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Lorsqu’un jour le peuple veut
vivre, force est pour le destin de
répondre. Force est pour les
ténèbres de se dissiper, force est
pour les chaînes de se briser . . .

When the people will to live,
destiny must surely respond.
Oppression shall then vanish, and
fetters are certain to break . . .

Se un giorno il popolo vorrà
vivere, il destino deve
assecondarlo. La notte deve
dissiparsi e le catene devono
spezzarsi . . .

Abou el Kacem Chebbi
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Abstract

The objective of this thesis is to build an efficient and powerful computational
framework for addressing large scale Uncertainty Quantification (UQ) problems
arising in cardiac electrophysiology.

Cardiac models for reproducing the electrophysiological activity may suffer
from a significant amount of uncertainties. These may be associated to the inher-
ent physical and geometrical parameters of the model, as much as they could be
induced by the imprecision of the model itself (e.g. uncertainty in the ion channel
model). We here rely exclusively on the monodomain equation that represents
a widely used model for computing the activation map of the cardiac cells. This
model is highly anisotropic, as it strongly depends on the heart fibers’ directions.

In this thesis, we evaluate the effect of spatially correlated perturbations of
the heart fibers on the statistics of the resulting activation map. We rely on sam-
pling methods that entail solving a numerous amount of times the computation-
ally expensive monodomain model. The feasibility of such an approach is highly
dependent on the efficiency of the computational framework. For this purpose,
we introduce a new methodology which relies on a close integration of multilevel
Monte-Carlo methods, parallel iterative solvers and a space-time all–at–once ap-
proach. This design allows for a fully parallelized framework in space, time, and
stochastics. The following setting is further improved by taking advantage of
space-time solutions of past samples in the initialization of the Newton’s method,
resulting in a tremendous reduction of iterations for convergence.

We numerically assess the described framework on three dimensional geome-
tries. More precisely, we evaluate the convergence properties and compare the
performances of classical Monte Carlo and quasi-Monte Carlo methods, as well
as multilevel quadrature strategies. In particular, we consider multilevel Monte
Carlo and multilevel quasi-Monte Carlo on hierarchies of nested meshes for the
time–dependent non linear equation represented by the monodomain model. Fi-
nally, and as a synthesis of the following work, we use the reversed construction
of the multilevel quadrature in order to adapt the multilevel (quasi-) Monte Carlo
to the configuration of non-nested meshes of a realistic heart geometry.
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Chapter 1

Introduction

Due to its very central role, the heart plays the greatest partition in the human
body symphony and the smallest misregulation of its activity might unluckily lead
to dramatic consequences. As a matter of fact, cardiovascular diseases carve up
the lion’s share in terms of mortality causes and lethal cardiac incidents are re-
ported to be responsible of about 17 millions deaths worldwide every year, c.f.
Figure 1.1. Faced with this observation, the human ingenuity is left with no other
option than to rival of creativity in order to comprehend the inherent complex
mechanism of heart functioning, as a first step towards the implementation of
medical treatments.

Figure 1.1. Statistics on death causes worldwide. Published online at
OurWorldInData.org, Source: Institute for Health Metrics and Evaluation.

1



2 1.1 Brief history of the cardiac research

1.1 Brief history of the cardiac research

From the early stages of the 19th century up to nowadays, many major discov-
eries have been achieved contributing largely not only to the understanding of
the mysterious heart operating mechanism, but also to the modern clinical prac-
tice as we know it today, with its increasingly complex screening instruments
made at our disposal. The long pathway always needs to start somewhere and
in 1842, the pioneer Dr. Carlo Matteucci (Italian professor of physics at the
University of Pisa) was the first to record the heart electrical activity of a frog,
see [Mat42]. His outstanding discovery was further brought to the human per-
spective, as Augustus Waller (British physiologist at St Mary’s Medical School)
used a capillary electrometer and electrodes to reveal for the first time in the
history the electrical activity of a human heart in 1887, see [Wal87]. Greatly in-
spired by this experiment, Dr. Willem Einthoven (Dutch physiologist) took up the
torch and distinguished five significant deviations in the curve of the electrical
activity known until today as the PQRST sequence. This represented in a way the
first mathematical intervention in electrophysiology, as one of Einthoven’s addi-
tion consisted in a mathematical correction of the recorded electrical curve. The
cardiac research community also owes Einthoven the terminology of electrocar-
diogram, shortened initially as EKG, to become the famous ECG in reference to
its English orthography, see [Ein95]. Back then, the electrocardiograph used by
Einthoven was a quite insolite machinery that weighted hundreds of kilos, where
two cylinders of electrolyte solution constituted rather rustic electrodes. Com-
bined to a third mouth electrode, this constituted the first three-lead approach
in electrocardiography to be used in clinical practice, eventually after further im-
provement of the maneuverability of the initial electrocardiogram. The next five
decades have witnessed a constant evolution of the apparel, in terms of clinical
practicality and measuring efficiency. In 1942, Emanuel Goldberger (American
cardiologist) adds three additional limb leads. Combined to the six pericordial
leads introduced by Dr. Frank Wilson (American cardiologist) and the three ini-
tial leads of Einthoven, this constituted the 12-leads electrocardiogram as known
today, see [AL12] for more details. Probably the most noticeable discovery that
summarizes the effort made on the constant improvement of the measuring sys-
tem was the invention brought by Normann Jeff Holter (American biophysician
at the University of California) in 1949, consisting in a portable backpack de-
vice able to record the ECG and transmit the signal to a monitor. A device that



3 1.2 Modern cardiac research in clinical practice

by now is as small as to hold in a pocket, equipped with digital recording.1 In
our modern days, the ECG remains an elementary yet powerful instrument for
detecting electrical disorders. Nonetheless, the ECG alone might encounter limi-
tations, being unable to provide the right diagnosis in some situations. The ECG
needs therefore to be supplied with additional technologies.

1.2 Modern cardiac research in clinical practice

Historical research on electrocardiography, as shortly narrated above, was of a
major importance as it provided scientists with the main interaction tool for a
quantitative evaluation of patients hearts’ electrical activity. On the way to the
most modern and elaborate electrocardiograms of nowadays, and as the exper-
imenting process progressed, the heart functioning mechanism was no longer
a mystery and its role in the circulatory system became well understood. This
has prepared the ground for new tracks of exploration for medical treatment
prospects, since the ability of detecting heart dysfunctioning is a complete sepa-
rate task from providing curative solutions.
While the responsibility of the healing step accounts in its major part to doctors,
cardiologists and biologists, the improvement of screening capabilities in clinical
practice definitely facilitate this process. Quantitative and qualitative screening
becomes naturally the new adage, as one would like to picture the biggest set of
information in the least invasive way.

In that context, cardiac imaging has opened a whole new era. With the ar-
rival of Magnetic Resonance Imaging (MRI) and Cardiac Computed Tomography
(CCT), the reach of non-invasive fully complete diagnosis had never become so
close. The MRI constituted a revolution as it provided information in tissue char-
acterization, while the CCT refashioned coronary artery disease detection as it
allowed visualizing the coronary arteries without an invasive angiogram. For a
more detailed resume on cardiac imaging and their different modalities, we refer
the reader to [LP16].

Nonetheless, with all the nowadays techniques at hand, some heart diseases
remain complicated to comprehend and to heal. Atrial fibrillation for example
is still a very challenging phenomenon to combat on a patient-specific basis. In
the meantime, the progress made in mathematical modeling, numerical analysis
for partial differential equations and the growing computing capabilities opened
the way for a new expedition. Mathematicians and computational scientists are

1See https://ecglibrary.com/ecghist.html for a more detailed timeline on history of eletrocar-
diography

https://ecglibrary.com/ecghist.html
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slowly but surely exploring the idea of patient-specific in silico virtual therapy.
The whispered hope of a heart digital twin is not that silent anymore.

1.3 Computational mathematics in cardiac electro-
physiology

All the dynamics governing the heart functioning are physiological phenomenons
and consequently mathematically modelable. Whether we refer to the heart
movement or its blood pumping function, very well established models exist de-
riving from the fields of mechanics and hemodynamics. Regarding the eletro-
physiological aspect, much research around electrical potential propagation in-
side an excitable cell has been successfully conducted. This was at first initiated
by [HH52] followed by [Fit61], who proposed a cellular model for describing a
prototype of an excitable cell. Many detailed membrane models followed since
then, with increasing precision in terms of number of currents and variables.
From the local (heart cell) to the global (heart tissue) scale, [Hen93] summa-
rized the electrical potential propagation inside the cardiac muscle, within the
bidomain set of equations that differentiated the behavior of the intra and extra-
cellular potentials. A more exhaustive and detailed description about models at
the cellular and tissue level will be provided in Chapter 2.

From that moment on, investigating the heart dynamics through numerically
solved mathematical equations got materialized, in what could be referred to
as part of computational medicine. This research field became very well estab-
lished during the two last decades, reaching already the clinical level in some
cases. Several models for cardiac electrophysiology, mechanics and hemodynam-
ics had been developed, with even remarkable coupling systems benchmarks.
(see [NNN+11, Qua15, Tra11] ).

Computational medicine can assist cardiology in many aspects, ranging from
diagnosis to in silico virtual therapy. Inverse problems in cardiac electrophysi-
ology can even improve data acquisition by inferring models’ parameters, while
a good data-model integration makes the conceit of digital twin feasible. The
contribution of computational medicine to cardiological clinical practice is ex-
pected to grow given the continuous and tremendous advances realized in terms
of growing computational resources.
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1.4 Uncertainty Quantification (UQ) motivation

Despite the very promising aspects of computational medicine, severe hurdles
stand in the way. The lack of data that models rely on is definitely a major
issue in tailoring patient–specific therapies. We refer to this data deficit with the
terminology of uncertainties.

The source of these uncertainties can be very broad and diverse. For instance,
some model parameters are hardly quantifiable due to simplifications of the ex-
perimental procedure. Indeed, clinical experiments for estimating model input
parameters may reveal in some cases to be either very costly, or quite invasive.
Limitations of the measurement apparatus can also induce uncertainties, or sim-
ply fail to provide the needed information.

Another potential source of uncertainties may arise from the inter and intra–
subject variability. Those refer to differences originating from an individual to
another (inter–variability), but also among the same individual himself (intra–
variability) as indeed humans’ bodies represent dynamical systems. Probably the
most evident and significant variability in that sense derives from the heart ge-
ometry, but one can also evoke uncertainties with respect to initial and boundary
conditions.

Among all those possible sources of uncertainty, we are confronted to a major
one whenever we consider the heart fibers. Those are comprised in its myor-
cardium, and accomplish a fundamental task when it comes to diffuse the elec-
trical potential all over the cardiac muscle. Unfortunately and even with all the
modern technology at hand regarding CCT and MRI imaging, the fibers orienta-
tions as well as the conductivities they carry are extremely hard to determine pre-
cisely. Moreover, these can vary from one patient to another (inter–variability),
leading to huge uncertainties if standard orientations or conductivities are used
in patient-specific simulations. It is therefore imperative to quantify the effects
of the fibers’ uncertainties on the output quantities–of–interest.

Scope of the thesis

Mathematically, the fibers are modeled by means of a tensor diffusion field.
In this work, we focus on modeling the fibers’ uncertainties (orientation and con-
ductivies) as a spatially–correlated random perturbation applied to the diffusion
field. We concentrate exclusively on the monodomain model, that is a simplifica-
tion of the bidomain model, slightly modified to contain uncertainty represented
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as a stochastic variable. We evaluate the effect of these uncertainties on the
statistics of the solution, that we approximate by means of stochastic quadrature
methods. Those are typically sampling methods requiring many solves of the
initial problem for various perturbations. In this context, a single simulation can
already take a large amount of time even when considering important computa-
tional resources. It follows that, e.g., UQ for such models is currently unfeasible,
or extremely inefficient, with plain Monte Carlo methods.

The central point of our approach is to consider the multilevel Monte Carlo
method, see [Gil15], which extends the idea of control variates, see [Fis03]. The
key idea is to perform most of the simulations on a sequence of low-resolution
models. The direct use of the highest-resolution level guarantees convergence,
while a significant portion of the computational load is offset to the low-resolution
hierarchy. In order to allow for arbitrary coarsening in space and time, we further
rely on a space-time discretization of the monodomain equation. By doing so, it
also becomes possible to use the already computed samples for the initialization
of Newton’s method, which solves the space-time equations, thereby significantly
reducing the amount of iterations required for convergence.

1.5 Work contributions and organization

Contributions of the thesis

The contributions of the following work stand at the interface of the two fields
of cardiac electrophysiology and UQ. They are listed below:

1. We suggest an efficient and fully parallelized computational framework
for addressing large scale uncertainty quantification problems arising in
cardiac electrophysiology, with high-dimensional quantity of interest. By
considering a parallel distribution of the total work among discretization
levels, batches of samples, and domain decompositon technique in space
and time for a given sample, we obtain a so–called three–layer paralleliza-
tion in space, time and stochastics.

2. We propose a multiple time–blocks strategy for resolving the problem of
non convergence of the Newton’s method for long time intervals. Addition-
ally, we take advantage of the computed samples and set them as Newton
initial guesses on every single time–block of newer samples, accelerating
remarkably the convergence in terms of iterations number. We further-
more consider the global solution in time of the computed samples, to be
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set as a global Newton initial guess for future samples. This methodology
proved to be very efficient, resulting in a convergence in few iterations, for
long time intervals.

3. By applying known stochastic quadrature methods such as (quasi) Monte
Carlo and their multilevel construction on the time–dependent non lin-
ear monodomain equation, we experimentally evaluate their convergence
rates proving in a reverse-engineered way their compliance with the al-
ready established convergence properties for a Poisson problem.

Organization of the thesis
This thesis informally comprises three parts: mathematical modeling of cardiac
electrophysiology, uncertainty quantification in cardiac electrophysiology and
performance improvement considerations with a numerical validation.

More formally, Chapter 2 is dedicated to the description of the heart function-
ing, with a focus on the underlying electrophysiological aspect. We introduce the
common used models for electrical potential simulation in the cardiac muscle,
proceeding from the cell level to the tissue level.

In Chapter 3, we introduce the discretization in space and time with respec-
tively finite elements and finite differences. We describe the all–at–once ap-
proach, demonstrating how the the large space–time system is assembled. Pro-
ceeding from the model problem represented by the heat equation, we describe
step-by-step the Newton’s method when a non linear term is integrated, explicit-
ing every Newton iteration problem to be solved in the case of the monodomain
equation.

In Chapter 4, we proceed to the UQ part by first introducing the foundations,
such as random fields generation with Karhunen-Loève expansion, the discretiza-
tion of its associated eigenvalue problem. We also evaluate the truncation error
produced by the discretization and low rank approximation processes. We fur-
thermore define the single and multilevel stochastic quadrature methods. We
evaluate their theoretical convergence properties in the case of the heat equation
model problem, and establish a theoretical comparison of the work produced by
different methods. We also invoke the transfer of discrete fields for a multilevel
setting.

In Chapter 5, we treat the uncertainty in the heart fibers, as the core part of
this thesis. We additionally consider a second test case for a heart presenting a
scar region, also modeled with an uncertainty in terms of width and conductivity.
These uncertainties are combined to that of the fibers, in a test case for which
numerical experiments will follow in Chapter 7.



8 1.5 Work contributions and organization

In Chapter 6, we invoke all the parallelization concepts and performance
improvements considerations used in our developed computational framework.
Starting from the three-layer parallelization strategy, to the solver used for solv-
ing the space–time system, passing by the local and the global Newton initial
guess strategy, we make a full report on every computational aspect of the the-
sis.

In Chapter 7, we finally provide numerical experiments to support our meth-
od's computational efficiency. Mainly, we always go through the same procedure
of evaluating the controlled convergence of the invoked stochastic quadrature
methods, as well as assessing their general effective work in terms of actual com-
putation time.

Finally, appendices are provided in the very end for the purpose of reader’s
convenience. We present there basic notions on normed vector spaces (Appendix
A), measure theory, Bochner spaces (Appendix B) and Sobolev spaces (Appendix
C). This is done in a synthetic way without further details on the proofs of the pre-
sented lemmas, propositions and theorems. For a more in depth understanding,
the reader is directed towards the following references, from which the appen-
dices are inspired; [Che08, CK13, Coh13].

Disclaimers. This thesis is partly based on the reviewed paper,

• Ben Bader, S., Benedusi, P., Quaglino, A., Zulian, P., and Krause, R. (2021).
Space–time multilevel Monte Carlo methods and their application to car-
diac electrophysiology. Journal of Computational Physics, 433, 110164.

and the preprint

• Ben Bader, S., Harbrecht, H., Krause, R., Multerer, M., Quaglino, A., and
Schmidlin, M. (2021). Space–time multilevel quadrature methods and
their application for cardiac electrophysiology. preprint arXiv:2105.02007.

which were produced along the thesis.



Chapter 2

Heart Electrophysiology &
Mathematical Modelling

2.1 Heart anatomy and functioning

Role and anatomy: The heart is by all means one of the most complex and
fascinating organs in the human body. It constitutes a muscular organ, that is
located in the middle compartment of the chest, protected by the rib cage (c.f.
Figure 2.11).

Figure 2.1. Portrait of the rib cage demonstrating the heart positioning.

1After an artistic representation found in the Est Milan market. The artist remains unfortu-
nately unknown to the thesis’ author.

9
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Its combination with the surrounding lungs constitutes a fundamental alliance
for the body’s well functioning. While the lungs are held responsible for the elim-
ination of all the toxic substances carried by the blood, the heart is the central
component of the circulatory system, harmoniously orchestrating the body ac-
tivity through the vital supply of blood to all of its components. This is achieved
by means of a multitude of veins and arteries connecting it to the entire body.
These can be seen under different angles in Figure 2.2.2

Figure 2.2. Representation of the veins and arteries of the heart.

The heart resembles a thin wall that comprises three distinct layers. The outer
layer is called the pericardium and encompasses the heart and its big vessels
(c.f. Figure 2.2). The inner layer is called the endocardium. The latter under-
lies under a much more voluminous middle layer, called the myocardium that
represents the actual heart muscle. It is constituted by cardiac cells called the
cardiomyocytes.
Heart functioning: The heart is made of four different chambers, two atria in the
upper part and two ventricles in the lower part (c.f. Figure 2.3). The inferior vena
cava and superior vena cava carry deoxygenated blood to the right atrium. When
the latter becomes full, it compresses and the blood flows from the right atria to
the right ventricle via the tricuspid valve. The right ventricle in turn contracts

2After an artistic representation found in the Est Milan market. The artist remains unfortu-
nately unknown to the thesis’ author.
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and the blood is ejected into the pulmonary artery through the pulmonary valve.
It is then directed to the lungs, where the blood releases the carbon dioxide and
other toxic substances, eliminated by the breathing process. Once oxygenated,
the blood is carried by means of the pulmonary veins to the left atria. Its passage
to the right ventricle is made possible by the mitral valve. From there, it passes
through the aortic valve and travels all over the body to supply its components.
This represents a full heart cycle, from arriving deoxygenated blood to leaving
oxygenated blood. This process overlaps as when a quantity of blood starts its
journey in the right part of the heart, another one is arriving to the end in the
left part. This is demonstrated in Figure 2.4. For a full review on the blood
circulation system and many technical aspects about intervening components,
see [QMV+19].

Figure 2.3. Different components of the heart on a vertical cross section.3

Electrical activity role: The heart functioning and the blood flowing from a
chamber to another is made possible by a very complex contraction and relax-
ation cycle occurring in the cardiac cells. This mechanical pattern is induced by
an electrical signal that originates at the sinoatrial (SA) node, diffusing along the
two atria and causing them to contract. The impulse travels to the atrioventric-
ular node (AV) node, that acts as a gate, delaying further electrical spreading in
the ventricles, up until the atria fully released the blood. When this is achieved,

3Found in https://www.empowher.com/media/reference/heart-murmur and adapted. Copy-
right: Nucleus Medical Media, Inc.

https://www.empowher.com/media/reference/heart-murmur
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the AV fires an electrical signal that travels to the septum by means of the bundle
branches. From there, the signal is diffused to the whole myocardium through
the Purkinje fibers, see [Kla11]. What follows from the electrical diffusion in-
side the heart muscle is a succession of opening and closing of the ion channels
for every cell, which allows ions such as calcium and potassium to pass back
and forth. This biomechanical process creates a transmembrane potential that
causes a contraction and relaxation of every single cardiomyocyte. This occurs
through the whole myocardium, in a travelling wave fashion, inducing the con-
traction and relaxation of the whole system. A more complete review can be
found in [Kat10].

Figure 2.4. Simultaneous blood circulation inside the cardiac muscle. The left
figure shows two simultaneous actions; the deoxygenated blood (blue) enters
the right part of the heart while a similar process is occurs in the left part

with oxygenated blood (red). The right figure shows the progression towards
the exiting process.4

2.2 Mathematical modeling of cardiac electrophys-
iology

The heart functions in a great harmony of an electrical potential activity, a me-
chanical contraction-relaxation cycle, and fluid (blood) exchanges within the sur-

4Found in the educational videos provided by http://www.bodhaguru.com and adapted.

http://www.bodhaguru.com
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rounding environment, i.e. the different body organs.
The aim to model the heart behaviour therefore necessitates a close integration
of electrical activity, mechanical deformation and fluid dynamics models. These
components can however be addressed separately, following a classical divide–
and–conquer strategy for solving sophisticated scientific problem. This work falls
in this scope, focusing exclusively on some of the electrophysiological aspects.

When considering the phenomenon of cardiac electrophysiology, it is important
to recall that local perturbations of the heart cells’ action potential, lie at the basis
of the electrical travelling wave along the myocardium. It is therefore necessary
to differentiate between processes occurring at the microscopic and macroscopic
levels, equivalently designated as cellular and tissue levels.

2.2.1 Cellular level models

Cellular models are mathematical models quantifying the membrane potential
variation of an excitable cell. What is referred to as the membrane potential is
the potential difference between intracellular and extracellular levels, that is

u= ui − ue,

where ui = ui(t) and ue = ue(t) are respectively intracellular and extracellular
potentials.
The potential variation between intracellular and extracellular levels is induced
by voltage–gated ionic channels opening and closing, allowing for ions to pass
back and forth across the membrane, thus creating an electrical activity. [HH52]
modeled the action potential time evolution in the squid giant axon. The par-
ticularity of their work consisted in treating each cell component as an electrical
element inside a consistent circuit depicting the membrane architecture (in terms
of ion channels). The notions of cell membrane capacitance and ion channel con-
ductance derive from this perspective.
Characterized as such, models for simulating the action potential of a cell could
be written in the following form, see [KS98],

Cm
u(t)
d t
+ Iion(u) = Iapp(t), (2.1)

where Cm is the membrane capacitance, Iapp an external applied stimulus on the
cell and Iion(u) the current arising from the passage of ions, in which the ion
channels conductances are to be taken into account.
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As an example, the ionic current generated by a cell membrane that contains a
unique sodium ion channel can be expressed with the following model:

Iion(u) = gNa(u− uNa), (2.2)

where gNa is the sodium ion channel conductance and uNa is the sodium rever-
sal potential. Expression (2.2) provides a model of the ionic current generated
by a leak channel, characterized by a fixed conductance. Whenever considering
a voltage–gated ion channel, the conductance becomes a function of time and
voltage, therefore more challenging to model.
In many contemporary works, see [MS03, TTP06b, BOCF08], the variable con-
ductance of voltage–gated ion channels was expressed by means of the so–called
gate variables and the concentrations of the ions involved. The gate variables
and the ion concentrations are themselves subject to interconnected time evolu-
tionary processes. This implies that the ionic current provided by means of N ion
channels can be summed up as, see [Poz19],

Iion(u,w,c) =
N∑

k=1

Iion,k(u,w,c), (2.3)

where for k = 1, · · · , N , we have that

Iion,k(u,w,c) = gk(u,w,c)(u− uk), (2.4)

for a vector w = [w1, · · · , wNg
]T of Ng gated variables wi ∈ (0,1) described by a

set of Ordinary Differential Equations (ODEs), see [Nel04],

dw
d t
= f (u,w,c), (2.5)

and a vector c = [c1, · · · , cNc
]T representing the ionic concentrations inside the

cell. Their dynamics is further described by another set of time ODEs, see e.g.
[RCG+90, NVKN98],

dc
d t
= h(u,w,c), (2.6)

The full cell model reads therefore
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Cm
du(t)

d t
+ Iion(u,w,c) = Iapp(t),

dw
d t
= f (u,w,c),

dc
d t
= h(u,w,c).

(2.7)
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Hence, the ionic current Iion(u) depends on the characteristics of the considered
membrane and the constituent ion–channels. In the context of cardiomyocytes,
a large family of ion channel models exist, see e.g. [FPT05, FPS14]. Among
those, the Fitz–Hugh Nagumo (FHN) model, see [Fit61], was one of the first. It
is a simplified model, still used in some cases for numerical experiments and val-
idation. It has the great advantage of reproducing the action potential, without
involving many other ionic species that might represent a computational burden.
The FHN model is given by:

⎧
⎨
⎩

Cm
du(t)

d t
+ Iion(u, w) = Iapp(t),

∂ w
∂ t
= γu⋆ − βw,

(2.8)

where
Iion(u, w) = α(u− urest)(u− uth)(u− upeak) +ηw(u− urest). (2.9)

Here, α,η,γ and β are all positive parameters affecting the action potential gen-
eral shape. The values urest, uth and upeak are characteristic potential values of the
electrical activation process. They represent the resting, the threshold and the
peak potential values characterizing respectively the initial, the activation and
the maximal states the membrane goes through. Finally, we have

u⋆ =
u− urest

upeak − urest
.

Figure 2.5. Action potential of a cardiomyocyte located at the
mid–endocardium.5

5Copyright: Graph generated through WOLFRAM Demonstrations Project platform, licensed
under the Creative Commons Attribution - NonCommercial - ShareAlike 3.0 Unported License.
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Remark. In presence of a stimulus important enough for activating the cell mem-
brane (the cell potential reaches the threshold), the latter goes over the process of
an instant depolarization characterized by a sudden raise of electrical potential up
to a peak value. This is afterwards followed by a repolarization where the electrical
potential slowly recovers its initial resting value. This process is called the action
potential and is depicted in Figure 2.5.

2.2.2 Tissue level models

Tissue models are concerned with the macro–scale electrical activity inside the
myocardium as a whole. They consist on integrating the cell models, that de-
scribe each cell individually, into a continuum model represented by average
properties of the considered group of cells constituting the tissue. They therefore
incorporate the space variable additionally to the time variable and are conse-
quently defined as coupled PDE systems.
The bidomain model: A very–well established tissue model consists of the so–
called bidomain model, see [Tun78, Hen93, KS98]. It simulates the electrical
potential activity inside the cardiac muscle (myocardium), differentiating the
two interpenetrating domains consisting of the intracellular and extracellular
domains. Each domain is characterized by an anisotropic conductivity tensor
describing the different propagating directions and their intensities. These are
typically reproducing the fibers and their orientations, see [LSC+95].
The unknowns for such a model are therefore naturally two, namely the intra-
cellular vi = vi(x, t) and the extracellular ve = ve(x, t) potentials. However, it is
generally defined with respect to the extracellular potential and the transmem-
brane potential by setting the intracellular potential to, see [PBC05],

ui = u+ ue. (2.10)

Based in the conservation of total current, see [PBC05], the bidomain model set
of equations can be expressed likewise ∀(x, t) ∈ D× (0, T] :

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ

&
Cm
∂ u
∂ t
+ Iion(u,w,c)

'
−∇ · (Gi∇u)−∇ · (Gi∇ue) = χ Iapp,

−∇ · ((Gi + Ge)∇ue)−∇ · (Gi∇u) = 0,
∂w
∂ t
= f (u,w,c),

∂ c
∂ t
= h(u,w,c),

(2.11)

where Gi = Gi(x) and Ge = Ge(x) are respetively intracellular and extracellular
conductivity tensors, χ the surface–to–volume ratio, D the heart tissue domain
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and [0, T] a given time interval. Notice that we abbreviated with u= u(x, t), ue =
ue(x, t),w = w(x, t),c = c(x, t) and Iapp = Iapp(x, t) for the sake of readability.
The lasting parameters are exactly as defined in (2.8), with respect to cellular
models. The system of equation further encodes homogeneous Neumann bound-
ary conditions given by, see [Tun78]:

(
Gi∇(u+ ue) · n= 0,

(Gi∇u+ (Gi + Ge)∇ue) · n= 0,
(2.12)

for every (x, t) ∈ ∂ D × (0, T]. Here, n = n(x) is the regular surface outer–
normal usually considered in boundary conditions. The set of equation is further
provided adequate initial conditions:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, 0) = u0(x), x ∈ D,

ue(x, 0) = ue,0(x), x ∈ D,

w(x, 0) =w0(x), x ∈ D,

c(x, 0) = c0(x), x ∈ D.

(2.13)

The bidomain model represents a well–established model, yet complex and com-
putationally expensive. A relative simplification can be provided by considering
instead the monodomain model.
The monodomain model: Assuming that the following expression

Ge(x) = λGi(x), ∀x ∈ D, λ ∈ !,

relates the two conductivity tensors (i.e. a proportional anisotropy ratio), the
second equation of (2.11) can be rewritten as, see [PBC05],

∇ · (Gi∇ue) = −
1

1+λ
∇ · (Gi∇u).

This induces that:

−∇ · (Gi∇u)−∇ · (Gi∇ue) = −∇ · (Gi∇u) +
1

1+λ
∇ · (Gi∇u)

= − λ

1+λ
∇ · (Gi∇u)

Therefore by setting Gm =
λ

1+λ
Gi, we recover the monodomain model given by

the following set of equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

χ

&
Cm
∂ u
∂ t
+ Iion(u,w,c)

'
−∇ · (Gm∇u) = χ Iapp,

∂w
∂ t
= f (u,w,c),

∂ c
∂ t
= h(u,w,c),

Gm∇u · n= 0,

u(x, 0) = u0(x),
w(x, 0) =w0(x),c(x, 0) = c0(x),

(2.14)

which holds for every (x, t) ∈ D× (0, T].

Remark. Anisotropy scaling assumption between intracellular and extracellular
fields (i.e. Ge(x) = λGi(x) for some λ ∈ !) is practically never achieved nor verifi-
able, yet it offers a considerable reduction in computational cost and memory with
respect to the bidomain. Many studies demonstrated that the monodomain, de-
pending on the final quantity of interest, remains reliable even considering that it
is based on the non–necessarily holding assumption, see [PDR+06a].

2.3 Medical and mathematical tools interaction in
clinical practice

2.3.1 ECG and the PQRST cycle

In Chapter 1, we have largely talked about the ECG as the first clinically acquired
measure, yet still one of the most important. It represents by far the least inva-
sive procedure for recording the heart electrical activity, if we compare with other
methods such as cardiac catheterization, for example, see [DB97].
The typical electrical signal recorded by the ECG is represented by the PQRST cy-
cle. The latter characterizes electrically a heart beat. A PQRST recorded through
a healthy heart demonstrates the following distinctive phases:

• The P–wave: it corresponds to the atria depolarization as soon as they are
full of blood (SA activation).

• The P–Q segment: it corresponds to when the signal is travelling from the
SA to the AV node.

• The QRS–complex: marks the AV node firing and the ventricles depolar-
ization. It comprises itself three distinctive phases:

(i) The Q–wave: depolarization of the inter ventricular septum
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(ii) The R–wave: main mass ventricles depolarization

(iii) The S–wave: last phase of ventricular depolarization, also accompa-
nied with atrial repolarization

• The S–T segment: the plateau in the action potential of the myocardium
when ventricles contract to pump blood

• T–wave: characterizes ventricular repolarization after ventricles relaxation,
i.e. the diastole

Figure 2.6. Representation of the PQRST signal.

Heart anomalies can, in some fortunate cases, already be detected from analyzing
the ECG and every phase of its PQRST cycle. However, sometimes this might be
invisible to the naked eye, even for experimented cardiologists. Resorting to
computational techniques can in those cases be of a great use. So far however,
we have only been concerned about simulating the electrical activity at the heart
surface, which cannot be compared to the signal measured clinically on a torso.
The forward problem can be solved for achieving this purpose, i.e. reconstructing
ECG signals from tissue models simulations.

2.3.2 Forward problem

The monodomain/bidomain models simulate the electrical activity inside the car-
diac muscle. This electrical activity further propagates inside the torso up to the
body surface (c.f. Figure 2.7).
In the absence of external current applied on the body, the latter can be consid-
ered just as a static regular conductor. The conservation of currents therefore
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Figure 2.7. A schematization of the forward problem: The simulated model
provides solution that is mapped on the torso domain. This is used for

reconstructing an ECG signal.

applies and a natural boundary condition is to consider the simulated electrical
activity on the heart surface. Accounting for the following statements, we recover
the formulation of the forward problem, expressed by means of a simple Lapla-
cian diffusion problem, with non–homogeneous Robin boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ · (GT∇uT ) = 0, ∀(x, t) ∈ DT × (0, T]
GT∇uT · nT = 0, ∀(x, t) ∈ ∂ DT × (0, T]
uT = ue, ∀(x, t) ∈ ∂ D× (0, T]
(Ge∇ue + GT∇uT ) · n= 0 ∀(x, t) ∈ ∂ D× (0, T],
uT (x, 0) = uT,0(x) ∀x ∈ DT ,

(2.15)

where DT is the torso domain, GT = GT (x) is the conductivity tensor inside the
torso and nT = nT (x) is the outer normal to the torso surface. The quantity
of interest is uT = uT (x, t) is the electrical potential inside the torso, that can
eventually be calculated at its surface. It therefore provides the potential at the
body surface, reconstructing a signal similar to what is measured by the ECG,
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see [BCF+10, FZ10]. The system of equations (2.15) can further be coupled
with (2.11) in a compact form, see [LGT03].

2.3.3 Inverse problem

Combination of simulations at the heart tissue level and forward problem can
serve for ECG reconstruction and might therefore be helpful for predictive be-
haviour of experimental treatment. However, for tailoring patient specific virtual
therapies in a reliable manner, one step back has to be taken as initially model
parameters need to be set correctly, or at least approximated well enough.
Model parameters can be inferred from clinical data by means of inverse prob-
lems. Originally, those were designed for achieving the exact reciprocal opera-
tion with respect to the forward problem, that is, mapping the torso potential
measurements on the epicardial surface. Nowadays also referred to as the ECG
Inverse problem (ECGI), this is applied in clinical practice as a non–invasive epi-
cardial potential reconstruction method, used e.g. for preventing arrhythmias,
see [RGJ+04, CZC+17]. Its formulation is very closely related to that of the for-
ward problem, and can expressed as, see [FGTV85],

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∇ · (GT∇uT ) = 0, ∀(x, t) ∈ DT × (0, T]
GT∇uT · nT = 0, ∀(x, t) ∈ ∂ DT × (0, T]
uT = umeas, ∀(x, t) ∈ ∂Σmeas × (0, T]
uT (x, 0) = uT,0(x) ∀x ∈ DT ,

(2.16)

where umeas and Σmeas ⊂ ∂ DT are respectively the measured potential and the
measurement surface. We also recall that D is the heart domain, ∂ D the heart
surface, whereas DT is the torso domain and ∂ DT its outer surface. The epicardial
distribution can then be recovered by restricting the solution uT on the heart
surface, i.e. uT |∂ D.
The inverse problem (2.16) is well–known to be an ill–posed problem in the
sense of Hadamard as its solution does not depend continuously on the data, see
[FGTV85]. Consequently, a small perturbation, e.g. of the boundary condition
such as that of the measured potential on the thorax surface, might lead to a
great variation with respect to the solution of interest. Given the noise affecting
the measurements, this scenario is very likely to occur, and therefore the inverse
problem is generally formulated in an alternative manner.
Closely related to the inverse problem, the forward problem can be solved by
computing a transfer matrix A, interpreted as an observation operator such that

Aue|∂ D = uT |∂ DT
, (2.17)
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where ue is provided by solving the bidomain model for example. Similarly, the
inverse problem can then also be reformulated as: provided umeas, find uT |∂ D

such that

AuT |∂ D = umeas. (2.18)

By introducing a cost function J(u) =
∫
Σ
|Au− umeas|2 dx, the solution can be

recovered by solving the minimization problem consisting of finding u⋆ such that

u⋆ = inf
u

J(u). (2.19)

The instability of this problem, straightforward consequence of the ill–posed na-
ture of (2.16), can be overcome by means of regularization methods, such as
Tikhonov or L1–regularization. For a review of the main regularization methods
and their comparison, see [KBMZ18].
The formulation (2.19) further inspired model parameters estimation, when the
cost functional is instead set to

J(v(σ)) =
∫

Σ

|v(σ)− umeas|2 dx, (2.20)

where v(σ) is the simulated thorax potential with respect to the parameter to
estimate σ. This formulation is known after the terminology of optimal control
problems, whereσ represents the control, i.e. the parameter to infer, and solving

σ⋆ = inf
σ

J(v(σ)), (2.21)

is equivalent to answer the question of which value of σ results in the observed
umeas. Such optimal control problems can be used for instance in recovering the
extracellular potential from solving the monodomain equation, see [NK11], ter-
mination of re-entry waves, see [NKP13], inverse identification of arterial wall
material parameters, see [LMQR13], or detecting infarcted areas, see [CZC+17,
BB15].
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Figure 2.8. Schematization of the inverse problem: The measured ECG is
mapped on the pericardial surface.

Remark. It is also possible to consider a group of parameters to estimate, repre-
sented then by a vector σ. This is naturally a more demanding optimization prob-
lem.

2.4 UQ motivation in cardiac electrophysiology

2.4.1 General sources of uncertainty

Forward and inverse problems represent the bridges connecting heart tissue mod-
els and clinical data. They allow the interaction between mathematical modeling
and clinical practice. They are therefore essential since clinical acquired data rep-
resents evidently a crucial ingredient for tailored computational cardiology.

The measurement data is however generally affected by noise. This can occur
for many reasons, among which one can cite the possible limited accuracy of the
measuring device. These uncertainties, if not accounted for, might lead to great
variations and possibly heavily impact on the accuracy of the obtained solution.

The integration of UQ in cardiac electrophysiology can therefore be moti-
vated by the aforementioned observation. It translates to the integration of a
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stochasticity for the considered uncertain parameters of the used model, leading
a PDE formulation which queries about statistical moments of the solution, for
given random distributions of the parameters of interest.

The estimation of the first moment of the solution, i.e. the expectation, can
therefore provide a more general idea of the system behaviour, accounting for
several selected values of the uncertain parameters. The information on the sec-
ond moment, i.e. the variance, provides an insight of the solution variability with
respect to a given parameter. This approach is related to sensitivity analysis, and
allows to evaluate the random parameters of main impact on the solution model.
This information can in turn be used for reducing the uncertainties dimensional-
ity in an optimal control optimization for example, as considering a high number
of control variables for those leads to more complex problems. Resorting to sen-
sitivity analysis in these cases might constitute a great benefit.

The usage of UQ in electrophysiology is very broad. Whether employed for
myocardial infarction detection, see [Pag17], or for quantification of the error
induced by the imaging imprecision with respect to the torso MRI, see [GKMP20],
UQ has been clearly adopted and identified to be essential to integrate inside a
framework pipeline for in–silico virtual therapy. A full review on many other UQ
usages and sources of uncertainties can be found in [Pag17].

2.4.2 Fiber uncertainty

Many sources of uncertainty can also find their root in the limitation of the math-
ematical model with respect to the phenomenon of interest, or the absence of
measurements instruments for a particular aspect of it. As an example, this can
be the case for heart fibers. As even with modern imaging techniques the fibers
pattern can still not be precisely identified, one typically resorts to their mathe-
matical construction, provided a given heart geometry.

The local fiber orientations are generally described by means of an orthonor-
mal set of vectors, constituted by the fiber direction, the sheet direction and the
sheet normal direction, see [LSC+95, LHS97, BPP+18]. These can be computed
by means of the transmural coordinate ρ = ρ(x) providing the distance from the
endocardium to the epicardium, calculated for every spatial point x ∈ D, through
solving the Laplace problem, [BBPT12],
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Figure 2.9. UQ-based general pipeline of computational cardiology assistance
in clinical practice.

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∆ρ(x) = 0, ∀x ∈ D,

ρ(x) = −1, ∀x ∈ ∂ LV,

ρ(x) = 0, ∀x ∈ D,

ρ(x) = 1, ∀x ∈ ∂ RV,

(2.22)

where LV and RV denote respectively the left and right ventricles.

Given that the fibers demonstrate a helical orientation from endocardium to
epicardium along the wall thickness, they are reconstructed by means of a func-
tion of their rotation with respect to the transmural coordinate, see [PDR+06b,
Poz19]. An example of mathematical fiber construction is shown n Figure 2.11.
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Figure 2.10. Transmural coordinate computed by means of the Laplace
problem (2.22) for a synthetic heart geometry.

Figure 2.11. Mathematical reconstruction of the fiber vector field surrounding
the geometry shown in Figure 2.10

The mathematical reconstruction of fibers may fail to reproduce the exact
fiber pattern for the heart of a given patient. Moreover, fibers naturally exhibit
an inter and intra patients variability. An alternative approach consists in con-
sidering fiber uncertainties and perform UQ.



Chapter 3

Discretization

The illusion of closed form solutions The vast majority of PDEs arising in nat-
ural or physiological phenomenons may at best be very effortful to solve analyti-
cally, if not at all. This even generalizes to the set of PDEs deriving from general
purpose mathematical modeling, as the less academical example of complex fi-
nancial models. In general, given the very large definition of a PDE, as any par-
tial derivatives combination of a quantity of interest in a closed form, it might
be quite intuitive that there should not be any magic wand and that analytical
solution for a PDE is more a matter of case by case.

Some combinations of smart techniques such as the separation of variables,
the principle of superposition and the Fourier decomposition could be used in
the past to find the solution of PDEs such as the heat equation under particular
forms of initial conditions, see [bdF22]. The change of variables is also a famous
technique for resolving some wave equations settings, see [d’A47]. Yet, the gen-
eralization of such methods to the wide set of PDEs with a larger combination of
initial conditions remains undoubtedly unsatisfying.

The existence of an analytical solution can even depend on the parameters
defining the same PDE problem. Let us consider the famous example of the
Poisson problem in 1D, given by

−u′′(x) = f , x ∈ (0,1),

u(0) = u(1) = 0,

for a given function f . Whenever the function f is given by a constant C > 0,

the analytical solution u(x) =
C
2

x(1− x) can very easily be found by integrating
twice the given PDE and applying the boundary conditions. At the contrary, when

27
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f is given by a more general formulation, see e.g. [LB13], analytical techniques
such as the ones described above do not come to the rescue.

Towards numerical methods The fatality that follows from the aforementioned
findings is that alternative approaches are no unnecessary luxury but rather an
imperative, and this serves as a good motivation into directing the research focus
on numerical techniques for solving PDEs. The researchers community had since
then concentrated almost exclusively on understanding PDEs’ behaviour under
the different paradigm of numerics, diverting the solution from the continuous
analytical scope to that of the discrete approximated one. Several numerical
methods such as Finite Difference (FD), Finite Volumes (FV) or Finite Elements
(FE) have been developed providing different advantages.

FE methodology The philosophy of the FE method is to approach the PDE solu-
tions with approximation spaces (usually piecewise continuous functions), turn-
ing the initial problem into an elegant variational formulation. The latter is de-
fined through the paradigm of seeing the original problem under the prism of
virtual applied loads, see e.g. [ZT00, Bat06]. It is characterized by multiplying
the PDE with a so-called test function, followed by an integration in the sense of
Lebesgue. This has the advantage of relaxing the regularity of the sought solu-
tion, as the original smoothness for which a problem is defined might undoubt-
edly constitute an additional difficulty for finding a solution. Discretization of
the domain into small elements, hence the name of the method, constitues then
a key tool of this approach allowing for characterizing the space domain with
a finite set of basis functions. These will serve to formalize the solution under
the form of a linear combination. After further mathematical manipulations, the
discretized solution is retrieved by solving a linear system.

The FE method can be and has been employed in several applications through-
out many decades with a particular success, see e.g. [KC71, RMRM02, MG15].
The theory developed around this method allows in addition to a priori esti-
mate the solution error approximation, with even possible techniques for en-
hancing the method’s precision, such as a posteriori adaptive refinement, see
[Löh87, ZZ88]. Literature furthermore continuously address the performance
concern, either by designing efficient linear system solvers (iterative solvers of
low complexity), or by taking advantage of the growing computations resources
to retrieve the final solution through distributing the total set of computations to
multiple computing units (domain decomposition), see e.g. [TW06, PT12].

Time–stepping vs parallel–in–time methods Whenever invoking non-stationary
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problems, the statements above relatively to the FE method still hold, yet it re-
mains to consider the discretization of the time variable. The space and time
entities have mainly been seen for decades as two separate ones. It is quite nat-
ural indeed to intuitively differentiate what can be seen (space) from what can
be sensed (time). It therefore appeared of a good common sense to combine
FE in space with FD in time in order to solve time-dependent problems. As the
FD method is well established for structured grids, it is rather straightforward
to use in the case of a time interval, with no further physical abstraction of an
additional dimensionality. This way of proceeding has been summarized under
the terminology of time-stepping methods and is widely used in the research
community.

Time-stepping methods are divided in two categories, explicit and implicit.
The latter are usually preferred due to their stability, however, they require solv-
ing one linear system at the time for every single time step (for a linear problem).
This consideration unavoidably leads to slowing down the solving process, partic-
ularly when a single linear system ends up being particularly expensive (in terms
of computations) to solve. Of course, every linear system can be solved in par-
allel using many computational resources. However, this parallelization process
saturates once a limit of the number of involved computing units with respect to
the dimension of the problem, is reached. Even when efficient load balanced do-
main decomposition strategies are adopted, communication becomes the natural
bottleneck of the overall performance.

This has motivated a growing interest of so–called parallel–in–time meth-
ods. Those methods, thanks to brilliant mathematical formalizations, developed
concurrency also in the time dimension, allowing therefore for parallelization
in time, hence the name. Around 60 years ago, [Nie64] considered a predic-
tor for different time intervals. Many other works have emerged since then,
see [LMT01], and more recently by [GKZ18] where it was merged into a multi-
grid solver setting. Methods involving geometrical space–time discretization,
where time was considered as a physical dimension, had also been developed.
Such a paradigm allowed for space–time adaptivity, time moving domains (such
as a heart for example) among other advantageous features. A non–exhaustive
of parallel–in–time methods can be found in [Gan15, Ben20].

The all–at–once method In this work, we employ a monolithic approach in space
and time, where a large spacetime system is assembled and solved in parallel.
Such a methodology has been introduced by [McD16] and helps achieving time
parallelism in a quasi immediate way.
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We illustrate this method in the following chapter by initially introducing it
for the heat equation, a historical parabolic problem that differs from the mono-
domain equation by the absence of the nonlinear reaction term derived from the
ion channel model (c.f. Equation (2.14)). The monodomain equation is after-
wards being treated with Newton’s method which we detail also in this chapter.

3.1 Heat equation

When it comes to the study of time-dependent PDEs, the heat equation had been
widely used in the literature as the main benchmark. The heat equation models
the time evolution of an initial heat distribution in a given domain, provided a
certain thermal conductivity characterizing the domain, possibly under the pres-
ence of an additional heat source provided to the domain.

Let us consider a domain D ∈ !d and a time interval given by [0, T]. We
define the heat equation as follows

∂ u(x, t)
∂ t

−∇ · (k(x)∇u(x, t)) = f (x, t), ∀(x, t) ∈ D× (0, T]

u(x, t) = 0, ∀(x, t) ∈ ∂ D× (0, T] (3.1)

u(x, 0) = g(x), ∀x ∈ D,

where (x, t) represents the space and time variables, u= u(x, t) is the distribution
of heat in the domain D along the time interval [0, T], k ∈ !d×d is the anisotropic
thermal conductivity, f a heat source supplied at point x for a time t and g(x)
an initial distribution of heat in the domain. Here, the operator ∇ is the usual
gradient operator given by

∇ =
&
∂

∂ x1
, · · · , ∂

∂ xd

'
.

Notice that we here defined the problem with homogeneous Dirichlet boundary
conditions, but this should not be considered as a restriction and the problem may
also be defined for homogeneous/inhomogeneous Neumann or Robin boundary
conditions. In Figure 3.1, we propose a visualization for the evolution of the
heat in a cube in the particular setting of having an initial heat distribution in
the upper corner, and a heat source applied (after a certain amount of time) on
the opposite lower corner.
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Figure 3.1. Heat propagation in a cubical domain.
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3.1.1 Finite Elements in space

Weak Formulation: The FE method is derived by first rewriting the initial PDE
problem under its weak formulation, also called the variational formulation.
This is achieved by means of a multiplication with a test function, followed by
an integration over the considered domain. Let us consider a simplified time–
independent version of the heat equation (c.f. Equation (3.1)), i.e. the Poisson
equation given by

−∇ · (k(x)∇u(x)) = f (x), ∀x ∈ D, (3.2)

for u ∈ ) (where ) is a functional space to be determined) subject to the same
set of homogeneous Dirichlet boundary conditions as in (3.1). This motivates the
additional assumption that every function v ∈ ) vanishes on the boundary, that
is, v|∂ D= 0, ∀v ∈ ) . We furthermore assume isotropic diffusion, i.e. k(x) ∈ ! ,
and that there exists constants kmin, kmax such that

0< kmin ≤ k(x)≤ kmax <∞ (3.3)

almost everywhere. The variational formulation goes by

−
∫

D

∇ · (k(x)∇u(x))v(x) dx=
∫

D

f (x)v(x) dx, (3.4)

for all v ∈ ) , that is the same functional space where the solution u lies. By
using Green’s first identity (see Appendix C), the Equation (3.4) can further be
written as follows

∫

D

(k(x)∇u(x)) ·∇v(x) dx−
∫

∂ D

(k(x)∇u(x) · n(x))v(x) ds=
∫

D

f (x)v(x) dx.

(3.5)
When applying the boundary conditions, the variational formulation (3.5) sim-
plifies to ∫

D

(k(x)∇u(x)) ·∇v(x) dx=
∫

D

f (x)v(x) dx. (3.6)

for all v ∈ ) . In order for the weak formulation (3.6) to make sense, we
must ensure that the solution and the test function are well behaved enough,
so to guarantee the existence of the underlying integrals. In the following case,
assuming that the function f is sufficiently smooth, it is enough to consider
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) = H1
0(D) = {v ∈ H1(D)|v|∂ D= 0} (see Appendix C). Indeed, the Cauchy–

Schwarz inequality can be used in this case to demonstrate the boundedness of
the two integrals of (3.6):

∫

D

(k(x)∇u(x)) ·∇v(x) dx≤ kmax

++++
∫

D

∇u(x) ·∇v(x) dx

++++ (3.7)

≤ kmax ∥∇u∥L2(D) ∥∇v∥L2(D) <∞,

and
∫

D

f (x)v(x) dx≤
++++
∫

D

f (x)v(x) dx

++++≤ ∥ f ∥L2(D) ∥v∥L2(D) <∞. (3.8)

In the above discussion about the functional space to consider resides the benefit
of the variational formulation. Indeed, the PDE strong form requirement of a
solution in C2(D) is softened to the space H1(D), relaxing therefore the condition
on the existence of a solution.

Furthermore, by observing that the left hand side of (3.6) is linear in u and v,
whereas the right hand side is linear in v, the weak formulation can be rewritten
in the following form:
Find u ∈ ) = H1

0(D) such that

a(u, v) = l(v), ∀v ∈ ) = H1
0(D), (3.9)

where a is a bilinear form on ) ×) defined by

a : ) ×) → !

(u, v) .→ a(u, v) :=
∫

D

(k(x)∇u(x)) ·∇v(x) dx,

and l a linear form on ) defined by

l : ) → !

v .→ l(v) :=
∫

D

f (x)v(x)) dx.

Solution existence and uniqueness: Rewriting (3.6) in the form of (3.9) is
not purely a matter of elegance as much as it enables a whole set of theory on
linear operators and their Riesz representation, see e.g. [Kre78]. This leads to a
primordial theorem about the existence and the uniqueness of a solution to the
PDE weak formulation.
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Theorem 3.1 (Babuska–Lax–Milgram). Let / be a Hilbert space, endowed with
its scalar product (·, ·) and its associated norm ∥·∥ . Let a(·, ·) be a bilinear form on
/ that is:

• continous on/ ×/ , i.e. ∃Ca > 0 such that |a(u, v)|≤ Ca ∥u∥∥v∥.

• coercive, i.e. ∃α> 0 such that a(u, u)≥ α∥u∥2.

Let furthermore l(·) be a linear form on/ that is

• continous on/ , i.e. ∃Cl > 0 such that |l(v)|≤ Cl ∥v∥ .

Under the following assumptions, there exists a unique u ∈/ such that

a(u, v) = l(v), ∀v ∈/ .

Proof. See [Bab71].

The assumptions of the Lax-Milgram theorem hold for our variational for-
mulation. Considering the Hilbert space / = H1(D) endowed with its scalar
product (·, ·)H1(D) and its induced norm ∥·∥H1(D) (see Appendix C), the continuity
of a(·, ·) is straightforward from (3.7), for Ca = kmax :

|a(u, v)|=
++++
∫

D

(k(x)∇u(x)) ·∇v(x) dx

++++≤ kmax ∥∇u∥L2(D) ∥∇v∥L2(D) (3.10)

≤ kmax ∥u∥H1(D) ∥v∥H1(D) .

The coercivity of a(·, ·) follows from the following inequality, for α=
kmin

C2
D + 1

:

a(u, u)≥
∫

D

k(x)(∇u(x))2 dx≥ kmin

∫

D

∇u(x)2 dx= kmin ∥∇u∥2L2(D) (3.11)

≥ kmin

C2
D + 1
∥u∥2H1(D) ,

where CD > 0 is the constant from the Poincaré inequality (see Appendix C). The
continuity of l(·) follows from (3.8), for Cl = ∥ f ∥L2(D), assuming that f ∈ L2(D) :

l(v) =
∫

D

f (x)v(x) dx≤ ∥ f ∥L2(D) ∥v∥L2(D) ≤ ∥ f ∥L2(D) ∥v∥H1(D) . (3.12)
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Consequently, the weak formulation does have a unique solution u ∈ / =
H1(D). Moreover,

Cl ∥u∥H1(D) ≥ l(u) = a(u, u)≥ α∥u∥2H1(D) , (3.13)

from which we deduce that

∥u∥H1(D) ≤
Cl

α
=
∥ f ∥L2(D) (C2

D + 1)
kmin

. (3.14)

Discretization: The FE methodology relies furthermore on a discretization of
the spatial domain D into smaller elements, aiming at locally approximating the
solution by piecewise continuous funtions.
Let 2 represent a tetrahedralization of D ⊂ !d (d = 2,3), or equivalently a
mesh, characterized by a set of d–simplices elements {Ki}Ne

i=1 (triangles for d = 2,
tetrahedrons for d = 3) such that D =

⋃Ne
i=1 Ki and Ki∩Kj for i ̸= j is either empty,

a corner, an edge (d = 2), or a face (d = 3).
Furthermore, every element K ∈ 2 is characterized by a length hK , that is defined
to be the diameter, or equivalently the longest edge, of K . The mesh step size is
then given by h = maxK∈2 hK . We introduce the space of continuous piecewise
linear polynomials with

Vh = {v ∈ C0(D) | vK ∈ #1(K),∀K ∈ 2 }. (3.15)

In the definition of Vh above, C0(D) denotes the space of continuous functions
on D, whereas #1(K) is the set of linear polynomials on K .
The space Vh is uniquely determined by the mesh nodal values {xi}ni=1 (that is
the spatial points defining the elements K of 2 ), and conversely every set of
nodal values uniquely determines a piecewise continuous linear function in Vh,
see [LB13]. We therefore define {φi}ni=1 ⊂ Vh to be a basis for the space Vh defined
around the degrees of freedom (Dofs) {xi}ni=1, i.e.

φi(x j) = δi j, i, j = 1, . . . , n.

We now can define the Galerkin approximation of the variational formulation
(3.9)
Find uh ∈ Vh ⊂ ) such that

a(uh, vh) = l(vh), ∀vh ∈ Vh ⊂ ) . (3.16)

Since Vh ⊂ ) , all the Lax–Milgram assumptions still hold since they were es-
tablished for the more constraining case of functions v ∈ ) . We therefore can
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affirm that the Galerkin approximation problem still have a solution and that it
is unique.
FE solution: Let us recall the Galerkin approximation in (3.16). Since {φ j}nj=1
represents a basis for Vh, every element in Vh can be written as a linear combina-
tion of φ j, j = 1, . . . , n. In particular,

uh(x) =
n∑

j=1

ujφ j(x), (3.17)

where uj ∈ ! for j = 1, . . . , n. By inserting (3.17) in (3.16), the problem trans-
lates to:
Find uj ∈ ! for j = 1, . . . , n such that

a(
n∑

j=1

ujφ j(x), vh) = l(vh), ∀vh ∈ Vh ⊂ ) . (3.18)

Furthermore, since Vh is completely represented by its basis, it is reasonable (ac-
tually equivalent) to replace test functions vh ∈ Vh with φi(x) for i = 1, . . . , n.
The formulation of the Galerkin problem becomes
Find uj ∈ ! for j = 1, . . . , n such that

a(
n∑

j=1

ujφ j(x),φi(x)) = l(φi(x)), ∀i = 1, · · · , n. (3.19)

Taking advantage of the bilinearity and symmetry of a(·, ·), we obtain:

n∑

j=1

a(φi(x),φ j(x))uj = l(φi(x)), ∀i = 1, · · · , n. (3.20)

Therefore, if we set A∈ !n×n and f ∈ !n such that

(A)i j = a(φi(x),φ j(x)) =
∫

D

k(x)∇φi(x) ·∇φ j(x) dx, (3.21)

and

(f)i = l(φi(x)) =
∫

D

f (x)φi(x) dx, (3.22)

it holds that
Au= f, (3.23)

where u = [u1, · · · , un]T . The solution to the Galerkin approximation can be re-
covered by solving the above linear system in (3.23) and reconstruct u(x) ∈ Vh
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as in (3.17).
Approximation property: We recall the original weak formulation for the solu-
tion u ∈ V

a(u, v) = l(v), ∀v ∈ ) . (3.24)

The Galerkin approximation on the other hand yields

a(uh, vh) = l(vh), ∀vh ∈ Vh. (3.25)

Since Vh ⊂ ) , we can apply (3.24) for vh ∈ Vh and substract (3.24) from (3.25).
By using the linearity of a(·, ·), we obtain the Galerkin orthogonality:

a(u− uh, vh) = 0, ∀vh ∈ Vh. (3.26)

From this equality, the following holds:

a(u− uh, u− vh) = a(u− uh, u− uh + uh − vh︸ ︷︷ ︸
∈Vh

) (3.27)

= a(u− uh, u− uh) + a(u− uh, uh − vh)︸ ︷︷ ︸
=0

= a(u− uh, u− uh).

By using the coercivity and the continuity of a(·, ·), we have that

α∥u− uh∥2H1(D) ≤ a(u− uh, u− uh) = a(u− uh, u− vh) (3.28)

≤ Ca ∥u− uh∥H1(D) ∥u− vh∥H1(D) ,

where α and Ca are respectively the coercivity and the continuity constants. This
leads to having:

∥u− uh∥H1(D) ≤
Ca

α
∥u− vh∥H1(D) ∀vh ∈ Vh. (3.29)

This equality is known as Céa’s Lemma. Since it holds ∀vh ∈ Vh, we can rewrite
it as

∥u− uh∥H1(D) ≤
Ca

α
inf

vh∈Vh
∥u− vh∥H1(D) . (3.30)

which we can interpret as uh being the quasi best approximation of u in Vh. This
indicates why the whole theory developed above works, as long as Vh approxi-
mates V , i.e. Vh

h→0−→ V.
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3.1.2 Finite Difference in time

Let us now consider the original model problem, that is the heat equation. This
equation only differs from the previous Poisson problem with a dependency in
time provided in the form of a time derivative.
The derivation of the Galerkin approximation emanating of the weak formulation
follows therefore the exact methodology and can be phrased as:
∀0< t ≤ T, find uh = uh(x, t) such that

∫

D

∂ uh(x, t)
∂ t

vh(x) dx+ a(uh, vh) = l(vh), ∀vh = vh(x) ∈ Vh. (3.31)

In the above, we underline the fact that the test function depends exclusively
on the space variable, whereas the solution u depends also on the time variable.
The Galerkin approximation in that context needs to be interpreted as several
approximations for many fixed time frames.
We can introduce the space Vh exactly as defined in (3.15) with its inherent set
of basis functions {φ j(x)}nj=1. To (3.31), we seek a solution of the form

uh(x, t) =
n∑

j=1

uj(t)φ j(x), (3.32)

in which {uj(t)}nj=1 for 0 < t ≤ T are to be determined. The ansatz (3.32) can
further be injected in the Galerkin approximation and vh substituted with φi for
i = 1, . . . , n:

∫

D

∂

∂ t
(

n∑

j=1

uj(t)φ j(x))φi(x) dx+ a(
n∑

j=1

uj(t)φ j,φi) = l(φi). (3.33)

Since the unknowns uj(t) are independent from the variable x, they can be taken
out from the space integral (and consequently also considered as scalars for
a(·, ·)). By exploiting the bilinearity of a(·, ·) and the linearity of the integral
operator, we obtain

n∑

j=1

1∫

D

φi(x)φ j(x) dx

2
∂ uj(t)
∂ t

+
n∑

j=1

a(φi(x),φ j(x))uj(t) = l(φi(x)). (3.34)

When setting M ∈ !n×n defined by

(M)i j =
∫

D

φi(x)φ j(x) dx, (3.35)
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A∈ !n×n and f ∈ !n respectively as in (3.21) and (3.22), we obtain the following
ODE system:

M u̇(t) + Au(t) = f(t) (3.36)

in which we rewrote
∂ u(t)
∂ t

=
∂

∂ t
[u1(t), · · · , un(t)]

T as u̇(t).
FD time discretization: In order to solve the ODE system (3.36), we need to
proceed to a discretization of the time interval [0, T]. For this purpose, let us
consider m−1 uniform subdivisions of [0, T] providing equally sized intervals of
length∆t = T/(m−1). We therefore obtain m discrete time modes characterized
by tk = (k− 1)/∆t for k = 1, . . . , m.
Integrating (3.36) over [tk, tk+1], ∀k ∈ 1, . . . , m− 1 yields the following:

M
∫ tk+1

tk

u̇(τ) dτ+ A
∫ tk+1

tk

u(τ) dτ=
∫ tk+1

tk

f(t) dτ, (3.37)

since the matrices M , A∈ !n×n are time independent. Naturally, this can also be
rewritten as:

M (u(tk+1)− u(tk)) + A
∫ tk+1

tk

u(τ) dτ=
∫ tk+1

tk

f(t) dτ. (3.38)

Let us furthermore denote the approximation of u(tk) to be given by uk, while
similar notation fk indicates the exact value of f(tk). One can use a quadrature
rule to approximate the remaining integrals of (3.38), as for example the trape-
zoidal rule:

M (uk+1 − uk) +∆tA
3uk+1 + uk

2

4
=∆t

&
fk+1 + fk

2

'
. (3.39)

A more general weighting for the quadrature can even be considered for recov-
ering a larger class of quadrature formulas, by setting θ ∈ [0,1] such that:

M (uk+1 − uk) +∆tA(θuk+1 + (1− θ )uk) =∆t (θ fk+1 + (1− θ )fk) . (3.40)

Rearranging in the following form,

M
uk+1 − uk

∆t
+ A(θuk+1 + (1− θ )uk) = (θ fk+1 + (1− θ )fk) . (3.41)

yields the so–called θ–method. Particular values of θ define different FD schemes
methods, each of which presenting distinct advantages.
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• θ = 0 : is called the Forward (or explicit) Euler method given by

Muk+1 = (M −∆tA)uk + fk. (3.42)

This method is known to be fast, but comes with a stability condition on
the time discretization step ∆t.

• θ = 1 : is called the Backward (or implicit) Euler method given by

(M +∆tA)uk+1 = Muk + fk+1. (3.43)

The method is characterized by good stability properties.

• θ = 1/2 : is called the Crank-Nicolson method given by
&

M +
∆t
2

A
'

uk+1 =
&

M − ∆t
2

A
'

uk +
∆t
2
(fk+1 + fk) . (3.44)

This method has the advantage of being second order accurate in time.

Let us recall that
uk ≈ u(tk) = [u1(tk), · · · , un(tk)]

T , (3.45)

where n is the number of space discretization nodes. Starting from k = 1 (corre-
sponding to t1 = 0 ) and u(0) provided by the PDE initial condition, all of these
methods require solving recursively m− 1 linear systems. In the case where the
number of time steps is important, this undoubtedly might represent a hindrance
to the overall performance of these methods, especially when every time itera-
tion itself requires a high number of space degrees of freedom.
The purpose of the space–time approach (or all–at–once method) developed in
the next subsection is to collect all the linear systems of interest in a larger global
one, so to exploit parallelism also in the time dimension.

3.1.3 Space–time approach

The heat equation (3.1) can be numerically solved, as demonstrated in the pre-
vious sections, by means of FE in space and FD in time, using a sequential time-
stepping method such as the θ–method. The parallel scalability of this approach
can however be limited by the time integration process. In fact, when the par-
allelization in space saturates, sequential time integration becomes the natural
bottleneck for the parallel scalability of the solution process. This can be over-
come by parallel-in-time methods, among which we here focus on the all–at–once
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approach, a monolithic approach where we assemble a large space-time system
that is solved in parallel.

The derivation of this approach is step–by–step similar to the classical one,
for which the weak formulation of the PDE, recall

∫

D

∂ u(x, t)
∂ t

v(x) dx+
∫

D

(k(x)∇u(x, t))∇v(x) dx=
∫

D

f (x, t)v(x) dx.

leads to the semi-discretized problem in space:

M
∂ u(t)
∂ t

+ Au(t) = f(t). (3.46)

Here, M ∈ !n×n and A ∈ !n×n are the standard mass and stiffness matrices ob-
tained using the usual n linear nodal basis functions {φi}i=n

i=1 ⊂ #1, i.e.

M :=
5∫

D

φi(x)φ j(x)dx

6n

i, j=1

, A :=
5∫

D

(G(x)∇φi(x))∇φ j(x)dx

6n

i, j=1

, (3.47)

f(t) :=
5∫

D

f (x, t)φi(x)
6n

i=1

, (3.48)

arising from the approximation:

u(x, t)≈
n∑

i=1

ui(t)φi(x), with u(t) = [u1(t), u2(t), ..., un(t)]T .

Let us now consider a uniform partition of the time interval [0, T] in m nodes,
such that ∆t = T/(m− 1) and tk = (k − 1)∆t, with k = 1, ..., m. We apply the
θ–method for the time discretization of (3.46) and obtain, for k = 1, .., m− 1

(M + θ∆tA)uk+1 + (−M + (1− θ )∆tA)uk = fk and uk ≈ u(tk), (3.49)

with fk :=∆t (θ f(tk+1) + (1− θ )f(tk)) . (3.50)

If we define Dt,h := M + θ∆tA and Bt,h := −M + (1 − θ )∆tA, the system of
equations (3.49) can be summarized in the compact form:

Dt,h

Bt,h Dt,h

Bt,h Dt,h

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝

u1

u2
...

um

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f1

f2
...

fm

⎞
⎟⎟⎠ ⇐⇒ Cu= f, (3.51)
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where C ∈ !nm×nm is a large space-time system that can be distributed and solved
in parallel and

u := [u1,u1, ...,um]T and f := [f1, f1, ..., fm]T .

3.2 The Monodomain equation

In the previous section, we have been through the methodology of solving the
heat equation. The latter model problem is undoubtedly a good starting point
for the solution of the monodomain equation, as both problems only differ by the
reaction term modeling the cells interaction. Recall the monodomain equation
given by:

∂ u(x, t)
∂ t

−∇ · (G(x)∇u(x, t)) + Iion(u(x, t)) = Iapp(x, t), ∀(x, t) ∈ D× (0, T]

G(x)∇u(x, t) · n= 0, ∀(x, t) ∈ ∂ D× (0, T]
u(x, 0) = 0, ∀x ∈ D. (3.52)

The difficulty arises however from the fact that this additional reaction term Iion is
non linear, preventing from deriving with ease the final liner system to be solved.
In this section, we explore the weak formulation of the monodomain equation,
show how to make use of Newton’s method for overcoming the non linearity of
the problem and express the final system to be assembled.

3.2.1 Weak formulation

We consider the Galerkin approximation of the weak formulation to the mono-
domain equation, proceeding in a similar way to what have been done previ-
ously: ∀0< t ≤ T, find uh = uh(x, t) such that

∫

D

∂ uh(x, t)
∂ t

vh(x) dx+ a(uh, vh) = l(vh), ∀vh = vh(x) ∈ Vh. (3.53)

where

a(uh, vh) =
∫

D

(G(x)∇uh(x, t)) ·∇vh(x) dx+
∫

D

Iion(uh(x, t))vh(x) dx, (3.54)

and

l(vh, t) =
∫

D

Iapp(x, t)vh(x) dx. (3.55)
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This provides us with the semi–discretized formulation of the monodomain equa-
tion in space. Since a(·, ·) is not anymore a bilinear form due to the presence of
Iion, injecting the solution ansatz

uh(x, t) =
n∑

j=1

uj(t)φ j(x), (3.56)

in (3.54), does not produce the desired linear system to solve. Instead, we will
proceed slightly diferently by considering a time–discretization scheme, say Back-
ward Euler for simplicity, to obtain the following fully–discretized problem:
for any k ≥ 0, given uh,k ∈ Vh, find uh,k+1 ∈ Vh such that

⎧
⎨
⎩

1
∆t

∫
D uh,k+1(x)vh(x) dx+ a(uh,k+1, vh) = l(vh, tk+1) +

1
∆t

∫
D uh,k(x)vh(x) dx,

uh,0 = u0,
(3.57)

where uh,k(x) = uh(x, tk). We furthermore introduce the residual, defined as the
difference between the left and the right hand side of the equality defined in
(3.57), that is

R(uh,k+1)(vh) =
1
∆t

∫

D

uh,k+1(x)vh(x) dx+ a(uh,k+1, vh) (3.58)

− l(vh, tk+1)−
1
∆t

∫

D

uh,k(x)vh(x) dx.

We are now left with the new problem formulation of finding uh,k+1 that cancels
the residual.

3.2.2 Newton’s method

The idea behind Newton’s method is to produce successively better approxima-
tions, in order to find the root of a given function.
Graphical interpretation: Starting from an initial guess close enough to the
root of a function, Newton’s method produces successive iterates based on the
tangent to the function calculated at the considered iteration. The tangent in-
tersection with the x–axis defines the next iteration point, that is meant to be a
better approximation of the root.
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Figure 3.2. Graphical illustration of Newton’s method through few iterations.

Mathematical formulation: Mathematically, the Newton’s method acts as a lin-
earization of a given function f : (a, b) → !, using its Taylor expansion for a
given point x0 ∈ (a, b) and a neighborhood h> 0

f (x0 + h)≈ f (x0) + hf ′(x0), (3.59)

provided that the function is differentiable in (a, b). If the desired incremented
value x1 := x0 + h is a root of f , then we get f (x1) = f (x0 + h) = 0, from which
one can deduce the value of the incrementation h, given by

0≈ f (x0) + hf ′(x0) =⇒ h≈ − f (x0)
f ′(x0)

(3.60)

Newton’s method for functional spaces: The situation for finding the root of
the residual (3.58) is slightly different since we are dealing with functional spaces
and the derivative is not to be understood in the usual sense. Let us recall that
if F : X → Y is an application of two normed linear spaces X and Y , we call the
Gâteaux (or weak) differential of F at a point x0 ∈ X in the direction of h, the
limit

DF(x0,h) = lim
λ→+∞

F(x0 +λh)− F(x0)
λ

(3.61)

for λ ∈ !. If the weak differential is linear, it can further be expressed as:

DF(x0,h) = F ′G(x0)h, (3.62)
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in which F ′G(x0) is called the Fréchet derivative of F in x0 in the direction of h.
From this, we deduce Newton’s method for finding the root of (3.58), that is
updating u(i)h,k+1 ∈ Vh with δu(i)h,k+1 ∈Wh such that

DR(u(i)h,k+1,δu(i)h,k+1)(vh) = −R(u(i)h,k+1), ∀vh ∈ Vh, (3.63)

in which similarly to the notation introduced previously, DR(u(i)h,k+1,δu(i)h,k+1)(vh)
is the differential of R(u(i)h,k+1)(vh) along δu(i)h,k+1. The latter differential is obtained
by computing the limit:

DR(u(i)h,k+1,δu(i)h,k+1)(vh) = lim
λ→+∞

R(u(i)h,k+1 +λδu(i)h,k+1)(vh)− R(u(i)h,k+1)(vh)

λ
. (3.64)

The motivation of setting δu(i)h,k+1 in Wh, that might represent a different space
from Vh, can be explained by eventual boundary conditions requirements that
limit the set of admissible updates, as for examples when non–homogeneous
Dirichlet boundary conditions are required.
We will later on show how the condition (3.63) serves as a linearization of the
weak formulation (3.57), from which the update δu(i)h,k+1 can be recovered. We
propose in the meantime, based on what have been developed above, the fol-
lowing algorithm for solving (3.57)

1. Initialize with u(0)h,k+1 = uh,k

2. Set i = 0 and residual= ε+ 1

3. While (i <maxiter) and (residual> ε)

(i) Find δu(i)h,k+1 by solving (3.63)

(ii) Update with u(i+1)
h,k+1 = u(i)h,k+1 +δu(i)h,k+1

(iii) Set i = i + 1

(iv) Compute residual =
CCCδu(i)h,k+1

CCC/
CCCu(i+1)

h,k+1

CCC

4. Set uh,k+1 = u(i)h,k+1
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3.2.3 The linear problem

Let us now attempt to solve (3.63) in order to recover the suitable update δu(i)h,k+1.
Using the definition of the Gâteaux derivative, we can compute:

DR(u(i)h,k+1,δu(i)h,k+1)(vh) =
1
∆t

∫

D

δu(i)h,k+1(x)vh(x) dx+
∫

D

G(x)∇δu(i)h,k+1(x) ·∇vh(x) dx

+
∫

D

I ′ion(u
(i)
h,k+1(x))(δu(i)h,k+1(x))vh(x) dx, (3.65)

where

I ′ion(u
(i)
h,k+1)(δu(i)h,k+1) = ((u

(i)
h,k+1 − upeak)(u

(i)
h,k+1 − uth) (3.66)

+ (u(i)h,k+1 − upeak)(u
(i)
h,k+1 − urest)

+ (u(i)h,k+1 − uth)(u
(i)
h,k+1 − urest))δu(i)h,k+1.

Using the derivative expression (3.65) in (3.63), we recover the following for-
mulation to be solved at every Newton iteration i for δu(i)h,k+1, given u(i)h,k+1 and
uh,k:

1
∆t

∫

D

δu(i)h,k+1(x)vh(x) dx+
∫

D

G(x)∇δu(i)h,k+1(x) ·∇vh(x) dx+
∫

D

I ′ion(u
(i)
h,k+1(x))(δu(i)h,k+1(x))vh(x) dx=

− 1
∆t

∫

D

u(i)h,k+1(x)vh(x) dx− a(u(i)h,k+1, vh) + l(vh, tk+1) +
1
∆t

∫

D

uh,k(x)vh(x) dx.

(3.67)

Rewriting (3.67) by inserting a linear combination of δu(i)h,k+1 in terms of Vh basis
elements, i.e.

δu(i)h,k+1(x) =
n∑

j=1

δujφ j(x), (3.68)

yields the linear system to be solved. In this context, we have that the functions
u(i)h,k+1 and uh,k are known by means of their nodal values which we denote with:

u(i)k+1 =
D
(u(i)k+1)1, · · · , (u(i)k+1)n

ET
, uk = [(uk)1, · · · , (uk)n]

T . (3.69)

Based on that, the formulation (3.67) yields the linear system:
&

1
∆t

M + A
'
δu(i) +M I ′ion(u

(i)
k+1) = b, (3.70)
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where
b := −

&
1
∆t

M + A
'

u(i)k+1 +M Iion(u
(i)
k+1) + f+

1
∆t

Muk. (3.71)

Here, Iion(u
(i)
k+1) ∈ !n and I ′ion(u

(i)
k+1) ∈ !n are given by

Iion(u
(i)
k+1) =

D
Iion((u

(i)
k+1)1), · · · , Iion((u

(i)
k+1)n)

ET
, (3.72)

and
I ′ion(u

(i)
k+1) =

D
I ′ion((u

(i)
k+1)1), · · · , I ′ion((u

(i)
k+1)n)

ET
, (3.73)

whereas

f :=
5∫

D

Iapp(x, tk+1)φi(x)
6n

i=1

. (3.74)

3.2.4 Space–time assembly of the linear problem

In the previous subsection, we have shown how to derive the linear system to
be solved at every Newton iteration, for every time step. Nonetheless, we aim at
assembling the system in an all–at–once fashion given the benefit from profiting
also from parallelization in time. The space–time discretization of the mono-
domain equation (3.52) is an extension of the space–time assembly procedure
described in Subsection 3.1.3 for the heat equation. In particular, the linear sys-
tem (3.51) is modified to contain the discretization of the non-linear reaction
term Iion:

R(u) = Cu+ r(u)− f= 0, (3.75)

where C and f are respectively defined as in (3.51) and (3.50). The reaction
term r(u) ∈ !nm is given by

r(u) := (∆t Im ⊗M)Iion(u) with Iion(u) := [Iion(u1), ..., Iion(unm)]T ,

where n and m are respectively the space and time degrees of freedom. The non–
linear equation (3.75) is further solved using the Newton method with a strategy
of setting the space–time initial guess described in Chapter 6, Section 6.4. The
residual derivative, or Jacobian, DR(u) ∈ !nm×nm of the non-linear residual R(u)
(3.75) is given by

DR(u) = Im ⊗ (M +∆tA) +∆t Im ⊗M · JIion(u).

with JIion(u) ∈ !nm×nm the diagonal matrix defined by

JIion(u) := diag([I ′ion(u1), I ′ion(u2)..., I ′ion(unm)]).
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JIion(u) :=

⎡
⎢⎢⎣

I ′ion(u1)
I ′ion(u2)

. . .
I ′ion(unm)

⎤
⎥⎥⎦ .

Newton’s method requires solving the following space–time system at every iter-
ation

DR(δu(i)) = −R(u(i)), (3.76)

in which both the current iteration u(i) and the update δu(i) are provided as
space–time vectors, i.e.

u(i) =
D
u(i)1 , · · · ,u(i)m

ET
, δu(i) =

D
δu(i)1 , · · · ,δu(i)m

ET
. (3.77)

The update for the Newton scheme is given by

u(i+1) = u(i) +δu(i). (3.78)

3.3 Comment on the error estimates

The combination of FE in space and FD in time, more specifically with a Crank-
Nicolson scheme, naturally introduces a discretization error. It is important to be
able to quantify this error, and have an a priori knowledge on how good a used
method approximates the final solution.

Regarding the heat equation, many works in the literature have addressed
this matter. In [QSS10] for instance, based on [QV08], it is shown that the error
for the solution approximation of the heat equation can be bounded as follows:

CCu(·, tk)− uh,k(·)
CC

L2(D) ≤ C(u0, f , u)(∆t2 + h2), (3.79)

where C is a function of its argument, and the solution approximated with linear
FE and Crank-Nicolson. The error can also be approximated in the H1-norm
yielding the following estimate

CCu(·, tk)− uh,k(·)
CC

H1(D) ≤ C(u0, f , u)(∆t2 + h). (3.80)

It is possible to rely on techniques such as the ones used in [AM89] to rewrite
the following estimates in the Bochner norms, i.e.

∥u− uh∥L2([0,T];L2(D)) ≤ C(u0, f , u, D, T )(∆t2 + h2), (3.81)
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∥u− uh∥L2([0,T];H1(D)) ≤ C(u0, f , u, D, T )(∆t2 + h). (3.82)

Based on [RV19], these error estimates can be generalized to the case of the
monodomain equation.
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Chapter 4

Uncertainty Quantification

As motivated in Chapters 1 and 2, we are interested in equations that are subject
to uncertain or unreliable data in the aim of evaluating the information deriving
from the process of simulations. This concept has been summarized under the
terminology of uncertainty quantification (UQ) and is concerned about extracting
robust and qualitative information despite the presence of this variability. In the
next section, we set the theoretical ground lying behind the characterization of
the randomness to consider, and introduce the reader to the notation we rely
on for the rest of the chapter. This part is largely based on the work introduced
in [Pet14]. Many of the theoretical aspects presented in the aforementioned
work, are reintroduced here for a matter of completion of the present document.

4.1 Foundations for UQ

Randomness in our problem of interest is defined through (random) fields de-
fined all over the considered domain. For mathematical purposes, these fields
need to be explicitly derived in terms of adequate functional spaces for our prob-
lem to be well-defined, mainly in terms of the smoothness that should character-
ize them.

In this section, we go through the construction of these so–called random
fields, showing how they can be explicitly derived by means of the Karhunen–
Loève expansion, that is a decomposition of the random fields in terms of or-
thonormal bases both for the stochastic and the spatial variables.

51
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4.1.1 Random fields

Solving PDE problems with FE systematically relies on adequate functional spaces
for all the interfering components. It is therefore of a crucial matter to address
the question of what should be a suitable functional space for our random fields.
Let (Ω,8 ,#) denote a complete and separable probability space, where Ω is the
sample space (or equivalently the universe of all possible outcomes), 8 the σ–
algebra and # the probability measure.
Additionnally, let us introduce (9 ,∥·∥9) to be a Banach space over the space
!. Following the conceptual idea of having a random event ω ∈ Ω realizing a
particular random field V (·,ω) ∈ 9 , the natural environment for the random
fields becomes therefore defined by means of the Lebesgue–Bochner spaces.

Definition 4.1 (Lebesgue–Bochner spaces). The Lebesgue–Bochner spaces denoted
by Lp(Ω,8 ,#;9) (here written as Lp(Ω;9) for simplicity), for 1 ≤ p ≤∞, are
defined to be the equivalence classes of strongly measurable maps v : Ω→9 such
that ∥v∥Lp(Ω;9) <∞, where the norm ∥·∥Lp(Ω;9) is defined as follows

∥v∥Lp(Ω;9) :=

(F∫
Ω
∥v(·,ω)∥p9 d#(ω)

G1/p
if 1≤ p <∞,

ess supω∈Ω ∥v(·,ω)∥9 if p =∞.

An important property for such a Bochner space is that whenever p = 2 and
9 is a separable Hilbert space, it is isomorphic to the tensor product space
L2(Ω) ⊗ B ([BBN14]). This property is crucial in two aspects. Being a ten-
sor product of two Hilbert spaces, the Lebesgue–Bochner space is also a Hilbert
space. Additionally, as we will later detail, this property allows to decouple the
Lebesgue–Bochner space and express every one of its elements as a tensorized
decomposition of orthonormal basis spanning both the probabilistic space Ω and
the Banach space9 .
Let us now be more explicit about the space9 . We consider a sufficiently smooth
domain D ∈ !d and set 9 to be the Hilbert space 9 =

D
L2(D)

Edr . Here, dr is
the dimension deciding for whether we are treating scalar or vectorial random
fields and is typically set to either dr = 1 or dr = d.
Let V ∈ L2(Ω;

D
L2(D)

Edr ) ∼= L2(Ω) ⊗
D
L2(D)

Edr be a representation of a random
field defined as

V(x,ω) =
D
V1(x,ω), · · · , Vdr

(x,ω)
ET

. (4.1)

By means of the Bochner integral, we additionally introduce the mean

" [V] (x) =
∫

Ω

V(x,ω) d#(ω) ∈
D
L2(D)

Edr , (4.2)
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as well as the centered random field provided with

V0 = V−" [V] ∈ L2(Ω;
D
L2(D)

Edr )∼= L2(Ω)⊗
D
L2(D)

Edr . (4.3)

By a result emanating from the theory on tensor products of Hilbert spaces and
their representation, see [Pet14], V0 exhibits an orthogonal decomposition, that
is

V0 =
∑

k∈;
σkXk ⊗φk, (4.4)

where {Xk}k∈; ⊂ L2(Ω) and {φk}k∈; ⊂
D
L2(D)

Edr are respectively orthonor-

mal in L2(Ω) and
D
L2(D)

Edr . On the other hand, {σk}k∈; ⊂ !. The centered
random field is therefore completely determined by means of {σk}k∈; , {Xk}k∈;
and {φk}k∈; .
Let us now define the covariance of V to be given by

Cov [V] (x,y) = " [(V(x)−" [V(x)])(V(y)−" [V(y)])] (4.5)

= "
D
V0(x)VT

0 (y)
E

=
∫

Ω

V0(x,ω)VT
0 (y,ω) d#(ω) ∈

D
L2(D× D)

Edr×dr

The boundedness of the covariance, i.e. Cov [V] ∈
D
L2(D× D)

Edr×dr , derives from
the element–wise boundedness of (Cov [V])i j (x,y) =

∫
Ω

V0,i(x,ω)V0, j(y,ω) d#(ω)
for 1≤ i, j ≤ dr , that is a consequence of the Cauchy–Schwarz inequality.
Following the definition of the covariance, we introduce the Hilbert–Schmidt op-
erator < associated to the covariance, defined by:

< :
D
L2(D)

Edr →
D
L2(D)

Edr (4.6)

(<u) (x) .→ (<u) (x) =
∫

D

Cov [V] (x,y)u(y) dy.

< is a linear operator, and we can therefore evoke its eigenvalues and eigenfunc-
tions. If additionally Cov [V] is symmetric non–negative, then by the spectral
theorem for compact operators, the covariance has a representation given by

Cov [V] =
∑

k∈;
λkφk ⊗φk , (4.7)

where {φk}k∈; and non–negative {λk}k∈; are respectively eigenvalues and eigen-
functions of < . Furthermore, the {φk}k∈; correspond to those used in V0 de-
composition (c.f. (4.4)) in which we also have that λk = σ2

k. The latter affirma-
tion can be elegantly proven by interpreting (with analogy to Hilbert–Schmidt
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operators on tensor product of Hilbert spaces) the covariance as the element cor-
responding to the trace–class operator defined around the representative V0 and
its adjoint, c.f. [Pet14].

4.1.2 The Karhunen–Loève expansion

In theory, random fields are now very well characterized by what has been de-
veloped in the previous subsection. Indeed, from the orthogonal decomposition
of V0, the random fields are well characterized by the orthonormal basis {Xk}k∈;
and {φk}k∈; , from which we could retrieve the random fields:

V(x,ω) = " [V] (x) +
∑

k∈;
σkXk(ω)φk(x). (4.8)

This expression is known as the Karhunen–Loève (KL) expansion. Assuming that
the covariance operator defined in (4.5) is known, the KL expansion for the ran-
dom fields can be retrieved by solving the eigenvalue problem related to the co-
variance operator. In practice however, the information on the covariance might
be unknown. Therefore, the random fields in our case are actually modeled by
reverse engineering the machinery described above, via an empirical correlation
kernel prescribing the covariance matrix.
More concretely, this is achieved by setting (Cov [V])i j (x,y) = ki j(∥x− y∥2),
1 ≤ i, j ≤ dr for functions ki j, where ∥x− y∥2 is the euclidian distance between
x and y.
For the random variables {Xk}k∈; , we make the reasonable assumptions to have
them independent and identically distributed, centered, i.e. " [Xk] = 0, with
bounded values in [−1,1] ( −1 ≤ Xk(ω) ≤ 1, ∀k ∈ ; and ∀ω ∈ Ω). The lat-
ter assumption is compensated by introducing a scaling factor s=

D
s1, · · · , sdr

ET
,

with si ∈ ! for 1≤ i ≤ dr . We introduce the matrix S ∈ !dr×dr with

S = diag(s)

⎡
⎣

s1
. . .

sdr

⎤
⎦ (4.9)

and we rewrite the KL expansion as:

V(x,ω) = " [V] (x) + S
∑

k∈;
σkXk(ω)φk(x). (4.10)

In the scalar case (dr = 1), this will serve to preserve the uniform ellipticity
condition (c.f. Subsection 4.2.2), whereas in the vectorial case (dr = d) this can
be used to impose a reasonable variability with respect to " [V] (x).
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4.1.3 Discretization of the eigenvalue problem

In the context of the methodology introduced above, generating the random
fields relies on solving the eigenvalue problem. So far, we have only been evok-
ing the covariance as lying in a given infinite dimensional functional space, i.e.
Cov [V] ∈

D
L2(D)

Edr×dr . However, in order to have the problem numerically fea-
sible, a discretization must come into play.
The eigenvalue problem resides in finding {(λk,φk)}∞k=1 such that

(
<φk = λkφk

(φk,φk′)[L2(D)]dr = δkk′ ,
(4.11)

where < is the covariance operator defined in (4.6). We express the weak for-
mulation of this problem by considering test functions v ∈

D
L2(D)

Edr , such that

(
(<φk,v)[L2(D)]dr = λk(φk,v)[L2(D)]dr , ∀v ∈

D
L2(D)

Edr

(φk,φk′)[L2(D)]dr = δkk′ .
(4.12)

Let us now consider a finite dimensional subspace Uh ⊂
D
L2(D)

Edr of dimension
Nh, with its spanning basis {ξk}

Nh
k=1. The Galerkin approximation deriving from

(4.12) is now to find {(λk,h,φk,h)}Nh
k=1 such that

(
(<φk,h,vh)[L2(D)]dr = λk,h(φk,h,vh)[L2(D)]dr , ∀vh ∈ Uh

(φk,h,φk′,h)[L2(D)]dr = δkk′ .
(4.13)

Since {ξk}
Nh
k=1 represent a basis for Uh, everyφk,h can be written as the linear com-

bination φk,h(x) =
∑Nh

j=1χk, jξ j(x). By inserting this in (4.13), and substituting
the test function vh with ξi for i = 1, · · · , Nh, we recover:

(
(<

I∑Nh
j=1χk, jξ j

J
,ξi)[L2(D)]dr = λk,h(

∑Nh
j=1χk, jξ j,ξi)[L2(D)]dr

(
∑Nh

j=1χk, jξ j,
∑Nh

j′=1χk′, j′ξ
′
j)[L2(D)]dr = δkk′ .

(4.14)

Using the linearity and the symmetry of the scalar product in
D
L2(D)

Edr , we end
up with

(∑Nh
j=1(ξi,<ξ j)[L2(D)]drχk, j = λk,h

∑Nh
j=1(ξi,ξ j)[L2(D)]drχk, j∑Nh

j=1

∑Nh
j′=1χk, j(ξ j,ξ

′
j)[L2(D)]drχk′, j′ = δkk′ .

(4.15)
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Finally, if we set C ∈ !Nh×Nh and M ∈ !Nh×Nh to be the matrices defined by

(C)i j = (ξi,<ξ j)[L2(D)]dr (4.16)

and

(M)i j = (ξi,ξ j)[L2(D)]dr , (4.17)

we end up solving the following system:
for k = 1, · · ·Nh, find χ k =

D
χk,1, · · · ,χk,Nh

ET
and λk,h such that:

(
Cχ k = λk,hMχ k

χ T
k Mχ k′ = δkk′

(4.18)

The obtained system represents a discretization of the initial eigenvalue problem
(4.11). Yet, the matrix C in (4.16) is defined with respect to the covariance
operator< that is the Hilbert–Schmidt operator for the covariance Cov [V], recall

(<u) (x) =
∫

D

Cov [V] (x,y)u(y) dy (4.19)

We therefore still need a suitable discretization for expressing Cov [V] (x,y) ∈D
L2(D× D)

Edr×dr . Given the tensor product structure of Cov [V] (c.f. (4.7)) and
with respect to the canonical map

D
L2(D)

Edr ⊗
D
L2(D)

Edr →
D
L2(D× D)

Edr×dr

ξk ⊗ ξl .→ ξk(x)ξ
T
l (y),

we can approximate the covariance by means of the following expression:

Cov [V] (x,y)≈
Nh∑

k,l=1

cklξk(x)ξ
T
l (y). (4.20)

We also define the matrix C̃ ∈ !Nh×Nh with

(C̃)kl = ckl . (4.21)
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This results in having:

<ξ j(x)≈
∫

D

K Nh∑

k,l=1

cklξk(x)ξ
T
l (y)

L
ξ j(y) dy

=
Nh∑

k,l=1

cklξk(x)
∫

D

ξT
l (y)ξ j(y)

=
Nh∑

k,l=1

cklξk(x)Ml j,

and therefore,

M
ξi,<ξ j(x)

N
[L2(D)]dr

≈
∫

D

ξT
i (x)

K Nh∑

k,l=1

cklξk(x)Ml j

L
dx

=
Nh∑

k,l=1

ckl Ml j

∫

D

ξT
i (x)ξk(x) dx

=
Nh∑

k,l=1

Mikckl Ml j.

This leads to the approximation

MC̃ M ≈ C . (4.22)

By replacing C with the above approximation in (4.18), we obtain the eigenvalue
problem defined by (

MC̃ Mχ k = λk,hMχ k

χ T
k Mχ k′ = δkk′

(4.23)

Approximating the initial problem (4.11) with the generalized eigenvalue prob-
lem (4.23) introduces an error that is the result of the approximation of the
eigenvalues and the eigenfunctions of the covariance operator, combined to an
additional error deriving from the spatial approximation of the covariance ma-
trix. In [Pet14], it is shown that provided an extra spatial regularity of the ran-
dom field, i.e. V ∈ L2(Ω)⊗ [Hq(D)]dr with q > 0, then the total error brought by
the process of discretization is bounded by h2min{2,q}.

4.1.4 Low rank approximation

The process of approximation of the infinite dimensional space
D
L2(D)

Edr with
the finite dimensional space Uh leads to solve the eigenvalue problem (4.23)
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of size Nh. In general, one should expect Nh to be given by a high number, as
to capture the spatial resolution of the solution. This evidently leads not only to
performance issues due to the size of the problem, but also eventually to memory
limits due to the density of the matrix C̃ (therefore MC̃ M ).
One might therefore think of approximating the eigenvalue problem (4.23) with
a smaller one of size M ≪ Nh. This suggests that the random fields would be
retrieved by means of a truncated KL expansion

V(x,ω) = " [V] (x) +
M∑

k=1

σkXk(ω)φk(x). (4.24)

Undoubtedly, for (4.24) to be a good approximation of the original infinite sum
KL expansion, a significant proportion of the information deriving from the eigen-
value problem (λk and φk) needs to be carried by the first M terms. It is actually
sufficient whenever the eigenvalues exhibit a certain decay, to not only achieve
the desired objective, but furthermore rigorously control the truncation error. We
leave the following argument to be addressed later.
Since C̃ is a symmetric positive semi–definite matrix, it can exactly be expressed
in terms of its Cholesky decomposition, i.e. C̃ = LLT for L ∈ !Nh×Nh . A variant
of this would instead be to approximate C̃ with a low–rank Cholesky decomposi-
tion, that is C̃ ≈ LLT for L ∈ !Nh×M with M ≪ Nh. The new eigenvalue problem
to consider becomes therefore:
for k = 1, · · ·Nh, find v k =

D
vk,1, · · · , vk,Nh

ET
and λk,h such that:

(
M LLT M v k = λk,hM v k

v T
k M v k′ = δkk′

(4.25)

Let us consider the subsidiary eigenvalue problem given by:
for k = 1, · · ·M , find the M eigenfunctions ṽ k =

D
ṽk,1, · · · , ṽk,M

ET
and the M

eigenvalues λ̃k,h such that:
(

LT M L ṽ k = λ̃k,h ṽ k

ṽ T
k M ṽ k′ = δkk′

(4.26)

If ṽ k is an eigenvector of (4.26), then v k := L ṽ k is an eigenvector of (4.25) for
the same eigenvalue λk,h := λ̃k,h since

M LLT M (L ṽ k) = M L
F
LT M L

G
ṽ k = λ̃k,hM (L ṽ k) . (4.27)

Furthermore,

(L ṽ k)
T M L ṽ k′ = ṽ T

k LT M L ṽ k′ = λ̃k′,h ṽ T
k ṽ k′ = λ̃k′,hδkk′ . (4.28)



59 4.1 Foundations for UQ

Therefore, setting v k = L ṽ k leads to already scaled eigenfunctions by
O
λ̃k,h.

Note about the low rank approximation: The low rank approximation can be
computed by means of Pivoted Cholesky Decomposition (PCD) as described in
[HPS15]. This algorithm presents the main advantage of not requiring to fill the
matrix C̃ with all of its entries, but instead computing one row at the time when
this is needed.

4.1.5 Truncation error

The process of low rank approximation of the discretized covariance matrix in-
troduces an additional truncation error to that provided at the end of Subsection
4.1.3. The behaviour of this error is closely related to the eigenvalues decay rate
of the covariance operator.
Eigenvalues decay rate: We start by characterizing the random field V with
an additional smoothness, i.e. V ∈ L2(Ω) ⊗ [Hq(D)]dr for q ≥ 1. This implies
that Cov[V] ∈ [Hq(D× D)]dr×dr . Furthermore, Cov[V] can still be expressed as
in (4.7), i.e. Cov [V] =

∑
k∈; λkφk ⊗φk , and we recall that:

∥V0∥L2(Ω)⊗[L2(D)]dr = (Tr< )1/2 =
√√∑

k∈;
σ2

k =
√√∑

k∈;
λk. (4.29)

In [Pet14] is developed a generalization of the results in [GH14] and [ST06] to
the case of vector fields, showing that the eigenvalues of the covariance operator
decay as:

λk $
&

k
dr

'−2q/d

=
&

dr

k

'2q/d

, as k→∞. (4.30)

This suggests an asymptotical decay of the eigenvalues, accelerated by the smooth-
ness characterizing the random fields.
Truncation error for the original (non–discretized) eigenvalue problem:
The effect of the truncation error on the original problem is characterized by the
following error:

CCCCCV0 −
M∑

k=1

σkXk ⊗φk

CCCCC
L2(Ω)⊗[L2(D)]dr

=

CCCCC
∞∑

k=M+1

σkXk ⊗φk

CCCCC
L2(Ω)⊗[L2(D)]dr

=

K ∞∑

k=M+1

σ2
k

L1/2

=

K ∞∑

k=M+1

λk

L1/2

.
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Recall (4.30),
∞∑

k=M+1

λk $
∞∑

k=M+1

&
dr

k

'α(q)
, for α(q) =

2q
d
> 0

≤
∫ ∞

M

&
dr

x

'α(q)
d x , since f (x) =

&
dr

x

'α(q)
is decreasing on [M ,∞]

= dα(q)r
x−α(q)+1

−α(q) + 1

++++
∞

M
= dα(q)r

M1−α(q)

α(q)− 1
, for α(q) ̸= 1.

Therefore, if we would require a controlled accuracy for an arbitrary ε> 0, i.e.
CCCCCV0 −

M∑

k=1

σkXk ⊗φk

CCCCC
L2(Ω)⊗[L2(D)]dr

=

K ∞∑

k=M+1

λk

L1/2

≤
1

dα(q)r
M1−α(q)

α(q)− 1

21/2

≈ ε,

(4.31)
we would have:

dα(q)r
M1−α(q)

α(q)− 1
≈ ε2 =⇒ M1−α(q) ≈ (α(q)− 1)ε2

dα(q)r

. (4.32)

This is possible only when α(q)> 1, for which we would have

M ≈
1
(α(q)− 1)ε2

dα(q)r

21/(1−α(q))
. (4.33)

Truncation error for the discretized eigenvalue problem:
As detailed in Subsection 4.1.3, the eigenvalues and eigenfunctions {

F
λk,φk

G
}Mk=1

are obtained after discretization, leading to approximations {
F
λk,h,φk,h

G
}Mk=1 of

the original quantities of interest. We therefore would like to investigate the
decay rate of the approximated eigenvalues, as well as ensure the existence of a
rank M for which the truncation error becomes arbitrarily small.
We aim to provide a bound for

I =

CCCCC
M∑

k=1

σkXk ⊗φk −
M∑

k=1

σk,hXk ⊗φk,h

CCCCC
L2(Ω)⊗[L2(D)]dr

. (4.34)

For this purpose, we use the following identity:

σkXk ⊗φk −σk,hXk ⊗φk,h = σkXk ⊗ (φk −φk,h) + (σk −σk,h)Xk ⊗φk,h, (4.35)

in such way that we get the following inequality:

I ≤
CCCCC

M∑

k=1

σkXk ⊗ (φk −φk,h)

CCCCC+
CCCCC

M∑

k=1

(σk −σk,h)Xk ⊗φk,h

CCCCC , (4.36)
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where the norm stands for that in L2(Ω)⊗
D
L2(D)

Edr . In [GH14], the following
inequalities are shown to hold:

CCφk −φk,h

CC
[L2(D)]dr $

hq

R
λk

, (4.37)

and
0≤ λk −λk,h $ λk

CCφk −φk,h

CC2

[L2(D)]dr $ h2q. (4.38)

We therefore get for the first part of the inequality (4.36):
CCCCC

M∑

k=1

σkXk ⊗ (φk −φk,h)

CCCCC$
√√√√

M∑

k=1

λk ∥Xk∥2L2(Ω)︸ ︷︷ ︸
=1

CCφk −φk,h

CC2
(4.39)

=

√√√ M∑

k=1

h2q =
>

Mhq.

With respect to the second part of the inequality (4.36), we have:
CCCCC

M∑

k=1

(σk −σk,h)Xk ⊗φk,h

CCCCC$
√√√ M∑

k=1

(σk −σk,h)2 (4.40)

≤
√√√ M∑

k=1

(λk −λk,h)$

√√√ M∑

k=1

h2q =
>

Mhq

Consequently, we get the condition under which I becomes arbitrarily small:

I ≤ 2
>

Mhq ≈ ε. (4.41)

Mixed condition for total truncation error control:
The total truncation error can be interpreted as the superposition of the trunca-
tion error on the non–discretized eigenvalue problem, and the error emanating
from the approximation of the eigenvalues and eigenfunctions. This is motivated
by the following inequality:

CCCCCV0 −
M∑

k=1

σk,hXk ⊗φk,h

CCCCC=
CCCCCV0 −

M∑

k=1

σkXk ⊗φk +
M∑

k=1

σkXk ⊗φk −
M∑

k=1

σk,hXk ⊗φk,h

CCCCC

≤
CCCCCV0 −

M∑

k=1

σkXk ⊗φk

CCCCC+
CCCCC

M∑

k=1

σkXk ⊗φk −
M∑

k=1

σk,hXk ⊗φk,h

CCCCC
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Consequently, for the eigenvalue problem approximated solution to be arbitrarily
smaller than a given tolerance ε′ = 2ε, the equality (4.33) provides the condi-
tion on the truncation number. The condition on the mesh size is provided by
(4.41). Insuring both condition guarantees a good overall truncated discretized
approximation of the solution to the eigenvalue problem.

4.1.6 The covariance in brief

We now formulate a synthesis of all the primarily presented theoretical mate-
rial on random fields, meant as a concrete methodology for practical usage.
It has been argued in Subsection 4.1.2 that the random fields are expressed
by means of the KL expansion, in the form of a superposition of an empirical
mean field "[V](x), and a perturbation provided in terms of the sum given by∑

k∈;
R
λkXk(ω)φk(x), where λk andφk are respectively eigenvalues and eigen-

functions of the covariance operator. The latter is also provided empirically, by
means of correlation kernel functions ki j(r), for 1≤ i, j ≤ dr where r = r(x,x’) is
a distance measure between two given spatial points x and x’, of the considered
domain D.
On the other hand, the efficiency of the low–rank approximation and the control
of the truncation error is strongly dependent on the eigenvalues decay, that in
turns is determined by the smoothness of the covariance as suggested by (4.30)
and (4.41). Consequently, a special class of functions constitutes a preferential
choice for correlation kernels, namely the Matérn class of functions. These can
be expressed by means of the following formulation, see [Ras03],

kp+1/2(r) = exp

1
−
R

2(p+ 1/2)r
σ

2
p !
(2p) !

p∑

k=0

(p+ k) !
k !(p− k) !

1R
8(p+ 1/2)r

σ

2p−k

(4.42)
for p ∈ % and σ ∈ (!+)⋆. The reason for which this class of functions is particu-
larly attractive for numerical examples is that their eigenvalues decay is known
in advance, as shown in [GKN+15]

λk ≤ Ck−(1+2(p+1)/d). (4.43)

In particular, for p = 0 and p =∞ we have

k1/2(r) = exp
3
− r
σ

4
, (4.44)

and

k∞(r) = exp
&
− r2

2σ2

'
. (4.45)
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Written as such, the case p =∞ defines a Gaussian bell in which the param-
eter σ represents the standard deviation. In the context of covariance kernels,
this defines a correlation length that prescribes the magnitude of local variations.
Using the Matérn class functions therefore prescribes spatial correlation on the
random fields, defined by the parameter σ.

Figure 4.1. Effect of the correlation length for squared exponential kernel on
the local variations. On the left, a random field field obtained for σ = 0.1.

On the right, a random field field obtained for σ = 0.5.

1D Analytical example: For D = !, an interesting analytical example can be
found in [RW06]. This is a different situation from that described along this
work, as it shows the eigenfunctions and eigenvalues of

∫

D

k(x , x ′)φ(x) dµ(x) = λφ(x ′),

for when there is a density function p(x) such that dµ(x) = p(x)d x . Nonethe-
less, it can be of interest to notice the behaviour of the eigenfunctions, and the
decay of eigenvalues through this example. Provided a kernel given by k(x , x ′) =

exp
&
−(x − x ′)2

2σ2

'
and a Gaussian density function given by p(x) =? (0, l2), the

eigenvalues and eigenfunctions are given by:

λk =

√√2a
A

Bk, k = 0,1,2, · · · (4.46)

φk(x) = exp
F
−(c − a)x2

G
Hk(
>

2cx), k = 0,1,2, · · · (4.47)

where
a = (4l2)−1, b = (2σ2)−1, (4.48)
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c =
R

a2 + 2ab, A= a+ b+ c, B = b/A, (4.49)

and Hk represents the Hermite polynomial of order k. We report in Figure 4.2
the plot some of the eigenvalues and the eigenfunctions provided by (4.46) and
(4.48) for the values of σ = 0.4 and l = 0.5.
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Figure 4.2. Eigenfunctions (left) and eigenvalues (right) of the squared
Gaussian kernel weighted with normal density.

The noticeable fact about the Figure 4.2 is the shape of the eigenfunctions, as
they exhibit properties of (anti)symmetry and periodicity. This is very close to
what can be observed for Fourier modes for example. One can also see how the
eigenvalues follow an exponential decay, in accordance to (4.43) for p =∞.

Remark. It is important to recall that the latter example is not directly concerned
with the theory developed in this chapter, and that it does not apply to bounded
domains. However, the eigenfunctions and eigenvalues behaviour is very similar
in general, demonstrating respectively symmetry and decay properties. Figures 4.5
and 4.6 show an example of weighted eigenfunctions (by means of the eigenvalues
square roots) in the cases dr = 1 and dr = 3 respectively.

Methodology-from continous correlation kernels to discrete random fields:
Considering a sufficiently fine mesh discretization resulting in a set of nodal ver-
tices {xi}Nh

i=1, the associated covariance matrix C ∈ !dr Nh×dr Nh is given by:

(C)mn = kst(xi,x j), (4.50)

for 1 ≤ m, n ≤ dr Nh ,where s = ⌊m/Nh⌋ , t = ⌊n/Nh⌋ and i ≡ m (mod Nh), j ≡ n
(mod Nh). Here, kst are correlation kernels in the form of (4.44) or (4.45), for
1≤ s, t ≤ dr .
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The PCD algorithm can be used as a low–rank approximation technique for ma-
trix C as detailed in Subsection 4.1.4. In this procedure, the covariance matrix
need not to be computed fully, providing a matrix L ∈ !dr Nh×M such that

CCC − LLT
CC

tr ≤ ε, (4.51)

where ε > 0 is a given tolerance and ∥·∥tr denotes the trace norm. As sug-
gested by (4.26), solving the M -sized new eigenvalue problem results in getting
M eigenfunctions ṽ k ∈ !M . The nodal value of one particular realization of
random fields can finally recovered by means of the following expression:

V(xi,y) = "[V](xi) +
M∑

k=1

D
(L ṽ k)i , (L ṽ k)i+Nh

· · · , (L ṽ k)i+(dr−1)Nh

ET
yk, (4.52)

where y = (y1, · · · , yM) is an M -tuple of random numbers sampled from an a
priori chosen distribution.

Figure 4.3. Example of isotropic (dr = 1) random fields on more complex
geometries.

Figure 4.4. Example of anisotropic (dr = d) fiber fields.
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Figure 4.5. Weighted isotropic eigenfunctions (left) and their contours (right)
in decreasing order.
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Figure 4.6. Weighted anisotropic eigenfunctions in decreasing order for a
diagonal covariance matrix, i.e. kst = 0 for s ̸= t.

Scaling factor for tuning components variability: Let us recall the scaled KL
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version given in (4.10), under its truncated form:

V(x,ω) = " [V] (x) + S
M∑

k=1

σkXk(ω)φk(x), (4.53)

where S ∈ !dr×dr is the diagonal matrix defined in (4.9). Let x j ∈ D be a given
spacial point of the domain D. The i–th component, 1 ≤ i ≤ dr , of the KL
expansion in x j is given by:

D
V(x j,ω)

E
i =

D
" [V] (x j)

E
i + si

M∑

k=1

σkXk(ω)
D
φk(x j)

E
i . (4.54)

The variance of the KL expansion applied on x j on its i–th component is given
by:

Var
FD

V(x j,ω)
E

i

G
= s2

i

M∑

k=1

σ2
kVar (Xk(ω))

D
φk(x j)

E2

i , (4.55)

since Var
FD
" [V] (x j)

E
i

G
= 0. The variance of the random variable Xk for k =

1, · · · , M shall be known in advance, e.g. Var(Xk) = 1/3 for Xk ∼ C (−1,1). In
which case we would obtain the following:

Var
FD

V(x j,ω)
E

i

G
=

1
3

s2
i

M∑

k=1

σ2
k

D
φk(x j)

E2

i . (4.56)

The standard deviation for the KL expansion applied on x j on its i–th component
is therefore given by:

std
FD

V(x j,ω)
E

i

G
=
T

Var
FD

V(x j,ω)
E

i

G
= si

√√√1
3

M∑

k=1

σ2
k

D
φk(x j)

E2

i . (4.57)

This expression shows that it is possible to tune the coefficient si to obtain a
desired amplitude for the variability around

D
" [V] (x j)

E
i. Obviously, this vari-

ability differs from a spatial points to another. It is however possible to choose
si to guarantee a certain maximal amplitude variability throughout the domain,
as reported in Figures 4.7 and 4.8. On a given geometry, Figure 4.7 reports the
vector field variability on each coordinate separately, for a given initial state vec-
tor field and a corresponding perturbation arising from a non-scaled (si = 1) KL
expansion. Figure 4.7 reports the same perturbation on the same configuration,
with a scaling factor si = 2 on each coordinate.
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Figure 4.7. Unscaled vector field variability arising from KL expansion.
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Figure 4.8. Scaled vector field variability arising from KL expansion with a
factor of si = 2 for each coordinate.

Further a posteriori truncation: After a truncated KL expansion is computed
by means of Low–rank approximation of the covariance matrix, it is possible to
perform an a posteriori truncation. This can be done by selecting a truncation
number Mtrunc < M such that:

Mtrunc = argmin
m

U
m :

m∑

k=1

σk/
M∑

k=1

σk > 1− εtrunc

V
, (4.58)

typically for εtrunc→ 0. The chosen tolerance corresponds likewise to the portion
of information to carry from the previous KL, in terms of eigenvalues. The a
posteriori may allow to reduce significantly the initial M , while carrying most of
the information. A qualitative measurement of this statement will be provided
in Chapter 7 in a concrete example involving the numerical results for this work.
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4.2 Problem setting

4.2.1 Stochastic formulation

Let us recall (Ω,Σ,#) to be a complete and separable probability space and a
bounded Lipschitz domain given by D ⊂ !d , where d = 1,2,3. We addition-
ally consider a time domain [0, T] and define ) = L2([0, T]; H1(D)) to be the
Bochner space equipped with the norm in Hq(D) for q = 0,1, given by:

∥v∥) :=

K∫

[0,T]
∥v(·, t)∥2Hq(D) d t

L1/2

. (4.59)

We have already argued (c.f. discussion in Subsection 4.1.1) that since H1(D)
is a Hilbert space, ) = L2([0, T]; H1(D)) is also a Hilbert space. With a similar
reasoning, we arrive to the natural conclusion that L2(Ω;) ) is also characterized
as a Hilbert space. We introduce our model problem, that is formulated as a
stochastic heat equation:
find u ∈ L2(Ω;) ) such that for almost every ω ∈ Ω,

∂tu(X,ω)−∇ · (G(x,ω)∇u(X,ω)) = f (X), ∀X= (x, t) ∈ D× (0, T]
u(X) = 0, ∀X= (x, t) ∈ ∂ D× (0, T] (4.60)

u(x, 0) = g(x), ∀x ∈ D,

where G ∈ L∞(Ω; [L∞(D)]dr×dr ) is the random diffusion field for dr = 1 (isotropic
case) or dr = d (anisotropic case), i.e. satisfying the uniform ellipticity condition
as a guarantee of the well-posedness of the PDE problem.

Remark. If the forcing function f was depending on u(X) and further written as
f (X ) = Iapp(X)− Iion(u(X,ω)) (with respect to the notation introduced by (3.52)),
we would recover a stochastic formulation of the monodomain equation. The latter
undoubtedly represents our main equation of interest with respect to all the numer-
ical experiments. Nonetheless, the stochastic heat model equation will serve as a
referential point with respect to the theoretical error analysis.

More specifically, the formulation (4.60) suggests a heat equation subject to the
uncertainty of the diffusion field, to be provided by a function of the truncated
KL expansion as detailed in Section 4.1, recall

V(x,ω) = " [V] (x) +
M∑

k=1

W
λkXk(ω)φk(x). (4.61)
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We demonstrate how this is done in a way that ensures the well–posedness of
the problem.

4.2.2 Well-posedness

We separate for convenience the two cases: isotropic and anisotropic.
Isotropic: When dr = 1, the uniform ellipticity condition translates to the exis-
tence of two constants 0< Gmin < Gmax <∞ such that:

Gmin ≤ ess inf
x∈D

G(x,ω)≤ ess sup
x∈D

G(x,ω)≤ Gmax #-almost surely. (4.62)

In this case, we simply set G(x,ω) = V (x,ω). Requiring that

Gmin ≤ ess inf
x∈D

V (x,ω)≤ ess sup
x∈D

V (x,ω)≤ Gmax #-almost surely (4.63)

is therefore a sufficient condition for the well-posedness of the problem.

Remark. In accordance to the discussion in Subsection 4.1.2, the condition (4.63)
can always be ensured by considering a scaling factor s ahead of the perturbation
provided by the KL expansion, as in (4.10). The scaling factor can be selected such
that the highest variation is dumped to remain bounded by " [V ], i.e.

s

+++++
M∑

i=1

W
λiφk(x)

+++++≤ "[V ](x),∀x ∈ D.

Anisotropic: When dr = d, the uniform ellipticity condition transforms to:

Gmin ≤ ess inf
x∈D

λmin (G(x,ω))≤ ess sup
x∈D

λmax (G(x,ω))≤ Gmax #-almost surely,

(4.64)
with 0 < Gmin < Gmax < ∞, and where λmin and λmax refer respectively to
the smallest and largest eigenvalues. In this case, vector-valued random fields
V(x,ω) can be used for designing tensor random fields by means of a tensor
product construction given by

G(x,ω) := aId + (∥V(x,ω)∥2 − a)
V(x,ω)VT (x,ω)
VT (x,ω)V(x,ω)

, (4.65)

as suggested in [HPS17b], for a given a > 0. By doing so, we are modeling a
diffusion of strength ∥V(x,ω)∥2 in the direction of V(x,ω), and perpendicularly
with strength a.
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Remark. In the context of electrophysiology, this suggests that V(x,ω) represent the
fiber field orientations comprised in the myocardium, diffusing electrical potential
with conductivity ∥V(x,ω)∥2 in the fibers’ directions, and a transversal conductivity
of strength a.

The following lemma as demonstrated in [HPS17b], ensures the well–posedness
of the tensor model provided by (4.65).

Lemma 4.1 ([HPS17b]). Given the existence of constants bmin ≤ 1 and bmax ≥ 1
such that bmin ≤ a ≤ bmax and

bmin ≤ ess infx∈D ∥V(x,ω)∥2 ≤ ess supx∈D ∥V(x,ω)∥2 ≤ bmax #-almost surely,
(4.66)

the conductivity tensor (4.65) is symmetric and satisfies a uniform ellipticity condi-
tion (4.64) for Gmin = bmin and Gmax = bmax

Proof. For almost every ω ∈ Ω and almost every x ∈ D we have that G(x,ω) is
well-formed, because of

VT (x,ω)V(x,ω) = ∥V(x,ω)∥22 ≥ b2
min > 0,

and clearly symmetric. Furthermore, we can choose u2, · · · ,ud ∈ !d that are per-
pendicular to V(x,ω) and linearly independent. Thus, it holds, for i = 2, · · · , d,
that

G(x,ω)ui = aui and G(x,ω)V(x,ω) = ∥V(x,ω)∥2V(x,ω).

Consequently, we obtain for almost every ω ∈ Ω and almost every x ∈ D that

λmin

F
G(x,ω)

G
=min{a,∥V(x,ω)∥2}≥ bmin,

λmax

F
G(x,ω)

G
=max{a,∥V(x,ω)∥2}≤ bmax.

Solution existence and uniqueness: Due to (4.63) (respectively (4.64)), the
problem defined in (4.60) is elliptic and admits a unique solution for almost
every ω ∈ Ω. This claim can be proven by using the Banach-Nec̃as–Babus̃ka, a
generalization of the Babus̃ka–Lax–Milgram (Theorem 3.1), c.f. [CMO18]. The
proof can be found e.g. in [LM12], or [Bai69]. Furthermore, the solution satisfies

∥u(·,ω)∥) ≤ C(Ca,α, u0)∥ f ∥V ⋆ , (4.67)

where C > 0 is a constant depending on Ca and α respectively the boundedness
and coercivity constants, and the initial condition u0, c.f. [Bai69, Joh19]
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4.2.3 Parametric formulation

Regarding (4.60), we are interested in computing the statistics of the stochastic
solution u, with respect to a functional 8 , i.e.

"[8 (u)](X) =
∫

Ω

8 (u(X,ω)) d#(ω). (4.68)

As described in the previous subsection, the characterization of G is provided by
the truncated KL expansion

V(x;ω) = "[V](x) +
M∑

k=1

W
λkφk(x)ψk(ω) , (4.69)

where λk and φk(x) are respectively eigenvalues and eigenvectors of the covari-
ance induced by the spatial correlation kernel. The {ψk(ω)}Mk=1 are stochastically
uncorrelated random variables of the joint density function ρ(y) =

∏M
i=1ρk(yk).

We use here a uniform distribution, i.e ψi ∼C (−1,1). We are therefore able to
identify the stochastic space Ω with its image [−1,1]M using the mapping

ψ : Ω→ [−1,1]M , (4.70)

ω .→ (ψ1(ω), · · · ,ψM(ω)). (4.71)

Likewise by inserting a realization y = (y1, · · · , yM) = (ψ1(ω), · · · ,ψM(ω)) , we
could reformulate the truncated KL expansion in a deterministic form as

V(x,y) = "[V](x) +
M∑

k=1

W
λkφk(x)yk. (4.72)

Consequently, we can also rewrite the stochastic equation (4.60) in a parametric
form: find u ∈ L2([−1,1]M ; L2([0, T]; H1(D)))

∂tu(X,y)− div(G(X,y)∇u(X,y)) = f (X) in D× [0, T], (4.73)

for all y ∈ [−1,1]M . The expectation of the considered functional of the solution
for the stochastic heat equation (4.73) can be rewritten as a high dimensional
integral

"[8 (u)](X) =
∫

Ω

8 (u(X,ω)) d#(ω)≈
∫

[−1,1]M
8 (u(X,y))ρ(y) dy. (4.74)

For the sake of simplicity, we consider from now on the functional corresponding
to the PDE solution, that is given by the identity function 8 (u) = u.
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4.3 Single-level sampling methods

In order to numerically approximate the integral (4.74), one should rely on a
quadrature formula of the type

Du(·) =
N∑

i=1

wiu(·,ξ(i))ρ(ξ(i)) . (4.75)

Approximating a stochastic integral likewise can further be interpreted as a sam-
pling method, where the samples represent the quadrature points.

4.3.1 Monte Carlo (MC)

A well known sampling method for this type of problem is provided by the Monte
Carlo (MC) estimator. It is characterized by a fairly easy implementation and is
straightforward to use. The approximation provided by the MC estimator is fur-
thermore independent of the considered stochastic dimension and the method
requires only weak regularity assumptions. Nonetheless, the disadvantage of
such a method is characterized by its low convergence rate, requiring therefore
a large number of samples, i.e. simulations. In some applications, this might
represent a heavy burden, especially when a single simulation is already compu-
tationally demanding. Combination of multilevel techniques and deterministic
methods, as suggested further in this work, may represent an alternative by dras-
tically lowering the computational cost of the MC method.

The MC estimator’s quadrature formula is given by the following expression

DN
MCu(·) = N−1

N∑

i=1

ui(·,ξ(i)), (4.76)

i.e. the mean over solutions ui, for i = 1, .., N , computed for N independent sam-
ples ξ(i) ∈ [−1,1]M corresponding to realizations of independent and identically
distributed random vectors.

Remark. Realizations of random vectors, with uniform distributions e.g., require
the generation of an absolute random number between two provided bounds. The
computer, however, is unable to generate such numbers completely randomly and
relies on parameter dependent algorithms. We refer to these numbers as pseudo–
random numbers.



75 4.3 Single-level sampling methods

The definition of the MC estimator (4.76) would be completely auto-sufficient
if a solution ui to the sample ξ(i) could be computed exactly. However in the con-
text the monodomain equation, as in many other applications, an exact and ana-
lytical solution can not be provided and we rely on finite elements to numerically
approximate it. Let us consider an l ≥ 0 and a corresponding tetrahedralization
2l of the spatial domain D of mesh size hl & 2−l . We define the continuous,
piecewise linear finite element spaces

El = {vl ∈ C0(D) : vl|T ∈ #1(T ),∀T ∈ 2l}. (4.77)

We now introduce the notation

DNl
MCul(·) = N−1

l

Nl∑

i=1

ui
l(·,ξ(i)), (4.78)

where ui
l is the finite element approximation of the solution ui for the sample ξ(i),

lying in the space El (Nl replaces N in (4.76) for designating the number of sam-
ples for the discretization level l). Therefore, the solution obtained through the
MC method is subject not only to the stochastic error depending on the number
of samples used as quadrature points, but also on the discretization error inher-
ent to solving the PDE within the context of finite elements. The latter concern
is discussed in Section 4.5.

4.3.2 Quasi–Monte Carlo (QMC)

The Quasi–Monte Carlo (QMC) estimator is a deterministic quadrature method
that might represent an alternative to MC, under the condition of an extra regu-
larity exhibited by the integrand. The lack of such regularity may induce a higher
upper bound in the method’s convergence. Furthermore, the method may suf-
fer from the curse of dimensionality depending on the considered deterministic
sequencing, causing an exponential growth of the number of required evalua-
tions. The method is however still widely used in many applications, leading
in fortunate but not so rare cases to a faster convergence towards the desired
quantity.

The inherent idea motivating the QMC method is to rely on a deterministic
sequence of quadrature points that exhibits a low discrepancy, defined to be as
such if the proportion of points from the considered sequence falling into a con-
taining set is close to its measure. In other terms, the QMC typically relies on a
set of points rendering a better coverage of a given (stochastic) space. In order
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to fully identify the features of this method, we shall proceed more formally by
introducing the following definitions.

Definition 4.2 (Discrepancy). The discrepancy of a set SN = {ξ(1), · · · ,ξ(N)} ⊂
[0,1]M is defined to be given by DN (SN ) = sup9∈F

++++
1
N
∑N

i=1 9(ξ
(i))−λ(9)

++++
where 9 is the indicator function of the set9 , that is

9(ξ) =

(
1 if ξ ∈9 ,

0, otherwise,

λ(9) the Lebesgue measure of the set 9 , and F the set of M–dimensional boxes
of the form

M∏

i=1

[ai, bi) = {x ∈ !M : ai ≤ xi ≤ bi},

for 0≤ ai < bi ≤ 1, where 1≤ i ≤ M .

Remark. The number
1
N
∑N

i=1 9(ξ
(i)) represents the proportion of SN set points

that are contained in9 .

Definition 4.3 (star–Discrepancy). The star–Discrepancy is defined similarly for
ai = 0 and bi < 1 for 1≤ i ≤ M, that is

D⋆N (S
N ) = sup

z∈[0,1]

+++++
1
N

N∑

i=1
[0,z)(ξ

(i))−λ([0,z))

+++++ .

We below define the van der Corput sequence, an example of equidistributed and
dense sequence over the interval [0,1] that exhibits a low discrepancy.

Definition 4.4 (van der Corput sequence). Let r be a positive integer representing
a base, equivalently called a radix. The representation of a positive integer n≥ 1 in
the radix of r is given by:

n=
K−1∑

k=0

dk(n)rk,

where 0 ≤ dk(n) < r is the k–th digit in the representation of n in radix r. The
n–th number of the van der Corput sequence with respect to the radix r is obtained
by the following transformation:

gr(n) =
K−1∑

k=0

dk(n)r−k−1.
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Defined as such, the van der Corput sequence suggests to reverse the repre-
sentation of the sequence of natural numbers with respect to a given radix.
This means that if a number n can be written as n = · · · d3d2d1 in the r–base,
its transformation with respect to the van der Corput sequence is obtained by
gr(n) = 0.d1d2d3 · · · . We illustrate this with the following example of the first
five numbers expressed in the 2–base:

1= 1 ⋆ 20 = 12,

2= 1 ⋆ 21 + 0 ⋆ 20 = 102,

3= 1 ⋆ 21 + 1 ⋆ 20 = 112,

4= 1 ⋆ 22 + 0 ⋆ 21 + 0 ⋆ 20 = 1002,

5= 1 ⋆ 22 + 0 ⋆ 21 + 1 ⋆ 20 = 1012,

for which the five corresponding numbers of the van der Corput sequence are
provided by:

0.12 = 1 ⋆ 2−1 = 1/2,

0.012 = 0 ⋆ 2−1 + 1 ⋆ 2−2 = 1/4,

0.112 = 1 ⋆ 2−1 + 1 ⋆ 2−2 = 3/4,

0.0012 = 0 ⋆ 2−1 + 0 ⋆ 2−2 + 1 ⋆ 2−3 = 1/8,

0.1012 = 1 ⋆ 2−1 + 0 ⋆ 2−2 + 1 ⋆ 2−3 = 5/8.

The van der Corput sequence is a low–discrepancy sequence over the unit inter-
val, that can be generalized to M dimensions, for any M . Provided the first M
prime numbers, this gives rise to the Halton sequence defined as follows.

Definition 4.5 (Halton sequence). The M–dimensional Halton sequence is given
by

ξ(i)HP = [gp1
(i), · · · , gpM

(i)]T , for i ∈ %,

where p1, · · · , pM are M first prime numbers, and gpk
(i) denotes the i–th element

of the van der Corput sequence with respect to the base pk.

In most applications, the integration interval is not necessarily given by [0,1]M .
In the case of an integration interval given [a, b]M , the Halton sequence can
easily be mapped by means of an affine transformation of the form

h : [0,1]→ [a, b]
x .→ h(x) := cx + d,



78 4.4 Multilevel sampling methods

such that h(0) = a and h(1) = b, for which the low discrepancy with respect to
[0,1]M is preserved in [a, b]M . We consider for the current work an integration
interval defined by [−1,1]M , which yields a transformation h(x) = 2x − 1.

Remark. For the more complex case where the integration domain is given by !M,
the mapping can be performed by means of the cumulative normal distribution and
its inverse, see [HPS17a].

We therefore have everything at hand for defining formally the QMC estimator
in the case of our application,

DQMCu(·) = N−1
N∑

i=1

u(·, 2ξ(i)HP − 1). (4.79)

We also introduce the notation related to the use of the QMC estimator in the
context of approximating the solution u on a discretization level l

DNl
QMCul(·) = N−1

l

Nl∑

i=1

ul(·, 2ξ(i)HP − 1). (4.80)

4.4 Multilevel sampling methods

Multilevel methods were developed to overcome the high computational cost of
MC, in view of its slow convergence (to be discussed in Section 4.5). They were
introduced as a variance reduction technique for the approximation of integrals
in [Hei01], generalized to stochastic ODEs in [Gil08]. Multilevel techniques have
become since then widely adopted and many works brought different contribu-
tions, see e.g. [BSZ11, Gil13a, HPS12b, MS12]. The main idea is to rely on
a multilevel splitting that creates low–resolution models. Provided a balancing
of samples priorily set on the basis of the method’s convergence properties, the
major portion of samples can be offset to the low–resolution models, while the
overall accuracy still preserved. The sampling strategy, which we discuss in Sec-
tion 4.6, is therefore of paramount importance in the multilevel setup.

4.4.1 Multilevel Monte Carlo (MLMC)

The Multilevel Monte Carlo (MLMC) estimator relies on a hierarchy of meshes
priorily defined for a given spatial domain. Let us therefore start by consider-
ing a nested sequence of shape regular tetrahedralizations {2l}l≥0 of the spatial
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domain D, where each 2l is of mesh size hl & 2−l . For all levels l ≥ 0, we recon-
sider the continuous, piecewise linear finite element spacesEl , defined in (4.77).
To each of the finite element spaces El , we furthermore associate the subscript
corresponding time-discretization step from {∆tl}l≥0 where ∆tl ∼ hl .
The MLMC estimator can be defined as follows:

DMLMCuL(·) =
L∑

l=0

DNl
MC(∆ul(·)) =

L∑

l=0

DNl
MC(ul(·)− ul−1(·)), (4.81)

where
Z
DNl

MC

[L

l=0, involving Nl samples , is a sequence of MC quadratures of pre-
cision εl with respect to its stochastic error, therefore defined by the sampling
strategy. These quadratures are expressed as priorily defined in the case of MC,
applied to the difference of FE spaces. We can write them in the following way:

DNl
MC(ul(·)− ul−1(·)) = N−1

l

Nl∑

i=1

F
ul(·,ξ(i))− ul−1(·,ξ(i))

G
. (4.82)

where ul(·,ξ(i)) is the solution obtained at level l for the sample ξ(i), with the
corresponding mesh and time discretization steps. We further define u−1 ≡ 0.

Remark. Defined as in (4.81), the MLMC estimator is given by a telescopic sum that
algebraically is equivalent to a MC estimator applied for the fine level, assuming that
identical samples are solved at every level.

Remark. By looking closer at (4.82), one can deduce that an essential component
of the MLMC resides in the intergrid transfer of the data. The samples represent
random fields to be interpreted at different mesh levels. The quantities–of–interest,
here the samples’ solutions for simplicity, are to be transferred on the fine level. This
is discussed in Section 4.8.

4.4.2 Multilevel inverse construction

The MLMC as introduced by the expression (4.81) can be interpreted in an ab-
stract way as the sum of quadrature formulas applied to the difference of FE
functions. In this context, the FE spaces nestedness requirement is the conse-
quence of the necessity of having the difference of FE functions well-defined.
In [HPS12b], based on the work developed in [GH13b], it is shown that the mul-
tilevel estimator resembles a sparse grid tensor representation of product spaces,
in which the complementary spaces are provided by the differences of FE spaces.
This observation has motivated the so–called inverse construction of the MLMC
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estimator, by inverting the roles of the quadrature and the FE spaces. The MLMC
estimator can therefore also be written in the form of differences in quadrature,
applied to FE functions:

DMLMCuL(·) =
L∑

l=0

∆DNl
MC(ul(·)) =

L∑

l=0

F
DNl

MC −D
Nl+1
MC

G
(ul(·)), (4.83)

where we set DNl+1
MC ≡ 0. The benefit from this representation is that it allows to

give up the FE spaces nestedness requirement. This represents a non negligible
advantage, as in the case of complex 3D geometries, it might be impossible to
construct a nested sequence of meshes. However, such a representation does not
allow for recovering the full solution as such a process introduces an additional
error. The expression in (4.83) is abusive in that sense and should rather be
defined for a pointwise functional

DMLMCuL(·) =
L∑

l=0

∆DNl
MC8 (ul(·)) =

L∑

l=0

F
DNl

MC −D
Nl+1
MC

G
8 (ul(·)), (4.84)

where 8 is the functional.
The difference in quadrature is well–defined beyond any nestedness condition.
It turns out however to be an advantage to consider nested quadrature as this
reduces the overall work of the MLMC estimator, see [GHM15]. Provided that
the MLMC involves solving more samples on coarse levels (implying therefore
Nl > Nl+1, ∀l = 0, · · · , L − 1), the use of nested quadrature results in solving Nl

samples on every level l, summed up with different weights:

F
DNl

MC −D
Nl+1
MC

G
(ul(·)) =

Nl+1 − Nl

Nl Nl+1

Nl+1∑

i=0

ul(·,ξ(i)) +
1
N0

Nl∑

i=Nl+1+1

ul(·,ξ(i)). (4.85)

In this process, furthermore, all samples ξ(i) are drawn only once at all the in-
volved MC quadratures.

4.4.3 Multilevel Quasi–Monte Carlo (MLQMC)

The Multilevel Quasi–Monte Carlo (MLQMC) estimator is evidently the com-
bination of the MLMC estimator and QMC, i.e. samples selected with a deter-
ministic approach as in the case of the Halton sequence for example. It can be
formally represented with the following formula
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DMLQMCuL(·) =
L∑

l=0

DNl
QMC(ul(·)− ul−1(·)) =

L∑

l=0

F
DNl

QMC −D
Nl+1
QMC

G
(ul(·)), (4.86)

where the second equality is provided by the inverse multilevel construction.
Here,

Z
DNl

QMC

[L

l=0
is a sequence of QMC quadratures with precision εl . This pre-

cision is induced by the number of samples used on every level, as in the case of
the MLMC.

4.5 Convergence properties

In the following, we discuss in detail the convergence behaviour for each of
the introduced sampling methods. As argued previously, the use of stochastic
quadrature methods in the context of FE approximation entails stochastic and
discretization contributions to the general (or total) error.
The study of the convergence behaviour is crucial for the understanding of these
methods, providing moreover a clear idea on the sampling strategy to be adopted
(discussed in Section 4.6). The latter in turn prepares the ground for the com-
parison of the performance of these methods. This will be adressed based on the
work evaluation (c.f. Section 4.7).

4.5.1 Discretization error

Let us first recall the approximation errors deriving from the FE discretization
process, already introduced in Section 3.3, combined to the solution bounded-
ness provided by (4.67):

∥u− ul∥L2([0,T];L2(D)) ≤ C(h2
l +∆t2

l )∥ f ∥L2([0,T];L2(D)) , (4.87)

and
∥u− ul∥L2([0,T];H1(D)) ≤ C(hl +∆t2

l )∥ f ∥L2([0,T];H1(D)) , (4.88)

for the case of linear FE as relied upon all along this work. In order to make
further error analysis not burdensome, we suggest an expression of these er-
ror estimates only in terms of the space discretization step hl , by considering
hl ∼ ∆tl . This does not affect the error order as we perform equal refinement
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(or coarsening) in space and time between different levels. Hence, we recover
simplified error estimates given by

∥u− ul∥L2([0,T];L2(D)) ≤ Ch2
l ∥ f ∥V ⋆ , (4.89)

and
∥u− ul∥L2([0,T];H1(D)) ≤ Chl ∥ f ∥V ⋆ . (4.90)

We furthermore write the aforementioned error estimates in a single compact
form, by setting

∥u− ul∥)q
≤ Ch2−q

l ∥ f ∥V ⋆ , (4.91)

for q = 0,1 and )q = L2([0, T]; Hq(D)).

4.5.2 Stochastic error

The stochastic error emanating from the MC process of estimating the expecta-
tion of a random variable u converges as suggested by the following proposition.

Proposition 4.1 ([BSZ11]). Recall the MC method for approximating the expecta-
tion "[u] ∈ )q (u ∈ L2([−1,1]M ;)q)) given by

DN
MCu(·) = N−1

N∑

i=1

ui(·). (4.92)

For any N ∈ %, it holds that
CC"[u]−DN

MCu
CC

L2([−1,1]M ;)q)
≤ N−1/2 ∥u∥L2([−1,1]M ;)q) , (4.93)

Proof. For a proof of this statement, see [BSZ11].

We have presented the MC quadrature method as a relatively easy method to
employ, with nonetheless a low convergence rate. The bound given in Proposi-
tion 4.1 gives a quantitative measure of this statement, since it suggests that the
error converges as G (N−1/2).

The QMC method instead, is designed to improve the convergence rate of the
MC method. Through a deterministic choice of quadrature points presenting a
lower discrepancy, a faster convergence of the stochastic error can be recovered.
The success of such a procedure is not automatic, but depends instead on some
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intrinsic features of the problem, mainly in terms of the smoothness of the con-
sidered integrand. The study of the convergence for the QMC requires therefore
more analytical effort than the MC. For this purpose, we define two important
notions in the treatment of the QMC convergence error: the variation in the sense
of Vitali, and the variation in the sense of Hardy and Krause.

Definition 4.6 (Variation in the sense of Vitali). Let f :
∏M

k=1[ak, bk] → !. We
define:

∆hk
( f ,x) = f (x1, · · · , xk + hk, · · · , xM)− f (x1, · · · , xk, · · · , xM),

for hk > 0. We define recursively:

∆h1,··· ,hk
( f ,x) =∆hk

(∆h1,··· ,hk−1
,x).

We also create in every direction the partition πk, defined by Nk+1 points t i
k such

that ak = t1
k < · · ·< tNk+1

k = bk, to which we associate the spacings hi
k = t i+1

k − t i
k.

The variation in the sense of Vitali of f is given by:

V M( f ) = sup
(π1,··· ,πM )

M∑

k=1

Nk∑

ik=1

+++∆hi1
1 ,··· ,hik

k
( f , (x i1

1 , · · · , x ik
k ))
+++ .

Definition 4.7 (Variation in the sense of Hardy and Krause). The variation in the
sense of Hardy and Krause is given by:

VHK( f ) =
∑

V M( f ),

where the sum is provided on every sub-interval of the M–dimensional box provided
by
∏M

k=1[ak, bk] ⊂ !M, of dimension inferior or equal to M.
Additionally, a function is said of bounded variation in the sense of Hardy and
Krause if VHK( f )<∞.

For functions f : [0,1]M .→ ! that are bounded in the sense of Hardy and Krause,
the approximation error for the integral of f is provided by the Koksma-Hlawka
inequality,

|DN
QMC f − I( f )|≤ D⋆N (S

N )VHK( f ), (4.94)

where I( f ) =
∫
[0,1]M f (x) dx and SN the samples set. This inequality was estab-

lished in [Hla61], generalized to any dimension in [Zar68].
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In our case however, we are interested in the integration of a function u belong-
ing to the Bochner space L2([−1, 1]M ;)q). Let us assume an extra smoothness
of the function u such as u ∈W 1,1

mix([−1,1]M ;)q), for which the norm defined as

∥u∥W 1,1
mix([−1,1]M ;)q)

:=
∑

∥α∥∞≤1

∫

[0,1]|α|

CCC∂ αy u|α|(·)
CCC
)q

(4.95)

is bounded, where α = (α1, · · · ,αM) is the the usual multi–index used in the
partial derivatives notations with ∥α∥∞ = maxk=1,...,M |αk|, and u|α| the projec-
tion of u on the |α|–dimensional face defined by the set {y ∈ !M such that yj =
1 for α j = 0}. We may obtain an analogous bound to that given in (4.94), see
[HPS17a],

CCCDN
QMCu−"[u]

CCC
)q

≤ ∥u∥W 1,1
mix([−1,1]M ;)q)

D⋆N (S
N ). (4.96)

The upper bound provided by (4.96) is very important for understanding the
convergence behaviour of the QMC estimator. It is provided as a product of two
separate terms.

The first is independent of the considered set of integration points and is
given in terms of the integrand’s mixed first order derivatives. It is therefore
crucial to guarantee that the latter exist and are bounded, in what is referred
to as the mixed regularity. This is not an obvious task and is a matter of the
solution specificity and the distribution of the random variables. It has been
proven e.g. to hold in the case of the Poisson equation, for log–normally dis-
tributed random diffusion coefficients, see [HPS17a]. It also holds for the same
problem when uniformly elliptic (an)isotropic random diffusion coefficients are
used, see [HPS17b]. This represents the closest configuration to our problem of
interest.

Remark. A similar result has not been proven yet for the monodomain equation,
and is more a matter of work in progress. In this work, we assume that such as
a mixed regularity holds and suggest to show by experiments that the theoretical
convergence rates can be attained.

The second bounding term in (4.96) is given by the discrepancy of the consid-
ered sampling points, as a measure of its quality. It is therefore a term depending
exclusively on the considered stochastic domain (in terms of all the intervening
components of the inducing KL expansion) and the dispersion of sample points
therein. In the case of the Halton sequence, it has been shown that it is esti-
mated to be of order G

F
N−1(log N))M

G
, see e.g. [Nie92]. This bound is very
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interesting to multiple extents, as it suggest an almost linear convergence for a
small stochastic dimension M , but also an eventual exponential growth in this
dimension. This is referred to as the curse of dimensionality. It can however be
demonstrated that provided a certain decay of the eigenvalues, the convergence
is almost linear whatever the considered stochastic dimension.
We define γk :=

CCσkφk

CC
(L∞(D))dr , with respect to the KL notation used all along

this work. The proposition 4.2 states the conditions under which this is achieved.

Proposition 4.2. Assuming that the mixed regularity of the integrand holds, and
that there exists ε > 0 such that γk ≤ ck−3−ε for some positive constant c > 0, the
QMC error converges as

CCC"[u]−DN
QMCu

CCC
L2([−1,1]M ;)q)

≤ CδN−1+δ ∥u∥W 1,1
mix([−1,1]M ;)q)

, (4.97)

for any δ > 0, where Cδ is a constant depending on it.

Proof. See [HPS16], as a consequence of the result proven in [Wan02].

Notice that given the deterministic selection of quadrature points, different
realizations in the [−1,1]M space provide exactly the same set of samples. As a

consequence, we have that
CCC"[u]−DN

QMCu
CCC

L2([−1,1]M ;) )
=
CCC"[u]−DN

QMCu
CCC
)

and

we could also restrict ourselves to the norm in ) . For a matter of homogeneity
between the error estimates given for all the quadrature methods, we will how-
ever keep the use of the plain norm.

4.5.3 General error

The convergence bounds established by Propositions 4.1 and 4.2 combined to the
discretization error estimate (4.91) can be used in order to evaluate the general
(or total) error behaviour for all the quadrature methods of interest.

Theorem 4.1 (MC approximation). Given a discretization level l and q = 0,1, the
following error bound holds

CCC"[u]−DNl
MC,lu

CCC
L2([−1,1]M ;)q)

≤ C(N−1/2
l + h2−q

l )∥ f ∥V ⋆ , (4.98)

for approximating the expectation of the random variable u ∈ L2([−1,1]M ;)q)
with the MC method.
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Proof. For a matter of spacing, we denote [−1,1]M with '. Then,
CC"[u]−DNl

MCul

CC
L2(';)q)

=
CC"[u]−"[ul] +"[ul]−DNl

MCul

CC
L2(';)q)

≤ ∥"[u]−"[ul]∥L2(';)q) + ∥"[ul]−DMCul∥L2(';)q)

= ∥"[u− ul]∥)q
+ ∥"[ul]−DMCul∥L2(';)q) .

The first inequaliy is induced by the norm triangular inequality, whereas in the
second equality we used the linearity of the expectation operator and the fact
that "[u] and "[ul] do not depend on the random variable.
The first term of the inequality can be bounded by using the FE discretization
error estimate given in (4.91). Proposition 4.1 can be used in turn to bound the
second term of the inequality, fulfilling the bound proposed by the theorem.

Theorem 4.2 (QMC approximation). Given a discretization level l and q = 0,1,
the following error bound holds

CCC"[u]−DNl
QMC,lu

CCC
L2([−1,1]M ;)q)

≤ C(N−1+δ
l + h2−q

l )∥ f ∥V ⋆ , (4.99)

for approximating the expectation of the random variable u ∈ W 1,1
mix([−1,1]M ;)q)

with the QMC method.

Proof. The sketch of the proof is identical to that of Theorem 4.1, where Propo-
sition 4.2 with the bound provided by (4.97) is used instead.

Theorems 4.1 and 4.2 indicate that the general error for the single level meth-
ods is additive with stochastic and discretization error components. The situa-
tion for the multilevel methods is slightly different. As the inner structure of
these alternative estimators is given by the stochastic quadrature applied to the
difference of discretized solutions, each level contribution to the error becomes
stochastic and discretization multiplicative. Theorems 4.3 and 4.4 illustrate this
fact.

Theorem 4.3 (MLMC approximation). Recall the MLMC estimator given by

DMLMCuL(·) =
L∑

l=0

DNl
MC(ul(·)− ul−1(·)), (4.100)

where
Z
DNl

MC

[L

l=0 is a sequence of MC quadratures with accuracy εl = N−1/2
l for

every level l = 0, . . . , L. The MLMC approximation for the expectation of the random
variable u ∈ L2([−1,1]M ;)q) yields the following error bound
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CC"[u]−DMLMC,Lu
CC

L2([−1,1]M ;)q)
≤ D(h2−q

L +
L∑

l=0

N−1/2
l h2−q

l )∥ f ∥V ⋆ (4.101)

for q = 0,1 and a constant D > 0.

Proof. In the following demonstration, we again use ' = [−1,1]M . We find
CC"[u]−DMLMC,Lu

CC
L2(';)q)

≤
CC"[u]−"[uL] +"[uL]−DMLMC,Lu

CC
L2(';)q)

=

CCCCC"[u]−"[uL] +"[uL]−
L∑

l=0

DNl
MC(ul − ul−1)

CCCCC
L2(';)q)

≤ ∥"[u]−"[uL]∥+
CCCCC"[uL]−

L∑

l=0

DNl
MC(ul − ul−1)

CCCCC
L2(';)q)

The first part of the inequality can be easily bounded by making use of the FE
approximation estimate (4.91),

∥"[u]−"[uL]∥L2(';)q) = ∥"[u]−"[uL]∥)q
≤ Ch2−q

L ∥ f ∥V ⋆ . (4.102)

By observing that the expectation of the discretized solution for level L can be
rewritten in the form of the following telescopic sum,

"[uL] =
L∑

l=0

"[ul]−"[ul−1] =
L∑

l=0

"[ul − ul−1], (4.103)

the second term of the inequality can be bounded as follows:

CCCCC
L∑

l=0

"[ul − ul−1]−
L∑

l=0

DNl
MC(ul − ul−1)

CCCCC≤
L∑

l=0

CCF"−DNl
MC

G
(ul − ul−1)

CC
L2(';)q)

≤
L∑

l=0

N−1/2
l ∥ul − ul−1∥L2(';)q) . (4.104)

On the other hand, solution differences are bounded as follows:
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∥ul − ul−1∥L2(';)q) ≤ ∥ul − u∥L2(';)q) + ∥u− ul−1∥L2(';)q)

≤ C(h2−q
l + h2−q

l−1 )∥ f ∥V ⋆
= C(h2−q

l + (2hl)2−q)∥ f ∥V ⋆
= (1+ 22−q)Ch2−q

l ∥ f ∥V ⋆ .

Therefore the inequality (4.104) becomes:
CCCCC

L∑

l=0

"[ul − ul−1]−
L∑

l=0

DNl
MC(ul − ul−1)

CCCCC≤ (1+ 22−q)C

K
L∑

l=0

N−1/2
l h2−q

l

L
∥ f ∥V ⋆

(4.105)
Combining (4.105) with (4.102) yields the bound (4.101) for D = (1+ 22−q)C .

Theorem 4.4 (MLQMC approximation). Recall the MLQMC estimator given by

DMLQMCuL(·) =
L∑

l=0

DNl
QMC(ul(·)− ul−1(·)), (4.106)

where
Z
DNl

QMC

[L

l=0
is a sequence of MC quadratures with accuracy εl = N−1+δ

l for ev-
ery level l = 0, · · · , L. The MLQMC approximation of the expectation of the random
variable u ∈W 1,1

mix([−1,1]M ;)q) yields the following error bound

CC"[u]−DMLQMC,Lu
CC

L2([−1,1]M ;)q)
≤ D(h2−q

L +
L∑

l=0

N−1+δ
l h2−q

l )∥ f ∥V ⋆ . (4.107)

for q = 0,1 and a constant D > 0.

Proof. The sketch of the proof is identical to that of Theorem 4.1, where Propo-
sition 4.2 with the bound provided by (4.97) is used instead.

4.6 Sampling strategy

The sampling strategy is concerned with the amount of computed samples for
a given experiment. As the number of samples to be considered influences the
overall computational cost, it seems reasonable not to overcompute unnecessary
additional samples which do not increase the precision of the global solution.
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It is important to notice that the overall accuracy is always at best bounded by
the discretization error deriving from the fine considered level. The number of
computed samples in turn, can only impact on the stochastic error. The sampling
strategy is therefore based on the convergence rates priorily established for all
the considered quadrature methods, with the aim of balancing the stochastic
error to be of the same order as the discretization error.
Recall the error bound given in Theorem 4.1 for the MC quadrature method

CCC"[u]−DNl
MC,lu

CCC
L2([−1,1]M ;)q)

≤ C(N−1/2
l + h2−q

l )∥ f ∥V ⋆ . (4.108)

Assuming that hl ∼ 2−l , equal stochastic and discretization contributions to the
error can be imposed by setting

N−1/2
l & G (h2−q

l ) =⇒ Nl & G (h2q−4
l ) = G (2(4−2q)l), (4.109)

for q = 0,1. Regarding the QMC method, the error bound provided by Theorem
4.2 is given by

CCC"[u]−DNl
QMC,lu

CCC
L2([−1,1]M ;)q)

≤ C(N−1+δ
l + h2−q

l )∥ f ∥V ⋆ . (4.110)

Neglecting the δ > 0 (arbitrarily small), we can deduce from the above the ideal
number of samples to be computed for the QMC method

N−1
l & G (h

2−q
l ) =⇒ Nl & G (hq−2

l ) = G (2(2−q)l), (4.111)

for q = 0,1. Expressions (4.109) and (4.111) motivate Propositions 4.3 and 4.4.

Proposition 4.3 (MC convergence rate). The Hq-error (q = 0,1) produced by the
MC estimator converges asymptotically with a rate of 2(q−2)l provided a number of
samples NMC,l = G (2(4−2q)l).

Proposition 4.4 (QMC convergence rate). The Hq-error (q = 0,1) produced by
the QMC estimator converges asymptotically with a rate of 2(q−2)l provided a number
of samples NQMC,l = G (2(2−q)l).

The main observation about Propositions 4.3 and 4.4 is that the two methods
converge asymptotically with the same convergence rate, that of the discretiza-
tion error. MC requires however solving NMC,l/NQMC,l = 22 factor more samples
to produce the same convergence rate.
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Regarding the multilevel strategies, the situation is slightly more complex as it
requires an optimal sample distribution on each level for a given experiment. Re-
call the error bound provided by Theorem 4.3 for the MLMC quadrature method

CC"[u]−DMLMC,Lu
CC

L2([−1,1]M ;)q)
≤ D(h2−q

L +
L∑

l=0

N−1/2
l h2−q

l )∥ f ∥V ⋆ . (4.112)

When looking closely at the sum, one can observe that the error contribution
from each level is stochastics–discretization multiplicative, given by N−1/2

l h2−q
l ,

∀l = 0, · · · , L. A reasonable thought in this case is to impose an equal error con-
tribution from each level by imposing h2−q

l N−1/2
l = h2−q

l ′ N−1/2
l ′ , for distinct levels

l and l ′. Applying this equality for two consecutive levels and taking advantage
of the uniform coarsening (hl = 2hl+1), we recover the following:

h2−q
l N−1/2

l = h2−q
l+1 N−1/2

l+1 =⇒ h2−q
l N 1/2

l+1 = h2−q
l+1 N 1/2

l =⇒ 24−2qNl+1 = Nl (4.113)

The sampling ratio between consecutive levels is therefore given by

Nl/Nl+1 = 24−2q, ∀l = 0, · · · , L − 1. (4.114)

Furthermore, from (4.112), we also notice that the error is at best bounded by
h2−q

L . The error contribution from the finest level L is given by N−1/2
L h2−q

L , from
which we deduce that NL ∼ G (1). Based on this and (4.114), we deduce that the
sampling strategy should be such as

Nl ∼ G (2(4−2q)(L−l)), ∀l = 0, · · · , L. (4.115)

With a similar reasoning regarding the MLQMC, where levels error contributions
become N−1/2

l h2−q
l , we obtain a sampling ratio between successive levels given

by

Nl/Nl+1 = 22−q, ∀l = 0, · · · , L − 1, (4.116)

and a sampling strategy defined by

Nl ∼ G (2(2−q)(L−l)), ∀l = 0, · · · , L. (4.117)

All these results are summarized in Propositions 4.5 and 4.6.

Proposition 4.5 (MLMC convergence rate). The Hq-error (q = 0,1) produced
by the MLMC estimator converges asymptotically with a rate of 2(q−2)L provided a
sampling strategy given by

NMLMC,l ∼ G (2(4−2q)(L−l)), ∀l = 0, · · · , L. (4.118)
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Proposition 4.6 (MLQMC convergence rate). The Hq-error (q = 0,1) produced
by the MLQMC estimator converges asymptotically with a rate of 2(q−2)L provided a
sampling strategy given by

NMLQMC,l ∼ G (2(2−q)(L−l)), ∀l = 0, · · · , L. (4.119)

4.7 Work comparison

It may seem counter–intuitive from Propositions 4.3, 4.4, 4.5 and 4.6 that all the
quadrature methods presented in this work converge asymptotically with a sim-
ilar rate. However, they indeed do so as the error is always bounded by the con-
sidered discretization. This, nonetheless, should not be interpreted in the sense
that all these methods perform just as equal. The different outcome regarding
these methods arises at the level of their performance, and the computational
cost they imply.
In order to quantitatively evaluate this difference, we rely here on the notion
of work, defined to be a theoretical measure of performance, materialized by
a balance of the computational cost of computing a single sample for a given
discretization level (in terms of floating points operations), and the number of
samples to be computed for reaching a desired accuracy.
For the sake of simplicity, we will separate the cases for the L2– and H1–error.
Theoretical work for convergence in the L2– error:
Let us recall that in order to achieve an error of order 2−2l in the L2–norm using
linear FE, the cost of solving a sample is given by

CFE,l = 2γdl , (4.120)

where γ is the complexity of the solver used and d is the dimension of the PDE
problem considered (here d = 4). Given the convergence rates for MC and QMC,
the number of samples to be executed by these methods on a level l to get to the
same order of error (2−2l) is provided by Propositions 4.3 and 4.4, respectively
given by

NMC,l = 24l (4.121)

and
NQMC,l = 22l . (4.122)

We can recover the total amount of work required by both methods given a fine
discretization level L:

WMC,L = CFE,LNMC,L = 2γd L24L = 2(γd+4)L, (4.123)
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and
WQMC,L = CFE,LNQMC,L = 2γd L22L = 2(γd+2)L. (4.124)

The total work for MLMC with L + 1 discretization levels can also be written in
terms of the sum of works at every involved level:

WMLMC,L =
L∑

l=0

CFE,l NMLMC,l =
L∑

l=0

2γdl24(L−l) = 24L
L∑

l=0

2(γd−4)l . (4.125)

In that case, if γd ̸= 4, we have a geometric sum and we can write

WMLMC,L = 24L 1− 2(γd−4)(L+1)

1− 2γd−4
=

24L − 2(γd L+γd−4)

1− 2γd−4
=

24L − A2γd L

1− 2γd−4
, (4.126)

where we set A = 2γd−4. The case where γd = 4 is rather trivial, and we can
resume the work expression for MLMC in the following form:

WMLMC,L =

⎧
⎨
⎩
(L + 1)24L if γd = 4,
A2γd L − 24L

2γd−4 − 1
if γd ̸= 4.

(4.127)

Similarly, the total work for MLQMC can be recovered by computing:

WMLQMC,L =
L∑

l=0

CF E,l NMLQMC,l =
L∑

l=0

2γdl22(L−l) = 22L
L∑

l=0

2(γd−2)l . (4.128)

This yields the following expression:

WMLQMC,L =

⎧
⎨
⎩
(L + 1)22L if γd = 2,
B2γd L − 22L

2γd−2 − 1
if γd ̸= 2,

(4.129)

for B = 2γd−2.

Remark. The asymptotical work behaviour for MLMC is bounded by G (24L) when
γd ≤ 4, and by G (2γd L) if γd > 4. For MLQMC, the asymptotical work is bounded
by G (22L) when γd ≤ 2, and by G (2γd L) if γd > 2. Regarding the MC and the QMC,
the asymptotical work is augmented by few orders of magnitude to reach G (2(γd+4)L)
and G (2(γd+2)L), respectively.

Theoretical work for convergence in the H1– error:
The study of the methods’ work for the error reduction in the H1–norm is similar
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to what has been developed above. The cost of solving samples stays unchanged,
instead the number of samples for reaching a 2−l error rate is given by:

NMC,l = 22l , NQMC,l = 2l , (4.130)

and

NMLMC,l = 22(L−l), NMLQMC,l = 22(L−l). (4.131)

This provides us with the following expressions:

WMC,L = 2(γd+2)L, WQMC,L = 2(γd+1)L, (4.132)

WMLMC,L =

⎧
⎨
⎩
(L + 1)22L if γd = 2,
C2γd L − 22L

2γd−2 − 1
if γd ̸= 2,

(4.133)

and

WMLQMC,L =

⎧
⎨
⎩
(L + 1)2L if γd = 1,
D2γd L − 2L

2γd−1 − 1
if γd ̸= 1.

(4.134)

Here, C = 2γd−2 and D = 2γd−1.
General formulation of the work for convergence in Hq– error (q=0,1):
For the sake of simplicity, we have treated separately the cases regarding q = 0
and q = 1. By looking closely at the obtained formulations, one can actually
notice that these can be concatenated in the following way:

W q
MC,L = 2(γd+4−2q)L, W q

QMC,L = 2(γd+2−q)L, (4.135)

W q
MLMC,L =

⎧
⎨
⎩
(L + 1)2(4−2q)L if γd = 4− 2q,
C(q)2γd L − 2(4−2q)L

2γd−(4−2q) − 1
if γd ̸= 4− 2q,

(4.136)

and

W q
MLQMC,L =

⎧
⎨
⎩
(L + 1)2(2−q)L if γd = 2− q,
D(q)2γd L − 2(2−q)L

2γd−(2q−1) − 1
if γd ̸= 2− q,

(4.137)

with C(q) = 2γd−(4−2q) and D(q) = 2γd−(2−q).
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4.8 Transfer of discrete fields

In the context of multilevel stochastic quadrature methods, information needs to
be transferred from a level to another; random fields are computed on the fine
level and need to be interpreted on coarser levels, and reciprocally quantities-
of-interest (c.f. Section 5.3, Chapter 5) computed on coarser levels are to be
transferred to the original fine level. We here detail how to proceed, and distin-
guish between two cases with respect to the nestedness or not of the used mesh
hierarchy.

4.8.1 Nested meshes

Random fields from fine to coarse: The transfer of random fields from the
fine space to the coarse space is done by L2–projection as they are proven to
be optimal, stable and in general superior to interpolation, see [HB06]. The
L2–projection we employ is constructed by exploiting the properties of the dual
basis, as in [Woh00, PWGW12]. This approach allows for computing transfer
matrices on an offline basis.
For l = 0, ..., L−1, let Gl ∈ !nl be the coefficients of the discrete random field on
level l, where nl is the number of spatial nodes on l. Provided the spatial discrete
representation Pl,h ∈ !nl×n of the L2–projection (or transfer matrix) from the fine
level to a coarser level l computed by the method indicated above, the transferred
discrete random field Gl is obtained by the matrix–vector multiplication,

Gl = Pl
LGL,

where GL ∈ !n is the discrete random field computed for level L.
Quantities-of-interest from coarse to fine: We start by considering the overall
space–time transmembrane potential as a quantity–of–interest. This represents a
different situation from the case cited above as it requires a transfer in the space
and time dimensions. By exploiting the tensor-product structure of (3.51) we
can simplify the implementation and benefit from better computational perfor-
mance. In this case, the tensor-product structure of the space-time grid allows
us to construct space-time operators in a convenient way which requires the as-
sembly of the spatial transfer operator to be performed only once.
For l = 0, ..., L − 1, let ul ∈ !nl ml be the coefficients of the discrete space–time
solution on level l where ml represents the number of time steps. The space–
time transfer of the overall solution quantity-of-interest is performed from coarse
to fine level, by means of a tensor product of the space and time interpolation



95 4.8 Transfer of discrete fields

matrices. Provided the discrete representations of the spatial and temporal in-
terpolation matrices I L

l,h ∈ !n×nl and I L
l,t ∈ !m×ml from coarse level l to fine level

L, the transfer matrix is offline–obtained by means of the tensor product

I L
l = I L

l,t ⊗ I L
l,h ∈ !nm×nl ml .

The transferred fine field is then obtained by matrix–vector multiplication,

uL = I L
l ul ,

where uL ∈ !nm is the discrete space–time solution obtained at the fine level L.
When considering exclusively time–dependent quantities-of-interest, such as the
action potential on a given location of the domain, the transfer is obtained by
using the time interpolation matrix I L

l,t ∈ !m×ml . That is, given the discrete rep-
resentation of the time variant quantity-of-interest ul ∈ !ml , the transfer on the
fine level is obtained by means of the matrix–vector multiplication

uL = I L
l,tul ∈ !m.

Regarding scalar quantities-of-interest, such as the activation time for a given
location of the domain, no transfer is needed.

4.8.2 Non–nested meshes

Random fields from fine to coarse: According to [Sie15], the computation
of the stiffness matrix with respect to the random diffusion field was shown to
be consistent with a piecewise linear finite element discretization when the mid-
point rule with respect to the actual grid is applied. Therefore, for the transfer
of the random fields from the finest level to the coarser levels, we perform an
element–wise transfer based on the midpoint rule; that is, for every element of
the coarse level, we assign a constant diffusion value corresponding to the fine el-
ement containing its center. Therefore, the assembly of the matrix on the coarser
levels can be performed with linear complexity relative to the particular level of
discretization.
Quantities-of-interest from coarse to fine: We only consider in this case time–
dependent and scalar quantities-of-interest. We proceed as indicated in the case
of nested meshes.
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Chapter 5

Uncertainty Quantification for
Heart Electrophysiology

5.1 Fiber uncertainty

The mathematical and numerical instruments developed in decades of research
in the electrophysiology field allow in principle for virtual therapy planning. The
monodomain equation is by now an established model in cardiac electrophysi-
ology, describing with high accuracy the electrical activity in the myocardium.
Nonetheless, patient-specific simulations are still not widely employed as a rou-
tine tool in the treatment of patients.

A particular reason for this can be found in the data which is acquired in clin-
ical practice. For instance, the fiber structure still represents a great challenge to
be determined from an imaging point of a view. One should therefore account for
possible uncertainties of the diffusion field in the monodomain equation, which
mathematically models the fiber conductivities and orientations.

Modeling the uncertainty requires to account for an additional stochastic
variable in the formulation of the monodomain equation. Let us denote this
stochastic variable with ω ∈ Ω where Ω is, as before, the set of all possible out-
comes, which in this particular case represents the set of all diffusion fields mod-
elled by the uncertainty. We are now interested in estimating the statistics of
u(x, t,ω) = u(X,ω), i.e. "[u(x, t)] = "[u(X)], as a solution to the monodomain
stochastic PDE, which reads: for almost every ω ∈ Ω:

∂ u(X,ω)
∂ t

−∇ · (G(x,ω)∇u(X,ω)) + Iion(u(X,ω)) = Iapp(X), (5.1)

97
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for X = (x, t) ∈ D × (0, T]. The stochastic model (5.1) can furthermore be ex-
pressed with the parametric formulation:

∂ u(X,y)
∂ t

−∇ ·
F
G(x,y)∇u(X,y)

G
+ Iion

F
u(X,y)

G
= Iapp(X), (5.2)

for all y ∈ [−1,1]M , after identifying the stochastic space Ω with its image
[−1,1]M using the mapping

ψ : Ω→ [−1,1]M ,

ω .→ (ψ1(ω), · · · ,ψM(ω)),

as done in Subsection 4.2.3. One can now approximate statistics of the stochastic
solution, as for example the expectation (mean)

"[u](X) =
∫

[−1,1]M
u(X,y)ρ(y) dy, (5.3)

or the variance

([u](X) =
∫

[−1,1]M
(u(X,y)−"[u](X))2ρ(y) dy, (5.4)

where ρ(y) =
∏M

i=1ρk(yk) is the joint density function for M uniformly dis-
tributed random variables. The approximation of the aforementioned quantities
can be done by means of single and multilevel Monte-Carlo techniques. These
methods imply solving the monodomain equation for different independent and
identically distributed samples of random diffusion fields.

Figure 5.1. Example of first (mean, left) and centered second (variance, right)
moments of the solution to (5.2).
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In the case where we consider an isotropic diffusion, a random diffusion field is
obtained by considering a realization of the KL expansion

V (x,y) = "[V ](x) +
M∑

k=1

W
λkφk(x)yk. (5.5)

and setting G(x,y) = V (x,y) ∈ !, for all x ∈ D and y ∈ [−1,1]M . One can
equivalently set

G(x,y) =

⎡
⎣

V (x,y)
. . .

V (x,y)

⎤
⎦ ∈ !d×d .

This allows for a straightforward physical interpretation of the current scenario,
that is an equal diffusion prescribed in each direction ei ∈ !d , i = 1, . . . , d, form-
ing the standard canonical basis. We therefore refer to this setting as the diffusion
uncertainty. We can instead consider the more realistic configuration consisting
of anisotropic diffusion, by non restricting to diagonal tensors. Given a symmet-
ric tensor diffusion G(x) ∈ !d×d for x ∈ D, it is possible to find a corresponding
diagonalization

G(x) = S(x)Λ(x)S−1(x), (5.6)

for a matrix S(x) consisting of d orthogonal eigenvectors, and a diagonal matrix
Λ(x) consisting of eigenvalues. Furthermore, whenever G(x) is initially positive
definite, the eigenvalues are also positive. In the case where d = 3, these positive
eigenvalues define three conductivities σ f ,σs, and σn in the fiber, sheet normal,
and fiber normal directions (respectively e f (x),es(x) and en(x)) provided by the
matrix S(x). Hence, a similar scenario has to be accounted for when considering
fiber orientation and diffusion uncertainties.
This can be done by means of the vector valued random fields,

V(x,y) = "[V](x) +
M∑

k=1

W
λkφk(x)yk, (5.7)

which are used to define the random diffusion tensors, see [HPS17b],

G(x,y) := aId +
F
∥V(x,y)∥2 − a

G V(x,y)VT (x,y)
VT (x,y)V(x,y)

, (5.8)

for a > 0. It is easily verifiable that such a tensor diffusion matrix is symmetric.
It is, moreover, positive definite since we have for all x ∈ D, y ∈ [−1,1]M and
z ∈ !d:
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zT G(x,y)z= azT z+ (∥V(x,y)∥2 − a)
zT V(x,y)VT (x,y)z

VT (x,y)V(x,y)

= a
&

zT z− zT V(x,y)VT (x,y)z
VT (x,y)V(x,y)

'
+ ∥V(x,y)∥2

zT V(x,y)VT (x,y)z
VT (x,y)V(x,y)︸ ︷︷ ︸
≥0

.

The first term of the equality can in term be rewritten as:

a
&

zT z− zT V(x,y)VT (x,y)z
VT (x,y)V(x,y)

'
= a

K
∥z∥22 −

〈z,V(x,y)〉2
∥V(x,y)∥22

L
, (5.9)

from which we deduce the nonnegativity by the Cauchy–Schwarz inequality. We
therefore have:

zT G(x,y)z≥ 0. (5.10)

Furthermore, by considering for every x ∈ D an arbitrary vector z̃(x) that decom-
poses in the following form

z̃(x) = αV(x,y) + βV⊥(x,y), (5.11)

where V⊥(x,y) is perpendicular to V(x,y). When multiplying this vector with the
diffusion tensor defined in (5.8), we obtain:

G(x,y)z̃(x) = αG(x,y)V(x,y) + βG(x,y)V⊥(x,y). (5.12)

When using the following identities,
F
V(x,y)VT (x,y)

G
V(x,y) = V(x,y)

F
VT (x,y)V(x,y)

G
= ∥V(x,y)∥22 V(x,y), (5.13)

and
F
V(x,y)VT (x,y)

G
V⊥(x,y) = V(x,y)

F
VT (x,y)V⊥(x,y)

G
= 0, (5.14)

we can deduce that

G(x,y)V(x,y) = ∥V(x,y)∥2 V(x,y), (5.15)

and
G(x,y)V⊥(x,y) = aV⊥(x,y). (5.16)

This implies the following:
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G(x,y)z̃(x) = ∥V(x,y)∥2 (αV(x,y)) + a (βV⊥(x,y)) , (5.17)

from which we deduce that the action of the tensor G(x,y) amplifies the vector
z̃(x)N by ∥V(x,y)∥2 in the direction of V(x,y) and by the factor a in the direction
of V⊥(x,y). Therefore, when defined in the diffusion operator of the PDE, the
tensor G(x,y) prescribes a conductivity of strength ∥V(x,y)∥2 in the direction of
V(x,y), and a conductivity of strength a perpendicularly. For this reason, this
model allows for fibers orientation and diffusion uncertainties. The uncertainty
with respect to orientation is however only considered for the fibers direction, i.e.
e f (x). The same holds with respect to diffusion, where the unique considered
conductivity uncertainty is given byσ f . It is however possible to consider the pa-
rameter a as an additional stochastic variable, including therefore an uncertainty
on σn = σs, which is imposed by the model.

5.2 Scar fibrosis uncertainty

Scar identification represents a significantly meaningful input for clinical prac-
tice. Typically, inverse problems are used to identify parameters modeling a scar
(position and width mainly) where the control is updated in order to approxi-
mate a target solution (obtained through an ECG for example). However, these
inverse problems are usually non convex, and a regularization term is needed.
The obtained characterization of the scar is therefore influenced by the regular-
ization term and this can serve as a basis point for considering UQ in this context.
Many sources of uncertainties can be considered when modeling a scar. The po-
sition, the width, the conductivity inside the scar are all possible choices for an
uncertainty. For example, one can keep considering fiber uncertainty over the
domain as in (5.1), and combine it to an uncertainty related to the width of the
scar and its conductivity. The following setting assumes the position of the scar
is known, which can be motivated by prior investigation considering an inverse
problem.
Mathematically, the scar region can be modeled by means of a Gaussian function,
see e.g. [Pag17, BB15], given by

s(x;µ) = exp

1
−∥x− x0∥2

µ2

2
,

where x0 is the center of the scar, x ∈ D ⊂ !d a point of the considered domain
and µ ∈ ! is the width of the scar. The function s(x;µ) has therefore the shape
of a bell centered in x0 and the healthy part of the tissue can be characterized by
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h(x;µ) = 1− s(x;µ) = 1− exp

1
−∥x− x0∥2

µ2

2
.

Let us furthermore denote by σ ∈ ! the conductivity inside the scar. The con-
ductivity of the cardiac tissue G(x;y,µ,σ) is therefore subject to the three un-
certainties y ∈ !M (M is the stochastic dimension obtained by means of the KL
expansion), µ ∈ !+ and σ ∈ !+. It can be written under the following form:

G(x;y,µ,σ) = Gh(x;y)h(x;µ) +σ(1− h(x;µ)),

where Gh(x;y) is the conductivity for the healthy portion of the cardiac tissue and
is obtained through the KL expansion. The model consists now of the following
stochastic PDE: given (y,µ,σ) ∈ !M+2, find u(·,y,µ,σ) = u(x, t;y,µ,σ) such
that

∂ u(·,y,µ,σ)
∂ t

−∇ · (G(·,y,µ,σ)∇u(·,y,µ,σ)) + Iion(u(·,y,µ,σ)) = Iapp(·),

in D× (0, T], where the ion channel term is now written as

Iion(u(·,y,µ,σ)) = αh(x;µ)(u− urest)(u− uth)(u− upeak),

since the ion exchanges in ill regions are most likely to be impacted. The diffu-
sion field randomness y = (y1, · · · , yM) ∈ !M can still be sampled as previously
done, i.e. every yi is a realization of a uniformly distributed random variable
ψi ∼C (−1,1), whereas µ and σ can be sampled independently from each other
following two other uniform distributions C (µmin,µmax) and C (σmin,σmax) re-
spectively. Here, (µmin,µmax) and (σmin,σmax) are the considered bounds for the
scar width and conductivity.
The aim is now to approximate the expectancy of the solution u(x, t)

"[u](x, t) =
∫

[−1,1]M×[µmin,µmax]×[σmin,σmax]
u(x, t;y,µ,σ)ρy(y)ρµ(µ)ρσ(σ) dydµdσ,

using the usual stochastic quadrature methods.

5.3 Quantities-of-interest

One might be interested in approximating different quantities–of–interest, de-
pending the purpose of the experiment. This can be done by reconsidering the
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high–dimensional stochastic integral under the formulation

"[8 (u)](X) =
∫

[−1,1]M
8 (u(X,y))ρ(y) dy, (5.18)

8 denotes a functional that computes a particular quantity–of–interest. We
mainly consider here three different quantities of interest.
Transmembrane potential The transmembrane potential over the totality of the
heart geometry, and its evolution in time is the quantity obtained by solving the
monodomain equation. This is demonstrated as an electrical potential wave trav-
elling through the heart (c.f. Figure 5.2). The functional 8 in this case is simply
the identity function, i.e.8 (u(X,y)) = u(X,y). In general and considering a fine
discretization in space and time, the full information on the transmembrane po-
tential represents a high dimensional output that might become a burden at the
memory level in a context of a UQ study. This is the reason we might consider in
some cases other quantities of interest.

Figure 5.2. Wafefront propagation of transmembrane potential.

Activation map The transmembrane potential can be used in order to extract
the activation map of the heart. This reduces the size of the output to that of the
space dimension uniquely, indicating the times at which cells are activated. If the
activation time in a given location x0 is denoted by a(x0), then it is obtained by
computing a(x0,y) = mint{t ∈ [0, T] such that u(x0, t,y) ≥ uth}. The functional
8 can therefore be written in this case as 8 (u(X,y)) = a(x,y).
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Figure 5.3. Activation map of a heart. Negative value signifies non activated
region.

Action potential in a given location Another quantity of interest that can be
considered is the evaluation of the transmembrane time evolution at a given lo-
cation. This is typically what is clinically monitored when electrodes are placed
on the torso of a patient. For cardiologists, this information is of a high de-
gree of relevance as several rhythm troubles or dysfunctions can be revealed
exclusively from that. Mathematically, for every point in space x0, a functional
8x0
= u(X,y)|x=x0

.
Regarding the approximation of the integral (5.18) for a given functional

8 , we rely on stochastic quadrature methods that require solving the mono-
domain equation in quadrature points represented by different realization of
y ∈ [−1,1]M . The following procedure is labeled as sampling method and re-
quires a finite element solve for every sample.

5.4 Prior insights on numerical experiments

It may be considered good practice to verify certain properties of the problem
at hand before further deep investigations on the behaviour of the stochastic
quadrature methods for quantities–of–interest approximation.
In view of samples computation at different levels of space–time discretizations,
one may verify that the usual error estimates hold when considering the mono-
domain equation. In Figure 5.4, we plot the L2–error evaluation of L = 5 levels
of nested cube meshes in space and time, with respect to a reference solution
computed at a fine level. The plot shows that the error estimates arising from
this comparison yield the usual convergence rate of G (h2) = G (∆t2).
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Figure 5.4. L2–error convergence measured over space–time uniform
refinement.

In Figures 5.5 and 5.6, we conduct an MC mean and variance estimation for a
cube and an idealized ventricle. We notice that in the absence of repolarization
in the considered monodomain model, the variance is localized around the elec-
trical potential traveling wave. Therefore, the unique disparity caused by the
diffusion uncertainty is with respect to the speed of the travelling wave.

Figure 5.5. Mean (left) and variance (right) at the final time state for the cube.
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Figure 5.6. Mean (left) and variance (right) at the final time state for the
ventricle.

We next provide in Figures 5.7 and 5.8 a visualization of the MLMC estima-
tor (mean at coarse level and corrections between successive levels) for nested
meshes hierarchies of a cube and an idealized ventricle.

It is interesting to notice the decreasing amplitude of corrections as levels are re-
fined. One may also observe that these are localized around the travelling wave,
but are more concerned by the discretization correction as one can clearly see
from demonstrated shapes, i.e. size–decreasing cubes surrounding the travelling
wave.

We also test the stochastic convergence rate for the single–level methods. In Fig-
ure 5.9, we report the MC convergence of the two aforementioned geometries on
a given space–time discretization level using a reference solution computed with
10000 samples at that same level. The convergence rate seems to be consisting to
the theoretical one, i.e. G (N−0.5). In Figure 5.10, we compare the convergence
behaviour of the MC and QMC methods with respect to the same setting. We
may notice a faster convergence rate for the QMC method provided by G (N−1).
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(a) Mean at coarse level. (b) Correction between levels 0 and 1.

(c) Correction between levels 1 and 2. (d) Correction between levels 2 and 3.

Figure 5.7. Mean at coarse level and corrections between successive levels for
a cube geometry.

(a) Mean at coarse level. (b) Correction between
levels 0 and 1.

(c) Correction between
levels 1 and 2.

Figure 5.8. Mean at coarse level and corrections between successive levels for
an idealized ventricle geometry.
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Chapter 6

Parallelization and Performance
Considerations

For UQ problems, applying stochastic quadrature methods is particularly expen-
sive in terms of needed computations. Even for a demonstrated efficiency of
multilevel and deterministic techniques, a UQ study may remain unfeasible with
respect to the total execution time, provided a non–efficient solve strategy for
samples computations (e.g. sequential execution). Moreover, the generated data
may require an extremely high amount of memory that is not affordable on a
single machine. For this reason, one usually resorts to High Performance Com-
puting (HPC) facilities, in order to fully profit from parallelization and adequate
memory management. Yet, it remains an imperative to design a clever strategy
that fully takes advantage of parallelizing concurrent tasks, as much as reducing
their own execution time.
In what follows, we describe the computational framework designed in order to
efficiently tackle the aforementioned obstacles. This framework follows from the
work produced in [BBBQ+21]. It is characterized by a space–time and stochastics
parallel execution, consisting of a so–called three–layer parallelization strategy
for multilevel methods, combined to a space–time solver with a special care given
to the Newton initial guess.

6.1 Preconditioned Generalized Minimal Residual
Method (PGMRES)

The non–linear problem (3.75) is solved with Newton’s method. For each of
the arising linear problems in the form (3.51), we employ a space-time parallel
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PGMRES, with the preconditioner given by an ILU(0) factorization within the
PETSc [BAA+16] framework. If multiple processors are used, the corresponding
block-Jacobi preconditioner is employed, and the PGMRES is applied. As default
by PETSc, the GMRES solver is restarted after 30 iterations. It is important to
recall that the first iterate plays an important role for the convergence of Newton’s
method. The strategy for setting the Newton initial guess is discussed in Section
6.4.

6.2 Parallelization strategy

6.2.1 Concurrent tasks and parallelization paradigm

Multilevel techniques were designed in the first place to reduce the high com-
putational complexity demonstrated by a standard MC approach, carried on a
fine domain discretization. However, in order to fully exploit their capabilities,
an adequate parallel environment should be designed in a way that fully takes
advantage of all different layers under which concurrent work can be executed.

Multilevel methods entail computing different numbers of samples on dis-
tinct discretization levels, independently from each other, both in terms of the
considered level and sample. From this observation, one may draw two main
conclusions. On the one hand, the work load across levels is completely inde-
pendent and can be executed concurrently. On the other hand, different tasks
(samples computation) among distinct levels do not require the same amount of
parallel resources in order to execute in a reasonable time.

This second observation is important to many extents. First of all, it is rather
preferable not to compute samples with overly many resources than they would
actually require. But also, this would allow for a better use of the saved compu-
tational resources as they can be deployed on coarse levels which have a more
important number of samples instead.

To illustrate this, let us suppose we are considering an MLMC with L+1 levels
and L2 as an error metric. We recall that in this case, the number of samples to
compute on each level is provided by (c.f. Section 4.6)

Nl ∼ G (24(L−l)).

Let us furthermore consider a situation where we would dispose of a certain
amount of HPC nodes with P = 24L processors for every single node (a very
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unlikely scenario for a single node, especially when L is big). One can totally
compensate for the higher number of samples on coarse levels by using Pl = 24l

processors for a single sample on level l, while taking advantage of the remaining
processors to concurrently compute P/Pl = 24(L−l) samples, which corresponds
exactly to the number of samples required for each level l. If additionally, the
solver complexity was provided by γ= 1 and d = 4 such that the cost for solving
a sample at level l is given by

CFE,l = 2γdl = 24l ,

we would have all nodes for different levels terminating at the same time (as-
suming perfect scalability and neglecting communication latencies). The combi-
nation of these assumptions might be very unlikely, yet the example explains the
philosophy to be adopted for the parallelization strategy.

6.2.2 Parallelization algorithm

The ideas developed above can be conceptualized in a so-called three layer par-
allelization strategy, similar to what has been developed in [DGR+17], where
many other strategies are considered and compared. The strategy consists of ini-
tially distributing the required amount of work for every level on the available
resources, as a first parallelization layer. On every one of these levels, multiple
samples need to be computed. Those are completely independent and we can
consider distributing computing resources across batches of samples as a second
parallelization layer. The third layer, in the context of finite elements, would
naturally be a parallelization across the tempo-spatial grid, using the space-time
parallel solver described in Section 6.1.

More formally, let us consider a MLMC setting of L + 1 levels with corre-
sponding Nl samples to compute. The following algorithm defines the steps of
the above described strategy.

Algorithm 1 Three–layer parallelization strategy for multilevel methods
1: Decide on tl batches of samples of size Nl/tl on each level l
2: Decide on the number of processors Pl to use for a single sample on each

level l
3: Proceed in parallel for l = 0, . . . , L and k = 1, . . . , tl by:

recursively solve the Nl/tl samples of batches Tl,tk
using Pl processors
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6.3 Resources management

Clearly, the overall performance of the described strategy is very much depen-
dent on the parameters tl and Pl , provided the resources at hand, i.e. the number
of available nodes and the number of processors on each one of those. By perfor-
mance, we intend the speed of execution and simultaneous termination for all
batches. We propose here formal discussions about the order of priorities in set-
ting the values of these parameters, as well as suggest a strategy for simultaneous
termination in the aim of avoiding wasting computing time resources.

6.3.1 Discussion over algorithm speed

In the presence of a fixed amount of resources (computing nodes denoted by
K), parallelization over level and sample layers should always be preferred to
parallelization over the space–time grid. Indeed, it is not guaranteed that the
latter would perfectly scale when it comes to solving two completely separate
samples. That means that in general, one should privilege the highest possible
number of sample batches tl for a corresponding number of processors Pl , while
having

L∑

l=0

Pl tl ≤ KP.

This observation could lead to the conclusion that the optimal choice of Pl is
given by Pl = 1, for l = 0, . . . , L. This is not a reasonable choice as fine samples
require consequent memory allocation, and are more likely to execute in an un-
bearable time on a single processor. Usually, a full node with all processors is
required for computing a single sample on the finest level.

On the other hand, ideally a single processor would be able to compute ef-
ficiently samples on coarse levels. Provided the following facts experimentally
verified in many settings, we came to the conclusion that the most reasonable
choice is given by

Pl = 2l ,

for a processor ratio of αProc = Pl+1/Pl = 2. This can also be motivated by the
space–time coarsening between different levels, as the parallel space–time solver
we are using is more likely to be effective when the number of time steps is a
multiple the number of used processors.
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6.3.2 Discussion over simultaneous termination

In the following, we suggest a strategy that aims at having all tasks terminating
at the same time. This obviously can never be guaranteed given the nature of
the problem, and all the uncertainties in this given setting. Let us denote by α,
αCost, and αProc respectively the ratios of samples, computational cost and pro-
cessors between levels. We intend to understand the relationship between these
factors, in order to assign subsequent number of nodes, denoted by Kl , in order
to achieve simultaneous termination.

On fine levels, the cost acts as the only disadvantage with respect to the total
time execution. This is being compensated on the other hand by the higher sam-
ples number on coarse levels, and the number of processors choice (see e.g. dis-
cussion in Subsection 6.3.1). This leads to consider the evaluation of the follow-
ing parameter β , defined by:

β = (αCost/αProc)/α.

Indeed, we have the following scenarios with respect to β ’s value:

• β > 1 : the cost on fine samples is still dominating and we shall set e.g.

Kl = β l for l = 0, . . . , L.

• β = 1 : the balance of the processors and number of samples exactly com-
pensate for the cost on fine level. We can set an equal number of nodes,
e.g.

Kl = 1 for l = 0, . . . , L.

• β < 1 : The cost on coarse levels is dominating and we shall consider using
more nodes for those, by setting e.g.

Kl = β l−L for l = 0, . . . , L.

6.3.3 HPC oriented job scheduling strategy

We furthermore suggest an adaptation of the parallelization strategy to standard
allocation procedures on current High Performance Computing (HPC) systems,
in which a request for a small amount of resources is more likely to be granted
in a shorter amount of time. We issue consequently different job calls involving
different amount of resources for every parallel task consisting of a batches of
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samples to solve (c.f. Figure 6.2). Such a procedure allows for being granted
resources as they become available, and a shorter absolute time to solution. In
this situation, the discussion about simultaneous termination of tasks becomes
obsolete, but the real advantage of this scheduling approach is to avoid wasting
resources when one do not carefully set the parameters tl , Pl and Kl .

Figure 6.1. The different batches of samples executing concurrently organized
through the range of levels.

Figure 6.2. MLMC tasks scheduling and job requests step. Tl,i denotes the
i-th task of level l.
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6.4 Newton initial guess

Combining the space–time all–at–once approach with the Newton’s strategy can
result in convergence and performance issues. The Newton’s method indeed is
highly dependent on the choice of the initial guess, as it is known to converge
quadratically only in a vicinity of the solution, eventually diverging when initially
too far from it. Considering a big time interval enlarges the gap between the final
solution and the provided initial guess, with not only possible consequences in
terms of performance, but also in terms of convergence to the final solution.
It is therefore an imperative to consider an efficient Newton initial guess strat-
egy. In general, this can be achieved either by means of an a priori knowledge
of the solution behaviour, or by solving lower order models of the considered
phenomenon. In the context of UQ, the spectrum of possible workarounds ex-
pands naturally, as one can profit from the availability of computed solutions.
Other strategies relying on surface response models can also be exploited. We
here propose and compare many different strategies for improving the nonlinear
solver performance, mainly in terms of iterations to convergence.

6.4.1 Multiple time blocks strategy

The all–at–once methodology described in Subsection 3.1.3 fails to converge
when a high number of time steps is considered. A possible immediate fix is
to consider a multiple time blocks strategy that consists in decomposing the orig-
inal time interval into smaller chunks, for which a local number of time steps is
used. The equation is then solved sequentially on each time block, provided that
each block receives the final state solution from the precedent one, to serve as
an initial condition. This initial condition can be further generalized to all the
time steps of the current time block, and serve a constant initial guess.
More formally, let us consider a time interval [0, T], uniformly partitioned in m
time steps. For the sake of simplicity, let us consider an integer M and assume
that there exists T ′ ∈ ! and m′ ∈ % such that T = M T ′ and m= Mm′. We denote
the solution on the k−th time block with

u[k] = [u[k],1, · · · ,u[k],m′]T ∈ !nm′ , (6.1)

where n is the number of spatial Dofs. Conforming to the original given problem,
we consider the initial condition of setting:

u[k+1],0 = u[k],m′ , ∀k = 1, · · · , M − 1. (6.2)
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The Newton initial guess for every new time block is further set to be the final
time step solution of the previous block, generalized to all the time steps, that is

u(0)[k+1] = [u[k],m′ , · · · ,u[k],m′]T ∈ !nm′ . (6.3)

Figure 6.3. Schematization of the multiple time blocks strategy.

Remark. Resorting to a multiple time blocks strategy naturally reduces the paral-
lelization scalability in the time dimension. It is therefore preferable to use the least
number of time blocks for a given time interval, in a way that guarantees conver-
gence.

6.4.2 Eikonal initial guess

In the context of cardiac electrophysiology, the Eikonal equation is a low order
model that is often used to investigate the heart activation map. It represents a
reasonable alternative to the monodomain or the bidomain models, that comes
with a significantly lower computational cost. We here rely on a the Eikonal–
Diffusion model, see [PTH02a] , given by:

1
τ
∇ · (G(x)∇a(x)) +

c0

τ

W
∇a(x) · G(x)∇a(x) = 1, (6.4)

where a(x) is the activation time, G(x) the conductivity tensor, c0 and τ respec-
tively local velocity and time parameters. An initial guess state for the mono-
domain equation can be recovered by means of the following expression:
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u(x, t) =

(
urest if a(x)> t,
upeak otherwise.

Although potentially representing a good compromise for setting initial guess,
this method did not show in general the desired effect. The choice on τ and c0

which should depend on a priori knowledge of the travelling wave speed, is not
at all trivial. We have noticed however a relative acceleration of the convergence,
as shown in [Ben20].

6.4.3 Samples based initial guess

Starting from first samples computed with a combination of multiple time block
strategy and initial guess provided by the eikonal equation, one can take advan-
tage of the computed solutions as they become available. Indeed, it might be
reasonable to think that these represent good approximations even for a differ-
ent random field realization.
(i) Locally: A possibility is to keep using multiple time blocks and replace the
Newton initial guess with the solution provided by an available reference sample,
while still applying the initial condition 6.3 for every time block. This resorts to
solve recursively for every time block, after setting the Newton initial guess:

u(0)[k] =
I
u[k−1],m′ ,u

ref
[k],2, . . . ,uref

[k],m′

JT
∈ !nm′ ,

for k = 1, · · · , M and uref
[k] the reference computed sample, with corresponding

solution on the k–th time block. We additionally set u[0],m′ to the discretized
initial condition of the problem u0.
(ii) Globally: The Newton initial guess is provided by the computed reference
sample all over the time domain, and the problem solved without considering
multiple time blocks. That is, we simply set the initial guess:

u(0) = uref =
I
uref
[1], . . . ,uref

[M]

JT
∈ !nm.

6.4.4 Performance comparison

In the following, we compare the performances obtained with the different strate-
gies described above, by solving the monodomain equation on six time blocks.
We test them on our three main reference geometries: a cube, an idealized ven-
tricle and a realistic heart geometry. The acronyms DM, MTB, LNIG and GNIG
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designate respectively the Direct Method, the Multiple Time Block, the Local
Newton Initial Guess and the Global Newton Initial Guess.
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Figure 6.4. Comparison of the different Newton initial guess strategies for a
sample on the cube.
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Figure 6.5. Comparison of the different Newton initial guess strategies for a
sample on the ventricle.
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Figure 6.6. Comparison of the different Newton initial guess strategies for a
sample on a realistic heart geometry.

We resume the results arising from the Figures 6.4, 6.5 and 6.6 in the following
table.

DM MTB LNIG GNIG

Cube NC 41 21 4
Ventricle NC 54 30 7

Heart NC 42 19 4

Table 6.1. Number of iterations required by each method for the considered
geometries. The acronym NC stands for Non Converging.
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Chapter 7

Numerical Experiments

7.1 Setup

The numerical experiments have been conducted for three test-case geometries:
a cube, an idealized ventricle and a heart geometry (atria excluded) that was
acquired through real patient CCT data. We will refer to the latter geometry
with the term “realistic heart”. The simulations have been realized using SLOTH,
see [QBBK17], a UQ Python library developed at the Institute of Computational
Science (ICS) in Lugano. For this work, we extended it to the monodomain
equation (and in general to all types of 3D+1 dimensional PDEs) by employing
Utopia, see [ZKN+16], for the finite element formulation.

Parameters for the monodomain equation. Regarding the model (3.52) and
(2.3), we will always rely on the following parameters:

• The values for the ion channel model Iion(u) in (2.3) are set as α= 1.4·10−3

mV−2ms−1, urest = 0 mV, uth = 28 mV, and upeak = 115 mV.

• We choose

Iapp(x, t) =
1

urest + upeak exp

1
−(x− x0)2

σ2

22
χ[0,t1)(t),

where t1 = ∆t = 0.005 ms is the function we rely on for the applied
stimulus. Parameters σ and x0 represent respectively the power and the
location of the stimulus. They are geometry dependent.

Parameters for KL expansion For the numerical experiments, we accompany
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the perturbation on the KL expansion with a scaling factor, i.e. ∀x ∈ D,

V(x,ω) = "[V](x) + S
M∑

k=1

W
λkψk(x)Yk(ω).

where S ∈ !dr×dr is given by:

S =

⎡
⎣

s1
. . .

sdr

⎤
⎦

where 1 ≤ dr ≤ d is the dimension of the considered random vector field. The
parameters used in the KL expansion differ from an experiment to another and
are listed below:

• Cube: We consider isotropic diffusion, i.e. dr = 1, and a scaling fac-
tor s1 = 0.3. The covariance matrix is induced by the correlation kernel

Cov1,1[V ](x,y) = e
−d(x,y)2
σKL , for σKL = 0.25. The low rank Cholesky approx-

imation of the covariance matrix yielded a stochastic dimension M = 66.
The mean diffusion is set to "[V ](x) = 3.325 · 10−3mm2 ms−1, ∀x ∈ D.

• Idealized ventricle: We consider isotropic diffusion and a scaling factor

s1 = 0.3. The correlation kernel is given by Cov1,1[V ](x,y) = e
−d(x,y)2
σKL , for

σKL = 0.5. The stochastic dimension is given by M = 87. The mean diffu-
sion is set to "[V ](x) = 3.325 · 10−3mm2 ms−1, ∀x ∈ D.

• Heart geometry: We consider anisotropic diffusion, i.e. dr = d with a

block-diagonal covariance matrix given by Covi, j[V](x,y) = δi j e
−d(x,y)2
σKL , for

1≤ i, j ≤ dr whereδ is the Kronecker delta. We setσKL = 0.16. The scaling
factor is set to si = 0.3 for i = 1, . . . , dr . The recovered stochastic dimen-
sion for the described setting is given by M = 135. An additional a pos-
teriori truncation (see Subsection 4.1.6 and in particular Equation (4.58))
is performed with εtrunc = 0.05, leading to Mtrunc = 48. Furthermore, the
perpendicular diffusion in (4.65) is set to a = 1.625 · 10−3mm2 ms−1.

We furthermore use a KL truncation error of ε= 10−2.

Reference solution and error metrics. In all the convergence and work compar-
ison graphs that follow, the referenced Hq norm (L2 = H0 and H1 for respectively
q = 0 and q = 1) of the mean square error is given by

el = "
D
∥ul(·)−"[uref(·)]∥2L2((0,T );Hq(D))

E
(7.1)
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in case of a space–time quantity of interest. In case of a quantity of interest which
is associated with a specific point x0 in space, we consider instead the error

el = "
D
∥ul(x0, ·)−"[uref(x0, ·)]∥2Hq(0,T )

E
, (7.2)

The reference solution uref is computed by using N = 10’000 samples drawn from
the Halton sequence. Regarding the Monte Carlo quadrature, the expectation for
both, the single-level and multilevel runs, are approximated by averaging over 10
simulations at each level of precision for the nested case study, and 5 simulations
for the non–nested example.

Quadrature methods. In our experiments, we will consider the Monte Carlo
(MC) and quasi-Monte Carlo (QMC) quadrature method and their multilevel
pendants MLMC and MLQMC. Let us recall that the Hq–error (q = 0,1) is of order
2(q−2)l when using linear finite elements of mesh size hl = 2−l . Therefore, and
as suggested by Propositions 4.3 and 4.4, the number of samples to be executed
by these methods on a level l to get the same order of error 2(q−2)l is respectively
given by

NMC,l = G (2(4−2q)l) and NQMC,l = G (2(2−q)l). (7.3)

Regarding the multilevel strategies, the number of samples to be executed on
each level l = 0, . . . , L to get the same order of error 2(q−2)l is given by

NMLMC,l ∼ G (2(4−2q)(L−l)) and NMLQMC,l ∼ G (2(2−q)(L−l)), (7.4)

as suggested by 4.5 and 4.6

7.2 Isotropic random diffusion for simple geome-
tries and nested meshes

In these first experiments, we consider isotropic diffusion for the sake of sim-
plicity. The mean diffusion field G0(x) is set to the scalar value G0(x) = 3.325 ·
10−3mm2 ms−1. The experiments are conducted on the cube and the idealized
ventricle geometry.

7.2.1 Cube

We use a hierarchy of L + 1 = 6 nested levels, for which every coarse level l =
0,1, . . . , L−1 is obtained from the prior fine level l+1= 1,2, . . . , L by uniformly
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coarsening in space and time, starting from the finest level l = L. The number of
space-time degrees of freedom (Dof’s), the space and time discretization steps of
all the different levels are reported in Table 7.1.

l 0 1 2 3 4 5
Dof’s 16 256 4’096 65’536 1’048’576 16’777’216

h 0.5 0.25 0.125 0.0625 0.03125 0.015625
∆t 0.16 0.08 0.04 0.02 0.01 0.005

Table 7.1. Details about the considered mesh hierarchy for the cube geometry.

(i) Controlled convergence of the general error: We intend to estimate and
verify the convergence rate for the quadrature methods under consideration. The
number of samples on each level is determined by the sampling strategy for con-
trolling the error (c.f. Section 4.6) by using the sample numbers (7.3) and (7.4).
We report in figure 7.1 the controlled convergence in L2 and H1 norms.
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Figure 7.1. Controlled convergence graphs for the cube in L2 (left) and H1
(right) norms.

The plots show that we recover the expected convergence rate of the general
error for all the quadrature methods tested. This should not be interpreted as all
of these methods are equivalent, but that these instead get to the same precision
with a different balancing of samples on every level. This gets demonstrated in
a better way once converting these plots into work comparison plots.
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(ii) Asymptotical work behaviour: Equivalently to the controlled convergence
concept with the previously introduced sampling strategy, we would like now to
study the work in the context of the controlled error. Let us recall that in order
to achieve an error of order 2(q−2)l in the Hq norm (q = 0,1) using linear FE, the
work produced by all the considered quadrature methods is given by:

W q
MC,L = 2(γd+4−2q)L, W q

QMC,L = 2(γd+2−q)L, (7.5)

W q
MLMC,L =

⎧
⎨
⎩
(L + 1)2(4−2q)L if γd = 4− 2q,
C(q)2γd L − 2(4−2q)L

2γd−(4−2q) − 1
if γd ̸= 4− 2q,

(7.6)

and

W q
MLQMC,L =

⎧
⎨
⎩
(L + 1)2(2−q)L if γd = 2− q,
D(q)2γd L − 2(2−q)L

2γd−(2q−1) − 1
if γd ̸= 2− q,

(7.7)

with γ representing the solver complexity, C(q) = 2γd−(4−2q) and D(q) = 2γd−(2−q).
The complexity parameter γ is therefore of a major importance in the asymp-

totical work behaviour of the quadrature methods at hand. In our case, given
the Newton initial guess strategy, the solver preconditioning and the difference
in parallel resources used from a level to another do not allow to give this pa-
rameter a concise value over all levels (c.f. Chapter 6). We suggest however to
evaluate the work in terms of total execution time, in which the cost for solving a
sample at a level l is given by the time to solution (averaged over a hundred sam-
ples). The plot of work comparison between the different methods is reported in
Figure 7.2, where the error is measured in the L2–norm.

7.2.2 Idealized ventricle

In this second test case, we rely on a mesh hierarchy of L+1= 3 levels. The main
reason for the limitation of levels number for this geometry is essentially due to
the nestedness condition. Indeed, for this geometry as opposed to the simple
cube one, we proceed in an inverted way, i.e. refining an initial given mesh. This
procedure becomes very quickly demanding at the memory level. In general, this
limitation can be very often encountered when dealing with nested meshes for a
realistic geometry. This is the main motivation for relying on non nested meshes
for the last test-case (c.f. Section 7.3).

The number of space-time degrees of freedom (Dof’s), the space and time
discretization steps of the three different levels are reported in Table 7.2. The
meshes are demonstrated in Figure 7.3.



126 7.2 Isotropic random diffusion for simple geometries and nested meshes

10
0

10
5

10
-1

10
0

10
1

Figure 7.2. Work comparison for MC/MLMC/QMC/MLQMC. Work is
computed on the basis of execution time on a single thread for all levels.

l 0 1 2
Dof’s 154’546 2’120’420 31’184’747

h 0.1 0.05 0.025
∆t 0.02 0.01 0.005

Table 7.2. Details about the mesh hierarchy for the idealized ventricle
geometry.

Figure 7.3. Nested mesh hierarchy for the idealized ventricle.
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(i) Controlled convergence of the general error:
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Figure 7.4. Controlled convergence graphs for the idealized ventricle in
L2–norm.

(ii) Asymptotical work behaviour:
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Figure 7.5. Work comparison for MC/MLMC/QMC/MLQMC. Work is
computed on the basis of execution time.
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7.3 Anisotropic random diffusion for a complex ge-
ometry on non-nested meshes

The last test case concerns a realistic heart geometry with data acquired from
clinical practice. As this is meant to be the synthesis of this work, we also account
for anisotropic diffusion defined in (4.65). The background conductivity coeffi-
cient a in (4.65) is set to the value a = 1.625 · 10−3mm2 ms−1. The associated
expected fiber field "[V](x) is shown in Figure 7.6. It is obtained from a math-
ematical reconstruction using transmural coordinates [PDR+06a]. The transmu-
ral coordinates are derived by initially solving a diffusion problem with adapted
boundary conditions at the contour of the left and right ventricles [BBPT12].

Figure 7.6. Initial state for fibers "[V](x).

We also relax the nestedness condition by considering non-nested mesh lev-
els. As we have previously argued, the nestedness condition becomes very quickly
a burden in considering a high number of levels. We rely on 6 mesh levels in this
example. They are shown in Figure 7.7. The details on the space time Dof’s and
discretization steps are reported in Table 7.3.

l 0 1 2 3 4 5
Dof’s 18’480 113’312 583’104 1’740’800 8’777’728 34’894’848

h 0.16 0.08 0.04 0.03 0.02 0.01
∆t 0.16 0.08 0.04 0.02 0.01 0.005

Table 7.3. Details about the considered mesh hierarchy for the realistic heart
geometry.
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Figure 7.7. Non-nested mesh hierarchy for the realistic heart.

As we do not have nested finite element spaces, we rely here on the multilevel
estimator (4.83). Moreover, we evaluate the convergence for the two quantities
of interest, namely the action potential and the activation times for given location
in the domain.

7.3.1 Action potential

We evaluate the evolution of the action potential in several locations of the heart
domain. The first example considers a set of points that are placed along the wall
separating the left and right ventricles. These points are shown in Figure 7.8.

As one can see, these points have been selected so they trace the behaviour of
locations at different distance from the stimulus center, starting from very close
(the very below point) to relatively far (the very top point). We report in Figure
7.9 the action potential obtained by the MC quadrature method for different
discretization levels. The order goes from top left for the very bottom point
defined in Figure 7.8, to below right for the upper point.
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Figure 7.8. Locations selected along the wall separating the left and right
ventricles.

Figure 7.9. Action potential behaviour given different mesh level
discretizations for the points specified in Figure 7.8.

In Figure 7.10, we report the convergence graphs of the (pointwise) error (7.2)
for the action potential at the locations introduced in Figure 7.8 and q = 1.
Notice that the graphs report the root mean square errors.
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Figure 7.10. Convergence in the H1–norm of the action potential at the
locations specified in Figure 7.8.

The second test is concerned with points located at the circumference of a
horizontal cut of the heart surface. These are shown in Figure 7.11.

Since the behaviour of the action potential on these points follows a similar
pattern than that of the previously shown ones (c.f. Figure 7.9), we only show
the convergence graphs of the action potential for these points.
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Figure 7.11. Locations selected at the circumference of a horizontal cut of the
heart surface.
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Figure 7.12. Convergence of the action potential at the locations specified in
Figure 7.11.

7.3.2 Activation time

We start by selecting points at equivalent geodesic distance from the stimulus
location. These points are shown in Figure 7.13. The geodesic distance is calcu-
lated by solving an eikonal problem with a zero initial condition on the originat-
ing point [PQP19], i.e. the stimulus in our case.

Figure 7.13. Locations selected at equivalent geodesic distance from the
stimulus.
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The graphs on the convergence of the activation times for these locations are
reported in Figure 7.14.
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Figure 7.14. Convergence of the activation time at the locations specified in
Figure 7.13.

We now select locations at the circumference of the left ventricle. These are
shown in Figure 7.15. This electrical signal, when propagated to the chest, is
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exactly what is perceived clinically (on a electrocardiogram monitor). Math-
ematically, it is possible to map the surface potential to the chest by solving
an additional diffusion problem, as described in Subsection 2.3.2 (see further
[FZ10, BCF+10]). Notice that these are not placed exactly at the surface of heart.
As we have several discretization levels, we need to ensure that these points are
well-defined on each one of them.

Figure 7.15. Locations selected at the periphery of the heart surface.

1 2 3 4 5

10
-2

10
-1

1 2 3 4 5

10
-1



136 7.4 Scar uncertainty

1 2 3 4 5

10
-1

1 2 3 4 5

10
-1

1 2 3 4 5

10
-1

Figure 7.16. Convergence of the activation time at the locations specified in
Figure 7.15.

7.4 Scar uncertainty

As a final numerical experiment, we consider a setting where a scar fibrosis is
included in the computational domain and define additional uncertainties con-
sisting of the scar width and the conductivity, c.f. Section 5.2. This experiment
is conducted on the cube geometry, by still considering isotropic random diffu-
sion defined by the same set of parameters defined in Section 7.1. Additional
parameters with respect to the scar are listed here below:

• Scar center x0 = [0.25,−0.5, 0.25]T .

• Scar width bounds [µmin,µmax] = [0.05,0.4].

• Scar conductivity bounds [σmin,σmax] = [10−8, 2.5 · 10−4].

Recall that the cube is given by D = [−0.5,0.5]3. In Figure 7.17, we show the
evolution of the mean and the variance of the stochastic solution to the new
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setting considering the scar, in ordering to underline its effect on the electrical
propagation.



138 7.4 Scar uncertainty

Figure 7.17. Mean (left) and variance (right) over time after the inclusion of a
scar.

In Figures 7.18 and 7.19, we show the usual controlled convergence and asymp-
totical work graphs.
(i) Controlled convergence of the general error:
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Figure 7.18. Controlled convergence graphs for the cube after inclusion of a
scar in the L2–norm.
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(ii) Asymptotical work behaviour:
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Figure 7.19. Work comparison for MC/MLMC/QMC/MLQMC. Work is
computed on the basis of execution time.
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Chapter 8

Conclusion

Many sources of uncertainty can be encountered whenever considering param-
eter dependent PDEs. Those uncertainties are related to the impossibility, with
the means at hand, of sharply estimating given parameters.

In electrophysiology, this may materialize in many aspects. As an example,
obtaining a precise geometry of the fiber network within the myocardium is still
out of reach even with state–of–the–art imaging techniques. Consequently, mod-
els describing the electrical propagation inside the cardiac muscle are most likely
to be impacted by this uncertainty, in a way that severely complicates patient–
specific virtual therapy.

With respect to the aforementioned challenges, in this thesis:

• We modeled the fibers’ uncertainties with respect to the orientations and
conductivities, by means of a KL expansion expressed as spatially corre-
lated random perturbations on a given initial state.

• We employed the monodomain equation with the FHN ion channel model
and evaluated the effect of random diffusion fields on the statistics of the
resulting quantities–of–interest, i.e. the transmembrane potential, the ac-
tivation time and the action potential for given sites.

• We applied sampling methods such as standard MC and QMC, as well as
their multilevel pendants, i.e. MLMC and MLQMC (See Chapter 4). For a
non–constraining usage of multilevel methods on complex geometries, we
also employed a multilevel inverse construction (see Subsection 4.4.2).
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• To render these methods easily applicable, we constructed an efficient so-
lution framework that fully takes advantage of all possible concurrencies.

• We conducted extensive numerical studies on simple and complex geome-
tries. We evaluated the convergence rates of the considered methods and
compared their performances.

• We additionally included a realistic example of a scar fibrosis defined by
an uncertainty on its width and consuctivities.

We highlight the following results:

1. We have built an efficient computational framework for addressing large
scale UQ problems, that is fully parallel in space, time and stochastics.
In particular, we took advantage of three layers of parallelization: lev-
els, batches of samples, and spatio–temporal grid. More precisely, we em-
ployed a space–time all–at–once approach and solved the arising systems
with parallel space–time PGMRES.

2. We tackled the convergence problems with respect to Newton’s method by
means of multiple time blocks strategy and samples based Newton initial
guess strategy, i.e. MTB, LNIG and GNIG (see Chapter 6). By doing so, we
did not only improve the robustness of the iteration scheme but also dras-
tically accelerated the convergence with a reduction of Newton iterations
by an order of magnitude.

3. We evaluated through extensive numerical studies the convergence rates
for the sampling methods at hand. In particular, the optimal convergence
rate with respect to MLQMC is achieved, proving therefore that regularity
requirements hold for this considered problem, and most likely the respec-
tive classes of problems. This validates the use of multilevel and determin-
istic UQ techniques for non–linear time dependent parabolic equations,
with uncertainties in the diffusion coefficient.

4. The resulting MLQMC framework is capable of handling multilevel hierar-
chies of non–nested meshes, allowing for realistic geometries and reducing
dramatically the cost for quantities–of–interest estimation, in comparison
with standard MC.



Appendix A

Short review of normed vector
spaces

In the upcoming definitions, X is always considered to be a nonempty set.

Definition A.1 (Metric space). A metric on X is a function d : X × X → ! such
that the following assumptions hold ∀x , y, z ∈ X :

(i) d(x , y)≥ 0 and d(x , y) = 0 if and only if x = y, (nonnegativity)

(ii) d(x , y) = d(y, x), (symmetry)

(iii) d(x , y)≤ d(x , z) + d(z, y). (triangular inequality)

(X , d) is then called a metric space and d(x , y) the distance between x and y.

Definition A.2 (Convergence). A sequence of points {xn}∞n=1 in a metric space X
is said to converge to an x ∈ X if ∀ε> 0, there exists an N ∈ % such that

d(xn, x)< ε, ∀n≥ N .

Definition A.3 (Cauchy sequence). A sequence of points {xn}∞n=1 in a metric space
X is said to be a Cauchy sequence if ∀ε> 0, there exists an N ∈ % such that

d(xn, xm)< ε, ∀n, m≥ N .

The triangular inequality implies that a convergent sequence is necessarily a
Cauchy sequence. The opposite does not necessarily hold, and characterizes so–
called complete spaces.

Definition A.4 (Complete metric space). A metric space X is said to be complete if
every Cauchy sequence converges to an element x ∈ X .
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Definition A.5 (Dense subset). A subset S of a metric space (X , d) is said to be
dense in X if for every x ∈ X and every ε> 0, we have that

9(x ,ε)∩ S ̸= K,

where 9(x ,ε) = {y ∈ X such that d(x , y) < ε}, that is the open ball centered in
x of radius ε.

Remark. An example of a dense subset is provided by ) with respect to !.

In the following, we consider the notion of vector space to be known to the reader.

Definition A.6 (Norm). Let X be a vector space over !. A norm on X is a function
denoted as ∥·∥ : X → ! such that the following holds ∀x , y ∈ X and c ∈ !:

(i) ∥x∥ ≥ 0 and ∥x∥= 0 if and only if x = 0, (nonnegativity)

(ii) ∥cx∥= |c|∥x∥ , (homogeneity)

(iii) ∥x + y∥ ≤ ∥x∥+ ∥y∥ . (triangular inequality)

The vector space X , together with its norm, i.e. (X ,∥·∥), is then called a normed
vector space.

Remark. The norm provides the notion of individual vector’s length, while a metric
describes the distance between given points in a set. The latter can therefore be
defined for arbitrary sets, while norms are defined only for vector spaces.

Definition A.7 (Seminorm). A seminorm, usually denoted as |·|, fulfills the same
set of assumptions than that of a norm, except that if |x |= 0 for a given x ∈ X , we
do not necessarily have x = 0.

Lemma A.1 (Induced metric). Let (X ,∥·∥) be a normed space. The function d :
X × X → !

d(x , y) = ∥x − y∥ , ∀x , y ∈ X ,

defines a metric on X , called the induced metric.

Definition A.8 (Banach space). A normed vector space X is called a Banach space if
it is complete, in accordance with the definition of completeness of a space provided
by Definition A.4

Definition A.9 (Inner product). Let X be a vector space over !. An inner product
on X is a function 〈·, ·〉 : X × X → ! such that the following holds ∀x , y, z ∈ X and
α,β ∈ !:



(i) 〈x , x〉 ≥ 0 and 〈x , x〉= 0 if and only if x = 0, (nonnegativity)

(ii) 〈x , y〉= 〈y, x〉, (symmetry)

(iii) 〈αx + β y, z〉= α〈x , z〉+ β〈y, z〉. (linearity)

The vector space X is then called an inner product space.

Remark. The assumption (iii) describes the linearity only in the first term. The
linearity on the second argument is automatically induced by symmetry, i.e. as-
sumption (ii).

Lemma A.2 (Induced norm). If 〈·, ·〉 is an inner product on a given vector space X
then the function defined ∀x ∈ X such that

∥x∥= 〈x , x〉1/2,

represents a norm on X , called the inner product induced norm on X .

Theorem A.1 (Cauchy–Schwarz inequality). Let X be an inner product space with
corresponding inner product 〈·, ·〉. The following inequality holds ∀x , y ∈ X :

|〈x , y〉|≤ ∥x∥∥y∥ ,

where ∥·∥ denotes the inner product induced norm.

Definition A.10 (Hilbert space). A Hilbert space H is an inner product space that
is complete with respect to the inner product induced norm.

Definition A.11 (Separability). A Hilbert space is said to be separable if it contains
a dense countable subset.

Remark. The set ! is separable for example, since ) is countable.
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Appendix B

Basic notions of measure theory

B.1 Measurable spaces

Definition B.1 (σ–algrebra). Let X be a given set. A σ–algebra or σ–field 8 is a
collection of subsets of X satisfying the three following properties:

(i) K ∈ 8 ,

(ii) A∈ 8 =⇒ Ac ∈ 8 , (closure under complementation)

(iii) If A1, A2, . . . , An, . . . ∈ 8 =⇒
∞⋃
n=1

An ∈ 8 . (closure under countable union)

The combination of (i) and (ii) implies that X ∈ 8 . Furthermore, we have by
definition that 8 ⊆M (X ) where M (X ) denotes the power set of X .

Proposition B.1. Suppose that we are given σ–algebras 8i on X, for i ∈ N (index
set). Then,

⋂
i∈N 8i is also a σ–algebra.

Proposition B.2. ForO ⊆M (X ), there exists a smallest σ–algebra that contains
O denoted σ(O ) such that:

σ(O ) :=
⋂
O⊆8
8 ,

where the 8 ’s are σ–algebras. We call it the σ–algebra generated byO .

Definition B.2 (Borel σ–algrebra). Let X be a metric space with open sets corre-
sponding to9(x ,ε), ∀x ∈ X and ∀ε> 0. We call the Borel σ–algebra, denoted by
B(X ), the σ–algebra generated by the open sets of X .
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Definition B.3 (Measure function). Let X be a set and 8 a σ–algebra over X . A
measure µ on 8 is a function µ :8 → ! satisfying the following properties:

(i) µ(A)≥ 0, ∀A∈ 8 , (non–negativity)

(ii) µ(K) = 0, (null empty–set)

(iii) For every countable collection of {An}∞n=1, An ∈ 8 , such that Ai ∩ Aj = K,
∀i ̸= j, we have that µ(

∞⋃
i=1

Ai) =
∑∞

n=1µ(An). (countable additivity)

The pair (X ,8 ) is called a measurable space and A∈ 8 is called a measurable set.
The triple (X ,8 ,µ) is called a measure space.

Remark. Provided (iii), if a single set has finite measure, assumption (ii) holds
automatically provided that

µ(A) = µ(A∪ K) = µ(A) +µ(K).

Definition B.4 (Measurable function). Let (X ,8X ) and (Y,8Y ) be two measurable
spaces. A function f : X → Y is said to be measurable if for every Y –measurable set
B ∈ 8Y , the inverse A := f −1(B) is X–measurable, i.e. A∈ 8X .

B.2 Probability and Bochner spaces

Definition B.5 (Probability measure). Let X be a set and 8 a σ–algebra over X .
A probability measure # is a measure function such that 0 ≤ #(A) ≤ 1, ∀A ∈ 8
and #(X ) = 1.

Definition B.6 (Sample space). A sample space Ω is the collection of possible out-
comes of a random experiment. It is also referred to as the universe of all possible
outcomes.

Definition B.7 (Probability space). A probability space is a measurable space con-
stituted by a triplet (Ω,8 ,#), where Ω is a sample space, 8 a σ–algrebra on Ω
and # a probability measure. In this context, the σ–algrebra 8 is called an event
space, and # a probability function.

Definition B.8 (Random variable). Let (Ω,8 ,#) be a probability space. A function
X : Ω→ ! is called a random variable if for a ∈ !, we have

X ([a,+∞[)−1 = {ω ∈ Ω, X (ω)≥ a} ∈ 8 .
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Definition B.9 (Borel measurability). Let (Ω,8 ,#) be a probability space and H
a Hilbert space. A function f : Ω→ H is Borel measurable if f is measurable with
respect to B(H), that is the Borel σ–algebra induced by H. This is also referred to
as the weak measurability.

Definition B.10 (Separably valued function). A function f : Ω→ H is said to be
almost surely separably valued if there exists a subset N ⊂ Ω with #(N) = 0 such
that f (Ω \ N) ⊂ H is separable.

Definition B.11 (Bochner measurability). A function f is said to be Bochner mea-
surable, or strongly measurable, if there exists a sequence of separably valued func-
tion { fn}∞n=1, such that:

f (ω) = lim
n→∞

fn(ω),

for almost every ω ∈ Ω and f −1(x) is measurable ∀x ∈ H.

Theorem B.1. A function f : Ω→ H is Bochner (strongly) measurable if and only
if it is Borel (weakly) measurable almost surely separably valued.

Definition B.12. A Bochner measurable function f : Ω→ H is Bochner integrable
if there exists a sequence {sn}∞n=1 of simple functions (i.e. sn =

∑n
i=1χAi

xi, with
Ai ∈ 8 and xi ∈ H) such that:

∫

Ω

∥ f − sn∥H d#(ω) n→∞−−−→ 0.

Proposition B.3. A Bochner measurable function f : Ω→ H is Bochner integrable
if and only if ω .→ ∥ f (ω)∥H ∈ ! is integrable with respect to # (this is equivalent
to write f ∈ L1(Ω; H)). We then have ∀A∈ 8 :

CCCC
∫

A

f (ω) d#(ω)
CCCC

H

≤
∫

A

∥ f (ω)∥H d#(ω).

Therefore, if f ∈ L1(Ω; H), we have that "[ f ] =
∫

f (ω) d#(ω) ∈ H exists.

B.3 Lebesgue Measure and Integral on !
Let E be a subset of ! (E ⊂ !) and

F
I j

G
j∈N be a finite, or countable infinite,

coverage of R with open intervals.
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Definition B.13 (Outer measure of a set). The outer measure of a E is defined by

Oout(E) = inf
(I j) j∈N

∑

j

l(I j),

where l(I j) denotes the length of the interval I j.

Definition B.14 (Inner measure of a set). Suppose that E has a finite outer mea-
sure. Let 8 (E) be the set of closed subsets of E. The inner measure of E is defined
to be:

Oin(E) = sup
K⊂8 (E)

Oout(K),

Definition B.15 (Measurability in the sense of Lebesgue). If a set E is such that
Oin(E) =Oout(E), we say that it is measurable in the sense of Lebesgue and we set
its Lebesgue measure to:

O (E) =Oin(E) =Oout(E).

Proposition B.4. Every countable set of points has a zero measure.

Definition B.16. A property is said to hold almost everywhere if the set of points if
it does not hold only on sets of measure zero.

Definition B.17 (Lebesgue measurable functions). Let f : E ⊂ ! → !. The
function f is said to be Lebesgue measurable if ∀a ∈ !, the set {x ∈ E | f (x) < a}
is a measurable set in the sense of Lebesgue.

Definition B.18 (Simple functions). Let E ⊂ !. We denote with χE the character-
istic function of the set E, that is:

χE(x) =

(
1, if x ∈ E
0, otherwise.

A simple function f : E → ! is a function such that it can be written as a linear
combination of characteristic functions on measurable sets, i.e.

f (x) =
n∑

i=1

aiχE(x), (B.1)

where Ei ∩ Ej = K, ∀i ̸= j, and ai ∈ !, ∀i = 1, . . . , n.
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Definition B.19 (Integral on positive simple functions). Let f be a positive simple
function, i.e. ai > 0 in (B.1). The Lebesgue integral of the function f is given by:

∫

E

f dµ=
n∑

i=1

aiµ(Ei),

where we set aiµ(Ei) = 0 whenever ai = 0 and µ(Ei) =∞.

Definition B.20. Let f : !→ ! and A a measurable subset of !. We have that
∫

A

f dµ=
∫

!
f χA dµ=

n∑

i=1

aiµ(Ei ∩ A).,

Definition B.21. Let f be a positive Lebesgue measurable function. The integral of
f is given by: ∫

f dµ= sup
s≤ f

∫
s dµ,

where s represents a simple function. If
∫

f dµ is finite, f is said to be Lebesgue
integrable (equivalently, integrable in the sense of Lebesgue).

Definition B.22. Let f be an arbitrary, measurable function. We define:

f +(x) =

(
f (x), if f (x)≥ 0

0, otherwise,

and

f −(x) =

(
− f (x), if f (x)≤ 0

0, otherwise.

in such a way that we have f = f + − f −. The integral of f is defined with respect
to the positive functions f + and f −, by means of

∫
f dµ=

∫
f + dµ−

∫
f − dµ.

Remark. • If
∫

f + dµ >∞ and
∫

f − dµ >∞, then
∫

f dµ does not exist.

• If
∫

f + dµ > ∞ (respectively f −) and
∫

f − dµ is finite (respectively f +),
then

∫
f dµ= +∞ (respectively −∞).

• f is said to be Lebesgue integrable if
∫

f dµ < +∞.



Remark. All the definitions above can be generalized to functions f : D→ ! with
D ⊂ !n. The construction, mainly the sets measurability, is obtained by considering
Borel sets in !n obtained by tensor product of Borel sets in !, i.e.

9(!)⊗ . . .⊗9(!)︸ ︷︷ ︸
n times

=9(!n).

The product measure is considered on the basis of the usual Lebesgue measure. The
theorem of Fubini–Tonelli (c.f. [Coh13]) relates the evaluation of integrals in !n,
to that in !.

Appendix C

Sobolev Spaces

In the following, we always consider D ∈ !d to be a d–dimensional domain with
a Lipschitz boundary.

Definition C.1. For 1≤ p ≤∞, we define

Lp(D) = { f : D→ !, f measurable and ∥ f ∥Lp(D) <∞},

where we define the norms:

∥ f ∥Lp(D) =

(F∫
D| f (x)|p dx

G1/p
, for 1≤ p <∞,

ess supx∈D| f (x)|, for p =∞.
(C.1)

We recall that the essential supremum of a function f is given by:

ess supx∈D| f (x)|= inf{C ≥ 0 such that | f (x|≤ C almost everywhere}.

In other terms, the Lp(D) spaces define sets of equivalence classes of functions,
that are integrable on D up to the power 1≤ p <∞. For p =∞ in turn, L∞(D)
represents the set of essentially bounded functions.
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Remark. The equivalence class of a function is the set of functions that are defined
to be equal almost everywhere, i.e. they may differ only on sets of measure zero.
Provided that f is a representative of an equivalence class of interest, we write:

⌊ f ⌋= {g : D→ !, g(x) = f (x) almost everywhere}.
Proposition C.1. The spaces Lp(D) are Banach spaces with respect to the norms
defined in (C.1).

Proposition C.2. For p = 2, the spaces L2(D) is a Hilbert where the inner product
inducing the norm is provided by:

( f , g) =
∫

D

f (x)g(x) dx.

We therefore also have the Cauchy–Schwarz inequality in L2(D) :

( f , g) =
∫

D

f (x)g(x) dx≤ ∥ f ∥L2(D) ∥g∥L2(D) =
1∫

D

f 2(x) dx
21/21∫

D

g2(x) dx
21/2

Proposition C.3 (Lp–embedding). For 1 ≤ p < q ≤ ∞, we have the following
inclusion:

Lq(D) ⊂ Lp(D).

In order to define a more general class of Sobolev spaces, we need to intro-
duce the notion of weak derivative.

Definition C.2. We denote with:

C∞0 (D) = {v : D→ ! : v ∈ C∞(D), supp(v) ⊂ D},
the space of infinitely differentiable functions with compact support in D, where the
support of a function is defined by means of:

supp(v) = {x ∈ D : v(x) ̸= 0}.
We also introduce the multi–index notation α = (α1, . . . ,αn) of order |α| =∑n

k=1αk, for which we have:

Dα f =
∂ |α| f

∂ xα1

1 · · ·∂ xαn

n

,

corresponding to the αk–th partial derivative of the function f in each coordinate
xk. Furthermore, we say that f ∈ L1

loc(D) if we have
∫

D′
| f (x)| dx<∞,∀D′ ⊂ D.
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Definition C.3 (Weak derivative). Let f and F ′ ∈ L1
loc(D). If for every v ∈ C∞0 (D),

we have ∫

D

F(x)v(x) dx= (−1)|α|
∫

D

f (x)Dαv(x) dx,

then F is called the weak derivative of f corresponding to the multi–index α. We
write F(x) = Dα f (x).

Definition C.4 (Hk–spaces). The spaces Hk(D) consist of all equivalence classes of
functions in L2(D) such that all their weak derivatives of multi–index |α| ≤ k exist
and are square integrable, i.e.

Hk(D) = { f ∈ L2(D) : Dα f ∈ L2(D),∀|α|≤ k}.
We furthermore equip the spaces Hk(D) with the norm

∥ f ∥Hk(D) =

^∑

|α|≤k

∫

D

|Dα f (x)|2 dx

_1/2

,

induced by the inner product

( f , g)Hk(D) = ( f , g)L2(D) +
∑

1≤|α|≤k

(Dα f , Dαg)L2(D). (C.2)

Proposition C.4. The Hk(D) spaces are complete with respect to the norm induced
by the inner product (C.2), and therefore represent Hilbert spaces.

Remark. By definition of the spaces Hk(D) and L2(D), the following embedding
holds ∀k,

Hk(D) ⊂ L2(D).

We furthermore recover L2(D) for k = 0, i.e. H0(D) = L2(D).

Definition C.5 (General Sobolev spaces). The spaces W k,p(D) are generalization
of the spaces Lp(D) and Hk(D), that is:

W k,p(D) = { f ∈ Lp(D) : Dα f ∈ Lp(D),∀|α|≤ k},

equipped with the norms:

∥ f ∥W k,p(D) =

(F∑
|α|≤k

∫
D|Dα f (x)|p dx

G1/p
, for 1≤ p <∞,∑

|α|≤k ess supx∈D|Dα f (x)|p, for p =∞.
(C.3)
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Proposition C.5. The spaces W k,p(D) are complete with respect to the norms (C.3),
and therefore Banach spaces.

Remark. • For k = 0, we recover the Lp–spaces, i.e. W 0,p(D) = Lp(D).

• For p = 2, we recover the Hk–spaces, i.e. W k,2(D) = Hk(D).

Lemma C.1 (Poincaré–Friedrich inequality). Let us consider the case k = 1 and
functions in W 1,p

0 (D), with

W 1,p
0 (D) = { f ∈W 1,p(D) such that f|∂ D = 0},

i.e. functions in W 1,p(D) with a zero trace at the boundary. We then have the
following inequality:

∫

D

| f (x)|p dx≤ CD

∫

D

∥∇ f (x)∥p2 dx, (C.4)

where ∥·∥2 denotes the Euclidian norm and CD > 0 is a constant depending on the
domain D.

Remark. The inequality defined in (C.4) implies that for functions in W 1,p(D) with
zero trace (i.e. W 1,p

0 (D)), the norm (C.3) is equivalent to the semi–norm |·|W k,p(D)
defined by

| f |W k,p(D) =

(F∑
|α|=k

∫
D|Dα f (x)|p dx

G1/p
, for 1≤ p <∞,∑

|α|=k ess supx∈D|Dα f (x)|p, for p =∞.

Remark. The classical Poincaré inequality is given for p = 2 and reads as

∥ f ∥L2(D) ≤ CD ∥∇ f ∥L2(D) ,

for every function f ∈ H1
0(D).

We finish by enunciate an important identity, very useful in variational for-
mulations.

Theorem C.1 (Green first formula). The following identity holds ∀ f ∈ H2(D) and
v ∈ H1(D) :

∫

D

∇ f (x)∇v(x) dx=
∫

∂ D

∂ f
∂ n
(s)v(s) ds−

∫

D

∆ f (x)v(x) dx,

where s defines the surface variable, and n its outer normal.
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