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Abstract

Problems of contact mechanics arise in many engineering applications. The con-
tact conditions make the problem constrained and are the main challenge to be
tackled. Different weak forms can be used for the modeling of contact prob-
lems. The primal weak form solves for the only displacement u ∈ H1. After the
finite element (FE) discretization, the problem can be solved by means of the
monotone multigrid (MMG) method, a solver for constrained problems with op-
timal complexity. However, the primal formulation is affected by locking and can
compute the stress σ, a physical quantity of primary interest, only by means of
differentiation of the displacement.

In contrast to the primal formulation, the stress-based formulations are not
affected by locking, as they are based on the stresses as main unknowns. Thus
they are quite attractive for nearly incompressible and incompressible materials.
In this thesis, we study the first-order system least squares (FOSLS) and the dual
formulations for the Signorini problem, i.e., a unilateral contact problem. In
the first approach, an energy functional subject to only box-constraints has to be
minimized. In the second case, also global equality constraints must be enforced
and an LBB (Ladyzhenskaya-Babuška-Brezzi) condition must be satisfied. This
thesis extends the MMG method for the primal formulation to the stress-based
formulations applied to the Signorini problem for nearly incompressible and in-
compressible materials. However, in the stress-based formulations, the stress σ
belongs to the space Hdiv and therefore special care is needed for the finite el-
ement discretization and the corresponding solution methods. Linear multigrid
methods which work for Hdiv spaces have been already investigated. To the au-
thor’s knowledge, this thesis is the first attempt to generalize the MMG from the
primal formulation to the stress-based ones. To this purpose, we generalize the
Arnold-Falk-Winther smoother patch smoother for Hdiv-regular problems, so that
the contact constraints are solved locally. We show several numerical experi-
ments that illustrate the performance of our new multigrid method for both the
FOSLS and the dual cases.
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Chapter 1

Introduction

Contact problems arise in many engineering applications. From the physical
point of view, the two main unknowns involved in problems of mechanics are the
displacement field u and the stress field σ. However, when it comes to the weak
formulations, only one of the two can be the unknown to be found, while the
other one can be post-processed. For example, the primal formulation is the most
known weak form for problems of mechanics. It solves for the only displacement
variable, while the stress has to be computed a posteriori, once the displacement
is known. Furthermore, in this case, the functional of the formulation becomes
unbounded for nearly incompressible or incompressible materials. Nevertheless,
in many engineering problems, it is necessary to have a good approximation of
the stresses for nearly incompressible or incompressible materials. One of the
most common examples can be found in the field of civil engineering. Indeed,
for our safety, the buildings have to be almost incompressible. Furthermore,
the computation of the forces which are generated is crucial for determining
if the project of the structure satisfies the standard or not. Last but not least,
all the components of a building come into contact with each other, and thus the
particular case of contact mechanics is worth to be examined. Contact mechanics
give rise, even in linear elasticity and for rigid obstacles, to constrained problems.
Indeed if the body of interest cannot penetrate the obstacle, linear inequality
constraints naturally arise. We refer the reader to Kikuchi and Oden [1988] for
further reading on this topic.

Specific weak forms can be used to solve unilateral contact problems. The
standard primal weak formulation computes only the displacement u, while the
stress σ must be post-processed. On the other hand, the stress-based formula-
tions always treat the stressσ as the main variable. In particular, in this thesis, we
examine the first-order system least-squares (FOSLS) and the dual formulations
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for the linear elasticity problem and the frictionless unilateral contact problem,
also known as the Signorini problem. On one hand, in the FOSLS formulation,
u and σ are both main variables. On the other hand, in the dual formulation,
the stress σ is the main variable, while the displacement u and the rotation θ
take the role of Lagrange multipliers for enforcing respectively the equilibrium
condition and the symmetry of the stress condition. There are two main advan-
tages of the stress-based formulations. First, they enable the automatic treatment
of nearly incompressible and incompressible materials. Secondly, they permit di-
rect access to the stress, which does not have to be post-processed and which can
be exploited in further non-linear generalizations, like friction, plasticity, and so
on. However, if in the primal formulation the displacement u belongs to the well
know Sobolev space H1, in the stress-based formulations the stress σ belongs to
the larger space Hdiv. This is not a minor detail and will influence the analysis
not only of the continuum problem but also of the corresponding finite elements
(FE) discretization and solution method.

The FOSLS formulations have been widely studied. Bochev, Pavel B. and Gun-
zburger, Max D. [2009] is an exhaustive book that analyzes the FOSLS method
from both abstract and practical points of view. In particular, the success of the
FOSLS approach is given by the use of the FOSLS functional as an a posteriori
error estimator, like in Cai, Zhiqiang and Lazarov, R. and Manteuffel, Thomas A.
and McCormick, Stephen F. [1994], Berndt et al. [1997]. Furthermore, bound-
ary conditions in the FOSLS formulation can be enforced essentially or weakly. A
multilevel boundary functional is discussed in Starke [1999]. The case of discon-
tinuous coefficients is examined in Berndt et al. [2005] and in Starke, Gerhard
[2000], while generalizations to mechanics can be found in Yang, Suh-Yuh and
Liu, Jinn-Liang [1997], Cai, Zhiqiang and Starke, Gerhard [2004], Müller, Ben-
jamin [2015]. The relation between the FOSLS and the dual formulations for the
Poisson problem is studied in Brandts et al. [2006]. The same kind of analysis
is extended to the linear elastic problem in Starke et al. [2011]. Generaliza-
tions of the linear elastic problem to plasticity are discussed in Starke [2007]
and in Starke [2009]. The Signorini problem for the FOSLS linear elasticity is
examined in Krause, Rolf and Müller, Benjamin and Starke, Gerhard [2017]. For
the dual formulation in linear elasticity, we can refer the reader to Brezzi and
Fortin [2012] and Kober, Bernhard [2017]. The Signorini problem for the dual
linear elasticity is discussed in Kober, Bernhard [2020], where also the case of
Coulomb friction is taken into consideration. In Krause, Rolf and Müller, Ben-
jamin and Starke, Gerhard [2017] and Kober, Bernhard [2020], a posteriori er-
ror estimators are defined as well. For the general FOSLS problems, the FOSLS
functional to be minimized can be used as an error estimator. For the dual con-
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tact mechanics, the displacement, which is only a Lagrange multiplier, needs to
be properly reconstructed before the estimation of the error, see again Kober,
Bernhard [2020].

However, to the author’s knowledge, no proper discussion on optimal solvers
for both the linear elastic and the Signorini problems of the FOSLS and the dual
formulations has been carried out. In this thesis, we will study the multigrid
(MG) method for all these cases. Indeed multigrid methods are well known
iterative solvers for their optimal complexity, i.e., their rate of convergence is
independent of the dimension of the problem. To reach this goal, MG meth-
ods tackle the frequency components of the error simultaneously, by introducing
a proper hierarchy of FE spaces. For each level of the hierarchy, certain fre-
quency components of the error are smoothed down, for example, by means of
the Gauss-Seidel method or the conjugate gradient method. For further reading
on linear multigrid methods, see Xu, Jinchao [1992], Chen, Zhangxin [1994],
Xu, Jinchao [1996], Bank, Randolph E. and Yserentant, Harry [2010]. How-
ever, as already mentioned, the Signorini problem is constrained. Solvers that
tackle inequality constraints can be found in Hoppe, Ronald HW [1987], Gel-
man, E. and Mandel, J. [1990], Dostál, Zdenek [1997]. To recover optimality, a
multigrid method must be considered. The monotone multigrid (MMG) method
is an optimal solver that sequentially minimizes the energy employing fine and
coarse corrections which do also satisfy the constraints. It has been investigated
in Badea [2002], Badea [2014], Badea and Krause [2012], Kornhuber, Ralf and
Krause, Rolf [2001], Kornhuber, Ralf and Krause, Rolf and Sander, O. and Deu-
flhard, P. and Ertel, S. [2008], Kornhuber, Ralf [1994], Krause [2009], Krause,
Rolf and Rigazzi, Alessandro and Steiner, Johannes [2016]. However, all these
papers analyze the only primal case. We aim to generalize the MMG method to
the dual and the FOSLS formulations for the Signorini problem.

As an example of the multilevel method for the FOSLS case, we can mention
Starke, Gerhard [2000], where multigrid is applied to variably saturated subsur-
face flows. On the other hand, efficient multigrid methods exist for the saddle
point system arising from the discretization of the dual formulation for plane
linear elasticity for nearly incompressible materials. However, the finite element
discretizations differ from the one proposed in Brezzi and Fortin [2012] which
holds, in 2D and 3D, for nearly incompressible and incompressible materials.
For example, in Klawonn and Starke [2004] and in Pasciak, Joseph E. and Wang,
Yanqiu [2006], for the discretization of the stress, the 2D PEERS elements and
the 2D Arnold-Winther elements are respectively used, and only nearly incom-
pressible materials are examined.

The main issue of the FOSLS and the dual forms is that σ ∈ Hdiv and, in or-
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der to smooth the divergence-free components of the error, more sophisticated
strategies are required. In Hiptmair, Ralf [1997], the Helmholtz decomposi-
tion is exploited and divergence-free corrections belonging to a specific potential
space are computed. For generalizations of this idea from geometric to alge-
braic multigrid methods, see Kolev and Vassilevski [2012], Hiptmair, Ralf and Xu,
Jinchao [2007], Xu, Jinchao and Chen, Long and Nochetto, Ricardo H. [2009].
The Arnold-Falk-Winther smoother, introduced in Arnold Douglas [1998], Arnold
et al. [2000], Arnold et al. [1997], computes divergence-free corrections by en-
larging the subdomains of the Gauss-Seidel smoother to patch subdomains. For
sure, in mechanics, this approach is easier to manage. However, the Arnold-
Falk-Winther patch smoother has been developed only for linear problems, while
the Signorini problem is constrained. In this thesis, a novel non-linear patch
smoother is designed in this direction. In particular, here we present a list of the
contributions of this thesis:

• We extend the Arnold-Falk-Winther patch smoother to the Signorini prob-
lem for both the FOSLS and the dual formulations. In particular, a mono-
lithic approach is exploited. On one hand, the patch subspaces for the
FOSLS formulation tackle both u and σ. On the other hand, for the dual
formulation, the patch subspaces tackle the stress σ, the displacement u,
and the rotation θ altogether. However, in contrast to the problems con-
sidered in the papers cited above, the Signorini problem is constrained.
Thus, the MMG we develop must be able not only to tackle divergence-
free functions but also the constraints of the given formulation. Therefore
the smoother must solve for local constrained problems on patches.

• Concerning the FOSLS formulation, the Arnold-Falk-Winther patch
smoother can be easily defined. However, the truncation of the basis func-
tions, defined in Kornhuber, Ralf [1994] and in Kornhuber, Ralf [1996] to
accelerate the convergence of the MMG method for the primal case, is not
effective here. This bad performance leads back to the presence of mixed
essential boundary conditions.

• Concerning the dual formulation, the truncation of the basis functions
works as in the primal formulation. Nevertheless, the Arnold-Falk-Winther
patch smoother can be defined with different local boundary conditions:
Neumann, Dirichlet, and Robin. By imposing Neumann boundary condi-
tions on each patch, rigid body motions must be somehow removed. All
strategies proposed in this direction do not seem to make the smoother
properly working. On the other hand, the Robin conditions of parameter
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α ≥ 0 performs better. If α = 0, the Dirichlet conditions are recovered.
However, for the Signorini problem, convergence is attained only if pure
Robin conditions are enforced. Furthermore, if α is chosen properly, the
MMG convergence rate is optimal.

• Since the optimal value for the parameter α is unknown, we examine dif-
ferent algorithms for its dynamic computation. In particular, three main
scenarios have been studied. First, the parameter α is changed from patch
to patch. Second, the parameter α is constant for a given smoothing step.
Third, the parameter α is constant for an entire V-cycle. The last option
performs the best, but the algorithm for the update of α has to be properly
defined.

• Finally, we do also provide a proof for the coercivity of the bilinear form of
the FOSLS functional for the Signorini problem. We show that coercivity
can be ensured only if the constants of the FOSLS functional are properly
chosen.

In chapter 2, we introduce the notation and preliminary well known defini-
tions and results for both H1 and Hdiv spaces. In chapter 3, the linear elasticity
problem is defined in both its strong and weak forms. In particular, we treat the
primal, the dual, and the FOSLS weak formulations. In chapter 4, we generalize
both the strong linear elasticity problem and the three corresponding weak for-
mulations for the frictionless unilateral contact problem, also known as the Sig-
norini problem. In chapter 5, we discretize all these formulations by means of the
FE method. In particular, the Lagrangian and the Raviart-Thomas FE spaces will
be discussed in detail. In chapter 6 the MMG method is introduced. We discuss
the algorithm and its main ingredients, i.e., the interpolation operator, the mono-
tone restriction operator, the truncation of the basis functions, and the smoother.
We will discover that, for the primal formulation approaching the incompressible
limit, the MMG method is negatively affected. Thus it is necessary to extend the
MMG to the stress-based formulations, with functionals that are still bounded
in the incompressible limit. In contrast to the primal formulation, the interpo-
lation operator and the smoother must be modified accordingly. In particular,
as already mentioned, we generalize the Arnold-Falk-Winther smoother to a full
monolithic and locally non-linear approach. The numerical experiments for the
FOSLS formulation are presented in chapter 7. It is shown that the convergence
of the MMG can be negatively influenced by the simultaneous presence of essen-
tial boundary conditions for both the stress σ and the displacement u. Standard
truncation for both u and σ can produce coarse spaces that are not rich enough
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to capture all the coarse divergence-free functions. For this reason, the MMG for
the dual formulation has been widely studied in section 8. In this case, trunca-
tion does not create any problem, since the only variable to be truncated is σ.
However, the patch smoother can be defined with different local boundary con-
ditions, i.e., Neumann, Dirichlet, and Robin conditions. We show that the Robin
conditions perform better than the Neumann or the Dirichlet ones. However a
proper tuning of the Robin parameter α must be carried out. Several numerical
experiments are presented for varying α. Furthermore, to make the MMG α inde-
pendent, different algorithms for the dynamic computations of α are examined.
Finally, in chapter 9, the implementation in MARS of the assembly of different
bilinear and linear forms by means of compile metaprogramming techniques is
presented.



Chapter 2

Preliminaries

2.1 Notation and spaces

We denote scalar quantities by lowercase letters, e.g., a and b. The finite multi-
dimensional quantities, such as vectors and matrices, are respectively denoted
with bold lowercase letters, e.g., a and b, and bold capital letters, e.g., A and B.
We denote by ai the i-th component of a vector a and by (A)i, j the component of
A related to the i-th row and the j-th column. We also use the symbols . and
& to denote inequalities that involve a generic constant. To be more precise, the
constant can depend on some quantities related to the problem; however, these
quantities are not relevant to the inequality itself. Of course, the fact of being
relevant or not will depend on the context in which the inequality is involved.

We will denote by Ω ⊂ Rd , with d = 2, 3, a bounded domain with Lipschitz
boundary ∂Ω and outward normal n ∈ Rd . The elements of Ω are denoted by
x= (x1, ..., xd). For d = 2 we can use the notation x= (x , y).
We denote the space of infinitely-differentiable functions with compact support
in Ω as:

D(Ω) := {φ ∈ C∞(Ω) : supp(φ) is compact} , (2.1)

and define the L2 dot product as:

(u, v)L2(Ω) =

∫

Ω

u(x)v(x)dx . (2.2)

We define the following Hilbert space:

H1(Ω) := {v ∈ L2(Ω) : ∇v ∈ L2(Ω)} , (2.3)

7
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equipped with a norm induced by the scalar product
(·, ·)H1(Ω) : H1(Ω)×H1(Ω)→ R, defined by:

(u, v)H1(Ω) := (u, v)L2(Ω) + (∇u,∇v)L2(Ω) . (2.4)

If it is clear from the context, we can omit from the scalar product the subscript
L2(Ω). The space H1(Ω) can be generalized for a non-negative integer m:

Hm(Ω) := {v ∈ L2(Ω) : Dαv ∈ L2(Ω) ∀|α| ≤ m} , (2.5)

equipped with a norm induced by the scalar product
(·, ·)Hm(Ω) : Hm(Ω)×Hm(Ω)→ R, defined by:

(u, v)Hm(Ω) :=
∑

|α|≤m

(Dαu, Dαv)L2(Ω) , (2.6)

where

α= (α1, . . . ,αd), |α|=
∑

1≤i≤d

αi , (2.7)

and:

Dα [·] =
∂ α1

∂ xα1
1

. . .
∂ αd

∂ xαd
d

[·] . (2.8)

The semi-norm is defined as |u|2Hm(Ω) :=
∑

|α|=m(D
αu, Dαu)L2(Ω). The same defini-

tion can be extended from Sobolev spaces to Sobolev-Slobodeckij spaces with a
real exponent Hm+s(Ω), with s ∈ (0, 1), with the following norm:

‖v‖2
Hm+s(Ω) = ‖v‖

2
Hm(Ω) +

∑

|α|=m

∫

Ω

∫

Ω

|Dαv(x)− Dαv(y)|2

|x− y|d+2s
dxdy . (2.9)

A Hilbert space which will play a preminent role in this work is Hdiv(Ω), defined
in the following way:

Hdiv(Ω) := {σ ∈
�

L2(Ω)
�d

: divσ ∈ L2(Ω)} , (2.10)

and equipped with the following scalar product:

(σ,τ)div,Ω = (σ,τ)L2(Ω) + (divσ, divτ)L2(Ω) , (2.11)

where σ,τ ∈ Hdiv(Ω). In addition, for d = 2, 3 we also define the Hilbert space
Hcurl(Ω):

Hcurl(Ω) := {σ ∈
�

L2(Ω)
�d

: curlσ ∈
�

L2(Ω)
�d
} , (2.12)
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with a scalar product given by:

(σ,τ)curl,Ω = (σ,τ)L2(Ω) + (curlσ, curlτ)L2(Ω) , (2.13)

where σ,τ ∈ Hcurl(Ω). For d = 2, the curl applied to a scalar field v : Ω→ R is
defined as the 90° linearized rotation, denoted with the matrix R, of the gradient
of v:

curl v = R∇v . (2.14)

In case of multi-dimensional spaces, the corresponding symbol will be marked in
bold. So for example, H1(Ω) =

�

H1(Ω)
�d

or Hdiv(Ω) = [Hdiv(Ω)]
d . Finally, spaces

of finite dimension n, which are isomorphic to Rn, will be marked in bold.

2.2 Trace theorems

Partial differential equations (PDEs) require the definition of proper boundary
conditions for the unknown of the problem. Therefore the evaluation of a func-
tion on the boundary is somehow necessary. A function v ∈ L2(Ω) that is de-
fined almost everywhere cannot be evaluated on the boundary. Indeed the d-
dimensional Lebesgue measure of ∂Ω is zero, because ∂Ω has dimension d − 1.
Therefore the function v can arbitrarily assume any value on ∂Ω. However, if
the function v is sufficiently regular, it is possible to define the so-called trace
operator that allows us to evaluate the function on the boundary. Depending
on the definition of the space, different trace operators can be defined. In the
following, we will give an insight of the topic based on Brezzi and Fortin [2012],
Kober, Bernhard [2020].

If the boundary ∂Ω is smooth enough, e.g Lipischtz continuous, it exists a
continuous linear operator γ : H1(Ω) → L2(∂Ω) such that γ(v) = v|∂Ω for suf-
ficiently smooth v. We call γ the trace operator and γ(v) the trace of v on ∂Ω.
Even though the equality γ(v) = v|∂Ω makes sense only if the right-hand side of
the equation is well defined, for the sake of simplicity, we will make use of it with
abuse of notation.

The space γ(H1(Ω)) does not coincide with the space L2(∂Ω), but it is a strict
subset, i.e:

H1(∂Ω) ⊂ γ(H1(Ω)) ⊂ H0(∂Ω)≡ L2(∂Ω) . (2.15)

From this inclusion, it is possible to define a relation between γ(H1(Ω)) and some
Sobolev space H s(∂Ω) with s ∈ (0,1). Indeed we can define:

H1/2(∂Ω) = γ(H1(Ω)) , (2.16)
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equipped with the following norm:

‖g‖H1/2(∂Ω) = sup
u∈H1(Ω)
γ(u)=g

‖u‖H1(Ω) . (2.17)

We denote the dual space of H1/2(∂Ω) by H−1/2(∂Ω) and we equip it with the
following norm:

‖v‖H−1/2(∂Ω) = inf
u∈H1/2(∂Ω)

〈v, u〉H−1/2(∂Ω)×H1/2(∂Ω)

‖u‖H1/2(∂Ω)
, (2.18)

where 〈·, ·〉H−1/2(∂Ω)×H1/2(∂Ω) is the dual pairing between H−1/2(∂Ω) and H1/2(∂Ω).
We can also define the linear and continuous normal trace of Hdiv(Ω), which
is π : Hdiv(Ω)→ H−1/2(∂Ω). It satisfies π(σ) = σ · n|∂Ω whenever σ is smooth
enough. As for the trace of H1(Ω), with an abuse of notation we will writeσ · n|∂Ω
instead of π(σ). Then we have the validity of Green’s formula:
∫

Γ

uσ · nds=

∫

Ω

σ · ∇udx+

∫

Ω

u divσdx ∀u ∈ H1(Ω), ∀σ ∈ Hdiv(Ω) .

(2.19)

Usually, in PDE problems, especially the contact problems, the boundary ∂Ω
is subdivided into more disjoint subsets. Therefore the trace operators have to
be understood also on portions of ∂Ω. This topic is not trivial, in particular for
the case of the trace related to Hdiv, and we again refer the reader to Brezzi and
Fortin [2012], Kober, Bernhard [2020].

2.3 Spaces for the contact problem

For the definition of the functionals and the related weak forms used in this thesis,
we have to introduce the following spaces subject to equality constraints on the
boundary:

H1
0,ΓD
(Ω) := {u ∈ H1(Ω) : u|ΓD = 0} , (2.20a)

H1
gD ,ΓD
(Ω) := {u ∈ H1(Ω) : u|ΓD = gD} , (2.20b)

H0,ΓN ,div(Ω) := {σ ∈ Hdiv(Ω) : σ · n|ΓN = 0} , (2.20c)

HgN ,ΓN ,div(Ω) := {σ ∈ Hdiv(Ω) : σ · n|ΓN = gN} . (2.20d)

We see that only the first and the third sets with homogeneous boundary con-
ditions are linear spaces. However, it is always possible to recast problems with
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non homogeneous boundary conditions into problems that are subject only to
homogeneous boundary conditions, by means of a simple transformation. For
simplicity of notation we can set:

U := H1(Ω) , (2.21a)

Σ := Hdiv(Ω) , (2.21b)

U0 := H1
0,ΓD
(Ω) , (2.21c)

Σ0 := H0,ΓN ,div(Ω) , (2.21d)

UgD
:= H1

gD ,ΓD
(Ω) , (2.21e)

ΣgN
:= HgN ,ΓN ,div(Ω). (2.21f)

We also define the space of rotations:

Θ := {γ ∈
�

L2(Ω)
�d,d

: γ+ γT = 0} (2.22)

and

V=
�

L2(Ω)
�d

. (2.23)

2.4 Definitions and theorems for constrained minimiza-
tion problems

As we will see in the next chapters, the contact problems can be formulated as
constrained minimization problems. Therefore we need a theoretical framework
and proper tools to show their well-posedness. To this aim, we now give a list
of some useful definitions and theorems from Kikuchi and Oden [1988]. For
the proofs, we refer the reader to the same book. In this section, we just want to
explore the main general theorem for the minimization of a functional on a closed
convex set and its particular case which will apply to the formulations of this
thesis. To this purpose, let V be a reflexive Banach space equipped with the norm
‖ · ‖V : V → R and let V ′ be its dual space. We denote by 〈·, ·〉V ′×V : V ′ × V → R
the duality pairing between V ′ and V . We can omit the subscript if it is clear
from the context. We also denote by K a closed convex set of V . We give the
following definitions.

Definition 1 (Weak convergence). A sequence {un} ⊂ V converges weakly to u ∈ V
if:

lim
n→∞

F(un) = F(u) ∀F ∈ V ′ . (2.24)
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Definition 2 (Weak lower semicontinuity). A functional F : K → R is weakly
lower semicontinuous on K if, for any sequence {un} ⊂ K converging weakly to
u ∈K, it satisfies:

lim inf
n→∞

F(un)≥ F(u) . (2.25)

Definition 3 (Coercivity). A functional F : K→ R is coercive on K if:

lim
‖v‖V→∞

F(v) = +∞ ∀v ∈K . (2.26)

Definition 4 (Ellipticity). A bilinear form a : K×K→ R is elliptic on K if:

a(v, v)& ‖v‖2
V ∀v ∈K . (2.27)

Theorem 2.4.1. Let a : K ×K → R be an elliptic bilinear form on K. Then a is
coercive on K.

Definition 5 (Convexity). The functional F : K→ R is convex on K if:

F(αv + (1−α)u)≤ αF(v) + (1−α)F(u) ∀u, v ∈K, α ∈ [0, 1] . (2.28)

It is strictly convex if the inequality holds strictly.

Definition 6 (G-differentiability). The functional F : K→ R is G-differentiable at
u ∈K if there exists a linear functional DF(u) ∈ V ′ such that, given ε > 0:

lim
ε→0

F(u+ εv) = 〈DF(u), v〉 ∀v ∈K . (2.29)

Theorem 2.4.2 (Minimization 1). Let F : K → R be a weakly lower semicon-
tinuous functional on K, that satisfies Definition 2. If K is bounded or if K is
unbounded and F is coercive, satisfying Definition 3, then F attains its minimum
value on K, i.e.:

∃u ∈K : F(u)≤ F(v) ∀v ∈K . (2.30)

Since lower semicontinuity can be difficult to prove, the following Theorem
2.4.3 states that convexity and G-differentiability can be proven it its place.

Theorem 2.4.3. Let F : K→ R satisfy the following conditions:

• F is convex;

• F is G-differentiable on K;
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Then F is weakly lower semicontinuous on K.

In this way, we can specify the Theorem 2.4.2 by using Theorem 2.4.3. We
obtain Theorem 2.4.4.

Theorem 2.4.4 (Minimization 2). Let F : K → R be a convex and coercive func-
tional on K. Then F attains its minimum value on K. If, in addition, f is strictly
convex, the minimum is unique.

We can further specialize Theorem 2.4.4 by considering elliptic quadratic
functionals. We obtain the following theorems.

Definition 7 (Elliptic quadratic functional). We say F : K → R is an elliptic
quadratic functional on K if:

F(v) =
1
2

a(v, v)− f (v) ∀v ∈K , (2.31)

where a : K×K→ R is a symmetric, continuous and elliptic bilinear form:

a(u, v) = a(v, u) ∀u, v ∈K , (2.32a)

a(u, v). ‖u‖V‖v‖V ∀u, v ∈K , (2.32b)

a(v, v)& ‖v‖2
V ∀v ∈K , (2.32c)

and f : K→ R is a continuous linear form, i.e.:

f (v). ‖v‖V ∀v ∈K . (2.33)

Theorem 2.4.5. Let F : K→ R be an elliptic quadratic functional on K. Then F
is convex, G-differentiable and coercive on K.

Theorem 2.4.6 (Minimization 3). Let F : K → R be an elliptic quadratic func-
tional on K. Then F attains its unique minimum value on K.

We end the section with the Poincaré and Korn’s inequalities, which are very
important results for many proofs in mechanics.

Theorem 2.4.7 (Poincaré’s inequality). There exists Cp

‖v‖2
H1(Ω) ≤ Cp‖∇v‖2

L2(Ω) ∀v ∈ H1
0,ΓD
(Ω) . (2.34)

Theorem 2.4.8 (Korn’s inequality). There exists Ck

‖u‖2
H1(Ω) ≤ Ck‖ε(u)‖2

L2(Ω) ∀u ∈ H1
0,ΓD
(Ω) , (2.35)

where ε(u) := 1
2(∇u+ (∇u)T ) is the symmetric part of the gradient of u.
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Chapter 3

The linear elasticity problem

In this chapter, we introduce the strong formulation of linear elasticity. Then we
discuss the corresponding weak formulations of the primal, the dual, and the
FOSLS formulations.

3.1 The strong formulation

gD

ΓD

gNΓN
fΩ

Figure 3.1. Linear elasticity model problem.

Let Ω ⊂ Rd , with boundary ∂Ω, represent the solid body of interest. We can
consider two disjoint open sets of the boundary, the Neumann boundary ΓN and
the Dirichlet boundary ΓD, satisfying ∂Ω= Γ N ∪Γ D, with ΓN ∩ΓD = ;. The body is
subject to the external volumetric force f : Ω→ Rd onΩ and to the boundary force
gN : ΓN → Rd on ΓN . On ΓD a prescribed displacement gD is enforced. We seek for
sufficiently smooth displacements u : Ω→ Rd and internal stresses σ : Ω→ Rd,d

which solve the linear elasticity problem described in Figure 3.1. Linear elasticity
requires to enforce equilibrium directly on the reference configuration Ω, instead
of its deformed configuration, which is unknown. Then the conservation of linear

15
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and angular momenta of the body Ω are given by the following relations:

divσ = −f in Ω , (3.1a)

asσ = 0 in Ω , (3.1b)

where we define

as σ :=
1
2
(σ −σT ) , (3.2)

the antisymmetric part of σ. Furthermore, the strains have to be small enough
so that the kinematic relation ε between strains and displacements reduces to a
linear one:

ε(u) :=
1
2

�

∇u+ (∇u)T
�

, (3.3)

and the constitutive law has to be a linear relation between the stress and the
strain:

σ = Cε. (3.4)

In particular, for a homogeneous and isotropic body, the constitutive Hook’s law
reads as follows:

σ = Cε := 2µε +λ(tr(ε))I , (3.5)

where C is the stiffness tensor, µ and λ are the Lamé parameters, I ∈ Rd,d

is the identity matrix in d-dimension and tr : Rd,d → R, defined such that
tr(·) :=

∑d
i=1[·]ii, is the trace operator. Since the stiffness tensor has full rank,

we can also define its inverse, the so-called compliance tensor A such that:

ε =Aσ :=
1

2µ

�

σ −
λ

dλ+ 2µ
(trσ)I

�

. (3.6)

We can observe that, in the incompressible limit λ→∞, only the constitutive
law expressed in terms of the compliance tensor is bounded and defined for any
entry. Given any bounded σ and any bounded ε such that trε = 0:

lim
λ→∞

Cε = 2µε ,

lim
λ→∞

Aσ = 1
2µ

�

σ −
trσ
d

I
�

.
(3.7)
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Finally we must also close the problem with the boundary conditions:

σn= gN on ΓN , (3.8a)

u= gD on ΓD . (3.8b)

The strong formulation of linear elasticity for a homogenous and isotropic
material is:

divσ = −f in Ω , (3.9a)

asσ = 0 in Ω , (3.9b)

Aσ = ε in Ω , (3.9c)

σn= gN on ΓN , (3.9d)

u= gD on ΓD , (3.9e)

which is meant to be pointwise. On the other hand, the formuations that we will
present in the next sections have to be understood in a weak sense.

3.2 The compressible displacement-based primal formu-
lation

3.2.1 Weak form and minimization problem

We search for u ∈ UgD
andσ ∈ ΣgN

. We multiply the first equilibrium condition in
(3.1a) by a test function v ∈ U0, integrate over the volume Ω and then integrate
by parts:

−
∫

Ω

divσ · v=
∫

Ω

f · v , (3.10a)

∫

Ω

σ :∇v=

∫

Ω

f · v+
∫

∂Ω

(σn) · v , (3.10b)

∫

Ω

σ :∇v=

∫

Ω

f · v+
∫

ΓN

gN · v , (3.10c)

where we use v|ΓD = 0 and σ ·n= gN on ΓN . We can now first exploit both (3.2)
and (3.3) and then (3.5) to get:

∫

Ω

σ :∇v=

∫

Ω

f · v+
∫

ΓN

gN · v , (3.11a)

∫

Ω

σ : ε(v) =

∫

Ω

f · v+
∫

ΓN

gN · v . (3.11b)
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As it is clear, we get the following weak form, where we search for u ∈ UgD
such

that:

∫

Ω

Cε(u) : ε(v) =

∫

Ω

f · v+
∫

ΓN

gN · v ∀v ∈ U0 , (3.12)

that can be rewritten by means of the bilinear form ap : U×U→ R and linear
form fp : U→ R:

ap(u,v) := (Cε(u),ε(v))L2(Ω) , (3.13a)

fp(v) := (f,v)L2(Ω) + 〈gN ,v〉ΓN , (3.13b)

so that we search for u ∈ UgD
such that:

ap(u,v) = fp(v) ∀v ∈ U0 . (3.14)

The variable σ does not appear in the formulation and can be postprocessed by
means of (3.5). Therefore, in the primal formulation, the main variable is the
displacement u.

The formulation (3.12) is of the Bubnov-Galerkin type, meaning that u and v
do not belong to the same space. However, given the known function ugD

∈ UgD
,

we can write u in terms of a new unknown u0 ∈ U0 so that:

u= ugD
+ u0 . (3.15)

Indeed we can substitute this formula and express (3.12) in terms of u0 and v,
so that the new trial and test functions belong to U0. Then one can solve the
problem and finally reobtain u as u = ugD

+ u0. This fact will be implicitly used
also for the other formulations.

The equation (3.12) can also be read as the first order necessary condition
for the minimization of the following quadratic functional Fp : U→ R over UgD

:

Fp(u) :=
1
2

ap(u,u)− fp(u) . (3.16)

The solution û is then the minimizer û such that:

û= argmin
u∈UgD

Fp(u) . (3.17)
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3.2.2 Existence and uniqueness

Existence and uniqueness of (3.19) can be proved by means of (2.4.6). We again
refer the reader to Kikuchi and Oden [1988] for a more detailed discussion. In-
deed, the set UgD

is a non-empty convex set. The functional Fp is quadratic and
it can be easily proved that fp is linear and continuous. The same goes for the
symmetry and the continuity of ap. For its ellipticity, Theorem 2.35 is required.
Then Theorem 2.4.6 follows.

3.3 The incompressible displacement-based primal for-
mulation

In (3.12), the substitution of the constitutive law σ = Cε(u), with u as the in-
dependent variable, enables to write the whole problem only in terms of the
displacement. However, such a choice makes difficult dealing with nearly in-
compressible (λ� 1) and incompressible (λ=∞) materials. Indeed the tensor
C, as explicited in (3.7), becomes unbounded for increasing λ. At least for the
incompressible case, one can enforce the incompressibility constraint divu = 0
by means of the pressure p as Lagrange multiplier. The functional (3.16) can be
consequently augmented:

Fp,aug(u, p) := Fp(u) +

∫

Ω

divup . (3.18)

Then the solution of the problem is the pair (û, p̂) computed as:

(û, p̂) = arg minu∈UgD
arg maxp∈L2(Ω)Fp,aug(u, p) . (3.19)

The weak form reads as the following saddle point problem: search for u ∈ UgD

and p ∈ L2(Ω) such that:

2µ

∫

Ω

ε(u) : ε(v) +

∫

Ω

pdiv(v) =

∫

Ω

f · v+
∫

ΓN

gN · v ∀v ∈ U0 , (3.20a)

∫

Ω

qdiv(u) = 0 ∀q ∈ L2(Ω) , (3.20b)

where the term tr(ε) in the constitutive law is identically zero. The system (3.20)
is a saddle point, in contrast to (3.12) which is symmetric and positive definite.
Therefore the spaces of (3.20) have to satisfy the LBB (Ladyzhenskaya-Babuška-
Brezzi) condition.
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3.4 The stress-based dual formulation

3.4.1 Weak form and minimization problem

We can express the constitutive law, not as in (3.5), but as in (3.6). In this way,
the tensor Aσ we get is bounded for any λ and we are able to describe both
nearly-incompressible and incompressible materials. We can then multiply such
equation by τ ∈ Σ0, integrate over the volume, exploit∇u= ε(u)+as (∇u) and
then integrate by parts:

∫

Ω

Aσ : τ−
∫

Ω

ε(u) : τ = 0 , (3.21a)

∫

Ω

Aσ : τ−
∫

Ω

∇u : τ+

∫

Ω

as (∇u) : τ = 0 , (3.21b)

∫

Ω

Aσ : τ+

∫

Ω

u · divτ+

∫

Ω

as (∇u) : as τ =

∫

∂Ω

(τn) · u , (3.21c)

∫

Ω

Aσ : τ+

∫

Ω

u · divτ+

∫

Ω

θ : as τ =

∫

ΓD

(τn) · gD , (3.21d)

where we have introduced the definition of the rotation variable θ := as (∇u)
and have used τn|ΓN = 0 and u|ΓD = gD. We need also to enforce the equilibrium
condition and the symmetry of the stress tensor. To this purpose, we introduce
two additional test functions, v ∈ V and γ ∈ Θ, and we need to seek for σ ∈ ΣgN

,
u ∈ V, θ ∈ Θ such that:

∫

Ω

Aσ : τ+

∫

Ω

u · divτ+

∫

Ω

θ : as τ =

∫

ΓD

(τn) · gD ∀τ ∈ Σ0, (3.22a)

∫

Ω

v · divσ = −
∫

Ω

v · f ∀v ∈ V, (3.22b)

∫

Ω

γ : as σ = 0 ∀γ ∈ Θ, (3.22c)

where the boundary condition on the displacement has already been enforced
into the boundary integral, no derivative is applied to u and therefore we just seek
for u ∈ V and not in UgD

. Indeed, in the dual formulation, the dual variable σ is
the main variable, while the displacement u and the rotation θ can be interpreted
as Lagrange multipliers for the equilibrium condition (3.1a) and the symmetry of
the stress tensor (3.1b). See Brezzi and Fortin [2012], Starke et al. [2011]. The
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same system (3.22) can be written by using proper bilinear and linear forms:

ad(σ,τ) + bd(τ,u) + cd(τ,θ ) = fd,1(τ) ∀τ ∈ Σ0 , (3.23a)

bd(σ,v) = fd,2(v) ∀v ∈ V , (3.23b)

cd(σ,γ) = 0 ∀γ ∈ Θ (3.23c)

(3.23d)

where:

ad(σ,τ) :=

∫

Ω

Aσ : τ , (3.24a)

bd(τ,u) :=

∫

Ω

u · divτ , (3.24b)

cd(τ,θ ) :=

∫

Ω

θ : as τ , (3.24c)

fd,1(τ) :=

∫

ΓD

(τn) · gD , (3.24d)

fd,2(v) := −
∫

Ω

f · v . (3.24e)

The linear elasticity problem (3.22) can be formulated as the first-order
necessary condition for the minimisation of the following quadratic functional
Fd : Σ→ R over the closed convex set Sd ⊂ Σ:

Fd(σ) :=
1
2

ad(σ,σ)− fd,1(σ) ,

Sd := {σ ∈ ΣgN
: bd(σ,v) = fd,2(v) ∀v ∈ V,

cd(σ,γ) = 0 ∀γ ∈ Θ} .

(3.25)

The solution σ̂ is then the minimizer σ̂ such that:

σ̂ = arg min
σ∈Sd

Fd(σ) . (3.26)

3.4.2 Existence and uniqueness

As for the primal formulation, we want to discuss existence and uniqueness using
Theorem 2.4.6. As explained in Brezzi and Fortin [2012], the set Sd is convex
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and closed. Furthermore it is not empty, because the following LBB condition is
fulfilled: there exists β > 0 such that:

inf
u∈V
θ∈Θ

sup
σ∈Σ

bd(σ,u) + cd(σ,θ )
‖σ‖Σ(‖u‖U + ‖θ‖Θ)

≥ β > 0 . (3.27)

The functional Fd is quadratic. It is easy to show that fd,1 and fd,2 are linear and
continuous. The forms bd and cd are bilinear and continuous as well. Also ad is
bilinear, symmetric and continuous. As explained in Brezzi and Fortin [2012], it
is also possible to show that:

ap(σ,σ)≥
1

d(dλ+ 2µ)
‖σ‖2

L2(Ω) ∀σ ∈ Σ , (3.28)

where the ellipticity holds for any λ ≥ 0, but not for λ → ∞. In this case,
ellipticity is lost. However, ellipticity must hold on the convex set Sd and not on
the whole space Σ. Assuming homogeneous Dirichlet boundary conditions, i.e.,
gD = 0, it is possible to prove that:

‖σ‖2
Σ . (Aσ,σ)L2(Ω) ∀σ ∈ {σ ∈ Σ :

∫

Ω

trσ = 0, bd(σ,v) = 0 ∀v ∈ V} .

(3.29)

For more details on this topic, see Brezzi and Fortin [2012] and Kober, Bernhard
[2020].

Remark 3.4.1. The minimization problem (3.26) can be also written as a min-
max problem, by using the Lagrangian functional that takes into account also the
Lagrange multipliers, u and θ . To this purpose, the global equality constraints,
that are now included in Sd , would be transferred into the Lagrangian functional.
However, the monotone multigrid, described in Chapter 6 for the primal, the dual
and the FOSLS formulation, is based on the minimization of a functional. For this
reason, we prefer to write the dual formulation as a minimization problem instead
of a min-max problem.

3.5 FOSLS formulation

3.5.1 Weak form and minimization problem

For all the previous formulations, we have multiplied some of the equations in
their strong form by proper test functions, integrated at first over the volume and
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then by parts. Then we have noticed that the same weak forms can be seen as
the first-order necessary condition for the minimization of a given functional. On
the other hand, in the first-order system least squares (FOSLS) case, we directly
start by defining a functional. From the first-order necessary condition for its
minimization, the FOSLS weak form is recovered.

Indeed the main idea is to build a fictitious functional as the weighted sum of
the squared L2-norms of the residuals of the equations defined on the domain. As
literature about this topic we can mention Cai, Zhiqiang and Lazarov, R. and Man-
teuffel, Thomas A. and McCormick, Stephen F. [1994], Yang, Suh-Yuh and Liu,
Jinn-Liang [1997], Berndt et al. [1997], Starke [1999], Cai, Zhiqiang and Starke,
Gerhard [2004], Berndt et al. [2005], Brandts et al. [2006], Starke [2007],
Starke [2009], Bochev, Pavel B. and Gunzburger, Max D. [2009], Müller, Ben-
jamin [2015], Krause, Rolf and Müller, Benjamin and Starke, Gerhard [2017].
The FOSLS functional is a mathematical tool that does not have a physical mean-
ing. It is also clear that now the primal and the dual variables are both main
variables of the problem.

For the linear elasticity problem, the FOSLS principle is translated in finding
u ∈ UgD

, σ ∈ ΣgN
, that minimize the least-square functional F f : U×Σ→ R over

the set UgD
×ΣgN

:

F f (u,σ) = γ||Aσ − ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω) , (3.30)

where δ, γ are positive constants to be chosen. The solution (û, σ̂) is then the
minimizer (û, σ̂) = arg min(u,σ)∈UgD×ΣgN

F f (u,σ). The minimizer can actually be
computed as the solution of the following weak form: search for u ∈ UgD

,σ ∈ ΣgN

so that:

γ

∫

Ω

Aσ : Aτ+δ
∫

Ω

divσ · divτ− γ
∫

Ω

ε(u) : Aτ = −δ
∫

Ω

f · divτ ∀τ ∈ Σ0 ,

(3.31a)

−γ
∫

Ω

ε(v) : Aσ + γ
∫

Ω

ε(u) : ε(v) = 0 ∀v ∈ U0 .

(3.31b)

It is possible to define the following bilinear forms a f : Σ×Σ→ R,
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b f : U×Σ→ R, c f : U×U→ R and the linear form f f : Σ→ R:

a f (σ,τ) := γ

∫

Ω

Aσ : Aτ+δ
∫

Ω

divσ · divτ , (3.32a)

b f (u,τ) := −γ
∫

Ω

ε(u) : Aτ , (3.32b)

c f (u,v) := γ

∫

Ω

ε(u) : ε(v) , (3.32c)

f f (τ) := −δ
∫

Ω

f · divτ , (3.32d)

so that the problem (3.31) becomes:

a f (σ,τ) + b f (u,τ) = f f (τ) ∀τ ∈ Σ0 ,

b f (v,σ) + c f (u,v) = 0 ∀v ∈ U0 ,
(3.33)

and the functional (3.30) can be rewritten as:

F f (u,σ) = a f (σ,σ) + 2b f (u,σ) + c f (u,u)− f f (σ) . (3.34)

Using the substitution (3.15) for both u and σ, the system is transformed
from a Babunov-Galerkin to a Ritz-Galerkin problem and becomes symmetric
and positive definite. The same property could be maintained by adding to the
functional another penalty term, ‖as σ‖2, which would enforce the condition for
the symmetry of the stress. Nevertheless it has been showed in Cai, Zhiqiang and
Starke, Gerhard [2004] that we can bound this term by means of the constitutive
law, i.e.:

‖as σ‖ ≤ 4µ‖Aσ − ε(u)‖ . (3.35)

Therefore, if the pair (u,σ) makes ‖Aσ− ε(u)‖ small and µ is not too large,
then also ‖as σ‖ is small. Since the term ‖Aσ− ε(u)‖ is already added into the
functional to be minimized, we may not need to add the condition on the symme-
try of the stress. Therefore we can say that the first addendum in (3.30) is related
to the angular momentum, while the second term to the linear momentum. It is
then clear that, with this formulation, we do have a trade-off between the mo-
menta that have to be conserved. In applications where the body is subject to
an important bending, sometimes (3.30) does not well reflect the phenomenon.
In particular, if µ is too large, then (3.35) is far from being sharp and the sym-
metry of σ is not properly prescribed. Therefore it can be usefull to extend the
functional so that it penalize (3.1b):

F f (u,σ) = γ||Aσ − ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω) + ||asσ||2L2(Ω) , (3.36)
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so that the conservation of angular momentum can be well captured. The weak
form of this functional can be modified in order to improve the momentum bal-
ance law, as explained in Starke et al. [2011].

But the FOSLS functional can be changed also in other ways. For example,
we can notice that, in the minimization of the functional (3.30), the unknown
(u,σ) belongs to UgD

×ΣgN
. Thus the boundary conditions are essential, because

they are directly enforced into the space of the unknown. However, in the FOSLS
formulations, the boundary conditions can be enforced also weakly. To this aim,
it is sufficient to add them to the functional, as in (3.37):

F f ,bc(u,σ) =+ γ||Aσ − ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω)

+ ξ‖u− uD‖2
H1/2(ΓD)

+ ‖σn− gN‖2
H−1/2(ΓN )

,
(3.37)

where ξ > 0. Unfortunately the formulation (3.37) is cumbersome to deal with
in practice. The ‖ · ‖H1/2(ΓD) and ‖ · ‖H−1/2(ΓN ) norms would make the assembly of
the related weak form not trivial. Then it is necessary to replace negative or
fractional Sobolev norms with L2 norms, transforming (3.37) into:

F f ,bc(u,σ) =+ γ||Aσ − ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω)

+ ξ‖u− uD‖2
L2(ΓD)

+ ‖σn− gN‖2
L2(ΓN )

.
(3.38)

The trade-off between the right norm, negative or fractional, and the practical-
ity of implementation is investigated in Bochev, Pavel B. and Gunzburger, Max
D. [2009]. In Starke [1999] a multilevel technique for enforcing weakly the
boundary conditions is proposed.

Remark 3.5.1. In (3.36) no weight is used for the term ||as σ||2L2(Ω) because all
the weights can be normalized. This means that one addendum can have a weight
equal to one, while the other ones have to be chosen accordingly.

3.5.2 Existence and uniqueness

As for the previous formulations, we want to exploit Theorem 2.4.6. The set
UgD
×ΣgN

is a non empty closed convex set. The functional (3.34) is quadratic.
Linearity and continuity of the forms in (3.32a), (3.32b), (3.32c), (3.32d) is
trivial. For the discussion on the ellipticity of the (3.32a), (3.32b), (3.32c), we
refer the reader to Cai, Zhiqiang and Starke, Gerhard [2004].
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Chapter 4

The Signorini problem

In this chapter, we generalize the formulation of linear elasticity introduced in
chapter 3 to unilateral contact problems. First we examine the strong formula-
tion. Then we introduce the weak formulations of the primal, the dual and the
FOSLS formulations.

4.1 Contact conditions

gD

ΓD

gNΓN

n
g

ΓC

fΩ

Figure 4.1. 2D Signorini’s problem.

The linear elasticity problem (3.9) for a body Ω of Figure 3.1 is now general-
ized to the case in which it can interact with a rigid obstacle. See Figure 4.1. We
say this problem is unilateral because the body obstacle is rigid. In case it was
deformable as Ω, we would consider bilateral contact body problems, with two
deformable bodies Ω1 and Ω2.

We now introduce a contact boundary ΓC , an open subset of ∂Ω, so that
∂Ω= ΓD ∩ ΓN ∩ ΓC and Γi ∩ Γ j = ;, for i, j = C , D, N and i 6= j. Furthermore,
we assume ΓC to be surrounded by ΓN . This is the portion of the boundary which

27
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could come into contact with the obstacle. We say could because we do not know,
in advance, what subregion of ΓC will be actually in contact. If we knew, we could
simply prescribe a displacement and go back to the standard linear elasticity for-
mulation. However, since this is not the case, a non-linearity is introduced into
the problem.

Let us denote with g the distance in the normal direction between ΓC and
the obstacle. We denote with the subscripts n and t the normal and tangential
components. So we define un := u · n, σn = nT · (σn) and (σn)t := σn−σnn.
Then the frictionless contact conditions read as follows:

g − un ≤ 0 on ΓC , (4.1a)

σn ≤ 0 on ΓC , (4.1b)

σn(g − un) = 0 on ΓC , (4.1c)

(σn)t = 0 on ΓC . (4.1d)

The first inequality (4.1a) implies that the body Ω can never penetrate the obsta-
cle and for this reason it is called non-penetration condition. The second inequal-
ity (4.1b) states that, in case of contact, only negative pressure is permitted and
no adhesion force can occur. The third equation (4.1c) is referred as complemen-
tarity condition. It says that the body can be subject to an external pressure only if
it is in contact with the obstacle. The last equation (4.1d) is known as frictionless
condition: we assume that no friction force can arise during the contact process.
Considering (3.9) and the previous conditions (4.1a), (4.1b), (4.1c), (4.1d), we
get the strong formulation of the Signorini problem, that in this context have to
be interpreted in a pointwise manner.

In order to generalize the weak forms of linear elasticity by taking into ac-
count (4.1), it is convenient to modify the functional and the set on which the
minimization has to be carried out. We will examine only the compressible pri-
mal, the dual, and the FOSLS formulations. Indeed, we can say that the in-
compressible primal formulation has more disadvantages than the dual and the
FOSLS ones. First, it gives rise to a saddle point system -even though this is also
true for the dual formulation-. But most importantly, it is not suited for nearly
incompressible materials and does not give direct access to the stress variable,
which still needs to be post-processed.
In conclusion, we introduce also the following set:

Σt := {σ ∈ ΣgN
: (σn)t = 0 on ΓC} . (4.2a)
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4.2 The compressible displacement-based primal formu-
lation

4.2.1 Minimization problem

In the primal formulation, the main variable is the displacement u, therefore we
just need to satisfy the contact conditions related to u. The ones related to σ
will automatically follow. Then the Signorini problem can be formulated as the
minimization of the following quadratic functional Jp : U→ R over the closed
convex set Kp ⊂ UΓD :

Jp(u) =
1
2

ap(u,u)− fp(u) , (4.3a)

Kp = {u ∈ UgD
: un ≤ g on ΓC} . (4.3b)

The solution û is then the minimizer û= arg minu∈Kp
Jp(u).

4.2.2 Existence and uniqueness

The functional (4.3a) is the same of the linear case (3.16). The difference be-
tween the two formulations resides in the set Kp that can be easily shown to be a
non-empty closed convex set. Thus Theorem 2.4.6 holds. See Kikuchi and Oden
[1988].

4.3 The stress-based dual formulation

4.3.1 Minimization problem

The Signorini problem can be formulated as the minimisation of the following
quadratic functional Jd : Σ→ R over the closed convex set Kd ⊂ ΣgN

:

Jd(σ) :=
1
2

ad(σ,σ)− fd,1(σ)− 〈g,σn〉ΓC , (4.4a)

Jd := {σ ∈ Σt : bd(σ,v) = fd,2(v) ∀v ∈ V,

cd(σ,γ) = 0 ∀γ ∈ Θ,

σn ≤ 0 on ΓC} . (4.4b)

The solution σ̂ is then the minimizer σ̂ = arg minσ∈Kd
Jd(σ). The equality con-

straints div σ = −f and as σ = 0
¯

are respectively enforced by Lagrange multipli-
ers, v ∈ V and θ ∈ Θ. With respect to (3.22), we have enriched the minimization
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set by adding the frictionless contact condition (4.1d) and the negative pres-
sure condition (4.1b) on ΓC ; we have also modified the functional by defining
Jd(σ) := Fd(σ)− 〈σn, g〉ΓC .

4.3.2 Existence and uniqueness

The functional Jd , with respect to Fd in (4.4), has an additional term that is
linear and continuous. Furthermore the set of the dual Signorini problem is a
subset of the linear elasticity case: Kd ⊂ Sd . As explained in Kober, Bernhard
[2020], Kd is still a non-empty closed convex set, thus Theorem 2.4.6 holds.

4.4 FOSLS formulation

4.4.1 Minimization problem

For the Signorini problem applied to the FOSLS case, since both u and σ are
main variables of the problem, we must satisfy explicitly (4.1a), (4.1b), (4.1c),
(4.1d). The frictionless condition (4.1d) is a pointwise equality constraint and
thus it is easy to handle. The two relations (4.1a), (4.1b) are inequalities, but
linear and pointwise. On the other hand, the term (4.1c) is pointwise but non-
linear. Therefore including all the contact conditions in the closed convex set on
which we minimize the functional would make it too complicated for numerical
simulations. An easier solution is to define the convex set by means of the only
linear conditions (4.1a), (4.1b), (4.1d), while the quadratic term (4.1c) can be
added to the functional F f , so that we obtain an augmented FOSLS functional
J f (u,σ) := F f (u,σ) + 〈σn, un − g〉ΓC .

The FOSLS Signorini problem then is: find u ∈ UgD
, σ ∈ ΣgN

, that minimize
the FOSLS functional J f over the closed convex set K f ⊂ UgD

×ΣgN
:

J f (u,σ) = γ||Aσ − ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω) + 〈σn, un − g〉ΓC , (4.5a)

K f = {(u,σ) ∈ UgD
×Σt : un ≤ g, σn ≤ 0 on ΓC} , (4.5b)

where also in this case δ, γ are positive constants to be chosen. The solution
(û, σ̂) is then the minimizer (û, σ̂) = argmin(u,σ)∈K f

J f (u,σ).

4.4.2 Existence and uniqueness

The set K f is a subset of UgD
×ΣgN

and it is still non-empty closed and convex.
What differs in the functional J f , with respect to F f in (3.30), is the presence
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of the complementarity term. The corresponding bilinear and linear forms are
continuous. However, even if it is clear that, if evaluated on K f , the functional
is non-negative, the corresponding bilinear forms are not necessarily elliptic. In-
deed, as we show in section 7.1, the weights γ and δ are not arbitrary anymore
but need to satisfy given relations.
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Chapter 5

The Finite Element method for the
Signorini problem

In this chapter, we discuss the Finite Element (FE) method. We define the local
and global FE spaces for the linear Lagrangian family and the zero-order and
first-order Raviart-Thomas families. In this way, the continuous weak form for
the primal, the dual, and the FOSLS formulations can be discretized.

5.1 The Finite Element method

In order to solve the aforementioned continuous problems (4.3), (4.4), (4.5),
their discretization is required. Indeed, except for some specific cases, an explicit
formula for the exact solution has not been discovered yet. Thus, let us consider
a given Hilbert space H. We introduce a sequence of nested subspaces {H j}∞j=1
such that:

H j ⊂ H ∀ j, ∪
j∈N

Hj

‖·‖H
= H , (5.1)

where the symbol ‖·‖H is the closure with respect to the norm of the Hilbert space
H. A nested sequence of subspaces of this kind is said to be H-conforming. Indeed
each space H j is actually a subspace of H and, by taking the limit, its closure coin-
cide with H itself. This means that, by approximating H with H j, the approximate
solution belongs to a subspace of the the space of the real unknown. Further-
more, by taking increasingly richer spaces H j, the approximation becomes more
and more accurate.

In order to introduce conforming discrete spaces, we opt for the Finite El-
ement (FE) method. See Ciarlet, Philippe G. [2002], Braess, Dietrich [2007],

33
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Quarteroni, Alfio and Quarteroni, Silvia [2009], Rognes, Marie E. and Kirby,
Robert C. and Logg, Anders [2009]. Let Th = {K1, ..., KNe

} be a shape-regular
simplicial mesh of Ω with Ne elements. The general simplex K is a triangle, in
2D, or a tetrahedron, in 3D. The subscript h represents the maximal diameter of
Th. We also denote the faces of each simplex, a segment in 2D or a triangle in 3D,
by means of the capital letter f . The set of faces of the mesh is Fh = { f1, ..., fn f

},
where n f is the number of the faces. We also denote the set of vertices of the
mesh with Ph = {p1, ...,pN}.

We need to discretize all the linear spaces of (2.21), (2.22), (2.23) on the
mesh Th. Now the discretization parameter is identified by the maximal diameter
of the mesh h. Therefore the discretized versions of U, Σ, Θ, V are Uh, Σh, Θh,
Vh. If a function belongs to one of the now approximated continuous spaces, it
can be discretized as well. The functions of the problem, such as n, f, gD, gN , g,
are discretized as nh, fh, gh,D, gh,N , gh. In this way it is also possible to obtain the
discrete sets Uh,gh,D

, Σh,gh,N
. And the same goes with the discrete closed convex

set Kh,i and the discrete functionals Jh,i for i = p, d, f . The bilinear and linear
forms are consequently approximated and their discretizations are denoted with
the subscript h.

We assume the discrete spaces to be conforming, so we have Uh ⊂ U, Σh ⊂ Σ,
Θh ⊂ Θ, Vh ⊂ V. However, if the space is also subject to equality or inequality
constraints, the corresponding discrete set is effectively a subset of its continuous
version only if the discretized constraints coincide with their continuous versions.
This scenario is true, for example, for constant functions. Their discrete versions
are identical to the continuous ones. However for more complicated data, the
inclusion between the discrete and the continuous sets does not hold anymore.
In particular we can say this is true for the closed convex sets:

Kh,i 6⊂ Ki i = p, d, f . (5.2)

If Kh,i is characterized by a box-constraint, this one is typically approximated only
pointwise and interpolated linearly. With this in mind, we can now translate the
formulations (4.3), (4.4), (4.5) into their discrete counterparts. Before proceed-
ing in this direction, it is convenient to introduce conforming FE spaces for H1(Ω)
and Hdiv(Ω).

5.2 Local FE spaces

Many are the books treating the finite element method, like Brezzi and Fortin
[2012], Brenner, Susanne and Scott, Ridgway [2007], Quarteroni, Alfio and
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Quarteroni, Silvia [2009]. Here we want to exploit the definition from Ciarlet,
Philippe G. [2002].

Definition 8. The finite element is a triplet S = (K ,V ,L) such that:

• K is a closed convex subspace of Rd with a non-empty interior and Lipschitz-
continous boundary.

• V(K) is a space of continuous functions defined on K of dimension
nV(K) = dim(V(K)).

• L(K) = {lK ,1, ..., lK ,nV(K)} is a set of linear functionals, named degrees of
freedom (dofs). This set L(K) is V(K)-unisolvent, meaning that for any
set of scalars {α1, . . . ,αnV(K)} there exist a unique φ ∈ V(K) such that
lK ,i(φ) = αi for i = 1, . . . , nV(K). We then call basis functions the set of func-
tions {φ1, . . . ,φnV(K)} such that:

lK ,i(φ j) = δi j i, j = 1, . . . , nV(K). (5.3)

Usually, the space V(K) is defined by means of polynomials, so it is also useful
to introduce the following space:

Pq(K) := {the space of polynomials of degree≤ q on K} (5.4)

and

Qq(K) := {the space of homogeneous polynomials of degree q on K} . (5.5)

Furthermore given a function space V and v ∈ V sufficiently regular, we can
define an interpolation operator IK : V → V(K) such that:

IK(v) =
nV(K)
∑

i=1

viφi where vi = lK ,i(v), for i = 1, . . . , nV(K) . (5.6)

This implies that, for v = vh ∈ V(K), we can state:

vh =
nV(K)
∑

i=1

viφi where vi = lK ,i(vh), for i = 1, . . . , nV(K) . (5.7)

Typically, for convenience of implementation, it is also introduced the so-
called reference element K̂ ⊂ Rd . We will use the hat superscript “ˆ” to denote
all the quantities defined on the reference element. Thus we can also define a
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finite element space Ŝ = (K̂ , V̂ , L̂). In order to relate Ŝ to S , we need a geometric
map for the points in K̂ and a function map for the basis functions. The reference
element K̂ is related to a generic element K by means of an affine transformation
F : K̂ → K which associates to each point x̂ ∈ K̂ a unique point x ∈ K . Indeed it
is possible to define J ∈ Rd,d and j ∈ Rd so that:

x= F(x̂) := Jx̂+ j . (5.8)

It is also desirable to map the reference basis functions from K̂ to K . However
it can also be important to map their gradient, divergence, curl and so on. Briefly,
we would like to map the reference basis functions {Ô(φ̂i)}

nV(K)
i=1 of the FE space

Ŝ subject to an operator Ô (it can be the identity, the gradient, the divergence
and so on). We introduce the map MS ,O:

MS ,O : Ô(V(K̂)) → O(V(K)) ,
MS ,O : Ô(φ̂) 7→ O(φ) .

(5.9)

In this way, it is possible to transform the set {Ô(φ̂1), . . . , Ô(φ̂nV(K))} on K̂ into
{O(φ1), . . . , O(φnV(K))} on K .

The advantage of defining a reference element K̂ is the possibility of precom-
puting important quantities that can be later mapped onto a generic K , when-
ever it is needed. For example, the numerical computation of an integral on K ,
involving shape functions φi ∈ V(K), for i = 1, . . . , nV(K), can be reduced to a
quadrature integral, i.e., a weighted sum involving the evaluation of φi in cer-
tain quadrature points {q j}, with q j ∈ K . Then, if the position of the quadrature
points is fixed, it is not necessary to build φi and then to evaluate it. It is suffi-
cient to precompute Ô(φ̂i(F−1(q j))) once for all and then to map it back onto K
by means of the map MS ,O.

In case of a simplicial mesh, the reference element K̂ is the simplex defined
as:

K̂ := {(x1, . . . , xd) ∈ Rd :
d
∑

i=1

x i = 1, x i ≥ 0, i = 1, . . . , d}, (5.10)

that is the simplex with vertices (pi) j = δi j.

5.3 Global FE spaces

The definition of a local finite element is not enough. We need to decide how to
glue together the information among different elements. A global finite element
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space over the mesh Th is a space consisting of functions vh that, if restricted to
each K ∈ Th, belong to V(K). It can happen that, given two elements K1, K2 ∈ Th

with K1 6= K2, two different degrees of freedom lK1,i and lK2, j are equal: lK1,i = lK2, j

for i ∈ {1, . . . , nV(K1)}, j ∈ {1, . . . , nV(K2)}. For example, in the Lagrangian case,
if the dofs are defined as the evaluation of the function vh in given points like a
vertex shared between two adjacent cells, then the two dofs coincide. We can
then decide to enforce or not a dof-continuity of vh, meaning that if the two
dofs are identical, then we enforce their evaluation on vh to be also identical:
lK1,i(vh) = lK2, j(vh). By doing so, we obtain a continuous Lagrangian space, oth-
erwise, we recover a discontinuous Lagrangian space. The same argument holds
for the general definition of degree of freedom.

Definition 9. We define the dof-continuous space V (Th) and the dof-discontinuous
space DV (Th) as follows:

V (Th) := {vh ∈ L2(Ωh) : vh|K ∈ V(K)∀K ∈ Tk,

∃K1, K2 ∈ Th, i ∈ {1, . . . , nV(K1)}, j ∈ {1, . . . , nV(K2)} :

lK1,i = lK2, j ⇒ lK1,i(vh) = lK2, j(vh)} ,
(5.11)

DV (Th) := {vh ∈ L2(Ωh) : vh|K ∈ V(K)∀K ∈ Tk} . (5.12)

We can also set n = dim(V (K)) or n = dim(DV (K)), not to be confused
with the local dimension of the FE space nV(K). The local decomposition (5.7)
can be extended also for functions vh ∈ V (Th) or vh ∈ DV (Th). To this aim, we
need to define a global set of dofs L(Th). For vh ∈ DV (Th), L(Th) is simply the
union of all local dofs. For vh ∈ V (Th), on the other hand, L(Th) is the union
of all local dofs without ripetition. This means that, if two local dofs satisfy
lK1,i = lK2, j, then there is only a unique global dof representing them. Therefore,
for a function v ∈ V sufficiently regular, we can define the global interpolation
operator Ih : V → V (Th)/DV (Th):

Ih(v) =
n
∑

i=1

viφi where vi = li(v), li ∈ L(Th) . (5.13)

Similarly a function vh ∈ V (Th)/DV (Th) can be decomposed as:

vh =
n
∑

i=1

viφi where vi = li(vh), li ∈ L(Th) . (5.14)
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If it holds that V (Th) ⊂ V and limh→0 V (Th) = V , like in (5.1), then we say that
V (Th) is V -conforming. The same we would say for DV (Th). In the next sections,
we introduce the continuous Lagrange FE space, which is H1(Ω)-conforming, and
the continuous Raviart-Thomas FE space, which is Hdiv(Ω)-conforming. We will
also consider the discontinuous case of the Lagrange space, which will be useful
for the dual formulation.

5.4 The Lagrangian finite element space

Definition 10. Given a set of points {pi}1≤i≤n(q) with pi ∈ K, the local Lagrangian
space of order q, denoted by CGq(K) := (K ,V ,L), is defined as:

CGq(K) :=











K is a simplex

V = Pq(K)

L = {lK ,i(λ) = λ(pi) , 1≤ i ≤ nV(q)}
, (5.15)

where:

nV(q) =
d
∏

i=1

q+ i
i

(5.16)

For the reference simplex K̂ in (5.10), we can define the points {p̂i}
nV (q)
i=1 as fol-

lows:

p̂ :=
1
q
(p1, . . . , pd) 0≤

d
∑

i=1

pi ≤ q, pi ∈ N, i = 1, . . . , d (5.17)

We define the mapping MCGq ,O for the identity and gradient operators O = I ,∇
as:

MCGq ,I := 1 MCGq ,∇ := J−T (5.18)

where J is the matrix in (5.8).
We denote the continuous global FE space of Lagrangian functions of order q on
Th with Pq(Th), while its discontinuous version with DPq(Th). If the dependency
on Th is obvious from the contex, we will omit it.

We conclude this section with the following theorem.

Theorem 5.4.1. Let Th be a shape-regular triangulation. Then there exists an
interpolation operator Iq

h : Hm(Ω)→ Pq(Th) and a constant C indipendet of h such
that:

‖v − Iq
h v‖L2(Ω) ≤ Chm−s|v|Hm(Ω) 0≤ s ≤ m, 2≤ m≤ q+ 1 (5.19)
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5.4.1 The local linear Lagrangian space

For the linear Lagrangian element, the points {pi} correspond to the vertices of
the simplex. Thus there are d + 1 linear polynomial shape functions that are
independent and which build a basis for V(K). We have a 2D representation
in Figure 5.1a. Their dofs representation in the global finite element space, for
discontinuous and continuous piecewise linear functions, is given respectively in
Figure 5.1b and in Figure 5.1c. The black triangles, inside each element, suggest
the independence of the degree of freedom from the other elements, while the
black circles, which can overlap more elements, show the continuity of the global
function.

We remind the reader that, if b ∈ K is the barycenter of K and λi for
i = 1, . . . , d + 1 are the linear Lagrangian shape functions related to the vertex
pi, then:

λ1|b = . . .= λd+1|b =
1

d + 1
. (5.20)

p1

p2 p3

(a) Linear basis functions on a triangle, spanning P1(K).

(b) P1 discontinuous dofs. (c) P1 continuous dofs.

Figure 5.1. 2D linear Lagrange FE space.

5.5 The local Raviart-Thomas finite element space

A space Qh, in order to be a conforming finite element approximation space of
Hdiv(Ω), must contain functions qh in L2(Ω) such that div qh ∈ L2(Ω). A sufficient



40 5.5 The local Raviart-Thomas finite element space

condition for this to happen is that:

qh|K ∈ Hdiv(K) ∀K ∈ Th , (5.21a)
�

qh · n
�

f
= 0 ∀ f ∈ Fh , (5.21b)

where we have denoted the jump across the face f of two adjacent elements
Ki, K j ∈ Th with

�

qh · n
�

f
= qh · n| f ∩Ki

− qh · n| f ∩K j
. If φ ∈ D(Ω) −see section 2.1

for the definition −, then
∫

Ω
qh · ∇φ is bounded due to Cauchy-Schwarz and

the fact that qh ∈ L2(Ω). Thus, exploiting the Green’s formula (2.19) and the
hypotheses (5.21a), (5.21b) we can write:

∫

Ω

qh · ∇φ
(2.11)
=

∑

K∈Th

∫

K

qh · ∇φ (5.22a)

(2.19)
=

∑

K∈Th

 

∑

f ∈∂ K

(qh · n f )φ −
∫

K

divqhφ

!

(5.22b)

(2.11)
=

∑

f ∈Fh

�

(qh · n f )
�

φ −
∑

K∈Th

∫

K

divqhφ (5.22c)

(5.21b)
= −

∑

K∈Th

∫

K

divqhφ (5.22d)

(2.11)
= −

∫

Ω

divqhφ . (5.22e)

The expression at the second line (5.22b) is bounded because of (5.21a) and, in
the next steps, because of (5.21b). Since the first term in (5.22a) is bounded and
equal to the last one (5.22e), also this one is bounded. One can take φ = divqh

and show that divqh ∈ L2(Ω).
The condition (5.21a) can be satisfied by considering a local space V(K) of
vector-valued polynomials. The second condition (5.21b) requires qh to have
continuous normal flux between two adjacent elements and can be ensured only
by a proper construction of the local FE space. The Raviart-Thomas finite element
space does fulfill such a property.

Definition 11. The Raviart-Thomas finite element space of order q, for q = 0, 1, . . .,
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on a simplex K, is the space RTq(K) := (K ,V ,L) defined as:

RTq(K) :=



















K is a simplex

V =
�

Pq(K)
�d
+ xPq(K)

L =
¨∫

fi
φ · n p ds p ∈ Pq( fi), for each facet fi of K

∫

K
φ · p d x p ∈

�

Pq−1(K)
�d

, q ≥ 1

, (5.23)

with dimension:

nV(q) =

¨

(q+ 1)(q+ 3) T = triangle
1
2(q+ 1)(q+ 2)(q+ 4) T = tetrahedron .

(5.24)

We define the mapping MRTq ,O for the identity and the divergence operators
O = I , div as:

MRTq ,I :=
J

det(J)
MRTq ,div :=

1
det(J)

, (5.25)

where MRTq ,I is the so-called Piola transform. The symbolic representations in
2D for the cases q = 0, 1 are given in Figure 5.2a and Figure 5.2b. The arrows
represent the face degrees of freedom, while the internal circles the momentum
ones.

In the next paragraphs, we explain how to explicitly build the Raviart-Thomas
shape functions for the cases q = 0,1 and for a d-dimensional simplex.

(a) RT0: one face dof per face.
(b) RT1: two face dofs per face and two
momentum dofs.

Figure 5.2. 2D RT dofs.
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φ
·n
=

0

∫

F φ
· n=

1

φ · n= 0
∫

F
φ
·n
=

1

φ
· n=

0

φ · n= 0

φ
·n
=

0

φ
· n=

0

∫

F φ · n= 1

Figure 5.3. Representation on the reference triangle of RT0 shape functions.
The arrows have been scaled by a factor of 0.1.

5.5.1 The local space RT0(K) on a simplex

In d-dimensions, RT0(K) has exactly d + 1 degrees of freedom, one for each
facet of the simplex. For defining RT0 shape basis functions, we can just use the
Definition 11, considering q = 0:

RT0(K) :=











K is a simplex

V = [P0(K)]
d + xP0(K)

L =
∫

fi
φ · n ds for each facet fi of K .

(5.26)

The shape function related to the face fi of K with opposite vertex pi, for
i = 1, ..., d + 1, can be expressed as:

φ i(x) =
1

d|K |
(x− pi) ∀x ∈ K , i = 1, . . . , d + 1 , (5.27)

where |K | is the measure of K . In 2D, they look like in Figure 5.3.

5.5.2 The local space RT1 on a simplex

In d-dimensions, the simplicial RT1 space has d degrees of freedom per facet and
d momentum degrees of freedom. The definition (5.23) can be used for higher-
order Raviart-Thomas finite elements only for a theoretical purpose. Thus, for
practical implementation of RT1, we need an alternative way to define the dofs.
For example, in Kober, Bernhard [2017] the dofs are defined in a “Lagrangian”
way since they are pointwise evaluations. This makes the computation of the
corresponding shape functions easier.
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Given a facet fi, let pi,k for k = 1, . . . , d denote its vertices, while b is the
barycenter of K; the vectors e1 = (1,0, ...), e2 = (0, 1,0, ...),. . ., ed = (..., 0, 1)
represent the canonical basis of Rd . We then define:



















K is a simplex

V = [P1(K)]
d + xP1(K)

L =
¨

ψ · n|pi,k
for each vertex k = 1, . . . , d of the face fi of K

ψ · ek|bK
for k = 1, . . . , d

. (5.28)

For a 2D triangle, the shape functions are represented in Figure 5.4. We want to
stress out the fact that, by mapping the reference RT1 shape functions from K̂ to

K with the Piola transformation in (5.25), we obtain φ(x) =
J

detJ
φ̂(x̂), ∀x̂ ∈ K̂ .

However, if it is ensured that l̂i(φ̂ j) = δi j for i, j = 1, . . . , nV , it can happen that
li(φ j) 6= δi j. This is because the mapping is the one for Raviart-Thomas space,
but the way we have defined the degrees of freedom is intrinsically Lagrangian,
since it involves the evaluation of the function in given points. So the relation
(5.3) is not necessarily ensured on K . This can be a problem in the definition of
the interpolation operators, that requires the relation (5.3) to be satisfied on K .
So, in the case we have no interest in an interpolation-like operator, the mapping
can still be used. Otherwise, the definitions given for RT1 basis functions in (5.28)
must be directly enforced on K , without the mapping between K̂ and K .

Thus we want to show how the RT1 basis functions on a generic simplex can
be computed. We start from the 2D case and we then generalize for a simplex in
d-dimensions. Let us consider a 2D triangle with the vertices and the barycen-
ter identified respectively by the letters A, B, C and by D. We consider linear
Lagrangian shape functions λi such that λi( j) = δi j for i, j = A, B, C . Then we
consider the lowest order Raviart-Thomas functions that, for simplicity, we now
identify with the face and not with the opposite node. Therefore we write φ i j

for i, j = A, B, C and i 6= j, where i j refers to a given face. So for example φAB is
the RT0 function related to the face AB with opposite vertex C . We can write the
RT1 functions related to the face AB and to the node A as:

ψAB,A = φAB(αABλA+ γABλC) , (5.29)

where αAB,γAB ∈ R. The letters α and γ refer to the used Lagrangian shape
functions, λA and λC , that correspond to the nodes A and C . We want to define
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A B

C

φ1|A · nAB = 1

A B

C

φ2|B · nAB = 1

A B

C

φ3|A · nAC = 1

A B

C

φ4|C · nAC = 1

A B

C

φ5|B · nBC = 1

A B

C

φ6|C · nBC = 1

A B

C

D

φ7,x |D = 1

A B

C

D

φ8,y |D = 1

Figure 5.4. Representation on the reference triangle of RT1 shape functions.
The arrows are scaled by a factor of 0.2.
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αAB,γAB so that (5.28) is satisfied. This means that we must satisfy:

ψAB,A|A · nAB = 1 ψAB,A|B · nAB = 0 (5.30a)

ψAB,A|A · nAC = 0 ψAB,A|C · nAC = 0 (5.30b)

ψAB,A|B · nBC = 0 ψAB,A|C · nBC = 0 (5.30c)

ψAB,A|D · e1 = 0 ψAB,A|D · e2 = 0 (5.30d)

By construction, we already know that:

ψAB,A · nAC =ψAB,A · nBC = 0 , (5.31)

becauseφAB · nAC = φAB · nBC = 0. And this is true for any αAB,γAB. Thus (5.30b),
(5.30c) are fulfilled. Furthermore λA|B = λC |B = 0, so:

ψAB,A|B · nAB = 0 , (5.32)

and the second equation in (5.30a) is automatically satisfied. We now want to
find αAB,γAB such that (5.30d) is true. For this to happen, we just need to enforce:

(αABλA+ γABλC)|D = 0 , (5.33)

which, by using (5.20), boils down to:

αAB + γAB = 0 . (5.34)

Since this last equation is scalar in two unknowns, we still require one equation
more to fully determine αAB and γAB. We just need to consider the first equation
in (5.30a):

1=ψAB,A|A · nAB

= (αABλA|A+ γABλC |A)φAB|A · nAB

= αABφAB|A · nAB ,

(5.35)

where we have used λC |A = 0 and λA|A = 1. So the condition computed in (5.35)
reduces to:

αAB =
1

φAB|A · nAB
, (5.36)

while γAB can be directly computed from (5.34):

γAB = −
1

φAB|A · nAB
. (5.37)
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The same way of reasoning can be applied to ψAB,B and to all other shape
functions related to the faces of the simplex, ψAC ,A, ψAC ,C , ψBC ,B, ψBC ,C . On the
other hand, the shape functions related to internal momenta can be defined as:

ψD,k = γkφABλC + βkφACλB k = 1,2 , (5.38)

that must fulfill:

ψD,k|A · nAB = 0 ψD,k|B · nAB = 0 (5.39a)

ψD,k|A · nAC = 0 ψD,k|C · nAC = 0 (5.39b)

ψD,k|B · nBC = 0 ψD,k|C · nBC = 0 (5.39c)

ψD,k|D · e1 = δ1k ψD,k|D · e2 = δ2k . (5.39d)

By construction, ψD,k · n = 0 on the boundary, for k = 1, 2. This is true be-
cause both addenda in (5.38) satisfy the same condition. Indeed, for example,
φAB · nAC = φAB · nBC = 0; on the face AB, φAB · nAB 6= 0, but λC |AB = 0. At the
same way,φAC · nAB = φAC · nBC = 0; on the face AC ,φAC · nAC 6= 0, but λB|AC = 0.
Therefore the relations (5.39a), (5.39b), (5.39c) are satisfied. We now need to
fulfill (5.39d). This implies solving, for each shape function ψD,k, a 2× 2 linear
system that has, as unknown, the vector of coefficients (γk,βk):

��

[φAB]1λC

�

|D
�

[φAC]1λB

�

|D
�

[φAB]2λC

�

|D
�

[φAC]2λB

�

|D

��

γk

βk

�

=

�

b1,k

b2,k

�

b j,k = δk j j = 1, 2 .

We can notice that the matrix to invert is the same for k = 1, 2, so it can be
computed only once, while the right-hand side can change.

A generalization to a d-simplex is straightforward. Let us identify the vertices
of the simplex K of coordinates {pi}d+1

i=1 with the set {pi}d+1
i=1 and the barycenter

b with the letter b. The face fi of normal ni for i = 1, ..., d + 1 is the one which
does not contain pi. Then we can write the shape functions related to the face fi

and to the node p j, belonging to fi, as:

ψ fi , j = φ fi

�

α fi , jλ j +α fi ,iλi

�

i, j = 1, . . . , d + 1, i 6= j (5.40)

Here it can be replicated the same reasoning used for the 2D case. So we just
need to enforce:







α fi , j +α fi ,i = 0

α fi , j =
1

ψ fi , j| j · n fi

, (5.41)



47 5.6 The local Nédélec finite element space of the first kind

so that all the conditions in (5.28) are zero except forψ fi , j| j ·n fi
= 1. The internal

momentum shape functions look like:

φD,k =
d
∑

i=1

α fi ,kφ fi
λi k = 1, . . . , d (5.42)

and automatically satisfy φD,k · n = 0 on the boundary for any α fi ,k ∈ R and for
k = 1, . . . , d. In order to close the formula and determine the values α fi ,k, the
following d × d system has to be solved:




�

[φ f1]1λ1

�

|b . . .
�

[φ fd
]1λd

�

|b
... . . .

...
�

[φ f1]dλ1

�

|b . . .
�

[φ fd
]dλd

�

|b









α f1,k
...
α fd ,k



=





b1,k
...

bd,k



 bi,k = δki, i = 1, . . . , d .

(5.43)

The matrix is again indipendent of k. Therefore it can be inverted only once and
its inverse can be applied to the right-hand side (b1,k, . . . , bd,k)T , which depends
on k = 1, . . . , d.

In conclusion, it is clear that, for satysfying (5.3), the RT1 shape functions
must be defined directly on K . However, their definition is based on linear La-
grangian and RT0 shape functions, which can be precomputed on K̂ and then
mapped to K . Therefore, on K , it is just sufficient to solve for (5.41), (5.43).

5.6 The local Nédélec finite element space of the first
kind

We now want to give a brief introduction to Hcurl(Ω)-conforming FE space. This
can be useful for Hiptmair’s smoother discussed in section 6.12. In particular,
for d = 2, due to (2.14), the space Hcurl(Ω) could be identified with H1(Ω). For
d = 3, we need to introduce the Nédélec finite element space for a tetrahedron
K . For more details, see Brezzi and Fortin [2012]. It is defined in the following
way:

N Dq(K) :=































K is a simplex

V =
�

Pq(K)
�d
+ x∧

�

Qq(K)
�d

L =











∫

ei
χ · t p dl p ∈ Pq(ei), for each edge ei of K

∫

fi
χ · p ds p ∈

�

Pq( fi)
�d

, for each face fi of K, q ≥ 1
∫

K
χ · p d x p ∈

�

Pq−2(K)
�d

, q ≥ 2

,

(5.44)
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with dimension:

nV(q) =

¨

(q+ 1)(q+ 3) T = triangle
1
2(q+ 1)(q+ 2)(q+ 4) T = tetrahedron .

(5.45)

A 2D representation for the lowest-order case, N D0, is represented in Figure 5.5.

χ
·t
=

0

∫

F χ · t=
1

χ · t= 0

∫

F
χ
·t
=

1

χ · t=
0

χ · t= 0

χ
·t
=

0 χ · t=
0

∫

F χ · t= 1

Figure 5.5. Representation on the reference triangle of N D1 shape functions.
The arrows have been scaled by a factor of 0.1.

5.7 Lagrangian and Raviart-Thomas global finite ele-
ment spaces

In (5.11), (5.12) we have introduced a general definition for spaces that are dof-
continuous or discontinuous. Given a tessellation Th, we have introduced a local
finite element space (K ,V ,L) for a general element K ∈ Th. A global finite ele-
ment space over Th consists of functions that, if restricted onto K ∈ Th, belong to
V(K) and satisfy the required continuity conditions on the common interfaces be-
tween adjacent cells. Furthermore, to simplify the implementation of the shape
functions, a reference element K̂ and reference quantities have been examined
as well. In this section, we will focus on the Lagrangian and the Raviart-Thomas
spaces.



49 5.7 Lagrangian and Raviart-Thomas global finite element spaces

Here the definitions of the continuous and discontinuous Lagrangian FE
spaces of order q ∈ N:

Pq(Th) = {vh ∈ C0(Ω) : vh|K ∈ Pq(K)∀K ∈ Th} (5.46)

DPq(Th) = {vh ∈ L2(Ω) : vh|K ∈ Pq(K)∀K ∈ Th} (5.47)

and the mapping can be implemented as in (5.18). The continuous global
Raviart-Thomas space of order q ∈ N defined by:

RTq(Th) = {σh ∈ Hdiv(Ω) : σh|K ∈ RTq(K)∀K ∈ Th} , (5.48)

has a mapping that is trickier. We will now focus on the case of RT0 functions.
In fact higher-order RT shape functions can be written as combinations of La-
grangian and RT0 shape functions and the following argument will apply as well.

The contravariant Piola’s transformation in (5.25) preserves normal traces
of a vector field mapped from the reference element K̂ to K . If on K̂ , all RT0

shape functions are defined in order to have a positive external flux, this property
will be transferred onto K . In this scenario, using only Piola’s transformation
does not guarantee the normal flux continuity for the finite element functions
defined on Th. Indeed a degree of freedom related to a face f is shared by two
adjacent elements K1 and K2. To ensure normal flux continuity, the evaluation
of a degree of freedom must be independent of the fact that we consider the
face f as belonging to K1 or K2. However, as it can be seen from Figure 5.6, the
outward normals n1 and n2, defined on K1 and K2, are opposite. To have a unique
definition of the degree of freedom, a unique normal has to be chosen. And it
will be outward for one element and inward for the other one. As a rule, we
can choose a normal that points from the element with the smaller label to the
one with the larger one. On faces that discretize ∂Ω, for simplicity, the normal is
chosen to be outward. See also Rognes, Marie E. and Kirby, Robert C. and Logg,
Anders [2009].

The mapping via Piola’s transformation (5.25) can still be used, but it has to
be generalized:

φ f = α f
J

det(J)
φ̂ f̂ α f =

¨

+1 n f is outward

−1 n f is inward
(5.49)

So we can precompute the shape function φ̂ f̂ on the reference element K̂ related

to the face f̂ in some significant points, but then, in addition to the standard map,
also a coefficient for the sign detection of the global normal has to be computed.
Since RTq shape functions, for q > 0, are built with RT0 functions, this argument



50 5.8 The discrete compressible displacement-based primal formulation

K̂
n3

n2

n1

1 2

3

K1
n1

n1

n2

n4

1

2

3

n2

K2

n̂

J2
det(J2)

J1
det(J1)

Figure 5.6. To ensure normal flux continuity of Raviart-Thomas functions, we
must define global normals: each face f has a normal n which points from the
element with smaller label to the element with the larger one. For RT1(Th),
we order the degrees of freedom on each face based on the global numbering
scheme of the nodes (n1 < n2 < n3 < n4). Indeed the local ordering can be
different for adjacent elements.

is true for all Raviart-Thomas functions.
The introduction of (5.49) is necessary and sufficient for lowest-order Raviart-
Thomas spaces. Nevertheless, for higher-order Raviart-Thomas spaces, we must
also introduce a proper ordering of the nodes. Indeed, for RT0(Th), there is one
single degree of freedom per face and using (5.49) is enough. But, for RT1(Th),
each face corresponds to d degrees of freedom, one for each node of the face.
These dofs have to be properly glued between adjacent elements. Considering
the local numbering of the elements could produce possible mismatches. One
way to overcome this difficulty is to order the degrees of freedom of each face
based on the global numbering scheme of the nodes. For example, in Figure 5.6,
the first dof would be related to n1, the second one to n2, assuming n1 < n2.

5.8 The discrete compressible displacement-based pri-
mal formulation

The discrete version of the primal weak form for the Signorini problem (4.3) is
the following. We consider the discrete quadratic functional Jh,p : Uh→ R to be
minimized over the closed convex set Kh,p:

Jh,p(uh) =
1
2

ah,p(uh,uh)− fh,p(uh) , (5.50a)

Kh,p = {u ∈ Ugh,D
: uh,n ≤ gh on Γh,C} . (5.50b)
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Then ûh is the minimizer ûh = argminuh∈Kp,h
Jp,h(uh). As it is clear, (5.50) is a

quadratic optimization problem subject to box constraints. Therefore we need
only to choose Uh to be U-conforming. For this to happen, it is sufficient to
choose:

Uh = Pq(Th) . (5.51)

In particular, we choose the linear case: q = 1.

5.9 The discrete stress-based dual formulation

For the discrete version of the dual weak form of the Signorini problem (4.4), we
define the discrete quadratic functional Jh,d : Σh → R that has to be minimized
over the closed convex set Kh,d ⊂ Σh,gh,N

:

Jh,d(σ) :=
1
2

ah,d(σh,σh)− fh,d,1(σh)− 〈gh,σh,n〉ΓC , (5.52a)

Kh,d := {σ ∈ Σh,t : bh,d(σh,vh) = fh,d,2(vh) ∀vh ∈ Vh,

ch,d(σh,γh) = 0 ∀γh ∈ Θh,

σh,n ≤ 0 on ΓC} . (5.52b)

The solution σ̂h is the minimizer σ̂h = arg minσh∈Kd
Jh,d(σh). The problem

(5.52) is a quadratic optimization problem subject to both box constraints and
global equality constraints. Thus, conformity of the spaces is not sufficient. The
LBB condition (3.27) has to be fulfilled also in the discrete setting: exists βh > 0
such that

inf
uh∈Vh
θ h∈Θh

sup
σh∈Σh

bd(σh,vh) + cd(σh,θ h)
‖σh‖Σh

(‖uh‖Uh
+ ‖θ h‖Θh

)
≥ βh > 0 , (5.53)

where the continuous bilinear forms, bd and cd , and their discrete versions, bh,d

and ch,d , coincide. The spaces Σh, Vh and Θh cannot be chosen conforming but
arbitrarly. To fulfill (5.53) a choice of spaces examined in Brezzi and Fortin
[2012] is the following:

Σh = RT1(Th) ,

Vh = DP1(Th) ,

Θh = [P1(Th)]
d×d ∩Θ .

(5.54)
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Remark 5.9.1. We observe that the space Θ consists of L2 skew-symmetric matrix-
value functions. Therefore, in the discrete setting, for d = 2 only one scalar function
is required, while for d = 3 three scalar functions are needed. Indeed we can write:

Θh =

��

0 −a
a 0

�

, a ∈ P1(Th)

�

d = 2 , (5.55)

Θh =

�





0 −a −b
a 0 −c
b c 0



 , a, b, c ∈ P1(Th)

�

d = 3 . (5.56)

The formulation can be rewritten in terms of a for d = 2 or in terms of a, b, c for
d = 3. Then, instead of the space Θh = [P1(Th)]

d×d ∩ Θ, we use Θh = P1(Th) or
Θh = [P1(Th)]

3.

5.10 Discrete FOSLS formulation

The discrete version of the FOSLS Signorini problem (4.5), is: find uh ∈ Uh,gh,D
,

σh ∈ Σh,gh,N
, that minimize the discrete FOSLS functional Jh, f over the closed

convex set Kh, f ⊂ Uh,gh,D
×Σh,gh,N

:

Jh, f (uh,σh) = γ||Aσh − ε(uh)||2L2(Ωh)
+δ||divσh + fh||2L2(Ωh)

+ 〈σh,n, uh,n − gh〉Γh,C
,

(5.57a)

Kh, f = {(uh,σh) ∈ Uh,gh,D
×Σh,gh,N

: uh,n ≤ gh, σh,n ≤ 0,

(σhnh)t = 0 on Γh,C} , (5.57b)

The solution (ûh, σ̂h) is then the minimizer:

(ûh, σ̂h) = argmin
(uh,σh)∈Kh, f

Jh, f (uh,σh) .

The problem (5.57) is a quadratic optimization problem subject to box con-
straints. Thus no LBB condition has to be satisfied and any pair of conforming
spaces can be used. This implies also the lowest order FE spaces:

Uh = P1(Th) ,

Σh = RT0(Th) .
(5.58)

In the sequel, we will consider the functions as appropriately discretized and
we will omit the subscript h to simplify the notation. We will highlight the sub-
script h whenever it is really important, e.g. for the spaces, the sets, and the
variables of the problem.



Chapter 6

Monotone multigrid methods

In section 6.2 of this chapter, we take advantage of a compact framework in order
to describe in a unique way the previous discrete minimization problems (5.50),
(5.52), (5.57). This compact framework reduces to a quadratic programming
problem (QPP), with the minimization of a quadratic functional subject to box-
constraints and, eventually, global equality constraints. Since the functional to
minimize is quadratic, the main difficulty lies in the constraints set which makes
the problem to be solved non-linear.

6.1 Introduction

There are various strategies to tackle a non-linearity. The most famous one is
the Newton method, which approximates the roots of a functional by solving a
sequence of linearized problems. Since this method acts directly on a functional,
we need somehow to insert the constraints of the formulations (5.50), (5.52),
(5.57) into their functionals. This procedure makes the new functionals non-
smooth. Then the semi-smooth Newton method is necessary. See for example
Hintermüller, Michael and Ito, Kazufumi and Kunisch, Karl [2002], Hintermüller,
Michael [2010], Kunisch, Karl [2008]. In particular, in Hintermüller, Michael and
Ito, Kazufumi and Kunisch, Karl [2002] the relation between the semi-smooth
Newton method and the primal-dual active set method is discussed. Indeed,
another method for tackling the constraints is the active set method. This comes
with its variants, i.e., primal, dual, primal-dual.

As explained in Nocedal, Jorge and Wright, Stephen [2006], the primal ac-
tive set method solves a sequence of linearized problems, as the Newton method.
The active set is the set of all dofs which we assume to be active, either satisfying
an upper or a lower bound. At each iteration, in addition to the global equality

53
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constraints, we enforce as equality constraints all the inequality constraints be-
longing to the active set. Then, at the given iteration, the constraint set consists
only of equality constraints and the problem to be solved is a saddle point system.
We terminate the iterative process if the solution of the saddle point coincides
with the one of the original constrained problem. Otherwise, we must update
the definition of the active set. We will describe this procedure in section 6.3.

Another way to remove the inequality constraints is to use the penalty
method. The constraints are added into the functional as a penalty term and
the corresponding problem to be solved is just a linear one. Of course, a trade-
off between the accuracy of the solution and the efficiency of the solution method
arises. See Carstensen, Carsten and Scherf, Oliver and Wriggers, Peter [1999],
Eck, Christof and Steinbach, Olaf and Wendland, Wolfgang L [1999].

The Newton method and the active set methods tackle the constraints by
means of a sequence of global linearized problems. However, by increasing the
dimension of the problem, the number of constraints and, potentially, of the
linear problems to be solved increases as well. On the other hand, penalty meth-
ods are not accurate enough for our purposes. We would like to use a method
that captures the constraints exactly and has optimal complexity, meaning that
the number of iterations that it requires is independent of the dimension of the
problem. The monotone multigrid method has both advantages. See Kornhuber,
Ralf [1994], Kornhuber, Ralf [1996], Kornhuber, Ralf and Krause, Rolf [2001],
Kornhuber, Ralf and Krause, Rolf and Sander, O. and Deuflhard, P. and Ertel, S.
[2008], Krause [2009], Krause, Rolf and Rigazzi, Alessandro and Steiner, Jo-
hannes [2016], Badea [2002], Badea [2014]. The idea is to generalize the sub-
space correction method by Xu, Jinchao [1996], introduced in section 6.4, to
constrained problems, by sequentially minimizing the energy functional on fine
and coarse subspaces. We will discuss monotone multigrid in section 6.6. Never-
theless, as it can be shown in the experiments, the behavior of monotone multi-
grid for the primal formulation deteriorates for increasing of the Lamé parameter
λ. This is why we want to investigate the dual or the FOSLS formulations, which
remain bounded even for λ→∞. However, since the stress belongs to Hdiv(Ω)
and not to the standard Sobolev space H1(Ω), a special care is required. Geo-
metric and algebraic multigrids have been already examined for Hdiv problems
in the linear case. See Hiptmair, Ralf and Xu, Jinchao [2007], Kolev and Vas-
silevski [2012], Xu, Jinchao and Chen, Long and Nochetto, Ricardo H. [2009].
But, to the author’s knowledge, multigrid methods applied to contact problems
for a stress-based formulation are still to be discovered. Since no theory is given,
we will exploit what has already been used for the multigrid methods applied to
the primal Signorini and for the linear Hdiv problems. Thus we will take advan-
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tage of the monotone multigrid method and Hdiv smoothers.

6.2 A compact formulation

The previous problems (4.3), (4.4), (4.5) can be rewritten in a compact way. Let
X be a Hilbert space, K ⊂ X a non empty, closed and convex set and J : X→ R a
quadratic functional, non-negative on K, of the form:

J (x) = 1
2

a(x,x)− f (x) , (6.1)

where a : X×X→ R is a continuous bilinear form and f : X→ R is a continuous
linear form. Then the problem is finding the minimum of the functional J over
the closed convex set K ⊂ X:

x̂= arg min
x∈K

J (x) . (6.2)

For the different formulations, we can set the space X, the convex set K and the
functional J as in Table 6.1. We have also inserted the space W which can be
used in the dual formulation for enforcing global equality constraints by means
of Lagrange multipliers.

X W K J
Primal U − Kp Jp

Dual Σ V×Θ Kd Jd

FOSLS U×Σ − K f J f

Table 6.1. Continuous compact framework.

The same argument can be repeated for a common description of the discrete
problems (5.50), (5.52), (5.57). We define a discrete space Xh ⊂ X, a non empty
closed convex set Kh and a discrete quadratic functional Jh : Xh→ R:

Jh(xh) =
1
2

ah(xh,xh)− fh(xh) , (6.3)

where ah and bh are discretized versions of a and b. The solution of the problem
is:

x̂h = argmin
xh∈Kh

Jh(xh) . (6.4)



56 6.2 A compact formulation

Xh Wh Kh Jh

Primal P1 − Kh,p Jh,p

Dual RT1 DP1 × Pasym
1 Kh,d Jh,d

FOSLS P1 ×RT0 − Kh, f Jh, f

Table 6.2. Discrete compact framework.

The discrete version of the spaces and sets of Table 6.1 is Table 6.2.
Once the spaces, their bases and dofs are chosen, it is also possibile to re-

formulate (6.4) in a vector-matrix form. Let n be the dimension of Xh, i.e.,
n = dim(Xh). We collect the values of the coefficients of the unknown into
the vector yh ∈ Yh = Rn. Then, due to the Riesz theorem, we can associate to
ah : Xh ×Xh→ R and fh : Xh→ R respectively the matrix Ah ∈ Rn,n and the vec-
tor fh ∈ Rn. Similarly we can introduce the space Zh for the coefficients related
to the Lagrange multipliers of the dual formulation, uh and θ h, of dimension
m= dim(Zh). The corresponding coefficients of the Lagrange multipliers are col-
lected into the vector zh. Then, with a similar argument, the global equality con-
straints can be written as Bhyh = hh, where Bh ∈ Rm,n and hh ∈ Rm. Furthermore
also the box-constraints can be expressed in terms of a lower bound lh ∈ Rn and
an upper bound uh ∈ Rn. We want to stress out that assuming (lh)i = (uh)i, we
force (yh)i = (lh)i = (uh)i and thus we can enforce on the i-th dof the correspond-
ing boundary condition. On the other hand if the i-th dof is free, it suffices to
put (lh)i = {−∞} and (uh)i = {+∞}. The functional and the convex set then
become:

Jh(yh) =
1
2

yT
h Ahyh − yT

h fh , (6.5a)

Kh = {yh ∈ Yh : Bhyh = hh, lh ≤ yh ≤ uh} , (6.5b)

where the inequality lh ≤ yh ≤ uh is meant to be component-wise. The residual
corresponding to the whole KKT (Karush, Kuhn, Tucker) system related to (6.5)
without considering the inequality constraints can be defined as well:

r :=

�

fh

hh

�

−
�

Ah BT
h

Bh 0

��

yh

zh

�

. (6.6)

In order to take into consideration the inequality constraints, all the active dofs,
i.e., all the dofs belonging to the active set are removed from the computation of
the residual.
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In section 6.3 we introduce the primal active set method for tackling globally
the inequality constraints in (6.5b). In the other sections of the chapter, we will
see how the constraints can be captured also locally by means of a subspace
correction approach.

Remark 6.2.1. In general the conditions (4.1a) and (4.1b) are not box-constraints.
Thus we cannot really recover the set (6.5b). However, by changing the local coordi-
nate system from Cartesian to an orthogonal coordinate system with first component
identified by the direction of the normal n, (4.1a) and (4.1b) can be transformed
into box-constraints. To this aim it is possible to define on ΓC the Householder trans-
formation. See Krause, Rolf [2001] and section 6.9.5 for further details.

6.3 Primal active-set

In order to solve the QPP with a primal active set strategy, a sequence of linearized
problems, for the iterations k = 0,1, . . ., has to be solved. Given the ordered
sets of active dofs W k

l and W k
u , related to the lower and the upper bounds, the

corresponding saddle point system can be solved. Then, if the solution of the
k-th linearized problem, i.e., yk

h, is also the solution of the original constrained
problem, we stop; otherwise, the active sets W k

l and W k
u are updated and the

process is repeated. Let us examine in more detail this procedure.
We now want to express the problem (6.5) in terms of the correction. In

this way, assuming the initial guess is in the feasible set, we can guarantee the
lower and the upper bounds to be always respectively negative and positive.
Furthermore, this choice will fit the setting of the subspace correction method of
section 6.4. The current iterate yk

h, such that lh ≤ yk
h ≤ uh, is updated by means

of a correction ck
h, in order to get the value yk+1

h = yk
h+ck

h. The problem (6.5) can
be rewritten with respect to the correction ck

h:

Jh(c
k
h) =

1
2

ck
h

T
Ahck

h − ck
h

T
(fh −Ahyk

h) , (6.7a)

Kh = {ck
h ∈ Yh : Bhck

h = hh −Bhyk
h, lh − yk

h ≤ ck
h ≤ uh − yk

h} , (6.7b)

and consequently linearized. At the iterate k, the active sets W k
l and W k

u are such
that::

i ∈W k
l ⇔ (yk

h)i = (l
k
h)i ⇔ (ck

h)i = 0 , (6.8a)

i ∈W k
u ⇔ (yk

h)i = (u
k
h)i ⇔ (ck

h)i = 0 . (6.8b)

We also set nk
l = dim(W k

l ) and nk
u = dim(W k

u ). Since W k
l and W k

u are or-
dered sets, we can also introduce the mappings wk

l : {1, . . . , nk
l } → {1, . . . , n} and
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wk
u : {1, . . . , nk

u} → {1, . . . , n} which associate to the i-th active constraint the cor-
responding dof in the ordered sets W k

l and W k
u . Thanks to this definition, we

define Ck
h ∈ R

nk
l ,n, Dk

h ∈ R
nk

u,n in the following way:

(Ck
h)i j = δwk

l (i), j
i = 1, . . . , nk

l , j = 1, . . . , n , (6.9a)

(Dk
h)i j = δwk

u(i), j
i = 1, . . . , nk

u, j = 1, . . . , n . (6.9b)

Finally, we can define by lk
h and uk

h the vectors of components lh and uh corre-
sponding to the ordered dofs in W k

l and W k
u :

(lk
h)i = (lh)wk

l (i)
− (yk

h)wk
l (i)

i = 1, . . . , nk
l , (6.10a)

(uk
h)i = (uh)wk

u(i)
− (yk

h)wk
u(i)

i = 1, . . . , nk
u . (6.10b)

Then the saddle problem to be solved at iteration k is:








Ah BT
h Ck

h
T

Dk
h

T

Bh 0 0 0
Ck

h 0 0 0
Dk

h 0 0 0

















ck
h

zk
h
λk

h,l

λk
h,u









=









fh −Ahyk
h

hh −Bhyk
h

lk
h

uk
h









, (6.11)

a system that can be briefly written as:

Gk
hsk

h = tk
h . (6.12)

To determine how to modify the active sets W k
l and W k

u , we use Algorithm 1.
Every time we change the active sets, a new linear system needs to be solved. If
the dimension of the problem increases, the number of the constraints increases
as well and more iterations are required to identify the correct active set. Nev-
ertheless, if the active set method is used for relatively small problems, then it
will converge within a few iterations. The subspace correction method and, in
particular, the monotone multigrid method take advantage of this fact. Indeed,
the constraints are tackled not at a global level, but locally on different and suf-
ficiently small fine and coarse subspaces.

6.4 Subspace correction methods

In Xu, Jinchao [1992] a unified framework for different iterative solvers such as
Jacobi, Gauss-Seidel, domain decomposition and multigrid methods is presented.
The idea is to find a decomposition of Yh into N subspaces {Yi}Ni=1 so that:

N
∪

i=1
Yi = Yh , (6.13)
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Algorithm 1: Active-set method
Result: yh, zh

Input: y0
h, W 0

l , W 0
u

k = −1
stop= true
while stop do

k← k+ 1
Define Ck

h and Dk
h as in (6.9)

Define lk
h and uk

h as in (6.10)
Find sk

h and its components ck
h, zk

h, λk
h,l , λ

k
h,u, by solving (6.11)

rk
h = fk

h −Gk
hsk

h
W k+1

l ←W k
l

W k+1
u ←W k

u
stop= false
for i = 1, . . . , n do

if wk
l (i) ∈W k

l and (rk
h)i > 0 then

W k+1
l ←W k+1

l \ {i}
stop= true

if wk
u(i) ∈W k

u and (rk
h)i < 0 then

W k+1
u ←W k+1

u \ {i}
stop= true

if (ck
h)i < (l

k
h)i then

W k+1
l ←W k+1

l ∪ {i}
stop= true

if (ck
h)i > (u

k
h)i then

W k
u ←W k+1

u ∪ {i}
stop= true

end
yk+1

h ← yk
h + ck

h

end
yh← yk

h
zh← zk

h
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where each Yi is a small subspace of Yh, i.e., dim(Yi)� n. The subspaces of the
decomposition can be overlapping, if Yi ∩Y j 6= ; for at least two i, j ∈ {1, . . . , N}
with i 6= j, or non-overlapping, if Yi ∩ Y j = ; for i, j = 1, . . . , N with i 6= j. Fur-
thermore we define the interpolation operator between the subspace Yi and the
space Yh, as Πi : Yi → Yh.
The subspace correction method computes local corrections ci on each subspace
Yi such that the energy functional Jh is minimized. There are mainly two gen-
eral ways of computing the corrections. The parallel subspace corrections (PSC)
method computes all the corrections ci, for i = 1, . . . , N , in parallel. In order
to make the Algorithm 2 convergent, a proper scalar η must be given as input.
Even though this process can be carried out in parallel, it is rather slow. In order
to accelerate the convergence, a sequential subspace correction approach (SSC)
can be examined. This method computes sequentially each correction and up-
dates the current solution right afterward, as it is shown in Algorithm 3. In both
cases, the minimization of a quadratic functional over a closed convex set can be
carried out by using Algorithm 1.

Algorithm 2: ys
h=ParallelSubspaceCorrection(y0

h, s, Jh, Kh, η)

for k = 1, . . . , s do
for i = 1, . . . , N do

Ki(yk
h) := {ci ∈ Yi : yk

h + ci ∈ Kh}
ci ← argmin

ci∈Ki(yk
h)
Jh(yk

h +Πici)

end

yk
h← yk−1

h +
∑N

i=1ηΠici

end

If the convex set Kh coincides with Yh and if we identify Yh with Rn and
each subspace Yi with the i-th component of a vector in Rn, the PSC and SSC
schemes presented above coincide with the Jacobi and Gauss-Seidel methods. On
the other hand, if Kh is characterized by box-constraints, the corresponding SSC
method is called projected Gauss-Seidel. It is well known that the convergence
rate of the Jacobi and Gauss-Seidel methods deteriorates with the increase of the
problem size.

Remark 6.4.1. The sequential minimization of the functional as in Algorithm 3
should guarantee, in the limit for s → ∞, the convergence of the algorithm. At
least, no divergence of the solution is permitted, because the energy is always con-
trolled. On the other hand, for Algorithm 2, a proper parameter η is necessary
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Algorithm 3: ys
h=SequentialSubspaceCorrection(y0

h, s, Jh, Kh)

for k = 1, . . . , s do
yk

0← yk−1
h

for i = 1, . . . , N do
Ki(yk

i−1) := {ci ∈ Yi : yk
i−1 + ci ∈ Kh}

ci ← argmin
ci∈Ki(yk

i−1)
Jh(yk

i−1 +Πici)

yk
i ← yk

i−1 +Πici

end
yk

h← yk
N

end

for the convergence. Even though locally each correction is computed by energy
minimization, the overall correction c =

∑N
i=1 ci does not necessarily minimize the

energy. This can happen because the corrections are computed independently from
each other. Thus, to ensure a monotone minimization of the functional, it is im-
portant to employ, for example, a line search strategy onto the global correction
c.

Remark 6.4.2. In the original work by Xu, Jinchao [1992], the subspace correction
is carried out in terms of error reduction instead of energy minimization. Indeed the
main problem consists of the solution of a linear system and no energy is mentioned.
Nevertheless, a linear symmetric positive definite system can always be interpreted
as the first-order necessary condition for the minimization of a quadratic functional
on the global space, with no constraints. In this case, the local minimization process
coincides with the solution of a local linear subproblem.

6.5 Smoothers

A smoother is a method which can rapidly damp the high-frequency components
of the error. After the high frequencies are removed from the error, the smoother
has a small impact on its low-frequency components. Furthermore, as the prob-
lem size increases, the more this behavior becomes evident and its convergence
property deteriorates.

A well-known smoother for symmetric positive definite systems is the conju-
gate gradient method. It is examined, as a solver, in Nocedal, Jorge and Wright,
Stephen [2006]. It uses global information, like the residual of the problem,
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to damp the high-frequency components of the error. Assuming exact arith-
metic, it converges in no more than n iterations, where n is the dimension of
the system. However, for very large n and using inexact arithmetic, its conver-
gence behavior can deteriorate, in agreement with the typical smoother behav-
ior. As already mentioned, a similar performance concerns the Jacobi and the
Gauss-Seidel methods. Indeed, some subspace correction methods can be used
as smoothers for damping high-frequency components of the error. Indeed, as it
is explained in Remark 6.4.2, the error decreasing and the energy minimization
can be correlated. We call number of smoothing steps the parameter s in Algo-
rithm 2 and in Algorithm 3. Besides, the same algorithms for s = 1 are known
as single smoothing steps.

It is thus clear that standard methods as Jacobi, Gauss-Seidel, or conjugate
gradient, are not very well suited for solving very large problems, because their
rate of convergence depends on the dimension of the problem. Historically, at
least for elliptic problems, the multigrid method has been invented to get a rate
of convergence independent of the dimension of the problem. In the next sec-
tions, we will introduce the multigrid method and we will examine it also for
constrained problems of the Signorini problem’s type.

6.6 Monotone multigrid methods (MMG)

The multilevel idea is to represent the error on coarser subspaces, so that its
low-frequency components become high-frequency components on these coarser
subspaces and can still be easily damped with proper smoothers. Since the more
levels we add, the more frequencies we can capture, a multigrid method has
the optimal convergence property: the convergence rate is independent of the
dimension of the problem n. For some references concerning the optimal con-
vergence of the multigrid methods, see Bank, Randolph E. and Yserentant, Harry
[2010], Chen, Zhangxin [1994], Gelman, E. and Mandel, J. [1990], Mandel, Jan
[1984].

Since the convex set in (6.5b) is characterized by local inequality and global
equality constraints, the multigrid to be investigated is non-linear. Multigrid
methods for the Signorini problem expressed in the primal formulation have al-
ready been examined. This is the case, for example, of the monotone multigrid
(MMG) method. See Badea [2002], Badea [2014], Bader and Hoppe [1993],
Badea and Krause [2012], Kornhuber, Ralf and Krause, Rolf [2001], Kornhuber,
Ralf and Krause, Rolf and Sander, O. and Deuflhard, P. and Ertel, S. [2008],
Krause [2009], Krause, Rolf and Rigazzi, Alessandro and Steiner, Johannes
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[2016]. The MMG method is a generalization of Algorithm 3. Its goal is to
sequentially minimize the energy as Algorithm 3 but with optimal complexity.
To this purpose, the spaces Yi used in Algorithm 3, which can be interpreted as
spanned by the high-frequency components of the error, are not sufficient. How-
ever, subspaces spanned by low-frequency components can be added as well. In
this way, the energy is minimized over different fine and coarse subspaces and
optimal complexity can be recovered. The aim of this section is to discuss in
more details the MMG method applied to the primal, the dual and the FOSLS
formulations, i.e., (5.50), (5.52), (5.57), discretized by means of the FE method.

In the finite element framework, we introduce a sequence of nested tessel-
lations {T0}Jj=0 such that T0 ⊂ T1 ⊂ · · · ⊂ TJ−1 ⊂ TJ := Th. On these meshes,
we can define a sequence of nested subspaces Y0 ⊂ Y1 ⊂ ... ⊂ YJ−1 ⊂ YJ := Yh,
where each Y j is the coarse subspace on the level j of the space YJ , associated
with the mesh T j. We also denote by Π j+1

j : Y j → Y j+1 the interpolation op-
erator between the levels j and j + 1, for j ∈ {0, . . . , J − 1}. Furthermore, we
denote by ΠJ

j : Y j → YJ the interpolation operator between the levels j and J , for

j ∈ {0, . . . , J−1}. For each level j, we also define a decomposition Y j =
∑n j

i=1 Y j,i,
where n j is the number of subspaces on the level j. To relate Y j,i to Y j, we need
to define an interpolation operator Π j,i : Y j,i → Y j. We also consider a sequence
of nested subspaces Z0 ⊂ Z1 ⊂ ... ⊂ ZJ−1 ⊂ ZJ = Zh for the Lagrange multipliers.
By Q j+1

j : Z j → Z j+1 we denote the interpolation operator between the levels j
and j + 1, for j ∈ {0, . . . , J − 1}. By QJ

j : Z j → ZJ we denote the interpolation
operator between the levels j and J , for j ∈ {0, . . . , J−1}. Finally, we also define
a decomposition Z j =

∑n j

i=1 Z j,i and the interpolations Q j,i : Z j,i → Z j.

The fine problem (6.5) can be rewritten on level j = J by substituing the
subscript h with the subscript J . For all other levels j = J − 1, . . . , 0 and for a
fixed y j+1, the coarse problem at level j reads as follows:

J j(y j;y j+1) =
1
2

yT
j A j(y j+1)y j − yT

j f j(y j+1) , (6.14a)

K j(y j+1) = {y j ∈ Y j : B j(y j+1)y j = h j(y j+1), l j(y j+1)≤ y j ≤ u j(y j+1)} ,
(6.14b)
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where:

A j(y j+1) =
�

Π
j+1
j

�T
A j+1Π

j+1
j , (6.15a)

B j(y j+1) =
�

Q j+1
j

�T
B j+1Π

j+1
j , (6.15b)

f j(y j+1) =
�

Π
j+1
j

�T �
f j+1 −A j+1y j+1

�

, (6.15c)

h j(y j+1) =
�

Q j+1
j

�T
(h j+1 −B j+1y j+1) , (6.15d)

l j(y j+1) = R j
l, j+1(l j+1 − y j+1) , (6.15e)

u j(y j+1) = R j
u, j+1(u j+1 − y j+1) . (6.15f)

The vectors f j, h j, l j and u j directly depend on y j+1. The operators R j
l, j+1 and

R j
u, j+1 are the so called monotone restrictions, non-linear projection operators for

box-constraints. The matrices A j and B j can also depend on y j+1, despite the
expressions in (6.15a) and (6.15b), if truncation of the basis functions is used.
Both monotone restrictions and truncation of the basis will be discussed later in
sections 6.8 and 6.9.

The MMG method works as follows. Given an initial guess y0
J , the num-

ber of pre and post-smoothing steps νpre and νpost, the MMG method updates
yk+1

J =VCycle(yk
J , νpre, νpost) for the iterations k = 0,1, . . ., until convergence. See

Algorithm 4 and Algorithm 5, where the pseudocode, respectively for the smooth-
ing and the V-cycle, is presented. For determining the numerical convergence, a
criterion on the norm of the residual is used.

Algorithm 4: yk
j=Smoothing(yk

j,0, ν, J j, K j)

for s = 1, . . . ,ν do
for i = 1, . . . , n j do

K j,i(yk
j,i−1) := {c j,i ∈ Y j,i : yk

j,i−1 +Π j,ic j,i ∈ K j}
c j,i ← argminc j,i∈K j,i(yk

j,i−1)
J j(yk

j,i−1 +Π j,ic j,i)

yk
j,i ← yk

j,i−1 +Π j,ic j,i

end
yk

j ← yk
j,n j

end

Let y0
J ∈ KJ . Then, for k = 0, 1, . . . and j = J − 1, . . . , 0, two are the possible

scenarios:
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Algorithm 5: yk+1
J =VCycle(yk

J , νpost, νpost)

yk
J=Smoothing(yk

J , νpre, JJ(·), KJ)
for j = J − 1, . . . , 1 do

yk
j ← 0

yk
j=Smoothing(yk

j , νpre, J j(·;yk
j+1), K j(yk

j+1))
end
yk

0← argminy0∈K0(yk
1)
J0(·;yk

1)
for j = 1, . . . , J − 1 do

yk
j ← yk

j +Π
j
j−1yk

j−1

yk
j=Smoothing(yk

j , νpost, J j(·;yk
j+1), K j(yk

j+1))
end
yk

J=Smoothing(yk
J , νpost, JJ(·), KJ)

yk+1
J ← yk

J

• It is fulfilled the following inclusion:
�

Π
j+1
j yk

j

�

+ yk
j+1 ∈ K j+1 (6.16)

where yk
j ∈ K j(yk

j+1) is the resulting correction of the smoothing process.
Since all the corrections on the fine and on the coarse levels satisfy the
fine constraints, the energy functional is sequentially minimized and the
multigrid is monotone.

• Otherwise, there is at least a coarse correction that violates the fine con-
straints. In this case, the multigrid is not monotone and the value of the en-
ergy functional could temporarily increase. However, to get convergence,
the behavior of the overall correction of a V-cycle is what really matters. If
a single local correction makes the energy functional increase, the conver-
gence process is not necessarily badly affected.

Depending on the definition of the coarse convex sets K j for j = J−1, . . . , 0, either
the first or the second situation is obtained. For example, to get the first scenario,
the fine constraints could be enforced on the coarser levels as well. In this way, all
the coarse corrections would never violate the fine constraints. Nevertheless, this
choice would lead to suboptimal complexity, because quantities on the coarser
levels would be compared to the ones on the fine level.

On the fine level, the inequality constraints are just box constraints, i.e., the
unknowns can be compared component-wise to the lower and upper bounds.
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However, on a coarse level j, the comparison with the bounds on the fine level
is not component-wise anymore, but instead involves linear combinations of the
unknown y j. Indeed for j = J − 1, . . . , 0, it would be necessary to satisfy:

l j+1 − y j+1 ≤ ΠJ
j y j ≤ u j+1 − y j+1 . (6.17)

In order to avoid this, we can define K j by using bounds which belongs to Y j

instead of YJ . In this way, the comparison would still be component-wise. Fur-
thermore, if the corrections do not violate the constraints on the fine level, the
multigrid is monotone. To this aim, the monotone restriction operators R j

l, j+1

and R j
u, j+1, as in the equations (6.15e) and (6.15f), can be exploited. Monotone

restrictions, introduced in Kornhuber, Ralf [1994], are non-linear projections for
constraints from the level j + 1 to the level j, for j = J − 1, . . . , 0. They are de-
fined so that on the finer level j + 1:

l j+1 − y j+1 ≤ Π
j+1
j R j

l, j+1(l j+1 − y j+1)≤ Π
j+1
j R j

u, j+1(u j+1 − y j+1)≤ u j+1 − y j+1 ,

(6.18)

while the following component-wise relation holds for the correction y j on the
coarse level j:

R j
l, j+1(l j+1 − y j+1)≤ y j ≤ R j

u, j+1(u j+1 − y j+1) . (6.19)

Even though relations between coarse and fine vectors are presented, the
monotone restriction operators can exploit the FE discretization information. In
particular, they can be optimized for piecewise linear functions as shown in Ko-
rnhuber, Ralf [1994]. This is the case of the traces of linear Lagrangian and
first-order Raviart-Thomas elements. Nevertheless, for simplicity of implemen-
tation, a more strict definition of restriction operator can be introduced. Given
P j+1

j (i) := {k ∈ N : (Π j+1
j )k,i 6= 0}:

(R j
l, j+1(l j+1 − y j+1))i = max

k∈P j+1
j (i)
(l j+1 − y j+1)k , (6.20a)

(R j
u, j+1(u j+1 − y j+1))i = min

k∈P j+1
j (i)
(u j+1 − y j+1)k , (6.20b)

where by definition, if y j+1 is feasible, (l j+1 − y j+1) ≤ 0 and (u j+1 − y j+1) ≥ 0. In
this way, the relation (6.16) holds and the multigrid is still monotone. However,
if the restriction process is too aggressive, the convergence rate can be negatively
affected. Indeed, for example in (6.20b), it is sufficient that exists k such that
(u j+1)k = (y j+1)k, so that (R j

u, j+1(u j+1 − y j+1))i = 0. Similarly this also holds for
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the lower bound. However this situation can be solved by truncating the basis
functions. For this reason, after the discussion on global equality constraints, the
truncation of the basis functions will be studied as well in section 6.8, while the
monotone restrictions operators for piecewise constant and linear functions will
be studied in section 6.9.

In contrast to box-constraints, the global equality constraints on the fine level,
which are enforced also on the coarser level, would overconstrain the coarse
problems. To avoid this difficulty, the global equality constraints need to be pro-
jected, as in (6.14b). However, unlike the inequality constraints, they cannot
be projected onto the coarser levels so that (6.16) is fulfilled. Therefore mono-
tonicity of the multigrid can be guaranteed for the only primal and the FOSLS
formulations. On the other hand, even if monotone restrictions for the inequal-
ity constraints are used, no monotonicity can be a priori guaranteed for the dual
formulation. However, since the structure of the algorithm is the same as for the
primal formulation, we will still use the name MMG method.

In conclusion, typical ingredients of the multigrid method are the interpola-
tion operator and the smoother, which will be examined in section 6.7 and in
section 6.11. In particular, for the mixed formulations which involve unknowns
belonging to Hdiv(Ω) space, the smoother has to be examined with special care.
On the other hand, more specific ingredients of the MMG methods are the mono-
tone restrictions and the trucated basis that will be discussed in sections 6.8 and
6.9.

6.7 Interpolation operators

Let us consider two nested meshes:

TC := T j , TF := T j+1 , (6.21)

and the corresponding FE and coefficients spaces:

XC := X j , XF := X j+1 , YC := Y j , YF := Y j+1 , (6.22)

respectively with dimensions:

nC = dim(YC) , nF = dim(YF) . (6.23)

From now on, by the subpscripts C and F we will denote quantities respectively
on coarse and fine levels. Let {φC ,1, . . . ,φC ,nC

} and {φF,1, . . . ,φF,nF
} be the shape
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functions on the coarse and fine levels, respectively defined so that:

lC ,i(φC , j) = δi j i, j = 1, . . . , nC , (6.24)

lF,i(φF, j) = δi j i, j = 1, . . . , nF , (6.25)

where {lC ,1, . . . , lC ,nC
} and {lF,1, . . . , lF,nF

} are the degrees of freedom on the coarse
and on the fine levels. In practice, we want to interpolate the vector of the coef-
ficients of a function belonging to a coarse level, so that it is represented on the
fine mesh. Then the interpolation operator ΠF

C : YC → YF is a matrix ΠF
C ∈ R

nF ,nC .
Its components are defined as follows:

(ΠF
C)i, j = lF,i(φC , j) i = 1, . . . , nF , j = 1, . . . , nC . (6.26)

It is clear from its definition that the interpolation requires the evaluation of each
fine degree of freedom on each coarse basis function. However, the resulting
matrix is typically sparse. Indeed the support of finite element basis functions
is usually restricted to few elements, so this evaluation involves only a small
number of basis functions. Furthermore, if TC = TF , the interpolation operator
must coincide with the identity operator. For this to happen, (5.3) must hold.
This is the reason of the discussion in section 5.5.2 regarding RT1 basis functions
defined directly on the actual element K instead of the reference element K̂ . For
the definition of ΠF

C involving RT1 functions, the RT1 shape functions have to be
computed on K .

Typically, a degree of freedom l applied to a given function φ, i.e., l(φ), is
a particular integral of the function itself. Thanks to quadrature rules, it boils
down just to an evaluation of φ in a finite number of points pk of coordinates
pk ∈ K , for k = 1, ..., nqr, where nqr is the number of points for the quadrature
rule. On the other hand, if the dof is defined as a point-wise evaluation of the
function, then only one node p is needed. However the dof l and the points
pk are defined on KF , but the shape function φ is defined on KC . This requires
particular care for the mappings between the reference and the actual elements.

For example, let us assume that φC , j is a basis function of the local FE space
SC . For evaluating lF,i(φC , j), we need to know φC , j(pk), where pk are points
belonging to the fine element KF for k = 1, ..., 4 (see figure 6.1). If the shape
functions are computed on K̂C , we must map the points pk ∈ KF onto it, ob-
taining p̂k = F−1

C (pk), where FC : Rd → Rd , defined in (5.8), is the geomet-
ric map between K̂C and KC . The reference basis function can then be evalu-
ated in these points. The resulting values φ̂(p̂k) can be mapped back to the
actual element, giving rise to φ(pk) = MSC ,I(φ̂(p̂k)). In this way lF,i(φC , j) =
lF,i(φC , j(p1), . . . ,φC , j(p4)) can be finally computed.
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If the points p̂k are known a priori, also φ̂(p̂k) can be computed a priori.
Therefore the first mapping p̂k = F−1

C (pk)would not be necessary. This is the case
when we compute standard surface/volume integrals on the whole surface/vol-
ume of the element, for example in the assembly of the linear and bilinear forms.
Nevertheless, for the calculation of (ΠF

C)i, j, the domain of integration is a sub-
set of the coarse element which depends on the run-time refinement process.
Therefore the points pk can vary from element to element and the computation
p̂k = F−1

C (pk) can only be done at run-time.

Kc

K f

p1

p2

p3

p4

p̂k = F−1
C pk

K̂c

K̂ f

Kc

K f

φ̂(p̂1) φ̂(p̂2)

φ̂(p̂3)

φ̂(p̂4)

φ(pk) =MSC ,I φ̂ i(p̂k)

φ̂(p1)

φ̂(p2)

φ̂(p3)

φ̂(p4)

Figure 6.1. Mapping from the fine actual element to the corresponding coarse
reference element; computing the shape functions in the desired reference
nodes; mapping the obtained values to the actual element.

Remark 6.7.1. The discussion presented here and in the sequel for truncation and
monotone restrictions is based on the particular choice of the basis functions. The
construction of the interpolation or the restriction operators cannot be expected to
be necessarily generalized to other discretizations, like NURBS.

6.8 Truncation of the basis

As previoulsy explained, the monotone restriction operators could produce too
restrictive box-constraints on the coarser levels. The spaces {Y j}Jj=0 refer to coef-
ficients of FE functions belonging to {X j}Jj=0. In particular, it is possible to relate
each i-th component of a correction y j ∈ Y j to the i-th shape function of the corre-
sponding FE space X j on level j. Since the hierarchy is nested, i.e., X0 ⊂ ... ⊂ XJ ,
the basis functions of the coarse FE spaces can be expressed as linear combina-
tions of the basis functions on the fine level, for j = 0, ..., J −1. During the itera-
tive multigrid process, a box-constraint on the level j+1 can become active. This
means that, at the iteration k, exists i ∈ {1, . . . , n j+1} such that (lk

j+1)i = (y
k
j+1)i or
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(uk
j+1)i = (y

k
j+1)i. This situation would produce a too restrictive box-constraint

on all levels s = j−1, . . . , 0. Thus, we can assume that, at least for this iteration,
the i-th constraint on level j + 1 has to be active, the effective value (yk

j+1)i is
known and no further correction from the coarser spaces is needed. In practice,
this means there is no need for other corrections in the direction of the subspace
related to the dof i of level j+1 and thus the corresponding basis function is not
required anymore.

Therefore, we could temporarily remove this basis function from the basis of
the level j+1. In other words, we would truncate the basis. As a consequence, the
basis of the coarse level j would change, being built as a linear combination of the
truncated basis from level j + 1. Recursively, the same will happen for all other
levels 0, . . . , j−1. In this way, from the coarse levels there will be no corrections
influencing the active dof i on level j+1. In Figure 6.2, we show the effect on a
1D example for the truncation of a shape functionφF,3. The corresponding coarse
basis function φC ,2 =

1
2φF,2 +φF,3 +

1
2φF,4, that is a hat function, is consequently

modified as φC ,2 =
1
2φF,2 +

1
2φF,4 and is no more a hat function.

φC ,2 =
1
2
φF,2 +φF,3 +

1
2
φF,4

1
2
φF,2

φF,3

1
2
φF,4

pF,1 pF,2 pF,3 pF,4 pF,5pC ,1 pC ,2 pC ,3

φC ,2 =
1
2
φF,2 +

1
2
φF,4

1
2
φF,2

1
2
φF,4

pF,1 pF,2 pF,3 pF,4 pF,5pC ,1 pC ,2 pC ,3

Figure 6.2. The coarse basis function φC ,2 in black is hat function given by the
linear combination of φF,2, φF,3, φF,4. If φF,3 is truncated, the function φC ,2 is
only a linear combination of φF,2, φF,4 and no more a hat function.

It is clear however that this process depends on the current iterate yk
j+1.

For example, it can happen (uk
j+1)i = (y

k
j+1)i and (uk+1

j+1 )i 6= (y
k+1
j+1 )i. The depen-

dency of the basis functions at level j on the current iterate yk
j+1 implies that

also the spaces Y j depend on yk
j+1 as well. So we should write Yk

j = Y j(yk
j+1) for

j = 0, . . . , J − 1. Similarly, for the interpolation operator Π j+1
j : Y j → Y j+1 intro-

duced in section 6.7, i.e., Πk, j+1
j = Π j+1

j (y
k
j+1). As a final consequence, the coarse

matrix in (6.15a) has such dependency as well and we can write Ak
j = A j(yk

j+1).
The same arguments apply on B j, for j = 0, . . . , J−1. Therefore truncation makes
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necessary the Galerkin assembly everytime a dof is added or removed from the
active set. If the set of active dofs on level j + 1 does not change from iteration
k to iteration k+ 1, then no re-assembly is needed.

A special case of always active dofs is related to boundary conditions, which
are known from the beginning. So for linear problems, where the constraints are
only given by the boundary conditions, known a priori, the coarse matrices can
be assembled only once. In general, even for nested meshes, Galerkin assem-
bly expressed in (6.15a) ensures a better description of the problem in contrast
to a geometric assembly on T j. The reason for this, also for the linear case,
is that in (6.15a) the information is projected from the finest level, where all
the information of the problem is precisely described. So originally, before the
projection, the shape functions belong to XJ and also possible space-dependent
coefficients are represented on TJ . On the other hand, a direct assembly on T j,
for j = 0, . . . , J − 1, loses both of these advantages. Therefore we can say that the
truncation strategy is, in general, useful. But it becomes even more important if
monotone restrictions come into play as well.

6.9 Monotone restrictions

6.9.1 Introduction

In order to ensure the monotonicity in the reduction of the energy functional JJ ,
it suffices to satisfy (6.16). Indeed a correction cC ∈ YC from the coarse level
must satisfy:

lF(x)− yF(x)≤ ΠF
CcC ≤ uF(x)− yF(x) , (6.27)

where by definition, if yF is feasible, lF(x)−yF(x)≤ 0 and uF(x)−yF(x)≥ 0. But
then a comparison between functions at coarse and fine levels is required. In par-
ticular, as previously explained, this would make the constraints at a coarse level
not box-constraints and the multigrid not-optimal anymore. For papers which
explain this topic, see Kornhuber, Ralf [1994] and Kornhuber, Ralf [1996]. Op-
timality of the multigrid method could be recovered by defining K j by means of
box-constraints at a coarse level that fulfill (6.16) and that are also close-enough
to the corresponding constraints at the fine level. To this purpose, monotone re-
striction operators are introduced. For coarse and fine meshes TC and TF , defined
in (6.21), and for coarse and fine spaces XC and XF , defined in (6.22), monotone
restriction operators on the lower and upper bounds are respectively operators
RC

l,F : YF → YC and RC
u,F : YF → YC defined so that on the fine and coarse levels
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the relations (6.18) and (6.18) are respectively fulfilled. It is clear that, to this
purpose, it is sufficient to choose RC

l,F(lF − yF) = RC
u,F(uF − yF) = 0. Nevertheless

this choice is not smart because makes zero all the coarse corrections and the
monotone multigrid boils down to a smoother on the fine level. For this reason,
RC

l,F(lF−yF) and RC
u,F(uF−yF) have to be close-enough to lF−yF and uF−yF . This

property cannot be guaranteed in general, but it is for sure possible for functions
which are piecewise constant or piecewise linear.

6.9.2 The 1D case

For simplicity, let us focus on a one dimensional monotone projection problem
with coarse segment KC , delimited by the points p0 and pnp

, and np nested fine
elements {KF,1, . . . , KF,np

}, each of which is delimited by the points pi and pi+1 for
i = 0, . . . , np − 1, where:

KC =
N
∪

i=1
KF,i KF,i ∩ KF, j = ; , i, j = 1, . . . , np, i 6= j . (6.28)

As example, see Figure 6.3.

Kc

p0

KF,1

p1

KF,2

p2

KF,3

p3

KF,4

p4

Figure 6.3. Coarse element KC = [p0, p4] subdivided into four fine elements
KF,1, . . . , KF,4.

Let us consider two piecewise constant functions on {KF,1, . . . , KF,np
} that, with

abuse of notation, assume respectively the values lF,i and uF,i on each KF,i, for
i = 1, . . . , np, not to be confused with the degrees of freedom in (6.25). We
define:

lF,i = (lF)i − (uF)i , (6.29a)

uF,i = (uF)i − (uF)i . (6.29b)

We want to define two constant functions on KC , identified by their single value
lC and uC , such that:

lF,i ≤ lC , uC ≤ uF,i i = 1, . . . , np . (6.30)
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It suffices to define the monotone restrictions so that:

lC = max
i=1,...,np

{lF,i} , (6.31a)

uC = min
i=1,...,np

{uF,i} . (6.31b)

This formula is equivalent to the ones in (6.20). Since this projection can be
too pessimistic for piecewise linear functions, in Kornhuber, Ralf [1994] a better
performing monotone restriction has been presented. Here we want to explain
how it works also in the case of non-uniform refinement. For simplicity, we will
consider only the projection of the upper bound. Its nodal values in {pi}

np

i=0 are
{ui}

np

i=0. We use the same definition as in (6.29). The coarse nodal values uC ,0

and uC ,1, which refer to the nodes p0 and pnp
, can be computed by means of

Algorithm 6. We initialize these values with the corresponding fine ones. We
then loop on each fine element and consider its left and right node. We want to
make the coarse bound, represented by the straight line between uC ,0 and uC ,1,
below the given value uF,i:

α uC ,0 + (1−α)uC ,1 ≤ uF,i , where α=
|pi − pnp

|

|pnp
− p0|

. (6.32)

To this aim, the values uC ,0 and uC ,1 have to be modified accordingly:

ûC ,k =min
�

uC ,k,max
�uF,i − uC , j

α
+ uC , j, uF,i

��

, (6.33)

j =

¨

1 if k = 0

0 if k = 1
, α=















|pi − pnp
|

|pnp
− p0|

if k = 0

|pi − p0|
|pnp
− p0|

if k = 1
, (6.34)

where ûC ,0 and ûC ,1 are the updated values for uC ,0 and uC ,1. Given k and j, the
update of uC ,0 and uC ,1 in Algorithm 6 is written, conceptually, as a parallel pro-
cess, but the formula (6.34) permits also their sequential computation. We have
stressed out this fact because (6.34) builds a monotone restriction independently
of the order of the computation of uC ,0 and uC ,1.

Let us consider the Figure 6.4. The continuous black line represents the fine
piecewise linear upper bound. The dashed orange horizontal line represents the
constant value uF,i. Then, on the left column, the dashed blu line passes through
uC ,1 and uF,i; the projected coarse upper bound ûC ,0 is highlighted in red. In the
middle column, the dashed blu line passes from uC ,0 to uF,i and the projected
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coarse upper bound ûC ,1 is depicted in red as well. Finally, in the right column,
the two pieces of information are gathered into the resultant projected upper
bound, which is always smaller than the upper bound on the finer level.
Thus in Figure 6.4, there are four cases to consider:

• The value uF,i is larger than uC ,0 and uC ,1i.e., uF,i >max(uC ,0, uC ,1); the line
connecting uC ,0 and uC ,1 is below the upper bound.

• The value uF,i is smaller than uC ,0 and uC ,1, i.e., uF,i < min(uC ,0, uC ,1); the
line connecting uC ,0 and uC ,1 is above the upper bound.

• The value uF,i is in between uC ,0 and uC ,1, in particular uC ,1 ≤ uF,i ≤ uC ,0;
the slope of the line between uC ,0 and uF,i is larger, in absolute size, than
the slope of the line between uF,i and uC ,1.

• The value uF,i is in between uC ,0 and uC ,1, in particular uC ,0 ≤ uF,i ≤ uC ,1;
the slope of the line between uC ,0 and uF,i is smaller, in absolute value, than
the slope of the line between uF,i and uC ,1.

1−α0 α0

uC ,0
uF,i

uC ,1

ûC ,0

α1 1−α1

uC ,0
uF,i

uC ,1

ûC ,1

uC ,0
uF,i

uC ,1

ûC ,0 ûC ,1

1−α0 α0

uC ,0

uF,i

uC ,1

ûC ,0

α1 1−α1

uC ,0

uF,i

uC ,1

ûC ,1
uC ,0

uF,i

uC ,1

ûC ,0 ûC ,1

1−α0 α0

uC ,0

uF,i uC ,1
ûC ,0

α1 1−α1

uC ,0

uF,i uC ,1ûC ,1

uC ,0

uF,i uC ,1
ûC ,0

ûC ,1

1−α0 α0

uC ,0 uF,i

uC ,1ûC ,0

α1 1−α1

uC ,0 uF,i

uC ,1

ûC ,1

uC ,0 uF,i

uC ,1

ûC ,0
ûC ,1

Figure 6.4. Continuous black line: the fine upper bound. Dashed orange line:
the value uF,i. On the left colum: computation of ûC ,0. In the middle colum:
computation of ûC ,1. On the right column: the coarse upper bound represented
as a red dashed line, always smaller than its fine continuous black version.

The formula in (6.34) can be modified if the truncation of the basis functions
is used. Indeed, if the i-th dof is active due to the upper bound, i.e., (yF)i = (uF)i,
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Algorithm 6: uC ,0, uC ,1=MonotoneRestricionUpperBound(p0, . . . , pnp
,

uF,0, . . . , lF,np
)

uC ,0 = uF,0,
uC ,1 = uF,np

// loop on the elements
for k = 1, . . . , np do
// loop on the left and right node of the element KF,k

for j = 1,0 do
i = k− j

α0←
|pi − pnp

|

|pnp
− p0|

α1←
|pi − p0|
|pnp
− p0|

ûC ,0←min
�

uC ,0, max
�uF,i − uC ,1

α0
+ uC ,1, uF,i

��

ûC ,1←min
�

uC ,1, max
�uF,k − uC ,0

α1
+ uC ,0, uF,i

��

uC ,0← ûC ,0

uC ,1← ûC ,1

end
end

then the value (uF − yF)i = 0. The updated values of the coarse bounds would
be consequently affected, making them too pessimistic. However the i-th dof
should not influence the corrections at the coarse level anymore. Thus, we can
redefine the values in (6.29) so that:

(lF)i = (yF)i ⇒ lF,i = −∞ , (6.35a)

(uF)i = (yF)i ⇒ uF,i = +∞ . (6.35b)

As an explanatory example, let us consider the positive piecewise linear function
(uF − yF) as in Figure 6.5 defined as:

�

uF − yF

�

(p) =











+1 p = pF,1 = pC ,1

0 p = pF,2

+1 p = pF,3 = pC ,2 ,

(6.36)

By applying the standard definition of the monotone restriction RC
u,F without trun-
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cation, we would recover:

[RC
u,F(uF − yF)](p) = 0 for p = pC ,1, pC ,2 . (6.37)

However, if the fine shape function corresponding to the node pF,2 is removed,
then no coarse correction can influence that point. And thus, before projection,
(6.36) can be modified into:

�

uF − yF

�

(p) =











+1 p = pF,1

+∞ p = pF,2

+1 p = pF,3 ,

(6.38)

so that the coarse monotone restriction results in:

�

RC
u,F(uF − yF)

�

(p) =

¨

+1 p = pC ,1

+1 p = pC ,2 .
(6.39)

which guarantees for larger coarse corrections than the only zero function.
We have omitted the case of the lower bound. But it is very simple to take

advantage of the same formula (6.34) for this case. It suffices to use uF,i = −lF,i

for i = 1, . . . , np. Then we define l̂C ,k := −ûC ,k.

pF,1 pF,2 pF,3pC ,1 pC ,2

Figure 6.5. Example of representation of the piece-wise linear function (uF−yF).

6.9.3 The 2D case

We would like to generalize the argument of the 1D case to triangle. The coarse
points pC ,0, pC ,1 and pC ,2 coincide with the vertices of the triangle. The other
{pF,i}, for i = 1, . . . , np, can be placed anywhere in the triangle. The fine elements
satisfy the same relation (6.28). Then we loop on each fine element KF,i and on
its internal nodes. For a given node, we update the values uC ,0, uC ,1, uC ,2. Let us
focus, for example, on uC ,0. To recover the same argument used for the 1D case,
we should trace a line from pF,0, passing through pF,i. In general, its prolongation
does not intersect neither pF,1 nor pF,2. Thus, we need to consider the point of
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intersection between this line and the line connecting pF,1 and pF,2. We denote
this point by p̂. We denote by β the following normalized distance:

β =
|pF,2 − p̂|
|pF,2 − pF,1|

, (6.40)

which we use to interpolate the value uC ,1 and uC ,2, obtaining the value:

û= βuC ,1 + (1− β)uC ,2 . (6.41)

Now that p̂ and û are known, the 1D argument can be replicated on the segment
starting in pF,0 and ending in p̂. The procedure is repeated for all the other points.

uC ,1 pC ,1

uC ,2
pC ,2

(1− β)u
C ,1 + βu

C ,2p̂

1− β

β

uC ,0

pC ,0

uF,i

pF,i

α

1−
α

Figure 6.6. 2D projection example. Fixed the point pF,i and the value
uF,i, the line passing from pF,0 to pF,i does not intersect neither pF,1 nor
pF,2. Thus we interpolate the value uC ,1 and uC ,2 in the point p̂, obtaining,
û := βuC ,1 + (1− β)uC ,2.

6.9.4 Monotone restrictions for the Signorini problem

It is clear that the monotone restrictions here defined can be applied only to
piecewise constant or piecewise linear functions. Let us investigate if all the
choices of the discrete spaces for the different formulations, (5.51), (5.54) and
(5.58), fulfill this definition. To this aim, we first notice that (4.1a) and (4.1b)
concern the trace of uh and σh.

In the primal formulation, uh ∈ P1(Th) is piecewise linear on the domain
and also on the boundary. In the dual formulation, σh ∈ RT1(Th) is a quadratic
vector on the domain, but its trace is a piecewise linear vector. In the FOSLS
formulation, uh ∈ P1(Th) like for the primal formulation, while σh ∈ RT0(Th) is a
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piecewise linear vector on the domain and its trace is a piecewise constant vector.
Therefore the monotone restrictions almost fit the framework of the discretized
Signorini problem. We say “almost fit” because the monotone restrictions are
defined for box-constraints, while (4.1a) and (4.1b) involve linear combinations
of the corresponding dofs of uh and σh. We need to make those constraints box-
constraints, by means of a proper transformation that we will discuss in the next
section.

6.9.5 The Householder transformation

In general the conditions (4.1a) and (4.1b) are not box-constraints. Indeed all
the components of the displacement u or the force σn, for i = 1, . . . , d, are
involved in a single inequality constraint. Therefore the set (6.5) can not really
describe the formulations (5.50), (5.52), (5.57). However, by changing the local
coordinate system from Cartesian to an orthogonal coordinate system with first
component identified by the direction of the normal n, (4.1a) and (4.1b) become
box-constraints.

To this aim it is possible to define on ΓC the Householder transformation Hx

relative to the outward normal n in the point x ∈ ΓC as:

H(x) = I− 2 m(x)m(x)T (6.42a)

m(x) =
n(x)− e1

‖n(x)− e1‖
, (6.42b)

where e1 ∈ Rd and (e1)i = δ1i. Since the transformation (6.42) involves the nor-
mal n, in the discrete setting this quantity must be computed with care. If the
normal n is defined on a face, then it coincides with the normal of the face. This
is the case for normals involved by RT0(Th) and RT1(Th) functions, like in (4.5b)
and in (4.4b). On the other hand, a normal n on a vertex of the mesh is not
well defined and so it is computed as the average of the normals defined on the
surrounding faces. This can be the case for the displacement u ∈ P1(Th) in (4.5b)
or in (4.3b).

The local Householder transformation has to be applied to the collection of
dofs related to all the components of the local uh orσhn. Given the point p ∈ Γh,C

of normal n, the vector of displacement dofs uh,p = (u1, . . . , ud) related to the
vertex p can be expressed in the new coordinate system, obtaining uh,p:

uh,p := H(p)uh,p . (6.43)

Its first component (uh,p)1 coincides with uh,p · n. The same argument can be
used also for (σh · n), but we need to pay attention on the physical meaning of
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the quantities of interest. Indeed the set of dofs uh,p does actually represent the
displacements in the Cartesian coordinate system, but the set of dofs σh,p does
not have the same meaning of the force (σhn), which is what appears in (4.1b).
Starting from σh,p, we need to recover (σn)h,p. Therefore, by using H(p), the
new dofs will describe (σn)h,p in the new coordinate system, not σh,p.

Once the local Householder transformations are built, the global Householder
matrix can be built as well and the whole problem can be reformulated in terms
of the new basis. Such a decision has a direct impact on the matrices A j, for
j = 0, . . . , J and on the interpolation operators Π j+1

j , for j = 0, . . . , J − 1. From
now on, we will assume the problem to be expressed using local Householder
transformations, so that box-constraints are recovered.

6.10 Monotone multigrid for the primal formulation

In the previous sections we have introduced all the ingredients for the monotone
multigrid method. We would like now to study its behavior in the case of the
discrete primal formulation (5.50). The method applied to this discretization
has already been investigated in Badea [2002], Badea [2014], Bader and Hoppe
[1993], Badea and Krause [2012], Kornhuber, Ralf and Krause, Rolf [2001], Ko-
rnhuber, Ralf and Krause, Rolf and Sander, O. and Deuflhard, P. and Ertel, S.
[2008], Krause [2009], Krause, Rolf and Rigazzi, Alessandro and Steiner, Jo-
hannes [2016]. In particular, we apply the Householder transformation of sec-
tion 6.9.5, use truncation argument and monotone restrictions of sections 6.8
and 6.9. The smoother to be chosen is projected point-wise Gauss-Seidel. This
means the spaces Y j,i, for j = 0, . . . , J and i = 1, . . . , n j, consists of all the dofs
corresponding to a node. A subspace is thus referred to all components of a
displacement in a node.

The MMG method for the primal formulation exhibits both theoretically and
practically optimal convergence behavior. Nevertheless, as it can be shown in
the experiments, its behavior deteriorates for increasing of the Lamé parameter
λ. Indeed it is well known that the primal formulation is affected by the locking
effects for λ → ∞. We can notice this peculiarity in Figure (6.7), where we
have applied MMG to the case of a square domain subject to a circular obstacle,
as in Figure 8.22. The rate of convergence is independent of the dimension of
the problem but is significantly influenced by λ. The difference becomes more
and more evident by increasing λ and it is sufficient to choose λ= 100 to obtain
a bad convergence rate. This is why we want to take advantage of the dual or
the FOSLS formulations, which remain bounded even for λ → ∞. However,
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special care is required since we need to solve also for the stress which belongs
to Hdiv(Ω) and not to the standard Sobolev space H1(Ω).
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Figure 6.7. log10 of the Euclidean norm of the residual for the MMG applied
to the primal formulation of the Signorini’s problem. Parameters: Ncoarse = 8,
µ= 1, number of pre and post smoothing steps= 3.

6.11 Smoothers for Hdiv regular problems

The errors of the formulations (4.3), (4.4), (4.5), can be expressed as linear
combinations of the eigenvectors of the corresponding differential operators
and their high-frequency components are related to the large eigenvalues of the
operators themselves. For H1 regular problems (with the unknown belonging to
H1) like the weak form associated with the Laplacian problem, there is a bijective
correspondence between large eigenvalues and high oscillatory eigenfunctions.
This property makes Gauss-Seidel or the conjugate gradient methods, which
only damp components related to large eigenvalues, also smoothers for H1

regular problems.
Let us consider, for example, the following bilinear form
ΛH1 : H1(Ω)×H1(Ω)→ R:

ΛH1(u, v) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) ∀u, v ∈ H1(Ω) , (6.44)

which also represents the H1 dot product. The generalized eigenvalue problem
can be written as: find the eigenfunctions u ∈ H1(Ω) and the scalar eigenvalues
λH1 ≥ 0 such that:

ΛH1(u, u) = λH1(u, u)L2(Ω) . (6.45)
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Then the formula for λH1 , obtained by simply rearranging the terms, is:

λH1 = 1+
(∇u,∇u)L2(Ω)

(u, u)L2(Ω)
= 1+

‖∇u‖2
L2(Ω)

‖u‖2
L2(Ω)

(6.46)

Since the second term is never negative, λH1 ≥ 1. Then it is clear that low eigen-
values are related to functions with small variations, i.e., such that ‖∇u‖L2(Ω) is
very small. Indeed the smallest eigenvalue λH1 = 1 is related to the constant
function u = c, for c ∈ R, which defines the kernel of the gradient operator,
Ker(∇). Conversely, large eigenvalues correspond to eigenfunctions with large
gradients. We know that Gauss-Seidel, for example, damp in few iterations all
the eigenfunctions related to large eigenvalues. We need to determine if, in order
to tackle all oscillatory functions on the mesh Th, it is sufficient to damp only the
eigenfunctions related to large eigenvalues λH1 . Luckily, for a problem involving
(6.44), this condition is sufficient and Gauss-Seidel and the conjugate gradient
methods behave as smoothers.

However, for Hdiv regular problems (with the unknown belonging to Hdiv),
there are low frequency components of the error which can be represented only
on the fine mesh but which are not damped by standard smoothers for H1 regular
problems. For the sake of clarity, let us consider as an example the bilinear form
ΛHdiv : Hdiv(Ω)×Hdiv(Ω) of the type :

ΛHdiv
(σ,τ) = (σ,τ)L2(Ω) + (divσ, divτ)L2(Ω) ∀σ,τ ∈ Hdiv(Ω) . (6.47)

We can write the generalized eigenvalue problem as: find the eigenfunctions
σ ∈ Hdiv(Ω) and the scalar eigenvalues λdiv > 0 such that:

ΛHdiv
(σ,σ) = λdiv(σ,σ)L2(Ω) . (6.48)

The direct formula for λdiv is :

λdiv = 1+
(divσ, divσ)L2(Ω)

(σ,σ)L2(Ω)
= 1+

‖div σ‖2
L2(Ω)

‖σ‖2
L2(Ω)

≥ 1 . (6.49)

As we can see, the low eigenvalues are related to functions with small divergence,
i.e., such that ‖div σ‖ is small. The set of all functions with zero-divergence
corresponds to the eigenvalue λdiv = 1, identified by Ker(div), and is much larger
than the one which contains only the constants, Ker(∇). In particular, there are
divergence-free oscillatory functions, corresponding to low eigenvalues of the
operator ΛHdiv , which can be represented only on fine meshes. Therefore it loses
the bijective relation, which characterizes symmetric positive definite operators
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like the one in (6.44), between eigenfunctions related to large eigenvalues and
oscillatory functions. It is then clear that Hdiv smoothers must be able to damp
also divergence-free components of the error which are not visible from coarser
meshes. So it must tackle, in addition to the usual oscillatory functions related
to large eigenvalues, also oscillatory divergence-free functions related to small
eigenvalues. The divergence-free functions in 2D and in 3D for a simplicial mesh
Th, that cannot be reproduced on coarser meshes, are depicted in Figure 6.8.
They live on patches P of elements of Th surrounding respectively a node, in 2D,
and an edge, in 3D. These divergence-free functions are linear on each element
and their normal component on the boundary of the patch is zero. In fact, for
the divergence theorem

∫

P divσ =
∫

∂P σn = 0, it follows they have, at least on
average, zero-divergence.

(a) 2D node-related divergence-free function. (b) 3D edge-related divergence-free function.

Figure 6.8. Piecewise linear divergence-free functions.

In order to tackle these components of the error also on fine meshes, two
main strategies have been proposed in the existing literature. The first one we
are going to discuss has been developed by Hiptmair, Ralf [1997], Hiptmair, Ralf
and Toselli, Andrea [2000] and it is based on the Helmholtz decomposition. The
second one has been examined by Arnold-Falk-Winther and aims to directly cap-
ture the divergence-free components of the error. See Arnold Douglas [1998],
Arnold et al. [2008], Arnold et al. [2000], Arnold et al. [1997]. However, these
smoothers have been examined only for the linear case. We aim to generalize
them for the contact problems presented above.

6.12 The generalized Hiptmair smoother to tackle in-
equality constraints

If a vector field w : Rn→ Rn, for n= 2, 3, is sufficiently smooth, it can be decom-
posed in the sum of two components, one irrotational and the other solenoidal,
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by means of the Helmoltz decomposition. The irrotational field can be expressed
as the gradient of a scalar potential ρ, whilst the solenoidal one can be expressed
as the curl of a vector potential field ψ, so that:

w=∇ρ + curlψ , (6.50)

where curl∇ρ = 0 and divcurlψ = 0. In this way, we are able to distinguish
between divergence free components (curlψ) and the others (∇ρ). Hiptmair’s
idea is to smooth sequentially first the irrotational components of the error, then
the solenoidal ones. In order to do so, the irrotational part can be damped by
using a standard smoother for H1 variables. As we already know, this would
not work for the solenoidal term. This has to be examined in terms of its vec-
tor potential, meaning that we must recast the problem in the potential space.
Therefore the bilinear form ΛHdiv in (6.47) has to be recast into the space of the
vector potential ψ, obtaining ΛHcurl

: Hcurl(Ω)×Hcurl(Ω)→ R defined as:

ΛHcurl
(φ,ψ) := ΛHdiv

(curlψ,curlφ) ∀φ,ψ ∈ Hcurl(Ω) , (6.51)

which results in:

ΛHcurl
(φ,ψ) = (curlψ,curlφ)L2(Ω) ∀φ,ψ ∈ Hcurl(Ω) . (6.52)

As remarked in Hiptmair, Ralf [1997], “this time we do not have to worry about
Ker(curl) because no zero order term is present in the potential space”. Due to
(6.50), we should also cast the bilinear form ΛHdiv onto the space of the potential
ρ, obtaining ΛH∆ : H2(Ω)×H2(Ω)→ R defined as:

ΛH∆(ρ,η) := ΛHdiv
(∇ρ,∇η) ∀ρ,η ∈ H2(Ω) , (6.53)

which results in:

ΛH∆(ρ,η) = (∇ρ,∇η)L2(Ω) + (∆ρ,∆η)L2(Ω) ∀ρ,η ∈ H2(Ω) , (6.54)

where ∆ := div∇ is the Laplace operator. However, such projection is not neces-
sary, because, by smoothing oscillatory components in H1, the components in H2

are smoothed as well. Thus using smoothers like Gauss-Seidel or the conjugate
gradients methods on the variable σ ∈ Hdiv(Ω), in (6.47), is sufficient. After this,
it is fundamental to compute corrections ψ ∈ Hcurl(Ω) by means of a smoother
applied on the bilinear form (6.51). This mixed process is called hybrid-smoother
and has been introduced in Hiptmair, Ralf [1997].

In the finite element framework, the spaces Hdiv(Ω) and Hcurl(Ω) are dis-
cretized by means of RTp(Th) and N Dp+1(Th), representing the Raviart-Thomas
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and Nédélec spaces of order p and p+ 1, with non-negative p ∈ N. See sections
5.5.2 and 5.6 for details concerning their definition. Since the corrections in the
potential space need to be added to the current iterate in RTp(Th), an interpo-
lation operator between N Dp+1(Th) and RTp(Th) is required. To this aim, the
Stokes’s theorem plays a preminent role with the following formula:

∫

Σ

curlφ · n dσ =

∮

∂Σ

φdl , (6.55)

where Σ is a closed surface in Rd and ∂Σ is its boundary. Assuming φ i = curlψ,
the integral of the normal flux of φ i against the face Fi of a simplex K becomes:

∫

Fi

φ i · n=
∑

e∈Fi

∫

e

ψdle , (6.56)

where e is an edge of the face Fi. For simplicity, let us consider d = 2 and the
space RT0(Th). Then, recalling equation (2.14), φ i = curlψ , with ψ ∈ P1(Th).
We can relate the dofs of the two spaces as follows:

∫

Fi

φ i · n=ψ(pend)−ψ(pstart) , (6.57)

where the potential continuous linear Lagrangian variable ψ is evaluated in the
extreme points, pstart and pend, of the oritented edge Fi. Thus the resulting in-
terpolation between P1 and RT0 is characterized only by the values ±1. See also
Kolev and Vassilevski [2012].

The aforementioned problems are linear, without constraints. Therefore, to
understand the applicability of Hiptmair’s smoother to the constrained case, let
us consider, for example, the FOSLS formulation (4.5). The goal is to write the
functional and the convex set in terms of the potential variable. By fixing u and
σ and solving for corrections ψ ∈ H1(Ω) in 2D (and ψ ∈ Hcurl(Ω) in 3D), the
problem becomes:

J f (ψ;u,σ) =γ||A(σ + curlψ)− ε(u)||2L2(Ω) +δ||divσ + f||2L2(Ω)

+ 〈((σ + curlψ)n)n, un − g〉ΓC , (6.58a)

K f ={ψ ∈ H1(Ω) : ψ= 0 on ΓN , (6.58b)

(curlψn)n ≤ −σn, ψt = 0 on ΓC} . (6.58c)

Without constraints, we recover a linear problem and the smoother reduces to
the standard Hiptmair’s smoother. Unfortunately, in the contact formulation, the
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correction of the potential variableψmust fulfill global constraints, even though
the original constraints are only local. One could proceed in three different ways:

• enforcing ψ= 0 even on ΓC , but then there would be no correction on the
contact boundary;

• transforming, the global constraints into a more restricted dof-wise con-
straint, in the discrete FE formulation;

• satisfying the global constraints, making each dof satisfying contemporarily
more than one inequality constraint.

As it will be explained, even though some numerical experiments have been car-
ried out with these variants, they are still not able to solve the problem (7.2). A
more practical approach is, on the other hand, represented by the Arnold-Falk-
Winther’s smoother

6.13 The generalized Arnold-Falk-Winther smoother

The Arnold-Falk-Winther’s smoother tackles directly divergence-free components
not visible from coarser meshes. See Arnold et al. [1997], Arnold et al. [2000],
Arnold Douglas [1998]. To this aim, in contrast to projected point-wise Gauss-
Seidel method, it does not act sequentially on one-dimensional subspaces, but
on larger subspaces. In particular, the subspaces are defined on patches. A patch
Pn related to a node n is the set of all elements which share that node. This kind
of patch can be used for any dimension d. In 3D, we can also consider a patch
Pn,m which is the set of all elements sharing the edge connecting the nodes m
and n. A representation of these patches and of piecewise linear divergence-free
components is given in Figure 6.8. For RTp, the subspace has to be defined, at
least, as the set of all the degrees of freedom on the internal faces of the patch.
But, on such a patch, we can also consider other degrees of freedom, like the
ones on the border of the patch. We can see a 2D example in Figure 6.9 for both
RT0 and RT1 spaces.
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(a) Smallest RT0 subspace. (b) Largest RT0 subspace.

(c) Smallest RT1 subspace. (d) All internal RT1 dofs. (e) All RT1 dofs.

Figure 6.9. The olive and green circles refer respectively to RT0 and RT1 dofs.
For simplicity, in the RT1 case, we count 2 dofs per each green circle, since we do
have 2 dofs per face and 2 internal dofs. The Figure (a) represents the smallest
patch-subspace for tackling divergence-free components of RT0 functions, while
Figure (b) is an extension to the border. The Figure (c) represents the smallest
patch-subspace for tackling divergence-free components of RT1 functions. The
Figure (d) represents a possible extension of such subspace to all internal dofs.
In Figure (e) all RT1 dofs of the patch are represented.
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6.14 Uncertainty Quantification

6.14.1 Introduction

The MMG method described in section 6.6 is designed to have the optimal con-
vergence property. Therefore the number of iterations for its convergence should
be independent of the dimension of the problem and of the number of levels used.
This property is very important because it ensures a fast convergence of the al-
gorithm for a constrained optimization problem. If many are the constrained op-
timization problems to be solved, then optimal convergence is crucial: fast con-
vergence of a single simulation translates into the fast convergence of the overall
simulations. This is the case of uncertainty quantification problems, which are
solved by means of quasi-Monte Carlo or multilevel Monte Carlo methods that re-
quire the solution of thousands of simulations. In this context, the MMG method
of section 6.6 for the dual formulation applied to the Signorini problem would
be fundamental. In sections 6.14.2 and 6.14.3 we respectively introduce the
uncertainty quantification problems and the methods for their resolution.

6.14.2 The uncertainty quantification problems

Continuum mechanics describes the mechanical problem from a macroscopic
point of view. This approach is based on a simplified treatment of the surface
and material coefficients of the body, in addition to the external sources, which
are supposed to be known exactly. However, in practice, we do not know the
real shape of the body and how its coefficients vary from point to point. To do
that, we would need to deal with the microscale for every portion of the body
itself, which in practice is not achievable. Since the microscale perspective does
not pay off for standard engineering problems, but we still would want to take
into account our lack of complete knowledge of the boundary, the coefficients
and the external sources, an option is given by their stochastic treatment. With
uncertainty quantification methods, all the quantities, which we cannot assume
to know, are now considered stochastic variables and the knowledge we have
of them is assumed to be their mean values. For further references regarding
the stochastic treatment of some features of PDEs problems, we can mention
Babuška [1961], Babuška [1971], Babuška et al. [2005], Babuška et al. [2007a],
Babuška et al. [2007b], Schwab, Christoph [2003], Schwab, Ch and Stuart, AM
[2011], Schwab, Ch and Todor, Radu Alexandru [2003], Gittelson, Claude Jef-
frey [2011a], Gittelson, Claude Jeffrey [2011b], Multerer, MD [2019].

For simplicity, we study now a classic forward problem of uncertainty quan-
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tification for a PDE. The uncertainty resides only in the coefficient a of the con-
stitutive law. Since the coefficient a is stochastic, also the unknown u, which
depends on it, has to be stochastic as well. We characterize this fact by adding
the dependency of a and u on the parameter θ ∈ Θ.

−div (a(x,θ )∇u(x,θ )) = f (x) x ∈ Ω , (6.59)

u(x,θ ) = 0 x ∈ ∂Ω . (6.60)

We can separate the dependencies from the random field θ and the spatial dimen-
sion x, by means of the Karhunen-Loève expansion of the random field a(x,θ ).
See Harbrecht, Helmut and Peters, Michael D. and Schmidlin, Marc [2017]. We
can introduce a sequence of uniformly distributed and independent variables
y j ∈ U([−0.5, 0.5]) and express the coefficient a as:

a(x,θ ) = a0(x) +
∞
∑

j=1

y j(θ )a j(x), (6.61)

where

a0(x) =

∫

Θ

a(x,θ )dθ , j = 0, (6.62)

y j(θ ) =

∫

Ω

(a(x,y)− a0(x)) a j(x)dx, j ≥ 1. (6.63)

The term a0(x) is the mean-value of a(x,θ ) which we would use if we would
consider the problem as full deterministic. The terms a j(x) are usually the eigen-
vectors of a Hilbert-Schmidt operator, induced from the kernel of a covariance
operator. For non-trivial geometries, the computation of the eigenpairs of this
operator is not an easy task. For strategies in this direction, we can mention
Pezzuto, Simone and Quaglino, Alessio and Potse, Mark [2019].

In order to reduce the infinite dimensional stochastic problem to a finite one,
the series has to be trucated up to the order N , so that we obtain:

a(x,θ )≈ a0(x) +
N
∑

j=1

y j(θ )a j(x), (6.64)

Given the truncated distribution of a(x,θ ), we would like to obtain infor-
mation about the distribution of the solution u = u(x,θ ), like the mean-value
and the variance. To this aim, we must produce a sufficient amount of exper-
imental data. In particular, we must somehow fix a θ̄ to which correspond



89 6.14 Uncertainty Quantification

y1(θ̄ ), . . . yN (θ̄ ), i.e., N random numbers in [−0.5,0.5]. Then the PDE problem
can be solved and we obtain u = u(x, θ̄ ). We can repeat the process for varying
θk, for k = 1, . . . , M . Then, once we have computed a sufficiently large number
of experiments, we can recover the mean-value and the variance of u(x,θ ):

E[u(x)] =
1
M

M
∑

k=1

u(x,θk) (6.65)

Var[u(x)] =
1
M

M
∑

k=1

[E[u(x)]− u(x,θk)]
2 (6.66)

To reduce the overall computational cost, we can minimize the computational
time of a single simulation by means of an optimal solver, like the MMG that we
have presented. But we can also find smart strategies for reducing the number
of simulations required. We discuss this point in the next paragraph.

6.14.3 Multilevel Monte Carlo

The first natural approach for generating each θk is given by the Monte Carlo
method. We just need to produce, every time, N random numbers in the range
[−0.5,0.5]. This method converges with an error of order O(N−0.5), meaning
that we need to perform many numerical experiments to obtain convergence. It
is clear that, if solving a PDE is, in general, a demanding task, solving N PDEs
can be computationally overwhelming. The idea of quasi-Monte Carlo methods
is to accelerate such convergence with an error of the order O(N−1), so that a
reduced number of experiments is needed for getting the same level of error ob-
tained with the Monte Carlo method. For further reading about this topic, see
Trefethen, Lloyd N. [2017], Gilbert, Alexander D. and Graham, Ivan G. and Kuo,
Frances Y. and Scheichl, Robert and Sloan, Ian H. [2019]. In theory, this result
has not been achieved and instead the order of the error is given by O(log(N)/N).
However, in practice, the quasi-Monte Carlo method is much faster than its theo-
retical upper bound. Indeed, in contrast to Monte Carlo, it is purely deterministic.
Instead of creating a sequence of random numbers, a low discrepancy sequence
is built. Intuitively this means that, on average, the sequence of numbers is
equidistributed.

Even though quasi-Monte Carlo can solve a smaller amount of PDEs, every
experiment still consists of solving a large PDE. One can reduce the computational
burdern by means of a coarsening strategy. Instead of solving the same PDE on
the same mesh, we do few experiments on the fine mesh and we do many on
coarser meshes. This is the strategy of the so-called multi-level Monte Carlo. See
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Giles, Michael B. [2015]. As in multigrid methods, the convergence is ensured by
the usage of the experiments on the fine mesh, while the coarser ones are needed
for accelerating convergence. Nevertheless, such a strategy becomes impossible
if the fine mesh cannot be coarsened. A further generalization is given by the
multi-fidelity Monte Carlo methods. In this case, also low-fidelity models, which
do not provide a good approximation in terms of the error bounds, but still exhibit
high correlation with the finest model, can be used to accelerate convergence.
See Quaglino, A. and Pezzuto, S. and Krause, R. [2018].

As mentioned at the beginning of this section, for the solution of both the
finest and the coarsest models of a multi-level Monte Carlo or a multi-fidelity
Monte Carlo method applied to the dual formulation of the Signorini problem,
the MMG strategy presented in this thesis could be used. As it is clear, there are
two levels of multigrid that would be exploited. An external multigrid process
in the stochastic space (multi-level Monte Carlo) and an internal one for the
deterministic minimization problem (our proposed algorithm). Of course, if the
algorithms for the internal problems have the optimal convergence property, the
external process is beneficially affected and the overall performance is improved.



Chapter 7

The FOSLS case

In section 7.1 of this chapter we present a proof for the ellipticity of the bilinear
form related to the functional (4.5a). Since in the FOSLS formulation we seek
for both variables, u, and σ, and not just for one of the two like in the primal
or in the dual formulations, the ellipticity will be granted under certain condi-
tions of the coefficients γ and δ. In section 7.2, we introduce the generalized
Arnold-Falk-Winther smoother for the FOSLS formulation. In particular, we opt
for a monolithic approach like in Starke [1999], where the subspaces are meant
to capture local corrections for both u and σ. Thus we will expand the subspace
in Figure 6.9a so that also the displacement related to the internal node is consid-
ered. Even though the definition of the smoother is straightforward, in section
7.3 we will examine how the standard truncation of both the primal and dual
variables does not accelerate the convergence as expected.

7.1 Ellipticity for the FOSLS Signorini formulation

Let us consider the functional (4.5a). For the sake of simplicity, we can assume
that the unknowns satisfy homogeous boundary conditions. Indeed, we can write
u= u0 + vgD

and σ = σ0 +τgN
, where u0 ∈ U0, σ0 ∈ Σ0 and vgD

∈ UgD
, τgN

∈ Σt

are supposed to be known and to satisfy:

vgD
∈ UgD

vgD
|ΓC · n= 0 , (7.1a)

τgN
∈ Σt τgN

|ΓC = 0 . (7.1b)

91
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In this way, the functional in (4.5a) becomes:

J f (u0,σ0) =+ γ||Aσ0 − ε(u0)||2L2(Ω) + γ||AτgN
− ε(vgD

)||2L2(Ω)

+ 2γ(AτgN
− ε(vgD

),Aσ0 − ε(u0))L2(Ω)

+δ||divσ0||2L2(Ω) +δ||divτgN
+ f||2L2(Ω)

+ 2δ(divσ0, divτgN
+ f)2L2(Ω)

+ 〈σ0,n, u0,n〉ΓC − 〈σ0,n, g〉ΓC .

(7.2)

From this formulation, we can remove the constant terms, so that the functional
and the convex set are:

J f (u0,σ0) =+ γ||Aσ0 − ε(u0)||2L2(Ω) + 2γ(AτgN
− ε(vgD

),Aσ0 − ε(u0))L2(Ω)

+δ||divσ0||2L2(Ω) + 2δ(divσ0, divτgN
+ f)2L2(Ω)

+ 〈σ0,n, u0,n〉ΓC − 〈σ0,n, g〉ΓC ,
(7.3a)

K f ={(u0,σ0) ∈ U0 ×Σ0 : u0,n ≤ g, σ0,n ≤ 0, (σ0n)t = 0 on ΓC} . (7.3b)

All the corresponding bilinear and linear forms are continuous. However it is
necessary to show the ellipticity of the bilinear forms with respect to the following
norm:

‖(u,σ)‖ :=
Ç

‖σ‖2
Σ + ‖ε(u)‖

2
L2(Ω)

, (7.4)

as done in Cai, Zhiqiang and Starke, Gerhard [2004]. We notice that the bilinear
forms in (7.3a) are the same as the ones in (4.5a). Thus a proof regarding the
bilinear forms holds anyway for homogeneous or non homogenous boundary
conditions.

Theorem 7.1.1. For any (u,σ) ∈ K f , there exists C > 0 such that the inequality

‖σ‖2
Σ + ‖ε(u)‖

2
L2(Ω) ≤ C

�

γ||Aσ − ε(u)||2L2(Ω) +δ||divσ||2L2(Ω) + 〈σn, un〉ΓC
�

(7.5)

is fulfilled for

γ≥
��

2µ2 + 1
µ

�

�

5µ+ 16µC2
k

�

+ 2

�

δ ≥
�

4C2
k

µ
+ 1

�

C ≥ 2 .

(7.6)

where Ck is the Korn’s constant of Theorem 2.4.8.
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Proof. The proof is similar to the Theorem 3.1 in Cai, Zhiqiang and Starke, Ger-
hard [2004]. We will omit the L2(Ω) subscript when it is obvious from the con-
text. We also assume that σ and u satisfy homogeneous boundary conditions.

We start by add and subtract Aσ into the last norm of (7.4) and use triangle
and Young’s inequalities:

‖σ‖2 + ‖divσ‖2 + ‖ε(u)‖2 ≤‖σ‖2 + ‖divσ‖2 + 2‖ε(u)−Aσ‖2 + 2‖Aσ‖2

(7.7a)

≤
�

2µ2 + 1
2µ2

�

‖σ‖2 + ‖divσ‖2 + 2‖ε(u)−Aσ‖2

(7.7b)

≤
�

2µ2 + 1
µ

�

(Aσ,σ) + ‖divσ‖2 + 2‖ε(u)−Aσ‖2 ,

(7.7c)

where we use:

‖Aτ‖ ≤ 1
2µ
‖τ‖ , (7.8)

to get (7.7b) and :

(Aσ,σ)≥
1

2µ
‖σ‖2 (7.9)

to obtain (7.7c). Thus it is now sufficient to bound (Aσ,σ). We add and subtract
ε(u), exploit the Green’s formula (2.19) and the Cauchy-Schwarz inequality:

(Aσ,σ) = (Aσ − ε(u),σ) + (ε(u),σ) (7.10a)

= (Aσ − ε(u),σ) + (σ − 1
2

�

σ −σT
�

,∇u) (7.10b)

= (Aσ − ε(u),σ)− (divσ,u)−
1
2

�

σ −σT ,∇u
�

+

∫

∂Ω

σn · u (7.10c)

≤ ‖Aσ − ε(u)‖‖σ‖+ ‖divσ‖‖u‖+
1
2
‖σ −σT‖‖∇u‖+

∫

∂Ω

σn · u .

(7.10d)

In order to bound the second and third addenda, we take advantage of the fact
that the constitutive law bounds the symmetry condition, i.e., (3.35), and of the
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Korn’s inequality (2.35):

‖divσ‖‖u‖+
1
2
‖σ −σT‖‖∇u‖ ≤ ‖u‖H1(Ω)

�

‖divσ‖+
1
2
‖σ −σT‖

�

(7.11a)

≤ Ck‖ε(u)‖ (‖divσ‖+ 2µ‖Aσ − ε(u)‖) ,
(7.11b)

where Ck is the Korn’s constant. In this way, we can define:

H(σ,u) := ‖Aσ − ε(u)‖‖σ‖+ Ck‖ε(u)‖‖divσ‖+ 2µCk‖ε(u)‖‖Aσ − ε(u)‖
(7.12)

and obtain:

(Aσ,σ)≤ H(σ,u) +

∫

∂Ω

σn · u . (7.13)

We apply three times the Young’s inequality to (7.12), with parameters
α̃, β̃ , γ̃ > 0, collect the common terms and use (7.9):

H(σ,u)≤
�

1
4α̃
+
µCk

2γ̃

�

‖Aσ − ε(u)‖2 + α̃‖σ‖2+

+
�

Ckβ̃ + 2µCkγ̃
�

‖ε(u)‖2 +
Ck

4β̃
‖divσ‖2

(7.14a)

≤
�

1
4α̃
+
µCk

2γ̃

�

‖Aσ − ε(u)‖2 + 2µα̃(Aσ,σ)+

+
�

Ckβ̃ + 2µCkγ̃
�

‖ε(u)‖2 +
Ck

4β̃
‖divσ‖2 .

(7.14b)
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Now we can repeat the same argument of (7.7a), (7.7b), (7.7c)

H(σ,u)≤
�

1
4α̃
+
µCk

2γ̃
+ 2

�

Ckβ̃ + 2µCkγ̃
�

�

‖Aσ − ε(u)‖2 + 2µα̃(Aσ,σ)+

+ 2
�

Ckβ̃ + 2µCkγ̃
�

‖Aσ‖2 +
Ck

4β̃
‖divσ‖2

(7.15a)

≤
�

1
4α̃
+
µCk

2γ̃
+ 2Ckβ̃ + 4µCkγ̃

�

‖Aσ − ε(u)‖2 + 2µα̃(Aσ,σ)+

+

�

Ckβ̃

2µ2
+

Ckγ̃

µ

�

‖σ‖2 +
Ck

4β̃
‖divσ‖2

(7.15b)

≤
�

1
4α̃
+
µCk

2γ̃
+ 2Ckβ̃ + 4µCkγ̃

�

‖Aσ − ε(u)‖2+

+

�

2µα̃+
Ckβ̃

µ
+ 2Ckγ̃

�

(Aσ,σ) +
Ck

4β̃
‖divσ‖2 .

(7.15c)

Now by letting α̃=
1

8µ
, β̃ =

µ

8Ck
, γ̃=

1
16Ck

, it follows that:

�

2µα̃+
Ckβ̃

µ
+ 2Ckγ̃

�

=
1
2

, (7.16)
�

1
4α̃
+
µCk

2γ̃
+ 2Ckβ̃ + 4µCkγ̃

�

=
5
2
µ+ 8µC2

k , (7.17)

Ck

4β̃
=

2C2
k

µ
. (7.18)

Thus:

1
2
(Aσ,σ)≤

�

5
2
µ+ 8µC2

k

�

‖Aσ − ε(u)‖2 +
2C2

k

µ
‖divσ‖2 +

∫

∂Ω

σn · u , (7.19)
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a result which can be finally used in (7.7c):

‖σ‖2 + ‖divσ‖2 + ‖ε(u)‖2 ≤
�

2µ2 + 1
µ

�

(Aσ,σ) + ‖divσ‖2 + 2‖ε(u)−Aσ‖2

(7.20)

≤+
��

2µ2 + 1
µ

�

�

5µ+ 16µC2
k

�

+ 2

�

‖Aσ − ε(u)‖2+

(7.21)

+

�

4C2
k

µ
+ 1

�

‖divσ‖2+ (7.22)

+ 2

∫

∂Ω

σn · u (7.23)

The integral
∫

∂Ω
σn · u can be splitted into the integrals on ΓC , ΓD, ΓN . Since σ

and u satisfy homogenous boundary conditions, the integral boils down to the
one on ΓC . Then we use the frictionless contact condition (4.1d):

∫

∂Ω

(σ · n) · u=
∫

ΓC

(σ · n) · u+
∫

ΓD

(σ · n) · u+
∫

ΓN

(σ · n) · u (7.24a)

=

∫

ΓC

(σ · n) · u (7.24b)

=

∫

ΓC

(σ · n)nn · u (7.24c)

=〈σn, un〉ΓC (7.24d)

Therefore (7.6) follows.

Remark 7.1.1. The condition (7.6) derives from the fact that the only bilinear forms
have to be elliptic on the convex set. However, the non-negativity of the complemen-
tarity term depends also on the linear form in which the gap function g appears.
Thus, even though on the convex set the functional is non-negative for any positive
choice of γ and δ, the same cannot be guaranteed for the bilinear forms alone. To
obtain ellipticity, the weights of the FOSLS functional have to be chosen carefully.
As it is clear from (7.6) the constants γ and δ depend on the Korn’s constant Ck

and on µ. The former is known for simple problems, but in general is difficult to
compute exactly, even though it can be approximated. On the other hand, γ and δ
are at least independent of λ.
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formulation

Remark 7.1.2. In the FOSLS formulation, the displacement and the stress are both
main variables. On the other hand, in the primal and the dual formulations, the
stress and the displacement are respectively Lagrange multipliers. For this reason,
the complementarity term is not involved in any bilinear form but, at least in the
dual formulation, is just represented by the linear form with the gap function g.
Consequently, there are no problems of ellipticity regarding this term.

To avoid problems concerning its ellipticity, the complementarity term could be
enforced directly into the convex set K f , but then the constraints would be non-
linear. Therefore it is still more practical to consider the augmented functional J f

and then find a way to correctly choose γ and δ.

7.2 The generalized Arnold-Falk-Winther smoother for
the FOSLS formulation

In a monolithic approach like the one used in Starke [1999], the Arnold-Falk-
Winther smoother for the FOSLS formulation defines the subspaces to capture
local corrections for both u and σ. There are no restrictions in terms of the
dofs for the stress σ, except for the fact divergence-free components must be
captured. Thus between Figure 6.9a and Figure 6.9b, we can opt for the first
choice, which introduces the smallest subspace for σ. However, since we want
to tackle at the same time also the displacement u, the same subspace has to be
enriched. With the same philosophy, we would like to introduce the minimum
number of displacement dofs and this is why the only displacement dofs related
to the internal node are considered. Therefore, the monolithic patch subspace
can be defined by considering all dofs corresponding to the internal components
for RT0 and to the internal node for P1, as in Figure 7.1. The same argument
holds also for d = 3, if the patch is built on a node. Otherwise, if the patch is
built on an edge like in Figure 6.8b, all the displacement dofs related to the two
nodes on the internal edge must belong to the local subspace.

Once the subspace of Figure 7.1 is defined, then a local non-linear problem
has to be solved. Since the dimension of the subspace is relatively small, we
can compute corrections for both u and σ by using an active-set strategy. In
this regard, we mention Algorithm 1. Typically few iterations of the method are
necessary for its convergence. In particular, if the local set of active dofs is the
exact one, then just a local linear problem has to be solved.
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RT0 σh dofs

P1 uh dofs

Figure 7.1. FOSLS patch subspace.

7.3 Numerical Experiments with the Arnold-Falk-
Winther smoother

In the following numerical experiments, the material is chosen to be incompress-
ible, so that λ =∞, which is the problematic case for the primal formulation.
For simplicity, we opt also for µ = 1. Furthermore, after the FE discretization,
we obtain a linear system of the type:

Ahyh = fh , (7.25)

where Ah and fh are the discretized bilinear and linear forms related to the func-
tional (4.5a), while yh is the vector of the coefficients of [uh,σh]T . In order
to take into consideration the boundary conditions, Ah and fh are also modified
accordingly. Then we define the residual of the problem as:

rh = fh −Ahyh . (7.26)

The MMG applied to the formulation in FOSLS linear elasticity framework
works for standard linear elasticity problems, where the Neumann and the
Dirichlet boundaries are strictly separated on both the fine and the coarse levels.
This is not the case for the Signorini problem, even when it boils down to a linear
problem. If we already know which dofs are effectively active on ΓC , the contact
boundary reduces to portions of Dirichlet and Neumann boundaries, at least for
the normal components of the stress and displacement. However, it can happen
that on the coarse levels the separation between the two kinds of boundaries is
not strict.

For example, let us consider the linear problem of Figure 7.2, where a coarse
mesh of two triangles on level j = 0 is refined, using a bisection algorithm, up to
level J = 6. On the finest mesh, all Neumann and Dirichlet boundary conditions
are zero except for a uniform negative vertical displacement set on the top. The
boundary conditions are defined on different elements on the fine mesh of Figure
7.2a, but they intersect on the coarse level j = 5 of Figure 7.2b, meaning that
there exists a coarse element where both ΓD and ΓN are present.
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We have discovered that the MMG method is very sensitive to truncations
that involve both the primal and the dual variables. The convergence property
of MMG can be very poor if standard truncation techniques are used. In this case,
the truncation is carried out like in Figure 7.3a. All dofs related to uh andσh, that
must satisfy boundary conditions, are truncated. Then, in Figure 7.4a, we see
that after an initial decrease, the residual is almost constant. This happens for
a multilevel algorithm with levels j = 0, . . . , J , but also for a two levels method,
where the fine problem is on level J = 6 and the coarsest one is on level J − 1.
This means that the coarse correction is too restrictive and thus the effect of
truncation is too drastic.

Then we can imagine to partially truncate the displacement uh or the stress
σh. The overall truncation is standard except for the portions of the coarse
boundary where ΓD and ΓN intersect. In particular, for the partial truncation
of uh, we do not truncate the only fine displacement dofs uh which belong to a
coarse face where ΓD and ΓN intersect. See Figure 7.3b. On the other hand, for
the partial truncation ofσh, we do not truncate the only fine stress dofsσh which
belong to a coarse face where ΓD and ΓN intersect. See Figure 7.3c.

We see that for a multilevel strategy applied to the case of Figure 7.3b, the
MMG behaviour does not differ from the standard truncation argument: Figure
7.4a and Figure 7.4b are very similar. For the truncation of Figure 7.3c, the
results in 7.4c are more promising, at least for few levels. Since the problem is
linear, the truncation is applied only at the fine level and no monotone restriction
is necessary. Thus all the coarse levels are influenced by the only truncation at
the fine level since no other truncation occurs. Then the interpolation operators
between all the other levels do not change. So we would expect that, if the fine
truncation positively influences the coarse corrections from level j = 5, the same
will happen for the ones coming from j = 0, . . . , 4 as well. Unfortunately, this
happens only up to level j = 4, and, for all other scenarios, the behavior is still
close to the one of Figure 7.4a. This fact suggests that somehow, even the partial
truncation is truncating too much the stress components on the coarsest levels.

It is still not known the real root of this weird behavior of the truncation, but
we can affirm that:

• the order of the Raviart-Thomas space does not directly influence the MMG
method: if we use Σh = RT1 instead of Σh = RT0, the overall performance
of the MMG method is poor as the one in Figure 7.4a;

• the problem is linear, no monotone restriction is used and the cause of an
eventual bad convergence rate has to be found elsewhere;
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ΓD

ΓN ΓN

ΓN ΓD ΓN

(a) Fine mesh at level J = 6.

ΓD

ΓN ΓN

ΓN ΓD ΓN

(b) Coarse mesh at level J − 1= 5.

Figure 7.2. In the fine mesh (a) ΓD and ΓN are separated boundaries, while on
the coarse mesh (b) ΓD and ΓN intersect on the same elements.

• if ΓD and ΓN do intersect on the coarser levels, then

– the standard truncation does not work;

– the standard truncation works better if boundary conditions on the
stress at the bottom face are enforced weakly as in (3.38) with a
small parameter ξ, but, when it increases, the convergence still dete-
riorates;

– the partial truncation of uh does not work;

– the partial truncation of σh sometimes works as in Figure 7.3c;

In conclusion, the main difficulty is connected to the simultaneous presence
of essential boundary conditions for both the displacement and the stress on the
coarser levels. In particular, the problem is connected to the coarse representa-
tion of the stress variable in the case of mixed boundary conditions. We can say
that to fully represent the coarse divergence-free components, we need all the
fine Raviart-Thomas shape functions. But, if some fine Raviart-Thomas shape
functions are truncated, this is not possible anymore. Then, from the MMG per-
spective, we should truncate, but from the Hdiv smoother point of view, we should
not.
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Trucated σh dofs

Truncated uh dofs

ΓD

ΓN ΓN

ΓN ΓD ΓN

(a) Standard truncation.

ΓD

ΓN ΓN

ΓN ΓD ΓN

(b) Partial truncation in u.

ΓD

ΓN ΓN

ΓN ΓD ΓN

(c) Partial truncation in σ.

Figure 7.3. Different truncation choices for the dofs in beteewn ΓD and ΓN .
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(a) Standard truncation.
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(b) Partial truncation in u.
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(c) Partial truncation in σ.

NCoarse = 290
NCoarse = 162
NCoarse = 82
NCoarse = 50
NCoarse = 26
NCoarse = 18

Figure 7.4. log10 of the Euclidean norm of the residual for the MMG applied
to the FOSLS formulation for the problem in Figure 7.2. Parameters: µ = 1,
λ =∞, number of smoothing steps = 5, NFine = 578. We do 1000 smoothing
steps on the coarsest level.
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7.4 The generalized Hiptmair smoother for the FOSLS
case

In section 7.3, we have discovered that, whenever ΓD and ΓN share the same
element on the coarser levels, the MMG method has a bad convergence behavior.
In particular, due to the MMG method, we should truncate all the fine shape
functions related to the active dofs. But in this way, it is not possible to represent
the coarse divergence-free components that belong to the portion of the coarse
boundary where ΓD and ΓN intersect and consequently the coarse correction is
negatively affected.

With respect to the Arnold-Falk-Winther smoother, a different way to tackle
the divergence-free components is by means of the Hiptmair’s smoother of sec-
tion 6.12. However, as we have noticed, the issue resides not in the smoother, but
in the truncation process. So it is not sufficient to change the type of smoother.
Nevertheless, we could take advantage of the idea of computing corrections in
the potential space. In particular, we could do a standard V-cycle on the main
variables uh and σh and then do a full V-cycle on the potential variable ψh of
equation (6.58). The standard Hiptmair’s smoother damps, on each level, the
divergence-free components related to σh right afterward a pointwise Gauss-
Seidel onσh. In our case, we would take care of the divergence-free components
in an appropriate V-cycle, where truncation would be carried out directly on the
potential variable. Nonetheless, even in this case, the method does not converge
properly.



Chapter 8

The dual case

In the previous chapter, we have discovered that the FOSLS formulation is not
suited for truncation. The presence of essential boundary conditions for both the
primal and the dual variables makes the truncation process difficult to handle.
For this reason, in this chapter we examine the dual formulation, that enforces
essential boundary conditions only on the stress variable. Therefore, we can
assume truncation of the basis would work as in the primal case.

In section 8.1, we first introduce well known approaches for solving saddle
point problems: the Schur complement and the Uzawa’s methods. Since both
require to invert a single-block matrix, they are not suited for the solution of the
discrete problem (5.52) in the incompressible limit. For this reason, in section
8.2 local monolithic subspaces for the Arnold-Falk-Winther smoother are intro-
duced. In order to satisfy the constraints, rigid body motions have to be permit-
ted. However, in this way, the local constraints are linear dependent. In sections
8.3 and 8.4, two strategies for solving this issue are examined. Unfortunately,
both approaches are not satisfactory. For this reason, the subspace patch is en-
larged so that the local constraints are not satisfied exactly. The results in section
8.5 suggests that this direction is more promising. In particular, as shown section
8.6, this smoother makes the MMG method with standard truncation convergent
for the problem of Figure 7.2. Nevertheless, it is desirable to reduce the effect
of the constraints outside the patch, that cannot be satisfied. For this reason, in
section 8.7 the same local problem is modified so that boundary stress dofs are
damped. In 8.8 the connection between damping and local Robin conditions is
studied. Then the MMG with damping is examined for both the linear case, in
section 8.9, and the Signorini case, in section 8.10. Two-levels and multilevels
cases are compared as well. Finally, since all the results depend on the local
Robin parameter, in section 8.11 some strategies for its automatic computation
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are proposed.

8.1 The Schur complement method and the Uzawa’s
method

Let us consider the discrete problem (5.52). For the sake of simplcity, we can
assume for the moment ΓC = ;, so that the problem (5.52) boils down to a linear
one. Thus, in (6.5), we are enforcing either (lh)i = (uh)i for the boundary condi-
tions or (lh)i = −∞ and (uh)i = +∞. In order to simplify the notation, we will
assume the boundary conditions to be full Dirichlet or to be directly enforced in
the linear system, so that Ah and Bh are modified accordingly. Then we obtain:

�

Ah BT
h

Bh 0

��

yh

zh

�

=

�

fh

hh

�

. (8.1)

We can also define the residuals corresponding to the whole system, to its first
and to its second components:

r :=

�

fh

hh

�

−
�

Ah BT
h

Bh 0

��

yh

zh

�

, (8.2a)

ra := fh −Ahyh −BT
h zh , (8.2b)

rb := hh −Bhyh . (8.2c)

Different are the methods for solving this kind of problem. See Braess, Diet-
rich [2007]. The most known are for sure the Schur complement technique and
Uzawa’s method. The first one is a staggered approach, meaning that we first
solve for zh and then for yh. We rearrange the system (8.1) so that yh is written
explicitly in the first equation and substituted in the second one:

¨

Ahyh = (fh −BT
h zh)

Bhyh = hh

⇒

¨

yh = A−1
h (fh −BT

h zh)

BhA−1
h BT

h zh = BhA−1
h fh − hh

, (8.3)

obtaining Algorithm 7.
The matrix BhA−1

h BT
h , called the Schur complement, has to be inverted in the

first equation, in order to get zh. Once zh is known, yh can be found from the
second equation, by inverting Ah. For large systems, the matrices BhA−1

h Bh
T and

Ah can not be inverted directly and iterative solvers must be used. In particular,
to compute (BhA−1

h BT
h )
−1, the inverse matrix A−1

h must be known. Therefore two
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Algorithm 7: Schur’s complement algorithm
Result: yh, zh

Input: fh,hh

Solve zh← (BhA−1
h BT

h )
−1(BhA−1

h fh − hh)
Solve yh← A−1

h (fh −BT
h zh)

levels of iterations will be required: one inner iteration for inverting Ah and an
outer one for inverting the whole Schur complement.

On the other hand, Uzawa’s method is monolithic, meaning that we solve
contemporarily for both yh and zh. The saddle point system (8.1) is solved iter-
atively like in Algorithm 8. As we can see, both approaches require at least to

Algorithm 8: Uzawa’s algorithm
Result: yh, zh

Input: z0
h ∈ R

m, Kmax, tol
y0

h = A−1
h (fh −BT

h z0
h)

r0
h =

�

fh −Ahy0
h −BT

h z0
h, hh −Bhy0

h

�T

k← 0
while k < Kmax or ‖rk

h‖> tol do
qk

h = hh −Bhyk
h

pk
h = BT

h qk
h

sk
h = A−1

h pk
h

αk =
qk

h
T
qk

h

pk
h

T
sk

h
zk+1

h = zk
h −αkq

k
h

yk+1
h = yk

h +αks
k
h

k← k+ 1
rk

h =
�

fh −Ahyk
h −BT

h zk
h, hh −Bhyk

h

�T

end
yh← yk

h
zh← zk

h

invert the block Ah. Unfortunately, such block is not always well posed. Indeed
Ah is the discretization of the bilinear form (Aσ,σ)L2(Ω. We remind the reader
the definition of Aσ:

Aσ :=
1

2µ

�

σ −
λ

λ+ 2µ
tr(σ)I

�

, (8.4)
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where, for λ→∞, it reduces to:

lim
λ→∞

Aσ = 1
2µ
[σ − tr(σ)I] . (8.5)

It is easy to verify that, in the incompressible limit, the kernel of A is the set of
all tensors which are a multiple of the identity matrix I:

• In 2D:

Ker
�

lim
λ→∞

A
�

= {σ : σx x = σy y , σx y = σy x = 0} (8.6)

= {σ : σ = αI, α ∈ R} (8.7)

• In 3D:

Ker
�

lim
λ→∞

A
�

= {σ : σx x = σy y = σzz,

σx y = σy x = σxz = σzx = σyz = σz y = 0}
= {σ : σ = αI, α ∈ R} (8.8)

So, for incompressible materials, but even for large Lamè parameter λ, the dis-
cretized matrix Ah can be only symmetric semi-positive definite. Therefore it
cannot be inverted with standard techniques. In addition, the dimension of its
kernel increases with its dimension n.

The fulfillment of the discrete LBB conditions (5.53) makes the whole system
(8.1) solvable, but there is no guarantee on the invertibility of the single block
Ah. The same argument applies for the problem (8.1) represented on smaller
subspaces, like the ones in Figure 6.9c, Figure 6.9d and Figure 6.9e. This is the
reason for considering a monolithic, and not a staggered, version of the Arnold-
Falk-Winther smoother of section 6.13. The main unknown yh, related to the
variable σh, and the Lagrange multiplier zh, related to [uh,θ h]T , need to belong
to the same subspace, so that the local system is invertible. Let us consider the
local i-th subspace on level j. On level j the current iterate is given by y j and z j,
with right-hand side f j and h j. Then we define:

A j,i := ΠT
j,iA jΠ j,i , (8.9a)

B j,i := QT
j,iB jΠ j,i , (8.9b)

f j,i := ΠT
j,i(f j −A jy j) , (8.9c)

h j,i := QT
j,i(h j −B jz j) , (8.9d)
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where A j,i ∈ Rn j,i ,n j,i and B j,i ∈ Rm j,i ,n j,i . See section 6.6 for the definitions of the
other operators. The local correction y j,i ∈ Rn j,i and z j,i ∈ Rm j,i can be computed
by solving the following system:

�

A j,i BT
j,i

B j,i 0

��

y j,i

z j,i

�

=

�

f j,i

h j,i

�

. (8.10)

However, as we will discover, the choice of the subspace is not trivial and will
require special care. Fortunately, with respect to the MMG method for the FOSLS
formulation of section 7.3, the truncation will not be problematic, since the only
essential boundary condition is given by the stress variable. From now on the
discussion will concern the 2D case.

8.2 The Arnold-Falk-Winther smoother for the dual for-
mulation

In Figure 6.9c is given the minimum required RT1 dofs on the patch subspace,
to tackle divergence-free components of the error. On the other hand, in Figure
6.9e, all the dofs on the patch are represented. In between the two figures,
we can consider Figure 6.9d where the internal momentum dofs are added to
the internal dofs of Figure 6.9c. In this way, it would not be necessary to damp
separately the error related to those components. Due to the discussion in section
8.1, in addition to σh, the Lagrange multipliers uh and θh have to be considered
as well. Then, the subspace of the patch is enriched as in Figure 8.1. Since only
internal dofs of σh are present, all the corresponding constraints, enforced by
means of the associated Lagrange multipliers, live inside the patch and can be
fulfilled.

RT1 σh dofs

DP1 uh dofs

P1 θh dofs

Figure 8.1. Subspace referred to a patch without considering RT1 dofs on the
border.
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Neglecting the σh dofs on the boundary is equivalent to enforce local homo-
geneous Neumann boundary conditions. In linear elasticity, a body that on the
boundary is subject only to external forces, can freely translate and rotate. For
d = 2 the rigid body motions are three in total, given by two translations and
one rotation, while for d = 3 there are three rotations and three translations.
Focusing on the case d = 2 with only Neumann boundary conditions, we would
expect a local system that can be solved only up to the rigid body motions. In the
saddle point problem (8.10) related to the subspace of Figure 8.1, such property
shows up in the linear dependency of the constraints. Indeed the local matrix
B j,i ∈ Rm j,i×n j ,i has not full rank if m j,i > n j,i. In particular, if free rigid body mo-
tions are permitted, it should happen that m j,i = n j,i + 3. However, this is not al-
ways the case. In Figure 8.2, we notice that for a single element, n j,i = 4, m j,i = 9
and m j,i − n j,i = 5. For two elements, n j,i = 12, m j,i = 16 and m j,i − n j,i = 4.
Finally, for three elements n j,i = 20, m j,i = 23 and m j,i − n j,i = 3. Thus a patch
of the kind of Figure 8.1 needs to be built at least on three elements. Otherwise
the local matrix B j,i of the problem (8.10) has too many linear dependent rows,
even if we accept free rigid body motions.

Up to now, we have considered, as patches related to a node, the set of el-
ements that share that node. For fine enough meshes, the patches, that do not
have the internal node on the boundary, have always at least three triangles.
However, on the border, no matter how fine the mesh is, a patch can consist of
only one or two elements. Since this is the situation we want to avoid, we must
generalize our definition of patch. For a patch related to the node ν1, we do the
following

• if it consists of at least three elements, then it is accepted;

• otherwise, we add all the elements of the patch related to the node ν2,
where ν2 6= ν1 and ν2 belongs to one of the element of the patch; if the new
patch does not have at least three elements, the procedure is repeated for
another node ν3 of the new patch, with ν3 6= ν2,ν1, until the patch consists
of three elements; see Figure 8.3 for an example of this procedure.

In the case of patches built on the Dirichlet boundary, it could be not necessary
to enrich the local patch. Indeed, one or two elements could have enough σh

dofs. Nevertheless, since it cannot be known in advance if it is necessary or not,
it is easier to extend the above argument for enriching the patches to all patches
of the mesh.
Once the enlarged patches have been defined, the local problem can not sill
be solved, because rigid body motions are allowed. To overcome this difficulty,
different are the strategies we could think of:
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Legend dofs Subspace # # # # +

RT1 σh

DP1 uh

P1 θh

4 6 3 9

12 12 4 16

20 18 5 23

Figure 8.2. The table shows how many dofs are related to the unknowns σh and
how many to the Lagrange multipliers uh and θh. For full Neumann boundary
conditions, only rigid body motions should be allowed, so the difference of
Lagrange multiplier and stress dofs should be equal to 3. This happens if we
consider a patch of at least 3 elements, where we do have #dofs(uh + θh) = 23
and #dofs(σh) = 20 and #dofs(uh + θh)−#dofs(σh) = 3.
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1. Removing rigid body motions from the local system, not considering the
dofs related to one displacement, in both directions, and one rotation; of
course, on a single patch, many combinations can be taken into consider-
ation. See section 8.3.

2. Solving the system up to rigid body motions, searching for the local dis-
placement and rotation which have zero-average on the patch. See section
8.4.

3. Enriching the patch by adding also the stress boundary dofs. See section
8.5.

(a) Starting patch. (b) Enlarged patch. (c) Enlarged patch.

Patch ν1

Patch ν2

Figure 8.3. Starting from the patch built on the node ν1 of Figure 8.3a, we can
have two possible enlarged patches, Figure 8.3b or Figure 8.3c, depending on
the choice of ν2.

8.3 Removal of one displacement and one rotation

Let us examine Cook’s membrane problem, which is represented in Figure 8.4.
In figure 8.5, we represent the case in which, from the subspace of Figure 8.1, a
rotation and a displacement dofs are removed. Since, on a given patch, many are
the rotation and displacement dofs, as many combinations of removal of dofs can
be made. For simplicity, after having locally numbered all the dofs, the first two
components of the displacement and the last rotation of the patch are removed.
The result of this specific case is represented in Figure 8.6, where the definition
of the residual is given in (8.2). However, no matter how the removal process of
the dofs is realized, a divergent smoother is recovered. Even for a simple small
problem of pure rigid translation, the method, even though it is not divergent,
oscillates and does not converge.
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σn= hσn= 0

σ
n=

0
u

D
=

0

λ, µ

44

60

48x

y

Figure 8.4. Cook’s membrane problem.

Figure 8.5. Examples of patch built on the boundary where the displacement
and rotation dofs related to a given node are removed from the subspace.
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Figure 8.6. log10 of the Euclidean norm of the residual for the Arnold-Falk-
Winther smoother applied to dual formulation with subspaces of the type of
Figure 8.5 for the Cook’s problem in Figure 8.4.
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8.4 Enforcing zero-average multipliers

For enlarged patches, the system is solvable up to rigid body motions. A strategy
to make the system solvable is to enforce that the local displacement and the
local rotation have zero-average on the patch. For d = 2:

∫

Patch

uh,x = 0 ,

∫

Patch

uh,y = 0 ,

∫

Patch

θh = 0 , (8.11)

where we denote the first and second components of uh by uh,x and uh,y , while
the rotation θh is a scalar quantity. It is clear that the test function is the function
which is constant on the whole patch. So the same expressions can be assembled
globally into three vectors, from which it is possible to extract the local vectors
related to the only dofs on the patch:

∫

Ω

uh,x 1= 0 ,

∫

Ω

uh,y 1= 0 ,

∫

Ω

θh 1= 0 . (8.12)

By applying the Arnold-Falk-Winther smoother which locally enforces (8.11)
to the Cook’s problem of Figure 8.4, we obtain the results in Figure 8.7. In the
first iterations, the norm of the residual increases. Then it starts to decrease rel-
atively fast and, after some iterations, very slowly. It is clear that the norm ‖r‖
is governed by ‖rb‖, since ‖rb‖ � ‖ra‖. So, by adding the condition (8.11) the
system is now solvable, but the constraints are not properly captured. It is not
true that locally the solution must satisfy the zero-average condition for the dis-
placement and the rotation. This is just a trick to make the local system solvable,
but it also suggests that the choice of the subspace is not optimal. Besides, the
most important iterations of a smoother are the initial ones. But here we see that
many iterations are required to have a decrease in the residual. For this reason,
another strategy is necessary.

8.5 Patch enriched with stress dofs on the boundary
patch

The subspace of Figure 8.1 gives rise to a local system that allows for rigid body
motions, but which, in principle, satisfies all the constraints belonging to the
patch. In order to make the system (8.10) solvable, on one hand, in section 8.3
it is required to neglect some of these constraints, by removing one rotation and
one displacement. On the other hand, the idea of section 8.4 is to consider all the
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Figure 8.7. log10 of the Euclidean norm of the residual for the Arnold-Falk-
Winther smoother applied to the dual formulation for the Cook’s problem
in Figure 8.4. Locally (8.11) is enforced. Parameters: µ = 1, λ = 1,
number of smoothing steps= 100.

RT1 σh

DP1 uh

P1 θh

DP1 uh unused

P1 θh unused

Figure 8.8. Subspace referred to a patch considering RT1 dofs on the border.
All the constraints outside the patch, related to the orange and cyan dofs, are
unused but should somehow influence the local solution, since they communi-
cate with the RT1 dofs on the border.
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Figure 8.9. log10 of the Euclidean norm of the residual for the Arnold-Falk-
Winther smoother applied to dual formulation for the Cook’s problem in Figure
8.4. The patch is extended as in Figure 8.8. Parameters: Ndofs = 4089, µ = 1,
λ= 1, number of smoothing steps= 100.

constraints plus the zero-average constraints for the rotation and the displace-
ment. Therefore none of the two strategies can solve (8.10) on the subspace of
Figure 8.1 without some modifications of the constraints.

The main issue derives from the choice of the stress dofs, which are not
enough to avoid rigid body motions. Therefore, we now enrich the subspace
of Figure 8.1 by considering also σh dofs on the boundary patch. The full Neu-
mann problem of Figure 8.1 is transformed into the full Dirichlet problem of
Figure 8.8. All the constraints, corresponding to displacement (orange triangles)
and rotation (cyan circles) dofs outside the patch but communicating with theσh

dofs on the border, cannot be fulfilled. Hence ‖rb‖ can be expected sometimes
to increase after the addition, to the current solution, of the local correction.
Nevertheless, since the patches overlap and communicate with each other, it is
important the behavior of the residual, not after single local corrections, but after
a whole smoothing step. In particular, in Figure 8.9, we can notice that the norm
of the residual is decreasing after each smoothing step. In contrast to Figure 8.7,
now log10 ‖r‖ is decreasing monotonically with a much better rate of the decay.
This fact suggests that the enrichment of the boundary σh dofs is the strategy to
focus on. We will generalize the smoother proposed here in section 8.7. But first,
we would like to check if the problem of Figure 7.2 can be easily solved by means
of the MMG method applied to the dual formulation, with standard truncation
techniques and with the smoother presented here.
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8.6 Standard truncation works for the dual formulation

In section 7.3 the problem of Figure 7.2 has been investigated. It is known that
standard truncation works in the primal case, but we have shown that many dif-
ficulties can arise for the FOSLS formulation. In this section, we show that the
primal and the dual formulations behave similarly in terms of truncation if it is
adopted a smoother with local subspaces like the ones in Figure 8.8. Indeed us-
ing the MMG method for the dual formulation applied to the problem of Figure
7.2, we get the results of Figure 8.10. It is clear that, even for the multilevel
case, the MMG method does not have any problems due to the truncation. This
is true even in the incompressible limit, λ→∞. This fact strengthens the idea
that the truncation in the FOSLS formulation is problematic for the simultane-
ous presence of essential boundary conditions for both the primal and the dual
variables.

2 4 6 8 10
−9

−8

−7

−6

−5

−4

−3

−2

Iterations

NCoarse = 1097
NCoarse = 569
NCoarse = 285
NCoarse = 153
NCoarse = 77
NCoarse = 44

Figure 8.10. log10 of the Euclidean norm of the residual for the MMG applied
to the dual formulation for the problem in Figure 7.2. Parameters: µ = 1,
λ=∞, number of smoothing steps= 5, Nfine = 2193.

8.7 Damping of the stress boundary dofs (Robin condi-
tions)

Among the choices examined so far, the best performance of the smoother, which
also fits the MMG method with truncation, is given for a patch subspace which
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tackles also the boundary dofs of the stress. Nevertheless, in this way, all the con-
straints outside the patch cannot be fulfilled, since the corresponding Lagrange
multipliers are neglected from the system to be solved. For this reason, it could
be profitable to damp the components of the local correction related to stress
boundary dofs: the constraints outside the patch would be violated in a minor
way and maybe the convergence could be beneficially affected. The easier way
to obtain this penalization is by adding to A j,i in (8.10) a semi-positive definite
diagonal matrix that is non-zero only in the positions related to stress bound-
ary dofs. The new system is not arbitrary and unrelated to the original one, but
instead can be interpreted as an average between the cases of Figure 8.1 and
Figure 8.8.

By keeping in mind that we are always referring to a local system, the prob-
lem (8.10) can be rewritten in a simpler form by removing the indices of the
level j and of the subspace i. The local dofs of y j,i can be decomposed into the
internal and boundary dofs. Thus we obtain the local vectors yint and yext for the
correction and fint and fext for the right-hand side. All other local quantities will
be denoted with the subscript “loc”. The full Dirichlet problem related to Figure
8.8 becomes:





Aext,ext AT
int,ext BT

int,ext

Aint,ext Aint,int BT
int,int

Bint,ext Bint,int 0









yext

yint

zloc



=





fext

fint

hloc



 , (8.13)

while the full Neumann problem of Figure 8.1 is:




I 0 0
0 Aint,int BT

int,int

0 Bint,int 0









yext

yint

zloc



=





0
fint

hloc



 . (8.14)

Since the boundary conditions of (8.14) are homogeneous, the problem (8.14)
is also equivalent to the following linear system:





G(α) 0 0
0 Aint,int BT

int,int

0 Bint,int 0









yext

yint

zloc



=





0
fint

hloc



 , (8.15)

where, given the positive scalar α > 0, G(α) is a positive definite diagonal matrix
defined in the following way:

Gp,q(α) =

(

αmax
s

max
�

|(Aext,ext)p,s|, |(AT
int,ext)p,s|, |(BT

int,ext)p,s|
�

p = q

0 p 6= q
. (8.16)
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As already mentioned, the system (8.15) is not well-posed. However, we can
create a system as the average of (8.15) and (8.13). In particular, in (8.15) the
system is decoupled: yext and [yint,zloc]T are independent. For this reason, we
can leave the homogeneous boundary conditions as they are and multiply the
remaining part of the system by a scalar ε. Due to the decoupling, the system is
still equivalent for any ε > 0. Thus we can sum up the modified problem (8.15)
and (8.13), make ε tend to zero and get the following solvable system:





Aext,ext +G(α) AT
int,ext BT

int,ext

Aint,ext Aint,int BT
int,int

Bint,ext Bint,int 0









yext

yint

zloc



=





fext

fint

hloc



 . (8.17)

The new subspace is represented in Figure 8.11.

RT1 σh

RT1 σh damped

DP1 uh

P1 θh

Figure 8.11. Subspace referred to a patch considering damped RT1 dofs on the
border.

8.8 Discrete Robin conditions

In section 8.7, a local system that damps the boundary stress dofs of the patch
has been introduced as the average of the full Dirichlet and the full Neumann ap-
proaches. Intuitively, in the new problem, discrete Robin conditions are enforced.
The choice of using Robin, instead of Dirichlet or Neumann boundary condi-
tions, in a domain decomposition approach, has been proved to be an efficient
choice. See Efstathiou, Evridiki and Gander, Martin J. [2003], Gander, Martin
Jakob [2008], Gander, Martin J. and Halpern, Laurence and Magoules, Frédéric
[2007], Gander, Martin and Halpern, Laurence and Magoulès, Frédéric and
Roux, François-Xavier [2007], St-Cyr, Amik and Gander, Martin J. and Thomas,
Stephen J. [2007], Gander, Martin J. and Vanzan, Tommaso [2019].
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Since boundary conditions are usually imposed at a continuous level and then
discretized, it is interesting to understand if the local discrete boundary condi-
tions in (8.17) can be somehow related to the discrete or the continuous Robin
boundary conditions. For the sake of simplicity, the standard Poisson problem
will be examined. Since this digression is based on the computation of local cor-
rections that have homogeneous boundary conditions, homogeneous boundary
conditions will be assumed in the following.

8.8.1 Discrete Robin conditions for the primal formulation

Let u1, u2, u3 ∈ H1(Ω), f ∈ H−1(Ω). Let us consider the full Dirichlet Poisson
problem:

−∆u1 = f onΩ ,

u1 = 0 on ∂Ω ,
(8.18)

the full Neumann Poisson problem:

−∆u2 = f onΩ ,

∇u2 · n= 0 on ∂Ω ,
(8.19)

and the full Robin Poisson problem:

−∆u3 = (1+α) f onΩ ,

u3 +α∇u3 · n= 0 on ∂Ω .
(8.20)

If we multiply (8.19) by α and add it to (8.18), we can define w = u1 + αu2.
Then the volumetric equation can be written as −∆w= (1+α) f , like in (8.20),
if w= u3. However, the linear combination of the boundary conditions cannot be
represented in terms of the new variable w. Therefore at a continuous level, we
can represent the only Robin boundary conditions as the average of the Dirichlet
and Neumann boundary conditions, but a full Robin problem cannot be seen as
the average of a full Dirichlet problem and a full Neumann problem.

However at a discrete level, it is possible to determine a connection between
(8.20) and the average of (8.18) and (8.19). To this purpose, let us consider the
following weak form:

∫

Ω

∇u · ∇v =

∫

Ω

f v +

∫

∂Ω

∇u · n v , (8.21)

where u, v ∈ H1(Ω). By applying homogeneous Robin boundary conditions
u+α∇u · n= 0, we get:

∫

Ω

∇u · ∇v +

∫

∂Ω

α u v =

∫

Ω

f v (8.22)
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If we descretize the problem by means of Lagrangian finite elements and we
collect in u1 and in u2 respectively all the boundary and all the internal dofs, we
obtain the following system:

�

D1,1 +αM DT
2,1

D2,1 D2,2

��

u1

u2

�

=

�

f1

f2

�

, (8.23)

where the matrices D and M are respectively the discretizations of the bilinear
forms a(u, v) =

∫

Ω
∇u · ∇v and m(u, v) =

∫

∂Ω
uv, while the vector f = [f1, f2]T

discretize the linear form f (v) =
∫

Ω
f v.

Similarly, by enforcing homogeneous Dirichlet boundary conditions in (8.21),
we get:

�

G 0
0 D2,2

��

u1

u2

�

=

�

0
f2

�

, (8.24)

where G is a positive definite diagonal matrix. If we enforce homogenous Neu-
mann conditions, we obtain:

�

D1,1 DT
2,1

D2,1 D2,2

��

u1

u2

�

=

�

f1

f2

�

. (8.25)

As explained in section 8.7, the system (8.24) is decoupled and thus we can
multiply the second part by ε and making it tend to zero. The obtained system
can be added to (8.24), giving rise to:

�

D1,1 +G DT
2,1

D2,1 D2,2

��

u1

u2

�

=

�

f1

f2

�

. (8.26)

In contrast to the continuous case, we notice a relation between (8.23) and
(8.26). In the first block, equation (8.23) has a boundary mass matrix, while
equation (8.26) has just a diagonal matrix. By defining each diagonal entry of G
as a scaled sum of the corresponding row in M:

Gii =

�

Gii
∑

j Mi j

�

∑

j

Mi, j = βi

∑

j

Mi, j , (8.27)

the matrix G now represents a lumping of M, scaled by the coefficients βi. There-
fore the discrete Robin conditions in (8.26) represent the lumped discretized ver-
sion of the continuous Robin conditions in (8.23), where varying coefficients βi

are used instead of α.
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8.8.2 Discrete Robin conditions for the dual formulation

In section 8.8.1, we have determined for the primal case a relation between the
discrete Robin conditions explained in section 8.7 and the lumped discretized
version of the continuous Robin conditions. The same argument can be gener-
alized to the dual formulation. Let us consider the strong formulation of the
Poisson problem:

−divσ = f on Ω ,

σ =∇u on Ω .
(8.28a)

We multiply the equilibrium equation by a test function v ∈ L2(Ω) and the con-
stitutive equation by a test τ ∈ Hdiv(Ω). Then we integrate the second equation
by parts and obtain:

∫

Ω

σ ·τ+
∫

Ω

u divτ−
∫

∂Ω

u (τ · n) = 0 ∀τ ∈ Hdiv(Ω) ,
∫

Ω

divσ v =

∫

Ω

f v ∀v ∈ L2(Ω) .
(8.29a)

By enforcing homogeneous Robin boundary conditions for the dual formulation,
i.e:

u+ασ · n= 0 , (8.30)

we seek for (u,σ) ∈ L2(Ω)×Hdiv(Ω) such that:
∫

Ω

σ ·τ+
∫

Ω

u divτ+

∫

∂Ω

α (σ · n) (τ · n) = 0 ∀τ ∈ Hdiv(Ω) ,
∫

Ω

divσ v =

∫

Ω

f v ∀v ∈ L2(Ω) .
(8.31a)

If we descretize the problem by means of Raviart-Thomas finite elements and
we collect in σ1 and in σ2 respectively all the boundary and all the internal dofs,
we obtain the following system:





S1,1 +αN ST
2,1 TT

1

S2,1 S2,2 TT
2

T1 T2 0









σ1

σ2

u



=





0
0
f3



 (8.32)

where the matrices S, N and T are respectively the discretizations of the bilinear
forms s(σ,τ) =

∫

Ω
σ ·τ, n(σ,τ) =

∫

∂Ω
(σ · n) (τ · n) and t(σ, v) =

∫

Ω
divσ v,
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while the vector f3 discretizes f (v) =
∫

Ω
f v. Also in the dual formulation, Robin

conditions give rise to a mass matrix on the border, N. In principle, some com-
ponents of the volumetric mass matrix obtained by means of Raviart-Thomas
function can be negative. However, the trace of the Raviart-Thomas shape func-
tions for simplicial meshes reduces to discontinuous Lagrange finite elements on
the border. For this reason, the mass matrix N on the border is still similar to the
one of the primal case, M.

As for the primal case, the two discrete problems, with homogenous Dirichlet
and homogenous Neumann boundary conditions, can be introduced. For the full
Dirichlet case, we get:





S1,1 ST
2,1 TT

1

S2,1 S2,2 TT
2

T1 T2 0









σ1

σ2

u



=





0
0
f3



 , (8.33)

while for Neumann boundary conditions, we get:




G 0 0
0 S2,2 TT

2
0 T2 0









σ1

σ2

u



=





0
0
f3



 . (8.34)

With the same trick explained in section 8.7, we average between (8.35) and
(8.34), obtaining:





S1,1 +G ST
2,1 TT

1

S2,1 S2,2 TT
2

T1 T2 0









σ1

σ2

u



=





0
0
f3



 , (8.35)

The comparison between (8.35) and (8.32) is identical to the one of the pri-
mal case. Thus, even for the dual formulation, the discrete Robin conditions are
a lumped version of the discretized continuous Robin conditions. The matrix G
for both the primal and the dual cases can be implemented more easily than the
continuous corresponding version, i.e., N and M. It is not necessary to assemble
the boundary mass matrix, but it is sufficient to know which are the boundary
dofs. This is especially true if the assembly has to be repeated for patch subdo-
mains which have a boundary that does not necessarily coincide with ∂Ω.

8.9 Numerical examples in dual linear elasticity

In this section, we will investigate the convergence behavior of the smoother
of section 8.7 for the dual elasticity problem. Due to the equation (8.17), the
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smoother now depends on an input parameter α ≥ 0. For α = 0, we recover
the smoother of section 8.5. For α > 0, the smoother will behave differently
and here we want to examine how the value of α can affect the MMG method
convergence. The initial guess is always zero except for the boundary conditions,
which are satisfied exactly. The residual is computed as in (8.2).

8.9.1 MMG for the Cook’s membrane problem

We now consider the Cook’s problem, as depicted in Figure 8.4. On the left edge,
we enforce a zero displacament. On the right edge, a vertical force is applied:
σn = [0, 0.01]T . Everywhere else, we impose homogeneous Neumann condi-
tions, σn = 0. The material has the following parameters: µ= 1 and λ=∞.
We will analyze the cases α= 0, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10, 100. The
solutions can be found in Figure 8.16.

Figure 8.12 illustrates a convergent, even though slow, behavior of the
smoother for different values of α. The parameter α≤ 1 does not seem to af-
fect too much the performance. Values of α ∈ [0.25, 1]makes the method a little
bit faster than for simply α= 0. On the other hand, for Nfine = 819 and α= 2, the
method is slowly diverging. For α= 10, 100, the convergence is faster for small
meshes, but it gets worse for larger meshes. So by inspecting the only smoother,
we can assume the multigrid method will not be affected for α ∈ [0,1].
We use the multigrid method with a coarse mesh of Ncoarse = 819 dofs which we
refine, with a bisection algorithm, up to Nfine = 421294 dofs. For each level, we
do 5 pre-smoothing steps and 5 post-smoothing steps. On the coarsest level, we
solve exactly. Again, we have repeated the experiments for different values of
α. Similarly to Figure 8.12, Figure 8.13 shows a rate of convergence that is not
much influenced by α ∈ [0,1]. In this case, optimal convergence is achieved,
meaning that the number of iterations is independent of the number of dofs and
of the number of levels used. On the other hand, for α > 1, the rate of conver-
gence is no more optimal and depends on the size of the problem. For too large
values of α, the method does not even converge.

The impact of α > 0 does not seem so necessary for a linear multigrid method
that considers all the levels. However, if we inspect a 2-grid method as in Fig-
ure 8.14, its role becomes more and more important with the aggressivity of
the coarsening. The best performance is attained for α = 1. We recover a con-
vergence rate that is almost independent of the dimension of the problem, even
though only two levels are used. Thus, if the right value of α is chosen, the Robin
boundary conditions can damp different frequency components of the error. As
we move away from this value, the method becomes slower and slower and can



123 8.9 Numerical examples in dual linear elasticity

also not converge. We finally understand that the choice of α is very important
and could affect more complicated non-linear problems.

In Figure 8.15, we see how the norm of the residual behaves after each fine
and coarse correction for a 2-grid method. This means we evaluate the global
fine residual after the smoothing steps and after the coarse correction. Every time
the latter is added to the current approximate solution, the norm of the resid-
ual increases. Indeed the equality constraints at the fine level are just projected
onto the coarser space. Then on the coarse space, an exact coarse correction is
computed and it is interpolated to the fine space. Such correction, however, just
satisfies the coarse and not the fine constraints. This is why, after its addition
to the current solution, we can see an increment of the norm of the residual.
Nevertheless, at the same time, the coarse correction helps in the global com-
munication process and, thanks to the post-smoothing steps, in accelerating the
overall convergence. In conclusion, we can state that the parameter α does not
only govern the communication among the subdomains, but it is also important
for damping the error after the computation of coarse corrections that do not
fully satisfy the fine constraints. In particular, the value of α is properly cho-
sen for the convergence if ‖ra‖ and ‖rb‖ are comparable and the latter does not
dominate the whole process.
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Figure 8.12. log10 of the Euclidean norm of the residual for the smoother
of section 8.7 applied to the dual formulation for the problem in Figure 8.4.
Parameters: µ = 1, λ =∞. The residuals have been computed after each
smoothing step.
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Figure 8.13. log10 of the Euclidean norm of the residual for the multigrid
method applied to the dual formulation for the Cook’s problem in Figure 8.4.
Parameters: µ = 1, λ =∞, number of smoothing steps = 5. The coarsest
level has dimension Ncoarse = 82. Then bisection on each element is used to
refine the mesh. The residuals have been computed after each V-cycle.
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Figure 8.14. log10 of the Euclidean norm of the residual for the 2 grids method
applied to the dual formulation for the Cook’s problem in Figure 8.4. Param-
eters: µ = 1, λ =∞, number of smoothing steps = 5. The coarsest level has
dimension Ncoarse = 819. Then bisection on each element is used to refine the
mesh, but only the finest level is considered. The residuals have been computed
after each V-cycle.
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Figure 8.15. log10 of the Euclidean norm of the residual for the 2 grids
method applied to the dual formulation for the Cook’s problem in Fig-
ure 8.4. Parameters: Ncoarse = 819, Nfine = 92429, µ = 1, λ = ∞,
number of smoothing steps= 5. The residuals have been computed after each
smoothing step and each coarse correction addition to the current solution.
In particular, after the coarse correction addition, the residual suddenly in-
creases. This is due to the coarse representation of equality constraints. Nev-
ertheless, the coarse correction still ensures a faster convergence than for the
only smoother case of Figure 8.12.
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Figure 8.16. Results for the Cook’s problem in Figure 8.4. Parameters: µ= 1,
λ=∞.
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8.9.2 MMG for the face problem

In this section we want to examine how non-convexity of the geometry can even-
tually affect the multigrid convergence. Let us consider a square-shaped domain
Ω with four different holes: two squares, one triangle and one rectangle, as de-
picted in Figure 8.17. On the bottom edge, we enforce a quadratic displacement
in the y-component, i.e., gD|bottom = [0, 0.05x2]T . On the triangle, we enforce
zero displacement, i.e., gD|triangle = [0,0]T . Everywhere else, we impose homo-
geneous Neumann conditions, gN = [0,0]T . The material has the following pa-
rameter: µ= 1 and λ=∞. Solutions are represented in Figure 8.21.

In Figure 8.18, the smoother as a stand-alone solver is examined for
α= 0, 0.01, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10, 100. We can state that
α= 0.01 and α= 0.25 give rise to the best convergence results. On
the other hand, for increasing α > 1 the convergence starts to deterio-
rate. The plots in Figure 8.19 are obtained using a multigrid method
with a coarse mesh of Ncoarse = 769 dofs which we refine, with a bisec-
tion algorithm, up to Nfine = 234387 dofs. For each level we do 5 pre-
smoothing steps and 5 post-smoothing steps. On the coarsest level, we
solve exactly. We have repeated the experiments for different values of
α= 0, 0.001, 0.01, 0.1, 0.25, 0.5, 0.75, 1, 2, 5, 10. Since we know from the
analysis of the smoother that too large values of α are not a promising choice,
we have removed α = 100 and added α = 0.001. Results are represented in
Figure 8.19. In contrast to the Cook’s membrane problem, the parameter α has
to be chosen carefully. If α ≤ 0.01 results are always good, but for larger values
of α, the rate of convergence is no more optimal and depends on the size of the
problem. For too large α, the method does not even converge.

By inspecting the Figure 8.20, it is clear again that, for aggressive coarsening,
the full Dirichlet case α = 0 does not give rise to a convergent method. On the
other hand, the optimal behaviour is reached for α = 0.1. Indeed the rate of
convergence is independent of the dimension of the problem. This means that,
given a coarse level, independently of the fine level considered, the Robin bound-
ary conditions with a proper value of α can damp all the frequency components
of the error in between. By moving far away from this value, the convergence
deteriorates or is lost.
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Figure 8.17. The face geometry is a square domain [0, 1]× [0,1] with four
holes, three rectangles and one triangle. The displacament condition on
the bottom side is gD|bottom = [0, 0.05x2]T . On the triangle-shaped hole
gD|triangle = [0,0]T . Everywhere else gN = [0, 0]T .
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Figure 8.18. log10 of the Euclidean norm of the residual for the smoother of
section 8.7 applied to the dual formulation for the problem in Figure 8.17.
Parameters: µ = 1, λ =∞. The residuals have been computed after each
smoothing step.
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Figure 8.19. log10 of the Euclidean norm of the residual for the multigrid
method applied to the dual formulation for the face problem in Figure 8.17.
Parameters: µ = 1, λ =∞, number of smoothing steps = 5. The coarsest
level has dimension Ncoarse = 769. Then bisection on each element is used to
refine the mesh. The residuals have been computed after each V-cycle.
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Figure 8.20. log10 of the Euclidean norm of the residual for the 2 grids method
applied to the dual formulation for the face problem in Figure 8.17. Parame-
ters: µ = 1, λ =∞, number of smoothing steps = 5. The coarsest level has
dimension Ncoarse = 769. Then bisection on each element is used to refine the
mesh. The residuals have been computed after each V-cycle.
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Figure 8.21. Results for the face problem. Parameters: µ= 1, λ=∞.
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8.10 Numerical examples for the dual Signorini problem

In this section, the MMG method applied to the Signorini problem for the dual
formulation of equation (5.52) is examined. We always consider incompressible
materials with the following parameters µ= 1 and λ=∞. In section 8.10.1,
the domain is a square, discretized by means of a uniform mesh, while the rigid
obstacle is a semicircle. We first analyze the smoother and then the whole MMG.
We will discover that the choice of the optimal parameter α is more strict than
for the linear elastic case. For example, α = 0 does not make the MMG method
convergent. Of course, the parameter does not only depend on the continuous
problem, but also on the mesh discretization: in section 8.10.2, a non uniform
mesh for the same problem of section 8.10.1 will be used. In conclusion, in
section 8.10.3, we study the effect of a non-convex geometry. In particular, the
problem is given by is a square with a hole and with two rigid semicircular ob-
stacles, one internal and one external.

The smoother introduced in section 8.7 solves for local modified non-linear
problems that can be ill-posed for the active set method, meaning that the method
enters in an infinite loop. In this case, the simulation can not end and it is not
represented at all in the next figures. The same happens for simulations for
which the MMG method did not converge or that were not able to arrive at 20
iterations in a reasonable amount of time of two days (time limit of the cluster
used). The initial guess is always zero except for the boundary conditions, which
are satisfied exactly. The residual is computed as in (8.2), but the dofs on the
contact boundary which are active are neglected.

The results obtained by using the monotone restrictions in (6.34) gave rise to
some problems of convergence, especially for the aggressive coarsening case. For
this reason, we opted for using truncation on the fine level and for not enforcing
inequality constraints on the coarser levels.

8.10.1 MMG for one body contact problem with a uniform mesh

We consider a square-shaped body Ω= [0, 1]× [0,1], with µ= 1 and λ=∞.
We set free Neumann boundary conditions on the left and right sides, i.e.,
gN |left = gN |right = [0,0]T . On the bottom we enforce a uniform vertical dis-
placement gD|bottom = [0,0.01]T . The contact boundary ΓC is on the top, where
the obstacle is described by a semicircle of center c= [0.5, 1.5]T and radius
r = 0.5. See Figure 8.22. All the tests are carried out with different values of
α, i.e., α= 0, 0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1. Parame-
ters α > 1 have not been tried, because already in the linear case they make the



136 8.10 Numerical examples for the dual Signorini problem

MMG method divergent.
We start by examining the smoother as a stand-alone solver up to 100 iter-

ations. See Figure 8.24. In contrast to the linear case of Figure 8.12, now the
smoother can be positively influenced by the parameter α. We see that α = 0.5
gives very good results, for both coarse and fine problems. In particular, for
sufficiently coarse meshes, the smoother is a real solver. Regarding the MMG
method, we start from a coarse mesh of Ncoarse = 77 dofs, which we refine with a
bisection algorithm. We consider a MMG method with all the levels, doing 3 pre-
smoothing steps and 3 post-smoothing steps at each level, except for the coarsest
one, where an exact solver is used. Solutions of the problem can be found in Fig-
ure 8.23. The results are represented in Figure 8.25. The convergence is optimal
for α= 0.1, since it does not depend on the number of levels and the number
of dofs. At least among the values used, we can state αopt = 0.1. The more α is
chosen far away from this value, the more iterations are required for the MMG
method to converge, and the more the number of levels has an important effect.
Furthermore, if α is too far away, then the method can even not converge. In par-
ticular, it is interesting to notice that for too small values of α (α= 0, 0.001) and
for sufficiently fine meshes (Nfine ≥ 17057), the MMG method does not converge.
Thus, in contrast to the linear case, where α = 0 for a multilevel strategy could
be chosen with no problem, now the local Robin conditions are fundamental for
the convergence of the method. If instead we use a two-level method, where the
coarse space has Ncoarse = 1097 dofs, qualitatively the results in Figure 8.26 are
not so far away from the one in Figure 8.25. Also in this case αopt = 0.1 and for
too small values of α, the MMG method does not converge. In particular, for fine
meshes and large enough α, the method diverges as well.

If we focus on αopt = 0.1 for both Figure 8.25 and Figure 8.26, we see that
the number of iterations is independent of the dimension of the fine problem
and on the number of levels. Thus we can state that optimal convergence is
achieved. Furthermore, it is interesting to notice that the same number of itera-
tions is required for a multilevel strategy or a two levels strategy with aggressive
coarsening. The difference is that, in this last case, all intermediate levels can be
omitted and some computational time can be saved. Therefore, if αopt is known,
it is also possible to directly go for an aggressive coarsening.
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Figure 8.22. One body contact problem with rigid body obstacle.
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Figure 8.23. Results for the problem in Figure 8.22 with a uniform mesh.
Parameters: µ= 1, λ=∞.
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Figure 8.24. log10 of the Euclidean norm of the residual for the smoother
applied to the dual formulation for the Signorini problem of Figure 8.22 with a
uniform mesh. Parameters: µ= 1, λ=∞, number of smoothing steps= 100.
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Figure 8.25. log10 of the Euclidean norm of the residual for the MMG method
applied to the dual formulation for the Signorini problem of Figure 8.22 with
a uniform mesh. Parameters: µ = 1, λ =∞, number of smoothing steps = 3.
Coarse level dimension Ncoarse = 77.
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Figure 8.26. log10 of the Euclidean norm of the residual for the 2-levels
MMG method applied to the dual formulation for the Signorini problem
of Figure 8.22 with a uniform mesh. Parameters: µ = 1, λ = ∞,
number of smoothing steps= 3. Coarse level dimension Ncoarse = 1097.
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8.10.2 MMG for one body contact problem with a non uniform
mesh

We now consider the same problem as in section 8.10.1, but with a non uni-
form mesh. The starting and the deformed meshes can be seen in Figure
8.27. In the contact zone, we have refined more the starting mesh. The re-
sults for 100 smoothing steps are represented in Figure 8.28. The conver-
gence is more problematic. The finest case Nfine = 209739 is not convergent for
α= 0.075, 0.25, 0.75. For α= 0 and Nfine = 43368, the method oscillates and the
residual is not decreasing. Furthermore, now there is no αmaking the smoother
solving even the coarser problems. We can expect the MMG method’s conver-
gence to be challenging as well, in this case. Among the values chosen, we can
state that αopt is in between α= 0.001 and α= 0.01, which is at least an order
of magnitude less than the one we get for the uniform mesh. Thus all values
of α far from αopt and closer to zero or one are not good enough for the MMG
method, which can diverge. Similar results, as in Figure 8.30, are obtained with
a 2-levels MMG method. Indeed, even in this case, αopt = 0.01, with a number
of iterations similar to the one of the multilevel case.

Figure 8.27. Undeformed and deformed non-uniform mesh. Parameters: µ= 1,
λ=∞.
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Figure 8.28. log10 of the Euclidean norm of the residual for the smoother ap-
plied to the dual formulation for the Signorini problem of Figure 8.22 with a non
uniform mesh. Parameters: µ= 1, λ=∞, number of smoothing steps= 100.
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Figure 8.29. log10 of the Euclidean norm of the residual for the MMG
method applied to the dual formulation for the Signorini problem of Fig-
ure 8.22 with a non uniform mesh. Parameters: µ = 1, λ = ∞,
number of smoothing steps= 3. Coarse level dimension Ncoarse = 3070.
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Figure 8.30. log10 of the Euclidean norm of the residual for the 2-levels
MMG method applied to the dual formulation for the Signorini problem
of Figure 8.22 with a non uniform mesh. Parameters: µ = 1, λ = ∞,
number of smoothing steps= 3. Coarse level dimension Ncoarse = 3070.



146 8.10 Numerical examples for the dual Signorini problem

8.10.3 MMG for one body with hole in contact with two rigid
bodies

We consider a square-shaped body Ω = [0,1]× [0,1], with µ = 1 and λ =∞,
with a hole defined by [0.25, 0.75]× [0.25,0.75]. On the bottom we enforce
a uniform vertical displacement gD|bottom = [0, 0.01]T . The contact boundary
is on the top external edge and on the bottom internal edge, where the ob-
stacles are described by half circles respectively of radius r = 0.5 and center
c1 = [0.75,1.5]T and radius r = 1/6.0 and center c2 = [3/8, 5/12]T . Everywhere
else we set free Neumann boundary conditions.

In Figure 8.33, the results for the smoother method are represented. The
choice of α does not influence much the rate of convergence of the smoother as
a stand-alone solver. However, from Figure 8.34, we can state that αopt = 0.01,
while the more α is far away from this value, the worse the convergence be-
comes. In contrast to the previous examples, the two-levels MMG does not have
the same value αopt of the multilevel case. From Figure 8.35, we see that for
α= 0.01, the convergence is not obtained for fine enough meshes and neither
for the coarsest case. Among the values tested, we can say that αopt = 0.05,
at least for Nfine = 269847. So the more the problem becomes complex and the
more α has to be chosen carefully.
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Figure 8.31. Non-convex body with a hole in contact with two rigid body
obstacles. Contact boundaries are fixed to be the top external and the bottom
internal edges. There both σn ≤ 0 and σ · n −σnn = 0 hold. On the bottom
external edge a uniform vertical displacement is enforced, i.e., u = [0,0.01]T .
Everywhere else free Neumann boundary conditions σ · n = 0 are imposed.
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Figure 8.32. Results for the problem of Figure 8.31. Parameters: µ = 1,
λ=∞.
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Figure 8.33. log10 of the Euclidean norm of the residual for the smoother
applied to the dual formulation for the Signorini problem of Figure 8.31. Pa-
rameters: µ= 1, λ=∞, number of smoothing steps= 100.
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Figure 8.34. log10 of the Euclidean norm of the residual for the MMG method
applied to the dual formulation for the Signorini problem of Figure 8.31. Pa-
rameters: µ= 1, λ=∞, number of smoothing steps= 3. Coarse level dimen-
sion Ncoarse = 579.



151 8.10 Numerical examples for the dual Signorini problem

5 10 15 20

−8

−6

−4

−2

0

Iterations

α= 0

5 10 15 20
Iterations

α= 0.001

5 10 15 20
Iterations

α= 0.01

5 10 15 20

−8

−6

−4

−2

0

Iterations

α= 0.025

5 10 15 20
Iterations

α= 0.05

5 10 15 20
Iterations

α= 0.075

5 10 15 20

−8

−6

−4

−2

0

Iterations

α= 0.1

5 10 15 20
Iterations

α= 0.25

5 10 15 20
Iterations

α= 0.5

5 10 15 20

−8

−6

−4

−2

0

Iterations

α= 0.75

5 10 15 20
Iterations

α= 1.

Nfine = 1858

Nfine = 4637

Nfine = 11039

Nfine = 25343

Nfine = 56990

Nfine = 124869

Nfine = 269847

Figure 8.35. log10 of the Euclidean norm of the residual for the 2-levels MMG
method applied to the dual formulation for the Signorini problem of Figure
8.31. Parameters: µ = 1, λ =∞, number of smoothing steps = 3. Coarse
level dimension Ncoarse = 579.
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8.11 Estimate of the Robin parameter

As we have seen in the previous sections, the choice of the parameter α can have
a very important influence on the convergence of the MMG method. It is always
possible to choose α to be constant, but then the optimal convergence property
of the MMG method is not necessarily ensured. Depending on the problem, a
different α should be chosen. In section 8.10.1, for a square domain with a
uniform mesh, αopt = 0.1; in section 8.10.2, for a square domain with a non
uniform mesh, αopt = 0.01; in section 8.10.3, for a square domain with a hole,
αopt = 0.01. It is important to point out that, if a uniform refinement is used and
all levels are considered, then αopt is unchanged. However, for different coarse
meshes or different problems, the value of α has to be chosen accordingly. Except
for the fact we should take α ∈ [0,1], we have no many other useful clues. For
sure, it is useful to notice the plots in Figure 8.36. Here the number of iterations
of the MMG method, with a maximum of 20 iterations, is represented against the
parameter α for the different problems we have examined so far. If a simulation
is not convergent, then no point is depicted. For simplicity, we have decided to
show the behavior for the smallest and the largest fine problems. By increasingly
refine the problem, we can notice that the almost convex curves in those figures
become sharper and sharper, with a minimum in αopt. This is especially true for
the finest cases, where a sort of parabola in the neighborhood of αopt is recovered.
So for example, in Figure 8.36c, for Nfine = 1858, the curve is almost flat, while
for Nfine = 269847 we get a parabolic shape. Qualitatively this argument is true,
but as we see in Figure 8.36b, the convexity can be broken. However, we can still
imagine taking advantage of this information to dynamically determine α inside
the MMG method.

In this section, we will examine different strategies for a dynamic choice of
α. Since the corrections are computed locally on patches, the first idea is to
optimize α on a given patch. However, as it will be clear in section 8.11.1, it is
not possible to compute α on each patch independently from the other patches.
Communication must be ensured and this can be guaranteed for a constant value
of α. Thus, at least for a single smoothing step, α has to be chosen constant.
The strategy in section 8.11.2 is to compare the results of two smoothing steps
with two different values of α, i.e., αleft and αright, and to choose the best one.
In sections 8.11.3 and 8.11.4, a similar argument will be used to compare the
residual decrease of V-cycles computed with different values of α.
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(b) Problem of Figure 8.22 with non-uniform mesh.
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(c) Problem of Figure 8.31.

Figure 8.36. Number of MMG iterations, with a maximum of 20, against α.
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8.11.1 Random computation of α on each patch

Algorithm 9: RandomAlphaPatch
Result: αrand

Input: αleft, αright

if Rand(0,1)< 0.5 then
αrand← αleft

end
else
αrand← αright

end

For the MMG method applied to the problem of Figure 8.22 with a uniform
mesh, we can observe from Figure 8.25 that the optimal value of α is αopt = 0.1.
This parameter is constant for the whole simulation, but it is interesting to study
how its modification on each patch can influence the overall convergence. By
choosing α far away from αopt, the convergence should consequently be slowed
down. Different strategies can be taken into consideration for the dynamic com-
putation of α. If α is unknown, even in the linear elastic case, the local system of
equation (8.17) becomes non-linear. Of course, now that the local solution vector
is [yext,yint,zloc,α]T , an additional equation for closing the problem is necessary.
For example, we could minimize the global residual. To this aim, it would not
be necessary to compute the whole residual. Indeed a local correction influences
the residual only in the dofs of the patch and in the dofs of the elements which
surround the patch. We can call this last set of elements the halo of the patch.
Then the residual can be computed locally, taking into consideration the dofs
on the patch and on its halo. However this approach, due to the same argu-
ment used for Figure 8.15, fails. Since the residual can only decrease, we can
expect the method to converge, but such convergence is very slow. Indeed it is
not important that locally the residual decreases. What really matters is that, on
average, the residual decreases as much as possible. From this point of view, the
value of α on a patch cannot be chosen independently from the values on the
other patches.

Therefore, we will examine the case where we randomly choose α on each
patch and show how this affects the convergence. For simplicity, we can make
α assume two values αleft and αright such that αleft < αopt < αright. If the param-
eter α can be chosen independently from patch to patch, then we can expect a
global convergence rate in between the ones used in Figure 8.25 for the simula-
tions with constant α= αleft,αright. In particular, we will investigate the con-
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vergence behaviour if, on each patch of each level, we choose randomly be-
tween two values αleft = αopt − ε and αright = αopt + ε. See Algorithm 9, where
Rand(0,1) is a function returning a random number in [0, 1]. We use the values
ε= 0.01, 0.02, . . . and so on. Until ε= 0.07, we get the same convergence and
this is why in Figure 8.37 the only case ε = 0.01 is represented. However for
ε= 0.08, the method does not converge well or does not convergence at all any-
more. Nevertheless in Figure 8.25 , we see that for α= 0.01< 0.02= αopt − ε
and for α= 0.2> 1.08= αopt + ε, we still recover a convergent method. This
fact suggests that the parameter α cannot be chosen on each patch indepen-
dently from what happens on the other patches. Indeed the communication
among different patches is fundamental in the transfer of the information. A
local correction is good only if it is built so that the final combination of all local
corrections makes the residual decrease. Then, at least on a single smoothing
step, the value of α should be taken as constant.
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Figure 8.37. log10 of the Euclidean norm of the residual for the MMG method
applied to the dual formulation for the Cook’s problem in Figure 8.4 with a
uniform mesh. Parameters: µ = 1, λ =∞, number of smoothing steps = 3.
Coarse level dimension Ncoarse = 77. We choose a random α ∈ {αmin,αmax} from
patch to patch. For constant α = αmin,αmax, we get convergence in maximum
15 iterations. If we randomly choose α, we do not get convergence.
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8.11.2 Computation of α comparing two different smoothing steps

In section 8.11.1, it is shown that it is not a good idea to computeα on each patch,
but it is instead better to take it constant at least for a whole smoothing step. In
such a case, if α is constant, the subdomains on the given level can properly
communicate. Then the issue is how to update α between different smoothing
steps. First of all, it is necessary to choose which values α can assume. Instead
of choosing α ∈ [0, 1], we have decided to make α belong to a set of discrete
values A defined as follows:

A := {25 · 10−k, 50 · 10−k, 75 · 10−k, 100 · 10−k , k ∈ N} . (8.36)

This decision makes it easier the comparison with the cases of the MMG method
with a constant α. Furthermore, since the values are sufficiently spaced, it avoids
the incurrence of a local minimum, which was a major problem for strategies
involving α ∈ [0,1]. Of course, the set A is arbitrary and can be defined by
increasing or decreasing the number of values for a certain order of magnitude.
Such a number can also depend on the order of magnitude itself. For example for
k = 2 and k = 3, it is possible to decide how many values we can have. Finally,
we want to stress out that k ∈ N and that no constraint k ≥ 2, to get α ∈ [0,1], is
enforced. In this way, if the method that we use makes α increase over the unity,
we know it is not doing its job and something has to be changed.

The initial value for α is α0 ∈ A. Then, at the iteration k ≥ 0, given αk ∈ A,
we need to find αk+1 ∈ A. We define rk = log10 ‖rk‖ and rk−1 = log10 ‖rk−1‖. At
the beginning of each V-cycle, we do a preprocessing. If the previous residual
decrease was large enough, the same value for α is kept and thus αk+1 = αk.
This happens if rk − rk−1 < −η, where η is a positive number that we choose
to be η = 0.6. Otherwise we do two preprocessing smoothings steps with the
immediately left and right values of αk in A, i.e., αleft and αright. Then we opt
for the value of α which most minimizes the residual and the whole V-cycle is
carried out with this value of α. See the pseudocode in Algorithm 10, where
the function pos is used to determine the position of α in A and the function
NormOfTheResidual(ỹ) returns the norm of the residual corresponding to the
current solution ỹ. The results are represented in Figure 8.1 for starting values
α0 = {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75}. If the mesh is sufficiently
refined, the method is not able to properly detect the correct value for α. For
the fine meshes, α always tends to increase up to the value one or even more,
meaning that also the smoothing step is not sufficient to determine the optimal
α for the entire V-cycle. Similar results have been obtained by expanding this
preprocessing strategy to the post-smoothing steps or to the coarser levels. Un-
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fortunately no robustness of the algorithm with respect to the initial value α0 has
been recovered.

Algorithm 10: SingleSmoothingStepBasedComputation
Result: αk+1, yk+1

Input: η, rk−1, rk, yk, αk, A
if (rk − rk−1)< −η then
αk+1← αk

end
else

yleft ← yk

yright← yk

αleft ← A(pos(αk)− 1)
αright← A(pos(αk) + 1)
yleft ← Smoothing(yleft, αleft )
yright← Smoothing(yright,αright)
rleft ← log10 NormOfTheResidual(yleft)
rright← log10 NormOfTheResidual(yright)
if rleft < rright then
αk+1← αleft

yk+1← yleft

end
else
αk+1← αright

yk+1← yright

end
end
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Table 8.1. Results related to Algorithm 10.
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8.11.3 Increase or decrease α based on previous V-cycles

In this section and in section 8.11.4, α is modified based on the decrease of the
residual norm after an entire V-cycle. Two main ideas of update of α are exam-
ined and, for each of them, α is fixed constant for at least one or two iterations.

The strategy of this section is identified by Algorithm 11 and Algorithm 12,
where α is fixed respectively for at least one or two iterations. In this case, if the
residual decrease is enough, we keep αk. Otherwise, , depending on a parameter
s ∈ {−1,1}, we need to move to the left (s = −1) or to the right (s = 1) of αk.
Let us assume αk+1 = αleft. We keep this value until a sufficient decrease of the
residual is attained. Assuming at iteration k+ 2 the decrease is not large enough,
we consider αk+2 = αright. Then, if the residual decrease is better for αleft, we will
update α as its left value and put s = −1. Otherwise we will update α as the right
value of αright and put s = 1.

In Algorithm 11, η > 0 represents the “sufficient decrease” condition;
s ∈ {−1,1} is a parameter which states if it is necessary to move first to the
left or to the right of α; d ∈ {0,1, 2} is a parameter such that: for d = 0 we
use αk and, depending on s, for d = 1 we use αleft/αright and for d = 2 we use
αright/αleft; rk and αk are respectively log10 ‖r‖ and α at iteration k; the function
NormOfTheResidual(α) returns the last norm of the residual related to the
solution computed with the given α. The results for η = 0.6 are presented in
Figure 8.2. Even though they are better than the ones in 8.1, we see that the
convergence can be slow for the mesh with an internal hole. Furthermore, no
convergence is attained for the non-uniform square mesh if α0 is too far away
from αopt. Better results are obtained if α is fixed for at least two iterations, as
it is seen in Figure 8.3. This fact suggests that modifying α at each iteration
does not permit the method to stabilize. Maintaining α fixed helps in ensuring
convergence, even though this can be slower because we require many more
iterations for reaching or moving towards αopt.
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Algorithm 11: LeftRightOneStop
Result: s, d, αk+1, αleft, αright

Input: η, s, d, rk−1, rk, αk, αleft, αright, A
if rk − rk−1 < −η then
αk+1← αk

end
else

if d = 0 then
αleft← A(pos(αk)− 1)
αright← A(pos(αk) + 1)
if s = −1 then
αk+1← αleft

end
else
αk+1← αright

end
d ← 1

end
else if d = 1 then

if s = −1 then
αk+1← αright

end
else
αk+1← αleft

end
d ← 2

end
else if d = 2 then

if log10 NormOfTheResidual(αleft)< log10 NormOfTheResidual(αright)
then

s←−1
αk+1← A(pos(αleft)− 1)

end
else

s← 1
αk+1← A(pos(αright) + 1)

end
d ← 0

end
end
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Table 8.2. Results related to Algorithm 11.
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Algorithm 12: LeftRightTwoStops
Result: c, s, d, αk+1, αleft, αright

Input: c, η, s, d, rk, αk , αleft, αright, A
if rk < −η or c = 0 then
αk+1← αk

c← c + 1
end
else if c > 0 then

c← 0
if d = 0 then
αleft← A(pos(αk)− 1)
αright← A(pos(αk) + 1)
if s = −1 then
αk+1← αleft

end
else
αk+1← αright

end
d ← 1

end
else if d = 1 then

if s = −1 then
αk+1← αright

end
else
αk+1← αleft

end
d ← 2

end
else if d = 2 then

if log10 NormOfTheResidual(αleft)< log10 NormOfTheResidual(αright)
then

s←−1
αk+1← A(pos(αleft)− 1)

end
else

s← 1
αk+1← A(pos(αright) + 1)

end
d ← 0

end
end
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Table 8.3. Results related to Algorithm 12.
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8.11.4 Dynamic reduction of α

In this section we present Algorithm 13 and Algorithm 14, where α is fixed re-
spectively for at least one or two iterations. First of all, a sufficiently large α0

needs to be used. Then, if the residual decrease is not enough, we move to its
αleft value. And we continue in this way towards the minimum of Figure 8.36.
Since we aim for a sufficient decrease of the residual, we avoid local minima.
However, we need to not ask for a too-large decrease of the residual η, which
maybe is impossible to reach, since this could produce an always decreasing α.

Given η = 0.6, results for Algorithm 13 can be found in Figure 8.4. We
see that fast convergence is obtained in all cases if the value α0 is such that
α0 > αopt and if it is not too large. Good convergence results, but with a slower
rate are obtained for Algorithm 14. See Figure 8.5. Since in section 8.11.3, α
could be increased or decreased, it was more difficult to reach its stabilization
and for this reason, two steps were helpful. Now, since we only decrease α,
the method is more stable and, to get good results, we can fix α for a single
iteration. We can state that, if α0 is not too small, Algorithm 13 is quite robust
for the problems examined. In conclusion, the combination of Algorithm 13 and
the MMG method gives rise to an optimal solver for the Signorini problem in the
nearly-incompressible and incompressible cases.

Algorithm 13: ReductionOneStop
Result: αk+1

Input: η, rk, rk−1, αk, A
if rk − rk−1 < −η then
αk+1← αk

end
else
αk+1← A(pos(αk)− 1)

end
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Algorithm 14: ReductionTwoStops
Result: αk+1, c
Input: c, η, rk, rk−1, αk, A
if rk − rk−1 < −η or c = 0 then
αk+1← αk

c← c + 1
end
else if k > 1 and rk − rk−1 < η then
αk+1← αk

c← c + 1
end
else if c > 0 then

c← 0
αk+1← A(pos(αk)− 1)

end
else

c← c + 1
end



166 8.11 Estimate of the Robin parameter
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Table 8.4. Results related to Algorithm 13.
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Table 8.5. Results related to Algorithm 14.
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Chapter 9

MARS

9.1 Introduction to MARS

MARS is an open-source mesh management library designed to handle N-
dimensional simplicial elements (N ≤ 4). A more detailed description of the
library can be found in Zulian, Patrick and Ganellari, Daniel and Rovi, Gabriele
[2018]. The programming language is C++11. See Meyers, Scott [2005], Abra-
hams and Gurtovoy [2004], Vandevoorde, David and Josuttis, Nicolai M. [2002],
Yang, Daoqi [2000] for further reading about C++. The “rt-elements” branch, writ-
ten in C++17, is the one developed by the author. In this chapter, we present the
main components of the framework. Since it can be subject to changes, some
parts might differ. Hence we aim to explain the main ideas and we adopt shorter
names for classes and functions. In addition, only the central part of the classes
will be discussed, leaving the understanding of the minor details to the reader.

9.2 Introduction to rt-elements branch

The branch "rt-elements" in MARS allows the user to write and assemble easily
its own linear and bilinear forms to be solved with the FE method. A general
linear problem is the following. Find the trial function u ∈W such that, for any
test function v ∈W it holds:

a(u, v) = f (v) . (9.1)

Examples of the forms we are interested in are the following:

a(u, v) = (∇u,∇v)L2(Ω) ,

f (v) = (v, f )L2(Ω) ,
(9.2)

169
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where W = H1(Ω) and the auxiliary function f ∈ L2(Ω), or:

a(u,v) = (∇u,∇v)L2(Ω) ,

f (v) = (v, f)L2(Ω) ,
(9.3)

where W =
�

H1(Ω)
�m

, with 0< m ∈ N, and the auxiliary function f ∈
�

L2(Ω)
�m

,
or:

a([σ,u], [τ,v]) =+ γ (Aσ,Aτ)L2(Ω) − γ (ε(u),Aτ)L2(Ω) +δ (divσ, divτ)L2(Ω)

− γ (Aσ,ε(v))L2(Ω) + γ (ε(u),ε(v))L2(Ω)

+ ((τn)n,un)L2(ΓC ) + ((σn)n,vn)L2(ΓC )

f ([τ,v]) =−δ (divτ, f)L2(Ω) + ((τn)n, g)L2(ΓC )

(9.4)

where W= Hdiv(Ω)×H1(Ω) and the auxiliary functions f ∈ L2(Ω) and g ∈ L2(ΓC).
First the user defines the type of finite element FE, e.g. a simplex in d dimen-

sion, and then the FE spaces V ⊂W , for the trial and the test functions, and Vaux,
for other auxiliary functions. For example, for the equation (9.2), the Lagrangian
spaces V = Pm and Vaux = Pn could be chosen, where for varying 0 < m, n ∈ N
different discretization will arise. In general, V and Vaux can be direct sums of
other FE spaces. Each of these spaces can be a single component FE space, like
P1 or RT0, or an m-times components FE space, like [P1]

m or [RT0]
m. If the space

is written in bold, it means m = d. For example, for the FOSLS formulation in
(9.4) V= RT0 × P1. A similar argument can be extended for the auxiliary space.

Once the FE and the FE spaces are chosen, the user defines the bilinear and
linear forms. As we have seen, a form is a sum of integral terms involving trial,
test, and auxiliary functions. The way the linear and bilinear forms are written
in math is very compact and we would like to maintain this philosophy in MARS.
For example, in MARS the user can write the bilinear form (9.4) as follows:

a([σ,u], [τ,v]) =+ γ (Aσ − ε(u),Aτ− ε(v), )L2(Ω) +δ (divσ, divτ)L2(Ω)

+ ((τn)n,un)L2(ΓC ) + ((σn)n,vn)L2(ΓC )

f ([τ,v]) =−δ (divτ, f)L2(Ω) + ((τn)n, g)L2(ΓC ) ,

(9.5)

and then MARS automatically builds the corresponding split version (9.4), used
for run-time computations. In this way, math and code are very close to each
other, but we still exploit the linearity of the integrals for reasons that will be dis-
cussed later in section 9.14. Furthermore, MARS automatically checks whether
the user has written correctly the forms. We can have forms of order 0, 1, and 2,
which are respectively sums of integrals fulfilling the following conditions:
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• Each integral of the zero-form has no test nor trial functions;

• Each integral of the linear form has only one test function, in the left or in
the right arguments;

• Each integral of the bilinear form has exactly one test function in the left-
/right argument and one trial function in the right/left argument.

If none of these conditions is guaranteed, then a compile-time error occurs.
In this way, MARS let the user know that, for example, the forms (u,u)L2(Ω),
(uT u,u)L2(Ω) or (u, divσ)L2(Ω) are wrong. But the user is still free to put test or
trial functions where he or she desires. So (u,v)L2(Ω) and (v,u)L2(Ω) are both
compatible.

In order to get the corresponding discrete version of the problem (9.1) on the
mesh Th approximating the domain Ω:

Ahyh = fh , (9.6)

it is necessary to assemble the matrix Ah and the right-hand side fh. To this
aim, we exploit the linearity of the integrals over Ω as sum of integrals over the
elements K ∈ Th. In this way, the global matrix Ah and vector fh can be inter-
preted as the composition of local matrices and vectors. We definine Ah,loc = Ah|K ,
fh,loc = fh|K , yh,loc = yh|K . We approximate the local integrals over the element K
by means of the quadrature rule. A quadrature rule approximates the integral of
a function i ∈ L2(Ω) as follows:

∫

K

i(x)dx≈
NQR(o)
∑

i=1

i(pi)wi , (9.7)

where {pi}
NQR(o)

i=1 are the NQR(o) quadrature points and {wi}
NQR(o)

i=1 are the correspond-
ing weights for a quadrature rule of order o. However, if the integrand function
i is a polynomial, then it is possible to compute the integral exactly. In particular,
if the integrand function is a Euclidean product and its arguments are polynomi-
als, then the integral can be computed exactly by choosing the right quadrature
order. Since all the trial, test, and auxiliary functions are approximated by means
of FE functions, this is the case. Indeed FE functions, if restricted to the element
K , reduce to polynomials, and thus their combinations are again a polynomial.

In a form, each integral has its minimum order of quadrature that is necessary
for its exact computation. Two choices are now possible: different integrals can
have different required quadrature orders or all of them have the same quadra-
ture order, equal to the maximum of all quadrature orders. Both approaches have
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pros and cons, but in MARS we opted for the former possibility. To understand
how they would influence the implementation, let us focus on the assembly. In
particular, we can examine:

a(u, v) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) , (9.8a)

f (v) = ( f , v)L2(Ω) . (9.8b)

If we discretize the problem (9.8) by means of continuous linear Lagrange FE,
i.e., V = Vaux = P1, we get (9.9):

(Ah,loc)i j = (φi,φ j)L2(Ω) + (∇φi,∇φ j)L2(Ω) i, j = 1, . . . , d + 1 , (9.9a)

(fh,loc)i = (φi,
d+1
∑

k=1

(φk fk))L2(Ω) i = 1, . . . , d + 1 , (9.9b)

where, for simplicity of notation, we consider the local numbering for the indices
i, j. The shape functions φi are associated to the corresponding operators that,
in this case, are the identity and the gradient. We obtain φi and ∇φi. In gen-
eral, other operators can be used, such as the divergence, the trace, composite
operators and so on.

In order to reduce the computational cost, it is convenient to compute the
reference shape functions φ̂i ∈ R, ∇̂φ̂i ∈ Rd for i = 1, . . . , d + 1, before iter-
ating over all the elements. Given the element K , the mappings MCGq ,I = 1
and MCGq ,∇ = J−T can be computed only once in order to get φi = φ̂i and
∇φi = J−T∇̂φ̂i for i = 1, . . . , d + 1. The functions φi can be used for both the
left and right arguments respectively of the first integral in (9.9a) and in (9.9b),
while ∇φi can be used in the left and right arguments of the second integral in
(9.9a). In this way, computational time is saved with respect to the full compu-
tation of φi and ∇φi every time they appear in the forms.

Let us assume the quadrature rule to be Gaussian. Since i in (9.7) is a dot
product involving shape functions, the same shape functions have to be evaluated
in the quadrature points as well. Therefore we need an array which contains the
evaluation of the shape functions in {pi}

NQR(o)

i=1 . In particular, we only need the
reference shape functions in the reference quadrature points {p̂i}

NQR(o)

i=1 . Indeed
the array of reference shape functions in {p̂i}

NQR(o)

i=1 can be pre-computed and then
it is sufficient to apply the proper mapping to each of its components. Of course,
for different quadrature orders, different are the points in which the integrand i
has to be evaluated and so different collections of evaluations of shape functions
are required. See section 9.3. However, the FE, the FE spaces, and the forms are
known at compile-time. Hence it is possible to identify the order of quadrature
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of each integral at compile-time and the arrays of evaluations of the reference
shape functions can be computed at compile-time as well.

By inspecting (9.9), we see that the first integral in (9.9a) and the one
in (9.9b) are of the third order. So we can precompute the collection of ar-
rays Φ̂3 = {(φ̂1(p̂ j), . . . , φ̂d+1(p̂ j))}

NQR(3)
j=1 . On the other hand, the second inte-

gral in (9.9a) has order one, so we can precompute the collection of arrays
∇̂Φ̂1 = {(∇̂φ̂1(p̂ j), . . . , ∇̂φ̂d+1(p̂ j))}

NQR(1)
j=1 . See Table 9.1 for rules explaining the

computation of the quadrature order of an integral. Since the shape functions φ
and ∇φ are involved in different integrals and do not influence each other, we
can reduce to the minimum the evaluation in the quadrature points for both.

However, given a constant vector b ∈ Rd , we can consider the problem (9.10):

a(u, v) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) + (u,bT∇v)L2(Ω) , (9.10a)

f (v) = ( f , v)L2(Ω) , (9.10b)

which differs from (9.8) for the addition of the third integral in (9.10a). This
integral has order two. In MARS, for problem (9.10) we also precompute
Φ̂2 = {(φ̂1(p̂ j), . . . , φ̂d+1(p̂ j))}

NQR(2)
j=1 and ∇̂Φ̂2 = {(∇̂φ̂1(p̂ j), . . . , ∇̂φ̂d+1(p̂ j))}

NQR(2)
j=1 .

Altogether Φ̂2, Φ̂3, ∇̂Φ̂1, ∇̂Φ̂2 are precomputed. Thus at run-time for each ele-
ment K , it would be necessary to map them in order to get the corresponding
arrays of evaluation of shape functions on K , i.e., Φ2, Φ3,∇Φ1,∇Φ2. To avoid the
mappings of four different collections, it could be argued that it is better to take
just the maximum order of quadrature among all the integrals and compute and
map only Φ̂3 and ∇̂Φ̂3. However, in this way, it would be necessary to compute a
third order collection ∇̂Φ̂3 instead of two lower order collections, ∇̂Φ̂1 and ∇̂Φ̂2.
With the increasing of the dimension d, this could not be beneficial. However it
is clear that the best choice depends on the contest and MARS is programmed so
that the forms of the type of (9.9) can be optimized.

Until now, we have considered V to coincide with a single FE space. However,
the advantage of computing arrays of reference shape functions in the reference
quadrature points can be extended to more FE spaces. For example, if V = P1×P1,
for a bilinear form of the type:

a([u, p], [v, q]) = (∇u,∇v)L2(Ω) + (∇p,∇q)L2(Ω) + (p, v)L2(Ω) , (9.11)

we can precompute ∇̂Φ̂1 only once and use it for both the first two integrals
which involve different trial and test functions in the left and right arguments of
the dot product. This means that, to reduce the computational cost, we need to
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detect the minimum required shape functions to evaluate for all the FE spaces of
V . The same argument would not be true anymore for V = P1 × P2. We would
need different collections of gradient of shape functions, for both P1 and P2.
However the mapping MCGq ,∇ = J−T could be used for both. Indeed the mapping
does depend on the FE family and on the operator of the shape function, but it
is independent of the order and the continuity type of the FE space. Since two
are the operators of the forms, i.e., the gradient and the identity, a collection of
mappings is required as well.

From what has been explained so far, it is clear some processes can be carried
out and optimized at compile-time, others at run-time. Roughly speaking, what-
ever strictly depends on the mesh is at run-time, everything else is at compile-
time. Therefore the FE spaces, the forms, the order of quadrature of the integrals,
the dimension of the shape functions, and of the collections of their reference
evaluations for all necessary order of quadratures and operators, are known at
compile time. In particular, we can say the following.

• The trial space V is defined as V = V1 × . . .× Vv, where each Vi, for
i = 1, . . . , v, is a FE space identified by its FE family, order, continuity type
and number of components. We discuss the local and global FE spaces
respectively in sections 9.4 and 9.5.

• To compute the collections of mappings from the reference element K̂ , we
need to remove the duplicates of the FE spaces in V . Then, for a given
FE space obtained in this way, all the mappings related to the operators
appearing in the forms are built. See section 9.15.

• To compute all the collections of evaluations of reference shape functions,
we need to remove all the duplicate FE spaces from V . Then, for each space
obtained in this way, we need to consider all the shape functions, with
their associated operators (like the identity, the gradient, the divergence,
the trace or custom operators as explained in section 9.9), appearing in the
forms and, for each quadrature order, we build the corresponding arrays
of evaluations. See section 9.16.

• It is necessary to distinguish between volumetric and surface shape func-
tions and mappings. For this reason, we need to define the objects:
volumetric_map, volumetric_shape_function, surface_map and
surface_shape_function. In Algorithm 15 we describe the run-time
assembly procedure, where it is also stressed out the difference between
the volumetric and the surface quantities. The former have to be updated
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for each element, but only once. The latter have to be updated for each
face of the element, but only if it lies on an external boundary.

Algorithm 15: Assembly algorithm

for elem= 1, ..,Nelems do

FE.init(elem);

volumetric_map.init(FE);

volumetric_shape_function.init(FE,volumetric_map);

bilinear_form.eval(FE,volumetric_shape_function,Ah);

linear_form.eval(FE,volumetric_shape_function, fh);

for face= 1, ..,Nfaces do

FE.init_boundary(face);

if FE.is_side_on_boundary() then

surface_map.init(FE);

surface_shape_function.init(FE,surface_map);

bilinear_form.eval(FE,surface_shape_function,Ah);

linear_form.eval(FE,surface_shape_function, fh);
end

end
end

9.3 Tuples and constexpr expressions

In section 9.2 the importance of collections of objects of different types has been
highlighted. Indeed we need to collect different FE spaces, different arrays of
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evaluations of shape functions, and also different mappings. A tuple is a con-
tainer object, with size declared at compile-time, which can collect objects of
different types. Its variadic definition is the following:

template< class ... Args >

class tuple;

The first tuple to define is the one for the FE spaces. Then the tuples for the
mappings and the shape functions can be consequently declared. To easily man-
age tuples, MARS defines operations like the removal of duplicates, the removal
of old types or the addition or change of new types in certain positions, the re-
turn of the position of the first occurrence of a given type in the tuple, and so
on. Furthermore, MARS massively uses the constexpr specifier. If a variable
is declared as constexpr, then its evaluation, when possible, can be done at
compile-time. Thanks to C++17 features, the constexpr specifier can be used,
for example, to evaluate reference shape functions in some reference quadrature
points.

Many of the operations on tuples described above require to associate to each
component of the tuple a number. For this reason, it is important to handle
collections of numbers. However, at compile-time, it is still easier to handle
tuples than arrays. At least, this is true for C++11, which was initially used for
the purposes of this thesis. Nevertheless, the tuple type can collect different
types, but, of course, not integer objects. In order to have a type representation
of integers, the class Number, which is in a bijective relation with the integers,
has been defined:

template<Integer N> class Number

{public: static constexpr Integer value=N;};

Tuples of Numbers related to different integers can be used like arrays of integers.
The only caution is to access the value variable of each Number.

9.4 Local FunctionSpace

We define a general template class called BaseFunctionSpace for the FE
spaces, based on their family, order, continuity and number of components.
With this definition, we are able to make the considered FE space element-
independent.

template <Integer F,Integer O,Integer C=Continuous, Integer NC=1>

class BaseFunctionSpace

{

public:
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static const Integer FEFamily=F;

static const Integer Order=O;

static const Integer Continuity=C;

static const Integer NComponents=NC;

};

}

The BaseFunctionSpace class considers just the following parameters:

1. FEFamily is the FE family. This parameter is a negative integer identifying
the family itself.

constexpr Integer LagrangeFE = -10;

constexpr Integer RaviartThomasFE = -11;

2. Order is the order of approximation, which is an integer number. Consid-
ering simplicial meshes, for Lagrangian functions the order refers to the lo-
cal order of the polynomia. So Order= 0,1, 2... stands for constant, linear,
quadratic functions and so on. In the case of Raviart-Thomas functions,
always on simpicial meshes, Order= 0,1, ... stands for linear, quadratic
functions and so on.

3. Continuity is an integer parameter. Continuity = Continuous = 1
means that the continuity of the degrees of freedom between the elements
is enforced. On the other hand, Continuity = Discontinuous = 0, if
no continuity among dofs on different elements is enforced. See (5.11)
and (5.12).

constexpr Integer Discontinuous = 0;

constexpr Integer Continuous = 1;

4. NComponents refers to the number of components of the space, which
differs from the number of components of the shape function itself. For
example, the RT0 space is a single component space, but its shape functions
are vectorial function of dimension d.

The fact that all these parameters -especially the Continuity one- are integers,
is a good strategy for future generalizations which can consider different scenar-
ios. In the library, new definitions have been created based on this class to make
it easier to call standard and implemented spaces.

template<Integer Order,Integer NComponents>

using Lagrange=BaseFunctionSpace<LagrangeFE,Order,Continuous,NComponents>;

template<Integer Order,Integer NComponents>
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using LagrangeDG=BaseFunctionSpace<LagrangeFE,Order,Discontinuous,NComponents>;

template<Integer Order,Integer NComponents>

using RT=BaseFunctionSpace<RaviartThomasFE,Order,Continuous,NComponents>;

template<Integer Order,Integer NComponents>

using RTDG=BaseFunctionSpace<RaviartThomasFE,Order,Discontinuous,NComponents>;

A further specialization is obtained by considering the type of element of the
mesh, which gives rise to the class BaseElementFunctionSpace. This class,
in addition to the same parameters of the BaseFunctionSpace class, also con-
siders, as a first parameter, the type of element. The general Elem class is char-
acterized by two parameters, the dimension of the problem Dim and the one of
the manifold MDim. For example, given a triangle in 3D, Dim= 3 and MDim= 2.

template <typename E, Integer FEF, Integer O,Integer C, Integer NC>

class BaseElementFunctionSpace

{

using Elem=E;

static constexpr Integer Dim=Elem::Dim;

static constexpr Integer ManifoldDim=Elem::ManifoldDim;

static constexpr Integer FEFamily=FEF;

static constexpr Integer Order=O;

static constexpr Integer NComponents=NC;

static constexpr Integer Continuity=C;

};

The ElementFunctionSpace class inherits from
BaseElementFunctionSpace and different specialisation have been written
for Lagrange and Raviart-Thomas spaces.

template <typename E,Integer FEF,Integer O,Integer C, Integer NC>

class ElementFunctionSpace<Elem,FEF,O,C,NC>:

public BaseElementFunctionSpace<E,FEF,O,C,NC>

{

public:

static constexpr const std::array<Integer,M> entity;

static constexpr const std::array<Integer,N> dofs_per_entity;

static constexpr const Integer ShapeFunctionDim;

};

To explain its usage, we first must introduce the concept of entity in MARS.
We now consider the case of simplicial meshes of dimension MDim immersed
in a space of dimension Dim, with MDim ≤ Dim. Then an entity of dimension
EDim≤ MDim, for EDim= 0,1,2,3, . . ., is a point, a segment, a triangle, a tetra-
hedron and so on. In the array entity we set, in an increasing order of dimen-
sion, the dimension of the entities of interest for the definitions of the degrees
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of freedom (dofs). Similarly, in dofs_per_entity, we explicit how many dofs
per entity are required. Finally ShapeFunctionDim defines the dimension of
the shape function; this number is independent of the number of components.

For example, for linear Lagrangian elements on a simplex, the dofs belong
to the vertices of EDim= 0 and there is only one dof per vertex. For first-
order Raviart-Thomas functions, there are MDim dofs per face (of dimension
EDim= MDim− 1) and MDim internal dofs (referred to the simplex of dimension
EDim= MDim). Therefore:

• for P1 elements:

static constexpr const std::array<Integer,1> entity={0};

static constexpr const std::array<Integer,2> dofs_per_entity={1};

static constexpr const Integer ShapeFunctionDim=1;

• for RT1 elements:

static constexpr const std::array<Integer,2> entity={MDim-1,MDim};

static constexpr const std::array<Integer,2> dofs_per_entity={MDim,MDim};

static constexpr const Integer ShapeFunctionDim=MDim;

We notice that the definition of the ElementFunctionSpace is local and is
therefore independent of the continuity or discontinuity of the global FE space.
To create a new local function space, it is necessary to introduce its FE family in-
teger and define the corresponding variables in the ElementFunctionSpace.

9.5 Global FunctionSpaces

Having defined the class ElementFunctionSpace for local function spaces, we
now want to define the class FunctionSpace for global function spaces. To this
aim, we need first to introduce three new classes: the Mesh class, which depends
on the type of element considered; the Bisection and the Node2ElemMap
classes, which depend on the Mesh class. The Bisection class is used for bisec-
tion algorithms, while Node2ElemMap is used for building a map from the nodes
of the mesh to the elements, very useful for the assembly of the operators.

MeshT mesh;

Bisection<MeshT> bisection(mesh);

Node2ElemMap<MeshT> n2em(mesh,bisection);

The mesh consists of a list of elements, read from an input file or built with
a mesh generation function. In case of refinement, the new elements are just
added to the previous list. In this way, more levels of a mesh can be built and
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used, for example, for multigrid methods. For adaptively or uniformly refining
the mesh, we can exploit the Bisection class. Let n_levels be the number
of levels and refinement_jump be the number of times we use the bisection
algorithm between two levels of the mesh. For a uniform refinement, we can do:

for(int i=0;i<n_levels;i++)

{

bisection.tracking_begin();

bisection.uniform_refine(refinement_jump);

bisection.tracking_end();

}

Finally it is possible to define the class FunctionSpace for a single function
space, dependent on the Mesh and on a particular BaseFunctionSpace. In the
following we show the different specializations for continuous linear Lagrangian
functions with one component and N components, for discontinuous linear La-
grangian functions with MDim components, and for first-order RT functions with
MDim components:

template<typename MeshT,typename BaseFunctionSpace>

class FunctionSpace {...};

using P_1_1=FunctionSpace<MeshT,Lagrange<1,1>>;

using P_1 =FunctionSpace<MeshT,Lagrange<1,N>>;

using DGP_1=FunctionSpace<MeshT,LagrangeDG<1,MDim>>;

using RT_1 =FunctionSpace<MeshT,RT<1,MDim>>;

Once the type has been defined, the corresponding object space can be built:

P_1_1 p11(mesh,bisection,n2em);

P_1 p1(mesh,bisection,n2em);

DGP_1 dgp1(mesh,bisection,n2em);

RT_1 rt1(mesh,bisection,n2em);

Each space contains its dofmap, i.e., a map which associates to each element
the corresponding dofs of the space for every level of the mesh. However, in
the definition of the bilinear and linear forms, more than one global space can
occur. In particular, we must distinguish between two collection types of global
spaces: the mixed space, which is a container for all the spaces where the test
and trial variables belong; and the auxiliary space, which is a container for all
the spaces needed for all other functions that are neither tests nor variables. By
using variadic templates, we can define:

template<typename Arg,typename...Args>

class MixedSpace<Arg,Args...>{...};

template<typename Arg,typename...Args>
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class AuxMixedSpace<Arg,Args...>{...};

template<typename...Args,typename...AuxArgs>

class FullSpace<MixedSpace<Args...>,AuxMixedSpace<AuxArgs...>> {...};

and then build respectively the mixed, the auxiliary, the full spaces and the cor-
responding smart pointer:

auto Wtrial = MixedFunctionSpace(rt1,dgp1,p1_1);

auto Waux = AuxFunctionSpacesBuild(p1,p1_1);

auto W = FullSpaceBuild(Wtrial,Waux);

using W_type = decltype(W);

auto W_ptr = std::make_shared<W_type>(W);

Inside the FullSpace class, all the spaces inserted are collected in
a proper tuple tuple_of_spaces of type TupleOfSpaces. See sec-
tion 9.3 for explanations of the tuples in C++. In addition, the tu-
ple object unique_tuple_of_spaces of type UniqueTupleOfSpaces
is the tuple tuple_of_spaces without duplicates. This means,
for example, that if the MixedFunctionSpace is built from
tuple_of_spaces= (p1,p1,p1,rt1,p1), the corresponding tuple of
unique spaces is unique_tuple_of_space= (p1,rt1). The object
unique_tuple_of_spaces is used for the assembly of shape functions.
Indeed we reduce the collection of spaces and the corresponding shape func-
tions to compute, to its minimum. This avoid the computation of the same
shape function, associated to a given operator, multiple times. Of course,
for a correct assembly, it is necessary to relate the TupleOfSpaces to the
UniqueTupleOfSpaces. SpacesToUniqueNumbersTuple is a tuple of
numbers which maps a type in TupleOfSpaces to the corresponding position
in UniqueTupleOfSpaces. In summary, we get:

using TupleOfSpaces=std::tuple< Space_1,...,Space_n >;

using UniqueTupleOfSpaces=Unique<TupleOfSpaces>;

using SpacesToUniqueNumbersTuple=FromTo<TupleOfSpaces,UniqueTupleOfSpaces>;

For the dual contact problem, the tuples look like as follows:

using TupleOfSpaces=

tuple<ElementFunctionSpace<Elem,RaviartThomas,1,Continuous, 2>,

ElementFunctionSpace<Elem,Lagrange, 1,Discontinuous,2>,

ElementFunctionSpace<Elem,Lagrange, 1,Continuous, 1>,

ElementFunctionSpace<Elem,Lagrange, 1,Continuous, 2>,

ElementFunctionSpace<Elem,Lagrange, 1,Continuous, 1>>

using UniqueTupleOfSpaces=

tuple<ElementFunctionSpace<Elem,RaviartThomas,1,Continuous, 2>,
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ElementFunctionSpace<Elem,Lagrange, 1,Discontinuous,2>,

ElementFunctionSpace<Elem,Lagrange, 1,Continuous, 1>,

ElementFunctionSpace<Elem,Lagrange, 1,Continuous, 2>>

using SpacesToUniqueNumbersTuple=tuple<Number<0>,

Number<1>,

Number<2>,

Number<3>,

Number<2> >

There is no difference between TupleOfSpaces and UniqueTupleOfSpaces
regarding the trial and test spaces, because they are all different. However P1

in Waux, which is already present in Wmixed, does not have to be repeated. In
SpacesToUniqueNumbersTuple we see the collection of numbers mapping
TupleOfSpaces into UniqueTupleOfSpaces.

9.6 Trial, test and auxiliary functions

Trial and test functions can be declared after W_ptr, a shared pointer to the full
space, has been initialized. For creating the trial and test functions belonging to
the N -th space of the mixed space, we can do:

auto TrialN = MakeTrial<N>(W_ptr);

auto TestN = MakeTest <N>(W_ptr);

where the Trial and Test classes are Expressions (see section 9.7) that de-
pend on the global collection of spaces W_ptr, on the integer N and on a par-
ticular operator which is set by default to be the IdentityOperator. How-
ever other different differential operators such as the gradient, the divergence
or, as we will see, composite operators, can be used. The trial and tests with
different operators can be created directly in the forms by using, for example,
Grad(TrialN), Div(TrialN), Trace(TrialN) and so on.

template<typename MixedSpace, Integer N, typename Operator=IdentityOperator>

class Test: public Expression<Test<MixedSpace,N,Operator>>{...};

template<typename MixedSpace, Integer N, typename Operator=IdentityOperator>

class Trial: public Expression<Trial<MixedSpace,N,Operator>>{...};

The definitions for the Trial and the Test classes are identical. They also have
an integer variable value, which refers to the position of the N -th space of the
trial/test function in UniqueTupleOfSpaces.

template<typename MixedSpace, Integer N, typename Operator_=IdentityOperator>

class Test: public Expression<Test<MixedSpace,N,Operator_>>
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{public:

using Operator=Operator_;

using UniqueTupleOfSpaces=typename MixedSpace::UniqueTupleOfSpaces;

using SpacesToUniqueNumbersTuple=typename MixedSpace::SpacesToUniqueNumbers;

static constexpr Integer Nmax=TupleTypeSize<UniqueTupleOfSpaces>::value;

static constexpr Integer number=N;

static constexpr Integer value=GetType<SpacesToUniqueNumbersTuple,N>::value;

Test(const std::shared_ptr<MixedSpace>& W_ptr): spaces_ptr_(W_ptr) {}

Test(const MixedSpace& W): spaces_ptr_(std::make_shared<MixedSpace>(W) {}

inline auto spaces_ptr()const {return spaces_ptr_;};

private:

std::shared_ptr<MixedSpace> spaces_ptr_;

};

Declaring tests and trials for the previous example, we do obtain:

auto sigma = MakeTrial<0>(W_ptr);

auto u = MakeTrial<1>(W_ptr);

auto theta = MakeTrial<2>(W_ptr);

auto tau = MakeTest <0>(W_ptr);

auto v = MakeTest <1>(W_ptr);

auto rho = MakeTest <2>(W_ptr);

The auxiliary function referred to the N -th auxiliary space is instantiated simi-
larly. Separately it is defined the class FunctionTypewhich defines the function
to be discretized. It requires a static eval method for its evaluation which
takes as input the point of evaluation and the FE object, which is unused in this
case. So, for example, if we want to define the class FunctionZero, that has
the dimension as a template parameter, we need the following code:

template<Integer Dim> class FunctionZero

{public: using type=Matrix<Real,Dim,1>;

template<typename Point,typename Elem>

static type eval(const Point& p, FiniteElem<Elem>& FE)

{

Matrix<Real,Dim,1> func;

for(Integer i=0;i<Dim;i++)

func(i,0)=0;

return func;

}

};

where the definition of the Matrix class is trivial. Then two are the ways for
defining volumetric or boundary functions:



184 9.7 Expression templates

auto FuncN = MakeFunction<N,FunctionType>(W_ptr);

auto TraceFuncN = MakeTraceFunction<N,FunctionType>(W_ptr);

that have, as operators, IdentityOperator and TraceOperator.

9.7 Expression templates

Linear and bilinear forms are substantially sums of integrals. Their complexity
grows with the complexity of each integral term and with the increase of their
numerosity. In principle, we would like to write compile-time expressions for the
forms which can be used for the assembly on a mesh, given as input at run-time.
The basic operations which can appear in the forms are unary or binary. For
example, between integrals, we do have addition or subtraction, whilst inside
the integrals, we can have addition, subtraction, multiplication, dot product,
and so on. Each operation with one or more arguments is a new type and the
combination of different operations, in turn, gives rise to new different types,
which can be hard to handle.

For the sake of clarity, let us focus on the sum of integrals that appear in the
linear and bilinear forms. Since each integral is different, a templated class for
integrals will be required. We identify the integral object with the lowercase let-
ter i and its type with the capital letter I. Whenever we do sum up two integrals
i1 of type I1 and i2 of type I2, the result i1 + i2 is an object of a new templated
addition class of type A< I1, I2 >. Such class takes, as template arguments,
two integral classes. However, this class is not an integral class as well, because
it does not evaluate a single integral, but the sum of two. If we go even further, it
is clear that for the sum of three integrals i1 + (i2 + i3), we would first need to
define the type A< I2, I3 > and then A< I1, A< I1, I2 >>. For (i1 + i2) + i3,
on the other hand, we should define the class A< A< I1, I2 >,I3 >. By adding
more and more terms, the more combinations we can have and must define. So
it is evident that this way of proceeding is far from being optimal. This happens
because the finite sum of integrals is, mathematically, again an integral. But in
C++, the type of the sum of two integral classes is a totally different class which
is not an integral anymore. We need to homogenize the resulting type of unary
and binary operations to their arguments so that both, the arguments and the
results of the operations, are simply Expressions. To this aim, let us consider
the following example:

class Base: public Expression<Base>

{};
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The Base class inherits from the class Expression that has, as template param-
eter, the Base class itself. Typically, the Base class could inherit from classes that
have already been defined. Since Expression depends on Base itself, which is
not been declared yet, a recursion shows up. However, C++ enables this pos-
sibility. This suggests the name of curiously recursive template pattern (CRTP).
Such a pattern is very useful because it enables all classes to be, in addition to
their type, expressions as well. In this way, the arguments of the operations
can simply be expressions and the operations will result in expressions as well.
The Expression class is very simple. It is a template class that depends on the
Derived type. Its methods permit to access the Derived type object which can
be therefore used both as an Expression< Derived> type or a Derived type.

template<typename Derived> class Expression

{public: inline constexpr Derived &derived()

{return static_cast<Derived &>(*this);}

inline constexpr const Derived &derived() const

{return static_cast<const Derived &>(*this);}

inline constexpr operator Derived &()

{return derived();}

inline constexpr operator const Derived &() const

{return derived();}

};

The previous sum of three integrals can be seen now as sum of expressions. So
we do have:

using Addition_2_3=Expression<Addition<Expression<I_2>,Expression<I_3>>>;

using Addition_1_2_3=Expression<Addition<Expression<I_1>,Addition_2_3>>

This type is different and its evaluation follows a different order, even thought
the final result is the same, of the tree of expressions below:

using Addition_1_2=Expression<Addition<Expression<I_1>,Expression<I_2>>>;

using Addition_1_2_3=Expression<Addition<Addition_1_2,Expression<I_3>>>

It is clear that any combination of expressions results in a tree of expressions. This
tree has to be run-time evaluated later in the assembly. Its order of evaluation
follows the same structure of the expressions tree.

9.8 Predefined Operators

9.8.1 Algebraic and differential operators

In MARS, there are predefined operations that can be used for creating new ex-
pressions. Some standard algebraic operations, are:
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• unary plus;

• unary minus;

• binary plus (addition);

• binary minus (subtraction);

• binary multiplication;

• binary division;

• binary inner product;

• unary transposition;

and other operators for the only trial and test functions, that are expressions as
well, are:

• unary differential operators (gradient, divergence);

• unary trace;

The application of a differential operator or the trace operator to a test/trial
function creates a new test/trial. The corresponding operator is not the identity
anymore. Instead, it is the applied differential or trace operator.

9.8.2 Examples of a unary and a binary operator classes

Here we present a snippet of code for the definition of the UnaryPlus and the
Addition classes. We first introduce the operator+. It can be defined to take
one or two inputs expressions. In the first case, the object returned is of the type
UnaryPlus, whilst in the second case is of the type Addition.

template<typename Derived>

class UnaryPlus<Expression<Derived>>

operator+(const Expression<Derived>& expr)

{return UnaryPlus<Expression<Derived>>(expr);}}

template<typename L,typename R>

class Addition<Expression<L>, Expression<R>>

operator+(const Expression<L>& expr_left, const Expression<R>& expr_right)

{return Addition<Expression<L>,Expression<R>>(expr_left,expr_right);}

Here the definition of the UnaryPlus class:
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template<typename Derived>

class UnaryPlus<Expression<Derived>>:

public Expression<UnaryPlus<Expression<Derived>>>

{

public:

UnaryPlus(const Expression<Derived>& expr_value):

value_(expr_value.derived()){};

Derived& operator()(){return value_;};

const constexpr Derived& operator()()const{return value_;};

Derived& derived(){return value_;};

const constexpr Derived& derived()const{return value_;};

private:

Derived value_;

};

and here the one for the Addition class:

template< typename L,typename R>

class Addition<Expression<L>,Expression<R>>:

public Expression<Addition<Expression<L>,Expression<R>>>

{

public:

using Left=L;

using Right=R;

Addition(const Expression<L>& expr_left, const Expression<R>& expr_right):

left_(expr_left.derived()),

right_(expr_right.derived())

{};

const constexpr L& left()

const{return left_;};

const constexpr R& right()const

{return right_;};

auto operator()()

{return Addition<Expression<L>,Expression<R>>(left_,right_);};

auto operator()()const

{return Addition<Expression<L>,Expression<R>>(left_,right_);};

private:

Left left_;

Right right_;

};

It is interesting to notice that UnaryPlus has one private member, value_ of
type Derived and not Expression. For this reason, in the constructor we do
not initialize value_ simply using the expr_value object. Instead, we exploit
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the method derived() of the Expression class, which returns the object with
its templated type, i.e., Derived. We do the same in the Addition class for both
the left and right expressions, expr_left and expr_right, which are derived
in order to obtain a Left and a Right objects.

9.9 Composite Operators

In MARS it is also possible to have user-defined operators which can be compo-
sitions of the predefined operators. A new operator can be built by means of the
NewOperator function and can be used later in the linear and bilinear forms.
For example, in order to define the inverse of the elasticity operator C_inverse
or the asymmetry term of a 2D tensor Asym, we can do as follows:

constexpr Real mu=1.0;

constexpr Real lambda=9999999999.0;

constexpr auto C_1=Constant<Scalar>(1/(2 mu));

constexpr auto C_2=Constant<Scalar>(-lambda/((2 mu)(MDim lambda+ 2 mu)));

constexpr auto id_mat=Constant<Identity<MDim>>();

constexpr auto a_mat=Constant<Mat<2,2>>(0.0,1.0, 0.0,0.0);

auto C_inverse=NewOperator(C_1 Identity()+ C_2 id_mat MatTrace(Identity()) );

auto Asym=NewOperator(Inner(a_mat,(Identity()-Transpose(Identity()))));

where we have omitted the casting from Integer to Real variables.

9.10 Integrals

In MARS, the integral type for both volumetric and surface integrals is
L2DotProductIntegral. Volumetric integrals can be constructed by means
of the L2Inner() function which takes the two inputs of the L2 scalar
product. On the other hand, boundary integrals are constructed using the
surface_integral() function. Its first input is the boundary label of interest,
while the second and the third inputs are again the L2 scalar product arguments.
These functions are templated and, in addition to the left and right expressions,
have two other default parameters. A bool value which states if the integral is
volumetric or not and the type of quadrature rule, which is set by default to be
Gaussian.

template<typename L,typename R,bool Volumetric=true,Integer QR=Gaussian>

auto L2Inner

(const Expression<Left>& left,const Expression<Right>& right)

{return L2DotProductIntegral<Left,Right,VolumeIntegral,QR>(left,right);}
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template<typename L,typename R,Integer QR=Gaussian>

auto surface_integral

(const Integer label,const Expression<L>& left,const Expression<R>& right)

{return L2DotProductIntegral<L,R,false,QR>(left,right,label);}

The declaration of the L2DotProductIntegral class is:

template<typename L,typename R,bool Volumetric=true,Integer QR=Gaussian>

class L2DotProductIntegral:

public Expression<L2DotProductIntegral<L,R,Volumetric,QR>>

The most important information of this class are:

• the order of quadrature;

• the type of form (zero, one or two-form);

• in case of a one-form, the position of the FE space, corresponding to the test
function, in TupleOfSpaces; this is used for the dofmap in the one-form;

• in case of a two-form, the positions of the FE spaces, corresponding to the
test and trial functions, in TupleOfSpaces; these are used for the dofmaps
in the two-form;

The order of quadrature Q of an L2-inner product with arguments a and b, is
defined as Q((a, b)) =Q(a)Q(b) + 1. The quadrature order of the single terms
Q(a) and Q(b) can be computed by using recursively the rules in Table 9.1.

+u −u u+ v u− v u ∗ v u/v (u, v)
Q(u) Q(u) max(Q(u),Q(v)) max(Q(u),Q(v)) Q(u) +Q(v) Q(u)−Q(v) Q(u) +Q(v)

Q I(u) ∇(u) div(u) trace(u)
Lagrange Q(u) Q(u)− 1 − Q(u)

Raviart-Thomas Q(u) - Q(u)− 1 Q(u)− 1

Table 9.1. Quadrature order rules for trees of expressions.

9.11 Linear and bilinear forms

Here we do propose the bilinear and the linear forms of the Signorini problem
for the dual formulation of linear elasticity:
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auto bilinearform=L2Inner(C_inverse(sigma),tau)+

L2Inner(Div(sigma),v)+

L2Inner(u,Div(tau))+

L2Inner(Asym(tau),theta)+

L2Inner(Asym(sigma),rho);

auto linearform=L2Inner(v,-f_ext)+

surface_integral(dirichlet_label,Trace(tau),u_dirichlet)+

surface_integral(contact_label,Inner(Trace(tau),normal),g);

See section 4.4 for the continuous formulation.

9.12 Essential boundary conditions

To enforce the N -th trial function to be equal to FuncType on the boundary
Gamma, an essential boundary condition can be defined in this way:

auto bcs=DirichletBC<N,FuncType>(W_ptr,Gamma);

If it is necessary to prescribe only the M -th component of the trial function to be
equal to FuncTypeSingleComponent, we write the following:

auto bcs=DirichletBC<N,FuncTypeSingleComponent,M>(W_ptr,Gamma);

A list of boundary conditions can then be used:

auto bcs1=DirichletBC<0,FunctionZero<ManifoldDim>>(W_ptr,neumann_boundary);

auto bcs2=DirichletBC<0,FunctionZero<1>,0>(W_ptr,contact_boundary);

9.13 FE context and assembly

Once the forms and boundary conditions have been defined, the corresponding
context object can be created. The create_context() function takes the bi-
linear form and then, eventually, the linear form and/or the boundary conditions
desired. Then the matrix Ah and vector fh related to the bilinear and linear forms
can be assembled by means of the assembly method.

auto context=create_context(bilinearform,linearform,bcs1,bcs2);

context.assembly(A_h,f_h);

9.14 Evaluation

Template expressions enable to define compile-time structures (the forms in this
case) which can be later evaluated. The evaluation of the tree of expressions is
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carried by means of Evaluation objects. An Evaluation object can be built
in general for unary and binary operators. In addition to the Unary or Binary
classes, also other template arguments can be given as input. For example, the
quadrature rule is a piece of additional and necessary information for the evalu-
ation of the shape functions. Indeed shape functions as expressions are objects
independent from the integrals in which they will be inserted. In fact, the same
expression of a shape function can appear in different integrals terms. See for
example (9.10a). Nevertheless, its evaluation strictly depends on the integral
itself, which determines the quadrature rule. It is then obvious that we first must
declare the tree of expressions and, only later, we can go for its evaluation, by
considering the specific quadrature rule.

The Evaluation object of the forms cannot be built with the same structure
of the tree of expressions. Indeed the tree of the forms involves integrals with
different test and trial functions, which do not influence each other. We first
need to decompose the overall form into sub-forms involving the same test or
trial functions. Starting from the objects in (9.11), we need to create a matrix
and a vector of sub-forms to be evaluated. For the dual formulation, we can
decompose the evaluation of bilinear and linear forms into a matrix E and a
vector e of evaluations as in (9.12). Even though it is a different example, we can
notice the importance of using linearity in the FOSLS formulation (9.5). Indeed,
for a decomposed evaluation like in (9.12), we need each L2(Ω) dot product
of a bilinear form to have only one test function and one trial function in its
arguments. This is especially true if the trial or the tests belong to different
spaces.

E=





(Aσ,τ)Ω (u, div τ)Ω (θ ,as τ)Ω
(div σ,v)Ω 0 0
(as σ,γ)Ω 0 0



 e=





(τn,gD)ΓD + ((τn)n, g)ΓC
(−f, div τ)Ω

0





(9.12)

The difficult part here is that, at compile-time, we need to define from the global
types/object of (9.11), the local types/objects of the components in (9.12). We
will not discuss how this is done, but want to stress out the fact that, even though
is not trivial at all, it has been coded.

Once the Evaluation object is built, it can be evaluated by means of the
apply method. The output to be returned is also the first input, passed as a
reference, while all other variadic input arguments are useful for its computation.

template<template<class>class Unary,typename Derived,typename...Others>

class Evaluation<Expression<Unary<Expression<Derived> > >,Others...>

{



192 9.15 Collection of maps

public:

using type=Unary<Expression<Derived>>;

using Eval=Evaluation<Expression<Derived>,Others...>;

using subtype= OperatorType<Derived,Others...>;

using outputsubtype= OperatorType<type,Others...>;

Evaluation(){};

Evaluation(const Expression<type>& expr):

expr_(expr.derived()),

eval_(Eval(expr_()))

{};

template<typename...Inputs>

void apply(outputsubtype& output, Inputs&...inputs)

{

eval_.apply(derived_value_,inputs...);

OperatorApply<Unary<subtype>>::apply(output,derived_value_);

}

auto expression() {return expr_;}

const auto& expression()const{return expr_;}

private:

type expr_;

Eval eval_;

subtype derived_value_;

};

9.15 Collection of maps

In the assembly process, it is of fundamental importance the mapping between
the reference and the actual elements. Depending on the element, on the FE fam-
ily, and on the operator of interest, a different mapping is necessary. Therefore
the arguments of the ReferenceMap class are the operator (identity, gradient,
divergence, trace, and so on), the element, and the FE family. Such class has a
private member map_ that is initialized by means of the init() method, which
takes the finite element FE as input, and can be returned thanks to the function
operator().
template<typename Operator,typename Elem,Integer FEFamily>

class ReferenceMap

{
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public:

inline constexpr void init(const FiniteElem<Elem>& FE) {...}

inline constexpr const auto& operator() ()const{return map_;}

private:

MapType map_;

};

In Table 9.2, we propose the maps for the Lagrangian and Raviart-Thomas fam-
ilies for simplicial elements and for different operators:

Identity Trace Gradient Divergence
Lagrangian 1 1 A−T -

Raviart-Thomas A
det(A)

1
det(A) - 1

det(A)

Table 9.2. Mapping for different FE spaces and operators

The context object builds a MapFromReferenceCollection object for the
bilinear and the linear forms. This again constructs two collections of maps, one
for the volumetric operators, MapVolumetric, and the other one for the trace
operators, MapSurface. To this aim, two tuples of tuples are needed and built
as follows. Let us focus, for example, on the tuple of tuples MapVolumetric.
It is no longer than the UniqueTupleOfSpaces. Indeed the maps require only
the FE family integer labels. Additional information such as continuity or num-
ber of components is not necessary. Therefore, if in UniqueTupleOfSpaces
can appear two continuous Lagrangian linear spaces which differ for the num-
ber of components, in MapVolumetric both spaces are represented by the only
Lagrangian family.

For a FE family in the N -th position of MapVolumetric, the corresponding
component in MapVolumetric is again a tuple that collects all the reference
maps, related to the N -th FE family, necessary for the bilinear and the linear
forms. Even though the same operator can show up multiple times in the forms,
the tuples are reduced to their minimum, with no duplicate reference map. So
for example, we do have:
using MapVolumetric=tuple<tuple<ReferenceMap<Divergence,Elem,RT>,

ReferenceMap<Identity, Elem,RT>>,

tuple<ReferenceMap<Identity, Elem,Lagrange>>>

using MapSurface=tuple<tuple<ReferenceMap<Trace,BoundaryElem,RT>>,

tuple<ReferenceMap<Trace,BoundaryElem,Lagrange>>>

inside the MapFromReferenceCollection class. In the dual formulation, the
stress variable σh is subject to the identity and the divergence operators. Thus
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the first component of the tuple of type MapVolumetric is a tuple with two
components associated to the Divergence and the Identity operators. On
the other hand, the displacement uh is a discontinuous piecewise linear functions
of two components, while the rotation θh is a scalar continuous piecewise linear
function. They share the same map, associated with the Identity operator, in
the second component of the tuple of type MapVolumetric. The same argument
is used for the surface tuple of tuples of type MapSurface.

9.16 Collection of shape functions

As for the maps, the classes ShapeFunctionVolumetric and
ShapeFunctionSurface for the collection of the volumetric and surface
shape functions can be created. The class ShapeFunction is fully determined
by the element E, the BaseFunctionSpace, the operator Operator and
quadrature rule QR types:

template<typename E,typename BaseFunctionSpace,typename Operator,typename QR>

class ShapeFunction;

Two are the main differences between the map and the shape functions col-
lections. The first resides in the fact that the shape functions have to be evaluated
in quadrature points, while the map is fixed for the given element (at least if we
assume that the elements deform only linearly). The second one is that for the
maps only the FE family is important, while for the shape functions the whole
BaseFunctionSpace is. Therefore we can create a tuple of tuples, as long as
the UniqueTupleOfSpaces tuple. The N -th component is a tuple referring to
the N -th space of the tuple UniqueTupleOfSpaces. It contains all the occur-
rences of the shape function necessary for the bilinear and linear forms. If two
shape functions are defined for the same space and the same operator, but dif-
ferent quadrature rules, then both of them will be considered. Nevertheless, as
for the map case, no duplicate is allowed.

If we go back to the 2D dual formulation, the resulting collections are the
following:

using ShapeFunctionVolumetric=

tuple<tuple<ShapeFunction<Elem,RT1_2, Identity, GaussPoints<Elem,5>>,

ShapeFunction<Elem,RT1_2, Divergence,GaussPoints<Elem,3>>,

ShapeFunction<Elem,RT1_2, Identity, GaussPoints<Elem,4>>,

tuple<ShapeFunction<Elem,DGP1_2 Identity, GaussPoints<Elem,3>>>,

tuple<ShapeFunction<Elem,P1_1, Identity, GaussPoints<Elem,4>>>,

tuple<ShapeFunction<Elem,P1_2, Identity, GaussPoints<Elem,3>>>>
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using ShapeFunctionSurface=

tuple<tuple<ShapeFunction<Elem,RT1_2, Trace, GaussPoints<BoundaryElem,3>>,

ShapeFunction<Elem,RT1_2, Trace, GaussPoints<BoundaryElem,4>>>,

tuple< >,

tuple<ShapeFunction<Elem,P1_1, Trace, GaussPoints<BoundaryElem,4>>>,

tuple<ShapeFunction<Elem,P1_2, Trace, GaussPoints<BoundaryElem,3>>,

ShapeFunction<Elem,P1_2, Trace, GaussPoints<BoundaryElem,4>>>>

The first three components of the main tuples, ShapeFunctionVolumetric
and ShapeFunctionSurface, refer to the MixedFunctionSpace, while the
other ones refer to the AuxiliarySpace. For simplicity of notation, the number
of components of the spaces is described with a subscript. For example, RT1_2
means that we consider the RT1 space with two components. In this case, two are
the order of quadrature rules, 4 and 5, associated with the identity operator. In
all other cases, only one quadrature rule is used. Finally, we see that the second
component of ShapeFunctionSurface is an empty tuple because in the dual
formulation there is no boundary trace of the displacement.

The collection of shape functions with their operators and quadrature rules
is extended also to composite operators. Indeed, not only standard operators
can be reused in the forms, but also the composite operators. Therefore also a
tuple that enables their computation is necessary. Since the composite operators
depend on the standard operators, first the shape functions related to standard
operators are computed and, consequently, the composite operators can be com-
puted as well.

9.17 Assembly of the FOSLS and dual formulations

In this final section, we exploit the information of the previous pages to code
the assembly for both the FOSLS and the dual formulation. We consider the
problem in Figure 8.22. The domain is a square mesh, with boundaries numbered
from one to four, starting from the right edge and moving in a counterclockwise
direction. Thus ΓN = {1,3}, ΓC = {2}, ΓD = {4}. The gap function is defined as
follows:

class GapFunction{

public:

using type=Matrix<Real,1,1>;

template<typename Point,typename FiniteElem>

static type eval(const Point& point,FiniteElem& FE)

{return +1.* 0.5*(1-sin(acos((point[0]-0.5)/0.5)));}

};
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The code for the FOSLS and dual formulations is described below. Some parts,
like the reading of the input mesh, the declaration of the matrix and the vector,
or other minor details, are not inserted.

/////////////////////////////

///// FOSLS FORMULATION /////

/////////////////////////////

// Some type definitions

using MeshT=Mesh<Dim, ManifoldDim>;

using RT_0= FunctionSpace< MeshT, RT<0,MDim>>;

using P_1= FunctionSpace< MeshT, Lagrange<1,MDim>>;

using AuxP_1_1= FunctionSpace< MeshT,Lagrange<1,1>>;

// Mesh and auxiliary geometric objects

MeshT mesh;

Bisection<MeshT> bisection(mesh);

Node2ElemMap<MeshT> n2em(mesh,bisection);

// Single FE spaces

RT_0 rt0(mesh,bisection,n2em);

P_1 p1(mesh,bisection,n2em);

AuxP_1_1 p1_1(mesh,bisection,n2em);

// Collection of FE spaces

auto Wtrial = MixedFunctionSpace(rt0,p1);

auto Waux = AuxFunctionSpacesBuild(p1,p1_1);

auto W = FullSpaceBuild(Wtrial,Waux);

using W_type = decltype(W);

auto W_ptr = std::make_shared<W_type>(W);

// Trial functions

auto sigma = MakeTrial<0>(W_ptr);

auto u = MakeTrial<1>(W_ptr);

// Test functions

auto tau = MakeTest<0>(W_ptr);

auto v = MakeTest<1>(W_ptr);

// Auxiliary functions

auto f_ext = MakeFunction<0,FunctionZero<MDim>>(W_ptr);

auto u_D = MakeTraceFunction<0,FuncNthComp<MDim,1,Func001>>(W_ptr);

auto normal = MakeTraceFunction<0>(W_ptr);

auto gap = MakeGapFunction<1>(W_ptr);

// Compute the normal values (at nodes or faces depending)
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constexpr Real mu=1;

constexpr Real lambda=inf;

constexpr auto half=Constant<Scalar>(0.5);

constexpr Real alpha=1/(2mu);

constexpr Real beta=alpha (-lambda/(MDim lambda+2mu));

constexpr auto id_mat=Constant<Identity<MDim>>();

constexpr auto asym_mat=Constant<Mat<2,2>>(0.0,1.0, 0.0,0.0);

constexpr auto C1=Constant<Scalar>(1/(2 mu));

constexpr auto C2=Constant<Scalar>((1/(2mu))(-lambda/(MDim lambda+2mu)));

// Definition of asymmetric tensor

auto C_inv=NewOperator(C1 Identity() + C2 id_mat MatTrace(Identity()) );

// Definition of the compliance tensor

auto Asym=NewOperator(Inner(asym_mat,(Identity()-Transpose(Identity()))));

// Definition of the deformation tensor

auto Eps=NewOperator(half ((Gradient()+Transpose(Gradient()))));

// Bilinear form definition

auto b_form=+Int(Div(sigma),Div(tau))

+Int(C_inv(sigma)-Eps(u),C_inv(tau)-Eps(v))

+Surf_Int(GammaC,Inner(Trace(sigma),normal),Inner(Trace(v),normal)

+Surf_Int(GammaC,Inner(Trace(tau),normal),Inner(Trace(u),normal));

// Linear form definition

auto l_form=+Int(-Div(tau),f_ext)

+Surf_Int(GammaC,Inner(Trace(tau),normal),gap);

// Boundary conditions

auto bcs1=DirichletBC<0,FunctionZero<ManifoldDim>>(W_ptr,GammaN);

auto bcs2=DirichletBC<0,FunctionZero<1>,0>(W_ptr,contact_boundary);

auto bcs3=DirichletBC<0,FunctionZero<ManifoldDim>>(W_ptr,GammaN);

auto bcs4=DirichletBC<1, FuncNthComp<ManifoldDim,1,Func001> >(W_ptr,GammaD);

// Creation of the FE context

auto context=create_context(b_form,l_form,bcs1,bcs2,bcs3,bcs4);

// Matrix and right hand side

context.assembly(A,b);

////////////////////////////

///// DUAL FORMULATION /////

////////////////////////////

// Some type definitions

using MeshT=Mesh<Dim, ManifoldDim>;

using RT_1= FunctionSpace< MeshT, RT<1,MDim>>;

using DGP_1= FunctionSpace< MeshT, LagrangeDG<1,MDim>>;

using P_1= FunctionSpace< MeshT, Lagrange<1,MDim>>;
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using AuxP_1_1= FunctionSpace< MeshT,Lagrange<1,1>>;

// Mesh and auxiliary geometric objects

MeshT mesh;

Bisection<MeshT> bisection(mesh);

Node2ElemMap<MeshT> n2em(mesh,bisection);

// Single FE spaces

RT_1 rt1(mesh,bisection,n2em);

DGP_1 dgp1(mesh,bisection,n2em);

P_1 p1(mesh,bisection,n2em);

AuxP_1_1 p1_1(mesh,bisection,n2em);

// Collection of FE spaces

auto Wtrial = MixedFunctionSpace(rt1,dgp1,p1_1);

auto Waux = AuxFunctionSpacesBuild(p1,p1_1);

auto W = FullSpaceBuild(Wtrial,Waux);

using W_type = decltype(W);

auto W_ptr = std::make_shared<W_type>(W);

// Trial functions

auto sigma = MakeTrial<0>(W_ptr);

auto u = MakeTrial<1>(W_ptr);

auto theta = MakeTrial<2>(W_ptr);

// Test functions

auto tau = MakeTest<0>(W_ptr);

auto v = MakeTest<1>(W_ptr);

auto rho = MakeTest<2>(W_ptr);

// Auxiliary functions

auto f_ext = MakeFunction<0,FunctionZero<MDim>>(W_ptr);

auto u_D = MakeTraceFunction<0,FuncNthComp<MDim,1,Func001>>(W_ptr);

auto normal = MakeTraceFunction<0>(W_ptr);

auto gap = MakeGapFunction<1>(W_ptr);

// Compute the normal values (at nodes or faces depending)

constexpr Real mu=1;

constexpr Real lambda=inf;

constexpr Real alpha=1/(2mu);

constexpr Real beta=alpha (-lambda/(MDim lambda+2mu));

constexpr auto id_mat=Constant<Identity<MDim>>();

constexpr auto asym_mat=Constant<Mat<2,2>>(0.0,1.0, 0.0,0.0);

constexpr auto C1=Constant<Scalar>(1/(2 mu));
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constexpr auto C2=Constant<Scalar>((1/(2mu))(-lambda/(MDim lambda+2mu)));

// Definition of asymmetric tensor

auto C_inv=NewOperator(C1 Identity() + C2 id_mat MatTrace(Identity()) );

// Definition of the compliance tensor

auto Asym=NewOperator(Inner(asym_mat,(Identity()-Transpose(Identity()))));

// Bilinear form definition

auto b_form=+Int(C_inv(sigma),tau)

+Int(Div(sigma),v)

+Int(u, Div(tau))

+Int(Asym(tau), theta)

+Int(Asym(sigma),rho);

// Linear form definition

auto l_form=+Int(v,-f_ext)

+Surf_Int(GammaD,Trace(tau),u_D)

+Surf_Int(GammaC,Inner(Trace(tau),normal),gap);

// Boundary conditions

auto bcs1=DirichletBC<0,FunctionZero<MDim>>(W_ptr,GammaN);

auto bcs2=DirichletBC<0,FunctionZero<1>,0>(W_ptr,GammaC);

auto bcs3=DirichletBC<0,FunctionZero<ManifoldDim>>(W_ptr,GammaN);

// Creation of the FE context

auto context=create_context(b_form,l_form,bcs1,bcs2,bcs3);

// Matrix and right hand side

context.assembly(A,b);
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Chapter 10

Conclusions

10.1 Summary

In this thesis, a MMG method has been introduced for the FOSLS and the dual
stress-based formulations for the Signorini problem. In the FOSLS formulation,
the displacement u and the stress σ are discretized respectively by means of lin-
ear Lagrangian and lowest-order Raviart-Thomas functions. In the dual formu-
lation, the stress σ, the displacement u, and the rotation θ are approximated re-
spectively with first-order Raviart-Thomas, discontinuous linear Lagrangian, and
continuous linear Lagrangian functions (in 2D). In contrast to the standard pri-
mal formulation, which computes only the displacement u and that is unbounded
in the incompressible limit, the stress-based formulations always treat the stress
σ as the main variable and can easily deal with incompressible materials. For
these reasons, a working MMG method applied to a stress-based formulation of
the Signorini problem would be able to solve, with optimal complexity, for linear
elastic incompressible materials subject to inequality constraints.

The original idea of MMG is to sequentially minimize an energy functional
by means of fine and coarse corrections fulfilling the constraints. This principle
can be guaranteed only for the FOSLS formulation, since in the dual formulation
the global equality constraints are just projected on the coarser levels. However,
it is always possible to satisfy the local inequality constraints on coarser levels
by using monotone restrictions operators. Since the constraints on the boundary
can be discretized by means of linear functions, the monotone restrictions can
be defined easily for both the FOSLS and the dual cases.

The same goes for the truncation of the basis functions related to the active
degrees of freedom. This technique is used for accelerating convergence, but
it is not beneficial for the FOSLS formulation, where essential boundary condi-
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tions are enforced on both the primal and the dual variables, u, and σ. Since
in the dual formulation the boundary conditions concern only the stress variable
σ, truncation is effective as for the primal formulation, that enforces essentially
the only boundary conditions on the displacement u. However, for the dual for-
mulation and, in particular, in the case of aggressive coarsening, the monotone
restrictions did not perform very well in the numerical experiments. Thus the
only truncation has been used.

In addition to monotone restrictions and truncation of the basis functions, a
proper smoother must be introduced as well. In fact, σ ∈ Hdiv and the smoother
must be defined to tackle also the divergence-free components of the error. The
Hiptmair smoother of section 6.12 is based on the Helmholtz decomposition and
requires the computation of divergence-free corrections subject to global inequal-
ity constraints. The transformation from local to global inequality constraints is
not desirable and so we opted for the Arnold-Falk-Winther smoother of section
6.13. The idea is to enlarge the local subdomains of the Gauss-Seidel smoother to
entire patches so that divergence-free functions are tackled directly. In particular,
we use a monolithic approach, meaning that we consider all possible degrees of
freedom on the patch, not only the ones related to the stress.

In principle, for the FOSLS case, it could be possible to smooth separately
the stress and the displacement, but adding to the stress patch also the degrees
of freedom of the internal node is very simple. On the other hand, for the dual
formulation, a monolithic approach is a necessary choice in the incompressible
limit. Indeed the main bilinear form is only semi-positive definite and cannot
be inverted unless the constraints are imposed as well. Therefore, on a patch,
we can consider both the stress and the Lagrange multipliers dofs. Nevertheless,
depending on how the boundary stress dofs are treated, we can recover a full
Neumann, a full Dirichlet, or a full Robin problem. In the full Neumann case,
the constraints are satisfied exactly, but rigid body motions are allowed. Thus,
we must remove them, explicitly or by additional zero-average constraints on the
Lagrange multipliers. Unfortunately, both attempts do not make the smoother
satisfactory. On the other hand, the full Dirichlet approach, which incorporates
also the stress dofs on the boundary, is more promising. The disadvantage is that
some constraints outside the patch cannot be fulfilled. An idea could be to damp
the boundary stress dofs of the local correction so that the constraints outside
the patch can be violated in a minor way. This idea corresponds to a full Robin
approach of parameter α ≥ 0. For α = 0 we recover the full Dirichlet problem,
while for α > 0 local Robin boundary conditions are enforced.

We have shown in the numerical experiments that the parameter α is funda-
mental for the convergence of a two-level MMG method for linear elasticity, in



203 10.2 Outlook

case of aggressive coarsening. But it is also crucial for the convergence of the Sig-
norini problem. The main issue of the Robin parameter α is that its optimal value
is not known in advance. Therefore a dynamic computation of α should be car-
ried out. In particular, we have proven that α cannot be modified from patch to
patch, but it should remain constant at least for a whole smoothing step. Indeed
the role of α is to make adequately communicate the various patch subdomains
so that the overall error reduces as fast as possible. Optimization of α on a certain
patch without considering all the other ones is not possible. Therefore α must
be computed based on information obtained during the MMG process. In par-
ticular, among the strategies proposed, the best one works as follows. Given an
initial value α0, we keep it for the next V-cycle if the residual decrease is enough,
otherwise, we reduce α0. This strategy makes the algorithm robust with respect
to α0, if α0 is chosen to be sufficiently large but less than one. Therefore we
can state that we have defined an α0-robust MMG method for the dual formula-
tion applied to linear elastic nearly-incompressible or incompressible materials
subject to rigid obstacle constraints.

10.2 Outlook

In this thesis, we have provided a robust MMG algorithm for solving nearly-
incompressible or incompressible linear elastic obstacle problems for the dual
formulation. All the numerical experiments are in 2D. Thus a natural gener-
alization would be the 3D case. It would be also interesting to generalize the
setting also to other local non-linearities, like plasticity or Coulomb friction, and
see how the parameter α influences the performance. Furthermore, since the
MMG here presented is geometric, future work can concern the treatment of do-
mains with non-trivial shape. To this purpose, we would need to generalize the
work done so far to the algebraic or semi-geometric multigrid frameworks and
eventually to the extended FE method.
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