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Abstract

Language-integrated query (LINQ) frameworks offer a convenient programming
abstraction for processing in-memory collections of data, allowing developers to
concisely express declarative queries using general-purpose programming lan-
guages. Existing LINQ frameworks rely on the type system of statically typed
languages such as C♯ or Java to perform query compilation and execution. As
a consequence of this design, they do not support dynamically typed languages
such as Python, R, or JavaScript. Such languages are however widely used for
developing data-processing applications.

In this dissertation, we propose a new approach to query execution based on
query interpretation and just-in-time compilation. We introduce DynQ, a novel
query engine which bridges the gap between dynamically typed languages and
LINQ frameworks by leveraging just-in-time compilation.

From the user prospective, DynQ is a data-processing library which offers
SQL and a fluent API as query languages. Internally, DynQ is language-agnostic,
since, by leveraging a polyglot language runtime, it brings the LINQ features
to multiple languages without requiring one to implement query operators in
multiple languages. Moreover, DynQ can execute queries combining data from
multiple sources, namely in-memory object collections as well as on-file data and
external database systems.

DynQ offers efficient query execution for different kinds of workloads by im-
plementing a hybrid interpreted-compiled execution model. Our approach al-
lows executing queries on small datasets through interpretation, without incur-
ring the overhead of query compilation. On the other hand, DynQ leverages just-
in-time compilation to speed up the execution of long-running queries. Moreover,
DynQ implements reusable compiled queries, an efficient code cache which al-
lows reusing the same dynamically compiled code for multiple related queries. In
this way, DynQ can optimize high-throughput workloads based on a fluent API,
i.e., applications which use data-processing libraries mostly for executing many
queries on small datasets, such as e.g. in micro-services, as well as applications
which make use of data-processing libraries to perform repetitive queries.
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Our evaluation of DynQ shows performance comparable with equivalent hand-
optimized code, and in line with common data-processing libraries and embed-
ded databases, making DynQ an appealing query engine for standalone analytics
applications and for data-intensive server-side workloads. Moreover, thanks to
reusable compiled queries, DynQ can also speed up applications that heavily use
data-processing libraries on small datasets via a fluent API.
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Chapter 1

Introduction

This chapter first motivates the need for integrating LINQ into dynamically typed
languages (Section 1.1). Next, it presents the goals of this dissertation and its
main related challenges (Section 1.2). Then, it summarizes the contributions of
this dissertation (Section 1.3). Finally, it outlines the structure of the rest of this
dissertation (Section 1.4).

1.1 Motivations

In modern data processing, the boundary between where data is located and
who is responsible for processing it has become very blurry. Data lakes [29]
and emerging machine-learning frameworks, such as TensorFlow [108], make it
very practical for developers to implement complex data-processing applications
directly “in the language” (i.e., in Python or JavaScript), rather than resorting
to “external” runtime systems such as traditional relational database manage-
ment systems (RDBMSs). Such an approach is facilitated by the fact that many
programming languages are equipped with built-in or third-party libraries for
processing in-memory collections (e.g., arrays of objects). Well-known exam-
ples of such libraries are the Microsoft LINQ-to-Objects framework [65] (which
targets .NET languages, e.g., C♯) and the Java Stream API [79]. Microsoft’s im-
plementation of LINQ not only allows developers to query in-memory collections,
but it can be extended with data-source providers [64] (e.g., LINQ-to-SQL and
LINQ-to-XML) that allow developers to execute federated queries (i.e., queries
that process data from multiple sources). Many systems with similar features
have been proposed (e.g., Apache Spark SQL [2]).

Despite the many benefits it offers, LINQ support is currently missing in pop-
ular dynamically typed languages, i.e., languages for which the type of a variable
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2 1.2 Goals and Challenges

is checked at runtime, such as Python or JavaScript. However, such languages
are very popular [99], as an example, JavaScript and Node.JS are widely used
to implement data-intensive server-side applications [103]. Moreover, a recent
survey [9] shows that the most used languages among professional data scien-
tists are Python, SQL, and R. Consequently, we believe that also data scientists
would benefit from LINQ frameworks in data-analytics applications.

While bringing LINQ technology to dynamically typed languages is the main
motivation for the work presented in this dissertation, the underlying ideas and
techniques are not limited to dynamically typed languages but are applicable in
the context of statically typed languages, too. Indeed, as we will further discuss
in Section 4.4, our system is able to execute queries without resorting to any
static type information, i.e., based only on type information available at runtime.
However, whenever static type information is available, e.g., the data schema of
an R data frame, our system is able to access and leverage such information to
further optimize query execution.

Finally, besides the mentioned benefits of bringing LINQ to dynamically typed
languages, achieving efficient query processing in more than one language has
additional software-engineering advantages for language implementors. Indeed,
different languages have distinct API for data processing, often supporting only
a subset of what SQL offers, and language runtimes provide ad-hoc implemen-
tations of those API. As a consequence, there are often replicated functionali-
ties across those runtimes. In contrast, our approach integrates a single data-
processing module with all the supported languages. It supports the full SQL
query language and implements dedicated data-processing optimizations, while
at the same time it is designed with extensibility in mind, i.e., integrating new
data sources is straightforward. Hence, in addition to the benefits that our sys-
tem offers to end users, it also opens up the opportunity to simplify and optimize
the implementation of the data-processing API in different languages.

1.2 Goals and Challenges

The goal of our research is summarized in the following thesis statement:

LINQ can be efficiently integrated into multiple dynamically typed
programming languages, requiring no database schema, enabling queries

directly on data structures in the host language.

In particular, our goal is to bring the benefits of LINQ systems from stati-
cally typed programming languages to dynamically typed ones, enabling queries
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on collections of dynamic objects, requiring neither the introduction of a data
schema nor a data-ingestion phase, i.e., the process of copying the data into a
managed memory space using a physical data representation suitable for being
processed by the LINQ engine.

Our first design goal for bringing LINQ into dynamically typed languages is
the modularity of the implementation of the query operators in terms of language
independence. Indeed, a LINQ system for dynamically typed languages can ex-
ecute queries on collections of objects from multiple programming languages.
Similarly, extending such a system by implementing new optimizations and inte-
grating new data sources and query operators should impact only their respective
components, i.e., their implementation should be language independent.

Our second goal is efficient query processing, in particular, query execution
from a LINQ system on a collection of objects from a dynamically typed lan-
guage should be as efficient as an equivalent hand-optimized application written
in the same language. Moreover, query execution should be efficient both for
analytical workloads on large datasets (e.g., database workloads), as well as for
high-throughput workloads, where many queries are executed on small datasets
(e.g., data-intensive server-side applications).

LINQ systems have been studied from a theoretical point of view [38, 15], and
several optimization techniques have been proposed [73, 74, 59]. However, the
proposed solutions focus on statically typed languages, where type information is
known before program execution. The flexibility of dynamically typed languages
imposes additional challenges compared with LINQ engines that process data of
known types, as the types of the objects in a processed collection (e.g., an array)
can be different from each other, so the engine has to take into account, e.g., that
a property may be missing in an object or that it may have a different type than
a previously processed object.

During the last years, it has been shown by many researches [75, 52, 106, 91]
that efficient query execution can be obtained by compiling SQL queries into ma-
chine code. However, implementing a language-agnostic LINQ engine based on
query compilation imposes additional challenges, since the engine must be able
to emit different code depending on the internal implementation of the processed
data structure, for example, the engine can emit offset-based machine code when
accessing R data-frames, or hash-lookup-based access code when reading data
from JavaScript (map-like) objects.
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1.3 Contributions

To enable our goal of designing and implementing a LINQ system for multiple
dynamically typed programming languages, our research makes the following
contributions:

• We describe DynQ1, a language-agnostic LINQ engine targeting dynami-
cally typed languages. DynQ can execute queries on dynamically typed
object collections (e.g., JavaScript or R objects) as well as on file data
(e.g., JSON files) and other data sources. DynQ is exposed to users by
means of a language-agnostic API, and is capable of executing queries on
different object representations. DynQ does not require defining any data
schema (neither provided nor inferred) for executing queries on dynamic
collections, as it is able to specialize query operators on the data types en-
countered during query execution. However, at the same time DynQ can
further speed up query execution by exploiting a schema when such infor-
mation is available. Moreover, DynQ can efficiently integrate user-defined
functions (UDFs) within query execution.

• We describe DynQ’s approach to query compilation, which relies on self-
optimizing abstract syntax tree (AST) interpreters and dynamic speculative
optimizations. In contrast to many engines based on query compilation,
DynQ does not need to generate machine code before executing a query.
Query execution in DynQ begins as soon as the AST nodes have been in-
stantiated, since the execution starts by interpreting those nodes. Such
an approach to query execution allows DynQ to avoid compiling queries if
the underlying dataset is small. On the other hand, DynQ is highly opti-
mized and benefits from just-in-time (JIT) compilation to speed up query
execution on long-running queries.

• We address the problem of optimizing high-throughput workloads, where
many queries are executed on small batches of datasets. Indeed, using
the DynQ execution model based on interpretation and subsequent com-
pilation for large datasets, the application could end up executing most of
those small queries through interpretation. To overcome this performance
issue, we introduce reusable compiled queries, a novel approach to query
execution that relies on an efficient and flexible cache of compiled queries.
Such an approach allows the query engine to automatically detect the exe-

1DynQ is available as open source project at https://github.com/usi-dag/DynQ-VLDB.

https://github.com/usi-dag/DynQ-VLDB
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cution of a query which is similar to a previously executed one and to reuse
the previously compiled code to execute the current query.

• We evaluate DynQ on workloads designed for both databases and program-
ming languages. Our evaluation shows that DynQ performance is compa-
rable with hand-optimized implementations of the same queries and out-
performs implementations based on built-in or third-party data-processing
libraries in most of the workloads. In particular, our evaluation on rela-
tional data shows that the flexibility of DynQ in accessing data in differ-
ent formats does not impair query execution performance with respect to
query engines which known the data schema. Moreover, our evaluation
on programming-language workloads highlights the ability of DynQ to ef-
ficiently process dynamic objects with unknown schema.

1.4 Dissertation Outline

This dissertation is structured as follows.

• Chapter 2 introduces relevant background information related to our ap-
proach, i.e., the Microsoft LINQ implementation targeting .NET languages,
existing approaches to query execution, and the GraalVM platform with
Truffle, its language-implementation framework, on top of which DynQ
has been built.

• Chapter 3 discusses the state-of-the art in the context of our work, i.e.,
query compilation, embedded databases, the support of user-defined func-
tions in database systems, dynamic optimizations in the context of data-
processing and the execution of federated queries.

• Chapter 4 presents DynQ, our novel LINQ framework for dynamically typed
languages. In particular, it describes the architecture of DynQ, its approach
to query compilation, how DynQ allows extending query execution to new
data source through DynQ providers, the language-specific type specializa-
tion and conversions, and finally how fluent API are implemented in DynQ.

• Chapter 5 introduces reusable compiled queries, a technique which improves
performance of high-throughput workloads by allowing the reuse of the
same compiled code to execute similar queries relying on a cache of com-
piled queries.
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• Chapter 6 evaluates the performance of DynQ on two programming lan-
guages, namely R and JavaScript, on workloads designed for databases and
programming languages.

• Chapter 7 concludes the dissertation and outlines future research directions
inspired by this work.



Chapter 2

Background

This section gives an overview of the .NET implementation of LINQ and discusses
its execution model as well as improvements proposed in the research literature.
Then, it introduces the GraalVM platform [118] and the Truffle [116] framework
that were used for implementing DynQ.

2.1 Language-integrated Queries

LINQ was first introduced in Microsoft .NET 3.5 to extend the C♯ language with
an SQL-like query comprehension syntax and a set of query operators [8]. The
following is an example of a LINQ query:

IEnumerable<int> xs = ...;

var evenSquares = from x in xs

where x % 2 == 0

select x * x;

LINQ implements a lazy evaluation strategy by converting query operators to
iterators, a so-called pull-based model [97], i.e., each operator pulls the next row
from its source operator. In the example query, the where and select clauses
in the query comprehension are de-sugared into calls to the methods Where and
Select defined in the IEnumerable interface.

Another important feature of LINQ is its extensibility to new data formats.
LINQ can execute queries not only on in-memory object collections, but also on
any data type that extends the generic types IEnumerable or IQueryable. This
great flexibility is obtained through so-called LINQ providers, i.e., data-source
specific implementations of the mentioned generic types. Relevant examples of

7



8 2.2 Query Execution Models

LINQ providers are LINQ-to-XML (that queries XML documents) and LINQ-to-
SQL, which converts query expressions into SQL queries and sends them to an
external DBMS. LINQ providers can be categorized based on where the query
computation actually takes place, namely those that execute in the managed run-
time of the application process, and those that delegate the query processing to
an external system. Examples of the former are LINQ-to-Objects (for in-memory
collections) and LINQ-to-XML (that query XML documents), whilst the main ex-
ample of the latter is LINQ-to-SQL, which converts query expressions into SQL
queries and sends them to an external DBMS.

2.2 Query Execution Models

The C♯ implementation of LINQ executes queries by leveraging the pull-based
model, which shares many similarities with the Volcano [35] query execution
model in use by many popular relational databases, such as PostgreSQL [84].
It has been shown [60] that the main performance drawbacks of this execution
model are virtual calls to the interface methods (e.g., MoveNext() and Current()

in C♯, or hasNext() and next() in Java), which introduce non-negligible over-
head, since they are executed for each input row of each operator in the query
plan. In the context of relational databases, the most relevant optimizations for
removing such overhead are vectorization [10] and data-centric query compila-
tion [75].

Vectorized query execution, similarly to the Volcano model, uses a pull-based
approach. However, the query interpretation overhead is mitigated by leveraging
a columnar data representation and batched execution, i.e., instead of evaluat-
ing a single data item at a time, query operators work on a vector of items which
represents multiple input rows. Data-centric query compilation completely re-
moves the interpretation overhead by generating executable code for a given
query. Code generation commonly happens at runtime, using schema and type
information to generate code that is specialized for the tables used in a query.
Data-centric query compilation adopts a so-called push-based model, i.e., each
operator pushes a row to its destination operators. Both pull-based and push-
based models have been studied from the point of view of compilers and pro-
gram transformations [73, 74, 54]. Interestingly, it has been shown [97] that,
by leveraging compiler optimization techniques such as e.g. loop fusion, method
inlining, and scalar replacement, neither model clearly outperforms the other.

A well-known disadvantage of query compilation is the overhead introduced
by the compilation itself. For statically typed and compiled languages, query
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compilation can be invoked at different times, namely at application compila-
tion time (e.g., in SBQL4J [115]) or during its execution (e.g., in Steno [73]).
While the former approach has the advantage of hiding the query compilation
cost during the compilation of the application, it imposes serious limitations: the
queries must be expressed in the application code, meaning that a system that
accepts queries as user input cannot leverage such an approach. In the context of
dynamically typed languages (such as e.g. JavaScript or Python), this approach
cannot be used in general, because the application source code is directly exe-
cuted by the runtime. On the other hand, runtime query compilation does not
suffer from these limitations, but the compilation cost can shadow the bene-
fits obtained by the optimization passes, in particular for short-running queries.
Recent research [57] addresses this issue with an adaptive query compilation
model. With such a compilation model, the engine first quickly generates an
executable representation of the query and executes it in an interpreter. Then,
during query execution, the engine performs adaptive decisions whether to com-
pile a query operator based on execution-time estimations. Such approach is
inspired by the implementation of JIT compilers in language VMs.

2.3 GraalVM and the Truffle Framework

DynQ is implemented targeting the GraalVM [118] platform, i.e., a polyglot lan-
guage runtime compatible with the Java Virtual Machine (JVM). GraalVM is ca-
pable of executing programs developed in a variety of popular programming lan-
guages, such as Java, JavaScript, Ruby, Python, and R. At its core, GraalVM re-
lies on a state-of-the-art dynamic compiler (called Graal [117]), which brings JIT
compilation to all GraalVM languages. Language runtimes for GraalVM (includ-
ing DynQ) are implemented using the Truffle language implementation frame-
work [116]. Unlike other code-generation frameworks for the JVM or the .NET
platform, Truffle does not rely on bytecode generation, but rather on the concept
of self-optimizing interpreters [116], i.e., language interpreters that use custom
API and data structures enabling explicit and direct interaction with the underly-
ing language VM components (including the JIT compiler). The Graal optimizing
compiler has special knowledge of such API, and is capable of generating efficient
machine code by means of partial evaluation [47].

In addition to JIT compilation, the Truffle framework provides a so-called
language interoperability protocol [36], i.e., a runtime mechanism which allows
sharing values among the dynamically typed languages implemented with Truf-
fle. Thanks to these interoperability mechanisms, DynQ can effectively inline
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machine code used by GraalVM language runtimes into its own query execu-
tion code. For example, DynQ can use the very same machine code used by
the GraalVM JavaScript VM to read JavaScript heap-allocated objects, thereby
enabling efficient access to in-memory data during SQL query execution. This
approach to SQL execution allows DynQ to efficiently exploit runtime informa-
tion, to benefit from optimizations that are normally used in high-performance
language VMs, such as e.g. dynamic loop unrolling [21] and polymorphic inline
caching [43].



Chapter 3

Related Work

This section discusses the state-of-the-art in the context of this proposal. Sec-
tion 3.1 discusses query compilation, which is a technique used also in DynQ.
Section 3.2 presents an overview of existing embedded databases with bindings
for dynamically typed languages and discusses how they differ from LINQ en-
gines, such as DynQ. Section 3.3 discusses different techniques for executing
UDFs within a query engine, which is a crucial feature in a LINQ framework.
Finally, Section 3.4 discusses related work about dynamic optimizations in the
context of data-processing systems.

3.1 Query Compilation

Query compilation in relational databases dates back to System-R [12] and it
has been studied in many research work. Recently, query compilation is increas-
ingly gain interest both in the research community [76, 83, 50, 91, 75, 60, 33,
70, 81, 56, 55] and in industrial systems [30, 22, 14, 114]. In the context of
stream libraries and fluent API, Steno [73] exploits query compilation in LINQ
for the C♯ language. Nagel et al. [74] further improve LINQ query compilation
in C♯ by using more efficient join algorithms and by generating native C code
which is able to access C♯ collections that reside on the heap of the managed
runtime. OptiQL [105] is a stream library for the Scala language which lever-
ages the Delite [104] framework for generating optimized code. Strymonas [54]
is a stream library for Java, Scala, and OCaml. Strymonas leverages the LMS [93]
framework for ahead-of-time query compilation for Java and Scala, and MetaO-
Caml [53] for the OCaml language. Those libraries are designed for statically-
typed languages and exploit type information for generating specialized pro-
grams during the code generation.

11
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Caching the generated machine code of a compiled query for later reuse has
been recently proposed in a PostgreSQL query compiler [82]. However, this ap-
proach presents two important drawbacks. First, caching is enabled only when
developers make use of prepared statement by marking the variables which need
to be bind at query execution time, meaning that the developers have to take care
of identifying the queries which are suitable for being reused and writing them as
prepared statements. Second, bind variables can be only of raw types, i.e., a pre-
pared statement cannot be parametric for a whole expression tree. On the other
hand, with reusable compiled queries, DynQ is able to automatically detect the
execution of a query similar to a previously executed one and to reuse the previ-
ously compiled code to process the current query. Moreover, reusable compiled
queries are parametric for whole expressions, thus broadening their applicability
in comparison with prepared statements. Permutable compiled queries [71] also
addresses the problem of avoiding recompilation. However, such an approach
has been designed for integrating adaptivity in compiled queries, and does not
allow reusing the previously compiled code for executing subsequent queries, as
done in DynQ with reusable compiled queries.

3.2 Embedded Databases

Due to the popularity of dynamically typed programming languages, embedded
database systems such as SQLite [80] often provide bindings for some of them.
With such an approach, the database query engine is hosted in the application
process, removing the inter-process communication overhead imposed by solu-
tions that adopt an external database system [88]. However, developers cannot
use embedded databases to query arbitrary data that resides in the process ad-
dress space (e.g., an array of JavaScript objects or a file loaded by the applica-
tion). Instead, using embedded databases, it is usually required to create tables
with a data schema, and then traverse the object collection and insert relevant
data into such tables, a so-called ingestion phase.

Afterburner [28] is an in-memory, embedded relational database implemented
in JavaScript. Afterburner leverages optimized JavaScript data structures (i.e.,
typed arrays) and generates ASM.js [3] code, which is an optimized subset of
JavaScript with only primitive types. Although this design offers very fast query
processing, it comes with many limitations. First, it cannot execute queries on
arbitrary JavaScript objects, i.e., the data needs to be inserted into a database-
managed space before query execution, which introduces overhead, increases
the memory footprint, and requires users to provide a data schema. Another
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drawback of an ingestion phase is that, if the dataset is already stored in a col-
lection (e.g., in an array), copying the data into a managed memory space may
significantly increase the memory footprint. Moreover, Afterburner is designed
for relational data of few primitive types (i.e., numbers, dates, and strings), with
no support for querying arrays and nested data structures. Finally, our goal is
supporting data processing in multiple programming languages. However, the
approach proposed in Afterburner cannot be easily replicated in other dynamic
languages, since most of them do not offer efficient data structures like typed
arrays and an efficient subset of the language to operate on primitive datatypes,
like ASM.js.

DuckDB [89] is an embedded database with bindings for multiple dynami-
cally typed languages, i.e., Python, R and JavaScript. Differently from most of
the other embedded databases, DuckDB is able to execute queries directly on
data structures managed by a dynamic language, in particular Python and R
data frames. However, both Python and R data frames are implemented with a
columnar data structure composed of typed arrays, and they cannot store hetero-
geneous objects, such as e.g. a JavaScript map. Indeed, DuckDB cannot execute
queries on arbitrary objects, in contrast to DynQ. Hence, DuckDB does not need
to face the challenge of dealing with unexpected types during query execution.

3.3 Supporting Polyglot UDFs

Efficient execution of UDFs within data-processing systems is an active research
area [92], and there have been proposed two types of approaches to address
this problem, namely translating UDFs to relational expressions and embedding
language runtimes in the data-processing engine.

The first type of approaches, based on translation from UDF to SQL expres-
sion [7, 16] has been largely studied in the context of Froid [90], a component in
SQL Server which can translate imperative code without loops into SQL queries.
Many other approaches [25, 26, 39] improved Froid by allowing supporting more
complex imperative code with loop and recursion, converting it into SQL queries
with to recursive common table expressions. However, most of the existing ap-
proaches for converting imperative code, particularly in the context of dynami-
cally typed languages, are limited to a small subsets of language features [37].
Moreover, often those translations result in complex queries possibly involving
recursion, which are known to be difficult to optimize [90].

Other systems compile UDFs into low-level IR such as LLVM [62]. As an ex-
ample, Tupleware [19, 20, 18] is a state-of-the-art system that translates Python
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UDFs to LLVM. However, being based on ahead of time compilation, Tupleware
presents many limitations. First, it only supports UDFs for which types can be
inferred statically. Moreover, not all Python types are supported, but only numer-
ical types and there must be no polymorphic types as well as NULL values. Finally,
there is no exception support for runtime exception. Similar, also Numba [61],
a popular Python compiler for scientific computing, supports a limited subset
of Python. Tuplex [100, 101] improves Tupleware allowing exception handling.
Tuplex introduces a so-called dual mode execution model, which compiles an
optimized fast path for the common case (i.e., the expected object shape) which
is inferred with sampling, and falls back on CPython otherwise.

The second type of approaches is based on the idea of integrating a whole
language runtime to execute UDFs into a data-processing engine, an approach
used by existing systems, e.g., Apache Spark [119]. Simpler approaches of these
category [67] send each processed tuple to the language runtime, introducing
a high overhead. More complex approaches [94, 87] mitigated such overhead
by leveraging batched execution, i.e., invoking a UDF once to process multiple
rows. However, all this approaches require to execute UDFs written in a certain
language on objects of the same language, therefore limiting the reuse of existing
libraries as UDFs.

Recently, a query engine which leverages Truffle for optimizing polyglot UDF
execution has been proposed in Babelfish [37]. Babelfish and DynQ share some
implementation choices, i.e., leveraging Truffle nodes as representation of the
operators in a physical query plan. However, Babelfish’s goal is efficiently inte-
grating a polyglot UDF execution within a database system with static type in-
formation (i.e., the schema). In particular, Babelfish not only requires a schema
definition on the input dataset, but also all expressions involved in the query plan
need explicit physical type information. On the other hand, our goal is integrat-
ing a query engine in LINQ style within dynamically typed languages. Indeed,
DynQ deals with query execution on unknown types both on the datasets and
the expressions, e.g., executing queries with UDFs on arrays of JavaScript ob-
jects. This flexibility is crucial for embedding LINQ-style queries and a fluent API
within a dynamically typed language.

3.4 Dynamic Optimizations

Dynamic optimizations are an extensively studied topic in the context of pro-
gramming languages and just-in-time compilers [21, 43]. In the context of data-
processing systems, dynamic optimizations have been studied for adaptive query
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processing [5, 42, 63]. However, those techniques are commonly adopted only
on systems based on query interpretation, as it is often argued that it is very
challenging to achieve on systems based on query compilation, citing [51]:

“Integrating adaptivity in compiled execution is very hard; the idea of adaptive
execution works best in systems that interpret a query – in adaptive systems they can
change the way they interpret it during runtime. Vectorized execution is interpreted,
and thus amenable for adaptivity. The combination of fine-grained profiling and
adaptivity allows VectorWise to make various micro-adaptive decisions.”

As we will show throughout this dissertation, adaptivity can be integrated
in compiled query engines by leveraging dynamic compilation techniques and
deoptimizations [44]. Moreover, speculative optimizations for query compila-
tion based on Truffle have been proposed in our VLDB ’20 paper [95] in the
context of Spark SQL for optimizing query execution on textual data formats.
The proposed optimizations target the leaves of a query plan (i.e., table scans
with pushed-down projections and predicates). The speculative optimizations
discussed in [95] are complementary to the approach used for implementing
DynQ, and such optimizations can be integrated into our DynQ providers for
textual data sources.

Besides data processing, the Truffle framework has been successfully adopted
for optimizing existing libraries. FAD.js [11] is a runtime library for Node.js
which optimizes JSON data access by parsing data lazily and incrementally when
the data is actually consumed by the application. FAD.js focuses on optimizing
data access, whilst DynQ focuses on data processing. Moreover, the approach
described in FAD.js is complementary to our approach and can be synergistic
with DynQ, i.e., we could integrate FAD.js in the DynQ JSON provider.

3.5 Execution of Federated Queries

As introduced in Section 2.1, the Microsoft implementation of LINQ allows ex-
ecuting queries not only on object collections, but also on any data format for
which a so-called LINQ provider is available, i.e., an interface between the data-
processing systems and its data source.

In the context of relational DBMS, orchestration of federated queries is a
widely studied topic, pioneered by systems like Garlic [48] and TSIMMIS [13]
and later extended in other systems such as Apache Calcite [6], FORWARD [32],
and Apache Drill [40]. Federated database systems have gained the attention
of the research community and have been extended in the context of polystore
systems. By following a recently introduced taxonomy [107], query processing
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across multiple data sources can be grouped in the following categories: Fed-
erated databases (e.g., Multibase [98]) which are composed of multiple homo-
geneous data sources offering a single query language. Polyglot systems (e.g.,
Apache Spark SQL [2]) which are again composed of multiple homogeneous data
sources but they support multiple query languages. Multistore systems (e.g.,
FORWARD [32]) which are composed of multiple heterogeneous data sources
and offer a single query language. Polystore systems (e.g., BigDAWG [24, 34],
CloudMdsQL [58], Polypheny-DB [113]) which are composed of multiple het-
erogeneous data sources and offer multiple query languages.

According to the mentioned categories, DynQ belongs to the category of mul-
tistore systems, since it allows executing queries on heterogenous data sources
and it offers SQL as query language. Internally, DynQ leverages Apache Cal-
cite [6] to orchestrate query execution among different engines.



Chapter 4

DynQ - a Dynamic LINQ Engine

This chapter presents DynQ, our novel LINQ engine which bridges the gap be-
tween LINQ frameworks and dynamically typed languages. First, we give a de-
tailed description of DynQ’s internals, presenting first the general design of DynQ
(Section 4.1), then it’s approach to dynamic query compilation (Section 4.2), and
its built-in support for third-party data providers (Section 4.3). We also explain
how DynQ’s architecture facilitates the development of language-specific opti-
mizations (Section 4.4). Finally, we describe the implementation of the fluent
API in DynQ (Section 4.5). Unless otherwise specified, the achievements pre-
sented in this chapter were published [96] at VLDB ’21.

In designing DynQ we focused on the following goals:

• Language-independence and modularity: DynQ should be able to execute
queries on collection of objects from any language supported by GraalVM.
Moreover, integrating new data sources and query operators in DynQ should
impact only their respective components, i.e., their implementation should
be language-independent.

• High performance: Query execution with DynQ from a host language should
be as efficient as a hand-optimized application written in the same lan-
guage.

For creating a language-agnostic query engine, one could follow a canoni-
cal compiler design approach, by first implementing a common front-end for the
query language (e.g., SQL) with a parser and a common optimizer (e.g., a query
planner), and then implementing language-specific back-ends that compile the
query plan into source code for any target language. Using this approach, a query
engine could achieve query execution performance in line with an equivalent

17
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hand-optimized application written in the target language. However, such an ap-
proach would not meet language-independence requirement listed above, since
extending the engine with new query operators or data sources would require
extending all language-specific back-ends, i.e., the query operator implementa-
tions are not language-independent. In the following subsections we describe
how we designed DynQ to meet both the mentioned requirements.

4.1 DynQ Architecture

At its core, DynQ is a dynamic query engine for GraalVM that exploits advanced
dynamic compilation techniques to optimize query execution. DynQ is exposed
to users by means of a language-agnostic API, and is capable of executing queries
on any object representation supported by GraalVM languages.

Unlike the popular LINQ implementation for the .NET platform, DynQ does
not extend its supported programming languages with a query-comprehension
syntax, but rather relies on SQL queries expressed as plain strings. The LINQ
query-comprehension syntax allows query validation at program compilation
time. However, as already discussed in the literature [46], in a dynamically-typed
language, where syntactic validation and type checking take place at runtime,
lacking this form of compile-time validation is not an issue. Query-comprehension
could be integrated in a dynamically typed language without any form of compile-
time validation. However, since one of the main goals of DynQ is language inde-
pendence, extending the syntax of multiple languages would not be a practical
approach. For this reason, and for the sake of a simpler implementation, we
opted for expressing SQL queries as strings. Besides SQL, DynQ allows express-
ing queries using a so-called fluent API, as described in Section 4.5. Since DynQ is
currently a prototype, its fluent API do not cover all the operations implemented
in .NET LINQ. However, besides offering comprehensions as query language and
static type checking, DynQ approach to query execution is compatible with all
the features offered by the LINQ implementation for the .NET platform. Imple-
menting the missing operations would require only engineering effort.

Two important differences between DynQ and existing LINQ systems are its
dynamic type system and the tight integration with the underlying JIT compiler.
The flexibility of dynamic languages imposes additional challenges compared
with processing data with a known type, as the engine has to take into account
that a value may be missing in an object and that runtime types of the objects in a
single collection (e.g., an array) can be different from each other. JIT compilation
is crucial in this context, as it allows DynQ to generate machine code that is
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specialized for the data types observed at runtime. For example, DynQ can emit
offset-based machine code when accessing R data frames, or hash-lookup-based
access code when reading data from JavaScript (map-like) dynamic objects.

Close interaction with the platform’s JIT compiler is a peculiar feature of
DynQ and a key architectural difference w.r.t. other popular language-integrated
approaches. Existing systems (e.g., .NET LINQ or Java 8 Streams) do not interact
with the underlying language runtime; in these systems, queries are compiled to
an intermediate representation (e.g., .NET CLR or Java bytecode) like any other
language construct (e.g., Java 8 Streams are converted to plain Java bytecode
with virtual method calls and loops). Query compilation to such intermediate
representations happens statically, before program execution. At runtime, the
language VM might (or might not) generate machine code for a specific query.
However, the lack of domain knowledge of the underlying JIT compiler could
limit the class and scope of optimizations that the language VM can perform. For
example, a language VM might (or might not) decide to inline certain methods
into hot method bodies depending on runtime heuristics that have nothing to do
with the structure of the actual query being executed.

DynQ, on the contrary, takes a radically different approach as it explicitly in-
teracts with the underlying VM’s JIT compiler to drive query compilation. In this
way, DynQ can effectively propagate its runtime knowledge of any given query to
machine code generation, resulting in high performance. As an example, DynQ
can effectively force the inlining of the predicates of a given query expression
into table-scan operators, ensuring efficient data access. Moreover, the tight in-
tegration with the language VM’s JIT compiler unlocks a class of optimization
that are not achievable with existing LINQ-like systems, namely, dynamic spec-
ulative optimizations: not only can DynQ apply an optimization (e.g., inlining)
when it sees potential performance gains, but it can also de-optimize the gener-
ated machine code when certain runtime assumptions get invalidated, giving the
query execution engine the chance to re-profile the code that is being executed,
possibly leading to the generation of new machine code that now takes different
runtime assumptions into account.

Thanks to its design, DynQ is able to outperform hand-optimized implemen-
tations of queries written in dynamic languages. Internally, the type system of
DynQ’s query engine handles two main types, namely primitive types and struc-
tured types. Primitive types include all Java primitive types as well as String and
Date. Structured types include arrays and nested data structures, i.e., objects
with properties of any of the mentioned types; multiple nesting levels are sup-
ported as well. As expressions, DynQ supports logical and arithmetic operators,
the SQL LIKE function on strings, and the EXTRACT function on dates. Moreover,
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Figure 4.1. High-level query life cycle in DynQ.

DynQ seamlessly supports user-defined functions (UDFs), as it can directly inline
code from any GraalVM language into its SQL execution code. In this way, UDFs
from any of the GraalVM languages can be called during SQL evaluation with
minimal runtime overhead. In particular, it is not required that a UDF is written
in the same language as the application that is using DynQ, e.g., it is possible to
use DynQ from JavaScript, executing a query with a UDF written in R.

As GraalVM is compatible with Java, DynQ can leverage existing Java-based
components to perform SQL query parsing and initial query planning. To this
end, our implementation leverages the state-of-the-art SQL query parser and
planner Apache Calcite [6]. While using Calcite as an SQL front-end has the
notable advantage that DynQ’s implementation can focus on runtime query op-
timization after query planning, DynQ’s design is not bound to Calcite’s API, and
other SQL parsers and planners could be used as well.

A high-level overview of the life-cycle of a query executed with DynQ from a
dynamic language (JavaScript in the example) is depicted in Figure 4.1. As the
figure shows, as soon as a developer has defined a dataset in the form of an object
collection (e.g., an array) it is possible to execute an SQL query on the in-memory
data. DynQ is invoked from the host dynamic language, passing (as parameters)
a string representation of the query and a reference to the input data. DynQ
leverages Calcite for parsing and validating the SQL query; if successful, the
validated query is converted into an optimized query plan. Then, DynQ traverses
the query plan, generating an equivalent executable representation (i.e., Truffle
nodes [116]), which is our form of a physical plan.

By generating Truffle nodes, the query preparation phase of DynQ is very
efficient, as Truffle nodes are ready to be executed through interpretation. Query
execution thus begins by interpreting the Truffle nodes generated by DynQ. As
soon as the DynQ runtime detects that the AST (or parts of it) are frequently
executed, it delegates the JIT compilation to GraalVM. Dynamic compilation is
triggered by DynQ, which also takes possible runtime de-optimizations and re-
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compilations into account. Finally, the result of query execution, i.e., a language-
independent data structure accessible by any GraalVM language, is returned to
the application.

Source-code Metrics Source-code metrics of DynQ are presented in Table 4.1.
The parser module contains classes that use Calcite for SQL parsing and query
planning, as well as the conversion from a Calcite plan to DynQ Truffle nodes.
The expression and query-operator modules contain DynQ Truffle nodes. The
polyglot-API module contains classes that implement the API accessible from all
languages supported by GraalVM, as well as the implementation of our polyglot
result-set.

Table 4.1. DynQ source-code metrics; number of classes and lines of code
(LOC) for each module.

# Classes # LOC
Parser 37 3700
Expressions 123 5300
Query Operators 116 5800
Polyglot API 43 2500

Total 319 17300

4.2 Query Compilation in DynQ

Query compilation in DynQ uses a push-based approach and takes place by visit-
ing the query plan generated by Calcite and converting it into Truffle nodes. The
push-based query execution approach used by DynQ is inspired by the model
introduced in LB2 [106]. In this model, each operator produces a result row
that is consumed by an executable callback function. Rather than relying on
statically generated callback functions, however, DynQ propagates result rows
to Truffle nodes. In this way, those nodes can specialize themselves on the actual
data types observed at runtime. Internally, DynQ relies on two classes of Truffle
nodes, namely (1) Expressions and (2) Query-operators.

Expression nodes represent the supported SQL expressions and UDF functions
introduced in Section 4.1. Since DynQ is designed to be a schema-less query
engine, each expression node used in a query can have initial unknown input
(and output) type. During query execution, Truffle nodes rewrite themselves to
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specialized versions capable of handling the actual types observed during query
execution. This specialization mechanism is natively supported by the Truffle
framework, and allows DynQ to handle type polymorphism in a way analogous
to language runtimes, resorting to runtime optimization techniques such as poly-
morphic inline caches [43]. In this way, an expression can be specialized during
query execution to handle multiple data types. Note that, typed expression may
be used in DynQ as well, in case the types information of the underlying data
source is available, as further discussed in Section 4.4.

Query-operator nodes are responsible for executing SQL operators, eventu-
ally producing a concrete result value. DynQ relies on two categories of query-
operator nodes, namely consumer nodes and executable nodes. The correspond-
ing Java interfaces ExpressionNode, ConsumerNode, and ExecutableNode are
shown in Figure 4.2.

Intuitively, each query operator (excluding table scans) has its own consumer
node, whilst only table-scan and join operators implement an executable node.
The main executable node of a query, i.e., the one containing the root operator,
takes care of producing the result set for that query.

DynQ generates a query’s root executable node by visiting the plan generated
by Calcite. In particular, DynQ generates a consumer node C for the currently
visited operator O. If O is not a join (i.e., it has only one child), C will consume
the rows produced by the child of O. If O is a table scan, DynQ generates an
executable node which iterates over a data structure (which acts as a table),
invoking the generated chain of consumer nodes for each row.

The implementation of the consumer nodes generated by visiting a join op-
erator depends on the join type. DynQ supports nested-loop joins and hash-joins
(possibly with non-equi conditions). In case of nested-loop joins, DynQ creates a
left consumer which inserts all rows into a list L, and a right consumer that finds
matching pairs of rows by iterating over the elements in L for each row. In case
of hash-joins, the left consumer inserts the rows in a hash-map, which is used by
the right consumer to find matching pairs.

When the query root operator is not a materializer (e.g., for queries composed
of projections and predicates), DynQ adds a custom consumer which fills a list
of rows, since DynQ always outputs an array data structure. On the other hand,
when the root operator is a sort or an aggregation, DynQ returns the sorted (or
aggregated) data, which is already a list of rows.

Note that stateful operators do not need any specific executable node, since
they are implemented using the methods defined in the interface ConsumerNode,
i.e., consume(row) and getResult(). As an example, if a query has a group-by
operator (which is not the root operator in the query plan), its implementation of
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interface ExecutableNode {

Object execute();

}

interface ConsumerNode {

void consume(Object row) throws EndOfExecution;

Object getResult();

}

interface ExpressionNode {

Object execute(Object row);

}

Figure 4.2. Main interfaces in DynQ.

consume(row) updates the internal state (a hash-map) and the implementation
of getResult(), which is invoked by its source operator once all input tuples
have been consumed, sends all tuples from the aggregated hash-map to its desti-
nation (a ConsumerNode), calling the consume(row) method for each aggregated
row, and finally returns the value obtained by calling the getResult() method
on its destination consumer.

Since push engines do not allow terminating the source iteration, i.e., an
operator cannot control when data should not be produced anymore by its source
operator, DynQ implements early exits for the limit query operator by throwing a
special EndOfExecution exception, which is part of the signature of the method
ConsumerNode.consume(row).

Error handling in DynQ. During data-processing on data which is not directly
managed by query engine like in a RDBMS, errors due to malformed rows need
to be handled by the engine. As an example, Apache Spark [2] allows users to
choose among three different strategies in case of malformed rows, i.e., discard-
ing all the malformed rows (permissive mode), throwing an exception at the first
malformed row found during data processing (failfast mode), and collecting the
malformed rows into the result set (later dumped to a file) for further analysis
or data fixing (collect bad records mode).

The latter approach has been extended in the literature in the context of
Tuplex [100, 101], a processing model which offers advanced error handling
strategies. In particular, in Tuplex, malformed rows are collected during data
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processing and stored in the so-called exception set, i.e., a field of the final result
set. Such an exception set maps exception types to the list of tuples that gen-
erated such exceptions. Besides collecting errors, Tuplex allows developers to
define resolve functions, i.e., exception handlers which define alternative strate-
gies to clean malformed rows on-the-fly instead of collecting them, e.g., replacing
a missing value with a default one. Moreover, Tuplex allows partially replaying
pipelines with a so-called incremental exception resolution. In this way, once
errors have been collected into the exception set, the pipeline can be modified
and re-executed only on the exception set.

Currently, DynQ’s approach to error handling is rather simple and works as
the permissive mode of Spark, i.e., it discards all the malformed rows during
query execution. However, implementing different error-handling strategies like
those proposed in Tuplex would only require engineering efforts, since DynQ’s
approach to query execution is compatible with these approaches to error han-
dling. Moreover, in contrast to Tuplex, where exceptional cases are always exe-
cuted as slow paths, i.e., relying on the CPython interpreter, DynQ can specialize
on exceptional cases if they are common in a certain dataset, leading to possibly
more efficient error handling.

Query compilation example. Consider the DynQ query targeting a JavaScript
array of objects shown in Figure 4.3. The query execution plan for the example
query is composed of a table-scan operator, a predicate operator, and an aggre-
gation operator that counts the number of rows that satisfy the predicate. The
AST of Truffle nodes generated by DynQ for the example query is depicted in
Figure 4.4. A simplified implementation of the nodes that compose the query is
depicted in Figure 4.5 (table scan), Figure 4.6 (predicate), Figure 4.7 (count),
Figure 4.8 (less than), Figure 4.9 (read member). As shown in Figure 4.8, the
LessThanNode node leverages Truffle specializations for implementing the less-
than operation. The LessThanNode implementation shown in Figure 4.8 presents
only the specializations for Int and Date types, because those types are the ones
used in the example. The actual implementation contains specializations for all
types supported in DynQ as well as their possible combinations (e.g., Int/Double
and Double/Int). In particular, DynQ specializations with mixed types respect
the implicit type conversion (i.e., type cast) semantics that in a relation database
is commonly integrated in the query planner. However, since in general at query
planning time types information are not available in DynQ, instead of inserting
implicit cast operations in the query plan, the detection of such casts must take
place during data processing.
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var data = [{x: 1, y: 2},

{x: 2, y: 1},

{x: Date(’2000-01-01’), y: Date(’2000-01-02’)}];

DynQ.registerTable(data, ’T’);

var Q = ’SELECT COUNT(*) FROM T WHERE x < y’;

var result = DynQ.execute(Q);

Figure 4.3. Example of a DynQ query on a JavaScript array.

Figure 4.4. AST generated by DynQ for the query in Figure 4.3.

Consider the method execute(Object) defined in the class LessThanNode.
This method first executes the left and right children expression nodes (i.e., prop-
erty reads in the example query). Then, the method call to executeSpecialized

(internally) performs a type check for the two arguments (i.e., fst and snd). If
both values have type int, the specialization execute(int, int) is executed; if
they are both dates, the method execute(LocalDate, LocalDate) is executed;
otherwise, the current tuple is generates an error which will be handled as dis-
cussed above.

Consider again the AST generated by DynQ for the example query depicted in
Figure 4.4. If the query is executed on an R data frame, DynQ would generate the
same tree, but the TableScan executable node and the ReadMember expression
nodes would specialize in different ways, depending on the runtime types. The
flexible design of DynQ allows reusing the very same query-operator nodes for
executing queries on different data structures, like a JavaScript array of objects
or an R data frame. Thanks to this design, we achieve all the three goals listed
in the beginning of this section. In particular, the extensibility and modularity of
our design allow adding new data sources (e.g., a data structure in a dynamic
language or an external source like a JSON file) by integrating only the expres-
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class TableScanNode implements ExecutableNode {

ConsumerNode consumer;

PolyglotArray input;

public Object execute() {

try {

for(int i=0; i<input.numElements; i++) {

Object row = jsArrayElement(input, i);

consumer.consume(row);

}

} catch (EndOfExecution e) {}

return consumer.getResult();

}

}

Figure 4.5. Simplified DynQ implementation for the table-scan node in the
example query in Figure 4.3.

sion nodes which take care of accessing data from such a data source, without
requiring any modification to the query-operator nodes.

Dynamic machine-code generation. By implementing DynQ on top of Truffle,
DynQ has fine-grained control over Graal, the GraalVM’s JIT compiler. Dynamic
compilation is triggered based on the runtime profiling information collected
during query execution, and the Graal JIT compiler applies (to DynQ queries) all
optimizations that are commonly used in dynamic language runtimes. Examples
of optimizations applied by Graal include aggressive inlining, loop unrolling, and
partial escape analysis. JIT compilation is performed by GraalVM using a con-
figurable number of parallel compiler threads. This leads to short compilation
times, as we will further discuss in Section 6.2.

In contrast to many engines based on query compilation, DynQ does not need
to generate machine code before executing a query. Query execution in DynQ
begins as soon as the Truffle nodes have been instantiated. First, the execution
starts by interpreting those nodes; during this phase the runtime collects type in-
formation for the nodes that leverage Truffle specializations (e.g., LessThanNode
in the previous example). Then, once the runtime detects that some nodes are
frequently executed (e.g., the main loop in TableScanNode), it initiates machine-
code generation. Once the runtime has collected type information for those rows
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class PredicateNode implements ConsumerNode {

ConsumerNode consumer;

Expression predicate;

public void consume(Object row) {

if(predicate.execute(row)) {

consumer.consume(row);

}

}

public Object getResult() {

return consumer.getResult();

}

}

Figure 4.6. Simplified DynQ implementation for the predicate node in the
example query in Figure 4.3.

class CountNode implements ConsumerNode {

long result = 0;

public void consume(Object row) {

result++;

}

public Object getResult() {

return result;

}

}

Figure 4.7. Simplified DynQ implementation for the count node in the example
query in Figure 4.3.
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class LessThanNode implements ExpressionNode {

ExpressionNode left, right;

public boolean execute(Object row) {

Object fst = left.execute(row);

Object snd = right.execute(row);

return executeSpecialized(fst, snd);

}

@Specialization

boolean execute(int left, int right) {

return left < right;

}

@Specialization

boolean execute(LocalDate l, LocalDate r) {

return l.isBefore(r);

}

}

Figure 4.8. Simplified DynQ implementation for the less-than node in the
example query in Figure 4.3.

class ReadMember implements ExpressionNode {

String name;

public Object execute(Object row) {

return readJsMember(name, row);

}

}

Figure 4.9. Simplified DynQ implementation for the read-member node in the
example query in Figure 4.3.
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which have been executed in the interpreter, it speculatively generates machine
code assuming that the subsequent rows will have the same types. If such spec-
ulative assumptions get invalidated (e.g., because a subsequent row has an un-
expected type), the compiled code gets invalidated and the execution falls back
to interpreted mode. Then, the runtime can update the collected type informa-
tion and later re-compile the nodes to machine code accordingly. It is important
to note that, even if triggering recompilation has a cost, specializations stabilize
quickly [117], typically incurring only minor overhead. Besides type specializa-
tion, such a dynamic approach to query compilation is crucial for obtaining low
latency in query executions, as we will show in Section 6.2.

By leveraging a state-of-the-art dynamic compiler like Graal, DynQ can se-
lectively compile single components of the query’s physical plan. In particular,
each table-scan executable node can be selectively compiled to self-contained
machine code. Thanks to this approach, a query does not need to be fully com-
piled to machine code to achieve high performance, since e.g. executing a join
operator could lead to the evaluation of one child node in the interpreter (if it
has few elements) and another child in compiled machine code.

Figure 4.10 shows the pseudo-code equivalent to the machine code generated
by DynQ for the example query of Figure 4.3, once both types in the example
are encountered (i.e., both x and y properties have either type Int or Date). As
the figure shows, all the calls to the interface methods are aggressively inlined
by the compiler. The operations listed at the beginning of the while loop that
interact with the host dynamic language (i.e., reading the current array element
and its properties x and y) are inlined by the compiler as well. Moreover, the
predicate node is compiled into two if statements that check whether in the
current row the fields x and y have one of the expected types. If this is not the
case, in general, the generated code would be invalidated as described above,
whilst in this specific example, since there is no other specialization in the less-
than node, the current row is discarded and the generated code does not need
to be invalidated.

4.3 DynQ Providers

As introduced in Section 2.1, LINQ queries are not limited to object collections,
instead they can be executed on any data format for which a so-called LINQ
provider (i.e., a data-source specific implementation of the LINQ interfaces enu-
merable and queryable) is available. Such flexibility is an appealing feature for
developers, since it allows executing federated queries within the same program-
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executeMethodAfterJITCompilation() {

result = 0;

for(int i = 0; i < input.numElements, i++) {

row = // read i-th array element

fst = // read property "x" of row

snd = // read property "y" of row

// Type checking for predicate

if(/* fst and snd are integers */) {

if(fst < snd) {

result++;

}

}

else if(/* fst and snd are dates */){

if(fst.isBefore(snd)) {

result++;

}

}

}

return result;

}

Figure 4.10. Pseudo-code equivalent to the machine code generated by DynQ,
executing the example query in Figure 4.3.
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ming model, leaving the complexity of orchestrating different data sources to the
system.

In DynQ, we leverage Apache Calcite to federates multiple storage and pro-
cessing backends. Indeed, besides the query parser and planner, Apache Calcite
has another appealing feature for DynQ, namely its flexibility in integrating new
data sources by defining specific adapters. A Calcite adapter takes care of rep-
resenting a data source as tables within a schema, i.e., a representation that can
be processed by the query planner. Similarly to LINQ providers, from a query
execution point of view, a Calcite adapter takes care of converting the data from
a specific source to a Calcite enumerable that can be integrated into the query
engine, allowing the execution of federated queries. In this way, similarly to mul-
tistore databases, we use a single query language (i.e., SQL) to execute queries
that combine data from multiple sources. In implementing DynQ we leveraged
Calcite adapters for integrating Java Database Connectivity (JDBC) drivers. As
the Calcite ecosystem offers many adapters for other data sources (e.g., Elas-
ticsearch [23], MongoDB [72], Apache Kafka [109]), all these adapters can be
integrated in DynQ with minimal effort.

Besides leveraging existing Calcite adapters, DynQ-specific provider can be
implemented as well. Implementing a DynQ provider requires implementing a
specific table-scan operator, which takes care of iterating over the rows in the
input data source, and a data-accessor operator, which takes care of accessing
the fields of each row. As an example of DynQ provider, we implemented a JSON
data-source provider using Jackson [31], an efficient JSON parser for Java, for
accessing fields in JSON objects. This approach can be further extended with
more complex parsers that integrate predicate execution during data-scan oper-
ations, which is an approach already explored our previous work [95].

As an example of federated query in DynQ, consider a scenario where a devel-
oper needs to analyze a web-server log file in JSON format, counting the number
of accesses for each user who registered to the website after a specific date, with
user registration data however stored in a database. Figure 4.11 shows how
such a log analysis can be executed with DynQ. As the figure shows, developers
do not have to deal with opening/closing any file or database connection; they
only need to provide a file name and configurations for accessing the database
(e.g., the URL, credentials, and database name) to DynQ, which takes care of
everything else.

The Calcite query planner detects the operators that can be pushed to external
data sources. When executing the example query, DynQ sends (to the database)
the SQL query with the predicate on the date field and retrieves only user names
of the rows matching the predicate. Hence, the operation can be executed more
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efficiently (i.e., exploiting database optimizations) and communication overhead
is reduced. Currently, DynQ can push down predicates to data sources if they do
not involve UDFs. In this case, the predicate operator will be kept in a part of the
query plan processed by DynQ. However, the problem of translating UDFs into
SQL expressions has already been addressed, e.g., in BOLDR [7], an approach
that can be synergistic with our work.

var path = 'file://.../log.json';
DynQ.registerJSON('logs', path);

var config = // DB url, credentials, ...

DynQ.registerJDBC('users', config);

var result = DynQ.execute(`
SELECT users.name, COUNT(*) as count

FROM users, logs

WHERE logs.user.id = users.id

AND users.registration_date > DATE ...

GROUP BY users.name`);

Figure 4.11. Federated query with DynQ.

4.4 Language-specific Expressions

Although GraalVM allows efficient interactions among different languages [36],
it may introduce overhead related to data conversion operations. As an example,
dates are represented as LocalDate instances once shared among different lan-
guages, but the internal representation in a specific language may be different,
e.g., in JavaScript dates are represented as long values, as the number of mil-
liseconds from the epoch day January 1, 1970-01-01, UTC [27]. As an example,
consider the following simple query:

SELECT COUNT(*) FROM T WHERE X < DATE ’2000-01-01’

Suppose DynQ executes such a query (without language-specific expressions)
on JavaScript objects, in a first step (before query execution) it would create a
LocalDate instance for the constant date (2000-01-01), then during predicate
evaluation, for each row:
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• It would check that the current row contains the field X and that it is actu-
ally a date instance (this step cannot be avoided in the context of dynamic
languages).

• It would convert the JavaScript date into a LocalDate instance.

• Finally, it would compare the converted LocalDate instance with the con-
stant one (2000-01-01).

On the other hand, evaluating the predicate in JavaScript would require only
the first step above (i.e., checking that the field exists and has type date), if so
the date comparison is executed using the JavaScript internal representation of
dates, that is, a single comparison of two primitive longs, which is of course much
more efficient than the steps above.

The reason for those data conversions is that different languages may in-
ternally represent the same data type differently, but exposing those types to
other languages requires a common representation. To overcome these ineffi-
ciencies related to the type conversions introduced by language interoperability,
DynQ provides an extension mechanism that can be used to implement language-
specific expressions. As discussed in Section 4.2, DynQ relies on two main cate-
gories of nodes, namely expression nodes and query operator nodes. Language-
specific expressions can be implemented by extending expression nodes with new
specializations for types of a certain language.

Considering for example JavaScript dates, language-specific expressions can
be implemented to extend comparison nodes by taking care of checking if the
objects to be compared are actually JavaScript dates. If so, the comparison can be
executed more efficiently by delegating it to the JavaScript engine, an operation
that could be inlined by the Graal compiler into DynQ’s query operator nodes.

A second usage example of language-specific expressions in DynQ is the im-
plementation of the data-accessor nodes for R data frames. In particular, by
leveraging information about R language-specific types, DynQ can access to the
schema information within an R data frame before query execution, i.e., at table
registration time. Thanks to the language-specific extensions, even if schema in-
formation are not required to execute a query with DynQ, it can be still accessed
and leveraged to further optimize query execution.

Note that even if we implemented in DynQ typed data-accessor nodes, those
typed expressions respects the signature Object execute(Object) as shown in
Figure 4.2. In this way, also those typed nodes can be composed with all the
other expression nodes. As an example, if DynQ needs to evaluate an expression
composed of an addition of two fields and the accessor nodes for those fields
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are typed nodes, the existing AddNode can be used, and it will be specialized to
execute an integer addition once the query is JIT compiled.

Moreover, we note that language-specific expressions do not break the high
modularity of DynQ, since only expression nodes are extended with such opti-
mizations, whilst adding new query operators, data sources, or features of the
query engine (e.g., parallel query execution) would impact only query operator
nodes. Moreover, language-specific type expressions are an optional extension,
i.e., DynQ can execute queries on objects of a language for which no language-
specific expressions are implemented. In this case, depending on the data type
of the processed objects, DynQ may have to execute data-conversion operations.

4.5 Fluent API in DynQ

In this section, we focus on data-processing libraries for dynamic languages which
allow developers to query heap-allocated objects using a data-frame-like API, i.e.,
expressing query operators as a chain of method calls. Examples of this syntax are
the Spark DataFrame API [2] and LINQ queries when used with the de-sugared
method-call syntax [65]. The following is an example of a pipeline built with
method chaining, which is a de-sugared version of the LINQ query written with
the comprehension syntax in Section 2.1.

var evenSquares = xs

.Where(x => x % 2 == 0)

.Select(x => x * x);

.ToArray()

Such a chained method-call syntax is used by many existing data-processing
libraries. Using this syntax, developers invoke an operator on enumerable ob-
jects (also called pipeline builders), passing as parameters the expressions to be
evaluated by the operator. The invocation results in a new enumerable object
on which another operator can be invoked, forming a chain of method calls.
The method chain will result in a materialized result once the developer makes
use of a terminal operator, e.g., on the de-sugared LINQ query in the example,
evenSquares.ToArray() is called to materialize the query result into an array.
From now on, we will refer to this syntax as fluent API. As an example of fluent
API usage with DynQ, Figure 4.12 shows how the de-sugared LINQ query in the
example above can be executed with DynQ.

Note that, in contrast with SQL queries, using a fluent API developers can
fragment the definition of a single query. As an example, using a fluent API one
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var xs = [...];

var evenSquares = DynQ

.scan(xs)

.filter(x => x % 2 == 0)

.map(x => x * x)

.toArray();

Figure 4.12. Example of fluent API usage with DynQ.

can define a function which returns an enumerable object, e.g., the represen-
tation of a table scan followed by a predicate, and then call such a function in
two different contexts, appending a different terminal operator in each context.
This feature greatly improve modularity; indeed, it is often offered by Object-
Relational Mapping (ORM) systems [110].

Existing data-processing systems which offer fluent API and that are based
on query compilation are implemented similarly to SQL query compilers. In par-
ticular, those systems lazily keep track of the operators composing a pipeline as
well as their parameters (e.g., UDFs). Once a terminal operator is called, the se-
quence of operators are considered as a single, standalone query, which is then
compiled as a single unit. From now on, we will refer to this approach which
triggers compilation for each query execution per-query compilation.

Per-query compilation has the well-known advantage of generating code which
is specialized as much as possible for a given query, which means that the gener-
ated code is, in principle, the best possible implementation of that query. DynQ
offers developers the fluent API leveraging the described per-query compilation
approach. However, as further analyzed in the next section and shown in our
evaluation, whilst the per-query compilation approach performs very well on
analytical workloads, it is suboptimal for high-throughput workloads which per-
form many queries on small batches of data. In the next section we will present
an extension of DynQ to efficiently deal with high-throughput workloads, too.
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Chapter 5

Caching Compiled Queries

In the context of query engines based on compilation, a natural solution to the
problem of improving the performance on high-throughput workloads is reduc-
ing the compilation overhead. Since DynQ is able to execute queries through
interpretation before (or instead of) compiling them, compilation overhead is al-
ready mitigated. However, for high-throughput workloads, where many queries
are executed on small batches of datasets, using the DynQ execution model as dis-
cussed before, the application could end up executing all those queries through
interpretation.

To improve DynQ’s performance on high-throughput workloads, we integrate
query-reuse capabilities within the engine. In particular, we present reusable
compiled queries, a novel approach to query execution inspired by the code
cache implemented in managed runtimes of dynamic languages based on hot-
code compilation. With hot-code compilation, the runtime first executes an ap-
plication through its interpreter. Methods that are invoked often are identified
as “hot” and are dynamically compiled to native code. Such an approach has
the goal of reaching a stable (or steady) compiler state, i.e., eventually all hot
methods which compose the running application are compiled by the JIT of the
language runtime. Although the reachability of a stable compiler state is not
guaranteed by the runtimes, it is typically achieved for most long-running ap-
plications. To reach a stable compiler state, the language runtime must be able
to avoid recompiling the same method every time it gets called from a different
code location (unless such a method gets inlined). This feature is commonly
achieved by leveraging code caches, i.e., map-like data-structures which store
the compiled method defined at a given code location.

Considering the context of data-processing libraries, reaching a stable com-
piler state means that the pipelines are executed in compiled code. However, it
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is unlikely that the performance of a single pipeline is as good as the one that
could be obtained by compiling the specific pipeline using a per-query compi-
lation approach. Indeed, the compiler might (or might not) decide to inline a
certain operator as expected destination of another operator, similarly the com-
piler might (or might not) decide to inline a whole pipeline in a certain code
location, e.g., if detected to be frequently executed.

Table 5.1 shows the benefits and drawbacks of the described approaches,
per-query compilation, hot-code compilation, and reusable compiled queries in
the context of an application that accepts queries as user input. In particular,
per-query compilation can guarantee that all the virtual calls in the implementa-
tion of the query operators are de-virtualized through specialization. However,
such an approach cannot reach a stable compiler state by design, as every time a
query is executed, it triggers its compilation. On the other hand, hot-code com-
pilation is commonly able to reach a stable compiler state, executing the (hot)
implementation of the query operators in compiled code. However, method de-
virtualization is offered only on a best-effort basis through heuristics. Although
it is intuitively impossible to achieve both full de-virtualization and the reacha-
bility of a stable state, we argue that by restricting de-virtualization to a subset
of calls, it is possible to design an execution model which reduces the number of
compiler invocations compared with per-query compilation, but generates more
specialized code than hot-code compilation. To implement reusable compiled
queries, we first integrate parametricity within the query preparation, such that
a single compiled query can be reused multiple times passing different parame-
ters. Then, we leverage the pipeline builders’ API to detect similar queries and so
that internally we can make use of parametricity, i.e., as an automatic compiler
optimization.

In this chapter we first describe parametricity in its simpler form, i.e., pre-
pared statements [78], a well-known feature offered by many database systems.
Then, we introduce a parametric extension of a fluent API, a generalization
of prepared statements which extends the applicability of parametricity from
raw values to expressions through UDFs. Then, we describe reusable compiled
queries, a novel approach for implementing a fluent API which does not require
developers to make explicit use of parametricity, without suffering from the query
compilation overhead for each single query execution as done using the tradition
per-query compilation approach. Finally, we present two use case of DynQ. The
former shows the benefits of explicit parametricity, while the latter describes a
usage scenario where reusable compiled queries are more suitable than explicit
parametricity.
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Approach Calls de-virtualization Reachability of a stable state
per-query com-
pilation

✓ guaranteed (all calls) ✗ never (by design)

hot-code com-
pilation

✗ best-effort (all calls) ✓ most of the applications

reusable com-
piled queries

✓ guaranteed (subset of calls)
✗ best-effort (remaining calls)

✓ most of the applications

Table 5.1. Benefits and drawbacks of approaches to fluent API compilation:
per-query, hot-code, and reusable compiled queries.

5.1 Explicit Parametricity

Prepared statements have been designed to efficiently execute the same query
multiple times with differently bound variables. DynQ supports prepared state-
ments which are implemented as instances of ExecutableNode that accept pa-
rameters. In particular, when a query is prepared, DynQ generates an equivalent
AST as discussed in the previous sections. During the AST generation, when
DynQ encounters a query variable, i.e., the question mark symbol, it creates an
expression node which acts as a placeholder for a value to be bound at query exe-
cution time. During the execution of a prepared statement, DynQ binds the place-
holders to their values which are retrieved from the local scope of the currently
executing query, i.e., its stack frame. Thanks to this approach, once the AST
generated from a prepared statement is compiled by the JIT compiler, all sub-
sequent invocations of the prepared statement will execute the same compiled
code. Note that, similarly to the case of executing a query without bound param-
eters, prepared statements may be subject to re-compilation, too. However, since
prepared statements are designed to be executed multiple times, re-compilation
could take place among different executions. In particular, re-compilation could
take place if the types of the prepared statements’ parameters change among the
different invocations of the same prepared statement, as DynQ would need to
generate new machine code specialized for different types.

Figure 5.1 shows an example of a prepared statement with DynQ. The pre-
pared statement in the example is very similar to the example query in Figure 4.3,
with the only difference that the expression x < y in Figure 4.3 is now x < ?.
Figure 5.2 shows the AST generated from the prepared statement in Figure 5.1.
As expected, the AST is very similar to the one shown in Figure 4.4, the only dif-
ference is the node PlaceHolder$0, i.e., the placeholder for the prepared state-
ment variable, which replaces the node ReadMember(y). Note that also the com-
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var data = [{x: 1, y: 2},

{x: 2, y: 1},

{x: Date(’2000-01-01’), y: Date(’2000-01-02’)}];

DynQ.registerTable(data, ’T’);

var Q = ’SELECT COUNT(*) FROM T WHERE x < ?’;

var prepared = DynQ.prepare(Q);

var result1 = prepared(3);

var result2 = prepared(Date(’2000-01-02’));

Figure 5.1. Example of a DynQ prepared statement on a JavaScript array.

Figure 5.2. AST generated by DynQ for the prepared statement in Figure 5.1.

piled code for the AST depicted in Figure 5.2 is very similar to the one shown
in Figure 4.10, with the only difference that the generated function now takes a
parameter to be compared with the property x of each row.

As we will show in Section 6.3, using prepared statements, DynQ shows per-
formance in line with an equivalent hand-written function which takes the vari-
ables of the prepared statement as arguments.

In the implementation of DynQ, we generalize the notion of prepared state-
ment in the context of a fluent API. To this end, we introduced a special marker
in our fluent API: DynQ.par, as well as a special operator: prepare. The param-
eter marker DynQ.par acts as the question mark symbol in prepared statement.
However, in contrast with prepared statements, parameters are not limited to
placeholder replacements for raw values, since placeholder nodes in the fluent
API can represent any UDF. When a UDF is provided as argument to an operator
appended into a pipeline-builder, e.g., .map(x => x*x), as with per-query com-
pilation DynQ forces the inlining of the UDF into the query code, de-virtualizing
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the call to such UDF. On the other hand, when the marker DynQ.par is used to
indicate that a parameter will be provided at query execution time, DynQ intro-
duces a virtual call into the generated code pointing to the placeholder location,
where DynQ will place the reference to the UDF provided at query execution.
Consider again the DynQ fluent API example in Figure 4.12, which selects the
squares of the even numbers in a given array. Figure 5.3 shows an example
of parametricity defining a similar query which is parametric for the predicate
expression. Such a parametric fluent API can be later invoked by passing (as pa-
rameter) an arbitrary UDF as predicate expression. Indeed, as the figure shows,
the same compiled query can be used to evaluate the squares of even numbers
as well as the squares of the numbers which pass any given predicate, e.g., the
odd numbers.

As we will show in Section 6.3.3, both prepared statements and parametric
fluent API are efficient solutions for query reuse, since the query compilation
happens only once and its overhead is mitigated by multiple executions of the
same compiled code with different parameters. However, unfortunately, even if
parametric fluent API offer a great performance benefit, its usage has many limi-
tations in comparison with a traditional (i.e., non-parametric) fluent API. This is
motivated by the fact that both prepared queries and parametric fluent API offer
parametricity in an explicit manner. First, all queries must be expressed in the
application code, meaning that a system that accepts queries as user input can-
not leverage such an approach. Moreover, reusing queries requires developers to
carefully refactor each code location in the application which makes use of a flu-
ent API. As an example, in order to leverage the benefit of parametric fluent API,
a developer needs to be aware of all the possible code locations within an appli-
cation which are suitable for being expressed with parametric fluent API, which
may not be the case for large applications. Moreover, the process of switching
from a common data-processing library with a fluent API to a parametric fluent
API version as offered by DynQ may require rewriting a large part of the applica-
tion. Finally, parametric fluent API cannot be used for cross-library optimizations.
In particular, suppose an application makes use of multiple libraries that inter-
nally use the same pipeline. To execute that pipeline on the same compiled code,
a developer should create a separate module with the definition of the pipeline
and refactor those libraries’ code such that they all make use of the introduced
pipeline in the shared module. In the next sections, we will describe a novel
approach for implementing a fluent API which does not require developers to
make explicit use of parametricity, without suffering from the query compilation
overhead for each single query execution as done using the tradition per-query
compilation approach.
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var xs = [...];

var squaresOf = DynQ

.prepare()

.scan(xs)

.filter(DynQ.par)

.map(x => x * x)

.toArray();

var evenSquares = squareOf(x => x % 2 == 0);

var oddSquares = squareOf(x => x % 2 == 1);

Figure 5.3. Example of parametric fluent API usage with DynQ.

5.2 Reusable Compiled Queries

In this section we introduce reusable compiled queries, a novel approach to query
compilation which gets the best of the two above-mentioned approaches, per-
query and hot-code compilation. The main design goal of reusable compiled
queries is to leverage the DynQ query-compiler to de-virtualize a strict subset of
the virtual calls in the implementation of the query operators and to share the
same compiled code across multiple similar pipelines. Therefore, also reusable
compiled queries are suitable for executing similar pipelines multiple times on
small datasets, as well as for executing recursive functions that use the same
pipeline with different parameters. However, instead of requiring developers
to make explicit use of parametricity, reusable compiled queries internally de-
tect the usage of similar pipelines and leverage parametricity to reuse previously
compiled code transparently with respect to the user prospective, i.e., as an au-
tomatic compiler optimization.

The subsets of calls that are ensured to be de-virtualized with reusable com-
piled queries are all the calls to DynQ’s Truffle nodes of type ConsumerNode, i.e.,
consume(row) and getResult(). We avoid forcing inlining of calls to nodes of
type Expression, leaving the inlining decisions of expression nodes to the un-
derlying JIT compiler (i.e., Graal), as done with all methods during the execution
of an application on a VM with hot-code compilation. Consider again the even-
squares example query in Figure 4.12, the sequence of operators which composes
such a query starts with a source table scan operator, followed by a predicate, a
projection, and finally a sink toArray operator which materializes the rows into
an array. The representation of this query partially specialized by de-virtualizing
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the calls to nodes of type ConsumerNode is equivalent to the following parametric
fluent API.

var partiallySpecialized = DynQ

.prepare()

.scan(DynQ.par)

.filter(DynQ.par)

.map(DynQ.par)

.toArray();

Let’s now consider a similar query to the one in the example, i.e., a query
which returns the cubes (instead of squares) of the odd numbers (instead of
even) in a given array. Since the sequence of operators which composes this
query is exactly the same as the even-square query in the example, the partially
specialized function shown above can be used for executing both queries, even
if their predicate and projection expressions are different. In particular, the odd-
cubes pipeline can be executed on the existing compiled code for the function
partiallySpecialized, passing as parameters xs, x => x % 2 == 1 and x =>

x * x * x.
Reusable compiled queries are an optional feature of our fluent API, which

developers can enable globally as well as for a single query. We implemented the
caching strategy behind reusable compiled queries within the pipeline builders,
leveraging the parametric fluent API described in Section 5.1. In particular, the
reusable compiled queries are stored with a tree shape in a memory location
which is shared among the whole application. The pipeline tree is composed of
two kinds of nodes, intermediate nodes and leaves nodes. Each leaf contains a
prepared query generated with a parametric fluent API, whilst each intermediate
node represents a query operator. Thus, a path from the root to a leaf represents
a sequence of operators, i.e., a pipeline, and such a leaf contains a reference
to the compiled representation of that pipeline, i.e., a DynQ executable node.
Since there must be a single root in a tree and there can be multiple scan imple-
mentation, the root of pipelines tree is an empty operator; all scan operators are
children of the empty root.

Reusable compiled queries are transparently created by DynQ through the
pipeline builder instances created when developers make use of a fluent syntax.
Figure 5.4 shows the internal (simplified) Java implementation of the pipeline
builders, and Figure 5.5 shows the pipeline nodes implementation used by the
builders. As the figure shows, each pipeline-builder object contains two fields,
a reference to a (shared) node in the pipeline tree, and an array of actual pa-
rameters. Each node in the pipeline tree contains three fields, a reference to
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a (partially) prepared query using a parametric fluent API, a map which stores
the children nodes by operator, and a reference to an executable node generated
by the (fully) prepared query, which is non-null only for leaf nodes. Note that
the empty root of the pipeline tree is created with an empty map and a refer-
ence to a prepared query with parametric fluent API without any operator, i.e.,
root.query = DynQ.prepare().

When a developer makes use of a fluent API with reusable compiled queries,
DynQ internally creates a new pipeline builder composed of an empty array as
actual parameters and a reference to the (shared) root of the pipeline tree. Then,
every time an operator Op with parameters (p1, ..., pn) is appended on a pipeline
builder P0 through method call, the method P0.appendOperator is called, and
a new pipeline-builder instance P1 is created (line 8 in Figure 5.4). The actual
parameters of P1 are defined as P0.actualParameters ++ [p1, ..., pn], where
++ denotes the array concatenation (line 9 in Figure 5.4). The reference to
a the pipelines-tree node in P1 (i.e., P1.sharedNode) will be evaluated as fol-
lows. If the node P0.sharedNode has already a child node for the operator Op
(say node′), then we define P1.sharedNode = node′ (line 18 in Figure 5.4).
Otherwise, a new (shared) node node′′ is created for the operator O as a child
of P0.sharedNode in the pipeline tree, and P1.sharedNode will be assigned to
node′′ (lines 20-32 in Figure 5.4). Finally, if the operator Op is a terminal op-
erator, then P1.sharedNode is a leaf in the pipeline tree. If such a leaf was
freshly created, DynQ creates the ExecutableNode through the parametric flu-
ent API instance in the tree node and cache it in the tree node itself. Otherwise
DynQ reuses the already generated (i.e., cached) ExecutableNode. Note that the
generated AST does not contain any expression node but parameters, since all
actual parameters provided by the developer are internally stored in the pipeline-
builder instances and replaced with DynQ.par within the generated executable
node, making that node reusable for any other query composed of the same se-
quence of operator. Once the ExecutableNode has been retrieved (either cached
or freshly created) it is automatically invoked by passing as parameters the ar-
ray P1.actualParameters (line 18 in Figure 5.4). It is important to note that
reusable compiled queries do not prevent additional speculative compiler opti-
mizations, e.g., the compiler could decide to speculatively inline a UDF in a query
as in hot-code compilation.

Note that reusable compiled queries share a similar design goal with the
code cache implemented in language runtimes, i.e., avoiding recompiling the
same code location multiple times. There are however important differences
between reusable compiled queries and general-purpose code caches. In partic-
ular, a code-cache can store a compiled method, it cannot automatically partially
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1class PipelineBuilder {

2
3Object[] actualParameters;

4PipelineNode sharedNode;

5
6Object appendOperator(Operator op, Object[] params) {

7
8PipelineBuilder next = new PipelineBuilder();

9next.actualParameters = arrayConcat(

10this.actualParameters, params);

11
12next.sharedNode = this.sharedNode.getOrCreate(op);

13if(next.executable != null) {

14// terminal operator:

15// invoke the executable node

16// and return the result

17return next.executable.execute(

18next.actualParameters);

19} else {

20// intermediate operator:

21// return the new enumerable object

22return next;

23}

24}

25
26}

Figure 5.4. Java-like pseudocode of PipelineBuilder objects for reusable com-
piled queries.
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1class PipelineNode {

2static class ParametricFluent {

3// Implementation omitted for brevity

4ParametricFluentAPI append(

5Operator op, Object[] params) { ... }

6
7ExecutableNode toExecutable() { ... }

8}

9
10ParametricFluent query;

11Map<Operator, PipelineNode> children;

12
13// note: non-null only for leaf nodes

14ExecutableNode executable;

15
16PipelineNode getOrCreate(Operator op) {

17if(children.contains(op)) {

18return children.get(op);

19}

20int n = op.parametersCount;

21Object[] params = new Object[n];

22for(int i=0; i<n; i++) {

23params[i] = DynQ.par;

24}

25
26PipelineNode next = new PipelineNode();

27next.query = this.query.append(op,params);

28if(op.isTerminal) {

29next.executable = next.query.toExecutable();

30}

31children.put(op, next);

32return next;

33}

34}

Figure 5.5. Java-like pseudocode of PipelineNode objects used by the
PipelineBuilder implementation in Figure 5.4.
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specialize such a method for subsequent similar reuse, as in the case of reusable
compiled queries. Moreover, the lookup in the code cache is more expensive than
the one in the pipeline tree, as each lookup is performed on a single global map
on the code cache, whilst in the case of the pipeline tree, each lookup is local at
the level of a specific operator. In particular, the cost of a single lookup in the
pipeline tree is constant, i.e., a lookup only checks whether a specific attribute
of an object is null. Reusable compiled queries can be seen as an optimized
data-processing-specific code cache for fluent API which is able to detect similar
queries and reuse their compiled representation.

Thanks to the normal (i.e., non-parametric) fluent syntax offered by reusable
compiled queries, a developer can switch from using a typical data-processing
library implemented in a dynamic language to DynQ with minimal effort. In
particular, there is no need to take care of rewriting the pipelines with explicit
parametricity leveraging the parametric fluent API. Moreover, as we will show
in Section 6.3.3, thanks to reusable compiled queries, DynQ outperforms Lo-
dash [66], a popular data-processing library for JavaScript, making DynQ an
attractive drop-in replacement for existing data-processing libraries.

We note that reusable compiled queries may reduce peak performance of
long-running queries when compared to per-query compilation. This is expected,
because per-query compilation guarantees that all calls in the query-operator im-
plementations are de-virtualized at compilation time, which is not the case for
reusable compiled queries. However, it is important to note that, when reusable
compiled queries are enabled, the virtual calls that are not de-virtualized by
DynQ are still candidates to be de-virtualized by the underlying VM on a best-
effort basis, which in many cases is effectively applied. As an example, if a hot
code location makes use of the DynQ’s fluent API and the calls to DynQ are in-
lined within that code location, the parameters passed to the fluent API (e.g., the
UDF for a filter operation) can be de-virtualized by the VM once the generated
code for DynQ’s fluent API is inlined and optimized in the context of the caller.

5.3 DynQ Use Cases

Here, we present two realistic use cases of DynQ. As mentioned in Chapter 1,
JavaScript and Node.JS are widely used to implement data-intensive server-side
applications. As realistic use cases of DynQ, we show how it can be exploited for
(re-)implementing two existing npm [77] modules, highlighting the benefits of
explicit parametricity and of reusable compiled queries.
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Explicit parametricity The first use case is the npm module cities [17], which
exposes a dataset of locations and offers an API for selecting and filtering ele-
ments. Since in the cities module all the API is implemented as functions which
take simple, raw values as parameters (e.g., the prefix of the locations to be se-
lected), we implemented the API in DynQ leveraging the prepared statements
introduced in Section 5.1. As an example, below is the DynQ implementation of
the findByState API, which finds the first location that matches a given state
name.

var locations = { ... }

DynQ.registerTable(locations, ’locations’);

Q = ‘SELECT * FROM locations WHERE state=?‘;

findByState = DynQ.prepare(Q);

The cities npm module could also be implemented using an RDBMS to query
the set of locations. However, if the database ran in a separate process (or,
even worse, on a different machine), each query execution would suffer from
inter-process communication overhead, as well as from serialization and de-
serialization overheads [88]. If the database was embedded in the language
(i.e., both the database engine and the language runtime execute in the same
process), each query result set would have to be converted to heap-allocated ob-
jects before it could be accessed by JavaScript code. That is, also such a more
efficient usage of a database would introduce data-conversion overheads.

Instead of relying on databases, the developers of the cities module opted for
using Lodash [66], a popular JavaScript data-processing library, for querying the
locations, a solution which avoids any data conversions. Also the DynQ imple-
mentation of the API in the cities module does not need any data conversions.
Moreover, as we will show in Section 6.3.2, DynQ is faster than Lodash for the
cities module. Besides performance, the DynQ implementation of the API de-
fined in the cities module is more concise (and therefore easier maintainable)
than the original implementation using Lodash.

Reusable compiled queries As a second realistic use case, we consider the npm
module json-server [49]. This module offers a REST [69] server which loads
JSON files into memory (i.e., as JavaScript arrays of objects) and exposes an
HTTP API to query those array-based tables.

We consider json-server a good candidate for the reusable-compiled-queries
approach implemented in DynQ. Indeed, json-server is implemented internally
using Lodash, and it creates data-processing pipelines in a dynamic way. In par-
ticular, a simplified implementation of the json-server main entry point is de-
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picted in Figure 5.6. As the figure shows, each pipeline is built dynamically
within a for loop, conditionally appending query operators depending on the
given input parameters provided in the HTTP request. In such a scenario, it
would be challenging for a developer to use explicit parametricity to speed up
query execution. The implementation would need to detect similar pipelines by
inspecting the HTTP parameters and eventually selecting one of the previously
compiled queries for each incoming request, or creating a new query if there is
no previously compiled one for the given set of parameters.

The resulting implementation would be an ad-hoc cache of compiled queries
manually built by the application developer, resorting to explicit parametricity,
which is very similar to how reusable compiled queries are internally imple-
mented. On the other hand, leveraging reusable compiled queries allows the
developers to leave to DynQ the complexity of managing the cache of compiled
queries and to keep the implementation much simpler, exactly as shown in Fig-
ure 5.6, only replacing lodash.chain with DynQ.scan.

function entryPoint(table, urlParameters) {

pipeline = lodash.chain(table)

for(param of urlParameters) {

pipeline = appendOperatorFor(param, pipeline)

}

return pipeline.toArray()

}

function appendOperatorFor(param, pipeline) {

if(param.key == ’lt’)

return pipeline.filter(x => x < param.value)

// remaining operators omitted for brevity

}

Figure 5.6. Simplified main entry point of the json-server npm module.
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Chapter 6

DynQ Evaluation

In this section we evaluate the performance of DynQ. First, we describe our eval-
uation plan(Section 6.1), explaining the setup and the motivation for each ex-
periment. Then, we evaluate DynQ with two dynamic languages, R (Section 6.2)
and JavaScript (Section 6.3). We evaluate DynQ on existing, established work-
loads designed for both databases and programming languages. Moreover, we
also evaluate DynQ in a realistic scenario on existing’ code bases, by recasting an
existing server-side data-processing application to make use of DynQ.

As database workloads, we evaluate DynQ using the TPC-H benchmark [111]
queries and a micro-benchmark composed of a set of queries based on the dataset
of the TPC-H benchmark. Those queries, listed in Table 6.1, have been presented
in the context of a stream-fusion engine [97], and they belong to the following
categories:

• Queries consisting of selection and aggregation (without group by), lead-
ing to a single row (i.e., queries 1, 2, 3).

• Queries consisting of selection, projection, which return a list of rows (i.e.,
query 4), with also a limit operator (i.e., query 6) and with both sort and
limit (i.e., query 5).

• A query consisting of selection and join, followed by an aggregation oper-
ator resulting in a single row (i.e., query 7).

From now on, we refer to the i-th query in TPC-H as Qi, and to the j-th query
in the micro-benchmark as MQj.

We run all our experiments on an 8-core Intel i9-10980XE (@3.0 GHz) with
256 GB of RAM. The operating system is a 64-bit Ubuntu 20.04 and the language
runtime is GraalVM Community Edition 21.3.0, i.e., the latest LTS release at the
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Table 6.1. Micro-benchmark queries from stream-fusion engine [97].

MQ1
SELECT COUNT(*)

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

MQ2
SELECT SUM(l_discount * l_extendedprice)

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

MQ3

SELECT SUM(l_discount * l_extendedprice)

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

AND l_shipdate < DATE ’1997-01-01’

MQ4
SELECT l_discount * l_extendedprice

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

MQ5

SELECT l_extendedprice

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

ORDER BY l_orderkey

LIMIT 1000

MQ6

SELECT l_discount * l_extendedprice

FROM lineitem

WHERE l_shipdate >= DATE ’1995-12-01’

LIMIT 1000

MQ7

SELECT SUM(o_totalprice)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey

AND l_shipdate >= DATE ’1995-12-01’

AND o_orderdate >= DATE ’1995-12-01’
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time of writing. Unless otherwise specified, for all experiments the reported
execution times include the query preparation time, i.e., the Truffle nodes gener-
ation obtained by traversing the query plan generated by Calcite and the actual
query execution time. Note that we do not measure the time spent for query
parsing and planning done by Calcite since it is not an optimized component of
our system and, on some queries, planning is currently rather slow on Calcite, a
performance issue which can be solved with more engineering effort. However,
it is important to note that measured time takes into account the generation of
our physical plan representation (i.e., Truffle nodes), and also their JIT compi-
lation, which happens during query execution. Unless otherwise indicated, all
the figures presented in this section are bar plots that show the query execu-
tion time for each implementation. The numbers on top of the bars represent
the speedup (factors) achieved by DynQ. Speedup factors below 1 indicate that
DynQ is slower.

6.1 Evaluation Plan

On R, we evaluate DynQ against the data.table API, DuckDB [89], and Mon-
etDB [45]. In this setting, we import the TPC-H tables into R data frames. Since
TPC-H is based on a strict (relational) schema, and the data is imported into R
data frames, which is a typed data structure, the evaluation on R does not high-
light the DynQ peculiarity of efficiently accessing data with unknown schema.
Indeed, for all the experiments in this setting, DynQ uses the schema informa-
tion from the data frames. However, DynQ currently uses the schema only for
the data-access operations, all the query operators nodes as well as the other
expression nodes share the same implementations as in the case of unknown
schema, as described in Section 4.4. The main goal of this evaluation is to show
that on relational database workloads the flexibility of DynQ in accessing data
formats which are not directly managed by the query engine does not impair
performance, in contrast to other data-processing systems.

On JavaScript, we evaluate DynQ in very different settings. First, we eval-
uate DynQ against AfterBurner [28] using AfterBurner’s memory layout, i.e., a
columnar layout composed of typed JavaScript arrays. In this setting we use
TPC-H and the microbenchmark queries as workloads. Since AfterBurner is a
relational database, also this setting uses a strict schema, and similarly to the
evaluation on R the goal of this evaluation is to show that query execution per-
formance with DynQ on relational data is in line with a query engine which reads
data using its own memory layout.
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Then, we evaluate DynQ on datasets stored as JavaScript object arrays. For all
the experiments in this setting, no schema information is provided to DynQ. Here,
we first evaluate DynQ against Lodash [66] and hand-written implementations
using the microbenchmarks. Then, we evaluate DynQ on existing code bases (the
npm module cities [17]), leveraging prepared statements (Section 6.3.2) to im-
plement a web-service backend module to search locations based on user input.
Those experiments highlight the ability of DynQ to efficiently process dynamic
objects with unknown schema. Finally, we evaluate reusable compiled queries
(Section 6.3.3) on a JavaScript implementation of two relevant benchmarks that
use a fluent API for data processing that we recasted from the Renaissance [85]
benchmark suite, which was originally implemented in Java. One of these two
latter experiments also show the ability of DynQ to handle efficient query exe-
cution on polymorphic types, since the engine needs to deal with mixed types of
input arrays.

6.2 R Benchmarks

In this section we evaluate DynQ with the R programming language. Here, we
use the dataset from the TPC-H benchmark generated with the original dbgen
tool [111] loaded into an R data frame. Since, like DynQ, DuckDB [89] allows
executing SQL queries directly on R data frames, we evaluate DynQ on the TPC-
H benchmark queries and the micro-benchmark queries against DuckDB, on a
dataset of scale factor 10; the dataset size is 10GB in a text format. In partic-
ular, we use DuckDB (version 0.3.0), executed on GnuR [86] (version 3.6.3).
Since the measured execution time with DynQ does not take into account query
planning time, we slightly modified the DuckDB R plugin so that queries can be
planned and executed in two different steps, so that the measured execution time
on DuckDB does not take into account query planning as well. DuckDB provides
two ways for executing queries on R data frames, i.e., directly on the data-frame
data structure, and in a managed table, which is much more efficient but requires
an ingestion phase. We refer to the former setting as DuckDB(df), and to the lat-
ter one as DuckDB(preload). Note that, by comparing DynQ against DuckDB,
the fair comparison is with DuckDB(df), since the data is accessed directly on R
data frames, as in DynQ. Moreover, in evaluating DuckDB(preload), we do not
measure the time spent in the ingestion phase. In this evaluation, we measure
the median of 10 executions.

Due to the different query planners and implementation choices in DynQ and
DuckDB (DuckDB is vectorized and interpreted whilst DynQ is tuple-at-a-time
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Figure 6.1. R TPC-H benchmark (SF-10).
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Figure 6.2. R micro-benchmark (SF-10).

and JIT compiled), the goal of this performance evaluation is not to compare
two very different systems, but rather to demonstrate that DynQ achieves per-
formance competitive with an established, state-of-the-art data-processing sys-
tem. We consider the micro-benchmark queries important in our evaluation,
since, due to their simplicity, the query plans are the same in DynQ and in other
systems. Moreover, since the micro-benchmark queries are rather simple, they
stress data-access operations, showing that the extensibility of DynQ in accessing
data in different formats does not impair query execution performance, which we
consider a great achievement.

Micro-benchmarks. Due to the simplicity of the queries in the micro-benchmarks
listed in Table 6.1, we manually implement them using the data.table API,
which is arguably the most efficient library for processing R data frames. The
benchmark results are depicted in Figure 6.2. As the figure shows, DynQ is slower
than the data.table API only on MQ7 and outperforms it on all other queries
by speedup factors ranging from 1.16x (MQ4) to 27.8x (MQ5). The speedup
on MQ6 against data.table (i.e., 826x) is because DynQ chains query opera-
tors and stops the computation once it finds the first 1000 elements that satisfy
the predicate (i.e., the limit operator). On MQ6, DynQ performs comparably
with DuckDB, with speedup factors of about 1.18x against DuckDB(df) and 0.63x
against DuckDB(preload), with a query execution time of about 1ms, showing the
effectiveness of our exception-based approach for implementing early exits for
the LIMIT operator. We consider such a low query execution time a great achieve-
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ment for DynQ, since the existing query engines based on compilation commonly
suffer from a latency overhead due to query compilation. DynQ outperforms
DuckDB(df) in all other queries as well, with speedup factors ranging from 4.38x
(MQ7) to 48.14x (MQ1). Those speedups against DuckDB(df) are motivated
by the fact that the micro-benchmark queries are simple and mostly dominated
by table scans. DuckDB(df) requires table-scan operations to convert data on-
the-fly from data frames into the DuckDB physical data representation, which
introduces high overhead. On the other hand, DynQ can execute queries on R
data frames in-situ, i.e., without any conversion. Indeed, DynQ performance is
closer to DuckDB(preload), which significantly outperforms DuckDB(df), show-
ing that the great flexibility of DynQ in accessing data in different formats does
not impair performance. In particular, DynQ is slower than DuckDB(preload)
only on queries MQ6 (factor 0.63x) and MQ7 (factor 0.65x), and outperforms
DuckDB(preload) on all other queries, with speedup factors ranging from 1.11x
(MQ1) to 1.77x (MQ3).

TPC-H Benchmark. Here, we evaluate DynQ using the TPC-H benchmark.
Like in our previous experiment, we compare DynQ against DuckDB executing
queries directly on the data frame, i.e., DuckDB(df) and with data loaded into
a managed memory space, i.e., DuckDB(preload). The benchmark results are
depicted in Figure 6.1.

As the figure shows, DynQ is slower than DuckDB(df) only on Q13 (factor
0.81x) and Q16 (factor 0.71x), in all other queries DynQ outperforms DuckDB(df),
with speedup factors ranging from 1.27x (Q9) to 26.55x (Q15). In comparison
with DuckDB(preload), DynQ is faster on 12 queries (i.e., Q1, Q2, Q4, Q6, Q7,
Q10, Q12, Q14, Q15, Q17, Q18, Q19).

Latency Benchmarks. As discussed in Section 4.2, even if DynQ is an engine
based on query compilation, it is able to start executing a query before compiling
it, by executing the Truffle nodes which represent the query in the interpreter.
This feature is crucial for obtaining high throughput when executing queries on
small datasets. Here, we evaluate the throughput of DynQ against DuckDB. Since
DuckDB is based on interpretation and vectorization, it does not spend any time
on code generation and query compilation. On small datasets, this approach is
commonly faster than compiling queries, since the compilation overhead may
not be paid off.

For this evaluation, we consider an experiment similar to the one performed
in the context of Umbra [76]. Such an experiment [52] evaluates the throughput
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(by calculating the geometric mean of queries per second for all TPC-H queries)
over different scale factors. In our experiment we evaluate the throughput over
scale factors 0.001, 0.01, 0.1, 1, and 10, first on the micro-benchmark queries
and then on the TPC-H queries.

The benchmark results are depicted in Figure 6.4 for the micro-benchmark
and in Figure 6.3 for TPC-H. As the figures show, for both the micro-benchmark
and TPC-H, DynQ outperforms DuckDB(df) on all evaluated scale factors. In par-
ticular, on the micro-benchmark DynQ outperform DuckDB(df) of factors 9.17x
(SF 0.001), 5.94x (SF 0.01), 6.51x (SF 0.1), 11.02x (SF 1) and 14.29x (SF 10).
On TPC-H, DynQ outperform DuckDB(df) of factors 5.59x (SF 0.001), 3.56x (SF
0.01), 2.65x (SF 0.1), 4.31x (SF 1) and 4.4x (SF 10).

In comparison with DuckDB(preload), the evaluation shows interesting trends.
On the smallest scale factors (SF 0.001 and 0.01), DynQ fully executes all queries
in the interpreter and it never triggers compilation. On scale factor 0.001, the
DynQ throughput differs from DuckDB(preload) by a factor of 4.08x on the
micro-benchmark, and of 2.7x on TPC-H. On scale factor 0.01, the DynQ through-
put is in line with DuckDB(preload), in particular, DynQ shows a throughput
factor improvement of 1.06x on the micro-benchmark, and of 0.95x on TPC-
H. On scale factors 0.1, DynQ starts compiling parts of the queries; however,
since the datasets are still small, most of the query execution is still in the in-
terpreter. On such scale factor, the DynQ throughput is smaller than the one
of DuckDB(preload), by factors 0.58x on the micro-benchmark, and of 0.56x
on TPC-H. Then, on scale factor 1, in DynQ query compilation is paid off on the
micro-benchmark, reaching a throughput in line with the one of DuckDB(preload),
i.e., 0.96x factor. This is not the case for TPC-H, where the throughput of DynQ
is factor 0.84x compared with DuckDB(preload). The reason is that the TPC-H
queries are much more complex than the micro-benchmark queries, leading to
longer query compilation times. Finally, on scale factor 10, DynQ outperforms
DuckDB(preload) on the micro-benchmark by a factor of 1.15x, and becomes
comparable with DuckDB(preload) on the TPC-H queries, by a factor of 0.98x.

Our evaluation on the query latency shows that JIT compilation in DynQ is not
a source of performance concerns, differently from most existing query engines
based on compilation.

Comparison with Native DBMS. In this section we evaluate DynQ against
MonetDB [45], a modern, interpreter-based, RDBMS featuring high-performance
vectorized execution. Although we do not consider MonetDB a direct competi-
tor to DynQ, this evaluation should be considered an indication of how DynQ
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Figure 6.3. Geometric mean of queries/s (TPC-H).

Figure 6.4. Geometric mean of queries/s (micro-benchmark).
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Figure 6.5. TPC-H benchmark against MonetDB (SF-10).



61 6.2 R Benchmarks

Figure 6.6. Micro-benchmark against MonetDB (SF-10).

performs in comparison with a native RDBMS. For this evaluation, we use Mon-
etDB Database Server Toolkit 11.43.9 (Jan2022-SP1), executing the queries with
mclient. We measure the end-to-end query execution time, taking into account
the cost of inter-process communication for sending result sets from the server to
the client process. For fairness, we configure MonetDB for executing in a single-
thread, since we have not yet implemented parallel query execution in DynQ.
For this experiment, we evaluate DynQ on R data frames, using a scale factor
of 10 for both the micro-benchmark and TPC-H; we present the median of 10
executions.

The benchmark results are depicted in Figure 6.5 for TPC-H and in Figure 6.6
for the micro-benchmark. As the figures show, MonetDB outperforms DynQ in
all queries containing the join operator, i.e., in MQ7 and in all TPC-H queries but
Q1 and Q6, with the only exception of Q12, where MonetDB and DynQ show
very similar execution times. All remaining queries are rather simple and mostly
dominated by table scans. For those queries, DynQ is faster than MonetDB; in
particular DynQ outperforms MonetDB by a speedup factor of 3.3x on Q1 and
1.3x on Q6. Concerning the remaining micro-benchmark queries, on MQ6 DynQ
shows a speedup of 438x; this is because MonetDB (like the data.table R package)
does not stop the query execution once the first 1000 elements (i.e., the limit
operator) have been found. On MQ4, DynQ outperforms MonetDB by a speedup
factor of 9.16x, because MQ4 returns a large result set that MonetDB needs to
serialize and transfer to the client process, whereas DynQ (being an embedded
query engine) does not incur such an overhead. Finally, on MQ1, MQ2, and MQ3,
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MQ5 DynQ outperforms MonetDB by speedup factors of 1.43x, 2.55x, 2.01x, and
1.38x.

6.3 JavaScript Benchmarks

Here, we evaluate DynQ using the JavaScript programming language. For this
evaluation, we first compare DynQ against AfterBurner [28], which is an in-
memory database entirely written in JavaScript, on both the micro-benchmark
and on TPC-H. Then, we evaluate DynQ querying data loaded into a JavaScript
array of objects, like in the example of Figure 4.3. In this setting, we eval-
uate DynQ on the micro-benchmark against hand-written implementations in
JavaScript and implementations that rely on Lodash [66], which is arguably the
most efficient and popular data-processing library for JavaScript. Finally, we
evaluate DynQ on existing code bases, comparing the performance of a JavaScript
library against equivalent implementations using DynQ.

6.3.1 Evaluation on AfterBurner

For evaluating DynQ against AfterBurner [28], we implemented a specific DynQ
provider for the memory layout implemented in AfterBurner, i.e., a columnar
layout composed of JavaScript typed arrays. The implementation of such a spe-
cific data-source provider required only about 1000 lines of code, which shows
the great extendibility of DynQ. In this setting we evaluate AfterBurner both on
GraalVM and on V8 [112] (Node.JS version 14.17.6). All our experiments on
AfterBurner are executed using only scale factor 1; we cannot evaluate After-
Burner on bigger datasets due to a limitation in the Node.js file parser used in
AfterBurner, which cannot parse files exceeding 2GB. In this setting, we measure
the median of 20 executions.

Micro-benchmarks. Due to the simplicity of the queries in the micro-benchmark
listed in Table 6.1, we manually implemented them using the AfterBurner API,
which is a fluent API inspired by Squel.js [102]. The benchmark results are de-
picted in Figure 6.8. As the figure shows, even if AfterBurner is based on query
compilation, it does not optimize the early exit for the limit operator. Thus, for
MQ6, DynQ outperforms AfterBurner by a speedup factor of 145x on V8, and
826x on GraalVM. DynQ outperforms AfterBurner running on GraalVM for all
other queries, too, ranging from a speedup factor of 2.56x (MQ4) to 12.33x
(MQ5). When executing AfterBurner on V8, AfterBurner is faster than DynQ
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Figure 6.7. JS TPC-H benchmark on AfterBurner (SF-1).
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Figure 6.8. JS micro-benchmark on AfterBurner (SF-1).

on MQ1, MQ2, MQ4 and MQ7; the reason is that V8’s compiler is faster than
GraalVM on these queries, so the benefit of compilation is almost immediate.

TPC-H Benchmark. We evaluate DynQ against AfterBurner on TPC-H using
the original AfterBurner benchmark [1]. Since AfterBurner uses a fluent API,
there is no query parsing and planning phase, and the query plan is made ex-
plicit by the API usage. For fairness, we manually fine-tuned the queries in our
evaluation such that Calcite generates the same query plans used by AfterBurner.
The benchmark results are depicted in Figure 6.7. As the figure shows, DynQ
outperforms AfterBurner executed on GraalVM on all queries, with speedup fac-
tors ranging from 3.21x (Q20) to 25.05x (Q11). When executing AfterBurner
on V8, DynQ is slower on queries Q1 (0.82x), Q14 (0.88x), Q18 (0.65x) and
Q20 (0.41x). On all remaining queries, DynQ outperforms AfterBurner on V8
with speedup factors ranging from 1.26x (Q6) to 6.03x (Q17), since AfterBurner
materializes more intermediate results than DynQ.

6.3.2 Evaluation on Object Arrays

Here, we evaluate DynQ using JavaScript object arrays as datasets. First, we
evaluate DynQ on the micro-benchmark against equivalent hand-written imple-
mentations. Then, we evaluate DynQ on an existing code base, by comparing the
original implementation of an npm [77] module with an equivalent one based
on DynQ. Here, we measure query execution time at peak performance.



65 6.3 JavaScript Benchmarks

Micro-benchmarks. Similarly to the evaluation on R, we manually implemented
the micro-benchmark queries in the JavaScript language. In this setting, we eval-
uate the micro-benchmark queries against hand-written implementations and
implementations that use Lodash. Since Lodash does not offer an API for the join
operator, we do not evaluate MQ7 using Lodash. The scale factor used for our
JavaScript evaluation is 1 (whereas we used a scale factor of 10 for the R evalua-
tion). This is motivated by the fact that querying R data frames is more efficient
than JavaScript object arrays, since R data frames are internally implemented
using a columnar data format composed of typed arrays, whereas JavaScript ar-
rays are a more flexible data structure that can be composed of heterogeneous
objects.

The benchmark results are depicted in Figure 6.9. In this setting, we mea-
sure the median of 20 executions. As the figures show, DynQ outperforms im-
plementations based on Lodash for all queries. In particular, DynQ outperforms
Lodash with speedup factors ranging from 1.92x (MQ4) to 7.84x (MQ6). The
high speedup on MQ6 is motivated by the fact that, similarly to the data.table

API in R, also Lodash does not chain the filter with the limit operation, unlike
DynQ. Moreover, DynQ performance are comparable with the hand written im-
plementations in most of the queries. In particular, DynQ is slower than the hand
written implementations only on MQ2 (0.91x), and faster on MQ6 (2.46x) and
MQ7 (2.04x).

There are multiple reasons why DynQ is able to outperform the hand-written
queries. First, the JavaScript semantics may enforce additional operations which
are not required in data processing; as an example, JavaScript’s Map performs
hashing by converting each value into a string representation. Moreover, during
the execution of hand-written queries, the JavaScript engine needs to perform
more runtime checks than DynQ.

Besides performance, the implementations using DynQ are the most concise
ones. In particular, the hand-written implementations of the micro-benchmark
queries count 160 lines of code (LOC), the Lodash implementations count 58
LOC, and the DynQ implementations count 40 LOC.

Benchmarks on Existing Codebases. We evaluate DynQ on an existing code
base by comparing the performance of an existing JavaScript library against an
equivalent implementation that uses DynQ. In particular, we selected the npm
module cities [17], which exposes a dataset of locations and offers an API for
selecting and filtering elements. In this setting, we measure the median of 1000
executions (after a warmup of 5000 executions).



66 6.3 JavaScript Benchmarks

Figure 6.9. JS micro-benchmark (SF-1).

Figure 6.10. JS benchmark on cities module.

Figure 6.11. JS benchmark on cities module with UDF.
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The npm module cities stores data in a single table (i.e., in a JavaScript array).
The API offered by cities are listed below.

• findByState: finds the first location which matches a given state name.

• findByCityAndState: finds all the locations which match a given city
name and state name.

• zipLookup: finds the first location which matches a given zip code.

• gpsLookup: finds the closest location of a given point (by latitude and
longitude).

This module implements the first three API using Lodash, whilst the fourth
API is manually implemented with hand-optimized code, which relies on the
npm module haversine [41] for evaluating the distance between two points.
Due to the simplicity of the API of the cities module, we also implemented an
hand-optimized version of the first three API. We have not reimplemented the
gpsLookup API, since the original version is already hand-optimized and it does
not use any third-party data-processing library. For evaluating DynQ on the
gpsLookup API, we use two versions; one version (DynQ(JS UDF)) uses the
JavaScript module haversine as UDF for calculating the distance between two
points, whilst the other version (DynQ(Java UDF)) uses a Java UDF instead of
the JavaScript one. We manually implemented the Java UDF by carefully repli-
cating the JavaScript version, such that the executed algorithm is exactly the
same. As introduced in Section 5.3, we implemented all the API in cities with
DynQ leveraging prepared statement.

The benchmark results are depicted in Figure 6.10 for the first three API,
and in Figure 6.11 for the gpsLookup API. Since for the latter experiments we
use DynQ in two different ways (i.e., implementing the UDF in JavaScript and
Java), Figure 6.11 shows (above the bars of those two implementations) their
respective speedups against the original implementation. As the figures show,
DynQ outperforms both Lodash and the hand-optimized implementations in all
API. Moreover, the evaluation of the gpsLookup API shows that evaluating an
UDF with DynQ does not introduce any overhead when the UDF is implemented
in the host dynamic language (i.e., JavaScript). This is expected, since, as dis-
cussed in Section 4.2, GraalVM can inline the machine code generated from the
JavaScript UDF within the query execution code. Moreover, when the UDF is
implemented in Java, performance improves, i.e., we measure a speedup factor
of 1.69x. This is expected, since executing the JavaScript UDF requires more
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type checks than executing the UDF in Java. Our evaluation on existing code-
bases shows that, besides data analytics, DynQ is also a promising library for
server-side Node.JS applications that perform in-memory data processing.

6.3.3 Reusable Compiled Queries.

Here, we evaluate reusable compiled queries, our novel approach to query com-
pilation discussed in Section 5.2. As a benchmark, we re-implemented two work-
loads, i.e., Scrabble and Mnemonics, which are part of the Renaissance [85], a
well-known Java benchmark suite. The original Java implementation of these
benchmarks evaluate the Java 8 Stream API, a data-processing API offered by the
Java class library. In this setting, we implemented the benchmarks on JavaScript
using Lodash and DynQ with different implementations of the fluent API: the
per-query compilation approach (Section 4.5; DynQ-per-query in the figures),
explicit parametricity (Section 5.1; DynQ-par in the figures), and reusable com-
piled queries (Section 5.2; DynQ-rcq in the figures).

As expected, implementations based on DynQ with explicit parametricity out-
perform all other implementations on both benchmarks, so we use this config-
uration of DynQ as a baseline. In particular, the bar plots show, above each
bar, the speedup of DynQ with explicit parametricity against the implementation
referred by that bar. However, as discussed in Section 5.2, explicit parametric-
ity introduces limitations in term of modularity. On the other hand, reusable
compiled queries do not suffer from this limitation, as they offer a classic flu-
ent API. In particular, modifying an application to switch from a common data-
processing library (e.g., Lodash) to DynQ with reusable compiled queries requires
only minimal effort. The first goal of this evaluation is to show that both explicit
parametricity and reusable compiled queries outperform Lodash and DynQ using
per-query compilation approach. The second goal is showing that the enhanced
modularity of reusable compiled queries introduces a very low overhead w.r.t. ex-
plicit parametricity.

Scrabble is a simulation of the well-known board game, which evaluates the
list of words that results in higher score among a given list of 124 455 words.
On Scrabble, the execution time is mostly dominated by the UDFs in charge of
filtering words and evaluating their score. For this reason, in comparison to the
slowest implementation, i.e., Lodash, DynQ with explicit parametricity obtains
a moderate speedup of 1.25x. In comparison with DynQ with per-query compi-
lation approach, explicit parametricity obtains a speedup of 1.23x, which is mo-
tivated by the fact that per-query compilation approach requires DynQ to start
executing the query in interpreted mode even if the same query is executed mul-
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tiple times, since the compiled code is not shared among multiple runs. Finally,
in comparison with DynQ with reusable compiled queries, explicit parametric-
ity obtains a minimal speedup of 1.04x, showing that the better modularity of
reusable compiled queries does not impair performance.

Mnemonics uses Java streams to compute mnemonic phone codes [68]. Since
Mnemonics uses only simple query operators, we implemented this benchmark
also with the JavaScript simple (but performance-oriented) implementation of
the query operators (JS-Push in the figure). Since Mnemonics is implemented as
a recursive function which invokes two queries on each recursive step, we con-
sider it a relevant application for evaluating reusable compiled queries. Once
the recursion is close to its halting case, those queries are executed on very small
arrays, meaning that high throughput of a single call is required to achieve high
performance in the whole computation. As discussed in Chapter 5, DynQ ap-
proach to query execution without leveraging parametricity or reusable com-
piled queries, i.e., DynQ-per-query, is not suitable for those kinds of application,
as creating a fresh AST for each query execution leads to executing the whole
workload through interpretation most of the time.

The benchmark results are depicted in Figure 6.13. As expected, the slow-
est implementation is DynQ-per-query, which is outperformed by explicit para-
metricity by a factor of 6.92x. The speedup of DynQ with explicit parametricity
and reusable compiled queries against Lodash (2.69x for DynQ-par) is because
the Mnemonics benchmark uses the flatMap operator and Lodash implements
that operator by materializing intermediate results. Our JavaScript implementa-
tions of the query operators are similar to the ones in Lodash, but the flatMap

operator is implemented without materializing intermediate results, as in DynQ,
which explains the performance improvement of our JavaScript implementations
w.r.t. Lodash.

Although the JavaScript implementation of the query operators is conceptu-
ally very similar to those in DynQ, leveraging explicit parametricity leads DynQ
to a speedup of 1.57x against the JavaScript implementation. Also reusable com-
piled queries outperform the JavaScript implementation, since, as discussed in
Section 5.2, reusable compiled queries can guarantee that the sequence of oper-
ators composing a pipeline is fully de-virtualized. Finally, we note that explicit
parametricity leads to a speedup of 1.15x in comparison with reusable compiled
queries, a higher speedup w.r.t. the one observed on Scrabble. This is expected,
since Mnemonics is a function which, for the benchmark input, executes 338 re-
cursive calls for a single run of the benchmark, so the overhead of reusable com-
piled queries w.r.t. explicit parametricity is amplified in comparison to Scrabble,
since each recursive call involves a query execution.
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Figure 6.12. Scrabble benchmark on JavaScript with reusable compiled queries.

Figure 6.13. Mnemonics benchmark on JavaScript with reusable compiled
queries.

Our evaluation on shared compiled queries shows that, besides high perfor-
mance query execution, DynQ is now able to speed up high-throughput work-
loads, making DynQ an appealing drop-in replacement for data-processing li-
braries which offer a fluent API independently from the workload characteristics.



Chapter 7

Conclusion

Dynamically typed languages are nowadays the preferred solution adopted by de-
velopers and data-scientists for implementing analytical workloads, and they are
also widely used for implementing server-side data-intensive applications. LINQ
frameworks have been proposed as a declarative way to express queries on in-
memory object collections as well as other data sources through LINQ providers.
While LINQ support is currently missing for dynamically typed languages, we be-
lieve that developers and data scientists would benefit from declarative queries
as well as other LINQ features. This dissertation bridged the gap between LINQ
frameworks and dynamically typed languages.

7.1 Summary of Contributions

In this dissertation we introduced DynQ, a new query engine for dynamically
typed languages. DynQ is based on a novel approach to SQL compilation, namely
compilation into self-specializing executable ASTs. Our approach to SQL compi-
lation relies on the Truffle framework and on GraalVM to dynamically compile
query operators during query execution. Truffle was designed as a programming-
language implementation framework; however, in DynQ we have exploited it in
an innovative and previously unexplored way, i.e., as a code-generation frame-
work integrated in a query engine. Moreover, we addressed the problem of opti-
mizing high-throughout workloads, i.e., applications that perform data process-
ing on many small datasets by introducing reusable compiled queries.

DynQ has been evaluated with two programming languages, namely R and
JavaScript, against existing data-processing libraries and hand-optimized queries.
Our evaluation shows that the performance of query evaluation with DynQ is
comparable with, and sometimes better than, hand-optimized implementations,
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outperforming existing data-processing systems and embedded databases in most
of the benchmarks. Moreover, thanks to reusable compiled queries, DynQ is also
able to outperform data-processing libraries also on high-throughput workloads
that perform data processing on many small datasets.

To the best of our knowledge, DynQ is the first system which integrates a
query engine within a polyglot VM directly interacting with its JIT compiler, and
allowing the execution of federated queries on object collections as well as on file
data and external database systems for multiple dynamically typed languages.

7.2 Discussion and Future Work

While DynQ has been designed targeting dynamically typed languages, its ap-
proach to query compilation and the proposed optimizations are not dedicated
only to dynamically typed languages, and we believe that DynQ can bring ben-
efits to statically typed languages as well, in particular to those executing in a
virtual machine, e.g., Java. Those languages often offer dynamic features like
inclusion polymorphism, which can make it impossible to statically deduce the
exact type of the target for some operations. Indeed, JIT compilation is used
within virtual machines to optimize also statically typed languages with dynamic
features. For this reason, we believe that the query execution approach imple-
mented in DynQ is suitable in the presence of such dynamic features. Indeed,
as a future work, we plan to extend DynQ so that it can be used as a drop-in
replacement for the Java Stream API.

We also believe that DynQ can also benefit data-processing scenarios where
no dynamic feature is present. First, DynQ’s approach to query processing based
on hybrid interpreted-compiled execution to optimize workloads on both small
and large datasets can be used also with a known schema. In this case, spec-
ulative assumptions and their guards used to type-check the input would not
be needed. Moreover, we believe that such a dynamic approach to query ex-
ecution can enable adaptivity on query engines based on query compilation, a
feature which is commonly considered suitable only for engines based on query
interpretation [51]. Adaptivity can benefit scenarios where there is no statisti-
cal information on the processed data. With our dynamic compilation approach,
adaptivity can be obtained by recompiling part of the query-processing code de-
pending on properties of the processed data which are not known before query
execution; e.g., common adaptive query-execution techniques include runtime
reordering of conjunctive predicates [42] as well as reordering of join opera-
tors [4].
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Besides the features that DynQ offers to end users, we believe that DynQ
would also be a useful framework in other data-processing domains. Indeed,
since DynQ is a language-agnostic data-processing framework, and because of its
flexibility in executing queries on different data representations, DynQ could be
exploited for implementing query execution in the context of other existing data-
processing frameworks written in any language supported by GraalVM. As an
example, DynQ could be used for implementing query execution on external files
with possibly malformed data (e.g., JSON files) in a similar way as done in our
previous work on Spark SQL [95], i.e., by leveraging speculative optimizations.

We also believe that DynQ could be used within the GraalVM platform for im-
plementing data-processing operators offered by the language, e.g., the R data-
frame API, or the list- and set-comprehensions in Python. In particular, we be-
lieve that DynQ could be generalized and integrated within the GraalVM/Truf-
fle ecosystem as a building block for implementing language features related
to data-processing operations. Indeed, current implementations of those op-
erations may easily violate the principle of not repeating yourself, since many
data-processing operations (e.g., map, filter, reduce) are available in almost any
dynamically typed language, with very similar semantics. By creating a com-
mon set of building blocks for data-processing operations, language developers
could reuse them, focusing on their compositions and language-specific details,
rather then repeatedly implementing similar operations for different languages.
At the same time, developers of query operators can focus on data-processing
optimizations.

Besides improving modularity and code reuse, integrating DynQ as a building
block for data-processing operations would immediately bring other benefits into
the GraalVM/Truffle ecosystem, in particular it would enable federated query
execution. As an example, the data frame of the Truffle implementation of R
could be trivially extended to support a join operation with any other data source
for which a DynQ provider is implemented, e.g., a JSON file.

Finally, besides the high impact that DynQ can provide being the first LINQ
system for dynamically typed languages, we believe that DynQ is a great tool
for further research. As an example, DynQ could be extended for implementing
runtime predicate reordering in the area of adaptive data-processing, as men-
tioned above. Indeed, we think that releasing DynQ is an important contribu-
tion for the database and programming-language research communities. For
this reason, we released DynQ as an open-source project, available at https:
//github.com/usi-dag/DynQ-VLDB.

https://github.com/usi-dag/DynQ-VLDB
https://github.com/usi-dag/DynQ-VLDB
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