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Because social mechanisms operate over time (Abbott, 2007; 
White, 1970), network dependencies that produce—and, 
simultaneously, are reproduced by, such mechanisms play a 
major role in the evolution of social systems (Abbott, 1997; 
Padgett and Powell, 2012). Conversation (Gibson, 2005), 
technology-mediated communication (Stivala et  al., 2020), 
participation in on-line communities (Wellman, 2001), con-
tribution to crowd-sourced production projects (Lerner and 
Lomi, 2020), interorganizational collaboration (Amati et al., 
2019), and economic transactions (Williamson, 1979), repre-
sent only a small sample of empirical examples where net-
work dependencies shape the evolutionary dynamics of 
social interaction.

In all these cases, understanding the dynamics of social 
behavior hinges on our ability to reconstruct accurately the 
time order of sequences of events connecting multiple social 
actors (Butts and Marcum, 2017; Gibson, 2000). Yet, net-
work dependencies cannot be unambiguously identified 
when the time order of the underlying flow of relational 
events connecting senders and receivers of action is ignored 
(Perry and Wolfe, 2013). This is an issue of considerable 

generality because behavior becomes “social” as soon as an 
individual “emits a behavior directed at one or more entities 
in his or her environment” (Butts, 2008, p. 155).

Consider reciprocity, for example, perhaps the simplest 
form of dyadic dependence (Snijders et al., 2006)—and one 
of the most theoretically important (Fehr and Gächter, 1998) 
and empirically studied (Molm, 2010). For an event ′e  con-
necting actor j  to actor i  at time t  ( ′e j i t= { , , } ) to count 
as “reciprocity,” an event e  flowing in the opposite direction 
(from i  to j ) must have been observed at a time t k−  prior 
to t  ( e i j t k= { , , }− ). In the absence of censoring, the quan-
tity k  provides an estimate of the waiting time needed for 

Multiple clocks in network evolution

Federica Bianchi1 , Alex Stivala2   
and Alessandro Lomi2

Abstract
Relational event models shift the analytical focus away from network ties defined in terms of transitions between mutually 
exclusive states of connectivity, to bonding processes emerging from observable flows linking senders and receivers of 
action. In this framework, the possibility to connect social mechanisms of theoretical interest to sequences of observed 
relational events depends on the relative speed at which these mechanisms operate. Building on established non-parametric 
methods in survival analysis, in this paper we introduce a new approach to the analysis of the internal time distribution of 
relational mechanisms of broad theoretical interest in research on the evolutionary dynamics of social and other kinds of 
networks. We propose general algorithms that may be adopted to study the time structure of theoretically relevant network 
mechanisms. We illustrate the practical value of our proposal in an analysis of a large sample of high-frequency financial 
transactions observed over a period of 11 years. We show how the internal time structure of the social mechanisms that 
control flows of market transactions is sensitive to institutional change in transaction regimes induced by successive financial 
crises. The results we report invite reflection on a new notion of network “structure” incorporating change as one of its 
constitutive elements. The study suggests a number of conjectures that provide broad conceptual bases for the development 
of testable hypotheses about the forces that shape the evolutionary dynamics of network structure.

Keywords
Social mechanisms, network structure, relational events, Kaplan-Meier estimator, high-frequency data

1�Institute of Computing, Università della Svizzera italiana, Lugano, 
Switzerland

2�Institute of Computational Science, Università della Svizzera italiana, 
Lugano, Switzerland

Corresponding author:
Federica Bianchi, Institute of Computing, Università della Svizzera italiana, 
Via Giuseppe Buffi 13, Lugano 6900, Switzerland. 
Email: federica.bianchi@usi.ch

1077877 MIO0010.1177/20597991221077877Methodological InnovationsBianchi et al.
research-article2022

Original Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/mio
mailto:federica.bianchi@usi.ch
http://crossmark.crossref.org/dialog/?doi=10.1177%2F20597991221077877&domain=pdf&date_stamp=2022-03-31


30	 Methodological Innovations 15(1)

reciprocity to be observed between i  and j. From this per-
spective, the presence of reciprocity is not a simple matter of 
counting the number of mutual dyads aggregated over a 
given time period. Rather, it is a problem of timing: if recip-
rocation operates over a sufficiently long time, mutual dyads 
may not be observed over shorter time periods, and may be 
missed altogether in cross-sectional observation plans.

Differences in the time to reciprocity across dyads generate 
a distribution of waiting times. Reciprocity is not just a  
network statistic, but rather the outcome of an underlying time- 
dependent process of reciprocation (Kitts et al., 2017). As an 
evolving social process, reciprocation (unobservable) gener-
ates time-dependent patterns of reciprocity (observable): at any 
one point in time, a dyad census will reflect the relative speed 
at which reciprocation operates (Faust, 2007). In other words, 
the dyad census will reflect reciprocity, but not necessarily 
reciprocation. A similar argument holds, and holds in fact even 
more strongly, for more complex forms of dependence involv-
ing more than two actors such as, for example, cyclic and tran-
sitive closure (Amati et al., 2019). It is likely that social actors 
will need some time to construct—and then recognize, and 
then test—the social structures implied by social mechanisms,  
a conjecture suggested by recent experimental studies con-
ducted on human subjects (Zerubavel et al., 2018).

Implicit in this argument is the view that dependence struc-
tures do not just give rise to local configurations of network ties 
(Robins and Pattison, 2005). The general intuition that inspires 
this paper is that dependence structures induce—but at the same 
time are shaped by—time-dependent mechanisms regulated by 
their own internal clock. The general objective of this paper is to 
characterize these patterns of time dependence, and provide an 
empirical illustration of how this characterization may be practi-
cally useful in the analysis of relational data. More specifically, 
the main objectives of this study are to: (i) document variations 
in the internal time structure of network mechanisms associated 
to dependence structures of broad theoretical interest or contex-
tual empirical relevance; (ii) implement context-independent 
algorithms that may be generally adopted to reconstruct the 
internal time structure of network mechanisms starting from 
sequences of observed relational events, and (iii) examine how 
network mechanisms typically considered in empirical studies 
as endogenous generators of network change, themselves 
change over time and across institutional contexts.

We pursue these interdependent objectives in the context 
of data that we have collected on interorganizational 
exchange and dependence relations coordinated through a 
market interface designed to connect sellers and buyers of 
liquidity (Lomi and Bianchi, 2022; Bianchi and Lomi, 2022; 
Bianchi et al., 2020). More specifically, we examine how 
repetition, reciprocation, generalized exchange, and transi-
tivity mechanisms shape—and emerge from time-ordered 
sequences of high-frequency financial transactions.

The empirical setting we examine to seek support for our 
qualitative argument is commonly represented in network terms 
(Marti et  al., 2021). Paradoxically, financial transactions are 
characteristically ill-suited to dynamic network modeling 

because of the difficulties inherent in the definition of meaning-
ful states in data generated by high-frequency, second-by-second 
interactions among market agents (Zappa and Vu, 2021). 
Conventional network representations require time aggregation 
of events into ties (Bianchi et al., 2020; Finger and Lux, 2017). 
In this way, information on the internal time of network mecha-
nisms is typically lost. In financial transactions, ignoring the tim-
ing of exchange events may be particularly problematic.

In this work we document the internal time structure of 
basic network mechanisms. For instance, we observe that the 
time to reciprocation in financial transactions may vary from 
few minutes to months. Relatedly, we examine how this inter-
nal time structure changes systematically between exchange 
regimes determined by various development stages that may 
be identified within the recent global financial crisis. We find 
that the internal time of network mechanisms not only varies 
considerably across mechanisms, but also that such time is 
affected systematically by exogenous institutional changes 
(Lomi and Bianchi, 2022). We conclude by discussing the 
empirical, methodological and theoretical implications of our 
study for future research on network evolution.

The temporality of network structure

The problem of understanding the structure of social inter-
action starting from the observation of individual events 
figures prominently in the agenda of contemporary research 
on social relations (Butts, 2008, 2009; Butts and Marcum, 
2017; Golder and Macy, 2011; Golder et  al., 2007; Perry 
and Wolfe, 2013; Rivera et al., 2010; Stadtfeld et al., 2017; 
Vu et al., 2017; Wang and Huberman, 2012). Yet, with the 
exception of a limited number of studies (e.g., Amati et al., 
2019; Kitts et  al., 2017; Lee et  al., 2019; Moody, 2002; 
Stadtfeld et  al., 2017) relatively little empirical work is 
available that has explicitly documented temporal and con-
textual variations in the constructive mechanisms underly-
ing social structure.

Under conditions of time-specificity and sequential con-
straints, “past history creates the context for present action, 
forming differential propensities for relational events to occur” 
(Butts, 2008, p.160). This fundamental insight on the path-
dependence of individual action (March and Olsen, 1983)  
was originally limited to the analysis of conversation (Gibson, 
2005; Mondada, 2019), but is progressively becoming more 
central to our understanding of a broader range of social phe-
nomena like, for example, small group dynamics (Leenders 
et al., 2016), and interorganizational coordination (Lomi et al., 
2014).

The empirical application we develop in this paper docu-
ments the internal time structure of basic mechanisms of net-
work dependence that include repetition, reciprocity, as well 
as related forms of triadic closure such as, for example, tran-
sitive and cyclic closure. We narrow the focus on the dynam-
ics of reciprocation—the social process associated with 
reciprocity—in its direct (restricted exchange) and indirect 
(generalized exchange) forms. Indeed reciprocity is 
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responsible for more complex structures of dependence that 
are of key importance in the building of social structure 
(Burt, 1992; Coleman, 1988; Uzzi, 1996, 1997).

The network mechanisms of interest in the empirical part 
of our study are described in Table 1 along with their ante-
cedent configurations from which they derive.

The distribution of the internal time of each mechanism 
involves measuring the time elapsed between the emergence 
of a time-localized pattern of events and its antecedent con-
figuration. Time to reciprocation, for instance, measures the 
time elapsed between two consecutive directed actions 
involving the same pair of senders and receivers. The time to 
transitive and cyclic closure is the time required to close two-
path like structures—that is, structures of dependence that 
may connect two nodes ( , )i j  through a third common party 
k . Examples of two-paths are i h j→ →  and j → h → i.

The process that crystallizes relational events sequences 
into local structures of network dependence is reported in 
Figure 1. The graphical representation reports a hypothetical 
sequence of 15 relational events occurring between three 
actors A , B , and C . Reciprocity, for example, emerges 
through the reciprocation of relational events ( , , )3A C t  and 
( , , )11B C t  via ( , , )4C A t  and ( , , )15C B t , respectively. The 

Table 1.  Description of network mechanisms and their antecedent configurations.

Effect Explanation Antecedent (observed) Next event (expected)

Repetition Tendency of an event to flow in the same 
direction

Reciprocation Tendency of event to flow in the opposite 
direction

Transitive closure Tendency of an event to close the two-
path like structure i → h → j

Cyclic closure Tendency of an event to close the two-
path like structure j → h → i

Note.  →  past events, – – →next event.

Figure 1.  Formation of network-like structures of dependence from sequences of relational events. For each social mechanism its 
antecedent is reported. Examples of such mechanisms are repetition, reciprocity, transitive and cyclic closure.

time differences t t4 3−  and t t15 11−  are the so-called times  
to reciprocation and their collection represents the internal 
time distribution of reciprocation.

As our empirical application illustrates, (i) different 
mechanisms exhibit differences in their distributions of 
internal times; (ii) the same mechanism displays differences 
in its distribution across distinct exchange regimes.

Material and methods

Setting and data

We situate our study in the context of financial markets. 
Specifically, we focus on the European interbank money mar-
ket, a secondary financial market that allows banks facing con-
tingent liquidity constraints and banks having excessive liquidity 
to manage their resource needs. Funds are exchanged via bank-
to-bank transactions conducted through a technology-mediated 
market interface. The traded financial instruments are consid-
ered cash equivalents, and typically have overnight maturities–– 
that is, loans stipulated one day, must be reimbursed the day 
after. The object of main analytical interest is the sequence of 
events generated by high-frequency financial transactions.
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Several studies have examined the network of transactions 
between European banks. In the typical empirical study, the 
network structure is obtained by aggregating flows of transac-
tions into stable trading relationships that are then examined 
in terms of their topological network properties (e.g., De Masi 
et al., 2006; Finger et al., 2013; Fricke and Lux, 2015; Iori 
et  al., 2007, 2008). More recent studies have revealed an 
interest in the social mechanisms matching buyers and sellers 
on the trading platform. Finger et al. (2013) have shown that 
the interbank market exhibits random network qualities at the 
daily scale but systematic structures over longer periods like 
months or quarters. For quarterly aggregated networks of 
credit provision, for example, Finger and Lux (2017) have 
found that the existence and extent of past credit relationships 
is a major determinant for future credit extensions. Bianchi 
et  al. (2020) have proposed a longitudinal network model 
based on latent trajectories to study the evolution of recipro-
cal giving behaviors in consequence of the exogenous shocks 
that have severely affected the European interbank market 
since 2008. Applications of relational event models to the 
analysis of networks of financial transaction have emerged 
more recently (Bianchi and Lomi, 2022; Lomi and Bianchi, 
2022; Zappa and Vu, 2021).

While different in emphasis and methods, extant studies 
of liquidity exchange paved the way to our analysis of time-
specific variations in network mechanisms. The high-fre-
quency nature of overnight liquidity transfers, along with the 
rich network structure of credit provisions, make the 
European interbank market an almost ideal setting to detect 
changes in the internal time structure of those network mech-
anisms that are typically associated with dependence struc-
tures of broad theoretical interest in the formation of social 
structure.

We collected data on time-stamped unsecured interbank 
transactions recorded on the e-MID trading platform between 
2005 and 2015. e-MID serves as the reference marketplace 
to trade interbank liquidity in Europe. Its real-time gross set-
tlement system is open from Monday to Friday and from 
8:30 am to 5:30 pm. The exact terms of each transaction are 
accurately recorded, thus opening the way to detailed micro-
structure examinations.

In line with previous articles based on the same data 
source, we focus exclusively on the overnight segment of the 
market. The overnight segment alone accounts for more than 
85% of the global number of credit extensions and its trading 
dynamics have been shown to be representative of the whole 
market (Beaupain and Durré, 2008).

Each row in our dataset corresponds to an overnight trans-
action, which is public in terms of duration, time (precise to 
the second), amount (in millions of EUR), and rate. The iden-
tity of the credit institutions involved in the trading of over-
night funds is provided by unique identification codes that 
reveal banks’ country of origin. Banks are not defined as buy-
ers or sellers of liquidity. Rather they are classified according 
to their role on the e-MID market. Banks that reveal their 

intention to trade are known as quoters while banks that hit the 
quote are knows as aggressors. To determine buyers and sell-
ers of liquidity at each trading instance, we refer to the labels 
buy or sell associated with aggressors. Figure 2(a) illustrates a 
sample of our data. The resulting dataset is composed of a 
time-ordered sequence of 602,127 overnight transactions 
between 211 banks. For the purpose of our empirical work, 
raw data have been processed to obtain a time-ordered list of 
high-frequency transactions whose time-stamp has been 
recorded as a number. The integer part refers the calendar day 
while the decimal part indicates the exact time of the transac-
tion down to the second. Figure 2(b) shows the input data for 
our empirical application.

The emergence of the global financial crisis (GFC) in 
September 2008 represents a quasi-experiment that makes it 
possible to split the whole sample into four distinct sub-sam-
ples that correspond to four distinct exchange regimes. 
Figure 3 summarizes the boundaries of each exchange 
regime and shows the key dates defining the lower and upper 
bounds of each phase. On the one hand, the GFC has been 
anticipated by a period of market turmoil and, on the other, 
has been followed by a sovereign debt crisis (SDC) period 
that severely hit Southern European countries. Figure 3 sum-
marizes the four exchange regimes that we identify and 
shows the key dates defining the lower and upper bounds of 
each phase.

Splitting the period of observation into four sub-periods 
mapping onto distinct exchange regimes is consistent with 
the financial crisis timeline proposed by the European 
Central Bank (Drudi et al., 2012) and a collection of empiri-
cal papers that have recently appeared on peer reviewed jour-
nals (Brunetti et al., 2019; Hatzopoulos et al., 2015; Kapar 
et al., 2020; Temizsoy et al., 2015).

Algorithms

The algorithms that we have implemented to compute the 
internal time distribution of repetition, reciprocation, transi-
tive, and cyclic closure account for changes in the exchange 
regimes. The quantities of interest are then computed in asso-
ciation to the four financial phases produced by the emer-
gence of the 2008 crisis.

Computing the time to repetition is straightforward. For 
each transaction, the algorithm searches for the next in time 
transaction flowing in the same direction. The same logic is 
applied to the time to reciprocation, but the algorithm 
searches for a credit extension that flows in the opposite 
direction.

Computing the time to transitive (Table 2) and cyclic 
closure (Table 3) consists of a three-step procedure. The 
first step is registering the time needed to observe a two-
path structure. The second is registering the time at which a 
transitive triangle is observed. The last step consists of 
computing the difference between times observed at the 
previous steps.
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The associated procedures—implemented in Python—are 
available at our GitHub repository (https://github.com/stiva-
laa/network_times).

These algorithms require a directed graph (digraph) data 
structure with labeled (weighted) arcs, capable of efficiently 
testing for the existence of an arc and returning its label, 
inserting a labeled arc, and iterating over the in-neighbors 
and out-neighbors of a node. In the Python programing lan-
guage this is easily implemented as a “dictionary of diction-
aries” data structure.

Note that the only differences between transitiveClo-
sureTime (Table 2) and cyclicClosureTime (Table 3) are on 
line 10 where cyclicClosedTwoPaths (Table 5) is called 

instead of transitiveClosureTwoPaths (Table 4), and on 
lines 13–14 where t1  and t2  are assigned values from differ-
ent arcs.

Survival analysis of high-frequency transactions

The internal time distributions of the network mechanisms of 
interest are the input for a survival analysis of transactions 
based on Kaplan-Meier estimator (Kaplan and Meier, 1958). 
Our empirical application shows how long individual trans-
actions survive before being repeated or reciprocated, or how 
long two-paths like structures stay open before closing into 
transitive or cyclic triads. In the analysis we present below, a 

Figure 2.  Transactions are relational actions involving banks as senders and receivers of overnight liquidity. Transactions are associated 
with a time stamp and are precise to the second.

Figure 3.  Exchange regimes across the observation period (2005–2015). Such exchange regimes correspond to phases of market 
stability, turmoil, and crises. In particular, two types of crises have been recognized, namely global financial crisis (GFC) and sovereign 
debt crisis (SDC).  

https://github.com/stivalaa/network_times
https://github.com/stivalaa/network_times
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closed triad is represented as the terminal event—or 
“death”—for a two-path.

For the time to repetition, a censored event is the time 
elapsed between two consecutive events involving different 
pairs of senders and receivers. For the time to reciprocation, 
a censored event is the time elapsed between two consecu-
tive events that are not reciprocated. For the time to transitive 
and cyclic closure, censored events are the times elapsed 
between two subsequent open two-paths. For all the mecha-
nisms considered, a given transaction is assumed to close 
only one antecedent configuration. In other words, a two-
path configuration is removed from the risk set after experi-
encing its first closure event.

Results

For each mechanism we observe four distinct distributions 
and an equivalent number of survival curves—each for every 
exchange regime determined by the emergence of the GFC. 
Figure 4 represents the internal time distributions of repeti-
tion, reciprocation, transitive and cyclic closure by means of 
their scaled kernel density estimates and boxplots.

Scaled kernel density estimates—which are smoothed 
versions of histograms—depict the functional forms of 
mechanisms’ internal times. With the partial exception of 
repetition, all these distributions are highly skewed to the 
right and exhibit considerable differences across the four 
exchange regimes. Boxplots clearly show that distinct mech-
anisms do not operate in synchrony. As Table 6 documents, 
the median times of each distribution, for example, ranges 
from 2 to 481 days. More specifically, after the onset of the 
financial crisis, the median times of all the mechanisms—
with the exception of repetition—have increased with respect 
to their values registered one step back in time.

As Figure 5 shows, repeated transactions occur within a 
short period of time, no longer than 3 months. For example, 
the probability of observing a repeated transaction within the 
same trading day is 70%. The same measure decreases to 
30% after 5 days and, for longer time horizons, this decreases 
to approximately 10% after 1 month, and to 3% after 
3 months. These results suggest that credit extensions of 
overnight liquidity have occurred approximately at the same 
rate during the whole period of observation despite signifi-
cant churning in the set of market participants.

Table 2.  Pseudocode for computing the time to transitive closure.

Algorithm 1 transitiveClosureTime: Given a list of transactions, return a list of times for open two-paths to be closed transitively.

Precondition: transactionList is a list of transactions in the form of (sender, receiver, timestamp) tuples, sorted by timestamp ascending.
Postcondition: Return a list of times taken to close open two-paths.
    1: function transitiveClosureTime(transactionList)
    2:    N ← number of unique actors in transactionList
    3:    M ← length(transactionList)                    ▻ number of transactions in list
    4:    G ← digraph with N nodes and no arcs
    5:    L ← []                                                                               ▻ empty list
    6:    for k ← 1 to M do
    7:      i ← sender of transactionList[k]
    8:      j ← receiver of transactionList[k]
    9:      t ← timestamp of transactionList[k]
  10:      V ← transitiveClosedTwoPaths(G, i, j)
  11:      T ← []
  12:      for h in V do
  13:        t1 ← label of arc i → h in G
  14:        t2 ← label of arc h → j in G
  15:        if t2  > t1 then       ▻ closed two-path via h is forward in time
  16:          T ← T+[t2]                           ▻ append timestamp t2 to list T
  17:        end if
  18:      end for
  19:      ▻ T is list of timestamps of second arc in two-paths closed by i → j
  20:      if length(T) > 0 then
  21:        δt ← t−max(T)                         ▻ max(T) is highest timestamp in T
  22:        L ← L+[δt]
  23:      end if
  24:      if i → j is not an arc in G then
  25:        ▻ Keep first time on repeated transactions, not subsequent times
  26:        G ← G with arc i → j label t inserted
  27:      end if
  28:    end for
  29:    return L
  30: end function
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Our analysis of the time to reciprocation in Figure 6 suggests 
that the time to reciprocate a credit extension varies considera-
bly within the four exchange regimes of the financial crisis. The 
median survival times for reciprocation differ from that of rep-
etition and in the order of 100s of days. By considering the sta-
bility phase as the benchmark period, as well as we observed in 

the analysis of repetition, the trading on the interbank market is 
faster during periods in which the global economic scenario is 
suffering—that is, during the turmoil and the GFC phases. The 
survival probabilities for reciprocation have changed consider-
ably during the last period of observation. The average time to 
reciprocation increased by approximately 2.5 times.

Table 3.  Pseudocode for computing the time to cyclic closure.

Algorithm 2 cyclicClosureTime: Given a list of transactions, return a list of times for open two-paths to be closed to form a cycle.

Precondition: transactionList is a list of transactions in the form of (sender, receiver, timestamp) tuples, sorted by timestamp ascending.
Postcondition: Return a list of times taken to close open two-paths.
    1: function cyclicClosureTime(transactionList)
    2:    N ← number of unique actors in transactionList
    3:    M ← length(transactionList)                     ▻ number of transactions in list
    4:    G ← digraph with N nodes and no arcs
    5:    L ← []                                                                                ▻ empty list
    6:    for k ← 1 to M do
    7:      i ← sender of transactionList[k]
    8:      j ← receiver of transactionList[k]
    9:      t ← timestamp of transactionList[k]
  10:      v ← cyclicClosedTwoPaths(G, i, j)
  11:      T ← []
  12:      for H in V do
  13:        t1 ← label of arc j → h in G
  14:        t2 ← label of arc h → i in G
  15:        if t2 > t1 then     ▻ closed two-path via h is forward in time
  16:          T ← T+[t2]                      ▻ append timestamp t2 to list T
  17:        end if
  18:      end for
  19:      ▻T is list of timestamps of second arc in two-paths closed by i → j
  20:      if length(T) > 0 then
  21:        δt ← t−max(T)                        ▻ max(T) is highest timestamp in T
  22:        L ← L+[δt]
  23:      end if
  24:      if i → j is not an arc in G then
  25:        ▻ Keep first time on repeated transactions, not subsequent times
  26:        G ← G with arc i → j label t inserted
  27:      end if
  28:    end for
  29:    return L
  30: end function

Table 4.  Pseudocode for detecting the open two-paths that may form a transitive triad.

Algorithm 3 transitiveClosedTwoPaths: Return list of nodes identifying the open two-paths that would be closed transitively by the 
addition of arc i → j in digraph G.

Precondition: i and j are nodes in digraph G.
Postcondition: Return a list of nodes h in G such that i → j creates a transitive triangle via h.
    1: function transitiveClosureTwoPaths (G, i, j)
    2:    V ← []                                                                      ▻empty list
    3:    for h ← out-neighbors of i in G do      ▻h such that i → h is an arc in G
    4:      if h → j is an arc in G then
    5:        ▻arc i → j creates transitive triangle i → h, h → j, i → j
    6:        V ← V+[h]                                               ▻append h to list V
    7:      end if
    8:    end for
    9:    return V
  10: end function
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Given a transaction connecting a pair of senders and 
receivers, the probability that it remains unreciprocated after 
30 days is 95.3% under conditions of market stability, and 

97% during the SDC period. The same measure is equal to 
88.3% and 92.8% in the turmoil and GFC phases, respec-
tively. In other words, the probability that a transaction is 

Figure 4.  The internal time distribution of repetition, reciprocation, transitive and cyclic closure across four distinct exchange regimes, 
that is, stability, turmoil, global financial crisis (GFC), and sovereign debt crisis (SDC). Different time scales reflect different speeds in the 
unfolding of network mechanisms.

Table 5.  Pseudocode for detecting the open two-paths that may form a cycle.

Algorithm 4 cyclicClosedTwoPaths: Return list of nodes identifying the open two-paths that would be closed to form a cycle by the 
addition of arc i → j in digraph G.

Precondition: i and j are nodes in digraph G.
Postcondition: Return a list of nodes h in G such that i → j creates a cyclic triangle including h.
    1: function cyclicClosedTwoPaths (G, i, j)
    2:    v← []                                                                             ▻ empty list
    3:    for h ← in-neighbors of i in G do      ▻ h such that h → i is an arc in G
    4:      if j → h is an arc in G then
    5:      ▻ arc i → j closes two-path j → h → i into a cycle
    6:        V ← V+[h]                                                ▻ append h to list V
    7:      end if
    8:    end for
    9:    return V
  10: end function
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reciprocated after 30 days is extremely low under all the four 
exchange regimes. Overall, along with the decreasing num-
ber of reciprocated relations, survival probabilities seem to 
suggest a preference for role specialization, with credit insti-
tutions that typically trade from one side of the market inter-
face—that is, either as buyers or sellers of overnight funds.

Kaplan-Meier survival curves for the time to transitive 
closure are reported in Figure 7. The capacity of European 
banks to extend credit within a network of transitive rela-
tionships increased soon after the first turmoils in summer 
2007. With respect to the stability period, the time to tran-
sitive closure has immediately decreased and progres-
sively adjusted to reach the initial level during the GFC 
phase. The contraction of the time to transitive closure 
during the periods of highest financial uncertainty sug-
gests that indirect connectivity mechanisms like transitive 
closure are as sensitive as simpler direct connectivity 
mechanisms like repetition and reciprocation. As it hap-
pens with the other micro-mechanisms of interest, the 
time to transitive closure considerably increases during 

the last period of observation. A possible explanation for 
this general tendency is that during the SDC phase the 
general market activity decreased, with the obvious con-
sequence that a larger number of two-path sequences 
remained open. Fewer repeated and reciprocated transac-
tions were also observed during this period.

This general observation finds empirical support in the 
computation of survival probabilities of transitive triads that 
reach their highest value during the SDC phase. In the stabil-
ity period the probability of observing an open two-path after 
30 days is 57.91%. After decreasing to 34.77% in the turmoil 
phase, the same probability increases across the crises peri-
ods. In particular, the probability of survival after one month 
increases from 51.41% to 74.5% when the GFC turned into a 
SDC period. Overall, these results seem to support the claim 
that the more the market activity decreases and the economic 
conditions worsen, the less European banks tend to entrench 
trading relationships with the trading partners of their 
counterparts.

Kaplan-Meier survival curves for the time to cyclic clo-
sure are reported in Figure 8. The time to observe the pat-
terns of generalized exchange differ during the entire period 
of observation. During the stability and GFC phases, half of 
the open two-paths became embedded into cyclic structures 
within a period of approximately 90 days. To observe the 
same result it takes less (45 days) during the turmoil period, 
and much more (201 days) during the SDC period. 
Consistently, the probability of survival for open two-paths 
is the highest in the SDC phase, with a value of 88.90%, and 
the lowest in the turmoil period, being equal to 62.38%. In 
the intermediate cases, the probability that open two-paths 
survive after 1 month is 76.10% in conditions of market sta-
bility and 80.78% at the onset of the GFC.

Table 6.  Median values (in days) of the internal time distribution 
of repetition, reciprocity, transitive and cyclic closure. Values are 
reported across four distinct exchange regimes.

Stability Turmoil GFC SDC

Repetition 2.1 1.99 1.92 2.09
Reciprocation 319 133 191 481
Transitive closure 41.9 17.2 32.0 101
Cyclic closure 86.9 44.8 91.8 201

Figure 5.  Kaplan-Meier curves for repeated transactions across 
four exchange regimes that correspond to periods of market 
stability, turmoil, global financial crisis (GFC), and sovereign debt 
crisis (SDC).

Figure 6.  Kaplan-Meier curves for reciprocated transactions.
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These results provide evidence that (i) different social 
mechanisms do not evolve in synchrony—that is, some 
mechanisms operate faster than others; (ii) the “rhythms” of 
such mechanisms—that is, their internal time distributions—
may vary over time.

Discussion and conclusions

Network evolution emerges from the interaction of multiple 
micro-mechanisms (Stadtfeld et  al., 2020). One source of 
complexity in empirical models for network evolution arises 
from the presence of multiple clocks regulating the speed at 
which these mechanisms operate to produce observed pat-
terns of network change. This argument is best understood 
when network evolution is analyzed at its lowest possible 
level of observation––that is, in terms of relational events 
(Brandes et  al., 2009) interpreted as: “sequences of occur-
rences that result in transformations of structures” (Sewell, 
2005, p.227).1 This view implies a direct connection between 
network “times” and network “structures.”

The social character of networks generated by sequences 
of relational events is revealed by the their internal tendency 
to self-organize into time-localized patterns associated with 
recognizable relational mechanisms. This process-oriented 
view of social networks allows new questions to be asked 
about the internal micro-structure of social mechanisms. 
How fast does reciprocation (unobservable) generate reci-
procity (observed)? And how fast does path-shortening gen-
erate the various form of closure so frequently documented 
in empirical studies? How does the (absolute and relative) 
speed of these social mechanisms vary across social set-
tings—and over (calendar) time? We think addressing these 

questions is crucial for constructing a theoretical understand-
ing of network structure as a “living flow that reproduces, 
not a building “structure,” static and dead” (Padgett, 2018, 
p.406). The argument that we have developed in this paper is 
only a preliminary step toward a reconceptualization of net-
work “structure” that incorporates in its definition dynamic 
elements of change.

The objective of this paper was to articulate this argument 
by: (i) suggesting that multiple mechanism-specific clocks 
regulate the intensity of observed network “flows;” (ii) pro-
viding one possible algorithmic solution to the problem of 
reconstructing the internal time distribution of network 
effects given a sequence of observed time-ordered relational 
events, and illustrating how the internal timing of network 
mechanisms itself might change over (historical) time.

The empirical case study that we have developed demon-
strates with particular clarity our orienting claim that net-
work mechanisms operate at different speed, and that their 
speed is sensitive to changes originating in the institutional 
context of exchange (Lomi and Bianchi, 2022). Building on 
prior research (Finger and Lux, 2017), our empirical applica-
tion narrowed the focus on four mechanisms that shape the 
evolution of the European interbank market—that is, repeti-
tion, reciprocation, transitive closure, and cyclic closure. 
Dyadic patterns of exchange, such as repetition and recipro-
cation, accelerate during periods of market turbulence. We 
found that path-shortening (“closure”) is also sensitive to the 
level of uncertainty inherent in financial crises. During mar-
ket turmoil, open two-paths crystallize into transitive and 
cyclic patterns of exchange at much faster rates than in peri-
ods of stability. Due to the deterioration of global economic 
conditions during the last period of observation, the network 

Figure 7.  Kaplan-Meier curves for transactions embedded in 
transitive triads.

Figure 8.  Kaplan-Meier curves for transactions embedded in 
cyclic triads.
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mechanisms slowed down reflecting the general contraction 
of trading activities.

Simply changing the interpretation of “reciprocity” or 
“transitivity” from descriptive aggregate structural feature of 
the social structure of financial markets (Finger and Lux, 
2017; Finger et al., 2013) to time-dependent social processes 
paves the way to a new understanding of structure that prom-
ises to take us beyond the traditional dualism between con-
cepts of network “ties” versus network “flows” (Borgatti and 
Halgin, 2011) or—more generally—between “structure” and 
“change” (Padgett and Powell, 2012). While this article is 
obviously not the first to observe the presence of a mutually 
constitutive relation linking social structures and social flows 
(Breiger, 1990), it still is one of the relatively few available, 
linking a more dynamic concept of network structure to data 
produced by decentralized large-scale institutional systems 
of economic exchange (Butts, 2009).

To the best of our knowledge, this is also one of the few 
studies currently available offering a systemic empirical 
demonstration of the contextual viability of network mecha-
nisms due to variations in their internal time structure. Extant 
research has recognized the variability of network effects 
(Amati et al., 2019; Bianchi and Lomi, 2022; Bianchi et al., 
2020; Lomi and Bianchi, 2022; Zappa and Vu, 2021), but has 
not connected it to differences in the speed at which the dif-
ferent dependence mechanisms operate.

The generality of our results is clearly constrained by a 
number of idiosyncratic contextual elements that would be 
hard to reproduce outside financial markets. However, 
technology-mediated communication (Butts, 2008) and 
participation in on-line crowd-sourced activities (Lerner 
and Lomi, 2020) come to mind as relational settings capa-
ble of producing data structures comparable in frequency 
and volume to those produced by the financial market that 
we have examined in the empirical part of this study. 
However, the fact that the roles of buyer and seller are 
completely contingent on individual interactions (Aspers, 
2007; Leifer, 1988; Lomi and Bianchi, 2022), make finan-
cial markets more similar to animal societies organized by 
dominance relations produced by directed behavioral 
sequences than known forms of role-based formal human 
organization (Chase, 1982; Chase et  al., 2002). Yet, the 
problem of representing and understanding the internal 
timing of social mechanisms easily transcends the restric-
tive boundaries of our empirical setting.

For this reason we believe that our study supports the 
general conjecture that different network mechanisms are 
regulated by internal clocks ticking at different speeds. As 
our empirical illustration suggests, the master-clock of 
historical time may influence the speed at which these 
mechanism-specific clocks tick. How the different mech-
anism-specific clocks interact and change with historical 
time to shape the evolutionary dynamics of social and 
other kinds of networks is something that we call future 
research to clarify.

Directly related to the first, a second conjecture is that the 
speed at which network mechanisms operate is contingent on 
the social structure of the exchange setting. For example, in 
our study we found that path-shortening tends to operate faster 
then reciprocation, and that repetition is relatively insensitive 
to variations in the level of environmental uncertainty.

The interpretation that mechanisms involving role-
switching (e.g., reciprocation) are more complex—and ulti-
mately slower—than mechanisms that simply involve a 
larger number of actors (e.g., path-shortening) is consistent 
with the results we obtained for cyclic closure, which tends 
to operate more slowly than transitive closure.

In exchange settings characterized by roles that are more 
difficult to change and hence more stable, like, for example, 
in product and producer markets (Lomi and Bianchi, 2022; 
White and Eccles, 1987), it could be conjectured that the 
relative speed of these mechanisms will be reversed. This 
may happen because in exchange systems characterized by 
institutionalized roles, simpler mechanisms—like reciproca-
tion—involve lower coordination costs than mechanisms 
involving a larger number of actors—like path-shortening.

In general, how the results produced by received empiri-
cal research based on statistical models for networks might 
be re-interpreted once we consider the possibility that net-
work mechanisms may operate asynchronously and at differ-
ent clock-speeds, and how empirical studies should be 
designed to translate this conjecture into testable hypotheses 
is again a challenge that we hope future research will take on.

The third conjecture that our study suggests is a direct 
consequence of the prior two. The fixed-length observation 
period of empirical studies of social networks is problematic 
when the mechanisms producing network change run at dif-
ferent speeds. For example, if social selection and social 
influence mechanisms are regulated by internal clocks tick-
ing at different speed, an observation period of fixed length 
will include a larger number of observations produced by the 
faster mechanisms (Steglich et al., 2010). This problem is not 
specific to pooled cross-section time series designs, but pre-
sents itself also in event-based designs (Tuma and Hannan, 
1984). If relational mechanisms operate at different speed, 
“fast” dependencies will dominate “slow” dependencies in 
studies covering observation periods that are short relative to 
the speed of the slower mechanisms.
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