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State machine replication (SMR) is a standard approach to fault tolerance in which replicas execute 
requests deterministically and often serially. For performance, some techniques allow concurrent 
execution of requests in SMR while keeping determinism. Such techniques exploit the fact that 
independent requests can execute concurrently. A promising category of early scheduling solutions 
trades scheduling freedom for simplicity, allowing to expedite decisions during scheduling. This paper 
generalizes early scheduling and proposes a general method to schedule requests to threads, restricting 
scheduling overhead. Moreover, it explores improvements to the original early scheduling mechanism, 
namely the use of busy-wait synchronization and work-stealing techniques. We integrate early scheduling 
and its proposed improvements to a popular SMR framework. Performance results of the basic 
mechanism and its improvements are presented and compared to more classic approaches, where it 
is shown that early scheduling with our proposed enhancements can outperform the original early 
scheduling and other systems by a large margin in many scenarios.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

State machine replication (SMR) is a well-established approach 
to fault tolerance [26,36]. In this technique, server replicas execute 
client requests deterministically, in the same order. Consequently, 
replicas transition through the same sequence of states and pro-
duce the same output for each request. While SMR has been suc-
cessfully used in many different applications and contexts (e.g., 
[8,16,11]), modern multi-core servers challenge the SMR model 
since deterministic execution often translates into single-threaded 
replicas. In order to address this limitation, several techniques have 
been proposed (e.g., [17,22,24,31,28]). Techniques that introduce 
concurrency in SMR build on the observation that independent re-
quests can execute concurrently while conflicting requests must be 
serialized and executed in the same order. Two requests conflict 
if they access common state and at least one of the requests is 
an update; otherwise the requests are independent. An important 
aspect in the design of parallel state machine replication (P-SMR) 
is how to schedule requests on threads, while respecting conflict 
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requirements. Proposed solutions fall in two main categories: late 
and early scheduling.

With the late scheduling approach, requests are assigned to 
working threads after the requests are ordered across replicas. 
In [25], for example, each replica has a directed dependency graph 
that stores not-yet-executed requests and the order in which con-
flicting requests must be executed. A scheduler at each replica 
delivers requests in order and includes them in the dependency 
graph. Threads remove requests from the graph and execute them 
respecting the dependencies. In late scheduling, the scheduler and 
threads contend for access to the shared graph, causing synchro-
nization overhead. It has been observed that the cost of tracking 
dependencies and the synchronization overhead may outweigh late 
scheduling’s concurrency advantage [4].

In early scheduling [4], on the other hand, the rationale is to 
expedite scheduling decisions, even if at the cost of some reduc-
tion in concurrency. The idea is that some scheduling decisions are 
made before requests are ordered by the clients (or client proxies). 
Clients classify requests according to specific classes, derived from 
application semantics. At the server side, requests are assigned to a 
worker thread in constant time based on the request’s class. For in-
stance, consider a service based on the typical readers-and-writers 
concurrency model. Scheduling becomes simpler if we adopt the 
following execution models: any read request is scheduled on any 
le under the CC BY-NC-ND license 
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thread; each write request is scheduled on all threads; all threads 
having the same request must synchronize (e.g., using a barrier) to 
execute it.

Although previous research has shown that early scheduling 
can outperform late scheduling by a large margin, specially in 
workloads dominated by read requests [30,31,4], we observe that 
the early scheduling execution model may restrict concurrency 
since it assigns requests to specific threads while imposing high 
thread synchronization on writes. It has been also shown [5] that 
early scheduling creates unbalanced load on threads, reducing per-
formance. In this paper, we investigate techniques to enhance the 
early-scheduling execution model. In particular, we extend early 
scheduling with two well-established strategies: busy-wait syn-
chronization and work-stealing scheduling. The first strategy re-
duces the cost of synchronization and the second strategy bal-
ances the load among threads. While these techniques are well-
established, using them in the context of early scheduling required 
us to address aspects that had not been previously considered. For 
example, work-stealing in this case must account for interdepen-
dencies between requests.

In a nutshell, this paper makes the following contributions.

• First, we present the early scheduling technique. We explain 
the notion of classes of requests and show how a program-
mer can use them to express the allowed concurrency of an 
application. We present a set of rules to map request classes 
to worker-threads and the worker-threads execution model. 
Together these elements ensure linearizable executions (i.e., 
strong consistency).

• Second, we identify some limitations to the original early 
scheduling technique, we propose and fully implement en-
hancements to overcome these limitations. In particular, we 
generalize the well-known work-stealing technique to account 
for conflicting requests and investigate the use of a busy-wait 
approach to eliminate the synchronization costs of barriers.

• Third, we report a large set of experiments that we conducted 
to compare early scheduling and the proposed enhancements 
to late scheduling and classical state machine replication based 
on sequential execution of requests.

This paper continues as follows. Section 2 presents the system 
model, consistency criteria, and background on P-SMR. Section 3
discusses the original early scheduling and its performance limita-
tions. Section 4 discusses enhancements to early scheduling based 
on the identified performance limitations. Section 5 reports on our 
vast experimental evaluation, with the basic model and enhance-
ments. Section 6 surveys related work, and Section 7 concludes the 
paper.

2. Background

2.1. System model and consistency

We assume a distributed system composed of interconnected 
processes that communicate by exchanging messages. There is an 
unbounded set of client processes and a bounded set of replica 
processes. Each replica implements one (sequential approach) or 
more threads (parallel approaches) that execute client requests. 
The system is asynchronous: there is no bound on message delays 
and on relative process speeds. We assume the crash-stop failure 
model and exclude arbitrary behavior. A process is correct if it does 
not fail, or faulty otherwise. There are up to f faulty replicas, out 
of 2 f + 1 replicas.

Processes use an atomic broadcast communication abstraction, 
defined by primitives broadcast(m) and deliver(m), where m is a 
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message. Atomic broadcast ensures the following properties [13,
18]1:

• Validity: If a correct process broadcasts a message m, then it 
eventually delivers m.

• Uniform Agreement: If a process delivers a message m, then all 
correct processes eventually deliver m.

• Uniform Integrity: For any message m, every process delivers 
m at most once, and only if m was previously broadcast by a 
process.

• Uniform Total Order: If both processes p and q deliver messages 
m and m′ , then p delivers m before m′ , if and only if q delivers 
m before m′ .

Our consistency criterion is linearizability. An execution is lin-
earizable if there is a total order of its requests that satisfies the 
following requirements [20]:

• It respects the real-time ordering of requests across all clients. 
There exists a real-time order among any two requests if one 
request finishes at a client before the other request starts at a 
client.

• It respects the semantics of the requests as defined in their 
sequential execution.

2.2. Request independence

To ensure linearizability, it has been observed that it suffices 
to execute sequentially only dependent (or conflicting) requests. 
The independent requests can be executed concurrently without 
violating consistency [36]. The notion of request dependency or 
conflict is application-specific. Recently, several replication mod-
els have exploited request conflicts to parallelize the execution on 
replicas.

More formally, request conflicts can be defined as follows. Let 
R be the set of requests available in a service (i.e., all the requests 
that a client can issue). A request can be any deterministic compu-
tation involving objects that are part of the application state. We 
denote the sets of application objects that replicas read and write 
when executing a request r as r’s readset and writeset, or R S(r)
and W S(r), respectively.

Definition 1 (Request conflict). The conflict relation #R ⊆ R × R
among requests is defined as

(ri, r j) ∈ #R iff

⎛
⎝

R S(ri) ∩ W S(r j) �= ∅ ∨
W S(ri) ∩ R S(r j) �= ∅ ∨
W S(ri) ∩ W S(r j) �= ∅

⎞
⎠

Requests ri and r j conflict if (ri, r j) ∈ #R . We refer to pairs of 
requests not in #R as non-conflicting or independent. Consequently, 
if two requests are independent, they can be executed concurrently 
at replicas.

2.3. Late scheduling

In this category of protocols, replicas deliver requests in total 
order and then a scheduler assigns requests to threads. The sched-
uler must respect dependencies. More precisely, if requests ri and 
r j conflict and ri is delivered before r j , then ri must execute be-
fore r j . If ri and r j are independent, then there are no restrictions 
on how they should be scheduled.

1 Atomic broadcast needs additional synchrony assumptions to be imple-
mented [9,15]. These assumptions are not explicitly used by the protocols proposed 
in this paper.
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CBASE [25] is a protocol in this category, where a deterministic 
scheduler delivers requests in total order and includes them in a 
dependency graph (DAG). In the DAG, vertices represent delivered 
but not yet executed requests and directed edges represent depen-
dencies between them. Request ri depends on r j (i.e., ri → r j is an 
edge in the graph) if ri is delivered after r j , and ri and r j conflict.

The DAG is shared with a pool of threads. The threads choose 
requests for execution from the DAG respecting their interdepen-
dencies: a thread can execute a request if it is not under execution 
and it does not depend on any other requests in the graph. After 
the thread executes the request, it removes it from the graph and 
chooses another one.

3. Early scheduling

Several approaches to P-SMR resort to application semantics 
to parallelize independent requests. While executing requests in 
parallel improves performance, the scheduling of these requests in-
troduces overhead. The central idea of early scheduling is to rely 
on a simple execution model, based on the concept of classes and 
thread mappings, to avoid the late scheduling overhead. In early 
scheduling, a request is assigned to a thread based on the request’s 
class. In this section, we present request classes, the execution 
model, and the class-to-threads mapping of early scheduling. We 
then introduce algorithms and discuss their performance.

3.1. Request classes

In our model, each class has a descriptor and conflict informa-
tion, as defined next.

Definition 2 (Request classes). Let R be the set of requests avail-
able in a service (same as considered in request conflicts). Let 
C = {c1, c2, ..., cnc} be the set of class descriptors, where nc is 
the number of classes. We define request classes as R = C →
P(C) ×P(R),2 that is, any class in C may conflict with any subset 
of classes in C , and is associated with a subset of requests in R . A 
conflict among classes happens when any two requests from those 
classes conflict, according to the conflict definition #R . Moreover, 
we introduce the restriction that a non-empty non-overlapping 
subset of requests from R is associated with each class.

Example. Consider a service partitioned in 2 shards where re-
quests can be classified as read-only and read-write, per shard and 
globally. Different shards can be read and written independently. 
We model this application with the following classes, denoted in 
Fig. 1, where classes are nodes and conflicts are edges. Local read 
classes C R1 and C R2 in shards 1 and 2, respectively, conflict with 
the corresponding local write class CW 1 or CW 2, on the same par-
tition, and with the global write class CW g . The class CW g also 
conflicts with itself, with write classes and with global read class 
C Rg . Local write classes also conflict with themselves and with the 
global read class C Rg .

3.2. Execution model

The central idea of early scheduling is to rely on a simple ex-
ecution model, based on the concept of classes and thread map-
pings, to avoid the late scheduling overhead by preventing the 
evaluation of every other pending request when scheduling a new 
one. To accomplish such a straightforward scheduling algorithm, 
early scheduling adopts an execution model that will synchronize 

2 We denote the power set of set S as P(S).
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Fig. 1. Classes and conflict definition with two shards.

requests from conflicting classes. A replica will have one sched-
uler thread and n worker threads. Once a replica delivers (using 
an atomic broadcast) a request, it is handed over to the scheduler, 
which then schedules the request to one or more threads.

a. If scheduled to one thread only, r can be processed concur-
rently with other requests.

b. If scheduled to more than one thread, then r depends on 
preceding requests assigned to these threads. Therefore, all 
threads involved in r must synchronize before only one of 
them (called the executor) executes r.

3.3. Class-to-threads mapping

With this execution model, the following class-to-thread-
mapping rules must be applied to ensure linearizable executions:

i. Every class is associated with at least one thread, to ensure that 
requests are eventually executed.

ii. If a class is self-conflicting, it is sequential. Each request is sched-
uled to all threads of the class and processed as described in 
the previous section.

iii. If two classes conflict, at least one of them must be sequential. The 
previous requirement may help decide which one.

iv. For conflicting classes c1 , sequential, and c2, concurrent, the set of 
threads associated with c2 must be included in the set of threads 
associated with c1 . This requirement ensures that requests in c2
are serialized w.r.t. c1’s.

v. For conflicting sequential classes c1 and c2 , it suffices that c1 and c2
have at least one thread in common. The common thread ensures 
that requests in the classes are serialized.

These rules result in several possible mappings of classes to 
threads. Creating such a mapping can be modeled as an optimiza-
tion problem with the following objectives, detailed in [4]: mini-
mizing the number of threads in sequential classes; and maximiz-
ing the number of threads in concurrent classes, while assigning 
threads to concurrent classes in proportion to their relative weight 
(i.e., the number of requests expected for these classes). This map-
ping is static and defined a priori for a given application, hence, 
it is created only once, at system startup. A mapping is defined as 
follows.

Definition 3 (CtoT). CtoT = C → {seq, conc} ×P(T ) where: C is the 
set of class names; {seq, conc} is the sequential or concurrent syn-
chronization mode of a class; and P(T ) the possible subsets of 
the threads set T = {t0, .., tn−1}, n is the number of threads at a 
replica.

Example. Following our example from Fig. 1, considering 4 threads, 
a possible mapping is depicted in Table 1.
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Table 1
A possible mapping of 4 threads in Fig. 1.

C = {seq, conc} × P ( {t0, t1, t2, t3} )

CR1 = conc {t0, t2, }
CR2 = conc { t1, t3}
CW 1 = seq {t0, t2, }
CW 2 = seq { t1, t3}
CRg = seq {t0, t3}
CW g = seq {t0, t1, t2, t3}

The global read class C Rg is defined as seq and conflicts with 
itself to allow more concurrency [4]. By following the class-to-
threads mapping rules we observe the following. Since C Rg con-
flicts with CW 1 and CW 2, and if C Rg were configured as concur-
rent, all threads assigned to C Rg would have to be included in CW 1
and CW 2. Doing so would synchronize CW 1 and CW 2 since their 
threads would not be disjoint. A more efficient solution (identi-
fied by the mentioned optimization model) is to define C Rg as 
sequential and associate it with one thread from CW 1 and one 
thread from CW 2. As a result, multi-shard reads synchronize with 
local-shard writes, but local writes to different shards can execute 
concurrently.

3.4. Algorithms

Algorithms 1 and 2 present the execution model for the sched-
uler and threads, respectively. Whenever a request is delivered by 
an atomic broadcast protocol, the scheduler (Algorithm 1) assigns 
it to one or more threads. The function CtoT returns the set of 
threads associated with the class. If a class is sequential, then 
all threads in the set will receive the request to synchronize the 
execution (lines 4–6). Otherwise, requests are associated with a 
unique thread in the set (lines 7–8), following a round-robin pol-
icy (function next).

Algorithm 1 Early scheduler.
1: variables:
2: queues[0, ..., n − 1] ← ∅ {one queue per thread}
3: on deliver(req):
4: if req.class.mode = seq then {if execution is sequential}
5: ∀t ∈ CtoT (req.class) {for each conflicting thread in the mapping}
6: queues[t]. f i f oP ut(req) {synchronize to execute the request}
7: else {otherwise assigns it to some thread in round-robin}
8: queues[next(CtoT (req.class))]. f i f oP ut(req)

Each thread (Algorithm 2) takes one request at a time from its 
queue in FIFO order (line 6) and then proceeds depending on its 
class synchronization mode. If it is sequential, the thread synchro-
nizes with other ones in the class using barriers before the request 
is executed (lines 8–14), and only one thread (function min returns 
the thread with the smallest id) executes the request. If it is con-
current, then the thread simply executes the request (lines 15–16).

Algorithm 2 Threads for early scheduling.
1: variables:
2: myId ← id ∈ {0, ..., n − 1} {thread id, out of n threads}
3: queue[myId] ← ∅ {a queue of requests}
4: barrier[C] {one barrier per request class}
5: while true do
6: req ← queue. f i f oGet() {wait until there are requests available}
7: if req.class.mode = seq then {class requires sequential execution}
8: if myId = min(CtoT (req.class)) then {if thread has smallest id}
9: barrier[req.class].await() {wait for all threads before executing}

10: exec(req) {execute request}
11: barrier[req.class].await() {resume other threads}
12: else
13: barrier[req.class].await() {wait for all threads before execution}
14: barrier[req.class].await() {wait until execution is done}
15: else {if it is a concurrent execution}
16: exec(req) {simply execute the request}
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3.5. Correctness and performance

Safety and liveness are argued in [4], where it is shown that 
early scheduling produces linearizable executions and ensures that 
all requests are eventually executed. The performance of early 
scheduling has been also considered and compared to other ap-
proaches in the literature. Although early scheduling performs well 
in general when compared to late scheduling, the study reported 
in [5] sheds some light on how the restrictions imposed by the 
early scheduling execution model affect its performance.

It has been shown that if on the one hand the percentage of 
time that a thread waits on synchronization increases with conflict 
rates, on the other hand, as conflicts increase, threads spend less 
time waiting for new requests to execute. This happens because 
while waiting on synchronization barriers, requests arrive at the 
thread queues.

Another finding is that there is a difference in the size of the 
queues associated with the threads. This is a consequence of the 
static classes-to-threads mappings. For example, some threads may 
be associated with fewer request classes than other threads and 
have, on average, fewer requests in their queues.

Further details about the impact of the restrictions imposed by 
the early scheduling technique can be found in [5]. Motivated by 
these findings, in the next section we discuss techniques to boost 
the performance of early scheduling.

4. Improving early scheduling

In this section, we explore enhancements to early scheduling 
(also referred to as the basic technique), introducing additional 
techniques to improve resource utilization. We consider both a 
variation of the synchronization mechanism, replacing the barri-
ers by a busy-wait approach, as detailed next, and the suitability 
of work-stealing techniques.

4.1. Busy waiting

With the basic technique, threads synchronize using barriers. 
A call to a barrier introduces overhead (i.e., a context switch 
from user-space to kernel-space). When increasing the number of 
threads, there will be more such calls, and the system will expe-
rience performance degradation. The impact of this phenomenon 
was already observed in [4]. Hence, we consider a busy-wait ap-
proach to thread synchronization, aiming to avoid the overhead 
introduced by barriers.

We modify the original early scheduling thread execution 
model to keep threads active while synchronizing requests (Algo-
rithm 4). We avoid locks and use atomic variables with the atomic 
operations described in Algorithm 3. To ensure proper synchro-
nization among threads, we introduce the concept of cycle per 
class. A cycle is the process through which all threads belonging to 
the same class synchronize to execute one request, and is defined 
as follows.
Entering a cycle: Threads process their input queue in sequence 
(Algorithm 4, line 4). If the request is sequential, it has to enter the 
synchronization cycle. This boils down to atomically incrementing 
a class variable counting how many threads reached the cycle (line 
9) and, either busy-waiting (in line 13) or executing the request on 
behalf of the class (line 10) if all threads entered the cycle.
Leaving a cycle: A thread waits for the executor to set the request 
class’s mark variable to 0 for the corresponding cycle (line 11). 
Since a released thread could immediately find another request 
of the same class in its input queue while others are still in the 
previous cycle, we implement two cycles (0 and 1) per class (see 
the matrix mark[classes] × [2] in Algorithm 3) to avoid the faster 
thread reentering the same cycle, leading to inconsistencies. Each 
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thread keeps track of the next cycle for a class in which it will 
enter next (Algorithm 4, line 2), and it switches between 0 and 1
whenever it enters a new cycle for a class. This ensures that all 
threads belonging to a class use the same synchronization atomic 
variables without interference among cycles.

Algorithm 3 Busy-wait general definitions.
1: shared variables:
2: mark[c1, ..., cnc][2] ← [0, 0], [0, 0]...[0, 0] {one atomic integer per class and 

cycle}
3: access functions:
4: mark[class][cycle].get() {atomically read and return the value}
5: mark[class][cycle].set() {atomically set the value}
6: mark[class][cycle].incGet() {atomically increment and return the value}

Algorithm 4 Busy-wait at threads.
1: variables:
2: cycles[c1, ..., cnc] ← [0, ..., 0] {array of cycles, one per class}
3: while true do
4: req ← queue. f i f oGet()
5: class ← req.class {assigns variable with the request’s class}
6: if class.mode = seq then {sequential execution}
7: cycles[class] ← 1 − cycles[class] {recomputes current cycle for the class}
8: cycle ← cycles[class] {assigns variable with the current cycle}
9: if mark[class][cycle].incGet() = CtoT (class).len then

10: exec(req) {the last thread to increment becomes the executor}
11: mark[class][cycle].set(0) {notify other threads that execution is done}
12: else
13: while mark[class][cycle].get() �= 0 {busy-wait until execution is done}
14: else
15: exec(req)

Safety: The barrier in the original early scheduling thread (Algo-
rithm 2) ensures that all involved threads synchronize to execute 
the sequential request and do not advance before finishing their 
execution. In the busy-waiting version, a sequential request is ex-
ecuted when all involved threads reach the request in their input 
queues. After executing, the executor signals the other threads to 
stop waiting. Thus, the mechanism keeps the same key property 
during request execution: (a) a request is only executed after all 
threads have arrived to the request in their queues, and (b) one 
thread executes the request while the other threads wait for the 
request execution to finish.

Liveness: For a given class, all its threads initiate in cycle 0 and 
deterministically switch to the next when a sequential request is 
processed. Since all threads have the same requests of their class 
in the input queue, eventually all will switch to the next cycle 
and complete the number of threads to execute it. Moreover, since 
all threads have the same order of common requests, they will 
not build cycles while synchronizing to execute different requests. 
Thus, the synchronization mechanism does not block.

4.2. Work-stealing

Work-stealing is a prominent scheduling paradigm [7] in which 
underused processors take the initiative to steal work from busy 
processors. Based on this idea, we propose a work-stealing al-
gorithm for early scheduling. Unlike typical work-stealing ap-
proaches, we need to ensure that stealing does not violate the 
order of conflicting requests to preserve linearizability. More con-
cretely, requests from a victim thread v can only be stolen and 
executed concurrently by a stealer thread s if all requests in v ’s 
queue are independent and do not conflict with requests assigned 
for execution by s. In the following, we detail these ideas.

Stealer threads. When a thread becomes idle, it turns into a poten-
tial stealer. A thread becomes idle in two moments:
• when there are no requests in its input queue; and
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• when synchronizing with other threads before executing a 
request and the other threads involved are not ready.

In any case, the stealer will look for work to steal in other 
threads’ input queues; possibly steal one or more requests; ex-
ecute them; signal their execution; and then resume its usual 
role, checking its input queue.

Victim threads. Any thread v that has a non-empty queue contain-
ing only independent requests is a potential victim. We con-
sider independent requests only to ensure that the pending 
requests stolen from v ’s queue can be executed concurrently 
with the ones currently being executed by v . Notice that to 
guarantee linearizability, if a thread is executing a sequential 
request, then its enqueued requests cannot be stolen and exe-
cuted concurrently with the sequential request.

Stolen work. As discussed above, the stolen requests will be ex-
ecuted concurrently with the ones executed by the victim. 
Therefore, those requests have to be concurrent.

4.2.1. Algorithms
In this section, we detail the work-stealing algorithm and how 

it can be integrated in the early scheduling technique to improve 
performance. We first detail the basic algorithm and then discuss 
the optimizations and improvements that were incrementally in-
corporated into it.

Conservative work-stealing The first and simplest idea is to steal 
work while waiting for new requests. Algorithm 5 shows general 
definitions used by our work-stealing algorithms. Algorithms 6 and 
7 show the new execution model.

Algorithm 5 Work-stealing general definitions.
1: shared variables: consistent under concurrent manipulation (thread-safe)
2: ∀t ∈ T
3: ready Q ueue ← ∅ {separate queue holding requests ready for execution}
4: exec Q ueue ← ∅ {separate queue holding requests under execution}
5: readyFlag ← 0 {1: there is sequential request in ready Q ueue; 0: otherwise}
6: execF lag ← 0 {1: there is sequential request in exec Q ueue; 0: otherwise}
7: marker[t0, ..., tn−1] ← [0, ..., 0] {1 at entry s means that s stole requests from t

and did not finish executing them yet; 0: otherwise}

Each worker thread t is augmented with two separate queues 
(Algorithm 5): 1) the ready Q ueue holds pending requests deliv-
ered by the scheduler; 2) the exec Q ueue holds the requests that 
are currently under execution by t (i.e., t transfers requests from 
the first queue to the second, ensuring that the second queue con-
tains only requests that will be executed by t and cannot be stolen 
by other threads). Each thread has an array of atomic flags (called 
marker): If a victim v has value 1 at entry s in marker, it means 
that stealer s has stolen work from v and has not finished its exe-
cution, otherwise the value is 0. Hence, when v is about to execute 
sequential requests, it needs to verify these flags to find whether 
it needs to wait for a stealer to finish.

Algorithm 6 Work-stealing scheduler.
1: on deliver(Request: req):
2: if req.class.mode = seq then
3: atomic:
4: ∀t ∈ CtoT (req.class)
5: t.ready Q ueue. f i f oP ut(req)

6: t.readyFlag ← 1 {indicates a sequential request in t’s queue}
7: endAtomic
8: else
9: next(CtoT (req.class)).ready Q ueue. f i f oP ut(req)

The scheduler inserts requests in the threads’ ready Q ueue, ac-
cording to its synchronization class (Algorithm 6). Moreover, the 
scheduler updates a flag in each related thread when assigning 
them with sequential requests. This flag signals a sequential re-
quest in the ready Q ueue of each thread t .
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Algorithm 7 Work-stealing at thread t .
1: constant:
2: myId ← id ∈ {0, ..., n − 1} {thread id, out of n threads}

3: Thread t is as follows:
4: while true do
5: atomic:
6: exec Q ueue ← ready Q ueue {transfers all requests to execQueue}
7: execF lag ← readyFlag {may indicate execution of sequential request}
8: ready Q ueue ← ∅ {clear ready Q ueue}
9: readyFlag ← 0 {reset flag of sequential requests in ready Q ueue}

10: endAtomic
11: if exec Q ueue �= ∅ then {if there is something to execute}
12: while req ← exec Q ueue. f i f oGet() do
13: if req.class.mode = seq then
14: if myId = min(CtoT (req.class)) then
15: for all s ∈ T \ myId do {if it was stolen by someone else}
16: wait until marker[s] = 0 {wait until the stealer finishes}
17: barrier[req.class].await()
18: exec(req)

19: barrier[req.class].await()
20: else
21: barrier[req.class].await()
22: barrier[req.class].await()
23: else
24: exec(req)

25: else {no requests available, then will try to steal}
26: Steal(myId)

27: procedure Steal(s ∈ T ) {s is the stealer thread}
28: for all v ∈ (T \ {s}) do {tries to steal from all other threads}
29: atomic:
30: if v.readyFlag = 0 ∧ {only steal concurrent requests}
31: v.execF lag = 0 ∧ {if victim is not executing sequential requests}
32: v.ready Q ueue �= ∅ then {and there is something to steal}
33: s.exec Q ueue ← v.ready Q ueue {steal all requests}
34: v.ready Q ueue ← ∅ {clear victim’s ready Q ueue}
35: v.marker[s] ← 1 {signal s stolen from v}
36: endAtomic
37: if s.exec Q ueue �= ∅ then {steal succeeded, will execute}
38: for all req in s.exec Q ueue do
39: exec(req) {execute all stolen requests}
40: v.marker[s] ← 0. {notifies the victim when finished execution}
41: break for all {steal and execute once, then try its own queue again}

A stealing attempt will take place if a stealer finds its queue 
empty (Algorithm 7). The stealing procedure verifies the stealing 
conditions for each possible victim v (lines 30–32). If satisfied, 
the thread steals all requests from v ’s ready Q ueue and sets the 
marker indicating that requests have been stolen (lines 33–35). 
Once finished execution, the stealer signals v (line 40) and veri-
fies its own queue again.

Safety: We argue that the algorithms presented in this section 
preserve the order of conflicting requests. The key idea is to im-
pose conditions on the contents of queues using flags that mark if 
the respective queues have conflicting requests. Notice that queues 
and flags are accessed in the same atomic blocks, ensuring that the 
flags are consistent with the respective queue’s contents.

The stealing procedure ensures that queues have only concur-
rent requests. When stealing happens, the victim continues execu-
tion while the stealer starts processing the stolen requests. From 
this point, we have two possibilities: either the stealer or the vic-
tim finishes processing first. The first case is simple: independent 
requests were finished concurrently by the stealer and the vic-
tim proceeds to process normally. In the second case, the victim 
will process new incoming requests from its ready Q ueue again. 
If the new incoming requests are again concurrent, then they can 
be processed concurrently with the stealer. Otherwise, to process 
a conflicting request the stealer has to finish first. This is ensured 
in line 16 of Algorithm 7, stating that the victim will wait for all 
stealers to finish. The stealer, when finishing processing, will signal 
the specific victims (line 40 of Algorithm 7).

From the above discussion, we conclude that no conflicting re-
quests are reversed, either by preventing stealing to take place or 
by having the victim wait for stealers to finish, which are the only 
possible cases.
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Liveness: By construction, we can observe in Algorithm 7 that, 
once a thread s steals from a victim v , s unconditionally pro-
cesses all the contents of its exec Q ueue. Also, we observe that a 
victim, when processing its exec Q ueue, either proceeds indepen-
dently or awaits stealers to finish. Since stealers unconditionally 
process their contents, eventually the victim will progress. Also, 
notice that if the victim is waiting for a stealer s1 to finish, it is 
because the victim’s ready flag is set and it will not become a vic-
tim of another stealer s2. This ensures that once a victim has a 
conflicting request to process, eventually all current stealers will 
have finished and no new stealing attempt will succeed, ensuring 
progress.

We now argue that the execution is deadlock free. Suppose 
thread t1 has an empty ready Q ueue and tries to steal from 
thread t2, which is executing concurrent requests only from its 
exec Q ueue and has concurrent requests only in its ready Q ueue. 
In this case, t1 becomes stealer and t2 victim. Now suppose that 
t2 finishes its exec Q ueue, finds its ready Q ueue empty, and tries 
to steal from t1. Moreover, assume that t1 is still processing stolen 
requests from t2 but in the mean time its ready Q ueue is pop-
ulated with concurrent requests. In this case, t2 steals from t1
and we have a stealing cycle. Both threads nonetheless will make 
progress since the stolen work is independent and unconditionally 
processed. While non-conflicting requests are issued, threads can 
freely steal from each other as stealers are idle. Depending on the 
workload, this process may cause threads just to switch work.

Moderate work-stealing We now present an extension to the con-
servative work-stealing algorithm to allow for a thread to steal also 
while waiting for synchronization of a sequential request. By using 
atomic integers, we replace the first blocking step (barrier) before 
a sequential request execution (lines 17 and 21 of Algorithm 7) 
for a non-blocking mechanism. This mechanism is similar to the 
one described in the busy-wait approach, which provides a way 
for threads to signal the arrival at a specific class, without being 
blocked. Such a strategy allows us to identify the last thread to 
arrive (the executor), and the first arriving threads (the stealers) 
which can steal work while waiting for all threads to reach this 
point. After the executor finishes, it signals the stealers and pro-
ceeds to the barrier, waiting for synchronization (as in lines 19 and 
22 of Algorithm 7). The stealers keep checking if the execution is 
done, and once it does, they proceed to the barrier as well.

This optimization introduces another opportunity for stealing, 
in addition to the one described before. However, for the steal to 
happen now we need an additional restriction: while synchroniz-
ing for a request of class c1, stealer thread s cannot steal requests 
from any class c2 that conflict with c1. This prevents the stealer 
from reversing the order of conflicting requests, ensuring safety.

To argue for liveness, we recall that due to the stealing con-
ditions, only concurrent requests can be stolen. From the victim’s 
perspective, the order is not violated due to the nature of the re-
quests. Regarding the stealer, the stealing conditions prevent steal-
ing of requests that conflict with the one the stealer is currently 
waiting for synchronization. In such a case, it cannot steal be-
cause it cannot tell the right order among them. Therefore, the 
same arguments as in the previous algorithm apply: a stealer ex-
ecutes unconditionally; eventually all stealers of a victim finish; if 
the victim has concurrent requests it continues processing; and if 
the victim has a sequential request, stealers cease to steal, finish 
their current stolen works, and the victim synchronizes in the se-
quential request.

Aggressive work-stealing In the moderate work-stealing approach, 
the executor and the stealers synchronize after the execution using 
a barrier. We describe next how this synchronization barrier can be 
eliminated.
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The scheduler does not need any modifications. For the threads, 
after the executor has processed the synchronizing request, in-
stead of waiting for all threads to finish their stolen work, they 
can independently resume processing their input queues, as far as 
requests are concurrent. While doing so, whenever a synchronizing 
request is found, the procedure already discussed is adopted. How-
ever, now we have to deal with a situation where some threads 
are still finishing the work stolen previously while others are al-
ready stealing again due to a new synchronizing request. We have 
already solved a similar problem before by introducing cycles in 
Algorithm 4. Therefore, we use the same mechanisms in this case. 
For the same reasons as in case of the previous algorithms and 
from the cycle mechanism, this solution does not reverse the or-
der of conflicting requests.

A further enhancement introduced in this algorithm is the 
choice of victims. In the previous algorithms, stealers started 
searching to steal from the thread with the smallest id and, if 
not possible, trying with the next thread, and so on, following the 
order of thread ids. This procedure while simple, possibly led to 
contention on threads with low ids. We modify the search by hav-
ing a stealer start with the thread id that comes next to its own id
in the space of thread ids.

Optimistic work-stealing Despite the absence of barriers, the ag-
gressive work-stealing approach still has a significant level of con-
tention on the shared state (e.g., queues, flags). We address this 
shortcoming with optimistic synchronization [19]. In this approach, 
a thread does not use locks while searching for a condition in the 
shared state. This reduces overhead by decreasing the usage of mu-
tual exclusion mechanisms only to successful situations.

Based on this idea, we propose an optimistic work-stealing al-
gorithm (see Algorithm 8). This algorithm includes all the opti-
mizations we discussed so far. The Steal() procedure shows the 
algorithm augmented with the optimistic validation and the re-
striction that requests in conflicting classes cannot be stolen. This 
is ensured by the procedure that checks the conflicts of the re-
quest classes. In the case of a conflicting class, there will be no 
stolen requests (line 56 of Algorithm 8).

Regarding safety and progress conditions, the same arguments 
discussed in the previous algorithm are valid here. The only change 
presented is in the process of validation, but validation itself does 
not change. The stealing procedure execution flow has only been 
augmented with a pre-validation step (line 39) which is executed 
without mutual exclusion. The final validation (line 41) will take 
place if the former succeeds, and it will be consistently executed 
inside a critical section, ensuring the same properties of the pre-
vious algorithm. This strategy resorts to the idea that reevaluation 
succeeds most of the time, thus called optimistic.

5. Experimental evaluation

We implemented all algorithms described in the previous sec-
tions and conducted an experimental performance evaluation.3 We 
compare the results with a sequential version, a standard late 
scheduler (which we implemented based on the algorithm from 
[25]), and the original early scheduling [4].

5.1. Environment

We implemented all algorithms in Bft-SMaRt [6], a well-
established framework to develop SMR. Bft-SMaRt was imple-
mented in Java and uses an atomic broadcast protocol that exe-

3 Our source code, and instructions to run our experiments, can be found at 
https://github .com /elbatista /smr-workstealing.
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Algorithm 8 Optimistic work-stealing.
1: constant:
2: myId ← id ∈ {0, ..., n − 1}
3: variables:
4: cycles[c1, ..., cnc] ← [0, ..., 0]
5: sync[c1, ..., cnc][2] ← [0, ..., 0][0, 0]
6: access functions:
7: sync[class][cycle].get()
8: sync[class][cycle].set()
9: sync[class][cycle].incGet()

10: Thread t is as follows:
11: while true do
12: atomic:
13: exec Q ueue ← ready Q ueue
14: execF lag ← readyFlag
15: ready Q ueue ← ∅
16: readyFlag ← 0
17: endAtomic
18: if exec Q ueue �= ∅ then
19: while req ← exec Q ueue. f i f oGet() do
20: class ← req.class
21: if class.mode = seq then
22: for all s ∈ T \ myId do
23: wait until marker[s] = 0
24: cycles[class] ← 1 − cycles[class]
25: cycle ← cycles[class]
26: if sync[class][cycle].incGet() = CtoT (class).len then
27: exec(req)

28: sync[class][cycle].set(0)

29: else
30: while sync[class][cycle].get() �= 0 do {exec not finished yet}
31: Steal(myId, class) {steal informing class of current req}
32: else
33: exec(req)

34: else
35: Steal(myId, null) {steal without inform a class}
36: procedure Steal(s ∈ T , c ∈ C)

37: for all i ∈ [0, ..., T .length] do {one attempt for each thread}
38: v ← pickV ictim(s) {choose a victim}
39: if V alidation(c, v) then {evaluate conditions without lock}
40: atomic: {lock when steal conditions satisfied }
41: if V alidation(c, v) then {reevaluate conditions}
42: s.exec Q ueue ← v.ready Q ueue
43: v.ready Q ueue ← ∅
44: v.marker[s] ← 1
45: endAtomic {unlock after committing the steal}
46: if s.exec Q ueue �= ∅ then {execute stolen requests}
47: for all req in s.exec Q ueue do
48: exec(req)

49: v.marker[s] ← 0
50: break for all {stops stealing for now}
51: else
52: endAtomic {unlock when reevaluation fails}
53: procedure V alidation(c ∈ C, v ∈ T ) {the validation as a separate function}
54: return v.readyFlag = 0 ∧
55: v.execF lag = 0 ∧
56: (c = null ∨ NoConf lict(v, c)) ∧ {verify conflicts with the class (if any)}
57: v.ready Q ueue �= ∅

cutes series of consensus instances to order sets of requests. Bft-

SMaRt can be configured to tolerate crash-stop failures only or 
Byzantine failures. In all our experiments, it was configured to tol-
erate crash-stop failures. To further improve the performance of 
the Bft-SMaRt ordering protocol, we implemented interfaces to 
enable clients to send a batch of requests inside the same mes-
sage.

The experimental environment was configured with 7 machines 
connected via 1 Gbps switched network. The software installed on 
the machines was Linux Ubuntu with kernel 4.15.0 (64 bits) and 
64-bit Java virtual machine version 11.0.3. Bft-SMaRt was config-
ured with 3 replicas hosted in separate machines (AMD Opteron®

processor with 32 physical cores and 64 logical cores through 
hyper-threading and 126 GB of RAM) to tolerate up to 1 replica 
crash, while up to 200 clients were distributed uniformly across 
another 4 machines (Intel® Xeon® processor with 8 physical cores 
and 8 GB of RAM).

https://github.com/elbatista/smr-workstealing
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5.2. Applications

We implemented two applications: a linked list and a key-value 
store, both supporting disjoint data shards. In our implementa-
tion, each shard is represented by separate data structures inside 
each replica. In the linked-list application, each shard is a separate 
linked-list object. In the key-value store, each shard is a differ-
ent tree map object. In both cases, each data structure is accessed 
only by requests specifically addressed to the respective shard, or 
by global requests. Replicas order all requests before execution, no 
matter the target shard. There are requests to read and write in 
both the list and key-value store, accessing a single or all shards. A 
read request implements a contains operation in the list and a con-
tainsKey operation in the key-value store. A read checks whether 
an element is in one or all shards. A write request implements 
an add operation in the list and a put operation in the key-value 
store. A write adds an element in one or all shards. The write re-
quest checks if some element already is in some shard before the 
addition.

We conducted experiments with single and multiple shards. In 
a deployment with n shards, there are n local read classes, n local 
write classes, one global read class, and one global write class. The 
mappings respect the conflict structure between read and write 
classes, as in Fig. 1. We first present the linked list configuration 
and results, and then the results of the experiments using the key-
value store in Section 5.8.

5.3. Workload configuration

The workload is generated synthetically by the clients. We con-
figured the clients to vary the percentages of reads, writes, local 
and global requests in the workload from low to high, due to the 
observation that as the level of conflicts increases, it directly affects 
thread idleness in the original early scheduler [5]. We also consider 
balanced and unbalanced workloads. In the balanced workloads, 
each shard receives a similar number of local requests. A local 
request is a request that executes within only one shard. In the 
skewed workloads, each client process sends the majority of its 
requests to only one shard, the remaining requests are equally dis-
tributed across the other shards. There are three different request 
execution costs: light, moderate and heavy (i.e., lists with 1K, 10K 
and 100K elements, respectively). Clients create a configurable rate 
of concurrent and conflicting requests, in our experiments from 1% 
up to 50% of conflicting requests. Clients group requests over time 
based on an exponential distribution that determines the number 
of contiguous concurrent requests.

5.4. Single-sharded systems

We start by presenting the results for a single-sharded environ-
ment, varying the percentage of conflicting requests, request costs, 
and number of threads.

5.4.1. Busy-wait algorithm
Fig. 2 presents the results of the busy-wait approach. It shows, 

with 8 to 12 threads, a performance slightly better than the orig-
inal early scheduling with low conflicts (1% of writes) and light
costs (Fig. 2(a)). In this scenario, there is high concurrency exe-
cution in early scheduling, and low barrier synchronization. How-
ever, as we increase the number of threads, the overhead in the 
early scheduling also increases, due to higher rates of system calls 
caused by the barriers. This phenomenon becomes evident when 
considering that the busy-wait approach keeps high throughput 
as we increase the number of threads, while the early scheduling 
throughput degrades.
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Figs. 2(b) and 2(c) show that the throughput of the busy-
wait approach is about four times higher than the throughput of 
the original early scheduling when we increase the percentage of 
writes in the workload (this is a scenario of more overhead and 
barrier synchronization for the early scheduling). Fig. 2(d) shows 
that, even with moderate request execution costs, busy-wait can 
still outperform early scheduling by a large margin if conflict rates 
are low.

Figs. 2(e) to 2(i), on the other hand, show the impact of increas-
ing request costs and conflict rates. The higher request costs sub-
stantially impact the application throughput, bounding all paral-
lel applications to similar performance levels. Furthermore, higher 
costs lead the parallel techniques to approximate the sequential 
performance.

5.4.2. Work-stealing algorithms
We now evaluate our work-stealing implementations. Fig. 3

compares the performance of each work-stealing algorithm de-
scribed in Section 4.2 and the early scheduling. The first two 
work-stealing algorithms (conservative and moderate) do not show 
performance gains when compared to early scheduling. This re-
sult is expected since the stealing opportunities are rare in the 
conservative version (only when queues are empty). The moderate 
version, in turn, still has the expensive barrier synchronization.

The aggressive version improves performance by removing the 
barrier overhead and decreasing contention by using a different 
stealing strategy to choose victims. Finally, the optimistic version 
outperforms all other approaches, showing a gain of more than 
twice the throughput of any other version in some cases. This op-
timistic version includes all improvements that were incrementally 
aggregated to each version, and the gain obtained when decreasing 
overhead by cutting usage of mutual exclusion objects. As it shows 
the best performance, from now on we present only the optimistic 
version when referring to work-stealing.

5.5. Busy-wait vs. work-stealing

Fig. 4 shows that busy-wait and work-stealing present sim-
ilar performance. Although work-stealing can afford better load 
balance, it introduces additional overhead w.r.t. the busy-wait ap-
proach. Busy-wait avoids both complex stealing management logic 
and expensive mutual exclusion resources. On the contrary, it relies 
on simple atomic variables, which are architecture-native struc-
tures, cheaper than the ones used in work-stealing, leading it to 
present, in most considered cases, a performance slightly better 
than work-stealing.

Both work-stealing and busy-wait approaches largely outper-
form the other techniques. The behavior observed for the busy-
wait approach is also true for the work-stealing: as the level of 
conflicts increases, work-stealing performs better, reaching perfor-
mance about four times higher than the original early and late 
scheduling algorithms (e.g. Fig. 4(b)). Likewise, higher execution 
costs severely impact work-stealing throughput as well (Figs. 4(e) 
and 4(f)).

5.6. Multi-sharded systems

In our multi-sharded application, client processes randomly 
choose a shard to issue requests to. We considered balanced and 
skewed workloads, different numbers of shards, percentage of con-
flicting requests and percentage of global requests. We set the 
number of threads to 32 (uniformly distributed among the read 
and write classes of each shard) and also used only light operation 
costs since this configuration showed, in general, the best perfor-
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Fig. 2. Busy-wait algorithm for single shard, and light (top), moderate (middle) and heavy (bottom) operation costs.

Fig. 3. Work-stealing algorithms for single shard, and light (top) and moderate (bottom) operation costs.
mance in the previous experiments. Fig. 5 presents results for 2, 4 
and 8 shards, with 1% global requests issued by the clients. Simi-
lar results were obtained with 15% global requests, hence omitted. 
The percentage of writes is for both global and local requests (e.g., 
with 5% of writes, we have experiments with 5% of global write 
requests and 5% of local write requests).
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Varying the number of shards does not have much impact on 
sequential and late scheduling. However, the same is not observed 
for early scheduling: the higher the number of shards, the higher 
the concurrency of requests among shards, thus better the perfor-
mance. The same occurs for busy-wait and work-stealing. However, 
in the high conflicting balanced workload scenario (Figs. 5(b), 5(c)) 
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Fig. 4. Results for single-shard and balanced workloads, with light (top) and moderate (bottom) operation costs.

Fig. 5. Results for multi-shard, 1% global requests, balanced workload (top) and skewed workload (bottom).
our approaches show far better results than other ones, due to the 
advantage of increasing both the conflicting requests and the num-
ber of shards. Increasing conflicts is not beneficial for the early 
scheduling (high contention and overhead caused by the barri-
ers), but it is for our approaches. Busy-wait does not suffer the 
effects of barrier overhead and work-stealing benefits from higher 
opportunities to steal, either due to the large number of conflicting 
requests or the higher number of shards.

Skewed workloads impact more the early scheduling and our 
approaches than late and sequential. However, the work-stealing 
approach is less impacted in more concurrent scenarios. Figs. 5(a) 
and 5(d), with 8 shards, show that the throughput of the busy-
wait approach falls from about 240k ops/sec in the balanced sce-
nario to 160k in the skewed one. This represents a loss of 44%. 
On the other hand, the throughput of the work-stealing approach 
falls from 160k ops/sec to about 150k, representing only 7% of loss. 
Similar phenomenon occurs for the case with 4 shards and 50% of 
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writes, where work-stealing shows better performance than busy-
wait in the skewed scenario. This happens because work-stealing 
can minimize the skewed effect by distributing requests among 
threads when there is enough stealing capacity.

5.7. Additional experiments

We also conducted additional experiments to evaluate three 
other aspects of our techniques that we describe next.

5.7.1. Request execution costs
In our experimental evaluation, we analyzed the performance 

of all studied approaches when exposed to three distinct request 
execution costs: light, moderate, and heavy. We now quantify these 
execution costs. Fig. 6 presents the time a request waits before its 
execution starts and the time it takes to complete its execution. We 
compute the average times and compare the sequential (Seq), early 
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Fig. 6. Average execution and synchronization/waiting time of a single request for each cost configuration used in the experimental evaluation.
scheduling (Early), busy-wait (B-Wait), and work-stealing (WS) ap-
proaches. The waiting time starts when a request is delivered by 
BFT-SMaRt’s ordering layer (consensus protocol) and finishes be-
fore it starts executing. It includes scheduling and synchronization 
overhead in the parallel techniques. The execution time is the inter-
val between the moment the request is delivered to the application 
layer and the application logic finishes the execution.

Since we want to understand how much of the total execution 
time of a request is spent in the actual execution of the request 
and how much time is overhead, we configured the system with 
a single client (i.e., in the absence of contention). When execution 
costs are high, the gains from removing barriers and improving 
load balancing become irrelevant. In fact, in our experiments, we 
show that with heavy costs, our optimizations do not improve 
the early scheduling approach. Moreover, as the workload becomes 
heavier, and the percentage of conflicts rises, all parallel techniques 
approximate the sequential performance (Figs. 2(h) and 2(i)).

5.7.2. Stealing throughput
An important aspect of our work-stealing approach is that steal-

ing can only happen when the workload meets certain conditions: 
there must be a victim thread whose queue contains only requests 
that do not conflict with each other and with requests in the steal-
er’s queue. In this section, we analyze how much stealing is possi-
ble in different workload configurations. We call stealing throughput
the throughput of stolen requests only, within the overall through-
put. Fig. 7 presents the results, showing that the amount of stolen 
work increases with the number of shards and the rate of writes in 
the workload. A high number of writes, however, cuts both ways: 
although increasing the percentage of writes improves the possibil-
ities of stealing (recall that threads steal requests when waiting for 
synchronization of conflicting requests), at the same time it also 
decreases the amount of requests that can be stolen at a time, due 
to the conflict rate. The good performance of our work-stealing ap-
proach is due to both the fact that it reduces load unbalance and 
does not suffer from barrier synchronization costs.

5.7.3. External sensitivity
The last aspect that we evaluate regards the sensitivity of our 

work-stealing technique to external events that can possibly in-
terfere with the stealing capacity. In particular, we consider the 
impact caused by the garbage collection process in the Java VM. 
Fig. 8 presents the results for stealing throughput when running 
a configuration with light requests, 8 shards, 32 threads, and 
5% of writes. We consider four different garbage-collection algo-
rithms: Concurrent Mark Sweep (CMS), the G1 Young Generation 
(G1), Mark Sweep Compact (MSC), and PS MarkSweep/Scavenge 
(PSMS/S). As we can see, there is no relevant interference in the 
amount of stealing, except when running with the MSC algorithm, 
which imposes a slightly lower steal (and overall) throughput rate. 
In all other experiments in the paper we used G1.
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5.8. Key-value store application

We also implemented a key-value store application using the 
Java TreeMap data structure, to further extend our performance 
analysis. In our implementation, the keys are integers, and the val-
ues are strings. Since the map provides much faster data access 
than the list, the throughput of the application increased signifi-
cantly. In this case, we changed the factor for the request costs, 
initializing the key-value store with more elements (1M). Fig. 9
shows the results for the multi-sharded key-value store applica-
tion. Notice the throughput now reaches higher levels of requests 
per second, due to faster data access. However, despite the se-
quential version being much more efficient than in the list, our 
techniques again surpassed all others in most cases.

6. Related work

This paper is at the intersection of two areas of research: work-
stealing and state machine replication.

6.1. Work-stealing

The first scheduler with a randomized work-stealing algorithm 
for multi-threaded applications was proposed by Blumofe and Leis-
erson in [7]. They have shown that the work-stealing technique 
has lower communication costs than the work-sharing approach. 
Work-sharing and work-stealing are both techniques that optimize 
load balance. The difference is: in work-sharing, the scheduler al-
ways attempts to assign new threads to different processors. In 
work-stealing, the idle processes take the initiative to steal work 
from busy ones. Many variants of the work-stealing algorithm 
were presented in the literature. For example, a threshold-based 
queueing model of shared-memory multiprocessor scheduling is 
presented in [37]. In [14] the authors argued that work-sharing 
outperforms work-stealing under light to moderate loads, while 
work-stealing outperforms work-sharing under high loads. In [1], 
the authors present a work-stealing algorithm that uses locality 
information (affinity) and outperforms the standard work-stealing 
approach.

Work-stealing has also been investigated in a variety of other 
contexts. Among them, applications to thread scheduling, such as 
list scheduling [38], Fork-Join parallel programming [2], false shar-
ing [10] and parallel batched data structures [3].

Our contribution applies work-stealing concepts in the context 
of early-scheduling parallel state machine replication. According to 
early-scheduling, threads are associated with request classes. Dif-
ferently from previous works, this imposes additional restrictions 
in the execution model of both stealer and victim threads.

6.2. State machine replication

In this section, we review proposals that introduce concurrency 
in the execution of requests in SMR. In CBASE [25], replicas are 
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Fig. 7. Average stealing throughput in the Work-Stealing technique in various experiment configurations.
Fig. 8. Average stealing throughput considering the impact of different garbage col-
lectors (external sensitivity).

augmented with a deterministic scheduler. Based on application 
semantics, it serializes the execution of conflicting requests re-
specting delivery order and dispatches requests that do not conflict 
to parallel execution. Conflict detection is done by a dependency 
graph, which organizes requests to be processed as soon as pos-
sible (whenever dependencies have been executed). CBASE is an 
example of late scheduling.

In [41], the same approach is used: a scheduler evaluates new 
transactions delivered at a replica against pending transactions and 
builds a DAG with dependencies that have to be respected during 
execution. For fast detection of dependencies, an index structure 
indexes all items accessed by pending transactions. When a new 
transaction arrives, the ones it depends on are detected evaluat-
ing each item accessed by the new transaction against the index 
structure, avoiding a graph traversal.

In [30] the authors avoid a central scheduler by statically map-
ping requests to different multicast groups. Non-conflicting re-
quests are multicast to different groups that partially order re-
quests across replicas. Conflicting requests are multicast to the 
same group. At a replica, each thread is associated with a group 
and processes requests as they arrive. Requests delivered by differ-
ent groups are executed concurrently.

Rex [17] and CRANE [12] introduce consensus on replica syn-
chronization events to solve non-determinism due to concurrency. 
In Rex, a primary replica logs dependencies among requests during 
execution. The trace is proposed for agreement with other repli-
cas. After agreement, replicas replay the execution according to the 
trace. CRANE [12] solves non-determinism with the input deter-
minism of Paxos and the execution determinism of deterministic 
multi-threading [33]. It implements additional consensus on syn-
chronization events such that replicas see the same sequence of 
primitives.

Eve [24] and Storyboard [22] use optimistic approaches that 
may lead to additional overhead in some cases. In Eve, replicas 
compare the results of optimistic execution using consensus and 
if they diverge, roll-back and conservatively re-execute requests. 
With Storyboard, replicas have (a priori) forecasts of sequences of 
locks needed by requests. When the execution deviates from the 
expected, a deterministic re-execution is necessary.

Calvin [39] is a distributed transactional storage system. To en-
sure determinism across replicas, transactions are totally ordered. 
280
To concurrently execute transactions at nodes, a lock manager is 
used. It ensures that locks on objects are acquired following the 
total order of transactions. Transactions have to lock all needed 
objects before starting the execution. If two transactions conflict, 
then the total order is imposed due to locks; otherwise they can 
be concurrently executed. In [35], a Very Light Lock manager is 
proposed to reduce locking overhead. It keeps the same assump-
tions and requirements as Calvin.

In [23], the authors present a BFT SMR that can tolerate all but 
one replicas active in normal-case operation to fail. It runs a ex-
tended consensus protocol that exploits passive replication to save 
resources. In the absence of faults, it requires only f + 1 replicas 
to agree on client requests. When suspecting faulty behavior, the 
system triggers a transition protocol that activates f extra replicas 
to bring the system into a consistent state again.

Another approach to improving the performance of SMR is to 
weaken the total order requirement of requests at the replicas. In 
particular, only conflicting requests must be ordered consistently at 
the replicas. Generalized Paxos [27], Generic Broadcast [34], Egali-
tarian Paxos [32], Mencius [29], and Alvin’s Partial Order Broadcast 
(POB) [40] are examples of protocols that adopt this approach. 
The techniques proposed by such protocols are orthogonal to the 
aspects discussed in this paper. The exploration of execution par-
allelism out of request dependencies from generalized consensus 
is reported in Alvin with the proposed parallel concurrency control 
layer [40] and in [21] by replacing the sequential execution phase 
of EPaxos with a parallel one. Investigating the complementarity 
of these approaches and the mechanisms proposed here comprises 
an interesting direction for future research.

7. Conclusions

This paper reports on our efforts to increase the performance 
of P-SMR through enhancements to a scheduling approach that 
simplifies the work done by the scheduler, called early scheduling. 
We studied scenarios where this technique could lead to poor re-
source utilization, and investigated how to apply well-established 
concurrent techniques (e.g., busy waiting, work-stealing) in order 
to improve early scheduling.

Many works have proposed different approaches to P-SMR. 
However, we could not find any previous research using work-
stealing concepts. In this work, we introduced this alternative, 
shedding some light in this not-yet-addressed aspect in the litera-
ture. Experimental results have shown relevant performance gains 
of up to four times in some cases, opening up new opportuni-
ties for further improving the performance of the early scheduling 
technique.
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Fig. 9. Results for multi-shard, 1% global requests, balanced workload in a key-value store application.
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