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Abstract

The development of materials with specific structural properties is of huge practical interest, for example, for medical
pplications or for the development of lightweight structures in aeronautics. In this article, we combine shape optimization
nd homogenization for the optimal design of the microstructure in scaffolds. Given the current microstructure, we apply the
sogeometric boundary element method to compute the effective tensor and to update the microstructure by using the shape
radient in order to match the desired effective tensor. Extensive numerical studies are presented to demonstrate the applicability
nd feasibility of the approach.
2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

SC: 49K20; 49Q10; 74Q05
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1. Introduction

Many engineering problems amount to boundary value problems for an unknown function, which needs to be
ppropriately approximated in order to infer some desired quantity of interest. If the problem under consideration
xhibits different length scales, homogenization is the method of choice to avoid the expensive numerical resolution
f the different scales involved. The idea of homogenization is to replace the governing mathematical equations at
ultiple scales by approximate governing equations which only exhibit a single scale, see [1–4] for example.
Within this approach, the article at hand focuses on scaffold structures. This means that the material under

onsideration consists of periodic arrangements of an elementary microcell filled with material and possibly several
oids. Indeed, additive manufacturing allows to build lattices or perforated structures and hence to build structures
ith physical properties that vary in space. Assuming a lattice structure of the material under consideration, one may

ompute the effective material tensor on the microscale in order to derive an “effective” equation on the macroscale.
aking this consideration as a starting point, we address the optimal design of such scaffold structures. This task

s motivated by the need of scaffold structures which realize specific properties. The efficient numerical solution of
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this problem has, of course, a huge impact on many practical applications. Examples range from the development
of lightweight structures in aeronautics to medical implants in the orthopaedic and dental fields, see e.g. [5,6] and
the references therein.

We remark that the optimal design of scaffold structures has already been considered in many works, see
7–14] for some of the respective results and applications. The methodology used therein is mainly based on the
orward simulation of the material properties of a given microstructure. In contrast, in [15–19], shape sensitivity
nalysis has been used in combination with the finite element method. In [20,21], the derivatives with respect
o the side lengths and the orientation of rectangular cavities have been computed. Finally, in [22], the shape
erivative has been derived in the context of a level set representation of the inclusion. Rather than pursuing one
f the aforementioned approaches, we discretize Hadamard’s shape gradient directly by using a boundary integral
ormulation. As a consequence, we derive an efficient gradient based optimization algorithm for scaffold structures
s any remeshing of the domain under consideration can be avoided.

Shape optimization has been proven to be an efficient tool for designing structures, which should be constructed
ith respect to certain optimal design considerations. Having the shape gradient at hand, it can be applied to optimize

he structure under consideration with respect to the underlying shape functional, see [23–28] and the references
herein for an overview on the topic of shape optimization. Note that shape optimization falls into the general setting
f optimal control of partial differential equations.

For the numerical realization of our approach, we adopt the isogeometric analysis (IGA) framework. IGA
has been introduced in [29] in order to incorporate simulation techniques into the design workflow of industrial
development and thus allows to deal with domain deformations in a straightforward manner. Especially, by
representing the computational geometry and deformation fields by non-uniform rational B-splines (NURBS),
shapes can easily be deformed by directly updating the NURBS mappings which are used to represent the shape
under consideration. The particular class of shape deformations considered within this work are the eigenfunctions
of a prescribed covariance kernel. This way, we determine principal displacement fields that are tailored to the
underlying geometry. In particular, this approach is independent of the geometry’s smoothness or genus, as we
illustrate with our numerical experiments.

The cell functions, which are required for the computation of the effective tensor, are determined by means
of boundary integral equations. Especially, we show that all computations can be conducted at the boundary of
the cavity, including the evaluation of the shape functional and the shape gradient. This especially allows for
dealing with large deformations without having to update any volume mesh. For numerical computations, we
rely on the fast isogeometric boundary element method, developed in [30–33], which is available as C++-library
bembel [30,34]. In order to speed up computations, bembel employs H2-matrices with the interpolation based fast
multipole method [35–37].

The remainder of this article is structured as follows. In Section 2, we briefly recall the fundamentals of
homogenization theory and introduce the problem under consideration. We especially present the shape gradient
which enables us to find the optimal effective tensor by means of a gradient based optimization method. The topic
of Section 3 is the reformulation of the cell problem by means of boundary integral equations. This amounts to the
so-called Neumann-to-Dirichlet map, where the Green’s function for the periodic Laplacian is computed along the
lines of [38,39]. After having solved the Neumann-to-Dirichlet map, it suffices to evaluate both the shape functional
and the shape gradient exclusively at the boundary of the cavity. Section 4 is dedicated to the discretization of the
shape optimization problem, which comprises the discretization of the shape and the discretization of the Neumann-
to-Dirichlet map. Namely, we show how to define shape deformations by using the eigenfunctions of a prescribed
covariance kernel. We also summarize the solution of the Neumann-to-Dirichlet map by the isogeometric boundary
element method. Various numerical experiments are then performed in Section 5. We consider simple cavities like
the sphere and the cube, a multiple cavity consisting of a sphere and a cube, and finally a drilled cube which is a
cavity of genus 12. Finally, in Section 6, we state concluding remarks.

2. Shape optimization for scaffolds

2.1. Homogenization

We start by outlining the approach considered in this article. To this end, we shall restrict ourselves to the
situation of the simple two-scale problem posed on a domain D ⊂ R3, i.e.(

ε ε
)

ε

− div A ∇u = f in D, u = 0 on ∂ D. (1)

2
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Fig. 1. The domain D with unit cell Y .

Herein, the (3 × 3)-matrix Aε is assumed to be oscillatory in the sense that

Aε(x) = A
(

x
ε

)
, x ∈ D,

where the matrix A is symmetric, bounded, and uniformly elliptic. Mathematical homogenization is the study
f the limit of uε when ε tends to 0. Various approaches have been developed for this purpose. The oldest one is
omprehensively presented in Bensoussan, Lions and Papanicolaou [2]. It consists in performing a formal multiscale
symptotic expansion and then, in justifying its convergence, using the energy method due to Tartar [4]. A significant
esult obtained from this approach is the existence of the (L2(D)-) limit u0(x) of uε(x) and, more importantly, the
dentification of a limiting, “effective” or “homogenized” elliptic problem in D satisfied by u0.

We introduce the unit cell Y = [− 1
2 , 1

2 ]3 for the fast scale of problem (1) and assume that the matrix field A( y) is
Y -periodic, cf. Fig. 1 for a graphical illustration. Moreover, we consider the space H1

per(Y ) of Y -periodic functions
ith vanishing mean that belong to H1(Y ) and the unit vector ei ∈ R3 in the i th direction of R3. We define the cell

problems for i = 1, 2, 3 according to

find wi ∈ H1
per(Y ) such that

− div
(

A( y)(ei + ∇wi )
)

= 0.

The Lax–Milgram lemma ensures the existence and uniqueness of the solutions wi to these cell problems for
= 1, 2, 3.

The family of functions wi then determines the effective tensor

A0 = [ai, j ]3
i, j=1

in accordance with

ai, j =

∫
Y
⟨A(ei + ∇wi ), e j + ∇w j ⟩d y.

Based on this tensor, we may compute the homogenized solution u0 ∈ H1
0(D) by means of the boundary value

problem

−div
(

A0∇u0
)

= f in D, u0 = 0 on ∂ D.

In particular, by setting

u1(x, y) =

3∑
i=1

∂u0

∂xi
(x)wi ( y), (x, y) ∈ D × Y,

there holds the error estimateuε(x) − u0(x) − εu1

(
x,

x
ε

)
H1(D)

≤ c
√

ε → 0 as ε → 0

for some constant c > 0, cf. [1,40].
3
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2.2. Scaffold structures

From now on, we shall consider a scaffold structure. To this end, we assume that the unit cell Y is comprised of
a homogeneous material which contains some cavity Ω . More precisely, let Ω ⋐ Y be an open subset of Y and set
Γ := ∂Ω . The collection of interior boundaries, being translates of εΓ of the macroscopic domain Dε, is denoted
by ∂ Dε

int while the remainder of the boundary ∂ Dε
\ ∂ Dε

int is denoted by ∂ Dε
ext. The current situation is illustrated

in Fig. 1.
In accordance with [3], we consider the boundary value problem

−div
(

Aε
∇uε

)
= f in Dε,

⟨Aε
∇uε, n⟩ = 0 on ∂ Dε

int,

uε
= 0 on ∂ Dε

ext.

(2)

Here, we have Aε
= A(·/ε) in Dε with A = I in Y \Ω and A = 0 in Ω . Moreover, the surface Γ of the cavity Ω

is assumed to be oriented such that its normal vector n indicates the direction going from the interior of Ω to the
xterior Y \ Ω .

To derive the homogenized problem, one introduces the cell functions wi ∈ H1
per(Y \ Ω ) which are now given

by the Neumann boundary value problems

∆wi = 0 in Y \ Ω ,

∂nwi = −⟨n, ei ⟩ on Γ .
(3)

he homogenized equation becomes

−div
(

A0(Ω )∇u0
)

= (1 − |Ω |) f in D, u0 = 0 on ∂ D.

ere, the domain D coincides with Dε except for the holes. The effective tensor A0(Ω ) = [ai, j (Ω )]3
i, j=1 is now

iven by

ai, j (Ω ) =

∫
Y\Ω

⟨ei + ∇wi , e j + ∇w j ⟩d y, (4)

compare [3]. Notice that A0(Ω ) is a symmetric, bounded and uniformly elliptic matrix, since A is supposed to have
these properties. However, it is not a multiple of the identity in general, since the geometry of the cavity induces a
global anisotropy.

2.3. Shape calculus

Considering a given tensor B ∈ R3×3
sym which describes the desired material properties, we may ask the following

question: Can we find a cavity, i.e. a domain Ω , such that the effective tensor is as close as possible to B?
In order to make the notion of closeness between matrices precise, we choose the Frobenius norm of matrices

and define the shape functional J (Ω ) according to

J (Ω ) =
1
2
∥A0(Ω ) − B∥

2
F =

1
2

3∑
i, j=1

(
ai, j (Ω ) − bi, j

)2
. (5)

onetheless, in view of the Hashin–Strikman bounds, compare [41], it cannot be expected that every tensor can be
atched by a corresponding scaffold structure.
In order to solve the corresponding minimization problem

J (Ω ) → min,

e shall employ shape optimization. We are hence interested in describing how the effective tensor depends on
given deformation field, which acts on the shape of the cavity Ω . To this end, we introduce the displacement

eld V : Y → Y that vanishes at the boundary ∂Y of the reference cell but whose action may deform the interior
oundary Γ . In accordance with [42], the deformation field is then a perturbation of identity T t = I + t V , which
s a diffeomorphism for sufficiently small values t > 0 and preserves Y . We denote by Ω = T (Ω ) and by
t t

4
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wi (t) ∈ H1
per(Y ) the solution of (3) for the cavity Ω (t). Then, the shape derivative of a given shape functional J (Ω )

is defined according to

J ′(Ω )[V ] = lim
t→0

J (Ωt ) − J (Ω )
t

. (6)

The shape derivative (6) with respect to the functional (5) has been computed in e.g. [15,16,18] and reads

J ′(Ω )[V ] =

3∑
i, j=1

(
ai, j (Ω ) − bi, j

)
a′

i, j (Ω )[V ], (7)

here the coefficients a′

i, j (Ω )[V ] are given by

a′

i, j (Ω )[V ] = −

∫
Γ

⟨∇Γφi , ∇Γφ j ⟩⟨V , n⟩do with φi = xi + wi . (8)

3. Boundary integral equation for the cell problem

3.1. Green’s function

In order to numerically solve the cell problem (3), we shall recast it as a boundary integral equation. To that
end, we have first to determine the Y -periodic kernel function kper(z) which satisfies −∆kper(z) = δ0(z) − 1 in the

istributional sense. The term −1 is necessary to guarantee a vanishing mean on the kernel function, which ensures
he validity of Poincaré’s equation. We follow [38,39] and make the ansatz

kper(z) =
1

4π∥z∥
+

∥z∥2

6
+ kcorr(z).

f we apply the Laplacian to the first term on the right-hand side, we obtain the delta distribution δ0, whereas the
econd term relates to the −1. The corrector term then represents a harmonic function, which is used to enforce
he periodicity. For the Laplacian in three dimensions, it can be written as

kcorr(z) =

∞∑
n=0

n∑
ℓ=−n

αn,ℓ Rn
ℓ (z), (9)

here {Rn
ℓ } denote the (regular) solid harmonics and the coefficients {αn,ℓ} are chosen such that kper(z) is Y -periodic.

n practice, we truncate the expansion after N terms and compute the coefficients αn,ℓ by minimizing the deviation
f the kernel function kper and its normal derivative at ∂Y from a Y -periodic function in the least squares sense. In
ccordance with [38,39], we take the neighbouring cells into account and employ

k̃per(z) =
1

4π

∑
m∈{−1,0,1}3

1
∥z − m∥

+
∥z∥2

6
+ kcorr(z)

in order to accelerate the convergence towards a periodic function.
The necessary truncation rank to achieve machine precision is rather small. For example, we use N = 12 to

obtain an accuracy of about 5 · 10−8. The coefficients αn,ℓ can of course be computed in an offline phase and may
then be tabulated for later use.

3.2. Neumann-to-Dirchlet map

Having the periodic Green’s function at hand, we define the corresponding single layer operator V in accordance
with

V : H−1/2(Γ ) → H1/2(Γ ), (Vw)(x) =

∫
Γ

kper(x − y)w( y)do y (10)

and the double layer operator K in accordance with

K : H1/2(Γ ) → H1/2(Γ ), (Kw)(x) =

∫
∂kper (x − y)w( y)do y. (11)
Γ ∂n y

5
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Given the Neumann data −⟨n, ei ⟩ of the cell function wi ∈ H1
per(Y \Ω ) at the boundary Γ , the respective Dirichlet

data are given by the solution of the boundary integral equation(
1
2

− K
)

wi = V⟨n, ei ⟩. (12)

his (exterior) Neumann-to-Dirichlet map is known to be uniquely solvable. We refer the reader to [43,44] for all
he details.

.3. Evaluating the shape functional and its gradient

In this section, we present the formulas to compute the effective tensor A0(Ω ) = [ai, j (Ω )]3
i, j=1 given by (4) and

ts shape derivative (8) from the Dirichlet and Neumann data of the cell function.

emma 3.1. The effective tensor A0(Ω ) = [ai, j (Ω )]3
i, j=1 from (4) satisfies the identity

ai, j (Ω ) = δi, j |Y \ Ω | −

∫
Γ

wi ⟨e j , n⟩do.

roof. We will discuss the four terms of the effective tensor

ai, j (Ω ) =

∫
Y\Ω

{
⟨ei , e j ⟩ + ⟨∇wi , e j ⟩ + ⟨ei , ∇w j ⟩ + ⟨∇wi , ∇w j ⟩

}
d y.

separately. For the first term, it holds∫
Y\Ω

⟨ei , e j ⟩d y = δi, j |Y \ Ω |.

Then, integration by parts gives∫
Y\Ω

⟨∇wi , ∇w j ⟩d y = −

∫
Γ

∂wi

∂n
w j do =

∫
Γ

⟨n, ei ⟩w j do,

where we used the Y -periodicity of wi and w j . Likewise, observing that div(e j ) = 0, we find for the mixed terms
y integration by parts that∫

Y\Ω

⟨∇wi , e j ⟩d y = −

∫
Γ

wi ⟨e j , n⟩do.

he assertion is now obtained by adding up the different terms. □

For the shape derivative of the effective tensor, we find the following expression.

emma 3.2. The shape derivative of the effective tensor A0(Ω ) from (4) is given by

a′

i, j (Ω )[V ] =

∫
Γ

{
⟨ei , n⟩⟨e j , n⟩ − ⟨ei + ∇Γwi , e j + ∇Γw j ⟩

}
⟨V , n⟩do.

Proof. Since φi = xi + wi , we find

a′

i, j (Ω )[V ] = −

∫
Γ

⟨
ei − ⟨ei , n⟩n + ∇Γwi , e j − ⟨e j , n⟩n + ∇Γw j

⟩
⟨V , n⟩do.

First, we note that the normal n and the tangential gradient ∇Γwi are perpendicular to each other, i.e. ⟨∇Γwi , n⟩ =

⟨n, ∇Γw j ⟩ = 0. Moreover, we conclude⟨
ei − ⟨ei , n⟩n, e j − ⟨e j , n⟩n

⟩
= ⟨ei , e j ⟩ − ⟨ei , n⟩⟨e j , n⟩.
herefore, we get the desired result. □

6
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Fig. 2. Surface representation and mesh generation.

4. Discretization

4.1. Parametric representation of the reference shape

Our goal is to compute the deformation of a given reference boundary Γref such that the effective tensor A0(Ω )
corresponds to the desired one B. In the following, we will assume the usual isogeometric setting for the reference
boundary Γref. To this end, let the unit square be denoted by □ := [0, 1]2 and assume that the reference boundary
Γref is represented by a regular and non-overlapping decomposition into smooth, quadrangular (closed) patches

Γref =

M⋃
i=1

Γ (i)
ref .

Here, regular and non-overlapping means that the intersection Γ (i)
ref ∩ Γ (i ′)

ref of two patches consists at most of a
common vertex or a common edge for i ̸= i ′.

Following the paradigm of isogeometric analysis, each patch Γ (i)
ref is represented by an invertible spline or NURBS

mapping

si :□ → Γ (i)
ref with Γ (i)

ref = si (□) for i = 1, 2, . . . , M. (13)

We especially follow the common convention that parametrizations with a common edge coincide except for
orientation.

A mesh of level j on Γ is finally induced by dyadic subdivisions of depth j of the unit square into 4 j squares.
e denote these squares by

□( j)
k,k′ := [2− j k, 2− j (k + 1)] × [2− j k ′, 2− j (k ′

+ 1)].

his generates 4 j M elements (or elementary domains), compare Fig. 2.

.2. Shape discretization

By assumption, the NURBS patches under consideration are smooth. As a consequence, we may reinterpolate
hem by using piecewise polynomials in order to speed up evaluations of the parametrization and its derivatives,
hich are required within the optimization and the update procedures. Our particular implementation is outlined
elow.

Given the vertices of the subdivided unit square

ξ ℓ,ℓ′ := 2− j
[
ℓ

ℓ′

]
, ℓ, ℓ′

= 0, 1, . . . ,2 j ,

e represent the element

Γi, j,k,k′ := si
(
□( j)

k,k′

)
y piecewise interpolating the parametrization si by tensor product polynomials of degree p = (p1, p2). To that
nd, we introduce the vertices

s (ξ ) for ℓ = m, m + 1, m + p , ℓ′
= m ′, m ′

+ 1, . . . , m ′
+ p ,
i ℓ,ℓ′ 1 2

7
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where m := min{k, 2 j
− p1}, m ′ := min{k ′, 2 j

− p2}, and the Lagrange polynomials L (1)
0 (x), L (1)

1 (x), . . . , L (1)
p1

(x)
with respect to the abscissae xℓ := 2− j (m + ℓ) and L (2)

0 (y), L (2)
1 (y), . . . , L (2)

p2
(y) with respect to yℓ := 2− j (m ′

+ ℓ).
Now, we approximate

si |□( j)
k,k′

≈

(m+p1∑
ℓ=m

m′
+p2∑

ℓ′=m′

si (ξ ℓ,ℓ′ )L (1)
ℓ ⊗ L (2)

ℓ

)⏐⏐⏐⏐
□( j)

k,k′

. (14)

Here, the polynomial degree p is always chosen such that the overall consistency error is met.
We remark that the polynomial approximation (14) particularly allows for the rapid evaluation of geometric

quantities, such as the surface measure and the normal vector by means of the complete Horner scheme provided
that the Newton basis is used for its representation, see for example [45].

For the representation of shape variations, we adopt an approach that is well established in the context of random
domain variations, compare [46]. Namely, we represent these variations by means of the Karhunen–Loève expansion,
see [47,48], of a parametric deformation field with design parameters {yk}k , that is

χ (x, y) = x +

∞∑
k=1

√
λk Vk(x)yk, x ∈ Γref. (15)

erein, {λk, Vk}k are the eigenpairs (in decreasing order with respect to the size of the eigenvalues λk) of the
ilbert–Schmidt operator associated to some matrix valued covariance function

Cov[χ ] :Γref × Γref → R3×3. (16)

he advantage of the approach (15) is that only the very first deformation vectors are dominant and hence needed
n practice. In order to compute this representation at the interpolation points

Ξ :=
{

si (ξ ℓ,ℓ′ ) : i = 1, 2, . . . , M, ℓ, ℓ′
= 0, 1, . . . , 2 j},

e have to solve the eigenvalue problem for the covariance matrix

C :=
[
Cov[χ ](ξ , ξ ′)

]
, ξ , ξ ′

∈ Ξ.

Since C ∈ R3M(2 j
+1)2

×3M(2 j
+1)2

, the solution of the corresponding eigenvalue problem can easily become
rohibitive. Therefore, we shall rely on an approach based on the pivoted Cholesky decomposition, compare [49,50].
ssuming that C ≈ LL⊺ with rank L = p ≪ 3M(2 j

+ 1)2, we can replace the eigenvalue problem LL⊺v = λv by
he much smaller one L⊺Lṽ = λṽ. Having computed an eigenpair (λ,ṽi ) of the latter, then (λk, vk) with vk := Lṽk
s an (approximate) eigenpair of the original eigenvalue problem. Especially, there holds v

⊺
k vk = λk .

As we consider a shape optimization problem, we will drop the weighting induced by the eigenvalues {λk}k
and consider only the eigenvectors {vk}k as principal directions for the domain deformation. Then, by applying the
interpolation procedure described earlier, we arrive at the parametric surface representation

Γ ( y) := χ (Γref, y) =

{
x +

p∑
k=1

Vk(x)yk : x ∈ Γref

}
, y ∈ Rp, (17)

here the displacement fields Vk are obtained by polynomial interpolation of the discrete points encoded by vk . By
efining Ω ( y) as the domain whose boundary is Γ ( y), one readily verifies that[

∇ y J
(
Ω ( y)

)]
y=0 =

[
J ′(Ω )[V 1], . . . , J ′(Ω )[V p]

]⊺
.

ence, the design parameters y = [y1, . . . , yp]⊺ are directly obtained from the gradient descent method based on
he shape derivatives.

.3. Boundary element method

We discretize the Neumann-to-Dirichlet map by means of an isogeometric Galerkin discretization. To this end,
et {ϕ j,k} denote a suitable B-spline basis of order d on the mesh of level j and define the system matrices

S j =

[∫
(Vϕ j,k′ )(x)ϕ j,k(x)dσ

]
, K j =

[∫
(Kϕ j,k′ )(x)ϕ j,k(x)dσ

]
.

Γ k,k′ Γ k,k′

8
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Fig. 3. The coordinate axes for the plots of the resulting geometries.

They correspond to the single layer operator (10) and double layer operator (11), respectively. Moreover, we require
the mass matrix and the right-hand sides

M j =

[∫
Γ

ϕ j,k(x)ϕ j,k′ (x)dσ

]
k,k′

, bi, j =

[∫
Γ

⟨ei (x), n(x)⟩ϕ j,k(x)dσ

]
k
,

here i = 1, 2, 3. Then, the discrete version of the Neumann-to-Dirichlet map (12) for the computation of the cell
unctions wi ≈

∑
k[wi, j ]kϕ j,k is given by the linear system of equations(

1
2

M j − K j

)
wi, j = S j M−1

j bi, j . (18)

n practice, we use globally continuous B-spline functions for the Dirichlet data and patchwise continuous B-spline
unctions for the Neumann data, as the Neumann data cannot be expected to be continuous across patch boundaries
f the geometry under consideration exhibits corners and edges.

The implementation of the discretized Neumann-to-Dirichlet map (18) is done with the help of the C++-library
embel, where the order of the B-splines can be chosen arbitrarily. We refer the reader to [30,34] for the details
oncerning bembel.

Having the Neumann and Dirichlet data of the cell functions at hand, we are able to compute the shape functional
5) and the shape gradient (7) in accordance with Lemmata 3.1 and 3.2.

. Numerical results

In this section, we present extensive numerical results to demonstrate the feasibility of our approach. The
ollowing setup is chosen: The covariance kernel (16) for generating the displacement fields Vk in (15) is chosen
iagonally with diagonal entries given by the Matérn kernel with smoothness index ν = 9/2, that is

k9/2(r ) =

(
1 +

3r
ℓ

+
27r2

7ℓ2 +
18r3

7ℓ3 +
27r4

35ℓ4

)
exp

(
−

3r
ℓ

)
, (19)

here the radius is given by r = ∥x − y∥2 and ℓ denotes the correlation length. Notice that the Matérn kernels kν

are the reproducing kernels of the Sobolev spaces Hν+3/2(R3) and hence the volumetric shape deformation basis is
H ν+3/2-smooth, compare [51] for the details. The correlation length is always set to ℓ = 1, unless otherwise stated.

In the subsequent examples, we consider a sphere, a cube and a drilled cube as initial shapes. The shape
iscretization is based on p = 16 displacement vectors except for the disconnected geometry and the drilled cube,
ompare Sections 5.3 and 5.4. The iterative optimization of the initial shape Ω is performed by using the gradient
escent method with quadratic line search, where a value of the functional (5) under consideration, which is smaller
han 10−5, was always obtained within 25 steps.

The boundary element method for solving the state equation employs quadratic B-spline functions on refinement
evel j = 4, which amounts to about 1700 boundary elements on the sphere and also on the cube. In the case of
he drilled cube, we use the refinement level j = 3, which yields 4000 boundary elements.

As the shapes are three-dimensional, we display them with respect to different directions. The first image is
lways oriented such that we are looking into the x-direction, the second one such that we are looking into the

y-direction and the third one such that we are looking into the z-direction, see Fig. 3 for the orientation axes. The
ifferent colours represent the different patches of the surface.

The shape functional assumes very small values at convergence in each of the numerical examples, which

ndicates that the solution is not unique and depends on the particular choice of the displacement vectors. Indeed, it

9
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Fig. 4. Desired tensor B1: Starting from the initial guess B0.3(0), one obtains a ball of approximate radius 0.25.

Fig. 5. Desired tensor B2: Starting with the initial guess B0.3(0), one obtains a ball of approximate radius 0.42.

has already been observed in [16] that the solution of the shape optimization problem under consideration depends
on the choice of the initial shape. This is also observed in our numerical experiments, as we present different optimal
shapes for the same desired effective tensors.

5.1. Sphere

We start with the canonical example of the sphere. To this end, let us denote an open ball with radius r , centred
around the point x ∈ R3, by Br (x) = { y ∈ R3

: ∥ y − x∥2 < r}. Then, in the following examples, we use the ball
B0.3(0) as the initial shape and the optimization is stopped if J (Ω ) < 10−5. For the sphere as an initial guess, this
criterion was satisfied in the subsequent experiments after 3, 6, 17, and 25 iterations, respectively.

In our first test, we used

B1 = 0.9I and B2 = 0.6I

as desired effective tensor B in (5). This choice yields just a scaling of the radius of the ball, compare Fig. 4 for
B1 and Fig. 5 for B2.

To obtain a shape different from a ball, we prescribe an anisotropic effective tensor B in (5). Let us therefore
define the matrix

B3 =

⎡⎣0.9
0.88

0.86

⎤⎦ .

Using B3 as the desired effective tensor, the shape of the cavity changes significantly, as can be seen in Fig. 6.
In order to account for shapes which are not oriented along the coordinate axes, we define the orthogonal

transformation

T =

⎡⎢⎣
1

√
3

0 2
√

6
1

√
3

−
1

√
2

−
1

√
6

1
√

1
√ −

1
√

⎤⎥⎦ (20)
3 2 6

10
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Fig. 6. Resulting shape in case where the initial guess is B0.3(0) and the desired tensor B3.

Fig. 7. Resulting shape in case where the initial guess is B0.3(0) and the desired tensor B4.

nd choose the desired effective tensor

B4 = T B3T⊺,

.e. a rotated version of the matrix B3. As can be seen in Fig. 7, the perforation orients differently. Indeed, it is
ow aligned with the rotated coordinate system induced by the transformation T .

5.2. Cube

In the next examples, we consider the cube C = [−0.15, 0.15]3 and its rotated version TC, respectively, as initial
guesses. We want to examine what happens if we optimize its shape with respect to a given desired effective tensor.
In all examples, convergence to the final value was achieved between 13 and 16 iterations.

If the effective tensor is diagonal relative to the axes of the initial cube, then we observe that Ω takes the shape of
a cuboid, aligned with these axes. If not, then Ω takes approximately the shape of a parallelepiped. This behaviour
an clearly be observed in Figs. 8–11. Therein, the first situation (initial guess and desired effective tensor aligned)
ppears in Figs. 8 and 11, while the second situation (initial guess and desired effective tensor not aligned) appears
n Figs. 9 and 10.

.3. Sphere and cube

Another important configuration we investigate is that of an initial shape made of two disjoint connected
omponents placed at different locations in the unit cell Y . To study this case, we define the geometry

D = B0.15
(
−[0.25, 0.25, 0.25]⊺

)
∪ [0.175, 0.325]3.

he desired material tensor under consideration is the diagonal matrix

B5 =

⎡⎣1
0.995

⎤⎦ .
0.99
11
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A
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R
t
F

Fig. 8. Resulting shape in case where the initial guess is C and the desired tensor B3.

Fig. 9. Resulting shape in case where the initial guess is C and the desired tensor B4.

Fig. 10. Resulting shape in case where the initial guess is TC and the desired tensor B3.

Fig. 11. Resulting shape in case where the initial guess is TC and the desired tensor B4.

s can be seen from Fig. 12, using D as initial guess, the geometries do not just deform as before, but rather affect
ach other. Especially the cube is stretched towards the (deformed) sphere.

Instead of considering different desired tensors as in the examples before, we follow a different approach here.
ecall that the construction of the displacement fields depends on the Matérn kernel (19), where ℓ > 0 denotes

he correlation length. If ℓ is chosen small, then the two shapes act more like two different geometries, compare
ig. 13. However, p = 16 are too few displacement fields to deform two separate shapes in order to decrease the
12
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5

t
r

Fig. 12. Desired tensor B5, initial guess D, ℓ = 1. Convergence is achieved after 12 iterations, computed on the fourth refinement level.

Fig. 13. Desired tensor B3, initial guess D, ℓ = 1/4. Convergence is achieved after 8 iterations, computed on the fourth refinement level.

Fig. 14. The parametrization of the drilled cube by 48 patches with mesh on refinement level 3.

value of the objective functional significantly if ℓ = 1/4. Hence, we rather work with p = 50 displacement fields
here, resulting in a rapid convergence. Note that the number of iterations to reduce the value of the shape functional
below 10−5 has been 12 when ℓ = 1, p = 16 and 8 when ℓ = 1/4, p = 50.

.4. Drilled cube

In our final example, we consider a more complex geometry as initial guess, namely a cube [−0.3, 0.3]3, where
hree holes of diameter 0.15 have been drilled into, compare Fig. 14. Notice that the parametrization of the cube is
epresented by 48 patches.

We choose the desired effective tensor

B6 =

⎡⎣0.82
0.78

⎤⎦

0.74

13
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s

Fig. 15. Drilled cube as initial guess for the desired tensor B6. The number of deformation vectors is p = 200 and convergence is achieved
after 8 gradient steps.

Fig. 16. Drilled cube as initial guess for the desired tensor B6. The number of deformation vectors is p = 50 and convergence is achieved
after 12 gradient steps.

and employ p = 200 displacement fields. We require 8 gradient descent steps to reduce the value of the shape
functional below 10−5. The resulting shape is illustrated in Fig. 15. It can be observed that, instead of changing the
ize of the cube, the size of the holes is changed in order to account for the anisotropic effective tensor.

If we reduce the number of shape deformation vectors to p = 50, then the result is different. The latter situation
is depicted in Fig. 16. Here, we observe that the drilled cube (including the drill holes) is basically just rescaled to
a cuboid which reflects the desired anisotropic effective tensor.

6. Conclusion

In this article, we have presented an isogeometric approach to the shape optimization of scaffold structures. By
defining the shape deformations with the help of a covariance kernel, we are able to optimize also non-smooth shapes
with edges and corners as well as disconnected shapes and shapes of genus larger than 0 without any additional
effort. This implies a huge progress compared to previous approaches in shape optimization. In combination with
an isogeometric boundary element method, we arrive hence at a powerful new methodology for the numerical
solution of shape optimization problems. We, however, emphasize that our parametric approach does not allow for
topological changes. Finally, we remark that an extension of the present methodology to linear elasticity is possible,
compare [17,52].
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