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Abstract

In the unfitted finite element methods, traditionally we can use Nitsche’s method
or the method of Lagrange multipliers to enforce the boundary/interface condi-
tions. In this work, we present tailored multilevel methods for solving the prob-
lems stemming from either of these discretizations. Generally, multigrid methods
require a hierarchy of finite element (FE) spaces which can be created geometri-
cally using a hierarchy of nested meshes. However, in the unfitted FE framework,
standard multigrid methods might demonstrate poor convergence properties if
the hierarchy of FE spaces employed is not nested. We design a prolongation
operator for the multigrid methods in such a way that it can accommodate the
arbitrary shape of the boundaries/interfaces and recursively induces a nested
FE space hierarchy. The prolongation operator is constructed using so-called
pseudo-L2-projections; as common, the adjoint of the prolongation operator is
employed as the restriction operator. We employ this transfer operator in our
multigrid method and solve the linear system of equations that arise from using
Nitsche’s method. In the numerical experiments, we show that our multigrid
method is robust with respect to highly varying coefficients and the number of
interfaces in a domain. It shows level independent convergence rates when ap-
plied to different variants of Nitsche’s method.

Additionally, we present a generalized multigrid method for solving the prob-
lems stemming from the discretization of the interface conditions using Lagrange
multipliers. This method can be used to solve the quadratic minimization prob-
lems with linear equality/inequality constraints, efficiently. The essential com-
ponent of this multigrid method is the technique that decouples the linear con-
straints by projecting them into a new basis. The decoupled constraints are then
handled by a modified version of the projected Gauss-Seidel method. By means
of several numerical experiments, we exhibit the robustness of our multigrid
method for the boundary or interface conditions with respect to varying coef-
ficients. In addition, we demonstrate that this multigrid method can also han-
dle the inequality constraints arising from the contact problems in the unfitted
framework.
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Chapter 1

Introduction

In the last two decades, unfitted finite element methods have become quite
popular. An unfitted method can be defined as any method where the com-
putational domain does not match the mesh exactly. The rise in the popular-
ity of the unfitted method is due to the fact that the finite element method
(FEM) [BS07, Bra07, LB13] poses certain challenges for modeling problems on
the complex domains or for problems with static or dynamic discontinuities. For
modeling the problems on complex domains, it is essential to generate a mesh
that could explicitly represent the computational domain. While for the prob-
lems with a static discontinuity, it becomes essential to create a mesh, such that
a discontinuity is resolved by the mesh. Whereas, for the problems with the dy-
namic discontinuities, it would become necessary to adapt the mesh over time as
the discontinuity evolves. In many of these cases, it can be a cumbersome, time-
consuming, and computationally demanding task to create high-quality meshes,
and failing to do so can result in usually sub-optimal approximation properties of
FEM. Geometrically unfitted methods overcome these problems, as they just re-
quire a background mesh and a finite element space defined on the background
mesh. Clearly, the latter has to be modified to enforce the boundary conditions or
the interface conditions. Here, an interface can be described as codimension one
entity embedded in the domain, across which a function may exhibit non-smooth
properties.

There is a huge variety of unfitted methods. The fictitious domain method
can be listed as one of the oldest variants of an unfitted method [GPP94]. Later,
Babuška and Melenk introduced the partition of unity finite element method
which falls in the category of the meshless methods, as the meshes in the
classical sense were not required [MB96, BM97]. Based on that work, Be-
lytschko and Black proposed the idea of modeling crack propagation problems
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with minimal remeshing of the finite element mesh, where the nodes near the
crack surfaces and the crack tip were enriched to describe the crack [BB99].
This work was extended by Moës et al. by introducing the Heaviside func-
tion and crack-tip function, and this new method is termed as eXtended Fi-
nite Element Method (XFEM) [MDB99]. Later, it was applied to the problems
with the voids and inclusions by employing different types of enrichment func-
tions [SCMB01, DMD+00]. Simultaneously, a similar approach to solve the in-
terface problems without the need of remeshing was considered by Hansbo and
Hansbo [HH02, HH04]. The methodology to enrich the background mesh used
by Hansbo and Hansbo is very similar to the XFEM method introduced by Moës
et al. [MCCR03], where the Heaviside functions are used with absolute shifted
enrichments. In the work of Hansbo and Hansbo [HH02], in addition to the en-
richments, Nitsche’s method was utilized to enforce the interface conditions in
the unfitted finite element framework. A similar XFEM approach is also consid-
ered for the two-phase flow problems in fluid dynamics to enrich the pressure
variable [GRR06, Reu08, GR11]. Even though the XFEM has been introduced
for problems in fracture mechanics with crack propagation, it has been later ap-
plied to many different problems [FB10, MDS17]. In addition to the interface
problems, the unfitted methods have been widely applied in the context of fic-
titious domain methods [BH10, BH12, BH14]. The Finite Cell Method (FCM)
can be considered as an extension of the fictitious domain method to higher-
order function space [PDR07, SR15]. The FCM has been recently extended
by employing the spline-based finite elements for harmonic and bi-harmonic
problems [EDH10]. Another examples of unfitted methods can be given as
the CutFEM method [BCH+15, CBM15], which normally emoploys a form of
ghost penalty term to imporve the stability [Bur10]. In addition to these meth-
ods, we can also list other unfitted methods as the immersed boundary meth-
ods [Pes02, SDS+12], immersogeometric analysis [KHS+15], the trace finite ele-
ment method [OR17], etc.

In the unfitted methods, a background mesh captures the computational do-
main of arbitrary shape, thus the elements are allowed to be cut arbitrarily by the
boundaries or interfaces. This could give rise to a highly ill-conditioned system
of linear equations. Due to this reason, it becomes essential to develop efficient
solution strategies or the preconditioning strategies for solving the linear systems
arising from the unfitted discretization methods. Tailored preconditioning meth-
ods for solving the interface problems with Nitsche based XFEM discretization
were proposed and studied in [LMDM14, LR17, GLOR16].

In this work, we focus on developing the robust multilevel solution and
preconditioning strategies in the unfitted finite element framework. Multilevel



3 1.1 Overview

methods are ideal iterative solvers for many large-scale linear/nonlinear prob-
lems, as they are of optimal complexity [Hac86, TOS00, BvEHM00]. The opti-
mal complexity implies that the convergence rate of the multilevel methods is
bounded independently from the size of the problem, and the amount of numer-
ical operations done in the algorithm is proportional to the size of the problem.
The robustness of multilevel iteration results from a sophisticated combination
of smoothing iterations and coarse level corrections. Ideally, these components
are complementary to each other as they reduce errors in different parts of the
spectrum. Traditionally, the mesh hierarchy for multilevel methods is created by
either coarsening or refinement strategies, and a simple interpolation operator
and its adjoint are used to transfer the information between different levels.

There have been some efforts to develop multilevel solution strategies for the
XFEM discretization. Initial approaches propose to modify the algebraic multi-
grid method (AMG). A domain decomposition-based AMG preconditioner is pro-
posed for the fracture problems [BVWH+12], where the domain is decomposed
into ‘cracked’ and ‘intact’ domain and AMG is applied to the ‘intact’ domain, and
the ‘cracked’ domain is solved with a direct solver. Another approach using AMG
for the XFEM discretization for the fracture problems is exploited in [GT13]. In
an alternative approach, known as a quasi-algebraic multigrid method, the spar-
sity pattern of the interpolation operator is modified to prevent the interpolation
across the interfaces [HTW+12]. Recently, a new multigrid method is also pro-
posed for the elliptic interface problems, with an interface smoother in [lud20].

1.1 Overview

The main objective of this thesis is to develop efficient multilevel methods for
solving the optimization problems arising from the unfitted finite element dis-
cretizations.

We start our discussion with a presentation of the discretization framework
for the unfitted FEM. We introduce the XFEM with first-order finite element
spaces for discretizing the fictitious domain and the interface problems. Here, we
focus on the strategies for enforcing the boundary conditions and the interface
conditions in the unfitted FEM framework. To enforce the boundary/interface
conditions in a weak sense, we utilize the penalty method, Nitsche’s method,
and the method of Lagrange multipliers. Next, we discuss in detail the numerical
challenges posed by each method and evaluate the robustness of these methods
by comparing their discretization errors and the condition numbers of arising
linear systems.
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Then, we propose tailored multigrid methods for solving the system of equa-
tions arising from Nitsche’s method and the method of Lagrange multipliers. The
multigrid method requires transfer operators to transfer the information between
the mesh hierarchy. In the unfitted framework, the mesh hierarchy is generally
created by the either coarsening or refinement of the background meshes. Thus,
even though the background meshes are nested, the meshes associated with the
computational domain may not be nested. Hence, we propose a new transfer
operator for the unfitted meshes computed using L2-projection and pseudo-L2-
projection [DK11, DK14, KK19]. Additionally, the system of equations arising
from the method of Lagrange multipliers has a saddle point structure, which
can also be formulated as a quadratic minimization problem with linear equality
constraints. Here, we introduce a new generalized multigrid method for solving
such problems. This generalized multigrid method is an extension of the mono-
tone multigrid method [Kor94, Kor96, KK01], which was introduced for solving
quadratic minimization problems with pointwise constraints.

As a culmination of this thesis, we employ the unfitted finite element methods
for solving contact problems. We use the method of Lagrange multipliers to dis-
cretize the non-penetration condition for contact problems. In addition, we use
our novel generalized multigrid method for solving the quadratic minimization
problems with linear inequality constraints.

Here, we provide a brief list of the contributions made in this thesis:

• We compare the penalty method, Nitsche’s method, and the method of La-
grange multipliers used for enforcing the boundary/interface conditions.
We evaluate the performance of these methods by comparing their dis-
cretization errors and condition numbers of the linear system by means of
several numerical examples.

• We introduce a new transfer operator in the unfitted framework. We eval-
uate the robustness of this transfer operator by employing it in the semi-
geometric multigrid method for solving the linear systems, which arise
from fictitious domain method and interface problems when using the
penalty method or Nitsche’s method.

• We evaluate the performance of the standard iterative methods for solving
the saddle point problems that arise due to the method of Lagrange mul-
tipliers. We also assess the performance of the semi-geometric multigrid
method as a solution strategy for solving the primal problem.

• We introduce a generalized multigrid method for solving the saddle point
problem, or an equivalent quadratic minimization problem with linear con-
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straints, arising from the method of Lagrange multipliers. In order to han-
dle the linear constraints, we propose a technique to decouple the con-
straints and introduce a variant of the projected Gauss-Seidel method.

• Finally, we employ all these ingredients for solving the contact problem
in the unfitted framework. We use the method of Lagrange multipliers to
enforce the non-penetration conditions for Signorini’s problem and two-
body contact problems. In the end, we extend the generalized multigrid
method for solving contact problems.

1.2 Function Spaces

In this work, we discuss the finite element method for solving the second-order
partial differential equations. The Sobolev spaces are a natural choice for the
variational problems of this kind. Here, we give an introduction to the notations
used in this work and later give a short description of the Sobolev spaces. For
the detailed review of the Sobolev spaces, we refer to the monographs [BS07,
Bra07, Sal08].

Notations: In this work, the scalar quantities, such as functions, constants, op-
erators are denoted by lower case and upper case characters e.g., u, v, f , C . The
vector quantities are denoted by bold symbols in lower case characters e.g., a, b,
and the matrix quantities are denoted by bold symbols in upper case characters
e.g., A, B. We denote a matrix A ∈ Rm×n, where the symbols Rm×n denote the
set of m× n matrices with real entries. For a given matrix A, its transpose is de-
noted by AT. The components of these vector and matrix quantities are given as
ai, b j, Ai j, Bkl for some indices i, j, k, l. By symbols V , W , we denote real normed
function spaces. Given a function space V , we denote its dual space that con-
tains all bounded linear functionals by V∗. We denote the vector-valued function
spaces by V = (V)d , where d ∈ {2, 3}.

The Euclidean inner product is defined as u · v :=
∑

i ui vi for u, v ∈ Rn. We
define scalar energy product (·, ·)A as (u, v)A := u · Av , for all u, v ∈ Rn and
the induced energy norm is defined as ‖ · ‖2

A := (·, ·)A. Additionally, we define the
Kronecker delta δi j for some indices i, j by

δi j =

¨

1 if i = j,

0 if i 6= j.
(1.1)
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Sobolev Spaces: We consider a simple and connected domain Ω ⊂ Rd for
d ∈ {2,3}. The domain Ω is an open and bounded in the Euclidean space with
Lipschitz boundary ∂Ω and the outer normal vector from the domain is defined as
n. We assume, the boundary ∂Ω can be decomposed into two subsets; the closed
Dirichlet boundary ∂ΩD and the open Neumann boundary ∂ΩN , such that

∂ΩD ∪ ∂ΩN = ∂Ω and ∂ΩD ∩ ∂ΩN = ;.
We denote the elements of Ω by x = (x1, x2, . . . , xd). On the domain Ω, a scalar
valued function is defined as u : Ω→ R and a vector valued function is defined
as v : Ω→ Rd .

We define a multi-index as a d-tuple a = (a1, a2, . . . , ad),∀ai ∈ N. The length
of a multi-index is given by |a| := ∑1¶i¶d ai. The a-th derivative of order |a| is
denoted by

∂ a =
∂ a1

∂ x a1
1

∂ a2

∂ x a2
2

· · · ∂
ad

∂ x ad
d

.

Let L2(Ω) be a Lebesgue space of square-integrable function on the domain
Ω. The inner product on L2(Ω) is denoted as (u, v)L2(Ω) :=

∫

Ω
u(x )v(x ) dΩ,

and the induced L2-norm is defined as ‖ · ‖2
L2(Ω) := (·, ·)L2(Ω). The sym-

bol L∞(Ω) denotes the space of essentially bounded function with norm
‖v‖L∞(Ω) := ess supx∈Ω |v(x )|.

Additionally, by Hk(Ω), we denote the Sobolev space of function with k ¾ 0
square-integrable weak derivatives on the domain Ω. We note, L2(Ω) = H0(Ω).
Then ∂ a denotes the weak differentiation and the corresponding norm in Hk(Ω)
are given as

‖v‖2
Hk(Ω) := ‖v‖2

L2(Ω) +
∑

1¶|a|¶k

‖∂ av‖2
L2(Ω).

The space Hk(Ω) is a Hilbert space with respect to the scalar product

(u, v)Hk(Ω) = (u, v)L2(Ω) +
∑

1¶|a|¶k

(∂ au,∂ av)L2(Ω).

In this work, we use several subspaces of H1(Ω) and L2(Ω). We denote the sub-
space of H1(Ω) with all the function that vanish on the Dirichlet boundary ∂ΩD

is denoted as H1
D(Ω), we have

H1
D(Ω) = {v ∈ H1(Ω) : v|∂ΩD

= 0},
and if the whole boundary is Dirichlet boundary ∂ΩD = ∂Ω, we have

H1
0(Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}.
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When the boundary ∂Ω is Lipschitz continuous, we introduce a linear and
continuous operator

γ0(·) : H1(Ω)→ H
1
2 (∂Ω).

The operator γ0 is surjective and it is known as a trace operator. For simplicity,
we denote the restriction of a function u on the boundary ∂Ω by u|∂Ω. Given
u ∈ H1(Ω), the image of the trace operator γ0(u) coincides with the restriction
of u to the boundary ∂Ω, given as γ0(u) = u|∂Ω, which we refer to as trace of u
on the boundary ∂Ω. In addition, the dual of the space of H

1
2 (∂Ω) is denoted as

H−
1
2 (∂Ω), and the duality paring between these two spaces is given as

〈·, ·〉∂Ω : H−
1
2 (∂Ω)×H

1
2 (∂Ω)→ R.

1.3 Outline

This thesis is organized as follows.

• In Chapter 2, we introduce the fictitious domain method in the unfitted
finite element framework. We introduce the penalty method, Nitsche’s
method, and the method of Lagrange multipliers for enforcing the Dirichlet
boundary conditions. Also, we review various approaches for estimating
the value of the stabilization parameter used in Nitsche’s method. In ad-
dition, we also discuss the necessity of satisfying the inf-sup condition and
introduce the vital vertex algorithm to construct a stable multiplier space.

• In Chapter 3, we introduce the interface problem as overlapping fictitious
domains in the XFEM framework. Our presentation is given as an extension
of Nitsche’s method and the method of Lagrange multipliers from enforcing
boundary conditions to enforcing interface conditions.

• In Chapter 4, we review the multigrid method as subspace correction
method. Later, we introduce the multilevel framework for creating a nested
hierarchy of the FE space from a hierarchy of the background meshes. We
present the variational transfer approach to compute the transfer operators
by means of L2-projections and pseudo-L2-projections.

• In Chapter 5, we discuss standard iterative methods for solving saddle point
problems and review some preconditioners for the dual systems. Then,
we introduce the generalized multigrid method for solving the quadratic
minimization problem with linear equality constraints.
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• In Chapter 6, we introduce contact problems in the unfitted framework. We
use the method of Lagrange multipliers for imposing the non-penetration
condition on the unfitted interface and we use our generalized multigrid
method for solving the contact problems.



Chapter 2

Fictitious Domain Method

The fictitious domain method is among one of the earliest variants of unfitted
methods [GPP94, GG95]. This method was introduced to simplify the process of
numerically solving partial differential equations on complex domains using reg-
ular structured meshes. In this approach, the solution of the problem is defined
only up to the boundary of the computational domain. Thus, the weak formula-
tion of a problem is defined only on the elements that are located in the interior
of the domain. This method is a subset of a Galerkin method, and it inherits the
approximation properties of the standard finite element methods.

The unfitted method simplifies the task of creating high-quality meshes that
fit the domains, but it gives rise to some other challenges. Firstly, we have to store
various details about the actual computational domain and identify the part of
the background mesh that is associated with the domain. Secondly, we have to
pay attention to the numerical integration of the elements that are intersected by
the boundary and are only partially inside of the domain. The last challenge is
concerning the imposition of the Dirichlet boundary conditions. As the boundary
of the computational domain does not fit the background mesh exactly, we have
to enforce the Dirichlet boundary conditions in a weak sense.

In this chapter, we provide an introduction to the fictitious domain method in
the extended finite element framework and discuss various methods to enforce
the boundary conditions. The concepts outlined in this chapter are extended
in the next chapter for tackling the interface problems. Additionally, in order to
highlight elements of the discretization method, we limit our presentation in this
chapter to a model diffusion problem.

In Section 2.1, we define a diffusion problem on a domain Ω. The assump-
tions on the background mesh and the finite element function spaces are dis-
cussed in Section 2.2. In Section 2.3, we give a weak formulation of the diffu-

9
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sion problem and pose the problem in an optimization framework with Dirichlet
boundary conditions as constraints. Further, we investigate different strategies
to enforce the Dirichlet boundary conditions in the XFEM framework, e.g., the
penalty method, the method of Lagrange multipliers, and Nitsche’s method in
Section 2.4. Later, we discuss the stabilization parameter in Nitsche’s method
which plays an important role in establishing the coercivity of the bilinear form.
In Section 2.5, we discuss strategies to implicitly estimate the value of the stabi-
lization parameter. Then, we discuss a method to create a stable space for the
Lagrange multipliers in Section 2.6. In the last section, we perform some nu-
merical experiments to show the convergence properties of the penalty method,
Nitsche’s method, and the method of Lagrange multipliers for different test ex-
amples.

2.1 Model Problem

We assume a bounded domain Ω ⊂ Rd , d ∈ {2,3} with the boundary ∂Ω. In this
section, we denote the boundary as Γ := ∂Ω. The boundary Γ is assumed to be
Lipschitz continuous. We consider the following diffusion problem as a model
problem.

Given the data f ∈ L2(Ω) and a function gD ∈ H
1
2 (Γ ), find a function u such

that
−∇ ·α(x )∇u= f in Ω,

u= gD on Γ ,
(2.1)

where the coefficient α : Ω→ R+ is piecewise constant satisfying

α(x )¾ α0 > 0.

With a slight abuse of notation, we write α = α(x ). The model problem (2.1)
has a unique solution u ∈ H1(Ω) that satisfies

‖u‖H1(Ω) ¶ C(‖ f ‖L2(Ω) + ‖gD‖H
1
2 (Γ )
).

The weak formulation of the problem (2.1), which has inhomogeneous
Dirichlet boundary conditions, is given as, find u ∈ H1

0(Ω) such that

(α∇u,∇v)L2(Ω) = ( f , v)L2(Ω) − (α∇ug ,∇v)L2(Ω) ∀v ∈ H1
0(Ω), (2.2)

where ug ∈ H1(Ω) with ug |Γ = gD in the sense of trace theorem.
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We remark that the formulation (2.2) is equivalent to the following minimiza-
tion problem. Find u ∈ H1

0(Ω) such that

min
u∈H1

0 (Ω)

1
2
(α∇(u+ ug),∇u)L2(Ω) − ( f , u)L2(Ω). (2.3)

In both of the above formulations (2.2) and (2.3), the solution is sought in the
H1

0(Ω) space.

2.2 Finite Element Discretization

In the previous section, the weak formulation is still given in a continuous sense.
In this section, we introduce the necessary ingredients for the discretization of
the diffusion problem in the extended finite element framework.

2.2.1 Background Mesh

We assume a domain D, that encapsulates the computational domain Ω, i.e.,
Ω ⊂ D. We define shape regular, quasi-uniform, conforming triangulation on
the background domain. The partition of the background domain D is given by
simplicies Ki ∈ Rd such that

Dh = {K1, K2, . . .}.

Now, we can define the closure of the background domain as union of closure of
all simplicies, given as

Dh = {K1, K2, . . .}= ∪K∈Dh
K .

The background triangulation which is associated with our domain is defined as
follows:

eTh = Dh\∂Dh.

The domain Ω is encapsulated by the mesh, Ω ⊂ eTh, but the mesh is not fitted to
the boundary of the domain. The boundary of the domain is resolved sufficiently
well by the mesh eTh and the curvature of the boundary is bounded.

We use eTh as a background triangulation which captures the domain. Let hK

be the diameter of the element K , and mesh size is defined as h = maxK∈ eTh
hK .

We define so-called active mesh, which is strictly intersected by the domain Ω as

Th = {K ∈ eTh : K ∩Ω 6= ;}.
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The active mesh Th excludes all the elements that are neither intersected by the
boundary Γ nor are in the interior of the domain. In Figures (2.1a, 2.1b), we can
see an example of a background mesh eTh and an active mesh Th that encapsulates
a circular domain.

We define a set of elements that are intersected by the boundary Γ as

Th,Γ = {K ∈ eTh : K ∩ Γ 6= ;}.

For all elements K ∈ Th,Γ , let KΩ := K ∩Ω be part of K in domain Ω. While for all
elements K ∈ Th \ Th,Γ are strictly in the interior of domain Ω. For all K ∈ Th,Γ ,
let ΓK := Γ ∩ K be part of Γ in K . Additionally, we define the set of faces Gh,Γ

Gh,Γ = {G ⊂ ∂ K : ∂ K ∩ ∂ Th = ;,∀K ∈ Th,Γ }.

This set includes all the faces that are associated with the cut elements, except
the ones that are on the boundary of the mesh ∂ Th. In Figure 2.1c, we can see the
distinction between the elements of mesh Th,Γ and the elements of mesh Th\Th,Γ .
While in Figure 2.1d we can see the set of faces that belong to the set Gh,Γ .

2.2.2 Extended Finite Element Space

We define a continuous first order finite element (FE) space over the triangulation
eTh as

eVh = {v ∈ H1( eTh) : v|K ∈ P1(K), ∀K ∈ eTh},
where P1 denotes the space of piecewise linear functions. Following the original
XFEM literature [MDB99], we define a characteristic function of the computa-
tional domain Ω, given as

χΩ : Rd → R, χΩ(x ) =

¨

1 ∀x ∈ Ω,

0 otherwise.
(2.4)

The characteristic function is used to restrict the support of the finite element
space eVh to the domain Ω. Thus, the space of finite elements in the domain Ω is
defined as

Vh = χΩ(x )eVh. (2.5)

We obtain the “cut” basis associated with a node p as,

φ
p
h = χΩ(x ) eφ

p
h ∀p ∈ fNh.
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(a) A triangular mesh eTh is used as a back-
ground mesh to capture a circular domain
Ω.

(b) the mesh Th is strictly intersected by the
domain Ω.

(c) The mesh Th,Γ is shaded in blue, while
the interior mesh Th\Th,Γ is shaded in green.

(d) The set of faces Gh,Γ is shown in the red.

Figure 2.1. An example of a domain Ω with a background mesh eTh.
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φ̃
p
h

(a)

Γ

φ
p
h

(b)

Figure 2.2. (a) The basis function eφ
p
h associated with a node p, (b) The “cut” basis

function φp
h = χΩi

(x ) eφp
h associated with the node p

Here, fNh denotes the set of nodes of the active mesh eTh. Now, the set of nodes
associated with the domain Ω can be given as

Nh = {p ∈ fNh : supp(φp
h )∩Ω 6= ;}.

The FE space Vh is spanned by the nodal basis functions given as, Φh = (φ
p
h )p∈Nh

.
In Figure 2.2, we can see the basis function eφ

p
h associated with the original func-

tion space eVh and corresponding cut basis function φp
h associated with the FE

space Vh.

2.3 Variational Formulation

Now, we discretize the problem (2.1) using the FE space Vh defined on the ac-
tive mesh Th. We write the discretized variational formulation of the diffusion
problem (2.1) as a constrained minimization problem. Find uh ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

a(uh, uh)− F(uh)

subject to uh = gD on Γ ,
(2.6)

where J(·) : Vh → R denotes the energy functional, a(·, ·) : Vh × Vh → R is a
continuous, symmetric and coercive bilinear form and F(·) : Vh → R denotes a
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continuous linear form. The bilinear and the linear forms are defined as

a(uh, vh) := (α∇uh,∇vh)L2(Ω),

F(vh) := ( f , vh)L2(Ω).

We remark that the formulation (2.3) is posed as an unconstrained minimization
problem, while (2.6) is formulated as a constrained minimization problem. In
the unfitted finite element framework, it is not possible to impose the Dirich-
let boundary condition in a pointwise manner as the mesh is not fitted to the
boundary of the domain. Thus, we have to rely on other methods to impose the
Dirichlet boundary conditions in a weak manner. We also mention that, we seek
the solution of (2.3) in H1

0(Ω) space while for (2.6) the solution is sought in a
larger space Vh ⊆ H1(Ω).

Before discussing the weak formulation in the XFEM framework we need to
define the appropriate norms. We define mesh-dependent inner products on the
boundary as

(u, v)
H

1
2 (Γ ),h

:=
∑

K∈Th,Γ

(h−1
K u, v)L2(ΓK ),

(u, v)
H−

1
2 (Γ ),h

:=
∑

K∈Th,Γ

(hKu, v)L2(ΓK ).

The induced mesh-dependent norms at the boundary are given as

‖v‖2

H
1
2 (Γ ),h

=
∑

K∈Th,Γ

1
hK
‖v‖2

L2(ΓK )
,

‖v‖2

H−
1
2 (Γ ),h

=
∑

K∈Th,Γ

hK ‖v‖2
L2(ΓK ).

(2.7)

We recall, 〈·, ·〉Γ : H−
1
2 (Γ )×H

1
2 (Γ )→ R, denotes a duality paring on the boundary.

On the duality pairing, we have the following inequality due to Cauchy-Schwarz

〈u, v〉Γ ¶ ‖u‖H−
1
2 (Γ ),h
‖v‖

H
1
2 (Γ ),h

. (2.8)

For the FE space Vh an important trace inequality on each element K ∈ Th,Γ is
given as

‖α∇nuh‖2

H−
1
2 (ΓK ),h
¶ Cγ‖α

1
2∇uh‖2

L2(KΩ)
, (2.9)

where, ∇nu = n · ∇u. Here, we note that the constant Cγ depends on the shape
regularity of element KΩ not the background element K .
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2.3.1 Causes of Ill-conditioning

In the unfitted methods, a background mesh captures the computational domain
of arbitrary shape, hence the elements are allowed to be cut arbitrarily by the
boundary. In general, this flexibility can result in disproportionally cut elements
that might not be shape regular anymore. For an element K ∈ Th, the bound
on the gradient of a function is established by the following inverse inequality
relation

‖∇uh‖L2(K) ¶ Ch−1
K ‖uh‖L2(K), (2.10)

where, the constant C depends on the shape regularity of element K . Now, for
the cut elements, ∀ K ∈ Th,Γ , the constant C depends on the shape regularity
of element KΩ and on the mesh size of the element hK , which can become arbi-
trarily small. Therefore, the bounds on the gradients of the function can become
arbitrarily weak depending on the location of the boundary with respect to the
background mesh. The inverse inequality relation (2.10) is necessary to provide
the bounds for the condition number estimates of the system matrix, hence a
large value of the constant C in the above inequality gives rise to linear systems
of equation with large condition numbers. Indirectly, the condition number of
the system matrix depends on the cut position and the conditioning of the lin-
ear system may become arbitrarily poor when an interface passes very close to
element faces or nodes. In order to tackle the issue of poor conditioning of the
system matrix, the ghost penalty method was introduced.

2.3.2 Ghost Penalty Stabilization

In this section, we introduce a new stabilization term, called the ghost penalty, in
the variational formulation. The ghost penalty term was introduced to recover
the control over the gradients of the function on the cut elements [Bur10]. The
ghost penalty method was introduced in the context of Nitsche’s method to im-
prove the robustness of the method irrespective of the location of the bound-
ary [BH12, Bur10]. The idea of such a stabilization term was used for the
problems with dominant transport to penalize the jumps in the normal deriva-
tive across the interior faces of elements [DD76]. This type of penalty term
was recently also applied in the context of convection-diffusion-reaction prob-
lem [BH04], Stoke’s problem [BH06] and in the XFEM context for incompressible
elasticity problems to penalize the jump in pressure [BBH09].

The ghost penalty term consists of a least-square penalization of the flux
jumps across the element boundaries, which weakly enforces the continuity of
normal flux at the element interfaces in the neighborhood of the boundary. This
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penalty term has to be chosen in such a way that it provides sufficient stability
and it stays weakly consistent with the original formulation for smooth solutions.
The ghost penalty term is enforced on the set of faces Gh,Γ , and it is defined as

g(uh, vh) =
∑

G∈Gh,Γ

εGhGα(J∇nG
EhuhK, J∇nG

EhvhK)L2(G), (2.11)

where hG is the diameter of face G, nG denotes unit normal to face G, and εG is a
positive constant. Here, Eh denotes the canonical extension of the function from
the domain to the background mesh, which is defined as Eh : Vh|KΩ → eVh|K .

By adding the ghost penalty term, we regain the control over the gradients
of the function on the cut elements with very small support and by extension we
overcome the issue of ill-conditioning. The coercivity of the bilinear form a(·, ·)
in the discrete sense is defined only up to the boundary of the computational
domain. Adding the stabilization term to the bilinear form a(·, ·) extends the
coercivity from the computational domain to the active mesh,

a(vh, vh) + g(vh, vh)¾ Cs

∑

K∈Th

‖α 1
2∇vh‖2

L2(K).

In [Bur10], it is shown that the extended coercivity is enough to ensure a uni-
form upper bound on the condition number of the system matrix. The condition
number of the system matrix associated with the updated bilinear form does not
depend on the location of the boundary with respect to the background mesh.

Even though, the ghost penalty stabilization term was introduced in the con-
text of Nitsche’s method, we add this term to the bilinear form regardless of
the method chosen to enforce the Dirichlet boundary condition. We modify the
energy formulation in (2.6), by introducing an additional ghost penalty stabi-
lization term (2.11). The modified energy functional is given as

J(uh) :=
1
2

�

a(uh, uh) + g(uh, uh)
�

− F(uh). (2.12)

Since its introduction, the ghost penalty term has become quite popular in the
unfitted finite element framework. The ghost penalty terms have been used for
different variants of the unfitted finite element framework e.g., in so-called Cut-
FEM methods[BCH+15], cut discontinuous Galerkin methods [GM18, GM19].

2.4 Enforcing Boundary Conditions

In this section, we discuss different strategies for enforcing the Dirichlet bound-
ary condition. We reformulate the problem (2.6) with the modified energy func-
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tional (2.12) that includes the ghost penalty term. Thus, the updated minimiza-
tion problem is given below. Find uh ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

�

a(uh, uh) + g(uh, uh)
�

− F(uh)

subject to uh = gD on Γ .
(2.13)

In this section, we consider a constrained optimization framework to derive a
weak formulation of the above problem.

2.4.1 The Penalty Method

The idea of enforcing the Dirichlet boundary condition in the finite element
framework in a weak sense dates back to the work of Babuška [Bab73b]. The
penalty method is one of the simplest ways to recast an equality constrained min-
imization problem to an unconstrained minimization problem. This is done by
adding an extra term to the energy functional which penalizes the violation of
the constraints.

Here, we consider a quadratic penalty method that penalizes the constraints
in a least squares sense. The modified energy functional is given as

min
uh∈Vh

JP(uh) := J(uh) +
γp

2
‖uh − gD‖2

H
1
2 (Γ ),h

,

where γp ∈ R+ is the penalty parameter. If the penalty parameter is chosen to
be large enough, then the solution of the above minimization problem leads to a
solution that satisfies the Dirichlet boundary condition approximately.

The Euler-Lagrange condition corresponding to the above minimization prob-
lem yields:

find uh ∈ Vh such that AP(uh, vh) = FP(vh) ∀vh ∈ Vh. (2.14)

Here, the bilinear functional AP(·, ·) and the linear functional FP(·) are defined
as

AP(uh, vh) = a(uh, vh) + g(uh, vh) + (γpuh, vh)H 1
2 (Γ ),h

,

FP(vh) = F(vh) + (γp gD, vh)H 1
2 (Γ ),h

.

This formulation can be also achieved by reformulating the Dirichlet boundary
condition to a Neumann or a Robin type condition and then using the Neumann
boundary condition in the Green’s formula for the problem (2.1) [BE86].
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Although the penalty method is trivial to implement, it is not widely used
since it is not consistent with the strong formulation (2.1). The system matrix as-
sociated with the bilinear functional AP(·, ·) can produce a highly ill-conditioned
system if a large penalty parameter is chosen. The convergence of the discretiza-
tion error depends on the value of the penalty parameter. If a large enough
penalty parameter is not chosen, the method may produce sub-optimal converge
rates. Analysis of the penalty method for the fitted method is carried out in
[Bab73b, BE86], but in our knowledge, the analysis for the penalty method in
the unfitted finite element framework is not available.

2.4.2 The Method of Lagrange Multipliers

The method of Lagrange multipliers was also introduced by Babuška in the finite
element framework to impose the Dirichlet boundary conditions [Bab73a]. It
is also extensively used in the field of constrained optimization problems to en-
force equality constraints. This method results in the mixed formulation which
requires the solution of the primal variable and an additional multiplier.

We define a Lagrangian function L(·, ·) : Vh ×Mh→ R, where Mh is a mul-
tiplier space, Mh ⊆ H−

1
2 (Γ ). The Lagrangian function for enforcing the Dirichlet

boundary condition is defined as

L(uh,λh) = J(uh) + 〈λh, uh − gD〉Γ . (2.15)

The saddle-point (uh,λh) ∈ Vh ×Mh is the solution of the above problem given
as

L(uh,µh)¶ L(uh,λh)¶ L(vh,λh) ∀(vh,µh) ∈ Vh ×Mh.

The first order optimality conditions of the Lagrangian formulation (2.15) can
be reformulated into the following equivalent formulation.
Find (uh,λh) ∈ Vh ×Mh such that

a(uh, vh) + g(uh, vh) + b(λh, vh) = F(vh) ∀vh ∈ Vh,

b(µh, uh) = GD(µh) ∀µh ∈Mh.
(2.16)

Here, the bilinear form b(·, ·) : Mh × Vh→ R and the linear form GD : Mh→ R
are defined as

b(λh, uh) :=
∑

K∈Th,Γ

〈λh, uh〉ΓK and GD(λh) :=
∑

K∈Th,Γ

〈λh, gD〉ΓK .

The method of Lagrange multipliers is an attractive option for enforcing the
Dirichlet boundary conditions. However, it is stable only if the following discrete
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inf-sup condition is satisfied

inf
λh∈Mh

sup
uh∈Vh

b(λh, uh)
‖λh‖H−

1
2 (Γ ),h
‖uh‖H1(Ω)

¾ β > 0, (2.17)

where the constant β does not depend on the mesh size h. The choice of a fi-
nite element space for the Lagrange multiplier is very essential to have a stable
discretization method. In the XFEM framework, most naive options for the pri-
mal and the multiplier spaces do not satisfy the inf-sup sup condition. In the
original work of the fictitious domain methods, the Lagrange multiplier method
was used for imposing the Dirichlet boundary conditions [GPP94, GG95]. In that
case, the primal variable and the Lagrange multiplier are discretized on two dif-
ferent meshes. The Lagrange multiplier is discretized on a coarser mesh such
that the mesh size of the coarse mesh is at least three times larger than the mesh
chosen to discretize the primal variable [GPP94].

The inf-sup condition (2.17) can be circumvented by introducing additional
stabilization terms. In the work of Barbosa and Hughes [BH91, BH92a], the inf-
sup condition is avoided by adding a least-square penalty term that minimizes the
difference between the multiplier and its physical interpretation. Their method
is also introduced to the XFEM framework and analyzed in detail for the fictitious
domain problem in [HR09].

We discuss stable discretization spaces for the Lagrange multiplier and ways
to circumvent the inf-sup condition in more detail in Section 2.4.2.

2.4.3 Nitsche’s Method

Nitsche’s method was introduced as an alternative to the penalty method and
the method of Lagrange multipliers to enforce the Dirichlet boundary condi-
tions [Nit71]. This method is utilized in many different discretization meth-
ods as it is simple to use. For example, in the discontinuous Galerkin (DG)
method, Nitsche’s method is used to enforce the continuity between each ele-
ment faces [Arn82]. It is also used in a domain decomposition methods to mor-
tar the interfaces between non-matching meshes [BFMR97, BHS03]. Nitsche’s
method is also a popular choice for enforcing the Dirichlet boundary conditions
for mesh-free methods and particle methods [GS03].

This method can be regarded as a variationally consistent penalty method.
An alternative interpretation of the method is as a stabilized Lagrange multiplier
method, where the Lagrange multiplier is explicitly expressed by its physical in-
terpretation as an outward flux in the primal variable [Ste95].
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We start with an augmented Lagrangian functional LA(·, ·) : Vh ×Mh → R,
where the formulation is given as

LA(uh,λh) = J(uh) + 〈λh, uh − gD〉Γ +
γp

2
‖uh − gD‖2

H
1
2 (Γ ),h

. (2.18)

If we solve this problem, the saddle-point point (uh,λh) ∈ Vh×Mh is the solution
of the above problem given as

LA(uh,µh)¶ LA(uh,λh)¶ LA(vh,λh) ∀(vh,µh) ∈ Vh ×Mh.

But rather than solving for the saddle-point problem, we replace the Lagrange
multiplier by its physical interpretation. In the context of problem (2.1) the
Lagrange multiplier can be interpreted as outward flux at the boundary, given as

λh = −α∇nuh.

Using this information, we reformulate the augmented Lagrangian formulation
(2.18) from mixed formulation to primal formulation. We define energy func-
tional, JN (·) : Vh → R as JN (uh) := LA(uh,−α∇nuh). The modified energy func-
tional is given as

min
uh∈Vh

JN (uh) = J(uh)− 〈α∇nuh, uh − gD〉Γ +
γp

2
‖uh − gD‖2

H
1
2 (Γ ),h

. (2.19)

This formulation can be referred to as the energy formulation of Nitsche’s
method.

The first order optimality condition corresponding to the minimization prob-
lem (2.19) yields the abstract variational problem.

Find uh ∈ Vh such that AN (uh, vh) = FN (vh) ∀vh ∈ Vh, (2.20)

where the bilinear from AN (·, ·) and the linear form FN (·) are defined as

AN (uh, vh) = a(uh, vh) + g(uh, vh)− 〈α∇nuh, vh〉Γ − 〈α∇n vh, uh〉Γ
+ (γpuh, vh)H 1

2 (Γ ),h
,

FN (vh) = F(vh)− 〈α∇n vh, gD〉Γ + (γp gD, vh)H 1
2 (Γ ),h

.

(2.21)

The connection between the Lagrange multiplier method of Barbosa-Hughes and
Nitsche’s method is established in [Ste95]. Nitsche’s method can be regarded as
a penalty method with extra consistency terms with the normal derivatives across
the boundary.
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Nitsche’s method was introduced in the unfitted finite element method in con-
text of the interface problem to enforce the interface conditions [HH02]. Later,
this work was extended to more generic problems and applied to the fictitious do-
main problems [BH12]. Under reasonable mesh assumptions on the background
mesh, a priori error estimates are given by [BH12],

|||u− uh|||h ¶ C h‖u‖H2(Ω) ∀u ∈ Vh,

‖u− uh‖L2(Ω) ¶ C h2‖u‖H2(Ω) ∀u ∈ Vh,

where the constant C is completely independent of the location of the interface
in the mesh. The mesh-dependent energy norms |||·|||h in the above estimates are
defined as

|||v|||2h := ‖∇v‖2
L2(Ω) + γp‖v‖2

H
1
2 (Γ ),h

+ ‖∇n v‖2

H−
1
2 (Γ ),h

.

2.5 Stabilization Parameter in Nitsche’s Method

As mentioned in the previous section, Nitsche’s formulation is stable only if the
bilinear form AN (·, ·) is coercive, for example by choosing a sufficiently large
stabilization parameter γp. Estimation of such a stabilization parameter is a very
delicate task. If the value of the stabilization parameter is too large, it gives rise
to an ill-conditioned system matrix. It becomes increasingly difficult to estimate
the stabilization parameter for irregular meshes and higher-order finite elements.

In this section, we explore different methods for estimating the stabilization
parameter. Following the coercivity of the bilinear form (2.21), we have

AN (vh, vh)¾
∑

K∈Th\Th,Γ

‖α 1
2∇vh‖2

L2(K) +
1
ε
‖α 1

2∇n vh‖2

H−
1
2 (Γ ),h

+ g(vh, vh)

+
∑

K∈Th,Γ

�

1− 2Cγ
ε

�

‖α 1
2∇vh‖2

L2(KΩ)
+ (γp − ε)‖vh‖2

H
1
2 (Γ ),h

.

This inequality utilizes Young’s inequality for some ε > 0 and follows trace in-
equality (2.9) (see A.1). The bilinear form is coercive if the positivity of two terms
in the last line is ensured, given by ε ¾ 2Cγ, and γp ¾ ε. Thus, the stabilization
parameter can be given with the bound γp ¾ 2Cγ.

The stabilization parameter thus influences two different aspects. Firstly, if
the stabilization parameter has to be chosen sufficiently large such that the sta-
bility of the method is insured. Secondly, we know that the large stabilization
parameter enforces the Dirichlet boundary conditions more accurately. Hence,
a large stabilization parameter reduces the discretization error at the boundary,
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but simultaneously it increases the condition number of the linear system. Thus,
it is necessary to strike a balance between the discretization error and the condi-
tioning of the system. Therefore, we aim to choose the value of the stabilization
parameter larger than the value required to ensure stability but not too large that
the system matrix becomes poorly conditioned.

In the next sections, we discuss two approaches: the first one for estimating
the stabilization parameter and the second one for circumventing the need to
compute the stabilization parameter.

2.5.1 Eigenvalue Problem

Here, we discuss the idea of estimating the stabilization parameter by solving a
generalized eigenvalue problem. This method was used for a particle-partition
of unity method and later explored more for spline-based finite elements applied
to harmonic and bi-harmonic problems [EDH10, GS03]. This approach is also
widely used in the finite cell methods [SR15, RSB+13, RSOR14, JADH15], where
Nitsche’s method is used to enforce Dirichlet boundary condition.

The coercivity of the bilinear form relies on trace inequality (2.9). A good
estimate of Cγ can be achieved by solving a generalized eigenvalue problem, as Cγ
is bounded from below by the largest eigenvalue of the auxiliary problem (2.22).

We pose eigenvalue problems for each K ∈ Th,Γ , and solve series of locally
given element-wise problems, find max(λK) ∈ R such that

(α∇n vh,α∇n vh)H− 1
2 (ΓK ),h

= λK(α∇vh,∇vh)L2(KΩ) ∀vh ∈ Vh|KΩ , (2.22)

where Vh|KΩ is restriction of Vh on a given element K and λK denotes the set
of eigenvalues. In order to solve the generalized eigenvalue problem (2.22),
it is necessary that the (α∇vh,∇vh)L2(KΩ) has only a trivial kernel. This can
be achieved if the function space Vh|K is defined in the space of polynomi-
als which are orthogonal to constants. From the construction, it is clear that
(α∇vh,∇vh)L2(KΩ) is a representation of a local stiffness matrix. The kernel of the
local stiffness matrix is known to be a constant vector. Algebraically, we can use a
deflation method to eliminate the influence of the trivial kernel from matrix rep-
resentation of both terms in (2.22) and still retain the spectral properties of ma-
trices. Thus, solving the generalized eigenvalue problem of the deflated system
is equivalent to solving the original eigenvalue problem (2.22). This allows us
to use the largest eigenvalue to estimate the stabilization parameter. To ensure
the boundedness of (2.9), we take the value of the element-wise stabilization
parameter 4 times larger than the largest eigenvalue. Hence, the stabilization
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parameter is computed element-wise as, γp = 4 max(λK) to satisfy the condition
γp ¾ 2Cγ.

Above, we have defined local eigenvalue problems for each element K ∈ Th,Γ .
An alternate option is to create a global system for all cut elements and solve a
global eigenvalue problem [GS03]. In this case, the stabilization parameter is
estimated by the largest eigenvalue of the global system. For irregular meshes
and complex domains, an interface can intersect the mesh arbitrarily and a very
small cut in one element can influence the largest eigenvalue in the global setting.
Hence, we choose to solve a series of local eigenvalue problems and estimate the
local stabilization parameter for each cut element [DH09]. This approach is more
beneficial, as we do not have to solve a global generalized eigenvalue problem
and the effect of small cut elements is localized.

2.5.2 Lifting Operator

In order to avoid the computation of the stabilization parameter in Nitsche’s
method, an alternative method is proposed in [Leh16, Leh15]. In this method,
the stabilization parameter is chosen locally in an implicit manner, similarly to
the previous section. This strategy is common in the DG method [BR97]. The
stability and error analysis of the DG discretization equipped with the lifting
operators is carried out in [BMM+00].

First, we introduce an element-wise lifting operator RK(·) : Vh|K →Wh that
lifts the functions defined on the cut elements into the space of polynomials which
are orthogonal to constants. The space Wh is given as

Wh := {uh ∈ L2(K) : uh|K ∈ P1 ∩ (P0)
⊥ ∀K ∈ Th,Γ }.

On the uncut elements, i.e., K ∈ eTh \ Th,Γ the lifting operator is defined as
RK(uh) = 0. While on the cut elements, the lifting operator is defined as, find
wh :=RK(uh) ∈Wh such that

(α∇wh,∇vh)L2(KΩ) = −〈α∇n vh, uh〉Γ ∀uh, vh ∈ Vh|K .

The coercivity of the bilinear form of the original formulation (2.21) can be en-
sured if an additional term stemming from the lifting operators is added

a(uh, uh)− 2〈α∇nuh, uh〉Γ + 2
∑

K∈Th,Γ

a(RK(uh),RK(uh))¾
1
2

a(uh, vh).

Addition of such a term in the bilinear form ensures the coercivity for any positive
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stabilization parameter. Thus for simplicity, we choose the value of the stabiliza-
tion parameter as γp = 1. Now, the updated bilinear formulation is given as

AR
N (uh, vh) = a(uh, vh) + g(uh, vh)− 〈α∇nuh, vh〉Γ − 〈α∇n vh, uh〉Γ

+ (uh, vh)H 1
2 (Γ ),h

+ 2
∑

K∈Th,Γ

a(RK(uh),RK(vh)), (2.23)

which can be replaced with the original bilinear form AN (·, ·) in (2.20).

2.6 Discretization of Lagrange Multiplier Space

In the finite element framework, the stability of the mixed formulation is en-
sured if the discrete inf-sup condition (2.17) is satisfied [Bre74]. The detailed
analysis of the method of Lagrange multipliers for enforcing the Dirichlet bound-
ary condition is carried out by Pitkäranta in the context of fitted FE frame-
work [Pit79, Pit80]. In order to achieve optimal convergence rates of the dis-
cretization method, the choice of the FE spaces for primal variable uh ∈ Vh and
the dual variable λh ∈ Mh is crucial. Also, the most convenient options for
Vh and Mh are very rarely stable. In the unfitted finite element framework, it
is shown that the most convenient approach to construct the multiplier spaces
gives rise to instabilities [DMB01, BPM+03, JD04].

To circumvent the strict requirement of satisfying the inf-sup condition, a
different approach was introduced by Barbosa and Hughes [BH91]. In this ap-
proach, the restriction over the choices for FE spaces is dropped and the sta-
bility of the formulation is ensured using a stabilization term [BH92b]. In the
Barbosa-Hughes approach, the stabilization term penalizes the jump between the
multiplier and its physical interpretation. The Barbosa-Hughes approach is ex-
tended by Haslinger and Renard to fictitious domain method in the XFEM frame-
work [HR09]. In the unfitted FEM framework, a different type of a stabilization
method was introduced by Burman and Hansbo [BH10]. In that work, the multi-
plier is chosen as piecewise constant function and the stability of the saddle-point
formulation is achieved by penalizing the jump of the multiplier over the element
faces [BH10].

In general, the inf-sup condition is satisfied when the FE spaces for the primal
variable and the multiplier are compatible. The multiplier is used to enforce the
constraints on the primal variable. The compatibility between FE spaces suggests
that the primal variable is neither over-constrained nor under-constrained. If the
multiplier space is chosen to be too large, it causes the primal variable to be over-
constrained and it gives rise to the phenomenon called boundary locking. In this
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case, either a richer primal space has to be chosen or the multiplier space has
to be coarsened. In the work of Babuška [Bab73a, BOL78], the error estimates
were established under the condition that the ratio between the boundary mesh
size and the mesh size in the domain is greater than some constant depending
on the domain. When the method of Lagrange multipliers was employed in the
original fictitious domain method to enforce the boundary condition, the stability
of the method was achieved by coarsening the multiplier space [GPP94, GG95].
Another option to satisfy the inf-sup condition is to choose a richer primal space
while taking the most-convenient multiplier space. In the context of unfitted
FEM, bubble-stabilized primal spaces were considered such that they satisfy inf-
sup condition [MDH07, DF08]. In the earlier work, it is shown that the bubble-
stabilized method and Nitsche’s method bear a strong resemblance [BFMR97,
MDH07].

Another approach where the primal space was kept the same and a coarser
multiplier space was considered, and it can be found in several works [MBT06,
KDL06, BMW09]. Béchet et al. developed a stable Lagrange multiplier space
based on a vital vertex algorithm [BMW09], which was later extended by Haute-
feuille et al. [HAD12]. This method does not require any stabilization terms and
also the primal space Vh is not modified. Only the multiplier space Mh is de-
signed carefully such that it satisfies the inf-sup condition and ensures optimal
convergence of discretization error. In the next section, we discuss the algorithm
for creating a stable Lagrange multiplier space.

2.6.1 Vital Vertex Algorithm

In order to create a finite element space, we have to create a mesh. There are
multiple ways to create a mesh on the embedded boundary on the background
mesh. The simplest way to create a mesh would be to extract the submesh of
all elements which are intersected by the boundary. But the Lagrange multiplier
discretized on this mesh does not satisfy the inf-sup condition.

In Figure 2.3a, all edges that are intersected by the boundary are marked
with a thick line, and the intersection points that lie on those edges are marked
with green circles. From this point onwards, we refer to the intersection points
as vertices. One of the most straightforward ways for creating a mesh is to cre-
ate a trace mesh with all vertices. But a trace mesh that can be used to dis-
cretize the embedded boundary has too many vertices. If this mesh is used to
discretize the multiplier space, it clearly violates the inf-sup condition. Another,
less common, approach is to create a new trace mesh on the boundary and us-
ing that mesh for the discretization of the multiplier space [KDL06]. We follow
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the strategy of Béchet et al. and Hautefeuille et al. to create a stable multiplier
space [BMW09, HAD12]. This approach is robust for the curved boundaries and
it can easily be extended to higher dimensions. In this approach, the trace mesh,
created by the vertices, is methodically coarsened. The coarse mesh is obtained
by algorithmically selecting a subset of vital vertices. In this section, we describe
the vital vertex algorithm.

The vital vertex algorithm utilizes elements of graph theory to get a subset of
vital vertices. As a first step, a vertex graph is created, where the vertices are set
as the nodes of this graph. In the vertex graph, two vertices are connected if the
edges on which the vertices lie have a common endpoint. Once the vertex graph
is created, we declare a vertex as vital or non-vital based on the following two
rules:

(a) A vital vertex is never connected to another vital vertex.

(b) A non-vital vertex is always connected to a vital vertex.

The first rule provides an upper bound on the number of vital vertices, and thus
it allows for coarsening. The second rule prevents aggressive coarsening and can
be interpreted as a lower bound on the number of non-vital vertices. These two
rules are complementary and restrict the number of multipliers from becoming
too few or too many. The algorithm for selecting vital vertices described below
satisfies both of these rules.

The algorithm to identify the vital vertices is given as follows:

1. Get a list of all elements that are intersected by the boundary and generate
a submesh Th,Γ .

2. Traverse the mesh Th,Γ and create a list of all vertices indexed by the cor-
responding cut edges.

3. Generate a map from the vertices to the endpoints of the corresponding cut
edges and an inverse map from the endpoints of the edges to the vertices.

4. Create a graph of the vertices, where the vertices represent the nodes of the
graph and the edges of the graph are represented by a common endpoint.

5. Sort the nodes in this graph by the number of edges.

6. Lexicographically sort all nodes with an equal number of edges.

7. Create two empty sets vital and non-vital.

8. Go to the first vertex in the sorted list and add it to the vital set.
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(a) All vertices are marked with a green cir-
cle, all cut edges which are intersected by
the boundary are marked with blue line.

(b) Vital vertices are marked with a green
circle, the cut edges on which the vital ver-
tices lie are marked with blue line.

Figure 2.3. Nodes associated with a naive Lagrange multiplier space and the multi-
plier space due to the vital vertex method.

9. Move to the next vertex and if the current vertex is connected to any vertex
from the vital set, add the current vertex to the non-vital set; otherwise add
the current vertex to the vital set.

10. Go to 9 and repeat until the sorted vertex graph is traversed.

The algorithm is designed in such a way that the vertices which have the
least connections are added to the vital list first. Hence, the vertices with fewer
connections have a higher likelihood to be in the vital list. The step 5 and 6 in
the algorithm ensure that the set of the vital vertices has the highest possible
cardinality. In general, there is a deterministic list of vital vertices, but there are
multiple acceptable sets of vital vertices. Due to the sorting procedure, under a
small perturbation of the boundary, the list of vital vertices remains unchanged.
In Figure 2.3a, a list of all vertices that are intersected by the boundary and the
corresponding cut edges are shown. While in Figure 2.3b, we can see a list of
vital vertices and the corresponding cut edges.

We denote the list of vital vertices on the boundary by Vh,Γ , and the dimension
of the multiplier space Mh is given as |Vh,Γ |. As, we have now defined a mesh on
the embedded boundary, in the next section we discuss a definition of the basis
functions on the vital vertices.
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2.6.2 A Stable Lagrange Multiplier Space

In this section, we describe the last remaining detail about the construction of
a stable Lagrange multiplier space. We define a multiplier on each vital vertex,
where we have to define a new basis function for the corresponding multiplier.
In two-dimensions, a simple choice of the basis function is to use standard hat
function, defined on the segments connecting two vital vertices. While in three-
dimension, one can construct a mesh of boundary using the vital vertices under
some regularity assumptions (e.g., using a Delaunay approach). If the basis func-
tions for the multiplier are computed using this strategy, the inf-sup condition per
element can not be satisfied in pathological cases [BMW09]. Also, these strate-
gies are not very simple from the implementation perspective. We can simplify
this aspect if the definition of the basis functions for the Lagrange multiplier is
defined on the background mesh.

Hence, rather than creating a new set of basis functions for the multiplier
space, the basis functions are defined as a trace of the basis function of the back-
ground mesh. The basis functions on the vital vertices are computed as a linear
combination of the basis functions defined on the nodes of the background mesh.
This basis functions on the vital vertices that should also satisfy the partition of
unity condition and should have local support on the boundary.

For each vital vertex p ∈ Vh,Γ , we define the associated basis function µp as a
linear combination of the basis functions of nodal basis φq, ∀q ∈ Nh, restricted
to the boundary Γ . We introduce a set of nodes Nh,Γ given as

Nh,Γ := {q ∈ Nh : φq|Γ 6= 0},
whereNh,Γ includes all nodes that are endpoints of the cut-edges. In Figure 2.4a
these nodes are marked by black squares. Now, we define the nodal basis function
for each vital vertex p ∈ Vh,Γ as

µp :=
∑

q∈Nh,Γ

wpqφq|Γ ∀q ∈ Nh,Γ ,

where wpq are coefficients of the linear combination.
For each vital vertex p ∈ Vh,Γ , we define a set Pp ⊂Nh,Γ . The set Pp contains

all nodes that are endpoints of the edge on which the vital vertex p is located.
We define a set of active nodes N A

h,Γ := ∪p∈Vh,Γ
Pp and a set of inactive nodes

N I
h,Γ := Nh,Γ \ N A

h,Γ . The inactive nodes are set of nodes that are not connected
to any vital vertex, and it is possible that N I

h,Γ is an emptyset. Also, all inactive
nodes, q ∈ N I

h,Γ , are always connected to a non-vital vertex. Due to the rule (b),
we know each non-vital vertex is connected to a vital vertex, hence for q ∈ N I

h,Γ
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(a) The nodes Nh,Γ that belong to the sub-
mesh Th,Γ are marked with black squares

(b) All active nodes N A
h,Γ are marked with

red squares, and the inactive nodesN I
h,Γ are

marked with green squares

Figure 2.4. Different type of nodes characterized by the vital-vertex algorithm.

there exists another endpoint of the cut edge which is an active node. All Pp are
pairwise disjoint, thus there exists a unique p ∈ Vh,Γ such that one endpoint of
this edge is in Pp and the other endpoint is placed in Qp, where Qp denotes set
of inactive nodes associated with vertex p. We denote the number of nodes in
Qp as nq. Also, the set of global inactive nodes can be given as N I

h,Γ = ∪p∈Vh,Γ
Qp.

Now, we can define the values of the coefficients in terms of these subsets of
nodes. The values of the coefficients wpq, p ∈ Vh,Γ and q ∈ Nh,Γ are given as

wpq :=















1 q ∈ Pp,
1
nq

q ∈Qp,

0 otherwise.

Now, the basis function µp can be written as

µp =
∑

q∈Pp

φq +
∑

q∈Qp

1
nq
φq.

The basis function defined using this method has local support on the boundary
and it also has a positive partition of unity property.

The multiplier space Mh discretized using the vital vertices has the basis
functions which are carefully constructed as a weighted sum of traces of the basis



31 2.7 Numerical Results

functions of background mesh. This multiplier space Mh satisfies a uniform
inf-sup condition (2.17). In our knowledge the detailed error analysis of the
method is not available, but based on the abstract saddle point theory [BBF13]
the discretization error could be given as

|||u− uh|||h ¶ Ch‖u‖H2(Ω) ∀uh ∈ Vh,

‖λ−λh‖H−
1
2 (Γ )
¶ Ch‖λ‖

H
1
2 (Γ )

∀λh ∈Mh.

The mesh-dependent energy norm |||·|||h in the above estimates is defined as

|||v|||2h := ‖∇v‖2
L2(Ω) + ‖v‖2

H
1
2 (Γ ),h

.

2.7 Numerical Results

In this section, we carry out some numerical experiments to study the conver-
gence behavior of all methods discussed until now. We consider two different
examples for numerical experiments. We compare the condition numbers of the
arising linear system of equations and the discretization errors in different norms.

2.7.1 Problem Description

All experiments in this chapter are carried out on a structured grid with the
quadrilateral elements, defined on [0,1]2. We start with a background mesh that
has 100 elements in each direction, denoted as mesh on level L1, and uniformly
refine the mesh to obtain finer meshes as shown in Table 2.1. We also use the
same mesh hierarchy in the next chapters for the multilevel solution strategies.
We note that in Table 2.1, we have only shown the active nodes or the active
degrees of freedom (DOFs) and the number of active elements associated with
the domain.

Example 1-FD For this example, we consider a diffusion problem on a domain
of superellipse shape, where the superellipse is defined by a level set function.
The boundary of the domain is defined as a zero level set of a function

Λe(x ) := r8
1 −

�

�

�

x − cx

a

�

�

�

8
−
�

�

�

y − cy

b

�

�

�

8
.

Here, r1 denotes the radius of the superellipse, given as r1 = 0.4901. The sym-
bols a and b denote the major and minor axis of the superellipse, chosen as
a = 1, b = 0.8. The components of the position are given as x = (x , y). Lastly,
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levels hmax
Superellipse Domain Circular Domain

# DOFs # Elems # DOFs # Elems

L1 1.41421E-02 7,691 7,514 5,729 5,560
L2 7.07107E-03 30,036 29,685 22,209 21,876
L3 3.53553E-03 118,904 118,204 87,585 86,920
L4 1.76777E-03 473,123 471,725 347,629 346,300
L5 8.83883E-04 1,887,036 1,884,243 1,385,209 1,382,556

Table 2.1. The multilevel hierarchy of meshes with quadrilateral elements, with
total number of active DOFs and number of active elements on a given level.

by cx and cy , we denote the center of the superellipse, given as (0.5, 0.5). The
domain Ω is defined as the region where the level set of the function Λe is posi-
tive, Λe(x )> 0. For simplicity, we choose the right-hand side f1 and the Dirichlet
boundary condition in such a way that the exact solution is given as defined by
the level set function, u1 := Λe.

Example 2-FD For this example, we consider again a diffusion problem on a
circular domain. The boundary of the domain Γc is defined as a zero level set
of a function Λc(x ) := r2

2 − ‖x − c‖2
2 with radius, r2

2 = 3− 21/2, and c is the
center of the circle (0.5,0.5). The domain Ω is defined by the region where the
value of level set function is positive, Λc(x ) > 0. The right-hand side f2 and the
Dirichlet boundary condition are chosen in such a way that the exact solution,
u2 = (exp(−500s)−1)(exp(−500t)−1)(exp(−500y y)−1)(1−3r r)2 is satisfied.
Here, s := (x − 1/3)2, t := (x − 2/3)2, x x := (x − 1/2)2, y y := (y − 1/2)2 and
r r := x x + y y [Woh00a].

In both examples, we have deliberately chosen the radius of the circle and the
superellipse in such a way that the interface would not coincide with the element
edges or the nodes. We compare these two examples against the different meth-
ods, namely the penalty method, Nitsche’s method, and the method of Lagrange
multipliers. For the penalty method, the value of the stabilization parameter or
the penalty parameter is chosen as γp = 100. We have discussed several methods
to compute the stabilization parameter in Nitsche’s formulation, but for the nu-
merical experiments, we used the generalized eigenvalue problem to compute
the stabilization term, as described in Section 2.5.1. The Lagrange multiplier
approach uses the vital vertex algorithm to create a stable multiplier space. All
these methods include the ghost penalty term, with the parameter εG = 0.1.
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Figure 2.5. Discretization error in L2-norm and H1-seminorm for the different meth-
ods applied to Example 1-FD and Example 2-FD.

2.7.2 Study of Discretization Errors

In this section, we compare the convergence rate of the discretization error in
L2-norm, H1-seminorm on the domain. As we are focusing on the methods to
enforce the boundary conditions using the different strategies, we also compare
the discretization error on the boundary. Thus, we also compare the discretiza-
tion error of the function on the boundary in H

1
2 (Γ ), h-norm and the outward

flux on the boundary in H−
1
2 (Γ ), h-norm.

Domain Error: Figure 2.5 depicts the convergence of the discretization error in
the domain. It is clear from Figure 2.5 that the error in the H1-seminorm for both
examples reduces with the number of DOFs. As the error estimates suggest, the
rate of convergence of the discretization error in H1-seminorm is of order h for
all methods. While for the discretization error in L2-norm, the convergence rate
of Nitsche’s method and the method of Lagrange multipliers is of order h2. Al-
though, this does not hold for the penalty method. The penalty method is known
to have suboptimal convergence rates if sufficiently large penalty parameter is
not chosen. For the Example 1-FD, the convergence rate of the discretization er-
ror in L2-norm is of order h, while for the Example 2-FD the convergence rate is
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Figure 2.6. Discretization error on the boundary, the error of the function in
H

1
2 (Γ ), h-norm and flux in H−

1
2 (Γ ), h-norm for different methods applied to Example

1-FD and Example 2-FD.

optimal for larger mesh sizes but we observe the impediment in the convergence
rate with decreasing mesh size.

Boundary Error: Figure 2.6 demonstrated that the convergence of the dis-
cretization error on the boundary for different mesh sizes. From the error es-
timates, it is known that the convergence rate of the discretization error of the
function in H

1
2 (Γ ), h-norm and the outward flux in H−

1
2 (Γ ), h-norm is of order

h
3
2 . From Figure 2.6, we observe that the convergence rate of the discretization

errors of the outward flux in the corresponding norm at the boundary is of opti-
mal order for the penalty method, Nitsche’s method and the method of Lagrange
multipliers for both examples. By closely observing the error rates, we see that
even with the same convergence rates the method of Lagrange multipliers has the
smallest error in the outward flux. The convergence rate of the discretization er-
ror of the function at the boundary has the optimal rates for Nitsche’s method and
the method of Lagrange multipliers. Although, the convergence rates are same
for Nitsche’s method and the method of Lagrange multipliers, the discretization
error due to the method of Lagrange multipliers is order of magnitude smaller
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than Nitsche’s method. While for the penalty method, we again observe subopti-
mal convergence rates of the discretization error of the function at the boundary.
Specifically, for the Example 1-FD the converge rate of the error of the function
is of order h

1
2 , while the convergence rate of the error for the Example 2-FD

deteriorates slowly with decreasing mesh size.

2.7.3 Comparison of the Condition Numbers
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Figure 2.7. The condition numbers of the stiffness matrices A arising from different
methods against the number of DOFs, for Example 1-FD and Example 2-FD.

In this section, we compare the condition numbers of the stiffness matrices
arising from all three methods used to enforce the Dirichlet boundary conditions.
The condition number of the stiffness matrices for the standard FEM discretiza-
tion increases with decreasing mesh size and is of order h−2. This does not hold
for the unfitted discretization methods. The condition number of the system ma-
trices arising from the unfitted discretization methods depends on the size of the
cut elements, as the condition number of the stiffness matrices is dominated by
the size of the smallest elements. In this chapter, we discussed the ghost penalty
stabilization approach to eliminate the effect of the small cut elements on the
condition numbers. The other source of the ill-conditioning of the stiffness ma-
trices in the unfitted discretization methods is due to the stabilization parameter
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used by the penalty method and Nitsche’s method. The condition number of a
matrix A is given as

κ(A) =
|λmax(A)|
|λmin(A)|

,

where λmax(A) and λmin(A) denote the largest and the smallest eigenvalue of the
matrix A, respectively. As we know, the stiffness matrices arising from the method
of Lagrange multipliers are symmetric positive semidefinite. The smallest eigen-
value of these matrices is always zero, and hence the condition number of these
matrices is theoretically infinite. Due to this reason, in this work, we have to
modify the method to compute the condition number of the positive semidefi-
nite matrices. In this case, we rather use the smallest nonzero eigenvalue of a
matrix to compute the condition number of the positive semidefinite matrices.

From Figure 2.7, we can see that the condition number of the stiffness matri-
ces stemming from the method of Lagrange multipliers is the smallest for both
examples. While for the stiffness matrices arising from the penalty method, the
condition number is an order of magnitude higher. The system matrices stem-
ming from the method of Lagrange multipliers do not consist of a stabilization
parameter, while the stabilization parameter in the penalty method is chosen as
γp = 100. Here, we note that the condition number of the system matrices still
increases with decreasing mesh size with order h−2. We do not observe any in-
fluence of the disproportionally cut elements on the condition numbers. This
behavior is attributed to the inclusion of the ghost penalty stabilization term in
the weak formulation. The largest condition number for all system matrices can
be observed for Nitsche’s method and unlike for the other methods, the condition
numbers do not increase with order h−2. This can be attributed to the value of
the stabilization parameter in Nitsche’s method. As the value of the stabilization
parameters is computed using the generalized eigenvalue problem, its value de-
pends on the size of the cut elements. Thus, based on the size of the cut elements
on a given mesh, we can see oscillations in the condition numbers.



Chapter 3

Interface Problems

In many real-world applications, the field quantities change rapidly in the do-
main. These types of problems can be categorized as interface problems. In
such cases, two or more distinct materials have different properties and due to
this reason a function on the domain may exhibit non-smooth behavior. When
the interface is smooth enough, the function is also smooth in each subdomain
individually, but on the whole domain, the regularity or the smoothness of the
function is generally very low. The interface problem is encountered often in
solid mechanics, fluid dynamics, material science, geophysics, etc. In the solid
mechanics, this type of problem arises in presence of cracks, dislocations or in-
clusions [BB99, SCMB01, HH04]. While in the field of fluid mechanics, the
interface problem arises in multi-phase flows and in the presence of boundary
layers [Reu08].

In this chapter, we discuss the discretization methods for interface problems.
In the XFEM framework, the interface problems can be regarded as an exten-
sion of the fictitious domain method, where the interface problems are treated
as overlapping fictitious domains. The interface problem in the traditional FEM
framework requires a mesh such that the nodes on the interface and edges of
the mesh align with the interface. This strict condition is waived in the XFEM
framework, as the FE space is defined in the background mesh. In this chapter,
we describe the XFEM discretization for the interface problem and the different
methods to enforce the interface conditions. As we have seen in the last chapter
the penalty method does not always produce optimal convergence rates, there-
fore we limit our discussion to Nitsche’s method and the method of Lagrange
multipliers.

In Section 3.1, we define a diffusion problem on a domain Ω with an inter-
face. The diffusion coefficients across the interface are different, which leads to

37
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a non-smooth solution on the domain. In Section 3.2, we discuss the extended
finite element method, the background mesh, and the extended finite element
function spaces. Further, we provide a weak formulation of the interface prob-
lem and pose the problem as a constrained minimization problem with the in-
terface condition as constraints. In Section 3.3, we review Nitsche’s method and
its extension from enforcing the Dirichlet boundary condition to enforcing the
interface conditions. Later, we consider the method of Lagrange multipliers in
Section 3.5, which employs the vital vertex algorithm to create a stable multiplier
space. In the last section, we carry out some numerical experiments to show the
convergence properties of the discussed methods and also to study the condition
number of the stiffness matrices arising from all methods.

3.1 Model Problem

We consider a bounded Lipschitz domain Ω ⊂ Rd , d ∈ {2,3} with interface Γ
which decomposes the domain Ω into two non-overlapping subdomains Ω1 and
Ω2, such that Ω = Ω1 ∪Ω2 ∪ Γ . The interface is defined as Γ = ∂Ω1 ∩ ∂Ω2 and
it is assumed to be sufficiently smooth. For simplicity, the interface Γ is defined
as polygonal. We define a sufficiently regular function ui : Ωi ∪ Γ → R as a pair
(u1, u2) =: u in Ω. The jump in function u over the interface is defined as

JuK := u1|Γ − u2|Γ ,
where ui|Γ is the restriction of ui to Γ .

We consider a stationary diffusion problem with discontinuous coefficient α
as

−∇ ·α∇u= f in Ω1 ∪Ω2,

u= 0 on ∂Ω,

JuK= gI on Γ ,

Jα∇nuK= 0 on Γ ,

(3.1)

where f ∈ L2(Ω) and gI ∈ H
1
2 (Γ ). The coefficient α ∈ R+ is piecewise constant

defined as
α(x ) = αi ¾ α0 > 0 ∀x ∈ Ωi.

The function gI denotes a jump of the function u over the interface.
In problem (3.1), continuity of the function u and the continuity of the flux

across the interface is enforced. Recall, the outward flux from the interface is
defined as ∇nu = n · ∇u. For definiteness, we take the unit normal n as the
outward pointing normal from Ω1 on Γ , n = n1 = −n2.
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Problem (3.1) is consistent with the Poisson problem, if the coefficients are
chosen as, α1 = α2 = 1. For the standard FEM approach, the interface conditions
in (3.1) can only be imposed if nodes are placed on the interface explicitly. For the
fitted finite element method, the detailed analysis of the interface problem with
discontinuous coefficients is carried out under the assumption that the function
is non-smooth only at the interface, the problem has a unique solution in H2 on
each convex subdomain Ωi [CZ98].

3.2 Finite Element Discretization

In standard FEM discretization, the interface across which the function u is dis-
continuous has to be aligned with the element faces. In contrast, for the XFEM
approach, this requirement is relaxed, and the interface is allowed to be any-
where in the domain. The XFEM discretization captures the interfaces by enrich-
ing the FEM solution space and then duplicating the elements that are intersected
by the interface. The new degrees of freedom (DOFs) are then associated with
the duplicated elements.

We assume a shape regular, quasi-uniform, conforming triangulation eTh on
the domain Ω. Unlike the last chapter, we assume that the triangulation eTh is
fitted on the domain Ω. Even though, this is not necessary as we can employ the
methods from the last chapter to enforce the boundary conditions on the unfitted
boundary. The triangulation eTh thus captures both subdomains (Ω1 ∪Ω2) ⊆ eTh.
We define the active mesh associated with each subdomain as

Th,i = {K ∈ eTh : K ∩Ωi 6= ;} i ∈ {1,2}.
As shown in Figure (3.1), each subdomain Ωi is captured by respective active
mesh, Ωi ⊂ Th,i. Now, we define a submesh as union of all elements that are
intersected with the interface Γ

Th,Γ = {K ∈ eTh : K ∩ Γ 6= ;}.
The interface triangulation Th,Γ is doubled, T i

h,Γ := Th,Γ . This interface triangula-
tion is part of both active meshes, denoted as T i

h,Γ ⊂ Th,i, i ∈ {1, 2}. Additionally,
for any element K , let Ki = K ∩Ωi be part of K in domain Ωi and for K ∈ T i

h,Γ , let
ΓK := Γ ∩ K be part of Γ in K .

We define continuous low order finite element space over the triangulation
eTh, which vanishes on the boundary,

eVh = {v ∈ H1( eTh) : v|K ∈ P1(K), v|∂ eTh
= 0, ∀K ∈ eTh}.
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(a) Triangular mesh eTh (b) Active mesh Th,1 encapsu-
lates Ω1

(c) Active mesh Th,2 encapsu-
lates Ω2

Figure 3.1. 2D Triangular mesh is divided into two parts Th,1 and Th,2 as depicted in
(b) and (c) due to the interface Γ , elements which belong to the respective domain
are shaded.

Following the same strategy as in last chapter, we define a characteristic function
of each subdomain Ωi, i = 1,2, given as

χΩi
: Rd → R, χΩi

(x ) =

¨

1 ∀x ∈ Ωi,

0 otherwise.
(3.2)

The characteristic function χΩi
is used to restrict the support of the finite element

space to domain Ωi, thus the space of finite elements in the domain Ωi is defined
as

Vh,i = χΩi
(x )eVh.

We seek the approximation uh = (uh,1 ⊕ uh,2) in space Vh = Vh,1 ⊕ Vh,2. From the
definition of the FE space, it is clear that the function is allowed to be discontin-
uous across the interface.

The function space eVh is spanned by the nodal basis functions eΦh = ( eφ
p
h )p∈ fNh

,

where fNh denotes the set of nodes of the background triangulation eTh. We define
the set of nodes on the active meshes Th,i, i = 1,2 associated with domain Ωi as

Nh,i := {p ∈ fNh : supp( eφp
h )∩Ωi 6= ;} i = 1,2.

We now define the “cut” basis function associated with a node p as

φ
p
h = χΩi

(x ) eφp
h ∀p ∈ Nh,i, i = 1, 2.

The function space Vh,i is spanned by the nodal basis functions Φh,i = (φ
p
h )p∈Ni

.
We define the span of nodal basis function on Vh as Φh = Φh,1 ⊕Φh,2, and the set
of nodes associated with the mesh Th is given by Nh =Nh,1 ⊕Nh,2.
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We have defined the FE space Vh on the mesh Th, now we can discretize the
problem (3.1). Following the last chapter, we write the discretized variational
problem as a constrained minimization problem. Find uh ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

a(uh, uh)− F(uh)

subject to JuhK= gI on Γ ,
(3.3)

where J(·) denotes the energy functional, a(·, ·) : Vh × Vh → R is a continuous,
symmetric bilinear form and F(·) : Vh → R denotes a continuous linear form.
The bilinear form and the linear form for the interface problem are defined as

a(uh, vh) :=
∑

i=1,2

(αi∇uh,∇vh)L2(Ωi),

F(vh) :=
∑

i=1,2

( f , vh)L2(Ωi).
(3.4)

In the next sections, we discuss different strategies to impose interface con-
ditions.

3.3 Nitsche’s Method

In this section, we discuss Nitsche’s method for imposing the interface conditions
for the problem (3.1). Nitsche’s method was introduced and analyzed for ellip-
tic interface problems with the discontinuous coefficients in the unfitted finite
element framework by Hansbo and Hansbo [HH02].

Before moving to the weak formulation, we define the weighted average func-
tion as

��

u
		

=
�

β1u1 + β2u2

�

and
��

α∇nu
		

=
�

β1α1∇nu1 + β2α2∇nu2

�

, (3.5)

where βi ∈ R+ are the weighting parameters. Here a choice of the weighting pa-
rameters play an important role, but for now we define the weighting parameters
as the measure fraction defined on element K ∈ Th,Γ [HH02], i.e.,

βi =
measd(Ki)
measd(K)

. (3.6)

As in Section 2.4, we have already introduced Nitsche’s method for imposing
the Dirichlet boundary condition. Here, we give the abstract variational formula-
tion of Nitsche’s method for the interface problem (3.1) in the context of unfitted
FEM.

Find uh ∈ Vh such that AN (uh, vh) = FN (vh) ∀vh ∈ Vh. (3.7)
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Here, the bilinear from AN (·, ·) and the linear form FN (·) are defined as

AN (uh, vh) = a(uh, vh)− 〈{{α∇nuh}}, JvhK〉Γ − 〈{{α∇n vh}}, JuhK〉Γ
+ (γpJuhK, JvhK)H 1

2 (Γ ),h
,

FN (vh) = F(vh)− 〈{{α∇n vh}}, gI〉Γ + (γp gI , JvhK)H 1
2 (Γ ),h

.

(3.8)

Following [HH02], the formulation (3.7) can be shown to be consistent with the
strong formulation (3.1) and stable for a sufficiently large stabilization param-
eter. In the detailed analysis of this method, a priori error estimates are given
under reasonable mesh assumptions [HH02]

|||u− uh|||h ¶ C h
∑

i=1,2

‖u‖H2(Ωi) ∀u ∈ H1
0(Ω)∩H2(Ω1 ∪Ω2),

‖u− uh‖L2(Ω) ¶ C h2
∑

i=1,2

‖u‖H2(Ωi) ∀u ∈ H1
0(Ω)∩H2(Ω1 ∪Ω2),

(3.9)

where the constant C is completely independent of the location of the interface
in the mesh. The mesh-dependent energy norms |||·|||h in the above estimates are
defined as

|||v|||2h := ‖∇v‖2
L2(Ω1∪Ω2)

+ ‖JvK‖2

H
1
2 (Γ ),h

+ ‖{{∇n v}}‖2

H−
1
2 (Γ ),h

.

We note that unlike Nitsche’s formulation for the fictitious domain method,
we have not added the ghost penalty term to the weak formulation. The ghost
penalty term can also be added to Nitsche’s formulation (3.7) and of course, it
improves the conditioning of the system of linear equation for the same reasons
discussed in Section 2.3.2. For the interface problem, Nitsche’s method includes
the weighted averaging function {{·}}, which enforces the flux at the interfaces to
take the average value of the fluxes from both subdomains. This averaging func-
tion introduces extra stability to Nitsche’s formulation for the interface problems.
In the fictitious domain method, such a term does not exist, thus we added the
ghost penalty term by default to the bilinear form in order to impose the Dirichlet
boundary conditions in a stable manner.

Coercivity: As we mentioned earlier, the stability and convergence of Nitsche’s
method rely on the choice of the stabilization parameter. Following the coercivity
of the bilinear form AN (·, ·), we have

AN (vh, vh)¾
∑

K∈ eTh\Th,Γ

‖α 1
2∇vh‖2

L2(K) +
1
ε
‖{{α∇n vh}}‖2

H−
1
2 (Γ ),h

+
∑

K∈Th,Γ

�

1− 2Cγ
ε

�

‖α 1
2∇vh‖2

L2(K) + (γp − ε)‖JvhK‖2

H
1
2 (Γ ),h

.
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This inequality uses Young’s inequality for some ε > 0, the following trace in-
equality on the interface (see A.2)

‖{{α∇nuh}}‖2

H−
1
2 (ΓK ),h
¶ Cγ

2
∑

i=1

‖α 1
2
i ∇uh‖2

L2(Ki)
∀K ∈ Th,Γ . (3.10)

Following the same methodology from the last chapter, the bilinear form is co-
ercive if γp ¾ ε and ε ¾ 2Cγ. Thus, the stabilization parameter can be given
with the bound γp ¾ 2Cγ. The constant Cγ in the trace inequality depends on the
shape regularity of the cut elements Ki, when weighting parameters in the defi-
nition of the averaging function are given by (3.6). In the next part, we consider
a robust option for the weighting parameters.

Robust Weighting parameters: In addition to the stabilization parameter, the
weighting parameters also play an important role in the stability of Nitsche’s
formulation. If the stabilization parameter is chosen by estimating the constant
Cγ in the trace inequality (3.10), it is beneficial to make the constant Cγ a function
of shape regularity of cut elements and the coefficients. A robust option for the
weighting parameters is given in [BBDL12, AHD12], where it is suggested to use
the weighting parameters that include diffusion coefficient α and the measure of
the cut element. The updated weighting parameters are given as

βi =
measd(Ki)/αi

measd(K1)/α1 +measd(K2)/α2
for i = 1,2. (3.11)

These weighting parameters provide better averaging for the discontinuous co-
efficients, specially for highly varying coefficients. In [BBDL12], the jump of
discrete flux and the L2-error in the flux were compared for a different definition
of the weighting parameters. For highly varying coefficients, it was demonstrated
that as an interface approaches a node or an edge of the mesh, Nitsche’s method
equipped the original weighting parameter (3.6) leads to large error compared
to the updated weighting parameters [BBDL12].

Unless otherwise specified, we utilize the updated weighting parameters in
our work. In the next section, we discuss modifications to (3.7), and approaches
to estimate the stabilization parameters by estimating the constant Cγ.

3.4 Variants of Nitsche’s Method

In this section, we describe three different variants of Nitsche’s method. In the
first variant, we estimate the stabilization parameter by solving a generalized
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eigenvalue problem. For the second variant, we use the lifting operator approach
to circumvent the process of carefully choosing the stabilization parameter. While
in the last approach, we use the ghost penalty stabilization in Nitsche’s method
and also change the definition of the weighting parameters to make the formu-
lation robust with respect to highly varying coefficients [BZ12].

3.4.1 Eigenvalue Problem

We restate the weak formulation of Nitsche’s method as,

find uh ∈ Vh such that A1
N (uh, vh) = F1

N (vh) ∀vh ∈ Vh, (IN-EV)

where

A1
N (uh, vh) = a(uh, vh)− 〈{{α∇nuh}}, JvhK〉Γ − 〈JuhK, {{α∇n vh}}〉Γ

+ (γ1
pJuhK, JvhK)H 1

2 (Γ ),h
,

F1
N (vh) = F(vh)− 〈gI , {{α∇n vh}}〉Γ + (γ1

p gI , JvhK)H 1
2 (Γ ),h

,

where the weighting parameters βi are defined as in (3.11). As we know, one
can estimate the constant Cγ in the trace inequality at the interface by solving a
generalized eigenvalue problem.

The eigenvalue problem for each K ∈ Th,Γ is given as, find max(λK) ∈ R such
that

({{α∇n vh}}, {{α∇n vh}})H− 1
2 (ΓK ),h

= λK

2
∑

i=1

(αi∇vh,∇vh)L2(Ki) ∀vh ∈ Vh|K , (3.12)

where Vh|K is restriction of Vh on a given element K , and λK denotes the set of
eigenvalues. In order to solve the eigenvalue problem (3.12), we still have to
remove the influence of non-trivial kernel from the right hand side term. For the
interface problem, we note that there exist two non-trivial kernels associated with
cut elements on each subdomain. We follow the same strategy as in Section 2.5.1
and use a deflation method.

Once we have the largest eigenvalue, the stabilization parameter is computed
element-wise to satisfy the condition γ1

p ¾ 2Cγ, thus it is given as

γ1
p = 4 max(λK).
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3.4.2 Lifting Operator

In this section, we borrow the same definition of the lifting operator RK(·)
and the space of polynomials which are orthogonal to constants Wh from Sec-
tion 2.5.2. On the uncut elements, i.e., K ∈ eTh \ Th,Γ , we set the lifting operator
as RK(uh) = 0. While on the cut elements, the definition of the lifting operator
is updated for the interface problem. Find wh :=RK(uh) ∈Wh such that

2
∑

i=1

(α∇wh,∇vh)L2(Ki) = −〈{{α∇n vh}}, JuhK〉ΓK ∀uh, vh ∈ Vh|K .

Now, by adding the new term stemming from the lifting operator of the original
formulation (3.7) we can ensure the coercivity of the bilinear form,

a(uh, uh)− 2〈{{α∇nuh}}, JuhK〉Γ + 2a(RK(uh),RK(uh))¾
1
2

a(uh, uh).

As the coercivity of the bilinear form is ensured regardless of the value of the
stabilization parameter, we can have any positive value for the stabilization pa-
rameter. The updated weak formulation is given as,

find uh ∈ Vh such that A2
N (uh, vh) = F2

N (vh) ∀vh ∈ Vh, (IN-LO)

where

a2
N (uh, vh) = a(uh, vh)− 〈{{α∇nuh}}, JvhK〉Γ − 〈{{α∇n vh}}, JuhK〉Γ

+ 2a(RK(uh),RK(vh)) + (γ
2
pJuhK, JvhK)H 1

2 (Γ ),h
,

F2
N (vh) = F(vh)− 〈gI , {{α∇n vh}}〉Γ + (γ2

p gI , JvhK)H 1
2 (Γ ),h

.

In the original work [Leh16], the weighting parameters are chosen as volume
fraction of the cut element and the original element (3.6), and the stabilization
parameter is chosen as γp = 1. In case of highly varying coefficients, we have
noticed that the updated weighting parameters given in (3.11) produce better
results. Hence, we use the robust weighting parameters and for the stabilization
parameter we employ harmonic averaging of the coefficients

γ2
p =

2α1α2

α1 +α2
.

Here, we prefer the harmonic averaging of the coefficients as a stabilization pa-
rameter, as it bounds the value of the stabilization parameter from above with the
smaller value of coefficients, e.g., γ2

p ¶ 2 inf(α1,α2). This definition of the stabi-
lization parameter avoids the cases where the value of the stabilization parameter
becomes dominant in the presence of very small coefficients, e.g., αi � 1.
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3.4.3 Ghost Penalty Stabilization

For the standard Nitsche’s formulation, as we have mentioned earlier, the condi-
tion number of the system matrix depends on the cut position and it can become
arbitrarily bad when an interface passes very close to element faces or nodes.
The ghost penalty method overcomes this issue by extending the coercivity of
the bilinear form, from the computational domain to the fictitious part. If the
ghost penalty stabilization term is added to the formulation, Nitsche’s method
becomes stable even for pathological cases [dPLM18].

We define the set of faces G i
h,Γ for each subdomain Ωi

G i
h,Γ = {G ⊂ ∂ K | K ∈ T i

h,Γ , ∂ K ∩ ∂ Ti = ;} i = 1,2.

The ghost penalty term is defined as

g(uh, vh) =
2
∑

i=1

∑

G∈G i
h,Γ

εGhGαi(J∇nG
Eh,iuhK, J∇nG

Eh,i vhK)L2(G), (3.13)

where hG denotes the diameter of face G, nG is unit normal to face G and εG

is a positive constant. Here, Eh,i denotes the canonical extension of the function
from the domain to the background mesh, which is defined as Eh,i : Vh|Ki

→ eVh|K .
In the previous section, we observed that the choice of the averaging function is
also quite important. For the problems with highly varying coefficients α, this
stabilization term is an attractive option, when the averaging function does not
provide sufficient stability. Following [BZ12] the definition of the βi is changed
for the highly varying coefficients to

β1 =
α2

α1 +α2
and β2 =

α1

α1 +α2
.

The stabilization parameter can also be chosen to be coefficient dependent, thus
as

γ3
p = γgp

2α1α2

α1 +α2
, where γgp ∈ R+.

Now, the weak formulation equipped with the ghost penalty term is given as,

find uh ∈ Vh such that A3
N (uh, vh) = F3

N (vh) ∀vh ∈ Vh, (IN-GP)

where

a3
N (uh, vh) = a(uh, vh)− 〈{{α∇nuh}}, JvhK〉Γ − 〈{{α∇n vh}}, JuhK〉Γ

+ (γ3
pJuhK, JvhK)H 1

2 (Γ ),h
+ g(uh, vh),

F3
N (vh) = F(vh)− 〈gI , {{α∇n vh}}〉Γ + (γ3

p gI , JvhK)H 1
2 (Γ ),h

.
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The error analysis of this method was carried out in [BZ12] and it was shown to
have optimal convergence rates in the L2-norm and the mesh-dependent energy
norm for highly varying coefficients.

3.5 The Lagrange Multiplier Formulation

In this section, we describe the method of Lagrange multiplier for imposing the
interface conditions for the problem (3.1).

We have already introduced the method of Lagrange multiplier for imposing
the Dirichlet boundary conditions in the previous chapter. The abstract varia-
tional formulation of the Lagrange multiplier method of the interface problem in
the XFEM framework can be given as, find (uh,λh) ∈ Vh ×Mh such that

a(uh, vh) + g(uh, vh) + b(λh, vh) = F(vh) ∀vh ∈ Vh,

b(µh, uh) = GI(µh) ∀µh ∈Mh.
(3.14)

Here, the bilinear form b(·, ·) : Mh × Vh → R and the linear form GI : Mh → R
are defined as

b(λh, uh) :=
∑

K∈Th,Γ

〈λhJuhK〉ΓK and GI(λh) :=
∑

K∈Th,Γ

〈λh, gI〉ΓK ,

while the ghost penalty term is defined as (3.13). In Nitsche’s method there exist
a weighted averaging function that stabilizes the flux at the interface. As we lack
a similar term in the Lagrange multiplier formulation, we introduce the ghost
penalty stabilization term in the bilinear form.

As discussed in Section 2.6 at length, for the method of Lagrange multipliers
it is essential to create the multiplier space in such a way that discrete inf-sup
condition (2.17) is satisfied. Following the discussion in the previous chapter, we
use the vital vertex algorithm to construct the multiplier space. We note that even
though we employed the vital vertex algorithm in the fictitious domain method
for enforcing boundary conditions. The original work by Béchet et al. [BMW09]
was developed for enforcing the stiff interface conditions. In our knowledge the
detailed error analysis of the method is not available, but based on the abstract
saddle point theory the discretization error could be given as

|||u− uh|||h ¶ Ch‖u‖H2(Ω) ∀uh ∈ Vh,

‖λ−λh‖H−
1
2 (Γ )
¶ Ch‖λ‖

H
1
2 (Γ )

∀λh ∈Mh.
(3.15)

Here, the mesh-dependent energy norm |||·|||h in the above estimate is defined as

|||v|||2h := ‖∇v‖2
L2(Ω) + ‖JvK‖2

H
1
2 (Γ ),h

.
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3.6 Numerical Results

In this section, we introduce three different numerical examples. Through these
numerical examples, we compare the different variants of Nitsche’s methods and
the method of Lagrange multipliers in terms of the discretization errors and the
condition number of the system matrices.

3.6.1 Problem Description

We consider a domain Ω= [0,1]2 with two different types of interfaces, a linear
interface, and a circular interface. All experiments are carried out on a triangular
structured mesh, except one experiment that was carried out on a quadrilateral
mesh. We start with a mesh that has 100 elements in each direction, denoted
as L1, and uniformly refine the mesh on level L1 to obtain different meshes as
shown in Table 3.1. The same mesh hierarchy is later used as the multilevel hier-
archy in the multigrid method. We remark that the DOFs and number of elements
reported in Table 3.1 include the enriched nodes and the enriched elements. We
consider problems with continuous and discontinuous coefficients to analyze the
effect of different variants of Nitsche’s method on the condition number of the
linear systems and the numerical accuracy of the discretization methods.

Example 1-IF We consider a diffusion problem where α1 = α2 = 1, and a linear
interface Γl . For this example, the right-hand side f1 and the Dirichlet boundary
conditions are chosen in such a way that the exact solution, u1 = (exp(−500s)−
1)(exp(−500t)−1)(exp(−500y y)−1)(1−3r r)2 is satisfied. Here, s := (x−1/3)2,
t := (x−2/3)2, x x := (x−1/2)2, y y := (y−1/2)2 and r r := x x+ y y . The linear
interface Γl is defined as a zero level set of the function Λl(x , y) := x − 1/

p
2.

levels hmax
Linear Interface Γl Circular Interface Γc
# DOFs # Elems # DOFs # Elems

L1 1.41421E-02 10,403 20,200 10,767 20,566
L2 7.07107E-03 40,803 80,400 41,531 81,130
L3 3.53553E-03 161,603 320,800 163,063 322,262
L4 1.76777E-03 643,203 1,281,600 646,127 1,284,526
L5 8.83883E-04 2,566,403 5,123,200 2,572,251 5,129,050

Table 3.1. The multilevel hierarchy of meshes with triangular elements, with total
number of DOFs and number of elements on a given level.
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We have deliberately chosen the location of interface Γl in such a way that the
interface would stay close to edges of the elements for all levels of the refinement
process and would not coincide with the element edges. Thus, the enriched
elements are divided into disproportional fractions.

Example 2-IF For this example, we consider a problem with discontinuous co-
efficients and a circular interface Γc. The circular interface Γc is defined as a zero
level set of a function Λc(x ) := r2

0 − ‖x − c‖2
2 with radius, r2

0 = 3−p2, and c is
the center of the circle (0.5, 0.5). The circular interface decomposes the domain
Ω into Ω1, where Λc(x )> 0 and Ω2 where Λc(x )< 0.

We consider a diffusion problem, where we choose coefficients as α2 = 1
and α1 = {10−1, 10−5, 10−9}. For this example, the right-hand side is chosen as
f2 = −4α1α2, and the Dirichlet boundary conditions satisfy the exact solution

u2(x ) =

¨

α2(‖x − c‖2
2 − r2

0 ), if x ∈ Ω1,

α1(‖x − c‖2
2 − r2

0 ), if x ∈ Ω2.

Example 3-IF Here, we consider the same circular interface as in Example 2-IF.
In this example, we consider the coefficients as α1 = 1 and α2 = {10, 105, 109}.
The right-hand side is chosen as, f3 = −4, and the Dirichlet boundary conditions
satisfy the exact solution

u3(x ) =















‖x − c‖2
2

α1
, if x ∈ Ω1,

‖x − c‖2
2 − r2

0

α2
+

r2
0

α1
, if x ∈ Ω2.

Using these examples we compare different variants of Nitsche’s methods, with
the eigenvalue problem, with the lifting operator method, and with the ghost
penalty stabilization. Also, we compare the Example 2-IF and Example 3-IF for
the method of Lagrange multipliers. The parameters in the ghost penalty term
are defined as εG = 0.1 and the stabilization parameter is defined as γgp = 10.
For the method of Lagrange multipliers, we use both the triangular and the
quadrilateral elements with the same mesh sizes in the hierarchy, and we de-
note these discretizations as LM-T and LM-Q, respectively.
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3.6.2 Study of Discretization Errors

We compare the convergence rate of error in L2-norm and in H1-seminorm
against the condition number of the stiffness matrix, denoted as κ(A). The mo-
tivation behind this comparison is to investigate the influence of previously dis-
cussed variants of Nitsche’s methods and the method of Lagrange multipliers on
condition numbers and the discretization errors. As the background mesh and
the location of the interface is fixed for a given example, the condition number
of the system matrix is only affected by the choice of stabilization parameter γp

and the weighting parameters βi.

Domain Error: From Figure 3.2 and Figure 3.3, it is clear that all variants of
Nitsche’s methods have almost identical convergence rates for the discretization
error in both L2-norm and the H1-seminorm. As the error estimates in (3.9) and
(3.15) suggest, the convergence rate of discretization error in L2-norm is of or-
der h2 and in the H1-seminorm is of order h. Figure 3.2 demonstrates that FEM
and XFEM methods have the same approximation properties since both methods
produce the same discretization error for the same mesh size. The discretiza-
tion error for Example 2-IF and Example 3-IF are also almost identical in both
norms for all variants of Nitsche’s method and both discretizations of the La-
grange multiplier method. From Figure 3.3, we see the convergence rates for
both discretizations of the Lagrange multiplier method are optimal, but the error
in the L2-norm for the quadrilateral meshes is little larger than for its counterpart
which employs triangular meshes.

Thus, we can conclude that all variants of Nitsche’s formulations and the
Lagrange multiplier formulations are robust with respect to highly varying coef-
ficients.

Interface Error: In Figure 3.4, we see the discretization error at the interfaces
for different mesh sizes used for enforcing the interface conditions. From the
error estimates of the interface errors, it is known that the convergence rate of
the discretization error of the function at the interface in H

1
2 (Γ ), h-norm and the

outward flux at the interface in H−
1
2 (Γ ), h-norm is of order h

3
2 . We can observe

from Figure 3.4 that the convergence rates for all the variants of Nitsche’s method
in both norms are of optimal order. Even with the highly varying coefficients, we
do not observe any deterioration in the interface errors.

For the method of Lagrange multipliers, the errors at the interfaces are not
of optimal order for the triangular meshes. This is due to the fact that we have
used the vital vertex algorithm to generate a stable multiplier space. As we know,
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Figure 3.2. Discretization error in L2-norm and mesh-dependent energy norm (ex-
cept for FEM formulation, where we use H1-seminorm) for different variants of
Nitsche’s method applied to Example 1-IF.

the coarsening for the multiplier space influences the approximation error of the
primal variable (solution). For the triangular meshes, the number of edges that
are connected with the endpoints of the edges is comparatively larger, and thus
the coarsening of the multiplier space reduces the approximation of the function
at the interfaces. We can observe that for the LM-T discretization, the error of
the function and the outward flux at the interfaces are suboptimal compared to
Nitsche’s method. If we change the discretization from the triangular mesh to
the quadrilateral mesh, we recover the optimal convergence rates for the error
at the interfaces. The discretization error of the outward flux in H−

1
2 (Γ ), h-norm

produced by the LM-Q discretization is identical to Nitsche’s methods, while for
the errors of the function in H

1
2 (Γ ), h-norm produced by the same discretization

is larger than Nitsche’s methods. Thus, for the method of Lagrange multipliers,
we use only the quadrilateral meshes from now onwards.

3.6.3 Comparison of the Condition Numbers

As the Example 1-IF has continuous coefficients, we can compare the FEM dis-
cretization with the XFEM discretization on the same background mesh. We
observe that FEM discretization has the smallest κ(A) for all different mesh sizes
in comparison with its XFEM counterparts. The XFEM discretizations produce
the system of linear equations with a larger condition number for all cases. The
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Figure 3.3. Discretization error in L2-norm and H1-seminorm in the domain Ω for
different methods applied to Example 2-IF and Example 3-IF.
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Figure 3.4. Discretization error of the function in H
1
2 (Γ ), h-norm and flux in

H−
1
2 (Γ ), h-norm for different methods applied to Example 2-IF and Example 3-IF.
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condition number for Nitsche’s formulation equipped with the lifting operator is
closest to the FEM discretization, while (IN-EV) formulation is the close second.
The condition numbers of the (IN-GP) formulation is the largest for all mesh
sizes, but this can be attributed to the value of the stabilization parameter.

Example 2-IF and Example 3-IF are different in terms of the coefficients. The
ratio between the smallest and the largest coefficient is kept the same for both
examples. For a given method to enforce the interface condition and a given
ratio between coefficients, we witness the identical results in terms of error and
condition number of the system for both examples. Application of the Dirichlet
boundary condition to the stiffness matrix in both examples causes the distri-
bution of the eigenvalues in the spectrum to vary, but the ratio between the
largest and the smallest eigenvalues stays the same. Figure 3.3 shows a com-
parison of the condition numbers against the discretization errors for both ex-
amples for various coefficients. It is evident from Figure 3.3, that the condition
numbers and the discretization errors in L2-norm and H1-seminorm for both ex-
amples are identical. The condition number is the smallest for the method of
Lagrange multipliers discretized on the quadrilateral mesh. Among the variants
of Nitsche’s method, the condition number is the smallest for the ghost penalty
discretization, regardless of the scale of coefficients, and κ(A) grows with de-
creasing mesh size, O(h−2). The theoretical estimates of Nitsche’s method with
the ghost penalty term, suggest that κ(A) is completely independent of the loca-
tion of the interface on mesh and only depends on the coefficients. This is also
evident for the condition numbers of the system matrices arising from the method
of Lagrange multipliers discretizations LM-T and LM-Q, as we have also used the
ghost penalty term in the Lagrangian formulations. The theoretical estimates of
Nitsche’s method with the ghost penalty term, suggest that κ(A) is completely
independent of the location of the interface on mesh and only depends on the co-
efficients. Experimental results also support the theoretical estimates of (IN-GP)
discretization for all examples. There are no theoretical bounds established on
κ(A) for (IN-LO) and (IN-EV) discretizations. For different mesh sizes, κ(A) is
larger than the ghost penalty formulation in almost all cases but it grows as the
ratio between the coefficients increases. We also observe the effect of irregular
intersection between the interface and the meshes at different levels.

From this discussion, it is clear that Nitsche’s method with the ghost penalty
term is more robust amongst variants of Nitsche’s methods. While for the method
of Lagrange multipliers, the discretization on the quadrilateral meshes is stable.
The other two variants of Nitsche’s methods produce the system matrices with
larger condition numbers, but still, these variants are stable as their condition
numbers do not grow sporadically.



Chapter 4

A Multigrid Method for
Nitsche-XFEM

As mentioned in the introduction, a multigrid method is a combination of
smoothing and coarse level corrections. The efficiency of the coarse level correc-
tions is heavily dependent on well-chosen transfer operators that can be used to
restrict residual from a fine level to a coarse level and prolongate correction from
a coarse level to a fine level. In this chapter, we introduce our multigrid method
for the XFEM discretization and discuss a new transfer operator based on the
L2-projection and pseudo-L2-projection in the XFEM framework. We note, this
multilevel method relies only on the unfitted meshes and the enriched FE spaces
and it is agnostic of any method chosen to enforce the boundary or the interface
conditions.

This chapter is organized as follows. In the next section, we describe the lin-
ear system, arising from either the penalty method or Nitsche’s method. In Sec-
tion 4.2, we present the framework of the subspace correction method for solving
the linear system of equations and motivate the two-grid method. The abstract
multigrid method is introduced in Section 4.3, where we demonstrate the sub-
space decomposition for two-grid and multigrid methods. In Section 4.4, we in-
troduce a method to create a hierarchy of multilevel meshes and then the process
to create a hierarchy of nested FE spaces, and present the semi-geometric multi-
grid method. In Section 4.5, we discuss the variational transfer approach to com-
pute the transfer operator in the XFEM framework. Lastly, in Section 4.6 we pro-
vide results of the numerical experiments compare the SMG method with other
solution strategies and demonstrate the robustness of our multigrid method.

55
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4.1 Linear Problem

In this section, we discuss the solution methods for the problems stemming from
the unfitted finite element framework. The problems that arise from the XFEM
discretization depend on the method that we used for enforcing the boundary
conditions or interface conditions. When the penalty method or Nitsche’s meth-
ods is employed to enforce the boundary/interface conditions, we have a prob-
lem of the following type.

Find uh ∈ Vh such that A(uh, vh) = F(vh) ∀vh ∈ Vh. (4.1)

Here, the bilinear form A(·, ·) and linear form F(·) are abstract formulation, which
may arise from either the penalty method or Nitsche’s method. With a slight
abuse of notation, we have dropped here the discretization parameter h as a
subscript from uh and vh.

We define a linear operators A : Vh → V∗h associated with the bilinear form
A(·, ·), and its adjoint AT : V∗h → Vh such that

A(u, v) = 〈Au, v〉V∗h×Vh
= 〈u,ATv〉Vh×V∗h ∀u, v ∈ Vh.

The linear operator A is continuous symmetric positive definite. We also denote
the linear functional F(·) by choosing a function f ∈ V∗h such that

F(v) = 〈 f , v〉V∗h×Vh
∀v ∈ Vh.

We can rewrite the problem (4.1) using the operators as,

find u ∈ Vh such that Au= f in V∗h . (4.2)

4.2 Basic Iterative Methods

In this section, we describe basic iterative methods, for solving the linear problem
(4.2), where the operator A is symmetric positive definite (SPD).

For a given initial guess u(0) ∈ Vh, a general iterative method for solving a
linear system can be written as

u(k) = u(k−1) +P( f −Au(k−1)) k = 1, 2, . . . , (4.3)

where P : V∗h → Vh is a linear operator. Here, we denote the k-th iterate as u(k).
We assume the operator P to be an approximate inverse of operator A. The
iteration can be rewritten as

u(k) = (I −PA)u(k−1) +P f k = 1,2, . . . ,
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where I : Vh→ Vh is the identity operator. It is easy to see that

u− u(k) = (I −PA)(u− u(k−1)) = (I −PA)k(u− u(0)).

This iterative method is convergent for an arbitrary initial value of u(0) if and
only if ρ(I −PA)< 1, where ρ denotes the spectral radius of the iterator.

Based on the above simple iteration scheme, we can define multiple iterative
methods. The linear problem (4.2) can be written in the matrix-vector formula-
tion as

Au = f ,

where A ∈ Rn×n, f ∈ Rn and solution u ∈ Rn. We start with the decomposition
of the matrix A as

A= D + L+U ,

where D is the diagonal part of A, and L and U are the strict lower and upper
triangular part of A, respectively. Now, we can write different iterative methods:

• Richardson method:

u(k+1) = u(k) + ( f − Au(k)) k = 1,2, . . .

• Jacobi method:

u(k+1) = u(k) + D−1( f − Au(k)) k = 1, 2, . . .

• Gauss-Seidel method:

u(k+1) = u(k) + (D + L)−1( f − Au(k)), k = 1, 2, . . .

• symmetric Gauss-Seidel method:

u(k+1) = u(k) + (D + L)−1D(D +U)−1( f − Au(k)), k = 1, 2, . . .

4.2.1 Subspace Correction Methods

The subspace correction method is generalization of many linear iterative meth-
ods for solving the linear system of equations arising from the partial differential
equations [Xu92, Xu01]. Due to its abstract nature, many iterative methods can
be viewed as a subspace correction method, for example, stationary iterative
methods, Krylov subspace methods, multigrid methods, domain decomposition
methods, etc. The idea of the subspace correction method is to decompose the
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global problem into a number of local subproblems, and then to update the iter-
ate by adding the solution of each local subproblems.

We consider a sequence of spaces V1, . . . ,Vn. This sequence of spaces is de-
fined by subspaces of the Vh, such that each, Vi ⊂ Vh for i = 1, . . . , n. These
subspaces are known as auxiliary spaces, and they are related to the original FE
space Vh by a linear operator

Πh
i : Vi → Vh.

We assume that the original FE space Vh can be decomposed into the sequence
of auxiliary subspaces

Vh =
n
∑

i=1

Πh
i Vi.

For each function v ∈ Vh there exists vi ∈ Vi, for i = 1, . . . , n, such that

v =
n
∑

i=1

Πh
i vi.

We remark that this summation does not have to be a direct sum. As the represen-
tation of vi is not necessarily unique and the subspaces can also be decomposed
with redundancy. In a similar way, we define adjoint of Πh

i as

(Πh
i )

T : V∗h → V∗i ,

such that

〈(Πh
i )

T f , vi〉V∗i ×Vi
= 〈 f ,Πh

i vi〉V∗h×Vh
f ∈ V∗h , vi ∈ Vi.

We assume that on each subspace Vi the bilinear form is given as Ai(·, ·). An
equivalent linear operator on each subspace Vi is defined as Ai : Vi → V∗i , such
that

Ai(ui, vi) = 〈Aiui, vi〉V∗i ×Vi
= 〈 fi, vi〉V∗i ×Vi

ui, vi ∈ Vi.

For each such linear operator Ai, there exists approximate inverse Pi given as

Pi : V∗i → Vi.

Thus, by employing the approximate inverses in each subspace, we can rewrite
(4.3) as a subspace corrections iteration,

u(k) = u(k−1) +Πh
i Pi(Π

h
i )

T( f −Au(k−1)) k = 1,2, . . . (4.4)
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Algorithm 4.1: Parallel Subspace Correction Iteration

Input : u(0) ∈ Vh

Output: u(k) ∈ Vh

1 for k = 1,2, . . . do
2 u(k)← [ u(k−1) +

∑n
i=1Π

h
i Pi(Πh

i )
T( f −Au(k−1))

Here, rather than computing the correction or update by employing an approxi-
mate inverse on the original function space Vh, the correction is computed by
employing a sequence of approximate inverses defined on the corresponding
subspaces. The subspace correction method is a very abstract formulation as
it accommodates many different decompositions of the subspaces.

The subspace correction method can be classified into two major categories,
namely parallel subspace correction (PSC) method, and successive subspace cor-
rection (SSC) method. The idea of the parallel subspace correction method is to
compute the corrections on each subspace independently and then to update the
current iterate by adding the sum of local corrections from each subspace. This
approach can be viewed as an additive Schwarz method in the domain decom-
position framework.

We recall that, the FE space Vh is spanned by the nodal basis functions
ϕ

p
h ∈ ϕh, for nodes p ∈ Nh. The cardinality of the nodal set Nh is given as

n = |Nh|. One of the simplest form of the subspace decomposition can be
achieved by direct splitting of the FE space Vh into one-dimensional subspaces
spanned by the nodal basis functions, where Vi = span{φ i

h}, for i = 1, . . . , n. For
this specific decomposition, the PSC method is equivalent to the Jacobi method
if the exact inverses are used on each subspace. If the subspace decomposition is
given by the subspaces of larger sizes, and if the exact inverses are employed on
each subspace then the PSC method leads to a block Jacobi method. An abstract
iteration of the PSC method is given in Algorithm 4.1.

In general, the PSC method is very slow to converge, especially if the di-
mension of the subspaces is small. In order to improve the convergence behav-
ior of this method, one can choose to update the corrections successively. This
means, each local subspace problem is solved sequentially, and the correction
in each subspace utilizes the most updated iterate. The abstract iteration of the
SSC methods is given in Algorithm 4.2. When the subspace decomposition is
given by the subspaces spanned by one-dimensional nodal basis functions, the
SSC method is equivalent to the Gauss-Seidel method. In the context of the
domain decomposition methods, the SSC method is a variant of the multiplica-
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Algorithm 4.2: Successive Subspace Correction Iteration

Input : u(0) ∈ Vh

Output: u(k) ∈ Vh

1 for k = 1,2, . . . do
2 v(0)← [ u(k−1)

3 for i = 1 . . . n do
4 v(i)← [ v(i−1) +Πh

i Pi(Πh
i )

T( f −Av(i−1))

5 u(k)← [ v(n)

tive Schwarz method. The SSC method, as given in the Algorithm 4.2, is not
symmetric. The symmetric version of the SSC method involves one step of SSC
iteration in the regular ordering of subspaces and one more iteration in the re-
verse ordering of the subspaces. Thus, the same subspace decomposition gives
rise to a symmetric Gauss-Seidel method. The symmetric variant of the Gauss-
Seidel method is preferred in many cases since this variant can be employed as
a preconditioner in the conjugate gradient method.

4.2.2 Extended Subspace Correction Method

As discussed in the previous section, the subspace correction methods such as
the Jacobi method and the Gauss-Seidel method utilize the subspaces spanned
by the nodal basis functions. The nodal basis functions are very high-frequency
functions and can not represent the low-frequency contribution of the error accu-
rately. In order to improve the convergence rate of the subspace correction meth-
ods described earlier, it is essential to extend the decomposition of subspaces in
such a way that low-frequency contributions of the error are also captured. This
objective is possible to achieve by introducing an additional subspace, which is
spanned by the nodal basis functions with larger support. The subspace spanned
by the basis functions with the larger support can be given by some FE space
VH with the mesh size h < H, where VH is not necessarily a subspace of Vh.
We assume the subspace VH is related to the FE space Vh by a linear operator
ΠH : VH → Vh. Hence, an extended subspace decomposition can be given by

Vh =
n
∑

i=1

Πh
i Vi +Π

h
HVH .

The subspace VH can also be decomposed into sequence of subspaces given as
Vn+1, . . . ,Vn+m. Following the same strategy as before, we define a linear operator
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that connects the FE space VH to Vn+1, . . . ,Vn+m by

ΠH
j : V j → VH .

Thus, the extended subspace decomposition can be given as

Vh =
n
∑

i=1

Πh
i Vi +Π

h
H

m+n
∑

j=1+n

ΠH
j V j.

This extended decomposition can be regarded as a variant of a two-level method.
Each of these subspaces Vn+ j for j = 1, . . . , m can be assumed to be spanned by
the nodal basis functions defined on the space VH . This decomposition in the sub-
space correction framework can give rise to the Jacobi method or Gauss-Seidel
method on the space VH . For the Jacobi or Gauss-Seidel method, the corrections
are obtained in the local direction of the basis functions of the space Vh, while
the nodal basis functions of the space VH provide additional search directions.
The corrections in the local direction of the basis functions of the space Vh and
VH can be referred to as the fine level and the coarse level corrections, respec-
tively. This framework accelerates the subspace correction method by exploiting
the additional coarse level corrections. This idea can be considered as a first step
towards the multilevel methods. In the multilevel framework, the FE space Vh

is decomposed into multiple subspaces which are spanned by the basis functions
with increasingly larger supports. This allows for tackling different components
of the error simultaneously on each subspace.

In the next section, we discuss the multigrid method as a subspace correction
method.

4.3 Abstract Multigrid Method

In the last section, we discussed the basic iterative methods for solving linear
problems. It is well-known that the convergence rate of these methods deterio-
rates with increasing problem sizes. In order to improve the convergence rates
of the basic iterative methods, we can employ the extended subspace correction
method, i.e., multigrid methods.

The multigrid methods are one of the most efficient techniques for solving
the linear systems of equations originating from the discretization of the partial
differential equations [Hac86]. The efficiency of the multigrid methods depends
heavily on the underlying multilevel hierarchy of meshes and the hierarchy of
multilevel spaces. In the multigrid methods, the multilevel decomposition of the
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FE space is done in such a way that the FE spaces associated with a coarse level
are subspaces of a fine level FE space. This is not necessarily true for the FE
spaces in the XFEM framework. In order to avoid the confusion, we limit our
discussion in this section to abstract FE spaces that do not necessarily arise from
the XFEM discretization.

4.3.1 Two-grid Method

The basic iterative methods such as the Richardson method, the Jacobi method,
and the Gauss-Seidel method are not very robust. These methods converge
rapidly in a few initial iterations, but then their convergence rates deteriorate.
The Jacobi and the Gauss-Seidel method operate on the nodal basis functions,
which span the FE space Vh, locally. These methods can eliminate the high-
frequency components of the error easily but they are relatively slow to eliminate
the low-frequency components of the error [Hac16]. As these methods can re-
move the oscillatory components of the error quickly, after a few iterations only
the smooth components of the error remain. This property is called smoothing
property, and we refer to these iterative methods as smoothers. The idea of the
two-grid method is to decompose the problem into a fine and a coarse problem.
In this way, the high-frequency and the low-frequency components of the error
are treated separately on different levels. The error components which are too
smooth on the fine level can be tackled on the coarse level.

Let Yh be an abstract FE space defined on a fine grid, and YH be a FE space
defined on a coarse grid, where YH ⊂ Yh. As another component of the two-grid
method, let Sh be a smoother defined on the fine level, as Sh : Y∗h → Yh. Let Πh

H
be a linear operator that connects the coarse space with the fine space. Following
the multigrid terminology, we call Πh

H a prolongation operator and its adjoint a
restriction operator. In addition, we define an exact or approximate inverse of
the coarse level operator AH as PH : Y ∗H → YH .

An abstract iteration of the two-grid method is given in Algorithm 4.3. In
general, a single iteration of the smoother may not be sufficient, hence in many
cases, it becomes essential to perform multiple smoothing iterations. We denote
the number of smoothing steps performed before and after the coarse level cor-
rection, by parameters ν1,ν2 > 0 respectively.

4.3.2 Multigrid Method

In many practical applications, the coarse level discretization in the two-grid
method might be too large to be solved quickly. In such cases, the multigrid
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Algorithm 4.3: Two-grid Method

Input : u(0) ∈ Yh

Output: u(k) ∈ Yh

1 for k = 1,2, . . . do
2 v← [ u(k−1) + Sν1

h ( f −Au(k−1)) ; . ν1 pre-smoothing steps

3 v← [ v +Πh
HPH(Πh

H)
T( f −Av) ; . coarse level correction

4 u(k)← [ v + Sν2
h ( f −Av) ; . ν2 post-smoothing steps

methods can be viewed as a natural extension of the two-grid methods, where
the two-grid algorithm is called recursively until the problem on the coarsest
level is computationally inexpensive to solve.

To obtain the multigrid method, we assume an abstract FE space Yh is de-
composed into L levels, such that

Yh = YL +
L−1
∑

`=1

Π`+1
`

Y` +Π1
0Y0,

where Y`−1 ⊂ Y` and Π`
`−1 : Y`−1 → Y` are associated linear operators for all

` = 1, . . . , L. This subspace decomposition consists of a lot of redundancies, but
the redundant subspaces are quite essential for achieving the optimal conver-
gence of the multigrid methods. The hierarchy of nested FE spaces (Y`)`=0,...,L

is constructed by the discretization on the hierarchy of nested meshes. Also, let
S` : Y∗

`
→ Y`, for ` = 1, . . . , L be smoothers, that damp oscillatory components

of the error on a given level. At each level, ` > 0, the smoothing operator, asso-
ciated with space Y`, reduces the high-frequency contributions of the error with
respect to the mesh size. We assume that the remaining error may be approxi-
mated well enough in the subspace Y`−1, as it can be resolved on a coarser mesh.
On the coarsest level, we employ an exact inverse of the coarse level operator
which can get rid of the low-frequency components of the error that remain after
the smoothing iterations.

The subspace decomposition in the multigrid framework can be given as

Yh =
nL
∑

i=1

ΠL
i Yi +

L−1
∑

`=1

Π`+1
`

n
∑̀

j=1

Π`jY j +Π
1
0Y0.

Here, except on the coarsest level, the subspaces on all other levels are again de-
composed in one dimensional subspaces, as we use the Jacobi, the Gauss-Seidel
or the symmetric Gauss-Seidel methods as smoothers. In many practical appli-
cations, specifically, if the multigrid method is chosen as a preconditioner for a
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u2 ← [ Sν1,ν2
2 ( f2 − A2u2)

c1 ← [ Sν1,ν2
1 (r1 −A1c1)

c0 ← [ A−1
0 r0

c1← [ 0
r2← [ f2 −A2u2

r1← [ (Π2
1)

Tr2

r0← [ (Π1
0)

T(r1 −A1c1) c1← [ c1 +Π1
0c0

u2← [ u2 +Π2
1c2

Figure 4.1. A multigrid V (ν1,ν2)-cycle, where ν1 and ν2 denote number of pre-
smoothing and post-smoothing steps. On the right, we can see a hierarchy of meshes
associated with each level.

Krylov subspace method, it is necessary to choose symmetric smoothing oper-
ators. In Figure 4.1, we can see an example of an abstract V (ν1,ν2)-cycle. A
multigrid method is a combination of the smoothing iterations and the coarse
level corrections. The coarse level corrections are heavily dependent on well-
chosen transfer operators which can be used to restrict residuals from a fine
level to a coarse level and prolongate corrections from a coarse level to a fine
level. In order to improve the convergence of the multigrid methods, we can
design more suitable smoothers and/or the transfer operators for a given prob-
lem. In the geometric multigrid methods, the standard interpolation operator
is usually employed as the prolongation operator, while the transpose of the in-
terpolation operator is chosen as the restriction operator. For the smoother, we
could choose any of the basic iterative methods. We note that the Richardson
method and the Jacobi methods are not necessarily convergent, hence weighted
Richardson or weighted Jacobi methods should be used as smoother. While the
Gauss-Seidel and the symmetric Gauss-Seidel method are always convergent if
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A is diagonally dominant and symmetric positive definite, and traditionally the
weighted counterparts of these methods are rarely used as smoothers.

In the traditional FE framework, the subspaces used in the multigrid hierarchy
are chosen in such a way that the hierarchy of the spaces is nested. The FE spaces
associated with the meshes would also be nested if the hierarchy of the meshes
is obtained by uniform refinement or coarsening strategy. This is a convenient
way to create a hierarchy of nested FE spaces, but unfortunately in the XFEM
framework even if we have a nested mesh hierarchy of the background mesh,
we have a non-nested mesh hierarchy for each subdomain due to the arbitrary
location of interfaces. In the next section, we discuss a framework for creating
nested FE spaces in the XFEM framework and the way to utilize this framework
in a multigrid method.

4.4 Multilevel method for XFEM Discretization

In this section, we discuss a method for creating a multilevel hierarchy of the
meshes and the corresponding hierarchy of FE spaces. The approach for creat-
ing a hierarchy of the nested FE spaces from the non-nested meshes was first
proposed as an auxiliary subspace correction method [Xu96]. Later, we describe
the semi- geometric multigrid (SMG) method for the XFEM discretization.

4.4.1 Multilevel Space Hierarchy

In this section, we provide a framework for creating a hierarchy of nested XFEM
spaces from the hierarchy of background meshes. We carry out the discussion for
a generic case, for both the fictitious domain method and the interface problems.
For the interface problems, we include cases with multiple interfaces.

Let us define a mesh hierarchy of background meshes for levels, `, where
` ∈ {0, . . . , L}. The coarsest level is denoted by ` = 0 and the finest level is
denoted by ` = L. The original background mesh is considered to be the mesh
on the finest level, i.e., eTL := eTh. We define the coarse level mesh hierarchy as, eT`,
for all ` ∈ {0, . . . , L − 1}. It is necessary that, the domainΩ is encapsulated by the
background mesh on each level `, Ω ⊂ ( eT`)`=0,...,L−1. Now, on this mesh hierarchy,
we define finite element spaces associated with each of these background meshes
as

eV` = {v ∈ H1( eT`) : v|K ∈ P1, v|∂ eT` = 0, ∀K ∈ eT`} ∀` ∈ {0, . . . , L − 1}.
On the finest level, the definition of the finite element space is taken directly from
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the original problem, i.e., eVL := eVh. When the hierarchy of the meshes is nested,
the hierarchy of the FE spaces associated with these meshes is also nested, thus

eV`−1 ⊂ eV` ∀` ∈ {1, . . . , L}.
In the XFEM discretization, the background mesh is enriched, decomposed

and then it is associated with each subdomain i = 1, .., r, where r is the number
of total subdomains. In the multigrid framework this procedure is carried out on
each level thus

T`,i = {K ∈ eT` : K ∩Ωi 6= ;} ∀` ∈ {0, . . . , L − 1}, ∀i ∈ {1, . . . , r}.
If possible, the mesh hierarchy can be obtained by uniform coarsening of the
original background mesh used for the discretization on the finest level.

Now, we define the characteristic function of each subdomain Ωi, for
i = 1, . . . , r

χΩi
: Rd → R, χΩi

(x ) =

¨

1 ∀x ∈ Ωi,

0 otherwise.

We exploit the definition of the characteristic function to restrict the finite ele-
ment space (eV`)`=0,...,L−1 to each subdomain Ωi, as

V`,i = χΩi
(x )eV` ∀` ∈ {0, . . . , L − 1}, ∀i ∈ {1, . . . , r}.

Similar to the finest level mesh, we borrow the definition of FE space from the
finest level on each subdomain, i.e., VL,i := Vh,i. In the XFEM framework, even
if we have a nested mesh hierarchy of the background mesh, due to the arbi-
trary location of interfaces, we could have a non-nested mesh hierarchy for each
subdomain, see an example in Figure 4.2. There, the meshes associated with the
domain Ωi at different levels are not nested. As the meshes are not nested, the fi-
nite element spaces associated with the meshes are also not nested, V`−1,i 6⊂ V`,i.

In this work, we want to create the hierarchy of nested FE spaces associated
with each subdomain. We define the prolongation operators which connects the
spaces, (V`,i)`=0,...,L as

Π`
`−1,i : V`−1,i → V`,i ∀` ∈ {1, . . . , L}, ∀i ∈ {1, . . . , r}, (4.5)

such that Π`
`−1,iV`−1,i ⊂ V`,i. Now using this prolongation operator, we can con-

struct a FE space associated with mesh T`,i by composition of the prolongation
operators,

X`,i := ΠL
L−1,i · · ·Π`+1

`,i V`,i ∀` ∈ {1, . . . , L − 1}, ∀i ∈ {1, . . . , r}.
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(a) Triangular mesh T`−1,i (b) Triangular mesh T`,i (c) Superimposition of T`,i on
T`−1,i

Figure 4.2. 2D Triangular meshes on different levels encapsulating the domain Ωi,
(domain Ωi is shaded in gray).

We define XL,i := VL,i on the finest level, as the FE space on the finest level is not
modified. We can create the hierarchy of the nested spaces for i = 1, . . . , r by
recursive application of the prolongation operators as

(ΠL
L−1,i · · ·Π`+1

`,i )(Π
`
`−1,iV`−1,i)

︸ ︷︷ ︸

=:X`−1,i

⊂ (ΠL
L−1,i · · ·Π`+1

`,i )(V`,i)
︸ ︷︷ ︸

=:X`,i

∀` ∈ {1, . . . , L − 1}.

Thus, the composition of the prolongation operators applied on the finest level
generates a nested hierarchy of the FE spaces, i.e.,

X0,i ⊂ X1,i ⊂ · · · ⊂ X`−1,i ⊂ X`,i ⊂ · · · ⊂ XL−1,i ⊂ XL,i ∀i ∈ {1, . . . , r}.
For simplicity and compactness, we define the prolongation operators for the
whole domain as a direct sum of the prolongation operator defined for each
subdomain, i.e.,

Π`
`−1 :=

r
⊕

i=1

Π`
`−1,i ∀i ∈ {1, . . . , r}.

This prolongation operator Π`
`−1 inherits the same properties from its counter-

parts defined on each subdomain. A hierarchy of nested spaces for the whole
domain can be generated with the same procedure on the enriched FE space,
i.e.,

X` = Π``−1

r
⊕

i=1

V`,i
︸ ︷︷ ︸

=:V`

=
r
⊕

i=1

(ΠL
L−1,i · · ·Π`+1

`,i V`,i)
︸ ︷︷ ︸

=⊕r
i=1X`,i

∀` ∈ {0, . . . , L − 1}.
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L

1

0

Γ Γ

L − 1

1

0

L − 2

1

0

Figure 4.3. Basis of the cut domain in 1D, in blue we see the original basis VL,i 6⊃
VL−1,i 6⊃ VL−2,i, in red we see the basis computed with L2-projections which are
nested, XL,i ⊃ XL−1,i ⊃ XL−2,i.

Thus, we can create the sequence of nested spaces (X`)`=0,...,L. In Figure 4.3,
we see how the basis functions created by the nested FE spaces differ from the
non-nested FE spaces.

By construction, it is clear that the transfer operator for the XFEM discretiza-
tion treats each subdomain separately. This can be regarded as an additive sub-
space splitting strategy to compute the transfer operator. Intuitively, it can also
be seen as all different transfer operators assembled on each subdomain, where
the support of the FE space is restricted to the respective subdomain. The global
transfer operator is computed as a direct sum of all such transfer operators on
each subdomain. This ensures that the information transfer between levels is
restricted to each subdomain, and there is no cross-information transfer across
the interfaces.

Let {ζp
`
}p∈N` be the basis of a FE space X`, whereN` denotes the set of nodes

associated with the mesh T`. Also, we define the cardinality of the nodal set N`
as, n` = |N`|. Using the nodal basis of the finite element spaces X` and X`−1,
we can compute the matrix representation of the transfer operator Π`

`−1. We
denote the matrix formulation of the transfer operator Π`

`−1 as T `
`−1 ∈ Rn`×n`−1 .

In the next section, we discuss some approaches to compute the transfer operator
algebraically.

This transfer operator can be used to compute the basis functions associated
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with all coarse spaces (X`)`=0,...,`−1 as

ζ
q
`−1 :=

∑

p∈N`
(T `

`−1)pqζ
p
`

∀q ∈ N`−1,∀` ∈ {1, . . . , L}. (4.6)

Thus, the basis functions of a coarse FE space can be computed recursively as a
linear combination of the basis functions of a fine level FE space. For the finest
level, as we have mentioned earlier the definition of the FE space is kept un-
touched, thus the basis functions on the finest levels are defined as ζp

L := φp
h , for

all p ∈ Nh. In Figure 4.2, we can observe how the basis function associated with
the space V` and X` for all ` = 0, . . . , L differ. From Figure 4.2, we can see that
the basis functions of the coarse levels are piecewise linear with respect to the
mesh associated with the finest level, provided the basis functions are linear also
on the finest level.

4.4.2 Semi-geometric Multigrid Method

Now, we have created a hierarchy of nested FE spaces X` from the hierarchy of
non-nested FE spaces V`. This is quite essential for ensuring the robustness of
the multigrid method.

Considering the abstract weak formulation (4.1) given for either Nitsche’s
method or the penalty method, we recall the abstract problem,

find u ∈ VL = XL such that A(u, v) = F(v) ∀v ∈ VL = XL.

We denote the algebraic representation of the bilinear form as AL, also known
as a stiffness matrix, with the entries (AL)pq := A(ζq

L,ζp
L) for all p, q ∈ NL. The

right hand side is represented by f L, with the local entries ( fL)p := F(ζp
L), for all

p ∈ NL. We can write the algebraic variant of our problem as

ALu L = f L,

where unknown u L represents a vector of the coefficients u L = (uL)p for all
p ∈ NL, which are associated with the finite element approximation space XL.

From a practical point of view, we need a preliminary step before the multi-
grid algorithm can be invoked. In the preparation step, we compute a sequence
of prolongation operators (T `

`−1)`=1,...,L between successive levels of the FE space
hierarchy. These prolongation operators are used to transfer a coarse level cor-
rection to a fine level and the adjoint of these operators is used as restriction
operators to transfer the residual from a fine level to a coarse level. The next
stage of the setup consists of computation of the coarse level stiffness matrices,
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Algorithm 4.4: Setup Semi-geometric Multigrid algorithm
Input : AL, (T`)`=0,...,L

Output: (T `
`−1)`=1,...,L, (A`)`=0,...,L−1

1 Function: Setup SMG
2 for `← [ L, . . . , 1 do
3 T `

`−1← [ (T`,T`−1) ; . assemble prolongation operator

4 A`−1← [ (T `
`−1)

TA`T
`
`−1 ; . coarse level assembly

(A`)`=0,...,L−1. We use the Galerkin assembly approach to compute the coarse level
stiffness matrices, defined as

A`−1 := (T `
`−1)

TA`T
`
`−1 ∀` ∈ {1, . . . , L}. (4.7)

Here, as the finest level stiffness matrix AL is symmetric positive definite, and
the transfer operator T `

`−1 has full rank then for all ` = 0, . . . , L − 1 the coarse
level matrices are also symmetric positive definite. The Galerkin assembly is
quite essential in the semi-geometric multigrid algorithm. If the assembly of
the stiffness matrix is done on each level, the coarse level operator would be
constructed using the FE spaces (V`)`=0,...,L−1. In contrast, using the Galerkin
assembly assures the stiffness matrix is recursively constructed in the nested FE
spaces (X`)`=0,...,L−1.

After the computation of the coarse level stiffness matrices and the prolonga-
tion operators, we invoke the multigrid algorithm. The multigrid iterations can
be used for preconditioning or solving a linear system. Therefore, the SMG can
be written in an abstract way, such that it returns the correction c L rather than
the iterate explicitly. The residual on the finest level is given as

r L = f L − ALu L.

The semi-geometric multigrid algorithm is given in Algorithm 4.5, where ν1, ν2

are the number of pre-smoothing and post-smoothing steps, respectively. For
γ = 1 and γ = 2, the multigrid method in Algorithm 4.5 can be transformed to
the V (ν1,ν2)-cycle and the W (ν1,ν2)-cycle, respectively.

Until now, we have only discussed the transfer operators in the abstract sense.
In the next section, we provide the framework for computing the transfer oper-
ators algebraically through variational transfer.
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Algorithm 4.5: Semi-geometric Multigrid algorithm

Input : (A`)`=0,...,L, r L, L, ν1, ν2, (T `
`−1)`=1,...,L, γ

Output: c L

1 Function: SMG(A`, r `, `, ν1, ν2, T `
`−1, γ):

2 if ` 6= 0 then
3 c`← [ 0 ; . initialize correction

4 c`← [ Smoother(A`, c`, r `,ν1) ; . ν1 pre-smoothing steps

5 r `−1← [ (T `
`−1)

T(r ` − A`c`) ; . restriction

6 c`−1← [ 0 ; . initialize coarse level correction

7 for i = 1, . . . ,γ do
8 c`−1← [ c`−1+ SMG(A`−1, r `−1, `− 1, ν1, ν2, T `−1

`−2,γ) ; . coarse cycle

9 c`← [ c` + T `
`−1 c`−1 ; . prolongation

10 c`← [ Smoother(A`, c`, r `,ν2) ; . ν2 post-smoothing steps

11 else
12 c0← [ A−1

0 r 0 ; . direct solver

4.5 Variational Transfer

In this section, we discuss the computation of the transfer operator for the XFEM
framework. Following the multigrid terminology, we refer to the transfer opera-
tor as a prolongation operator while to the adjoint of the transfer operator as a
restriction operator.

In the context of non-conforming domain decomposition methods and con-
tact problems, the information transfer between non-conforming meshes is real-
ized through global L2-projections [Bel99, Woh00a]. The mortar methods were
introduced to couple different discretizations on the interfaces of subdomains,
where the meshes of the subdomains do not necessarily match at the interface. In
the mortar method, the L2-projections are performed to couple these discretiza-
tions on the trace spaces defined on the boundaries. We exploit the same strategy
to couple different FE spaces defined on a fine and a coarse level, i.e., we create
the transfer operators between the successive meshes in the multilevel hierarchy.

In the theory of the mortar method, a mortar side and a non-mortar side are
chosen such that the transfer operator maps a function from a mortar side to a
non-mortar side. Thus, a mortar side and a non-mortar side can be regarded
as a domain and an image of a transfer operator. In the multigrid framework,
we associate a fine space with the non-mortar side, while a coarse space is as-
sociated with the mortar side, as we aim to compute the prolongation operator
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from a coarse space to a fine space. The transfer operators between connected
spaces (V`)`=0,...,L in our mesh hierarchy are defined as in (4.5). For example, the
operator Π`

`−1 projects the element v ∈ V`−1 into V`, given as Π`
`−1v := w, where

w ∈ V`.
We define the prolongation operator, Π`

`−1 : V`−1→ V` for all `= 1, . . . , L, by
enforcing the following condition Π`

`−1v = w, in weak sense using the method of
Lagrange multipliers. Thus, the weak formulation of this problem can be given
as,

find Π`
`−1v ∈ V` such that (Π`

`−1v,µ)L2(Ω) = (w,µ)L2(Ω) ∀µ ∈M`, (4.8)

where M` is a space of Lagrange multipliers defined on a finer level. Thus, the
dimension of spaces M` and V` are equal, as they both are defined on the same
mesh T`. Reformulating (4.8), we get weak equality condition on the domain Ω,

(Π`
`−1v −w,µ)L2(Ω) = 0 ∀µ ∈M`.

Let {φ j
`−1} j∈N`−1

be a basis of V`−1, {φk
`
}k∈N` be a basis of V` and {θ i

`
}i∈Nµ be basis

of the multiplier space M`, where N`−1, N` and Nµ denote the set of nodes
associated with respective FE space.

Writing the functions v ∈ V`−1 and w ∈ V` as a linear combination of the
basis functions, we get v =

∑

j∈N`−1
v jφ

j
`−1 and w=

∑

k∈N` wkφ
k
`
, with coefficients

{v j} j∈N`−1
and {wk}k∈N` . Now, inserting the respective basis function in (4.8), we

get
∑

j∈N`−1

v j(φ
j
`−1,θ i

`
)L2(Ω) =

∑

k∈N`
wk(φ

k
`
,θ i
`
)L2(Ω) ∀i ∈ Nµ. (4.9)

The formulation (4.9) in matrix-vector form is given as

Nv = Mw .

Here, the matrix N is defined between a fine and a coarse space, with en-
tries Ni j = (φ

j
`−1,θ i

`
)L2(Ω) and M matrix is defined on a fine level, with entries

Mik = (φk
`
,θ i
`
)L2(Ω). As Lagrange multiplier space and the finite element space on

fine level ` are of the same dimension, M ∈ Rn`×nµ is a square matrix, as n` = nµ,
where n` = |N`| and nµ = |Nµ|. Whereas, N ∈ Rn`×n`−1 is a rectangular matrix,
here n`−1 = |N`−1| denotes the dimension of FE space V`−1. The vectors v and w
are representation of function v, w on level `−1 and `, respectively. The formula
for computing the transfer operator can be expressed algebraically as

w = M−1Nv = T v . (4.10)

The matrix T ∈ Rn`×n`−1 is the discrete representation of the transfer operator
Π`
`−1, which we use as a prolongation operator in the multigrid method.
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4.5.1 L2-projections

The choice of different Lagrange multiplier spaces in the formulation (4.8) can
lead to different transfer operators. The Lagrange multiplier space can be taken
as the finite element space M` := V`. Thus, we take the same basis functions
{φ i

`
}i∈Nµ for M` and V`. In this particular case, the scaled mass matrix N, be-

tween a coarse and a fine space, has the entries

Ni j = (φ
j
`−1,φ i

`
)L2(Ω) ∀i ∈ N`,∀ j ∈ N`−1.

The matrix M is the mass matrix on a fine level with the entries

Mik = (φ
k
`
,φ i

`
)L2(Ω) ∀i, k ∈ N`.

The usage of the transfer operator computed with the L2-projection does not
guarantee a computationally efficient multigrid algorithm. In the multigrid al-
gorithm, we employ the Galerkin assembly approach (4.7) to create coarse level
operators. Hence, it is necessary to compute the transfer operator T , which re-
quires an inverse of a sparse block diagonal mass matrix M . As the inverse of
matrix M is dense, the resulting transfer operator computed using (4.10) pro-
duces a dense transfer operator. If the dense transfer operator is used to con-
struct the coarse level basis functions using (4.6), the coarse level basis functions
would have large supports. Due to this reason, the coarse level stiffness matri-
ces (A`)`=0,...,L−1 computed using Galerkin projection also become dense. If this
transfer operator is employed within the multigrid method, it impedes the per-
formance of the overall algorithm, as all the matrix-vector multiplications have
to be performed on the dense systems.

4.5.2 Pseudo-L2-projections

In order to reduce the computational cost of the application of the transfer op-
erator, we require the transfer operator T to be sparse. This can be achieved
by choosing a different definition of Lagrange multiplier space [Woh00a, DK11,
DK14]. The basis functions of this multiplier space are chosen in such a way that
they are biorthogonal to the standard Lagrange FE basis with respect to L2-inner
product.

We define the dual space, M` := span{ψi
`
}i∈Nµ , where ψi

`
are defined as the

dual functions which satisfy the following biorthogonality condition

(φq
`
,ψp

`
)L2(Ω) = δpq(φ

p
`
,1)L2(Ω) ∀p, q ∈ N`,
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Figure 4.4. Lagrange basis functions (in blue) for the cut domain and corresponding
biorthogonal basis functions (in red), the biorthogonal basis for the cut-element
have been modified to satisfy biorthogonality condition for truncated support.

where 1 denotes the constant function with value 1 and δpq denotes the Kro-
necker delta, defined as in (1.1).

For linear and bilinear elements, it is possible to compute the biorthogonal
basis (ψp

`
)p∈N` as a linear combination of the Lagrange basis (φk

`
)k∈N` for each

element K ∈ eT`,
ψ

p
`
= Cpqφ

q
`

∀p, q ∈ NK , (4.11)

where Cpq denotes the entries of the coefficient matrix C K , which defines the
coefficient of the linear combination and NK denotes set of nodes of a given tri-
angulation K . Using the formula (4.11), we can compute the coefficients matrix
C K , for each element K ∈ T`,i, for all i ∈ {1, . . . , r} as

Cpq(φ
q
`
,φp

`
)L2(Ki) = δpq(φ

p
`
,1)L2(Ki) ∀p, q ∈ NK .

Here, we note for each subdomain the L2-inner product is restricted to the ele-
ment Ki = K ∩ Ωi, for all, i = 1 . . . , r. The matrix representation of the multi-
plication of element-wise basis function is defined as (MK)pq = (φ

p
`
,φq

`
)L2(Ki) and

(NK)pq = δpq(φ
p
`
,1)L2(Ki). Here, the elemental matrix NK is diagonal and MK is

an elemental mass matrix with the entries (NK)pq and (MK)pq, respectively. In
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the algebraic form, it can be written as

C K MK = NK .

The element-wise coefficients of the linear combination could be computed as

C K = NK(MK)
−1.

Once, the coefficients matrix C K is computed, we can construct the biorthogonal
basis function using (4.11).

In general, it is not necessary to compute the biorthogonal basis functions for
each element. For the uncut elements, we can compute the coefficients for an
element and construct the biorthogonal basis from the pre-computed coefficients.
While for the cut elements, it is essential to compute the coefficients explicitly
for each cut element. For the cut elements, the support of the Lagrange basis
function depends on the location of the interface with respect to the background
mesh. Hence, also the biorthogonal basis for the corresponding cut elements
depends on the support of the Lagrange basis functions. The biorthogonal basis
functions computed using this strategy are not necessarily continuous for the cut
elements. In Figure 4.4, we can see the Lagrange basis and the corresponding
biorthogonal basis functions for a cut mesh.

Now, we define the pseudo-L2-projection operator, where the Lagrange multi-
plier space is spanned by the biorthogonal basis functions. In the discrete setting,
the entries of matrix M are given by Mik = (φk

`
,ψi

`
)L2(Ω) = (φ i

`
,1)L2(Ω). Due to

this definition, the matrix M computed using the biorthogonal basis is diagonal.
This matrix is computationally trivial to invert, and the inverse of the matrix is
also diagonal. The matrix N, defined between a coarse and a fine level can be
given with the entries Ni j = (φ

j
`−1,ψi

`
)L2(Ω). The transfer operator computed us-

ing this method has a sparse structure, and the support of the basis functions on
the coarse level is also smaller compared to the standard L2-projection operator.

Hence in the semi-geometric multigrid method, we use the transfer operator
computed using the pseudo-L2-projections.

4.6 Numerical Results

In this section, we evaluate the performance of our semi-geometric multigrid
method for different variants of Nitsche’s method using the examples discussed
in Section 2.7 for the fictitious domain method and Section 3.6 for the inter-
face problem. We employ the multigrid method as a solution method and as a
preconditioner and compare its performance against other preconditioners.
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Our examples have highly varying coefficients, hence, to compare all solu-
tion methods on the same scale we choose relative residual in energy norm as a
termination criterion, as

‖ f − Au(k)‖A

‖ f − Au(0)‖A
< 10−12. (4.12)

Additionally, we define the asymptotic convergence rate of an iterative solver as

ρ∗ :=
‖u(k+1) − u(k)‖A

‖u(k) − u(k−1)‖A
,

where the iterate u(k+1) satisfies the termination criterion (4.12).

4.6.1 Comparison with Other Preconditioners

The system of linear equations arising from Nitsche’s method and the penalty
method are symmetric positive definite (SPD). The most natural choice of an
iterative solver for such problems is the conjugate gradient (CG) method. Al-
though, the CG method has the best convergence rate amongst all Krylov sub-
space solvers for SPD systems, in practice preconditioned CG method is used to
ensure the fast convergence and, in some cases, to ensure the convergence of
the solver up to a certain tolerance. We use the preconditioned CG method as a
solver in our numerical experiments with Jacobi, symmetric Gauss-Seidel (SGS),
and semi-geometric multigrid methods as preconditioners, which will be denotes
as CG-Jacobi, CG-SGS, CG-SMG, respectively.

The experiments are carried out on the system of linear equations with
around 2.5 × 106 DOFs (L5). Our semi-geometric multigrid method is set up
with 5-levels, and symmetric Gauss-Seidel is chosen as smoother with 3 pre-
smoothing and 3 post-smoothing steps at each level, and we perform a single
V -cycle as a preconditioner.

Preconditioners

Table 4.1 shows the number of iterations required by different methods to reach
the termination criterion (4.12). We observe that the CG method preconditioned
with the Jacobi method has the slowest convergence amongst all solvers. CG
method with SGS as a preconditioner is significantly better than the Jacobi pre-
conditioner, the number of iterations is reduced in more than half for most of the
problems. The best performance from all the preconditioners is clearly shown by
the SMG preconditioner.
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CG-Jacobi CG-SGS CG-SMG SMG (ρ∗)

Penalty
Example 1-FD 3424 1245 14 28 (0.493)
Example 2-FD 3417 1243 19 41 (0.793)

Nitsche
Example 1-FD 3256 1121 8 10 (0.116)
Example 2-FD 3101 1235 10 13 (0.117)

(a) Penalty and Nitsche’s method for fictitious domain problem

CG-Jacobi CG-SGS CG-SMG SMG (ρ∗)

IN-EV 6363 2048 8 9 (0.113)
IN-LO 5365 2001 7 8 (0.087)
IN-GP 5396 2051 9 12 (0.181)

(b) Nitsche’s method for solving Example 1-IF

CG-Jacobi CG-SGS CG-SMG SMG (ρ∗)

α1 = 10−1

α2 = 1

IN-EV 5276 1779 8 10 (0.157)
IN-LO 4710 1724 7 9 (0.112)
IN-GP 4510 1787 7 8 (0.101)

α1 = 10−5

α2 = 1

IN-EV 4036 1626 8 10 (0.172)
IN-LO 4027 1626 8 10 (0.195)
IN-GP 4494 1761 7 7 (0.092)

α1 = 10−9

α2 = 1

IN-EV 4139 1661 8 10 (0.171)
IN-LO 4132 1655 8 10 (0.195)
IN-GP 4969 1675 7 7 (0.092)

(c) Nitsche’s method for solving Example 2-IF

CG-Jacobi CG-SGS CG-SMG SMG (ρ∗)

α1 = 1
α2 = 10

IN-EV 5192 1794 7 9 (0.135)
IN-LO 4655 1784 7 7 (0.031)
IN-EV 4428 1803 7 7 (0.033)

α1 = 1
α2 = 105

IN-EV 3761 1635 6 7 (0.029)
IN-LO 3752 1635 6 7 (0.029)
IN-GP 4417 1684 6 7 (0.029)

α1 = 1
α2 = 109

IN-EV 3535 1509 6 7 (0.029)
IN-LO 3520 1509 6 7 (0.029)
IN-GP 3941 1550 6 7 (0.029)

(d) Nitsche’s method for solving Example 3-IF

Table 4.1. The number of iterations required by different solution methods to reach
the predefined tolerance, the last column shows the asymptotic convergence rates of
the SMG method.
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The convergence rate of the conjugate gradient method depends on the distri-
bution of the spectrum of A, and the method performs very well if the eigenvalues
are clustered in a certain region of the spectrum, rather than being uniformly
distributed. We observe that the CG-SMG method is stable for all discussed
discretization methods and coefficients, as the number of iterations required to
reach the predefined tolerance stays stable.

Performance as a Solution Method

For the fictitious domain method, the SMG method converges significantly better
for Nitsche’s method than for the penalty method. From Figure 2.7, it is clear
that the condition number of the system matrix arising from Nitsche’s method
is larger than the system matrices arising from the penalty method. But still,
the large value of the stabilization parameter in the penalty method affects the
asymptotic convergence rate significantly more than the Nitsche’s method. This
could be attributed to the different distribution of the eigenvalues in the penalty
method and Nitsche’s method.

While for the interface problem, we observe Nitsche’s method with the ghost
penalty stabilization term converges fastest for highly varying coefficients, while
it is slowest for the continuous coefficients. Even though the difference is not
significantly high, a few more iterations can be attributed to the large value of
the stabilization parameter. For the (IN-EV) and (IN-LO) the number of iterations
to reach the tolerance stays more or less stable. The multigrid method can be
considered quite robust in terms of the asymptotic convergence rates, as for all
the experiments we observe ρ∗ < 0.2. A multigrid method can be interpreted
as a Richardson method with SMG as a preconditioner, and the CG method is
known to be far superior to the Richardson method. Hence, we observe that the
number of iterations required is smaller in all cases when the semi-geometric
multigrid is used as a preconditioner rather than a solution method.

Level Independence

In this part, we evaluate the performance of the CG-SMG method with respect to
the number of levels in the multigrid hierarchy. The finest level is kept the same
as in the previous experiments, and the number of levels used in the multilevel
hierarchy is changed. As we use a direct solver on the coarsest level, the coarse
level corrections become increasingly more accurate as the number of levels is
reduced. The higher number of levels is computationally cheaper since a smaller
linear system of equations is solved by the direct solver on the coarsest level.
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# levels 2 3 4 5

α1 = 1
α2 = 10

IN-EV 7 7 7 7
IN-LO 6 6 6 7
IN-GP 7 7 7 7

α1 = 1
α2 = 105

IN-EV 6 6 6 6
IN-LO 6 6 6 6
IN-GP 6 6 6 6

α1 = 1
α2 = 109

IN-EV 6 6 6 6
IN-LO 6 6 6 6
IN-GP 6 6 6 6

Table 4.2. The number of iterations required by the PCG-SMG method to reach a
predefined tolerance with a different number of levels in the multigrid hierarchy for
solving Example 3-IF.

# interfaces 1 2 4 6 8 10
IN-EV 9 9 9 9 9 9
IN-LO 8 8 8 8 8 8
IN-GP 9 9 9 9 9 9

Table 4.3. The number of iterations required by the PCG-SMG method to reach a
predefined tolerance for solving the problem with multiple interfaces in the domain.

Table 4.2 demonstrates that the number of iterations stays constant regardless
of the number of levels. We observe that the change in the ratio between the
coefficients α1,α2 does not affect the performance of the CG-SMG method. This
result shows the level independence property of our multigrid method.

4.6.2 Effect of Multiple Interfaces on the Multigrid Method

The last set of experiments demonstrates the robustness of the SMG method with
respect to the number of interfaces within a domain. We consider Example 1-IF
with continuous coefficients. The finest level is kept the same as in the previous
cases, and the multigrid hierarchy consists of 5-levels. This test is performed for
all the discussed variants of Nitsche’s methods with multiple interfaces.

The interfaces are represented by zero level set of the following functions

Λi(x) :=

(

x − 0.1
�

1p
2
+ i − 1

�

for all i ∈ {1, . . . , 5},
x + 0.1

�

1p
2
− i
�

for all i ∈ {6, . . . , 10}.
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All the interfaces are linear and parallel to the original interface Γl . In the per-
formed experiment, we start with a single interface and increase up to 10 inter-
faces in the domain. From Table 4.3, we can observe that the proposed multigrid
method is stable, as the number of iterations do not change with increasing num-
ber of interfaces in the domain.

Hence, we can conclude that our semi-geometric method is a robust solution
method and even more robust when employed as a preconditioner. In particular,
the method is stable for all variants of Nitsche’s method with respect to highly
varying coefficients, the number of levels in the multilevel hierarchy, and also
with respect to the number of interfaces in the domain.



Chapter 5

A Multigrid Method for Linear
Constraints

In this chapter, we discuss the saddle point problem in the abstract sense, and we
introduce a new multigrid method for solving the saddle point problems arising
from the Lagrange multiplier based XFEM discretization.

The traditional multigrid methods for solving the saddle point systems require
a different class of smoothers and the transfer operators [BDW99, Bac14]. As
we have discussed, the efficiency of multigrid methods is heavily dependent on
both of these ingredients. Depending on the type of problems, there are many
options for the smoothers for the saddle point systems [Zul00, Woh00b, BLS14,
Krz04], which can be explored for our problem. The transfer operators used in
the saddle point system require to prolongate and restrict both primal variable
(solution) and the dual variable (Lagrange multiplier). In the context of our
saddle point problem, it is not an easy task to create such a transfer operator.
For transferring the primal variables, we can employ the pseudo-L2-projections as
discussed in Section 4.5. But the design of the transfer operator for the Lagrange
multiplier is not straightforward. The Lagrange multipliers defined on the vital
vertices are not defined uniquely, thus creating a relationship between them in
a multilevel framework is challenging. The multigrid method proposed in this
section requires the transfer operator only for the primal variable. The novel
multigrid method is based on the semi-geometric multigrid method from the last
chapter, with some modifications on the finest level.

This chapter is organized as follows. In the next section, we provide a de-
scription of the saddle point problem. In Section 5.2, we discuss the standard
iterative methods for solving the saddle point problems. Further, we introduce
our new multigrid method in Section 5.3. In the last section, we carry out nu-
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merical experiments to compare the performance of the standard iterative solvers
and the new multigrid method.

5.1 Saddle Point Problem

In this section, we discuss the abstract variational formulation arising from the
Lagrange multiplier formulation. This formulation can be stemming from im-
posing either the Dirichlet boundary condition or the interface conditions. The
saddle point formulation is given as, find (u,λ) ∈ Vh ×Mh such that

A(u, v) + b(λ, v) = F(v) ∀v ∈ Vh,

b(µ, u) = G(µ) ∀µ ∈Mh.
(5.1)

Recall, the linear operators A : Vh → V∗h and its adjoint AT : V∗h → Vh are
associated with the bilinear form A(·, ·). The linear operator A is continuous
symmetric, and it is assumed to be positive semidefinite. In the fictitious domain
method, if the operator is not modified to incorporate the boundary conditions
explicitly then a non-trivial kernel of the operator A exists. For the interface
problems, the floating domains may exist in the presence of close interfaces,
especially, if the close interfaces do not intersect with a Dirichlet boundary.

We define a linear operator B : Vh→M∗
h associated with bilinear form b(·, ·)

such that
b(u,µ) = 〈Bu,µ〉M∗

h×Mh
∀u ∈ Vh, ∀µ ∈Mh.

An adjoint of the operator B is defined as BT : Mh→ V∗h such that

〈u,BTµ〉V∗h×Vh
:= 〈Bu,µ〉M∗

h×Mh
∀u ∈ Vh, ∀µ ∈Mh.

Here, G(·) denotes a linear functional that enforces either Dirichlet boundary
conditions or interface conditions. We define the functional G(·) in (5.1) by
choosing a function gλ ∈M∗

h such that

G(µ) = 〈gλ,µ〉M∗
h×Mh

∀µ ∈Mh.

We write the saddle point problem (5.1) in operator form as, find
(u,λ) ∈ Vh ×Mh such that

Au+BTλ = f in V∗h ,

Bu = gλ in M∗
h.

(5.2)

The operator A is a symmetric positive semidefinite, and it does not have an
exact inverse. The problem (5.2) is solvable if and only if, ( f − BTλ)⊥ Ker(A),



83 5.1 Saddle Point Problem

where Ker(A) denotes the kernel of operator A. The saddle point problem has
a unique solution if Ker(A)∩ Ker(B) = {0}.

We rewrite the saddle point problem in the matrix-vector formulation as

Au + BTλ= f

Bu = g λ,
(5.3)

where A ∈ Rn×n, f ∈ Rn, B ∈ Rm×n, rank(B) = m, g λ ∈ Rm, m � n, with the
unknowns u ∈ Rn and the Lagrange multiplier λ ∈ Rm. The matrix A is semidef-
inite, and its condition number increases with order h−2, while the matrix B is a
scaled mass matrix on the interface and its condition number increases with order
h−1. In practice, special care is required in order to solve the system with a non-
trivial kernel. In particular, if the null space of the matrix A is known, the iterative
process can create a sequence of iterates that are orthogonal to Ker(A) [BL05].
As this work is not focused on the iterative solvers for positive semidefinite sys-
tems, we take a different approach and transform the block matrix A into an
equivalent symmetric positive definite matrix.

The minimization problem associated with the saddle point problem (5.2)
can be posed as,

min
u

J(u) =
1
2

uTAu − uT f

subject to Bu = g λ.
(5.4)

Employing the augmented Lagrangian approach we reformulate the problem
(5.4) as,

min
u

J(u) =
1
2

uT(A+ γsB
TB)u − uT( f + γsB

Tg λ)

subject to Bu = g λ,
(5.5)

where γs > 0 is a penalty parameter. Using (5.5), we can replace the saddle point
formulation (5.3) with the equivalent problem

Aγu + BTλ= f γ
Bu = g λ,

(5.6)

where Aγ := A+ γsB
TB and f γ := f + γsB

Tg λ are the augmented matrices and
vectors. Now, the matrix Aγ in the saddle point problem (5.6) is a positive definite
matrix. In this work, we choose the value of the penalty parameter as

γs :=
λmax(A)
λmax(BTB)

,
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where λmax denotes the largest eigenvalue of the corresponding matrix. This
penalty parameter is quite an attractive option as it minimizes the condition num-
ber of the whole saddle point system and by extension enhances the convergence
of the standard iterative methods [GGV04].

From now onwards, all the methods discussed in this chapter are concerned
with solving the modified saddle point problem (5.6).

5.2 Standard Iterative Solvers

The saddle point problem arises in a wide variety of applications, for instance,
the mixed finite element discretization, especially in fluid and solid mechan-
ics [BBF13], mortar methods [Woh01], etc. In the optimization framework, this
type of problem arises from interior point methods for both linear and nonlinear
optimization problems [NW00]. Even though the saddle point systems arising
from the different problems have very different properties, the standard itera-
tive methods used to solve them have the same characteristics [Zul01, BGL05].
In this section, we discuss some of the basic iterative schemes for solving the
problems arising from the Lagrange multiplier based XFEM discretization.

5.2.1 Schur Complement Reduction

The Schur-complement method is one of the most common approaches for solv-
ing the saddle point problem. The idea of this method is to first solve the smaller
problem by computing the Lagrange multiplier, and once the multiplier is known,
we can compute the primal variable.

As the matrix Aγ is invertible, we can rewrite the first part of the saddle point
problem as

u = A−1
γ
( f γ − BTλ). (5.7)

By substituting the above equation in the second part of (5.6) we get the dual
formulation,

BA−1
γ

BTλ= BA−1
γ

f γ − g λ. (5.8)

This dual system is of the reduced dimension m, the dimension of the multiplier
space. The new operator BA−1

γ
BT is referred to as Schur-complement matrix,

which is also a symmetric positive definite matrix. Once the Lagrange multi-
plier λ is computed from (5.8), we obtain u by solving (5.7). This is one of the
simplest, but quite expensive approach.

The explicit computation of the Schur-complement matrix and the right-hand
side of the dual system is quite expensive, as we need to compute the inverse of
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the matrix Aγ. Here, we can use the direct methods for computation of the Schur-
complement system, but we rather employ iterative methods such as Krylov sub-
space methods. In the iterative methods, we can compute the action of the in-
verse on a vector rather than computing the explicit inverse. If we can carry
out this step economically, it directly influences the computational complexity of
the overall algorithm. We can use any of the linear iterative solution methods
to compute the action of the inverse. As we have a robust solution method for
solving the linear system of this kind, we can use the semi-geometric multigrid
method (Algorithm 4.5), or conjugate gradient method preconditioned with the
semi-geometric multigrid method. The dual system, in general, is not easy to
solve as the Schur-complement matrices are normally poorly conditioned (espe-
cially when the matrix Aγ is ill-conditioned). In such cases, the solution schemes
for solving the dual problem may not reach prescribed tolerance or may even
diverge, without suitable preconditioning strategies. Also, it can be a tricky task
to design the preconditioners for the Schur-complement system when we don’t
have an explicit representation of the Schur-complement matrix.

In Section 5.2.3, we discuss some of the common preconditioning strategies
for solving the dual system.

5.2.2 Uzawa Methods

The first iterative schemes for solving the saddle point problems were developed
by Arrow, Hurwicz, and Uzawa. The Arrow-Hurwicz method and the Uzawa
methods are the simplest kind of iterative schemes for solving the coupled saddle
point problems [Bac06]. The Uzawa method is widely used for solving saddle
point problems arising from the Stoke’s problem, incompressible solid and fluid
mechanics problems. It consists of the following coupled iteration

Aγu
(k+1) = f γ − BTλ(k),

λ(k+1) = λ(k) +ω(Bu(k+1) − g λ),
(5.9)

where ω > 0 is a relaxation parameter. If we use the first equation to eliminate
u(k+1) from the second equation, we have a stationary iterative method for the
Schur-complement system

λ(k+1) = λ(k) +ω(BA−1
γ
( f γ − BTλk)− g λ).

This method can be viewed as a classical Richardson method for the Schur-
complement system.
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In the last section, the primal and dual linear systems are decoupled and
solved separately, while in the case of the Uzawa method the coupled saddle
point system is solved. This iteration scheme also requires us to solve the primal
problem exactly in each iteration. This is often not necessary, instead one can
use the inexact solution methods [IXZ14]. The Uzawa methods are generally
slow to converge, as their convergence rate depends on the choice of the relax-
ation parameter. Therefore, it is desirable to replace the Richardson method in
the Uzawa scheme by more robust steepest descent or conjugate gradient meth-
ods [Bra07, BS13]. Following the same strategy from the last section, we employ
the semi-geometric multigrid method for solving the primal problem. Simulta-
neously, we also employ some preconditioning strategies to accelerate the con-
vergence of the Uzawa iteration (5.9) and to reduce the overall computational
cost of the solution scheme. The preconditioned Uzawa method can be written
as

Aγu
(k+1) = f γ − BTλ(k)

λ(k+1) = λ(k) + P−1(Bu(k+1) − g λ),
(5.10)

where P ∈ Rm×m denotes the preconditioner matrix for the dual system.
In the next section, we describe some of the preconditioning techniques for

solving the dual system.

5.2.3 Preconditioners for Dual System

Since the saddle point problem appears in many practical applications, there
have been many efforts for developing optimal preconditioning strategies. In this
section, we focus on the preconditioners developed in two different applications,
namely FETI methods and SIMPLE methods.

FETI Preconditioners

The Finite Element Tearing and Interconnecting (FETI) methods were intro-
duced by Farhat and Raux as a non-overlapping domain decomposition meth-
ods [FR91]. FETI is a group of iterative sub-structuring methods for solving large
systems of linear equations arising from FEM discretization. By design, the FETI
methods are parallel solution methods, where the computational domain is de-
composed into multiple subdomains. These subdomains are distributed among
multiple processors. On each processor, a local Neumann problem is solved along
with a coarse problem, used for global information transfer. The continuity be-
tween all subdomains is imposed by means of the method of Lagrange multipli-
ers.
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We can leverage some tricks from the FETI methods for solving our problem
as the algebraic formulation of the FETI method also gives rise to the saddle point
system. We write the algebraic problem arising from the FETI method is given
as

Au + BTλ= f

Bu = 0.
(5.11)

Here, the matrix B is a constraint matrix with values 1, −1 and 0. The matrix
A has a block diagonal structure, representing different subdomains which are
separated by the interfaces. If a subdomain does not contain any Dirichlet nodes,
that subdomain is called a floating domain. The submatrices associated with the
floating domains have a non-trivial kernel. If any submatrix of A has a non-trivial
kernel, the pseudoinverse of each submatrix is computed instead of the explicit
inverse. For a general case, we denote by A† a pseudoinverse of matrix A. The
matrix A† is a block diagonal matrix composed of local Moore-Penrose pseudoin-
verses associated with each subdomain. This parallel solution method reduces
the saddle point problem to a Schur-complement system after eliminating the in-
terior nodes and the problem is solved only on the interface. The primal variable
u is eliminated from (5.11), which gives rise to a dual problem, given as

BA†BT λ= BA† f .

For simplicity, the Schur-complement matrix is defined as S† := BA†BT and
the right hand side is defined as d† := BA† f . This version of the FETI method
is scalable with the number of subdomains, but the condition number of the
Schur-complement system grows polynomially with the number of unknowns in
the subdomains. Hence, it becomes essential to devise preconditioners for the
dual systems. The preconditioned dual system is defined as

P−1S†λ= P−1d†,

where P ∈ Rm×m denotes a preconditioner matrix. This dual system is closely
related to the dual system (5.8). We remark that for brevity we have omitted the
necessary details about the properties of the null space of the matrix A. As, this
section aims to establish the connection between the FETI methods and the sad-
dle point problems, rather than providing an introduction to the FETI methods.

In earlier FETI literature [FMR94], Farhat et al. proposed the Dirichlet pre-
conditioner, given as

P−1
D := BABT. (5.12)
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This preconditioner, even though being useful, is quite elementary. More
complex and better alternatives for the preconditioners were proposed by La-
cour [Lac96], given as

P−1
L := (diag(BBT))−1BABT(diag(BBT))−1 (5.13)

and by Klawonn and Widlund [KW01], given as

P−1
F ET I := (BD−1BT)−1BD−1AD−1BT(BD−1BT)−1 (5.14)

where, D = diag(A). These preconditioners have been shown to perform better
than the Dirichlet preconditioner (5.12). For comparison and more possibilities
of FETI preconditioners, we refer to the work of Stefanica [Ste01].

SIMPLE Preconditioner

Another option for a preconditioner is used in the solution techniques for the
problems arising from Navier-Stokes equations [Pat80]. This preconditioner is
known as SIMPLE which is an acronym for Semi-Implicit Method for Pressure
Linked Equation. We consider this preconditioned as the saddle point system
for incompressible Navier-Stokes equation has the same algebraic formulation
as (5.11). In this framework, the unknowns u represents the velocity vector and
λ represents a pressure vector, while the matrix B represents the constraint on
the pressure vector. The SIMPLE type preconditioner in the original formula-
tion can be viewed as a semi-implicit Uzawa method and the preconditioner is
normally used for a coupled iteration. In this work, we aim to only employ the
preconditioner for solving the dual problem. The SIMPLE preconditioner is given
as

P−1
SI M P LE := (BD−1BT)−1.

The SIMPLE and FETI preconditioners are very attractive possibilities for solv-
ing the dual systems arising from the saddle point system (5.3). We aim to use
these preconditioners for solving the dual problems arising in the Uzawa method
(5.10) and in the Schur-complement method (5.8). While for solving the primal
system, we rely on the robust semi-geometric multigrid method.

5.2.4 Conjugate Projected Gradient Method

In this section, we discuss a null-space based method for solving the saddle point
problem (5.3). The conjugate projected gradient (CPG) method is used to solve a
quadratic optimization problem, with the equality constraints (5.4) [CV01]. This
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quadratic problem can be solved by computing a basis ZB ∈ Rn×(n−m) that spans
the null space of matrix B. These basis are used to eliminate the constraints and
allow us to apply the conjugate gradient method on the reduced problem. We
follow the strategy of Gould et al. [GHN01], where the need for computing a null
space of B is circumvented. In this way, we only need to solve one linear system
of equations, which reduces the computational cost of the solution method.

Here, we give an example of the CPG algorithm for an abstract projection
operator P⊥ ∈ Rn×n. From (5.4), it is clear that the solution of the optimization
problem has to be in the null space of matrix B. We choose the projection op-
erator as an orthogonal projector to the row space of matrix B. The projection
operator without any preconditioner is given as

P⊥I = I − BT(BBT)−1B, (5.15)

where I ∈ Rn×n is an identity matrix. In this process, we need to compute the
inverse of BBT , which could be performed using the Cholesky decomposition. It
is also possible to use the projection operator in combination with some other
preconditioners. For example, the projection operator with the Jacobi precondi-
tioner is expressed by

P⊥J = D−1(I − BT (BD−1BT )−1BD−1), (5.16)

where D = diag(Aγ).
The detailed description of the CPG method is given in Algorithm 5.1. From

the implementation perspective, the computation of the projected gradient can
give rise to significant round-off errors that may prevent the iterates from remain-
ing in the null space of the matrix B, as the algorithm approaches the solution.
As the iterations proceeds, the projected vector z(∗), becomes increasingly small
with respect to r (∗). This can be remedied by employing the residual update strat-
egy, where the residual is redefined in such a way that the norm of r (∗) stays close
to the norm of g (∗). Thus, we redefine r (∗) immediately after its computation, as

r (∗)← [ P⊥r (∗).

Instead of the Jacobi preconditioner in the projection operators, we can also use
a multigrid as preconditioner. We replace the matrix D in (5.16) by the matrix
Aγ

P⊥MG = A−1
γ
(I − BT(BA−1

γ
BT)−1BA−1

γ
). (5.17)

In order to utilize this projection operator (5.17), we do not have to compute the
inverse of the matrix Aγ, explicitly. We can perform a single V (ν1,ν2)-cycle of the
semi-geometric multigrid iteration to compute the action of the inverse instead.
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Algorithm 5.1: Conjugate projected gradient method

Input : A, f , u(s.t. Bu = g λ), P⊥

Output: u

1 Set: r ← [ f − Au(0), z = P⊥r , p = z
2 while not conver ged do

3 α← [ rTr
pT Ap

; . compute step size

4 u ← [ u +αp ; . update the iterate

5 r (∗)← [ r −αAp ; . compute new residual

6 z(∗)← [ P⊥r (∗) ; . projected gradient

7 β ← [ (r
(∗))Tz(∗)

rTz
; . orthogonalization

8 p ← [ z(∗) + βp ; . new direction

9 r ← [ r (∗), z← [ z(∗) ; . next iteration

5.3 Generalized Multigrid Method for Linear Con-
straints

In this section, we introduce a new generalized multigrid method for solving a
quadratic minimization problem with linear constraints (5.4) or an equivalent
saddle point problem (5.6). This multigrid method is motivated by the mono-
tone multigrid method [Kor94, Kor96, Kor97], which was originally developed
to solve a quadratic minimization problem with pointwise equality and/or in-
equality constraints. Here, we present an extension of this method for solving
the quadratic minimization problem with linear equality and/or inequality con-
straints.

The monotone multigrid method is an iterative method, where in each itera-
tion the energy functional is minimized successively such that the current iterate
satisfies the constraints. This task is carried out by the projected Gauss-Seidel
method, which simultaneously minimizes the energy functional and projects the
current iterate onto a feasible set. For the linear constraints, represented by a
linear combination of several variables, the traditional projected Gauss-Seidel
method is unusable. To overcome this difficulty, we introduce the orthogonal
transformation and a variant of the projected Gauss-Seidel method that can han-
dle the linear constraints. In addition, in this multigrid method we employ the
transfer operators constructed using the pseudo-L2-projections.
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In this section, by slight abuse of notation, we drop the subscript γ from the
matrix Aγ and the vector f γ. However, we still compute the matrix A and the
vector g by means of augmented Lagrangian formulation, which ensures that the
matrix A is symmetric positive definite.

5.3.1 Orthogonal Transformation

In this section, we introduce the orthogonal transformation for the original prob-
lem. This orthogonal transformation is necessary to decouple the linear con-
straints, which in turn allows us to use the modified projected Gauss-Seidel
method in the next section.

We rewrite the saddle point problem as constrained minimization problem in
the algebraic formulation as

min
u

J(u) =
1
2

uTAu − uT f

subject to Bu = g λ,
(5.18)

where u, f ∈ Rn, A ∈ Rn×n, B ∈ Rm×n, g λ ∈ Rm, m� n and rank(B) = m.
In order to decouple the constraints, we perform a QR decomposition of the

constrained matrix BT to obtain

BT = QR and B = RTQT,

where Q ∈ Rn×n is an orthonormal matrix, which means the adjoint of this matrix
is its own inverse. Thus, we have QQT = QTQ = I , where I ∈ Rn×n, represents
the identity matrix. The decomposition of the matrix R ∈ Rn×m is given by R =
[R1 O1]T, where R1 ∈ Rm×m is an upper triangular matrix and O1 ∈ R(n−m)×n is a
matrix with all zero entries. The orthonormal matrix Q simply provides a change
of basis, and on this new basis, the representation of the constraint is modified.
It is clear from the structure of the new constraint matrix R1 that in the new basis
the constraints are sequentially dependent on the previous linear constraint.

We use this orthonormal matrix and project the problem on a different basis.
The orthonormal matrix Q is used to define the variables in the new basis system,
given as eu = QTu and u = Qeu. Moreover, we can observe that QTBT = R and
BQ = RT. By incorporating, the transformed matrices and the vectors, we can
reformulate the constrained minimization problem (5.18) as

min
eu

J(eu) =
1
2
euT
eAeu − euT

ef

subject to RT
eu = g λ,

(5.19)
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where eA = QTAQ and ef = QT f . As Q is an orthonormal matrix, the spectral
properties of the eA and A are equivalent. But, the sparsity pattern of the original
matrix A and its rotated variant eA are quite different. In practice, the matrix eA is
denser than the original matrix, which in turn increases the computational cost of
the matrix-vector products in the algorithm. The new constraint matrix RT has a
lower triangular structure, which can be handled easily by forward substitution.
Here, it is important to note that, this type of constraint can be handled easily by
the Gauss-Seidel method, due to its inherent sequential nature.

Now, we define a constrained subspace or a feasible set as

K̃ = {eu ∈ Rn : RT
eu = g λ}.

We pose our problem as an energy minimization problem in the algebraic formu-
lation:

find eu ∈ K̃ such that J(eu)¶ J(ev) ∀ev ∈ K̃. (5.20)

The transformed saddle point system related to the above minimization problem
is given as

�

eA R
RT O

��

eu
λ

�

=

�

ef
g λ

�

,

where O ∈ Rm×m is a zero matrix.

5.3.2 Modified Projected Gauss-Seidel Method

Here, we introduce a modified projected Gauss-Seidel method for solving the
problem (5.20).

The Gauss-Seidel method is known to minimize the energy functional J(·)
in each local iteration step. The energy minimization takes place in the direc-
tion of the nodal basis functions that span the FE space. As we have discussed
earlier in Section 4.2.1, the Gauss-Seidel method can be written as a subspace
correction method, where the subspace decomposition is achieved by a direct
splitting of the underlying FE space into one-dimensional subspaces spanned by
the nodal basis function. The projected Gauss-Seidel method is used widely to
solve various forms of obstacle problems, and it is known to be globally conver-
gent [Kor94, KK01]. We remark that decoupling of the constraints with respect
to the nodal basis function is essential for the global convergence of the Gauss-
Seidel method [Kor97, Glo84]. The original linear constraints Bu = g λ do not
satisfy this property, as the constraints are represented by the linear combination
of basis functions. The QR decomposition allows us to decouple the constraints
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by expressing them in new basis as RT
eu = g λ. As we are solving the minimiza-

tion problem with equality constraints all constraints are binding. We define the
set of all active nodes by

A := {p : (Reu)p = (g λ)p}.
Otherwise, for regular upper and lower bounds, the active set is defined by the
list of nodes where the constraints are binding. The matrix RT being a lower
triangular matrix allows us to write the constraints as a linear combination of
the current nodal basis function and previously constrained basis. This key idea
allows us to use the projected Gauss-Seidel method to solve the problem (5.20).

The iterative process is given as follows. For a given k-th iterate eu(k) ∈ K̃,
we compute a sequence of local intermediate iterates, w (0), w (1), . . . , w (n) on the
given subspace Xi ⊂ Xh. We begin with the first local iterate w (0) = eu(k), and the
next local iterates are given by w (i) = w (i−1)+ c(i), for i = 1, . . . , n. Once all local
intermediate iterates are computed, the new iterate is given by eu(k) = w (n). The
corrections c(i) are the unique solution of the local subproblems, given as,

find c(i) ∈D(i) such that J(w (i−1) + c(i))¶ J(w (i−1) + c) ∀c ∈D(i),
with closed, convex set D(i) for abstract upper bound ub ∈ Rm and lower bound
lb ∈ Rm is defined as

D(i) = {c(i) ∈ Rn : lb−Rw (i−1) ¶ Rc(i) ¶ ub−Rw (i−1)}. (5.21)

As, our problem has equality constraints, the upper bound and the lower bounds
are defined as lb = ub = g λ. Each intermediate step ensures that the iterate
does not violate the constraints. If the current iterate violates the constraints,
then it is projected back into the admissible space, accordingly. Finally, the next
iterate eu(k+1) is given by

eu(k+1) = eu(k) +
n
∑

i=1

c(i).

The projected Gauss-Seidel method for a generic linear inequality constrained
minimization problem is summarized in the Algorithm 5.2. Here, it is necessary
to pay attention to the values of diagonal entries of the matrix R, as the positive
and negative values affect the inequality bounds differently. In the Algorithm 5.2,
we have assumed that the values of diagonal entries of the matrix R are positive.

Thus, we have a globally convergent projected Gauss-Seidel method that can
be used to solve the problem (5.20). But the convergence rate of the Gauss-Seidel
method is known to deteriorate as the size of the problem increases. Hence, in
order to accelerate the convergence, we employ the semi-geometric multigrid
method and the modified projected Gauss-Seidel method is used as a smoother.
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Algorithm 5.2: Projected Gauss-Seidel method

Input : eA, ef ,R, eu(0), lb, ub,ν∗
Output: eu(ν∗),A

1 Function: Projected GS(eA, ef ,R, eu(0), lb, ub,ν∗):
2 for k = 1, 2, . . . ,ν∗ do
3 A ← [ ; ; . initialize empty active set

4 for i = 1,2, . . . , n do

5 eu(k)i =
1

Ãii

(ef i −
∑

j<i Ãi jeu
(k)
j −

∑

j>i Ãi ju
(k−1)
j ) ; . update

6 if i ¶ m then

7 lt =
1

Rii

�

lbi −
∑i−1

j=1 R jieu
(k)
j

�

; . updated lower bound

8 ut =
1

Rii

�

ubi −
∑i−1

j=1 R jieu
(k)
j

�

; . updated upper bound

9 if lt < eu
(k)
i < ut then

10 eu(k)i =max(lt ,min(eu(k)i , ut)) ; . projection onto feasible set

11 A ← [A ∪ i ; . add current index to the active set

5.3.3 The Multigrid Method

In this section, we present the generalized multigrid method, by modifying the
semi-geometric multigrid method from Section 4.4.2, for solving the saddle point
problem (5.20).

Following the discussion in the previous chapter, we have a sequence of non-
nested finite element spaces (V`)`=0,...,L associated with the hierarchy of meshes
(T`)`=1,...,L. Recall, the nodal basis functions are given by φp

h for all nodes p ∈ Nh

associated with the mesh Th. Following Section 4.5, we have the transfer op-
erators (Π`

`−1)`=1,...,L which are computed using the pseudo-L2-projections. By
means of these transfer operators, we create a hierarchy of nested finite element
spaces (X`)`=0,...,L from the hierarchy of background meshes.

The prolongation matrices associated with the transfer operators are given as
(T `

`−1)`=1,...,L. The orthogonal transformation of the matrix BT still plays a vital
role in this multigrid method. Recall, the basis functions ζp

L = φ
p
L for all p ∈ NL

are associated with the finest level XL = VL. These basis functions are also
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Algorithm 5.3: Generalized Multigrid algorithm

Input : AL, f L, L,ν1,ν2, (T `
`−1)`=1,...,L, B, lb, ub,γ

Output: u L ← [ Qeu L

1 Function: GMG(AL, f L, L,ν1,ν2, (T `
`−1)`=1,...,L, B, lb, ub,γ):

2 eu L ← [ 0; . initialize solution

3 Q,R← [ QR Transformation(BT); . QR decomposition

4 eT
L

L−1← [ QTT L
L−1; eAL ← [ QTALQ; ef L ← [ QT f L; . orthogonal rotation

5 while not converged do
6 eu L,AL ← [ eu L+ Projected GS(eAL, ef L,RT, eu L, lb, ub,ν1); .

. ν1 pre-smoothing steps

7 er L ← [ ef L − eALeu L; . residual

8 er t rc ← [ trc(er L,AL); eAt rc ← [ trc(eAL,AL); . truncation

9 r L−1← [ (eT L

L−1)
T
er t rc ; . restriction

10 AL−1← [ (eT L

L−1)
T
eAt rc

eT
L

L−1; . Galerkin projection

11 c L−1← [ 0 ; . initialize coarse level correction

12 for i = 1, . . . ,γ do
13 c L−1← [ c L−1+ coarseMG(AL−1, r L−1, L − 1,ν1,ν2, T L−1

L−2,γ); .

. coarse level cycle

14 ec L ← [ eT L

L−1c L−1; . prolongation

15 ectrc← [ trc(c L,AL); . truncation

16 eu L ← [ eu L +ectrc; . update iterate

17 eu L,AL ← [ eu L+ Projected GS(eAL, ef L,RT, eu L, lb, ub,ν2); .

. ν2 post-smoothing steps

modified or rotated after the orthogonal transformation, which can be written as

ζ̃
q
L :=

∑

p∈NL

Qpqζ
p
L ∀q ∈ NL.

In Section 4.5, the transfer operators are computed using the basis functions that
span the FE space on a coarse level and a fine level. With the modified basis func-
tions on the finest level, it becomes essential to compute the transfer operator
associated with the finest level such that the vector and the matrix quantities are
projected on the FE space spanned by the modified basis. The modified prolon-
gation operator T L

L−1 is defined as eT
L

L−1 := QTT L
L−1. Now, the basis function
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Algorithm 5.4: Coarse level cycle

Input : (A`)`=0,...,L−1, r L−1, L − 1,ν1,ν2, (T `
`−1)`=1,...,L−1,γ

Output: c L−1

1 Function: coarseMG(A`, r `,`,ν1,ν2, T `
`−1,γ):

2 if ` 6= 0 then
3 c`← [ 0; . initialize correction

4 c`← [ Smoother(A`, c`, r `,ν1); . ν1 pre-smoothing steps

5 r `−1← [ (T `
`−1)

T(r ` − A`c`); . restriction

6 A`−1← [ (T `
`−1)

TA`T
`
`−1; . Galerkin projection

7 c`−1← [ 0 ; . initialize coarse level correction

8 for i = 1, . . . ,γ do
9 c`−1← [ c`−1+ coarseMG(A`−1, r `−1,`− 1,ν1,ν2, T `−1

`−2,γ); .

. coarse level cycle

10 c`← [ c` + T `
`−1c`−1; . prolongation

11 c`← [ Smoother(A`, c`, r `,ν2); . ν2 post-smoothing steps

12 else
13 c0← [ A−1

0 r 0; . direct solver

associated with the FE space XL−1 can be given as

ζ̃
q
L−1 :=

∑

p∈NL

(QTT L
L−1)pqζ

p
L =

∑

p∈NL

(eT
L

L−1)pqζ
p
L ∀q ∈ NL−1.

This modification of the transfer operator is only required on the finest level,
while all other transfer operators (T `

`−1)`=0,...,L−1 remain the same.
The modified projected Gauss-Seidel method is employed as a smoother in

the generalized multigrid method only on the finest level. It minimizes the en-
ergy functional in each local iteration in each smoothing step. At the end of the
smoothing iterations, we obtain a list of active nodes where the constraints are
binding. The most crucial feature of this multigrid method is that the coarse
level corrections do not violate the fine level constraints. As a consequence, we
solve the constrained optimization problem only on the finest level, while on the
coarse levels ` = 0, . . . , L − 1, we solve the unconstrained linear problem. This
is very convenient for solving the problem (5.18), as we do not require a coarse
level representation of the constraint matrices.

In order to ensure that the coarse level corrections do not violate the con-
straint on the finest level, we modify the restriction of the residual and the stiff-
ness matrix, and the prolongation of the coarse level correction. Following the



97 5.4 Numerical Results

discussion of the semi-geometric multigrid method, we know the basis functions
associated with the coarse level FE space are computed as a linear combination
of the basis function defined on the FE space on the finest level. If the value of
a basis function on the finest level is set to zero, the basis function on the coarse
levels would be represented by truncated basis functions. For all nodes which
are in the active set, we set the corresponding entries of the residual or the pro-
longated correction to zero. While for the stiffness matrix, we set the rows and
columns associated with the active set to be zero. Setting the entries of the stiff-
ness matrix and residual vector to zero is equivalent to removing the nodal basis
function associated with all nodes in the active set.

As we are using transfer operators constructed by the pseudo-L2-projection,
this multigrid method including the truncation process can be carried out al-
gebraically. In comparison with the semi-geometric multigrid method for the
linear system, this algorithm is computationally more expensive. This can be
attributed to the cost of computing the orthogonal transformation of the matrix
BT and then projecting the problem on a new basis. Even though the multigrid
method is more expensive, the algorithm has optimal convergence properties. If
we are solving an optimization problem with inequality constraints, the active set
changes in a few initial multigrid iterations but once the active set of the solution
is found, the algorithm converges linearly.

In Algorithm 5.3, we can see the detailed generalized multigrid algorithm for
the finest level with the modified projected Gauss-Seidel smoother. The Algo-
rithm 5.4 shows the coarse level cycle with any regular smoother. Here, we note
that the algorithm is given in a more abstract setting for linear equality and/or
inequality constraints, assuming the active set may change in each multigrid iter-
ation. This is not the case for the problems with equality constraints, as we know
the active set in advance and thus the truncated stiffness matrix does not change.
The computational cost of the multigrid method, therefore, can be reduced for
problems with the equality constraint. This can be achieved by invoking the
setup phase of the semi-geometric algorithm (Algorithm 4.4) and precomputing
the coarse level stiffness matrices.

5.4 Numerical Results

In this section, we evaluate the performance of the various solution schemes,
discussed in this chapter, for solving the saddle point problem arising from the
Lagrange multiplier discretization in the XFEM framework.
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5.4.1 Comparison of Standard Iterative Methods

Here, we consider the fictitious domain problem, specifically Example 1-FD,
where the method of Lagrange multiplier is used to enforce the Dirichlet bound-
ary condition. The experiments in this section are carried out on the mesh hier-
archy described in Table 2.1 on a superellipse domain. We compare the perfor-
mance of three main strategies discussed in Section 5.2 i.e., Schur-complement
method, Uzawa methods, and conjugate projected gradient method. In all of
these methods, we employ the semi-geometric multigrid method for solving the
primal problem. The semi-geometric multigrid method is set up as a V (3,3)-
cycle with a symmetric Gauss-Seidel method as a smoother. The mesh hierarchy
at different levels has different multigrid hierarchy associated with them. For
example, the coarsest mesh in the multigrid hierarchy is kept the same for all
the discretization levels (L1, . . . , L5). Thus, when we are solving the problem on
level L1, we have a two-grid method where the coarse level is created by uni-
form coarsening of the background mesh. While, for solving the problem on the
level L2, we have 3-levels in the mesh hierarchy. This procedure is carried out
for setting up the multigrid hierarchy on all levels. The termination criterion for
solving the primal problem is given by the relative residual in the energy norm,
thus

‖ f − Au(k)‖A

‖ f − Au(0)‖A
< 10−10.

Schur Complement Reduction

As we have mentioned, the Schur-complement system is of a smaller dimension.
Since the Schur-complement matrix is symmetric positive definite, we can em-
ploy the Krylov subspace methods. Here, we use the conjugate gradient (CG)
method and the preconditioned conjugate gradient (PCG) method with SIMPLE
and FETI preconditioners. We assume that if the residual of the dual problem in
the Euclidean norm is smaller than 10−13, it satisfies the termination criterion.
We prefer this measure, as the computation of the residual in the energy norm
would require an explicit representation of the Schur-complement matrix. The
termination criterion for the dual problem is chosen to be an order of magnitude
smaller than for the primal problem because the approximation error of the dual
variable clearly affects the approximation of the primal variable.

Table 5.1 illustrates the number of iterations required to reach the predefined
tolerance by the iterative methods for solving the Schur-complement systems. It
is evident from the table that the PCG method with the FETI preconditioner out-
performs the SIMPLE preconditioner almost by a factor of 2 and the CG method
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levels
CG PCG-SIMPLE PCG-FETI

# iter (# MG iter) # iter (# MG iter) # iter (# MG iter)

L1 23 (102) 11 (54) 6 (34)
L2 23 (104) 10 (52) 5 (33)
L3 22 (100) 10 (52) 5 (36)
L4 19 (88) 9 (48) 5 (36)
L5 18 (89) 9 (53) 5 (38)

Table 5.1. The number of iterations required by CG and PCG methods to reach a
predefined tolerance for solving the Schur Complement system arising from Example
1-FD. In bracket, we have the total number of SMG iterations for solving the primal
problem.

levels
Uzawa CG Uzawa PCG-SIMPLE Uzawa PCG-FETI

# iter (# MG iter) # iter (# MG iter) # iter (# MG iter)

L1 23 (97) 11 (49) 6 (29)
L2 23 (99) 10 (47) 5 (28)
L3 22 (95) 10 (47) 5 (31)
L4 19 (83) 9 (43) 5 (31)
L5 18 (83) 9 (47) 5 (32)

Table 5.2. The number of iterations required by Uzawa-CG and Uzawa-PCG methods
to reach a predefined tolerance for solving the saddle point problem arising from
Example 1-FD. In bracket, we have the total number of SMG iterations for solving
the primal problem.

by a factor of 4. Even with the increasing problem size, the number of iterations
required to solve the dual problem does not increase for all the methods. This
can be attributed to the choice of the penalty parameter γs in the augmented
system, as it stabilizes the condition number of the Schur-complement matrix
regardless of the discretization levels. Similar behavior is also evident for the
multigrid iterations, as the total number of the iterations used to solve the pri-
mal problem also does not increase with decreasing mesh size, thus we get the
desirable level independent convergence.

Uzawa Methods

In this section, we evaluate the performance of the Uzawa methods. As the
Uzawa methods are slow to converge in its original formulation, we use the
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L1 L2 L3 L4 L5

P⊥I 282 527 1021 1909 3706
P⊥J 268 512 1009 1994 3759

P⊥MG 8 8 8 9 9

Table 5.3. The number of iterations required by the projected CG method (with
various projection operators) to reach a predefined tolerance for solving the saddle
point problem arising from Example 1-FD.

modified Uzawa conjugate gradient method (see Algorithm C.1) and Uzawa pre-
conditioned conjugate gradient method (see Algorithm C.1) instead. Here, we
assume that if the residual of the dual problem and primal problem in the Eu-
clidean norm is smaller than 10−13, it satisfies the termination criterion.

From Table 5.2, we can see that the number of iterations required by all vari-
ants of the Uzawa methods is identical to their Schur-complement counterparts.
The only difference is in the number of total iterations of the semi-geometric
multigrid method, which is due to the coupled nature of the Uzawa algorithm.
The Uzawa method updates both the primal and the dual variables simultane-
ously. In contrast, for the Schur-complement method once we have a solution
for the dual variable, we have to solve one more linear system of questions to
achieve the solution of the primal variable.

Conjugate Projected Gradient Method

Here, we compare the performance of the CPG method with different projec-
tion operators. In the Algorithm 5.1, the termination criterion is set to be
p

rTg < 10−16. We compare the different projection operators: P⊥I defined
as (5.15), P⊥J defined as (5.16) and P⊥MG defined as (5.17). From Table 5.3, it is
clear that the number of iterations required to solve the problem increases pro-
portionally to the problem size. We also notice that employing the projection
operator with the Jacobi preconditioner does not offer any significant improve-
ment in the number of iterations and in some cases, the performance may even
worsen. In this case, we have only performed one multigrid iteration in the com-
putation of the projection operator. While using the projection operator P⊥MG is
very effective as the number of iterations does not increase with the increasing
problem size, even though, we have only performed one multigrid iteration. But,
we note that using the multigrid method here is quite expensive, as we need to
carry out 2 multigrid iterations per CPG iteration in addition to computing the
action of inverse A−1

γ
BT.
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5.4.2 Convergence of the Multigrid Method

Here, we consider the fictitious domain problem and interface problems for eval-
uating the performance of the generalized multigrid method. For these experi-
ments, we consider Example 1-FD and Example 2-FD to test the fictitious domain
problems. While for the interface problems, we consider Example 2-IF and Ex-
ample 3-IF. In this set of experiments, we choose the values of the coefficient
α2 = 1 and α1 = {0.1,0.9} for Example 2-IF. While for Example 3-IF, the coef-
ficients are chosen as α1 = 1 and α2 = {1.1,10}. For both of these examples,
the hierarchy of the meshes is depicted in Table 2.1 and Table 3.1, where we
have added an extra level L0 to the mesh hierarchy by uniformly coarsening the
background mesh associated with level L1. For all the problems, the finest level
mesh is defined by discretization on L5. Here, the termination criterion for the
method is defined in the norm of corrections as

‖u(k+1) − u(k)‖< 10−10.

While, the asymptotic convergence rate of the iterative method is given as

ρ∗ :=
‖u(k+1) − u(k)‖
‖u(k) − u(k−1)‖ ,

where u(k+1) satisfies the termination condition.
In the generalized multigrid method, it is required to compute the orthogo-

nal transformation of the matrix BT. We utilize the Givens rotation algorithm for
performing the QR decomposition [GvL12]. The examples in this section are car-
ried out with the implementation in the Utopia library [ZKN+16]. On the finest
level, we perform 3 pre-smoothing and 3 post-smoothing steps of the projected
Gauss-Seidel method (Algorithm 5.2). While, we employ the symmetric Gauss-
Seidel method as a smoother with 3 pre-smoothing and 3 post-smoothing steps
on all other levels, except on the coarsest level. On the coarsest level, we use the
direct solver from the MUMPS library [ADKL01].

Table 5.4 and Table 5.5 illustrate the number of iterations required by the
generalized multigrid method to reach the predefined termination criterion for
the fictitious domain method and the interface problem. From the tables, it is
clear that the number of iterations does not change with the increasing number
of levels. Thus, the convergence of the generalized multigrid methods does not
depend on the number of levels in the multigrid hierarchy. In Table 5.4 and Ta-
ble 5.5, we can also observe the asymptotic convergence rate of the multigrid
method for different examples. Here, we observe that for the fictitious domain
problems the asymptotic convergence rate is quite small (ρ∗ < 0.06), which
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# levels
Example 1-FD Example 2-FD

# iter (ρ∗) # iter (ρ∗)
2 5 (0.016) 6 (0.053)
3 5 (0.015) 6 (0.018)
4 5 (0.013) 6 (0.034)
5 5 (0.010) 6 (0.038)
6 5 (0.008) 6 (0.024)

Table 5.4. The number of iterations required by the generalized multigrid method
to reach a predefined tolerance for solving the saddle point problem arising from the
fictitious domain method.

#
le

ve
ls

Example 2-IF Example 3-IF
α1 = 0.1 α1 = 0.9 α1 = 1 α1 = 1
α2 = 1 α2 = 1 α2 = 1.1 α2 = 10

# iter (ρ∗) # iter (ρ∗) # iter (ρ∗) # iter (ρ∗)
2 8 (0.155) 8 (0.022) 8 (0.025) 8 (0.142)
3 8 (0.155) 8 (0.027) 8 (0.036) 8 (0.143)
4 8 (0.156) 8 (0.023) 8 (0.033) 8 (0.145)
5 8 (0.155) 8 (0.034) 8 (0.031) 8 (0.143)
6 8 (0.155) 8 (0.024) 8 (0.034) 8 (0.136)

Table 5.5. The number of iterations required by the generalized multigrid method
to reach a predefined tolerance for solving the saddle point problem arising from the
interface problem.

shows the robustness of our multigrid method. We remark that for Example 2-
FD even though the number of iterations is exactly the same for all levels, the
asymptotic convergence rate varies with the number of levels. While for the in-
terface problems, we observe that the convergence rate is quite small (ρ∗ < 0.04)
when the coefficients on the subdomains have a smaller jump. The asymptotic
convergence rate is larger (ρ∗ < 0.16) when the coefficients are different by an
order of magnitude.

From these experiments, we can conclude that the generalized multigrid
method is a robust iterative method for solving the equality constraints prob-
lems arising from the Lagrange multiplier discretization of the constraints in the
XFEM framework.



Chapter 6

Contact Problems

Contact phenomena are virtually ubiquitous in nature. From the modeling point
of view, the contact problems are challenging to solve as the contact boundary
is not known a priori. In this work, we present the contact problem in the un-
fitted finite element framework and propose to solve the arising linear system
of equations with the novel generalized multigrid method. Here, we consider
the frictionless contact problems, where we can neglect the tangential forces on
the contact interfaces. The literature on the topic of contact mechanics is quite
vast, here we provide a brief introduction to the frictionless contact problems,
we refer to the monographs [Wri06, KO87, Lau13] for a detailed overview.

In Section 6.1, we provide a brief introduction to the linearized elasticity and
discuss its weak formulation. Signorini’s problem is presented in Section 6.2,
where we describe the variational inequality formulation and its discretization
within the XFEM framework. Section 6.3 discusses the two-body contact prob-
lem and its XFEM discretization. In both contact problems, we employ the vital
vertex algorithm to discretize the non-penetration condition on the embedded
contact boundary/interface. In the later sections, we discuss the generalized
multigrid method from the previous chapter and propose to employ basis trans-
formation before the algorithm can be invoked for solving the contact problems.
In Section 6.5, we perform several experiments to demonstrate the robustness of
the proposed multigrid method.

6.1 Linear Elasticity

In this section, we review the deformation of an elastic body under the influence
of the external forces. We give a very compact introduction to the elasticity theory
for the linear elastic material model. A detailed description of the concepts of
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continuum mechanics can be found in [Cia97, Hol00, BW08].
We assume a body Ω ∈ Rd , d ∈ {2,3} with the Lipschitz continuous bound-

ary ∂Ω. The boundary ∂Ω is decomposed into two different parts: the Dirich-
let boundary ∂ΩD and the Neumann boundary ∂ΩN . The body is assumed
to be subjected to volume forces f : Ω → Rd and the traction/surface forces
t N : ∂ΩN → Rd . As a result, under the influence of the external forces, the body
undergoes deformation. A material point x ∈ Ω in the undeformed state moves
to the location x + u after the deformation. Here, the vector-valued quantity
u : Ω→ Rd describes displacement of the material point x , thus u = u(x ).

In elastostatics, the equation of the equilibrium can be written as

∇ ·σ + f = 0 in Ω,

u = 0 on ∂ΩD,

σn = t N on ∂ΩN ,

(6.1)

where, σ = σ(u) is the Cauchy stress tensor σ = σT, f is the body force per
unit volume, t N is the traction on the Neumann boundary, n denotes the outward
normal, and the Dirichlet boundary has fixed displacements. We assume that the
body Ω is linear elastic, where the constitutive law is provided by Hooke’s law

σ = λtr(ε)I + 2µε, (6.2)

where λ and µ are Lamé parameters, and tr(·) denotes the trace operator. Next,
we consider the case of small strain theory and neglect the non-linear terms from
the finite strain tensor. Thus, the linearized strain tensor ε = ε(u) is defined as

ε(u) :=
1
2

�∇u + (∇u)T
�

. (6.3)

The variational formulation of the problem (6.1) using the principle of virtual
work is defined as

find u ∈ H1
D(Ω) such that a(u, v) = F(v) ∀v ∈ H1

D(Ω), (6.4)

where a(·, ·) : H1
D × H1

D → R is as symmetric continuous coercive bilinear form
and F(·) : H1

D→ R denotes continuous linear form. The test functions are chosen
in such a way that they vanish on the Dirichlet boundary, which leads to

H1
D(Ω) := {v ∈ H1(Ω) : v = 0 on ∂ΩD}.

The bilinear and the linear forms are defined as

a(u, v) = (σ(u),ε(v))L2(Ω) =

∫

Ω

σ(u) : ε(v)dx ,

F(v) = ( f , v)L2(Ω) + 〈t N , v〉∂ΩN
=

∫

Ω

f · vdx +

∫

∂ΩN

t N · vd s .
(6.5)
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In the above formulation, the test function v can be interpreted as virtual dis-
placements. We consider this formulation as the foundation for the contact prob-
lems discussed in the next sections.

6.2 Signorini’s Problem

In this section, we consider contact problems for the linear elastic body in terms
of variational inequalities.

6.2.1 Problem Formulation

The Signorini’s problem models the contact of a linear elastic body to a friction-
less rigid foundation.

We assume the boundary of the domain ∂Ω is decomposed into three different
parts, given as

∂Ω= ∂ΩD ∪ ∂ΩN ∪ ∂ΩC . (6.6)

All these parts of the boundary are assumed to be disjoint and meas(∂ΩD) > 0.
The body is assumed to be clamped at the Dirichlet boundary, thus

u = 0 on ∂ΩD. (6.7)

The Neumann or the traction boundary condition is defined as

σn = t N on ∂ΩN , (6.8)

where n is the outward normal to the surface and t N denotes the surface forces
or the pressure on the body.

The last remaining part of the boundary condition concerns the contact
boundary. This part of the boundary may come in contact with the rigid founda-
tion Σ ∈ Rd . For brevity, the possible contact boundary is denoted as ΓC = ∂ΩC .
We assume that the initial gap function gc : ΓC → R+ is given between the body
and the rigid foundation in the outward normal direction n. For a vector v , we
distinguish between its normal component vn = v · n and the tangential compo-
nent v t = v−vnn at the boundary. The non-penetration condition on the possible
contact boundary ΓC is given as

un ¶ gc on ΓC , (6.9)

where u · n = un denotes the displacement in the normal direction. Similar
to the displacement vector, we can also decompose the stress vector or traction
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at the contact boundary into the normal and tangential components, given as
σn = σn · n +σ t . Here, σn = σn(u) denotes the contact pressure developed in
the normal direction on ΓC . The contact stress is either compressive or it vanishes
if the body is not in contact with the rigid foundation, which can be represented
as

σn ¶ 0 on ΓC , (6.10)

whereσn = n·σn = σi jnin j. We are considering the frictionless contact problem,
so the body is allowed to move freely in the tangential direction and the induced
tangential stresses are given as

σ t = 0 on ΓC , (6.11)

where (σ t(u)) j = σi jni − σnn j. Finally, the last contact condition is the com-
plementarity condition, which forces the gap between the body and the rigid
obstacle to be zero when non-zero contact pressure occurs and the contact pres-
sure is zero when there is no contact, thus

(un − gc)σn = 0 on ΓC .

Now, combining (6.9),(6.10),(6.11), we can summarize the frictionless con-
tact conditions as

un − gc ¶ 0

σn ¶ 0

(un − gc)σn = 0

σ t = 0



















on ΓC . (6.12)

These conditions are known in contact mechanics as Hertz–Signorini–Moreau
conditions for frictionless contact or Karush–Kuhn–Tucker (KKT) conditions of
the constraints in optimization literature. The boundary value problem (6.1)
with the above contact conditions is called the Signorini’s problem. In Figure 6.1,
we can see an example of a Signorini’s contact problem.

Following the discussion of the linear elastic formulation, for brevity, we de-
fine space

V := H1
D = {v ∈ H1(Ω) : v = 0 on ∂ΩD}.

The virtual displacements v vanish on the Dirichlet boundary. But in order to
provide the weak formulation of the Signorini’s problem, we define admissible
space such that the virtual displacements also satisfy the contact conditions. We
define, K as a set of admissible displacements with respect to the contact condi-
tions (6.9), as a convex subset of V

K := {v ∈ V : vn − gc ¶ 0 on ΓC}. (6.13)
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body, Ω

∂ΩC

∂ΩD

surface force, t N

∂ΩN

rigid foundation, Σ

initial gap, gc

Figure 6.1. Signorini’s problem.

Let u ∈K be the solution of the Signorini’s problem, we can multiply equilibrium
equation in (6.1) with the virtual displacements v −u ∈K. Then by performing
the integration by parts we obtain

a(u, v − u) = F(v − u) + 〈σn, v · n − u · n〉ΓC , (6.14)

where the bilinear form a(·, ·) and the linear form F(·) are defined as in (6.5).
From the contact condition, we can deduce 〈σn, v ·n−u ·n〉ΓC ¾ 0. By introduc-
ing this condition in the weak formulation, we obtain the variational inequality
formulation of the Signorini’s problem, given as

find u ∈K such that a(u, v − u)¾ F(v − u) ∀v ∈K. (6.15)

Due to this inequality condition the contact problem is inherently non-linear even
in case of linear elasticity.

The variational formulation (6.15) can also be written as an equivalent en-
ergy minimization problem

find u ∈K such that J(u)¶ J(v) ∀v ∈K, (6.16)

for the quadratic energy functional J(u) := 1
2 a(u, u)− F(u).
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6.2.2 XFEM Discretization

The variational formulation of Signorini’s problem (6.16) is still not discretized.
In this section we discuss the discretization of the contact problem in the unfit-
ted finite element framework. For simplicity we assume that only the contact
boundary is unfitted, while Dirichlet and Neumann boundaries are fitted in the
mesh.

We consider the quadrilateral background mesh eTh that encapsulates the do-
main Ω. We define the low order FE space over the background mesh as

eVh = {v ∈ H1( eTh) : v |K ∈Q1(K), v|(∂ eTh)D
= 0,∀K ∈ eTh},

whereQ1 denotes the space of piecewise bilinear functions. Following the discus-
sion from Section 2.2, we create an active mesh Th and then define the extended
FE space Vh using the characteristic function on the active mesh. Here, the ba-
sis function on this FE space Vh has support only up to the boundary ∂Ω of the
domain.

In the XFEM framework, the discretized Signorini’s problem can be written
as a constrained minimization problem with inequality constraints given as, find
uh ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

As(uh, uh)− F(uh)

subject to uh · n ¶ gc on ΓC ,
(6.17)

where the bilinear form As(·, ·) is defined as

As(uh, vh) = a(uh, vh) + g(uh, vh),

where a(·, ·) and F(·) are defined as in (6.5). We have included the ghost penalty
term in the bilinear form As(·, ·) to improve the stability of the XFEM discretiza-
tion [HLL17]. The ghost penalty term is enforced on the set of edges Gh,ΓC , and
it is defined as

g(uh, vh) =
∑

G∈Gh,ΓC

εGhG(J∇nG
EhuhK, J∇nG

EhvhK)L2(G).

This ghost penalty term is enforced in the normal derivatives of the displacement
field, while we could also impose the ghost penalty term in the normal derivatives
of the stress field [CK18]. Here, we have discretized the bilinear form and the
linear form, but we still have to discretize the contact condition.

Traditionally, in the fitted finite element framework, we can use the method
of Lagrange multipliers, the penalty method, Nitsche’s method, the regulariza-
tion methods, the augmented Lagrangian methods, etc. to impose the contact



109 6.3 Two-body Contact Problem

conditions [Woh11]. Here, we employ the method of Lagrange multipliers to
enforce the contact conditions, rather than Nitsche’s method. This is due to the
fact that the Lagrange multiplier formulation does not require modification of the
primal formulation, and the contact condition can be handled by the Lagrange
multipliers implicitly. Whereas, Nitsche’s formulation for the contact problem is
more complicated as we have to handle the inequality conditions in the primal
formulation. Nitsche’s method for the contact problems in the fitted finite ele-
ment method is implemented and analysed in [WZ07, GSV20, CHLR19, CHR14].
In the context of the CutFEM method, the contact problems are considered
in [CK18].

We impose the contact condition by using the method of Lagrange multipliers,
where the multiplier space is constructed by employing the vital vertex algorithm
(Section 2.6). We introduce the multiplier space Mh ⊆ H−

1
2 (ΓC) and define the

bilinear form b(·, ·) : Mh ×Vh→ R by

b(µh, uh) :=
∑

K∈Th,Γc

〈µh, uh · n〉ΓK ∀µh ∈Mh,∀uh ∈ Vh, (6.18)

and the linear form GC(·) : Mh→ R by

GC(µh) :=
∑

K∈Th,Γc

〈µ, gc〉ΓK ∀µh ∈Mh.

Thus, after the discretization of the non-penetration condition, we obtain refor-
mulated Signorini’s contact problem as, find uh ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

As(uh, uh)− F(uh)

subject to b(µh, uh)¶ GC(µh) ∀µh ∈Mh.
(6.19)

6.3 Two-body Contact Problem

In this section, we discuss more general the frictionless contact problem between
two-bodies.

6.3.1 Problem Formulation

Generally, in two body problems master-slave concept is used, where one body
is denoted as a slave body, and the other body is denoted as a master body.
The contact condition is imposed as a non-penetration condition between the



110 6.3 Two-body Contact Problem

slave surface and the master surface. In the two-body problem, we seek the
displacement field u i of bodies, Ωi where i = m, s, where symbols m, s denote the
master and the slave side, respectively. As discussed in the previous section, the
boundary of the domain is represented as the union of disjoint boundaries, where
we assume both bodies consist of Dirichlet boundary condition with a nonzero
measure. In this case, we consider the linear elasticity formulation for the two-
body problem. The equilibrium conditions for the displacement u := (um, u s)
are given as

∇σ + f = 0 in Ω := Ωm ∪Ωs,

u = uD on ∂ΩD := ∂Ωm
D ∪ ∂Ωs

D,

σ · n = t N on ∂ΩN := ∂Ωm
N ∪ ∂Ωs

D.

(6.20)

The contact boundary condition is shared by the boundary on both sides
which may come in contact with each other. As both bodies share the same
contact boundary, we have

ΓC = ∂ΩC = ∂Ω
m
C = ∂Ω

s
C .

We assume that on the contact boundary the outward normal is smooth such
that, n = nm = −ns. We define the point-wise gap in the displacement fields of
both domains as

Ju · nK := um · nm + u s · ns = (um − u s) · nm,

where the normal n is defined as the outward normal to Ωm. A simple sketch of
the two-body contact problem can be seen in Figure 6.2.

The contact pressure or stress developed in the normal direction on ΓC is com-
pressive and equal on the contact boundary on both surfaces. The gap function
gc is defined as the distance from the possible contact boundary of the master
body to the slave body in the normal direction. Thus, the contact conditions are
given as

Ju · nK− gc ¶ 0

σn ¶ 0

(Ju · nK− gc)σn = 0

σ t = 0



















on ΓC . (6.21)

The weak formulation of the above two body problem is analogous to Signorini’s
problem. For the two body contact problem, the function space is defined as

V := {(vm, v s) = v ∈ H1(Ω) : v = 0 on ∂Ωm
D ∪ ∂Ωs

D}.
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Ωm Ωs
gc

us
num

n

∂ΩC

Figure 6.2. Two body contact problem.

We seek the solution in the admissible space with respect to the contact condition
(6.21). The admissible space K is a convex subset of the space V defined as

K := {v ∈ V : Jv · nK¶ gc on ΓC}. (6.22)

The weak formulation of the two-body contact problem can also be formulated
as a constrained minimization problem, given as (6.16). The bilinear and the
linear forms for the two-body contact problem are given as

at(u, v) =
∑

i=m,s

(σ(u i),ε(v i))L2(Ω) =
∑

i=m,s

∫

Ω

σ(u i) : ε(v i)dx ,

Ft(v) =
∑

i=m,s

�

( f , v i)L2(Ω) + 〈t N , v i〉∂ΩN

�

=
∑

i=m,s

�∫

Ω

f · v idx +

∫

∂ΩN

t N · v id s

�

.

(6.23)

Here, the bilinear and the linear form are denoted with a subscript t to distin-
guish between their counterparts used for the Signorini’s problem.

6.3.2 XFEM Discretization

As we have a variational formulation of the two-body contact problem, in this
section we discretize the problem in the XFEM framework. Here, we assume the
only contact boundary ΓC is unfitted, while the Dirichlet and Neumann bound-
aries are fitted.
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We assume the quadrilateral background mesh eTh that encapsulates both do-
mains Ωm and Ωs. For simplicity, we assume that these two bodies are already
in contact, and the interface between these two bodies is considered as con-
tact boundary ΓC . On the background mesh eTh, we define a low order FE space
with the piecewise quadrilateral functions that vanish on the Dirichlet bound-
aries eVh ⊂ H1

D(Ω). Now, following the discussion from Section 3.2, we create
an active mesh associated with each domain by decomposing and then enrich-
ing the background mesh. Afterward, we exploit the definition of the Heaviside
function (3.2) and obtain the FE space defined on each domain as Vm

h and V s
h.

The basis functions of these FE spaces are defined only up to the boundary of the
respective domain. We define the FE space Vh on both domains Ωm and Ωs as
Vh = Vm

h ⊕V s
h.

The discretized two-body contact problem in the XFEM framework can be
written as, find uh := (um

h , u s
h) ∈ Vh such that

min
uh∈Vh

J(uh) =
1
2

At(uh, uh)− Ft(uh)

subject to Juh · nK¶ gc on ΓC .
(6.24)

The bilinear form At(·, ·) is defined as

At(uh, vh) = at(uh, vh) + gt(uh, vh) (6.25)

where, the bilinear form at(·, ·) is defined as in (6.23) and the bilinear form
gt(·, ·) denotes the ghost penalty term. The ghost penalty term is enforced in the
neighborhood of all the elements that are intersected by the contact boundary on
both master and slave domains, also see Section 3.4.3. The ghost penalty term
is defined as

gt(uh, uh) =
∑

i=m,s

∑

G∈G i
h,ΓC

εGhG(J∇nG
Ehu i

hK, J∇nG
Ehv i

hK)L2(G),

where, εG is a penalty parameter and hG is the diameter of face G. Similarly to
the last section, we also discretize the non-penetration condition by means of
the Lagrange multipliers. Here, we can define the multiplier space on the con-
tact boundary given either on the master domain or the slave domain, as the
discretized representation of the contact boundary is identical on both sides. We
utilize again the definition of the multiplier space as Mh ⊆ H−

1
2 (ΓC). The multi-

plier space is discretized using the vital vertex algorithm, discussed in Section 2.6.
Thus, the discretized two-body contact problem is given as, find uh ∈ Vh such
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that

min
uh∈Vh

J(uh) =
1
2

At(uh, uh)− Ft(uh)

subject to bt(µh, uh)¶ GC(µh) ∀µh ∈Mh.
(6.26)

Here, the bilinear form bt(·, ·) is defined as

bt(µh, uh) :=
∑

K∈Th,Γc

〈µh, Ju · nK〉ΓC ∀µh ∈Mh,∀uh ∈ Vh. (6.27)

6.4 Generalized Multigrid Method for Contact
Problems

The solution of the contact problem requires us to solve a quadratic optimiza-
tion problem with linear inequality constraints. As these types of problems arise
in many applications in practice, there have been some efforts to develop the
solution strategies to tackle such problems.

One of the simple approaches is to first convert the problem in its dual formu-
lation and then solve the constrained minimization problem with the point-wise
constraints. Here, the Lagrange multipliers are interpreted as contact pressure,
and from the contact conditions (6.12) and (6.21), we know the constraints on
the Lagrange multiplier is always point-wise. This approach circumvents the
need for tackling the linear inequality constraints, by imposing a simpler set of
constraints. Once the dual problem is solved, we can compute the displacement
field [Dos09]. As an alternative, we can employ the semi-smooth Newton or
active set methods to solve such problems, see [HKK04, HW10, PWGW12]. In
addition to these methods, the interior-point methods are also an attractive op-
tion, see [Wri97, NW00, KMNv13]. These methods are quite expensive, as in one
form or another they require inner solutions schemes to solve linear problems,
while the outer iteration schemes are used for tackling the constraints.

In this section, we propose to employ the generalized multigrid method,
introduced in Section 5.3, for solving the contact problems arising from the
XFEM discretization, where the non-penetration conditions are discretized us-
ing the method of Lagrange multipliers. Ideally, the only essential modification
required in the generalized multigrid method is updating the projected Gauss-
Seidel method to handle the inequality constraints. But, to improve the numeri-
cal stability of the generalized multigrid method, we perform an additional local
basis transformation.
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6.4.1 Basis Transformation

We note, the non-penetration constraints in the contact problem are given by the
relative displacement of the bodies in the normal direction. Thus, the constraint
at any node is given by the coupling of the DOFs on the node. In order to create
the constraint matrix such that the non-penetration condition is enforced only
on one DOF per node, we transform the system into a new basis.

Let {e i}i=1,...,d be the Euclidean basis of Rd and np denotes the outward nor-
mal on the node p. Recall the definition of the nodal sets on the mesh, we define
the set of nodes as Nh,ΓC = {p ∈ Nh : φq|ΓC 6= 0}. On each node p ∈ Nh,ΓC ,
we redefine the Euclidean basis e1(p) = np and also change {e i}i=2,...,d such that
these redefined basis are orthonormal, while for all q ∈ Nh \ Nh,ΓC , the defini-
tion of the Euclidean basis remain same. This approach was introduced for Sig-
norini’s problems in [Kra01] and later applied to multi-body contact problems
in [DK09, Kra09, WK03]. The transformed basis can be constructed by using lo-
cal Householder transformation on Rd . We can compute the local Householder
transformation as

H pp = I − 2(v p ⊗ v p) ∀p ∈ Nh,ΓC ,

where the vector v p is computed by v p = (np − e1)/‖np − e1‖2. While for all
p ∈ Nh \ Nh,ΓC , we define H pp = I . Thus, by using these local transformation
matrices, we can construct global matrix H ∈ Rnd×nd where H = ⊕p∈Nh

Hpp, which
is an orthonormal matrix with the properties, H = HT = H−1.

This transformation decouples and locally modifies the constraints such that
the constraint matrix B would be sparser in the new basis. In the generalized
multigrid method, we employ the QR transformation to decouple the constraints
further. Hence the sparse matrix B will create a sparser orthogonal matrix Q and
upper triangular matrix R. The bilinear form (6.18) for the Signorini’s problem
can be reformulated as

b(µh, uh) :=
∑

K∈Th,ΓC

〈µh, uh · e1〉ΓK ∀µh ∈Mh,∀uh ∈ Vh,

and the corresponding bilinear form (6.27) for the two-body contact problem
can be given as

bt(µh, uh) :=
∑

K∈Th,ΓC

〈µh, Ju · e1K〉ΓK ∀µh ∈Mh,∀uh ∈ Vh.

Thus, the entries of the constraint matrix B for Signorini’s problem are given as

bpq = b(µp,φq · e1) ∀p ∈ Vh,ΓC ,∀q ∈ Nh,
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where Vh,ΓC denotes the set of vital vertices, and by µp andφq we denote the basis
functions associated with nodes p, q in the FE space Mh and Vh, respectively.
While for the two body problem the entries of the constraint matrix are given as

(bpq)t = b(µp,φq · e1) ∀p ∈ Vh,ΓC ,∀q ∈ N m
h ,

(bpr)t = −b(µp,φr · e1) ∀p ∈ Vh,ΓC ,∀r ∈ N s
h ,

where N m
h and N s

h denote the set of node of the active meshes associated with
master and slave bodies, respectively.

As we have changed the definition of the Euclidean basis, we have to also
modify the primal problem. The matrix H can be used to transform the variables
into the new basis as u = Hu and u = Hu, where u denotes the unknown
displacements. Similarly, the stiffness matrix A and the right hand side f in the
new basis can be given as A = HAH and f = H f . The algebraic formulation of
the contact problem in the new basis system is given as find u ∈ Rd×n such that

min
u∈Rd×n

J(u) =
1
2

uTAu − uT f

subject to Bu ¶ g c,
(6.28)

where, g c denotes the gap between the body and the rigid foundation on the
contact boundary or the gap between the master and the slave body on the con-
tact boundary. As we are going to use the multigrid method, we have to also
modify the prolongation operator associated with the finest level, given as

T L
L−1 = HT L

L−1.

It is well-known that round-off errors play a vital role in the field of numeri-
cal computing and affect the accuracy and stability of the algorithms. We recall,
before employing the projected Gauss-Seidel method, we have to perform QR
decomposition to decouple the linear constraints. Performing the QR decom-
position of the constraint matrix B can give rise to the round-off errors in the
computation of the orthogonal matrix Q and upper triangular matrix R. The
round-off errors also accumulate when repeatedly multiplying matrices and vec-
tors to the matrix Q. Thus, by performing local basis transformation, we reduce
the sparsity of the matrix B. If the matrix B is sparser, it gives rise to a sparser
matrix Q and the matrix R, and in this way we can reduce the accumulation of
the round-off errors.

6.4.2 The Multigrid Method

As mentioned earlier, once we have the updated problem (6.28) after the local
basis transformation we still perform the QR transformation described in Sec-
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tion 5.3.1. Thus, after computation of the matrices Q and R from the constraint
matrix B, we have to project the problem onto new basis. The orthonormal ma-
trix is used to define the variables in the new basis as eu = QTu = QTHu and
u = Hu = HQeu. By incorporating the transformed matrices and the vectors, we
can reformulate the constrained minimization problem (6.28) as

min
eu

J(eu) =
1
2
euT
eAeu − euT

ef

subject to RT
eu ¶ g c,

(6.29)

where eA= QTAQ = QTHAHQ and ef = QT f = QTH f . In practice, the matrices
eA, A, and A have the same spectral properties, but they have different sparsity
pattern. The new constraint matrix R has been decoupled such that we can
employ the projected Gauss-Seidel method (Algorithm 5.2) as the finest level
smoother in the multigrid method.

Now, we define a constrained subspace or a feasible set as

eK= {eu ∈ Rd×n : RT
eu ¶ g C}.

We pose our problem as an energy minimization problem (6.29) in the algebraic
formulation:

find eu ∈ eK such that J(eu)¶ J(ev) ∀ev ∈ eK.

As discussed in Section 5.3.2, the projected Gauss-Seidel method minimizes en-
ergy functional such that the intermediate iterates also remain in the feasible
set eK. In order to utilize the projected Gauss-Seidel method, we have to mod-
ify the upper bound and the lower bounds in (5.21) given as, lb = −∞ and
ub = g C . This also influences the active nodes, the nodes where the constraints
are binding, which are given as

A := {p : (Reu)p = (g C)p}.

Based on this active set, we perform the truncation of the stiffness matrix, resid-
ual and correction vectors on the finest level. The last modification is required in
the prolongation operator associated with the finest level. The updated transfer
operator is given as

eT
L

L−1 = QTT L
L−1 = QTHT L

L−1.

Thus, after these modifications, we can call the generalized multigrid method
from Algorithm 5.3 for solving the contact problem (6.29).
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6.5 Numerical Results

In this section, we evaluate the performance of the proposed generalized multi-
grid method for Signorini’s problem and two-body contact problem. The non-
penetration condition at the contact interface is discretized using the method of
Lagrange multipliers in the unfitted finite element framework.

6.5.1 Signorini’s Problem

In this section, we describe the problem setup for Signorini’s problem for two
different types of rigid obstacles.

Problem Description

All experiments in this section are carried out on a structured background mesh
with the quadrilateral elements. The background mesh is defined on a coarsest
level, on a rectangle of dimension [−1.09,1.09] × [0, 1.09], with the elements
100 in X-direction and 50 in Y-direction, denoted as mesh on level L1. By uni-
formly refining this mesh, we obtain a hierarchy of meshes up to the level L5. In
this experiment, we consider a semicircular domain, where the contact boundary
of the domain is defined by a zero level set of a function Λs(x ) := r2 − ‖x − c‖2

2
with radius r = 0.9, and c is the center of the circle (0,1). The domain Ω is
defined by the region where the value of the level set is positive, Λs > 0. The
Dirichlet boundary for this problem is fitted on the background mesh, and the
Dirichlet boundary condition is defined as u = 0 on x = [−1.09,1.09] and y = 0.
The body force for this example is considered to be zero. Also, the method of the
Lagrange multiplier utilizes the vital vertex algorithm to discretize the contact
boundary. In addition, we are employing the ghost-penalty stabilization term
in the bilinear form, with the parameter εG = 0.1. In these experiments, the
material parameters are chosen as Young’s modulus E = 10 and Poisson’s ratio
ν = 0.3. We can compute Lamé parameters λ and µ using the following relation:

λ=
Eν

(1+ ν)(1− 2ν)
and µ=

E
2(1+ ν)

.

Example 1-SC For this example, we consider a rigid foundation Σ defined by
a line, given as y = 0.12. Thus the body Ω would be pressed against the rigid
foundation, and the maximum magnitude of the displacement on the body would
be given as u= 0.02. The setup of this example is depicted in Figure 6.3a, where
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we observe the magnitude of the displacement field due to the contact with a
rigid foundation.

Example 2-SC This example considers a more complex rigid foundation, which
does not satisfy the small strain theory, as we are enforcing a large displacement
field. But this experiment is carried out to test the robustness of the multigrid
method with respect to the shape of a rigid foundation. Here, we define a circular
rigid foundation, defined by a circular level set function Λo(x ) := r2

o −‖x − co‖2
2,

with radius ro = 0.9, and the center co = (0,−0.35). In Figure 6.3b, we can
observe the setup and the magnitude of the displacement field due to contact
with the circular rigid foundation.

Performance of the Multigrid method

Following the generalized multigrid method in the previous chapter, we are using
the Givens rotation algorithm to compute the orthogonal transformation of the
matrix BT. The examples in this section are carried out in the Utopia library. For
these experiments choose correction in energy norm as a termination criterion,
given as

‖u(k+1) − u(k)‖A < 10−10. (6.30)

Also, we define the asymptotic convergence rate of an iterative solver as

ρ∗ :=
‖u(k+1) − u(k)‖A

‖u(k) − u(k−1)‖A
,

where the iterate u(k+1) satisfies the termination criterion (6.30). Here, all the
experiments are carried out on the discretization L5, with around 2.5×106 DOFs,
and in Figure 6.4 we can observe the resultant displacement field and the stress

# levels
Example 1-SC Example 2-SC

# iter (ρ∗) # iter (ρ∗)
2 12 (0.070) 13 (0.077)
3 12 (0.070) 13 (0.076)
4 12 (0.070) 13 (0.074)
5 12 (0.070) 13 (0.073)

Table 6.1. The number of iterations required by the generalized multigrid method
to reach a predefined tolerance for solving Signorini’s problems (with two different
kind of obstacles).
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(a) Setup of the Signorini Problem for Example 1-SC

(b) Setup of the Signorini Problem for Example 2-SC

Figure 6.3. Setup of the Signorini’s problem for experiments, the object in the gray
scale is the rigid obstacle. We can see the active background mesh and the displace-
ment field.

field. On the finest level, we perform 3 pre-smoothing and 3 post-smoothing steps
of the modified projected Gauss-Seidel method. While, we employ the symmetric
Gauss-Seidel method as a smoother with 3 pre-smoothing and 3 post-smoothing
steps on all other levels, except on the coarsest level.

Table 6.1 illustrates the number of iterations required by the generalized
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(a) Displacement in X direction u x (b) Displacement in Y direction u y

(c) Stress component σx x (d) Stress component σ y y

(e) Stress component σx y (f) von Mises Stress

Figure 6.4. Resultant displacement field and stress field of Signorini’s problem Ex-
ample 1-SC.

multigrid method to reach the termination criterion (6.30). From the table, it is
evident that the number of iterations does not change with the increasing number
of levels in the multigrid hierarchy. For Example 2-SC we have a considerably
complex rigid obstacle than for Example 1-SC, but the multigrid method con-
verges with almost equal number of iterations for both examples. Also in Table
6.1, we can observe the asymptotic convergence rate of the multigrid method.
Here, we can observe that the asymptotic convergence rate for both of these
examples is quite small (ρ∗ < 0.1).
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6.5.2 Two-body Contact Problem

For the two-body contact problem, we consider two different types of embedded
interfaces: a circular interface and an elliptical interface.

Problem Description

The experiments in this section are carried out on a structured background mesh
with quadrilateral elements. Both bodies are considered to be in contact with
each other in the absence of external body force or the Neumann boundary con-
ditions. The background mesh is given in domain Ω = Ω1 ∪ Ω2 in [0,1]2. We
start with 100 elements in each direction, this mesh is denoted by L1. We create
a hierarchy of the meshes by uniformly refining this mesh until we have 1600
elements in each direction. The sequence of the meshes is given by, L1, . . . , L5.
The Dirichlet boundary conditions is defined as u = 0 on x = [0,1] and y = 0,
while the Neumann boundary condition is defined as σn = (0,5) on x = [0, 1]
and y = 1. The body force for this example is considered to be zero.

Example 1-TC For this example, we consider a circular contact interface de-
noted as Γc. The circular interface is defined as a zero level set of a function
Λc(x ) := r2

0 −‖x − c‖2
2, with radius r2

0 = 3−21/2, and c is the center of the circle,
chosen as (0.5,0.5). The circular interface decomposes the domain Ω into Ω1

where Λc(x ) > 0 and Ω2 where Λc(x ) < 0. For this example, we consider two
different sets of material parameters. We choose Young’s modulus as E1 = 10
and E2 = {10,50} and the Poisson’s ratio is chosen as ν = ν1 = ν2 = 0.3.

Example 2-TC This example considers an elliptical contact interface denoted
as Γe. The interface is defined as a zero level set of a function

Λe(x ) := r2
1 −

�

�

�

x − cx

a

�

�

�

2
−
�

�

�

y − cy

b

�

�

�

2
.

Here, r1 denotes the radius of the ellipse, chosen as r2
1 = 2(3−21/2). The symbols

a and b denote the major and minor axis of the ellipse, chosen as a = 1, b = 0.8.
Here the center of the circle is chosen as (0.5, 0.5). The circular interface de-
composes the domain Ω into Ω1, where Λe(x )> 0 and Ω2 where Λe(x )< 0. For
this example, we consider the same set of material parameters, as used in the
previous example. Young’s modulus is chosen as E1 = 10 and E2 = {10,50} and
the Poisson’s ratio is chosen as ν = ν1 = ν2 = 0.3.
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(a) Displacement in X direction u x (b) Displacement in Y direction u y

(c) Stress component σx x (d) Stress component σ y y

(e) Stress component σx y (f) von Mises Stress

Figure 6.5. Resultant displacement field and stress field, as a solution of the two-
body contact problem, Example 1-TC, with Young’s modulus E1 = E2 = 10, where
the domain Ω2 is the circle.
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#
le

ve
ls

Example 1-TC Example 2-TC
E1 = 10,ν1 = 0.3 E1 = 10,ν1 = 0.3 E1 = 10,ν1 = 0.3 E1 = 10,ν1 = 0.3
E2 = 10,ν2 = 0.3 E2 = 50,ν2 = 0.3 E2 = 10,ν2 = 0.3 E2 = 50,ν2 = 0.3
# iter (ρ∗) # iter (ρ∗) # iter (ρ∗) # iter (ρ∗)

2 14 (0.071) 16 (0.159) 14 (0.075) 14 (0.153)
3 14 (0.073) 16 (0.224) 14 (0.077) 14 (0.151)
4 14 (0.075) 16 (0.271) 14 (0.078) 15 (0.138)
5 14 (0.073) 16 (0.171) 14 (0.079) 15 (0.139)

Table 6.2. The number of iterations required by the generalized multigrid method
to reach a predefined tolerance for solving two-body contact problems.

Performance of the Multigrid method

Here, all the experiments are carried out on the discretization L5, with around
5.1×106 DOFs. In Figure 6.5 we can observe the resultant displacement field and
the stress field for two-body problem with circular interface Example 1-TC with
E1 = E2 = 10. While in Figure 6.6, we observe the result of the two-body contact
problem with an elliptic interface Example 2-TC with E1 = 50 and E2 = 10. As
a solution method, we employ the multigrid method with V -cycle and 3 pre-
smoothing and 3 post-smoothing steps, with the projected Gauss-Seidel on the
finest level and SSOR method on the coarser levels.

Table 6.2 shows the number of iterations required by the generalized multi-
grid method to reach the termination criterion (6.30). We can conclude from
the table, that the number of iterations does not change with an increasing num-
ber of levels in the multigrid hierarchy. Also, in Table 6.1, we can observe the
asymptotic convergence rate of the multigrid method. Here, we can see that
even though the number of iterations required to reach the termination criterion
is almost the same, we can see the difference in the asymptotic converge rates.
For the case with an equal value of Young’s modulus, the asymptotic convergence
rate is quite low (ρ∗ < 0.01). While, for the case with different values of Young’s
modulus, the asymptotic convergence rate is much larger (ρ∗ < 0.3).

Thus, we can conclude the proposed generalized multigrid method is robust
with respect to the number of levels, the material parameters, type of obstacle
or the shape of the interface.
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(a) Displacement in X direction u x (b) Displacement in Y direction u y

(c) Stress component σx x (d) Stress component σ y y

(e) Stress component σx y (f) von Mises Stress

Figure 6.6. Resultant displacement field and stress field, as a solution of the two-
body contact problem, Example 2-TC, with Young’s modulus E1 = 50 and E2 = 10,
where the domain Ω2 is the ellipse.



Chapter 7

Conclusion

7.1 Summary

In this thesis, we reviewed several strategies for enforcing the boundary condi-
tions and the interface conditions in the context of the unfitted finite element
framework. We applied the ghost penalty method in order to overcome the ill-
conditioning of the linear systems arising from the XFEM discretizations. We
also reviewed two different strategies to implicitly estimate the value of the sta-
bilization parameter in Nitsche’s formulation. Later, we discussed the vital vertex
algorithm for constructing a stable multiplier space that satisfies the discrete inf-
sup condition for the method of Lagrange multipliers. We numerically compared
the stability of these methods for continuous and highly varying coefficients in
terms of discretization error and condition numbers of the arising linear systems.

We introduced a semi-geometric multigrid (SMG) method for solving linear
problems arising from Nitsche’s method in the unfitted finite element framework.
We presented the pseudo-L2-projection approach to construct the transfer oper-
ator for the XFEM discretization. This novel transfer operator was designed in
such a way that it induces a hierarchy of the nested finite element spaces from
the hierarchy of the background meshes. In the series of numerical experiments,
we demonstrated the robustness of our SMG method equipped with the tailored
transfer operator. We showed that the proposed multigrid method has level inde-
pendent convergence rates, and it is robust with respect to highly varying coeffi-
cients and the number of interfaces in a domain. Further, we also employed the
SMG method for solving the primal system in the saddle point problem, where
the method also proved to be robust.

Later, we introduced the generalized multigrid method for solving the
quadratic minimization problems with linear equality/inequality constraints. In
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the unfitted framework, these types of problems arise when the method of La-
grange multipliers is used for enforcing the boundary/interface conditions. Our
generalized multigrid method also employed the pseudo-L2-projection approach
for computing the transfer operator. In order to handle the linear constraints,
we proposed a decoupling technique that projects the constraints in new basis.
This task was carried out by QR decomposition of the constraint matrix. Further,
we introduced a variant of the projected Gauss-Seidel method to handle such de-
coupled constraints. In the numerical experiments, we demonstrated the robust-
ness of the novel generalized multigrid method. The proposed multigrid exhib-
ited optimal convergence properties when applied to the problems with equality
constraints, stemming from imposing the boundary/interface conditions. This
multigrid method was later also applied to the contact problems in the XFEM
framework, where we also observed optimal convergence rates.

7.2 Outlook

The multigrid methods proposed in this work can be used for many other unfit-
ted finite element discretization. In the future, we aim to extend the generalized
multigrid method for contact problems with friction. Besides, we also aim to use
the multigrid method for more complex coupled problems, such as fluid-structure
interaction problems, thermoelastic contact problems, crack propagation prob-
lems in fracture mechanics, etc.

All the implementation and numerical experiments in this thesis were car-
ried out in Matlab. As future work, we would like to extend this implementa-
tion to parallel architectures in order to handle large-scale problems. As a first
step, we aim to port the implementation of the unfitted discretizations using the
DMDA features of the PETSc library [BAA+20, BGMS97], as they already provide
a scalable-parallel data structures for handling Cartesian structured meshes. As
a second step, we aim to implement the L2-projections based transfer operator
for the XFEM discretization in the ParMOONoLith library [Zul16, KZ16], which
can already compute the L2-projection on the complex geometries on distributed
computing architecture. Lastly, we plan to port the multigrid methods, along
with the smoothers proposed in this thesis, to the Utopia library [ZKN+16].



Appendix A

Coercivity in Nitsche’s Formulation

A.1 Fictitious Domain Problem

The coercivity of the bilinear form (2.21) is given as
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Here, the second line uses the Cauchy-Schwarz inequality (2.8) on the duality
paring on the boundary. The third line utilizes Young’s inequality for some ε > 0
and the fifth line follows from the trace inequality (2.9).

A.2 Interface Problem

The coercivity of the bilinear form (3.8) for the interface problem is given as
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Similar to the last section, the second line uses the Cauchy-Schwarz inequality
(2.8) on the duality paring on the boundary. The third line utilizes Young’s in-
equality for some ε > 0 and then the trace inequality (3.10) is used in the fifth
line.



Appendix B

Numerical Integration

B.1 Numerical Integration in XFEM

Here, we describe the numerical integration on the cut elements for the inter-
face problems. These new basis functions in the XFEM framework have compact
support only in a restriction on its subdomain Ωi. Here, we describe modified
quadrature rules for numerical integration of the cut elements and the interfaces.

For any given element K , let Ki = K ∩ Ωi be the restriction of the element
K in the domain Ωi. The set of all the elements intersected by the interface Γ
is denoted by Th,Γ := {K ∈ eTh : K ∩ Γ 6= ;}. Also for an element K ∈ Th,Γ , let
ΓK := Γ ∩ K be the part of Γ in K .

Figure (B.2) and Figure (B.3) provide a graphical representation of the mod-
ified quadrature rule. An element K is intersected by the interface, hence it is
doubled by adding extra degrees of freedom at the same location of the nodes.
Thus, the element K can be seen as two overlapping elements K1 and K2. The
element K1 in this particular case is split into a triangle and its counterpart el-
ement K2 is cut into a quadrilateral. The numerical integration of the enriched
elements and the discrete interface is then done in the following steps:

• We determine the set of elements intersected by the interface, Th,Γ .

• Then, we need to determine on which side of the interface the element Ki

belong.

• We map the quadrature points defined on the reference element to the
enriched current element using the affine map ϕ : K̂ → Ki.

• In the next step, the inverse of the affine map ϕ−1 : Ki → K̂ is used to map
the quadrature points back to the reference element.
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Figure B.1. Splitting of a triangular element with the XFEM enrichments.

The numerical integration of the discrete interface ΓK is then done in the
following steps:

• First a set of all ΓK is determined.

• We define a map ϑ : Ê→ ΓK , where E is a reference element of the dimen-
sion of the interface.

• In the last step, the inverse of the affine map ϕ−1 : ΓK → K̂ is used to map
the quadrature points in the reference element.

Once the proper quadrature points are computed, we can compute the element-
wise contribution of the bilinear and linear forms.

B.2 Numerical Integration for L2-projection

As we discussed, to use the multilevel method we need to compute a transfer
operator based on L2 projection. In order to compute the transfer operator T ,
we need to compute T = D−1B in (4.10), where D is the mass matrix of the
fine level mesh and B is the coupling operator between the fine and coarse level
meshes. These computations are done in the following way:
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Figure B.2. Mapping the quadrature points on the enriched elements, the gray re-
gion represents the region where support of the basis function is nonzero.
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Figure B.4. Mapping the quadrature points on the intersection between the enriched
elements from different levels.

• First compute set of all elements on each level which are intersected by the
interface. Then we determine on which side of the interface the elements
belong.

• We determine the pair of intersecting elements 〈K`i , K`−1
i 〉, where K` ∈ eT`

and K`−1 ∈ eT`−1.

• For each pair 〈K`i , K`−1
i 〉, we need to compute the intersection polytope Is =

K`i ∩ K`−1
i .

• If the intersection polytope is not a triangle, we further need to subdivide
the intersection into triangles. The triangulation is not explicitly computed
but it is only used to map the reference triangulation to the intersection.

• In the next step, we map the quadrature points from the intersection to
back to the reference element K̂ .

• We compute the local element-wise contribution by means of the numerical
quadrature and assemble B and D.

Figure (B.4) gives a graphical representation of how the numerical integration is
carried out.



Appendix C

Uzawa Algorithms

Uzawa algorithm with conjugate directions

Here, in C.1 we have given the algorithm for conjugate gradient Uzawa method.

Algorithm C.1: Uzawa-Conjugate Gradient Method
Input : A, B, f , u, g λ,λ
Output: u,λ

1 λ ∈ Rm ; . initial guess

2 u ← [ A−1( f − BTλ) ; . solve primal problem

3 q ← [ g λ − Bu ; . compute residual

4 d ← [ −q ; . set direction

5 while q 6= 0 do
6 p ← [ BTd ; . intermediate step

7 h← [ A−1p ; . solve primal problem

8 α← [ q
Tq

pT h
; . compute step size

9 λ← [ λ+αd ; . update the dual iterate

10 u ← [ u −αh ; . update the primal iterate

11 q (∗)← [ g λ − Bu ; . compute new residual

12 β ← [ (q
(∗))Tq (∗)

qTq
; . orthogonalization

13 d ← [ −q (∗) + βd ; . new direction

14 q ← [ q (∗) ; . updated for new iteration

In C.2 we have given the algorithm for preconditioned conjugate gradient
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Uzawa method.

Algorithm C.2: Uzawa-Preconditioned Conjugate Gradient Method
Input : A, B, f , u, g λ,λ, P
Output: u,λ

1 λ ∈ Rm ; . initial guess

2 u ← [ A−1( f − BTλ) ; . solve primal problem

3 q ← [ g λ − Bu ; . compute residual

4 z← [ P−1q ; . preconditioning

5 d ← [ −z ; . set direction

6 while q 6= 0 do
7 p ← [ BTd ; . intermediate step

8 h← [ A−1p ; . solve primal problem

9 α← [ q
Tz

pT h
; . compute step size

10 λ← [ λ+αd ; . update the dual iterate

11 u ← [ u −αh ; . update the primal iterate

12 q (∗)← [ g λ − Bu ; . compute new residual

13 z(∗)← [ P−1q (∗) ; . preconditioning

14 β ← [ (q
(∗))Tz(∗)

qTz
; . orthogonalization

15 d ← [ −z(∗) + βd ; . new direction

16 q ← [ q (∗) ; . updated for new iteration
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