
Journal of Parallel and Distributed Computing 163 (2022) 269–282

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Early scheduling on steroids: Boosting parallel state machine

replication

Eliã Batista a,c,∗, Eduardo Alchieri b, Fernando Dotti c, Fernando Pedone a

a Faculty of Informatics, Università della Svizzera italiana, Via Giuseppe Buffi 13, Lugano, Switzerland
b Departamento de Ciência da Computação, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, Brazil
c Escola Politécnica, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Porto Alegre, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 June 2021
Received in revised form 27 November 2021
Accepted 3 February 2022
Available online 11 February 2022

Keywords:
State machine replication
Synchronization
Work-stealing
Scheduling

State machine replication (SMR) is a standard approach to fault tolerance in which replicas execute
requests deterministically and often serially. For performance, some techniques allow concurrent
execution of requests in SMR while keeping determinism. Such techniques exploit the fact that
independent requests can execute concurrently. A promising category of early scheduling solutions
trades scheduling freedom for simplicity, allowing to expedite decisions during scheduling. This paper
generalizes early scheduling and proposes a general method to schedule requests to threads, restricting
scheduling overhead. Moreover, it explores improvements to the original early scheduling mechanism,
namely the use of busy-wait synchronization and work-stealing techniques. We integrate early scheduling
and its proposed improvements to a popular SMR framework. Performance results of the basic
mechanism and its improvements are presented and compared to more classic approaches, where it
is shown that early scheduling with our proposed enhancements can outperform the original early
scheduling and other systems by a large margin in many scenarios.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

State machine replication (SMR) is a well-established approach
to fault tolerance [26,36]. In this technique, server replicas execute
client requests deterministically, in the same order. Consequently,
replicas transition through the same sequence of states and pro-
duce the same output for each request. While SMR has been suc-
cessfully used in many different applications and contexts (e.g.,
[8,16,11]), modern multi-core servers challenge the SMR model
since deterministic execution often translates into single-threaded
replicas. In order to address this limitation, several techniques have
been proposed (e.g., [17,22,24,31,28]). Techniques that introduce
concurrency in SMR build on the observation that independent re-
quests can execute concurrently while conflicting requests must be
serialized and executed in the same order. Two requests conflict
if they access common state and at least one of the requests is
an update; otherwise the requests are independent. An important
aspect in the design of parallel state machine replication (P-SMR)
is how to schedule requests on threads, while respecting conflict

* Corresponding author at: Faculty of Informatics, Università della Svizzera ital-
iana, Via Giuseppe Buffi 13, Lugano, Switzerland.

E-mail address: delime@usi.ch (E. Batista).
https://doi.org/10.1016/j.jpdc.2022.02.001
0743-7315/© 2022 The Author(s). Published by Elsevier Inc. This is an open access artic
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
requirements. Proposed solutions fall in two main categories: late
and early scheduling.

With the late scheduling approach, requests are assigned to
working threads after the requests are ordered across replicas.
In [25], for example, each replica has a directed dependency graph
that stores not-yet-executed requests and the order in which con-
flicting requests must be executed. A scheduler at each replica
delivers requests in order and includes them in the dependency
graph. Threads remove requests from the graph and execute them
respecting the dependencies. In late scheduling, the scheduler and
threads contend for access to the shared graph, causing synchro-
nization overhead. It has been observed that the cost of tracking
dependencies and the synchronization overhead may outweigh late
scheduling’s concurrency advantage [4].

In early scheduling [4], on the other hand, the rationale is to
expedite scheduling decisions, even if at the cost of some reduc-
tion in concurrency. The idea is that some scheduling decisions are
made before requests are ordered by the clients (or client proxies).
Clients classify requests according to specific classes, derived from
application semantics. At the server side, requests are assigned to a
worker thread in constant time based on the request’s class. For in-
stance, consider a service based on the typical readers-and-writers
concurrency model. Scheduling becomes simpler if we adopt the
following execution models: any read request is scheduled on any
le under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2022.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.02.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:delime@usi.ch
https://doi.org/10.1016/j.jpdc.2022.02.001
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
thread; each write request is scheduled on all threads; all threads
having the same request must synchronize (e.g., using a barrier) to
execute it.

Although previous research has shown that early scheduling
can outperform late scheduling by a large margin, specially in
workloads dominated by read requests [30,31,4], we observe that
the early scheduling execution model may restrict concurrency
since it assigns requests to specific threads while imposing high
thread synchronization on writes. It has been also shown [5] that
early scheduling creates unbalanced load on threads, reducing per-
formance. In this paper, we investigate techniques to enhance the
early-scheduling execution model. In particular, we extend early
scheduling with two well-established strategies: busy-wait syn-
chronization and work-stealing scheduling. The first strategy re-
duces the cost of synchronization and the second strategy bal-
ances the load among threads. While these techniques are well-
established, using them in the context of early scheduling required
us to address aspects that had not been previously considered. For
example, work-stealing in this case must account for interdepen-
dencies between requests.

In a nutshell, this paper makes the following contributions.

• First, we present the early scheduling technique. We explain
the notion of classes of requests and show how a program-
mer can use them to express the allowed concurrency of an
application. We present a set of rules to map request classes
to worker-threads and the worker-threads execution model.
Together these elements ensure linearizable executions (i.e.,
strong consistency).

• Second, we identify some limitations to the original early
scheduling technique, we propose and fully implement en-
hancements to overcome these limitations. In particular, we
generalize the well-known work-stealing technique to account
for conflicting requests and investigate the use of a busy-wait
approach to eliminate the synchronization costs of barriers.

• Third, we report a large set of experiments that we conducted
to compare early scheduling and the proposed enhancements
to late scheduling and classical state machine replication based
on sequential execution of requests.

This paper continues as follows. Section 2 presents the system
model, consistency criteria, and background on P-SMR. Section 3
discusses the original early scheduling and its performance limita-
tions. Section 4 discusses enhancements to early scheduling based
on the identified performance limitations. Section 5 reports on our
vast experimental evaluation, with the basic model and enhance-
ments. Section 6 surveys related work, and Section 7 concludes the
paper.

2. Background

2.1. System model and consistency

We assume a distributed system composed of interconnected
processes that communicate by exchanging messages. There is an
unbounded set of client processes and a bounded set of replica
processes. Each replica implements one (sequential approach) or
more threads (parallel approaches) that execute client requests.
The system is asynchronous: there is no bound on message delays
and on relative process speeds. We assume the crash-stop failure
model and exclude arbitrary behavior. A process is correct if it does
not fail, or faulty otherwise. There are up to f faulty replicas, out
of 2 f + 1 replicas.

Processes use an atomic broadcast communication abstraction,
defined by primitives broadcast(m) and deliver(m), where m is a
270
message. Atomic broadcast ensures the following properties [13,
18]1:

• Validity: If a correct process broadcasts a message m, then it
eventually delivers m.

• Uniform Agreement: If a process delivers a message m, then all
correct processes eventually deliver m.

• Uniform Integrity: For any message m, every process delivers
m at most once, and only if m was previously broadcast by a
process.

• Uniform Total Order: If both processes p and q deliver messages
m and m′ , then p delivers m before m′ , if and only if q delivers
m before m′ .

Our consistency criterion is linearizability. An execution is lin-
earizable if there is a total order of its requests that satisfies the
following requirements [20]:

• It respects the real-time ordering of requests across all clients.
There exists a real-time order among any two requests if one
request finishes at a client before the other request starts at a
client.

• It respects the semantics of the requests as defined in their
sequential execution.

2.2. Request independence

To ensure linearizability, it has been observed that it suffices
to execute sequentially only dependent (or conflicting) requests.
The independent requests can be executed concurrently without
violating consistency [36]. The notion of request dependency or
conflict is application-specific. Recently, several replication mod-
els have exploited request conflicts to parallelize the execution on
replicas.

More formally, request conflicts can be defined as follows. Let
R be the set of requests available in a service (i.e., all the requests
that a client can issue). A request can be any deterministic compu-
tation involving objects that are part of the application state. We
denote the sets of application objects that replicas read and write
when executing a request r as r’s readset and writeset, or R S(r)
and W S(r), respectively.

Definition 1 (Request conflict). The conflict relation #R ⊆ R × R
among requests is defined as

(ri, r j) ∈ #R iff

⎛
⎝

R S(ri) ∩ W S(r j) �= ∅ ∨
W S(ri) ∩ R S(r j) �= ∅ ∨
W S(ri) ∩ W S(r j) �= ∅

⎞
⎠

Requests ri and r j conflict if (ri, r j) ∈ #R . We refer to pairs of
requests not in #R as non-conflicting or independent. Consequently,
if two requests are independent, they can be executed concurrently
at replicas.

2.3. Late scheduling

In this category of protocols, replicas deliver requests in total
order and then a scheduler assigns requests to threads. The sched-
uler must respect dependencies. More precisely, if requests ri and
r j conflict and ri is delivered before r j , then ri must execute be-
fore r j . If ri and r j are independent, then there are no restrictions
on how they should be scheduled.

1 Atomic broadcast needs additional synchrony assumptions to be imple-
mented [9,15]. These assumptions are not explicitly used by the protocols proposed
in this paper.

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
CBASE [25] is a protocol in this category, where a deterministic
scheduler delivers requests in total order and includes them in a
dependency graph (DAG). In the DAG, vertices represent delivered
but not yet executed requests and directed edges represent depen-
dencies between them. Request ri depends on r j (i.e., ri → r j is an
edge in the graph) if ri is delivered after r j , and ri and r j conflict.

The DAG is shared with a pool of threads. The threads choose
requests for execution from the DAG respecting their interdepen-
dencies: a thread can execute a request if it is not under execution
and it does not depend on any other requests in the graph. After
the thread executes the request, it removes it from the graph and
chooses another one.

3. Early scheduling

Several approaches to P-SMR resort to application semantics
to parallelize independent requests. While executing requests in
parallel improves performance, the scheduling of these requests in-
troduces overhead. The central idea of early scheduling is to rely
on a simple execution model, based on the concept of classes and
thread mappings, to avoid the late scheduling overhead. In early
scheduling, a request is assigned to a thread based on the request’s
class. In this section, we present request classes, the execution
model, and the class-to-threads mapping of early scheduling. We
then introduce algorithms and discuss their performance.

3.1. Request classes

In our model, each class has a descriptor and conflict informa-
tion, as defined next.

Definition 2 (Request classes). Let R be the set of requests avail-
able in a service (same as considered in request conflicts). Let
C = {c1, c2, ..., cnc} be the set of class descriptors, where nc is
the number of classes. We define request classes as R = C →
P(C) ×P(R),2 that is, any class in C may conflict with any subset
of classes in C , and is associated with a subset of requests in R . A
conflict among classes happens when any two requests from those
classes conflict, according to the conflict definition #R . Moreover,
we introduce the restriction that a non-empty non-overlapping
subset of requests from R is associated with each class.

Example. Consider a service partitioned in 2 shards where re-
quests can be classified as read-only and read-write, per shard and
globally. Different shards can be read and written independently.
We model this application with the following classes, denoted in
Fig. 1, where classes are nodes and conflicts are edges. Local read
classes C R1 and C R2 in shards 1 and 2, respectively, conflict with
the corresponding local write class CW 1 or CW 2, on the same par-
tition, and with the global write class CW g . The class CW g also
conflicts with itself, with write classes and with global read class
C Rg . Local write classes also conflict with themselves and with the
global read class C Rg .

3.2. Execution model

The central idea of early scheduling is to rely on a simple ex-
ecution model, based on the concept of classes and thread map-
pings, to avoid the late scheduling overhead by preventing the
evaluation of every other pending request when scheduling a new
one. To accomplish such a straightforward scheduling algorithm,
early scheduling adopts an execution model that will synchronize

2 We denote the power set of set S as P(S).
271
Fig. 1. Classes and conflict definition with two shards.

requests from conflicting classes. A replica will have one sched-
uler thread and n worker threads. Once a replica delivers (using
an atomic broadcast) a request, it is handed over to the scheduler,
which then schedules the request to one or more threads.

a. If scheduled to one thread only, r can be processed concur-
rently with other requests.

b. If scheduled to more than one thread, then r depends on
preceding requests assigned to these threads. Therefore, all
threads involved in r must synchronize before only one of
them (called the executor) executes r.

3.3. Class-to-threads mapping

With this execution model, the following class-to-thread-
mapping rules must be applied to ensure linearizable executions:

i. Every class is associated with at least one thread, to ensure that
requests are eventually executed.

ii. If a class is self-conflicting, it is sequential. Each request is sched-
uled to all threads of the class and processed as described in
the previous section.

iii. If two classes conflict, at least one of them must be sequential. The
previous requirement may help decide which one.

iv. For conflicting classes c1 , sequential, and c2, concurrent, the set of
threads associated with c2 must be included in the set of threads
associated with c1 . This requirement ensures that requests in c2
are serialized w.r.t. c1’s.

v. For conflicting sequential classes c1 and c2 , it suffices that c1 and c2
have at least one thread in common. The common thread ensures
that requests in the classes are serialized.

These rules result in several possible mappings of classes to
threads. Creating such a mapping can be modeled as an optimiza-
tion problem with the following objectives, detailed in [4]: mini-
mizing the number of threads in sequential classes; and maximiz-
ing the number of threads in concurrent classes, while assigning
threads to concurrent classes in proportion to their relative weight
(i.e., the number of requests expected for these classes). This map-
ping is static and defined a priori for a given application, hence,
it is created only once, at system startup. A mapping is defined as
follows.

Definition 3 (CtoT). CtoT = C → {seq, conc} ×P(T) where: C is the
set of class names; {seq, conc} is the sequential or concurrent syn-
chronization mode of a class; and P(T) the possible subsets of
the threads set T = {t0, .., tn−1}, n is the number of threads at a
replica.

Example. Following our example from Fig. 1, considering 4 threads,
a possible mapping is depicted in Table 1.

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
Table 1
A possible mapping of 4 threads in Fig. 1.

C = {seq, conc} × P ({t0, t1, t2, t3})

CR1 = conc {t0, t2, }
CR2 = conc { t1, t3}
CW 1 = seq {t0, t2, }
CW 2 = seq { t1, t3}
CRg = seq {t0, t3}
CW g = seq {t0, t1, t2, t3}

The global read class C Rg is defined as seq and conflicts with
itself to allow more concurrency [4]. By following the class-to-
threads mapping rules we observe the following. Since C Rg con-
flicts with CW 1 and CW 2, and if C Rg were configured as concur-
rent, all threads assigned to C Rg would have to be included in CW 1
and CW 2. Doing so would synchronize CW 1 and CW 2 since their
threads would not be disjoint. A more efficient solution (identi-
fied by the mentioned optimization model) is to define C Rg as
sequential and associate it with one thread from CW 1 and one
thread from CW 2. As a result, multi-shard reads synchronize with
local-shard writes, but local writes to different shards can execute
concurrently.

3.4. Algorithms

Algorithms 1 and 2 present the execution model for the sched-
uler and threads, respectively. Whenever a request is delivered by
an atomic broadcast protocol, the scheduler (Algorithm 1) assigns
it to one or more threads. The function CtoT returns the set of
threads associated with the class. If a class is sequential, then
all threads in the set will receive the request to synchronize the
execution (lines 4–6). Otherwise, requests are associated with a
unique thread in the set (lines 7–8), following a round-robin pol-
icy (function next).

Algorithm 1 Early scheduler.
1: variables:
2: queues[0, ..., n − 1] ← ∅ {one queue per thread}
3: on deliver(req):
4: if req.class.mode = seq then {if execution is sequential}
5: ∀t ∈ CtoT (req.class) {for each conflicting thread in the mapping}
6: queues[t]. f i f oP ut(req) {synchronize to execute the request}
7: else {otherwise assigns it to some thread in round-robin}
8: queues[next(CtoT (req.class))]. f i f oP ut(req)

Each thread (Algorithm 2) takes one request at a time from its
queue in FIFO order (line 6) and then proceeds depending on its
class synchronization mode. If it is sequential, the thread synchro-
nizes with other ones in the class using barriers before the request
is executed (lines 8–14), and only one thread (function min returns
the thread with the smallest id) executes the request. If it is con-
current, then the thread simply executes the request (lines 15–16).

Algorithm 2 Threads for early scheduling.
1: variables:
2: myId ← id ∈ {0, ..., n − 1} {thread id, out of n threads}
3: queue[myId] ← ∅ {a queue of requests}
4: barrier[C] {one barrier per request class}
5: while true do
6: req ← queue. f i f oGet() {wait until there are requests available}
7: if req.class.mode = seq then {class requires sequential execution}
8: if myId = min(CtoT (req.class)) then {if thread has smallest id}
9: barrier[req.class].await() {wait for all threads before executing}

10: exec(req) {execute request}
11: barrier[req.class].await() {resume other threads}
12: else
13: barrier[req.class].await() {wait for all threads before execution}
14: barrier[req.class].await() {wait until execution is done}
15: else {if it is a concurrent execution}
16: exec(req) {simply execute the request}
272
3.5. Correctness and performance

Safety and liveness are argued in [4], where it is shown that
early scheduling produces linearizable executions and ensures that
all requests are eventually executed. The performance of early
scheduling has been also considered and compared to other ap-
proaches in the literature. Although early scheduling performs well
in general when compared to late scheduling, the study reported
in [5] sheds some light on how the restrictions imposed by the
early scheduling execution model affect its performance.

It has been shown that if on the one hand the percentage of
time that a thread waits on synchronization increases with conflict
rates, on the other hand, as conflicts increase, threads spend less
time waiting for new requests to execute. This happens because
while waiting on synchronization barriers, requests arrive at the
thread queues.

Another finding is that there is a difference in the size of the
queues associated with the threads. This is a consequence of the
static classes-to-threads mappings. For example, some threads may
be associated with fewer request classes than other threads and
have, on average, fewer requests in their queues.

Further details about the impact of the restrictions imposed by
the early scheduling technique can be found in [5]. Motivated by
these findings, in the next section we discuss techniques to boost
the performance of early scheduling.

4. Improving early scheduling

In this section, we explore enhancements to early scheduling
(also referred to as the basic technique), introducing additional
techniques to improve resource utilization. We consider both a
variation of the synchronization mechanism, replacing the barri-
ers by a busy-wait approach, as detailed next, and the suitability
of work-stealing techniques.

4.1. Busy waiting

With the basic technique, threads synchronize using barriers.
A call to a barrier introduces overhead (i.e., a context switch
from user-space to kernel-space). When increasing the number of
threads, there will be more such calls, and the system will expe-
rience performance degradation. The impact of this phenomenon
was already observed in [4]. Hence, we consider a busy-wait ap-
proach to thread synchronization, aiming to avoid the overhead
introduced by barriers.

We modify the original early scheduling thread execution
model to keep threads active while synchronizing requests (Algo-
rithm 4). We avoid locks and use atomic variables with the atomic
operations described in Algorithm 3. To ensure proper synchro-
nization among threads, we introduce the concept of cycle per
class. A cycle is the process through which all threads belonging to
the same class synchronize to execute one request, and is defined
as follows.
Entering a cycle: Threads process their input queue in sequence
(Algorithm 4, line 4). If the request is sequential, it has to enter the
synchronization cycle. This boils down to atomically incrementing
a class variable counting how many threads reached the cycle (line
9) and, either busy-waiting (in line 13) or executing the request on
behalf of the class (line 10) if all threads entered the cycle.
Leaving a cycle: A thread waits for the executor to set the request
class’s mark variable to 0 for the corresponding cycle (line 11).
Since a released thread could immediately find another request
of the same class in its input queue while others are still in the
previous cycle, we implement two cycles (0 and 1) per class (see
the matrix mark[classes] × [2] in Algorithm 3) to avoid the faster
thread reentering the same cycle, leading to inconsistencies. Each

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
thread keeps track of the next cycle for a class in which it will
enter next (Algorithm 4, line 2), and it switches between 0 and 1
whenever it enters a new cycle for a class. This ensures that all
threads belonging to a class use the same synchronization atomic
variables without interference among cycles.

Algorithm 3 Busy-wait general definitions.
1: shared variables:
2: mark[c1, ..., cnc][2] ← [0, 0], [0, 0]...[0, 0] {one atomic integer per class and

cycle}
3: access functions:
4: mark[class][cycle].get() {atomically read and return the value}
5: mark[class][cycle].set() {atomically set the value}
6: mark[class][cycle].incGet() {atomically increment and return the value}

Algorithm 4 Busy-wait at threads.
1: variables:
2: cycles[c1, ..., cnc] ← [0, ..., 0] {array of cycles, one per class}
3: while true do
4: req ← queue. f i f oGet()
5: class ← req.class {assigns variable with the request’s class}
6: if class.mode = seq then {sequential execution}
7: cycles[class] ← 1 − cycles[class] {recomputes current cycle for the class}
8: cycle ← cycles[class] {assigns variable with the current cycle}
9: if mark[class][cycle].incGet() = CtoT (class).len then

10: exec(req) {the last thread to increment becomes the executor}
11: mark[class][cycle].set(0) {notify other threads that execution is done}
12: else
13: while mark[class][cycle].get() �= 0 {busy-wait until execution is done}
14: else
15: exec(req)

Safety: The barrier in the original early scheduling thread (Algo-
rithm 2) ensures that all involved threads synchronize to execute
the sequential request and do not advance before finishing their
execution. In the busy-waiting version, a sequential request is ex-
ecuted when all involved threads reach the request in their input
queues. After executing, the executor signals the other threads to
stop waiting. Thus, the mechanism keeps the same key property
during request execution: (a) a request is only executed after all
threads have arrived to the request in their queues, and (b) one
thread executes the request while the other threads wait for the
request execution to finish.

Liveness: For a given class, all its threads initiate in cycle 0 and
deterministically switch to the next when a sequential request is
processed. Since all threads have the same requests of their class
in the input queue, eventually all will switch to the next cycle
and complete the number of threads to execute it. Moreover, since
all threads have the same order of common requests, they will
not build cycles while synchronizing to execute different requests.
Thus, the synchronization mechanism does not block.

4.2. Work-stealing

Work-stealing is a prominent scheduling paradigm [7] in which
underused processors take the initiative to steal work from busy
processors. Based on this idea, we propose a work-stealing al-
gorithm for early scheduling. Unlike typical work-stealing ap-
proaches, we need to ensure that stealing does not violate the
order of conflicting requests to preserve linearizability. More con-
cretely, requests from a victim thread v can only be stolen and
executed concurrently by a stealer thread s if all requests in v ’s
queue are independent and do not conflict with requests assigned
for execution by s. In the following, we detail these ideas.

Stealer threads. When a thread becomes idle, it turns into a poten-
tial stealer. A thread becomes idle in two moments:
• when there are no requests in its input queue; and
273
• when synchronizing with other threads before executing a
request and the other threads involved are not ready.

In any case, the stealer will look for work to steal in other
threads’ input queues; possibly steal one or more requests; ex-
ecute them; signal their execution; and then resume its usual
role, checking its input queue.

Victim threads. Any thread v that has a non-empty queue contain-
ing only independent requests is a potential victim. We con-
sider independent requests only to ensure that the pending
requests stolen from v ’s queue can be executed concurrently
with the ones currently being executed by v . Notice that to
guarantee linearizability, if a thread is executing a sequential
request, then its enqueued requests cannot be stolen and exe-
cuted concurrently with the sequential request.

Stolen work. As discussed above, the stolen requests will be ex-
ecuted concurrently with the ones executed by the victim.
Therefore, those requests have to be concurrent.

4.2.1. Algorithms
In this section, we detail the work-stealing algorithm and how

it can be integrated in the early scheduling technique to improve
performance. We first detail the basic algorithm and then discuss
the optimizations and improvements that were incrementally in-
corporated into it.

Conservative work-stealing The first and simplest idea is to steal
work while waiting for new requests. Algorithm 5 shows general
definitions used by our work-stealing algorithms. Algorithms 6 and
7 show the new execution model.

Algorithm 5 Work-stealing general definitions.
1: shared variables: consistent under concurrent manipulation (thread-safe)
2: ∀t ∈ T
3: ready Q ueue ← ∅ {separate queue holding requests ready for execution}
4: exec Q ueue ← ∅ {separate queue holding requests under execution}
5: readyFlag ← 0 {1: there is sequential request in ready Q ueue; 0: otherwise}
6: execF lag ← 0 {1: there is sequential request in exec Q ueue; 0: otherwise}
7: marker[t0, ..., tn−1] ← [0, ..., 0] {1 at entry s means that s stole requests from t

and did not finish executing them yet; 0: otherwise}

Each worker thread t is augmented with two separate queues
(Algorithm 5): 1) the ready Q ueue holds pending requests deliv-
ered by the scheduler; 2) the exec Q ueue holds the requests that
are currently under execution by t (i.e., t transfers requests from
the first queue to the second, ensuring that the second queue con-
tains only requests that will be executed by t and cannot be stolen
by other threads). Each thread has an array of atomic flags (called
marker): If a victim v has value 1 at entry s in marker, it means
that stealer s has stolen work from v and has not finished its exe-
cution, otherwise the value is 0. Hence, when v is about to execute
sequential requests, it needs to verify these flags to find whether
it needs to wait for a stealer to finish.

Algorithm 6 Work-stealing scheduler.
1: on deliver(Request: req):
2: if req.class.mode = seq then
3: atomic:
4: ∀t ∈ CtoT (req.class)
5: t.ready Q ueue. f i f oP ut(req)

6: t.readyFlag ← 1 {indicates a sequential request in t’s queue}
7: endAtomic
8: else
9: next(CtoT (req.class)).ready Q ueue. f i f oP ut(req)

The scheduler inserts requests in the threads’ ready Q ueue, ac-
cording to its synchronization class (Algorithm 6). Moreover, the
scheduler updates a flag in each related thread when assigning
them with sequential requests. This flag signals a sequential re-
quest in the ready Q ueue of each thread t .

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
Algorithm 7 Work-stealing at thread t .
1: constant:
2: myId ← id ∈ {0, ..., n − 1} {thread id, out of n threads}

3: Thread t is as follows:
4: while true do
5: atomic:
6: exec Q ueue ← ready Q ueue {transfers all requests to execQueue}
7: execF lag ← readyFlag {may indicate execution of sequential request}
8: ready Q ueue ← ∅ {clear ready Q ueue}
9: readyFlag ← 0 {reset flag of sequential requests in ready Q ueue}

10: endAtomic
11: if exec Q ueue �= ∅ then {if there is something to execute}
12: while req ← exec Q ueue. f i f oGet() do
13: if req.class.mode = seq then
14: if myId = min(CtoT (req.class)) then
15: for all s ∈ T \ myId do {if it was stolen by someone else}
16: wait until marker[s] = 0 {wait until the stealer finishes}
17: barrier[req.class].await()
18: exec(req)

19: barrier[req.class].await()
20: else
21: barrier[req.class].await()
22: barrier[req.class].await()
23: else
24: exec(req)

25: else {no requests available, then will try to steal}
26: Steal(myId)

27: procedure Steal(s ∈ T) {s is the stealer thread}
28: for all v ∈ (T \ {s}) do {tries to steal from all other threads}
29: atomic:
30: if v.readyFlag = 0 ∧ {only steal concurrent requests}
31: v.execF lag = 0 ∧ {if victim is not executing sequential requests}
32: v.ready Q ueue �= ∅ then {and there is something to steal}
33: s.exec Q ueue ← v.ready Q ueue {steal all requests}
34: v.ready Q ueue ← ∅ {clear victim’s ready Q ueue}
35: v.marker[s] ← 1 {signal s stolen from v}
36: endAtomic
37: if s.exec Q ueue �= ∅ then {steal succeeded, will execute}
38: for all req in s.exec Q ueue do
39: exec(req) {execute all stolen requests}
40: v.marker[s] ← 0. {notifies the victim when finished execution}
41: break for all {steal and execute once, then try its own queue again}

A stealing attempt will take place if a stealer finds its queue
empty (Algorithm 7). The stealing procedure verifies the stealing
conditions for each possible victim v (lines 30–32). If satisfied,
the thread steals all requests from v ’s ready Q ueue and sets the
marker indicating that requests have been stolen (lines 33–35).
Once finished execution, the stealer signals v (line 40) and veri-
fies its own queue again.

Safety: We argue that the algorithms presented in this section
preserve the order of conflicting requests. The key idea is to im-
pose conditions on the contents of queues using flags that mark if
the respective queues have conflicting requests. Notice that queues
and flags are accessed in the same atomic blocks, ensuring that the
flags are consistent with the respective queue’s contents.

The stealing procedure ensures that queues have only concur-
rent requests. When stealing happens, the victim continues execu-
tion while the stealer starts processing the stolen requests. From
this point, we have two possibilities: either the stealer or the vic-
tim finishes processing first. The first case is simple: independent
requests were finished concurrently by the stealer and the vic-
tim proceeds to process normally. In the second case, the victim
will process new incoming requests from its ready Q ueue again.
If the new incoming requests are again concurrent, then they can
be processed concurrently with the stealer. Otherwise, to process
a conflicting request the stealer has to finish first. This is ensured
in line 16 of Algorithm 7, stating that the victim will wait for all
stealers to finish. The stealer, when finishing processing, will signal
the specific victims (line 40 of Algorithm 7).

From the above discussion, we conclude that no conflicting re-
quests are reversed, either by preventing stealing to take place or
by having the victim wait for stealers to finish, which are the only
possible cases.
274
Liveness: By construction, we can observe in Algorithm 7 that,
once a thread s steals from a victim v , s unconditionally pro-
cesses all the contents of its exec Q ueue. Also, we observe that a
victim, when processing its exec Q ueue, either proceeds indepen-
dently or awaits stealers to finish. Since stealers unconditionally
process their contents, eventually the victim will progress. Also,
notice that if the victim is waiting for a stealer s1 to finish, it is
because the victim’s ready flag is set and it will not become a vic-
tim of another stealer s2. This ensures that once a victim has a
conflicting request to process, eventually all current stealers will
have finished and no new stealing attempt will succeed, ensuring
progress.

We now argue that the execution is deadlock free. Suppose
thread t1 has an empty ready Q ueue and tries to steal from
thread t2, which is executing concurrent requests only from its
exec Q ueue and has concurrent requests only in its ready Q ueue.
In this case, t1 becomes stealer and t2 victim. Now suppose that
t2 finishes its exec Q ueue, finds its ready Q ueue empty, and tries
to steal from t1. Moreover, assume that t1 is still processing stolen
requests from t2 but in the mean time its ready Q ueue is pop-
ulated with concurrent requests. In this case, t2 steals from t1
and we have a stealing cycle. Both threads nonetheless will make
progress since the stolen work is independent and unconditionally
processed. While non-conflicting requests are issued, threads can
freely steal from each other as stealers are idle. Depending on the
workload, this process may cause threads just to switch work.

Moderate work-stealing We now present an extension to the con-
servative work-stealing algorithm to allow for a thread to steal also
while waiting for synchronization of a sequential request. By using
atomic integers, we replace the first blocking step (barrier) before
a sequential request execution (lines 17 and 21 of Algorithm 7)
for a non-blocking mechanism. This mechanism is similar to the
one described in the busy-wait approach, which provides a way
for threads to signal the arrival at a specific class, without being
blocked. Such a strategy allows us to identify the last thread to
arrive (the executor), and the first arriving threads (the stealers)
which can steal work while waiting for all threads to reach this
point. After the executor finishes, it signals the stealers and pro-
ceeds to the barrier, waiting for synchronization (as in lines 19 and
22 of Algorithm 7). The stealers keep checking if the execution is
done, and once it does, they proceed to the barrier as well.

This optimization introduces another opportunity for stealing,
in addition to the one described before. However, for the steal to
happen now we need an additional restriction: while synchroniz-
ing for a request of class c1, stealer thread s cannot steal requests
from any class c2 that conflict with c1. This prevents the stealer
from reversing the order of conflicting requests, ensuring safety.

To argue for liveness, we recall that due to the stealing con-
ditions, only concurrent requests can be stolen. From the victim’s
perspective, the order is not violated due to the nature of the re-
quests. Regarding the stealer, the stealing conditions prevent steal-
ing of requests that conflict with the one the stealer is currently
waiting for synchronization. In such a case, it cannot steal be-
cause it cannot tell the right order among them. Therefore, the
same arguments as in the previous algorithm apply: a stealer ex-
ecutes unconditionally; eventually all stealers of a victim finish; if
the victim has concurrent requests it continues processing; and if
the victim has a sequential request, stealers cease to steal, finish
their current stolen works, and the victim synchronizes in the se-
quential request.

Aggressive work-stealing In the moderate work-stealing approach,
the executor and the stealers synchronize after the execution using
a barrier. We describe next how this synchronization barrier can be
eliminated.

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
The scheduler does not need any modifications. For the threads,
after the executor has processed the synchronizing request, in-
stead of waiting for all threads to finish their stolen work, they
can independently resume processing their input queues, as far as
requests are concurrent. While doing so, whenever a synchronizing
request is found, the procedure already discussed is adopted. How-
ever, now we have to deal with a situation where some threads
are still finishing the work stolen previously while others are al-
ready stealing again due to a new synchronizing request. We have
already solved a similar problem before by introducing cycles in
Algorithm 4. Therefore, we use the same mechanisms in this case.
For the same reasons as in case of the previous algorithms and
from the cycle mechanism, this solution does not reverse the or-
der of conflicting requests.

A further enhancement introduced in this algorithm is the
choice of victims. In the previous algorithms, stealers started
searching to steal from the thread with the smallest id and, if
not possible, trying with the next thread, and so on, following the
order of thread ids. This procedure while simple, possibly led to
contention on threads with low ids. We modify the search by hav-
ing a stealer start with the thread id that comes next to its own id
in the space of thread ids.

Optimistic work-stealing Despite the absence of barriers, the ag-
gressive work-stealing approach still has a significant level of con-
tention on the shared state (e.g., queues, flags). We address this
shortcoming with optimistic synchronization [19]. In this approach,
a thread does not use locks while searching for a condition in the
shared state. This reduces overhead by decreasing the usage of mu-
tual exclusion mechanisms only to successful situations.

Based on this idea, we propose an optimistic work-stealing al-
gorithm (see Algorithm 8). This algorithm includes all the opti-
mizations we discussed so far. The Steal() procedure shows the
algorithm augmented with the optimistic validation and the re-
striction that requests in conflicting classes cannot be stolen. This
is ensured by the procedure that checks the conflicts of the re-
quest classes. In the case of a conflicting class, there will be no
stolen requests (line 56 of Algorithm 8).

Regarding safety and progress conditions, the same arguments
discussed in the previous algorithm are valid here. The only change
presented is in the process of validation, but validation itself does
not change. The stealing procedure execution flow has only been
augmented with a pre-validation step (line 39) which is executed
without mutual exclusion. The final validation (line 41) will take
place if the former succeeds, and it will be consistently executed
inside a critical section, ensuring the same properties of the pre-
vious algorithm. This strategy resorts to the idea that reevaluation
succeeds most of the time, thus called optimistic.

5. Experimental evaluation

We implemented all algorithms described in the previous sec-
tions and conducted an experimental performance evaluation.3 We
compare the results with a sequential version, a standard late
scheduler (which we implemented based on the algorithm from
[25]), and the original early scheduling [4].

5.1. Environment

We implemented all algorithms in Bft-SMaRt [6], a well-
established framework to develop SMR. Bft-SMaRt was imple-
mented in Java and uses an atomic broadcast protocol that exe-

3 Our source code, and instructions to run our experiments, can be found at
https://github .com /elbatista /smr-workstealing.
275
Algorithm 8 Optimistic work-stealing.
1: constant:
2: myId ← id ∈ {0, ..., n − 1}
3: variables:
4: cycles[c1, ..., cnc] ← [0, ..., 0]
5: sync[c1, ..., cnc][2] ← [0, ..., 0][0, 0]
6: access functions:
7: sync[class][cycle].get()
8: sync[class][cycle].set()
9: sync[class][cycle].incGet()

10: Thread t is as follows:
11: while true do
12: atomic:
13: exec Q ueue ← ready Q ueue
14: execF lag ← readyFlag
15: ready Q ueue ← ∅
16: readyFlag ← 0
17: endAtomic
18: if exec Q ueue �= ∅ then
19: while req ← exec Q ueue. f i f oGet() do
20: class ← req.class
21: if class.mode = seq then
22: for all s ∈ T \ myId do
23: wait until marker[s] = 0
24: cycles[class] ← 1 − cycles[class]
25: cycle ← cycles[class]
26: if sync[class][cycle].incGet() = CtoT (class).len then
27: exec(req)

28: sync[class][cycle].set(0)

29: else
30: while sync[class][cycle].get() �= 0 do {exec not finished yet}
31: Steal(myId, class) {steal informing class of current req}
32: else
33: exec(req)

34: else
35: Steal(myId, null) {steal without inform a class}
36: procedure Steal(s ∈ T , c ∈ C)

37: for all i ∈ [0, ..., T .length] do {one attempt for each thread}
38: v ← pickV ictim(s) {choose a victim}
39: if V alidation(c, v) then {evaluate conditions without lock}
40: atomic: {lock when steal conditions satisfied }
41: if V alidation(c, v) then {reevaluate conditions}
42: s.exec Q ueue ← v.ready Q ueue
43: v.ready Q ueue ← ∅
44: v.marker[s] ← 1
45: endAtomic {unlock after committing the steal}
46: if s.exec Q ueue �= ∅ then {execute stolen requests}
47: for all req in s.exec Q ueue do
48: exec(req)

49: v.marker[s] ← 0
50: break for all {stops stealing for now}
51: else
52: endAtomic {unlock when reevaluation fails}
53: procedure V alidation(c ∈ C, v ∈ T) {the validation as a separate function}
54: return v.readyFlag = 0 ∧
55: v.execF lag = 0 ∧
56: (c = null ∨ NoConf lict(v, c)) ∧ {verify conflicts with the class (if any)}
57: v.ready Q ueue �= ∅

cutes series of consensus instances to order sets of requests. Bft-

SMaRt can be configured to tolerate crash-stop failures only or
Byzantine failures. In all our experiments, it was configured to tol-
erate crash-stop failures. To further improve the performance of
the Bft-SMaRt ordering protocol, we implemented interfaces to
enable clients to send a batch of requests inside the same mes-
sage.

The experimental environment was configured with 7 machines
connected via 1 Gbps switched network. The software installed on
the machines was Linux Ubuntu with kernel 4.15.0 (64 bits) and
64-bit Java virtual machine version 11.0.3. Bft-SMaRt was config-
ured with 3 replicas hosted in separate machines (AMD Opteron®

processor with 32 physical cores and 64 logical cores through
hyper-threading and 126 GB of RAM) to tolerate up to 1 replica
crash, while up to 200 clients were distributed uniformly across
another 4 machines (Intel® Xeon® processor with 8 physical cores
and 8 GB of RAM).

https://github.com/elbatista/smr-workstealing

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
5.2. Applications

We implemented two applications: a linked list and a key-value
store, both supporting disjoint data shards. In our implementa-
tion, each shard is represented by separate data structures inside
each replica. In the linked-list application, each shard is a separate
linked-list object. In the key-value store, each shard is a differ-
ent tree map object. In both cases, each data structure is accessed
only by requests specifically addressed to the respective shard, or
by global requests. Replicas order all requests before execution, no
matter the target shard. There are requests to read and write in
both the list and key-value store, accessing a single or all shards. A
read request implements a contains operation in the list and a con-
tainsKey operation in the key-value store. A read checks whether
an element is in one or all shards. A write request implements
an add operation in the list and a put operation in the key-value
store. A write adds an element in one or all shards. The write re-
quest checks if some element already is in some shard before the
addition.

We conducted experiments with single and multiple shards. In
a deployment with n shards, there are n local read classes, n local
write classes, one global read class, and one global write class. The
mappings respect the conflict structure between read and write
classes, as in Fig. 1. We first present the linked list configuration
and results, and then the results of the experiments using the key-
value store in Section 5.8.

5.3. Workload configuration

The workload is generated synthetically by the clients. We con-
figured the clients to vary the percentages of reads, writes, local
and global requests in the workload from low to high, due to the
observation that as the level of conflicts increases, it directly affects
thread idleness in the original early scheduler [5]. We also consider
balanced and unbalanced workloads. In the balanced workloads,
each shard receives a similar number of local requests. A local
request is a request that executes within only one shard. In the
skewed workloads, each client process sends the majority of its
requests to only one shard, the remaining requests are equally dis-
tributed across the other shards. There are three different request
execution costs: light, moderate and heavy (i.e., lists with 1K, 10K
and 100K elements, respectively). Clients create a configurable rate
of concurrent and conflicting requests, in our experiments from 1%
up to 50% of conflicting requests. Clients group requests over time
based on an exponential distribution that determines the number
of contiguous concurrent requests.

5.4. Single-sharded systems

We start by presenting the results for a single-sharded environ-
ment, varying the percentage of conflicting requests, request costs,
and number of threads.

5.4.1. Busy-wait algorithm
Fig. 2 presents the results of the busy-wait approach. It shows,

with 8 to 12 threads, a performance slightly better than the orig-
inal early scheduling with low conflicts (1% of writes) and light
costs (Fig. 2(a)). In this scenario, there is high concurrency exe-
cution in early scheduling, and low barrier synchronization. How-
ever, as we increase the number of threads, the overhead in the
early scheduling also increases, due to higher rates of system calls
caused by the barriers. This phenomenon becomes evident when
considering that the busy-wait approach keeps high throughput
as we increase the number of threads, while the early scheduling
throughput degrades.
276
Figs. 2(b) and 2(c) show that the throughput of the busy-
wait approach is about four times higher than the throughput of
the original early scheduling when we increase the percentage of
writes in the workload (this is a scenario of more overhead and
barrier synchronization for the early scheduling). Fig. 2(d) shows
that, even with moderate request execution costs, busy-wait can
still outperform early scheduling by a large margin if conflict rates
are low.

Figs. 2(e) to 2(i), on the other hand, show the impact of increas-
ing request costs and conflict rates. The higher request costs sub-
stantially impact the application throughput, bounding all paral-
lel applications to similar performance levels. Furthermore, higher
costs lead the parallel techniques to approximate the sequential
performance.

5.4.2. Work-stealing algorithms
We now evaluate our work-stealing implementations. Fig. 3

compares the performance of each work-stealing algorithm de-
scribed in Section 4.2 and the early scheduling. The first two
work-stealing algorithms (conservative and moderate) do not show
performance gains when compared to early scheduling. This re-
sult is expected since the stealing opportunities are rare in the
conservative version (only when queues are empty). The moderate
version, in turn, still has the expensive barrier synchronization.

The aggressive version improves performance by removing the
barrier overhead and decreasing contention by using a different
stealing strategy to choose victims. Finally, the optimistic version
outperforms all other approaches, showing a gain of more than
twice the throughput of any other version in some cases. This op-
timistic version includes all improvements that were incrementally
aggregated to each version, and the gain obtained when decreasing
overhead by cutting usage of mutual exclusion objects. As it shows
the best performance, from now on we present only the optimistic
version when referring to work-stealing.

5.5. Busy-wait vs. work-stealing

Fig. 4 shows that busy-wait and work-stealing present sim-
ilar performance. Although work-stealing can afford better load
balance, it introduces additional overhead w.r.t. the busy-wait ap-
proach. Busy-wait avoids both complex stealing management logic
and expensive mutual exclusion resources. On the contrary, it relies
on simple atomic variables, which are architecture-native struc-
tures, cheaper than the ones used in work-stealing, leading it to
present, in most considered cases, a performance slightly better
than work-stealing.

Both work-stealing and busy-wait approaches largely outper-
form the other techniques. The behavior observed for the busy-
wait approach is also true for the work-stealing: as the level of
conflicts increases, work-stealing performs better, reaching perfor-
mance about four times higher than the original early and late
scheduling algorithms (e.g. Fig. 4(b)). Likewise, higher execution
costs severely impact work-stealing throughput as well (Figs. 4(e)
and 4(f)).

5.6. Multi-sharded systems

In our multi-sharded application, client processes randomly
choose a shard to issue requests to. We considered balanced and
skewed workloads, different numbers of shards, percentage of con-
flicting requests and percentage of global requests. We set the
number of threads to 32 (uniformly distributed among the read
and write classes of each shard) and also used only light operation
costs since this configuration showed, in general, the best perfor-

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282

Fig. 2. Busy-wait algorithm for single shard, and light (top), moderate (middle) and heavy (bottom) operation costs.

Fig. 3. Work-stealing algorithms for single shard, and light (top) and moderate (bottom) operation costs.
mance in the previous experiments. Fig. 5 presents results for 2, 4
and 8 shards, with 1% global requests issued by the clients. Simi-
lar results were obtained with 15% global requests, hence omitted.
The percentage of writes is for both global and local requests (e.g.,
with 5% of writes, we have experiments with 5% of global write
requests and 5% of local write requests).
277
Varying the number of shards does not have much impact on
sequential and late scheduling. However, the same is not observed
for early scheduling: the higher the number of shards, the higher
the concurrency of requests among shards, thus better the perfor-
mance. The same occurs for busy-wait and work-stealing. However,
in the high conflicting balanced workload scenario (Figs. 5(b), 5(c))

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282

Fig. 4. Results for single-shard and balanced workloads, with light (top) and moderate (bottom) operation costs.

Fig. 5. Results for multi-shard, 1% global requests, balanced workload (top) and skewed workload (bottom).
our approaches show far better results than other ones, due to the
advantage of increasing both the conflicting requests and the num-
ber of shards. Increasing conflicts is not beneficial for the early
scheduling (high contention and overhead caused by the barri-
ers), but it is for our approaches. Busy-wait does not suffer the
effects of barrier overhead and work-stealing benefits from higher
opportunities to steal, either due to the large number of conflicting
requests or the higher number of shards.

Skewed workloads impact more the early scheduling and our
approaches than late and sequential. However, the work-stealing
approach is less impacted in more concurrent scenarios. Figs. 5(a)
and 5(d), with 8 shards, show that the throughput of the busy-
wait approach falls from about 240k ops/sec in the balanced sce-
nario to 160k in the skewed one. This represents a loss of 44%.
On the other hand, the throughput of the work-stealing approach
falls from 160k ops/sec to about 150k, representing only 7% of loss.
Similar phenomenon occurs for the case with 4 shards and 50% of
278
writes, where work-stealing shows better performance than busy-
wait in the skewed scenario. This happens because work-stealing
can minimize the skewed effect by distributing requests among
threads when there is enough stealing capacity.

5.7. Additional experiments

We also conducted additional experiments to evaluate three
other aspects of our techniques that we describe next.

5.7.1. Request execution costs
In our experimental evaluation, we analyzed the performance

of all studied approaches when exposed to three distinct request
execution costs: light, moderate, and heavy. We now quantify these
execution costs. Fig. 6 presents the time a request waits before its
execution starts and the time it takes to complete its execution. We
compute the average times and compare the sequential (Seq), early

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282

Fig. 6. Average execution and synchronization/waiting time of a single request for each cost configuration used in the experimental evaluation.
scheduling (Early), busy-wait (B-Wait), and work-stealing (WS) ap-
proaches. The waiting time starts when a request is delivered by
BFT-SMaRt’s ordering layer (consensus protocol) and finishes be-
fore it starts executing. It includes scheduling and synchronization
overhead in the parallel techniques. The execution time is the inter-
val between the moment the request is delivered to the application
layer and the application logic finishes the execution.

Since we want to understand how much of the total execution
time of a request is spent in the actual execution of the request
and how much time is overhead, we configured the system with
a single client (i.e., in the absence of contention). When execution
costs are high, the gains from removing barriers and improving
load balancing become irrelevant. In fact, in our experiments, we
show that with heavy costs, our optimizations do not improve
the early scheduling approach. Moreover, as the workload becomes
heavier, and the percentage of conflicts rises, all parallel techniques
approximate the sequential performance (Figs. 2(h) and 2(i)).

5.7.2. Stealing throughput
An important aspect of our work-stealing approach is that steal-

ing can only happen when the workload meets certain conditions:
there must be a victim thread whose queue contains only requests
that do not conflict with each other and with requests in the steal-
er’s queue. In this section, we analyze how much stealing is possi-
ble in different workload configurations. We call stealing throughput
the throughput of stolen requests only, within the overall through-
put. Fig. 7 presents the results, showing that the amount of stolen
work increases with the number of shards and the rate of writes in
the workload. A high number of writes, however, cuts both ways:
although increasing the percentage of writes improves the possibil-
ities of stealing (recall that threads steal requests when waiting for
synchronization of conflicting requests), at the same time it also
decreases the amount of requests that can be stolen at a time, due
to the conflict rate. The good performance of our work-stealing ap-
proach is due to both the fact that it reduces load unbalance and
does not suffer from barrier synchronization costs.

5.7.3. External sensitivity
The last aspect that we evaluate regards the sensitivity of our

work-stealing technique to external events that can possibly in-
terfere with the stealing capacity. In particular, we consider the
impact caused by the garbage collection process in the Java VM.
Fig. 8 presents the results for stealing throughput when running
a configuration with light requests, 8 shards, 32 threads, and
5% of writes. We consider four different garbage-collection algo-
rithms: Concurrent Mark Sweep (CMS), the G1 Young Generation
(G1), Mark Sweep Compact (MSC), and PS MarkSweep/Scavenge
(PSMS/S). As we can see, there is no relevant interference in the
amount of stealing, except when running with the MSC algorithm,
which imposes a slightly lower steal (and overall) throughput rate.
In all other experiments in the paper we used G1.
279
5.8. Key-value store application

We also implemented a key-value store application using the
Java TreeMap data structure, to further extend our performance
analysis. In our implementation, the keys are integers, and the val-
ues are strings. Since the map provides much faster data access
than the list, the throughput of the application increased signifi-
cantly. In this case, we changed the factor for the request costs,
initializing the key-value store with more elements (1M). Fig. 9
shows the results for the multi-sharded key-value store applica-
tion. Notice the throughput now reaches higher levels of requests
per second, due to faster data access. However, despite the se-
quential version being much more efficient than in the list, our
techniques again surpassed all others in most cases.

6. Related work

This paper is at the intersection of two areas of research: work-
stealing and state machine replication.

6.1. Work-stealing

The first scheduler with a randomized work-stealing algorithm
for multi-threaded applications was proposed by Blumofe and Leis-
erson in [7]. They have shown that the work-stealing technique
has lower communication costs than the work-sharing approach.
Work-sharing and work-stealing are both techniques that optimize
load balance. The difference is: in work-sharing, the scheduler al-
ways attempts to assign new threads to different processors. In
work-stealing, the idle processes take the initiative to steal work
from busy ones. Many variants of the work-stealing algorithm
were presented in the literature. For example, a threshold-based
queueing model of shared-memory multiprocessor scheduling is
presented in [37]. In [14] the authors argued that work-sharing
outperforms work-stealing under light to moderate loads, while
work-stealing outperforms work-sharing under high loads. In [1],
the authors present a work-stealing algorithm that uses locality
information (affinity) and outperforms the standard work-stealing
approach.

Work-stealing has also been investigated in a variety of other
contexts. Among them, applications to thread scheduling, such as
list scheduling [38], Fork-Join parallel programming [2], false shar-
ing [10] and parallel batched data structures [3].

Our contribution applies work-stealing concepts in the context
of early-scheduling parallel state machine replication. According to
early-scheduling, threads are associated with request classes. Dif-
ferently from previous works, this imposes additional restrictions
in the execution model of both stealer and victim threads.

6.2. State machine replication

In this section, we review proposals that introduce concurrency
in the execution of requests in SMR. In CBASE [25], replicas are

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282

Fig. 7. Average stealing throughput in the Work-Stealing technique in various experiment configurations.
Fig. 8. Average stealing throughput considering the impact of different garbage col-
lectors (external sensitivity).

augmented with a deterministic scheduler. Based on application
semantics, it serializes the execution of conflicting requests re-
specting delivery order and dispatches requests that do not conflict
to parallel execution. Conflict detection is done by a dependency
graph, which organizes requests to be processed as soon as pos-
sible (whenever dependencies have been executed). CBASE is an
example of late scheduling.

In [41], the same approach is used: a scheduler evaluates new
transactions delivered at a replica against pending transactions and
builds a DAG with dependencies that have to be respected during
execution. For fast detection of dependencies, an index structure
indexes all items accessed by pending transactions. When a new
transaction arrives, the ones it depends on are detected evaluat-
ing each item accessed by the new transaction against the index
structure, avoiding a graph traversal.

In [30] the authors avoid a central scheduler by statically map-
ping requests to different multicast groups. Non-conflicting re-
quests are multicast to different groups that partially order re-
quests across replicas. Conflicting requests are multicast to the
same group. At a replica, each thread is associated with a group
and processes requests as they arrive. Requests delivered by differ-
ent groups are executed concurrently.

Rex [17] and CRANE [12] introduce consensus on replica syn-
chronization events to solve non-determinism due to concurrency.
In Rex, a primary replica logs dependencies among requests during
execution. The trace is proposed for agreement with other repli-
cas. After agreement, replicas replay the execution according to the
trace. CRANE [12] solves non-determinism with the input deter-
minism of Paxos and the execution determinism of deterministic
multi-threading [33]. It implements additional consensus on syn-
chronization events such that replicas see the same sequence of
primitives.

Eve [24] and Storyboard [22] use optimistic approaches that
may lead to additional overhead in some cases. In Eve, replicas
compare the results of optimistic execution using consensus and
if they diverge, roll-back and conservatively re-execute requests.
With Storyboard, replicas have (a priori) forecasts of sequences of
locks needed by requests. When the execution deviates from the
expected, a deterministic re-execution is necessary.

Calvin [39] is a distributed transactional storage system. To en-
sure determinism across replicas, transactions are totally ordered.
280
To concurrently execute transactions at nodes, a lock manager is
used. It ensures that locks on objects are acquired following the
total order of transactions. Transactions have to lock all needed
objects before starting the execution. If two transactions conflict,
then the total order is imposed due to locks; otherwise they can
be concurrently executed. In [35], a Very Light Lock manager is
proposed to reduce locking overhead. It keeps the same assump-
tions and requirements as Calvin.

In [23], the authors present a BFT SMR that can tolerate all but
one replicas active in normal-case operation to fail. It runs a ex-
tended consensus protocol that exploits passive replication to save
resources. In the absence of faults, it requires only f + 1 replicas
to agree on client requests. When suspecting faulty behavior, the
system triggers a transition protocol that activates f extra replicas
to bring the system into a consistent state again.

Another approach to improving the performance of SMR is to
weaken the total order requirement of requests at the replicas. In
particular, only conflicting requests must be ordered consistently at
the replicas. Generalized Paxos [27], Generic Broadcast [34], Egali-
tarian Paxos [32], Mencius [29], and Alvin’s Partial Order Broadcast
(POB) [40] are examples of protocols that adopt this approach.
The techniques proposed by such protocols are orthogonal to the
aspects discussed in this paper. The exploration of execution par-
allelism out of request dependencies from generalized consensus
is reported in Alvin with the proposed parallel concurrency control
layer [40] and in [21] by replacing the sequential execution phase
of EPaxos with a parallel one. Investigating the complementarity
of these approaches and the mechanisms proposed here comprises
an interesting direction for future research.

7. Conclusions

This paper reports on our efforts to increase the performance
of P-SMR through enhancements to a scheduling approach that
simplifies the work done by the scheduler, called early scheduling.
We studied scenarios where this technique could lead to poor re-
source utilization, and investigated how to apply well-established
concurrent techniques (e.g., busy waiting, work-stealing) in order
to improve early scheduling.

Many works have proposed different approaches to P-SMR.
However, we could not find any previous research using work-
stealing concepts. In this work, we introduced this alternative,
shedding some light in this not-yet-addressed aspect in the litera-
ture. Experimental results have shown relevant performance gains
of up to four times in some cases, opening up new opportuni-
ties for further improving the performance of the early scheduling
technique.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282

Fig. 9. Results for multi-shard, 1% global requests, balanced workload in a key-value store application.
Acknowledgments

We wish to thank the anonymous reviewers for their con-
structive comments and suggestions. This work was achieved in
cooperation with HP Brasil Indústria e Comércio de Equipamen-
tos Eletrônicos LTDA, using incentives of Brazilian Informatics
Law (Law number 8.2.48 of 1991), and also with CAPES (Brazil),
FAPERGS (RS-Brazil), and the Swiss National Science Foundation
(SNSF).

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .jpdc .2022 .02 .001.

References

[1] U.A. Acar, G.E. Blelloch, R.D. Blumofe, The data locality of work stealing, in:
Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and
Architectures, 2000, pp. 1–12.

[2] K. Agrawal, C.E. Leiserson, J. Sukha, Helper locks for fork-join parallel program-
ming, in: Proceedings of the 15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2010, pp. 245–256.

[3] K. Agrawal, J.T. Fineman, K. Lu, B. Sheridan, J. Sukha, R. Utterback, Provably
good scheduling for parallel programs that use data structures through im-
plicit batching, in: Proceedings of the 26th ACM Symposium on Parallelism in
Algorithms and Architectures, 2014, pp. 84–95.

[4] E. Alchieri, F. Dotti, F. Pedone, Early scheduling in parallel state machine repli-
cation, ACM SoCC, 2018.

[5] E. Batista, E. Alchieri, F. Dotti, F. Pedone, Resource utilization analysis of early
scheduling in parallel state machine replication, in: 9th Latin-American Sym-
posium on Dependable Computing (LADC), 2019.

[6] A. Bessani, J. Sousa, E. Alchieri, State machine replication for the masses with
BFT-SMaRt, in: IEEE/IFIP International Conference on Dependable Systems and
Networks, 2014.

[7] R.D. Blumofe, C.E. Leiserson, Scheduling multithreaded computations by work
stealing, J. ACM 46 (5) (1999) 720–748.

[8] M. Burrows, The chubby lock service for loosely coupled distributed systems,
in: Proceedings of the 7th Symposium on Operating Systems Design and Im-
plementation, 2006.

[9] T.D. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed sys-
tems, J. ACM 43 (2) (1996) 225–267.

[10] R. Cole, V. Ramachandran, Analysis of randomized work stealing with false
sharing, in: 2013 IEEE 27th International Symposium on Parallel and Dis-
tributed Processing, 2013, pp. 985–998.

[11] J.C. Corbett, J. Dean, M. Epstein, et al., Spanner: Google’s globally distributed
database, in: Proceedings of the 10th Symposium on Operating Systems Design
and Implementation, 2012.

[12] H. Cui, R. Gu, C. Liu, T. Chen, J. Yang, Paxos made transparent, in: ACM Sympo-
sium on Operating Systems Principles, ACM, 2015, pp. 105–120.

[13] X. Défago, A. Schiper, P. Urbán, Total order broadcast and multicast algorithms:
taxonomy and survey, ACM Comput. Surv. 36 (4) (2004) 372–421.

[14] D.L. Eager, E.D. Lazowska, J. Zahorjan, A comparison of receiver-initiated and
sender-initiated adaptive load sharing (extended abstract), in: Proceedings of
the 1985 ACM SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, 1985, pp. 1–3.

[15] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus
with one faulty process, J. ACM 32 (2) (1985) 374–382.
281
[16] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, T. Anderson, Scalable con-
sistency in scatter, in: Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, 2011.

[17] Z. Guo, C. Hong, M. Yang, L. Zhou, L. Zhuang, D. Zhou Rex, Replication at the
speed of multi-core, in: European Conference on Computer Systems, 2014.

[18] V. Hadzilacos, S. Toueg, Fault-tolerant broadcasts and related problems, in:
S. Mullender (Ed.), Distributed Systems, ACM Press/Addison-Wesley Publishing
Co., 1993, pp. 97–145.

[19] M. Herlihy, N. Shavit, The Art of Multiprocessor Programming, Revised reprint,
1st edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2012.

[20] M. Herlihy, J.M. Wing, Linearizability: a correctness condition for concurrent
objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[21] T.C. Junior, F.L. Dotti, F. Pedone, Parallel state machine replication from general-
ized consensus, in: International Symposium on Reliable Distributed Systems,
SRDS 2020, Shanghai, China, September 21–24, 2020, IEEE, 2020, pp. 133–142,
https://doi .org /10 .1109 /SRDS51746 .2020 .00021.

[22] R. Kapitza, M. Schunter, C. Cachin, K. Stengel, T. Distler, Storyboard: optimistic
deterministic multithreading, in: Workshop on Hot Topics in System Depend-
ability, 2010.

[23] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S.V. Mohammadi, W.
Schröder-Preikschat, K. Stengel, Cheapbft: resource-efficient byzantine fault tol-
erance, in: Proceedings of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, Association for Computing Machinery, New York, NY,
USA, 2012, pp. 295–308, https://doi .org /10 .1145 /2168836 .2168866.

[24] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin, All about
eve: execute-verify replication for multi-core servers, in: OSDI, 2012.

[25] R. Kotla, M. Dahlin, High throughput byzantine fault tolerance, in: IEEE/IFIP Int.
Conference on Dependable Systems and Networks, 2004.

[26] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565.

[27] L. Lamport, Generalized consensus and paxos, Technical Report MSR-TR-2005-
33, Microsoft Research, 2005.

[28] B. Li, W. Xu, R. Kapitza, Dynamic state partitioning in parallelized byzantine
fault tolerance, in: 2018 48th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks Workshops (DSN-W), 2018, pp. 158–163.

[29] Y. Mao, F.P. Junqueira, K. Marzullo, Mencius: building efficient replicated state
machines for wans, in: 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 08), USENIX Association, San Diego, CA, 2008.

[30] P.J. Marandi, C.E. Bezerra, F. Pedone, Rethinking state-machine replication for
parallelism, in: IEEE International Conference on Distributed Computing Sys-
tems, 2014.

[31] O. Mendizabal, R. Moura, F. Dotti, F. Pedone, Efficient and deterministic
scheduling for parallel state machine replication, in: International Parallel &
Distributed Processing Symposium, 2017.

[32] I. Moraru, D.G. Andersen, M. Kaminsky, There is more consensus in Egalitarian
parliaments, in: SOSP, ACM, 2013.

[33] M. Olszewski, J. Ansel, S. Amarasinghe, Kendo: efficient deterministic multi-
threading in software, ACM SIGPLAN Not. 44 (3) (2009) 97–108.

[34] F. Pedone, A. Schiper, Handling message semantics with generic broadcast pro-
tocols, Distrib. Comput. 15 (2) (2002).

[35] K. Ren, A. Thomson, D.J. Abadi, VLL: a lock manager redesign for main mem-
ory database systems, VLDB J. 24 (5) (2015) 681–705, https://doi .org /10 .1007 /
s00778 -014 -0377 -7.

[36] F.B. Schneider, Implementing fault-tolerant service using the state machine ap-
proach: a tutorial, ACM Comput. Surv. 22 (4) (1990) 299–319.

[37] M.S. Squillante, R.D. Nelson, Analysis of task migration in shared-memory mul-
tiprocessor scheduling, in: Proceedings of the 1991 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, 1991, pp. 143–155.

[38] M. Tchiboukdjian, N. Gast, D. Trystram, Decentralized list scheduling, CoRR
arXiv:1107.3734 [abs], 2011, arXiv:1107.3734, http://arxiv.org /abs /1107.3734.

https://doi.org/10.1016/j.jpdc.2022.02.001
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib9EF1193416736D9A5C4BE52D7C6AA4FBs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib9EF1193416736D9A5C4BE52D7C6AA4FBs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib9EF1193416736D9A5C4BE52D7C6AA4FBs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8120A3DB615805B2B045950D924B951Ds1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8120A3DB615805B2B045950D924B951Ds1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8120A3DB615805B2B045950D924B951Ds1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1ED243452FDC7AD18EA16EDA96CF5B06s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1ED243452FDC7AD18EA16EDA96CF5B06s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1ED243452FDC7AD18EA16EDA96CF5B06s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1ED243452FDC7AD18EA16EDA96CF5B06s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibA213D519148D435471000B7794330A27s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibA213D519148D435471000B7794330A27s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC50C87C51BC5781B940D97F10110F8D1s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC50C87C51BC5781B940D97F10110F8D1s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC50C87C51BC5781B940D97F10110F8D1s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibFA587898E5C202B9FA14EB3F85F42A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibFA587898E5C202B9FA14EB3F85F42A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibFA587898E5C202B9FA14EB3F85F42A9Cs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib5CE16A3E48CA53CA52DB742CEF676FFAs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib5CE16A3E48CA53CA52DB742CEF676FFAs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib4EDC4C4508EE755E5247E72A94FF7C76s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib4EDC4C4508EE755E5247E72A94FF7C76s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib4EDC4C4508EE755E5247E72A94FF7C76s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib4EF11CC89E5AD8C9465142D1E645F058s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib4EF11CC89E5AD8C9465142D1E645F058s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib5E40EE583E97181DAC49B95A642956EAs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib5E40EE583E97181DAC49B95A642956EAs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib5E40EE583E97181DAC49B95A642956EAs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0C668CF13242D8B6AAC5DC97A55E95E0s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0C668CF13242D8B6AAC5DC97A55E95E0s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0C668CF13242D8B6AAC5DC97A55E95E0s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibF0A3DC3A5AE40AEEC7B7D815952293C3s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibF0A3DC3A5AE40AEEC7B7D815952293C3s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibD7828CFE815415AFB3BA02ACBD1AA2C3s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibD7828CFE815415AFB3BA02ACBD1AA2C3s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib483C336D7D9FE614A8B5AAE1E746E01Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib483C336D7D9FE614A8B5AAE1E746E01Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib483C336D7D9FE614A8B5AAE1E746E01Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib483C336D7D9FE614A8B5AAE1E746E01Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib54BCFC9C55AB2E98C915CE1A9FF99D91s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib54BCFC9C55AB2E98C915CE1A9FF99D91s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib50894A237D9BCDE0A18769AF9A768BAFs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib50894A237D9BCDE0A18769AF9A768BAFs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib50894A237D9BCDE0A18769AF9A768BAFs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib606146B25A3D79C5B52D632ED76EF01Ds1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib606146B25A3D79C5B52D632ED76EF01Ds1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC6F182DBE2AFE21C29519F4B93E86765s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC6F182DBE2AFE21C29519F4B93E86765s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibC6F182DBE2AFE21C29519F4B93E86765s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib397DA9FBFFDBD3CEE1F563C1DD91A984s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib397DA9FBFFDBD3CEE1F563C1DD91A984s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib11B2C9821575D67EF67FBE0752EB3AC8s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib11B2C9821575D67EF67FBE0752EB3AC8s1
https://doi.org/10.1109/SRDS51746.2020.00021
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib80FD2766A16750287545B27E88D9B2B7s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib80FD2766A16750287545B27E88D9B2B7s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib80FD2766A16750287545B27E88D9B2B7s1
https://doi.org/10.1145/2168836.2168866
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1E360334B7CEA6FBE99E6DB5BB775AA0s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib1E360334B7CEA6FBE99E6DB5BB775AA0s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibA8DB3E9BD24A814DF1E6826D6C034280s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibA8DB3E9BD24A814DF1E6826D6C034280s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib114602D531569FABC349E5242620B6BCs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib114602D531569FABC349E5242620B6BCs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibBAA86A0BE7A3BA669775338CCBDA112Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibBAA86A0BE7A3BA669775338CCBDA112Fs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0AD8DACC7D62D574BC5D0C1DC415387Bs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0AD8DACC7D62D574BC5D0C1DC415387Bs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0AD8DACC7D62D574BC5D0C1DC415387Bs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibE83C71293FDF0F92917BD4FCED7A12C9s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibE83C71293FDF0F92917BD4FCED7A12C9s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibE83C71293FDF0F92917BD4FCED7A12C9s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib138E325C096420158E34A5045AD80239s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib138E325C096420158E34A5045AD80239s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib138E325C096420158E34A5045AD80239s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8E65200CD1D4C18AC19264D1C3E36E68s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8E65200CD1D4C18AC19264D1C3E36E68s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib8E65200CD1D4C18AC19264D1C3E36E68s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib84756C4ED9B4A4EEDAFE0F5E52A90031s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib84756C4ED9B4A4EEDAFE0F5E52A90031s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib3D3F2AD4C5A159A4C402641416A48DDFs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib3D3F2AD4C5A159A4C402641416A48DDFs1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib84F81DD7BF5F19E3E909101EAB6BCC37s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib84F81DD7BF5F19E3E909101EAB6BCC37s1
https://doi.org/10.1007/s00778-014-0377-7
https://doi.org/10.1007/s00778-014-0377-7
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibFC24058574BD5A3A55F796E5BAD35BA6s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bibFC24058574BD5A3A55F796E5BAD35BA6s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib24FB2E68F29F0F80654D3DECA88F0036s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib24FB2E68F29F0F80654D3DECA88F0036s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib24FB2E68F29F0F80654D3DECA88F0036s1
http://arxiv.org/abs/1107.3734

E. Batista, E. Alchieri, F. Dotti et al. Journal of Parallel and Distributed Computing 163 (2022) 269–282
[39] A. Thomson, T. Diamond, S. Weng, K. Ren, P. Shao, D.J. Abadi, Calvin: fast dis-
tributed transactions for partitioned database systems, in: K.S. Candan, Y. Chen,
R.T. Snodgrass, L. Gravano, A. Fuxman (Eds.), Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2012, Scotts-
dale, AZ, USA, May 20–24, 2012, ACM, 2012, pp. 1–12, https://doi .org /10 .1145 /
2213836 .2213838.

[40] A. Turcu, S. Peluso, R. Palmieri, B. Ravindran, Be general and don’t give up
consistency in geo-replicated transactional systems, in: M.K. Aguilera, L. Quer-
zoni, M. Shapiro (Eds.), Principles of Distributed Systems - 18th International
Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December 16–19, 2014.
Proceedings, in: Lecture Notes in Computer Science, vol. 8878, Springer, 2014,
pp. 33–48, https://doi .org /10 .1007 /978 -3 -319 -14472 -6 _3.

[41] G. Zhao, G. Wu, Y. Song, B. Qiao, D. Han, Index-based scheduling for paral-
lel state machine replication, in: X. Wang, R. Zhang, Y.-K. Lee, L. Sun, Y.-S.
Moon (Eds.), Web and Big Data, Springer International Publishing, Cham, 2020,
pp. 808–823.

Eliã Batista received the M.Sc. degree in Computer
Science from Pontifical Catholic University Rio Grande
do Sul, Brazil, in 2020. He is currently a Ph.D. stu-
dent at the Faculty of Informatics, Università della
Svizzera Italiana (USI), Switzerland, and also at the
School of Technology at Pontifical Catholic University
of Rio Grande do Sul, Brazil (Cotutelle Thesis). His re-
search interests include the theory and practice of
dependable distributed systems, more specifically the
replication paradigm, parallel SMR scheduling and re-
covery.
282
Eduardo Alchieri received the Ph.D. degree from
Federal University of Santa Catarina, Brazil, in 2011.
He is currently a Professor at the Department of Com-
puter Science of the University of Brasília, Brazil. His
research interests include the theory and practice of
secure and dependable distributed systems.

Fernando Dotti received the Ph.D. degree from
Technical University Berlin, Germany, in 1997. He is
currently a full professor with the School of Technol-
ogy at Pontifical Catholic University of Rio Grande do
Sul, Brazil. His research interests include the theory,
modelling and analysis of distributed systems, includ-
ing distributed algorithms and fault tolerance.

Fernando Pedone received the Ph.D. degree from
EPFL in 1999. He is currently a Full Professor with the
Faculty of Informatics, Università della Svizzera Ital-
iana (USI), Switzerland. He has been also affiliated
with Cornell University, as a Visiting Professor, EPFL,
and Hewlett-Packard Laboratories (HP Labs). He has
authored more than 100 scientific articles and seven
patents. He is a Co-Editor of the book Replication:
Theory and Practice. His research interests include the
theory and practice of distributed systems and dis-
tributed data management systems.

https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1007/978-3-319-14472-6_3
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0730EEDB84EDC1F8520997938BF1F476s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0730EEDB84EDC1F8520997938BF1F476s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0730EEDB84EDC1F8520997938BF1F476s1
http://refhub.elsevier.com/S0743-7315(22)00037-5/bib0730EEDB84EDC1F8520997938BF1F476s1

	Early scheduling on steroids: Boosting parallel state machine replication
	1 Introduction
	2 Background
	2.1 System model and consistency
	2.2 Request independence
	2.3 Late scheduling

	3 Early scheduling
	3.1 Request classes
	3.2 Execution model
	3.3 Class-to-threads mapping
	3.4 Algorithms
	3.5 Correctness and performance

	4 Improving early scheduling
	4.1 Busy waiting
	4.2 Work-stealing
	4.2.1 Algorithms
	Conservative work-stealing
	Moderate work-stealing
	Aggressive work-stealing
	Optimistic work-stealing

	5 Experimental evaluation
	5.1 Environment
	5.2 Applications
	5.3 Workload configuration
	5.4 Single-sharded systems
	5.4.1 Busy-wait algorithm
	5.4.2 Work-stealing algorithms

	5.5 Busy-wait vs. work-stealing
	5.6 Multi-sharded systems
	5.7 Additional experiments
	5.7.1 Request execution costs
	5.7.2 Stealing throughput
	5.7.3 External sensitivity

	5.8 Key-value store application

	6 Related work
	6.1 Work-stealing
	6.2 State machine replication

	7 Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary material
	References

