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a b s t r a c t

Android is nowadays the most popular operating system in the world, not only in the realm of
mobile devices, but also when considering desktop and laptop computers. Such a popularity makes
it an attractive target for security attacks, also due to the sensitive information often manipulated
by mobile apps. The latter are going through a transition in which the Android ecosystem is moving
from the usage of Java as the official language for developing apps, to the adoption of Kotlin as the
first choice supported by Google. While previous studies have partially studied security weaknesses
affecting Java Android apps, there is no comprehensive empirical investigation studying software
security weaknesses affecting Android apps considering (and comparing) the two main languages
used for their development, namely Java and Kotlin. We present an empirical study in which we: (i)
manually analyze 681 commits including security weaknesses fixed by developers in Java and Kotlin
apps, with the goal of defining a taxonomy highlighting the types of software security weaknesses
affecting Java and Kotlin Android apps; (ii) survey 43 Android developers to validate and complement
our taxonomy. Based on our findings, we propose a list of future actions that could be performed by
researchers and practitioners to improve the security of Android apps.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mobile apps and devices are nowadays omnipresent in daily
ife activities, supporting many crucial tasks (e.g., banking, social
etworking, etc.) involving the manipulation and storage of sen-
itive and private data. The usage of mobile operating systems
as already exceeded the usage of desktops/laptops operating
ystems (StatCounter, 2020a,b; Google, 2019a). As a consequence,
obile apps and devices have become a very attractive target for
alicious attacks aimed at stealing private and sensitive informa-

ion from apps/devices and to exploit on-device capabilities such
s processing, data collection via sensors, and networking. Also,
ccording to the CVE details portal1 the number of vulnerabilities
n the Android operating system has seen a steep growth in the
ast years, with a total of 2563 reports in 10 years (2009–2019). As
natural reaction to such a rising of vulnerabilities in the mobile
cosystem, original equipment manufactures (OEMs), operating
ystem designers (e.g., Google), researchers, and companies have

✩ Editor: Shane McIntosh.
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witzerland.
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1 https://www.cvedetails.com/product/19997/Google-Android.html.
ttps://doi.org/10.1016/j.jss.2022.111233
164-1212/© 2022 The Authors. Published by Elsevier Inc. This is an open access a

nc-nd/4.0/).
devoted efforts to improve the security of mobile OSs, devices and
apps.

A paramount example is the volume of research focused on
detecting vulnerabilities in Android apps (see e.g., Arzt et al.,
2014; Li et al., 2015; Sadeghi et al., 2017; Lee et al., 2017; Single-
ton et al., 2019; You et al., 2016; Bello-Jiménez et al., 2019; Ren
et al., 2015; Novak et al., 2015; Gadient et al., 2018). The Android
OS and devices have been also investigated in the context of
previous studies aimed at categorizing their security weaknesses
and exploits (e.g., Huang et al., 2015; Thomas et al., 2015; Cao
et al., 2015; Wang et al., 2016; Jimenez et al., 2016; Bagheri et al.,
2018; Meng et al., 2018; Mazuera-Rozo et al., 2019). Even datasets
with malicious apps have been built (Allix et al., 2016; Zhou and
Jiang, 2012).

Still, to the best of our knowledge, there is no comprehensive
taxonomy of security weaknesses exhibited in Android apps. With
security weaknesses we refer to flaws or gaps in a software
that could be exploited to violate its security policy, thus even-
tually causing a disruption of the confidentiality, integrity, or
availability of the system in question. As compared to desktop
applications, Android apps may suffer of specific vulnerability
types since they (i) run on a mobile device, thus usually collecting
a larger amount of information about the user (e.g., location,
video/audio, as well as biometric information); (ii) are built on top
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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of a specific framework and programming model, that, as we will
show, requires to carefully handle specific types of resources and
components (e.g., Activities, Intents, Broadcast Receivers, etc.);
(iii) despite the Android OS is built on top of the Linux kernel,
several modifications have been done to the kernel, and there is
a set of specific OS layers built on top of the kernel that makes
Android apps programming different from web and desktop app
programming, even the programming model is different from the
iOS model. In this paper, we focus on Android apps written in
Java and in Kotlin, the two main programming languages officially
supported for the development of Android apps.2

Despite previous individual efforts for analyzing, detecting and
ixing specific sets of security weaknesses, the research commu-
ity still lacks a body of knowledge characterizing the types of
eaknesses affecting Android apps. Also, some of the empirical

nvestigations performed in the past could become outdated due
o the frenetic evolution of the Android ecosystem. Indeed, the
rogramming models include now the possibility of creating na-
ive, hybrid, cross-platform, and mobile web apps for the Android
latform. Previous studies on specific security vulnerabilities have
ocused on analyzing Android Java apps, because of the avail-
bility of code bases and APKs in this language. Given the rising
nterest for Kotlin apps and its status of official Android language,
nvestigating security weaknesses in Kotlin becomes a required
venue for research. While Dart3/Flutter4 also represent interest-
ng targets for research, their diffusion is still limited, with ∼18k
itHub repositories as compared to the ∼75k Kotlin repositories
May 2020).

In this paper, we present the first empirical study character-
zing software security weaknesses in Android Java and Kotlin
pps. To this end, we build a taxonomy of security weaknesses
y (i) manually analyzing 681 commits in open source Android
ava/Kotlin apps (i.e., mining-based study), and (ii) surveying 43
ndroid developers to collect their experience with security
eaknesses, and in particular with the types they frequently

aced (i.e., survey-based study). The output of the mining-based
tudy is a taxonomy on multiple levels featuring a total of 74
ategories of security weaknesses.
As results of the developers’ survey, we identified 28 types

f security weaknesses, of which 22 were already covered in
ur taxonomy, and six more were added. We use the defined
axonomy to discuss interesting directions for future research in
he area, and lessons learned for practitioners.

Note that, while catalogues of security weaknesses in mobile
pps have been previously defined (CWE, 2020; The OWASP
oundation, 2020), they are not based on the empirical obser-
ation of weaknesses affecting real mobile apps and, as a result,
hey are less comprehensive than the taxonomy we derive in this
ork.

. Study design

The goal of the study is to investigate software security weak-
esses affecting Java and Kotlin Android apps. The context con-
ists of (i) 681 commits performed by software developers of
ndroid apps to fix software security weaknesses, and (ii) an-
wers to a survey conducted with 43 Android developers to
nvestigate the software security weaknesses they face and how
hey deal with their identification and fixing.

Our study addresses the following research question:

2 https://developer.android.com/kotlin/first.
3 Dart is a programming language developed by Google and designed to

upport the implementation of applications, including mobile apps. https://dart.
ev/.
4 Flutter is a software development kit created by Google that is built on

op of Dart and can be used to develop cross-platform applications. https:
/flutter.dev/.
2

RQ1: What are the types of software security weaknesses faced
by the developers of Java and Kotlin Android apps?

To answer RQ1, we combine two orthogonal analyses. We start
by manually analyzing a set of 681 commits fixing security weak-
nesses performed in 315 Java and Kotlin open source Android
apps with the goal of defining a taxonomy of software security
weaknesses faced by Android developers. We analyze both apps
written in Java and in Kotlin, by presenting the differences (if any)
in the distribution of security issues across the two languages.
Then, we run a survey with 43 Android developers. The survey
has a dual goal. First, we ‘‘validate’’ the taxonomy defined in the
first step, by asking developers which security weaknesses they
address more often. This allows to assess the comprehensiveness
of our taxonomy and to complement it with new categories
of security weaknesses if needed. Second, we collect additional
data reporting how developers perceive security weaknesses in
Android apps.

2.1. Manual analysis of commits

We present the procedure to collect the data needed for our
study (i.e., commits fixing security weaknesses we manually val-
idated) and the process performed to derive our taxonomy.

2.1.1. Data collection
As previously explained, Java has been historically the official

programming language for creating Android apps. However, in
2019, Google announced that Kotlin is its official and preferred
language for native Android apps.5 Thus, when selecting the
mobile apps to study, we made sure to have a mix of Java and
Kotlin apps by (i) merging different datasets available in the
literature, and (ii) mining a dataset we created for this study.
Keep in mind that for all considered apps we must have access to
their repositories, since we later mine their commits. Having in
mind previously mentioned considerations, we adopted the three
following datasets.

Geiger et al. (2018) This dataset is composed of 8431 real-
world open-source Android apps. It combines source and commit
history information from GitHub with metadata from Google Play
store. We processed the dataset to exclude apps that are no longer
available on GitHub, leading to 7862 apps currently usable from
this dataset (all available both on GitHub and on the Google Play
store).

Coppola et al. (2019) The authors of this dataset mined all
projects hosted on F-Droid,6 a repository for free and open source
ndroid apps.
This dataset is interesting because Coppola et al. reported

he presence of 19% of apps featuring Kotlin code among the
232 mined apps. We excluded apps that are no longer available
n GitHub and, for consistency with the previous dataset, also
hose not published in the Google Play store. This resulted in 472
rojects.
GitHub archive. Since in the two previous datasets there is
prevalence of Java apps (also due to the fact that they were
uilt before the announcement by Google pushing Android apps
owards Kotlin), we ran a query on GH Archive7 using Google
igQuery, with the goal of identifying repositories having Kotlin
s the primary language. The query is available in our online
ppendix (Mazuera-Rozo et al., 2021). The aforementioned query
as run on March 1st, 2020, obtaining a list of 3967 repositories
s a result. We sorted these projects by number of stars (in

5 https://tcrn.ch/363AyBv.
6 https://f-droid.org.
7 https://www.gharchive.org.

https://developer.android.com/kotlin/first
https://dart.dev/
https://dart.dev/
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https://www.gharchive.org
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descending order) and selected the top 5% (i.e., 200 reposito-
ies) for manual analysis. In particular, we checked that the 200
epositories were real-world Android apps available on the Play
tore. From this screening, we obtained a list of 22 Kotlin apps to
onsider in our dataset.
We aggregated these three datasets and removed duplicates,

btaining a final list of 8157 open-source Android apps. The list is
vailable in our replication package (Mazuera-Rozo et al., 2021).
e cloned all 8157 repositories and ran on them a customized

ersion of git-vuln-finder (cve-search, 2020), a Python appli-
ation aimed at finding commits likely to fix a security weakness.
he search is based on a set of regular expressions applied on
he commit message (Zhou and Sharma, 2017). While most of the
sed regular expressions are applicable in the context of mobile
pps, the work by Zhou and Sharma (2017) focuses on web appli-
ations. Thus, we modified their tool by complementing the list
f regular expressions with others we defined by looking at the
ist of security weaknesses relevant to mobile apps and present
n the Common Weakness Enumeration (CWE8) version 4.0, a
ommunity-developed list of common software and hardware
ecurity weaknesses. Also, we considered a commit as relevant for
ur study if it explicitly mentions the name or id of any weakness
resent in the CWE dictionary. The adopted regular expressions
re publicly available (Mazuera-Rozo et al., 2021).
After running git-vuln-finder on the 8157 projects, we

dentified a set of candidate commits from which we removed du-
licates due to: (i) commits mined from both the master branch
nd other branches merged in the master; (ii) forked repositories.
lso, we decided to keep in our dataset only commits in which the
evelopers are modifying a single Java or Kotlin file (as identified
y their extension). The rationale behind this decision is two-fold.
irst, if a developer mentions in the commit note that she is fixing
security weakness and only one file is modified in the commit,
e can be sure that the fix happened in that file. Second, since
e aim at classifying the type of security weakness involved in
ach commit, understanding a fix spanning across many files can
e quite challenging, and lead to misclassifications.
This cleaning process resulted in a final list of 4781 candidate

ommits.

.1.2. Open coding
Given the 4781 commits collected in the previous step, we

anually analyzed 681 of them with the goal of describing,
sing a label, the type of security weakness fixed in the commit.
he number of inspected commits ensures a significance interval
margin of error) of ±5% with a confidence level of 99%. We did
ot use random sampling for the selection of the commits to
anually inspect. Indeed, in the set of 4781 candidate commits,

here are 4391 commits impacting a Java file, and 390 modifying
Kotlin file. Since we aim at comparing the types of security
eaknesses affecting these two main languages used to develop
ative Android apps, we decided to target the analysis of the
ame number of Java- and Kotlin-related commits. We targeted
he inclusion of 200 valid commits per language (i.e., excluding
ommits labeled as false positive since they are not related to
ecurity weaknesses’ fix).
The choice of 200 was tailored on the amount of commits

vailable for Kotlin, since we expected to find a substantial num-
er of false positives as result of the regular expressions used
o select the commits. By applying the process described in the
ollowing, we analyzed 360 Java-related commits (200 valid +

60 false positives) and 321 Kotlin-related commits (200 valid +

21 false positives).

8 https://cwe.mitre.org.
3

Table 1
Structure of the survey used in our study.
BACKGROUND QUESTIONS

Q1: In which country do you live?
Q2: What is your current job position?
Q3: How many years of programming experience do you have?

Q4: How many years of programming experience do you have concerning
native Android apps? Please specify overall/Java/Kotlin/Dart.

Q5: How many years of programming experience do you have concerning
the testing of native Android apps?

EXPERIENCE WITH SOFTWARE security weaknesses AND THEIR PERCEPTION

Q6: Which factors do you consider to estimate the likelihood of a security
weakness to be exploited?

Q7: Which factors do you consider to estimate the negative impact of a
security weakness in case it is exploited?

Q8: Which are the most common security weaknesses that you found?
Q9: Which security weaknesses do you consider as the most dangerous?
Q10: How do you detect security weaknesses? Do you use any specific tool
for this task?

Five authors took part to the labeling process that was sup-
ported by a web application. Each author independently labeled
the commits randomly assigned to her/him by the web appli-
cation, defining a ‘‘label’’ describing the security weakness fixed
in each commit. To define such a label the authors manually
inspected the diff of the commit and the message accompanying
it. As a guideline for the label definition, the authors used the
CWE 4.0 list. The authors reused as much as possible the list
of security weaknesses in CWE, defining new labels only when
needed. Moreover, the web application also showed the list of
labels created so far, allowing the author to select one of the
already defined labels. Since the number of possible labels (i.e.,
types of security weaknesses) is extremely high, such a choice
helps using consistent naming while not introducing a substantial
bias. In case the commit was not related to a security weakness
fix, a false positive label was assigned, discarding the commit
from the study. Each commit was assigned to two authors and,
in cases for which there was no agreement between the two
authors, the commit was assigned to a third author. Conflicts
arisen for 344 commits (∼50% of 681). While such a number
may look high, note that we considered as a conflict also cases
in which the authors used two slightly different labels to express
the same concept (e.g., CWE-703: improper check or handling of
exceptional conditions vs. CWE-754: improper check for unusual
r exceptional conditions). A total of 1706 labels was required
n order to reach our target of assessing and characterizing 200
alid commits per programming language: two labels per each of
he 400 valid commits (800), two labels for each of the 281 false
ositives we discarded (562), and one more label for each of the
44 solved conflicts (344).
As outcome, we present a taxonomy of software security

eaknesses identified in the manual analysis and we complement
ur discussion with qualitative examples.

.2. Survey with developers

We designed a survey aimed at investigating the types of se-
urity weaknesses that are found by developers in their apps and
heir perception about specific aspects of security weaknesses.
he survey was designed to last at most 15 min, to maximize
he survey completion rate. The survey structure is reported in
able 1. Note that we rephrased some of the questions to shorten
hem. First, we collected background information about partici-
ants (Q1 −Q5). If a participant answered ‘‘zero’’ to the part of Q4

related to the overall programming experience of native Android

https://cwe.mitre.org
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Fig. 1. Experience in years of the 43 surveyed participants.

apps,9 the survey ended, and the participant was excluded from
the study. This happened in 2 cases.

Then, Q6 − Q7 aimed to collect information about the devel-
pers’ perception of security weaknesses. For these questions we
rovided a predefined list of possible factors to check, with the
ossibility of specifying additional factors. For Q6, the predefined
ist included: Skill level required to exploit it, Motivation to exploit
it, Chances for a successfully exploit, Number of agents needed for
the exploit,10 Ease of discovery, Technical difficulty of the exploit,
How well-known is the weakness, and How likely is the exploit
to be detected. Concerning Q7: Confidentiality, Integrity, Availabil-
ity, Accountability, Brand reputation, Business profits, and Privacy
violation.

Q8 and Q9 aimed to validate/complement the taxonomy de-
fined as output of the manual study, with Q8 focusing on the
most frequent and Q9 on the most dangerous security weak-
nesses experienced by developers. Both these questions required
an open answer. Two authors read each answer and assigned
the CWE-ID(s) needed to describe the security weaknesses men-
tioned in each answer. A third author merged these tags and
solved conflicts arisen for 15 answers (18%).

Since a respondent might have answered the same for Q8
and Q9, duplicates among these answers were removed to avoid
counting twice the same security weakness mentioned by the
same developer.

Finally, Q10 asked developers how they detect security weak-
nesses and whether they are supported by any tool.

We used convenience sampling to invite developers from com-
panies we know to participate in our survey. Also, the link to
the survey was shared in social media. We collected answers
for ten days, with a total of 43 participants that completed our
survey from nine countries (i.e., Argentina, Canada, Colombia,
Germany, Hungary, Italy, Macedonia, Poland and USA). On av-
erage, the participants had ∼6 years of overall programming
experience and approximately 3 years of Android development
experience (see Fig. 1). The average testing experience is close to
two years. Regarding their job position, 21% of participants are
B.Sc. students, 7% M.Sc. students, 4.6% Ph.D students and 67.4%
professional Android developers having different job positions
in the industry (e.g., Senior Android developer, Technical leader,
Project Management Engineer, Director).

2.3. Testing the generalizability of our taxonomy

Once obtained the final taxonomy including both categories
defined through the mining-based study as well as those com-
plemented by the developers’ survey, we assessed its gener-
alizability. We used all 64 Kotlin-related commits we did not

9 With native Android apps we refer to mobile apps written in one of the
fficial programming languages of Android (i.e., Java and Kotlin).
10 With ‘‘agents needed for the exploit’’ we refer to the number of attackers
hat are needed to exploit a security weakness. Indeed, not all security issues
an be exposed by a single attacker.
 e

4

manually analyze while building our taxonomy and a sample of
186 Java-related (again, among those we did not analyze). Then,
we asked two Master students both having experience in Android
development and not involved in the taxonomy definition and
unaware of its structure, to perform the same manual analysis
previously described. Each of them independently evaluated all
instances. Conflicts arisen in 68% of cases were solved through
an open discussion between the two students and the first two
authors of this work. The final output is a taxonomy of security
weaknesses affecting Android apps, that we can compare with the
taxonomy we defined to assess its stability. While in principle
more Kotlin-related commits would be needed, we labeled all
those we found by mining several datasets of Android apps.

2.4. Data analysis

We start by presenting the taxonomy of types of software
security weaknesses output of our mining-based study. Then,
we discuss how the developers’ survey helped in validating/
complementing the obtained taxonomy. Finally, we report about
the results of the generalizability study. The data used in our
study are publicly available (Mazuera-Rozo et al., 2021).

3. Results

Fig. 2 depicts the taxonomy presenting the types of security
weaknesses we found. Each sub-hierarchy uses a different color,
with the black boxes representing the root categories.

The taxonomy is derived by a total of 400 commits (200 for
Java and 200 for Kotlin) we manually validated. However, there
are 14 commits that were grouped in the Unclear category since
in these cases, while it was clear the intent of fixing a security
flaw, we were unable to derive the type of fixed security weak-
ness. Each category in Fig. 2 is accompanied by one, two, or three
numbers. The two numbers with white background represent the
number of instances of the corresponding security weakness type
we found in Java (top number) and Kotlin (bottom). The one with
gray background represents the number of developers that men-
tioned the type of security weakness in our survey. Categories
added to our taxonomy as the result of the survey (e.g., CWE-
625: Permissive Regular Expression), only have a gray-background
number.

It is worth noting that some categories have only been found
in a few commits or have only been mentioned by developers
(but not found in the mining-based study). Concerning the first
case (i.e., low number of commits related to the category), we
preferred to still include those categories since, thanks to the
numbers attached to them, it is easy for the reader to assess
their relevance. In other words, it is clear from our taxonomy
that, for example, the prevalence of CWE-691 vulnerabilities (78
overall instances) is much higher as compared to CWE-779 (3
overall instances). Concerning the latter case (i.e., categories only
mentioned by developers), they increase the comprehensiveness
of our taxonomy; the fact that we did not find them in the
analyzed sample of commits does not make them less relevant for
our study. Indeed, while we analyzed a substantial set of commits
(400), it is reasonable to expect that we did not encounter specific
types of vulnerabilities in our study (as we will also show in
Section 3.4).

In addition, it is worth mentioning the hierarchical organiza-
tion of the categories, moving from the most general categories
(i.e., the root nodes, such as CWE-710), to more specialized ones
(e.g., CWE-1164) down to the leafs (e.g., CWE-1069). The sum of
nstances for all child categories of a given node is lower or equal
han the number of instances reported in its parent node. For

xample, CWE-1069 and CWE-561 are the two child categories
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Fig. 2. Types of security weaknesses found in Java and Kotlin android apps.
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Table 2
Definition of categories created by authors not existing in CWE dictionary.
Categories Common consequences

Missing code obfuscation Non-obfuscated code is susceptible to reverse
engineering allowing an attacker to retrieve
sensitive information from a system.

Double serialization Data mishandling can lead to a degradation of
its integrity quality.

Exposure of sensitive
information through user
interface

Sensitive information could be exposed within
the GUI to an actor that is not explicitly
authorized to have access to that information.

File URI exposed A file can be made unsafely accessible from
other apps providing unintended actors with
inappropriate access to the resource.

Component hijacking A vulnerable component within an app can be
seized by an actor to gain privileges in order
to conduct operations originally prohibited.

of CWE-1164 (top-left corner of Fig. 2). CWE-1069 and CWE-561
have 1 and 11 Java-related instances, respectively, while their
parent category CWE-1164 has 18 Java-related instances. This is
due to the labeling process since we assigned to each commit the
most specific security weakness type we could derive from the
manual inspection. Thus, for 12 of the 18 commits belonging to
CWE-1164 we managed to provide a more specific categorization,
resulting in the two child categories, while for 6 of them CWE-
1164 was the most detailed label we could assign. Finally, some
categories are not linked to any CWE-ID. These categories are
either (i) aggregating some sub-categories for better visualization,
or (ii) created by the authors since they did not find a proper type
within the CWE dictionary to classify an instance (See Table 2).

We start by discussing the categories output of the manual
analysis (Section 3.1), presenting then the main differences be-
tween Java and Kotlin-related security weaknesses (Section 3.2),
and then discussing how the developers survey validated/
complemented our taxonomy (Section 3.3). Finally, we present
the results of the further manual validation performed by two
Master students to test the generalizability of our taxonomy. We
use icons to highlight parts related to implications for researchers
( ) and practitioners ( ).

3.1. Mining-based study

(1) Improper Control of a Resource Through its Lifetime (145
instances - 36.25%). It includes security weaknesses related to not
maintaining or incorrectly maintaining control over a resource
throughout its lifetime of creation, use, and release, leading to
potentially exploitable states.

A strongly represented type in this category is CWE-557: Con-
urrency Issues, being prominent in both Java (29 instances) an
otlin (40).
Fig. 3 depicts an example of a concurrency issue in Kotlin code

n which the developer is modifying the nature of the collection
eing used.
The collection type mutableMapOf is replaced with a

oncurrentHashMap, preventing concurrency issues. The auto-
atic detection and fixing of the type of code issues reported in

he example can be easily targeted through approaches support-
ng Change Variable Type refactoring.

A customization of these techniques is needed to embed a
et of ‘‘change type’’ rules that are relevant for security weak-
esses (e.g., replace mutableMapOf with ConcurrentHashMap

if the class extends Thread).
Another common weakness related to the improper control of

resources is CWE-668: Exposure of Resource to Wrong Sphere, with
1 instances found in Java and 8 in Kotlin. CWE-668 arises when
6

Fig. 3. Usage of thread-safe collection.

Fig. 4. Exposing private information in the interface.

a resource is inadvertently exposed due to insecure permissions
or unexpected execution scenarios. Fig. 4 shows Kotlin code in
which the developer sets the FLAG_SECURE to a window showing
a password in the app.

The added flag asks the window manager to disable screen
recording/capturing when the showPassword method is exe-
cuted. The usage of this flag in windows containing sensitive
information is recommended in the official Android documen-
tation. Also in this case, techniques can be developed by
researchers to automatically identify features in code that (i) deal
with sensitive information that can be detected through sim-
ple keyword matching mechanisms (e.g., looking for words like
‘‘password’’), and (ii) are in charge of displaying windows. Then,
a simple automatic addition of proper flags can avoid potential
points of attack. Such a security issue is also documented in Stack
Overflow.11

This suggests the potential usefulness for developers of
recommender systems able to point out them to relevant Stack
Overflow discussions while writing code (e.g., Prompter Pon-
zanelli et al., 2016). Making the developer aware of such issues
at coding time can avoid the introduction of the security flaw in
the first place.

Other types of security weaknesses that are less diffused but
still relevant in the context of controlling resources are: CWE-
178: Improper Handling of Case Sensitivity (12 cases) and CWE-665:
Improper Initialization (13). The complete dataset of labeled weak-
nesses is available in the replication package (Mazuera-Rozo et al.,
2021).

(2) Improper Adherence to Coding Standards (98 instances -
24.50%). This category frames security weaknesses present in soft-
ware due to ignored development best practices. The most rep-
resented sub-category for both programming languages is CWE-
1164: Irrelevant Code, with 18 Java and 19 Kotlin instances. This
category is related, for example, to the presence of dead code in
the apps (i.e., code that is not executed in any of the app’s fea-
ture). Such a code, while not executed in the normal app’s usage,
can still be unintentionally invoked/tested by software develop-
ers, or even exploited and executed by an attacker. The execution
of dead code can be particularly dangerous since it is often not
maintained with the latest security-related updates. Moreover,

11 https://stackoverflow.com/questions/9822076.

https://stackoverflow.com/questions/9822076
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notice that for both investigated languages, dead code is not
removed from the APK (i.e., the compiled app) after compilation.
esides being possibly exploited, dead code can ‘‘come back to
ife’’ by mistake, thus leading to unexpected consequences. For
xample, the implementation of a new feature can by mistake
e invoking an old (dead) implementation of a method accessing
he database, leading to a loss of information when the app is de-
loyed. In addition, dead code ‘‘might indirectly make it easier to
ntroduce security-relevant weaknesses or make them more diffi-
ult to detect’’.12 When dead code is identified, two strategies are
sually adopted by developers to remove it (Romano et al., 2020):
i) adding a explanatory comment before the dead fragment in
uestion in which the developer mentions that the fragment it
s or could be dead; and (ii) commenting out the code, leaving it
vailable for future usage. The latter strategy is the one that has
een applied in one of the fixing commits we inspected. The de-
eloper is commenting out dead code that seems to be related to
he management of contacts in the database. Two days before this
ommit, the same developer added a comment on top of the dead
ode saying //TODO: what is this for again? (see changes to
ile MVP_Activity_Contacts in commit f0801d88).

The prevalence of CWE-561: Dead Code weaknesses in our
axonomy confirms the importance for researchers to investigate
pproaches able to automatically identify code components that
an be removed without ripple effects on the code functionalities.

To the best of our knowledge, very few tools are available for
this task such as the one by Romano et al. (2020), the Android Lint
tool (Google, 2019b), and the Kotlin DCE plugin (Kotlin, 2019).

Another prevalent type of security weaknesses related to cod-
ng standards are the ones grouped in the Serialization issues
ategory. A simple yet frequent issue we identified is the lack of
unique serialVersionUID in serializable classes, something

expected in Java. Indeed, this identifier is stored with the serial-
ized object and it is verified when deserializing it, thus to avoid
data integrity issues.

All other first-level subcategories in the ‘‘coding standard’’ tree
have less than ten total instances and, in several cases, are only
related to one of the investigated languages (see Fig. 2).

The categories added as result of our survey will be discussed
in Section 3.3.

(3) Improper Check or Handling of Exceptional Conditions (84
instances - 21%). This category includes weaknesses that can lead
to unpredictable behavior due to the improper or missing han-
dling of exceptional conditions rarely occurring during the normal
operation of the app. Within this category, the most represented
type of security weakness is CWE-707: Improper Neutralization,
appening when messages and/or data are not properly checked
o be well-formed, valid, or benign (i.e., the exceptional condition
f malformed messages/data is not properly handled). This cate-
ory is mostly composed by cases related to CWE-20: Improper
nput Validation (e.g., issues related to the improper validation
f the password in a login form, such as commit 4875515b in
he ccomeaux/boardgamegeek4android app, which could lead to
future credential management error). This type of issues can
e addressed by relying on dynamic analysis, and in particular
n fuzz testing, which aims at feeding unexpected input data
hat may generate crashes, exploit security weaknesses, or induce
nexpected states in the app.

Several tools for this scope exist nowadays (Arzt et al., 2014;
oogle, 2019c; Ye et al., 2013; Huang et al., 2019; Cai and Jenkins,
018; Fang et al., 2015; Nilizadeh et al., 2019), thus giving to prac-
itioners a vast repertory of available options that can be adopted
or their testing activities. However, these tools work on Java
nd to the best of our knowledge, there are neither proposals of

12 https://cwe.mitre.org/data/definitions/561.html.
7

Fig. 5. Unauthorized user must not be able to resume an activity.

fuzzers that work at source-code level for Kotlin nor Dart/Flutter.
In the case of Kotlin, fuzzers at the Java bytecode level could be
used, however, this is not the case for Dart/Flutter apps because
the Dart language is not JVM-based. Therefore, we encourage the
research community to devise fuzzers and benchmarks for Kotlin
and Dart such as e.g., FuzzBench (FuzzBench, 2021).

Another well-represented subcategory is CWE-248: Uncaught
xception, that may cause the program to crash and/or expose
ensitive information. Uncaught exceptions are a well-known
ssue in Android apps, especially when apps strongly rely on
ndroid abstractions (e.g., activities, asynctasks, etc.) (Oliveira
t al., 2018). The prevalence of this type of weakness in our tax-
nomy, supports previous findings reported in the literature,
and highlights the potential usefulness for developers of tools

developed in academia to automatically test Android apps using
systematic input generation (see e.g., Liñán et al., 2018; Li et al.,
2017).

(4) Protection Mechanism Failure (59 instances - 14.75%). These
ecurity weaknesses are related to the incorrect restriction of
ccess to a resource from an unauthorized actor.
Thus, an attacker can compromise the security of the app by

aining privileges, accessing sensitive information, etc Most of
he weaknesses in this category are related to CWE-287: Improper
uthentication. Fig. 5 shows an example of this type of security
eakness, in which the developer fixes a security bug due to the
issing authentication step in a feature requiring the user to have
valid authorization.
While most of the cases in this category are simple program-

ing mistakes (e.g., a wrong/missing if statement), these bugs
re difficult to catch and automated testing tools are of little
elp here, since mostly focused on identifying app crashes. The
evelopment of approaches relying on machine learning (ML) to
utomatically discriminate apps’ features that can be accessed
ith/without authentication could help.
This would require the existence of a large training set of apps

omponents (e.g., GUIs) labeled with their need for authentication
e.g., a simple boolean). Assuming the feasibility of this ML-based
pproach, exploratory testing can then be used in combination
ith it to identify apps’ features that should not be accessi-
le without authentication but that, instead, can be reached by
andomly exploring the app without a valid authentication.

In this category we also found cases related to CWE-798: Use
f Hard-coded Credentials, such as commit f92221f from the
serLAnd app. 13 These cases are mostly due to hard-coded

13 https://github.com/CypherpunkArmory/UserLAnd/commit/f92221f.

https://cwe.mitre.org/data/definitions/561.html
https://github.com/CypherpunkArmory/UserLAnd/commit/f92221f
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Fig. 6. Exposing token within GET request.

credentials most likely for testing purposes. However, using these
credentials and having them available in repositories and/or URLs
could lead to attacks.

Finally, representative of the Improper Access Control category
s also the commit in Fig. 6 . Before the fix, the app was sending
private token as a parameter within a GET request, which
akes the token visible to anybody that can catch the URL, then
xposing it and potentially allowing a Man-in-the-Middle attack,
herefore under such circumstances an attacker could imperson-
te the user to whom the token belongs. The commit fixes this
ssue by removing the problematic code.

In the case of the example, a private token was sent as a
arameter of a GET request, which makes the token visible to
nybody that can catch the URL. This type of tokens are user to
ake the server know that the client sending the HTTP message is
valid/certified/authorized client, in that sense if authentication
okens are visible when sending an HTTP message, the user
ending the token can be impersonated.
The identification of leaks for security-related information in

obile apps is an active research area (Bello-Jiménez et al., 2019),
ith approaches extracting data from the apps’ local databases
nd shared preferences to identify sensitive information that is
ot properly encrypted and/or anonymized.

Identifying security-related information passed through
uery strings in URLs is a needed complement to these ap-
roaches.

.2. Java vs. kotlin

This section compares the distribution of security weaknesses
e observed in Java and Kotlin code. We focus on second-level
ategories (i.e., the direct child nodes of the root categories). We
o not consider in this discussion categories in which there are
ess than ten overall instances when summing up the weaknesses
or Java and Kotlin. Indeed, whatever observation made for these
ategories may be due to the low number of instances in the cat-
gory. Also, it is worth noting that our goal is simply to highlight
he differences we found in our taxonomy. Indeed, explaining
he reasons for the observed differences without best-guessing
s not possible with the available empirical data. A different ex-
erimental design targeting this RQ is needed to properly answer
t.

We found a balanced distribution of Kotlin/Java instances
mong most of the subcategories. In particular, no major differ-
nces are observed in the subtree related to CWE-710: Improper
dherence to Coding Standards. Instead, when moving to the CWE-
64: Improper Control of a Resource Through its Lifetime subtree, we
bserve a slight prevalence of Kotlin-related security weaknesses.
This is mostly due to more issues related to improper thread

ynchronization and handling of case sensitivity (i.e., the code
oes not properly handle differences in case sensitivity, possibly
eading to inconsistent results).

Concerning the CWE-703: Improper Check or Handling of Ex-
eptional Conditions tree, the main category exhibiting differences
8

s the one related to uncaught exceptions, with a prevalence of
ava-related security weaknesses (15 vs. 7).

Finally, no major differences have been observed for what
oncerns CWE-693: Protection Mechanism Failure.
Summarizing, the distribution of types of security weaknesses

cross Java and Kotlin seems to be quite similar.
This suggests that previous findings reported in empirical studies
about security weaknesses in Java Android apps are likely to
generalize to Kotlin apps as well, at least for what concerns the
security weaknesses diffusion.

3.3. Survey with developers

Our taxonomy has been validated/complemented through the
survey we performed with software developers. In the devel-
opers’ answers to Q8 and Q9 (see Table 1), we found mentions
o 87 software security weaknesses, that can be classified into
he 28 types labeled with a gray number (i.e., the number of
evelopers who mentioned that security weakness type) in Fig. 2.
ut of these, 22 were already part of our taxonomy as out-
ut of the mining-based study, while six were added: CWE-269:
mproper Privilege Management, CWE-325: Missing Required Cryp-
ographic Step, CWE-625: Permissive Regular Expression, CWE-1104:
se of Unmaintained Third Party Components, Hijacking, and Miss-
ng Code Obfuscation. The fact that 78% of the security weakness
ypes mentioned by developers (22/28) were already part of
ur taxonomy, provides a good level of confidence about its
omprehensiveness.
The most common security weaknesses (Q8) mentioned by

he surveyed developers can be easily seen in Fig. 2, with those
elonging to the CWE-693: Protection Mechanism Failure and CWE-
64: Improper Control of a Resource Through its Lifetime trees
epresenting 81% of the mentioned security weaknesses (71/87).
here is a common thread we found when analyzing the answers
rovided to Q9, meaning the most dangerous weaknesses per-
eived by developers. All developers are mostly worried about
nauthorized access to sensitive, private data stored in the app
r sent/received through/by it. Some of the (shortened) answers:
‘vulnerabilities related to confidentiality, since they can expose user
nformation’’, ‘‘wrong/missing encryption of data being stored within
he app’’, ‘‘the leak of user personal information’’.

Answers to Q9 confirm the importance of research studying
ecurity weaknesses related to data stored/manipulated
y the apps (Arzt et al., 2014; Bello-Jiménez et al., 2019; Zhang
t al., 2013).
An orthogonal view about the harmfulness of security weak-

esses as perceived by developers is given by the answers to Q6
(i.e., the factors impacting the likelihood of a security weakness to
e exploited) and Q7 (i.e., the factors impacting the harmfulness

of the security weakness if exploited).
Developers pointed to technical aspects when answering Q6,

ndicating the difficulty of exploiting a security weakness as more
mportant than the motivation to exploit it (i.e., the actual gain
an attacker gets). Indeed, the difficulty of exploiting has been
mentioned by 79% of the surveyed developers, as compared to the
∼56% mentioning the potential gain. Answers to Q7 stress again
the importance for developers of protecting sensitive information,
with most (88.3%) of the respondents reporting confidential-
ity and privacy violations as the main factors impacting the
dangerousness of a security weakness.

Finally, we analyze the answers provided for Q10, related to the
tools used by developers to detect security weaknesses. None of
the surveyed developers mentioned tools developed in academia.
Clearly, this does not mean that the adopted tools do not use any
idea proposed in the literature.

Among the mentioned ones (available in our replication pack-
age) there are AppScan from IBM (2020), Infer from Facebook
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Table 3
Security weaknesses mentioned by developers: Available tools.
Security weaknesses Tools

CWE-20: Improper input validation DifFuzz (Nilizadeh et al., 2019), DroidFuzzer (Ye et al., 2013), EvoTaint (Cai and Jenkins, 2018), Flowdroid
(Arzt et al., 2014), Huang et al. (2019), IVDroid (Fang et al., 2015), Monkey (Google, 2019c)

CWE-89: SQL Injection OPIA (Bello-Jiménez et al., 2019), Kul et al. (2018)

CWE-200: Exposure of sensitive information to
an unauthorized actor

AppFence (Hornyack et al., 2011), AppIntent (Yang et al., 2013), AutoPatchDroid (Xie et al., 2017), Blackdroid
(Zhang et al., 2013), CoChecker (Cui et al., 2014), ComDroid (Chin et al., 2011), ContentScope (Zhou and Jiang,
2013), Covert (Bagheri et al., 2015), CredMiner (Zhou et al., 2015), Flowdroid (Arzt et al., 2014), IccTA (Li
et al., 2015), Kul et al. (2018), Matsumoto and Sakurai (2013), MITHYS (Conti et al., 2013), M-Perm (Chester
et al., 2017), OAUTHLINT (Rahat et al., 2019), Onwuzurike and De Cristofaro (2015)

CWE-269: Improper privilege management AppProfiler (Rosen et al., 2013), AppGuard (Backes et al., 2013), AutoPatchDroid (Xie et al., 2017), AWiDe
(Demissie et al., 2016), Bartsch et al. (Bartsch et al., 2013), CoChecker (Cui et al., 2014), Covert (Bagheri et al.,
2015), DroidChecker (Chan et al., 2012), Droidtector (Wu and Liu, 2019), Lintent (Bugliesi et al., 2013),
M-Perm (Chester et al., 2017), PaddyFrog (Wu et al., 2015)

CWE-284: Improper access control ContentScope (Zhou and Jiang, 2013)
CWE-311: Missing encryption of sensitive data DroidSearch (Rasthofer et al., 2015), OPIA (Bello-Jiménez et al., 2019)
CWE-325: Missing required cryptographic step CrypLint (Egele et al., 2013)

CWE-312: Cleartext storage of sensitive
information
CWE-922: Insecure Storage of Sensitive
Information

Blackdroid (Zhang et al., 2013), CredMiner (Zhou et al., 2015), Flowdroid (Arzt et al., 2014)

CWE-359: Exposure of private personal
information to an Unauthorized Actor
CWE-798: Use of Hard-coded Credentials

Flowdroid (Arzt et al., 2014), Kul et al. (2018), M-Perm (Chester et al., 2017), CredMiner (Zhou et al., 2015)

Component hijacking ActivityHijacker (Wang et al., 2016), AppSealer (Zhang and Yin, 2014), CHEX (Lu et al., 2012), ComDroid (Chin
et al., 2011), Ren et al. (2015), You et al. (2016)
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(2020), SonarQube (2020), and pre-launch reports given by
Google Play when uploading the app to the market. Then, we
looked into the relevant literature for tools that can be used by
developers to detect the types of security weaknesses they more
often face or they perceive as more dangerous (i.e., previously
nalyzed answers to Q8 and Q9). Table 3 reports categories of

security weaknesses with corresponding references presenting
approaches for their detection. Some categories are merged in a
single row since their security weaknesses are quite similar, and
approaches related for one category should work for the other as
well. For 12 of the 28 types of security weaknesses mentioned
by developers we found at least one approach supporting their
automatic detection. On the one side, this shows that the
esearch community is working on security weaknesses that
re relevant for developers. On the other side, the developed
pproaches are unknown (at least) to our small pool of sur-
eyed developers. This may also be due to the unavailability of
ndustry-strength products implementing these approaches.

.4. Stability of the taxonomy

Among the 250 commits analyzed by the two Master students
see Section 2 for details), 73 were classified as false positives for
ava and 24 for Kotlin. This left us with 153 valid instances that
ave been used for the construction of the validation taxonomy
See Fig. 7). Looking at it, it can be seen that 85% of the identified
ategories are already covered in our taxonomy and only 8 new
ategories were identified (i.e., CWE-22: Improper Limitation of a
athname to a Restricted Directory, CWE-372: Incomplete Internal
tate Distinction, CWE-392: Missing Report of Error Condition, CWE-
00: Uncontrolled Resource Consumption, CWE-446: UI Discrepancy
or Security Feature, CWE-474: Use of Function with Inconsistent
mplementations, CWE-544: Missing Standardized Error Handling
echanism, and CWE-766: Critical Data Element Declared Public).
lso, all these categories are child of one of our root categories.
his indicates a good generalizability of our taxonomy. Addition-
lly, although the proportion of Kotlin artifacts is considerably
ower than the amount of Java ones, it is worth noting that in the
wo taxonomies the distribution of types of security weaknesses
cross Java and Kotlin is similar.
 R

9

4. Threats to validity

Construct validity. We identified through manual analysis the
ypes of security weaknesses fixed by developers. To mitigate
ubjectivity bias, two authors have been assigned to each commit
nd, in case of conflict, the commit was assigned to a third
valuator.
Also, when the type of security flaw being fixed was not

lear, we assigned the ‘‘unclear’’ tag rather than best-guessing the
lassification. Despite this mitigation strategies, imprecisions are
till possible.
Concerning the survey, we tried to not bias the participants’

nswers especially in the context of questions asking for the most
ommon/dangerous security weaknesses they faced in their apps.
or this reason, we did not provide a multiple choice answer but
e used an open answer.
Internal validity. In the survey, we collected information

bout the background of the participants, and excluded develop-
rs having no experience with native Android apps. For the man-
al study, we acknowledge that we only analyzed one specific
ource of information (i.e., security weakness-fixing commits) and
his may have an impact on the derived taxonomy. Similarly, we
nly included in the manual analysis commits that impacted a
ingle file, to make sure that the ‘‘security weakness’’ mentioned
n the commit message was located in that file. Again, this could
ave affected the resulting taxonomy.
External validity. We manually analyzed a total of 681 secu-

ity weakness-fixing commits coming from 315 apps. However,
ue to the removal of false positives and ‘‘unclear’’ instances, our
axonomy is based on 386 actual instances. Also, we asked two
aster students to analyze an additional set of 250 instances to

est the generalizability of our taxonomy. Analyzing additional
nstances and other orthogonal sources of information (e.g., )
ould complement our taxonomy. As for the survey, we collected
total of 43 complete answers. While this number is limited, it is
n line with many previously published survey studies in software
ngineering (see e.g., Dagenais et al., 2010; Canfora et al., 2012;
omano et al., 2020).
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Fig. 7. Validation taxonomy of types of security weaknesses found in java and Kotlin android apps.
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Table 4
Empirical studies on security weaknesses in Android apps.
Ref. Year Brief summary Size Types Categories

Felt et al. (2011) 2011 Detection of overprivileges in Android apps #a: 940 10 1
Enck et al. (2011) 2011 Identification of vulnerabilities’ root causes #a: 1100 8 1
Egele et al. (2013) 2013 Cryptographic misuse in Android apps #a: 11k+ 6 1
Zuo et al. (2015) 2015 Detection of SSL error-handling vulnerabilities #a: 13,820 1 1
Bagheri et al. (2015) 2015 Analysis of inter-app security vulnerabilities #a: 500 2 1
Ahmad et al. (2016) 2016 Developers challenges for inter-app communication #a: 52k 3 1
Weir et al. (2020) 2020 Survey on developer practices for app security #a: 454 3 1
Gao et al. (2021) 2021 Temporal evolution of vulnerabilities in Android apps #a: 465,037 10 4

This paper Taxonomy of security weaknesses #a:8157 #c:4781 80 5
5. Related work

Several techniques have been proposed to detect, and in some
ases fix, vulnerabilities in mobile apps (e.g., Arzt et al., 2014;
i et al., 2015; Sadeghi et al., 2017; Lee et al., 2017; Singleton
t al., 2019; You et al., 2016; Bello-Jiménez et al., 2019). We focus
n studies investigating security-related aspects in Android apps,
ince these are the most related to our work. Table 4 provides an
verview of the discussed studies, reporting for each reference,
he year of publication, a brief summary of its contribution, the
ize of the dataset including the number of analyzed apps (#a)
r commits (#c) since our paper reports this information, along
ith the number of security weaknesses types and categories that
ave been outlined.
Felt et al. (2011) identified over-privileges in the permissions

e.g., bluetooth, read contacts) of one-third of the 940 Android
pps they analyzed. 10 most common unnecessary permissions
re identified, and the percentage of overprivileged applications
aries from 5% to 16%. The authors point out that this is mainly
ue to developers not interpreting correctly the API documenta-
ion. The results of our work, and especially of our survey, sup-
ort the relevance of permissions for the vulnerabilities affecting
ndroid apps.
Enck et al. (2011) investigated the root causes of vulnera-

ilities in 1100 free Android apps. The authors find misuse of
ensitive information (i.e., phone identifiers and geographic lo-
cation) among the root causes. Android-specific vulnerabilities
relate all to the sensitivity of data, and 8 different types are
identified, e.g., leaking information to logs, unprotected broadcast
receivers, etc. The security of Android APIs was also considered
insufficient, but no vulnerability was found able to maliciously
control the apps.

The mishandling of sensitive information is also a prevalent
aspect in our taxonomy.

Egele et al. (2013) used a static analysis technique to capture
cryptographic misuses in 11k+ apps. They showed that 88% of
the analyzed apps do not correctly use cryptographic APIs. This is
mainly due to the lack of inter-procedural analysis that correlates
multiple functionalities (e.g., encryption and decryption) within
a method instantiation. Focus here is on cryptography, and 6
different types of violations (e.g., constant encryption keys) have
been highlighted. Instances of issues related to cryptography are
found both in Java and Kotlin in our taxonomy.

Sufatrio et al. (2015) presented a secondary study reviewing
the literature about existing security solutions for Android apps.
The taxonomy is relevant for five deployment stages, i.e., develop-
ment, availability on markets, installation on a device, execution,
and security settings modification. It surveys existing work, it
does not rely on a specific dataset of analyzed apps/commits, but
it elaborates on the literature to derive a taxonomy including 5
categories and 18 types of security vulnerabilities that should be
prevented.

Zuo et al. (2015) exploited static and dynamic analysis to

detect apps opening https web pages with illegal certificates.

11
It targets a specific category of vulnerabilities, i.e., the privacy of
the communications. The developed framework detects a specific
type of violation, i.e., ignoring the illegal certificate error and
proceeding with the sending of sensitive information over an
insecure communication channel. Bagheri et al. (2015) analyzed
inter-app and inter-component security vulnerabilities in 500
apps. Specifically, a formal model expressing security properties
of apps/components is extracted and a model checker verifies
the safety of simultaneously running two apps that may interact
while holding certain permissions. This research focuses on iden-
tifying a specific category of vulnerability, i.e., privilege escalation
— an application with less permissions can be not restricted
to access components of a more privileged application–. Two
types of detection strategies are adopted: (i) entities that can be
inferred from a method; (ii) vulnerable paths of communication
between entities. Also Ahmad et al. (2016) analyzed inter-app
communication (IAC) in 52k apps, where the focus is on different
types of actors involved in IAC (Library, Caller, and Callee), which
are recognized as types of entities potentially vulnerable. Overall,
these works (Zuo et al., 2015; Bagheri et al., 2015; Ahmad et al.,
2016) focus on a specific category of security vulnerabilities that,
also due to the nature of our investigation (intentionally meant
to be more general), we did not identify in our study.

Android devices and the operating system have been also
investigated. Meng et al. (2018) presented a taxonomy of 63
device exploits (i.e., vulnerabilities leading to privilege escalation)
grouped in 3 main categories that are related to perspectives:
societal, practical, and technical. It is shown that the diffusion of
exploits is decreasing due to Android systems and Linux kernels
strengthening their security mechanisms. Our study does not
limit its focus to exploits, but looks at security weaknesses from
a more general perspective.

Jimenez et al. (2016) presented a taxonomy of 43 issues
related to Android OS vulnerabilities by leveraging the CVE-
NVD (Common Vulnerability Exposures - National Vulnerability
Database) database whose size is left unspecified. The authors
found that Android vulnerabilities related to the code mainly
belong to 9 categories (e.g., resource management, handling data,
etc.). They are mainly located in components dealing with brows-
ing, cryptography, access control or networking. Also the fixing of
vulnerabilities is investigated looking at the distribution of code
changes, and most of them related to the additions of condi-
tion(s), authorization, functions, etc (Mazuera-Rozo et al., 2019)
also performed empirical studies on the Android OS to categorize
the types of the vulnerabilities (e.g., denial of service, improper
authorization), their evolution overtime and their survivabil-
ity. Security weaknesses are grouped in 14 categories where
154 types (e.g., credentials management, improper authorization,
transmission of sensitive information, etc.) have been identified.
Besides, vulnerability patches (e.g., check for exceptional condi-
tions, proper handling of certificates, appropriate initialization
values for variables) are analyzed to investigate the most used
fixes. Our work, while related, focuses on security weaknesses

affecting Android apps rather than the Android OS.
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Weir et al. (2020) conducted a survey on the effect of re-
uirements and developer practices on apps’ security. For app
evelopment, security is perceived relevant by the participants,
ven if assurance techniques are poorly used. The survey refers
o a set of 454 apps, and 335 developers were using tools suitable
o check the following 3 types of weaknesses: SSL security, cryp-
ographic API misuse, and privacy leaks. As result, a portion of
articipants have been classified as security specialists and they
dvocated the usage of cryptography to enforce security.
Gao et al. (2021) investigated the temporal evolution of vul-

erabilities in Android apps. Vulnerable code is detected in terms
f which locations (e.g., library code) are more common than
thers, the types of code change (e.g., the addition of new files)
hat may entail security-related issues, and also if there is a
orrelation with malwares. The list of considered vulnerabilities
s constituted of 4 categories (i.e., security features, permissions,
njection flaws and data/communication handling) and 10 types,
ach associated to a detection tool providing evidence of the
orresponding vulnerability.
To the best of our knowledge, our work represents the first

nd most comprehensive taxonomy of security weaknesses in
ndroid apps, including both Java and Kotlin app-related code.
esides, our taxonomy is the result of a two-phase study, in-
olving the inspection of software-related artifacts (i.e., security

weakness-fixing commits) and a survey with software develop-
ers. The derived taxonomy is more comprehensive and extensive,
covering 18 of the 20 issues analyzed in previous papers by
Enck et al. (2011), Egele et al. (2013), Zuo et al. (2015), Bagheri
et al. (2015), Jimenez et al. (2016), Weir et al. (2020), and Gao
et al. (2021). Finally, we focus on both Java and Kotlin code re-
cently suggested in Coppola et al. (2019), while only Java-related
security weaknesses are analyzed in previously mentioned works.

6. Conclusions

We presented the first available taxonomy of security weak-
nesses in Android apps that covers both Java- and Kotlin-related
code. Our taxonomy features 80 types of software security weak-
nesses, and it is the result of both a mining-based study in which
we manually inspected 681 commits fixing security weaknesses
(that contributed 74 types of security weaknesses), and a survey
performed with 43 developers (contributing six additional types).
Our results discussion resulted in the identification of several
lessons learned for both practitioners (see the icon in Section 3)
nd researchers ( icon).
Our future work will be mostly driven by the findings dis-

ussed in Section 3. In particular, we plan to focus on the def-
nition of techniques able to detect (and possibly automatically
ix) security weaknesses that are (i) not currently supported by
xisting detection tools, (ii) frequently spread in real Android
pps, and (iii) relevant for software developers. Besides, we are
nterested to investigate the portability of methodologies and
ools detecting Java-based weaknesses in Kotlin-based code, to
nderstand which changes are needed to enable interoperability
etween the two languages. Our study provides the foundations
or such a research agenda.
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