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Geological settings, such as reservoirs, include fractures with different material properties 
and geometric features. Hence, numerical simulations in applied geophysics demands 
for computational frameworks which efficiently allow us to integrate various fracture 
geometries in a porous medium matrix. This study focuses on a modeling approach 
for single-phase flow in fractured porous media and its application to different types 
of non-conforming mesh models. We propose a combination of the Lagrange multiplier 
method with variational transfer techniques for simulating flow through fractured porous 
media by employing complex non-conforming geometries as well as hybrid- and equi-
dimensional models and discretizations. The variational transfer is based on the L2-
projection and enables an accurate and highly efficient parallel projection of fields between 
non-conforming meshes (e.g., between fracture and porous matrix domain).
We present the different techniques as a unified mathematical framework with a 
practical perspective. By means of numerical examples we discuss both, performance and 
applicability of the particular strategies. Comparisons of finite element simulation results 
to widely adopted 2D benchmark cases show good agreement and the dual Lagrange 
multiplier spaces show good performance. In an extension to 3D fracture network, we first 
provide complementary results to a recently developed benchmark case and afterwards 
we explore a complex scenario which leverages the different types of fracture meshes. 
Complex and highly conductive fracture networks are found more suitable in combination 
with embedded hybrid-dimensional fractures. However, thick and blocking fractures are 
better approximated by equi-dimensional embedded fractures and the equi-dimensional 
mortar method, respectively.
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1. Introduction

Fluid flow through fractured porous media is a crucial process in the context of numerous subsurface applications, e.g. 
groundwater management, geothermal energy utilization, CO2 sequestration, hazardous waste storage, and enhanced oil 
and gas recovery [1–8]. Often, fluid flow velocities in fractures and in the porous medium matrix range over many orders 
of magnitudes. Therefore, single fractures and networks of fractures largely govern the characteristics of fluid transport 
in fracture-dominated porous media. More specifically, the detailed fracture geometry of each individual fracture has a 
significant influence on the fluid flow in a fracture-dominated system. Both the values of the aperture width of a fracture 
and those of the permeability of its infilling material, can vary over several orders of magnitudes. As a consequence, these 
two aspects lead to strong differences in the transmissivity and therefore the fractures ability to permit fluid transport. 
Thereby, the presence and permeability of an infilling material determines if a single fracture acts as a conduit or a barrier 
for fluid flow [9–12].

A detailed description of fluid flow through fractured porous media therefore requires comprehensive knowledge about 
the hydraulic properties of each individual fracture. Such properties are very difficult to obtain in the field and a detailed 
deterministic description of such systems is not possible [13]. Consequently, stochastic investigations are universally con-
ducted to describe fractured media and to account for associated uncertainties [14,9]. Due to the large number of forward 
simulations required by stochastic studies, highly efficient and accurate numerical methods and mesh generation approaches 
are needed [15–19].

For the numerical modeling of the fractured systems, two method classes are widely used: continuum models and 
discrete fracture models. In the class of continuum models, fractures and porous-medium matrix are represented by separate 
continua within the same geometric mesh [20–23]. Effective flow properties are obtained by upscaling and information 
between the continua needs to be transferred. In the class of discrete fracture models, fractures are represented as discrete 
domains in a numerical mesh [24,25]. Here, two concepts are distinguished where the porous-medium matrix is either 
represented in discrete-fracture-matrix models (DFM) or neglected in discrete-fracture-networks models (DFN) [26,9]. In 
classic DFMs, fracture and porous-medium matrix domains are explicitly meshed and conforming at the domain interface, 
i.e. conforming geometry and discretization [27–30]. Due to the large complexity of fracture networks, mesh generation for 
such conforming DFMs can be very challenging and time consuming [31–33]. Such challenges occur in the matrix mesh 
domain as well as the fracture mesh domain.

Due to the large length-to-width ratio of many fractures it is common to use lower-dimensional elements to represent 
the fracture domain, e.g. [34–37]. This avoids elements with large aspect ratios in the fracture mesh and thus improves 
numerical performance. However, fractures with considerably large aperture width are not ideally represented by lower-
dimensional elements [38]. Those fractures might be less numerous but require to generate fracture domain meshes which 
are equi-dimensional to the porous medium matrix domain. Further challenges are posed by the matrix mesh generation 
around the fractures. This is particularly difficult where fractures are close to each other or intersect with very small angles. 
Such configurations can lead to elements with large aspect ratios or non-physical connections, which requires fine tuning of 
the meshes to improve performance and stability of the solution [38]. It is important to bear in mind that this is even more 
challenging in 3D and makes stochastic studies with DFMs very difficult in practice. These challenges in model generation 
combined with the requirements and geometrical complexities of DFMs motivated a large number of method developments 
and improvements, and yielding this to be an active research field.

The drawbacks associated with the classic discrete-domain approaches have triggered research on, and the development 
of, numerical methods that allow to use individual meshes for the fracture and porous medium matrix domains. Such 
methods rely on the concept of non-conforming discretizations, while the meshes might be geometrically conforming or 
non-conforming. Methods with non-conforming discretization, but conforming geometries, require the element facets of the 
fracture domain to align with the neighboring element facets of the porous-medium matrix domain without coinciding, 
e.g. mortar methods [39–44] and discontinuous Galerking methods [45]. In contrast, fully non-conforming methods, i.e. 
non-conforming discretization and non-conforming geometry, require no geometrical relationship between the fracture and 
the porous-medium matrix domains. These methods exist for finite volume schemes, e.g. (p)EDFM [46–50] and for finite 
element schemes, e.g. extended finite element methods (XFEM) [51], or continuous Galerkin method where fractures are 
represented as Dirac functions [52]. XFEM approaches exist with primal formulations [53–55] and dual formulations [56,57]. 
An exposition of different coupling techniques in discrete fracture networks is provided in Fumagalli et al. [58], where the 
focus is on handling complex fracture networks without accounting the effects of the surrounding rock.

Recently, Köppel et al. [59] presented an alternative fully non-conforming finite element formulation for which Schä-
dle et al. [60] demonstrated the applicability in 3D. Often, non-conforming mesh methods allow for an automated mesh 
generation and model setup process, which enables stochastic studies with a large number of different fracture network 
geometries. In particular, methods that handle fracture and matrix meshes separately (i.e. non-conforming geometries), sig-
nificantly reduce the work required for preparing the simulation geometries. Berre et al. [61] provide a good overview of 
existing conceptual and discretization methods and discuss the differences in conforming and non-conforming methods.

The adoption of non-matching meshes for matrix and fracture require the use of coupling techniques and information 
transfer between the discretizations of the different domains. Lagrange multipliers are a common tool to couple systems 
of equations and they are widely used throughout various fields of research [62,63], and with state of the art techniques 
such as fictitious domain [64] and mortar [65–67] methods. In the context of DFMs, Lagrange multipliers have thus far 
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been applied for both, non-conforming discretizations with both matching and non-matching geometries. Frih et al. [68]
and Boon et al. [69] presented approaches where the porous-matrix domain is split along the fracture planes. The resulting 
sub-domains are then meshed independently and glued together using the mortar method. Alternatively, discontinuous 
Galerkin methods are used to handle non-conforming interfaces between any pair of elements, hence providing flexibility 
at a finer granularity with respect to the mortar method [45]. A fully non-conforming approach using Lagrange multipliers 
to couple non-matching fracture and porous matrix discretizations is studied by Köppel et al. [59] and Schädle et al. [60]. 
Particularly in [60], the L2-projection with different discrete Lagrange multipliers are used to transfer information between 
the fracture and porous-medium matrix domains in a variationally consistent way. Both, Köppel et al. [59] and Schädle 
et al. [60] studied flow through DFMs with fractures of codimension one.

While these hybrid-dimensional DFMs are widely applied and are very efficient with respect to meshing and numerical 
performance they are less suited for fractures with large aperture widths [38]. For such cases, equi-dimensional descriptions 
of the porous-medium matrix and the fractures provide more accurate results. However, this requires a volume-to-volume 
coupling between the fracture and the matrix discretizations. Consequently, the L2-projection needs to be constructed con-
sidering volumetric polyhedral intersections. Volumetric coupling combined with variational transfer has been studied for 
several applications related to fluid-structure interaction [70,62]. Note that, as for the hybrid-dimensional case, local mass 
conservation is generally not guaranteed and jumping pressure coefficients can not be represented properly with our con-
tinuous Galerkin approach and Lagrange finite element spaces.

One underlying assumptions of the Lagrange multiplier approach is a continuity of the solution across the fractures, 
which prevents them to act as flow barriers. However, some fractures are populated with an infilling material with very low 
permeability and therefore hinder fluid flow. To model such fractures, equi-dimensional sub-domains with very low perme-
ability values need to be employed and then coupled to the porous-medium matrix using the mortar method. Furthermore, 
Schädle et al. [60] found that the solution is less accurate in areas with fracture intersections and boundaries, which is more 
enhanced by steep pressure gradients located in these areas. Local adaptive mesh refinement would improve accuracy in 
these cases.

Schädle et al. [60] employed dual-Lagrange multipliers [66,71], which have shown to have a positive impact on the 
condition number and further allow to construct a symmetric positive-definite system of equations. Solving such systems is 
much more convenient than solving saddle-point problems, which are indefinite systems and are typically harder to solve. 
These types of systems can be solved with a wide range of methods, e.g., conjugate gradient method, and preconditioners, 
e.g. multigrid [72], and enable to perform large scale computations in a convenient manner. Furthermore, the dual-Lagrange 
multiplier space facilitates combining different coupling strategies, i.e. fully non-conforming hybrid-dimensional and equi-
dimensional as well as mortar coupling, in a simple and unified way.

The first contribution of this paper is a unified framework based on the method of Lagrange multipliers, which combines 
embedded discretization methods with non-conforming domain decomposition approaches. On the one hand, embedded 
discretization methods are designed to couple overlapping meshes which are mutually non-conforming and can have non-
matching geometric features. Here, the finite element discretization of the matrix is coupled with any number of fracture 
discretizations, which can be hybrid-dimensional and equi-dimensional. On the other hand, non-conforming domain decom-
position techniques, such as mortar, allow us to split the domain into multiple sub-domains, discretize them independently, 
and couple them at their interfaces. This combination allows to employ each technique to scenarios where it is most suited, 
i.e. blocking fractures, fractures with large apertures, or fractures with large aspect ratio in networks with many fractures. 
By choosing the dual Lagrange multipliers space for each of the aforementioned coupling approaches, the arising systems of 
equations are easily combined and condensed, as mentioned earlier, into a unique symmetric positive-definite matrix. The 
second contribution of this paper consists of illustrating how to combine non-conforming adaptive mesh refinement meth-
ods with the variational transfer, and employ it to control the error as well as to reduce the number of degrees of freedom 
in the arising system of equations. The third contribution of this paper consists of studies of all the different approaches, 
both in isolation and combined. In particular, the accuracy and performance of the presented frameworks is demonstrated 
by comparison to standard benchmark cases in 2D and 3D as well as a complex 3D scenario which combines the different 
approaches.

In Section 2 we describe the overall methodology. We illustrate the unified formulation of the flow model (Section 2.1), 
its variational formulation (Section 2.2), the finite element discretization (Section 2.3), the necessary steps for coupling 
the different discretizations with dual Lagrange multipliers (Section 2.5), and the construction of the algebraic system of 
equations. In Section 2.6, we show how non-conforming mesh refinement can be integrated within the coupling frame-
work, followed by some specific details about the implementation in Section 2.7. Numerical investigations and experiments 
are illustrated and discussed in Section 3. Finally, a conclusion of our findings and future developments are provided in 
Section 4.

2. Method

The method of Lagrange multipliers allows to discretize flow problems for porous media with two main types of non-
conformity. First, the matrix is split into sub-domains which can be discretized independently then glued together using 
the mortar method [71]. Not only the sub-domains can differ in terms of permeability, but their interface can represent 
fractures. This case is what we refer throughout the paper as “decomposition”. Second, the fractures are represented as 
3
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Fig. 1. Two-dimensional (d = 2) overview of the main geometric primitives used in this paper. Sub-domain and fracture numbers are marked with the 
subscript. With γ d−1

1 = γ 1
1 we denote the first fracture which is embedded and lower-dimensional. Here, γ 1

2 is a lower dimensional (line) fracture at the 
interface ξ1,2, between sub-domains �1 and �2 of the matrix. Fractures with larger apertures are represented as equi-dimensional (polygonal) domains. 
With γ d

3 = γ 2
3 we denote an equi-dimensional fracture. With nγ we denote the normal vector perpendicular to the fracture surface. The dashed lines 

represent a nonexistent spacing which is employed only for illustrative purposes.

Fig. 2. Different mesh representations of matrix (black) and fracture (thick/red). Left: embedded hybrid-dimensional (a) and equi-dimensional (b) fractures. 
Right: hybrid-dimensional (c) and equi-dimensional (d) fractures represented with domain decomposition. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

separate bodies embedded in the matrix. Such fractures are described by either lower-dimensional manifolds or equi-
dimensional manifolds. This case is what we refer throughout the paper as “embedded”. In this section, we present a unified 
notation for describing the different geometric representations. Fig. 1, provides an overview of the different continuous 
geometric representations of both the matrix domain and fractures, the related symbols and their use are introduced in 
detail in Section 2.1. Fig. 2 provide simple examples for showing how the same fracture would be meshed for the different 
techniques.

2.1. Problem formulation

Let � ⊂Rd, d ∈ {2, 3} be the matrix domain with the following decomposition into N sub-domains

� =
N⋃

i=1

�i,

where �i ∩� j = ∅, i �= j. If �i and � j are connected, hence �i ∩� j �= ∅, their interface is described by ξi j = ∂�i ∩ ∂� j ∩�.
Let γ ⊂ � be a manifold of dimension d or d − 1 describing the fracture domains with the following decomposition

γ =
Nγ⋃

k=1

γ k.

When required we distinguish the dimension of the manifold γk , with γ d−1
k we have a lower-dimensional fracture, and 

with γ d
k an equi-dimensional fracture. If the interface ξ = ξi j is interpreted as a lower-dimensional fracture we employ the 

short-hand notation γξ = γ d−1
ξ .

Steady state fluid flow in the matrix � is governed by

∇ · (−K∇p) − λ = f in �, (1)

with p = p on ∂�D , where p is the pressure, K ∈Rd×d is a bounded symmetric positive definite permeability tensor, f is 
a sink/source term, p is a given pressure on the boundary ∂� of the domain of interest �.

Flow in the fracture-network γ is described by

∇ · (−K γ ∇pγ ) + λ = fγ in γ , (2)
4
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with pγ = pγ on ∂γD . The fluid exchange between � and γ is given by the Lagrange multiplier λ ∈ �(γ ). The function 
spaces V� and Vγ are defined by

V� = H1(�), W� = H1
0(�),

Vγ = H1(γ ), Wγ = H1
0(γ ),

V = V� × Vγ , W = W� × Wγ ,

where H1 is the Sobolev space of weakly differentiable functions, and H1
0 ⊂ H1 its restriction to functions vanishing at the 

boundary. The Lagrange multiplier space is defined as the dual of W with the product

� =
N

γ d−1∏
k=1

H
− 1

2
00 (γ d−1

k ) ×
N

γ d∏
k=1

H−1
00 (γ d

k ), Nγ = Nγ d−1 + Nγ d .

With H
− 1

2
00 (γ d−1

k ) and H−1
00 (γ d

k ) we describe the dual spaces of H
1
2 (γ d−1

k ) and H1(γ d
k ), respectively, with zero-extension 

outside γ [73]. For each γk ∈ γ the corresponding Lagrange multiplier is denoted with λk ∈ �k = �(γk).
Depending on the type of fracture the pressure term and the Lagrange multiplier have slightly different meanings. The 

lower-dimensional fracture, i.e., γ d−1
k is associated with a thickness parameter ε which we consider to as a uniform scaling 

factor in the permeability tensor K γk = εκ I , where I ∈ Rd×d is the identity matrix and κ is the permeability parameter. 
Note, that the pressure term pγk is constant in normal direction, which is the norm for plate finite elements. We prescribe 
its associated Lagrange multiplier with

λk = [K∇p · nγk ]γk = p = p(x), x ∈ γ d−1
k ,

which represents the jump [·] of the fluid pressure gradient in normal direction nγk with respect to the fracture surface γk .
For the embedded equi-dimensional fracture the Lagrange multiplier can be thought as a reactive force field introduced 

in order to ensure the continuity of the pressure.
At the interface ξ = ξi j between the two sub-domains �i and � j the continuity of the solution is ensured by the 

following condition

λξ

(
p∂�i − p∂� j

) = 0 in ξ, (3)

where λξ is the Lagrange multiplier defined on the surface ξ , and p∂�i and p∂� j are the pressures defined on the surfaces 
∂�i and ∂� j , respectively. The Lagrange multiplier λξ is incorporated in (1) within λ as a subtracting term. With these 
primitives we are able to couple the different sub-domains that are discretized independently. Hence allowing also to 
represent fractures as sub-domains with much greater mesh resolution than the surrounding matrix. If ξ is also a fracture 
the additional equations

∇ · (−K γξ ∇p∂�k ) + λξ = fγξ ,

with k ∈ {i, j}, are added to the overall system.
Intersections between fractures are not treated explicitly hence no additional equations are added to the system.
For a more compact notation, interface fractures are not referred to explicitly since the notation is compatible and they 

are considered as any other fracture. Additionally, the aperture of lower dimensional fractures is neglected and considered 
in the permeability tensor unless stated explicitly.

2.2. Weak formulation

With (·, ·)� and (·, ·)γ we denote the L2-inner product over � and γ , respectively. The variational formulation is found 
by multiplying (1) and (2) by test functions and integrating over the domains � and γ , using integration by parts. Hence, 
the weak form of the coupled system of equations is given as follows: find (p, pγ ) ∈ V and λ ∈ �, such that

(K∇p,∇q)� + (K γ ∇pγ ,∇qγ )γ − (λ,q − qγ )γ = ( f ,q)� + ( fγ ,qγ )γ ∀(q,qγ ) ∈ W , (4)

and the weak equality condition

(p − pγ ,μ)γ ∀μ ∈ �, (5)

are satisfied.
5
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2.3. Discretization

The variational formulation introduced in Section 2.2 is discretized using the finite element method. Depending on the 
settings different meshes Mi =M�i and Mγk are used for the different sub-domains of the porous matrix �i, i = 1, . . . N , 
and for the fractures γk, k = 1 . . . Nγ respectively. The presented techniques and their implementation allow for an arbitrary 
choice of Mλk , which is the mesh associated with the Lagrange multiplier, however since we restrict ourselves to a particular 
choice of multiplier space, we set Mλk =Mγk .

The method allows for a wide variety of elements for each of the meshes. For a manifold with dimension d we employ 
either Lagrange elements Pk , or tensor-product elements Qk of order k ∈ {1, 2}

Wh,α = {w ∈ W (α) : ∀E ∈Mα,

w|E ∈
{
Pk if E is a simplex

Qk if E is a hyper-cuboid

}

},
α ∈ {�,γ d, γ d−1}

�h,β β ∈ {γ d, γ d−1},

(6)

where �h is a discrete Lagrange multiplier space. Let {ϕi}i∈ J be a basis of Wh,� , {θ j} j∈ Jγ a basis of Wh,γ , and {ψk}k∈ Jγ
a basis of �h , where J and Jγ ⊂ N are index sets of the node-sets of their respective meshes M and Mγ . Writing the 
functions q ∈ Wh,� , qγ ∈ Wh,γ , and μ ∈ �h,γ in terms of their respective bases and coefficients, they read q = ∑

i∈ J qiϕi , 
qγ = ∑

j∈ Jγ q jγ θ j , and μ = ∑
k∈ Jγ μkγ ψk .

The dual shape functions ψ j ∈ �h(γ ) are constructed in such a way that they satisfy the bi-orthogonality condition [71]:

(θi,ψ j)γh = δi j(θi,1)γh ∀i, j ∈ Jγ , (7)

where δi j is the Kronecker delta function, and integral positivity

(ψ j,1)γh > 0. (8)

Note that (8) is naturally satisfied for first order finite elements. For second order elements we follow the construction 
described in [66,74].

After reformulating the variational problem (4) as a set of point-wise algebraic equations, the discrete problem for the 
porous matrix reads:∑

i∈ J

pi(K∇ϕi,∇ϕ j)�h −
∑

k∈ Jγ

λk(ψk,ϕ j)γh = ( f ,ϕ j)�h , ∀ j ∈ J , (9)

which translates to the linear system Ap − BT λ = f. The fracture equations result in,∑
i∈ J

pi,γ (Kγ ∇θi,∇θ j)γh +
∑

k∈ Jγ

λk(ψk, θ j)γh = ( fγ , θ j)γh , ∀ j ∈ Jγ , (10)

which translates to the linear system Aγ pγ + DT λ = fγ . The weak-equality condition (5) results in,

−
⎛
⎝∑

i∈ J

pi(ϕi,ψ j)�h −
∑
k∈ J

pk,γ (θk,ψ j)γh

⎞
⎠ = 0, ∀ j ∈ Jλ, (11)

which translates to the linear system −Bp + Dpγ = 0. The discretization of the complete problem results in saddle-point 
system as follows:∣∣∣∣∣∣

A 0 −BT

0 Aγ DT

−B D 0

∣∣∣∣∣∣
∣∣∣∣∣∣

p
pγ

λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣

f
fγ
0

∣∣∣∣∣∣ . (12)

Due to the choice of Lagrange multipliers, following the definition in (11), the matrix D is trivially invertible. For linear 
elements D is in fact diagonal and for quadratic element the inverse is constructed as a combination of a basis transforma-
tion, for which its inverse is known [66], and again a diagonal matrix. This convenient property enables us to perform block 
Gaussian elimination and obtain the following statically condensed system [75]

(A + TT Aγ T)p = f + TT fγ , (13)
6
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Fig. 3. Non-conformity with matching geometry (a) and non-matching geometry (b).

Table 1
Intersection for different coupling types. The standard mortar and nonmortar roles used in the 
related literature are associated with matrix and fracture, respectively.

Matrix (mortar) Fracture (nonmortar) Intersection type

� ⊂R3 γ 3 polyhedron-polyhedron
� ⊂R3 γ 2 polyhedron-polygon
∂�i ∩ ξi, j ⊂R3 ∂� j ∩ ξi, j ⊂R3 polygon-polygon (oriented)
� ⊂R2 γ 2 polygon-polygon
� ⊂R2 γ 1 polygon-segment
∂�i ∩ ξi, j ⊂R2 ∂� j ∩ ξi, j ⊂R2 segment-segment (oriented)

where T = D−1B. Once the system is solved for p, the solution for the fracture network can be computed by pγ = Tp. The 
resulting system matrix is symmetric positive definite which allows us to adopt optimal solution strategies such as Multigrid 
methods [72].

2.4. Handling multiple types of non-conforming mesh interactions

The presented methods handle non-conforming meshes in two stages. The first stage involves the domain decomposition 
of the porous matrix. For instance, a matrix domain � can be split into the two domains �1 and �2 with interface ξ1,2, this 
interface could be interpreted as a fracture. However, in discrete settings (Fig. 3 (a)) it could also be a convenient way to 
handle different resolutions for the meshes M1 and M2, and ensure the continuity of the solution at ξ1,2 using the standard 
mortar approach introduced in Bernardi et al. [65]. In practice, we need to assign the standard mortar and nonmortar role, 
for instance, we assign the mortar role to ξ1 and nonmortar role to ξ2. Once the transfer operator is assembled the porous-
medium-matrix system is condensed. Note that in the resulting system of equations the degrees of freedom associated with 
the nonmortar discretization are eliminated after static condensation (e.g., by replacing the related rows of the matrix with 
the identity and the related right-hand side value with zero). Once this is achieved we go to the next stage.

The second stage involves the embedded case (Fig. 3(b)) where we compute the transfer operator between Wh and Wh,γ

and condense the resulting system as described in Section 2.3.

2.5. Information transfer

The computation of the so called mortar integrals, which are the integral terms in (9), (10), and (11), associated with the 
Lagrange multiplier require special handling. In fact, quadrature formulas have to be generated in the intersection between 
elements of the matrix and the fracture. The computation of intersections differs depending on which type of fracture is 
considered. Table 1 lists, for each type of coupling, the roles and the intersection types. Here, the mortar role is given to the 
domain covering completely the nonmortar domain. The nonmortar role is given to the domain with which we associate 
the Lagrange multiplier space.

For the coupling at an interface ξ , either for non-conforming domain decomposition or for an interface fracture γξ , 
the coupling is performed on a common surface description. This operation requires intersecting oriented planar polygonal 
elements in the case of a three-dimensional problem, or intersecting oriented line elements in the case of two-dimensional 
problem.

For the embedded scenario, the polytopal elements of the matrix are intersected with the lower- or equi-dimensional 
polytopal elements of the fracture. The case where we have M ⊂ Rd and Mγ being a (d − 1)-dimensional manifold mesh, 
requires particular handling when the fracture elements are aligned with the surface of the matrix elements. In such case 
it is likely that some intersections might be computed twice, hence these duplicate intersections are detected and removed.
7



P. Zulian, P. Schädle, L. Karagyaur et al. Journal of Computational Physics 449 (2022) 110773
Fig. 4. Bi-linear elements Ek with different levels of refinement k ∈ {l, l + 1}. With pi , p j we denote the parent nodes that are generated on level l, with 
ci j = (pi + p j)/2 we denote the child node generated on level l + 1 by splitting the edge (i, j). Depending on the finite element discretization the splitting 
is done in different (multiple) locations. The prolongation operation at node ci j for this particular case would simply be u(ci j) = (u(pi) + u(p j))/2.

The (d − 1)-dimensional fractures represented with the mortar method require a careful set-up. In fact, in the case of 
intersecting fractures, multiple sub-domains (more than two) might intersect at one point or edge. The mesh primitives, 
i.e. edges and nodes, generating such intersections require a specific handling. The first approach consists of ignoring the 
side elements that are incident to the aforementioned mesh primitives when defining the discrete Lagrange multiplier as 
in Krause et al. [76], hence introducing discontinuities of the solution at these interfaces. The second approach, which would 
require a set-up similar to Farah et al. [77], consists of defining one-to-many relationships for the intersecting primitives. 
Here, one mortar primitive has to be determined and continuity is either enforced using interpolation for intersecting 
nodes, or with a weak equality condition for intersecting edges. The third approach, consists of explicitly defining the entire 
surface mesh for which the discrete Lagrange multiplier is constructed. These complications with the mortar method are 
not present in the equi-dimensional case if the discrete fractures are represented with a unique conforming mesh, since the 
role of mortar and nonmortar can be trivially assigned to porous-matrix and fracture respectively.

The computation of the intersections listed in Table 1 is performed with suitable variants of the Sutherland-Hodgman 
clipping algorithm [78]. Once the intersection is computed, if required, this intersection is meshed into a simplicial complex 
so that we can map quadrature rules to each simplex and integrate exactly.

2.6. Adaptive refinement

Let us recall the definition of element E from Section 2.3. With ∂ E we denote the boundary of element E and with Ē
its closure. A mesh is said to be conforming if Ē i ∩ Ē j, i �= j is a common vertex, edge, face, or ∅. A node is said to be 
hanging if it lies on the interior of an edge or face of another element. A mesh containing at least one hanging node is 
called non-conforming.

Non-conforming adaptive mesh refinement has the advantage that can be applied to any type of element in a rather 
straight-forward and independent manner. However, once the elements marked by the error estimator are refined, the 
resulting mesh might have hanging nodes, as shown in Fig. 4.

As a consequence, continuity of the solution is to be enforced either by employing variational restriction or adopt discon-
tinuous Galerkin methods. Here, we consider the variational restriction technique which is thoroughly explained in Cerveny 
et al. [79] also for high-order discretizations.

Let Ri, i ∈ {m, s} be a suitable restriction operator that splits contributions of each hanging node to its adjacent nodes, 
where m stands for matrix and s refers to the fracture. For combining adaptivity with DFMs and the method of Lagrange 
multipliers, we consider the constrained spaces arising from the refinement and variational restriction, which requires us to 
perform some slight modifications to the final steps of the assembly procedure for the transfer operator, in any of the cases 
we mentioned in previous sections. We recall the definitions of the coupling matrix B and mass-matrix D from Section 2.3, 
and define the modified transfer operator

TR = (RT
s DRs)

−1(RT
s BRm).

The operator TR allows us to transfer between constrained spaces, however for also setting the values in the hanging nodes 
we apply the prolongation operator Ps = RT

s as follows

T = PsTR .

This small modification allows to use T as in the standard case without any special treatment as described in Section 2.2.

2.7. Implementation

The routines described in this paper are implemented within the open-source software library Utopia [80,81]. In this 
work, Utopia uses libMesh [82] for the finite element discretization, MOONoLith [83] for the intersection detection, and 
8
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Fig. 5. 2D Benchmark Case 1: Regular fracture network, from Flemisch et al. [38]. Pressure solution for a regular fracture network with six equi-dimensional frac-
tures for conductive fractures with the equi-dimensional embedded method (a) and blocking fractures with the equi-dimensional decomposition method (b).

PETSc [84] for the linear algebra calculations. The software developed for this contribution is used by means of a JSON 
(JavaScript Object Notation) input file where any number of mesh files can be linked to the simulation and coupled together 
automatically for creating complex networks of fractures.

3. Numerical results & discussion

First, the focus is on a comparison of results obtained with the equi-dimensional embedded technique and the mortar 
method to a specific selection of commonly used 2D and 3D benchmarks [38,85]. Here, we use non-conforming mesh 
refinement in proximity of the fractures for maintaining the size of the mesh small while achieving small deviations from 
the reference solution. Second, we show how employing an adaptive mesh refinement, with gradient-recovery based error 
estimator [86], allows us to refine only where the error in the solution is estimated to be higher. Finally, we present a 
complex 3D experiment inspired by realistic scenarios where we conveniently mix all the techniques we covered in this 
article. In each of the following sections we discuss the practicalities of the different techniques and how to combine them.

For compactness, in the following sections we use the abbreviation ED for equi-dimensional and HD for hybrid-
dimensional. We report exclusively the error of the solution associated with the matrix discretization. This is done for 
avoiding redundant information, since the solution for the fracture is just the L2-projection of the solution for the matrix.

3.1. 2D benchmarks

The 2D setting allows us to provide a simpler and clearer presentation of the numerical results. Hence, with a selection 
of 2D benchmarks from Flemisch et al. [38], we complement and extend the previous contribution presented in Schädle 
et al. [60]. We verify the embedded ED approach and our implementation of the mortar method with the dual Lagrange 
multiplier. We show how adaptive mesh refinement allows us to solve problems with a smaller number of degrees of 
freedom while achieving the desired accuracy in the solution. For all 2D cases we use the reference solution pref proposed 
in Flemisch et al. [38] which is computed by means of the mimetic finite difference method. Consistent with the analysis 
proposed in [38], the numerical error is computed as

errm =
∫
�
(p − pref)

2

(max(pref) − min(pref))
2
∫
�

1
.

3.1.1. 2D benchmark case 1: regular fracture network
We consider the same settings and reference solutions used in Flemisch et al. [38] Benchmark 1, with both conductive 

and blocking fractures, as shown in Fig. 5. Both settings have the same square domain � = [0, 1]2 and boundary conditions. 
We impose Dirichlet conditions on the right boundary, where the pressure is set to constant value 1. We impose no-flow 
conditions on the bottom and top sides. Permeability of the matrix is uniform K = I, where I is the identity matrix. We 
distinguish conductive and blocking scenarios for the fracture permeability. For the conductive scenario, in the HD case the 
permeability tensor is described as Kγ 1 = εI ·104, where ε = 10−4 is the fracture aperture, whereas for the ED case we have 
Kγ 2 = I · 104. For the blocking scenario, we only have the ED case with Kγ 2 = I · 10−4.

A particular emphasis is placed on equi-dimensional fractures and the comparison between non-conforming embed-
ded/immersed fractures and geometrically conforming fractures which are glued together with the matrix using the mortar 
method. For the hybrid-dimensional embedded we reproduced the results of Schädle et al. [60] using the methods of dual-
Lagrange multipliers and static condensation. In Table 2, we report results for three different resolutions for each of the 
9
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Fig. 6. 2D Benchmark Case 1: Regular fracture network. Pressure profiles along the lines AA′ (a) and BB′ (b) with a zoom into the area with the largest 
deviation. Blue lines indicate Emebedded-ED, dashed red lines indicate Decomposition-ED.

Table 2
2D Benchmark Case 1: Regular fracture network. For each method we report number of elements in the matrix (#-matr) and fracture (#-frac), number of 
degrees of freedom (d.o.f.), normalized number of non zero entries (nnz/size2), condition number (‖ · ‖2-cond.) and error in the matrix (errm) with respect 
to the reference solution.

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond. errm

Embedded-ED 10 656 triangles 8648 5853 2.6e-4 3.7e6 3.3e-5
Embedded-ED 47 142 triangles 8648 25 992 7.6e-5 1.8e8 1.9e-6
Embedded-ED 96 762 triangles 8648 53 379 5.3e-5 1.2e9 2.8e-7

Decomposition-ED 12 791 triangles 34 592 32 935 2.3e-4 5.2e10 6.4e-8
Decomposition-ED 36 331 triangles 34 592 45 172 1.7e-4 8.8e10 2.8e-8

Decomposition-ED (blocking) 922 triangles 34 592 26 520 2.7e-4 9.4e7 3.3e-8

Embedded-HD 1600 quads 112 1681 9.7e-4 1.6e5 1.3e-7
Embedded-HD 25 600 quads 448 25 921 4.3e-5 9.5e6 1.0e-7
Embedded-HD 102 400 quads 896 103 041 1.0e-5 7.6e7 9.8e-8

Embedded-ED (disconnected) 7596 triangles 12 052 4198 3.2e-4 2.0e6 6.1e-5
Embedded-ED (disconnected) 34 116 triangles 12 052 18 902 7.7e-5 4.1e7 4.0e-6
Embedded-ED (disconnected) 70 365 triangles 12 052 38 998 4.6e-5 2.6e8 8.9e-7

Embedded-HD (disconnected) 1600 quads 112 1681 8.5e-4 1.6e5 2.9e-7
Embedded-HD (disconnected) 25 600 quads 448 25 921 4.3e-5 9.6e6 2.3e-7
Embedded-HD (disconnected) 102 400 quads 896 103 041 1.0e-5 7.6e7 2.2e-7

three strategies. Here, we differentiate with fractures that are represented as a unique connected mesh as well as discon-
nected entities. In the following paragraphs we illustrate the different set-ups, results, and limitations of the embedded and 
mortar methodologies.

The employed embedded techniques enforce the continuity of the solution at the intersection of the matrix and fracture 
meshes. Hence, steep pressure jumps and barriers can not be represented. Consequently, for the embedded case we restrict 
our study to conductive fractures. In particular, we study the equi-dimensional embedded technique for 3, 5, and 6 levels 
of non-conforming mesh refinement (Section 2.6) performed exclusively in proximity of the fractures. This refinement pat-
terns are generated automatically using the variational transfer algorithm for marking the elements of the matrix that are 
intersecting with the fractures. On Fig. 6, we plot the solution over the lines AA′ (y = 0.75) and BB′ (x = 0.5) and it can 
be observed that even for low resolutions, the solutions are in agreement with the reference results of Flemisch et al. [38]. 
From Table 2, it can be observed that with this particular set-up we reach an error in the order of 10−7 for both connected 
and disconnected fracture networks. Note that the number of elements in the fracture network do not influence the number 
of degrees of freedom, hence they do not count for the computational cost of solving the linear system but only for the 
set-up phase which is typically cheaper.

For the domain decomposition technique based on the classical mortar method we are required to represent the fracture 
explicitly in the matrix mesh. For this particular scenario, the fracture is modeled as an equi-dimensional geometry which is 
meshed independently from the matrix. This allows us to refine all the different sub-domains in a completely independent 
manner and glue them together using the mortar method. We manually refine the matrix around the two fractures crossing 
at the center of the domain. This is done for having a higher resolution in the region of interest of the benchmark. From 
Table 2, it can be observed that even for low mesh resolutions of the matrix the error reaches an order of 10−8 for both, 
conductive and blocking fractures. However, the mesh resolution of the fractures is very high from the start. Despite this 
10
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Fig. 7. 2D Benchmark Case 2: Hydrocoin, from Flemisch et al. [38]. Embedded-ED: spatial distribution of the piezometric head [m]. Solution profiles are 
compared along the line AA′ with coordinates y = −200 [m] (marked in green).

Table 3
2D Benchmark Case 2: Hydrocoin. Uniform refinement for the Embedded-ED vs Decomposition-ED cases. Here errm is the error computed with respect to the 
reference solution. #UR refers to the number of uniform refinements.

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond. errm #UR

Embedded-ED 272 triangles 3 480 159 4.3e-2 2.83e3 4.6e-4 1
Embedded-ED 1 088 triangles 3 480 589 1.2e-2 2.12e4 7.3e-5 2
Embedded-ED 4 352 triangles 3 480 2 265 3.1e-2 1.35e5 1.3e-5 3
Embedded-ED 17 408 triangles 3 480 8 881 8.1e-4 9.13e5 2.25e-6 4
Embedded-ED 69 632 triangles 3 480 35 169 2.1e-4 5.02e6 6.73e-7 5
Embedded-ED 278 528 triangles 3 480 139 969 5.5e-5 2.07e7 2.28e-7 6

Decomposition-ED 1 116 triangles 220 246 9.7e-3 3.6e6 4.5e-5 1
Decomposition-ED 4 464 triangles 880 2 973 2.5e-3 7.6e6 7.5e-6 2
Decomposition-ED 17 856 triangles 3520 11 285 6.4e-4 2.7e7 1.1e-6 3
Decomposition-ED 71 424 triangles 14 080 43 941 1.7e-4 1.1e8 1.5e-7 4

fact, in our experiments the actual degrees of freedom are only associated with one layer of nodes in the middle of the 
fracture, while the ones at the interface are eliminated by means of the mortar constraints as mention in Section 2.4.

We can observe that the embedded methodologies generate linear systems with comparable condition numbers and 
number of degrees of freedom. Whereas, the decomposition-ED method gives rise to larger systems with larger condition 
numbers. Only with the decomposition-ED we are able to solve the blocking scenario 5(b), however already for this simple 
experiment the mesh set-up is more laborious due to the matching geometry.

3.1.2. 2D benchmark case 2: hydrocoin
We test the capability of the adaptive mesh refinement by considering the hydrocoin benchmark [87] for two differ-

ent techniques: the embedded-ED and the decomposition-ED. The matrix consists of a rectangular box with a broken line 
located on the top, whereas the fracture network consists of two oblique lines. As shown in Fig. 7, we prescribe the piezo-
metric head on the Dirichlet boundary on the top and Neumann no-flow on the remaining sides of the rectangular box. The 
permeability is set equal to Kγ = 10−6 [m/s] for the fractures and K = 10−8 [m/s] for the matrix. Fracture aperture is about 
ε1 = 10.16 for the left fracture and about ε2 = 15 for the right fracture.

We use a gradient recovery strategy for the a-posteriori error estimation to guide the adaptive refinement (AR) of the 
matrix and the fracture meshes, and compare the numerical results with those computed employing uniform refinement 
(UR). We estimate the accuracy of each numerical simulation by computing the error with respect to the reference solution 
obtained on a very fine mesh consisting of 2 745 606 nodes.

In Tables 3, 4 and 5 we report the results related to the embedded-ED technique for UR and AR test cases, respectively. 
Here, all the methods provide numerical solutions converging to the reference one. In particular, we specify the number of 
elements in the matrix mesh (#-matr.) and in the fracture mesh (#-frac.), the number of degrees of freedoms (d.o.f.), the 
density of non zeros entries (nnz/size2), the condition number (‖ · ‖2-cond), and the error computed with respect to the 
reference solution (errm). In Table 3 we also specify the number of uniform refinements (#UR), whereas in Tables 4 and 5
we report the number of adaptive refinements (#AR), and the error-threshold used for the gradient recovery strategy (errg ). 
We point out that both the UR and the AR strategies are only performed on the matrix mesh.

In Table 4 we also compare the condition number of the original stiffness matrix with the one obtained by using left 
inverse diagonal scaling (IDS), i.e., m̃i j = mij/mii , where mij and m̃i j are the entries of the system matrix and the precon-
ditioned one, respectively. As one may observe the use of such a preconditioner allows to reduce the condition number of 
several magnitudes. This result suggests that the AR strategy is a viable option to reduce the computational costs without 
affecting the properties of the stiffness matrix of the overall systems of equations.
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Table 4
2D Benchmark Case 2: Hydrocoin. Adaptive refinement for the Embedded-ED cases. Here, errg is the threshold used for the gradient recovery strategy. 
#AR refers to the number of adaptive refinements, whereas the number within parentheses refers to the steps of adaptive refinement performed on the 
overlapping region between the matrix and the fracture meshes.

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond IDS-cond errm # AR errg

Embedded-ED 611 triangles 3 480 352 2.0e-2 1.5e10 1.3e04 7.8e-5 0 (2) -
Embedded-ED 1 544 triangles 3 480 874 7.8e-3 5.3e10 3.3e04 1.2e-5 1 (2) 5
Embedded-ED 2 378 triangles 3 480 1354 4.5e-3 8.1e10 5.1e04 5.8e-6 2 (2) 5
Embedded-ED 7 913 triangles 3 480 4371 1.6e-3 3.5e11 3.2e05 1.8e-6 4 (2) 1
Embedded-ED 9 147 triangles 3 480 5006 1.5e-3 2.8e11 7.4e05 1.1e-6 4 (4) 1
Embedded-ED 21 599 triangles 3 480 11658 1.02e-3 1.06e12 5.3e06 2.6e-7 4 (6) 1

Table 5
2D Benchmark Case 2: Hydrocoin. Adaptive refinement for the Decomposition-ED cases. Here, errg is the threshold used for the gradient recovery strategy. 
#AR refers to the number of adaptive refinements, whereas the number within parentheses refers to the steps of adaptive refinement performed on the 
overlapping region between the matrix and the fracture meshes.

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond. errm # AR errg

Decomposition-ED 2 127 triangles 202 1375 5.9e-3 1.3e11 4.7e-5 1 (1) 5
Decomposition-ED 8502 triangles 727 2791 1.1e-3 2.5e11 8.6e-6 2 (1) 1
Decomposition-ED 17 826 triangles 1942 10 600 7.1e-4 7.1e11 1.1e-6 3 (0) 0.2
Decomposition-ED 71424 triangles 2500 15 284 4.8e-4 5.36e12 1.3e-7 4 (0) 0.1

Fig. 8. 2D Benchmark Case 2: Hydrocoin. Embedded-ED adaptive mesh refinement. The meshes have been obtained by performing first an adaptive refinement 
in the region where fractures are located, then by using the gradient-recovery based error estimator.

In Fig. 8 we show the meshes obtained for all the six AR test cases. The AR based on the gradient recovery strategy is 
combined with an AR performed on the overlapping region between the matrix and the fracture network. The number of 
AR performed in the overlapping zone are reported in Tables 4 and 5 and specified within parentheses.

Fig. 9 shows the piezometric head obtained over line AA′ for the UR (a) and the AR (b) test cases. One may note large 
discrepancies in the area of the left fracture, especially for the results referred to the uniform refined meshes. In this regard, 
we found that the a-posteriori error errg was higher close the sharp top boundary and in the zone occupied by the left 
fracture. Indeed, Fig. 8 (3)-(5) show that the AR strategy produces a mesh size reduction in such regions. Hence, all the AR
test cases reveal a better agreement with the reference solution when compared to the UR scenarios.

For completeness, the numerical results obtained for the test case 3 AR are presented in Fig. 7. Here, the color refers to 
the spatial distribution of the piezometric head, whereas the contour lines are in black.

We perform the same analysis for the decomposition-ED scenario and collect all the numerical results in Ta-
bles 3, 4, and 5. Again, the use of AR allows us to achieve an accuracy comparable to the UR test cases with less elements 
in both the matrix mesh (#-matr.), and the fracture mesh (#-frac.).

In Fig. 10 we observe that the piezometric head profile computed along line AA′ converges to the reference solution 
by increasing the number of refinements for all the numerical simulations. We point out that, while the embedded-ED 
test cases reveal large discrepancies with respect to the reference solution in the region of the left fracture, only little 
differences are observed for the decomposition-ED scenarios. Indeed, the mortar approach requires a matching geometry at 
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Fig. 9. 2D Benchmark Case 2: Hydrocoin. Pressure along line AA′ for the uniform (A) and the adaptive (B) Embedded-ED test cases. Here, UR and AR refer 
to different steps of uniform and adaptive refinements performed on the initial matrix mesh. In particular, the number of AR are obtained combining a 
gradient recovery strategy with an adaptive refinement performed on the overlapping region between the matrix and the fracture zone. More details can 
be found in Tables 3, 4, and 5.

Fig. 10. 2D Benchmark Case 2: Hydrocoin. Pressure along line AA′ for the uniform (A) and the adaptive (B) Decomposition-ED test cases. Again, UR and AR
refer to the steps of uniform and adaptive refinement performed on the initial matrix mesh. We use a solution computed on a very fine mesh with 2745606
nodes as a reference.

the interface between fracture and matrix, and consequently more accurate results are achieved even with coarser meshes 
as confirmed also by the error analysis.

Even though the use of AR allows to compute accurate results also on coarse meshes, the non-conforming adaptive mesh 
strategy we adopted negatively affects the conditioning of the overall problem. Indeed, the condition numbers reported in 
Tables 3-5, reveal that UR test cases produce values which are several order of magnitudes lower than the ones computed 
on AR meshes. Ill-conditioning associated with anisotropic AR meshes is a well known problem which can be alleviated by 
adopting suitable preconditioning techniques. We address this problem, as suggested by Kamenski et al. [88], by means of 
diagonal scaling. This operation reduces the effects of mesh non-uniformity, and, in our experiments, consistently reduces 
the order of magnitude of the condition number in half (e.g., 1012 becomes approximately 106).

3.1.3. 2D benchmark case 3: realistic fracture network
We consider the same settings and reference solution used in Flemisch et al. [38] Benchmark 4. For this benchmark, a 

more realistic fracture network is taken into consideration. Here, the size of the domain is 700 m x 600 m with a fracture 
network of 64 fractures divided in 13 connected groups. The matrix permeability is K = I · 10−14 m2. All the fractures have 
the same permeability 10−8 m2 and the same aperture ε = 10−2 m. Hence, we have Kγ 1 = εI · 10−8 for the HD case, and 
Kγ 2 = I · 10−8 for the ED one. There are no-flow boundary conditions on top and bottom of the domain. A pressure of 
1 013 250 Pa is imposed on the left boundary and of 0 Pa on the right boundary. Due to the rather complex geometry of the 
fracture network, the mortar decomposition method is impractical, hence it is not used here. We exclusively present results 
for the equi-dimensional embedded method. The mesh of the matrix has been automatically refined at the intersection 
with the fracture, for each experiment with 3, 6, and 7 levels of non-conforming mesh refinement, respectively. It can 
be observed in Table 6 the condition numbers have comparable magnitudes for both HD and ED versions. The condition 
number becomes large with the extremely varying mesh size resulting from the heavily focused refinement around the 
fractures. In fact, as can be observed in Table 6 (b), when the mesh is refined uniformly the condition number is typically 
several order of magnitudes lower.
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Table 6
2D Benchmark Case 3: Realistic fracture network from Flemisch et al. [38]. Mesh information (number of elements and degrees of freedom), characteristics 
of system matrix and error in the matrix computed with respect to the reference solution for Emebedded equidimensional (ED) and hybriddimensional 
(HD) methods. Table (a) reports the results obtained by locally refining the mesh around fractures. Table (b) reports the results in case of uniform mesh 
refinement. Mesh information, characteristics of system matrix and error in the matrix for the 2D Realistic fracture network benchmark in Embedded-ED and 
Embedded-HD cases.

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond.

Embedded-ED 1405 quads 199 996 1487 1.9e-4 2.0e15
Embedded-ED 39 085 quads 199 996 41 773 2.3e-4 2.2e17
Embedded-ED 94 513 quads 199 996 102 486 9.1e-5 5.8e17

Embedded-HD 4200 quads 1024 4331 3.8e-3 1.3e16
Embedded-HD 67 200 quads 4096 67 721 1.6e-4 2.1e17

(a) Local mesh refinement around fractures

Method #-matr. #-frac. d.o.f. nnz/size2 ‖ · ‖2-cond.

Embedded-ED 1600 quads 199 996 1681 2.1e-3 4.2e5
Embedded-ED 25 600 quads 199 996 25 921 7.4e-5 2.0e7
Embedded-ED 102 400 quads 199 996 103 041 1.4e-5 1.7e8

Embedded-HD 6400 quads 2048 6561 4.8e-4 1.9e6
Embedded-HD 102 400 quads 2048 103 041 3.3e-5 1.6e8

(b) Uniform mesh refinement

Fig. 11. 2D Benchmark Case 3: Realistic fracture network, from Flemisch et al. [38]. Pressure solution for real fracture network with 64 fractures (a). Pressure 
profiles along the lines (b) AA′nd (c) BB′ for both Embedded-HD and Embedded-ED techniques.

As can be observed in Fig. 11, the results obtained are similar to those obtained by other methods in the field although 
no reference solution is available. It can be noticed that the equi-dimensional variant is closer to the Box method compared 
to most other methods, including the hybrid dimensional results presented in [60]. From a practical perspective the equi-
dimensional technique is slightly more complex since the fractures are extruded in normal direction, although automatically, 
thus requiring many more elements.

3.2. 3D experiments

Flow through fractured porous media is largely governed by 3D effects. Therefore, this section presents an application and 
evaluation of the dual Lagrange multiplier methods in 3D. First, results obtained with three Lagrange multiplier methods 
(embedded HD, embedded ED, decomposition HD) are compared to results of 17 methods presented in the benchmark 
study by Berre et al. [85]. More complex benchmark cases in 3D are studied for the embedded HD method as part of 
the aforementioned benchmark study. The embedded HD method is preferably used for those geometrically complex cases 
as it eases meshing of the fracture networks and the porous matrix mesh can be chosen regular. Fracture network mesh 
generation for the embedded ED method is more challenging, which is particularly relevant at the fracture intersection. 
Furthermore, all 3D benchmark cases in [85] are designed for very small fracture apertures and therefore equi-dimensional 
fracture meshes result in poor mesh quality. It is also important to bear in mind that equi-dimensional fracture meshes 
are mainly necessary for large aperture values and the benchmark cases yield no reason to use equi-dimensional meshes. 
Furthermore, the decomposition approach based on the mortar method is less suited for complex fracture geometries due 
to the complexity of both, setting up the mesh and dealing with over-constrained scenarios for the mortar conditions. In a 
final complex scenario the strength of each method is demonstrated and they are applied in a combined scenario as it could 
be typical for fractured systems. The experiments are in agreement with the expected results for studying flow problems. 
14



P. Zulian, P. Schädle, L. Karagyaur et al. Journal of Computational Physics 449 (2022) 110773
Fig. 12. 3D Benchmark Case 1: Single fracture. Model domain (outlines) of benchmark Case 1: Single Fracture in Berre et al. [85] with Matrix 1 and 2 and a 
single fracture intersecting Matrix 1. Boundary 1 (BC1) is the inflow and boundary 2 (BC2) the outflow. Results are compared along the line AA′ through 
the matrix domains.

Note that, while in these studies there are no evident problems related to the lack of local mass conservation of the finite 
element discretization, further investigations are envisioned to improve on this aspect and for extending these studies to 
transport problems.

3.2.1. 3D benchmark case 1: single fracture
In this section three Lagrange multiplier methods are compared to benchmark Case 1: Single Fracture presented by Berre 

et al. [85], which is simple enough to accommodate all the fracture representations in one single study, including the dif-
ferent versions of the decomposition approach. This presentation also includes results obtained with the hybrid embedded 
method, presented in Schädle et al. [60]. Nevertheless, for completeness and for better comparison of the methods presented 
in this study the results of the hybrid embedded approach are again explicitly presented. To ease comparison, the results 
presented in the benchmark study are summarized and only the mean of all results as well as the standard deviation are 
plotted. The comparison of vastly different discretization methods is enabled by interpolating each solution to 1000 evenly 
spaced points along a line. Following this, the mean and standard deviation are computed at each of these points. It is im-
portant to note that the mean of all results is not necessarily the correct solution and just provides a measure of comparison 
to the results presented in the aforementioned benchmark study. For the detailed benchmark results the interested reader 
is referred to Berre et al. [85]. Finally, improvements of the accuracy can be demonstrated for the embedded ED approach 
by adaptive mesh refinement.

Fig. 12 shows the model domain of benchmark Case 1: Single Fracture which is adapted from Zielke et al. [89] and Barlag 
et al. [90]. This case consists of a single fracture intersecting a matrix cube with 100 m edge length. The lowest 10 m thick 
layer of the matrix block (Matrix 2) has an increased permeability. Fluid injection occurs at a Dirichlet boundary condition 
(BC1) located above the fracture at the upper most 10 m thick layer of the matrix block. A Dirichlet boundary condition 
(BC2) which acts as the outflow, is located at Matrix 2. The injection pressure is fixed at 4 m and the production pressure 
at 1 m. The permeability K in the Matrix 1 is I ·10−6 [m/s] and in the Matrix 2 I ·10−5 [m/s]. The fracture has a permeability 
Kγ of Iγ · 10−3 [m/s] with an aperture ε of 10−2 [m].

The results obtained with the hybrid- and equi-dimensional embedded method and the hybrid decomposition method 
are presented in Fig. 13. In the upper part of the figure, three different mesh sizes (∼1k, ∼10k, and ∼100k matrix cells) 
are compared to 17 methods presented in Berre et al. [85]. It is important to keep in mind that the hybrid-dimensional 
embedded results are also part of the benchmark results. The pressure solution for all methods is compared along the 
line AA′ (see Fig. 12).

Overall, the results of the methods presented here and the methods presented in Berre et al. [85] show good convergence 
towards a common solution. Particularly for the very coarse mesh of only ∼1k cells in the matrix domains the Lagrange 
multiplier methods show some deviations. These deviations are more pronounced for the embedded HD method at the first 
half of line AA′ and for the embedded ED and the decomposition method at the second half. The deviations are partially 
due to the fact that most of the other methods presented in the benchmark study represent the fracture geometry in the 
matrix explicitly in matching mesh geometries. Embedded techniques typically require a resolution that is roughly twice as 
high as fitted mesh techniques to achieve the same accuracy. Already for the case with ∼10k cells the embedded HD and 
ED methods show very similar results. For the coarsest case neither of the methods is preferable as they all show deviations 
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Fig. 13. 3D Benchmark Case 1: Single fracture. Pressure results along the line AA′ for ∼1k, ∼10k, and ∼100k matrix cells for uniform refinement (upper figure) 
and ∼1.3k, ∼9k, and ∼28k for adaptive mesh refinement (lower figure). Results are shown with uniform refinement for the hybrid-dimensional (HD) and 
equi-dimensional (ED) embedded method and the hybrid decomposition method and with adaptive mesh refinement for the equi-dimensional embedded 
method. The black line shows the mean results of all benchmark methods and the grey range shows the standard deviation, respectively [85].

in different regions. Furthermore, the solution of the decomposition method shows a kink at ∼ 115 m for all mesh sizes. As 
mentioned above, this is due to over-constrained dofs, which poses significant technical challenges to be automated in 3D.

As shown in 3.1.2 adaptive mesh refinement allows to obtain more accurate results while reducing the number of matrix 
elements. Here the matrix mesh for the embedded ED approach is adaptively refined with up to two refinement steps, 
starting at ∼500 cells by progressively reducing the threshold of error adopted for the gradient recovery strategy. For 
brevity, we refer to the error threshold as errg and to the number of adaptive refinement steps as AR. Thus, we employ 
errg = 15 and AR = 1 for the coarsest mesh, errg = 5 and AR = 2 for the middle mesh, and errg = 0.1 and AR = 2 for 
the finest test case. One may note that the error threshold, errg , is progressively reduced to increase the accuracy of the 
numerical results. The matrix meshes resulting from the adaptive mesh refinement have ∼1.3k, ∼9k, and ∼28k cells. In 
Fig. 13, second row, we compare the results obtained with uniformly refined meshes with those obtained with adaptive 
mesh refinement. While the AMR has some more cells than the compared uniform mesh, the pressure solution along parts 
of the line AA′ is closer to the mean of all benchmark methods. For the two finer meshes, an improvement in accuracy is 
clearly visible. Taken together, all Lagrange multiplier methods presented here show good convergence and match well with 
other methods presented in the benchmark study.

3.3. Complex 3D scenario

Geological setting with fractures and faults often require to represent such features with permeability and aperture 
values ranging over several orders of magnitude. Therefore, their combined representation in numerical models is crucial 
for a complete description of geological settings. The setup of the present, more realistic, scenario is loosely based on the 
geological setting at the Grimsel Test Site, (GTS) [91]. However, it is important to note that the steady-state flow field, 
as computed here, is difficult to achieve in experiments conducted in such laboratories with a very low permeability rock 
matrix. Nevertheless, the given setup allows to demonstrate the different strength of the particular methods described in this 
study, i.e. complex fracture networks, fractures with large aperture widths, and blocking fractures. Even more importantly, 
the given scenario shows the integration of several coupling strategies in a single joint framework method.

Fig. 14 shows the model domain with a complex fracture network (blue) located between two large features with two 
intersecting fractures each. One of these features acts as blocking fractures (yellow) with low permeability values, the 
fractures in the other feature have large apertures (magenta). Furthermore, two boreholes are drilled into the rock domain 
with one of them ending in the large aperture fractures and the other one in the rock domain. The upper right corner of 
the square domain is not modeled as it acts as an access tunnel with atmospheric pressure. Consequently, the pressure at 
the outer boundary is fixed by a Dirichlet boundary condition of pD = (x − y + 100) 0.025 (green). This boundary condition 
results in a pressure of 1 MPa at the access tunnel location and 5 MPa at the lower right corner. At the top and bottom 
(z-direction) of the domain no-flow boundary conditions are applied.
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Fig. 14. Complex 3D scenario. Model domain of the complex case with a combined application of all presented methods. The upper right corner represents a 
ventilated access tunnel, as it is typical in deep underground laboratories. Fractures computed with the hybrid embedded method are depicted in blue and 
fractures computed with the equi-dimensional embedded method in pink. The yellow domains, with low permeability, are equi-dimensional and coupled 
by the mortar method. The green planes show the outer boundaries and the black lines indicate the injection and production boreholes.

Fig. 15. Complex 3D scenario. Pressure solution at three planes intersecting the domain at -5 m, 0 m, and 5 m in z-direction.

In the numerical model the fractures and fracture network are represented by three different methods described above. 
The complex fracture network (blue) is meshed with lower-dimensional manifolds and embedded in the matrix mesh and 
has been initially presented by Schädle et al. [60]. In this study the fracture aperture and permeability and the matrix 
permeability are chosen so that the fractures and the matrix contribute similarly to the overall flow. In contrast, the rock 
matrix in the present experiment holds a low permeability and the fracture properties are chosen to dominate the flow. 
The fracture radius distribution in the network follows a power law, with truncations at 2.5 m and 10 m. The 150 fractures 
are circular, randomly oriented, and distributed in a cubical area of the model domain with a side length of 25 m. The 
fracture aperture is ∼ 10−4 m and the permeability chosen to be ∼ 10−9 m2. Furthermore, the two fractures with large 
apertures (magenta) are represented by equi-dimensional domains embedded in the matrix domain. One of these fractures 
is intersected by a borehole which is explicitly meshed as a sub-domain. The two fractures are circular with an aperture 
width of 3 ×10−1 m and radii of 25 m. Further, the infilling material of these fractures is assumed to have a permeability of 
1 × 10−12 m2. In the borehole domain a forcing function of 1.0 × 10−13 is applied in a volume of 1 × 10−2 m3, acting as an 
injection borehole with a pressure of ∼5.5 MPa. To represent fractures with low permeability, acting as blocking fractures, 
two fractures (yellow) are described by equi-dimensional domains coupled to the matrix mesh by the mortar method (i.e., 
decomposition-ED). These fractures are rectangular with a side length of 35 m and permeability of 1 × 10−21 m2. Generally, 
the fractures might be of any shape, e.g. circular or rectangular. The second borehole acts as a sink with a fixed pressure 
at 1 MPa. This borehole is represented by a separate small domain with the dimensions of the borehole itself and by using 
the decomposition-ED variant. Finally, the matrix permeability is 1 × 10−18 m2.

Fig. 15 shows the pressure distribution across three planes intersecting the model domain parallel to the xy-plane. 
Throughout all planes the low permeability fractures act as discontinuities for pressure. Moreover, for plane (a) a clear 
discontinuity can be observed across the two fracture cross sections. With the high aperture and permeability of the com-
plex fracture network and the low permeability of the rock matrix the pressure across the fracture network is equilibrated, 
connecting the upper right with the lower left part of the domain. With the injection borehole in one of the two equi-
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dimensional fractures, these fractures and the surrounding rock matrix area are subject to the largest pressure values. In 
plane (b) the production borehole locally reduces the pressure to atmospheric pressure. However, due to the low permeabil-
ity of the rock matrix the gradient around this borehole is very steep and the influence on the overall solution is limited. 
Additionally, the fixed pressure boundary condition at the outer boundary forces the pressure to steep gradients close to 
the embedded ED fractures with high injection pressure. These steep gradients result from boundary effects and for a rep-
resentative study of such a geological setting the domain would have to be extended in these areas. However, the goal of 
this study is to demonstrate the application of Lagrange multipliers for different coupling strategies, spanning from equi-
dimensional to lower dimensional models, and from embedded to mortar techniques. Ultimately, this allows more flexibility 
in the treatment of the fracture and the matrix configuration. Furthermore, such steep gradients are generally difficult to 
resolve in numerical models, thus adding further complexity to this test case. In summary, this complex 3D scenario demon-
strates the strength of each method and the ability of the presented unified framework to combine all of these approaches 
while yielding smooth pressure results in geologically complex settings. More specifically, the hybrid-dimensional embed-
ded approach eases meshing of complex fracture networks of fractures with small aperture widths, the equi-dimensional 
embedded approach allows to consider fractures with large aperture widths, and the equi-dimensional mortar approach 
enables to consider blocking fractures.

4. Conclusion

This study expands on previous works based on the application of the Lagrange multiplier method to compute single-
phase fluid flow problems in fracture dominated porous media. In particular, we employ the finite element method in 
combination with an L2-projection operator to couple different types of non-conforming meshes. The non-conformity might 
arise at the interface of independently meshed sub-domains, at hanging nodes resulting from adaptive mesh refinement, 
or by combining multiple overlapping meshes. Furthermore, fractures are either described by equi-dimensional or hybrid-
dimensional domains. The applied Lagrange multiplier is discretized using dual basis functions, which provide two main 
advantages. First, the number of degrees of freedom is reduced to the ones of the background mesh representing the 
porous-matrix. Second, the arising symmetric-positive-definite linear systems are convenient to work with.

Here, we present a unified framework covering all coupling techniques mentioned above. The different mesh solutions 
are compared to state-of-the-art benchmark cases in 2D and 3D, the numerical performance is studied, and use cases are 
presented in isolation and combination. Overall, the results suggest that the presented tool-set is capable of computing fluid-
flow through complex and heterogeneous rock formations in a robust and convenient way. It is important to bear in mind 
that realistic scenarios of fracture dominated rock formations may include fractures with geometric and physical properties 
ranging over many orders of magnitude. Therefore, the presented single joint framework allows to deeply exploit non-
conforming hybrid- and equi-dimensional fracture models and efficiently combine these models. By using the dual Lagrange 
multiplier we are able to combine multiple complex fracture networks without changing the size of the algebraic system 
arising from the porous-medium matrix, although we have more non-zero entries associated with the coupled degrees of 
freedom. It is also worth to point out that the conditioning of the system is not worsened, as it is the case when using 
other types of Lagrange multipliers [60].

With the integration of adaptive mesh refinement in the solution process, the error in the solution can be controlled in 
an automated way either by means of an error estimator or by pre-defining areas of interest for refinement. This allowed 
to complement the discussion in Schädle et al. [60] about the necessity of having a finer mesh around fractures and their 
tips and intersections.

The study of a complex, more realistic, geological setting, inspired by the Grimsel Test Site, demonstrates the advantage 
of the unified framework to represent vastly different fracture geometries and properties within a single numerical model. 
This allows to expand on existing numerical studies of such systems by the opportunity to include a large range of fracture 
representations. Furthermore, the highly efficient and convenient tools combined with the eased meshing of non-conforming 
meshes enable stochastic studies for a wide range of fracture dominated systems.

Further investigations based on this unified framework would benefit by focusing on mass conservation properties of the 
finite element discretization and application to transport problems.
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Computer code availability

All methods and routines, used for this study, are implemented with the open-source software library Utopia [80,81]. 
Utopia’s lead developer is author Patrick Zulian at USI Lugano, Switzerland. The contact address and e-mail of Patrick Zulian 
are as follows:

Euler institute
Università della Svizzera italiana (USI - University of Lugano)
Via Giuseppe Buffi 13
CH-6900 Lugano

patrick.zulian @usi .ch

Utopia was first available in 2016, the programming language is C++ and it can be accessed through a git repository or a 
docker container on:

https://bitbucket .org /zulianp /utopia (approx. 40 MB of uncompressed data),
https://hub .docker.com /r /utopiadev /utopia.

The software dependencies are as follows:

PETSc (https://www.mcs .anl .gov /petsc),
must be compiled with HYPRE enabled
libMesh for the FE module (https://github .com /libMesh)

There are no hardware requirements given by Utopia. Potential hardware or software requirements of the underlying libraries 
libMesh and PETSc are not stated here.
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