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a b s t r a c t

Resource leaks – a program does not release resources it previously acquired – are a common kind of
bug in Android applications. Even with the help of existing techniques to automatically detect leaks,
writing a leak-free program remains tricky. One of the reasons is Android’s event-driven programming
model, which complicates the understanding of an application’s overall control flow.

In this paper, we present PlumbDroid: a technique to automatically detect and fix resource leaks in
Android applications. PlumbDroid builds a succinct abstraction of an app’s control flow, and uses it to
find execution traces that may leak a resource. The information built during detection also enables
automatically building a fix – consisting of release operations performed at appropriate locations –
that removes the leak and does not otherwise affect the application’s usage of the resource.

An empirical evaluation on resource leaks from the DroidLeaks curated collection demonstrates
that PlumbDroid’s approach is scalable, precise, and produces correct fixes for a variety of resource
leak bugs: PlumbDroid automatically found and repaired 50 leaks that affect 9 widely used resources
of the Android system, including all those collected by DroidLeaks for those resources; on average, it
took just 2 min to detect and repair a leak. PlumbDroid also compares favorably to Relda2/RelFix –
the only other fully automated approach to repair Android resource leaks – since it can often detect
more leaks with higher precision and producing smaller fixes. These results indicate that PlumbDroid
can provide valuable support to enhance the quality of Android applications in practice.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The programming model of the Android operating system
akes its mobile applications (‘‘apps’’) prone to bugs that are due

o incorrect usage of shared resources. An app’s implementation
ypically runs from several entry points, which are activated by
allbacks of the Android system in response to events triggered
y the mobile device’s user (for example, switching apps) or other
hanges in the environment (for example, losing network con-
ectivity). Correctly managing shared resources is tricky in such
n event-driven environment, since an app’s overall execution
low is not apparent from the control-flow structure of its source
ode. This explains why resource leaks – bugs that occur when a
shared resource is not correctly released or released too late – are
one of the most common kind of performance bugs in Android
apps (Pathak et al., 2011; Liu et al., 2014a; Mazuera-Rozo et al.,
2020), where they often result in buggy behavior that ultimately
degrades an app’s responsiveness and usability.

Motivated by their prevalence and negative impact, research
in the last few years (which we summarize in Section 5) has
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developed numerous techniques to detect resource leaks using
dynamic analysis (Pathak et al., 2011; Banerjee et al., 2014), static
analysis (Wu et al., 2016b,a; Liu et al., 2016), or a combination of
both (Banerjee et al., 2018). Automated detection is very useful to
help developers in debugging, but the very same characteristics of
Android programming that make apps prone to having resource
leaks also complicate the job of coming up with leak repairs that
are correct in all conditions.

To address these difficulties, we present a technique to detect
and fix resource leaks in Android apps completely automatically.
Our technique, called PlumbDroid and described in Section 3, is
based on static analysis and can build fixes that are correct (they
eradicate the detected leaks for a certain resource) and ‘‘safe’’
(they do not introduce conflicts with the rest of the app’s usage of
the resource, and follow Android’s recommendations for resource
management (Anon, 2022a)).

PlumbDroid’s analysis is scalable because it is based on a suc-
cinct abstraction of an app’s control-flow graph called resource-
flow graph. Paths on an app’s resource-flow graph correspond to
all its possible usage of resources. Avoiding leaks entails match-
ing each acquisition of a resource with a corresponding release
operation. PlumbDroid supports the most general case of reen-
rant resources (which can be acquired multiple times, typically
mplemented with reference counting in Android): absence of
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eaks is a context-free property (Sipser, 1997); and leak detec-
ion amounts to checking whether every path on the resource-
low graph belongs to the context-free language of leak-free
equences. PlumbDroid’s leak model is more general than most
ther leak detection techniques’—which are typically limited to
on-reentrant resources (see Table 8).
The information provided by our leak detection algorithm

lso supports the automatic generation of fixes that remove leaks.
lumbDroid builds fixes that are correct by construction; a final
alidation step reruns the leak detection algorithm augmented
ith the property that the new release operations introduced by
he fix do not interfere with the existing resource usages. Fixes
hat pass validation are thus correct and ‘‘safe’’ in this sense.

We implemented our technique PlumbDroid in a tool, also
alled PlumbDroid, that works on Android bytecode. PlumbDroid
an be configured to work on any Android resource API; we
quipped it with the information about acquire and release oper-
tions of 9 widely used Android resources (including Camera and
ifiManager), so that it can automatically repair leaks of those
esources.

The current implementation of PlumbDroid is not equipped
ith any aliasing analysis technique; therefore, it may incur a

arge number of false positives when applied to apps that use
esources under lots of different aliases. We found that different
ndroid resources have distinct usage patterns: some, such as
atabase cursors, are frequently used under many aliases; others,
uch as the camera or the Wi-Fi adapter, are not. PlumbDroid’s
urrent implementation is geared towards analyzing the latter
ind of resources, which we call non-aliasing resources and are
he main target of our experiments with PlumbDroid.

We evaluated PlumbDroid’s performance empirically on leaks
f 9 non-aliasing resources in 17 Android apps from the cu-
ated collection DroidLeaks (Liu et al., 2019). These experiments,
escribed in Section 4, confirm that PlumbDroid is a scalable
utomated leak repair technique (around 2 min on average to
ind and repair a leak) that consistently produces correct and safe
ixes for a variety of Android resources (including all 26 leaks in
roidLeaks affecting the 9 analyzed resources).
We also experimentally compared PlumbDroid with Relda2/

elFix (Wu et al., 2016a; Liu et al., 2016)—the only other fully
utomated approach to repair Android resource leaks that has
een developed so far—by running the former on the same apps
sed in the latter’s evaluation. The comparison, also described in
ection 4, indicates that, on non-aliasing resources, PlumbDroid
etects more true leaks (79 vs. 53) with a higher average preci-
ion (89% vs. 55%) than Relda2/RelFix, and produces fixes that are
ne order of magnitude smaller.
PlumbDroid’s novelty and effectiveness lie in how it combines

nd fine-tunes existing analysis techniques to the usual charac-
eristics of Android resource usage. (1) PlumbDroid’s fine-grained,
et succinct, abstract model of resource usage supports a sound
tatic analysis with high precision; (2) PlumbDroid’s fix generation
rocess follows Android’s guidelines about the program locations
here each resource should be released; (3) PlumbDroid’s valida-
ion step further guarantees that the fixes that it automatically
enerates are suitable and correct.
In summary, this paper makes the following contributions:

• It introduces PlumbDroid: a fully automated technique based
on static analysis for the detection and repair of Android
resource leaks.
• It evaluates the performance of PlumbDroid on apps in Droi-

dLeaks, showing that it achieves high precision and recall,
and scalable performance.
• It experimentally compares PlumbDroid to the other ap-

proach Relda2/RelFix on the same apps used in the lat-
ter’s evaluation, showing that it generally achieves higher
precision and recall.
2

Fig. 1. An excerpt of class ImageViewerActivity in Android app IRCCloud,
showing a resource leak that PlumbDroid can fix automatically.

• For reproducibility, the implementation of PlumbDroid, as
well as the details of its experimental evaluation (including
the produced fixes), are publicly available in a replication
package:
https://github.com/bhargavbh/PlumbDROID

2. An Example of PlumbDroid in Action

IRCCloud is a popular Android app that provides a modern IRC
chat client on mobile devices. Fig. 1 shows a (simplified) excerpt
of class ImageViewerActivity in IRCCloud’s implementation.

As its name suggests, this class implements the activity – a
kind of task in Android parlance – triggered when the user wants
to view an image that she downloaded from some chat room.
When the activity starts (method onCreate), the class acquires
permission to use the system’s media player by creating an object
of class MediaPlayer on line 7. Other parts of the activity’s
implementation (not shown here) use player to interact with
the media player as needed.

When the user performs certain actions – for example, she
flips the phone’s screen – the Android system executes the ac-
tivity’s method onPause, so that the app has a chance to appro-
priately react to such changes in the environment. Unfortunately,
the implementation of onPause in Fig. 1 does not release the
media player, even though the app will be unable to use it while
paused (Anon, 2021a). Instead, it just acquires a new handle to
the resource when it resumes. This causes a resource leak: the
acquired resource MediaPlayer is not appropriately released.
Concretely, if the user flips the phone back and forth – thus
generating a long sequence of unnecessary new acquires – the
leak will result in wasting system resources and possibly in an
overall performance loss.

Such resource leaks can be tricky for programmers to avoid.
Even in this simple example, it is not immediately obvious that
onPause may execute after onCreate, since this requires a clear
picture of Android’s reactive control flow. Furthermore, a devel-
oper may incorrectly assume that calling the implementation of
onPause in Android’s base class Activity (with
uper.onPause()) takes care of releasing the held resources.
owever, Activity.onPause cannot know about the resources
hat have been specifically allocated by the app’s implementa-
ion; in particular, it does not release MediaPlayer() instance
layer.
PlumbDroid can automatically analyze the implementation of

RCCloud looking for leaks such as the one highlighted in Fig. 1.

https://github.com/bhargavbh/PlumbDROID
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Fig. 2. How PlumbDroid works: First, PlumbDroid builds a finite-state abstraction of the Android app under analysis, which captures acquire and release operations
f an API’s resources. The abstraction models each function of the application with a resource-flow graph (RFG) – a special kind of control-flow graph – and combines
esource-flow graphs to model inter-procedural behavior. In the analysis step, PlumbDroid searches the graph abstraction for resource leaks: paths where a resource
is acquired (ak) but not eventually released. In the fixing step, PlumbDroid injects the missing release operations rk where needed along the leaking path. In the

inal validation step, PlumbDroid abstracts and analyzes the code after fixing, so as to ensure that the fix does not introduce unintended interactions that cause
ew resource-usage related problems.
lumbDroid generates an abstraction of the whole app’s control-
low that considers all possible user interactions that may result
n leaks. For each detected leak, PlumbDroid builds a fix by adding
uitable release statements.
For Fig. 1’s example, PlumbDroid builds a succinct fix at line

5 consisting of the conditional release operation if (player !=
ull) player.release(). PlumbDroid also checks that the fix
s correct (it removes the leak) and ‘‘safe’’ (it only releases the
esource after the app no longer uses it). Systematically run-
ing PlumbDroid on Android apps can detect and fix many such
esource leaks completely automatically.

. How PlumbDroid works

Fig. 2 gives a high-level overview of how PlumbDroid works.
ach run of PlumbDroid analyzes an app for leaks of resources
rom a specific Android API – consisting of acquire and release
perations – modeled as described in Section 3.1.
The key abstraction used by PlumbDroid is the resource-flow

raph: a kind of control-flow graph that captures the informa-
ion about possible sequences of acquire and release operations.
ection 3.2.1 describes how PlumbDroid builds the resource-flow
raph for each procedure individually.
A resource leak is an execution path where some acquire op-

ration is not eventually followed by a matching release opera-
ion. In general, absence of leaks (leak freedom) is a context-free
roperty (Sipser, 1997) since there are resources – such as wait
ocks – that may be acquired and released multiple times (they
re reentrant).2 Therefore, finding a resource leak is equivalent
o analyzing context-free patterns on the resource-flow graph.
lumbDroid’s detection of resource leaks at the intra-procedural
evel is based on this equivalence, which Section 3.2.2 describes
n detail.

Android apps architecture. An Android application consists
f a collection of standard components that have to follow a
articular programming model (Anon, 2021b). Each component
ype – such as activities, services, and content providers – has
n associated callback graph, which constrains the order in which
ser-defined procedures are executed. As shown by the example
f Fig. 3, the states of a callback graph are macro-state of the
pp (such as Starting, Running, and Closed), connected by edges
ssociated with callback functions (such as onStart, onPause,
nd onStop). An app’s implementation defines procedures that
mplement the appropriate callback functions of each component
as in the excerpt of Fig. 1).

2 For resources that do not allow nesting of acquire and release, leak freedom
s a regular property—which PlumbDroid supports as a simpler case.
 w

3

Fig. 3. Simplified callback graph of an Android component.

Because it follows this programming model, the overall control-
flow of an Android app is not explicit from the app’s implemen-
tation. Rather, the Android system triggers callbacks according to
the transitions that are taken at run time (which, in turn, depend
on the events that occur). PlumbDroid deals with this implicit exe-
cution flow in two steps. First (Section 3.3.1), it defines an explicit
inter-procedural analysis: it assumes that the inter-procedural
execution order is known, and combines the intra-procedural
analysis of different procedures to detect leaks across procedure
boundaries. Second (Section 3.3.2), it unrolls the callback graph
to enumerate sequences of callbacks that may occur when the
app is running, and applies the explicit inter-procedural analysis
to these sequences.

Fix generation. PlumbDroid’s analysis stage extracts detailed
information that is useful not only to detect leaks but also to
generate fixes that avoid the leaks. As we describe in Section 3.4,
PlumbDroid builds fixes by adding a release of every leaked re-
source as early as possible along each leaking execution path.

PlumbDroid’s fixes are correct by construction: they release
previously acquired resources in a way that guarantees that the
previously detected leaks no longer occur. However, it might still
happen that a fix releases a resource that is used later by the
app—thus introducing a use-after-release error. In order to rule
this out, PlumbDroid also runs a final validation step which reruns
the leak analysis on the patched program. If validation fails, it
means that the fix should not be deployed as is; instead, the pro-
grammer should modify it in a way that makes it consistent with
the rest of the app’s behavior. Our experiments with PlumbDroid
(in particular in Section 4.2.1) indicate that validation is nearly
always successful; even it fails, it is usually clear how to reconcile
the fix with the app’s behavior.

3.1. Resources

A PlumbDroid analysis targets a specific Android API, which

e model as a resource list L representing acquire and release
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perations of the API as a list of pairs (a1, r1) (a2, r2) . . .. A pair
ak, rk) denotes an operation ak that acquires a certain resource
ogether with another operation rk that releases the same resource
cquired by ak. The same operation may appear in multiple pairs,
orresponding to all legal ways of acquiring and then releasing it.
or simplicity, we sometimes use L to refer to the whole API that L
epresents. For example, resource MediaPlayer can be acquired
nd released with (new, release)—used in Fig. 1.

.2. Intra-procedural analysis

In the intra-procedural analysis, PlumbDroid builds a resource-
low graph for every procedure in the app under analysis. In the
xample of Fig. 1, it builds one such graph for every callback
unction, and for all methods called within those functions.

.2.1. Resource-flow graphs
PlumbDroid’s analysis works on a modified kind of control-

flow graph called resource-flow graph (RFG). The control-flow
graphs of real-world apps are large and complex, but only a
small subset of their blocks typically involve accessing resources.
Resource-flow graphs abstract the control flow by only retaining
information that is relevant for detecting resource leaks.3

Input: control-flow basic block b, resource list L
Output: resource path graph p

1 p← ∅ // initialize p to empty graph
2 foreach statement s in block b do
3 if s invokes a resource acquire operation a in L
4 n← new AcquireNode(a)
5 elseif s invokes a resource release operation r in L
6 n← new ReleaseNode(r)
7 elseif s invokes any other operation o
8 n← new TransferNode(o)
9 elseif s is a return statement

10 n← new ExitNode
11 else
12 n← NULL
13 if n ̸= NULL
14 append node n to path graph p’s tail
15 // if b contains no resource-relevant statements
16 if p = ∅
17 p← new TrivialNode // return a trivial node

Algorithm 1: Algorithm Path that builds the resource path
graph p modeling control-flow basic block b.

A procedure’s resource-flow graph R abstracts the procedure’s
control-flow graph C in two steps. First, it builds a resource path
graph p for every basic block in C—as described by Algorithm
1. Then, it builds the resource-flow graph R by connecting the
resource path graphs according to the control-flow structure—as
described by Algorithm 2.

Resource path graph. A basic block corresponds to a sequence
of statements without internal branching. Algorithm 1 builds
the resource path graph p for any basic block b. It creates a
node n in p for each statement s in b that is relevant to how
L’s resources are used: a resource is acquired or released, or
execution terminates with a return (which may introduce a
leak). Nodes in the resource path graph also keep track of when
any other operation is performed, because this information is

3 Energy-flow graphs – used by other leak detection techniques for An-
roid (Banerjee et al., 2018; Wu et al., 2016a) – are similar to resource-flow
raphs in that they also abstract control-flow graphs by retaining the essential
nformation for leak detection.
4

Input: control-flow graph C , resource list L
Output: resource-flow graph R

1 foreach block b in control-flow graph C do
2 // p(b) is the path graph corresponding to b ∈ C
3 p(b)← Path(b, L) // call to Algorithm 1
4 R← { entry node s }
5 c0 ← the entry block of C
6 add an edge from s to p(c0)’s entry
7 foreach block b1 in control-flow graph C do
8 foreach block b2 in b1’s successors in C do
9 add an edge from p(b1)’s exit to p(b2)’s entry

10 foreach ExitNode e in p(b1) do
11 add an edge from e’s predecessors to f
12 (the exit node of R)

Algorithm 2: Algorithm RFG that builds a resource-flow graph R
modeling control-flow graph C .

needed for inter-procedural analysis (as we detail in Section 3.3);
in other words, intra-procedural analysis is sufficient whenever
a procedure does not have any transfer nodes. Graph p connects
the nodes in the same sequential order as statements in b. When
a block b does not include any operations that are relevant for
resource usage, its resource path graph p consists of a single
trivial node, whose only role is to preserve the overall control-
flow structure in the resource-flow graph. Since b is a basic block
– that is, it has no branching – p is always a path graph—that is a
linear sequence of nodes, each connected to its unique successor,
starting from an entry node and ending in an exit node.

Resource-flow graph. Algorithm 2 builds the resource-flow
graph R of control-flow graph C—corresponding to a single pro-
cedure. First, it computes a path graph p(b) for every (basic) block
b in C . Then, it connects the various path graphs following the
ontrol-flow graph’s edge structure: it initializes R with an entry
ode s and connects it to the entry node of p(c0)—the path graph

of C ’s entry block; for every edge b1 → b2 connecting block b1
to block b2 in C , it connects the exit node of p(b1) to the entry
node of p(b2). Since every executable block b ∈ C is connected to
C ’s entry block c0, and c0’s path graph is connected to R’s entry
ode s, R is a connected graph that includes one path subgraph for
very executable block in the control-flow graph C . Also, R has a
ingle entry node s and a single exit node f .
Given that R’s structure matches C ’s, if there is a path in C that

eaks some of L’s resources, there is also a path in R that exposes
he same leak, and vice versa. Thus, we use the expression ‘‘R has
eaks/is free from leaks in L’’ to mean ‘‘the procedure modeled by
has leaks/is free from leaks of resources in the API modeled by

’’.
Fig. 4 shows the (simplified) resource-flow graphs of meth-

ds onCreate and onPause from Fig. 1’s example. Since each
ethod consists of a single basic block, the resource-flow graphs
re path graphs (without branching).

.2.2. Context-free emptiness: Overview
Given a resource-flow graph R – abstracting a procedure P of

he app under analysis – and a resource list L, P is free from
eaks of resources in L if and only if every execution trace in R
onsistently acquires and releases resources in L. We express this
heck as a formal-language inclusion problem – à la automata-
ased model-checking (Vardi and Wolper, 1986) – as follows (see
ig. 5 for a graphical illustration):
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Fig. 4. Some abstractions built by PlumbDroid to analyze the example of Fig. 1. The intra-procedural analysis described in Section 3.2 builds a resource-flow graph
RFG) for each procedure onCreate and onPause independently. As described in Section 3.3, the inter-procedural analysis considers, among others, the sequence
f callback functions onCreate(); onStart(); onResume(); onPause(); since onStart() and onResume() do nothing in this example, this corresponds to
onnecting onCreate’s exit to onPause’s entry. The inter-procedural analysis thus finds a leaking path (in orange), where acquire operation new is not matched by
ny release operation. Fixing (Section 3.4) modifies the app by adding a suitable release operation player.release() (in green), which completely removes the
eak. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. A graphical display of PlumbDroid’s intra-procedural leak detection.
he resource automaton AL captures all leak-free sequences; its complement AL
aptures all leaking sequences. The flow automaton AR captures all sequences
f resource usages that may happen when the procedure under analysis runs.
he intersection automaton AX captures the intersection of the violet and orange
reas (outlined in dotted white), which marks the procedure’s resource usage
equences that are leaking. If this area is empty, we conclude that the procedure
s leak free. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

(1) We define a resource automaton AL that accepts sequences
of operations in L that are free from leaks. Since leak free-
dom is a (deterministic) context-free property, the resource
automaton is a (deterministic) pushdown automaton.4
(Resource automata are described in Section 3.2.3.)

(2) We define the complement automaton AL of AL, which ac-
cepts precisely all sequences of operations in L that leak.
Since AL is a deterministic push-down automaton, AL is too
a deterministic push-down automaton.
(Complement automata are described in Section 3.2.4.)

(3) We define a flow automaton AR that captures all possible
paths through the nodes of resource-flow graph R. Since
AR is built directly from R, it is a (deterministic) finite-state
automaton.
(Flow automata are described in Section 3.2.5.)

(4) We define the intersection automaton AX
= AL × AR that

accepts all possible paths in R that introduce a leak in
resource L.
(Intersection automata are described in Section 3.2.6.)

(5) We check if the intersection automaton accepts no inputs
(the ‘‘empty language’’). If this is the case, it means that R
cannot leak; otherwise, we found a leaking trace.
(Emptiness checking is described in Section 3.2.7.)

he following subsections present these steps in detail.

4 We could equivalently use context-free grammars.
 p

5

3.2.3. Resource automata
Given a resource list L = {(a1, r1) (a2, r2) . . . (an, rn)}, the

resource automaton AL is a deterministic pushdown automaton5
that accepts all strings that begin with a start character s, end
with a final character f , and include all sequences of the charac-
ters a1, r1, a2, r2, . . . , an, rn that encode all leak-free sequences of
acquire and release operations.

More precisely, AL is a deterministic pushdown automaton if
the resource modeled by L is a reentrant, and hence it can be
acquired multiple times. If the resource modeled by L is not reen-
trant, AL is an ordinary finite state automaton (a simpler subclass
of pushdown automata). In the remainder of this section, we
recall the definitions of deterministic pushdown automata and
finite-state automata, and we show the example of resource au-
tomaton of a reentrant resource, as well as one of a non-reentrant
resource.

Pushdown automata. Pushdown automata (Sipser, 1997) are
finite-state automata equipped with an unbounded memory that
is manipulated as a stack. For leak detection, we only need deter-
ministic pushdown automata, where the input symbol uniquely
determines the transition to be taken in each state.

Definition 1 (Deterministic Pushdown Automaton). A deterministic
pushdown automaton A is a tuple ⟨Σ,Q , I, Γ , δ, F⟩, where: (1) Σ

is the input alphabet; (2) Q is the set of control states; (3) I ⊆ Q
and F ⊆ Q are the sets of initial and final states; (4) Γ is the
stack alphabet, which includes a special ‘‘empty stack’’ symbol
⊥; (5) and δ :Q ×Σ×Γ → Q ×Γ ∗ is the transition function. An
utomaton’s computation starts in an initial state with an empty
tack⊥. When the automaton is in state q1 with stack top symbol
and input σ , if δ(q1, σ , γ ) = (q2,G) is defined, it moves to state

2 and replaces symbol γ on the stack with string G. L(A) ⊆ Σ∗

enotes the set of all input strings s accepted by A, that is such
hat A can go from one of its initial states to one of its final states
y inputting s.

Reentrant resources. Consider a reentrant resource with re-
ource list L = {(a1, r1) (a2, r2) . . . (an, rn)}. The resource automa-
on AL is a deterministic pushdown automaton that operates as
ollows. When AL inputs an acquire operation ak, it pushes it on
o the stack; when it inputs a release operation rk, if the symbol
n top of the stack is some ak such that (ak, rk) ∈ L, it pops ak—
eaning that the release matches the most recent acquire: since

5 Precisely, a visibly pushdown automaton (a subclass of deterministic
ushdown automata (Alur and Madhusudan, 2004)) would be sufficient.
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Fig. 6. Resource automata for reentrant resource WifiLock and non-reentrant resource MediaPlayer.
Fig. 7. The intersection automaton AX (right) combines the complement automa-
on ALM (left) of the MediaPlayer’s resource automaton ALM from Fig. 6(b) and
he flow automaton AR (middle) of method onCreate() from Fig. 1.

ll operations in L correspond to the same resource, any release
as to refer to the latest acquire. Finally, AL accepts the input if it
nds up with an empty stack.

xample 1 (Resource automaton for WifiLock). Let us illustrate
this construction in detail for the case of resource WifiLock
with LW = {(acquire, release)} that is reentrant (see Table 1).
Pushdown automaton ALW in Fig. 6(a) accepts all strings over
alphabet Σ LW = {s, f , acquire, release} of the form s B f
here B ∈ {acquire, release}∗ is any balanced sequence of
cquire and release—that is, a leak-free sequence.

Finite-state automata. Finite-state automata can be seen as a
special case of pushdown automata without stack.

Definition 2 (Finite-state Automaton). A finite-state automaton A is
a tuple ⟨Σ,Q , I, δ, F⟩, where: (1) Σ is the input alphabet; (2) Q is
the set of control states; (3) I ⊆ Q and F ⊆ Q are the sets of initial
and final states; (4) and δ ⊆ Q ×Σ ×Q is the transition relation.
An automaton’s computation starts in an initial state. When the
automaton is in state q1 with input σ , if q2 ∈ δ(q1, σ ), it may
move to state q2. L(A) ⊆ Σ∗ denotes the set of all input strings
s accepted by A, that is such that A can go from one of its initial
states to one of its final states by inputting s.

A finite-state automaton is deterministic when its transition
relation δ is actually a function: the input uniquely determines
the next state.

Non-reentrant resources. Consider a non-reentrant resource
with resource list L = {(a , r ) (a , r ) . . . (a , r )}. The resource
1 1 2 2 n n

6

automaton AL is a finite-state automaton that operates as follows.
When AL inputs an acquire operation ak, it moves to a new fresh
state that is not final; the only valid transitions out of this state
correspond to release operations rk such that (ak, rk) ∈ L. Thus, AL

accepts the input only if every acquire operation is immediately
followed by a matching release operation.

Example 2 (Resource automaton for MediaPlayer). Resource
MediaPlayer (used in the example of Section 2) is instead not
reentrant (see Table 1), and offers operations LM =

{(new, release) (start, stop)}. The finite-state automaton ALM
in Fig. 6(b) accepts all strings over alphabet Σ LM =

{s, f , new, release, start, stop} of the form s (new release |
start stop)∗ f , where each acquire operation is immediately
followed by the matching release operation—that is, all leak-free
sequences.

3.2.4. Complement automata
Deterministic pushdown automata are a strict subclass of

(nondeterministic) pushdown automata (Alur and Madhusudan,
2004). Unlike general pushdown automata, deterministic push-
down automata are closed under complement. That is, given
any deterministic pushdown automaton A, we can always build
the complement A: a deterministic pushdown automaton that
accepts precisely the inputs that A rejects and vice versa. For
brevity, we do not repeat the classic construction of complement
automata (Sipser, 1997) The key idea is to switch final and non-
final states, so that every computation that ends in a final state in
A will be rejected in A and vice versa. Since finite-state automata
are a subclass of deterministic pushdown automata, they are
closed under complement too.

For our purposes, we need a slightly different complement
automaton: one that accepts all sequences that begin with s, end
with f , and include any leaking sequence of acquire and release in
between these markers. For example, the automaton on the left in
Fig. 7 is the complement of MediaPlayer’s resource automaton
in Fig. 6(b) that PlumbDroid builds: it only accepts sequences that
terminate with an f when there is a pending acquired resource
before it is released.

3.2.5. Flow automata
Given a resource-flow graph R = ⟨V , E⟩, the flow automaton

AR is a deterministic finite-state automaton that accepts precisely
the language L(R) of all paths π through R such that π starts in
R’s entry node s and ends in R’s exit node f .

More precisely, the flow automaton AR is a tuple ⟨ΣR,Q R, IR,
δR, FR

⟩, where: (1) ΣR
= Σ L are all acquire and release opera-

tions, plus symbols s and f ; (2) Q R
= V ∪ {e} are all nodes of R

plus a fresh exit node e; (3) IR = {s} is the unique entry node of
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, and FR
= {e} is the new unique exit node; (4) the transition

elation δR derives from R’s edges: for every edge m → n in R,
∈ δR(m, type(m)) is a transition from state m to state n that

reads input symbol type(m) corresponding to the type of node m
(start, acquire, or release); plus a transition from R’s exit node to
the new exit node e reading f .

Without loss of generality, we can assume that AR is determin-
istic, since finite-state automata are closed under determiniza-
tion (Sipser, 1997). That is, even if the construction above gives a
nondeterministic finite-state automaton AR, we can always build
an equivalent deterministic variant of it that accepts precisely the
same inputs.

The middle automaton in Fig. 7 is the flow automaton AR
of onCreate in Fig. 1’s running example: it is isomorphic to
onCreate’s resource-flow graph (left in Fig. 4) except for an
additional final node e that follows f .

3.2.6. Intersection automata
Given (the complement of) a resource automaton AL and flow

utomaton AR, the intersection automaton AX
= AL × AR is a

deterministic pushdown automaton that accepts precisely the
intersection language L(AL) ∩ L(AR), that is the inputs accepted
by both the complement automaton AL and the flow automaton
R. Therefore, AX precisely captures all sequences of acquire and
elease operations that may occur in R (that is, they are in L(AR))
nd that leak some resource in L (that is, they are in L(AL) = L(AL)

and thus are rejected by AL).
More precisely, the intersection automaton AX is a deter-

ministic pushdown automaton ⟨ΣX ,Q X , IX , Γ X , δX , FX
⟩, where:

(1) ΣX
= Σ L is the usual alphabet of all acquire and release

operations, plus symbols s and f ; (2) Q X
= Q R

× Q L is the
Cartesian product of AR’s and AL’s states; (3) IX = (i1, i2), where
i1 ∈ IR is an initial state of AR and i2 ∈ IL is an initial state
of AL; (4) FX

= (f1, f2), where f1 ∈ FR is a final state of AR
and f2 ∈ F L is a final state of AL; (5) Γ X

= Γ L is the stack
alphabet of AL; (6) for every transition p2 ∈ δR(p1, σ ) in AR and
very transition (q2,G) = δL(q1, σ , γ ) in AL that input the same
ymbol σ , AX includes transition ((p2, q2),G) = δX ((p1, q1), σ , γ )
that manipulates the stack as in AL’s transition. Since both AR and
AL are deterministic, so is AX .

The rightmost automaton in Fig. 7 is the intersection automa-
ton of Fig. 1’s running example. Since the flow automaton AR is
just a single path, it is identical to its intersection with ALM , which
ccepts the single leaking path.

.2.7. Emptiness checking
In the last step of its intra-procedural leak detection, Plumb-

roid has built the intersection automaton AX : a deterministic
ushdown automaton that accepts all sequences of operations on
esources L that may occur in the piece of code P corresponding
o R and that leak some resource. In other words, R is free from
eaks in L if and only if the intersection automaton AX accepts the
mpty language—that is, no inputs at all.
It is another classic result of automata theory that checking

hether any pushdown automaton accepts the empty language
that is, it accepts no inputs) is decidable in polynomial time (Alur
nd Madhusudan, 2004).

PlumbDroid applies this classic decision procedure to deter-
ine whether AX accepts the empty language. If it does, then
rocedure P is leak free; otherwise, we found a trace of P that
eaks.
7

3.3. Inter-procedural analysis

PlumbDroid lifts the intra-procedural analysis to a whole app
by analyzing all possible calls between procedures. The analysis of
a given sequence of procedure calls combines the results of intra-
procedural analysis as described in Section 3.3.1. Since in Android
system callbacks determine the overall execution order of an app,
Section 3.3.2 explains how PlumbDroid unrolls the callback graph
to enumerate possible sequences of procedure calls—which are
analyzed as if they were an explicit call sequence.

Input: call graph C = ⟨V , E⟩, automaton AL

Output: H =
{
Hp | V ∋ p is not called by any procedure

}
1 N ← topological sort of C
2 foreach n ∈ N do
3 // for each procedure n
4 if n is not calling any other procedure
5 // leaking paths in
6 // intra-procedural analysis of n
7 // Rn is the RFG of procedure n
8 Hn ← LeakingPaths(Rn, AL, L)
9 elseif n calls procedures m1,m2, . . .

10 R′n ← Rn
11 foreach m ∈ {m1,m2, . . .} do
12 // R′n is Rn with call-to-m nodes
13 // replaced by Hm
14 R′n ← R′n[TransferNode(m) ↦→ Hm]

15 // leaking paths in
16 // intra-procedural analysis of R′n
17 Hn ← LeakingPaths(R′n, AL, L)

Algorithm 3: Algorithm AllCalls which computes inter-
procedural resource-flow paths accepted by ‘‘leaking’’ push-
down automaton AL. Function LeakingPaths performs the
intra-procedural detection of leaking paths described in
Section 3.2.2.

3.3.1. Explicit call sequences
As it is customary, PlumbDroid models calls between proce-

dures with a call graph C: every node v in C is one of the
procedures that make the app under analysis; and an edge u→ v
in C means that u calls v directly. In our analysis, a call graph
may have multiple entry nodes, since Android applications have
multiple entry points.

PlumbDroid follows Algorithm 3 to perform inter-procedural
analysis based on the call graph. First of all, we use topological
sort (line 1) to rank C ’s nodes in an order that is consistent with
the call order encoded by C ’s edges: if a node P has lower rank
than a node Q it means that P does not call Q . Topological sort
is applicable only if C is acyclic, that is there are no circular calls
between procedures. If it detects a cycle, PlumbDroid’s implemen-
tation issues a warning and then breaks the cycle somewhere. As
we discuss in Sections 4 and 3.6, the restriction to acyclic call
graphs seems minor in practice since all apps we analyzed had
acyclic call graphs.

Once nodes in C are ranked according to their call depen-
dencies, Algorithm 3 processes each of them starting from those
corresponding to procedures that do not call any other proce-
dures (line 4). The resource-flow graph of such procedures does
not have any transfer nodes, and hence it can be completely
analyzed using intra-procedural analysis.

Function LeakingPaths performs the intra-procedural leak de-
tection technique of Section 3.2.2 and returns any leaking paths in
the procedure. The leaking path, if it exists, is used as a summary
of the procedure.
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Procedures that are free from leaks have an empty path as
ummary; therefore, they are neutral for inter-procedural anal-
sis. In contrast, procedures that may leak have some non-empty
ath as summary, which can be combined with the summary of
ther procedures they call to find out whether the combination
f caller and callee is free from leaks. This is done in lines 9–
7 of Algorithm 3: the resource-flow graph of a procedure n
hat calls another procedure m includes some transfer nodes to
m; we replace those nodes with the summary of m (which was
computed before thanks to the topological sorting), and perform
an analysis of the call-free resource-flow graph with summaries.
The output of Algorithm 3 are complete summaries for the whole
app starting from the entry points.

3.3.2. Implicit call sequences
Callbacks in every component used by an Android app have

to follow an execution order given by the component’s callback
graph: a finite-state diagram with callback functions defined on
the edges (see Fig. 3 for a simplified example). Apps provide
implementations of such callback functions, which PlumbDroid
can analyze for leaks. When an edge’s transition is taken, all
callback functions defined on the edge are called in the order in
which they appear.

The documentation of every resource defines callback func-
tions where the resource ought to be released. PlumbDroid enu-
merates all paths that first go from the callback graph’s entry to
the nodes from where the release callback functions can be called,
and then continue looping until states are traversed up to D
times—where D is a configurable parameter of PlumbDroid called
‘unrolling depth’’ (see Section 4.2.5 to see its impact in prac-
ice). Each unrolled path determines a sequence of procedures
1; P2; . . . used in the callback functions in that order. PlumbDroid
ooks for leaks in these call sequences by analyzing them as if
hey were explicit calls in that sequence—using the approach of
ection 3.3.1.
For example, Fig. 1’s resource MediaPlayer should be re-

eased in callback function onPause. For a component with the
allback graph of Fig. 3, and unrolling depth D = 2, PlumbDroid
numerates the path Starting → Running → Running →
losed, corresponding to the sequence of callbacks onCreate();
nStart(); onResume(); onPause(); onResume();
nPause(); . . . . If the media player is acquired and not later
eleased in these call’s implementations, PlumbDroid will detect
leak. Since callback functions onStart and onResume are not

mplemented in Fig. 1’s simple example, Fig. 4 displays the initial
art of this sequence of callbacks by connecting in a sequence the
esource-flow graphs of onCreate and onPause.

.4. Fix generation

Fix templates. Once PlumbDroid detects a resource leak, fixing
t amounts to injecting missing release operations at suitable
ocations in the app’s implementation. PlumbDroid builds fixes
sing the conditional template if (resource != null && held)
esource.r(), where resource is a reference to the resource
bject, r is the release operation (defined in the resource’s API),
nd held is a condition that holds if and only if the resource is
ctually not yet released. Calls to release operations must be con-
itional because PlumbDroid’s analysis is an over-approximation
see Section 3.6) and, in particular, a may leak analysis (Nielson
t al., 1999): it is possible that a leak occurs only in certain
onditions, but the fix must be correct in all conditions. Condition
eld depends on the resource’s API: for example, wake locks
ave a method isHeld() that perfectly serves this purpose; in
ther cases, the null check is enough (and hence held is just
rue). Therefore, PlumbDroid includes a definition of held for
very resource type, which it uses to instantiate the template.
8

Another complication in building a fix arises when a reference
o the resource to be released is not visible in the callback where
he fix should be added. In these cases, PlumbDroid’s fix will also
ntroduce a fresh variable in the same component where the
eaked resource is acquired, and make it point to the resource
bject. This ensures that a reference to the resource to be released
s visible at the fix location.

Fix injection. A fix’s resource release statement may be in-
ected into the application at different locations. A simple, con-
ervative choice would be the component’s final callback function
onDestroy for activity components). Such a choice would be
imple and functionally correct but very inefficient, since the app
ould hold the resource for much longer than it actually needs

t.
Instead, PlumbDroid uses the information computed during

eak analysis to find a suitable release location. As we discussed
n Section 3.3.2, the overall output of PlumbDroid’s leak analysis
s an execution path that is leaking a certain resource. The path
raverses a sequence C1; C2; . . . ; Cn of callback functions deter-
ined by the component’s callback graph, and is constructed by
lumbDroid in a way that it ends with a call Cn to the callback
unction where the resource may be released (according to the
esource’s API documentation). Therefore, PlumbDroid adds the fix
tatement in callback Cn just after the last usage of the resource
n the callback (if there is any).

In the running example of Fig. 1, PlumbDroid inserts the call to
elease in callback onPause, which is as early as possible in the
equence of callbacks—as shown in the rightmost node of Fig. 4.

.5. Validation

Since leak analysis is sound (see Section 3.6), PlumbDroid’s
ixes are correct by construction in the sense that they will
emove the leak that is being repaired. However, since the re-
ource release statement that fixes the leak is inserted in the first
uitable callback (as described in Section 3.4), it is possible that it
nterferes in unintended ways with other usages of the resource.

In order to determine whether its fixes may have introduced
nconsistencies of this kind, PlumbDroid performs a final valida-
ion step, which runs a modified analysis that checks absence
f new leaks as well as absence of use-after-release errors. This
nalysis reuses the techniques of Sections 3.2 and 3.3 with the
nly twist that the pushdown automaton characterizing the prop-
rty to be checked is now extended to also capture absence of
se-after-release errors.
PlumbDroid’s fixes release resources in the recommended call-

ack function, but the app’s developer may have ignored this
ecommendation and written code that still uses the resource
n callbacks that occur later in the component’s lifecycle. Such
cenarios are the usual origin of failed validation: PlumbDroid
ould fix the leak but it would also introduce a use-after-release
rror by releasing the resource too early.
Continuing Fig. 1’s example of resource MediaPlayer, sup-

ose that the implementation does call the release operation
ut only in activity onStop. PlumbDroid would still report a
eak, since it does not find a release in onPause—which is
here MediaPlayer should be released according to its API
ocumentation. Accordingly, PlumbDroid’s fix for this leak would
dd release in onPause as described in Section 2. Validation of
he leak would, however, fail because the programmer-written
elease in onStop introduces a double-release of the same
esource, which validation detects.

If validation fails, PlumbDroid still outputs the invalid fix,
hich can be useful as a suggestion to the developer—who re-
ains responsible for modifying it in a way that does not conflict
ith the rest of the app’s behavior. In particular, the experiments
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f Section 4.2.1 confirm the intuition that validation fails when
lumbDroid releases resources in the callback function recom-
ended by the official resource documentation but the rest of the
pp’s behavior conflicts with this recommendation. Therefore, the
eveloper has the options of adjusting the fix or refactoring the
pp to follow the recommended guidelines.
In the running example of MediaPlayer, the programmer

ay either ignore PlumbDroid’s suggestion and keep releasing the
esource in onStop (against the resource’s recommendations), or
ccept it and remove the late call of release that becomes no

longer necessary.
Validation is an optional step in PlumbDroid. This is because

t is not needed if we can assume that the app under repair
ollows Android’s recommendation for when (in which callbacks)
resource should be used and released. As we will empiri-

ally demonstrate in Section 4, validation is indeed usually not
eeded—but it remains available as an option in all cases where
n additional level of assurance is required.

.6. Features and limitations

Let us summarize PlumbDroid’s design features and the limi-
ations of its current implementation. Section 4 will empirically
onfirm these features and assess the practical impact of the
imitations.

.6.1. Soundness
A leak detection technique is sound (Nielson et al., 1999) if,

henever it finds no leaks for a certain resource, it really means
hat no such leaks are possible in the app under analysis.

PlumbDroid’s intra-procedural analysis is sound: it performs
an exhaustive search of all possible paths, and thus it will re-
port a leak if there is one. The inter-procedural analysis, how-
ever, has two possible sources of unsoundness. (a) Since it per-
forms a fixed-depth unrolling of paths in the callback graph
(Section 3.3.2), it may miss leaks that only occur along longer
paths. (b) Since it ranks procedures according to their call order
(Section 3.3.1), and such an order is not uniquely defined if the
call graph has cycles, it may miss leaks that only occur in other
procedure execution orders.

Both sources of unsoundness are unlikely to be a significant
imitation in practice (Livshits et al., 2015). A leak usually does not
epend on the absolute number of times a resource is acquired or
eleased, but only on whether acquires and releases are balanced.
s long as we unroll each loop a sufficient number of times,
nsoundness source (a) should not affect the analysis in practice.
urthermore, leak detection is monotonic with respect to the
nrolling depth D: as D increases, PlumbDroid may find more
eaks by exploring more paths, but a leak detected with some D
will also always be detected with a larger D′ > D.

As for the second source of unsoundness, the Android devel-
opment model, where the overall control flow is determined by
implicit callbacks, makes it unlikely that user-defined procedures
have circular dependencies. More precisely, PlumbDroid’s sound-
ness is only affected by cycles in paths with acquire and release
– not in plain application logic – and hence unsoundness source
(b) is also unlikely to occur.

The experiments of Section 4 will confirm that PlumbDroid is
sound in practice by demonstrating that a wide range of Android
applications trigger neither source of unsoundness.

3.6.2. Precision
A leak detection technique is precise (Nielson et al., 1999) if it

never reports false alarms (also called false positives): whenever
it detects a leak, that leak really occurs in some executions
of the app under analysis. In the context of leak repair, many
9

false alarms would generate many spurious fixes, which do not
introduce bugs (since the analysis is sound) but are useless and
possibly slow down the app.

PlumbDroid’s analysis is, as is common for dataflow analy-
ses, flow-sensitive but path-insensitive. This means that it over-
approximates the paths that an app may take without taking
into account the feasibility of those paths. As a very simple
example, consider a program that only consists of statement
if (false) res.a(), where res is a reference to a resource
and a is an acquire operation. This program is leak free, since
the lone acquire will never execute. However, PlumbDroid would
report a leak because it conservatively assumes that every branch
is feasible.

Aliasing occurs when different references to the same resource
ay be available in the same app. Since PlumbDroid does not

perform alias analysis, this is another source of precision loss: a
resource with two aliases x and y that is acquired using x and
released using y will be considered leaking by PlumbDroid, which
thinks x and y are different resources.

In practice, these two sources of imprecision are limitations
o PlumbDroid’s applicability. When aliasing is not present, the
xperiments of Section 4 indicate that the path-insensitive over-
pproximation built by PlumbDroid is very precise in practice.
hether aliasing is present mostly depends on the kind of re-

ource that is analyzed. As we discuss in Section 4.1.1, it is easy to
dentify resources whose usage is unlikely to introduce aliasing.
lumbDroid is currently geared towards detecting and repairing
eaks of such resources.

A comprehensive empirical study of performance bugs in mo-
ile apps (Mazuera-Rozo et al., 2020) found that about 36% of
he analyzed Android resource leaks were related to non-aliasing
esources, such as WiFi and Camera, whose operations are en-
rgy intensive. The same study also reported that the leaks that
ffect these resources tend to have a much longer life than the
emory-related leaks, as it takes developers longer, on average,

o detect and fix the former over the latter. These data indicate
hat non-aliasing resource leaks are a significant fraction of the
ost common resource-related issues in Android apps, can have
negative impact on performance, and can be challenging to
etect and fix. These observations motivate PlumbDroid’s focus on
on-aliasing resources.

.7. Implementation

We implemented PlumbDroid in Python on top of Andro-
Guard (Anon, 2021c) and Apktool (Anon, 2021d).

PlumbDroid uses AndroGuard – a framework to analyze An-
droid apps – mainly to build the control-flow graphs of methods
(which are the basis of our resource-flow graphs) and to process
manifest files (extracting information about the components that
make up an app). Using AndroGuard ensures that the control-
flow graphs capture all behavior allowed by Java/Android (includ-
ing, for example, exceptional control flow) in a simple form in
terms of a few basic operations.

Apktool – a tool for reverse engineering of Android apps –
supports patch generation: PlumbDroid uses it to decompile an
app, modify it with the missing release operations, and recom-
pile the patched app back to executable format. PlumbDroid’s
analysis and patching work on Smali code—a human-readable
format for the binary bytecode format DEX, which is obtained by
decompiling from and compiling to the APK format.

4. Experimental evaluation

The overall goal of our experimental evaluation is to inves-
tigate whether PlumbDroid is a practically viable approach for
detecting and repairing resource leaks in Android applications.
We consider the following research questions.
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Table 1
Android resources analyzed with PlumbDroid. For each resource, the table reports the acquire ak and release rk operations it supports (according to the resource’s
PI documentation (Anon, 2022b)), the callback function on... where the resource should be released (according to the Android developer guides (Anon, 2022a)),
nd whether the resource is reentrant (yes implies that absence of leaks is a context-free property and no implies that it is a regular property).
resource operations released

ak rk callback reentrant?

AudioRecorder new release onPause, onStop n

BluetoothAdapter enable disable onStop nstartDiscovery cancelDiscovery onPause

Camera
lock unlock

onPause nopen release
startPreview stopPreview

LocationListener requestUpdates removeUpdates onPause n

MediaPlayer new release onPause, onStop nstart stop
Vibrator vibrate cancel onDestroy n
WakeLock acquire release onPause y
WifiLock acquire release onPause y
WifiManager enable disable onDestroy n
,

r

Table 2
DroidLeaks apps analyzed with PlumbDroid. For each app, the table reports its
size kloc in thousands of lines of code. For each resource used by the app, the
table then reports the number of leaks of that resource and app included in
DroidLeaks. The two bottom rows report the average (mean) and total for all
apps.
app kloc resource leaks

APG 42.0 MediaPlayer 1
BarcodeScanner 10.6 Camera 1
CallMeter 13.5 WakeLock 3

ChatSecure 37.2 BluetoothAdapter 0
Vibrator 1

ConnectBot 17.6 WakeLock 0
CSipSimple 49.0 WakeLock 2

IRCCloud 35.3 MediaPlayer 0
WifiLock 1

K-9 Mail 78.5 WakeLock 2
OpenGPSTracker 12.3 LocationListener 1
OsmDroid 18.4 LocationListener 2
ownCloud 31.6 WifiLock 2
QuranForAndroid 21.7 MediaPlayer 1
SipDroid 24.5 Camera 4
SureSpot 41.0 MediaPLayer 2
Ushahidi 35.7 LocationListener 1
VLC 18.1 WakeLock 2
Xabber 38.2 AudioRecorder 2

average 30.9
total 525.2 26

RQ1: Does PlumbDroid generate fixes that are correct and ‘‘safe’’?

Q2: How do PlumbDroid’s fixes compare to those written by
developers?

Q3: Is PlumbDroid scalable to real-world Android apps?

Q4: How does PlumbDroid compare with other automated re-
pair tools for Android resource leaks?

Q5: How does PlumbDroid’s behavior depend on the unrolling
depth parameter, which controls its analysis’s level of de-
tail?

.1. Experimental setup

This section describes how we selected the apps used in the
xperimental evaluation of PlumbDroid, how we ran the exper-
ments, and how we collected and assessed the experiments’
esults to answer the research questions.
10
4.1.1. Subjects: RQ1, RQ2, RQ3, RQ5
Our experiments to assess correctness and scalability target

apps in DroidLeaks (Liu et al., 2019)—a curated collection of re-
source leak bugs in real-world Android applications. DroidLeaks
collects a total of 292 leaks from 32 widely used open-source
Android apps. For each leak, DroidLeaks includes both the buggy
(leaking) version of an app and a leak-free version obtained by
manually fixing the leak.

Leaks in DroidLeaks affect 22 resources. The majority of them
(13) are Android-specific resources (such as Camera or WifiLock)
while the others are standard Java APIs (such as InputStream or
BufferReader). PlumbDroid’s analysis is based on the Android
programming model, and every Android-specific resource ex-
presses its usage policy in terms of the callback functions where
a resource can be acquired or released—an information that is
not available for standard Java API’s resources. Therefore, our
evaluation only targets leaks affecting Android-specific resources.
As we discussed in Section 3.6, PlumbDroid is oblivious of possible
aliases between references to the same resource object. If such
aliasing happens within the same app’s implementation, it may
significantly decrease PlumbDroid’s precision. We found that each
Android resource can naturally be classified into aliasing and
non-aliasing according to whether typical usage of that resource
in an app may introduce multiple references that alias one an-
other.6 Usually, a non-aliasing resource is one that is accessed
in strict mutual exclusion, and hence such that obtaining a han-
dle is a relatively expensive operation; Camera, MediaPlayer,
and AudioRecorder are examples of non-aliasing resources. In
contrast, aliasing resources tend to support a high degree of
concurrent access, and hence it is common to instantiate fresh
handles for each usage; a database Cursor is a typical example
of such resources, as creating a new cursor is inexpensive, and
database systems support fine-grained concurrent access. Out
of all 13 Android resources involved in leaks in DroidLeaks, 9
are non-aliasing; our experiments ran PlumbDroid on all apps in
DroidLeaks that use these resources.7

Table 1 summarizes the characteristics of the 9 resources we
selected for our experiments according to the above criteria.
Then, Table 2 lists all apps in DroidLeaks that use some of these
resources, their size, and how many leaks of each resource Droi-
dLeaks includes with fixes. Thus, the first part of our experiments

6 Note that the classifications of resources into aliasing/non-aliasing and
eentrant/non-reentrant are orthogonal: PlumbDroid fully supports reentrant
resources, but achieves a high precision only when analyzing non-aliasing
resources.
7 We also tried PlumbDroid on the 4 (= 13 − 9) aliasing resources in

DroidLeaks; Section 4.3 discusses the outcome of these secondary experiments.
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ill target 16 Android apps with a total size of about half a million
ines of code; DroidLeaks collects 26 leaks in these apps affecting
he 9 non-aliasing resources we consider.

.1.2. Subjects: RQ4, RQ5
At the time of writing, RelFix (Liu et al., 2016) is the only

ully automated tool for the detection and repair of Android
esource leaks, which can be quantitatively compared to Plumb-
roid. Since RelFix uses Relda2 (Wu et al., 2016a) to detect leaks,

and Relda2’s experimental evaluation is broader than RelFix’s, we
also compare PlumbDroid’s leak detection capabilities to Relda2’s.

As we discuss in Section 5.3, other tools exist that detect other
kinds of leaks; since they are not directly applicable to the same
kinds of resources that PlumbDroid analyzes, we only compare
them to PlumbDroid in a qualitative way in Section 5.

The experimental evaluations of RelFix and Relda2, as reported
in their publications (Liu et al., 2016; Wu et al., 2016a), targeted
27 Android apps that are not part of DroidLeaks. Unfortunately,
neither detailed experimental results (such as the app versions
that were targeted or the actual produced fixes) nor the RelFix
and Relda2 tools are publicly available.8 Therefore, a detailed,
direct experimental comparison is not possible. However, we
could still run PlumbDroid on the same apps analyzed with RelFix
and Relda2, and compare our results to those reported by Liu et al.
(2016) and Wu et al. (2016a) in terms of number of fixes and
precision.

Out of the 27 apps used in RelFix and Relda2’s experimen-
tal evaluations, 22 use some of the 9 non-aliasing resources
that PlumbDroid targets (see Table 1). More precisely, Relda2’s
evaluation in Wu et al. (2016a) only targets resources that are
non-aliasing, thus we consider all of their experiments in our
comparison. RelFix’s evaluation in Liu et al. (2016) targets 4 non-
aliasing and 4 aliasing resources; we only consider the former for
our comparison with PlumbDroid. In order to include apps as close
as possible to those actually analyzed by Liu et al. (2016) and Wu
et al. (2016a), we downloaded the apk release of each app that
was closest in time to the publication time of Liu et al. (2016) and
Wu et al. (2016a). This excluded 2 apps whose older releases we
could not retrieve. In all, this process identified 20 apps: 16 used
in the evaluation of Relda2 (listed in Table 4) and 4 used in the
evaluation of RelFix (listed in Table 5), for a total of 260000 lines
of code and using 7 of the 9 non-aliasing resources.

Relda2 supports both a flow-insensitive and a flow-sensitive
detection algorithm. According to Wu et al. (2016a), the flow-
insensitive approach is faster but much less precise. Since Plumb-
roid’s analysis is also flow-sensitive, we only compare it to
elda2’s flow-sensitive analysis (option op2 in Wu et al. (2016a)),
hich is also the one used by RelFix.

.1.3. Experimental protocol
In our experiments, each run of PlumbDroid targets one app

nd repairs leaks of a specific resource.9 The run’s output is a
umber of leaks and, for each of them, a fix.
After each run, we manually inspected the fixes produced by

lumbDroid, confirmed that they are syntactically limited to a
mall number of release operations, and checked that the app
ith the fixes still runs normally. Unfortunately, the apps do not

nclude tests that we could have used as additional evidence that
he fixes did not introduce any regression. However, PlumbDroid’s
oundness guarantees that the fixes are correct by construction;

8 The authors of Wu et al. (2016a) and Liu et al. (2016) could not follow up
n our requests to share the tools or details of their experimental evaluation.
9 PlumbDroid can analyze leaks for multiple resources in the same run, but

we do not use this features in the experiments in order to have a fine-grained
breakdown of PlumbDroid’s performance.
11
and its validation phase further ascertains that the fixes do not
introduce use-after-release errors.

In all experiments with DroidLeaks, we also tried to match, as
much as possible, the leaks detected and repaired by PlumbDroid
to those reported in DroidLeaks. This was not always possible:
ome apps’ are only available in obfuscated form, which limits
hat one can conclusively determine by inspecting the bytecode.

n addition, DroidLeaks’s collection is not meant to be exhaustive:
therefore, it is to be expected that PlumbDroid finds leaks that
re not included in DroidLeaks. In the experiments with the apps

analyzed by RelFix and Relda2, we did not have any ‘‘ground
truth’’ to compare them to, but we still performed manual checks
and testing.

More precisely, we followed these steps to manually inspect
and validate all leak detected by PlumbDroid: (1) We consider the
leaking path on the resource-flow graph reported by PlumbDroid
and determine whether it is feasible. If this is not the case (for
example, two elements of the path condition are contradictory),
then we classify the leak as a false positive. (2) If the leaking
path is feasible, we consider the path’s matching sequence of
callbacks, and use that as a guide to write a test that tries to
cover the path on the real program—and thus confirms that
the leak is a true positive. For short paths, the path condition
usually contains enough information to come up with a test after
some trial-and-error. (3) In more complex cases (especially paths
involving UI interactions), we use Android Studio’s Monkey Test-
ing framework (Anon, 2022c) to generate several random input
sequences that thoroughly exercise the app; then, we monitor
the app running on those inputs, and select any execution paths
that matched the leaking path on the resource-flow graph. (4)
Finally, we re-compile the app after injecting the fix produced
by PlumbDroid, and run the patched app on the tests generated
as described above, as well as on a few other random inputs
and also trying the app interactively, checking that the leak is no
longer triggered and there are no other changes in behavior (in
particular, no negative impact on performance). In all cases, we
were conservative in assessing which leaks and fixes are correct,
marking as ‘‘confirmed’’ only cases where the collected evidence
that a leak may occur and its fix safely repairs it is conclusive.

The main parameter regulating PlumbDroid’s behavior is the
unrolling depth D. We ran experiments with D ranging from 1
to 6, to demonstrate empirically that the default value D = 3 is
necessary and sufficient to achieve soundness (i.e., no leaks are
missed).

Hardware/software setup. All the experiments ran on a Mac-
Book Pro equipped with a 6-core Intel Core i9 processor and
16 GB of RAM, running macOS 10.15.3, Android 8.0.2 with API
level 26, Python 3.6, AndroGuard 3.3.5, Apktool 2.4.0.

4.2. Experimental results

This section summarizes the results of our experiments with
PlumbDroid, and discusses how the results answer the research
questions.

4.2.1. RQ1: Correctness
Column fixed in Table 3 reports the number of DroidLeaks

leaks that PlumbDroid detected and fixed with a correct fix (i.e., a
fix that prevents leaking); column invalid reports how many of
these fixes failed validation (were ‘‘unsafe’’).

PlumbDroidwas very effective at detecting leaks in non-aliasing
resources. In particular, it detected and fixed all 26 leaks reported
by DroidLeaks and included in our experiments (see Table 2),
building a correct fix for each of them. In addition, it detected
and fixed another 24 leaks in the same apps.

Precision. Empirically evaluating precision is tricky because
we lack a complete baseline. By design, DroidLeaks is not an
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Table 3
Results of running PlumbDroid on apps in DroidLeaks. For every app, the table reports the number of nodes |V | and edges |E| of its resource-flow graph rfg, and the
ratio M/M ′ between the rfg’s cyclomatic complexity M and the cyclomatic complexity M ′ of the whole app’s control-flow graph. For every resource used by the
app, the table then reports PlumbDroid’s running time to perform each of the steps of Fig. 2 (abstraction, analysis, fixing, and validation); as well as the total
running time; since the abstraction is built once per app, time abstraction is the same for all resources used by an app. Finally, the table reports the number of
leaks of each resource detected and fixed by PlumbDroid; how many of these fixed leaks we could not conclusively classify as real leaks ( ); and the number of
he fixes that PlumbDroid classified as invalid (that is, they failed validation). The two bottom rows report the average (mean, per app or per app-resource) and
otal in all experiments.
app rfg cc time (s)

|V | |E| M/M ′ resource abstraction analysis fixing validation total fixed invalid

APG 4968 7442 0.47 MediaPlayer 32.7 273.4 0.2 55.5 361.8 1 0 0
BarcodeScanner 1189 2462 0.35 Camera 6.8 69.2 0.3 21.8 98.1 3 0 0
CallMeter 1 840 3216 0.35 WakeLock 11.2 100.7 0.6 35.1 147.6 4 0 0

ChatSecure 5430 8686 0.48 BluetoothAdapter 23.0 316.6 0.1 114.6 454.3 2 0 0
Vibrator 273.7 0.5 93.3 390.2 2 0 0

ConnectBot 1 956 3814 0.23 WakeLock 12.1 107.0 0.2 32.7 152.0 2 0 0
CSipSimple 5712 9154 0.42 WakeLock 38.0 433.8 0.1 111.4 583.3 4 2 0

IRCCloud 4782 9755 0.43 MediaPlayer 25.1 239.8 0.5 80.5 345.9 3 0 0
WifiLock 295.3 0.3 58.0 380.8 2 0 0

K-9 Mail 8 831 16390 0.29 WakeLock 64.1 475.7 0.4 165.8 706.0 2 0 0
OpenGPSTracker 1 418 2791 0.29 LocationListener 7.1 107.4 0.4 33.7 148.6 2 0 0
OsmDroid 2222 3545 0.36 LocationListener 12.9 161.9 0.4 32.9 208.1 4 2 0
ownCloud 4444 8980 0.6 WifiLock 20.7 238.6 0.5 47.8 307.6 4 2 0
QuranForAndroid 2898 4545 0.43 MediaPlayer 14.9 177.5 0.2 63.8 256.4 2 0 0
SipDroid 3178 4583 0.38 Camera 14.1 176.6 0.5 39.7 230.9 4 0 0
SureSpot 3 575 7240 0.37 MediaPLayer 33.0 246.4 0.4 54.1 333.9 3 0 3
Ushahidi 5 073 10417 0.43 LocationListener 24.4 201.9 0.3 58.5 285.1 2 0 2
VLC 2689 4199 0.55 WakeLock 14.4 119.5 0.5 34.4 168.8 2 0 0
Xabber 4194 8478 0.31 AudioRecorder 25.4 256.9 0.3 76.6 359.2 2 0 0

Average 3788 6805 0.4 23.4 231.2 0.3 65.2 320.2
Total 64399 115697 6.74 444.6 4392.8 5.9 1238.8 6084.8 50 6 5
t
f

exhaustive collection of leaks. Therefore, when PlumbDroid reports
and fixes a leak it could be: (a) a real leak included in DroidLeaks;
(b) a real leak not included in DroidLeaks; (c) a spurious leak. By
inspecting the leak reports and the apps (as discussed in Sec-
tion 4.1.3) we managed to confirm that 44 leaks (88%) reported
by PlumbDroid are in categories (a) (26 leaks or 52%, matching all
leaks included in DroidLeaks) or (b) (18 leaks or 36%) above—and
thus are real leaks (true positives). Unfortunately, the remaining
6 leaks (12%) reported by PlumbDroid were found in apps whose
bytecode is only available in obfuscated form, which means we
cannot be certain they are not spurious; these unconfirmed cases
are counted in column ‘‘ ’’ in Table 3. Even in the worst case
n which all of these are spurious, PlumbDroid’s precision would
emain high (88%). The actual precision is likely higher: in all
ases where we could analyze the code, we found a real leak;
nconfirmed cases probably just require more evidence such as
ccess to unobfuscated bytecode. Anyway, note that any spurious
ixes would still be safe to apply – albeit unnecessary – because
hey do not introduce bugs: since all release operations added
y PlumbDroid are conditional (Section 3.4), a fix ‘‘repairing’’
spuriously detected leak simply introduces release operations

hat is neve executed in actual program executions.
Correctness and safety. All fixes built by PlumbDroid are cor-

rect in the sense that they release resources so as to avoid a
leak; manual inspection, carried out as described in Section 4.1.3,
confirmed this in all cases—with some remaining uncertainty
only for obfuscated apps.

PlumbDroid’s validation step assesses ‘‘safety’’: whether a fix
does not introduce a use-after-release error. All but 5 fixes built
by PlumbDroid for non-aliasing resources are safe. The 5 unsafe
fixes are:

(i) Three identical fixes (releasing the same resource in the
same location) repairing three distinct leaks of resource
MediaPlayer in app SureSpot.
According to the Android reference manual (Anon, 2021e),
this resource can be released either in the onPause or
in the onStop callback. PlumbDroid releases resources as
12
early as possible by default, and hence it built a fix re-
leasing the MediaPlayer in onPause. The developers of
SureSpot, however, assumed that the resource is only re-
leased later (in onStop), and hence PlumbDroid’s fix intro-
duced a use-after-release error that failed validation.
To deal with such situations – resources that may be re-
leased in different callbacks – we then could introduce a
configuration option to tell PlumbDroid whether it should
release resources early or late. An app developer could
therefore configure our analyzer in a way that suits their
design decisions. In particular, configuring PlumbDroid with
option late in these cases would generate fixes that pass
validation.

(ii) Two identical fixes (releasing the same resource in the
same location) repairing two distinct leaks of resource
LocationListener in app Ushahidi.
The fix generated by PlumbDroid failed validation because
the app’s developers assumed that the resource is only
released in callback onDestroy. This assumption conflicts
with Android’s recommendations to release the resources
in earlier callbacks.
In this case, the best course of action would be amend-
ing the app’s usage policy of the resource so as to com-
ply with Android’s guidelines. PlumbDroid’s fix would pass
validation after this modification.

Note that PlumbDroid does not output fixes that do not pass
he validation step; therefore, there is no risk that such unsafe
ixes are accidentally deployed.

PlumbDroid detected and fixed 50 leaks in DroidLeaks producing
correct-by-construction fixes. PlumbDroid’s detection is very

precise on the resources it supports.

4.2.2. RQ2: Comparison with developer fixes
The manual inspection and validation protocol (Section 4.1.3)

that we followed to confirm the correctness of all leaks and
fixes reported by PlumbDroid already strongly suggests that the



B.N. Bhatt and C.A. Furia The Journal of Systems & Software 192 (2022) 111417

s
e

D
l
t
D
v
P

c
f
w
l
f

P
r
o
f
d
s
(
d
a
t
n

f

d

P

,

i
P
s
a

f
f
t
r

c
g
r
M
i
f
r

c

Fig. 8. An excerpt of class NetworkConnection in Android app IRCCloud,
howing the disconnect() method with a resource leak (code in black,
xecuted in callback onPause()), and how the leak was patched by the app

developers in commit 113555e9ae (code in orange). PlumbDroid generates a
patch for this leak that exactly matches the developer-written one shown here.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

results of PlumbDroid’s analysis are usually of high quality. To
better understand whether PlumbDroid’s fixes are comparable
to those written by developers, we further scrutinized the fixes
produced by PlumbDroid for leaks in apps IRCCloud and Ushahidi.
We selected these two apps as they are among the largest in
the DroidLeaks collection, they are open source, and their public
code repositories are well organized and feature a long-running
development history. Furthermore, as shown in Table 3, Plumb-
roid detected and fixed 5 leaks in IRCCloud; and detected 2
eaks in Ushahidi, for which it could only produce fixes that fail
he validation step. Thus, there is a mix of cases where Plumb-
roid is completely successful and cases where PlumbDroid’s
alidation fail—which mitigates the risk of biasing the analysis in
lumbDroid’s favor.
Based on these results, we went through the bug reports and

ommit history of the two apps, looking for developer-written
ixes of the 7 leaks that PlumbDroid detected and fixed. Indeed,
e found that developers eventually found and fixed all these

eaks,10 which confirms that they are considered serious enough
aults.

In 2 out of the 5 leaks in IRCCloud, the fix produced by
lumbDroid is identical to the developer-written one, as they both
elease the same resource in the same location. Fig. 8 shows one
f these leaks and its fix.11 In the other 3 leaks in IRCCloud, the
ix produced by PlumbDroid released the same resource as the
eveloper-written one but in a different location of the same ba-
ic block. Fig. 9 shows one of these leaks and its fix by developer
Fig. 9(a)) and by PlumbDroid (Fig. 9(b)). In all these cases, the
ifference of release location is immaterial, as the statements that
re between the release point in the developer-written fix and
he release point in PlumbDroid’s fix are simple assignments do
ot affect any shared resources and execute quickly.
In both leaks in Ushahidi, the difference between the (invalid)

ixes produced by PlumbDroid and the developer-written ones is

10 See IRCCloud’s commits: 113555e9ae, 35e0a587e3, 0cd91bc5ca,
7a441e3a6, 113555e9ae; and Ushahidi’s commits: 9d0aa75b84, 337b48f5f2.
11 In these examples, we express the fix as Java source code, even though
lumbDroid works at the level of the human-readable bytecode Smali.
13
also the location of the release. Sticking to the Android devel-
oper guidelines (Anon, 2022a), PlumbDroid only releases resource
LocationListener in the callback onPause() for one of these
leaks; doing so fails the validation phase, since the Ushaidi app
still uses location resources when it is running in the background.
Therefore, the developers fixed the leak by releasing the resource
in the callback onDestroy(), that is only when the app is shut
down. The other leak has a similar discrepancy between the
Android guidelines followed by PlumbDroid and how the Ushahidi
app is written.

In all, PlumbDroid’s fixes are often very similar and functionally
equivalent to those written by programmers for the same leaks.
PlumbDroid’s validation phase is useful to detect when an app
deviates from Android’s guidelines on resource management; in
these cases, the user of PlumbDroid can decide whether to refactor
the app to follow the guidelines, or modify PlumbDroid so that it
generates a fix at a different location.

The similarity between PlumbDroid and developer-written fixes
as well their usual syntactic simplicity, is also evidence that
these fixes are unlikely to negatively alter the running-time
performance of an app (and hence the user experience). This is
also consistent with our manual analysis (Section 4.1.3), which
never found an app’s responsiveness to worsen after applying a
resource-leak fix.

According to the analysis of a sample, we found that the fixes
produced by PlumbDroid often are functionally equivalent to

those written by the app developers.

4.2.3. RQ3: Performance
Columns time in Table 3 report the running time of PlumbDroid

n each step. As we can expect from a tool based on static analysis,
lumbDroid is generally fast and scalable on apps of significant
ize. Its average running time is around 5 min per app-resource
nd around 2 min per repaired leak (121 s ≃ 6084.8/50).
The analysis step dominates the running time, since it per-

orms an exhaustive search. In contrast, the abstraction step is
airly fast (as it amounts to simplifying control-flow graphs); and
he fixing step takes negligible time (as it directly builds on the
esults of the analysis step).

PlumbDroid’s abstractions are key to its performance, as we
an see from Table 3’s data about the size of the resource-flow
raphs. Even for apps of significant size, the resource-flow graph
emains manageable; more important, its cyclomatic complexity
—a measure of the number of paths in a graph (McCabe, 1976)—

s usually much lower than the cyclomatic complexity M ′ of the
ull control-flow graph, which makes the exhaustive analysis of a
esource-flow graph scalable.

PlumbDroid is scalable: it takes about 2 min
on average to detect and fix a resource leak.

4.2.4. RQ4: Comparison with other tools
Comparison with Relda2. Table 4 compares the leak detection

apabilities of PlumbDroid and Relda2 on the 17 apps used in the
latter’s experiments (Wu et al., 2016a)— which only target non-
aliasing resources. Relda2 reports more leaks than PlumbDroid,
but PlumbDroid’s precision (90% = 70/78) is much higher than
Relda2’s (54% = 46/81), and hence PlumbDroid reports several
more true leaks (70 vs. 46). The difference between the two tools
varies considerably with the app. On 4 apps (Andless, PicsArt,
Vplayer, and Yelp) both tools detect the same number of leaks
with the same (high) precision; even though we cannot verify
this conjecture, it is quite possible that exactly the same leaks

https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/irccloud/android/commit/35e0a587e3e9ed376b36355dfbccdeed049aae85
https://github.com/irccloud/android/commit/0cd91bc5ca350671bcf6ae84d634d097a3602d8c
https://github.com/irccloud/android/commit/d7a441e3a675cac30cffdfdfa94e5a6dd486b169
https://github.com/irccloud/android/commit/113555e9ae7a2f4b8ec83b4d2e17729266c9c8d4
https://github.com/ushahidi/Ushahidi_Android/commit/9d0aa75b84d74566727b91f5d7dcb85caff34d33
https://github.com/ushahidi/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
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Fig. 9. An excerpt of class NetworkConnection in Android app IRCCloud, showing the removeHandler() method with a resource leak (code in black, executed
n callback onPause()), and how it was fixed by the app developers (Fig. 9(a)) and by PlumbDroid (Fig. 9(b)). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)
Table 4
Comparison of PlumbDroid’s and Relda2’s leak detection capabilities. For every app used in the comparison, the table reports its size kloc in thousands of lines
f code, and the resource analyzed for leaks. Then, it reports PlumbDroid’s running time in seconds, the number of leaks PlumbDroid detected, and how many of
hese we definitely confirmed as true positives by manual analysis ( ). These results are compared to the number of leaks detected by Relda2, and how many
f these were true positives ( ) according to the experiments reported in Wu et al. (2016a). The two bottom rows report the average (mean) and total for all
pps/resources.
app kloc resource PlumbDroid Relda2

time (s) leaks leaks

Andless 0.5 WakeLock 13.1 1 1 1 1
Apollo 24.5 Camera 176.4 2 2 4 2
CheckCheck 4.5 WakeLock 35.4 3 3 6 4
Impeller 4.6 WiFiLock 25.9 4 3 1 1
Jane 42.7 LocationListener 280.5 2 2 0 0
MiguMusic 13.0 MediaPlayer 121.6 8 8 12 5
PicsArt 17.6 WakeLock 92.7 2 2 2 2
QRScan 24.5 Camera 144.1 4 4 6 3
Runnerup 37.2 LocationListener 232.9 13 11 8 5
Shopsavvy 5.3 LocationListener 41.3 8 7 5 3
SimSimi 3.9 WakeLock 35.6 7 6 11 4
SuperTorch 3.8 Camera 24.5 3 3 1 1
TigerMap 3.7 LocationListener 36.7 2 2 6 2
Utorch 1.0 Camera 20.5 2 2 1 1
Vplayer 6.6 MediaPlayer 49.8 7 5 7 5
WeatherPro 5.0 LocationListener 55.8 8 7 12 5
Yelp 14.3 LocationListener 156.4 2 2 2 2

average 12.5 90.8
total 212.7 1543.2 78 70 85 46
Table 5
Comparison of PlumbDroid’s and RelFix’s leak repair capabilities (on non-aliasing resources). For every app used in the comparison, the table reports its size kloc in
housands of lines of code, and the resources whose leaks are repaired. Then, it reports PlumbDroid’s running time in seconds, the number of leaks detected and
ixed by PlumbDroid , how many of these leaks we could conclusively classify as real leaks ( , true positives), and the number of fixes that PlumbDroid classified
s invalid (that is, they failed validation). These results are compared to the number of leaks detected and fixed by Relfix, and how many of these are considered
eal leaks ( ) according to the experiments reported in Liu et al. (2016). The two bottom rows report the average (mean) and total for all apps/resources.
app kloc resource PlumbDroid RelFix

Time (s) leaks Fixed invalid leaks Fixed

BlueChat 13.1 MediaPlayer 93.9 3 2 3 0 1 0 1
WakeLock 111.7 2 2 2 0 2 1 2

FooCam 14.7 Camera 152.7 1 1 1 0 3 1 3
MediaPlayer 124.5 0 – 0 0 1 1 1

GetBackGPS 21.4 LocationListener 153.4 2 2 2 1 3 3 3
SuperTorch 3.8 Camera 24.5 3 2 3 1 1 1 1

Average 50.2 110.1
Total 200.6 660.7 11 9 11 2 11 7 11
14
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Table 6
Results of running PlumbDroid with different unrolling depths on the DroidLeaks benchmark and on the apps used
in the comparison with Relda2 and RelFix. For each unrolling depth D, the table reports the average (mean, per
app-resource) running time of PlumbDroid on all leaks of non-aliasing resources; and the total number of fixed
leaks and missed leaks (not detected, and hence not fixed). The row with D = 3 corresponds to the DroidLeaks
data in Table 3, and the Relda2/RelFix data in Tables 4 and 5.
D DroidLeaks Relda2/RelFix

time (s) fixed missed fixed missed

1 116.7 40 10 75 14
2 184.9 50 0 84 5
3 320.2 50 0 89 0
4 501.3 50 0 89 0
5 907.8 50 0 89 0
6 1894.3 50 0 89 0
are detected by both tools in these cases. On 2 apps (Impeller
and CheckCheck), neither tool is strictly better: when PlumbDroid
utperforms Relda2 in number of confirmed detected leaks (app
mpeller) it also achieves a lower precision; when PlumbDroid
utperforms Relda2 in precision (app CheckCheck) it also finds
ne less correct leak. On the remaining 11 apps (Apollo, Jane,
iguMusic, QRScab, Runnerup, Shopsavvy, SimSimi, SuperTorch,
igerMap, Utorch, and WeatherPro) PlumbDroid is at least as
ood as Relda2 in both number of confirmed detected leaks and
recision, and strictly better in detected leaks, precision, or both.
e cannot directly compare PlumbDroid’s and Relda2’s running

imes, since we could not run them on the same hardware, but
e notice that the running times reported in Wu et al. (2016a) are

n the ballpark of PlumbDroid’s. In all, PlumbDroid’s leak detec-
ion capabilities often outperforms Relda2’s on the non-aliasing
esources that we currently focus on.

Comparison with RelFix. Table 5 compares the fixing capa-
ilities of PlumbDroid and RelFix (which uses Relda2 for leak
etection) on the 4 non-aliasing resources used in the latter’s
xperiments (Liu et al., 2016). Here too PlumbDroid generally
ppears more effective than RelFix: conservatively assuming that
ll fixes reported by Liu et al. (2016) are genuine and ‘‘safe’’,12
lumbDroid has higher precision (82%= 9/11 vs. 64%= 7/11) and
ixes at least as many confirmed leaks (even after discarding those
hat fail validation).

PlumbDroid generates small patches, each consisting of just
1 bytecode instructions on average, which corresponds to an
verage 0.017% increase in size of a patched app. This approach
eads to much smaller patches than RelFix’s, whose patches also
nclude instrumentation to detect the leaks on which the fixes
epend to function correctly. As a result, the average increase in
ize introduced by a RelFix patch is 0.3% in terms of bytecode
nstructions (Liu et al., 2016), which is one order of magnitude
arger than PlumbDroid’s.

As explained in Section 4.1.2, all results in this section are
ubject to the limitation that a direct comparison with Relda2 and
elFix was not possible. Despite this limitation, the comparison
ollected enough evidence to indicate that PlumbDroid’s analysis
s often more thorough and more precise than the other tools’.

On non-aliasing resources, PlumbDroid is usually
more effective and precise than other techniques for the

automated detection and repair of Android resource leaks.

4.2.5. RQ5: Unrolling
In the experiments reported so far, PlumbDroid ran with the

nrolling depth parameter D = 3, which is the default. Table 6
ummarizes the key data about experiments on the same apps

12 RelFix’s paper (Liu et al., 2016) does not explicitly discuss possible fix
alidation errors.
 D

15
Table 7
Detection of leaks of aliasing resources by Relda2 (according to the experiments
reported in Liu et al. (2016)) and PlumbDroid (on the programs in DroidLeaks).
The table reports the number of aliasing resources involved in leaks, the
reported leaks, how many of them are confirmed true leaks , and the
corresponding precision /leaks.
tool subjects resources leaks precision

Relda2 Liu et al. (2016) 4 108 24 22%
PlumbDroid DroidLeaks 6 273 86 32%

but using different values of D. These results indicate that a
value of D ≥ 3 is required for soundness: PlumbDroid running
with D = 1 missed 24 leaks (10 in DroidLeaks, and 14 in the
apps used by Relda2/RelFix); with D = 2 it missed 5 leaks
(all in the apps used by Relda2/RelFix). All missed leaks only
occur with resources that are acquired multiple times—that is
they affect reentrant resources: WakeLock and WifiLock in apps
CallMeter, CSipSimple, IRCCloud (from DroidLeaks), CheckCheck,
Impeller, PicsArt, SimSimi (from the comparison with Relda2),
and BlueChat (from the comparison with RelFix).

Is D = 3 also sufficient for soundness? While we cannot for-
mally prove it, the experiments suggest this is the case: increasing
D to larger values does not find new leaks but only increases
the running time. Unsurprisingly, the running time grows con-
spicuously with the value of D, since a larger unrolling depth
determines a combinatorial increase in the number of possible
paths. Thus, for the analyzed apps, the default D = 3 is the
empirically optimal value: it achieves soundness without unnec-
essarily increasing the running time. It is possible this result does
not generalize to apps with more complex reentrant resource
management; however, PlumbDroid always offers the possibility
of increasing D until its analysis is sufficiently exhaustive.

PlumbDroid’s analysis is sound provided it unrolls callback loops
a sufficient number of times (thrice in the experiments).

4.3. Aliasing resources

We repeatedly remarked that PlumbDroid’s current implemen-
tation is effective only on non-aliasing resources; it remains ap-
plicable to aliasing resources, but it is bound to generate a large
number of false positives. In order to get a clearer picture of
PlumbDroid’s limitations in the presence of aliasing, this section
reports some additional experiments on aliasing resources. It
remains that our contributions focus on non-aliasing resources;
an adequate support of aliasing belongs to future work.

Table 7 shows the behavior of PlumbDroid on leaks of the 6
aliasing resources in DroidLeaks apps. PlumbDroid reported a total
of 273 leaks, but we could only confirm about one third of them
as real leaks (true positives). This is a lower bound on Plumb-
roid’s precision on aliasing resources, as it is possible that more
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eported leaks are real but we could not conclusively confirm
hem as such because they affect obfuscated apps. Nevertheless,
t is clear the precision is much lower than on non-aliasing
esources—as we expected.

For comparison, Table 7 also reports the performance of Relda2
ccording to the experiments reported in Liu et al. (2016) on 4
liasing resources (Section 4.2.4 discusses the data from the same
ource but involving non-aliasing resources). Relda2 reported a
otal of 108 leaks, but only 22% of them are real leaks according
o Liu et al. (2016). Even though the experiments with PlumbDroid
nd with Relda2 are not directly comparable, it is clear both tools
chieve a low precision on aliasing resources—arguably low to the
oint that practical usefulness is severely reduced.

.4. Threats to validity

The main threats to the validity of our empirical evaluation
ome from the fact that we analyzed Android apps in bytecode
format; furthermore, some of these apps’ bytecode was only
available in obfuscated form. In these cases, we were not able to
inspect in detail how the fixes modified the original programs;
we could not always match with absolute certainty the leaks and
fixes listed in DroidLeaks with the fixes produced by PlumbDroid;
and we could not run systematic testing of the automatically fixed
apps. This threat was significantly mitigated by other sources of
evidence that PlumbDroid indeed produces fixes that are correct
and do not alter program behavior except for removing the source
of leaks: first, the manual inspections we could carry out on the
apps that are not obfuscated confirmed in all cases our expecta-
tions; second, PlumbDroid’s analysis is generally sound, and hence
it should detect all leaks (modulo bugs in our implementation of
PlumbDroid); third, running the fixed apps for significant periods
of time did not show any apparent change in their behavior.

As remarked in Section 4.1.2, we could only perform an in-
direct comparison with Relda2/RelFix (the only other fully auto-
mated approach for the repair of Android resource leaks that is
currently available) since neither the tools nor details of their ex-
periments other than those summarized in their publications (Wu
et al., 2016a; Liu et al., 2016) are available. To mitigate the
ensuing threats, we analyzed app versions that were available
around the time when the Relda2/RelFix experiments were con-
ducted, and we excluded from the comparison with PlumbDroid
measures that require experimental repetition (such as running
time). While it is still possible that measures such as precision
were assessed differently than how we did, these should be minor
differences that do not invalidate the high-level results of the
comparison.

Our evaluation did not assess the acceptability of fixes from a
programmer’s perspective. Since PlumbDroid works on bytecode,
its fixes may not be easily accessible by developers familiar only
with the source code. Nonetheless, fixes produced by PlumbDroid
are succinct and correct by construction, which is usually con-
ducive to readability and acceptability. As future work, one could
implement PlumbDroid’s approach at the level of source code,
so as to provide immediate feedback to programmers as they
develop an Android app. PlumbDroid in its current form could
instead be easily integrated in an automated checking system for
Android apps—for example, within app stores.

We did not formally prove the soundness or precision of Plumb-
Droid’s analysis, nor that our implementation is free from bugs.
Since PlumbDroid is implemented on top of AndroGuard (Anon,
2021c) and Apktool (Anon, 2021d) (Section 3.7), any bugs or
limitations of these tools may affect PlumbDroid’s analysis. In
particular, AndroGuard cannot currently analyze native code13—
a common limitation of static analysis. By and large, however,

13 https://github.com/androguard/androguard/issues/566#issuecomment-
31090708
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these tools’ support of Android is quite extensive, and hence
any current limitations are unlikely to significantly impact the
soundness of the results obtained in PlumbDroid’s experimental
evaluation.

Nonetheless, we analyzed in detail the features of Plumb-
roid’s analysis both theoretically (Section 3.6) and empirically
Section 4). The empirical evaluation corroborates the evidence
hat PlumbDroid is indeed sound (for sufficiently large unrolling
depth D), and that aliasing is the primary source of imprecision.
In future work, we plan to equip PlumbDroid with alias analy-
sis (Kellogg et al., 2021), in order to boost its precision on the
aliasing resources that currently lead to many false positives.

DroidLeaks offers a diverse collection of widely-used apps and
eaked resources, which we further extended with apps used in
elda2/RelFix’s evaluations. In our experiments, we used all apps
nd resources in DroidLeaks and in Relda2/RelFix’s evaluations
hat PlumbDroid can analyze with precision. This helps to gen-
ralize the results of our evaluation, and led to finding numerous
eaks not included in DroidLeaks nor found by Relda2/RelFix.
urther experiments in this area would greatly benefit from ex-
ending curated collections of leaks and repairs like DroidLeaks.
ur replication package is a contribution in this direction.

. Related work

.1. Automated program repair

PlumbDroid is a form of automated program repair (APR) tar-
eting a specific kind of bugs (resource leaks) and programs
Android apps). The bulk of ‘‘classic’’ APR research (Gazzola et al.,
018; Monperrus, 2018; Weimer et al., 2009; Martinez et al.,
016) usually targets general-purpose techniques, which are ap-
licable in principle to any kinds of program and behavioral bugs.
he majority of these techniques are based on dynamic analysis—
hat is, they rely on tests to define expected behavior, to detect
nd localize errors (Hua et al., 2018; Chen et al., 2017), and to vali-
ate the generated fixes (Long and Rinard, 2015; Jiang et al., 2018;
aha et al., 2017). General-purpose APR completely based on
tatic analysis is less common (Logozzo and Ball, 2012; Logozzo
nd Martel, 2013; Gao et al., 2015), primarily because tests are
ore widely available in general-purpose applications, whereas
chieving a high precision with static analysis is challenging for
he same kind of applications and properties.

.2. Leak analysis

Whereas PlumbDroid is one of only two fully automated ap-
roaches for fixing Android resource leaks (the other is RelFix,
iscussed below and in Section 4.2.4), detection of leaks and other
efects is more widely studied and has used a broad range of
echniques—from static analysis to testing. Table 8 outlines the
eatures of the main related approaches, which we discuss in the
est of this section.

.2.1. Static analysis
Approaches based on static analysis build an abstraction of a

rogram’s behavior, which can be searched exhaustively for leaks.
ince Android apps run on mobile devices, they are prone to
efects such as privacy leaks (Gibler et al., 2012), permission mis-
ses (Liang et al., 2015), and other security vulnerabilities (Zhou
nd Jiang, 2013; Pan et al., 2020) that are less prominent (or
ave less impact) in traditional ‘‘desktop’’ applications. In such
pecialized domains, where soundness of analysis is paramount,
tatic analysis is widely applied—for example to perform taint
nalysis (Luo et al., 2019) and other kinds of control-flow based
nalyses (Li et al., 2017; Arzt et al., 2014). Indeed, there has been

https://github.com/androguard/androguard/issues/566#issuecomment-431090708
https://github.com/androguard/androguard/issues/566#issuecomment-431090708
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Table 8
Comparison of tools that detect and repair leaks in Android apps. For each tool, the table report the kinds of code analysis it performs (static or dynamic), the
inds of leaks it primarily targets, whether it is fully or partially automated, whether it models reentrant behavior, whether its detection is sound, and whether

it can also generate repairs of the detected leaks. Entries (Yes) in column repair denote fixes that release any leaking resource at the very end of an app’s lifecycle,
ithout following the resource-specific Android guidelines.
tool analysis leaks automated reentrant soundness repair

FindBugs (Anon, 2021f) static Java resources full No No No
EnergyTest (Banerjee et al., 2014) dynamic energy partial No No No
LeakCanary (Anon, 2021g) dynamic memory full No No No
Android Studio (Anon, 2021h) dynamic memory full No No No
FunesDroid (Amalfitano et al., 2020) dynamic memory partial No No No
Sentinel (Wu et al., 2020, 2018) static+ dynamic sensor partial Yes No No
Relda2/RelFix (Wu et al., 2016a; Liu et al., 2016) static Android resources full No No (Yes)
EnergyPatch (Banerjee et al., 2018; Banerjee and Roychoudhury, 2016) static+ dynamic energy full No No (Yes)
PlumbDroid static Android resources full Yes Yes Yes
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plenty of work that applied static analysis to analyze resource
management in Java (Weimer and Necula, 2004; Dillig et al.,
2008), including detecting resource leaks (Torlak and Chandra,
2010; Kellogg et al., 2021).

Whereas some of these contributions could be useful also
o analyze mobile apps written in Java, in order to do so the
echniques should first be extended to support the peculiarities of
he Android programming model—in particular, its event-driven
ontrol flow.
General-purposes static analyzers for Java like FindBugs (Anon,

021f), are also capable of detecting a variety of issues in common
ava resources (e.g., files); however, FindBugs is neither sound nor
ery precise (Vetrò et al., 2010), as it is based on heuristics and
attern-matching that are primarily geared towards detecting
tylistic issues and code smells.

.2.2. Dynamic analysis
Many approaches use dynamic analysis (testing), and hence

re not sound (they may miss leaks).
One example is a test-generation framework capable of build-

ng inputs exposing resource leaks that lead to energy ineffi-
iencies (Banerjee et al., 2014). Since it targets energy efficiency,
he framework consists of a hybrid setup that includes hard-
are to physically measure energy consumption, which makes it

ess practical to deploy (hence, Table 8 classifies it as ‘‘partial’’
utomation). Its measurements are then combined with more
raditional software metrics to generate testing oracles for energy
eak detection. The framework’s generated tests are sequences of
I events that trigger energy leaks or other inefficiencies exposed
y the oracles. As it is usual for test-case generation, (Banerjee
t al., 2014)’s framework is based on heuristics and statistical
ssumptions about energy consumption patterns, and hence its
etection capabilities are not exhaustive (i.e., not sound).
Other tools (Wu et al., 2020, 2018; Anon, 2021g,h; Amalfitano

t al., 2020; Yan et al., 2013) exist that use tests to detect re-
ource leaks—such as sensor leaks (Wu et al., 2020, 2018; Yan
t al., 2013) and memory leaks (Anon, 2021g; Amalfitano et al.,
020). A key idea underlying these approaches is to combine run-
ime resource profiling (Anon, 2021h) and search-based test-case
eneration looking for inputs that expose leaks.
LeakCanary (Anon, 2021g) and the Android Studio Monitor

Anon, 2021h) are two of the most popular tools used by devel-
per to detect memory leaks as they have high precision and are
ully automated. Like all approaches based on testing, they are
nsound in general, and their capabilities strongly depend on the
uality of the tests that are provided.
FunesDroid (Amalfitano et al., 2020) generates inputs that

orrespond to pre-defined user interactions – like rotating the
creen – which can trigger memory leaks when executed in cer-
ain activities. Besides being unsound like all testing techniques,
unesDroid’s testing capabilities are also limited by the kinds

f interactions that it supports. Furthermore, FunesDroid’s test

17
generation capabilities are not fully automated for leak detection:
while the tool provides user interactions as inputs, one still needs
to provide tests that run the app where leaks are being detected.

Sentinel (Wu et al., 2020, 2018), an approach based on gener-
ating GUI events for testing, models resource usage as context-
free languages, and hence it is one of the few leak analysis
techniques that is capable of fully modeling reentrant resources.
The tool first performs a static analysis of app code to build
a model that maps GUI events to callback methods that affect
sensor behavior. Then, it traverses the model to enumerate paths,
which in turn are used to generate test cases. The last step (from
paths to actual test inputs) requires users to manually come up
with suitable inputs that match the abstract paths; therefore, the
Sentinel approach is not fully automated.

5.3. Leak repair

The amount of work on detecting various kinds of leaks (Baner-
ee et al., 2018, 2014; Wu et al., 2016a; Liu et al., 2014b; Pathak
t al., 2011) and the recent publication of the DroidLeaks curated
ollection of leaks (Liu et al., 2019) indicate that leak detection is
onsidered a practically important problem in Android program-
ing. In this section, we discuss in greater detail two approaches

hat are also capable, like PlumbDroid, of fixing the Android leaks
hey detect.

.3.1. Relda2 and RelFix
Relda2 (Wu et al., 2016a) combines flow-insensitive and flow-

ensitive static analyses to compute resource summaries: abstract
epresentations of each method’s resource usage, which can be
ombined to perform leak detection across different procedures
nd callbacks. Since Relda2 approximates loops in an activity’s
ifecycle by abstracting away some of the flow information (even
n its ‘‘flow-sensitive’’ analysis), and does not accurately track
ested resource acquisitions, its analysis is generally unsound
leaks may go undetected) and imprecise (spurious errors may be
eported). In contrast, PlumbDroid performs a more thorough and
recise inter-procedural analysis by considering all possible call-
ack sequences. PlumbDroid even allows users to set the unrolling
epth D (affecting the maximum length of analyzed callback
equences), which is a means of trading off soundness (i.e., how
horough the analysis is) with running time (i.e., how long/how
any computational resources the analysis takes). PlumbDroid’s
odeling of resources is more detailed than Relda2’s also be-
ause it supports a validation step (Section 3.5), which can detect
nconsistencies between a resource’s recommended usage guide-
ines and how it is actually used by an app. After building a
ontrol-flow model of resource usages, Relda2 uses an off-the-
helf model checker to analyze it. In contrast, PlumbDroid uses a
ustom automata-theoretic analysis algorithm to search for leaks
n resource-flow graphs, which may contribute to more precise
nd scalable results.
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RelFix (Liu et al., 2016) can patch resource leaks in Android
pps that have been detected by Relda2. It applies patches at
he level of Dalvik bytecode, whereas PlumbDroid does so at the
evel Smali (a human-readable format of Dalvik), which makes
lumbDroid’s output more accessible to human programmers.
ection 4.2.4 discussed a detailed comparison between Plumb-
roid and Relda2/RelFix in terms of precision and patch sizes.
nother significant difference is how they build fixes: RelFix
ollows the simple approach of releasing resources in the very last
allback of an activity’s lifecycle, whereas PlumbDroid builds fixes
hat adhere to Android’s recommended guidelines.

.3.2. EnergyPatch
EnergyPatch (Banerjee et al., 2018; Banerjee and Roychoud-

ury, 2016) is another approach for leak detection based on static
echniques where resource usage are modeled as regular expres-
ions. EnergyPatch uses abstract interpretation to compute an
ver-approximation of an app’s energy-relevant behavior; then,
t performs symbolic execution to detect which abstract leaking
ehaviors are false positives and which are executable (i.e., corre-
pond to a real resource leak); therefore, its analysis is hybrid as
t combines static and dynamic techniques. For each executable
eaking behavior, symbolic execution can also generate a concrete
rogram input that triggers the energy-leak bug. EnergyPatch
argets a different kind of resource leaks (energy-consumption
elated, which lead to a wasteful usage of a mobile device’s en-
rgy resources) than PlumbDroid. Since EnergyPatch only analyzes
imple paths (i.e., without loops) in the callback graph, its analysis
ay be unsound (especially for reentrant resources).
While EnergyPatch focuses on leak detection, it also offers a

imple technique for generating fixes, which simply releases all
esources in the very last callback of an activity’s lifecycle. As we
iscussed in Section 3.4, this approach is sometimes impractical
ecause it may conflict with some of Android programming’s best
ractices. In contrast, PlumbDroid releases the resource aggres-
ively, in the earliest callback, since our validation step later can
ilter out patches that result in use-after-release issues.

. Conclusions and future work

This paper presented PlumbDroid: a technique and tool to de-
ect and automatically fix resource leaks in Android apps. Plumb-
roid is based on succinct static abstractions of an app’s control-
low; therefore, its analysis is sound and its fixes are correct
y construction. Its main limitation is that its analysis tends to
enerate false positives on resources that are frequently aliased
ithin the same app. In practice, this means that PlumbDroid’s

s currently primarily designed for the numerous Android re-
ources that are not subject to aliasing. On these resources, we
emonstrated PlumbDroid’s effectiveness and scalability. Extend-
ng PlumbDroid’s approach with aliasing information is an inter-
sting and natural direction for future work.
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