Automatic Generation of Test Oracles from
Natural Language Specifications

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Arianna Blasi

under the supervision of

Prof. Mauro Pezze and Prof. Alessandra Gorla

05 2022

Dissertation Committee

Paolo Tonella Universita della Svizzera italiana, Lugano, Switzerland
Carlo A. Furia Universita della Svizzera italiana, Lugano, Switzerland
Earl T. Barr University College London (UCL), London, UK
Michael Pradel University of Stuttgart, Stuttgart, Germany

Dissertation accepted on 10 05 2022

Aok

Research Advisor Co-Advisor

Prof. Mauro Pezzé Prof. Alessandra Gorla

PhD Program Director

The PhD program Director pro tempore

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Arianna Blasi
Lugano, 10 05 2022

Abstract

This PhD thesis proposes a framework to automatically derive test oracles from
natural language specifications. We studied and developed cost-effective tech-
niques to derive oracles from information commonly available in natural lan-
guage about the code.

Despite previous research in software testing, the oracle problem, that is,
the challenge to distinguish correct from incorrect behavior, is still largely open.
Contemporary test case generators (TCGs) rely on either simple and incomplete
implicit oracles or on regression oracles that refer to the results of running previ-
ous versions of the program. Implicit oracles can reveal exceptions and program
crashes, but miss semantically relevant issues. Regression oracles can detect de-
viations from the behavior observed in former versions of the program, but not
in new functionalities. Many approaches generate powerful and complete test
oracles from formal specifications that are still not the most common practice in
software development.

The main goal of this thesis is to define techniques that use natural language
annotations, which current approaches largely ignore, to generate effective test
oracles without additional human effort. Most software systems are supported
by textual information, such as annotations, comments, and wikis. This informa-
tion is typically informal and unstructured, and often combines natural language
expressions with developers’ jargon. We also observe that informal artifacts are
prone to human mistakes. In a nutshell, informal artifacts are not always reliable
and are hard to exploit automatically.

This thesis defines approaches to automatically interpret and translate infor-
mal and unstructured information that combines natural language expressions
with developers’ jargon into actionable test oracles, that is, test cases that can be
automatically evaluated, while overcoming human errors that affect their qual-
ity. We first automatically verify the consistency between the code and its doc-
umentation by modeling both code and documentation with a Bag Of Words
(BOW) representation, and signal developers inconsistencies that we detect at
a fine-grained level. We then process the pruned specifications to automatically

generate test oracles in the form of executable assertions. We designed and de-
veloped approaches that process both structured and unstructured Javadoc spec-
ifications, to derive both descriptive and prescriptive assertions for the methods
of a Java class. We successfully experimented with the approaches on popular,
widely-used and open-source Java systems.

This PhD thesis opens new research directions towards the automated ex-
ploitation of natural language artifacts beyond Javadoc specification, to derive
powerful test oracles. The intuitions and observations our study proposes can be
generalized and applied to many other software related artifacts.

Acknowledgements

We would like to thank the Swiss National Science Foundation that partially supported this PhD
within the SNF project ASTERIx: Automatic System TEsting of inteRactive software appllcations
(SNF 200021 _178742).

I thank my advisor, Prof. Mauro Pezzé, and my co-advisor, Prof. Alessandra Gorla, for having
believed in me since the very first day I entered their office. I will always be grateful to them for
having introduced me to the research world.

I cannot praise enough all the great scientists who inspired me during this journey. I thank
the impressive women I had the luck to work with: Dr. Nataliia Stulova, an example of rigourous
researcher and great humanity at the same time, and Dr. Pooja Rani, a living demonstration of
how hard work and grit look like. I thank all my amazing co-authors: Prof. Michael D. Ernst,
Prof. Antonio Carzaniga, Prof. Oscar Nierstrasz, Prof. Sebastiano Panichella, Dr. Alberto Goffi,
and Dr. Konstantin Kuznetsov. Thanks to the former members of my lab, who were there when I
had just started: Prof. Valerio Terragni, Dr. Daniele Zuddas, Dr. Pasquale Salza and Dr. Cristina
Monni. In fact, thanks to all the colleagues of the STAR group, both in Lugano and SIT. Also
thanks to all the people in Meta that made my summer internship not only valuable but also
greatly enjoyable.

Thanks to the students and researchers from the old open space and the Software Institute,
with whom I had the possibility to share teaching duties, coffe breaks and chats. In particular,
thanks to the colleagues living in Como for the fun we shared outside the university. And of
course, thanks to all the people from the IMDEA Software Institute with whom I could live similar
experiences.

Thanks to all the people who supported me through these years outside the work environ-
ment. I thank the awesome women of the Aerial&Dance Academy in Como, who taught me to
fly high both metaphorically and literally. I thank my mental health counselors, especially for the
support offered during pandemic lockdowns. I thank the volunteers of Supporto Attivo, Vicini
di Strada, Comunita Annunciata, and all the other associations I may or may not have had the
pleasure to know in Como which work hard everyday to improve the life of the less privileged.

Last but not least, I thank my immediate family, and the one composed of my dear friends
and my loving partner. Actually, in the not-sky-high possibility that it is a PhD student reading
this: Sure, science is cool, just do remember that healthiness and worthy human relationships
are as well.

Vi

Contents

[Contents

[List of Figures

[List of Tables|

(1_Introduction
(1.1 Background.
(1.2 Research Hypothesis and Contributions|

[1.3 Thesis Structure] v v v o e e e e e e e e e e e e

[2__State Of The Artl
2.1 T racl NEration|. v v v v e e e e e e e e e e e e

[3 Exploiting Natural Language Specifications|
I3.1 The Pervasiveness Of Natural Language Specifications|
[3.2 An Overview Of Javadoc Specification|
[3.3 From Informal Specifications To Oracles|

|4 Deriving Test Oracles From Semi-structured Javadoc|
4.1 Translating Pre, Post, Exception-Post Conditions|
4.1.1 New Knowledge To Acquire|
14.1.2 Overview of JDOctor v v v i i
[4.1.3 JDoctor’s EXtractor v v v v v v e e e e e e e
4.1.4 JDoctor’s Translator]

[4.1.5 JDoctor’s GENnerator] v v v v it i e

14.1.6 Experimental Evaluation of JDoctor|

[5 Deriving Test Oracles From Unstructured Javadoc|
[5.1 Discovering And Translating Metamorphic Relations|
[5.1.1 New Knowledge To Acquire|
Vil

AN -

(G2 9; |

viii Contents
[5.1.2 Overviewof MeMol 39
5.1.3 MeMo’s EXtractor|. v v v v v v i e et e e 42
5.1.4 MeMo’s FIndero v, 42
[5.1.5 MeMo’s Translator| 44
[5.1.6 MeMo0’S GENETatOr . . . « v v v v v v v e e et e e e e 45
[5.1.7 Experimental Evaluation Of MeMo| 47

[5.2 Discovering And Translating Temporal Constraints|. 57
[5.2.1 New Knowledge To Acquire| 61
[5.2.2 Overview Of CaMeMal oo 62
15.2.3 CaMeMa’s Javadoc Extractor 62
5.2.4 CaMeMa’s Constraint Finder| 62
[5.2.5 CaMeMa’s Translator] 63
I5.2.6 CaMeMa’s Direction Chiefl 64
[5.2.7 CaMeMa’s GENerator« v v v v v v v newn.. 65
[5.2.8 Experimental Evaluation Of CaMeMa| 66

|6 Automatically Improving Informal Specification| 71

[6.1 Inconsistency Between Code And Documentation| 72
|6.1.1 Fine-grained Detection Of Code-Doc Inconsistency 73
6.1.2 Overview Of UpDoC oo v v v e e e e 74
[6.1.3 UpDocC’sParser] ueienennnn 74
[6.1.4 UpDoc Change Extractor 75
[6.1.5 UpDoc’s Mapper]| uuuuenenennn. 75
[6.1.6 UpDoc’s Change Analyzer.. 77
|6.1.7 Experimental Evaluation Of UpDoc 78

6.2 Harmful Code Documentation Clones|. 79
[6.2.1 Automatic Detection And Fix Suggestion For Doc Clones| . 80
6.2.2 Overview Of RepliComment 81
[6.2.3 RepliComment’sParser]. 84
|6.2.4 RepliComment’s Clone Detector] 84
|6.2.5 RepliComment’s Clone Analyzer 86
|6.2.6 Experimental Evaluation Of RepliComment| 90

|7__Conclusions 109

[Z.1 Contributions| 109

[7.2 Open Research Directions| 111

Bibliography; 113

Figures

[2.1 Placing test oracles according to Cost and Effectiveness|. 6
[3.1 From natural language specifications to actionable test oracles . . 19
4.1 _JDoctor'sworkflow| 23
5.1 MeMo’sworkflow, 39
[5.2 Improvement in mutants killed with MeMo oracles. Each pair of |
| bars compares a test suite without MeMo oracles to one with MeMo |
| oracles. EI stands for EvoSuite Implicit oracles, ER for EvoSuite |
| Regression oracles, RI for Randoop Implicit oracles and RR for |
| Randoop Regression oracles. DA means developers’ assertions, |
| referring to the developers’ test suite. +M indicates augmented |
[test suites with MeMo oracles. 55
5.3 CaMeMda’s workflow]. 62
6.1 UpDoc’s workflow 74
6.2 RepliComment’s workflow] 84

Figures

Tables

(3.1 Available Javadoctags 13

4.1 Subject programs and ground-truth translations. Column “Doc’d
| Classes” reports the total number of classes with documentation,
| out of which we selected “Analyzed Classes”. “Analyzed Methods”
| reports the methods with Javadoc tags that the authors of this
I

paper could express in executable form. 31

4.2 Accuracy (precision, recall, f-measure) of tools that translate En- |

| glish to executable procedure specifications.| 33

|4.3 How Jdoctor output (procedure specifications) improves Randoop’s |
test classification. Each cell is th nt of candidate tests that

| were classified differently by Randoop and Randoop+Jdoctor, for |

| onerunof Randoop. 35

[5.1 Ground truth: manually-identified metamorphic relations (MR)| . 48

5.2 Effectiveness of MeMo on 7189 sentences from 113 classes 49
[5.3 MeMo’s performance on SBES15 dataset considering documented |
MR: Both means that such MRs are found by both MeMo and |
SBES15. SBES15-only means such MRs are found by SBES15 but |
missed by MeMo. MeMo-only are the MRs found by MeMo and |

missed by SBES15| 52
[5.4 Rules currently encoded in CaMeMa | 65
5.5 Ground truth: manually-identified temporal constraints| 66
I5.6 Effectiveness of CaMeMa on 73 classes| 67

[5.7 Randoop+CaMeMa signals, in terms of number of false alarms de- |
| tected in error test cases, and enriched expected exceptions in re- |
| gression test SUItes|o vttt 68

(6.1 Similarity Measures Sensitivity 76

Xi

xii Tables

6.2 Subjects used for the evaluation of RepliComment. For each subject |
| we report the number of implemented classes, the lines of Java |

| code and the stars on GitHub as of July 2020 91
|6.3 Quantitative results of the method comment clones reported by |
| RepliComment on each analyzed project.| 93
|6.4 Quantitative results of the field comment clones reported by Repli- |
| Comment on each analyzed project.| 94
|6.5 Clones of comment parts and whole comments after duplicate re- |
| moval 96
6.6 Total of clones considered legitimate by the heuristics|. 99
6.7 Samples of clones marked as non-legitimate before and after new |
| heuristics application|.o .. 101
|6.8 Manual analysis of RepliComment assessment for clones of Javadoc |
| parts (summary, @param, @return or @throws)|. 102
[6.9 Manual analysis of RepliComment assessment for whole Javadoc |
[clonesl 103

Chapter 1

Introduction

This chapter reflects on the importance of testing activities and the
need for automation. It presents the main ideas of the thesis.

1.1 Background

Software testing is a fundamental activity to ensure software quality. Test ora-
cles are the mechanism to distinguish between correct and incorrect behavior of
the software under test (SUT). While there exist many techniques to automat-
ically generate test inputs, there are relatively few approaches to automatically
generate test oracles. Some existing approaches can be easily automated, but
produce partial oracles that cannot reveal relevant semantic errors. This is the
case for implicit oracles that trigger system crashes and unhandled exceptions.
Other approaches can reveal relevant semantic errors, but rely on information
that is not often available, for example, by generating oracles from formal spec-
ifications. This thesis studies and develops new and cost-effective techniques to
automatically generate test oracles from information widely available in the form
of informal natural language annotations written in English.

Barr et al. classify oracle generation techniques in three main categories Barr
et al.|[2015]:

* Specified test oracles come from formal specifications, which may be given
in many different forms and languages. Formal specifications provide a for-
mal encoding of the correct behaviors of the SUT. They are rarely available
and are costly to define and maintain.

* Derived test oracles are inferred from different artifacts, including informal
documentation and system executions. Derived oracles rely on information

2 1.2 Research Hypothesis and Contributions

commonly available but often incomplete, for instance, regression oracles
rely on a previous version of the program and can detect failures when the
current implementation of the software breaks properties that held in the
previous versions, but not failures in new or modified functionality.

» Implicit oracles express properties that are generally valid and hold inde-
pendently from the specific semantics of the software under test, for in-
stance null-dereferences are illegal. Implicit oracles can easily be gener-
ated automatically, but can detect only a few kinds of failures.

Automatic test case generators, such as Randoop (Pacheco et al. [2007]) and
EvoSuite (Fraser and Arcuri [2011]), rely on both regression and implicit test
oracles. This means that they can only detect incorrect behavior with respect
to previous versions of the SUT, or generally undesired behavior that does not
depend on its intrinsic semantics, and miss many relevant failures. The lack of
semantically relevant oracles is a main limitation of such systems.

Developers produce multiple natural language artifacts: documentation, source
code comments, wikis, tutorials. Software-related natural language artifacts in
natural language are widely and commonly available, , however, they are ofter
hard to interpret automatically. The presence of developers’ jargon adds to the
intrinsic complexity of natural language, and reduces the effectiveness of clas-
sic NLP techniques. Moreover, the final artifacts may be victims of developers’
mistakes and inaccuracy, which threaten the reliability of what they document
about the SUT.

This PhD thesis proposes tools and techniques to automatically derive proper-
ties of the SUT from natural language specifications in reliable and cost-effective
ways. The work shows how informal software specification can look, how to
overcome defects in informal specifications, and how to exploit the documented
properties to improve testing activities.

1.2 Research Hypothesis and Contributions

The main research hypothesis of this thesis is the following:

It is possible to automatically generate executable test oracles from com-
monly available natural language information.

The first approaches to automatically generating test oracles from natural lan-
guage annotations were proposed by Tan et al. who defined @tComment about a

3 1.2 Research Hypothesis and Contributions

decade ago Tan et al. [2012]. @tComment exploits relatively simple techniques
and can synthesize only simple conditions. To the best of our knowledge, the
seed research idea was not been followed by in-depth studies to either extend
the original @tComment approach or argue the infeasibility of reliably deriving
test oracles from information not formally structured and prone to human errors.
Only recently, the software engineering community acknowledged the value of
informal natural language artifacts, and started studying their use to improve
software artifacts.

This PhD thesis contributes to the state of the art by defining an approach
to automatically derive semantically-relevant properties from natural language
artifacts that document the SUT. We show how natural language software spec-
ifications convey information exploitable for testing, and propose a framework
to both overcome the unreliability of informal specifications and automatically
generate test oracles by interpreting informal specifications. We observe that
the natural language specifications may be flawed, i.e., somewhat unreliable to
derive a correct oracle. We propose approaches to automatically check natural
language specifications, fix the identified flaws, and translate the corrected infor-
mation into test oracles. Automation is a key point across the whole framework,
for its cost effectiveness that we obtain by both requiring little if any human effort
and no heavy computational time.

The main results presented in this thesis were published in international
venues, and tools and datasets are publicly available. We prsented JDoctor [Blasi
et al. [[2018] at the ACM SIGSOFT International Symposium on Software Testing
and Analysis. We published MeMo Blasi et al. [[2021a] in a special issue of the
Journal of Systems and Software on metamorphic testing. We initially presented
RepliComment at the IEEE/ACM International Conference on Program Compre-
hension Blasi and Gorla [[2018], and published an extension in a special issue
of the Journal of Systems and Software on code clones Blasi et al. [2021b]. We
presented UpDoc |Stulova et al. [[2020] at the International Working Conference
on Source Code Analysis and Manipulation. We submitted CaMeMa for publica-
tion to a software engineering venue. The tools and datasets are available on
the STAR lab website|') Zenodo [, and on the thesis author’s GitHub page[’, The
author of the thesis contributed either wholly or significantly to the novel ideas
presented in all papers, to the implementation of the tools, and to the experi-
mental evaluation of the results.

1 https://star.inf.usi.ch/#/software-data

2 https://zenodo.org/record/5094318#.Yj3IIjfMLtw, https://zenodo.org/record/
1297458#.Yj3IPDfMLtw

https://github.com/ariannab?tab=repositories

4 1.3 Thesis Structure

1.3 Thesis Structure

This thesis is organized as follows. Section [2|presents the state of the art of both
test oracle generation and exploitation of natural language software artifacts.
Section [3| overviews our framework by discussing both the characteristics of in-
formal software specification and the challenges of interpreting them to generate
test oracles. Section [4|presents a first approach to derive test oracles from semi-
structured natural language specifications. Section [5|presents two approaches to
generate test oracles from unstructured specifications. Section|6|presents two ap-
proaches to detect defects in natural language specifications and suggest fixes.
Section [7| summarizes the main results of the thesis and indicates the new re-
search directions that emerge from the results presented in this thesis.

Chapter 2
State Of The Art

This section overviews techniques to automatically generate test ora-
cles in terms of cost-effectiveness. It also discusses studies about the
potential and pitfalls of natural language artifacts in software engi-
neering.

2.1 Test Oracle Generation

Software testing is an essential activity for engineering software systems. Test-
ing improves the quality of software systems by revealing faults during the de-
velopment process. Thorough software testing is expensive, and automatically
generating test cases can largely reduce the costs. Automatic test case gener-
ation requires producing both inputs that solicit the execution of the program
under test and oracles that determine the acceptability of the results. Producing
good oracles requires knowledge of the semantics of the SUT and high effort that
impacts the cost of testing.

The oracle problem attracted a lot of research interest since the early work of
Davis and Weyuker Davis and Weyuker| [[1981]]; Weyuker [[1982], as clearly de-
scribed in Barr et al.’s excellent survey Barr et al. [2015]]. Much recent research
efforts study test oracles to tackle modern challenges, such as deep learning
systems Nejadgholi and Yang [2019], autonomous driving systems Jahangirova
et al. [2021], and the problem of energy consumption of software systems [Bruce
et al.|[2018]; Jabbarvand et al. [2020].

This thesis defines approaches to generate general oracles in the presence
of available information about the SUT. Here, we overview the most common
techniques to automatically generate test oracles by considering costs and effec-
tiveness. Both dimensions largely depend on the level of semantically-relevant

5

6 2.1 Test Oracle Generation

information required to generate the oracle. Figure |2.1|visualizes the core ap-
proaches with respect to these dimensions. The ideal approach sits in the bottom
right corner of the space: high effectiveness at low cost.

Cost A Formal specifications
X Expensive

Regression
X Cannot discover faults in new code

Intrinsic properties
X Incomplete

Heuristics
X Imprecise
| Ideal
Implicit | Oracle
X Blatant faults
Effectiveness

Figure 2.1. Placing test oracles according to Cost and Effectiveness

Implicit oracles sit near the leftmost bottom corner: They can be cheaply gen-
erated, but offer limited effectiveness, since they ignore semantics of the SUT.
Implicit oracles are essentially “blatant faults” Barr et al. [2015]. They tell devel-
opers that something went wrong in the execution, and can be detected without
actually formalizing a semantically-relevant oracle, but give little information
about the flaw that lead to the crash.

Heuristic oracles improve the effectiveness of implicit oracles with heuris-
tics that assess anomalies such as thrown exceptions. Many techniques rea-
son about exceptions using heuristics (Csallner and Smaragdakis [2004, 2005];
Pacheco and Ernst [[2005]; [Pacheco et al. [[2007]; Ma et al. [[2015]. As a repre-
sentative example, Randoop Pacheco et al. [2007]] considers a test that throws
NullPointerException on null input as expected behavior. Randoop and simi-
lar heuristics-based approaches allow testers to customize such rules to alleviate
the false positive rate that may derive from heuristics not tailored to the seman-
tics of the SUT. As a relevant example of heuristics imprecision, JCrasher|Csallner
and Smaragdakis| [2004] and Check 'n’ Crash (CnC) (Csallner and Smaragdakis

7 2.1 Test Oracle Generation

[2005] assume that methods do not raise exceptions unless specifically declared
in the method signature, an assumption that can lead to many false alarms. Sim-
ilarly, Randoop classifies as erroneous a test case leading to an exception if it was
not explicitly declared in any signature.

Intrinsic properties-based, regression, and formal specification-based oracles
improve effectiveness and increase generation costs by exploiting intrinsic prop-
erties, previous versions, and formal specification of the SUT, respectively.

Approaches to generate test oracles from formal specifications flourished since
the eighties, as several specification languages exist. Formal specification pro-
vides a mathematical model of the SUT behavior, making it a good source of test
oracles. Algebraic specifications|/Antoy and Hamlet [2000];/Gannon et al. [[1981];
Doong and Frankl [[1994] define a software module in terms of its interface, usu-
ally by means of first-order logic to prove properties of the specification. Asser-
tions and contracts Araujo et al.|[2011]; |Cheon [[2007]]; Meyer [[1988]; Rosen-
blum| [[1995]]; Taylor [[1983] are popular means to check the program behavior.
Popular programming languages such as Java|', C++[’|and Python [| support as-
sertions by means of the assert statement. An assertion is a boolean expression
that checks the SUT at run time either in the source or test code. Model-based
specifications Day and Gannon [[1985]; Fujiwara et al. [[1991]]; Mcdonald|[[1998];
Mikk [[1995]]; Cheon and Leavens [2002]; Gay et al. [2016] support reasoning
about a system by operations that can alter the system state. Producing and
maintaining a formal specification is expensive, and this limits the applicabil-
ity of these techniques in practice. Many approaches derive both test input and
oracles from semi-formal specification, like UML models Schwarzl and Peischl
[2010]; Porres and Rauf [2010]; Wang et al. [2015]; Mai et al. [2018]. Semi-
formal specifications are more common than formal specifications; however, the
effectiveness of automatically generated oracles is limited to the subset of the
SUT semantics formalized with the semi-formal models.

Metamorphic testing generates test oracles by manipulating intrinsic proper-
ties of the SUT. Metamorphic oracles reveal failures by checking metamorphic
relations that capture application-specific symmetries and equivalences (Chen
et al. [[1998, |2003]). Simple examples of equivalence metamorphic relations
(MRs) are sum(a, b) = sum(b,a), or sin(x + 27) = sin(x). Metamorphic testing
becomes difficult and effort-demanding when the specification of the SUT is not
available and hard to define. Similarly, crosschecking oracles |Carzaniga et al.

1 https://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.

html
https://www.cplusplus.com/reference/cassert/assert/
https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

2
3

8 2.1 Test Oracle Generation

[2014] exploit the intrinsic redundancy of SUT, while symmetric testing |Gotlieb
[2003] exploits permutation relations between program executions. In a nut-
shell, metamorphic testing, crosschecking oracles, and symmetric testing gener-
ate oracles by comparing the results of two behaviors of the SUT that should
be equivalent. The effectiveness of these oracles is limited to cases where such
properties exist. They may not be always known, available, or easy to exploit.

Regression test oracles offer a good trade-off between cost and effectiveness
by relying on previous versions of the SUT. Regression assertions can be easily
generated automatically [Pacheco et al. [2007]; Fraser and Arcuri|[[2011]] and of-
fer semantically relevant oracles. The cost of regression oracles derives mainly
from the need to incrementally monitor and record the executions of the SUT
during testing. Not surprisingly, regression testing is one of the most common
automated testing practices in industry |Ali et al. [[2019]; |Ziftci and Cavalcanti
[2020]. Regression oracles are useful to reveal differences with respect to previ-
ous versions (regression of the SUT); however, they cannot reveal faults in new
code.

In the last decade, a new research direction has emerged that studies the
possibility of automatically generating semantically relevant test oracles from
information about the SUT in natural language, and thus with negligible extra
effort . Informal natural language information describing software is available in
different formats and shapes, making it an appealing candidate for the automatic
acquisition and exploitation of knowledge about the SUT. Natural language in-
formation is not as easy to exploit and as reliable as formal specification, which
explains why work in this direction started evolving only with the improvement
of natural language processing techniques . It is fair to affirm that this line of re-
search was promoted by works by Tan et al. Tan et al./ [[2012]]. Their @tComment
technique uses pattern matching on source code documentation to determine
conditions related to nullness of method parameters. A similar work, Toradocu
by Goffi et al. Goffi et al. [[2016], predicates on exceptional behaviors instead.
Such simple rule-based approaches are effective and safe in generating reliable
oracles about simple properties. However, their applicability is limited to both
the properties they can handle and of the complexity of the natural language
information they can exploit. More advanced approaches infer properties of the
SUT from code documentation while addressing some natural language ambi-
guities. ALICS by Pandita et al. Pandita et al. [[2012] combines part-of-speech
tagging and pattern-matching to generate simple pre- and post-conditions, by
exploiting a restricted vocabulary of synonyms. Yet other approaches exploit
natural language information to generate test inputs. Both Mai et al. and Wang
et al. Wang et al. [[2015[]; Mai et al. [[2018] automatically derive test cases from

9 2.2 Relevance Of Natural Language Artifacts In SE

use case specifications by means of Semantic Role Labeling, taking advantage of
the simplifications induced by the structure of semi-formal specifications to gen-
erate the test inputs. The technique can be effective in the context of use case
specifications, where the vocabulary is quite restricted. In a free-form of natu-
ral language text, the matching of roles in a sentence would be more difficult to

apply.

2.2 Relevance Of Natural Language Artifacts In SE

We conclude this section by discussing the relevance of natural language artifacts
in software engineering. System requirements, software documentation, source
code comments, programming discussion boards, all employ natural language
as the primary mean to convey information concerning software. It is thus not
surprising that the software engineering research community looks for ideas to
automatically exploit them to support different development activities.

Requirements are often scattered among large documents. Many techniques
use natural language processing to automatically extract key aspects and improve
traceability Xiao et al. [2012]; Abad et al. [2019]; Shi et al. [2020]; Hey et al.
[2021]. Discussion boards, such as Stack Overflow, hold a large volume of col-
lective knowledge about APIs. Natural language processing techniques help in
finding and organizing such information, to build knowledge graphs and concept
hierarchies|Li et al. [2018]; |Chen et al.|[2019], support code search Rahman and
Roy| [[2018], or opinion mining Lin et al. [2019]. Other work exploits app re-
views, which convey improvement suggestions and bug reports [Panichella et al.
[2016, 2015]; Di Sorbo et al. [2016]. Source code comments document useful
information to both program users and developers. They support program com-
prehension and ease communication among developers Pawelka and Juergens
[2015]; Arnaoudova et al. [[2016]; Louis et al.|[2020]; Nie et al. [2019], and iden-
tify self-admitted technical debt|da Silva Maldonado et al. [2017]. Some work
uses code comments to infer types in non-strongly typed languages Malik et al.
[2019], reveal code misuses that lead to program crashes|Kechagia et al. [2019],
detect code clones Nafi et al. [2019]], and generate formal specifications |Zhai
et al.|[[2020].

Some research work proposes ways to improve the parsing of software-related
natural language information Abebe and Tonella [2010]; |Gupta et al.| [2013];
Partachi et al. [2019]. Approaches that unveil issues affecting software-related
natural language artifacts are also growing in popularity. Both Wen et al. and
Aghajani et al. Wen et al. [2019]; Aghajani et al. [2019] bring attention on

10 2.2 Relevance Of Natural Language Artifacts In SE

anti-patterns and inconsistencies impacting software documentation, including
source code comments.

Other techniques attempt to automatically detect and possibly fix emerging
issues. [Ratol and Robillard [[2017]] propose a technique that detects textual ref-
erences to identifier renamed during refactoring activities, to update identifiers
in related unstructured comments. [Liu et al.| [[2020] propose an approach to
update comments as soon as the code changes, to avoid introducing bad com-
ments. This body of research work is particularly relevant for the framework
we propose in the thesis. [Fluri et al. [2007]] notes that comment changes are
triggered by corresponding code changes in less than half cases of code changes,
and changes may happen quite late (more than three revisions later). Wen et al.
[2019], in their large-scale study involving over 1500 open source projects (of
which 500 commits manually analyzed) confirm that “in most of the cases, code
and comments do not co-evolve” simultaneously. Co-evolution occurs roughly in
20% cases. Such studies prove that informal code specification may not always
be a reliable source to derive test oracles, which motivates our work on detecting
inconsistencies in informal software specification.

Chapter 3

Exploiting Natural Language
Specifications

In this chapter, we discuss how to exploit informal software specifi-
cation expressed in natural language to derive test oracles. We focus
on code documentation expressed in English as Javadoc annotations.
We discuss the characteristics of informal Javadoc specifications, and
show how to take advantage of such characteristics to generate test
oracles.

3.1 The Pervasiveness Of Natural Language Specifi-
cations

Software can be specified in several ways. Natural language information de-
scribing the software behavior can be find in many artifacts, such as software
requirements, UML specifications, wikis, user and developer guides, and such-
like.

In this thesis, we focus on documentation of source code and on API comments
in particular. Documentation of source code is particularly interesting because
it describes the code at different levels of granularity. Inline comments typically
document specific lines of code, while block comments document multiple state-
ments. The most extensive kind of source code comments are API comments,
as they serve to document the behavior of whole methods and classes. They fit
well the thesis objective, as we are interested in inferring the expected behavior
of the SUT for testing.

The most popular contemporary programming languages offer tools to effec-

11

12 3.2 An Overview Of Javadoc Specification

tively generate API documentation. In this thesis, we focus on Javadoc, the de
facto standard to write code documentation for the Java language. An analogue
is PyDoc for Python. In general, all the findings in the thesis generalize and apply
to any similar natural language artifact for documenting code.

3.2 An Overview Of Javadoc Specification

The Javadoc standard was introduced in the early 2000s and has been widely
used since then to document Java software. Popular libraries are especially well-
documented through Javadoc to aid both users and developers to comprehend,
improve and maintain source code. We can get an intuition of the span of
Javadoc from Guava, the Google Core Libraries for Java. Guava is currently used
by nearly thirty thousand artifacts, according to the Maven Repository |', and
counts over forty thousands stars on GitHub A simple check of Google Guava’s
Javadoc indicates the presence of nearly ten thousand sentences, by considering
only the documentation of methods.

Javadoc comments can document classes, fields, constructors and method
declarations. We can distinguish two main components of Javadoc documenta-
tion: Unstructured free-text and semi-structured descriptions. Free-text descrip-
tions are the so-called Javadoc summaries, while semi-structured descriptions are
Javadoc block tags. Any Javadoc comment can be enriched with Inline tags, for
instance, @code and @link to highlight code identifiers and hypertext links, re-
spectively. Table overviews all Javadoc block and inline tag where Inline
tags are within curly brackets.

In a nutshell, informal specifications are rarely if ever composed of mere tex-
tual information, and are often annotated with tags that are extremely useful
when parsing the documentation. Common natural language parsers would not
be able to process, for example, the presence of a method signature mentioned
inside a code comment. However, we can easily adapt natural language parsers
to consider code identifiers found in text as nouns, by being aware that code
identifiers are wrapped within @code tags .

We overview the main challenges of interpreting Javadoc comments, by dis-
cussing some Javadoc examples that we excerpt from popular libraries. We argue
that it is possible to achieve a high precision in automatically generating exe-

1
2
3

https://mvnrepository.com/artifact/com.google.guava/guava
https://github.com/google/guava
https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javadoc.
html#javadoctags

13 3.2 An Overview Of Javadoc Specification

Table 3.1. Available Javadoc tags

Tag Introduced in JDK/SDK
@author 1
{@code} 1.5

{@docRoot} 1.3
@deprecated 1

@exception 1
{@inheritDoc} | 1.4
{@link} 1.2
{@linkplain} 1.4
{@literal} 1.5
@param 1
@return 1
@see 1
@serial 1.2

@serialData 1.2
@serialField 1.2

@since 1.1
@throws 1.2
{@value} 1.4
@version 1

cutable test oracles from Javadoc specifications by exploiting syntactic features
of the text. This observation matured during the PhD work (Blasi et al. [2018]),
and is sustained in other studies as well (|Di Sorbo et al. [2019]]). We observe that
precision is most important than recall when generating test oracles: Missing a
few oracles (low recall) is a much lesser issue than generating wrong oracles
(low precision).

Listing[3.1: a simple example of informal specification with low ambiguity level
The natural language text of tag @param at line 3 states that parameter fpp should
be both positive and less than a constant double value. To generate an executable
test oracle, our technique must be aware that (i) “positive” means greater than
zero, i.e., > 0, (ii) the text indicates a comparison between a parameter and the
constant value 1.0, (iii) the conjunction “and” implies that both conditions must
hold as preconditions for the parameter. As humans, we barely notice the amount
of information there is to consider to understand and translate such simple text.

This first example is indeed a basic one in terms of interpretation. The context
is still quite explicit, thanks to the @param tag, there are no implicit subjects to
infer, and the predicate is straightforward. In other words, the level of ambiguity

14 3.2 An Overview Of Javadoc Specification

of this piece of informal specification is extremely low.

Listing 3.1. Example from BloomFilter class of Google Guava
/% *

*

* @param fpp the desired false positive probability (must be
* positive and less than 1.0)

*/

public static <T> BloomFilter<T> create(

Funnel<? super T> funnel,

int expectedinsertions,

double fpp) { ... }

O 0O O U1 W IN

Listing an example of ambiguous subjects due to incomplete information
A subject may be ambiguous, and thus hard to translate into code, for different
reasons. The natural language text of tag @throws at line 3 mentioning “either
collection” and “the comparator” shows an example of ambiguity that derives
from information left implicit in the comment. Our knowledge and intuition
suggest us that “collection” in the comment refers to the Iterables in input, and
that “comparator” refers to the other parameter. In essence, we infer that “col-
lection” is just another identifier for parameters a and b, as “comparator” is for
parameter c. Automatic techniques need to infer such knowledge as well. In this
example, the parameter names are not helpful at all for machine comprehen-
sion (since they are generic a, b and c) — however, our automatic technique can
match the subjects of the @throws text to the right code candidates from type
information.

Listing 3.2. Example from CollectionUtils class of Apache Commons Collections
/% *

*

* @throws NullPointerException if either collection or the
* comparator is null

*/

public static <O> List<O> collate(

Iterable <? extends O> a,

Iterable <? extends O> b,

Comparator<? super O>¢) { ... }

O 00O O U1 W IN

Listing an example of ambiguous subjects due to natural language am-
biguity Listing refer to two parameters, x and y, and a @throws text that
states that an exception will be thrown if “the number of points” is less than a

15 3.2 An Overview Of Javadoc Specification

certain value, leaving it unspecified both what “the number of points” is and what
“points” refers to. The @param text at line 3 indicates that x is a “points” array.
By observing that this the first noun describing x, we can infer that “points” is an
identifier for x. We also know x is an array, which becomes yet another identifier
for the parameter.

Listing 3.3. Real example from DividedDifferencelnterpolator class of Apache Commons
Math

/% *

* DY

* @param x Interpolating points array .

* @param y Interpolating values array .

*

* @throws NumberlsTooSmallException if the number of points

* is less than 2.
*

*/

O 0N O U1 A WN

—_
—_

protected static double[] computeDividedDifference(final double x[],
final doubley[]) { ... }

—
N

Ambiguous predicates Interpreting, matching, and translating predicates can
be particularly difficult. While subjects are often stated explicitly by their code
names inside textual informal specification, or, at least, recognizable by smart
expedients as we saw in the previous examples, predicates may be expressed in
a great variety of ways. Some predicates are straightforward expressions and
can be easily mapped to code expressions: for example “is positive” can be easily
matched against the code expression > 0. Some other predicates are essentially
actions whose code matching is a specific method call. For example a predicate
“is empty” that refers to a subject collection coll of type List, is easily trans-
lated as coll.isEmpty (). However, variety and challenges can go much further
than that, as for example, when developers use synonyms of actions to describe
predicates.

Listing an example of ambiguity due to the use of synonyms The predi-
cate in the @throws tag text of Listing “is not found in the graph”, referring
to subject “vertex”, does not clearly specify the meaning of a vertex not found
in a graph. This concept could be interpreted as either “the vertex does not
exist in the structure" (thus matching a hypothetical method vertexExists),

16 3.2 An Overview Of Javadoc Specification

or “the structure does not contain such vertex” (thus matching the hypotheti-
cal containsVertex). In either case, an automatic translation technique needs
some semantic understanding capability to infer the right match between natural
language and code.

Listing 3.4. Real example from Graph class of JGrapht
[**

1

21 % ...

3| * @throws NullPointerException if vertex is not found in the
4|/* graph
5| */

6| Set edgesOf(Object vertex) { ... }

Listing [3.5: an example of wrong informal specification Informal specifica-
tions may not be updated synchronously with the code, or it may be simply wrong
due to mere human distraction. The example in Listing[3.5|survived from the very
first version of the Google Guava library up to version 19.0 before getting fixed:

Listing 3.5. Real example from CharMatcher class of Google Guava

1] /%*

20 % ...

3| * @return true if this matcher matches every character in the
4|* sequence, including when the sequence is empty

5| */

6| public boolean matchesNoneOf(CharSequence sequence) { ... }

The comment in Listing(3.5|comes from the Javadoc of method matchesNoneOf.
The mismatch between the comment, “true if this matcher matches every charac-
ter in the sequence” and the name of the method, “matchesNoneOf(CharSequence
sequence)” suggests a likely inconsistency between the comment and the code.
Guava fixed this error in release 20.0 by substituting the description of matches-
NoneOf’s return tag with “true if this matcher matches no characters in the se-
quence, including when the sequence is empty”, which sounds indeed more con-
sistent.

Listing an example of semi-structured and unstructured documentation
The example in Listing [3.6| illustrates the differences between semi-structured
and unstructured documentation. The semi-structured section of the Javadoc
comment is identified with block tags, and it is preceded by an unstructured
summary (Merges the arrays in input [... | in the newly merged array.). The method
summary is a paragraph reporting general information about the behavior of the

17 3.3 From Informal Specifications To Oracles

method (how it operates, how the result will look like, and so on) in a free-text
form. The block tags provide essential information about specific elements of the
method, parameters (@param), normal postconditions (@return), exceptional
postconditions (@throws).

Listing 3.6. Sample Javadoc specification of a method

/% *

* Merges the arrays in input. This method combines two arrays in a single

* array object that will be returned. The array elements maintain their original
* order in the newly merged array. The elements of the first array precede the
elements of the second array in the newly merged array.

* @param x the first array, not null

* @param y the second array, not null

* @return an array which is the result of the merge.
Empty if both arrays are empty

@throws lllegalArgumentEsxception if either array is null

O 0N O U1 A WN =
*

[Y
N = O
* ® %

*/
public Object[] merge(Object[] x, Object[] y) throws lllegal ArgumentException
{.}

Semi-structured and unstructured informal specification come with different
pros and cons. Unstructured free text is often richer than the information em-
bedded in block tags; however it may also contain information that is either not
interesting or usable for testing purposes.

With this thesis, we aim to provide a framework that shows how to exploit
both kinds of informal specification to derive test oracles.

[Y
EANNOV]

—
U1

3.3 From Informal Specifications To Oracles

We now frame the main challenges that emerge when dealing with both struc-
tured and unstructured comments in Javadoc documentation:

Challenge 1. Understanding the code context, which amounts to identifying which
code elements a certain part of the documentation refers to. The broader
the scope of a documentation fragment is, the harder this challenge is.

Challenge 2. Translating the information from natural language into executable
oracles: Test oracles must be encoded in some way that allows the oracles
to be evaluated, such as in the form of executable code assertions. To pro-
duce compilable and executable assertions, we must find the right bridge

18 3.3 From Informal Specifications To Oracles

between natural and programming language, and solve jargon references
often present in Javadoc comments.

Challenge 3. Dealing with unreliable specification: Informal specification does
not follow strict rules or schemes. Developers are free to write it following
their personal taste, making it prone to error. As indicated in examples dis-
cusses above in this section, informal specifications are not always aligned
to the code. Exploiting flawed specification implies deriving incorrect ora-
cles.

With this thesis, we identify two key characteristics of an informal natural
language artifact to successfully address these challenges:

Characteristic 1. Artifact format:

The structure of the natural language artifact can help us address Chal-
lenge 1. Let us consider for example the Javadoc @param tags: Whatever
information may be written after such tags, we can safely assume that it
refers to a method parameter (and sometimes its relations with other pa-
rameters). It may also help us address Challenge 2 because, usually, the
amount of text written for a single tag is much shorter and self-contained
than in some unstructured comments, like class summaries. Finally, a for-
mat that favors code understanding opens the possibility to automatically
infer fixes for a flawed specification, easing Challenge 3.

Characteristic 2. Artifact scope:

The scope of the natural language information can help us address Chal-
lenge 1. Let us consider for example how a method summary rarely refers
to a scope broader than the method itself, while a class summary may re-
fer to multiple properties scattered around the whole class. The scope of
a comment may also help us address Challenge 2 because the amount of
text to tackle is different. As per Challenge 3, fixing flawed specification
at a narrow scope may be easier because the set of potential correct fixes
reduces.

In this thesis, we show how we exploit Javadoc different formats and scopes
to successfully address the challenges of translating natural language software
specification into test oracles. Figure outlines the two phase framework that
we define to address the problem of automatically generating reliable test oracles
from informal specifications. The main characteristics of the framework are:

19

3.3 From Informal Specifications To Oracles

. Admitting the possibility of starting with a flawed informal specification,

since we cannot deny it is a real and hindering possibility.

. Exploiting natural language interpretation by taking advantage of the spe-

cific Artifact Format and Scope, to automatically identify flaws and suggest
fixes . The framework proposes the fixes to the developers who may/may
not implement them. Implementing the suggested fixes improves the ef-
fectiveness of the generated test oracles.

. Exploiting natural language interpretation to identify suitable code trans-

lations for the natural language text inside the reliable version of the spec-
ification.

. Generating actionable test oracles, e.g., in the form of executable asser-

tions.

Flawed
NL Specs

24)

Phase 1:
Suggest Specification Fixes

A8

l NL Specs

Translate Specification

=ENTS

(Phase 2:

assert(...)

Figure 3.1. From natural language specifications to actionable test oracles

In this thesis, we also show the added value of embedding the generated ora-

cles into test suites either written by developers or automatically generated with
automatic test case generators such as Randoop Pacheco et al. [2007] and Evo-
Suite Fraser and Arcuri [[2011]]. We, of course, need to define the format of the

20 3.3 From Informal Specifications To Oracles

generated oracles, which we require to be machine readable and automatically
actionable .

We already observed that the Javadoc documentation includes information
of little use and interest for testing purposes. Before even considering how to
translate information from Javadoc documentation to actionable assertions, we
need to identify the elements in the documentation that are relevant for testing
purposes and are worth translating into actionable assertions. It is also worth
noticing that Javadoc documentation contains information that corresponds to
different kinds of properties:

Prescriptive properties properties that prescribe what the user of a software
should or should not do. They specify the correct usage of the code, for
example, in terms of preconditions.

Descriptive properties properties that describe the effect of the software be-
havior. They specify how the code execution affects the state of the SUT.

Both prescriptive and descriptive properties are relevant for testing purposes,
since the correct behavior of a software is defined by indicating both the condi-
tions to execute the code (prescriptive properties) and the effects of executing the
code (descriptive properties). In the following chapters, we define approaches
to automatically generate both prescriptive and descriptive properties.

Chapter 4

Deriving Test Oracles From
Semi-structured Javadoc

In this section, we present a technique and a tool, JDoctor, to derive
executable assertions from Javadoc block tags. We also report the re-
sults of a set of experiments that confirm the high precision and recall
of JDoctor in deriving pre, post and exceptional-post conditions for
Java methods from Javadoc structured specifications. The assertions
that JDoctor automatically generates improve the test cases gener-
ated with automatic test case generators, such as Randoop. The core
contributions of this chapter is the main content of a paper that we
presented in the technical track of the 2018 International Symposium
of Software Testing and Analysis(Blasi et al.|[[2018]]).

Artifact format Artifact scope

Semi-structured: Javadoc tags Specific aspects of the docu-
mented method: Determined by
each tag

JDoctor generates actionable assertions from the semi-structured Javadoc spec-
ification at the method level that provides information about the expected be-
havior of the documented methods. The format of the semi-structured Javadoc
specifications provides some useful hints about the code context. The core con-
tribution of JDoctor relies in the intuition of exploiting the context provided with
the partial format of semi-structured Javadoc specifications to disambiguate the
information in natural language and produce actionable assertions. The core

21

22 4.1 Translating Pre, Post, Exception-Post Conditions

challenge that JDoctor addresses is the natural language ambiguity of the textual
description.

4.1 Translating Pre, Post, Exception-Post Conditions

The semi-structured portion of a Javadoc method documentation offers informa-
tion about pre-conditions, normal post-conditions, and exception post-conditions.
Pre-conditions describe the expected input that the method does or does not
accept. For example, the method may not accept null inputs. Normal post-
conditions describe what the method returns. For example, the method may
return true if some conditions hold, false otherwise. Exception post-conditions
describe the exceptions the method throws in case some non-acceptable condi-
tions. For example, the method may throw NullPointerException upon receiv-
ing null inputs. All of these pieces of information are precious for unit testing,
as assertions can be derived from them.

4.1.1 New Knowledge To Acquire

Mixing between natural language and developers’ jargon An off the shelf nat-
ural language parser is not designed to properly interpret all the information that
non-formal code specification can contain. We need tweaks to properly parse
code identifiers (e.g., method signatures), CS terms (e.g., is null an adjective or
a noun?) , and arithmetic notation (e.g., x>0).

Unveiling the relations between natural language terms and code identifiers
Of course, when a code identifier is directly mentioned in a natural language
comment, the relation is made explicit. However, developers may use verbs to
describe an actions that refers to a specific method call, or even use synonyms to
describe it.

23 4.1 Translating Pre, Post, Exception-Post Conditions

4.1.2 Overview of JDoctor

JDoctor

Translator

NL Subject Predicate
Parser Matcher Matcher

Java |

Assertions

= N

pre-conditions

Method Block
Tags
Comments

JSON Specs
Generator

Javadoc
Extractor

post-conditions

exceptional
post-conditions

Figure 4.1. JDoctor’s workflow

JDoctor works on the Javadoc documentation of methods, using the Javadoc
documentation of the declaring class as input. It extracts and analyzes @param
tags, @return tags and @throws (or @exception) tags. JDoctor identifies the pres-
ence of translatable oracles inside these tags and translates the natural language
information into executable Java assertions, which are the final output of the
technique.

Preconditions @param tags typically characterize method parameters and state
the preconditions that callers must respect . Consider again the example of low
specification ambiguity from section belonging to the BloomFilter class of
Google Guava. JDoctor transforms this comment into the executable specification
that is shown in the box below the Javadoc comment. The clauses are conjoined
with the Java conditional operator “and” (&&) to form the complete procedure
specification.

1 /**

20 % ...

3| * @param expectedinsertions the number of expected insertions

4| * to the constructed BloomFilter; must be positive

5| * @param fpp the desired false positive probability (must be

6| * positive and less than 1.0)

7| */

8|public static <T> BloomFilter<T> create(

9| Funnel<? super T> funnel,

10| int expectedinsertions,

11|double fpp) { ... }

expectedInsertions > 0
fop >0 && fpp < 1.0

24 4.1 Translating Pre, Post, Exception-Post Conditions

JDoctor correctly handles comments using math expressions (second and third
@param comment) and compound conditions (third @param comment). JDoctor
also understands that the comment regarding the first parameter does not specify
any precondition and thus does not produce any specification regarding param-
eter funnel.

Exceptional Postconditions @throws and @exception tags represent postcon-
ditions of exceptional executions. Consider the following example, shown in
to represent a case of subject ambiguity, belonging to CollectionUtils class of
Apache Commons Collections:

1 /**

2| * @throws NullPointerException if either collection or the comparator is null

3| */

4|public static <O> List<O> collate(

5| lterable <? extends O> a,

6| lterable <? extends O> b,

7| Comparator<? super O>¢c) { --- }

(a ==null || b ==null || ¢ ==null) — java.lang.NullPointerException

JDoctor correctly determines that “either collection” refers to parameters a
and b, and “the comparator” refers to parameter c.

Again, we borrow an example presented in section [3.2] coming from class
Graph of JGrapht. This example represents the highest ambiguity possible:

1| /** @throws NullPointerException if vertex is not found in the graph */
2| Set edgesOf(Object vertex)

receiverObjectID.contains(vertex) ==false — java.lang.NullPointerException

JDoctor infers that “the graph” is the instance of the Graph class itself, which
we encode as receiverObjectID. Less obviously, it also infers that “not found”
is semantically related to the concept of “an element being contained in a con-
tainer”, thanks to its semantic similarity analysis.

Normal Postconditions @return tags typically represent postconditions of reg-
ular executions of methods. Below we report an example from method addEdge
of the JGraphT library.

1| /** @return true if this graph did not already contain the specified edge */
2|boolean addEdge(V sourceVertex, V targetVertex, E e)

IreceiverObjectID.containsEdge(sourceVertex, targetVertex) — result == true

25 4.1 Translating Pre, Post, Exception-Post Conditions

Jdoctor infers that “this graph” refers to the graph instance itself, and that
method containskdge can check the postcondition. Jdoctor correctly passes the
two vertexes as parameters of this method to form an edge.

4.1.3 JDoctor’s Extractor

The Extractor is the entry point of JDoctor. It takes in input the Javadoc doc-
umentation of a class under test and extracts the content of the Javadoc tags
of each method: @param, @return, @throws and @exception. The extractor
pre-processes the language text to cleaning it from noise (e.g., HTML tags) and
retaining valuable information. The Extractor is not merely responsible of text
cleaning. Its main duty is to prepare the text so that it is effectively exploitable
by the next component, which will have to translate it into code. The Extractor
hence produces an internal representation of the Javadoc comment holding all
the useful information that can ease the later translation. In particular:

Punctuation: Jdoctor adds a terminating period when it is absent and removes
spurious initial punctuation. Indeed, sometimes developers may (incor-
rectly) use commas in Javadoc comments to separate parameter or excep-
tion names from their descriptions.

Implicit subject: Comments may refer to a subject that was previously men-
tioned. For instance, a typical @param comment is “Will never be null.”
Since Jdoctor parses sentences in isolation, each sentence needs an explicit
subject. For @param comments Jdoctor adds the parameter name at the be-
ginning of the comment text. Jdoctor also heuristically resolves pronouns
such as “it”, replacing them with the last-used noun in the comment.

Implicit verb: Some comments have implicit verbs, such as “eparam num, a pos-
itive number”. Jdoctor adds “is” or “are” depending on whether the first
noun, which is assumed to be the subject, is singular or plural.

Incomplete sentences: Jdoctor transforms dependent clauses into main clauses
when no main clause exists.

Vocabulary standardization: To accommodate later pattern-matching, Jdoctor
standardizes text relating to nullness, if, and empty patterns. For example,
Jdoctor standardizes “non-null” and “nonnull” to “not null”.

Mathematical notation: Jdoctor transforms inequalities to placeholders that can
be parsed as an adjective. For instance, Jdoctor transforms the clause if
{@code e} < 0 into the expression e < 0, and then into e is LTo.

26 4.1 Translating Pre, Post, Exception-Post Conditions

Inner tags: words inside “@code” tags are memorized to be wrapped by place-
holders. In later phases, they will be tagged as nouns in the semantic graph
produced by the NL parser. Words inside “@link” tags are memorized to be
later remembered as possible pointers to useful resources. If a code match-
ing cannot be found inside the class under test, it may be in one of the class
linked in the documentation.

4.1.4 JDoctor’s Translator

The Translator takes in input the comment representation produced by the Ex-
tractor. As we see in the workflow of Figure the Translator operates by
sub-phases.

Natural Language Parsing Given an English sentence, Jdoctor identifies (subject,
predicate) pairs, commonly known as propositions Del Corro and Gemulla [2013].
It also identifies conjunctions and disjunctions that connect propositions, if any.

Jdoctor first performs a partial POS (Part-Of-Speech) tagging. It marks pa-
rameter names as nouns, and inequality placeholders such as LTo as adjectives.
Jdoctor then completes the POS tagging process by means of the Stanford Parse
Marneffe et al. [[2006]], which produces a semantic graph (i.e., an enriched parse
tree) representing the input sentence. In a semantic graph, nodes correspond
to the words of the sentence, and edges to grammatical relations between them.

Jdoctor identifies the words that comprise the subject and the ones that com-
prise the predicate by traversing said graph. Given the single node marked as
subject (e.g., by the NN POS tag) in the semantic graph, Jdoctor identifies the
complete subject phrase by visiting the subgraph with the subject node as root
node and collecting all the words involved in a relation of type compound, ad-
verbial modifier, adjectival modifier, determiner, and nominal modifier. Jdoctor
builds a predicate by collecting words with the following grammatical relations:
auxiliary, copula, conjunct, direct object, open clausal complement, and adjecti-
val, negation, numeric modifiers.

When conjunctions are involved, Jdoctor correctly supports multi-clause sen-
tences by processing the corresponding edges.

Proposition Translation The proposition thus built must be finally translated.
When translating propositions into Java expressions (line [I2)), the goal is to

http://nlp.stanford.edu/software/lex-parser.html

2 http://universaldependencies.org/u/dep/all.html

27 4.1 Translating Pre, Post, Exception-Post Conditions

match each subject and predicate to code elements.

Algorithm |1/ shows how Jdoctor processes the (normalized) text of Javadoc
comments. The text may contain multiple propositions. The algorithm trans-
lates each proposition independently. Then, these translations (which are Java
expressions and operations) are recombined to create the full executable specifi-
cation. The recombination is done specially for @return comments. Jdoctor first
identifies the guard, the true property and the false property. For instance, the
return comment for ArrayStack.search() in Apache Commons Collections is “the
1-based depth into the stack of the object, or -1 if not found”. Jdoctor identifies
“if not found” as the guard, “the 1-based depth into the stack of the object” as the
true property, that is, the property that holds when the guard is true, and “-1” as
the false property, that is, the property that holds when the guard is evaluated to
false.

Jdoctor starts by analyzing the subject of the proposition (line[14) and tries to
match the subject to a code element, which may be a parameter of the method, a
field of the class, or the class itself. If Jdoctor finds a matching expression for the
subject, it proceeds looking for a corresponding matching predicate retrieving the
code identifiers of all public methods and fields within the scope of the subject
as possible candidates.

JDoctor attempts to translate a predicate according to the most suitable strat-
egy in a cascade-like fashion. (i) It checks whether the predicate matches a set of
predefined translations (line , (ii) it looks for lexically similar matches (line
, (iii) it searches for matches according to semantic similarity (line .

Pattern Matching: Jdoctor uses pattern matching to map common phrases such
as “is positive”, “is negative”, and “is null” to the Java expression fragments
>0, <0, and ==null, respectively. Pattern matching can efficiently translate

common patterns but has of course limited applicability.

Lexical Matching: Jdoctor tries to match a subject or a predicate to the corre-
sponding code element looking at the lexical similarity between words in
Javadoc comments and words composing code identifiers. Jdoctor (i) to-
kenizes code candidates into separate terms according to camel-case con-
vention, (ii) computes the Levenshtein distance between each term and
each word in the subject/predicate, and (iii) selects the candidate with the
smallest Levenshtein distance, as long as it does not exceed a threshold
(with a very small default threshold (i.e. two) to avoid wrong matches
as much as possible). Jdoctor uses a lexical matching similar to the one
performed by Toradocu |Goffi et al. [2016].

28

4.1 Translating Pre, Post, Exception-Post Conditions

Algorithm 1 Comment Translation

1: /** Translate comment text into Java expressions. Given the English text and the list of

2:
3
4
5:
6
7
8
9

10:

11

12

propositions, the function matches each part. */
function TRANSLATE(set of propositions)

if return-comment then
IDENTIFY-GUARD-AND-PROPERTIES (set of propositions)
MATCH-PROPOSITION (proposition-in-guard)
MATCH-PROPOSITION (proposition-in-trueProperty)
MATCH-PROPOSITION (proposition-in-falseProperty)
else
for all proposition € text do
MATCH-PROPOSITION (proposition)

: /** Given a proposition (i.e. a pair of subject and predicate), find code elements to match
subject and predicate. */

: function MATCH-PROPOSITION (proposition)

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

subjCandidateList = GET-SUBJECT-CANDIDATES (subject)
matchedSubject = LEXICAL-MATCH (subject, subjCandidateList)
if no match for subject then

return
predCandsList = GET-PREDICATE-CANDIDATES (predicate)
matchedPredicate = PATTERN-MATCHING(predicate, predCandsList)
if no match for predicate then

matchedPredicate = LEXICAL-MATCH (predicate, predCandsList)

if no match for predicate then
matchedPredicate = SEMANTIC-MATCH (predicate, predCandsList)

Semantic Matching: The Jdoctor semantic matching approach compensates for

cases where nor pattern matchin,g nor syntactical matching can provide a
correct code translation. Syntactically different terms can have a close se-
mantics, as we saw in the example from JGraphT with method containsvertex
in the code and the concept “is not found in the graph” in the comment.
Jdoctor’s semantic metching exploits word embedding, which has been proved
to be a powerful approach to represent semantic word relations. It em-
beds words in a high-dimensional vector space such that distances between
words are closely related to the semantic similarities, regardless of the syn-
tactic differences. In particular, Jdoctor uses GloVe a two-layer neural
network model. GloVe is however not sufficient to handle the compari-
son among whole sentences. Hence, Jdoctor relies on the Word Mover’s
Distance (WMD) algorithm Kusner et al. [2015]]. Similarly to what Jdoc-

3

https://nlp.stanford.edu/projects/glove/

29 4.1 Translating Pre, Post, Exception-Post Conditions

tor does for lexical matching, it selects the candidate that has the closest
semantic distance up to a given threshold.

Despite offering different matching strategies, Jdoctor resorts only to lexical
similarity for subject matching. This approach forces Jdoctor to match subjects
to code elements with a very high precision (though it may miss some matches).
This conservative decision is vital for the performance of Jdoctor, since subject
matching gives the scope to later match the predicate. A wider—and possi-
bly wrong — scope would direct the search for predicate matching towards com-
pletely wrong paths. As we stressed since the introductory sections of the thesis,
having no oracle would be more desirable than having a wrong oracle.

Jdoctor translations are Java assertions. A single Java boolean conditions
is the translation for @param comments. A pair (expected exception type, Java
boolean condition), is the translation of @throws comments. Translations of @return
comments are not a single boolean Java condition; instead, a single translation
is composed of three Java boolean conditions corresponding to guard, true-, and
false-property.

4.1.5 JDoctor’s Generator

The last component is responsible for outputting the Java assertions in an ac-
tionable format. JDoctor exploits a JSON structure that can be be easily read by
external tools. In Listing|4.1|we see an excerpt of JSON output for method load
of class CacheLoader, from Google Guava.

Listing 4.1. JDoctor’s real example of JSON output

—_
o

1
2 ces
3 {
4 "signature": "load(java.lang.0Object key)",
5 "name": "load",
6 "containingClass": {
7 "qualifiedName": "com.google.common.cache.CachelLoader",
8 "name": "CachelLoader",
9 "isArray": false
},
11 "targetClass": "com.google.common.cache.CachelLoader",
12 "isVarArgs": false,
13 "returnType": {
14 "qualifiedName": "V",
15 "name": "V",
16 "isArray": false
17 }
18 "parameters": [
19 {

20 "type": {

30 4.1 Translating Pre, Post, Exception-Post Conditions
21 "qualifiedName": "java.lang.Object",
22 "name": "Object",
23 "isArray": false
24 Yo
25 "name": "key"
26 }
27 1,
28
29 "paramTags": [
30 {
31 "parameter": {
32 "type": {
33 "qualifiedName": "java.lang.Object",
34 "name": "Object",
35 "isArray": false
36 +
37 "name": "key"
38 Vo
39 "comment": "the non-null key whose value should be loaded",
40 "kind": "PARAM",
41
42 "condition": "args[O]!=null"
43 }
44 P
45 "returnTag": {
46 "comment": "the value associated with key; must not be null",
47 "kind": "RETURN",
48
49 "condition": "true ? (methodResultID==null)==false"
50 Io
51 "throwsTags": [
52 {
53 "exceptionType": {
54 "qualifiedName": "java.lang.Exception",
55 "name": "Exception",
56 "isArray": false
57 1
58 "codeTags": [1,
59 "comment": "if unable to load the result",
60 "kind": "THROWS",
61
62 "condition": ""
63 },
64 .
65 |

At line 28| we find @param tags, and at line [41we find the translation for the
condition about the only parameter of the method. Similarly, we find the trans-
lation for the @return tag at line There is no boolean assertion to translate
for the @throws tags, hence line|61| reports an empty condition.

31 4.1 Translating Pre, Post, Exception-Post Conditions

4.1.6 Experimental Evaluation of JDoctor

The evaluation of JDoctor is two-folds. We evaluate it in terms of its translation
accuracy, and the usefulness of its assertions in the context of testing.
The translation accuracy evaluation answers two research questions:

RQ1 What is the effectiveness (precision and recall) of Jdoctor in translating
Javadoc comments to procedure specifications?

RQ2 How does Jdoctor’s effectiveness compare with state-of-the-art approaches,
namely @tComment and Toradocu?

Table 4.1. Subject programs and ground-truth translations. Column “Doc’d Classes”
reports the total number of classes with documentation, out of which we selected “‘An-
alyzed Classes”. “Analyzed Methods” reports the methods with Javadoc tags that the
authors of this paper could express in executable form.

Classes Methods | Normal Excep.

Subjects Doc’d Analyzed Analyzed|Pre. Post. Postcond.
Commons Collections 4.1 196 20 179 146 26 166
Commons Math 3.6.1 519 52 198 57 23 198
GraphStream 1.3 67 7 14 3 8 1
Guava 19 116 19 66 30 12 48
JGraphT 0.9.2 47 10 23 0 6 28
Plume-lib 1.1 26 10 83 7 43 27
Total 971 118 563 [243 118 468

Precision measures correctness as the proportion of the output that is correct,
with respect to missing and wrong outputs. The output is correct (C) when Jdoc-
tor produces a specification that matches the expected specification. The output
is missing (M) when Jdoctor does not produce any specification. The output
is incorrect when Jdoctor either produces a spurious (S) specification when no
specification is expected, or a wrong (W) specification that does not match the
expected one. A partially correct translation is still considered wrong. For exam-
ple, if the comment is “ethrows Exception if x is negative or y is null”, then the
translation “x < 0” is deemed as wrong.

Precision is defined as the ratio between the number of correct outputs and
the total number of outputs:

|C|

precision = ———————
ICl+IS|+ W]

32 4.1 Translating Pre, Post, Exception-Post Conditions

Recall measures completeness as the proportion of desired outputs that the tool
produced, and it is defined as the ratio between the number of correct outputs
and the total number of desired outputs:

[
ICl+ W]+ M|

recall =

JDoctor’s accuracy is evaluated on the six well-maintained open-source Java
systems in table 4.1} Column “Doc’d Classes” reports the number of classes that
satisfy these conditions for each subject.

For each analyzed method in each selected class, we manually determined
its ground truth—the correct translation of Javadoc comments to executable
method specifications.

To answer RQ2, JDoctor’s performance is compared with the one of two sim-
ilar tools in the state of the art:

* @tComment Tan et al. [[2012] pattern-matches against predetermined tem-
plates for three different types of nullness specifications.

» Toradocu Goffi et al. [2016] generates exceptional postconditions from
@throws comments by means of a combination of NLP and string matching.

Table |4.2] reports the accuracy of @tComment, Toradocu, and Jdoctor on
the subject classes of table |4.1] Toradocu does not handle preconditions, and
neither Toradocu nor @tComment handle normal postconditions (values n.a. in
the table). The data in the table show that Jdoctor’s precision is comparable
with state-of-the-art approaches, and Jdoctor’s recall is substantially higher than
state-of-the-art approaches.

Finally, we evaluated the use of Jdoctor’s procedure specifications for im-
proving the generation of test cases. We do so by integrating the JSON output of
JDoctor into the popular test case generator Randoop Pacheco et al. [2007].

As other test case generation tools, Randoop first generates test cases and
then heuristically classify each one as:

1. failing (or error-revealing) test cases that reveal defects;

2. passing (or normal, or expected) test cases that can be used as regression
test cases;

3. illegal (or invalid) test cases that should not be executed; for example,
because they either violate some method preconditions or their oracles are
incorrect.

33 4.1 Translating Pre, Post, Exception-Post Conditions

Table 4.2. Accuracy (precision, recall, f-measure) of tools that translate English to
executable procedure specifications.

Normal Exceptional
Precond postcond postcond Overall
(eparam) (@return) (ethrows) (all Javadoc tags)

Prec Rec Prec Rec Prec Rec Prec Rec F

@tComment 0.97 0.63 n.a. 0.00 0.80 0.16 0.90 0.24 0.38
Toradocu n.a. 0.00 n.a. 0.00 0.61 0.39 0.610.23 0.33
Jdoctor 0.96 0.97 0.71 0.69 0.97 0.79 0.920.83 0.87

The test generation tool outputs both failing tests and passing test cases to
the user. The heuristics may misclassify test cases, leading to both false and
missed alarms. By accessing some (partial) specifications, TCGs can improve the
classification of generated test cases, thus detecting more errors and/or reducing
the human effort required to identify false alarms.

We investigate the usefulness of Jdoctor by addressing the following research
questions.

RQ3 Do Jdoctor specifications improve the quality of automatically generated
tests?

RQ4 Do Jdoctor specifications increase the number of bugs found by an auto-
mated test generator?

As explained, Jdoctor outputs a JSON file containing executable Java expres-
sions corresponding to each method preconditions, normal postconditions, and
exceptional postconditions. When a method lacks a Javadoc comment or its
Javadoc comment lacks a @param, @return, or @throws clause, the JSON file con-
tains no corresponding expression. We extended Randoop to take advantage of
this information during test generation.

Randoop can be thought of as a loop that iteratively creates test cases. Each
iteration randomly creates a candidate test by first choosing a method to test,
and then choosing arguments from a pool of previously-created objects. Ran-
doop executes the candidate test, and heuristically classifies the test as error-
revealing, expected behavior, or invalid based on its behavior. If the test be-
haves as expected, Randoop places its result in the pool, and continues with its

34 4.1 Translating Pre, Post, Exception-Post Conditions

loop. When a time limit has elapsed, Randoop outputs the error-revealing and
expected-behavior tests, in separate test suites.
We modified Randoop to create Randoop+Jdoctor as follows:

 After choosing the arguments but before creating or executing the candi-
date test, Randoop+Jdoctor reflectively executes the precondition expres-
sions. If any of them fails, then Randoop+Jdoctor discards the test, exactly
as if it had been classified as invalid. In this way, Randoop+Jdoctor avoids
the possibility of misclassifying it as an error-revealing or passing test.

* If the test completes successfully, Randoop classifies it as passing. Ran-
doop+Jdoctor reclassifies it as failing if a normal postcondition (a trans-
lated @return clause) does not hold. Randoop+Jdoctor handles conditional
postconditions, such as “@return true if this graph did not already contain
the specified edge”, because Jdoctor provides information about the con-
ditional.

* While executing the test, Randoop catches any thrown exceptions. If the
exception matches one in an exceptional postcondition (a translated @throws
clause), then Randoop+Jdoctor classifies the test as passing iff the @throws
condition holds. If the exception does not match, Randoop+Jdoctor falls
back to Randoop’s normal behavior of heuristically classifying the test.

Our experiments compare the original Randoop test generation tool with
Randoop+Jdoctor, which extends Randoop with Jdoctor-generated procedure
specifications.

We ran both Randoop and Randoop+Jdoctor on all the 6 programs of ta-
ble To answer RQ3, we measured when Randoop-+Jdoctor classified a can-
didate test differently than Randoop (giving to the two tools the same time limit
of 15 minutes). There are five possibilities:

Same Randoop and Randoop+Jdoctor classify the test in the same way, which

might be “failing”, “passing”, or “invalid”.

False alarm Randoop+Jdoctor classifies as passing a test that Randoop classifies
as failing. Randoop’s output requires manual investigation by the program-
mer, but Randoop+Jdoctor’s does not.

Missed alarm Randoop classifies the test as passing, but Randoop+Jdoctor clas-
sifies it as failing. Randoop misses a bug, but Randoop+Jdoctor reveals it
to the programmer.

35 4.1 Translating Pre, Post, Exception-Post Conditions

Table 4.3. How Jdoctor output (procedure specifications) improves Randoop’s test clas-
sification. Each cell is the count of candidate tests that were classified differently by
Randoop and Randoop-+Jdoctor, for one run of Randoop.

Subjects Same False alarm Missed alarm New test Invalid test
Collections 7527 0 0 2 0
Math 3893 0 0 1 0
Guava 10821 0 34 4 20
JGrapht 4843 0 0 0 0
Plume-lib 4253 0 48 0 0
Graphstream 12454 3 3 8 0
Total 43791 3 85 15 20

Invalid test Randoop classifies the test as passing, but Randoop+Jdoctor clas-
sifies it as invalid. Randoop’s output contains a meaningless test (e.g. be-
cause it violates the preconditions of a method) that may fail at any time
in the future, but Randoop+Jdoctor ’s does not.

New test Randoop+Jdoctor generates the test that Randoop does not generate,
since it classifies it as invalid, leading to better coverage and better regres-
sion testing.

A manual inspections of all the 3 False alarms and the 20 Invalid tests con-
firms the results. Invalid tests are newly classified as such thanks to Jdoctor
specifications on parameters (pre-conditions). For instance, method max() in
class com.google.common.primitives.Longs of Guava states that parameter ar-
ray is “a nonempty array of long values”. Thus any test passing an empty array
to max() was correctly classified as invalid since it violates the preconditions.

To answer RQ4, we manually inspected some of the 85 Missed alarms. Un-
fortunately, we could spot several incorrect results due to mis-translated com-
ments (precision is not 100% in table . An example is due to the comment
“@throws NullPointerException if the check fails and either @code errorMes-
sageTemplate or @code errorMessageArgs is null” which Jdoctor translated as
errorMessageTemplate = = null | | errorMessageArgs = = null, incorrectly miss-
ing the part on the failing check. This specification wrongly makes Randoop+
Jdoctor classify tests having any null value as failing if they do not throw a Null-
PointerException.

36

4.1 Translating Pre, Post, Exception-Post Conditions

Chapter 5

Deriving Test Oracles From
Unstructured Javadoc

In this section, we present two techniques and corresponding tools,
MeMo and CaMeMa, to derive metamorphic and temporal specifi-
cations from Javadoc summaries. We define the tools and present
the experimental results about the precision and recall of MeMo and
CaMeMa in translating text into test oracles. We discuss the integra-
tion of MeMo and CaMeMa within automatic testing, and present the
results of experiments involving automatic TCGs. The first part of
this chapter reflects the main content of a paper we published in the

Journal of Systems and Software (Blasi et al. [2021b]).

Artifact format Artifact scope
Unstructured: Method or class The whole documented method
summary or class

Moving from semi-structured specification to unstructured specification, we
lose the format advantages of the former. The direct bridge that exists, for ex-
ample, from a @param tag to its specific method parameter, is now unavailable.
Consider how a Javadoc summary at the method level may report any informa-
tion concerning the documented method: Again, we are not dealing with formal
specification, so there is no strict rule or scheme a developer should follow when
writing it. The information the summary reports could be relevant for testing
purposes or not, and, even when relevant, it may still not be directly translatable
into testing code (e.g., executable assertions).

37

38 5.1 Discovering And Translating Metamorphic Relations

Luckily, unstructured informal specification is not a completely unknown mat-
ter. Some researchers attempted to identify and classify the kind of informa-
tion we may find in unstructured summaries, both in methods (Monperrus et al.
[2012] and in classes (Rani et al. [[2021]]). Considering for example Monperrus
et al.[[[2012], we can easily see how State Directives, Alternative Directives and
even Synchronisation Directives can all be relevant to test the correct behavior of
a method. In this thesis, as per method summaries, we focused particularly on
discovering and translating metamorphic relations, which can be seen as Alterna-
tive Directives in Monperrus et al.’s taxonomy, and temporal constraints, a kind
of State Directives. We then reflected on the possibilities of class usages reported
in class summaries, one of the category identified by Rani et al.’s study.

5.1 Discovering And Translating Metamorphic Rela-
tions

As introduced in Chapter [2] metamorphic testing resorts to oracles to compare
the results of two actions that should be functionally equivalent. Domain experts
can identify and write metamorphic oracles for a known program, but the man-
ual task would be onerous. Hence, in recent years, techniques to automatically
identify metamorphic relations (MRs) emerged. Such techniques may focus on
specific domains, such as model transformations([Troya et al. [[2018]]), or work
under strict assumptions, such as dealing only with functions with numeric pa-
rameters(Zhang et al. [2019]). A few techniques automatically generate com-
posite metamorphic relations by combining simple manually-identified metamor-
phic relations(Xiang et al.|[[2019]; Liu et al. [[2012]]). Other techniques use either
code structure information to train machine learning classifiers(|[Kanewala and
Bieman| [2013]]; Kanewala [2014]) or dynamic analysis information(|Su et al.
[2015]; Goffi et al.|[[2014]) to identify metamorphic relations. In this PhD work,
we aim to automatically recognize and translate MRs expressed in natural lan-
guage inside informal documentation.

5.1.1 New Knowledge To Acquire

Unveiling the context in unstructured text Method summaries are completely
unstructured, meaning we lose the context information given previously by a
Javadoc block tag. We need techniques to recognize the context information
that interests us.

39 5.1 Discovering And Translating Metamorphic Relations

Comparing the effects of method calls To fairly compare the effects of the
method calls, we must be sure they operate on object instances in the same status.

5.1.2 Overview of MeMo

MeMo equivalence checks \
A

Method e
Summaries Java C‘;esseﬁs
Assertions
n SN—
MR Finder Translator
C E—
Javadoc Semantic Subject Aspects

[JAVA Extractor matcher Generator

n Phrases Expansion < ~
a

Augmented
Test Cases
S——

Figure 5.1. MeMo’s workflow

The MeMo Blasi et al. [2021a] approach operates on Javadoc method summaries.
A summary is typically composed of multiple sentences, differently from a block
tag which is often described by a single sentence. Each of the sentences in a
summary may express a property that can or cannot be relevant as test oracle.
For this reason, MeMo’s architecture augments JDoctor’s with a new component,
the Finder, that aims to find which sentences of a summary may be relevant as
test oracle. Since MeMo attempts to find and translate metamorphic relations
expressed in the text, MRs are the context we look for through the Finder.

In the real example of Listing|5.1|we see the full Javadoc summary of method
Iterables.cycle(T... elements) in Google Guava’s class Iterables. In the
third sentence, it states that this method call should have the same functional
behavior of Iterables.cycle(Lists.newArrayList(elements)).

Listing 5.1. Equivalence relation in Guava method summary

1| /** Returns an iterable whose iterators cycle indefinitely over the provided

2| * elements.

3 *

4| * After remove is invoked on a generated iterator , the removed element will no
5| * longer appear in either that iterator or any other iterator created from the

6| * same source iterable. That is, this method behaves exactly as

7| * lIterables .cycle(Lists .newArrayList(elements)).

8| * The iterator s hasNext method returns true until all of the original elements
9| * have been removed.

10| *

11| * Warning: Typical uses of the resulting iterator may produce an infinite loop.

40 5.1 Discovering And Translating Metamorphic Relations

12| * You should use an explicit break or be certain that you will
13| * eventually remove all the elements.

14| *

15| * To cycle over the elements n times,

16| * use the following: Iterables .concat(Collections.nCopies(n,
17| * Arrays. asList (elements)))

18] */

19| public static <T> lterable<T> cycle(T ... elements) { ...

*

In the above example, Google’s developers chose to express a MR through the
wording “this method behaves exactly as...”. Since summaries have a completely
free-text format, a MR may be expressed in many other different ways, with
sentences like “...this is equivalent to...” or “...it is identical to...”. Then, they
mix in code fragments. MeMo thus needs to first identify sentences that describe
equivalent behaviors, which may be embedded in large text blocks like the one
in Listing Secondly, it needs to recognize the code elements involved in
the metamorphic relation. While the latter is a challenge similar to one JDoctor
already deals with, here the scope widens. Sometimes, the equivalence is said to
hold between methods from different classes, or even different libraries.

To better illustrate these challenges, we can look into further real examples
of Javadoc summaries expressing MRs. This time, we report only the relevant
sentences and not the full summaries for simplicity.

1| /** Equivalent to newReentrantLock(lockName, false). */

3| public ReentrantLock newReentrantLock(String lockName) { ... }

methodResultID.equals (receiverObjectClone.newReentrantLock (args[0], false))

In this simple example, the comment is a single sentence that directly states
an equivalence property. MeMo must distinguish the English from the code snip-
pet, interpret the English, and recognize that the first argument in the documen-
tation refers to the method’s only parameter, while the second argument is a
Boolean literal.

In the next example from Guava’s Shorts class, we see a MR involving calls
from a different library, i.e., Oracle’s JDK.

1|/** Returns a fixed-size list backed by the specified array, similar to
2| Arrays# asList (Object[]). The list supports [...] */

4|public static List<Short> asList (short ... backingArray) { ... }

methodResultID.equals(java.util. Arrays.asList(args[0]))

41 5.1 Discovering And Translating Metamorphic Relations

MeMo recognizes that only the first sentence states an equivalence relation, that
Arrays comes from a different library (java.util), and that short... is con-
vertible to Object[].

Some methods do not return values that can be compared with == or equals ().
The following example from Guava class LongAdder shows how MeMo handles
methods with void return types.

1| /** Equivalent to add(—1). */
2| public void decrement() { ... }

receiverObjectID.add(-1);
receiverObjectClone.decrement();
assert(receiverObjectClone.equals(receiverObjectID));

JDoctor was not comparing the results of method calls, so using object clones is a
novelty. Through the receiverObjectClone, MeMo can compare the states after
two separate invocations of the methods involved in the metamorphic relation.

Of course, a metamorphic relation may involve multiple method calls nested
at different levels. Considering again the example in Listing[5.1}, this is the output
MeMo produces:

1|/** ... this method behaves exactly as

2| * [terables . cycle(Lists .newArraylist(elements)).
31 * ...

4| */

methodResultID.equals(Iterables.cycle(com.google.commond.collect.Lists.newArrayList (args[0])))

Code snippets in summaries may even include multiple statements:

1| /**

2| * For each occurrence of an element e in occurrencesToRemove,

3| * removes one occurrence of e in multisetToModify. [...] this operation is
4| * equivalent to, albeit

5| * sometimes more efficient than, the following: for (E e :

6| * occurrencesToRemove) { multisetToModify.remove(e); }

7| */

methodResultID==[for (Object e : args[1]) args[0]remove(e);]

The above translation is a compact representation of the assertions that MeMo
produces in this case. In a nutshell, MeMo declares a new method and includes
the code statements in squared parenthesis in its body, thus making the snippet
callable.

Finally, some summaries report conditional equivalence, such as the following
comment in the com.google.common.collect.Multisets class:

42 5.1 Discovering And Translating Metamorphic Relations

1| /**

2| * Removes a number of occurrences of the specified element from this
3| * multiset. [...] Note that if occurrences == 1, this is functionally
4| * equivalent to the call remove(element)

5| */

if (args[1]==1) assert(methodResultID==(receiverObjectClone.remove(args[0])));

We now proceed with the description of each MeMo component and how
they work together to identify and translate equivalence MRs into executable
specifications.

5.1.3 MeMo’s Extractor

The Extractor of MeMo differs from JDoctor’s mainly in extracting documenta-
tion summaries while ignoring subsequent tags. From a manual inspection of
various Java projects, we observe that sections beyond summaries in Javadoc
descriptions are much less likely to express metamorphic properties. This choice
also makes sense intuitively, since summaries are supposed to provide general
descriptions of the methods, including any interesting semantic property, while
the following sections are instead much more specific and narrower in the type
of information they conveyf'|

5.1.4 MeMo’s Finder

The Finder processes the comments as given by the Extractor, and works in two
phases. It first splits the comments into sentences as text separated by ordinary
punctuation (i.e., a period followed by spacing). A metamorphic relation is nor-
mally expressed within a single sentence, so we design the second and more
semantically rich phase of the Finder to operate on single sentences.

The Finder determines whether each sentence describes a metamorphic rela-
tion or not with a binary decision procedure that determines whether a sentence
is relevant for our purposes. To recognize the useful sentences, the Finder adopts
two strategies in cascade: equivalence phrase search, and, semantic expansion.

! https://www.oracle.com/technetwork/java/javase/documentation/index-137868.

html#tag

43 5.1 Discovering And Translating Metamorphic Relations

Equivalence phrase search

The equivalence phrase search uses a fixed set of ten equivalence phrases mined
from real-world Javadoc documentation. The original was a set of 4741 Javadoc
sentences randomly chosen from the documentation of seven widely used Java
projects: Apache Commons Collections, Apache Commons Math, Apache Hadoop,
Apache Lucene, Eclipse Vert.x, Google Guava, and GWT. By manually assessing
each sentence we isolated the expressions typically used to express equivalence
MRs. The resulting set of phrases is: equivalent, similar, analog, like, identical,
behaves as, equal to, same as, alternative, replacement for. If MeMo finds any of
this phrases followed by a method signature, it assumes a MR was found in the
summary. Otherwise, the Finder tests the second strategy.

Semantic expansion of MR equivalence phrases

While the predefined set of equivalence phrases was derived from a large cor-
pus and would already identify many MRs, restricting MeMo’s finding abilities
to this would hinder generalization. We must always assume developers’ jargon
in informal specification may vary across projects. As a real example, the set of
manually-mined equivalence phrases would not find the following MR in sum-
mary of method push from the Graphstream API:

Listing 5.2. Equivalence relation in Graphstream method summary

1|/** A synonym for add(Edge). */
2| void push(org.graphstream.graph.Edge edge) { ...

In this second strategy, the Finder returns true if a sentence in the summary
contains text that is semantically similar to one of our manually-mined equiva-
lence phrases. It does so by building a normalized version of the comment sen-
tence. This means adding an explicit subject when missing and substituting the
method signature it refers to with “that method”. For the example in Listing|5.2}
the Finder normalizes the code comment sentence “A synonym for add(Edge) ” to
“this method is a synonym for that method”. Second, MeMo builds a dummy
sentence for each equivalence phrase in the form of: “method (equivalence
phrase) that method”. Finally, the Finder compares the normalized summary
sentence to each dummy sentence built via equivalent phrases: “this method is
equivalent to that method” ...“this method is same as that method”.

The comparison quantifies the semantic similarity between the sentences as
WMD (Word Mover’s Distance [Kusner et al. [2015]]). JDoctor uses WMD to
match natural language actions to code names, while MeMo uses WMD to an-

44 5.1 Discovering And Translating Metamorphic Relations

swer the question: “is the given sentence in the comment also expressing an
equivalence?”.

The Finder returns true if any of the computed WMDs is below 20%, which
means a similarity of at least 80%, and passes the sentence to the Translator. We
set the threshold experimentally.

5.1.5 MeMo’s Translator

Similarly to JDoctor’s, MeMo’s Translator processes sentences to derive Java as-
sertions that both refer to the correct code components and compile correctly
in the applicable context of each assertion. However, MeMo does not normally
need to identify and match propositions (i.e., identify and match subject and
predicate) as JDoctor. MeMo adopts such a strategy only to translate the condi-
tion in the case of conditional equivalence, as the one in the example of Listing
b.1.2

MeMo’s Translator first identifies and resolves the fully qualified names of
all the method signatures found in the sentence (contained in whatever code
fragment, including whole code snippets). Consider the following real example:

1‘ ...equivalent to ByteBuffer. allocate (8). putLong(value). array ().

There is no direct link to any ByteBuffer class in the comment itself nor
in the source code. The class this comment belongs to does not use the library,
which is mentioned in the comment only to highlight a MR. MeMo thus needs to
explore the other project packages and external dependencies to find the right
match for the translation

Then, differently from JDoctor, MeMo’s Translator already knows at this point
that the predicate expresses an equivalence (which would be translated either
with the == operator or a call to the equals() method). It can thus directly attempt
the correct translation for the code elements that occur in the relation, and it
does so via syntax matching (a translation strategy already saw, for example, in
JDoctor’s subject matching). The Translator then ensures that the results of the
documented method and the method (or code) which is said to be equivalent
can indeed be compared. For example, assessing whether the primitive return
types are of the same type. If they are, and the final assertion compiles, then it
is given in output.

45 5.1 Discovering And Translating Metamorphic Relations

5.1.6 MeMo’s Generator

The translator output maps a single method to code fragments (simple method
call, chain of calls, or code snippet) for which the metamorphic relation is sup-
posed to hold.

MeMo uses aspect-oriented programming for this task. Specifically, MeMo
uses an aspect template with a join point around the method call for which we
have a translation. When a test suite — whether manually or automatically gen-
erated — contains a method call for which MeMo is aware of a translation, the
executor triggers the aspect and compares the execution of the original and sup-
posedly equivalent code fragment declared in the documentation.

Algorithm 2 Executor

1: /** Given the code translation of a metamorphic relation, embeds it within the Aspect tem-
plate to obtain an executable assertion.*/

2: function POPULATE-ASPECT-TEMPLATE(translation, receiverObjectID)

3 if translation contains receiverObjectClone then

4 CLONE = GENERATE RECEIVER OBJECT CLONE (receiverObjectID)

5 if translation contains code fragment then

6: EMBED CODE FRAGMENT IN DUMMY METHOD (code fragment)

7 CLONE.DUMMY-METHOD()

8 /** Call to the documented method already existing in the test suite.*/

9 METHODRESULTID = RECEIVEROBJECTID.DOCUMENTEDMETHODCALL()

10: if translation contains receiverObjectClone then

11: ASSERT(RECEIVEROBJECTCLONE.EQUALS (receiverObjectID))
12: else if translation contains methodResultID then

13: ASSERT (translation)

The executor in MeMo fulfills this task by populating the Aspect template
as shown in algorithm [2. Since MeMo uses an around pointcut, it can perform
some operations both before the method invocation mentioned in the translation
(before line [8) and after (from line[9).

If a translation contains object cloning, the clone must reflect the state of the
receiver object before the test invokes the documented method. On said clone,
the code fragment can be then executed.

After the test suite invokes the documented method, the results of the execu-
tions involved in the translation of the metamorphic relation can be compared.
Since the comparison is expressed as an assertion (lines [13), the test case
will pass if the metamorphic relation does hold as documented, and will fail oth-
erwise.

In Listing[5.3|we see an Aspect generated for class Vector1D of Apache Com-
mons Math. The aspect surrounds the invocation of the following documented

46 5.1 Discovering And Translating Metamorphic Relations

method:
1|/** Calling this method is equivalent to calling: p1.subtract(p2).getNorm() */

3| public double

4| org.apache.commons.math3.geometry.euclidean.oned.Vector1D.distance(
5| org.apache.commons.math3.geometry.euclidean.oned.Vector1D p1,

6| org.apache.commons.math3.geometry.euclidean.oned.Vector1D p2)) {
7
8

methodResultID == args[0].subtract(args[1]).getNorm()

The equivalence expressed in the comment can be easily verified with a direct
comparison (line of method equivalenceHolds). If the comment were to
report a complex snippet (e.g., code involving loops), the corresponding code
would be wrapped inside method snippetWrapper (line[32)), empty in this case.

Listing 5.3. Real MeMo-generated aspect

1| @Aspect

2| public class Aspect_1 {

3| @Around("(call(double

4| org.apache.commons.math3.geometry.euclidean.oned.Vector1D.distance(
5 org.apache.commons.math3.geometry.euclidean.oned.Vector1D,

6 org.apache.commons.math3.geometry.euclidean.oned.Vector1D))")

7| public Object advice(ProceedingJoinPoint jp) throws Throwable {

8 String output = "Triggered aspect: " + this. getClass (). getName() + " (" +
9 jp.getSourcelocation() + ")";

10 Object target = jp.getTarget ();

11 Object[] args = jp.getArgs ();

12 Object clonedTarget = new Cloner().deepClone(target);

13 Object result = jp.proceed(args);

14 if (equivalenceHolds(result, target,

15 clonedTarget, args)) {

16 System.err. println (output + " —> Success: Expected equivalence

17 holds");

18 } else {

19 fail (output + " —> Failure: Expected equivalence DOES NOT hold");
20}

21 return result;

22| }

24| private boolean equivalenceHolds(Object methodResultID, Object

25| receiverObjectlD, Object receiverObjectClone, Object[] args) {

26 /I Calling this method is equivalent to calling: p1.subtract(p2).getNorm()
27 return ((((Double) methodResultlD) = =

28 (((org.apache.commons.math3.geometry.euclidean.oned.Vector1D)

47 5.1 Discovering And Translating Metamorphic Relations

29 args [0]). subtract (((org.apache.commons.math3.geometry.euclidean.oned.Vector1D)
30 args [1])). getNorm ())));
31 }

32| private void snippetWrapper(Object
33| receiverObjectClone, Object[] args) {
34|)

35|}

5.1.7 Experimental Evaluation Of MeMo

Similarly to Jdoctor’s, MeMo’s evaluation aims to assess both its translation accu-
racy on MRs, and the usefulness of the generated oracles when applied to testing.
Our experimental evaluation aims to answer the following research questions:

* RQ1: Can MeMo identify natural language sentences that express meta-
morphic properties and translate them into executable assertions?

* RQ2: How does MeMo compare with state-of-the-art technique SBES in
terms of identified equivalence relations?

* RQ3: Do MeMo assertions improve testing when used as oracles?

We evaluated MeMo on a benchmark of 113 classes randomly selected from
nine popular Java systems.

As we did for JDoctor’s ground truth, we inspected all 7189 Javadoc sentences
and manually translated all those that express a metamorphic relation into a code
assertion. Table [5.1|reports statistics.

48 5.1 Discovering And Translating Metamorphic Relations

Table 5.1. Ground truth: manually-identified metamorphic relations (MR)

Project Randomly Selected Classes Sentences MRs
Colt 9 477 19
ElasticSearch 10 228 14
GWT 17 448 44
GraphStream 3 126 11
Guava 33 1558 80
Hibernate 5 126 5
JDK 23 3381 72
Math 9 653 30
Weka 4 192 6
TOTAL 113 7189 281

Precision and recall are computed according to the same formulas shown in
Section

We addressed RQ1 by experimenting with all sentences in the benchmark.
We addressed RQ2 by experimenting with the subset of sentences that are used
in the SBES paper Mattavelli et al. [[2015], that is, 792 sentences belonging to
220 methods of 16 classes of the collect package of the Google Guava library.
We addressed RQ3 by experimenting with the 1274 sentences of the 27 Guava
classes, to mitigate the effort required to manually exclude false positives from
the mutation analysis, as we further discuss in RQ3.

Table 5.2| reports the effectiveness of MeMo in translating Javadoc comments
to executable metamorphic relations. MeMo translates JavaDoc sentences into
executable assertions with a precision of 91% and a recall of 69%.

We can see how MeMo is highly precise, albeit achieving a lower recall than
JDoctor. Most missing translations of MeMo depend on comments that describe
parameter values with complex natural language expressions and with little or
no code. In Table we see how GWT is the project on which MeMo achieves
the poorest recall. A representative example of the reason why is the follow-
ing comment from method endsWithRt1 of the com.google.gwt.i18n.shared-
.BidiUtils class.

1|/** Like #endsWithltr(String, boolean), but assumes str is not HTML /
2| HTML—escaped. */

that can be translated to the assertion

49 5.1 Discovering And Translating Metamorphic Relations

Table 5.2. Effectiveness of MeMo on 7189 sentences from 113 classes

Project Correct Missing Wrong Spurious Precision Recall
Colt 11 8 0 0 1.00 0.58
ElasticSearch 8 6 0 0 1.00 0.57
GWT 12 31 1 1 0.86 0.27
GraphStream 9 2 0 0 1.00 0.82
Guava 62 16 2 2 094 0.78
Hibernate 3 2 0 0 1.00 0.60
JDK 59 11 2 6 0.88 0.82
Math 26 0 2 0.93 0.87
Weka 3 1 2 0 0.60 0.50
TOTAL 193 81 7 11 091 0.69

1‘ methodResultID.equals(endsWithLtr(args[0], false))

where the false value for the second argument comes from the intuition that
“str is not HTML / HTML-escaped” refers to the second parameter of method
endsWithLtr, which is the boolean variable isHtml. MeMo’s NLP techniques do
not infer the information required to translate this sentence, and GWT has many
comments similar to this one.

To identify a metamorphic relation within a comment, simple syntactic match-
ing against the hard-coded set of equivalence phrases achieves a recall of 65%
on our dataset. WMD provides a boost of 4% in recall by retrieving further
matches (without losing precision). WMD can detect variations of the equiva-
lence phrases, e.g., going from behaves as to “..behaves exactly as...", or from
same as to “..has the same behavior...” and to “..has the same effect as...”, so
that not every variation needs to be hard-coded. WMD can also detect subtle
similarities, like the one shown in Listing[5.2] (i.e., “A synonym for...”).

To answer RQ2, we compared MeMo with Search-Based Equivalent Synthesis
(SBES) Goffi et al. [2014]; Mattavelli et al. [2015], a dynamic analysis tech-
nique that finds sequences of equivalent method calls through a search-based
algorithm. MeMo deduces metamorphic relations from code documentation,
meaning that, when correct, its output is as deterministic and sound as the orig-
inal specification. SBES infers likely relations from executing the code, and its
output depends on the initial test suite used in the search-based algorithm, and
must be manually confirmed by the user.

50 5.1 Discovering And Translating Metamorphic Relations

MeMo runs much faster than SBES. For example, SBES takes 5 hours to ana-
lyze the class java.util.Stack. MeMo takes a few seconds.

We compared MeMo and SBES15 Mattavelli et al. [2015]] by executing the
corresponding tools on the SBES15 dataset, and by manually intersecting the
set of relations produced with the two tools. MeMo inferred six metamorphic
relations from the SBES15 dataset.

MR 1 corresponds to the comment
1|/** ... This method is equivalent to tailMultiset (lowerBound,
2| lowerBoundType).headMultiset(upperBound, upperBoundType). */
in method TreeMultiset.subMultiset (). MeMo translates it to
1‘ methodResultID.equals(receiverObjectID. tailMultiset (args [0], args [1]). headMultiset(args [2], args [3]))

which states that the result of method subMultiset is the same as calling method
tailMultiset with the first two arguments of subMultiset, followed by method
headMultiset with the last two arguments.

MR 2 corresponds to comment:

1‘ /** Equivalent to size () == 0, but can in some cases be more efficient. */

in ArrayListMultimap and 5 more classes regarding method isEmpty() that
MeMo translates as:

1‘ methodResultlD = = (receiverObjectlD.size() = = 0)
which means that the result of the documented method isEmpty should be the
same of comparing the result of method size on the receiver object to the value
0.

MR 3 corresponds to comment:

1
2

/** ... Equivalent to (but expected to be more efficient than): for (V
value : values) { put(key, value); } */

in ArrayListMultimap and 5 more classes on method putAll() that MeMo
translates as:

1
2

methodResultlD = =[for (V value : args[1]) { receiverObjectID.put(args [0],
value); } 1

which means that the effect of invoking the documented method putAll should
be the same obtained by the code snippet in squared parenthesis.

MR 4 corresponds to comment:
1‘ [** .. If values is empty, this is equivalent to removeAll(key). */
in class ArrayListMultimap and 5 more on method replaceValues () that MeMo
translates as:
1‘ if (1 args [1]. iterator (). hasNext())

51 5.1 Discovering And Translating Metamorphic Relations

2‘ {methodResultID.equals(receiverObjectID.removeAll(args[0]))}

MeMo understands that there is a condition that must hold for the documented
method replaceValues to be comparable to calling method removeAll with the
first argument. Notice that the second argument, values, is an iterator, thus the
emptiness condition is verified via !values.iterator().hasNext().

MR 5 corresponds to comment:

1|/** ... Note that if occurrences == 1, this method has the identical effect

2| to #add(Object). This method is functionally equivalent (except in the case of
3|overflow) to the call addAll(Collections.nCopies(element, occurrences)), which
4| would presumably perform much more poorly. */

on ConcurrentHashMultiset and 4 more classes regarding method add() that
MeMo translates as:

11if (args[1] == 1){

2| receiverObjectlD.add(args [0]);

3| receiverObjectClone.add(args [0], args [1]);

4| assert (receiverObjectClone.equals(receiverObjectlD));

5

6

7

}
&&

methodResultID = = (receiverObjectlD.addAll(java.util.Collections.nCopies(args [1], args [0])))

This is the most complicated MR for MeMo. MeMo uses && to combine two meta-
morphic properties expressed in two different sentences. The first property is
conditional, similarly to relation 4. The second property presents nested calls,
with the innermost being in a different system (Java standard library).

MR 6 corresponds to comment:

1|/** ... Note that if occurrences == 1, this is functionally equivalent to the
2| call remove(element). */

on ConcurrentHashMultiset and 4 more classes on method remove (), and MeMo
translates it as follows:

1]if (args[1] == 1){

2| receiverObjectlD.remove(args[0]);

3| receiverObjectClone.remove(args[0],args [1]);

4| assert (receiverObjectClone.equals(receiverObjectlD));

5}

This case is similar to relation 4. The first difference is that the condition is
expressed as code inside the comment, rather than in natural language. The
second difference is that the result of the documented method and the equivalent
one are not directly comparable, since one returns int and the other boolean.
Thus, the invocations must be done on two separate, cloned instances of the
same receiver object to later compare their statuses.

52 5.1 Discovering And Translating Metamorphic Relations

Table 5.3. MeMo’s performance on SBES15 dataset considering documented MR: Both
means that such MRs are found by both MeMo and SBES15. SBES15-only means such
MRs are found by SBES15 but missed by MeMo. MeMo-only are the MRs found by MeMo
and missed by SBES15

Discovered documented MRs
Both SBES15-only MeMo-only TOTAL

8 5 20 33

In comparing MeMo with SBES15, we take into account that MeMo can only
infer metamorphic relations that are documented. On the other hand, SBES may
infer properties that are not documented, while missing those that are. Table
summarizes the results for the documented relations.

As for Documented properties, that is, properties which MeMo can actually
identify and translate, we have:

Both : of the reported 8 equivalences found both by MeMo and SBES15, five
are instances of MR 4. SBES15, however, missed the same property on
one class (ImmutableListMultiMap). Two other sequences are instances of
MR 6, which, again, actually exists on multiple classes. By relying on the
static information of the Javadoc documentation, MeMo, can synthesize the
property correctly for all the classes involved. The last sequence, instead,
corresponds to the first part of the composed MR 5. As in the case before,
SBES15 missed some classes for the first past, detecting it only on one class.
The second part of MR 5 was never found by SBES15.

SBES-only : the reported 5 sequences refer to the same comment: ...so, val-
ues().size() == size().

Differently from the heuristics MeMo uses, this comment directly reports
some code without preceding it with any keyword that could suggest the
presence of an equivalence.

MeMo-only : MeMo found 20 relations missed by SBES15. MR 1 (one instance),
MR 3 (six instances), and MR 2 (six instances) were never found by SBES15.
The others (MR 4, MR 5, and MR 6) were found only partially by SBES15.

Clearly, not all the MR of the SBES15 dataset are documented. In total,
SBES15 finds 188 true positive equivalent sequences. Of these, as per Table|5.3]

53 5.1 Discovering And Translating Metamorphic Relations

33 are documented: SBES15 found 40% of them, while MeMo 85%. This con-
firms our hypothesis that the two techniques complement each other, and the
amount of true positives increases when they are used in combination.

Finally, to answer RQ3 we measure the amount of mutants (artificial bugs)
detected by test cases augmented with MeMo assertions. This is a proxy measure
of the quality of the oracles (strength of the assertions).

We use test suites automatically generated with both EvoSuite Fraser and
Arcuri| [2013] and Randoop [Pacheco et al. [[2007], and the original developers’
test suite.

To mitigate the effort required to manually exclude false positives from the
mutation analysis, our experiment uses only Guava as the program under test.
Guava represents 1/3 of MeMo’s correct translations, with few spurious results
(Table . Guava comes with a solid manually-written test suite of 5681 test
cases, a challenging competitor for MeMo’s assertions.

The experiment proceeded in three phases:

Phase 1: Generating test suites. We retrieved the developers’ test suite from
GitHub and Mavenf]

repositories, and automatically generated test suites with EvoSuite and Ran-
doop. We use the respective default timeout, that is, 60 seconds for EvoSuite and
100 seconds for Randoop. Randoop and EvoSuite generate different test suites
depending on the initial seed. This paper reports the mean of the results of three
generations with different seeds.

Our goal is to compare the original Randoop and EvoSuite test suites with the
test suites augmented with MeMo oracles. We compare two different variants of
each original test suite: test suites with only implicit oracles, and test suites with
both implicit and regression oracles.

We discard classes for which the generator either cannot produce a test suite
or does not contain contain method calls to which MeMo can attach assertions via
Aspects. For example, for class com.google.common.collect.ArrayListMultimap
EvoSuite only outputs 5 test cases, none of which covering methods for which
MeMo as assertions. For this evaluation. This leaves ten classes for EvoSuite and
ten for Randoop. The two sets of classes are not the same. Only Randoop gener-
ates tests for com.google.collect.Multiset and com.google.collect.Multimap,
and only EvoSuite generates tests for com.google.concurrent.RateLimiter
and com.google.base.CharMatcher.

Phase 2: Enhancing test suites with MeMo assertions. We invoked MeMo on
the subject classes to infer the metamorphic relations and insert assertions within

2 https://mvnrepository.com/artifact/com.google.guava/guava-tests/19.0

54 5.1 Discovering And Translating Metamorphic Relations

all test cases as additional test oracles.

We executed the augmented test suites, and manually inspected each failing
test case to discard any Aspect that raises a failure, to avoid biases in mutation
analysis (the next phase). To be clear, no test gets eliminated: We only prevent
the attachment of faulty Aspects to them. In this way, we eliminate assertions
leading to failures from the analysis, and we assure that subsequent failures are
due to assertions that kill mutants.

A few failures are due to equality checks being too strict, for instance, classes
that do not override the default Java equality implemented by Object.equals().
These are false positives for MeMo oracles.

Phase 3: Mutation analysis. We generated mutants for the classes under test
with Major Just et al. [2011]. We executed all Randoop and EvoSuite test cases
on the mutants with different oracles: implicit oracles only, regression oracles,
and both implicit and regression oracles augmented with MeMo oracles. We per-
formed analogous steps with the developers’ test suite: we first ran the test suite
as-is (i.e., with developers’ manually written assertions), and then augmented
with MeMo assertions.

Our analysis considers only mutants relevant for the studied assertions: That
is, mutations of methods executed by at least one test case that contains a MeMo
assertion.

Figure presents the results of our experiments.

MeMo’s automatically generated assertions complement both automatically
generated test suites and developers’ test suites.

Improvement over implicit oracles MeMo’s automatically generated assertions
are much more effective than implicit oracles: automatically generated test suites
reveal many more mutants when augmented with MeMo assertions.

Improvement over developers’ oracles Developers’ assertions alone kill 269
mutants. MeMo Kkills 40 of these mutants. Most importantly, 34 times MeMo
assertions kill more mutants than developers’ assertions. A total of 81 mutants
survive both developers’ and MeMo assertions: Some may be equivalent mutants,
some others may be mutants that are not exercised by the test suite, a few others
may be defective mutants that do not compile.

Improvement over regression oracles EvoSuite and Randoop kill 233 and 230
mutants, respectively, when executed with regression assertions. 67 and 69 of

55 5.1 Discovering And Translating Metamorphic Relations

100

80 4 77% 78%

o5 69% 68% 0%
0
60 - >8%
51%
40
20
6%
3%
0

EI El+M ER ER+M RI RI+M RRRR+M DADA+M
Increments in killed mutants

Figure 5.2. Improvement in mutants killed with MeMo oracles. Each pair of bars com-
pares a test suite without MeMo oracles to one with MeMo oracles. EI stands for EvoSuite
Implicit oracles, ER for EvoSuite Regression oracles, RI for Randoop Implicit oracles and
RR for Randoop Regression oracles. DA means developers’ assertions, referring to the
developers’ test suite. +M indicates augmented test suites with MeMo oracles.

those mutants are killed equally well by MeMo oracles, meaning that MeMo as-
sertions are as effective as EvoSuite and Randoop regression assertions in 29%
and 30% of the cases, respectively. Adding MeMo assertions to regression test
suites brings 25 additional kills to EvoSuite and 35 to Randoop. Some mutants
are not killed by either regression or MeMo oracles (76 for EvoSuite and 112 for
Randoop, on average).

Analysis of MeMo’s kills MeMo’s assertions kill not only mutants that affect
the interface level, as may be expected, but also deeper methods under test, as
illustrated by the following two examples.

The first example comes from method com.google.common.primitives-
.Longs. fromByteArray:

56 5.1 Discovering And Translating Metamorphic Relations

Listing 5.4. Equivalence relation in com.google.common.primitives.Longs method sum-

mary
1| /** Returns the long value whose byte representation is the given 8 bytes, in

2| big—endian order; equivalent to Longs.fromByteArray(new byte[] {b1, b2, b3,

3| b4,

4| b5, b6, b7, b8}). */

5| static long fromBytes(byte b1, byte b2, byte b3, byte b4, byte b5, byte b6, byte
6|/b7, byte b8) { \Idots

Method fromByteArray calls method fromBytes after spitting the array into
single bytes. Major mutates fromByteArray with the following mutant:

1| 166:LVR:0:POS:com.google.common.primitives.Longs@fromByteArray(byte[]):295:0
2| ==>1

This mutant is killed by a developer test case augmented with the assertion
that MeMo automatically generates from the MR informally described in List-
ing [5.4} Returns the long value whose byte representation is the given 8 bytes, in
big-endian order; equivalent to Longs.fromByteArray. The same test case does not,
however, kill the mutant without MeMo’s oracles. We observe that the bug is not a
simple intra-method issue, but involves the invocation of two methods. The sec-
ond example comes from com.google.common.math.DoubleMath, a class with
many dependencies. Major mutates both the class itself and its dependencies.
In particular, Major seeds several bugs into class com.google.common.math-
.DoubleUtils.

MeMo correctly identifies the MR informally described in the comment of
method DoubleMath:

1|/** ... This is equivalent to, but not necessarily implemented as, the
2| expression !Double.isNaN(x) && !Double. isInfinite (x) && x = = Math.rint(x). */
3| public static boolean isMathematicallnteger(double x) { ...

and produces an executable assertion. Method isMathematicalInteger invokes
some methods of class DoubleUtils, such as isFinite(double). Major seeds
bugs in the body of the methods invoked in isMathematicalInteger leading to
several mutants like:
1| 187:ROR:< =(int,int): = =(int,int) : com.google.common.math.DoubleUtils@isFinite(double)
:75:getExponent(d)
2| <= MAX_EXPONENT | = => getExponent(d) = = MAX_EXPONENT
that successfully get killed by MeMo’s assertion derived from Listing
These two examples illustrate how MeMo’s assertions can kill mutants that
alter both the interfaces and the intra-methods calls, even ones that may survive
developers’ oracles.
We conclude our analysis of MeMo’s kills, with some data about the effective-

57 5.2 Discovering And Translating Temporal Constraints

ness of MeMo’s oracles for different kinds of mutations. We inspected the mutants
that tests do not kill with either regression or developers’ oracles alone, but kill
with MeMo’s assertions, and classified them according to the mutation operators.
We observe that MeMo is particularly effective in killing mutants generated with
LVR (Literal Value Replacement) and OR (Operator replacement) mutation oper-
ator which constitute 80% of MeMo’s mutants killing. The remaining 20% are
mutants generated with EVR (Expression Value Replacement) and STD (Statement
deletion) mutation operators.

5.2 Discovering And Translating Temporal Constraints

Temporal constraints, also referred to as call protocols Ramanathan et al. [[2007],
specify the correct sequence of method invocations for a proper use of an API.
Call protocols are often inferred dynamically, and formalized as finite state ma-
chines Ammons et al. [[2002]; Pradel et al. [[2010] that can be used to support
testing activities, as for example by comparing the execution of generated tests
against the inferred API protocols Thummalapenta et al.| [[2009]]; Pradel and
Gross [2012]. In this thesis, we observe that free-text Javadoc summaries of
either methods or classes often document temporal constraints. Thus we can
support testing by formalizing the documented behavior of a program as speci-
fied by API developers. Doc2Spec was the first approach Zhong et al. [2009] to
infer temporal constraints on resources following a similar intuition. Doc2Spec
infers temporal constraints formalized as FSMs by exploiting a template: “re-
source creation methods, followed by resource manipulation methods, followed
by resource release methods”. The more recent ICON approach Pandita et al.
[2016] offers a more general technique to recognize temporal constraints based
on ML features, by observing that temporal constraints are not necessarily re-
stricted to the Doc2Spec template. ICON was not applied to any testing or soft-
ware engineering task. In this thesis, we propose a new approach that improves
and complements all the above approaches.

To the best of our knowledge, there is no in-depth study on the way informal
specifications either express temporal constraints or differentiate among differ-
ent kinds of temporal constraints. In this section, we discuss prescriptive and de-
scriptive constraints, overview the challenges in identifying temporal constraints
in informal specification, and propose an approach to recognize temporal con-
straints expressed in informal specification and translate them into automatically
exploitable test oracles.

3 http://mutation-testing.org/doc/major.pdf

58 5.2 Discovering And Translating Temporal Constraints

A temporal constraint is descriptive if it describes the effects of an execution
in terms of sequence of events. These constraints describe properties similar to
the properties that JDoctor recognizes in @return and @throws block tags. A
temporal constraint is prescriptive if it describes the proper usage of a class, to
prevent undesired consequences during the program execution.

Listings [5.5/ and [5.6| show examples of a descriptive constraint from Cern’s
Colt library and a prescriptive constraint from Apache Commons Collections, re-
spectively. Listing describes the effects of calling method clear() on an
instance of AbstractCollection, and it is thus a prescriptive constraint.

Listing 5.5. Descriptive constraint from class AbstractCollection of the Colt library

1|/** The receiver will be empty after this call returns. */
2| public void clear () { ...

Listing|[5.6|enforces an order of method calls that must be respected to avoid
undesirable behaviors, and is thus prescriptive. We cannot properly use an in-
stance of IteratorEnumeration without invoking setIterator first.

Listing 5.6. Prescriptive constraint from class IteratorEnumeration of Apache Commons
Collections
1|/** Constructs a new lteratorEnumeration that will not function until

2| setlterator (Iterator) is invoked.*/
3| public IteratorEnumeration () { ...

We observe that developers often document temporal constraints both in
method and class summaries, by referring either explicitly to the concept of op-
eration or implicitly to a method name. For example, developers may document
a constraint on a Thread class that prescribes that a daemon should be set before
the thread is started either explicitly or implicitly:

Explicitly referring to the concept of operation EXAMPLE: “method setDaemon
should be called before method start”. In this example, the term call refers
to a general operation that can be performed in a program, similarly to
invocation, instantiation, etc. The constraint is thus expressed by using an
execution-related action, and, by explicitly mentioning the signature of the
involved methods.

Implicitly referring to a method name EXAMPLE: “the thread should be started
after setting the daemon”. In this example, the term started implicitly refers
to an invocation of method start, and the phrase setting the daemon to
method setDaemon. The constraint is thus expressed by using actions im-
plicitly encoding actual code identifiers.

59 5.2 Discovering And Translating Temporal Constraints

This example is similar to the real one in Listing[5.7] The JDK Javadoc spec-
ification implicitly refers to the action of invoking method start() on a thread
instance by using the proposition (thread, is started).

Listing 5.7. Constraint that implicitly refers to method, from class Thread of the JDK

1|/** This method must be invoked before the thread is started . */
2|public final void setDaemon(boolean on) ...

Listing from Apache Commons Collections, instead, refers explicitly to
method calls, thus falling back to the concept of “operation”.

Listing 5.8. Constraint that explicitly refers to the concept of operation (call), from class
LoopingListlterator of Commons Collections
1|/** This method can only be called after at least one {@link #next} or

2| {@link #previous} method call */
3| public void remove() ...

Listing [5.9| from the Graphstream library is an example of a description in a
class summary that both implicitly refers to the action of invoking methods and
explicitly refers to method signatures:

Listing 5.9. Constraint from Graphstream class summary
[**
* Allows to run a layout in a distinct thread.
*
* DY

*

* link with the event source and stop the thread. The runner cannot be used
* after .

*/

public class LayoutRunner extends java.lang.Thread

1
2
3
4
5
6| * Once you finished using the runner, you must call release () to break the
7
8
9
0

Class summaries may also specify desirable (good) and undesirable (bad) class
usages via code snippets. Listing[5.10 shows a Google Guava summary that indi-
cates a bad usage through a snippet and discouraging statements. The text terms
highlighted in red indicate the bad usage and occur both before and inside the
snippet as code comments:

Listing 5.10. Summary that describes a ‘bad constraint’ from Google Guava

1| /**
2| * Overrides the {@link ImmutableMultiset} static methods that lack {@link
3| * ImmutableSortedMultiset} equivalents with deprecated, exception—throwing

60 5.2 Discovering And Translating Temporal Constraints

O 0 NN O U1 b

10
11
12
13
14
15
16
17

* versions. This prevents accidents like the following:

*

* {@code

* List <Object> objects = ...;

* /I Sort them:

* Set<Object> sorted = ImmutableSortedMultiset.copyOf(objects);
* // BAD CODE! The returned multiset is actually anunsorted ImmutableMultiset!
*J}

*

*

*

*/

abstract class ImmutableSortedMultisetFauxverideShim<E> extends

ImmutableMultiset<E>

Listing [5.11 shows an Apache Commons Collections summary that indicates

a good usage:

Listing 5.11. Summary that describes a ‘good constraint’ from Apache Commons Collec-

tions

1] /%%

2| * Defines an iterator that operates over a {@code Map)}.

3 *

4| * ...

5 *

6| * In use, this iterator iterates through the keys in the map. After each call
7| * to {@code next()}, the {@code getValue()} method provides direct
8| * access to the value. The value can also be set using {@code setValue()}.
9 *
10| * {@code
11| * Maplterator<String, Integer> it = map.maplterator();
12| * while (it.hasNext()) {
13| * String key = it.next ();
14| * Integer value = it.getValue ();
15| * it . setValue (value + 1);
16| * }
17| * }

18] *

19| */
20| public interface Maplterator<K, V> extends Iterator <K>

Descriptive temporal constraints indicate useful assertions. However, often-

times the temporal constraints described in Javadoc summaries are a repetition
of constraints described in block tags, as we can infer from the Pandita et al.
[2016]'s dataset. Since JDoctor already deals fairly well with block tags, de-
scriptive constraints that we can find in summaries do not enrich much the as-

61 5.2 Discovering And Translating Temporal Constraints

sertions already produced with JDoctor. Meanwhile, prescriptive temporal con-
straints can be very useful in automatic testing: TCGs not aware of prescrip-
tive constraints may easily generate invalid sequences leading to errors, thus
resulting in many false alarms. For example, Randoop Pacheco et al. [2007]
cannot infer what is expressed in the method summary of [5.6} It instantiates a
new IteratorEnumeration and attempts to make calls on it without invoking
setIterator first, leading to errors that are prompted to the user (false alarms).

5.2.1 New Knowledge To Acquire

Describing order of events To the best of our knowledge, ICON (Pandita et al.
[2016]) by Pandita and others is the only study focusing on automatically iden-
tifying temporal constraints in informal specification. ICON is mostly based in
machine learning and has, admittedly, difficulties in recognizing implicit con-
straints.

The general problem of distinguishing temporal information in natural lan-
guage text is a tough challenge for the computational linguistics community (Sak-
aguchi et al. [[2018];|Huang et al. [2016]). We take advantage of the characteris-
tics of our domain, which is much narrower than the general linguistic problem,
and does not require to address the challenge for any kind of natural language
text.

The direction of a temporal constraint MeMo already parses method sum-
maries, meaning we can take advantage of some existing knowledge. However,
there is an important difference between translating an equivalence MR and a
temporal constraint. Equivalences are bi-directional, thus we need only to com-
pare the effects of the calls on the same instance, while ignoring the direction of
the calls themselves. Temporal constraints are characterized by a precise direc-
tion, as an event must either follow or precede the other, and not the contrary.
This introduces a relevant challenge in correctly translating constraints in natural
language text.

Method VS Class summaries Class summaries contain constraints that describe
either bad or good usages, either via natural language sentences or code snippets.
Class summaries have a wider scope and are thus more challenging than method
summaries. Beside, a snippet is just a piece of code that contains little descriptive
elements. Understanding if a snippet either suggests a proper (good) class usage
or discourages a bad one would be yet another issue to tackle.

62 5.2 Discovering And Translating Temporal Constraints

CaMeMa || identifies and translates temporal constraints by extracting con-
straint descriptions from method summaries, and translating them into action-
able temporal constraints. In principle, CaMeMa could work also on class sum-
maries. Here we focus on solving the challenge for methods.

5.2.2 Overview Of CaMeMa

Figure [5.3| overviews the CaMeMa process. It extracts summaries from Javadoc
method specifications, identifies descriptions of temporal constraints, translates
the informal descriptions into rules, and generate temporal constraints that can
be used to either augment or prune test suites.

CaMeMa addresses the new challenges of directional descriptions of temporal
constraints by enriching the MeMo components with a Direction Chief compo-
nent, that determines the direction of the method calls in the constraint.

CallMeMaybe

Summaries II Temporal II
Formulas

JSON Specs
Generator

C int Finder Translator Direction

<> Chief
Summary Dependency Subject Predicate

JAVA Extractor Parser matcher Matcher
Rules

(¢!

Figure 5.3. CaMeMa’s workflow

Flagged
Test Cases;

5.2.3 CaMeMa’s Javadoc Extractor

CaMeMa Extractor is built on top of the MeMo extractor: It extracts information
in method summaries and ignores any kind of Javadoc block tag following the
summaries.

5.2.4 CaMeMa’s Constraint Finder

The CaMeMa Constraint Finder processes the information that it obtains from
the Extractor by splitting the comments into sentences and identifying the ones
describing temporal constraints. The strategy is similar to JDoctor, as it involves
building a semantic graph and traversing it to build propositions. CaMeMa Con-
straint Finder looks for advcl and advmod dependencies. These dependencies

4 Call Me Maybe.

63 5.2 Discovering And Translating Temporal Constraints

identify adverbs and adverbial clauses, which fall into several categories, one
of them being time : We can thus identify clauses that express when an event
happens with respect to a point in time, or another event.

By parsing the method summary “This method must be invoked before the
thread is started” in Listing the CaMeMa Protocol Finder generates the fol-
lowing semantic graph:

-> invoked/VBN (root)
-> method/NN (nsubjpass)
-> This/DT (det)
-> must/MD (aux)
-> be/VB (auxpass)
-> started/VBN (advcl:before)
-> before/IN (mark)
-> thread/NN (nsubjpass)
-> the/DT (det)
-> 1s/VBZ (auxpass)

O 0O N O U1 A W IN

—_
o

The dependency advcl:before at line[6]identifies an adverbial clause together
with its specific modifier, before, thanks to the Enhanced English Universal De-
pendencies parsing (Schuster and Manning [2016]).

The Finder discovers this advcl:before dependency, along with subject ones,
and extracts three propositions from them:

nsubjpass: (This method, be invoked)
nsubjpass: (thread, is started)
advcl:before: (invoked, started)

Finally combining the three in the following proposition series:

(This method, be invoked) BEFORE (thread, is started)

This final result is passed to CaMeMa’s Translator.

5.2.5 CaMeMa’s Translator

CaMeMa’s Translator transforms temporal proposition series into temporal con-
straints. It identifies the code identifiers in each proposition, by considering both
explicit references to operations and implicit references to method names.

> https://universaldependencies.org/en/dep/advcl.html

64 5.2 Discovering And Translating Temporal Constraints

Recognizing the concept of “operation”: The Translator identifies propositions
that express actions explicitly referring to the concept of operation by rely-
ing on the SO_word2vec model Efstathiou et al./[[2018], which is a word2vec
model for the software engineering domain. It is pre-trained on over 15GB
of textual data from Stack Overflow posts. The Translator starts from a
basic golden set of three words: operation, call and use, and queries the
model with this positive examples to get a whole new set of related con-
cepts that include words such as invocation or return. If any of the verbs
in the proposition belongs to this set, the Translator assumes the presence
of a constraint, with the proposition subject being an explicit reference to
a code element.

Recognizing actions encoding code identifiers: CaMeMa’s Translator identifies
propositions containing actions implicitly encoding method names with a
strategy adapted from JDoctor: It tries to match both subject and pred-
icate against elements in the code by either Lexical Matching or Pattern

Matching (Section [4.1.4)

In the example of Listing|[5.7} the CaMeMa Translator identifies the subject of
the first proposition (This method, be invoked) as the documented method
(“this method” gets normalized with the corresponding method signature), and
the predicate, “invoked”, as a concept of interest by means of the word2vec
model strategy. It then matches the subject and predicate in the second propo-
sition, (thread, is started), by looking for syntactic similarities with code
identifiers. Subject “thread” refers to the instance of the receiving object of class
Thread. Predicate “is started” refers to a call to method start(). This way, it
solves all the calls involved in the constraint:

receiverObjectID.setDaemon(args[0]) BEFORE receiverObjectID.start()

To generate an oracle, the CaMeMa Direction Chief needs to infer the di-
rection of this temporal constraint from BEFORE, the temporal modifier in the
proposition.

5.2.6 CaMeMa’s Direction Chief

The Direction Chief identifies the constraint directions by looking at the temporal
modifier of the proposition. It uses a small set of fixed rules, one for each specific
temporal particle. A rule essentially dictates the direction of the link between the
two proposition, either a left arrow <, or a right arrow —. The rules currently

NO U~ WN -

65 5.2 Discovering And Translating Temporal Constraints

encoded in our CaMeMa implementation are AFTER, ONCE, BEFORE, PRIOR
and UNTIL, as shown in Table Such a small set of rules already serves a large
number of cases, and the set can be trivially extended to include the application
of further rules.

Table 5.4. Rules currently encoded in CaMeMa

Modifier Arrow
AFTER —
ONCE —
BEFORE —
PRIOR -
(NOT) UNTIL | —

The CaMeMa Direction Chief solves the full constraint of our example as:

receiverObjectlD.setDaemon(args[0]) — receiverObjectID.start()

The rule-based strategy has the advantage of not relying on potentially de-
ceiving heuristics, making the final translation into oracle reasonably safe. ICON
Pandita et al. [2016] uses a strategy which looks at the verb tense: The past tense
indicates a method call that must happen before, and vice-versa. This strategy
does not generalize well to all temporal sentences. For instance, it would be dif-
ficult to asses the direction of a constraint such as “start should be invoked after
setDaemon is invoked” just by considering the sentence tense.

5.2.7 CaMeMa’s Generator

The CaMeMa Generator produces temporal constraints as an actionable output.
It models the constraints with a simple JSON structure, similarly to JDoctor. The
structure indicates whether an operation should either precede or succeed any
other operation. This JSON format has the advantage of being serializable and
machine readable, making the output of CaMeMa ready to exploit by other tools
such as automated TCGs. Listing[5.12|shows the excerpt of JSON output for our
running example.

Listing 5.12. CaMeMa’s real example of JSON output

{
"signature": "java.lang.Thread.setDaemon(boolean)",
"name": "setDaemon",
"containingClass": {
"qualifiedName": "java.lang.Thread",

66 5.2 Discovering And Translating Temporal Constraints

10
11
12
13
14
15

"name": "Thread",
"isArray": false

+

"mustPrecede": "receiverObjectID.start()",
"mustFollow": ""

1

5.2.8 Experimental Evaluation Of CaMeMa

Similarly to the procedure we followed for JDoctor and MeMo, CaMeMa’s evalu-
ation assesses its translation accuracy on constraints, and the usefulness of the
generated oracles when applied to testing. The experimental evaluation aims to
answer the following research questions:

* RQ1: Can CaMeMa identify natural language sentences that express tem-
poral constraints and translate them into temporal formulas?

* RQ2: Do CaMeMa constraints reduce the human effort to assess false alarms
and expected exceptions in automated testing when used as oracles?

We evaluate CaMeMa on a benchmark of 73 classes randomly selected from
seven popular Java systems.

As we did for JDoctor and MeMo, to produce the ground truth we inspect all
the Javadoc sentences in the dataset and manually translate the ones expressing
temporal constraints into temporal formulas. Tab reports statistics.

Table 5.5. Ground truth: manually-identified temporal constraints

Project Selected Classes Constraints
Colt 9 9
Commons Collections 10 11
GraphStream 5 6
Guava 3 3
JDK 32 43
Lucene 7 10
Weka 7 7

TOTAL 73 89

67 5.2 Discovering And Translating Temporal Constraints
Table 5.6. Effectiveness of CaMeMa on 73 classes
Project Correct Missing Wrong Spurious Precision Recall
Colt 9 0 0 0 1.00 1.00
Commons Collections 10 1 0 0 1.00 091
GraphStream 5 1 0 0 1.00 0.83
Guava 0 3 0 0 0.00 0.00
JDK 32 6 5 0 0.86 0.84
Lucene 4 3 3 0 0.57 0.57
Weka 2 0 5 0 1.00 0.29
TOTAL 62 14 13 0 0.83 0.70

To answer RQ1 we measure precision and recall. Table[5.6|reports the results.

CaMeMa achieves good precision and recall, of 83% and 70% respectively.

To answer RQ2, we feed CaMeMa specifications to Randoop [Pacheco et al.

[2007]. We know that Randoop heuristics classify a test that throws a checked ex-
ception as expected behavior, and that it outputs the error-revealing and expected-
behavior tests in separate test suites. Randoop+CaMeMa operates on both of

them:

Inside error-revealing tests: Randoop adds a line of comment above the state-

ment that raised exception explaining the cause. It does so by implement-
ing some internal checks. We modify Randoop so to have CaMeMa-specific
checks on error-revealing tests. That is, when Randoop detects some er-
ror for a method call for which we have a constraint specification, we run
our additional CaMeMa checks. If the constraint was violated, the error
test case is still given in output, but we enrich Randoop’s default comment
with information about the violation of a constraint. This way, the user
knows such a error test case may actually be a false alarm.

Inside regression test suite: Randoop reports the message of the checked ex-

ception that was thrown, which it wraps in a try/catch block. Inside the
catch clause, it also adds a comment stating “// Expected exception”. In
case we have a CaMeMa oracle specifying this behavior, we enrich the com-
ment by reporting the natural language constraint as documented by the
developer. This way, the user knows precisely what went wrong, and how
a legitimate sequence should look like. Moreover, we can assess whether

68 5.2 Discovering And Translating Temporal Constraints

Randoop heuristics were correct in their assessment.

Our experiments compare the original Randoop test generation tool with
Randoop+CaMeMa, which extends Randoop with CaMeMa-generated temporal
specifications. We run both Randoop and Randoop+CaMeMa on the programs
reported in Table [5.5| To answer RQ2, we measure the quantity of test cases
that Randoop+CaMeMa enriched with information about violated constraints.
We leave the default time limit of 100 seconds for each class.

Five projects out of seven in Table|[5.5/have constraints concerning file systems
operation and other domains that make it hard for Randoop to generate satisfying
test suites, at least without external suggestions for the inputs to be fed. With that
said, we have the highest number of constraints for Apache Commons Collections
and for the JDK, for which it is easy to automatically generate inputs, so we
experiment with Randoop+CaMeMa using their classes. In Table we report
statistics.

Table 5.7. Randoop+CaMeMa signals, in terms of number of false alarms detected in
error test cases, and enriched expected exceptions in regression test suites

Project False Alarms Expected Exceptions
Commons Collections 10948 8298
JDK 870 3726
TOTAL 11818 12024

We see how Randoop+CaMeMa is able to warn about hundreds of false alarms
for the JDK, and thousands for Commons Collections, leading to a total of 11818
false alarms detected. Regression test suites are enriched by CaMeMa constraint
specifications in thousands of test cases for both projects, precisely 12024 in
total. Although a manual assessment of all the results would be hardly feasible,
we here report some relevant examples.

Consider the constructor of class IteratorChain, documented in Listing|5.13|

Listing 5.13. Prescriptive constraint from class IteratorChain of Apache Commons Col-
lections

1| /** Construct an lteratorChain with no lterators .

2| You will normally use additerator (Iterator) to add some iterators after using
3| this constructor. */

4| public IteratorChain () { ...

69 5.2 Discovering And Translating Temporal Constraints

CaMeMa translates the constraint in Listing |5.13 as the following temporal
formula:

org.apache.commons.collections4.iterators.IteratorChain.addlterator(java.util.lterator<?
extends E>) « receiverObjectlD.org.apache.commons.collections4.iterators.lIteratorChain()

In Listing [5.14] we see an excerpt of Randoop automatically generated test
case for class IteratorChain.

Listing 5.14. Real example of Randoop+CaMeMa behavior for Commons Collections

1| org.apache.commons.collections4.iterators . IteratorChain <java.io. Serializable >
2| serializableltor0 = new

3| org.apache.commons.collections4.iterators . IteratorChain <java.io. Serializable >();
4| // The following exception was thrown during execution in test generation

5| try {

6 serializableltorO .remove();

7| org.junit. Assert. fail ("Expected exception of type

8| java.lang. lllegalStateException ; message: Iterator contains no

9| elements");

10|} catch (java.lang. lllegalStateException e) {

11| // Expected exception.

12| /* CaMeMa constraint violation :

13| "Construct an lteratorChain with no lterators .

14| You will normally use {@link #addlterator (Iterator)} to add some

15| iterators after using this constructor." */

In the first line, Randoop instantiates a new IteratorChain. Before doing
anything else, at line[6) it attempts to invoke a removal operation on the newly in-
stantiated iterator. This raises an expected I1legalStateException exception,
which default messages explains that “Iterator contains no elements”. CaMeMa
correctly recognized and translated the constraint for the constructor, and can
thus report (right after the comment at line[11)) that a correct sequence would
first invoke method addIterator on the newly instantiated iterator.

Let us now consider the documentation of method end() of class Deflater

in Listing|5.15.

Listing 5.15. Prescriptive constraint from class Deflater of the JDK

1|/** Closes the compressor and discards any unprocessed input. This

2| method should be called when the compressor is no longer being used, but

3| will also be called automatically by the finalize () method. Once this method
4| is called, the behavior of the Deflater object is undefined. */

5| public void end() { ...

70 5.2 Discovering And Translating Temporal Constraints

CaMeMa translates the constraint in Listing |5.15 as the following temporal
formula (where the receiverObjectID preceded by the logical negation opera-
tor ! means no further invocation should happen on the receiver object):

receiverObjectID.end() — !receiverObjectlD

Listing [5.16 shows the violation of this CaMeMa constraint in the error test
suites for the JDK.

Listing 5.16. Real example of Randoop+CaMeMa behavior for the DJK

java. util .zip. Deflater deflater2 = new java.util.zip. Deflater ((—1), true)
long long3 = deflater2 . getBytesWritten ();

deflater2 . setLevel (2);

deflater2 .end();

/* during test generation this statement threw an exception of type
java.lang. NullPointerException in error

But, CaMeMa constraint violated too:

"Closes the compressor and discards any unprocessed input. This method
should be called when the compressor is no longer being used, but will also
be called automatically by the finalize () method. Once this method is called,
the behavior of the Deflater object is undefined." */

long long7 = deflater2 . getBytesWritten ();

OO UT A WDN -

[Y
N = O O

[
w

In the first line, Randoop instantiates a new Deflater object. A few state-
ments later, at line |§, the test sequence calls operation end(). After this call,
Randoop still attempts some operation on the object, i.e. a call at line 13| that
raises a NullPointerException “in error” (line [7). However, CaMeMa knows this
is probably a false alarm, given the violation of the constraint it reports at line

Chapter 6

Automatically Improving Informal
Specification

In this section we show how the imperfection of natural language
specification can be overcome, to prevent it from hindering our test
oracle generation workflow. We present two studies and tools, UpDoc
and RepliComment, which prove to effectively detect defects in flawed
Javadoc specification while suggesting fixes. RepliComment was orig-
inally presented at the IEEE/ACM International Conference on Pro-
gram Comprehension Blasi and Gorla [2018], and later extended in
an article published in the Journal of Systems and Software Blasi
et al.| [[2021b]]. UpDoc was presented at the International Working
Conference on Source Code Analysis And Manipulation [Stulova et al.
[2020].

While natural language artifacts relating to software are nowadays commonly
available (in the form of documentation, comments, wikis), they are prone to
human error and imprecision. They may be poorly written, or not always being
updated together with the code [Fluri et al. [2007]; Wen et al. [[2019]; Aghajani
et al. [2019]. Correct information is an important requirement for the effective-
ness of our automatically generated test oracles: Wrong oracles are even less
desirable than no oracles. In the PhD work, we studied different kinds of issue
affecting code documentation and proposed ways to automatically detect and
overcome them.

71

72 6.1 Inconsistency Between Code And Documentation

6.1 Inconsistency Between Code And Documenta-
tion

When the code implementation changes, the corresponding informal specifica-
tion is not always correspondingly updated. Studies show that documentation
may be updated some time after the code changed, even months or several com-
mits later [Fluri et al. [[2007] Aghajani et al.|[2019]. In the worst case, documen-
tation may get never updated.

To assess the correctness of source code during evolution there exist many
automatic tools such as parsers, analyzers, compilers and linters. On the other
hand, maintaining the correctness of its corresponding informal specification is
largely responsibility of the programmer. The outcome is that either existing
documentation becomes outdated, or, it is not written in the first place to avoid
the problem altogether [Fluri et al.|[[2007]]; Wen et al. [2019]]. This leads to many
undesirable effects, such as the hindering of program comprehension (Aghajani
et al. [[2019[];/Arnaoudova et al. [[2016]). In the context of this PhD thesis and the
framework it proposes, a possible undesirable consequence would be to derive
wrong test oracles.

As areal example of long-lived code-doc inconsistency, consider the Adaptive-
IsomorphismInspectorFactory class of the JGraphT library in Listing [6.1] In
matching colors, we can see the code and the corresponding parts of the Javadoc
documentation that relate to program fragments. Notice how the documentation
mentions method parameters twice: implicitly in the summary (line 2: “one of
the graphs”) and explicitly with the @param tags (lines 5-6).

Listing 6.1. Method body with its doc comment

J**

* Checks if one of the graphs isfrom unsupported graph type and [ilfoW8
* ICEAIATSUMEHIEXEEpHeN ifitis. 7he current
unsupported types

* are graphs with multiple-edges.

* @param graph1

* @param graph2

* @throws |EERATEENEGERIo

9| */

10| protected static void assertUnsupportedGraphTypes (
11 Graph graph1,

12 Graph graph2)

13 throws lllegal ArgumentException{

14 Graph [] graphArray = new Graph [] {

15 graph1, graph2

OO UT A WDN -

73 6.1 Inconsistency Between Code And Documentation

16 b

17 for (int i = 0; i < graphArray.length; i+ +) {
18 Graph g = graphArray[i];

19 if (g instanceof Multigraph)

20 | | (g instanceof DirectedMultigraph)

21 | | (g instanceof Pseudograph)) {

22

23 "graph type not supported for the graph"
24 +8);

25 }

26 }

27|}

Now take into consideration two revisions of the above code, namely|b4805f5

and a68071b. The first one modifies both the signature and the body of the
method, but not the respective Javadoc, introducing code-documentation incon-
sistency:

1
2
3
4
5
6
7
8
9

10

- protected static void assertUnsupportedGraphTypes(
- Graph graphf,
- Graph graph2)
+ protected static voidassertUnsupportedGraphTypes(Graph g)
throws lllegal ArgumentException {
- Graph [] graphArray = new Graph [] {
- graph1, graph2
-3
-for (inti = 0; i < graphArray.length; i+ +) {
- Graph g = graphArray[il;

The second revision updates the documentation, but only at the @param tags
level. We still read “one of the graphs” in the summary, although the method

now takes only one argument:

1
2
3

- * @param graph1
- * @param graph2
+ * @param g

These two revisions are separated by 7.5 years. This is not surprising: In the next
sections, we see with further examples how code-documentation inconsistencies

do tend to survive the test of time.

6.1.1 Fine-grained Detection Of Code-Doc Inconsistency

During the PhD work we implemented a technique, UpDoc, that attempts to au-
tomatically detect inconsistencies between code and documentation |Stulova et al.
[2020]. The tool aims to detect inconsistency by relying on a fine-grained map-

74 6.1 Inconsistency Between Code And Documentation

ping between source code and documentation. UpDoc operates directly on the
source files, by statically analyzing the information from text and code, with-
out requiring training data. The same authors propose other techniques that de-
tect code-comments inconsistencies via deep learning [Panthaplackel et al. [[2020,
2021] and require training. The most recent work of Panthaplackel et al. Pan-
thaplackel et al. [2021] detects inconsistencies before they are committed to
a repository, while UpDoc compares different committed versions of the source
code, hence detecting already present errors.

6.1.2 Overview Of UpDoc

upDoc

Source
Code Parser Mapper

v.0 Code l Text Processor “ AST Processor |
Extractor e
: Map Builder

Source ;
Code Comment
v Extract
xtractor Change Extractor

Figure 6.1. UpDoc’s workflow

Code-Doc
Mapping

Change
Analyzer

N Report

Structural
Diff

We schematically illustrate the full UpDoc architecture and workflow in Fig-
ure

At a high level, the core of UpDoc takes in input the AST of a Java method code
and its Javadoc documentation, and produces an internal mapping between them
by representing both with bag of words. The technique then computes the simi-
larity between code and documentation by means of cosine similarity and Word
Mover’s Distance. Such a technique generalizes to any programming language
and its respective format of documentation, and does not require training nor
extra human effort. The tool consists of four principal modules: Parser, Change
Extractor, Mapper and Change Analyzer.

6.1.3 UpDoc’s Parser

The Parser is UpDoc’s entry point. It takes two revisions of a Java class source
code, and extracts tuples of method bodies and their doc comments into an in-
termediate representation. For the documentation part, UpDoc extracts both the
unstructured summary part and the sentences from the usual block tags @param,
@exception, @throws, and @return. We disregard sentences in other block tags

75 6.1 Inconsistency Between Code And Documentation

as they typically contain information that is not related to the implementation. In
UpDoc, a single documentation sentence is the smallest unit the technique works
on, either from summaries or block tags. For the code part, the Parser extracts
the method signature AST nodes to store the method name, return type name,
thrown exception type names, and parameter names together with respective
type names for each of them.

6.1.4 UpDoc Change Extractor

The Change Extractor compares the two representations produced by the Parser
for both source code versions. The goal is essentially to create a diff aware of
any structural change happened between the two versions.

Working with AST-based representation of the source code, UpDoc filters out
any purely syntactic changes (both for documentation and code), such as whites-
paces and formatting edits. The Change Extractor focuses in detecting and hold-
ing AST nodes that have been deleted and modified in the change, as they are
likely to require a matching change in the existing documentation text. Indeed,
code addition is not strongly associated with comment changes, but rather with
new comment addition if any [Fluri et al. [2007]. The Change Extractor is built
around the source code differencing functionalities of the GumTreeDiff frame-
work [Falleri et al. [2014] to benefit from the AST-based diffs of the source code
under change. This allows the component to hold an internal representation of
a commit as a list of changes happened on specific AST nodes. An AST node
is identified by its range inside a specific source file (row+column position) and
other information, such as its type (e.g., SignatureNode for a method signature).

6.1.5 UpDoc’s Mapper

The Mapper creates a mapping between the structural units of the source code
and the documentation for each method of the code version before the change, i.e.
SourceCode v.0 in Figure|6.1] The goal is to compute the level of consistency we
originally had between code and documentation before the changes happened.
The subcomponents of the Mapper are:

Text Processor The Mapper produces a bag-of-words (BoW) representation of
each documentation sentence by (a) splitting all code identifiers into constituents
with regular expressions that allow for camelCase and special character split-
ting, (b) expanding abbreviations (incorporating the dataset of Newman et al.

76 6.1 Inconsistency Between Code And Documentation

[2019]), (c¢) reducing each word to its stem, and (d) filtering out stop-words with
the “Short English stopwords list”

AST Processor We use AST-based representations of source code, just as Change
Distiller|[Fluri et al. [[2007] tool and the GumTree framework Falleri et al. [[2014].
AST-based representation allows us to vary the granularity of the source code ele-
ments (as AST nodes at different depths) mapped to the comment text. We build
the bag-of-words representation of AST nodes similarly to how we do it for the
comments.

Map Builder Finally, the Mapper produces a many-to-many mapping between
the AST nodes of source code and sentences of the comments.

The mapping reflects how similar code is to its relative natural language docu-
mentation comment. This depends on the vocabularies of the units of these two
elements. For a code and a comment unit to be related and included into the
mapping the similarity score of their BOW representations must be higher than a
predefined threshold. There are various metrics to assess the similarity between
two texts. Some of them, like cosine similarity, can only assess lexical similarity.
Others, such as WMD we know well by now, have a semantic understanding of
natural language words.

To illustrate the advantage of a semantic understanding of text over a more
naive one, consider once again the code example of the Listing In Ta-
ble we report similarity scores of the BoW representations of the comment
text (which did not change), and the method signature before and after the
change (BC and AC respectively). Using WMD UpDoc can relate the method pa-

Table 6.1. Similarity Measures Sensitivity

Comment [1:illeg,1:argument,1:throw,1:one,1:except,1:check,1:unsupport,1:type,2:graph]

WMD Cosine Sim
Method (BC) [1:illeg,1:argument,1:void,1:assert,1:except,1:unsupport,1:type,4:graph,1:first,1:second] 70% 75%
Method (AC) [1:illeg,1:argument,1:void,1:assert,1:g,1:except,1:unsupport,1:type,2:graph] 66% (-4%) 75% (no change)

rameters graphl and graph2 to the independent clause of the first sentence of the
method doc comment (“Checks if one of the graphs is fromunsupported
graph type”). When Graph graphl and Graph graph2 disappear to leave only
Graph g, the semantic understanding detects a decrease of the similarity with

1 https://www.ranks.nl/stopwords.

77 6.1 Inconsistency Between Code And Documentation

respect to the comment. With cosine similarity UpDoc does not detect this incon-
sistency as the vocabulary is still too syntactically similar, despite the change. We
implement both cosine similarity and WMD metrics in upDoc.

6.1.6 UpDoc’s Change Analyzer

The last component of UpDoc takes in input both the output from the Change
Extractor and from the Mapper.

Iterating through the related sentences of the node under change, the Change
Analyzer checks if all related sentences are present in the diff, and warns the
programmer if not. In case of code modification (or addition), this component
issues a warning if the new code does not have any relation to the comment text
(e.g., common identifiers or domain terms). In Listing[6.2| we see an excerpt of
report for our running example:

Listing 6.2. Excerpt of real UpDoc final report

1 WARNING: Consistency between doc and code decreased!

3 Original documentation:

4 Checks if one of the graphs is from unsupported graph type and throws
5 IllegalArgumentException if it is. [0.69]

6 The current unsupported types are graphs with multiple-edges. [0.58]
7 graph first [0.81]

8 graph second [0.80]

9 illeg argument except [0.48]
11 Documenting node:
12 | in original source sub-element SimpleName in
13 lines [219..219]:
14 graphl
15 | inside of MethodSignature in lines [218..222]:

16 protected static void assertUnsupportedGraphTypes(
17 Graph graphl,

18 Graph graph2)

19 throws IllegalArgumentException

21 Current documentation:

22 Checks if one of the graphs is from unsupported graph type and throws
23 IllegalArgumentException if it is. [0.66]

24 The current unsupported types are graphs with multiple-edges. [0.57]
25 graph first [0.47]

26 graph second [0.45]

27 illeg argument except [0.46]

29 Documenting node:

30 | changed into sub-element

31 SimpleName in lines [217..217]:

32 g

33 | inside of MethodSignature in lines [217..219]:

34 protected static void assertUnsupportedGraphTypes(Graph g)

35 throws IllegalArgumentException

78 6.1 Inconsistency Between Code And Documentation

The report warns the user (line[1) and specifies what change brought the de-
crease in the code-documentation consistency. It does so both at a fine-grained
level and coarser-grained level (lines and [30H32). Looking at the report,
we immediately know that the original parameter’s simple name, graphl, was
changed into g. We know the precise line ranges, and, what is the coarser node
the parameter belongs to (i.e., its MethodSignature). We, as well, see the orig-
inal and updated similarity scores with respect to the documentation, in all its

parts (lines|5|and [23|for the summary, lines[7H8 and for the @param tags).
It is thus easy for the developer to asses where and how a fix should happen.

6.1.7 Experimental Evaluation Of UpDoc

The goal of our experimental evaluation was to assess the efficacy of the Map-
per, the very core component of UpDoc on which all the inconsistency assess-
ments depend. The evaluation involved 67 comment changes from the dataset
of Wen et al. Wen et al.|[2019]. As UpDoc evaluates the code-comment consis-
tency based on similarity scores, our research hypothesis is that the Mapper would
report higher similarity scores in a mapping for the fixed version.

We focused on the first 50 entries of the dataset, and we manually ana-
lyze the results of UpDoc runs. We discarded 8 of them because none of the
changes involved comment lines (these are false positives admittedly included
in the datasetWen et al. [2019]). We further discard entries that do not involve
comments that UpDoc focuses on: 4 documentation changes affecting only class-
level doc comments (either general class or field descriptions), and 18 entries
that involve changes only in comments within method bodies. This leaves us
with 20 commits, each involving one or more changes in method doc comments
which we use to evaluate mappings produced by UpDoc.

For these 20 commits, which amount to a total of 67 changes, we follow this
evaluation protocol:

1. We run UpDoc on the version right before the commit, and we store the
similarity score for each method and corresponding comment affected by
the change.

2. We run UpDoc on the supposedly fixed version.

3. We compare the similarity score for each method signature and each cor-
responding doc comment sentence, before and after the change.

The manual analysis of the results revealed that:

79 6.2 Harmful Code Documentation Clones

* In 50 cases the similarity scores improve as expected. Nearly half of these
cases (24 out of 50) are trivial cases where there was no documentation
and developers added some. 26 cases are instead actual fixes or significant
semantic improvements to the comment text.

* In 10 cases the similarity scores did not change. Manual analysis revealed
that all these changes are either minor formatting fixes (e.g., adding/re-
moving white spaces and new lines) or other minor edits that do not change
the semantics of the documentation. The results produced by UpDoc are
thus expected, since these changes do not address a real code-comment
inconsistency.

* In 7 cases UpDoc reports unexpected decreases in the similarity scores.
The manual analysis shows that these are all due to current limitations
of the prototype, which at the moment analyzes only method signatures.
Details included in the documentation indeed could match similar elements
in the method body, but they do not always match the signature alone.

In conclusion, UpDoc’s mapping between methods and doc comments accu-
rately reflects inconsistencies in 90% of the cases.

6.2 Harmful Code Documentation Clones

As a relevant instance of code-documentation inconsistency, we focus on docu-
mentation clones. With the PhD work we demonstrated that code documentation
suffers for harmful clones, just as the code itself. Developers may copy the API
documentation referring to a method and paste it into another method, forget-
ting to revise the text according to the target method. Not surprisingly, such
an issue generates confusion in the documentation readers |Arnaoudova et al.
[2016].

In our thesis framework, this is yet another obstacle to the generation of cor-
rect test oracles. It was exactly through our techniques that we had spot the first
case of harmful documentation clone. The example we had shown previously
in Listing caused JDoctor to produce a false positive: An oracle correct ac-
cording to the documentation, but not according to the implementation. The
generated output was the following:
1| /**
2| % ...
3| * @return true if this matcher matches every character in the
4|* sequence, including when the sequence is empty

80 6.2 Harmful Code Documentation Clones

5| */
6| public boolean matchesNoneOf(CharSequence sequence) { ... }

— target.matchesAll0f(args[0])?result==true

Thus implying that the result of the invocation of method matchesAl110f and
method matchesNoneOf should have been the same (obviously not true). JDoc-
tor correctly recognized via semantic understanding of the text that “to match
every character” corresponds to the invocation of matchesA110f, but the failing
assertion rather revealed an issue in the informal specification.

6.2.1 Automatic Detection And Fix Suggestion For Doc Clones

Our original study and technique, RepliComment, was the first approach that
focused on harmful documentation clones. It showed that the issue occurs even
in widely-used, well-developed and well-documented systems Blasi and Gorla
[2018]. The study started by focusing on the detection of comment clones. The
findings of the tools were analyzed manually. This preliminary study allowed to
distinguish three different kind of documentation clones:

Legitimate clones. Some comments are legitimately cloned and do not create
problems. As an example, cloning the same method summary in the case
of method overloading produces a correct comment. Hence, such cases
should not alarm the developer.

Poor information clones. Comments may get cloned because they are so vague
that could document a large number of code elements, without providing
useful information. This is the case for example of @throws tags docu-
mented with “on error”.

Copy-and-paste mistakes. These clones represent the worst case scenario, such
as the Guava example described above. For whatever reason, a comment
gets copied from its legitimate method to another one that has little to do
with it. The method victim of this erroneous paste operation ends up being
documented with a piece of text that does not describe its actual behavior.

In an expanded, more recent study Blasi et al. [[2021b[], we heavily improved
RepliComment to make it automatically classify the documentation clones. For
the copy-and-paste mistakes, RepliComment also suggests the more appropriate
fix thanks to the integration with UpDoc.

Code clones are by far the most studied kind of source clones. The Soft-
ware Engineering community is rather familiar with the topic, so it is worth it to

81 6.2 Harmful Code Documentation Clones

highlight commonalities and differences. According to the state of the art tax-
onomy Roy and Cordy [2007]], code clones can be instances of Type I, i.e. exact
copy-and-paste clones, up to Type IV clones, i.e. semantically equivalent code
snippets. Comment clones can be classified according to the same taxonomy as
follows:

Type I comment clone: The comment of a code element, i.e. a method, a class
or a field, is an exact copy of the comment of another code element except
for whitespace and other minor formatting variations.

Type II comment clone: The comment of a code element is an exact copy of the
comment of another code element except for identifier names.

Type III comment clone: The comment of a code element is an exact copy of
the comment of another code element except for some paragraphs. For
instance, the Javadoc comment of a method has the very same free text
of another method, but the @param , @throws , or @return tag descrip-
tions differ. Conversely, tag descriptions may be the same, and Javadoc
comments may differ in the free text description of the method.

Type IV comment clone: The comment of a code element is lexically different,
but semantically equivalent to the comment of another code element.

RepliComment aims to find problematic Type I and Type III comment clones
affecting methods and fields within the same class, across classes within the same
hierarchy, or across classes within the whole project. RepliComment does not
report Type II clones since comments differ in identifiers, and therefore likely
document their corresponding piece of software correctly. Interestingly, we will
see in later sections that documentation clones do not seem correlated to code
clones, thus highlighting that different approaches must be adopted to tackle the
two issues.

6.2.2 Overview Of RepliComment

We start by presenting some real examples of comment clones that RepliComment
can deal with.

A critical comment clone is that of a comment that is copied from a cor-
rectly documented method or field, and erroneously pasted to another code en-
tity whose functionality differs completely. One example of this issue exists in

82 6.2 Harmful Code Documentation Clones

the Google Guava project in release 19:

In this example (see Sample 1), the Javadoc @return tag of method matches-
NoneOf is a clone of method matchesAl110f, offered by the same class Char -
Matcher. It is easy to see that the return comment of the second method does not
match the semantics of its name, while it does match the semantics of matches-
A110f. This clone is clearly an example of a copy-and-paste error. It is con-
ceivable that the developers first implemented method matchesA110f, and later
implemented matchesNoneOf starting from a copy of the first method. The two
methods have a similar purpose, i.e. to filter a collection of elements, however
in the first case the filter returns all elements matching a given pattern, while in
the second case it returns those that do not match the given pattern.

1] /**

2| * @return true if this matcher matches every character in the

3| * sequence, including when the sequence is empty.

4| */

5| public boolean matchesAllOf(CharSequence sequence) { +\ldots+ }

1] /%*

2| * @return true if this matcher matches every character in the

3| * sequence, including when the sequence is empty.

4| */

5| public boolean matchesNoneOf(CharSequence sequence) { +\ldots+ }

Sample 1: Comment clone due to copy-and-paste error.

Comment clones may also be examples of poor documentation that could
be improved to offer a better understanding for developers. See the following
example from a non-public class in the Apache Hadoop project release 2.6.5:

1| /**

2| * @return true or false

3| */

4| @InterfaceAudience.Public

5| @InterfaceStability .Evolving

6| public synchronized static boolean isLoginKeytabBased() throws IOException
71 { +\ldots+ }

1] /%%

2| * @return true or false

3| */

4| public static boolean isLoginTicketBased () throws IOException { +\ldots+ }

Sample 2: Comment clone of poor information.

2 http://google.github.io/guava/releases/19.0/api/docs/com/google/common/
base/CharMatcher.html

83 6.2 Harmful Code Documentation Clones

These two methods offered by class UserGroupInformation have exactly the
same comment regarding the postcondition. It states that the methods return
either true or false, which is correct. However, the documentation is uninforma-
tive, since any boolean method obviously returns either true or false. A more use-
ful documentation should state what the boolean value represents, e.g. whether
it is a system component status, or the result of a conditional check. Such clones
are symptoms of documentation that could be improved, and thus RepliComment
aims to report them as well.

Not all comment clones are necessarily an issue to report to developers. They
may occur for legitimate reasons, such as when two methods offer the same
functionality. The following example comes from class SolrClient of the Apache
solr library release 7.1.0f]

1| /**

2| * Deletes a single document by unique 1D

3| * @param collection the Solr collection to delete the document from
4| * @param id the ID of the document to delete

5| */

6| public UpdateResponse deleteByld(String collection, String id) { +\ldots+ }
1] /%%

2| * Deletes a single document by unique ID

3| * @param id the ID of the document to delete

4| */

5| public UpdateResponse deleteByld(String id) { +\ldots+ }

Sample 3: Legitimate comment clone due to method overloading.

The clone in this case affects the free text in the Javadoc comments. Methods
deleteById(), however, are an example of function overloading. Given that
they have similar purposes, it is legitimate for their method descriptions to be
identical. The difference between these two methods, which lies in their param-
eter lists, is properly documented through the custom @param tags.

Let’s proceed to understand how practically RepliComment can detect such
clones and propose fixes. We show the workflow of RepliComment in fig.

3 https://lucene.apache.org/solr/7_1_0//solr-solrj/org/apache/solr/client/

solrj/SolrClient.html#deleteById- java.lang.String-java.lang.String-

84 6.2 Harmful Code Documentation Clones

RepliComment

labeled clone
<comment, Clone clones Clone severity
signature> detector analyzer

tuples y ,
7,

| legitimate | HicH

MILD

non-legitimate Low

Figure 6.2. RepliComment’s workflow

6.2.3 RepliComment’s Parser

The Parser component of RepliComment takes as input a single Java file, identifies
the list of declared methods and field, and stores all method signatures and field
names. For each method and field it then identifies the corresponding Javadoc
documentation and parses it, extracting the summary and the usual block tags,
similarly to UpDoc.

The Parser outputs a list of tuples of field names and method signatures, and
their respective pre-processed Javadoc comments.

6.2.4 RepliComment’s Clone Detector

The Clone Detector aims to identify likely comment clones and distinguish the
legitimate and non-legitimate clones. It loops through all the method and field
declarations identified by the Parser and looks for Type I clones of whole (sum-
mary and block tags altogether) Javadoc comments. It then proceeds to detect
Type III clones, i.e. clones of specific comment parts across different methods.
Indeed, a single comment part may be cloned while the rest of the comment is
not. A single comment part is the smallest clone unit RepliComment looks for,
and it may be the summary or each one of the block tags.

The Clone Detector would flag a potential comment clone if two methods (or
fields) use the same comment to describe the method (or field), either entirely or
just in some parts. However, such a naive check is prone to false positives. Hence,
this component uses several heuristics to filter out false positives and only flag
real clone suspects. The Clone Detector operates in two main steps:

1. It takes the tuples produced by the Parser. For a method, it compares each
comment block with the same type of comment blocks of all the other meth-
ods within the same file or across files, according to the desired scope. First,
it compares the whole Javadoc documentations to check whether there are

85

6.2 Harmful Code Documentation Clones

whole comment clones documenting methods. Then, it proceeds with the
comparison of single comment parts: it compares each @param tag com-
ment with other @param comments and so on. As for fields, the comment
always consists of a single free-text summary.

2. When the Clone Detector finds that two or more clones of Javadoc com-

ment, it checks whether the clone might be legitimate or non-legitimate.
RepliComment never considers whole Javadoc comment clones to be legit-
imate, as we will explain later.

Legitimacy of a documentation clone is established if it satisfies any of the
following heuristics:

* the clone is found in methods with the same (overloaded) names
* the comment describes the same exception type
* the clones affect parameters that have the same name

* an exception comment consists of at least 4 words and does not match
a generic exception description pattern (recognized via a regex). We
have observed that three words are insufficient to express the condi-
tions under which an exception is thrown; furthermore certain generic
patterns, such as “@throws exception for any kind of error,” are com-
mon

* a@return tag clone describes methods with the same, non-primitive
return type. This is useful for filtering out APIs with methods that al-
ways update the class instance and return it, for which it is legitimate
to have comments such as “@return a reference to this.”

* constructors without parameters may have cloned comments, since
they can have very generic comments, according to the official Oracle
guide to writing good Javadoc documentatio

» comment clone describing fields with same name in different classes.

Finally, clones processed by the heuristics are stored in a csv report file as

tuples with the following items:

* the fully qualified name of the class,

* the signature of the first method or field,

4

https://www.oracle.com/technical-resources/articles/java/javadoc-tool.
html#defaultconstructors

86 6.2 Harmful Code Documentation Clones

* the signature of the second method or field,

* the type of cloned Javadoc comment part (i.e. whole, free-text, @param ,
@return or @throws),

* the cloned text, and

 avalueindicating if the clone is considered legitimate or rather non-legitimate
by the Clone Detector.

The csv report is the input to the next component, which performs an analysis
of the clone suspects to determine their severity level.

6.2.5 RepliComment’s Clone Analyzer

The Clone Analyzer core is implemented upon UpDoc. This component takes as
input the csv file produced by the Clone Detector and performs an analysis only
on comment clones flagged as non-legitimate. Clones flagged as legitimate are
ignored, trusting the judgment of the heuristics described in section [6.2.4, This
way, the heuristics act as a filter on all the possible cases of comment clones that
can be encountered in a Java project and may contain a high number of false
positives. Since the Clone Analyzer needs to perform a careful analysis on each
suspect, the heuristic filter helps to significantly reduce the computational effort.

Clone analysis algorithm Listing algorithm (3| shows the pseudo-code of the
code analyzer analysis, specifically referring to method comments since they are
the most complex to deal with. When dealing with field names instead of method
signatures, the reasoning about similarity thresholds is the same.

As we see in line 3 of |3 the Clone Analyzer first checks whether the clone
under analysis is a whole Javadoc comment clone. Such types of clones need
special consideration. As the official Oracle guide to the Javadoc tool explicitly
specifies, developers should “write summary sentences that distinguish overloaded
methods from each other” Hence, when a whole Javadoc comment is cloned,
RepliComment assumes there is some sort of issue no matter if the methods are
overloaded or not. In other words, whole Javadoc comment clones are never
considered legitimate by the Clone Detector, and are never labeled as Low sever-
ity issue by the Clone Analyzer. In case of overloading, the Clone Analyzer flags
such an issue as MILD severity, and RepliComment will report the problem sug-
gesting the developer to correctly document the difference in the parameters.

> https://www.oracle.com/technical-resources/articles/java/javadoc-tool.

html#doccommentcheckingtool

87 6.2 Harmful Code Documentation Clones

Algorithm 3 Clone analyzer

1: /** Given a pair of method signatures and the cloned Javadoc comment, return the severity score of the clone as a
warning */
2: function ANALYZE-COMMENT-CLONES (methodSignaturel, methodSignature2, clonedJavadoc)

3 if clonedJavadoc is of type WHOLE_JAVADOC_BLOCK then

4 if 1S-OVERLOADING (methodSignaturel, methodSignature2) then
5 REPORT(Please document parameter)

6: WARN(MILD_SEVERITY) & EXIT

7 else

8 REPORT(Not overloading: fix these comments)

9 WARN(HIGH_SEVERITY) & EXIT

10: m1Sim = COMPUTE-SIMILARITY(methodSignature1, clonedJavadoc)
11: m2Sim = COMPUTE-SIMILARITY (methodSignature2, clonedJavadoc)
12: if m1Sim < MIN-THRESHOLD and m2Sim < MIN-THRESHOLD then
13: REPORT (Please fix poor info comment)

14: WARN(MILD_SEVERITY)

15: if m1Sim > 0.50 and m2Sim > 0.50 then

16: REPORT(This looks like a false positive)

17: WARN (LOW_SEVERITY)

18: if | m1Sim - m2Sim| > DIFF-THRESHOLD then

19: REPORT (Please fix method with lowest sim score)

20: WARN(HIGH_SEVERITY)

21: else

22: REPORT(Fix these comments)

23: WARN (HIGH_SEVERITY)

Otherwise, the Clone Analyzer flags the issue as HIGH severity. We assume that
there are major issues to fix if unrelated methods have the same comment.

In lines 10 and 11 of (3} the Clone Analyzer computes the similarity scores
between the cloned comment and each of the involved methods (we explain the
details of this computation below). The similarity scores are used to determine
whether the clone is a Low, MILD or HIGH severity issue:

* Both methods can achieve a very low similarity score with respect to the
cloned comment (line 12): the assumption is that the comment is so generic
that it does not document well enough either of the methods. We set the
MIN-THRESHOLD value to 0.25, based on empirical evidence that this value
is the best balance to detect correct matches, while limiting false positives.
This is a MILD severity issue, and the Clone Analyzer requires the developer
to add more detail to the comment for those methods.

* Both methods can achieve a very high similarity score with respect to the
cloned comment (line 15): in this case the comment looks good enough
for both. These cases were not filtered out by the heuristics of the Clone
Detector in section but look like false positives nonetheless. Thus,
they are reported to be Low severity issues by the Clone Analyzer.

88 6.2 Harmful Code Documentation Clones

* If none of the above cases hold, then first we consider the case where one
method achieves a significantly better similarity score than another. The
method that achieves the highest similarity score is assumed to be the real
owner of the comment, while the other is reported to be the victim of a mis-
taken copy-paste. We set the DIFF-THRESHOLD value to 0.1, once again due
to empirical evidence. If both methods have very close similarity scores,
both comments are reported as needing correction. Comment clones for
which the owner is clearly distinguishable tend to be Type III clones, such
as the one in Sample Indistinguishable comments, instead, mostly
belong to Type I clones, i.e. whole comment clones. Such comments are not
overly generic, but at the same time, they are not informative enough to
highlight the distinction between two different code elements. This case is
reported as a HIGH severity issue, urging the developer to fix the wrongly-
documented method(s).

We now expand on the description of how a similarity score between a method
and its comment is computed.

Method-comment similarity computation We take the full method signature
and the part of the method comment marked by RepliComment as a likely clone
and compute the similarity between them based on natural language cues present
in each of them. Our underlying assumption here is that both the comment
text and the identifiers in the signature (method name, parameter names, type
identifiers , etc.) are written in the same language. This allows us to rely on
natural language processing (NLP) techniques to extract vocabularies of each
entity, and use the similarity of vocabulary-based representations as a proxy for
method-comment similarity.

The first step in the similarity computation is source text processing. For text
in comment parts it means identifying full period-terminated sentences using the
Stanford CoreNLP toolkit [?} in case the comment consists of more than one sen-
tence. Next, for each sentence we split all source code identifiers present into
their individual constituents and expand all detected abbreviations. Finally, we
reduce each word to its stem, and we filter out common English stop words. After
this step we transform the resulting text into a bag-of-words (BoW) representa-
tion. For the method signatures the pre-processing steps are similar, though in
this case we start directly with identifier splitting.

After we have obtained two bag-of-words representations, we evaluate their
similarity based on the occurrence of common words, for which we employ the

6 https://stanfordnlp.github.io/CoreNLP/coref.html

89 6.2 Harmful Code Documentation Clones

cosine similarity measure. For a pair of BoWs we consider them to be related if
the similarity measure value is above a threshold of 0.25 (MIN-THRESHOLD value
in the Algorithm, on a scale from O (no similarity at all) to 1 (exact similarity).

Clone severity computation After computing the similarity scores, RepliCom-
ment assigns a degree of severity to the issue (Low, MILD, or HIGH) as described
previously. Finally, RepliComment exports the results of its evaluation to a text
(.txt) report file with a separate entry for each issue category. Each file reports:

1. the record in the csv file of clone suspects
2. the specific Java class the clone is from
3. a description of the issue(s) encountered
4. fix suggestions, which differ depending on the type of issue:
(a) in the case of a HIGH severity issue, RepliComment points out which

field or method is the one more related to the cloned comment, sug-
gesting to fix the documentation of the other field or method

(b) in the case of a MILD severity issue, RepliComment warns the user
that the comment cloned across different fields or methods seems too
generic, hence suggesting to fix each comment by providing more de-
tail

(c) in the case of a Low severity issue, RepliComment warns the user of
the clone found, but specifies that she may want to ignore the issue
because it is likely a false positive (legitimate clone)

We see how a portion of the txt file reporting HIGH severity issues looks like
in Listing

Listing 6.3. RepliComment Results file example

—_

Record 53 in file: log4j.csv
2|In class: org.apache.log4j.1f5.LogRecord

4|1) The comment you cloned:"(@return) The LogLevel of this record."
5|seems more related to <LogLevel getLevel()> than <Throwable
6|getThrown()>

8| It is strongly advised to document method <Throwable getThrown()> with
9|a different, appropriate comment.

90 6.2 Harmful Code Documentation Clones

11| Record 152 in file: hadoop-hdfs.csv
12|In class: org.apache.hadoop.hdfs.util.LightWeightLinkedSet

14| 1) The comment you cloned:"(@return)first element"
15| seems more related to <T pollFirst()> than <List polIN(int n)>

17| It is strongly advised to document method <List polIN(int n)> with
18|a different, appropriate comment.

6.2.6 Experimental Evaluation Of RepliComment

We evaluate RepliComment on different dimensions. One goal was to under-
stand the accuracy of RepliComment in identifying and categorizing comment
clone issues. We also conducted a qualitative analysis of the results to investi-
gate whether the issues reported as HIGH severity, which are supposed to be the
most worrisome comment clones, are indeed critical documentation issues that
developers should fix. Finally, we compared the clone issues reported by Repli-
Comment and by a code clone detection tool to study the correlation between
code and comment clones.

For our empirical evaluation we select and analyze 10 projects among the
most popular and largest repositories on GitHub, as listed in [Table 6.2. Specif-
ically, in our study we include projects developed in Java, since RepliComment
targets this programming language, and these projects include a considerable
number of classes documented with Javadoc. We selected these projects be-
cause they belong to different companies and developers (e.g., Google, Apache,
Eclipse), and thus the study is not biased towards specific documentation styles.

Evaluation Protocol and Research Questions The evaluation of RepliComment
answers the following research questions:

* RQI: Are comment clones prevalent in popular Java projects? We perform
a quantitative study on all the classes of all the projects listed in
to motivate this work. We report the numbers of HIGH, MILD and Low
severity cases that we find in each subject, and we report the results in

section 6.2.61

* RQ2: How accurate is RepliComment at differentiating legitimate and non-
legitimate comment clones? It is essential that RepliComment be able to
differentiate between clones that developers should analyze and fix (non-
legitimate clones), and clones that are legitimate. We manually analyze

91 6.2 Harmful Code Documentation Clones

Table 6.2. Subjects used for the evaluation of RepliComment. For each subject we report
the number of implemented classes, the lines of Java code and the stars on GitHub as of
July 2020

Project Classes LOC Github %
elasticsearch-6.1.1 2906 300k 50k
hadoop-common-2.6.5 1450 180k 11k
vertx-core-3.5.0 461 48k 11k
spring-core-5.0.2 413 36k 38k
hadoop-hdfs-2.6.5 1319 262k 11k
log4j-1.2.17 213 21k 718
guava-19.0 469 70k 38k
rxjava-1.3.5 339 35k 43k
lucene-core-7.2.1 825 103k 4k
solr-7.1.0 501 50k 4k
Total 1665 1105k

225 samples of the HIGH, MILD and Low severity cases that RepliComment
reports as non-legitimate to assess whether they are false positives. More-
over, we manually analyze 200 samples among the cases that RepliCom-
ment flags as legitimate to assess if they are false negatives. We report the

results of this evaluation in [section 6.2.6l

* RQ3: How effective are the newly-introduced heuristics at filtering our le-
gitimate cases? RepliComment-V1 Blasi and Gorla [[2018] did not include
all the heuristics and further improvements that we now implement. We
evaluate how effective they are at reducing the number of false positives
against the RepliComment-V1 implementation, and we present these re-

sults in

* RQ4: How accurate is RepliComment at classifying the severity of non-legitimate
comment clones? We examine the manually analyzed samples of the previ-
ous research question, focusing on how accurate RepliComment is at flag-
ging HIGH, MILD and Low severity cases as such. The results of this evalu-

ation appear insection 6.2.6

* RQ5: Can RepliComment correctly identify the cloned vs. the original com-
ment? When RepliComment finds an instance of a non-legitimate comment
clone due to a copy-paste error, it reports which comment of the pair is the
one that should likely be fixed. We evaluate how accurate this information

is inlsection 6.2.6l

92 6.2 Harmful Code Documentation Clones

* RQ6: To what extent do comment clones detected by RepliComment correlate
with code clone issues? We investigate how often RepliComment reports
comment clone issues for methods that are detected as clones by code clone
detection tools, and report our findings in [section 6.2.6]

Overall, we manually analyze over 500 cases of comment clones.

RQ1: Prevalence of Comment Clones Table shows the complete quantita-
tive data that RepliComment outputs for the method comment clone search. We
report the number of comment clones by type of clone (CP — comment part,
WC — whole comment) and severity of the issue (Low, MILD or HIGH). For each
project, the first row reports the results of running RepliComment with default
scope search (i.e., INTRA-CLASS); the second row (HIERARCHY) reports the ad-
ditional clones with class hierarchy scope; and the last row (INTER-CLASS) the
additional clones with INTER-CLASS search scope.

RepliComment reports a total of 11,368 method comment clones considered
to be potential issues, and discards 61,459 comment clones considered to be
legitimate. For the hierarchy search, RepliComment reports 325 additional po-
tentially harmful clones, while it flags 2494 additional /egitimate clones. Finally,
for the inter-class search, RepliComment reports 49,255 additional clones, while
145,719 more clones are labeled as legitimate.

legitimate We can see that the vast majority of the comment clones are not
harmful. The total of 209,672 comment clones labeled as legitimate by
the Clone detector heuristics are not subsequently analyzed by the Clone
analyzer, and therefore are not reported to developers. 60,948 are left to
be analyzed, namely, 23% of the total reported issues.

Low Inthe intra-class search, 3,973 cases, i.e., 35% of the 11,368 non-legitimate
reported issues, are considered to be Low severity issues, and they all come
from comment part clones. In hierarchy search, this is the case for 91 cases
of 325 (or 28%), 15 for comment part clones and 76 for whole comment
clones. For inter-class search, 31746 (1946 comment parts, 29,800 whole
comments) are LOW severity issues over a total of 49,255 (or 64%). This
means that the Clone analyzer component of RepliComment thinks all those
cases might be false positives, despite overcoming the filtering heuristics of
the Clone detector (subsection 6.2.4). Thus, RepliComment is able to prune
additional clones thanks to the analysis phase.

93 6.2 Harmful Code Documentation Clones

Table 6.3. Quantitative results of the method comment clones reported by RepliComment
on each analyzed project.

. Low MILD HIGH . .
Project o We P We P We Tot. issues Legit
elasticsearch 111 0 23 567 30 184 915 2221
HIERARCHY +4 +39 +2 +21 0 +6 +72 +51
INTER-CLASS +924 428857 +138 +82 +117 +899 +31017 +4323
hadoop-common 100 0 75 173 28 4 380 3859
HIERARCHY +2 +15 0 0 0 +1 +18 +97
INTER-CLASS +64 +84 +569 +17 +55 +6 +795 +2314
vertx-core 33 0 139 53 795 4 1024 17433
HIERARCHY 0 +1 +2 0 0 +3 +6 +378
INTER-CLASS +368 +115 +1636 0 +5579 +13 +7711 +109558
spring-core 46 0 78 83 15 6 228 2089
HIERARCHY +1 0 0 +3 +1 0 +5 +75
INTER-CLASS +192 0 +5 +8 +11 0 +216 +964
hadoop-hdfs 23 0 184 13 7 13 240 1198
HIERARCHY +1 +11 +12 0 +1 +1 +26 +71
INTER-CLASS +19 +608 +1131 +10 +12 +3 +1783 +897
log4j 1 0 3752 437 1 18 4209 16689
HIERARCHY 0 +2 0 0 0 0 +2 +1434
INTER-CLASS +16 +6 +3752 +9 +1 +4 +3788 +18615
guava 75 0 63 215 77 63 493 1122
HIERARCHY +2 +1 +127 +44 0 +4 +178 +79
INTER-CLASS +16 +9 +2066 +49 +20 +6 +2166 +4091
rxjava 3558 0 12 15 48 4 3637 11533
HIERARCHY 0 0 0 0 0 0 0 0
INTER-CLASS +2 +3 +13 +12 +5 0 +35 0
lucene-core 25 0 84 65 1 50 225 1062
HIERARCHY +5 +6 +4 0 0 +2 +17 +295
INTER-CLASS +345 +118 +516 +710 +6 +46 +1741 +4268
solr 1 0 3 9 2 2 17 4253
HIERARCHY 0 +1 0 0 0 0 +1 +14
INTER-CLASS 0 0 0 +2 +1 0 +3 +689
Total, INTRA-CLASS 3973 0 4413 1630 1004 348 11368 61459
Additional, HIERARCHY 15 76 147 68 2 17 325 2494
Additional,INTER-CLASS 1946 29800 9826 899 5807 977 49255 145719

MILD In the intra-class search, 53% of the 11,368 issues, consisting of 4,413
clones of comment parts, and 1,630 clones of whole comments, are con-
sidered to be MILD severity issues by RepliComment. The same applies in
the hierarchy search in 66%, and in inter-class search in 22% of the times,
respectively.

This means that large proportions of problematic comment clones are con-
sidered to be due to poor information quality in the documentation. This
is not surprising to us, as our initial hypothesis was that code comment
clones are mostly due to lack of proper information rather than oblivious
copy-and-paste errors.

94 6.2 Harmful Code Documentation Clones

Table 6.4. Quantitative results of the field comment clones reported by RepliComment
on each analyzed project.

Project Low MiLb HIGH Tot. issues Legit
elasticsearch 2 1 0 3 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +19
hadoop-common 1 21 0 22 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 +1 0 +1 +6
vertx-core 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS +2 +1 0 +3 +14
spring-core 6 0 0 6 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +7
hadoop-hdfs 1 3 1 5 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +4
log4j 0 3 0 3 0
HIERARCHY 0 0 0 0 +2
INTER-CLASS +1 0 0 0 +65
guava 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +6
rxjava 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 +3
lucene-core 1 4 0 5 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 4 0 +4 +10
solr 0 0 0 0 0
HIERARCHY 0 0 0 0 0
INTER-CLASS 0 0 0 0 0
Total, INTRA-CLASS 11 32 1 44 0
Additional, HIERARCHY 0 0 0 0 +2
Additional, INTER-CLASS +3 +6 0 +9 +134

HiGH Finally, in the intra-class search, RepliComment reports that 12% of the
11,368 issues, consisting 1,004 cases of clones in comment parts and 348
cases of whole comment clones, are HIGH severity issues. In the hierarchy
search this happens only for a small proportion of 6% of cases, and, in
the inter-class search, of 14% of cases. Overall, 8155 cases over a total
of 60,948 analyzed ones (13%) are considered to be HIGH severity issues.
These are the issues that RepliComment considers to need an urgent fix.

Table[6.4/shows all clones that RepliComment reports for field comment clones.
Since field comments have no tags, there is no distinction between comment parts
and whole comment clones.

95 6.2 Harmful Code Documentation Clones

In the intra-class search, RepliComment reports a total of 44 field comment
clones considered to be potential issues, while none is considered legitimate right
away. In the hierarchy search, RepliComment reports no additional potentially
harmful clones, while it flags only 2 additional legitimate clones. Finally, in the
inter-class search, RepliComment reports 9 additional problematic clones, while
it labels 134 additional ones as legitimate. The overall number of potential issues
is 53:

Low A total of 14 issues, hence 26% of the total, are considered of LOw severity.

MILD Most of the issues, i.e., 38 (72% of the total), are considered to be of MILD
severity, hence providing poor information.

HiGH Only a single issue is considered to be a HIGH severity one, and it is de-
tected through an intra-class search.

Given the results of this experiment, we conclude that comment clones are
prevalent even in popular Java projects. The results of the search with different
scopes seem to show that RepliComment should better be used either with INTRA-
CLASS or HIERARCHY scopes, as looking for comment clones with INTER-CLASS
scope reports too many method comment clones to be analyzed by developers,
despite the ability of RepliComment to filter out many legitimate cases.

RQ2: Accuracy of RepliComment at differentiating legitimate and non-legitimate
clones We manually analyze some samples of the clones that RepliComment
identifies as legitimate or not to establish the rate of false positives and false
negatives. We first present the results regarding method comments, separating
clones of comment parts and whole comment clones. We then proceed with the
results of field comments.

Method comment clones

False positives We manually inspect all the entries in table to ensure a fair
sampling, and we remove duplicates to ensure that sampling catches the largest
variety of comments. For this purpose, we consider a case to be a duplicate if
the comment is exactly the same, but affects multiple method instances. This is
likely to happen when developers write generic @throws comments such as “on
error” for all the documented exceptions, for instance. Note that we draw this
distinction for manual analysis, but in reality comment clones affecting multiple
methods should all be addressed by developers.

96 6.2 Harmful Code Documentation Clones

Table 6.5. Clones of comment parts and whole comments after duplicate removal

Comment part clones Whole comment clones

Project Low-CP Mild-CP High-CP Total Low-WC Mild-WC High-WC Total
elasticsearch 111 15 6 132 0 377 103 480
HIERARCHY +4 +2 0 +6 +7 +2 +6 +15
INTER-CLASS +461 +119 +33 4613 +2 +10 +503 4515
hadoop-common 34 34 13 81 0 0 0 0
HIERARCHY +2 0 0 +2 +15 0 +1 +16
INTER-CLASS +64 +221 +24 4309 +84 +3 +6 +93
vertx-core 27 15 14 56 0 13 6 19
HIERARCHY 0 +2 0 +2 +1 0 +3 +4
INTER-CLASS +368 +13 +2 4383 +3 0 +1 +4
spring-core 46 20 12 78 0 46 20 66
HIERARCHY +1 0 +1 +2 0 +3 0 +3
INTER-CLASS +36 +5 +11 +52 0 +8 0 +8
hadoop-hdfs 23 28 7 58 0 13 11 24
HIERARCHY +1 +12 +1 +14 +11 0 +1 +12
INTER-CLASS +19 +895 +12 4926 +6 +10 +3 +19
log4j 1 1 1 3 0 15 3 18
HIERARCHY 0 0 0 0 +2 0 0 +2
INTER-CLASS +16 +1 +1 +18 +6 +9 +4 +19
guava 57 24 9 90 0 132 48 180
HIERARCHY +2 +127 0 +129 +1 +1 +4 +6
INTER-CLASS +16 +7 +9 +32 +9 +39 +6 +54
rxjava 23 7 3 33 0 15 2 17
HIERARCHY 0 0 0 0 0 0 0 0
INTER-CLASS +2 +13 +5 +20 +3 +1 0 +4
lucene-core 25 21 1 47 0 65 24 89
HIERARCHY +5 +4 0 +9 +6 +2 0 +8
INTER-CLASS +345 +516 +6 4867 +25 +6 +16 +47
solr 1 3 2 6 0 9 2 11
HIERARCHY 0 0 0 0 +1 0 0 +1
INTER-CLASS 0 0 +1 +1 0 +2 0 +2
Total,INTRA-CLASS 1690 2105 174 3969 182 781 773 1736
Additional, HIERARCHY 15 147 2 164 44 8 15 395
Additional, INTER-CLASS 1327 1790 104 3221 138 88 539 7207

Table|6.5|lists the unique comment clone instances after duplicates removal,
reporting comment part clones and whole comment clones separately.

We sample entries of Table by selecting at least 10% of the cases for each
category (Low, MILD, HIGH for intra-class, hierarchy and inter-class search). We
sample 225 issues for intra-class, 63 for hierarchy, and 124 for inter-class search,
for a total of 412 issues.

Regarding intra-class search, we find:

* For comment parts, we have 50 MILD issues and 30 HIGH issues. We dis-
agree on a total of 33 issues, 26 MILD and 7 HIGH. In particular, all 7 HIGH
issues are false positives, so such clones are actually legitimate. Among the
26 MILD cases, 22 of them are false positives (the rest should have been

97 6.2 Harmful Code Documentation Clones

considered HIGH severity issues). Thus RepliComment produces 29 false
positives for clones of comment parts.

* For whole comment clones, we have 70 MILD issues and 25 HIGH issues. We
disagree on a total of 12 issues, 10 MILD and 2 HIGH, and all of them are
false positives. A common reason why whole clones of comments can still
be considered legitimate is that an API class is not supported anymore, and
its method documentation states so (advising to avoid using the method
and pointing to another class, etc.).

* In conclusion, RepliComment reports 45 false positives for a total of 175
samples for intra-class search, which suggests a precision of 74% of Repli-
Comment in intra-class search.

Regarding hierarchy search, we have:

* For comment parts, we never disagree with RepliComment in the additional
sampled 17 issues (15 MILD and 2 HIGH ones).

* For whole comment clones, we never disagree on the assessment made on
10 MILD, while we do disagree for 11 HIGH ones.

* In conclusion, RepliComment achieves a precision of 71% for hierarchy
search.

Listing |6.4] show an example of a HIGH-severity comment part clone found
while exploring a class hierarchy. The same clone was found during an intra-
class search (see Listing[6.3)): Bad clones existing in one class may be replicated
in its subclasses, thus perpetuating the issue.

Listing 6.4. Hierarchy high-severity issue (RepliComment report)

1| ———— Record #4 file:2020_JavadocClones_h_hadoop—hdfs.csv ———
2| In class: org.apache.hadoop.hdfs.util.LightWeightLinkedSet
3| And its superclass: org.apache.hadoop.hdfs.util.LightWeightHashSet

5| 1) The comment you cloned:"(@return)first element"
6| seems more related to <T pollFirst()> than <List polIN(int n)>

Finally, for inter-class search, we have that:

* For comment parts, we disagree with 4 RepliComment assessments over a
total of 31 (16 MILD and 15 HIGH).

* For whole comment clones, we disagree with 2 assessments over a total of
the 65 (10 MILD and 55 HIGH) issues sampled.

98 6.2 Harmful Code Documentation Clones

* In conclusion, RepliComment reports 6 false positives over a total of 96
issues, achieving a precision of 94%.

As an example, consider Listing The interesting fact is that the two dif-
ferent classes across which the whole comment was cloned are not in the same
hierarchy, and in general have little in common: they do not even belong exactly
to the same package.

Listing 6.5. Inter-class high-severity issue (RepliComment report)

———— Record #6 file:2020_JavadocClones_cf hadoop—hdfs.csv ————
In class: org.apache.hadoop.hdfs.tools.offlineEditsViewer. XmlEditsVisitor
And class:

org.apache.hadoop.hdfs.tools.offlinelmageViewer. TextWriterlmageVisitor

D WN =

o))

You cloned the whole comment for methods
< XmlEditsVisitor(OutputStream out)> and
8| < TextWriterImageVisitor(String filename, boolean printToScreen)>

~

10| The comment you cloned:"(Whole)Create a processor that writes to the

11| file named and may or may not also output to the screen, as specified .
12| @param Name of file to write output to @param Mirror output to screen?"
13| seems more related to <TextWriterImageVisitor(String filename, boolean
14| printToScreen)> than <XmlEditsVisitor(OutputStream out)>

False negatives Our heuristics could wrongly flag as legitimate some clones
that actually represent real issues. Cases marked as legitimate are filtered out
in the first phase, i.e., they are not analyzed further. Thus, in the case of a false
negative, the issue would never be revealed. It is hence important to check that
false negatives are not pervasive.

RepliComment marks as legitimate the comment clones reported in[Table 6.3
We do not distinguish between comment parts and whole comments because a
whole comment clone can never be considered legitimate.

We randomly sample 20 cases for each project and each type of search. If
the total number is less than 20 then we analyze all cases. We manually analyze
each of the 572 comment clones to check whether it should indeed be considered
to be legitimate (i.e., we agree with RepliComment heuristics) or non-legitimate
(i.e., it is a false negative).

99 6.2 Harmful Code Documentation Clones

Table 6.6. Total of clones considered legitimate by the heuristics

Project Agree (legit) Disagree (non-legit) Precision
elasticsearch-6.1.1 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
hadoop-common-2.6.5 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
vertx-core-3.5.0 20 0 100%
HIERARCHY 19 1 95%
INTER-CLASS 20 0 100%
spring-core-5.0.2 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
hadoop-hdfs-2.6.5 19 1 95%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
log4j-1.2.17 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
guava-19.0 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
rxjava-1.3.5 20 0 100%
HIERARCHY- - -
INTER-CLASS 20 0 100%
lucene-core-7.2.1 20 0 100%
HIERARCHY 20 0 100%
INTER-CLASS 20 0 100%
solr-7.1.0 20 0 100%
HIERARCHY 14 0 100%
INTER-CLASS 20 0 100%
Total 572 2 99.7%

Table shows that we disagree with the classification as legitimate in two
comment clones over 572 randomly selected in total. This means that we find
only two false negatives in our random sampling. In particular, one is a case of a
very generic exception comment that RepliComment’s heuristics miss. The second
is the case of parameters documented with the same name (for which a comment
clone is tolerated), having however, different non-primitive types.

Field comments

False positives Since RepliComment reports a relatively low number of issues for
field comments, namely 38 MILD and only one HIGH, we analyze them all. Most
of the MILD severity issues, namely 21, are all from hadoop-common. These
clones would probably be considered legitimate by developers, since the com-
ment states: “This constant is accessible by subclasses for historical purposes. If

100 6.2 Harmful Code Documentation Clones

you don’t know what it means then you don’t need it.” Hence, we consider these
instances to be false positives. We also flag as false positives 3 instances from
hadoop-common: in this case, field names are not parsable correctly due to mul-

tiple words being merged into a single one (e.g., DFS_DATATRANSFER_SERVER_VAR-
IABLEWHITELIST_FILE). We agree with the remaining 14 MILD ones, as well as
with the single HIGH severity issue (see Listing|6.6). This suggests a precision of
39%.

Listing 6.6. Only high-severity issue existing for field clones (RepliComment report)

———— Record #7 file:2020_JavadocClones_fields_hadoop—hdfs.csv ————
3| In class: org.apache.hadoop.hdfs.shortcircuit. ShortCircuitCache

6| 1) The comment you cloned:"(Field) The executor service that runs the
cacheCleaner."
8| seems more related to <cleanerExecutor> than <releaserExecutor>

~

Listing shows the only HiGH-severity issue RepliComment finds when ex-
ploring field clones, along with its assessment. The clone exists within the same
class.

False negatives We sample 20 instances from the 136 total legitimate field-level
clones, and we confirm that we do agree with all of RepliComment’s assessments.

This analysis shows that RepliComment’s heuristics can be trusted to filter out
many legitimate comment clones, and the rate of false positives is acceptable for
practical use.

RQ3: Improvement of Heuristics over RepliComment-V1 We assess how well
new heuristics implemented in the clone detector filter out further false positives
in RepliComment compared to RepliComment-V1. To compare the effectiveness
of the heuristics, we take the intersection of comment clones that RepliCom-
ment-V1 and RepliComment identify, and we compare their classification results.
Table 6.7 presents the percentage of clones that RepliComment-V1 and Repli-
Comment report as non-legitimate. The ability to report fewer issues is positive
given the fact that insection 6.2.6|we assessed that heuristics do not cause false
negatives. The table highlights the following results:

* In half of the projects (marked in bold font) the decrease of clones marked
as non-legitimate by the heuristics is significant, going from a minimum
reduction of -7% (spring-core-5.0.2) to a maximum of -29% (vertx-core-
3.5.0);

101 6.2 Harmful Code Documentation Clones

Table 6.7. Samples of clones marked as non-legitimate before and after new heuristics
application

Project Old heuristics New Heuristics
elasticsearch-6.1.1 49% 29%
hadoop-common-2.6.5 10% 9%
vertx-core-3.5.0 35% 6%
spring-core-5.0.2 17% 10%
hadoop-hdfs-2.6.5 9% 17%
log4j-1.2.17 20% 20%
guava-19.0 31% 31%
rxjava-1.3.5 38% 24%
lucene-core-7.2.1 19% 18%
solr-7.1.0 16% 0.5%
Average 24% 16%

* In four projects the reduction was close to non-existent, which means that
some false positives are potentially retained, but no new ones are intro-
duced;

* In only one project (hadoop-common-2.6.5) did the number of clones
marked as non-legitimate increase by +8% instead of diminishing, poten-
tially leading to an increase in the number of false positives.

RQ4: Accuracy of RepliComment at Classifying legitimate Comment Clones
We manually evaluate RepliComment’s assessment for each entry in the samples
to determine its accuracy at classifying HIGH, MILD and Low clones. Results
report if our manual evaluation agrees or disagrees with RepliComment’s assess-
ment. If we disagree, it means that RepliComment assigns the wrong category to
one case, for example reporting it as a MILD severity when it is actually a Low
one. Conversely, if we agree it means we would assign the same level of severity
to the case.

Method-level analysis Overall, we manually inspect and assess 412 reported
issues. [Table 6.8|reports the analysis for clones of comment parts. Results show
that:

* RepliComment is very effective at classifying both Low (>80%) and HIGH
(>70%) severity issues in all kinds of search (intra-class, hierarchy, inter-

102 6.2 Harmful Code Documentation Clones

Table 6.8. Manual analysis of RepliComment assessment for clones of Javadoc parts
(summary, @param, @return or @throws)

Category Sample Agree Disagree Precision
INTRA-CLASS Low-CP 50 42 8 84%
Mild-CP 50 24 26 48%
High-CP 30 23 7 77%
HIERARCHY Low-CP 15 15 0 100%
Mild-CP 15 15 0 100%
High-CP 2 2 0 100%
INTER-CLASS Low-CP 14 14 0 100%
Mild-CP 16 16 0 100%
High-CP 15 11 4 73%

Total 207 162 45
Average precision 87%

class). This means RepliComment can highlight the most critical clones
(copy-paste issues) that developers should focus on.

* On the other hand, RepliComment often fails at identifying MILD severity
issues as such, since RepliComment analysis fails nearly half of the times
during intra-class search. We carefully analyzed the wrong classifications
to give an explanation to this discrepancy: it appears to be a problem of
linguistic semantics. RepliComment, in the current implementation, is nei-
ther aware of synonyms nor particular developer jargon. For example, our
manual analysis reveals that oftentimes developers refer to a primitive pa-
rameter (being it int, long, char, etc.) generically as “the value”. RepliCom-
ment’s bag of words representations do not map such an expression to any
portion of the method signature, since typically parameters have a specific
name and type that differ from “value”. Hence, the analysis concludes that
the cloned comment does not relate enough either to the first method or
to the second one, maybe because it is too generic. Unfortunately such
cases are false positives (LOW severity). By tackling synonyms correctly,
RepliComment would not report as an issue most of the wrongly classified
cases.

Table 6.9 reports the analysis for clones of whole comments:

103 6.2 Harmful Code Documentation Clones

Table 6.9. Manual analysis of RepliComment assessment for whole Javadoc clones

Category Sample Agree Disagree Precision
INTRA-cLAss OV 0 0 0 0%
Mild-WC 70 60 10 86%
High-WC 25 23 2 92%
HIERARCHY Low-WC 10 10 0 100%
Mild-WC 10 10 0 100%
High-WC 11 0 11 0%
INTER-CLASS Low-WC 14 14 0 100%
Mild-WC 10 10 0 100%
High-WC 55 53 2 96%

Total 205 180 25
Average precision 75%

Precision of RepliComment in classifying both MILD and HIGH severity issues
in all kinds of search for whole comment clones tends to be very high (~90%),
except for hierarchy search. In general, if a whole comment is copied for an
overloaded method, it most likely means that the developer simply forgot to
document the difference in the parameters, which would be a MILD severity issue.
On the other hand, if a whole comment is copied across methods that are not
overloaded, something is likely to be off. We report a particular example of this

in |Listing 6.7
Listing 6.7. RepliComment HIGH severity whole comment clone example

———— Record #519 file:2020_JavadocClones_elastic.csv ———
In class: org. elasticsearch .common.collect.ImmutableOpenMap
1) You cloned the whole comment for methods

<Iterator keysIt()> and

<Iterator valuesIt()>

g ph WN =

~

This is not an overloading case. Check the differences among the two
methods and document them.

[¢2)

10| 2) The comment you cloned:"(Whole)Returns a direct iterator over the
11| keys."
12| seems more related to <Iterator keysIt()> than <Iterator valueslt()>

As for the hierarchy search, RepliComment misclassifies constructor comments.
Overall, it reports a low number of HIGH severity issues, but unfortunately they

104 6.2 Harmful Code Documentation Clones

all look like false positives. To properly tackle constructor comments, more ad-
vanced assessments may be needed.

Field-level analysis We analyze 14 Low-severity issues, 38 MILD-severity issues
and only one HiGH-severity issue. We consider correct all Low-severity issues,
which include 11 clones identified during intra-class search, and 3 additional
clones identified during inter-class search. Regarding MILD-severity issues, we
believe 24 are wrongly classified, since they should probably be labeled as Low.
We consider correct the only HIGH-severity issue coming from an intra-class anal-
ysis of hadoop-hdfs. This yields a precision of 100% for Low and HIGH severity
issues, and of 39% for MILD severity issues.

The results of this experiment show that RepliComment is effective at differ-
entiating comment clones, so developers can effectively focus on the most critical
ones first.

RQ5: Ability to Identify Cloned and Original Comments The ultimate goal
of RepliComment is to support developers in pointing out which comment to fix,
when the clone is due to a copy-and-paste error. In this section we evaluate how
good RepliComment is at distinguishing the original and the cloned comment.

Method-level analysis

Intra-class clones To answer this question, we examine RepliComment’s assess-
ment for the same 30 entries of HIGH-CP in[Table 6.8, and the 25 HIGH-WC entries
in

* For HIGH-CB we exclude the seven entries for which we disagree, since
according to our manual inspection they are not real copy-paste issues.
Our manual analysis confirms the correctness of RepliComment in pointing
out the comment that was cloned for all the remaining 23 cases out of 30.
Thus, the tool correctly suggests to the developer which method needs a
documentation fix with a precision of 77%.

* Similarly, for HIGH-WC, we exclude the two entries for which we disagree.
Our manual analysis reveals that we are unsure about three suggestions
out of 23, and we do not agree with one out of 23 because we can infer
that the two methods are actually equivalent in behavior (RepliComment in
such a case should suggest that each of the methods is similarly related to
the comment, meaning that neither of them appears better than the other).

105 6.2 Harmful Code Documentation Clones

We completely agree with the suggestions for the remaining 19 out of 23
cases, which yields a precision of 83% in suggesting the right fix to the
developer.

Hierarchy clones We examine RepliComment’s assessment for the two entries
of HIGH-CP in|[Table 6.8 and the eleven HIGH-WC entries in [Table 6.9

* For HIGH-CB we do agree with both RepliComment’s picks. It is interesting
to note that one is an example already found via intra-class analysis of
hadoop-hdfs, which was replicated in the hierarchy.

* We exclude HIGH-WC, since we disagreed with all of their assessments.

Inter-class clones We examine RepliComment’s assessment for the 15 entries of

HIGH-CP in and the 55 HIGH-WC entries in

* For HIGH-CB we exclude the four instances for which we disagree with
RepliComment. We do agree with all the remaining ones.

* Similarly, for HIGH-WC, we exclude two instances. As for the remaining 53
ones, it is worth noting that 49 of them seem to arise from the same elas-
tic patterns of documentation. For example, the developers tend to write
comments like “Sets the minimum score below which docs will be filtered out”
both for actual setter methods and methods which are not actually setters,
or at least, methods which perform some extra operations beside setting a
value. Hence, RepliComment is justified in picking the setter method as the
right owner of the comment. That said, those are probably voluntary habits
accepted by the project’s developers, and not actual copy-and-paste slips.
Excluding such instances, we are left with four, which do look like oblivi-
ous copy-and-paste mistakes and for which we agree with RepliComment’s
pick.

Field-level analysis As for field-level analysis, we only have a single instance of
HIGH severity issue, for which we confirm the assessment of RepliComment.

This experiment confirms that RepliComment can actually support developers
in highlighting which comments are the original ones and which ones are copied,
and therefore should be fixed.

106 6.2 Harmful Code Documentation Clones

RQ6: Correlation with code clones Comment clones may be the result of copy-
and-paste practice on entire method implementations. If this was the case, com-
ment clones would appear only when their corresponding method implementa-
tions are clones as well. To understand if this is the case, we compare clone issues
reported by RepliComment and by NiCad 2.6 code clone detector Cordy and Roy:
[2011]. We follow this comparison protocol for each of the projects:

* We extract class-qualified signatures of methods for which RepliComment
reports HIGH severity issues in Javadoc comments for both comment parts
and whole comments in all three analysis modes (within the same file,
within the class hierarchy, and across all classes of the project);

* We extract class-qualified signatures of methods which NiCad reports as
type III (near-miss blind renamed) clones with first over 70% and then
only with exactly 100% similarity using the default configuration (clones
sized between 10 and 2500 LOC, the near-miss difference threshold set
to at most 30% different lines); We use the default code clone similarity
threshold of NiCad clone detector as a baseline in our experiments. The
difference of 30% is already quite liberal in the context of code clones, and
previous studies on human judgment of code clones suggest that it is not
trivial to agree on when a clone becomes a legitimate method with just a
similar structure Kapser and Godfrey [2006]].

* We pipe GNU core utilities sort and comm to sort outputs of both tools and
compare them line by line, respectively.

Additionally, we collect the statistics of how many methods reported as code
clones by NiCad have Javadoc comments. Table|6.10|presents such data both for
exact and non-exact code clones.

We can see from the statistics collected that code clones seem to be fairly
well-documented, with a minimum percentage of commented methods of 15% in
elasticsearch and a maximum percentage of 92% in hadoop-hdfs. The remaining
eight projects can be further split into two groups, where in the first group the
rate of documented code clones is around 30%, and in the other group this rate
is closer to 60%.

However, across the 10 projects we have detected only a few cases for which
both RepliComment and NiCad tools reported clone issues in the same methods.

RepliComment reported whole comment clones in the same file, the first clone
tuple consisting of two methods in the rxjava project, and the second clone tuple
of three methods in the lucene project, where both clone tuples consist of exact
code clones (code similarity 100%).

107 6.2 Harmful Code Documentation Clones

Table 6.10. Code clones statistics

Project Code clones exact Code clones 70%-+ similar
All Commented Matching All Commented Matching

elasticsearch-6.1.1 | 153 43 (28%) 0 1248 193 (15%) 29
hadoop-common-2.6.5 | 155 95 (61%) 0 1047 364 (34%) 0
vertx-core-3.5.0 23 6 (28%) 0 202 56 (27%) 0
spring-core-5.0.2 22 17 (77%) 0 143 89 (62%) 0
hadoop-hdfs-2.6.5 | 422 389 (92%) 0 5764 2093 (36%) 0
log4j-1.2.17 18 10 (55%) 0 90 40 (44%) 0
guava-19.0 84 37 (44%) 0 417 224 (53%) 3
rxjava-1.3.5 35 10 (28%) 2 332 102 (30%) 2
lucene-core-7.2.1 73 24 (32%) 3 592 175 (29%) 3
solr-7.1.0 | 129 25 (19%) 0 528 84 (16%) 0

Additionally, when lowering code clone similarity threshold to 70% RepliCom-
ment and NiCad report matching issues in two additional projects: in the elas-
ticsearch project 29 code clones distributed over 7 different clone classes with
in-class similarity varying from 70% to 91% are also reported by RepliComment
as methods with inter-class whole comment clones, and in the guava project 3
code clones distributed over 1 clone class with in-class similarity of 72% are also
reported by RepliComment as methods with intra-class comment part clones.

Our findings indicate that critical comment clones issues cannot necessarily
be well-detected by code clone detection tools, as in most cases the clones in
comments were considered to be legitimate by RepliComment.

108 6.2 Harmful Code Documentation Clones

Chapter 7

Conclusions

This thesis proposes a framework to automatically generate cost-effective test or-
acles from informal software documentation in natural language, aiming to over-
come the core limitations of state-of-the-art approaches. Current approaches to
automatically generate test oracles either produce oracles with limited capabil-
ities, as implicit and regression oracles, or rely on seldom available artifacts, as
oracles automatically generated from formal specification.

This thesis takes advantage of the observation that most professional soft-
ware systems are commonly available with documentation in the form of text en-
riched with jargon expressions, such as code annotations, comments, and wikis.
The thesis defines approaches to effectively generate oracles in the form of exe-
cutable assertions from the information available as code annotations, after prun-
ing common human mistakes. In this way, our approach automatically generates
semantically relevant oracles without requiring expensive human effort.

7.1 Contributions

The thesis contributes to the state of the art by defining both two approaches,
UpDoc and RepliComment, to detect inconsistencies in informal specification, and
three approaches, JDoctor, MeMo and CaMeMa, to automatically derive prescrip-
tive and descriptive test oracles. UpDoc automatically detects fine-grained in-
consistencies between code and Javadoc specification. RepliComment integrates
UpDoc to detect harmful clones in the documentation and suggest correct fixes to
developers. JDoctor derives oracles from semi-structured Javadoc specification.
MeMo and CaMeMa generate oracles from unstructured Javadoc summaries.

109

110 7.1 Contributions

UpDoc UpDoc automatically detects inconsistencies between code and docu-
mentation Stulova et al. [2020]. UpDoc produces an internal mapping between
the code of Java methods and the corresponding Javadoc documentation rep-
resented as bag of words. It then computes the similarity between code and
documentation, by means of cosine similarity and Word Mover’s Distance. Up-
Doc operates at a fine-grained level, relying on single AST nodes. The technique
generalizes to any programming language and documentation format, and does
not require either training or extra human effort. Our experimental evaluation
on 67 comment changes from the dataset of [Wen et al.|[[2019] indicates that
UpDoc ’s mapping between methods and documentation comments accurately
reflects inconsistencies in 90% of the cases.

RepliComment RepliComment is the first approach that specifically focuses on
harmful documentation clones. We define harmful documentation clones, show
that they occur even in widely-used, well-developed and well-documented sys-
tems Blasi and Gorla [2018], and propose RepliComment, an approach that as-
sesses the severity of harmful clones, and suggests suitable fixes for high severity
clones to the developers [Blasi et al. [2021b]. Our study indicates that docu-
mentation clones are not correlated to code clones, and highlights the need of
different approaches to tackle the two issues.

JDoctor JDoctor Blasi et al. [[2018] generates executable assertions from the
Javadoc documentation of Java methods. JDoctor extracts and analyzes three
classes of Javadoc tags: @param tags that express properties about the precondi-
tions of the documented method; @return tags that express properties about the
normal postcondition of the method; @throws and @exception tags that express
the exceptional postconditions of the method. JDoctor translates the information
present in these tags as natural language text into executable Java assertions.
Our experimental evaluation indicates that JDoctor translates informal textual
annotations into executable specifications with high precision and recall, largely
improving over state-of-the-art approaches. When applied to automated testing,
such as by integrating the specifications in Randoop Pacheco et al. [2007], JDoc-
tor assertions reduce false positives and false negatives by correctly classifying
test cases.

MeMo MeMo Blasi et al.|[2021a] identifies metamorphic relations in Javadoc
method summaries, a kind of unstructured informal specification, and generates
metamorphic oracles. Our experimental evaluation indicates that MeMo accu-

111 7.2 Open Research Directions

rately identifies metamorphic properties, and nicely complements state-of-the-
art techniques such as SBES Mattavelli et al. [2015]. When used as test oracles
jointly with both regression and developers’ assertions, MeMo’s assertions im-
prove the mutation score.

CaMeMa CaMeMa identifies both prescriptive and descriptive temporal con-
straints informally described in Javadoc method summaries, and produces tem-
poral formulas in a machine-readable format. CaMeMa produces temporal speci-
fications with good precision and recall. When integrated with Randoop Pacheco
et al. [2007]], CaMeMa ’s specifications enrich generated error and regression test
suites by revealing false alarms and validating expected exceptions.

7.2 Open Research Directions

By showing the possibility of automatically generating test oracles through the
machine translation of text from Javadoc comments, this thesis opens new re-
search directions towards the further exploitation of natural language artifacts
to improve software testing. We identify three main research directions open
with this thesis: Informal annotations beyond Javadoc, Testing artifacts beyond
oracles, Sentiment analysis beyond NLP.

Informal annotations beyond Javadoc In this thesis, we show how to gener-
ate different test oracles from Javadoc natural language specifications both in
semi-structured and unstructured form. There are many more natural language
artifacts documenting software, such as wikis, tutorials, and the like. Such doc-
umentation refers to software systems at many different granularity levels, and
describes different types of properties. The results presented in this thesis indi-
cate enormous opportunities to adapt the approaches here defined, and devise
new ones to automatically extract useful information to improve testing activi-
ties.

Testing artifacts beyond oracles In this thesis, we show how to automatically
generate executable assertions, metamorphic relations and temporal specifica-
tions from natural language annotations to be used as test oracles. Our evalua-
tion of JDoctor, MeMo and CaMeMa in the context of automated test case gener-
ation indicates that natural language annotations provide information that can
be used to automate the testing process beyond test oracles generation.

112 7.2 Open Research Directions

Sentiment analysis beyond NLP Our preliminary observations about Javadoc
class summaries suggest that analyzing the sentiment of information written by
developers may help us better classify the conveyed information. For example, a
documented class usage may be discouraged, hence enforcing prescriptive prop-
erties. As shown with CaMeMa, this is different from documenting purely de-
scriptive usages. The potential of sentiment analysis in this direction are worth
investigating.

Bibliography

Zahra Shakeri Hossein Abad, Vincenzo Gervasi, Didar Zowghi, and Behrouz H
Far. Supporting analysts by dynamic extraction and classification of
requirements-related knowledge. In Proceedings of the International Confer-
ence on Software Engineering, pages 442—-453. IEEE, 2019.

Surafel Lemma Abebe and Paolo Tonella. Natural language parsing of program
element names for concept extraction. In Proceedings of the International Con-
ference on Program Comprehension, pages 156-159. IEEE, 2010.

Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Mdrquez, Mario Linares-Vasquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. Software documentation
issues unveiled. In Proceedings of the International Conference on Software En-
gineering, pages 1199-1210. IEEE, 2019.

Nauman Bin Ali, Emelie Engstrom, Masoumeh Taromirad, Mohammad Reza
Mousavi, Nasir Mehmood Minhas, Daniel Helgesson, Sebastian Kunze, and
Mahsa Varshosaz. On the search for industry-relevant regression testing re-
search. Empirical Software Engineering, 24(4):2020-2055, 2019.

Glenn Ammons, Ras Bodik, and James R Larus. Mining specifications. In Pro-
ceedings of the Symposium on Principles of Programming Languages, pages 4-16.
ACM, 2002.

Sergio Antoy and Dick Hamlet. Automatically checking an implementation
against its formal specification. IEEE Transactions on Software Engineering,
26(1):55-69, 2000.

Wladimir Araujo, Lionel C. Briand, and Yvan Labiche. Enabling the runtime
assertion checking of concurrent contracts for the java modeling language. In
Proceedings of the International Conference on Software Engineering, ICSE '11,
pages 786-795, 2011.

113

114 Bibliography

Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Linguistic
antipatterns: what they are and how developers perceive them. Empirical
Software Engineering, 21:104-158, February 2016.

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. The
oracle problem in software testing: A survey. IEEE Transactions on Software
Engineering, 41(5):507-525, 2015.

Arianna Blasi and Alessandra Gorla. Replicomment: Identifying clones in code
comments. In Proceedings of the International Conference on Program Compre-
hension, ICPC’18. ACM, 2018.

Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezze, and Sergio Delgado Castellanos. Translating code com-
ments to procedure specifications. In Proceedings of the International Sympo-
sium on Software Testing and Analysis, ISSTA ’18. ACM, 2018.

Arianna Blasi, Alessandra Gorla, Michael D Ernst, Mauro Pezze, and Antonio
Carzaniga. Memo: Automatically identifying metamorphic relations in javadoc
comments for test automation. Journal of Systems and Software, 181:111041,
2021a.

Arianna Blasi, Nataliia Stulova, Alessandra Gorla, and Oscar Nierstrasz. Repli-
comment: identifying clones in code comments. Journal of Systems and Soft-
ware, 182:111069, 2021b.

Bobby R Bruce, Justyna Petke, Mark Harman, and Earl T Barr. Approximate
oracles and synergy in software energy search spaces. IEEE Transactions on
Software Engineering, 45(11):1150-1169, 2018.

Antonio Carzaniga, Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, and
Mauro Pezze. Cross-checking oracles from intrinsic software redundancy. In
Proceedings of the International Conference on Software Engineering, ICSE '14,
pages 931-942. ACM, 2014.

Hui Chen, John Coogle, and Kostadin Damevski. Modeling stack overflow tags
and topics as a hierarchy of concepts. Journal of Systems and Software, 156:
283-299, 2019.

Tsong Y. Chen, Shing-Chi Cheung, and Shiu Ming Yiu. Metamorphic testing: a
new approach for generating next test cases. Technical report, Department of
Computer Science, Hong Kong University of Science and Technology, 1998.

115 Bibliography

Tsong Y. Chen, E-C. Kuo, T. H. Tse, and Zhi Quan Zhou. Metamorphic testing
and beyond. In International Workshop on Software Technology and Engineering
Practice, STEP '03, pages 94-100. IEEE Computer Society, 2003.

Yoonsik Cheon. Abstraction in assertion-based test oracles. In Proceedings of the
International Conference on Quality Software, QSIC ’07, pages 410-414, 2007.

Yoonsik Cheon and Gary T. Leavens. A simple and practical approach to unit
testing: The JML and JUnit way. In Proceedings of the European Conference on
Object-Oriented Programming, ECOOP ’02, pages 231-255, 2002.

James R Cordy and Chanchal K Roy. The nicad clone detector. In Proceedings of
the International Conference on Program Comprehension, pages 219-220. IEEE
Computer Society, 2011.

Christoph Csallner and Yannis Smaragdakis. JCrasher: An automatic robustness
tester for java. Software: Practice and Experience, 34(11):1025-1050, Septem-
ber 2004.

Christoph Csallner and Yannis Smaragdakis. Check 'n’ Crash: Combining static
checking and testing. In Proceedings of the International Conference on Software
Engineering, ICSE ’05, pages 422—431. IEEE Computer Society, 2005.

Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsantalis. Using natural
language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering, 43(11):1044-1062, 2017.

Martin D. Davis and Elaine J. Weyuker. Pseudo-oracles for non-testable programs.
In Proceedings of the ACM ’81 Conference, ACM 81, pages 254-257. ACM, 1981.

J. D. Day and J. D. Gannon. A test oracle based on formal specifications. In
Proceedings of the Conference on Software Development Tools, Techniques, and
Alternatives, SOFTAIR ’85, pages 126-130, 1985.

Luciano Del Corro and Rainer Gemulla. Clausie: Clause-based open information
extraction. In Proceedings of the International Conference on World Wide Web,
WWW ’13, pages 355-366. ACM, 2013.

Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Junji Shimagaki,
Corrado A Visaggio, Gerardo Canfora, and Harald C Gall. What would users
change in my app? summarizing app reviews for recommending software
changes. In Proceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, pages 499-510. ACM, 2016.

116 Bibliography

Andrea Di Sorbo, Sebastiano Panichella, Corrado Aaron Visaggio, Massimiliano
Di Penta, Gerardo Canfora, and Harald C Gall. Exploiting natural language
structures in software informal documentation. IEEE Transactions on Software
Engineering, 2019.

Roong-Ko Doong and Phyllis G. Frankl. The ASTOOT approach to testing object-
oriented programs. ACM Transactions on Software Engineering and Methodol-
ogy, 3(2):101-130, 1994.

Vasiliki Efstathiou, Christos Chatzilenas, and Diomidis Spinellis. Word embed-
dings for the software engineering domain. In Proceedings of the Working Con-
ference on Mining Software Repositories, pages 38-41. ACM, 2018.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. Fine-grained and accurate source code differencing. In Proceedings
of the International Conference on Automated Software Engineering, pages 313—
324, 2014.

Beat Fluri, Michael Wursch, and Harald C Gall. Do code and comments co-
evolve? on the relation between source code and comment changes. In 14th
Working Conference on Reverse Engineering (WCRE 2007), pages 70-79. IEEE,
2007.

Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite generation
for object-oriented software. In Proceedings of the European Software Engi-
neering Conference held jointly with the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE ’11, pages 416-419. ACM,
2011.

Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Transactions
on Software Engineering, 39(2):276-291, 2013.

Susumu Fujiwara, Gregor von Bochmann, Ferhat Khendek, Mokhtar Amalou,
and Abderrazak Ghedamsi. Test selection based on finite state models. IEEE
Transactions on Software Engineering, 17(6):591-603, 1991.

John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, implemen-
tation, specification, and testing. ACM Transactions on Programming Languages
and Systems, 3(3):211-223, 1981.

Gregory Gay, Sanjai Rayadurgam, and Mats PE Heimdahl. Automated steering of
model-based test oracles to admit real program behaviors. IEEE Transactions
on Software Engineering, 43(6):531-555, 2016.

117 Bibliography

Alberto Goffi, Alessandra Gorla, Andrea Mattavelli, Mauro Pezze, and Paolo
Tonella. Search-based synthesis of equivalent method sequences. In Proceed-
ings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 14, pages 366-376. ACM, 2014.

Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezze. Automatic
generation of oracles for exceptional behaviors. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’16, pages 213-224.
ACM, 2016.

Arnaud Gotlieb. Exploiting symmetries to test programs. In Proceedings of the
International Symposium on Software Reliability Engineering, ISSRE 03, pages
365-374. IEEE Computer Society, 2003.

Samir Gupta, Sana Malik, Lori Pollock, and K Vijay-Shanker. Part-of-speech tag-
ging of program identifiers for improved text-based software engineering tools.
In Proceedings of the International Conference on Program Comprehension, pages
3-12. IEEE Computer Society, 2013.

Tobias Hey, Fei Chen, Sebastian Weigelt, and Walter F Tichy. Improving trace-
ability link recovery using fine-grained requirements-to-code relations. In Pro-
ceedings of the IEEE International Conference on Software Maintenance and Evo-
lution, pages 12-22. IEEE, 2021.

Ruihong Huang, Ignacio Cases, Dan Jurafsky, Cleo Condoravdi, and Ellen Riloff.
Distinguishing past, on-going, and future events: The EventStatus corpus. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics, 2016.

Reyhaneh Jabbarvand, Forough Mehralian, and Sam Malek. Automated con-
struction of energy test oracles for android. In Proceedings of the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
927-938, 2020.

Gunel Jahangirova, Andrea Stocco, and Paolo Tonella. Quality metrics and ora-
cles for autonomous vehicles testing. In Proceedings of the International Con-
ference on Software Testing, Verification and Validation, pages 194-204. IEEE,
2021.

René Just, Franz Schweiggert, and Gregory M. Kapfhammer. Major: An efficient
and extensible tool for mutation analysis in a Java compiler. In Proceedings

118 Bibliography

of the International Conference on Automated Software Engineering, ASE 11,
pages 612-615. IEEE Computer Society, 2011.

Upulee Kanewala. Techniques for automatic detection of metamorphic relations.
In Proceedings of the International Conference on Software Testing, Verification
and Validation Workshop, pages 237-238. IEEE Computer Society, 2014.

Upulee Kanewala and James M. Bieman. Using machine learning techniques
to detect metamorphic relations for programs without test oracles. In ISSRE,
ISSRE 13, pages 1-10. IEEE Computer Society, 2013.

Cory J Kapser and Michael W Godfrey. Supporting the analysis of clones in soft-
ware systems. Journal of Software Maintenance and Evolution: Research and
Practice, 18(2):61-82, 2006.

Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and Arie
van Deursen. Effective and efficient api misuse detection via exception propa-
gation and search-based testing. In Proceedings of the International Symposium
on Software Testing and Analysis, pages 192-203. ACM, 2019.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. From word
embeddings to document distances. In Proceedings of the International Confer-
ence on International Conference on Machine Learning, ICML ’15, pages 957-
966, 2015.

Hongwei Li, Sirui Li, Jlamou Sun, Zhenchang Xing, Xin Peng, Mingwei Liu, and
Xuejiao Zhao. Improving api caveats accessibility by mining api caveats knowl-
edge graph. In Proceedings of the IEEE International Conference on Software
Maintenance and Evolution, pages 183-193. IEEE, 2018.

Bin Lin, Fiorella Zampetti, Gabriele Bavota, Massimiliano Di Penta, and Michele
Lanza. Pattern-based mining of opinions in q&a websites. In Proceedings of the
International Conference on Software Engineering, pages 548-559. IEEE, 2019.

Huai Liu, Xuan Liu, and Tsong Yueh Chen. A new method for constructing meta-
morphic relations. In Proceedings of the International Conference on Quality
Software, QSIC ’12, pages 59-68. IEEE Computer Society, 2012.

Zhongxin Liu, Xin Xia, Meng Yan, and Shanping Li. Automating just-in-time
comment updating. In Proceedings of the International Conference on Automated
Software Engineering, pages 585-597. IEEE Computer Society, 2020.

119 Bibliography

Annie Louis, Santanu Kumar Dash, Earl T Barr, Michael D Ernst, and Charles Sut-
ton. Where should i comment my code? a dataset and model for predicting
locations that need comments. In Proceedings of the 42nd International Con-
ference on Software Engineering (New Ideas and Emerging Results) (ICSE NIER
2020). ACM, 2020.

Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and
Rudolf Ramler. GRT: Program-analysis-guided random testing. In Proceed-
ings of the International Conference on Automated Software Engineering, ASE
15, pages 212-223. ACM, 2015.

Phu X. Mai, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. A natural lan-
guage programming approach for requirements-based security testing. In Pro-
ceedings of the International Symposium on Software Reliability Engineering, IS-
SRE ’18, pages 58-69. IEEE Computer Society, 2018.

Rabee Sohail Malik, Jibesh Patra, and Michael Pradel. NI2type: inferring
javascript function types from natural language information. In Proceedings
of the International Conference on Software Engineering, pages 304-315. IEEE
Computer Society, 2019.

Marie-Catherine Marneffe, Bill MacCartney, and Christopher Manning. Generat-
ing typed dependency parses from phrase structure parses. In Proceedings of
the International Conference on Language Resources and Evaluation, LREC "06,
pages 449-454. European Language Resources Association (ELRA), 2006.

Andrea Mattavelli, Alberto Goffi, and Alessandra Gorla. Synthesis of equivalent
method calls in Guava. In Proceedings of the 7th International Symposium on
Search-Based Software Engineering, SSBSE '15, pages 248-254. Springer, 2015.

Jason Mcdonald. Translating Object-Z specifications to passive test oracles. In
Proceedings of the International Conference on Formal Engineering Methods,
ICFEM 98, pages 165-174, 1998.

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1st edition,
1988.

Erich Mikk. Compilation of Z specifications into C for automatic test result eval-
uation. In Proceedings of the 9th International Conference of Z Users, ZUM "95,
pages 167-180, 1995.

120 Bibliography

Martin Monperrus, Michael Eichberg, Elif Tekes, and Mira Mezini. What should
developers be aware of? an empirical study on the directives of api documen-
tation. Empirical Software Engineering, 17(6):703-737, 2012.

Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K Roy, and Kevin A
Schneider. Cledsa: cross language code clone detection using syntactical fea-
tures and api documentation. In Proceedings of the International Conference on
Automated Software Engineering, pages 1026-1037. IEEE Computer Society,
2019.

Mahdi Nejadgholi and Jingiu Yang. A study of oracle approximations in test-
ing deep learning libraries. In Proceedings of the International Conference on
Automated Software Engineering, pages 785-796. IEEE, 2019.

C. Newman, M. J. Decker, R. S. AlSuhaibani, A. Peruma, D. Kaushik, and E. Hill.
An open dataset of abbreviations and expansions. In Proceedings of the IEEE
International Conference on Software Maintenance and Evolution, pages 280-
280, 2019.

Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J Mooney,
and Milos Gligoric. A framework for writing trigger-action todo comments in
executable format. In Proceedings of the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 385-396, 2019.

Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classifica-
tion of test inputs. In Proceedings of the European Conference on Object-Oriented
Programming, ECOOP 05, pages 504-527. Springer Berlin Heidelberg, 2005.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proceedings of the International
Conference on Software Engineering, ICSE '07, pages 75-84. ACM, 2007.

Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. Inferring method specifications from natural language api descrip-
tions. In Proceedings of the International Conference on Software Engineering,
ICSE 12, pages 815-825. IEEE Computer Society, 2012.

Rahul Pandita, Kunal Taneja, Laurie Williams, and Teresa Tung. Icon: Inferring
temporal constraints from natural language api descriptions. In Proceedings
of the IEEE International Conference on Software Maintenance and Evolution,
pages 378-388. IEEE Computer Society, 2016.

121 Bibliography

Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. How can i improve my app? classifying
user reviews for software maintenance and evolution. In Proceedings of the
IEEE International Conference on Software Maintenance and Evolution, pages
281-290. IEEE Computer Society, 2015.

Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Visaggio,
Gerardo Canfora, and Harald C. Gall. Ardoc: App reviews development ori-
ented classifier. In Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, page 1023-1027. ACM, 2016.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Ray-
mond Mooney. Learning to update natural language comments based on code
changes. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 1853-1868, 2020.

Sheena Panthaplackel, Junyi Jessy Li, Milos Gligoric, and Raymond J Mooney.
Deep just-in-time inconsistency detection between comments and source code.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
427-435, 2021.

Profir-Petru Partachi, Santanu Dash, Christoph Treude, and Earl T Barr. Posit:
Simultaneously tagging natural and programming languages. In Proceedings
of the International Conference on Software Engineering, 2019.

Timo Pawelka and Elmar Juergens. Is this code written in english? a study of the
natural language of comments and identifiers in practice. In Proceedings of the
IEEE International Conference on Software Maintenance and Evolution, pages
401-410. IEEE, 2015.

Ivan Porres and Irum Rauf. From nondeterministic uml protocol statemachines
to class contracts. In Proceedings of the International Conference on Software
Testing, Verification and Validation, pages 107-116. IEEE, 2010.

Michael Pradel and Thomas R Gross. Leveraging test generation and specification
mining for automated bug detection without false positives. In Proceedings of
the International Conference on Software Engineering, pages 288-298. IEEE,
2012.

Michael Pradel, Philipp Bichsel, and Thomas R Gross. A framework for the eval-
uation of specification miners based on finite state machines. In 2010 IEEE
International Conference on Software Maintenance, pages 1-10. IEEE, 2010.

122 Bibliography

Mohammad Masudur Rahman and Chanchal Roy. Effective reformulation of
query for code search using crowdsourced knowledge and extra-large data
analytics. In Proceedings of the IEEE International Conference on Software Main-
tenance and Evolution, pages 473-484. IEEE, 2018.

Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Path-
sensitive inference of function precedence protocols. In Proceedings of the In-
ternational Conference on Software Engineering, pages 240-250. IEEE, 2007.

Pooja Rani, Sebastiano Panichella, Manuel Leuenberger, Andrea Di Sorbo, and
Oscar Nierstrasz. How to identify class comment types? a multi-language
approach for class comment classification. Journal of Systems and Software,
181:111047, 2021.

Inderjot Kaur Ratol and Martin P Robillard. Detecting fragile comments. In
Proceedings of the International Conference on Automated Software Engineering,
pages 112-122. IEEE Computer Society, 2017.

David S. Rosenblum. A practical approach to programming with assertions. IEEE
Transactions on Software Engineering, 21(1):19-31, 1995.

Chanchal Kumar Roy and James R Cordy. A survey on software clone detection
research. Queen’s School of Computing TR, 541(115):64-68, 2007.

Tomohiro Sakaguchi, Daisuke Kawahara, and Sadao Kurohashi. Comprehen-
sive annotation of various types of temporal information on the time axis. In
Proceedings of the Eleventh International Conference on Language Resources and
Evaluation. European Language Resources Association (ELRA), 2018.

Sebastian Schuster and Christopher D Manning. Enhanced english universal de-
pendencies: An improved representation for natural language understanding
tasks. In Proceedings of the Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 2371-2378, 2016.

Christian Schwarzl and Bernhard Peischl. Generation of executable test cases
based on behavioral uml system models. In Proceedings of the International
Workshop on Automation of Software Test, pages 31-34, 2010.

Lin Shi, Mingyang Li, Mingzhe Xing, Yawen Wang, Qing Wang, Xinhua Peng,
Weimin Liao, Guizhen Pi, and Haiqing Wang. Learning to extract transac-
tion function from requirements: an industrial case on financial software. In
Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 1444-1454, 2020.

123 Bibliography

Nataliia Stulova, Arianna Blasi, Alessandra Gorla, and Oscar Nierstrasz. Towards
detecting inconsistent comments in java source code automatically. In Inter-
national Working Conference on Source Code Analysis and Manipulation, 2020.

Fang-Hsiang Su, Jonathan Bell, Christian Murphy, and Gail E. Kaiser. Dynamic
inference of likely metamorphic properties to support differential testing. In
Hong Zhu, Dan Hao, Leonardo Mariani, and Rajesh Subramanyan, editors,
Proceedings of the International Workshop on Automation of Software Test, pages
55-59. IEEE Computer Society, 2015.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. @tComment: Test-
ing Javadoc comments to detect comment-code inconsistencies. In Proceedings
of the International Conference on Software Testing, Verification and Validation,
ICST ’12, pages 260-269. IEEE Computer Society, 2012.

Richard N. Taylor. An integrated verification and testing environment. Software:
Practice and Experience, 13(8):697-713, 1983.

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Wolfram Schulte. MSeqGen: Object-oriented unit-test generation via mining
source code. In Proceedings of the European Software Engineering Conference
held jointly with the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE ’09, pages 193-202. ACM, 2009.

Javier Troya, Sergio Segura, and Antonio Ruiz-Cortés. Automated inference of
likely metamorphic relations for model transformations. Journal of Systems
and Software, 136:188-208, 2018.

Chunhui Wang, Fabrizio Pastore, Arda Goknil, Lionel Briand, and Zohaib Igbal.
Automatic generation of system test cases from use case specifications. In

Proceedings of the International Symposium on Software Testing and Analysis,
ISSTA 15, pages 385-396. ACM, 2015.

Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. A large-scale
empirical study on code-comment inconsistencies. In Proceedings of the Inter-
national Conference on Program Comprehension, pages 53-64. IEEE, 2019.

Elaine J. Weyuker. On testing non-testable programs. The Computer Journal, 25
(4):465-470, 1982.

Zhenglong Xiang, Hongrun Wu, and Fei Yu. A genetic algorithm-based approach
for composite metamorphic relations construction. Information, 10(12):392,
2019.

124 Bibliography

Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, and Tao Xie. Automated
extraction of security policies from natural-language software documents. In
Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 1-11, 2012.

Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiging Ma, Lin Tan, and Xiangyu Zhang. C2s: translating natural language
comments to formal program specifications. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages 25-37,
2020.

Bo Zhang, Hongyu Zhang, Junjie Chen, Dan Hao, and Pablo Moscato. Automatic
discovery and cleansing of numerical metamorphic relations. In Proceedings
of the IEEE International Conference on Software Maintenance and Evolution,
pages 235-245. IEEE Computer Society, 2019.

Hao Zhong, Lu Zhang, Tao Xie, and Hong Mei. Inferring resource specifications
from natural language API documentation. In Proceedings of the International
Conference on Automated Software Engineering, ASE 09, pages 307-318. IEEE
Computer Society, 2009.

Celal Ziftci and Diego Cavalcanti. De-flake your tests: Automatically locating
root causes of flaky tests in code at google. In Proceedings of the IEEE Inter-
national Conference on Software Maintenance and Evolution, pages 736-745.
IEEE Computer Society, 2020.

