
j,
, Q ν

j,�

]ᵀ
V ν

else
for all sons ν ′ of ν do

computeMultiscaleClusterBasis(ν ′)
end

store
[

V ν

V ν
�

]
:= [

Q ν
j,
, Q ν

j,�

]ᵀ [
V

νson1

 T νson1

V
νson2

 T νson2

]

end
end

and [
K
,

ν,ν ′ K
,�
ν,ν ′

K �,

ν,ν ′ K �,�

ν,ν ′

]
= [

Q ν
j,
, Q ν

j,�

]ᵀ [K
,

νson1 ,ν ′ K
,

νson1 ,ν ′

K �,

νson2 ,ν ′ K �,

νson2 ,ν ′

]
,

where we set[
K
,

ν,ν ′ K
,�
ν,ν ′

K �,

ν,ν ′ K �,�

ν,ν ′

]
:=

[
(K,�ν ⊗ �ν ′

)�×� (K,�ν ⊗ �ν ′
)�×�

(K,�ν ⊗ �ν ′
)�×� (K,�ν ⊗ �ν ′

)�×�

]
.

Based on these relations, we introduce the function recursivelyDetermineBlock, which is the key ingredient for the
computation of the compressed kernel matrix. Note that this function never requires the formation of the actual H2-matrix,
as it only embeds the multilevel interpolation procedure to rapidly evaluate admissible blocks. Especially, the evaluation of
the coupling matrices can be performed on the fly, significantly reducing the memory requirements of the method.

Next, to assemble the compressed kernel matrix in standard form, we have to traverse the tensor product T ⊗ T of the
cluster tree. To this end, we employ two nested recursive calls of the cluster tree, which is traversed in a depth first search
way. Algorithm 4 first computes the lower right matrix block and advances from bottom to top and from right to left. It
relies on the two recursive functions setupColumn and setupRow. The purpose of the function setupColumn is to
recursively traverse the column cluster tree, i.e. the cluster tree associated to the columns of the matrix. Before returning,
each instance of setupColumn calls the function setupRow, which performs the actual assembly of the compressed
matrix. For a given column cluster ν ′ , the function setupRow recursively traverses the row cluster tree, i.e. the cluster
tree associated to the rows of the matrix, and assembles the corresponding column of the compressed matrix. The function
reuses the already computed blocks to the right of the column under consideration and blocks at the bottom of the very
same column.

Remark 5.9. Algorithm 4 has a cost of O(N log N) and requires an additional storage of O(N log N) if all stored blocks are
directly released when they are not required anymore. We refer to [1] for all the details.

6. Numerical results

6.1. Data compression

To demonstrate the efficacy of the samplet analysis, we compress data in one, two and three spatial dimensions. For
each example, we use samplets with q + 1 = 3 vanishing moments.

One dimension
We start with two one-dimensional examples. On the one hand, we consider the function

f (x) = 3
e−40|x− 1

4 | + 2e−40|x| − e−40|x+ 1
2 |,
2

13

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Function recursivelyDetermineBlock(ν , ν ′).

Result: Approximation of the block
[

K
,

ν,ν ′ K
,�

ν,ν ′
K �,

ν,ν ′ K �,�
ν,ν ′

]
.

begin
if (ν, ν ′) is admissible then

return
[

V ν

V ν
�

]
Sν,ν ′ [

(V ν ′

)ᵀ, (V ν ′

�)ᵀ
]

else if ν and ν ′ are leaf clusters then
return

[
Q ν

j,
, Q ν
j,�

]ᵀ
K

ν,ν ′
[

Q ν ′
j,
, Q ν ′

j,�

]
else if ν ′ is not a leaf cluster and ν is a leaf cluster then

for all sons ν ′
son of ν ′ do[

K
,

ν,ν ′
son

K
,�

ν,ν ′
son

K �,

ν,ν ′
son

K �,�

ν,ν ′
son

]
:= recursivelyDetermineBlock(ν, νson′)

end

return

⎡
⎣ K
,

ν,ν ′
son1

K
,

ν,ν ′
son2

K �,

ν,ν ′
son1

K �,

ν,ν ′
son2

⎤
⎦[

Q ν ′
j,
, Q ν ′

j,�

]
else if ν is not a leaf cluster and ν ′ is a leaf cluster then

for all sons νson of ν do[
K
,

νson,ν ′ K
,�
νson,ν ′

K �,

νson,ν ′ K �,�

νson,ν ′

]
:= recursivelyDetermineBlock(νson, ν ′)

end

return
[

Q ν
j,
, Q ν

j,�

]ᵀ [
K
,

νson1 ,ν ′ K
,

νson1 ,ν ′

K �,

νson2 ,ν ′ K �,

νson2 ,ν ′

]
.

else
for all sons νson of ν and all sons ν ′

son of ν ′ do[
K
,

νson,ν ′
son

K
,�

νson,ν ′
son

K �,

νson,ν ′
son

K �,�

νson,ν ′
son

]
:= recursivelyDetermineBlock(νson, νson′)

end

return
[

Q ν
j,
, Q ν

j,�

]ᵀ ⎡
⎣ K
,

νson1 ,ν ′
son1

K
,

νson1 ,ν ′
son2

K
,

νson2 ,ν ′
son1

K
,

νson2 ,ν ′
son2

⎤
⎦[

Q ν ′
j,
, Q ν ′

j,�

]
end

end

Algorithm 4: Computation of the compressed kernel matrix.
Data: Cluster tree T , multiscale cluster bases V ν

 , V ν
� and transformations [Q ν

j,
, Q ν
j,�].

Result: Sparse matrix K �
ε

begin
setupColumn(X)
store the remaining blocks K �

ε,ν,X for ν ∈ T \ {X} in K �
ε (they have already been computed by earlier calls to

recursivelyDetermineBlock)
end

Function setupColumn(ν ′).
begin

for all sons ν ′
son of ν ′ do

setupColumn(ν ′
son)

end
store K �

ε,X,ν ′ := setupRow(X, ν ′) in K �
ε

end

sampled at 8192 uniformly distributed random points on [−1, 1]. On the other hand, we consider a sample path of the
Brownian motion sampled at the same points. The coefficients of the samplet transformed data are thresholded with
10−i‖ f �‖∞ , i = 1, 2, 3, respectively. The resulting compression ratios and the reconstructions can be found in Fig. 2 and
Fig. 3, respectively. One readily infers that in both cases high compression rates are achieved at high accuracy. In case of
the Brownian motion, the smoothing of the sample data can be realized by increasing the compression rate, corresponding
to truncating more and more detail information. Due to the orthonormality of the samplet basis, this procedure amounts to
a least squares fit of the data.
14

Function setupRow(ν , ν ′).
begin

if ν is not a leaf then
for all sons νson of ν do

if νson and ν ′ are not admissible then[
K
,

νson,ν ′ K
,�
νson,ν ′

K �,

νson,ν ′ K �,�

νson,ν ′

]
:= setupRow(νson, ν ′)

else[
K
,

νson,ν ′ K
,�
νson,ν ′

K �,

νson,ν ′ K �,�

νson,ν ′

]
:= recursivelyDetermineBlock(νson, ν ′)

end
end[

K
,

ν,ν ′ K
,�

ν,ν ′
K �,

ν,ν ′ K �,�
ν,ν ′

]
:= [

Q ν

, Q ν

�

]ᵀ [
K
,

νson1 ,ν ′ K
,

νson1 ,ν ′

K �,

νson2 ,ν ′ K �,

νson2 ,ν ′

]

else
if ν ′ is a leaf cluster then[

K
,

νson,ν ′ K
,�

νson,ν ′
K �,

νson,ν ′ K �,�
νson,ν ′

]
:= recursivelyDetermineBlock(νson, ν ′)

else
for all sons ν ′

son of ν ’ do
if ν and ν ′

son are not admissible then

load already computed block
[

K
,

ν,ν ′
son

K
,�

ν,ν ′
son

K �,

ν,ν ′
son

K �,�

ν,ν ′
son

]

else[
K
,

ν,ν ′
son

K
,�

ν,ν ′
son

K �,

ν,ν ′
son

K �,�

ν,ν ′
son

]
:= recursivelyDetermineBlock(ν, νson′)

end
end

end[
K
,

ν,ν ′ K
,�
ν,ν ′

K �,

ν,ν ′ K �,�

ν,ν ′

]
:=

⎡
⎣ K
,

ν,ν ′
son1

K
,

ν,ν ′
son2

K �,

ν,ν ′
son1

K �,

ν,ν ′
son2

⎤
⎦[

Q ν ′

 , Q ν ′

�

]
end

store K �,�
ν,ν ′ as part of K �

ε return

[
K
,

ν,ν ′ K
,�
ν,ν ′

K �,

ν,ν ′ K �,�

ν,ν ′

]

end

Fig. 2. Sampled function approximated with different compression ratios.

Two dimensions
As a second application for samplets, we consider image compression. We use a 2000 × 2000 pixel grayscale landscape

image depicted in Fig. 4. The coefficients of the samplet transformed image are thresholded with 10−i‖ f �‖∞ , i = 2, 3, 4,
respectively. The corresponding results and compression rates can be found on the left hand side of the figure. A visualiza-
tion of the samplet coefficients in case of the respective low compression can be found on the right hand side of the figure.
As can be seen, the samplets localize at the sharp features of the image.
H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
15

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616

Fig. 3. Sampled Brownian motion approximated with different compression ratios.

Fig. 4. Different compression rates of the test image (left) and dominant samplet coefficients for the low compression (right). (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Data on the Stanford bunny (left) and dominant samplet coefficients (right).
16

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 6. Test data sets for d = 2 and d = 3. We consider uniformly distributed random points on the hypercube with randomly cut out circular holes.

Three dimensions
Finally, we show a data compression result in three dimensions. Here, the data are generated for a uniform subsample

of a surface triangulation of the Stanford bunny. We consider data resulting from the evaluation of the function

f (x) = e−20‖x−p0‖2 + e−20‖x−p1‖2 ,

where the points p0 and p1 are located at the tips of the bunny’s ears. The plot on the left hand side of Fig. 5 visualizes
the sample data, while the plot on the right hand side shows the dominant coefficients in case of a threshold parameter of
10−2‖ f �‖∞ . The samplets perfectly refine towards the points of interest p0 and p1.

6.2. Compression of kernel matrices

All computations in this section have been performed on a single node with two Intel Xeon E5-2650 v3 @2.30 GHz CPUs
and up to 512 GB of main memory.3 To achieve consistent timings, only a single core was used for all computations. The
samplet compression is implemented in C++11 and relies on the Eigen template library4 for linear algebra operations.
To benchmark the compression, we consider two different kernel functions, namely the exponential kernel kexp and the
rational quadratic kernel kRQ given by

kexp(x, y) = e−‖x−y‖2 , kRQ(x, y) = 1√
1 + ‖x − y‖2

2

,

see e.g. [45]. The exponential kernel decays exponentially for ‖x − y‖2 → ∞ and exhibits a kink for x = y. On the other
hand, the rational quadratic kernel only decays linearly for ‖x − y‖2 → ∞, while the kernel itself is smooth. In what
follows, we consider the compression of these kernel functions, for data sets based on uniformly distributed points and on
exponentially distributed points.

Uniformly distributed points
In this benchmark problem, the data set is selected from the hypercube [0, 1]d with randomly distributed cut out cir-

cular holes. The radii of the holes are exponentially distributed, while their position is uniformly distributed. The points
themselves are uniformly distributed, see Fig. 6 for a visualization of two data sets for d = 2, 3. The convergence of the
samplet compression is steered by the parameter η in the admissibility condition and the number of vanishing moments.
In the experiments, we shall keep η fixed and increase the number of vanishing moments. In addition, we introduce an
a-posteriori thresholding of small matrix entries using the parameter τ , i.e. all entries whose modulus is smaller than τ are
neglected. Finally, to keep the consistency error issuing from the kernel approximation (19) in the admissible blocks of the
order of the compression error, we have to increase the polynomial degree p of the kernel approximation when increasing
the number of vanishing moments. The respective parameter values can be found in Table 1. As a measure of sparsity, we
introduce the average number of nonzeros per row

anz(A) := nnz(A)

N
, A ∈RN×N ,

where nnz(A) is the number of nonzero entries of A .
Fig. 7 shows the numerical results in case of the exponential kernel kexp and uniformly distributed points. The left

column shows the values for anz(K �
ε). The middle column shows the relative compression errors, where we have approxi-

mated the Frobenius norm by randomly sampling 100 columns of the original kernel matrix and the respective columns of

3 The full specifications can be found on https://www.euler.usi .ch /en /research /resources.
4 https://eigen .tuxfamily.org/.
17

https://www.euler.usi.ch/en/research/resources
https://eigen.tuxfamily.org/

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Table 1
Parameters chosen for the different numbers of van-
ishing moments. The three numbers for mq corre-
spond to d = 1, 2, 3.

q = 0 q = 1 q = 2 q = 3

mq 1,1,1 2,3,4 3,6,10 4,10,20
p 2 3 4 6
η 1.25 1.25 1.25 1.25
τ 10−2 10−3 10−4 10−5

Fig. 7. Number of entries per row (left), relative compression error (middle) and computation time (right) for d = 1, 2, 3 for the exponential kernel kexp and
uniformly distributed points.

the compressed one. The right column of Fig. 7 shows the computation times for the matrix compression. Here, the dashed
lines correspond to the asymptotics N logα N for α = 0, 1, 2, 3. In all plots, the number N of data points is plotted on the
horizontal axis. As we keep the precision fixed, the average number of matrix entries per row decreases for d = 1, 2, 3 and
increasing N . Moreover, we see that the compression error reduces approximately by one order of magnitude if the number
of vanishing moments is increased by one. For d = 1, we retrieve a log-linear rate for all numbers of vanishing moments.
For d = 2, 3, we observe α > 1 for higher numbers of vanishing moments. Even so, it seems that the power is reduced for
larger values of N , indicating a preasymptotical behavior.

The results in case of the rational quadratic kernel kRQ are found in Fig. 8. The metrics are the same as in Fig. 7. As
the kernel is analytic, we observe a very low average number of entries per row, while obtaining a very high accuracy,
particularly in case q = 3. We note that, although the a-priori pattern is identical to the exponential kernel, the a-posteriori
18

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 8. Number of entries per row (left), relative compression error (middle) and computation time (right) for d = 1, 2, 3 for the rational quadratic kernel
kRQ and uniformly distributed points.

Fig. 9. Test data sets for d = 2 and d = 3. We consider exponentially distributed random points, with respect to the origin, on the hypercube with randomly
cut out circular holes.

pattern for the rational quadratic kernel resembles a hyperbolic cross. The computation times are similar to the case of the
exponential kernel.

Exponentially distributed points
To demonstrate that samplets also work on non-quasi-uniform data sets, we consider again the hypercube [0, 1]d with

randomly distributed cut out circular holes from before. This time, however, the points are exponentially distributed with
19

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 10. Number of entries per row (left), relative compression error (middle) and computation time (right) for d = 1, 2, 3 for the exponential kernel kexp

and exponentially distributed points.

respect to their distance from the origin. Fig. 9 shows a visualization of the data set for d = 2, 3. Fig. 10 shows the respective
results for the exponential kernel. The average numbers of entries per row and the computation times are very similar to
the case of uniformly distributed points, while the approximation error is slightly larger.

The results for the rational quadratic kernel are found in Fig. 11. As for the exponential kernel, there are no significant
qualitative differences between the two point distributions, except that the compression error is slightly larger.

Simulation of a Gaussian random field
As final example, we consider a Gaussian random field a(x, ω) evaluated at N randomly chosen points at the surface of

the Stanford bunny. The bounding box of the Stanford bunny is given by [−1.89, 1.22] × [−0.34, 2.75] × [−1.24, 1.176] and
we consider the exponential kernel kexp as covariance function, while we set the mean to zero. In order to demonstrate
that our approach works also for dimensions larger than 3, the Stanford bunny has been embedded into R4 and randomly
rotated to prevent axis-aligned bounding boxes. The parameters are set to q = 2, p = 4, η = 1.25, τ = 10−3, which results in
a relative compression error of about 3 · 10−4 for N = 1 000 000 points. For the simulation of the Gaussian random field, we
compute the Cholesky decomposition of the compressed covariance matrix. To this end, we have added a ridge parameter
of μ = 10−6 relative to the trace of the covariance matrix. The Cholesky decomposition is performed using the nested
dissection ordering implemented in the METIS library, cf. [31]. The graph on the left of Fig. 12 shows the computation
times for the Cholesky decomposition including the ordering of the matrix. As can be seen, the computation times are even
better than the expected rate of O(N3/2) for graphs that exhibit a

√
N-separator. The associated number of entries per row

is about 1000. The sparsity pattern of K �
ε for N = 100 000 can be found in the middle of Fig. 12, while the corresponding
20

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 11. Number of entries per row (left), relative compression error (middle) and computation time (right) for d = 1, 2, 3 for the rational quadratic kernel
kRQ and exponentially distributed points.

sparsity pattern of the Cholesky factor is found on the right. Each dot represents a matrix block of size 100 × 100, lighter
blocks have less entries. Performing an a-posteriori thresholding of the Cholesky factor with 10−6 reduces this number
by about 30%, while a thresholding with 10−3 even reduces this number by about 80%. Having the Cholesky factorization
K �

ε = LLᵀ at our disposal, we simulate the Gaussian random field evaluated at the data points via

a(ω) := [a(xi,ω)]N
i=1 = T ᵀL X(ω),

where X ∈RN is a standard Gaussian random vector and T denotes the fast samplet transform, cf. Section 4. In particular,
there holds

Cov(a,a) =
∫
�

(
T ᵀL X(ω)

)(
T ᵀL X(ω)

)ᵀ
dP (ω) = T ᵀL

∫
�

X(ω)X(ω)ᵀ dP (ω)LᵀT

= T ᵀL I LᵀT = T ᵀ K �
ε T ≈ [kexp(xi, x j)]N

i, j=1,

up to compression and regularization error. We remark that this expansion is similar to the wavelet expansion of random
fields suggested in [4].

Four different realizations of the corresponding Gaussian random field projected to R3 are shown in Fig. 13.
21

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
Fig. 12. Computation times for the Cholesky decomposition for kexp and corresponding values for anz(L) (left), sparsity pattern of K �
ε (middle) and sparsity

pattern of L (right) for the four dimensional Stanford bunny. Each dot represents a 100 × 100 matrix block, lighter blocks have less entries.

Fig. 13. Four different realizations of a Gaussian random field with covariance kexp on a Stanford bunny embedded into four dimensions for N = 100 000
(three dimensional projection shown).

7. Conclusion

Samplets constitute a multiresolution approach for the analysis of large data sets. They are easy to construct and
scattered data can be transformed into a samplet basis with linear cost. In our construction, we deliberately let out the
discussion of a level dependent compression of the given data, as it is known from wavelet analysis, in favor of a robust
error analysis. We emphasize however that, under the assumption of uniformly distributed points, different norms can be
incorporated, allowing for the construction of band-pass filters and level dependent thresholding. In this situation, also an
improved samplet matrix compression is possible such that a fixed number of vanishing moments would be sufficient to
achieve a precision proportional to the fill distance with log-linear cost.

Besides data compression, detection of singularities and adaptivity, we have demonstrated how samplets can be em-
ployed for the compression of kernel matrices to obtain sparse representations. Having a sparse representation of the kernel
matrix, algebraic operations, such as matrix vector multiplications can considerably be sped up. Moreover, in combination
with a fill-in reducing reordering, the factorization of the compressed kernel matrix becomes computationally feasible. This,
in turn, allows for the fast application of the inverse kernel matrix on the one hand and the efficient solution of linear
systems involving the kernel matrix on the other hand. The numerical results, featuring about 5 · 106 data points in up to
four dimensions, demonstrate the capabilities of samplets.

Future research will be directed to the extension of samplets towards high-dimensional data. This extension requires the
incorporation of different clustering strategies, such as locality sensitive hashing, to obtain a manifold-aware cluster tree and
the careful construction for the vanishing moments, for example by anisotropic polynomials. Alternatively, a sparse tensor
product construction resembling the one from [22] but based on samplets can be considered.

CRediT authorship contribution statement

Helmut Harbrecht and Michael Multerer have equally contributed to this work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] D. Alm, H. Harbrecht, U. Krämer, The H2-wavelet method, J. Comput. Appl. Math. 267 (2014) 131–159.
[2] B.K. Alpert, A class of bases in L2 for the sparse representation of integral operators, SIAM J. Math. Anal. 24 (1) (1993) 246–262.
22

http://refhub.elsevier.com/S0021-9991(22)00679-9/bib8AB4CECDFC86CF5D0E5D0BA6A18D7151s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibCD0B7349CC228271C93F83E47567275As1

H. Harbrecht and M. Multerer Journal of Computational Physics 471 (2022) 111616
[3] N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68 (3) (1950) 337–404.
[4] M. Bachmayr, A. Cohen, G. Migliorati, Representations of Gaussian random fields and approximation of elliptic PDEs with lognormal coefficients, J.

Fourier Anal. Appl. 24 (2018) 621–649.
[5] G. Beylkin, R. Coifman, V. Rokhlin, The fast wavelet transform and numerical algorithm, Commun. Pure Appl. Math. 44 (1991) 141–183.
[6] S. Börm, Efficient Numerical Methods for Non-local Operators: H2-Matrix Compression, Algorithms and Analysis, European Mathematical Society,

Zürich, 2010.
[7] C.K. Chui, An Introduction to Wavelets, Academic Press, San Diego, 1992.
[8] C.K. Chui, E. Quak, Wavelets on a Bounded Interval, Numer. Meth. Approx. Theory, vol. 9, 1992, pp. 53–75.
[9] A. Cohen, Numerical Analysis of Wavelet Methods, Elsevier, Amsterdam, 2003.

[10] R.R. Coifman, M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21 (1) (2006) 53–94.
[11] W. Dahmen, Wavelet and multiscale methods for operator equations, Acta Numer. 6 (1997) 55–228.
[12] W. Dahmen, H. Harbrecht, R. Schneider, Compression techniques for boundary integral equations. Optimal complexity estimates, SIAM J. Numer. Anal.

43 (6) (2006) 2251–2271.
[13] W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline wavelets on the interval – stability and moment conditions, Appl. Comput. Harmon. Anal. 6 (2)

(1999) 132–196.
[14] W. Dahmen, S. Prößdorf, R. Schneider, Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution, Adv.

Comput. Math. 1 (3) (1993) 259–335.
[15] W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999)

319–352.
[16] I. Daubechies, Ten Lectures on Wavelets, Society of Industrial and Applied Mathematics, Philadelphia, 1992.
[17] R.A. DeVore, Nonlinear approximation, Acta Numer. 7 (1998) 51–150.
[18] G.E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific, River Edge, 2007.
[19] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (2) (1973) 345–363.
[20] K. Giebermann, Multilevel approximation of boundary integral operators, Computing 67 (2001) 183–207.
[21] D. Gines, G. Beylkin, J. Dunn, LU factorization of non-standard forms and direct multiresolution solvers, Appl. Comput. Harmon. Anal. 5 (2) (1998)

156–201.
[22] M. Gnewuch, R. Lindloh, R. Schneider, A. Srivastav, Cubature formulas for function spaces with moderate smoothness, J. Complex. 23 (2007) 828–850.
[23] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.
[24] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis, Springer, Berlin, Heidelberg, 2015.
[25] W. Hackbusch, S. Börm, H2-matrix approximation of integral operators by interpolation, Appl. Numer. Math. 43 (1–2) (2002) 129–143.
[26] H. Harbrecht, U. Kähler, R. Schneider, Wavelet Galerkin BEM on unstructured meshes, Comput. Vis. Sci. 8 (3–4) (2005) 189–199.
[27] H. Harbrecht, M. Multerer, A fast direct solver for nonlocal operators in wavelet coordinates, J. Comput. Phys. 428 (2021) 110056.
[28] H. Harbrecht, R. Schneider, Biorthogonal wavelet bases for the boundary element method, Math. Nachr. 269 (1) (2004) 167–188.
[29] T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in machine learning, Ann. Stat. 36 (3) (2008) 1171–1220.
[30] U. Kähler, H2-wavelet Galerkin BEM and its application to the radiosity equation, Dissertation, TU Chemnitz, Chemnitz, 2007.
[31] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1) (1998) 359–392.
[32] R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (2) (1979) 346–358.
[33] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1999.
[34] S. Mallat, Understanding deep convolutional networks, Philos. Trans. R. Soc. Lond. A 374 (2065) (2016) 20150203.
[35] W.B. March, B. Xiao, S. Tharakan, D.Y. Chenhan, G. Biros, A kernel-independent FMM in general dimensions, in: SC’15: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis, 2015, pp. 1–12.
[36] H. Owhadi, C. Scovel, Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization: From a Game Theoretic Approach to Numerical Ap-

proximation and Algorithm Design, vol. 35, Cambridge University Press, Cambridge, 2019.
[37] I. Ram, M. Elad, I. Cohen, Generalized tree-based wavelet transform, IEEE Trans. Signal Process. 59 (9) (2011) 4199–4209.
[38] R. Schaback, H. Wendland, Kernel techniques: from machine learning to meshless methods, Acta Numer. 15 (2006) 543–639.
[39] F. Schäfer, T.J. Sullivan, H. Owhadi, Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity,

Multiscale Model. Simul. 19 (2) (2021) 688–730.
[40] R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme, B.G. Teub-

ner, Stuttgart, 1998.
[41] J. Tausch, J. White, Multiscale bases for the sparse representation of boundary integral operators on complex geometry, SIAM J. Sci. Comput. 24 (5)

(2003) 1610–1629.
[42] T. von Petersdorff, C. Schwab, Fully discrete multiscale Galerkin BEM, in: W. Dahmen, A. Kurdila, P. Oswald (Eds.), Multiscale Wavelet Methods for

PDEs, Academic Press, San Diego, 1997, pp. 287–346.
[43] T. von Petersdorff, C. Schwab, R. Schneider, Multiwavelets for second-kind integral equations, SIAM J. Numer. Anal. 34 (6) (1997) 2212–2227.
[44] H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2004.
[45] C.K. Williams, C.E. Rasmussen, Gaussian Processes for Machine Learning, MIT Press, Cambridge, 2006.
[46] C.K.I. Williams, Prediction with Gaussian processes. From linear regression to linear prediction and beyond, in: M.I. Jordan (Ed.), Learning in Graphical

Models, in: NATO ASI Series (Series D: Behavioural and Social Sciences), vol. 89, Springer, Dordrecht, 1998.
[47] L. Ying, G. Biros, D. Zorin, A kernel-independent adaptive fast multipole algorithm in two and three dimensions, J. Comput. Phys. 196 (2) (2004)

591–626.
23

http://refhub.elsevier.com/S0021-9991(22)00679-9/bib7D9D9C356C8BD01EE41D700E151C4815s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib3ED14F5226C68ACB066505E76BEAC97Fs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib3ED14F5226C68ACB066505E76BEAC97Fs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib40116901E9D516662539284681835DB4s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibE31850EC1DCCC61EC1AB7D7BE176FD56s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibE31850EC1DCCC61EC1AB7D7BE176FD56s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib71818FA39A9A0509AD90ABAF087D3419s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib4ECAF2705BAC7DDD7F893A3C8B8B3869s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib0A59CCC07FD0302F9FFE85E4998E9526s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibAA024B54E84B3BE936EBEB9800890D4As1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibD1EF13133EDFF8B90B72905324DCAA07s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibCE22EFF4CDB0C3F77C427059C7710F65s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibCE22EFF4CDB0C3F77C427059C7710F65s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibB283CC7BD0BE3141A59D3D534C0BADB0s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibB283CC7BD0BE3141A59D3D534C0BADB0s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib809402C7728DD6255AF87EC079B2C599s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib809402C7728DD6255AF87EC079B2C599s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibE14378B812AC4007BE88DB01B8034353s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibE14378B812AC4007BE88DB01B8034353s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib8D52B545434136E9770B002AE32BD843s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibF785AD66DC39FA581F7207D1799A149Cs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib435D8C4EB1CDA920FE981AE3D141B77As1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib1652ADDFBB786BD3481287D78DE00EABs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib61DB8CE3176286B3BC0C48596F9AB531s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib94A7D22A89D3BB0BF9F9B13B0D03C30Cs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib94A7D22A89D3BB0BF9F9B13B0D03C30Cs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibE8AC14AA18121A769609FBE5AAB3BF13s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibF214A7D42E0DE5875D55189E01E2E187s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib0A8459AA738B0A4FAA05B8EF091810F4s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib09981162598F8E5BBA43DC529AC7F0E1s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib90A094817307F0F6027CA46691D683FFs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib36A12A753997A4032C351F4C6A12C416s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib55A055409207A12D5937B243FD508BDEs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib3D5168EFC4EDAD402E886B4A2331571As1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib4C2760EDA33258CD8CDE49CC254802BEs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibBC195FF5BD8C571C049CB8BBD89DCBE8s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibD69C396F3FAB925CFB35E80932CE1001s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibF5686B00BCD9C14C6A02F439395073A0s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib3E1EF0005E113BDB42AB0301F581CA30s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib61A081A72E2DCD25F5D23665ADEE56CDs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib61A081A72E2DCD25F5D23665ADEE56CDs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib212322270178AC4B62DC3AC5F25BB601s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib212322270178AC4B62DC3AC5F25BB601s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib12E2A8B442D5E547FAC648BB80749E4Es1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibA70C06B94B67E5589C00BA35961FEE00s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib297E1A3F6923A9C83878A6FA61CE493Fs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib297E1A3F6923A9C83878A6FA61CE493Fs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib5791B7B0667A7456BF6AC773E1FD4022s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib5791B7B0667A7456BF6AC773E1FD4022s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibF6F0EBCC2C9454198955E4E793781C4Cs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibF6F0EBCC2C9454198955E4E793781C4Cs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibD3D4C5DEB455AC79DD5FF47C88BD65D9s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibD3D4C5DEB455AC79DD5FF47C88BD65D9s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib9EBAEA6EAB4C3A2C161D1ACA6443C9CDs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib0FAA140AE813C289CFAF81A9C24825E5s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibEA3617C97CBA1D4C64917E38FFB9755Ds1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib1FF36F10BD336AA4AF214023D94C8FBEs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bib1FF36F10BD336AA4AF214023D94C8FBEs1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibACA1AA322CFE6B41CD1471B0A7385628s1
http://refhub.elsevier.com/S0021-9991(22)00679-9/bibACA1AA322CFE6B41CD1471B0A7385628s1

	Samplets: Construction and scattered data compression
	1 Introduction
	2 Samplets
	3 Construction and properties of samplets
	3.1 Cluster tree
	3.2 Construction of samplet bases
	3.3 Properties of samplets

	4 Fast samplet transform
	5 Compression of kernel matrices
	5.1 Kernel matrices
	5.2 Asymptotically smooth kernels
	5.3 Matrix compression
	5.4 Compressed matrix assembly

	6 Numerical results
	6.1 Data compression
	One dimension
	Two dimensions
	Three dimensions

	6.2 Compression of kernel matrices
	Uniformly distributed points
	Exponentially distributed points
	Simulation of a Gaussian random field

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

