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Abstract

Personal computing systems like e.g., laptop, smartphone, and smartwatches are
nowadays ubiquitous in people’s everyday life. People use such systems not only
for communicating or searching for information, but also as digital companions,
able to track and support their daily activities such as sleep, food intake, physical
exercise and even work. Sensors embedded in personal computing systems en-
able the continuous collection of heterogeneous data about their users. Location,
heart rate and more, can nowadays be measured reliably using such sensors. Pro-
cessed with machine learning and data analytics techniques, sensors’ data can be
used to infer users’ information such as the type of activity, the behaviour and
even the affective states.

In this thesis, we investigate the feasibility of using data derived from per-
sonal devices to automatically recognize the affective state of engagement as it
occurs during daily activities. We focus on the specific use cases of inferring stu-
dents’ engagement during learning activities and knowledge workers’ engage-
ment during work activities.

Engagement, generally considered in terms of the emotional and attentional
involvement into an activity, is a well-known predictor of learning outcomes and
job performance. Consequently, engagement-aware systems able to sense, recog-
nize and promote engagement have a huge potential for improving the learning
and work experience.

Measuring engagement has been for years central focus of research in psy-
chology. Traditional methods, such as self-reports and observations, requiring
significant manual effort from researchers and study participants, have been used
for years to derive knowledge about engagement. Bulky devices measuring phys-
iological parameters e.g., electrodermal activity and heart rate variability, have
been also used to study engagement from a physiological perspective mostly in
laboratory settings or during pre-defined activities. Today, taking advantage of
the availability of personal devices and the sensors they are equipped with, com-
puter science researchers are investigating methods for automatically measuring
engagement in everyday activities, with little or no effort from users.

il
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Despite the knowledge gained from years of research on engagement, its au-
tomatic assessment using sensor data is a challenging goal. Indeed, there is no
a pre-defined mapping between sensor data and engagement, and it is not clear
what transformation and combination of data can provide a reliable engagement
assessment.

Furthermore, engagement definitions and its expressions are context-dependent,
thus a system aiming to infer engagement should be able to retrieve and use in-
formation about the user’s context. However, in the work environment, context
information such as the type of activity, are difficult to infer. People use several
tools to perform their tasks, work in different locations, alone and with others,
making the activity inference challenging.

In this thesis, we target two main problems: (1) the engagement recognition
problem; and (2) the activity recognition problem.

To evaluate our approaches we designed and ran three user studies and col-
lected data in laboratory settings and in the in-the-wild e.g., during lectures in
the classroom and during actual work days. Further, we performed an extensive
data analysis.

Specifically, we first address the sensor data transformation and combination
problem for engagement recognition. To this end, in the first study presented in
this thesis, we leveraged electrodermal activity data and proposed a method for
translating findings from educational research into sensor data representation,
i.e., features. We then used the features in input to machine learning algorithms
with the aim of recognizing students engagement during lectures. In the sec-
ond study, we proposed a novel method to recognize a behavioural expression,
i.e., laughter, that can be used for recognizing engagement. We leveraged typical
physiological and body movement reactions of laughter, and quantify them using
sensor data gathered from wristbands. In the third study, we investigated sensor-
fusion strategies based on traditional machine learning and deep learning, and
combined physiological data i.e., electrodermal activity and cardiac activity, to-
gether with context information to recognize engagement during work activities.

Second, we address the problem of recognizing activities in the workplace.
To this end, we proposed a method to combine behavioral expressions such as
physiological activation, physical movement, laptop and phone usage. We per-
formed a thorough analysis and investigated which type of device and sensor
data bring relevant information, especially for distinguishing between work and
break activities.

We believe that the insights and technical contributions of this thesis aim to
enable the design and development of engagement-aware systems able to sup-
port people during their daily activities.
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Chapter 1

Introduction

Computing systems have dramatically changed over the past decades. Techno-
logical advances have enabled a tremendous increase of computing power and
battery capacity, as well as a miniaturization of the devices going from “room
size” to “palm size”. A major consequence of such technological advances are
the development and widespread adoption of mobile and wearable devices such
as laptops, tablets, smartphones and smartwatches. Thanks to the proliferation
of these easily accessible devices, used anywhere and at any time, computing
systems have become ubiquitous.

Mobile and wearable devices allow a continuous and unobtrusive collection
of large amount of heterogeneous data in every day life situations. Data gathered
from sensors embedded in personal mobile and wearable devices, can be pro-
cessed and provide information about, e.g., people behaviour, activity and even
affective states [|5]].

For instance, inertial sensors can be used to determine the activity users are
doing [6]; location and communication sensors can be leveraged to understand
their mobility patterns [[7; [8]] and location preferences [[9]]; physiological data
such as electrodermal activity and heart rate variability can be exploited to infer
stress [[10}; [11]] or engagement [[12]].

Emerging computing systems, such as personal informatics system [[13], uti-
lize information about individuals’ behavior, activities, and affective states to
support them in their daily lives. For instance, such systems could help individu-
als maintaining a healthy life style by promoting self-reflection or even inducing
behavioral changes with just-in-time adaptive interventions (JITAIs) [[14].

These technologies are already in widespread use to track, e.g., food intake,
fitness, sleep quality and more [[15} [16]]. An example of component of personal



informatics system is the commercial Fitbit wristbandﬂ this device enables users
to track and improve their physical activity by setting goals (e.g., 10,000 steps
per day) and through competition with friends [[15].

Recently, there has been a growing interest from researchers and practition-
ers, in enhancing computing systems with emotional intelligence [[17]]. Affect and
emotions play a fundamental role in several aspects of daily life such as deci-
sion making, communication, memory, physical health, and overall psycholog-
ical well-being [[18]]. As a consequence, emotion-aware systems able to sense,
interpret, adapt and even express emotions and, more generally affective states,
have the potential for communicating more effectively with users, and for under-
standing, and supporting them [[19; 20; [17]. Prof. Rosalind Picard first clearly
outlined the potential and challenges of emotion-aware systems, and promoted
the new field of research called Affective Computing [20]].

Most of the initial efforts in the Affective Computing field were conducted as
controlled studies in laboratory settings [21]] in which participants were asked
to wear bulky sensors and perform pre-defined tasks. The affective features were
derived from video, audio and physiological signals [21]] and used to create af-
fective models. Today, the advances of mobile and wearable technologies as well
as their widespread use in daily life, open plenty of new possibilities for Affec-
tive Computing, enabling the creation of systems able to infer and respond to
individuals’ affective states in real settings and during daily activities [[17]].

In this thesis, we investigate how a specific affective state, i.e., engagement,
can be automatically recognized using data gathered from personal devices, and
how information about engagement can be integrated in personal informatics
systems to support people in their daily activities.

Several definitions of engagement exist and depend on the context [22} 23]].
However, it is widely accepted that “the way users engage in an activity is an
essential component of their experience with the activity” [24]]. When engaged in a
task, individuals generally have an emotional and attentional involvement with
the task [24]].

In this thesis, we focus on the problem of inferring engagement during activ-
ities. In particular, we focus on students and knowledge workers and on inferring
their engagement during learning and work activities. The ultimate goal of the
thesis is to advance the understanding of how engagement-aware systems can be
designed and utilized, and to provide a set of methods and tools for their design
and development.

Uhttps://www.fitbit.com/au/home
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3 1.1 Motivation

1.1 Motivation

Engagement is a crucial component of the overall quality of the work and learn-
ing experience [22; 23]]. Indeed, engagement has been linked to better learn-
ing [25]] and increased performance [26]].

Knowledge about engagement can be used by a computing system to under-
stand if and when is an appropriate moment to send an intervention to promote
engagement (e.g., when prolonged disengagement is assessed), to measure the
effectiveness of an intervention (e.g., whether the intervention strategy increased
or decreased the level of engagement) or to display information to the users in
order to enable self-reflection (e.g., in which activity, moment of the day they
felt more or less engaged).

Devising methods for automatically recognizing engagement is a key enabler
to the mentioned intervention strategies and it is the core goal of this thesis.

The automatic recognition of engagement is a challenging task. Indeed, there
is not an immediate and pre-defined mapping between sensor data and engage-
ment and it is not known which sensor representation and combination of infor-
mation could provide reliable engagement assessment.

In this thesis, we adopt a data-driven approach to discover quantitative re-
lations between sensors data and engagement. We leverage data about elec-
trodermal activity, cardiac activity, and physical movement, all gathered from
physiological and inertial sensors embedded in non-intrusive wearable devices
(i.e., wristbands). We derive and propose a set of features to quantify the physi-
ological activation and a multi-modal expression (i.e., laughter) that can be used
for detecting students and workers’ engagement during their activities.

As already mentioned, effective affect-aware systems should consider the con-
text of the user [27; [19]. A relevant context information to consider when cre-
ating interactive systems is the type of activity performed by the user [27]. The
type of activity can provide not only relevant information for assessing engage-
ment but can be exploited also as additional information to provide to the user
[28] or as a trigger for interventions [3]].

However, given the complexity of the work environment, recognizing what
the user is doing is a challenging problem. Knowledge workers use different
tools, work on several tasks, in different locations, alone and with others. The
choice and combination of the appropriate devices and sensors to capture the
complexity of the work environment is yet unexplored. A trade-off between in-
vasiveness and completeness needs also to be considered.

Motivated by the importance of retrieving information about the users’ ac-
tivity, in this thesis we also investigated the role of data gathered from personal
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devices (i.e., laptop, smartphones and wristbands) to automatically recognize
activities in the workplace. Further, we explored the role of context information
in the assessment of workers’ engagement.

The remainder of this chapter is organized as follows. Section describes
the engagement recognition and activity recognition problems and the associ-
ated challenges. Section summarizes the research questions addressed in
this thesis. An overview of the research methods we used and the contributions
we made are presented in Section [I.4]and Section [I.5] respectively. Section
presents the list of publications resulted from the work described in this thesis.
We conclude the chapter with the outline of the thesis.

1.2 Problem statement and open challenges

1.2.1 Engagement recognition problem

The engagement recognition problem is an example of the broad affect recog-
nition problem. Affect recognition (AR) is a fundamental building block of the
Affective Computing (AC) research field [29]]. AR refers to the study of methods
for automatically recognizing affective states based on observables, i.e., sensor
recordings, and it can be conceptualized as a pattern recognition problem [29]].
Recognizing the affective state of the user allows to answer the question: “How
is the user feeling?”

Researchers showed that engagement manifests itself through several non-
verbal behavioural expressions such as facial expressions, gestures, postures and
movement, physiological activation and multi-modal expressions. Using specific
sensors, e.g., cameras, inertial sensors, physiological sensors, it is possible to
capture different modalities — e.g., face, body — and quantify peculiar behavioural
expressions or cues of engagement — e.g., facial expressions, body movement,
physiological activation. Sensor data is processed and transformed into features,
which describe the behavioural cues of engagement (e.g., in terms of presence,
absence, intensity, or descriptions). The features are paired with a target output
i.e., engagement labels and used as input to supervised machine learning (ML)
models [[30]. The ML models are trained to learn the mathematical functions
that map the input with engagement labels. The learned models are then applied
to inputs extracted from new data to determine the engagement level of the
individual.

One of the factors that makes engagement recognition a challenging task is
the uncertainty related to sensor data representation, i.e., how meaningful infor-
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mation from sensor data can be extracted to quantify engagement’s expressions.
In particular, it is not evident what transformation needs to be applied to sensor
data and which combination of sensor data would produce a reliable engagement
assessment.

In machine learning, the features extraction or features engineering —i.e., the
process of applying transformations to sensors’ data — is critical to ensure the
success of the assessment, especially for models with a shallow structure [31]].

A common approach to the design of features is to embed expert knowledge
in their design. Being AC an interdisciplinary field grounded on research from
psychology and neuroscience, we argue that for creating representative features,
inspiration from theories derived from these research fields should be taken. In
this thesis we rely on engagement definition and theories from educational re-
search and psychology such as the "Flow Theory" conceptualized by the psychol-
ogist Csikszentmihalyi [[32]]. Further details about engagement definitions and
theories used in this thesis are described in Chapter 2|

Most of the previous approaches in sensor-based engagement recognition,
do not consider existing theoretical knowledge for the design of features from
physiological signal such as electrodermal activity (EDA). For instance, studies
targeting the learning setting [33; [34]], rather infer engagement using statisti-
cal description of the signals in the temporal or frequency domain or are based
only on specific signals’ characteristics such as EDA peaks i.e., skin conductance
responses (SCRs) [35]].

Despite these features provide complementary information, they do not take
into account the relation between the expression of engagement and the theo-
retical explanation underneath, preventing a proper interpretation of the infor-
mation derived from the sensors. Understanding how to map objective sensor
data into explainable representation is still an open challenge.

When interacting, people naturally use different modalities to convey their
emotional reactions. Each of the modalities bring unique fingerprints of the
affective state. For this reason, in the Affective Computing field, it has been
widely exploited the complementary information provided by different sensors
through their combination, we refer to this approach as multi-modal affect recog-
nition [29; 36]]. Several strategies exist for combining sensor data at different
levels, from very early stages in terms of raw data, to fusion of independent
models [36].

Despite the great advancements in data fusion techniques presented in liter-
ature, fusing data from different sources is still an open challenge. For instance,
the choice of the type and number of sensors and devices to use is not known a
priori. The choice of the sensors should be guided by the trade-off between intru-
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siveness and quality of the information retrieved. The quality of the information
can be considered in terms of relevance of the information for the problem ad-
dressed and in terms of noise in the signals generated by the sensors (e.g., due
to physical movement or sensor malfunctioning).

Despite the good progress in data fusion in AC, several approaches treat multi-
modal expressions such as laughter, using a single modality [|37], using data
collected with privacy-invasive sensors as cameras and microphones [38;[39]], or
using multiple invasive sensors attached in different parts of the individuals’ face
and body [[40]].

A major challenge in multi-modal affect recognition consists in defining which
data should be fused at which level [36/]]. Multi-modal fusion strategies used for
the inferring workers’ engagement using physiological sensors [41]; 28] rely on
the use of hand-crafted features and machine learning classifiers with a shallow
structure [41};28]]. Despite the promising results obtained, these approaches fail
to exploit the additional information derived by the complex, non-linear, low-
level interaction that can occur simultaneously across different modalities [|42}
43]]. Deep learning presents a possible solution to this problem, allowing an
automatic hierarchical construction of features within and across modalities [42]]
that can be merged at different stages [[44]].

In addition to the behavioural expressions of an individual, the current situa-
tion or context has an impact on the engagement recognition problem. Indeed, af-
fective states in general and engagement in particular are context-dependent [[19]].
Information about context is particularly critical when aiming to build affective
models using data collected “in-the-wild” where people act freely and are con-
tinuously exposed to different situations and interactions.

Particular behavioural expressions of engagement can be expected in specific
situations but not in others. For instance, a worker could laugh when interacting
with colleagues during a meeting or when watching a video during a break, while
a laughter episode could be less likely to happen when the worker is focused on
a work activity such as coding.

Individuals might be more engaged when dealing with particular activities or
during specific parts of the day. Further, the physiological reactions might vary
depending on the type of activity performed, and a change in the perceived en-
gagement might not always result in a change of the physiological signals. For
instance, during more “arousing” or “physiological demanding” activities (e.g.,
coding or attending meetings) the physiological reactions might be more pro-
nounced compared to when workers are dealing with a less demanding activity,
while the perceived level of engagement might be the same.

Despite its importance, retrieving and embedding context information into
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the assessment of affective states such as engagement, are significant open chal-
lenges [[19]. For instance, what type of context information can be meaningful
to consider and how to fuse it with physiological data is still unclear.

Most of existing approaches in the automatic recognition of workers’ engage-
ment are either conducted in laboratory settings (where the context is fixed) [[45}
41]], do not consider the role of context [[46}47] or indirectly retrieve it from dig-
ital activities only [128]].

1.2.2 Activity recognition in the workplace problem

The problem of activity recognition belongs to the Human Activity Recognition
(HAR) research field. HAR “aims to recognize activities from a series of observa-
tions on the actions of subjects and the environmental conditions" [|48]. As for
engagement recognition, also HAR can be conceptualized as a pattern recogni-
tion problem. Recognizing the activity the user is performing allows to answer
the question: “What is the user doing?”

HAR is involved in the development of several applications, such as video
surveillance, home monitoring, healthcare and human-computer interaction [[48]].
As discussed in [27], the activity the user is performing represents one of the
main primary types of context information to consider when designing interac-
tive computer systems. Systems able to sense and adapt to user’s context are
known as context-aware systems.

In this thesis, we focus on recognizing workers’ activities in the workplace,
and in particular we aim to distinguish between work and break activities.

One reason why activity recognition in the workplace is challenging is the
complexity of the work environment. Workers use different tools (physical and
digital), perform multiple tasks, work alone or with others, and in different loca-
tions (e.g., in their or others’ offices or at home). As a consequence, understand-
ing which sensor(s) or device(s) to use to gather data as well as which technique
to use for inferring the workers’ activity is not straightforward.

While the use of several sensors for a precise inference of workers’ activi-
ties might seem a promising solution, it is important to consider that the use
of more data sources do not necessarily imply more information. Indeed, data
from similar sources might be redundant or not significant for the problem at
hand. Further, a trade-off between completeness of information and users’ bur-
den needs to be considered. Indeed, users might feel overwhelmed by the use
of multiple instruments and by the perception of being tracked all the time, and
consequently stop using the system.
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Several existing approaches that aim to quantify the activities in the work-
place, focus on digital activities only [49}[3;/50], and determine the type of work
and break activities using only data derived from computer usage (e.g., type of
application used or website visited, interaction with keyboard or mouse). These
approaches use pre-defined assumptions and heuristics for inferring the work-
ers’ activity, e.g., a worker takes a break when she is not interacting with the
computer [|49; [3; [51]].

However, relying on heuristics prevents the recognition for being flexible to
intra-activity variations. For instance, a worker can take a break using the laptop
and watching a video, or can take a walk outside. Using heuristics based on
laptop usage only lack of distinguishing between these situations. Further, the
validity of the proposed heuristics in real settings has not been validated, by
for instance letting workers confirm whether the system correctly assessed when
they were taking a break nor is the correctness of the assumptions made verified
otherwise.

Recently, more flexible, machine learning based approaches have been used
to determine digital activities [52}; 53]]. However, considering only digital activi-
ties limits the possibility of properly capturing the multi-facet complexity of the
work environment leading to possible miss-classification especially of activities
that do not strongly require the use of the laptop as meetings, reading or taking
a break.

Other approaches have used sensors as cameras [|54]], microphones [[54], RF-
radar [55]] or Bluetooth beacons [[56]], placed in the workers’ room, on the fur-
niture [55]] or in the building [56] to determine workers’ work or break activi-
ties [56} 55} [54]].

However, approaches relying on cameras and microphones, may be consid-
ered invasive in the workplace setting especially when other people risk being
unintentionally monitored. Approaches relying on sensors in the environment
require additional infrastructures to be placed and are not flexible in terms of
work activities locations. For instance using sensors in the room might miss the
difference between ones not being in the office because of being in meeting in
another room or because taking a break outside.

1.3 Research questions
Following the considerations reported in the previous section, we now formulate

the research questions addressed in this thesis. The broad question this thesis
aims to address is:
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“Is it possible to recognize students and knowledge workers’ engagement using data
gathered from mobile and wearable devices?”

To address this broader topic, and building upon the considerations summarized
in the previous section, we formulate three specific research questions:

* RQ1 How can features representing behavioral expressions of engagement
be derived from physiological and movement data?

* RQ2 How can information about context a) be fused with physiological
data and b) impact the recognition of workers’ engagement?

* RQ3 How can activities in the workplace be accurately recognized?

1.4 Research method

To address the research questions formulated above, we propose a data-driven
approach and conducted three user studies. In this section we outline the method-
ological approach we used for the studies described in the thesis. We motivate
the decisions we took for collecting and analysing the data. For specific infor-
mation about each of the studies we refer to the articles and the chapters of the
thesis.

1.4.1 Data collection methods

Due to the lack of appropriate publicly available data sets for answering our
researchers questions, we collected three data sets: the Students Engagement
Using EDA (SEED) data set, the USI Laughs, and the WorkplaceDataSet, a detailed
description of the data sets is provided respectively in Chapter[3] Chapter [4 and
Chapter [5]

To collect the above mentioned data sets we designed and ran three data
collection campaigns. For all three studies we followed the ethics review policy
in place at our institutions. The studies were approved by the research ethics
delegate of the Faculty of Informatics at USI.

When designing a user study several choices needs to be made, including:
the setting of the study; the duration; the population; the type of tools to use;
the data collection protocol; and the strategies to adopt to protect the privacy of
the study participants and of the collected data.
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Figure 1.1. Data collection during lectures: students were asked to wear the
Empatica E4 wristband while attending the lectures.

Setting of the study. The first decision to take is whether the study should be
carried in laboratory settings or in the in-the-wild, i.e., in the natural setting of
the subjects. Laboratory settings are suitable for testing novel approaches, for
example to understand the feasibility of using new sensors for detecting partic-
ular reactions to stimuli. Natural settings add significant challenges in terms of
continuous monitoring of data quality and quantity but increases the reliability
and ecological validity of the results by taking into account the variability and
uncertainty of real settings. In this thesis we conducted studies both in laboratory
settings (study presented in Chapter [4] for laughter recognition) and natural set-
tings, i.e., during actual lectures in classroom (study presented in Chapter[3)) and
during actual work activities in the workplace (study presented in Chapter |5)).

Study duration. Given our goal of recognizing engagement during daily activ-
ities, we designed the studies to capture multiple occurrences of the activities.
Consequently our user studies lasted one or multiple weeks.

Population. We investigated two populations, students — Bachelor and Master
students — and knowledge workers from Academia (or academics) — PhD, senior
researchers and professors. We selected the first category because fostering stu-
dents’ engagement is considered as one of the most effective countermeasures
for resolving serious issues such as high drop out rates, disaffection, students’
alienation and low academic performance [57/]]. We selected academics since
they deal with multiple and diverse tasks, they tend to have irregular working
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hours and periodic stressful periods, thus having systems that can support their
work are challenging to design but particularly useful.

Type of tools and data collection protocol. Refers to the choice of data type —in
terms of sensor data and ground-truth —, and the data collection strategy. One of
our main goals is to monitor participants in real settings when also other people
might be present (e.g., in the classrooms or in the office). For this reason we use
data collection instruments that are not invasive, do not limit users’ movements,
and are socially acceptable by the users. Specifically, we collected data using
unobtrusive personal devices such as wristband, smartphone, and laptop that
people can use anywhere and at anytime and limit the user’s discomfort.

In particular, in all the studies we used the Empatica E4E] wristband [[58]] to col-
lect physiological and movement data. The E4 is a lightweight device equipped
with four high-quality sensors which measures: the electrodermal activity (EDA),
the blood volume pulse (BVP), the skin temperature (ST) and the 3-axis ac-
celerometer data (ACC) [58]]. Figure shows an example of the setup we used
for collecting students’ EDA data during lectures using the E4 wristband. We col-
lected information about laptop usage with RescueTimdﬂ a commercial monitor-
ing tool that people can use for tracking digital activities. We designed and devel-
oped a custom Android application called MEMOTION for collecting data about
phone usage. Participants installed MEMOTION on their smartphone. Data from
RescueTime and MEMOTION are used for the study presented in Chapter[5]

To collect ground-truth in the in-the-wild studies, we used the experience sam-
pling method (ESM) [I59]] and asked participants to report their engagement by
providing answers to validated questionnaires. The ESM has been widely used as
instrument to collect ground-truth in the workplace [|60; 61} 50] and in the class-
room setting [134}; [12]]. With this strategy we collected subjective data about the
perceived engagement. We used a retrospective strategy and prompted the ques-
tionnaires at the end of participants’ activities. In this way we did not interrupt
the flow of users’ activities and avoided the participants to leave the engagement
state due to the interruption caused by the ESM.

For the study on laughter recognition, conducted in laboratory settings, we
asked external annotators to report laughter episodes, as common practice in the
literature [|62]].

To facilitate the collection of ground-truth data we used paper-based ques-
tionnaires and diaries, we designed and developed smartphone applications, lap-
top widget, a situated self-report device [63]] called Devo and used the ANVIL video

Zhttps://www.empatica.com/research/e4/
3https://www.rescuetime.com/
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annotation tool [|64]]. A comprehensive overview of existing methods for collect-
ing ground-truth data is presented in Section [2.4]

Privacy and storage. In order to protect participants’ privacy, we anonymized
participants’ data during the data collection phase and we stored all the data in
the academic cloud storage service SWITCHdriV We used only third parties
services as Empatica and RescueTime which encrypt data in the transmission or
not store participants’ personal data.

1.4.2 Data analysis methods

To analyse the data we collected we used quantitative methods including statis-
tical analysis, traditional machine learning and deep learning [|65}; [66]].

For recognizing engagement and activities we built upon the typical machine
learning pipeline for Affect Recognition [29]] and Human Activity Recognition [|6]]
and rely on concepts and techniques presented in previous work [|67; 68;66}; [29;
6l]. Specifically, to analyse the collected raw data we followed the steps of: data
cleaning and pre-processing; segmentation; feature extraction; and the classifi-
cation pipeline. Each of these steps might have a significant impact on the model
performance. We experimented with different techniques and strategies depend-
ing on the specific contribution. Figure|l.2{shows an exemplary schematic repre-
sentation of the steps needed to process the data. We discuss below details about
the different steps.

Data cleaning and pre-processing. To minimize the noise and to derive use-
ful information from the data cleaning and pre-processing steps such as missing
data handling; sensor data filtering and decomposition; and normalization; are
usually suggested.

When collecting data in natural settings, data loss might be experienced. For
instance, participants might forget to answer to questionnaires, as a consequence
the ground-truth for a specific data instance will be lost. We discarded instances
without labels since reconstructing subjective data could be highly inferential.
Sensor data might be missing too, due to e.g., sensor malfunctioning, problems
with data transmissions or participants forgetting to wear or switch on the de-
vices. Missing data could be either discarded or imputed. To handle missing data,
we first investigated the possible reasons behind, indeed missing data could be
an information on its own, then we either discarded or imputed data based on
the quantity of data missing and possible errors introduced by the reconstruction.

4https://www.switch.ch/drive/
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Figure 1.2. Exemplary schematic representation of the data analysis steps we
used in this thesis.

The quality of physiological data collected in real-settings might be affected
by the presence of noise, and artifacts due to e.g., physical movement, thermal
regulation or device misplacement. To deal with this problem, we used manual
techniques e.g., visual inspection, and automatic approaches, e.g., using filters
such as the Butterworth low pass filter [[69], and applying artifacts detection
models with publicly available tools such as the EDArtifact developed and val-
idated in our research group and presented in [[70]].

To extract additional information from sensor data, pre-processing steps such
as decomposition or aggregation are often recommended [29]]. In this thesis we
decomposed the EDA signal in its phasic and tonic components [35]] using tools
such as cvxEDA available atﬂ and presented in [[71]]. We also derived the ACC
magnitude by combining the recordings from the three-axis.

Physiological signals of different individuals, even under the same experi-
mental conditions, might present differences in the recordings (e.g., in the range
of values) due to several factors e.g., different skin dryness, color, and thick-
ness [67; [35]]. This individuality might represent a problem especially when
building models that leverage data of a group of people and apply them on new
unseen subjects [67]]. To account for differences among individuals and make
the signals comparable, techniques as normalization (scaling) are usually ap-
plied. To deal with this problem, we used techniques such as min-max scaling or
z-transformation [|72]].

Shttps://github.com/S.gashi/EDArtifact
Shttps://github.com/lciti/cvxEDA
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Segmentation. Pre-processing steps are often followed by a segmentation proce-
dure. Windows of fixed or variable sizes can be used to segment the signals. We
often segmented the signal traces based on the activities performed by the user
(e.g., lectures or workplace activities) and further use a sliding-window approach
to augment the data set.

Features extraction. From the segmented traces, more often in a traditional
machine learning pipeline, informative features are extracted and used as input
to the classifiers. In this thesis we proposed features as well as extracted sensor-
specific features used in the literature [[67; 68} [73}; [74} [75]; [76}; [77; [78; [79]]. For
extracting the features we either implemented algorithms or used existing tools
such as HeartPy [|80] for heart rate analysis and EDAExploreiﬂ [68]] for electro-
dermal activity analysis.

Classification pipeline. The engagement recognition and activity recognition
problems can be conceptualized as classification tasks. Features are paired with
the labels (engagement levels or activity type) and used as input to the classi-
fiers. Additional steps such as features selection; features standardization; and
resampling are often applied before providing data to the classifiers. The goal
of these steps is to improve the model performance and speed up the learning
process [[72; 166]].

The feature selection step allows to limit the curse of dimensionality prob-
lem [|66] as well as to investigate the relevance of the specific features for the
classification task. Depending on the studies we used features selection methods
such as filter and wrapper methods. Specifically, we used the Sequential For-
ward Floating Selection (SFFS) algorithm [|81/] and filter methods based on the
Kolmogorov-Smirnov (KS) non-parametric test as done in [82]].

Our data sets often present an imbalanced distributions of the samples in the
classes. To increase the importance of underrepresented classes and avoid algo-
rithms to be skewed towards the majority classes only, we used resampling algo-
rithms such as the Synthetic Minority Oversampling TEchnique (SMOTE) [|83]].

The SMOTE algorithm combines the over-sampling and under-sampling tech-
niques, achieving better performance compared to only under-sampling [83]].

In this thesis we experimented with several machine learning algorithms. For
instance, we applied traditional machine learning pipeline using hand-crafted
features as input to classifiers with a shallow structure e.g., Support Vector Ma-
chines (SVM) [l66/], Random Forest (RF) [[66]], and Gradient Boosting (GB) [66].
We also used end-to-end deep learning pipeline using raw sensor data as input

"https://eda-explorer.media.mit.edu/
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to Convolutional Neural Networks (CNNs) [31[].

Evaluation. To evaluate the performance of the model a validation procedure;
performance metrics; and baselines to compare the models against, should be
used. The goal of machine learning is to learn models from previously collected
data that are able to generalize to unseen data [66]].

To verify the generalization capabilities of the models, validation techniques
are used. The data set is divided in train and test subsets. The model is built
using the train set and then it is applied to the test set which contains the unseen
data. Several validation strategies exist, and their choice should be guided by
the goal of the analysis and the application scenario. In this thesis we used user-
independent and user-dependent validation strategies [[84]]. The first is suitable to
test the generalizability of the models to unseen users, the second to evaluate the
performance of a new behaviour (or activity in our case) of known users [|84]]. We
used user-independent validation strategies such as leave-one-subject-out (LOSO)
and leave-one-group-out (LOGO) [29]. In LOSO, the model is trained with all
users’ data except one which is used for testing. In LOGO the model is trained
with a group of users’ data and tested with another group. Both methods test the
ability of the models to generalize to unseen user(s). These approaches mimics
the application scenario in which new user(s) use the system for the first time.

We also tested the ability of the model to generalize to data from unseen
activities of seen users. In this case, data of the same participants might be in the
train and test sets but data gathered in the same day is kept either in the train or
test set to avoid similarity biases due to adjacent segments [|84].

We considered several metrics to evaluate the models such as accuracy [|65]],
balanced accuracy [85]], precision [|65/], recall [[65] and F-measures [65]] to pro-
vide a complete picture of the performance. However, we set a metric of interest
depending on the final goal of the system.

We compared the performance of the models with different baselines such
as Random Guess (RG) and Biased Random Guess (BRG) classifiers. The RG
classifier predicts the outcome uniformly at random. The BRG instead takes in
consideration the distribution of the samples in the training set to take a bi-
ased decision and it is a suitable baseline for when dealing with imbalance data
sets [|86]]. We also considered baselines such as heuristic-based classifiers and
approaches presented in the literature, depending on the goal of the study.

1.5 Contributions

In this section we report a brief summary of the main contributions of this thesis.
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Features and behavioural markers of engagement

We answer the first research question by proposing and analysing a set of fea-
tures and behavioural markers that can be used as proxies for recognizing en-
gagement. In particular, based on findings in educational research, we extracted
a set of theoretically-motivated features from electrodermal activity to quantify
the momentary engagement [87]], the reaction to the teacher [188]], and the emo-
tional arousal [89]], key components of students’ emotional engagement. We
tested the effectiveness of the derived markers in the automatic recognition of
students’ emotional engagement during lectures. We compared the performance
obtained when using the proposed features in input to the classifier with the ones
obtained when using features proposed in existing literature [[90]. To evaluate
the performance of the method we ran a data collection campaign in-the-wild and
collect the Student Engagement Using EDA (SEED) data set. The SEED, after data
cleaning, contains data from 24 students, 9 teachers, during 41 actual lectures.
Results from this contribution have already been published as journal paper [|Al]
in the PACM IMWUT (September 2018). Details about the study are presented
in Chapter

Further, we proposed a novel approach based on the combination of physio-
logical and movement data, gathered from wristbands, to automatically quantify
laughter, a key multi-modal expression of engagement. To evaluate our approach
we conducted a study in laboratory settings and collected a data set, USI Laughs,
which contains data from 34 participants and is available to researchers. This
study is described in Chapter Results from this contribution have already
been published as conference paper [B]] at the PervasiveHealth conference (May
2019).

Fusion of sensor data and context information

We answer the second research question by proposing to combine physiological
data (i.e., electrodermal activity and blood volume pulse) gathered from wrist-
band together with context information (i.e., time of the day, day of the week
and type of activity) derived from self-reports.

We investigated different fusion strategies based on traditional machine learn-
ing and deep learning. We tested the performance of the models using the con-
text information alone and in combination with physiological data. To evaluate
the proposed approach we ran a data collection in-the-wild with 13 knowledge
workers performing their activities during actual work days resulting in the Work-
placeDataSet.
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For this work we used a subset of the WorkplaceDataSet data set. An overview
of this study is presented in Chapter (5, Results from this contribution have been
accepted for publication and will appear in the proceedings of the ACII 2021
conference [[C]].

Activity recognition in the workplace

We answer the third research question by proposing a method to combine data
derived from personal devices (i.e., laptop, smartphone and wristband) that peo-
ple use and carry anywhere and anytime. We investigated the impact of combi-
nation of data from multiple sources.

We compared the performance of the proposed method with heuristic-based
classifiers. To evaluate our approach we used a subset of the WorkplaceDataSet.
More details about this contribution are presented in Chapter |5, Results from
this contribution have already been published as journal paper [D] in the PACM
IMWUT (September 2020).

1.6 Publications

The work presented in this thesis has been published or is under submission
in peer-reviewed conferences and journals. The scientific articles derived from
work described in this thesis are:

A. E. Di Lascio, S. Gashi, S. Santini: Unobtrusive Assessment of Students’ Engagement
During Lectures Using Electrodermal Activity Sensors. In: Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies (PACM IMWUT),
Vol. 2, Issue 3, September 2018. 21 pages.

B. E. Di Lascio, S. Gashi and S. Santini: Laughter Recognition Using Non-invasive
Wearable Devices. In: Proceedings of the 13th EAI International Conference on
Pervasive Computing Technologies for Healthcare (PervasiveHealth), May 2019.
10 pages.

C. E. Di Lascio, S. Gashi, M. E. Debus and S. Santini. Automatic Recognition of Flow
During Work Activities Using Context and Physiological Signals. Accepted for pub-
lication in: Proceedings of 9th International Conference on Affective Computing
& Intelligent Interaction (ACII). 2021. 8 pages.

D. E. Di Lascio, S. Gashi, J. S. Hidalgo, B. Nale, M. Debus, S. Santini: A Multi-
sensor Approach to Automatically Recognize Breaks and Work Activities of Academic
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Knowledge Workers. In: Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (PACM IMWUT), Vol. 3, Issue 3, September 2020.
21 pages.

During my Ph.D. I have also co-authored additional publications. The complete
list of publications is reported in Appendix [Al

1.7 'Thesis outline

This thesis is structured in six chapters.

In Chapter (1] we introduced the motivation behind the work done in this
thesis, we defined the research questions, presented the research methods and a
brief summary of the main contributions and resulting publications.

In Chapter [2| we provide definitions, theories and concepts which build the
foundation of this thesis as well as we discuss existing literature in engagement
and activity recognition.

Chapter [3| presents our first user study that investigated the potential of EDA
sensors embedded in wearable devices to recognize students engagement dur-
ing lecture, we discuss our method for translating concepts from educational
research into features extracted from EDA signals.

In Chapter[4|we describe our second user study and present our novel method
for recognizing the behavioural expression of laughter using a combination of
physiological and movement data.

Chapter [5| describes our last user study in monitoring knowledge workers’
daily activities. Specifically, we explored the fusion of physiological signals and
context information to derive workers’ flow during work activities and further
proposed to use a combination of personal devices to distinguish between work
and break activities.

We summarize the thesis, along with conclusions and outlooks in Chapter [6]



Chapter 2

Background and Related Work

In this thesis we rely on several definitions, concepts and techniques. In this
chapter we provide an overview of these aspects.

In Section [2.1]we cover the definitions and theories of engagement that place
the theoretical foundation of this thesis. We particularly focus on students and
workers’ engagement from a psychological and physiological perspective.

We describe existing methods for measuring engagement in Section[2.2] Sec-
tion provides an overview of investigated behavioural cues of engagement
and the sensors used to describe them. We review existing methods for labeling
and modeling engagement respectively in Section and Section

We cover definitions of context and activity in Section We conclude the
chapter with Section[2.7] in which we review existing literature in activity recog-
nition in the workplace.

2.1 Engagement definitions and theories

In this section we introduce definitions of engagement that provide the theoret-
ical foundation of this thesis. Specifically, Section describes students’ en-
gagement theories derived from educational research and Section[2.1.2]provides
an overview of emotional engagement from a psychophysiology perspective. In
Section we summarize theories of work engagement and, in Section
we provide a description of the psychophysiology of flow.

Engagement is related to a person’s level of involvement and absorption into
an activity [[91]] and it represents a fundamental component of the persons’ expe-
rience with that activity [24]. Even though several context-specific definitions of
engagement exist, researchers agree that when people are engaged in an activity,
they are more likely to produce better outcome, enjoy and learn more [[18]]. Given

19
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the importance of engagement, several theories in psychology have emerged for
defining and quantifying engagement [[92; 57].

In the years these theories have been exploited in Computer Science (CS)
research, specifically in Human-Computer Interaction (HCI) and Affecting Com-
puting (AC) fields for addressing the problem of measuring engagement using
sensing technology.

In this thesis we differentiate between studies aiming to quantify user’s en-
gagement with technology with the goal of improving the user experience with
technology, from studies concerning measuring individual’s engagement during
their activities using technology with the goal of supporting people in their daily
activities. Even though the difference seems subtle, we believe that it is impor-
tant to consider that the final goal of the engagement-aware system in the two
cases is different.

The goal of the first type of studies is to determine which are the characteris-
tics of a technology artifact (e.g., user interface, web page, smartphone applica-
tion) that increase the likelihood of user’s engagement and design technology in a
way that engage people [93]]. In this direction, O’Brien rooted user’s engagement
with technology in Play, Flow and Aesthetic theories [[94]]. From the analysis of
these theories authors of [94]] defined user’s engagement as the “quality of user
experience characterized by attributes of challenge, positive affect, endurability,
aesthetic and sensory appeal, attention, feedback, variety/novelty, interactivity,
and perceived user control” [[94]].

The goal of studies in the second group is to investigate which are the char-
acteristics of individuals when they are engaged in their activities, quantify them
using sensing technology and build systems that can help people discover what
conditions engage them (e.g., using personal analytics), and how these condi-
tions can be promoted (e.g., using personal feedback).

Work done in this thesis belongs to the second category. In particular, we fo-
cus on quantifying the state of engagement as experienced by an individual (i.e.,
a student or worker) during an activity, and how it can be assessed using sensing
technology. In this thesis we focus on definitions and theories of engagement
that have been conceptualized for workers and students.

2.1.1 Students engagement definitions

There is a long history of research in educational literature aiming to define,
quantify and measure students’ engagement [23]]. Researchers and educators
have focused on students’ engagement as key for addressing serious social issues
such as high drop out rates, low academic achievement, students’ alienation and
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boredom [95]]. Students’ engagement is a malleable state and can be influenced
and shaped by teachers, peers and even technology [[18;[96]].

Students’ engagement is linked to motivation. Motivation refers to reasons
behind a given behaviour while engagement is considered in terms of action
or manifestation of motivation [[95]. In other words, in order to move from
motivation to action, the individual (in this case the student) should be engaged
in the activity. Furthermore, differently from motivation, engagement “reflects
an individual’s interaction with the context”, so the engagement of the individual
is directed to something in particular (e.g., a task, an activity) and can not be
separated from it.

Scholars have focused on different populations of students ( e.g., elementary,
middle school, high school, university) used several terms (e.g., academic en-
gagement, school engagement, student engagement in class), definitions, com-
ponents (e.g., emotional, behavioural, academic, psychological) for students’ en-
gagement, and measured engagement at different levels (e.g., with prosocial in-
stitutions, with school, in the classroom, with learning activities) and granularity
(e.g., individual students in the learning activity, group of students in a class).
For a comprehensive review of students’ engagement we refer to [23;[97].

In this thesis we focus on university students, we consider the well accepted
and widely used definition of students engagement as “a meta-construct that in-
cludes behavioural, emotional and cognitive engagement” proposed by Fredricks
et al., [57]], that we describe below. We investigate the emotional component of
engagement of individual students in the learning activity of attending the lec-
ture in classroom.

Behavioural, cognitive and emotional engagement.

According to the definition of Fredricks et al. [57]], students’ engagement can
be divided in three components: behavioural engagement (e.g., time on task),
emotional engagement (e.g., interest and value) and cognitive engagement (e.g..,
self-regulation and learning strategies) [[95]].

Behavioural engagement is based on the idea of participation in social, in ex-
tracurricular or in academic activities. It is generally assessed based on a set
of observable behaviours as class attendance, time on homework, effort (e.g.,
time on task) and adherence to classroom rules. Behavioural engagement can
be also considered in terms of academic engagement, which refers to the pres-
ence or absence of a set of students behaviours in classroom such as participating
in classroom tasks, asking questions, writing, or reading aloud [|95]].
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Cognitive engagement is broadly defined as “students’ level of investment in
learning” and incorporates elements such as motivation, effort, learning strat-
egy and self-regulated learning. The term cognitive engagement is used for de-
scribing aspects as the cognitive strategies used by the student (i.e., whether
the student used sophisticated or superficial learning strategies), self-regulatory
or meta-cognitive strategies (i.e., how students manage the learning process in
terms of acquiring and planning information). In the classroom, cognitive en-
gagement has been also expressed as the amount of effort put by the student in
understanding a topic [[98]].

Emotional engagement considers the emotional involvement of the student in
the process of learning. It focuses on the presence of positive and supportive
emotions (e.g., interest) and absence of negative or withdrawal emotions (e.g.,
boredom, anxiety)[[95}; [57]].

Several theories exist for defining emotions and affective states [29]]. In this
thesis we consider the circumplex model of affect proposed by Russel at the end
of 1970s [[99] and widely adopted in Affective Computing research [[29]].

The circumplex model of affect is a two-dimensional model in which affec-
tive states are represented as discrete points described in terms of the two axis
of valence and arousal [99]. The valence axis defines the polarity of the affective
states, e.g., how positive or negative it is. The arousal component refers to the
intensity or activation, and it describes how energized or deactivated an individ-
ual feels [[99]. Students’ emotional arousal is a relevant component to consider
in learning since it can influence performance and memory [[100; [89]].

An important component of emotional engagement in classroom is interest.
The complex relation between interest and engagement can be represented using
two metaphors, a “hook” and a “switch" as reported in [87].

The “hook” refers to the simplest interest, when an activity or a features of an
activity in class, elicits interest, the student “readily engages with that activity”
this case is also referred as situational engagement or momentary engagement. In
addition to situational engagement there is also students’ personal interests.

The “switch” metaphor in this case connects the personal interests with the
opportunity to express them in the class activity, this takes into account not only
the momentary engagement but also the past students’ experience. Whether
interest derives from specific activities or personal interests, it is fundamental
for ensuring engagement in classroom [|87]].

Students’ emotional engagement is also linked to positive and negative re-
actions to the teacher [[95; [57]]. Studies from educational research show that
as the teacher’s emotional response in classroom increases, so does their stu-



23 2.1 Engagement definitions and theories

dents’ emotional response [I88}; [101]]. Researchers, have studied the interaction
between students and teachers in classroom using the theory of emotional conta-
gion using traditional methods (i.e., surveys, rating-scales) [|88}; [101]].

The theory of emotional contagion suggests that people communicating to
each other, “automatically mimic and synchronize expressions, vocalizations,
postures and movements and consequently converge emotionally as a result of
the activation and/or feedback from such mimicry” [[102[]. Moreover it suggests
that all participants in an interaction are susceptible to each other’s emotions and
the contagion effect [[102].

In this thesis we focus on students’ emotional engagement and consider the
components of emotional arousal, interest, interaction with the teacher as ba-
sis for extracting and proposing a set of features from electrodermal activity that
could be used as proxies for describing these components. More details about the
procedure we followed are explained in Chapter 3| In the following section we
describe how emotional engagement have been considered from a psychophysi-
ology perspective.

2.1.2  Psychophysiology of emotional engagement

The relation between human affective states and the physiological reactions of
the body has been central focus of psychophysiologyﬂ research for over a cen-
tury [[104]. Several theories have been proposed in years connecting the emo-
tional and the physiological reactions, however the direction/causality that links
the two is still an open question [[104}; 29]].

For instance, according to the James-Lange theory [[105]], proposed by the
psychologists William James and the physiologist Carl Lange in the 19th century,
emotions occur as physiological reactions to events. The theory suggests that the
physiological reaction is a consequence of an external stimulus, while the emo-
tional reaction depends on how the individual interpret the physical reactions.

In contrast to the James-Lange theory, the Cannon-Bard theory [106], pro-
posed by Walter Cannon in 1920 and expanded by physiologist Philip Bard during
the 1930s, the emotions and the physiological reactions are experienced simul-
taneously [[106]].

For an overview of existing theories of the psychophysiology of emotions we
refer to [[104].

Ipsychophysiology is a particular branch of psychology that regards the study of the bodily
functions and physiological bases of “psychological phenomena -— the experience and behavior
of organisms in the physical and social environment” [[103]]
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Besides the different theories, the physiological patterns connected to emo-
tional responses are often linked to the the activity of the Autonomic Nervous
System (ANS). The ANS, which is a part of the Peripheral Nervous System (PNS),
is responsible for the regulation of involuntary body function as blood flow, heart-
beat, digestion, and breathing.

The ANS “plays a key role in directing physiological responses to external
(e.g., events) or internal stimuli (e.g., thoughts)” [29] and its activation is thus
suitable for understanding affective states [29]].

The ANS is composed by two complementary branches the Sympathetic Ner-
vous System (SNS) and the Parasympathetic Nervous System (PNS). The activity
of each of these systems is prevalent under specific conditions. The activation of
the SNS, also known as physiological arousal, is dominant during “fight-or-flight”
reactions and exercises.

An increment of the activation of the SNS corresponds to high arousal states.
The main function of the SNS is to prepare the body and provide energy for re-
sponding to a stimulus, it does so by increasing a set of physiological parameters
(e.g., accelerates the heart rate, increase the breathing rate, activate the sweat
secretion).

In contrast, the activation of PNS is dominant during quiet and resting con-
ditions, regulating the “rest and digest” functions. The goal of the PNS is to
conserve energy [[107]] by for instance slowing the heart rate and the breathing
rate.

Typical measures of the activity of the ANS, as studied in psychophysiology
literature, are the electrodermal activity — regulated by the SNS only; it thus rep-
resents a direct measure of the physiological arousal — and cardiac activity — reg-
ulated by both branches.

Based on findings from psychophysiology literature, researchers have inves-
tigated the emotional component of the students’ engagement in terms of the
students’ body reactions [[108}; [33}; 24} [34]].

In this thesis we focus on the use of electrodermal activity as a proxy for
students’ emotional engagement.

Considering the lecture as the external stimulus to which students are ex-
posed, physiological parameters derived from the electrodermal activity can be
used to determine the physiological and thus the emotional arousal component of
students’ emotional engagement [[33]]. For instance McNeal et al. [[33]] monitored
the engagement of 17 students during a course on environmental geology. Au-
thors tested different pedagogical approaches (frontal lecture, discussion, movie
watching) on subsets of the students and reported statistical differences in terms
of mean of the EDA traces, that they consider as proxy of engagement. Authors
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Figure 2.2. Example of teacher’s (red or dark color) and student’s (grey or
light color) EDA signal alignment over time.

noticed higher engagement, during discussion and movie watching compared to
lectures [33]].

In a recent work Cain et al. [90] proposed to use EDA as proxy for momen-
tary engagement. Specifically, the authors proposed that evident increments of
physiological arousal could be used as indicators of momentary engagement[90]].
The authors used EDA peaks to identify children’s momentary engagement dur-
ing learning activities [90]].

The emotional contagion phenomenon, described before, has been also in-
vestigated from a physiological perspective [[109]. In particular the physiological
synchrony has been underlined as one of the possible mechanism under emo-
tional contagion [[109]].

The physiological synchrony refers to the association between the physiologi-
cal activity of two or more people [[110]]. Previous works have successfully con-
nected the physiological synchrony derived from the EDA to individual’s engage-
ment, during conversations [[I111]] or in children-adult interactions [67]]. For
a complete review on physiological synchrony definitions and metrics we refer
to [110].

In this thesis we build upon previous work and derive a set of features that
could represent the emotional arousal of the student, the momentary engage-
ment and the reaction to the teacher.

An anecdotal example of the connection between EDA and momentary en-
gagement, as we considered in this thesis, is presented in Figure[2.1] Itis possible
to observe that the EDA of a student during a lecture presents high peaks when
the teacher interacts directly with the student, or when an in-class exercise is
prompted, these “arousing moments” could be interpret as proxies for the mo-
mentary engagement.

Figure shows an anecdotal example of physiological synchrony between
a student and a teacher. It is possible to observe variations of the alignment in
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the responses (no alignment at the beginning of the lecture, more alignment to-
wards the end). More details about the method we used for quantifying students’
engagement during lectures is presented in Chapter

2.1.3 Knowledge workers engagement definitions

Knowledge workers — often referred to also as information workers — typically
perform “non-routine, cognitive, or creative work” [[112/] and they have “significant
responsibility for structuring and managing [their Jwork” [[113]].

Examples of knowledge workers are programmers, engineers, scientists, de-
sign thinkers and academics. In the study presented in Chapter [5|we investigate
a particular category of knowledge workers: the academics.

Researchers agree in considering engagement at work as a “positive, fulfilling,
work-related state of mind” [[114].

According to Sonnentag et al. [[114]], work engagement is not only referred
as broad concept that compromise all the work activities and the whole work in
general. Rather, work engagement “emerges in the process of working, that is,
when dealing with a specific tasks” [[114]].

Engagement at work can fluctuate from day to day but also from task to
task [[114]], however this fluctuations are not random and events or experiences
are predictors of engagement. For instance, the type of task the worker is deal-
ing with can have a substantial contribution to the experience of work engage-
ment [[114].

Several theories exist in the definition of engagement at work [115;/116;[117;
26l]. Among them, prevalent theories have either consider work engagement in
relation with burnout (either as antipodes or as independent) [[116], or in terms
of the optimal experience of flow corresponding to high levels of engagement [[32;
26].

Studies in the first category, conceptualizing engagement as a persistent state
rather than a momentary and specific one, as opposite to the flow theory which
considers engagement as a peak experience emerging while performing an ac-
tivity.

A summary of the two theories is described below. However, in this thesis
we rely on the flow theory which has been also studied from a psychophysiology
perspective [[1; [118[] supporting the possibility of using physiological parameters
such as electrodermal activity and cardiac activity for measuring engagement,
which is the aim of this thesis.



27 2.1 Engagement definitions and theories

Work engagement and burnout

Initial studies defined work engagement as opposite to burnout [[115]]. Burnout
defined as “prolonged response to chronic emotional and interpersonal stressors
on the job” is described by three dimensions: exhaustion, cynicism and ineffi-
cacy [[115}116].

Exhaustion, or low energy, is one of the most reported aspects of burnout and
refers to psychological fatigue experienced by overtired employee.

Cynicism, or low identification, corresponds to a pessimistic or indifferent
attitude towards work. Lastly, inefficacy is defined in terms of reduced personal
accomplishment.

In contrast to burnout, Maslach et al. [[116] defined work engagement as “a
persistent, positive affective-motivational state of fulfillment in employees” and
described by three dimensions: vigor, dedication, and absorption [[116]].

Vigor, considered the opposite of exhaustion, is characterized by high level of
energy and willingness in investing effort in the work. Dedication, in contrast to
cynicism, refers to the enthusiasm of workers about their job that let individuals
experience a sense of significance. Absorption, is characterized by total immer-
sion in one’s work to the point that while working, employees do not notice time
passing.

Schaufeli et al. [[117;[119] after considering the results of a factor analysis to
verify this theory, decided to move away from the definition of engagement as
antipodes of burnout. Indeed authors observed that while the first two dimen-
sions of engagement (i.e., vigor and dedication) resulted to be the opposite of
the first two dimension of burnout (i.e., exhaustion and cynicism), this was not
verified for the third component (i.e., absorption against inefficacy).

Thus authors [[117] proposed to maintain the three components of work en-
gagement but consider it independently from burnout and developed the self-
report measure Utrecht Worker Engagement Scale (UWES) [120]].

Other studies, suggest that the core components of work engagement were
actually vigor and dedication, while absorption seems more related to the con-
cept of flow [[119]].

Flow at work

The concept of flow was firstly introduced by the psychologist Mihalyi Csikszent-
mihalyi in the 1970s [32]], as an optimal experience characterized by “intense
focus and concentration” [32]].
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When individuals are in this state, they are totally involved in the activity and
nothing else seems to matter. Flow occurrence and characterization have been
studied in several domains, such as sports, gaming, and leisure activities [121};
92].

Based on findings of the previous studies, Bakker [26]] applied the concept of
flow to the work context. Bakker defined flow at work as “short-term peak expe-
rience at work that is characterized by absorption, work enjoyment and intrinsic
work motivation” [|26].

Absorption refers to the sense of total involvement in the activity. Intrinsic
motivation refers to the need of performing the work activity because of the
pleasure and satisfaction it elicits. Enjoyment, refers to the perceived enjoyment
during the pleasurable work activity [26].

A central element of the flow theory regards the balance between the task
difficulty and the ability of the individual to address it. The optimal state of flow
during activities is likely to occur when the challenges induced by the task at hand
are in optimal balance with the individual’s skills, opposite to when activities are
too easy (leading to boredom) or too difficult (leading to anxiety or stress) [[122;
121]]. Furthermore it has been observed that the experience of flow is more
likely to occur when both, challenge and skills, are above the individual’s average
experienced daily activities [121]].

Interestingly, researchers noted that flow is more likely to occur in work ac-
tivities rather than in leisure activities [[123]], maybe due to difficulty for indi-
viduals to create challenging situations that require matching skills in the free
time [[123]]. For a comprehensive description of the advances in flow research
with refer to [[92]].

In the following section we describe how the state of flow has been charac-
terized from a physiological point of view.

2.1.4 Psychophysiology of flow

Initial studies measuring flow used retrospective methods such as self-reports.
More recently, researchers in psychophysiology started investigating potential
physiological indicators of flow [[1} [118]]. A comprehensive overview of existing
literature in psychophysioloy of flow is presented in [[1]].

The exact connection between physiological parameters and flow during daily
activities is still debated. However, based on the challenge-skill balance pre-
requisite for the flow experience, from a physiological perspective, flow has been
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Figure 2.3. Diagram describing the inverted-U connection between the flow
experience and the peripheral arousal as proposed in [I].

often linked to a moderate level of arousal, neither too high (as stress or anxiety)
or too low (as boredom or relaxation) [118]].

Based on existing literature, Peifer describes the experience of flow as char-
acterized by “optimized physiological activation” [[1]]. Despite the different phys-
iological demands that different activities might request, Peifer identifies a com-
mon “ground” for the phsyiological activation happening during flow: “the full
concentration of all body functions to the given activity and the down regulation
of all functions that are irrelevant for task fulfillment” [[1]].

According to Peifer, the “optimized physiological activation” [[92]] corresponds
to a “moderate peripheral arousal following a U-shaped function of activation”
as schematically represented in Figure

Electrodermal activity and cardiovascular activity are in general the most
used physiological parameters originated from the peripheral nervous system
considered in psychophysiology studies of flow [[124; 118} [125]].

Very low or very high cardiovascular activation corresponds respectively to
relaxation or stress states. Thus, according to the model proposed by Peifer, the
optimal state of flow should generate cardiovascular reactions that lie between
the two [[1]]. On the same line, the mental effort generated during flow should be
lower to the one during stressful conditions, thanks to ability of the individual
to deal with the challenges introduce by the task. This corresponds to lower
physiological arousal (and consequently reduced EDA responses) during flow
compared to stressful situations, however the challenges introduced by the task
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will nonetheless activate the sympathetic nervous system and thus generating
higher EDA responses compared to relaxation [[1]].

While the model proposed by Peifer [[1]] is grounded on existing literature,
the exact relation between physiological parameters and flow is still not certain.
For instance, while studies have confirmed the Peifer’s observations [[125/], others
have instead found a linear relation between flow and peripheral arousal [[126]].

Motivated by previous research, in this thesis we investigate the role of phys-
iological parameters as electrodermal activity and cardiovascular activity, to au-
tomatically recognize flow at work. However, we take a data-driven “bottom-up”
approach based on machine learning that could allow discovering new unknowns
and complex relations between physiology and flow as also discussed in [[47]].

Engagement Measurement Methods

Manual Automated

Sensor-free

Self-reports Sensor-based

ESM

Observations and
rating scales

Interviews

Engagement tracing

Facial expressions

Gestures, postures,
movement

Physiological

activation

Multi-modal
expressions

Figure 2.4. Taxonomy of engagement measurements methods.

2.2  Engagement measurements methods

Measuring engagement refers to the process needed for deriving information
about the individual’s engagement during an activity.

We divide the methods for measuring engagement in two main categories:
manual and automated. Methods belonging to the first category, often referred
to as as traditional methods, require manual effort from participants and/or re-
searchers. Manual methods are principally used in organizational psychology
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and educational research [[95} 92]].

Methods in the second category refer to strategies mostly adopted in HCI
research, that could be integrated in computer systems [[127; 24} 12} 28] and
require little or no input from the individual.

Given the focus of this thesis on students and knowledge workers, we mostly
report methods for measuring the engagement of these populations.

The main manual methods for measuring engagement are: self-reports; ex-
perience sampling; observations and rating scales; and interviews. We divide
the automated measurements methods in: sensor-free, and sensor-based meth-
ods. For conducting the studies presented in this thesis, we adopted automated,
sensor-based methods. Figure shows a schematic representation of the cat-
egories of existing measurements methods for engagement as considered in this
thesis.

2.2.1 Self-reports

Self-reports survey measures are one of the most used traditional methods for
obtaining subjective information.

This method has been largely used to measure students and workers’ engage-
ment [[95];[92; [128]]. It has been widely adopted to assess students’ engagement
in classroom because it is easy and practical to administer in a classroom setting
at relatively low cost [[95]]. Students are generally asked to select the response
to items that reflects different aspects of engagement.

Self-reports enable the collection of students’ subjective impressions and per-
ceptions, differently from objective information derived from behavioral indica-
tors (e.g., lecture attendance, homework completion) [[95]. In the educational
context self-reports are particularly indicated for assessing emotional and cogni-
tive engagement since these aspects are not directly observable, and using other
methods that require an external observer (e.g., a teacher) are considered highly
inferential [[129]].

One limitation of self-reports is that students might not be honest in their an-
swers, especially under specific circumstance (i.e., if the teacher administer them
and in case the anonymity of the answers is not granted) [[95}; [127]] hampering
the possibility of getting valid measurements [[95; [129]]. Further, self-reports of-
ten contains items that do not reflect the particular context (e.g., the lecture)
but rather describe broader circumstances (e.g., “I work hard at school” [57]),
so their usage is limited when the goal is to measure engagement in relation of
contextual factors. Lastly, completing a self-report is often time consuming and
participants might not have time or willingness to answer to many questions.
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2.2.2 Experience sampling

The Experience Sampling Method (ESM), often also referred as Ecological Momen-
tary Assessment (EMA), is a widely used technique to measure human behaviour
in real-settings [[130]].

In ESM studies, participants are requested to provide answers to self-reports
multiple times per day reporting about their activities, emotions or other aspects
of their daily life [130].

The self-reports are usually provided in terms of answers to short, identical
questionnaires that are prompted on a device accompanied by a notification.
Initial ESM studies were conducted using electronic pagers or alarm watches.
For example, participants of the study presented in [[131]], carried an electronic
pager together with a paper questionnaire, and completed a paper form when
receiving the pager signal [131]].

Recently, advances in mobile technology and their widespread in daily life
have enabled new possibilities for ESM studies. Personal devices as smartphones
and smartwatches are now often used as promising and sophisticated platforms
for delivering self-reports [59]]. Utilizing the sensors embedded in these devices
is also possible to adjust the content and the sampling strategy based on the
sensed participant’s availability and context [59].

The ESM strategy is widely adopted in flow research [[92]]. Csikszentmiha-
lyi [32]] was one of the first recognizing the value of this method for measuring
flow during daily activities.

The ESM has been identified also as a valuable strategy to measure students’
engagement in the classroom [[95]] and workers’ flow during work activities [132;
128]]. The ESM allows researchers to collect measures of engagement in the
moment, reducing the recall failure typical of self-reports which are retrospective.
Further, ESM studies enable researcher to investigate patterns and variations of
engagement across time and situations [95]]. However, the ESM strategy requires
time and effort from participants, thus the success and quality of the method
highly depends on the compliance of the respondents.

Furthermore, it is important to consider a proper design of the ESM studies
when measuring engagement and flow, indeed with the ESM there is the risk of
interrupting the user during the activity causing the individual to leave the flow
state [[1]]. A possible solution to this problem consists in assessing flow right after
the activity [[1]].
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2.2.3 Observations and rating scales

Observational methods require external observers (either researchers or the teach-
ers in case of students’ monitoring) to “judge” how engaged individuals appear.

Observers are generally asked to complete checklists or rating scales to report

the presence or absence of specific behavioral indicators of engagement.

This method have been used to measure students’ engagement either at the
classroom or individual level [|95]].

Typical academic behaviors indicative of engagement during lectures are writ-
ing, answering questions, participating in classroom tasks [[95]].

One of the main advantages of the observational method is that it can provide
a detailed description of the contextual factors which occur when students’ are
or not engaged. However, this method is time consuming, and the reliability of
the measures depend on the proper training of the observer [95]].

Furthermore, even if this method can provide useful information about the
behavioral indicators of engagement, it is limited for the assessment of students’
cognitive and emotional involvement. The last two indicators are not directly
observable and students might have learned how to mask their emotions [[95]].

For instance, researchers, in initial studies on students’ engagement [133]],
observed that many students who appeared "off-task", in subsequent interviews
reported to be highly engaged, while students assessed as engaged where actu-
ally not thinking about the material presented during the lecture [[133]].

2.2.4 Interviews

The interviews are a less common method to measure students and workers’
engagement [[95]].

Interviews are typically structured or semi-structured with questions that are
pre-designed and participants are requested to provide answers in an open-ended
and not structured way [95]. This method allows to collect detailed insights and
information about the reasons behind possible variability of the level of engage-
ment as perceived by the participants. However, the good quality of the data
derived from the interviews, is impacted by the skills, bias and knowledge of the
interviewer. Further, the tendency of social desirability of the participants could
hamper the reliability of the answers.

All the traditional methods for measuring engagement have advantages and
disadvantages and their applicability depends on the particular context.
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In general, traditional methods are time-consuming, involve large manual ef-
fort and the quality of the data often depends on the researchers and the partici-
pants. Further, a key characteristic of engagement is that it is experienced during
the activity. Thus, developing methods for continuously and automatically mea-
suring engagement could enable a better understanding of the engagement state
as well as create systems and interfaces that can optimally respond to the user’s
engagement.

Recent advances in mobile and wearable technologies have enabled initial
progresses in the automatic measurement of engagement. In the followings we
describe the main automated methods for measuring engagement.

2.2.5 Sensor-free methods

The sensor-free method does not require the use of sensors for measuring engage-
ment.

This method consists in monitoring individual’s interaction with the computer
system to derive actions that are stored in log files. Information from log-files
are processed to derive information such as reaction time, performance and er-
rors [[134] which are then used to infer engagement. This method was mainly
used in initial studies on computer-based learning and intelligent tutoring systems
(ITS) [135]]. For example, the engagement tracing is a sensor-free method defined
in [[135] are widely used in ITS [127;[134].

The engagement tracing is often considered as a semi-automated method given
the indirect involvement of the student and the teacher in the process [[134]]. The
method for estimating learner’s engagement consists in evaluating the accuracy
and timing of learners’ responses to problems and practice questions [[135]]. For
instance, very short response times or random answers to easy questions can be
used as indicators of student’s disangagement using probabilistic inference [[135]].

Although this method is widely adopted, it requires the students to use in-
struments (e.g., the laptop) that enable the system to automatically calculate
the time and accuracy of the responses. Sensor-free methods are more suitable
for computer-based learning. Indeed, students attending lectures in classrooms
might not always use their computers making the log file information not always
available. Further, especially the engagement tracing method, requires the in-
structor to provide questions and exercises during the lecture which might not
always be the case during lectures.



35 2.3 Behavioral cues of engagement and sensors

2.2.6  Sensor-based methods

Sensor-based automated measurements methods consist in using data derived
from sensors (e.g., cameras, inertial sensors, physiological sensors) to measure
different modalities (e.g., face, body) to quantify behavioural expressions or cues
of engagement (e.g., facial expressions, body movement, physiological activa-
tion). Features extracted from sensors are used to describe the behavioural ex-
pressions of engagement. Features together with engament labels are used as
input the machine learning algorithms that allows to automatically determine,
the level of engagement.

In the following sections we provide a brief overview of the main behavioural
cues, sensors, labeling procedures and models adopted in the literature for the
automatic recognition of engagement.

2.3 Behavioral cues of engagement and sensors

Most of the existing approaches in estimating engagement [[136}; 137} [138;; |67]]
and particularly students [[127}; [12; 24} 34; [30]] and workers’ engagement [28;
45} 147}, |41]] rely on nonverbal behavioural cues of engagement such as: facial
expressions [[139}; 24]]; gestures, postures and movement [[140} [141(]; physiolog-
ical activation [[142}; [47]; and multimodal expressions [143]]. These expression
are either considered individually [127; 47]] or combined [24; [28; [41]].

In this thesis we mainly rely on physiological activation cue and on a partic-
ular multi-modal expression i.e., laughter.

Engagement theorists have identified two types of data that can be used to
measure engagement: internal to the individual and external observable fac-
tors [25; 24]. The first is more suitable when targeting affective and cognitive
components of engagement, the second for the behavioral one. Among the be-
havioural cues that can be quantified using sensors, the physiological activation
represents a good proxy for the internal factor, while the others are key com-
ponents of the external factor. In the followings we summarize the main be-
havioural cues used in the literature and how they have been quantified using
Sensors.
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2.3.1 Facial expressions

Researchers have hypothesized that facial expressions represent one of the main
cues for humans to judge the perceived engagement of others [127;134]]. Based
on this assumption several approaches for recognizing students’ engagement rely
on this modality [[134; [127; [24]]. For instance, McDuff et al. consider, as one of
the possible cues, facial expressions for workers’ engagement recognition [28]].

Cameras embedded in personal computers, mobile phones or positioned in
the classroom or in the office, can be used to record face images. These images
can be then processed with Computer Vision techniques to automatically derive
facial information that are then translated into expressions of engagement [[134]].
A comprehensive review of Computer Vision techniques for students’ engagement
recognition in online learning is presented in [[134].

Two main methods exist for the analysis of facial expressions: part-based and
appearance-based [[134]].

The part-based method refers to the range of techniques that focus on parts of
a face (e.g., eyes, mouth, nose, forehead, chin and so on) [[134]. A widely used
method for describing the parts of the face is the Facial Action Coding System
(FACS) proposed by Ekman et al. [144; [145]]. The FACS framework describes
facial expressions in terms of Action Units (AUs) which measure the action of
individual or groups of facial muscles [[144} [145]].

While measuring the AUs represents a descriptive analysis of behaviour, deriv-
ing facial expressions (e.g., frustration, happiness) is an inferential process [144;
145]]. For instance, happiness is often described as a combination of AU12 and
AUG.

Over the years, psychologists and neuroscientists have widely used the FACS
for facial expression analysis. Currently, several computer vision-based systems,
such as the Computer Expression Recognition Toolbox (CERT) [[146], can recognize
accurately several AUs and provide their intensity.

For instance, Grafsgaard et al. [[139]] used the CERT system to track facial
expressions during computer-based tutoring. Authors observed that upper face
movements, including eyebrow raising (inner and outer), brow lowering, eyelid
tightening, and mouth dimpling, were predictors of engagement, frustration and
learning.

The CERT system was used also in [[127] for the automatic assessment of stu-
dents’ engagement in online learning as perceived by observers. Authors found
that among the most discrimitative features, the AU10 (upper lip raiser), was
positively correlated to perceived engagement while the AU1 (inner brow raiser)
and the AU45 (eye closure) — indicative of the student has tuned out or looking
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down away — were negatively correlated with engagement.

Techniques in the appearance-based category, extract features from the whole
face region [[134]] and analyze the changes in the face’s surface in static and dy-
namic space [24]]. Monkaresi et al. used a appearance-based method called
Local Binary Pattern (LBP) for texture description, part-based features and heart
rate measurements to determine when students were or not engaged in online
learning activities [24]]. Authors obtained the best engagement recognition per-
formance when fusing the channels [[24].

Alternative ways for measuring facial expressions could involve the use of
Electromyographic (EMG) signals which capture the electrical activity of mus-
cles through electrodes placed on the face [147], however this method is often
considered invasive. Alternatively, recently there is a growing interest in using
inertial sensors embedded in earables such as the eSensd?], to measure facial mus-
cle movements and consequently facial expressions [148]].

2.3.2  Gestures, postures and movement

Researchers postulate that the cognitive processes are constrained by the en-
vironment and by the coupling of action and perception. Thus, cognitive and
affective states are expected to be manifested in the body language [[149]].

Observable expressions such as head or hand gestures, body postures and
movement, provide important hints of non-verbal communication and mental
states and can be used for engagement detection [[134; [150; [28}; [151]].

Depending of the type of gestures and parts of the body involved, gestures
and postures can be quantified using sensors as cameras [[134]], depth cameras as
Microsoft Kinect [28]], inertial sensors — accelerometer (ACC), gyroscope (GYRO)
—embedded in wrist-worn wearable devices or earables, or using textile pressure
sensors embedded in the chair to measure body weight and weight changes [150;
149]).

Body postures in case of students and workers have been mostly monitored
when subjects were in a seated position [28;[140]], due to these individuals spend-
ing most of the time of their activities seated on a chair. When highly engaged
in a task, a worker or student could be expected to have a upright posture, in
contrast to a slouched posture typical of a disengaged person [28]].

In this direction, D’Mello et al. equipped a chair with a Body Pressure Measure-
ment System (BPMS) and investigated how body postures impacted the engage-

2https://www.esense.io/
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ment recognition while participants interacted with the AutoTutor system [[140]].
Authors found that the flow state was associated with minimal movement on
the chair and heightened pressure on the seat. This indicates that when learn-
ers are mentally focused on a task, they do not spend large amount of cognitive
processes in trivial body motions. Further, when in flow, individuals tend to get
closer to the source of stimulation (i.e., shorter distance between the nose and the
screen). Authors also found that boredom was manifested by a higher pressure
on the back of the chair, suggesting learners leaning back and detaching from
the learning environment. Rapid changes in pressure were also found during
boredom, indicating learners fidget when they are mentally disengaged from the
tutor [[140]]. According to [[140], an advantage in monitoring body postures for
determining engagement is that, in comparison with facial expressions and ges-
tures, these cues are unconscious and unintentional thus less affected by social
editing.

Head and hand gestures are also relevant proxies for recognizing engage-
ment or disangagement [[134]]. For instance, hand over-face gestures have been
observed to be highly prevalent in online learning settings and they seem to rep-
resent a relevant proxy for understanding learner’s affective states such as focus
or boredom [152; [141]]. For instance, Grafsgaard et al. [[152]] observed one-
hand-to-face and two-hands-to-face gestures were respectively associated with
reduced frustration or focus.

Methods for recognizing gestures indicative of active participation, and con-
sequently engagement, such as hand raised, have been also investigated in [153}
154].

Researchers have also explored the role of movements (e.g., movement of
the head [[I151]], eye [[134], and body [[155]) in the detection of workers [[155]]
and students’ [I51]] engagement. For instance Ara et al. [[155]] used continuous
sensing of motion rhythms derived from a 3-axis acceleromenter embedded in
work badges, to quantify flow experience at work. Authors found that the mo-
tion rhythm around 2-3Hz was moderately correlated with flow experienced at
work [[I55]].

2.3.3 Physiological activation

Researchers have frequently connected engagement to an increased level of arousal
or alertness and used central and peripheral physiological responses to measure
it [[24} 67; [156} [137]. Physiological responses are very hard if not impossible to
control by humans and provide an internal indicator of engagement, thus they
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are suitable for measuring emotional and cognitive components of engagement.

Existing approaches relying on physiological parameters to recognize engage-
ment often use wearable physiological sensors to quantify the brain [[157}; [158]],
cardiac [[24; [12]] and electrodermal activity [[159}; [12]].

Brain activity

Measurements of the brain activity obtained using electroencephalogram (EEG)
have been used for measuring cognitive engagement [[137} [156; [157]]. Using
electrodes placed on the scalp, the EEG measures the ionic current of neurons of
the brain. An “engagement index” derived from EEG has been proposed in the
literature [[160]].

The engagement index is a combination of neural oscillations at different
frequencies that reflects “visual processing and sustained attention” [[157]]. For
more details about the engagement index, we refer to [[160]. The index has
been used to measure audience [[158] and learners’ engagement [[156/] and to
log engagement during work tasks [[157/]]. Common devices used for measuring
the brain activity are brain headsets such as the Emotiv Insights’}

Cardiac activity

The activity of the cardiovascular system is regulated by interplay of the two
branches of the Autonomic Nervous System (ANS), i.e., the Sympathetic Nervous
System (SNS) and the Parasympathetic Nervous System (PNS) [[103};[161]].

The cardiac activity can be quantified using parameters such as the heart rate
(HR) and the heart rate variability (HRV) i.e., the variation between beat-to-beat
intervals.

For instance, during stressful or arousing conditions the SNS increases the
HR that is then brought back to normal by the PNS in the resting condition. The
HRV measurements are often used to quantify the interaction between the two
branches of the ANS, for instance, an increased/decreased HRV is indicative of
an increased/decreased activity of the PNS and SNS respectively [[103; [161]].

The main physiological measurements for cardiac activity are the electrocar-
diogram (ECG) and the photoplethysmogram (PPG). The first captures the elec-
trical activity of the heart by placing electrodes on the skin. The PPG data, also
known as Blood Volume Pulse (BVP) is obtained using an optical method.

Devices often used for recording cardiac activity for students and workers’
engagement are chestbands [[47]], wristbands [[12]], and ear clip [41]]. Cameras

3https://www.emotiv.com/insight/
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Figure 2.5. Example of the BVP signal we collected using the Empatica E4
wristband.

have been also used to derive heart rate measurements using computer vision
techniques [24]].

In the studies presented in this thesis we collected the BVP signal, with a
sampling rate of 64Hz, using the E4 wristband equipped with a PPG sensor.

The BVP indicates changes of the blood volume in the peripheral blood ves-
sels [[162]]. The raw BVP can be used to monitor changes in the blood volume
and consequently characterize the cardiac activity. Since the size of the blood
vessels is controlled by the SNS, the BVP has been widely used as measure of
sympathetic arousal [[163; 164} [165/]. The BVP signal can be used also to derive
measures of heart rate and heart rate variability.

Indeed, the HR and HRV can be calculated from the time intervals between
peaks (or valleys) in the BVP referred to as inter-beat-interval (IBI) [[162]]. The IBI
is often referred to as RR interval (the R letter is used in relation to the R-peaks
of traditional ECG signal) or NN interval (the letter N is often used for indicating
“normal” RR intervals, i.e, intervals that are free of artifacts and represent normal
cardiac timing).

Significant points of the BVP signal, often used to derive the IBI, are the di-
astolic, i.e., local minima, and the systolic, i.e., local maxima, points. The differ-
ence between the diastolic and systolic points, corresponding to the difference in
terms of the PPG reflected and absorbed light between the most and least oxy-
genated blood conditions, can be used for estimating the vasoconstriction of the
individual. Figure shows an example of the BVP signal we collected.

Several features have been proposed in the literature to quantify the cardiac
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Figure 2.6. Example of the EDA signal (top) and its tonic (center) and phasic
components (bottom).

activity [76}; (77} [78; [79]).

Examples of features describing the HRV in the time domain are: the mean of
the RR intervals and its standard deviation (SDNN), the standard deviation of dif-
ferences between adjacent RR (SDSD), the square root of the mean of the sum of
the squares of differences between RR (RMSSD). The IBI is often also processed
in the frequency domain using methods such as the Fast Fourier Transform (FFT),
from which the Power Spectral Density (PSD) is estimated. Typical frequency-
domain features are: total spectral power of all RR samples in the 0.05-0.15Hz
— low frequency (LF) — , between 0.15-0.5Hz - high frequency (HF) — and the
ration between the two (HF/LF).

Features representing the HRV in the temporal and frequency domain have
been used for recognizing students [[24; [12]] and workers’ [45;[47]] engagement.
For instance Rissler et al., found that the HF/LF ratio, representative of the auto-
nomic balance [29]], was the most discriminative feature for distinguishing low
from high levels of flow experienced by workers [[47].
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Electrodermal activity

The electrodermal activity (EDA) also known as galvanic skin response (GSR) broadly
refers to changes of the permeability of the skin due to the eccrine sweat glands
activity [35]]. The EDA is frequently measured in terms of skin conductance
(SC) [71].

The activity of the eccrine sweat glands is regulated by the Sympathetic Ner-
vous System (SNS), thus EDA signals are considered as a direct measure of the
SNS and thus of the physiological arousal [35]].

Given its connection with alertness and arousal, the EDA signal is a promising
proxy for measuring students [[12;[34]] and workers’ [28]] engagement.

The EDA signal can be measured using small electrodes placed on the skin.
Ad hoc sensors or wrist-worn devices as the Empatica E4 [58]] have been used
for collecting EDA data with the goal of measuring students [[12]] and workers’
engagement [28]].

In the studies presented in this thesis we used the E4 wristband to collect EDA
data. The E4 measures the electrical conductance of the skin thanks to a small
current passing between two dry electrodes positioned on the skin. The E4 uses
a sampling rate of 4Hz for EDA measured in microSiemens (uS).

The EDA is characterized by Skin Conductance Responses (SCRs), whic are
signal’s peaks occurring in response to stimulus and are indicative of the SNS
activity [I35]]. The SCRs have a peculiar shape, consisting in a steep increment to
a peak and a consequent exponential decay. The SCRs typically lasts 1-5 seconds
and have an amplitude of at least 0.01(uS) [35}; 68]].

It is common practice in the literature to decompose the EDA signal, to which
we often refer to as mixed-EDA, into its tonic and phasic components [35}; 67;
166/]. These two components differ for timescale and relationship with the stim-
uli [71]] and they can thus be used to infer different information from the EDA sig-
nal. More precisely, the tonic component corresponds to a slowly varying signal
and it is characterized by one-minute scale fluctuations [[167]]. The phasic compo-
nent is superimposed to the tonic one and it is characterized by rapid changes and
spike-like features [[166]]. The phasic component is related to stimulus responses
connected to novelty, significance and generally attention. The tonic component
is instead connected to general alertness and physiological arousal [[168]]. Fig-
ure shows an example of an EDA signal we collected using the E4 wristband,
as well as the tonic and phasic components.

Statistical features, and features describing the SCRs are often extracted from
EDA and its components to describe the physiological and thus emotional arousal [|67}
68; [73};[74; [75]]. Examples of statistical features often used are: minimum, max-
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imum, mean, standard deviation, dynamic range (i.e., difference between max-
imum and minimum). Features as the mean and standard deviation of the first
and second derivatives of the EDA signal are often computed to determine the
direction and amplitude of signal’s changes. Typical SCRs features used are:
area under the curve, rise time, decay time, number of peaks, peaks’ width and
amplitude.

In this thesis we investigated the role of typical EDA features together with
a set of theoretically-motivated features that we proposed, in the recognition of
students’ emotional engagement during lectures. More details are presented in
Chapter

Further, we investigated fusion strategies based on EDA and BVP signals, to-
gether with context, to recognize workers’ flow state during work activities. More
details are presented in Chapter

2.3.4 Multi-modal expressions

These type of expressions involve the concurrent interaction of multiple modali-
ties such as physiology, face, body, voice.

Examples of multi-modal expressions connected to engagement or the lack
thereof and investigated in the classroom or during work activities (e.g., meet-
ings) are laughs [[169; [170]] and yawns [[143; [171]]. To detect these expressions
multiple sensors (e.g., cameras, inertial sensors, physiological sensors) are often
involved. In this thesis we focus on the automatic recognition of laughter.

Laughter

Laughter is a multi-modal behavioral expression characterized by the combina-
tion of several body reactions. Humans express and perceive laughter in different
ways. However, laughter is naturally and universally recognizable from all indi-
viduals [[172].

Specific behavioural patterns make laughter easily identifiable, indeed a laugh-
ter episode (i.e., the whole multi-modal event related to laughter [[173]]) is char-
acterized by an onset, when the face suddenly change into a smiling-expression,
an apex, when the rhythmical exhalation and vocalization happen, and an offset,
the moment when the vocalization ends and returns to a smile [[172]]. In addition
to the vocal and facial expression generated during laughter episodes, physical
and physiological reactions are expressed as well. However, their investigation
is under explored compared to the vocal and facial cues.
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Several body movements happen during laughter episodes. As reported by
Ruch and Ekman in [[174]], the movements related to the forced expiration during
laughter episodes, generate vibrations of the trunk and shaking of the shoulders
which could be captured using accelerometers either placed on the body or on
the extremities [[174]]. We refer to these movements as respiration-movements. In
addition to those, other idiosyncratic body movements not related to the respi-
ration, defined as full-body movement in [[175]], might be observed , e.g. “rocking
violently sideways” or “hands throwing” [[174]]. These movements are more ex-
pected during social interactions among group of people to express the intensity
of the emotional arousal [[175} [173]].

Very little is known about the physiological reactions generated during laugh-
ter. Ruch in [[176]] describes laughter as a behavioural indication of higher exhil-
aration and provides a physiological characterization of laughter episodes [[176]].

In particular, the author [[176]] underlines that “characteristic cardiovascular
changes and fluctuations in electrodermal activity (EDA) can also be observed
during laughter” [176]]. The author reports also acceleration of the heart rate,
diastolic and systolic blood pressure increments as well as changes in the periph-
eral blood pressure between laugh and smile [[176]]. He noticed that significant
changes in the EDA happens during laughter, however whether they come from
the respiration changes or not remains still an open question [[176]]. In general,
it seems that a humorous stimulus activate the Sympathetic Nervous System and
it is then measurable with electrodermal and cardiac activity [177]].

Based on what stated in the literature, we hypothesize that laughter can be
recognizable using the combination of physiological and respiration-movement
data. In this thesis we propose a novel method to recognize laughter based on the
combination of physiological sensors (EDA and BVP) and inertial sensors (ACC)
gathered from a wrist-worn device, more details are presented in Chapter [4

Even though researchers have widely demonstrated the validity of the above-
mentioned behavioural expressions for detecting engagement, it is important to
notice that the choice of the expressions to investigate and the sensors to use
depends on several factors.

Particular behavioral expressions might be expected in specific contexts and
not in others. For instance, in this thesis we consider laughter episodes as multi-
modal behavioural expression of engagement. However, this expression might
occur in situations in which social interactions take place [[178] (e.g., during
meetings, lectures) or during breaks, while it might be less likely that individuals
laugh while focused in a work activity. Thus, it is important to have information
about the context in which engagement is monitored in order for the measure-
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ment to be effective.

The choice of the behavioural cues depends on the component of engagement
to measure. In this thesis we focus on the affective component of engagement
and measure students’ emotional engagement and workers’ flow. Thus, we chose
to mainly focus on internal indicators of engagement and in particular on the
physiological activation cue.

Further, the choice of the sensors should be also guided by constraints of
the workplace and classroom in terms of ease of access, comfort level, unob-
trusiveness and social acceptance [[41]]. For instance, given the interaction of
the subjects with computers, computer’s frontal cameras could represent a valid
sensor to use in online learning for detecting individual students’ facial expres-
sions or even physiological parameters. However, having an always-on cameras
in contexts such as classrooms or offices can be considered privacy invasive as
discussed in [41} [158]. For instance, many institutions do not allow cameras
to be used in classrooms and students who are not part of the study, or are not
willing to be monitored are difficult to exclude from the recordings [[179]].

EEG sensors or chest bands are often considered not socially acceptable or
uncomfortable, thus requiring subjects to use these sensors for prolonged time
might cause individuals to drop the study or stop using the system.

In this thesis we use physiological signals (EDA and BVP) and inertial sen-
sors (ACC) gathered from an off-the-shelf wrist-worn device. This device, is not
invasive and being a watch-like device could be more acceptable by e.g., stu-
dents [[180]]. Further, with this device, we do not connect engagement recogni-
tion to specific environment or task.

2.4 Engagement labeling methods

The main methods for gathering labels about students and workers’ engagement
during activities consists in using ESM and external raters. Methods for gathering
labels (or ground-truth) are grounded on the traditional methods for measuring
engagement presented before. Cognitive signals could be also used for deriving
engagement labels. In the followings we provide a brief overview of engagement
labelling methods used in the literature.
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2.4.1 Engagement labeling using ESM

The ESM is generally used when the goal is to assess the engagement as perceived
by the individual. The ESM is based on the assumption, that being engagement
a subjective experience, the best way of getting ground-truth about individual’s
engagement is by directly asking the subject itself. This method is also more
suitable when the goal is to determine the affective or cognitive components of
engagement since they are not directly observable [95].

The ESM questionnaires can be triggered during the activity (concurrent re-
ports) or at the end of the activity (retrospective reports) [[181l]. For instance,
Monkaresi et al. [24]] sent auditory probes every two minutes during a writing ac-
tivity, for asking students to verbally report about their level of engagement [24].
The proposed method allows to get a fine-grained labels and could be benefi-
cial for building precise real-time engagement models. However, this method is
highly invasive and might distract the individual causing her to leave the engage-
ment or flow state [92;41]]. Sending the questionnaire at the end of the activity
can overcome this problem, however being retrospective, this approach might
suffer of “recall bias” [[182] i.e., participants could report their engagement in-
accurately. The ESM questionnaires for collecting labels are often prompted on
a device such as smartphone or laptop, or using a paper form.

Recently, Situated Self-Reporting (SSR) devices have been proposed as alter-
native tools for collecting self-reports in situ [|63]]. According to the definition
provided by Paruthi et al. [[63]] a SSR device is a “situated device intended to
be placed in a location to optimize user’s self-reporting efficacy”. In contrast to
smartphones or laptop, SSR are often single-purpose devices, and their design
should guarantee a minimized access time and fit with the study’s context and
physical environment [|63]].

In general, the ESM strategy is often used when user studies are conducted
in real-settings as during actual lectures in classroom as in [34; [12]] or in the
workplace as in [47], while external raters are mostly involved when targeting
laboratory settings especially during simulated learning activities as in [[127].

2.4.2 Engagement labeling using external raters

The external raters method is based on the traditional observations and rating
scales method. The external raters method consists in asking human observers
to watch recorded videos of subjects performing a task and assign an engage-
ment score based on their estimation of the subject’s engagement or attention
level [[127; [171]).
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Guidelines are often provided to the raters for determining the level of en-
gagement, for instance Whitehill et al. [[127]] provided the following guidelines
to the observers considering: Not engaged at all - e.g., looking away from com-
puter and obviously not thinking about task, eyes completely closed. Nominally
engaged — e.g., eyes barely open, clearly not “into” the task. Engaged in task —
student requires no admonition to “stay on task”. Very engaged — student could
be “commended” for his/her level of engagement in task. X: The clip/frame was
very unclear, or contains no person at all [[127]].

The external raters method is more suitable when the goal is to develop a
system able to quantify the engagement as perceived by others (e.g., similar
to a teacher that “judges" the students from how engaged they appear) [127].
However, methods involving observations are highly inferential [95]], lack of
the “learner’s perspective” [181]], are expensive and impractical in large settings
(e.g., when classrooms with multiple students are monitored).

2.4.3 Engagement labeling using cognitive signals

Cognitive measurements derived from physiological signals as EEG could be also
used as alternative methods for generating labels about engagement as done
in [137]] for modeling user’s engagement with the smartphone [[137]].

The EEG-based engagement index introduced before and proposed in [[160]]
could be for instance used for this purpose. The main advantage of using cog-
nitive signals stands in the possibility of gathering a continuous assessment of
engagement without interrupting the flow of the task in which the user is in-
volved in. However, in the context of lectures the usage of EEG headsets could
be considered invasive by students, given the uncommon usage of these devices
in everyday life, students could have perceived them as unnatural. Similarly, in
the workplace context, the usage of the EEG headset might be inconvenient for
prolonged data collection.

However, the use of cognitive signals could be beneficial for benchmarking
the engagement during short and specific work activities (e.g., short coding ses-
sions), in which the user could feel more comfortable in wearing the device.

In this thesis we use the retrospective ESM strategy. Specifically, we use val-
idated questionnaires sent at the end of the activity to get labels about engage-
ment. We chose this strategy due to the focus on the affective component of
engagement as perceived by the individual (i.e., the student and the worker),
to not interrupt the individual during the activity, and since we conducted user
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studies in real-settings where multiple people were monitored concurrently (i.e.,
multiple students in classrooms).

To collect labels in our “in-the-wild” studies we used paper forms, we de-
signed and developed a smartphone application, laptop widget and a SSR device
called Devo. Details about the methods we used are described in details in Chap-
ter

2.5 Engagement modeling

Refers to the creation of models that map features into engagement labels. Ma-
chine learning (ML) algorithms are used for this purpose.

2.5.1 Machine learning algorithms for modeling engagement

One categorization of ML algorithms refers to the amount of supervision needed
by the algorithm, this divides the strategies in: supervised, unsupervised, semi-
supervised and reinforcement learning [[72].

In this thesis we focus on the supervised approach. In supervised learning, the
data set consists in a set of labeled instances {(x;, yl-)}ll.\’: , Where the element x; is
a feature vector.

Each dimension j = 1,..., D of the feature vector contains a value called fea-
ture (xU)). For instance, if each example in the data set describes the physiologi-
cal activation of a student during a lecture, the first feature x(*) could correspond
to the number of EDA’s SCRs generated by the student during the lecture. If the
label y; belongs to a finite set of classes {1,2,..C}, e.g., {engaged,non_engaged}
used in [24]], the learning problem is called classification. While, if the label is
a real number, e.g., an engagement score used in [[12]], the learning problem is
called regression [[72]).

To the best of our knowledge, supervised learning is the prevalent method
used in the literature for targeting the students’ and workers’ engagement recog-
nition problem [24; [47; |41}; [24; 28}, [171; 125127 [183]].

Most of the existing studies target the problem as a classification task [[24;
4751415 [24; 28 [171]], either binary classification [[24; |47; 28] — as yes-or-no phe-
nomenon (e.g., engaged vs non-engaged) [24] or low-high levels [47; 45} 28]
— or multi-class classification — as multiple levels (e.g., low-medium-high) of en-
gagement [[171]] or engagement against other affective states as stress or bore-
dom [[41]] —. Few studies used a regression strategy [[12; [127}; [183]].
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Figure 2.7. Traditional machine learning (top) and end-to-end deep learning
(bottom). The figure is adapted from [2].

In this thesis we target the engagement recognition as a classification task.

We consider another categorization of ML algorithms: traditional machine
learning and end-to-end deep learning as in [[2]] and summarized in Figure

In traditional machine learning, features are explicitly engineered by the hu-
man expert and the algorithms usually have a shallow structure, i.e., the param-
eters are learnt directly from the training samples’ features [72]]. In particular, in
traditional machine learning the feature extraction and model construction are
performed in a separate manner.

Examples of shallow learning algorithms adopted in engagement recognition
are Support Vector Machine (SVM) [[72]] used in [45]], and Random Forest (RF) [[72]
used in [47].

One advantage of traditional ML methods, consists in the interpretability of
the feature space. Indeed, traditional ML methods allow, using techniques such
as features selection or feature importance, to determine which are the most
discriminative features that lead to a particular output (e.g., engagement lev-
els). Knowing which are the most relevant features for solving a specific prob-
lem, could allow to build the trust of the user with the system. For instance, a
worker can better understand what are the important information, and in turns
behaviours, that often lead her to be disengaged. Researchers could better un-
derstand and describe the phenomenon of interest.

However, the process of transforming sensor data into useful features for en-
gagement recognition, requires several steps (i.e., pre-processing, features ex-
traction and features selection) which are often time consuming and demanding.

Instead of relying on hand-crafted features, end-to-end deep learning uses
data representation learning, and transforms data into abstract representation
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enabling features to be learnt directly from raw sensor data [2]]. In deep learn-
ing the emphasis is put on “learning successive layers of increasingly meaningful
representations” [31]] holding the potential of discovering new patterns in data
previously unknown.

Deep learning models enabling these layered representation are called neu-
ral networks (NNs) [I31]]. A layer can be considered as a “data-processing mod-
ule” [31]].

Different types of layers and networks exist and their choice and success de-
pends on the task to solve. Examples of NN, which we use in this thesis, are
the Convolutional Neural Networks (CNNs) [31]]. CNNs use convolutional layers
specialized in extracting spatial structures in one or more dimensions.

CNNs are widely used features extractors for various data sources (e.g., im-
ages, text, time-series) [[184]], CNNs are particularly suitable for capturing local
dependencies and translation invariant features in the data [43]]. CNNs with
multiple layers allow representation modularity, initial layers extract low-level
and simpler features directly from the raw data, going deeper in the network
the extraction of more high-level features is obtained [43]]. Typically used for
images, CNNs have been also successfully used for processing sensor data (1D
structure) in the Human Activity Recognition [[185} [186/] and Affective Comput-
ing [36]] fields.

Temporal dynamics in sequential data (e.g., video, audio) can be exploited
using layers as Long Short Terms Memory (LSTM) [31]] and Recurrent Neural Net-
works (RNNs) [31]]. These methods are also widely used for affect and activity
recognition [[185}; [36]].

In the context of students’ and workers’ engagement recognition, deep learn-
ing methods [[187}; [188}; [189]] are less investigated compared to the traditional
ML ones [28; [45}; [47; 141}; [24; [127}; [12]]. Few recent approaches [[187}; (188} [189]
applied deep learning methods to image and video data to recognize students’
engagement in e-learning environment. These approaches use the Dataset for Af-
fective States in E-Environments (DAISEE) presented in [[190]] which became also
part of the Emotion in the Wild (Emotiw) challenge [[191]]. In other contexts such
as engagement recognition during gaming [[192]] or in children interaction with
robots [30]] physiological signals in input to deep learning models have been
used.
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2.5.2  Multi-modal engagement recognition

As discussed before, engagement is a multi-dimensional construct and can be
expressed through different behavioural cues. This suggests that using a combi-
nation of different modalities, measured using sensors, to represent engagement
could improve the engagement recognition performance [[30].

In the Affective Computing field, it has been widely demonstrated that ex-
ploiting the complementary information provided by different sensors through
their combination can improve the affect recognition performance [29}; 36]].

Several solution for combining data have been proposed in the literature [36]].
Existing strategies allow to combine data at different levels, from raw data to
independent models [36].

Fusion strategies can be broadly divided in feature fusion and classifier en-
semble. The first refers to the combination of information extracted from the
different modalities to create a feature vector used in input to the classifier. In
the second case, the decisions took from independent classifiers, trained using
the information from a single modality, are merged in a unique decision [[193]].

In the classifier ensemble approach, it is important to train independent and
uncorrelated classifiers (i.e., using different algorithms or different features [[72]])
increasing the possibility of making different type of errors and thus increasing
the ensemble’s accuracy [66]]. The predictions of different classifiers can be com-
bined using a hard-voting or soft-voting approach [|66]. In the first case, the pre-
dicted class is the one that gets the majority of the votes, in the second case, the
class probabilities estimated by each classifier are combined with a statistic (e.g.,
mean, median) and the class with the highest probability is predicted [66].

The majority of fusion strategies adopted for students’ and workers’ engage-
ment rely on the use of hand-crafted features and shallow models [28}; 41} [12]].

The feature fusion strategy using shallow classifiers, often referred to as fea-
tures concatenation (FC) [[186]], is obtained by concatenating in a single feature
vector a set of hand-crafted features derived independently from each modal-
ity using sensor-specific processing techniques [[186/]. The FC is a widely used
approach, however it does not allow to exploit the complex relation that might
exist across different data sources at different levels [[42}; [186; 43]; 143]].

Deep learning presents a possible solution to this problem, allowing an au-
tomatic hierarchical construction of features within and across-modalities [186}
42]]. Deep neural networks allow additional flexibility in the development of
feature fusion strategies, allowing features automatically extracted from sensor
modalities to be merged at different stages [[193}; [44]].

In this thesis we use traditional ML for students’ engagement recognition, we
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use a feature-concatenation strategy for laughter detection, and explore different
fusion strategies based on traditional ML and end-to-end deep learning for work-
ers’ engagement recognition. More details are presented in Chapter 3] Chapter 4]
and in Chapter

2.6 Context definitions

The role of context in the design of responsive computer systems have been widely
investigated in the fields of Human-Computer Interaction (HCI) and Ubiquitous
Computing (UbiComp). Context-aware sytems, are a category of computer sys-
tems that adapt to context by changing their behaviour according to the “sensed”
context.

The central premise for investigating context is to mimic the interactions
among humans. When communicating, humans are indeed capable to convey
information and appropriately react. This capability is mainly due to the rich-
ness of their language and the “implicit understanding of everyday situation”,
or context. Thus, giving systems the ability to recognize and respond to context
could improve their interactions with humans [27]].

Several definitions of the term context exist, in this thesis we rely on the
widely used definition provided by Dey et at al. [27]]:

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications
themselves.”

In other words, according to the authors, any information that can character-
ize the situation of the entity is considered as context. In this thesis we consider
as entity the users of the engagement-aware system, i.e., students and workers.

The authors argue that primary context types important to consider for de-
scribing the situation are the location, time, identity and activity. [27]].

In this thesis we focus on activity and time context types referring to the work-
place. The activity describes what is occurring in the situation and in particular
what the user is doing, the time refers to when it is happening. In the followings
we provide definitions of workplace activities as well as briefly describe existing
methods for automatically recognize them.
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2.6.1 Workplace activities definitions

Human activities involve the movements of one or several parts of the body and
have an inherent hierarchical structure [[48]].

According to Zhang et al. [48]] human activities can be considered in terms of
a three-level categorization. At the bottom the authors place the atomic actions
at the limb level performed by a specific part of the body (e.g., arm, hands, upper
body). An example of a atomic action is “rising the left hand”.

In the second level, the authors consider the actions. The term action refers to
whole body movements composed of several atomic actions in sequential order
by a single individual with no objects involved. Examples of actions are “walk-
ing”, “running”.

In the upper level, interactions, are human activities that involve either two
or more people, or objects. An example of interaction is the “cooking” activity
which involves a single (or multiple) person(s) interacting with object(s) (e.g.,
pots and pans).

In this thesis we consider human activities at the upper level and use the term
interaction and activity interchangeably. We focus on recognizing workers’ activ-
ities in the workplace, and in particular we aim to distinguish between work and
break activities. During these activities people interact with different object(s)
(e.g., laptop, books, pens) and with different people (e.g., colleagues).

For the definition of work activity or task we rely on the one proposed by
Meyer et al. [[52]], which describe a work task as a: “well-defined work assignment
with a specific goal that people divide their work in” [[52]]. Examples of work activ-
ities, according to the authors, are fixing a code bug, or preparing for a meeting.

Knowledge workers are often responsible for managing and self-organizing
their work, thus it is important to consider a work task in terms of how workers
divide the work day. Further, as also pointed in [53]], knowledge workers use
different digital and physical tools for performing their task and do not think
about their activities in terms of the type of application they use. Indeed the same
application can be used for different purpose. Thus not making assumptions on
what tools or devices define work activities is an important aspect to consider.

In this thesis we further investigate the role of the type of work activities in the
assessment of workers’ flow. Different categorization of type of work activities at
different granularities have been investigated in the literature [[194} 61} 53} 52]],
in this thesis we refer to a set of activities identified in [[194]] and in [[61]] which
are also common to the ones identified in [|53; [52]] such as meeting, learning,
read /write, planning, email, coding, research project, other.

Despite the broad consensus on the existence and benefits of breaks, there is
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no a single definition for breaks [[195]].

In contrast to external and internal interruptions [[196]], which are not trig-
gered or desired by the user, work breaks can be considered as “moments in which
workers voluntarily pause their work” [[195]]. The term work break comprises of
a large amount of different activities [[195]] which vary across individuals [[195]
and do not necessarily imply the user to leave her workstation [[197]].

Recently, work breaks for knowledge workers have been divided in digital
breaks (e.g., watching videos, visiting social media website, consulting news) and
physical breaks (e.g., activities which involve physical activities such as walking,
going to take a coffee, doing physical exercises) [3; 51]]. The benefits of both
types of work breaks have been widely proved. Physical breaks allow workers to
interrupt sedentary work and consequently improve their physical health, while
digital breaks can increase productivity and reduce boredom [[195}; [3[].

In the following section we provide an overview of existing automated meth-
ods, proposed in the literature, for the automatic recognition of activities in the
workplace.

2.7 Activity recognition in the workplace

Existing approaches on activity recognition in the workplace rely on automated
methods. We divide existing works in: sensor-free and sensor-based methods.

Sensor-free

Most of existing work aiming to characterize knowledge workers’ activities rely
on computer interaction data [61; 52; 50; 53]]. These approaches quantify dig-
ital or online activities using a combination of computer interaction data and
ESM [61}; 52} 50; [53]].

Studies in this category relied on computer interaction data to quantify the
multi-task, task-switch behaviour [52]], or to connect the activity type to the per-
ceived engagement [[50]].

Data about the interactions of the workers with the computer and/or en-
abling devices (e.g., keyboard, mouse), are often collected using custom built-in
software as in [50} [61); [198}]; [52]] or using third party services as uLo such as
in [53]].

Typical information retrieved are mouse and keyboard activity, documents
opened, websites visited, application used [|53};/50;61); 28]]. Examples of features

4https://www.noldus.com/observer-xt/modules
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extracted, in a time window of few seconds [61], five [[53]] or 10 minutes [[50]],
are time spent on a given application (or category of application) as Facebook
(or social media category) [|50]], most used application (or category), number of
mouse clicks, number of spaces and backspaces from the keyboard [|53}; 50} 61]].

Features are used to analyze, using descriptive or inferential statistics, pat-
terns of workers’ behaviour with the aim of describing the work dynamics and
work fragmentation [|61]] or the connection with attention levels [[50]].

Approaches relying on computer interaction data, often use heuristics (e.g.,
time spent in a state higher than a pre-defined threshold) and characterize breaks
as moments in which computer inactivity or “idle state” (i.e., lack of interaction of
the user with the computer or devices) is observed as opposed to work activities
distinguished by lack of inactive moments [[61}; 3]]. Other approaches, considered
breaks as times spent interacting with applications related to social media, news
or shopping, hint for digital breaks [[51}; (199} 200]].

Type of work activities have been derived using the name or title of the ap-
plication or website in a segment and then mapped to high-levels categories us-
ing a pre-defined mapping generated with a semi-automated open-coding pro-
cess [61} 201]].

Few approaches, used computer interaction features and self-reported activ-
ities in input to machine learning models to automatically recognize the type of
work activity as defined by the user [53];52]].

Information about the workers’ current activity have been also retrieved by
personal calendars as in [28]] in particular for meetings.

Computer interaction data represent a valid proxy for quantifying online or
digital activities of workers. However, workers perform several activities that do
not strictly require the use of computers (e.g., take breaks, participate in meet-
ings, read books). Complementing digital information with data derived from
sensors could represent a promising solution to overcome this limitation.

We summarize below existing sensor-based approaches for recognizing activ-
ities in the workplace.

Sensor-based

Sensor-based methods for the recognition of activities in the workplace rely on
data gathered from sensors such as cameras [[54; [51], microphones [54], RF-
radar [|55]], accelerometer [[56;[202]] and bluetooth beacons [56].

Features derived from sensor data are then used to represent cues such as desk
presence, conversations, gestures and movements. These features are then pro-
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cessed using pre-defined heuristics [[56} (51]], statistical models [54]] or machine
learning models [55]] for the automatic assessment of activities in the workplace.

Several approaches aim to recognize static desk-work activities such as read-
ing, hand-writing, keyboard typing [202}; [55]]. Others focus on dynamic work
activities such as walking, climbing stairs and sitting-standing [202]]. Few exist-
ing approaches considered activities involving other people such as face-to-face
conversations [|54].

Most of the existing studies presented in the literature were conducted in lab-
oratory or controlled settings, in which researchers asked participants to perform
activities using a pre-defined protocol [202} [55]].

For instance, Avrahami et al. in [55]] explore the use of a RF-radar sensor
placed under the worker’s desk for the recognition of deskwork activities in an
experimental setting. The RF-radar sensor, equipped with several antennas, mea-
sures the strength of the signal reflected by the area above and generate a 3D
representation that authors mapped in a 2D image representation.

According to the authors [55]], the RF signal representation generated should
serve as hint for recognizing the gestures and the activities happening on the
desk. The authors used the image pixels intensity in input to shallow classifiers
and manage to recognize activities in the office such as reading, writing and eating
with accuracy in 83-95% range [/55].

Olivier et al. in [[54] used data derived from microphones, cameras, key-
board and mouse as input to Layered Hidden Markov Models to infer the type of
activity the user was performing. In particular, the authors used a two-layered
representation approach. In the first layers the authors used audio data to de-
rive particular office’s sounds (e.g., conversations, music, keyboard typing), and
video data as person detector, to infer the presence of one or multiple people in
the office. In the second layer of the model, the output of the first layer together
with features that characterized keyboard and mouse activity are used to de-
termine the higher-level activity the worker is performing. With their proposed
method, the authors distinguished among work activities such as phone conversa-
tion, face to face conversation, ongoing presentation, distant conversation, nobody
in the office, and user present [[54]).

The main sensor-based cues used in previous work for determining whether a
worker is taking a break, or not, are: absence from the desk [|56};51]] (sensed us-
ing cameras [51]] or Bluetooth beacons [[56]]), physical movement [[56] (assessed
by counting the number of steps).

For instance, Cambo et al. [|56]] designed and evaluated a break recommen-
dation system called BreakSense. To detect when workers were taking a break,
the authors used a combination of physical movement and distance from the
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desk. In particular, the authors used the receiver signal strength indicator (RSSI)
of Bluetooth beacons placed in the office to calculate the distance of the worker
from their room, and gathered physical activity information from Microsoft Band
2 wristband. Based on pre-defined heuristics, the BreakSense system identifies as
breaks moments in which the worker is far from the room and the physical state
changed to walking [I56]].

Kaur et al. [[51]] investigated the use of data derived from different sources
(e.g.., audio, video, computer interaction) to predict opportune moments for rec-
ommending breaks or transitions to another work task. In their implementation,
authors considered as breaks moments in which workers visited distracting web-
sites, hint for digital breaks and in which absence of data (video and computer
interaction data) was recorded, hint for physical breaks [51]].

Building upon findings presented in previous work, in this thesis we used data
gathered from personal devices (i.e., wristbands, smartphone and laptop) to cap-
ture different cues (i.e., physiological activation, physical movement, phone and
laptop usage). We extracted and concatenated features from these data sources
and used them in input to machine learning algorithms for automatically distin-
guishing between work and break activities. More details about the proposed
approach and the results we obtained are presented in Chapter [5]
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Chapter 3

Recognition of Students” Emotional
Engagement From Electrodermal
Activity Data

Students’ engagement is known to be a predictor of students’ learning progress
and academic achievements [25]]. Fostering students’ engagement is considered
one of the most effective countermeasures to prevent students’ drop out, disaf-
fection, alienation and low academic performance [57]].

Technology can play a fundamental role in understanding and reacting to stu-
dents’ engagement or lack thereof during lectures. An engagement-aware system
can provide students with information about their own level of engagement with
the goal of driving self-reflection and possibly behavioral changes. If information
about students’ engagement during lectures can be made available to teachers,
they can too self-reflect about their teaching performance, design and evaluate
methods to (re-)engage students.

To enable the creation of feedback systems to (re-)engage students, it is how-
ever necessary to first devise effective methods to recognize students’ engage-
ment.

In the study presented in this chapter we propose to recognize students’ en-
gagement using Electrodermal activity (EDA) data. EDA is a measure of indi-
viduals’ physiological arousal and, as extensively discussed in Section [2.I] and
Section it is considered as a valid proxy for measuring engagement [67;
34; [33].

While there exist several different definitions of engagement, in this thesis,
we consider the well-accepted characterization of students’ engagement as the
combination of behavioral, emotional and cognitive engagement [[95]]. We then
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focus in particular on the emotional engagement — to which, for simplicity, we
also refer to as engagement in the rest of the chapter. Emotional engagement
is linked to students’ affective state and is connected to emotional reactions to
teachers [57]].

To address the engagement recognition problem, we built upon literature
from educational research and identified three components of emotional engage-
ment: momentary engagement [|87], emotional arousal [|89] and reaction to the
teacher [|88]]. We then derived and proposed a set of features from EDA to repre-
sent these components.

Further definitions of emotional engagement and the considered components
are also provided in Section 2.1

In contrast to existing work — which considered the recognition of students’
engagement in e-learning contexts or in laboratory settings [[24; [127]] — we focus
on the learning activity of attending lectures and monitored actual lectures in
classroom setting.

Few studies examined student engagement during lectures in the classroom [[33;
34;[179]. Fujii et al. [179]] used a camera to record students during lectures and
assess their engagement based on their head pose. However, as also reported
by the authors, this system has significant privacy issues, especially for students
that are not willing to be monitored. To overcome this problem, we proposed to
collect EDA data using unobtrusive wristbands.

In contrast to cameras as used in [[179], collecting data using wristbands en-
sures data to be gathered only from students willing to be monitored. Further,
being lightweight and unobtrusive, wristbands do not limit students’ movements
allowing them to perform natural learning activities as taking notes. The au-
thors of [34]] and [33]] used wearable EDA sensors to measure students’ engage-
ment. However, these approaches used simple sensor data representation (i.e.,
statistical features), and performed statistical analysis only. With respect to these
works [133}; [34]], we collected a larger and more heterogeneous data set, derive
a set of theoretically-motivated features and design a machine learning pipeline
to automatically recognize students’ engagement.

In the study presented in this chapter, we distinguish between engaged and
non-engaged students, we ran an extensive analysis to evaluate the impact of the
different features on the assessment of engagement. Our results show that non-
engaged students can be identified with high reliability. Using a Support Vector
Machine, for instance, we achieve a recall of 81% — which is a 25 percentage
points improvement with respect to a Biased Random classifier. Features related
to the momentary engagement — computed using a method we proposed — re-
sulted the most discriminative ones.



61 3.1 Related work on sensor-based engagement recognition

To evaluate our approach we collected the Student Engagement Using EDA
(SEED) data set, which — after data cleaning — contains data from 24 students,
9 teachers, and 41 lectures. At the time it was collected (2017), this data set
was the largest and most diverse data set collected in-situ during lectures using
unobtrusive physiological sensors.

The study presented in this chapter targets the first research question of this
thesis, (RQ1: How can features representing behavioral expressions of engagement
be derived from physiological and movement data?). The results of the presented
work have been published as journal paper [|A]] in the PACM IMWUT (September
2018). Part of the text written in this chapter is reported from the paper [Al].

The reminding of this chapter is structured as follows. We summarize existing
literature in engagement recognition in Section In Section we describe
the data collection procedure of the SEED data set. Section [3.3|and Section 3.4
provide an overview of the data analysis and a discussion of the results. In Sec-
tion and in Section we discuss the implications and limitations of our
approach. We conclude with a brief summary of the chapter.

3.1 Related work on sensor-based engagement recogni-

tion

In this section we review existing literature on engagement recognition using
mobile and wearable devices with particular focus on students. Additional dis-
cussion about existing literature in this topic is presented in Chapter [2|

Several authors investigated the use of mobile and wearable devices for the
continuous and longitudinal monitoring of students’ stress [203}; [204]], happi-
ness [[205]] and overall well-being [[159; [206]].

Differently from these studies, we aim using data from wearable devices (i.e.,
wristbands) to monitor students during a particular learning activity, i.e., attend-
ing a lecture in the classroom, and focus on the affective state of engagement.

Several automated methods to quantify engagement in different activities
have been proposed in the literature [[156; [138}; [67; 136]. Examples include
the use of electroencephalography (EEG) for audience engagement during pre-
sentations [[156l], or during the interaction with the smartphone [[137]. Facial
expressions have been used for measuring the engagement of television view-
ers [[138]].

In contrast to these approaches we rely on the use of unobtrusive devices.
EEG headsets are bulky and given their uncommon usage in everyday life, stu-
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dents might consider them as invasive and unnatural. Cameras, besides being
cumbersome and expensive to install, make it difficult to monitor only those stu-
dents that want to be monitored as discussed in [[179]].

In our work, we focus on monitoring students’ engagement using electroder-
mal activity data (EDA) collected unobtrusive wristbands.

Several attempts have been made at recognizing engagement and general
affective states using EDA signals [[67;/136;[34;142;166;90;111]]. Some studies
explore the use of EDA for detecting audience engagement [[136}; [142]] and for
predicting children engagement in child-adult interactions [|67]].

A core contribution of these and similar approaches — and of our work too —
consists in designing features of EDA signals and use them to infer self-reported
or observed engagement [67} [136; [142]].

Other authors, however, focus on quantifying engagement in different sce-
narios than the one considered in this study. Since engagement is known to be
context-dependent and since there is no unique definition for it [[67]], considering
the specific characteristics of engagement in each scenario is crucial.

While most of the existing literature considers only one dimension of the
emotional engagement [[34; [33]], we explored the role of three different com-
ponents in the characterization of students’ emotional engagement: emotional
arousal [|89], reaction to the teacher [88]] — that we consider in terms of physio-
logical synchrony [110] —, and momentary engagement [|87].

Cain et al. [90] considered the interaction of two children during learning
activities and propose to use the peaks of the EDA signal to detect the momentary
engagement of the children.

We build upon their work and propose several new features that capture the
presence (or absence) of arousing moments during lectures. Our results show
that two of the new features we proposed contribute the most to the discrim-
ination of engaged and non-engaged student. When used as input to a SVM
classifier, these two features allow to achieve the best recognition performance.

Other authors investigated the role of physiological alignment — also referred
to as physiological synchrony — between two individuals to infer engagement in
social interactions [111;|67]. Similarly, we investigate if considering the physio-
logical synchrony between teachers and students helps inferring students’ emo-
tional engagement. Several attempts at recognizing students’ engagement and
general affective states have also been made. However, as also reported in [24]], a
direct comparison of different techniques is difficult. The data sets used in other
studies usually differ and the labeling methods used are often different. Specif-
ically, while some authors prefer observations or interviews to gather ground-
truth data [[127]], others rely on experience sampling method (ESM) and asked
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students to report engagement using self-reports [[34].

We too rely on self-reports for labeling the data set. This method has been
shown to be one of the most appropriate for explicitly measuring students’ emo-
tional engagement [95]].

Researchers from the Intelligent Tutoring Systems (ITS) community have put
significant effort in the development and evaluation of intelligent systems to
enhance learners’ experience [207; 208; 209]]. These authors, however, focus
mainly on fostering engagement in an e-learning environment, not in a class-
room settings.

A well-explored technique to assess students engagement during learning ac-
tivities consists in the automated detection of facial expressions [[127; [24; [210]].
Results from the work presented in [[127]] show a positive correlation between
automatic engagement recognition from facial expressions and human observa-
tions of engagement. This approach was however tested in a laboratory setting
only and involved the use of a camera, which is an invasive sensor.

Only very few studies measured students engagement during real lectures
[33; 134} [179]. Both Wang et al. [34] and McNeal et al. [33]] relied on wearable
EDA sensors to detect students’ engagement.

Wang et al. [|34]] measured the engagement of 17 students in a classroom and
in a remote location during one lecture using EDA sensors. They used ANOVA
for reporting affective states differences in the two locations based on question-
naires. Authors did not find significant difference in terms of EDA in the two
groups. Data was gathered during one lecture only — which limits the generaliz-
ability of the obtained results.

We instead based our analysis on data from 41 different lectures given by 9
different teachers and extensively analyze the collected data.

Mcneal et al. [[33]] monitored the engagement of 17 students during a term.
They tested different pedagogical approaches on subsets of the students and re-
port statistical differences in terms of mean of the EDA traces. In contrast, we
relied on a far more heterogeneous data set in terms of courses and students,
and ran extensive data analysis.

Lastly, researchers in the artificial intelligence for education (AIED) and the
learning analytics and knowledge (LAK) communities focused their attention on
detecting students’ affective states to foster their performance and learning [211};
212]).

Arroyo et al. [211]], for instance, created a system that automatically collects
physiological data and students’ self-reports about their emotional state.

However, they used first generation EDA sensors — which provided much less
accurate data than the sensors we used — and did not propose a specific technique
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to infer engagement from EDA data as we do.

3.2  Data collection of the SEED data set

At the time of writing, data sets available for recognizing learners’ engagement
are four and contain video data only. A summary of the existing data sets suit-
able for learner’s engagement recognition is presented in [[134]]. Our goal is to
recognize engagement during lecture using EDA data. The lack of an appropriate
existing data set for answering our research question, motivated us to collect the
SEED data set. We provide below details about the participants, the equipment
used to collect the data and the data collection procedure.

Participants

We recruited the instructors of five different courses, two at the Bachelor’s level
(B1, B2) and three at the Master’s level (M1, M2, M3). Since some of the lectures
we monitored were taught by teaching assistants, we collected data from a total
of 11 instructors.

We further recruited 27 students (6 females and 21 males) of age between
21 and 44 (M = 25.64, STD = 4.70) who attended one or more of the monitored
courses. The set of participants that attended B1 is the same that attended B2
(only one student did not attend B2). One student attended both M1 and M2.

To recruit student participants, we presented the study during the first lecture
of each course. We thereby informed students about the purpose and duration
of the study as well as about the devices used and the data collection procedure.

Students who volunteered to participate signed an informed consent form
and received a bag of chocolates as a courtesy.

Collected data

Figure shows, for each of the monitored courses, the number of teachers
and students that participated in the study as well as the number of lectures
during which data was collected. A lecture is a single teaching unit. We col-
lected data during 62 different lectures, most of which lasted around 45 minutes
(Mean=47.76, STD=17.35).

Sensor data. We recorded physiological data, i.e., electrodermal activity (EDA),
of students and teachers using the Empatica E4 wristband [[58]].
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Course Stud Teach Lect

Bl 12 2 16
B2 11 4 18
M1 4 1 8
M2 S 2 14
M3 7 2 6

TOTAL: 27 11 62

Figure 3.2. Key data about our study. “Stud” and “Teach” indicate the number
of students and teachers that registered for the study for each course. “Lect”
indicates the total number of lectures during which we collected data.

Ground-truth data. Refers to the subjective measurement of students’ emotional
engagement during lectures. In this study we used the experience sampling
method (ESM) and asked participants to fill-in a questionnaire at the end of each
lecture. As reported in the educational research literature, questionnaires are a
good explicit instrument for measuring students’ emotional engagement [[95]] be-
cause they enable students to report their internal state [24]]. Methods relying
on external observers or teacher rating scales have instead been reported to be
highly inferential [95]], as also discussed in Section and Section [2.2]

The questionnaire we used is structured in two parts: The first part consists
in a screenshot of the Photographic Affect Meter (PAM) [213]] while the second
part is an emotional engagement questionnaire.

For the analysis reported in this chapter, we considered only the emotional
engagement questionnaire. The questionnaire consists of five items related to
the emotional engagement dimension of the validated “University Student En-
gagement Inventory” (USEI) questionnaire [214]]. Specifically, the questions are:
(1) I didn’t feel very accomplished in this lecture; (2) I felt excited by the work
in this lecture; (3) I liked being at this lecture; (4) I am interested in the work
done in this lecture; (5) My classroom is an interesting place to be. We thereby
slightly adapted the questions to the lecture context. For instance, instead of I
feel excited about the school work we used I felt excited by the work in this lecture.

We used a 5-point Likert-scale (from strongly disagree to strongly agree). We
selected the USEI questionnaire because it is one of the few questionnaires de-
veloped for university students. Indeed most of the existing surveys developed
for assessing students emotional engagement target younger students [214]).
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Figure 3.3. Schematic representation of the data collection procedure we fol-
lowed for collecting the SEED data set.

Data collection procedure

One day before the start of each lecture we charged the devices and synchronized
them to a laptop. Shortly before the lecture started, a GoPro camera was placed
in an appropriate position for recording the teacher.

Figure depicts the setup in one of the monitored classrooms. Once a
student or a teacher arrived in the classroom we tied an E4 to the wrist of their
dominant hand and handed in the questionnaires. Students were requested to
fill-in the questionnaire after each teaching unit (i.e., during the break and at
the end of the lecture). Figure provides a schematic representation of the
data collection protocol we used. At the end of each lecture we recollected the
questionnaires as well as the devices. The study procedures were approved prior
to the start of the study by the faculty of Informatics ethics delegate.

3.3 Data analysis

The primary goal of our work is to devise a method to discriminate between
engaged and non-engaged students using EDA signals. We first cleaned the data
set and pre-processed the EDA signals. Then, we extracted a set of representative
features and used them as input for the engagement recognition pipeline. We
provide below details about the procedure we followed.

Data cleaning

While nearly all lectures of courses B1, B2, M2, and M3 lasted roughly 45 min-
utes, those of course M1 turned out to be of variable (and usually much longer)
length. This hampers the possibility to fairly compare this course with the others
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and we thus excluded it from our analysis. This left us with 314 traces of EDA
data in 44 different lectures. We thereby refer to a trace as to the EDA signal
collected from a student during a single lecture.

Then, as common procedure in the literature [|67]], we discarded the signals
that presented a large amount of evident artifacts like, e.g., flat responses, abrupt
drops and device quantization errors. We did this through visual inspection as
in [67]. Figure shows representative examples of discarded signals. This
cleaning step brought to the elimination of 93 signals, leaving us with 221 data
traces. Lastly, we further eliminated 24 signals for which we had incomplete or
empty questionnaires.

The number of data traces left after this last cleaning step is 197. These final
traces are gathered from 24 students during 41 lectures given by 9 teachers.
Their average duration is of 42.87 minutes (STD = 8.86 minutes).

The cleaning of the data set caused the elimination of 117 data traces — equiv-
alent to 37% of the total — out of the 314 raw data traces we had collected. Al-
though this is a considerable reduction, the size both of the final data set and of
the reduction itself are comparable to the figures reported by other authors for
similar studies.

Hernandez et al. [67]], for instance, used 51 data traces — after a data set
reduction of 28% — for assessing the engagement of children during playful in-
teractions with adults. Silveira et al. [[166]] collected EDA signals from 34 persons
to classify their ratings of three movies. Martella et al. [[215]] collected accelerom-
eter data from 35 audience’s participants to recognize their enjoyment during a
performance.

Visual inspection of EDA signals is a cumbersome and time-consuming pro-
cedure. This motivated us, in a subsequent work [[70]], to develop an automatic
approach to recognize EDA artifacts from data collected in ambulatory settings,
as well as to release an open-source dashboard, the EDArtifaclﬂ that facilitates
the visual inspection process. We used the method presented in [70] to process
EDA signals in the study presented in Chapter |5/ aiming to recognize workers’
engagement. More details about the approach we used are described in Sec-

tion

Pre-processing of EDA data

The pre-processing of EDA data is a crucial step to improve the quality of the col-
lected signals. We followed the same pre-processing procedure proposed in [[67]],

Uhttps://github.com/shkurtagashi/EDArtifact
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Figure 3.5. Normalizing EDA sensor because of difference in range of EDA
values between teacher (red, or dark color) and student (grey, or light color).

which is inspired by [35] and includes the following steps: artifacts removal;
normalization; and decomposition.

Artifacts removal. EDA signals collected in uncontrolled environments using
wearable devices can be affected by artifacts that can significantly hamper the
quality of the analysis [216]]. Motion artifacts in particular can cause peaks in
the signal, which in turn might be confounded with EDA responses [216]. To
attenuate the influence of motion artifacts (MAs) we used a low-pass filter, as it
is standard procedure in the literature [[217;/67; 11} 203} 218]]. More specifically,
we used a median filter, as in [217]], with a 5-seconds window. This filter reduces
the artifacts but preserves the typical EDA edges [217].

Normalization. The amplitude of EDA signals recorded from different persons
may present large differences [[103]]. Since these differences hamper the pos-
sibility to directly compare signals [35]], we normalized each of the collected
data traces using the same method used in [219]]. We used the formula in Equa-

tion 3.1k ‘
,_ x—min(x)

"~ max(x)—min(x) (3.1

Where x’ is the normalized value, x is the original one, and min() and max()
indicate the minimum and maximum functions. Thereby, we normalized the
entire signals instead that only the tonic component as in [219]]. After normal-
ization, all EDA traces have values in the [0,1] range. Figure shows the same
EDA signals of a teacher and a student without (left side) and with (right side)
normalization. The plot illustrates how normalization makes it possible to com-
pare different EDA signals. Normalization was applied on each individual trace,
of a given participant during a specific lecture, independently.

Decomposition. Several mathematical approaches have been proposed in the
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literature to decompose an EDA signal into its phasic and tonic components [[220;
166]]. In this work, we utilized the recently proposed cvxEDA method [[71]] by
Greco et al., which uses convex optimization to decompose the signaﬂ

Features

Building upon findings in educational research, we considered three components
of students’ emotional engagement, and characterized them using specific fea-
tures gathered from students’ physiological responses: emotional arousal [[89];
reaction to the teacher [88]], that we map using physiological synchrony; and
momentary engagement [[87].

We accordingly define three set of features — indicated as F,,,,, F;,,,, and F,y,,
— that can be extracted from the EDA signals and that quantify these three char-
acteristics.

Table provides the list and description of all considered features. While
we derive most of the features from the existing literature, we also propose a
new subset of features to capture momentary engagement (indicated with (*) in

Table [3.1).

Emotional arousal features. Emotional arousal is particularly important in the
learning context since it can influence memory and performance [[89]]. To derive
information about the emotional arousal and thus the physiological arousal, we
used features already proposed in the literature [|67; 221}; [168]], including the
mean, standard deviation, area under the curve, average peak amplitude, and
number of peaks of the phasic, tonic and raw signals. We computed the number
of peaks using a minimum amplitude of 0.01 (normalized) and distance of 1
second as in [|67]].

Physiological synchrony features. As a further potential indicator of a stu-
dents’ engagement during lectures we considered their emotional reaction to
the teacher [57]]. Studies from educational research show that as the teacher’s
emotional response in classroom increases, so does their students’ emotional re-
sponse [|88; [101]]. This is a phenomenon similar to the physiological synchrony
— association between the physiological activity of two or more people [[110]
—, which has been observed connected to emotional engagement in other con-
texts [67; [111];[222]]. More details are reported in Section [2.1.1]

To capture the physiological synchrony between teachers and students quan-
titatively we used three existing synchrony measures: Dynamic Time Warping

2An implementation of this method is publicly available at: https://github.com/lciti/
CVvXEDA


https://github.com/lciti/cvxEDA
https://github.com/lciti/cvxEDA

70 3.3 Data analysis

Feature Description

EMOTIONAL AROUSAL (F,,,)

avg_eda/ avg_phasic / avg_tonic Arithmetic mean of the raw EDA signal/ phasic/ tonic
std_eda/std_phasic/std_tonic Standard deviation of the raw EDA signal / phasic / tonic
n_p_eda/ n_p_phasic/ n_p_tonic = Number of peaks of the raw EDA signal/ phasic/ tonic
p_a_eda/ p_a_phasic/ p_a_tonic Average peak amplitude of the raw EDA signal/ phasic/ tonic
auc_eda/ auc_phasic/auc_tonic Area under the curve of the raw EDA signal/ phasic/ tonic

PHYSIOLOGICAL SYNCHRONY (F,,)

dtw Dynamic time warping distance
pc Pearson correlation coefficient
ssi Single session index

MOMENTARY ENGAGEMENT (F,,,.,)

arousing_normalized* Ratio between the number of arousing moments and the length of S,
arousing_ratio* Ratio between arousing and unarousing moments

arousing_num * Number of arousing moments during the lecture

unarousing_num* Number of unarousing moments during the lecture
unarousing_num_Cain Number of unarousing moments during the lecture [[90]
arousing_num_Cain Number of arousing moments during the lecture [90]
arousing_ratio_Cain Ratio between unarousing and arousing moments [[90]

level _i* Ratio between the number of Level i and the length of S; (i = 1,2,3,4,5)

Table 3.1. Summary of the 30 features used in this work (level i describe gener-
ally five features: level 1, level 2]level 3, level 4 and level 5) . The features we
proposed have been indicated with an asterisk (*).

(DTW) [|67], Pearson Correlation (PC) [[67] and Single Session Index (SSI) [222]].
DTW and PC have been explored in [|67] to analyze the physiological synchrony
between children and adults during playful interactions. The SSIis a single index
that represents the physiological synchrony between two persons during their
interaction. We computed the SSI following the procedure proposed in [222]].
Although we use existing indicators to compute the physiological synchrony, to
the best of our knowledge we are the first to investigate quantitatively this phe-
nomenon between teachers and students.

Momentary engagement features. A further important component of emo-
tional engagement is interest [|87]]. When an activity in class elicits interest and
the student “readily engages with that activity” [87]], this is referred to as momen-
tary engagement [87].

In a recent work Cain et al. [90]] suggest that evident increments of physiolog-
ical arousal identify situations of momentary engagement. Sudden peaks in the
EDA signal may however be caused by several stimuli or correspond to situations
of acute stress — due to, e.g., the teacher asking a question to the student — rather
than to emotional engagement. Even in this case, however, these peaks represent
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Figure 3.6. Discretized EDA signal and corresponding engagement levels.

valuable information because they contrast to periods without any peaks, which
are likely to be indicative of lack of interest and boredom [217]].

To capture students’ momentary engagement we considered a set of twelve
features, listed in Table[3.1] Three of them —unarousing_num_Cain, arousing_num_Cain,
and arousing_ratio_Cain - indicate the number of unarousing and arousing
moments during a lecture and their ratio, computed using the procedure de-
scribed in [[90].

Thereby, arousing moments, or highlights, are defined as those time inter-
vals during which the EDA signal shows a significant increment [90]]. All other
moments are unarousing moments.

To compute the number of unarousing and arousing moments Cain et al.
first subsample the EDA signal by computing the mean of 10-seconds long, not-
overlapping windows of the signal [90]. They then compute the difference be-
tween subsequent samples, obtaining what they call the relative change in skin
conductivity (RCSC) [90]. The standard deviation of the RCSC is used as a
threshold to discriminate unarousing from arousing moments. More specifically,
samples between £0.25 standard deviation correspond to unarousing moments
whereas samples outside this range identify arousing moments.

The method used by Cain et al. for identifying unarousing moments is simple
and effective yet sensitive to the presence of artifacts or small random variations
in the EDA signal, which could be erroneously identified as arousing moments.

To cope with this problem we proposed an alternative method to identify
arousing moments. As in [90]], we first reduce the dimensionality of the signal
using piecewise aggregate approximation (PAA) [223]]. PAA divides the signal
into blocks of M signal Valueﬂ and computes the mean of the values in each
block. PAA thus transforms the signal into a sequence S of the means of the sub-

3We use M = 20. Since the sampling rate of the E4 wristband is set to 4 Hz, a block corre-
sponds to snippet of the signal of 5 seconds.
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sequent blocks [223]]. In contrast to Cain et al. we then discretize the signal S,
by mapping its values to five levels of equal width, obtaining a new signal S,.
We considered five levels to have a correspondence between values of the EDA
signals and engagement levels indicated on the questionnaires used to gather
ground truth data (Level 1 = Very Disengaged to Level 5 = Very Engaged). Fig-
ure shows an example of discretized signal and the corresponding levels.

From the discretized signal S, we compute the relative change between two
levels as Al = S, [i]—S,[i — 1], where S, [i] indicates the current level. We then
divide the signal into time intervals of equal length (30 seconds in our current
design) and define each time interval as an arousing moment if Al > 1.

The fulfillment of this condition indicates that there has been an increment
of the arousal level during the time interval. Time intervals that do not fulfill the
condition are instead labelled as unarousing moments.

The output of this procedure is binary signal S, which we used to compute a
subset of the momentary features.

The main difference between our method and the method used by Cain et al.
consists in the fact that we discretized the signal and then used the detection of
“jumps” between levels to identify arousing moments. This makes our method
less sensitive to noisy fluctuations of the signal, which could be misinterpreted
as peaks.

Furthermore, the discretization of the signal allows us to consider the levels of
EDA as an additional feature, which is significantly discriminative in the recogni-
tion of students’ engagement. We use our alternative method to compute arous-
ing and unarousing moments and compute the features arousing num, unarous-
ing num, arousing ratio, arousing normalized, and level i (withi =1,2,3,4,5).
These are thus novel features whose discriminative power is investigated for the
first time in this work.

The feature arousing ratio is the ratio between the number of arousing mo-
ments and the number of unarousing moments during a lecture. This feature
models the impact of the number of moments in which a student shows a mo-
mentary interest towards the lecture compared to the number of moments in
which a student was not showing any significant change in her physiological
arousal.

We captured the role of the EDA amplitude in the momentary engagement
features by considering separately the percentage of time a student has been in
one of the engagement levels respect to the whole lecture, which we map into
level i feature (withi=1,2,3,4,5).
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Summary of the considered feature sets

As discussed above we considered in our study three main sets of features: fea-
tures related to the emotional arousal of a student — indicated with F,,,, — ; fea-
tures related to the reaction to the teacher, quantified using physiological syn-
chrony between students and teachers (F,,,); and features related to the mo-
mentary engagement of students (F,,,,,)-

We further divided the latter set into two subsets: F, ., cqin @04 Fom new- The
first contains the three features unarousing num_Cain, arousing num_Cain, and
arousing ratio_Cain, which rely on the computation of unarousing and arousing
moments using the method by Cain et al. The second contains the remaining
momentary engagement features, which are computed using our own method to
identify unarousing and arousing moments.

yn

Engagement recognition pipeline

In order to identify engaged and non-engaged students during the lecture we
setup a standard binary classification pipeline, described below.

Labeling. We leveraged the answers to the USEI questionnaire to assign students
for each lecture to either the engaged or the non-engaged class. To do so we re-
verse the first item of the questionnaire, as described in [214] and then compute
a single engagement score from the five items of the questionnaire by computing
(and rounding) the average of the answers as in [215]]. We labelled as engaged
students whose score is higher or equal to four (corresponding to “Agree”) and
as non engaged the others. This is because we assume that an engaged student
would provide answers at the positive extremes of the scale, as also discussed
in [215]]. This labeling procedure leads to an imbalanced data set with 120 in-
stances i.e., lectures, in the non-engaged class (which we considered as positive
class) and 77 in the engaged class.

Classifiers. In order to perform the classification task we selected three well-
known classifiers. In particular we used the Logistic Regression (LR) [[65]], Linear
Discriminant Analysis (LDA) [65]] and the Support Vector Machine (SVM) [224]]
with a linear kernel. We used the hyperparamenters of the classifiers set by de-
fault by the Python library we used for the implementation (i.e., scikit-learrﬂ),
except for the SVM for which we set C = 100 empirically. We did not perform
an automatic optimization of the hyperparameters due to the limited amount of
data at disposal for training the model. Indeed, the hyperparameter optimiza-

4https://scikit-learn.org/stable/
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tion procedure would have required an additional validation set with consequent
reduction of the number of training samples. To put the obtained classification
results in context, we use Random Guess (RG) and Biased Random Guess (BRG)
classifiers as baseline competitors. We compared the performance between the
classifiers and the baselines using a paired t-test [225]]. We tested the p-values
against the threshold a < 0.05 and report also the corrected threshold (obtained
using the Bonferroni correction method) a, = a/n = 0.005, where n = 10 in our
case. Further, we report the Cohen’s d effect size measure.

Metrics. While the ultimate goal of our work is to investigate whether it is pos-
sible to assess students’ engagement using physiological data, the automatic en-
gagement recognition is especially beneficial for non-engaged students. Those
are indeed the students who need to be re-engaged and ameliorate their perfor-
mance [24]]. For this reason we considered the non-engaged class as the positive
one. To evaluate the performance of the classifiers we use several performance
metrics: recall, precision, accuracy, and F1, all defined according to [[65]. We
further consider the F2 metric — which weights the recall higher than the preci-
sion — as defined in [226]]. Lastly, to quantify the classification error we consider
the false discovery rate (FDR) [65]], which indicates how many of the students
classified as non-engaged were actually engaged.

Feature Selection. We used the Sequential Forward Floating Selection (SFFS) al-
gorithm [|81]] to identify the most relevant features. We use the recall as the target
metric of the SFFS algorithm. This is because we aim at reducing the number
of false negatives, i.e., the number of non-engaged students that are erroneously
classified as engaged. A large number of false negatives would indeed make the
system miss non-engaged students and thus prevent the understanding of the
reasons of their lack of engagement as well as hamper the use of interventions
to re-engage them.

Validation Procedure. We trained and tested the classifiers using a nested cross-
validation approach [227]. This method iterates twice over the data, once for
running the feature selection process (inner loop) and once for actually training
and testing the classifiers (outer loop).

In the outer loop we created the folds so that the training and test sets in a
single fold do not contain data of the same student. In particular, similarly to [[67;
138]], we divide the data into n groups (whereas n is the number of students in
our data set, i.e., n=24), and each group contains the data of one student only.
A number k of folds (k < n, k=10 in our case) is then created ensuring that
the data of the same group does not appear in two different folds. The groups
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assigned to a fold are selected at random and the number of distinct groups in
each fold is approximately the same, i.e., the folds are approximately balanced.
This procedure — to which we refer to as the leave one group out (LOGO) — ensures
that the classifiers are trained in a student-independent manner and, thus, that
specific characteristics of individual students do not alter the validity of the final
results and their generalizability to other student populations [228;[138}; 67].

Once the training and test sets are defined in each fold, we scaled the features
as recommended in the literature using the training data only (from different
participants and lectures) [[227]. Further, to ensure that the distribution of non-
engaged and engaged students is balanced, we re-sample the training set using
the SMOTE algorithm [183]].

In the inner loop we use five-fold cross-validation to make the SFFS algorithm
select the best features [[81]]. Since nested cross-validation is a computationally
expensive procedure, we used five folds in the inner loop to speed up the execu-
tion of the SFFS algorithm. Once the inner loop ends, we used the selected best
features to evaluate the performance of the classifiers in the outer loop as done
in [67]] and explained above.

To evaluate the impact of specific characteristics of the data of individual stu-
dents on the overall classification error, we additionally performed experiments
using also the leave-one-student-out (LOSO) validation approach [29]. At each
iteration, the data of only one student is used for testing, while the data of all
the other students is used for training.

For both LOGO and LOSO validation approaches, the final performance of
each classifier is computed as the mean of the performance achieved by the clas-
sifier in each iteration.

3.4 Results and discussion

We report and discuss the results from the engagement recognition pipeline in
Section[3.4.1] Then, to further reflect on the connection between EDA responses
and the emotional engagement of students during lectures, we analyze the cor-
relation between EDA features and the engagement score obtained from self-
reports. Results from the correlation analysis are reported in Section [3.4.2]

3.4.1 Engagement recognition results

Table|3.2|shows the performance obtained using the considered classifiers trained
using different set of features and applying the LOGO validation protocol de-
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Feature set | Classifier | Recall FDR Precision Accuracy F1  F2

RG 53 40 60 51 53 52

BRG 56 34 66 51 54 53
F,; + SFFS | LDA 77 31 69 64* 65 70

LR 75 32 68 63 64 68

SVM 81~ 36 64 60 65 72
Foese 7 59 32 67 58 58 57
Fpost 4 SVM 79% 41 59 59 63 70
Foest 81~ 35 65 60 66 71
From cain 35 52 48 42 36" 35
From new SVM 54 39 61 53 55 53
Fron 53 41 59 58 50 50
Fon, SVM 58 36 64 54 57 56
Fipn 52 36 64 51 53 51
F 59 41 59 50 53 55

Table 3.2. Summary of the performance obtained using different models (subset of
features and classifiers). An asterisk (*) indicates significantly different performance
(p<0.05) from the RG and Cohen’s |d| > 0.8, two asterisks (**) indicate significantly
different performance from the BRG and Cohen’s |d| > 0.8. None of the carried tests
showed a p-value < a.. In the Fy,; - scenario we use all the 7 features extracted
at least once from SFFS. In the Fy,, 4 only the first 4 features and in Fp,, » the
best 2 features (level 5 and arousing_ratio). Fp,, refers to the use of all the mo-
mentary features while F,;; cqin @0d From new refer respectively to the use of only
the momentary features obtained by the Cain et al. procedure and the one obtained
using the features we proposed. F,,,, refers to the use of emotional arousal features
while F;,, to only the use of synchrony features. Fy;; considers the use of all features
together.

scribed in Section [3.3] We discuss below the main results obtained in the recog-
nition of students’ engagement.

Performance obtained using all features and SFFS for feature selection

We start by commenting on the performance obtained using all features (i.e., all
features listed in Table as input to the classifiers in combination with the
SFFS algorithm for feature selection (F,;+SFFS).

The results in Table |3.2|show that all classifiers outperform both the RG and
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Figure 3.7. Frequency of occurrence of the features selected at least once during
the feature selection process using the SFFS algorithm.

BRG baseline classifiers in terms of recall.

In particular, SVM achieves the best performance (tested with the paired t-
test [225]], p <0.05), with a recall of 81%, which is 25 and 28 percentage points
higher than for RG and BRG. SVM achieves the best performance also in terms
of F2 (72%), which is 20 and 19 percentage points higher than the correspond-
ing performance of RG and BRG. The fact that other performance metrics (FDR,
precision, accuracy, F1) present no or little improvement over the baseline clas-
sifiers might be due to the fact that we used the recall as target metric during the
feature selection process. This makes the classifiers maximize the recall — and
thus their ability to successfully identify non-engaged students.

From Table[3.2]we observe that SVM has a FDR of 36%. This means that if, on
average, the classifier identifies 100 students as non-engaged, 36 of them were
actually engaged. Even though this value of FDR may seem high, it still repre-
sents a reasonably good result for our particular scenario. Indeed, as also ob-
served in [|24], the cost paid in misclassifying engaged students as non-engaged
is less relevant compared to missing the chance of identifying non-engaged stu-
dents.

Since the SVM resulted to be the best performing classifier among those con-
sidered, we present below results obtained using SVM as reference classifier.

Dominant features selected during the feature selection procedure

Of the 30 features listed in Table only seven are selected by the SVM at least
once during the feature selection process. Figure shows the frequency of
occurrence of the selected features.

We can observe that the most frequently selected — i.e., the most discrimi-
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native — features are the arousing ratio and the level 5 (4 times) features. The
other most frequently selected features are the std_tonic and the auc_phasic (2
times) as well as the auc_eda, the level 3 and the pc (once) features.

The fact that the selected features belong to all the three main feature subsets
we defined (F,,,, F;,,, and F,,,) suggests that all the components we consid-
ered to characterize students’ emotional engagement — emotional arousal, phys-
iological synchrony and momentary engagement — contribute to the detection of
non-engaged students.

However, the momentary features display a stronger discriminative role in
identifying non-engaged students. In particular, the two dominant (“best”) fea-
tures arousing ratio and level 5 capture information about the arousing mo-
ments of a student — which in turn we can consider as representing the number
and intensity of the “highlights” experienced by the student during a lecture. This
confirms educational theories that outline the importance of momentary engage-
ment for ensuring the engagement of students with learning activities [|87]].

Most of the selected features contain information about the amplitude of the
signal (e.g., level 5, auc_phasic, auc_eda and the level 3) rather than its temporal
variation. The selection of the pearson feature, indicates that the physiological
synchrony with the teacher contributes to the recognition of students’ engage-
ment, although not in an as determinant manner as the momentary engagement.

Performance obtained using only the best features

Building upon the observations reported above about dominant features we ran
further experiments to verify the performance obtained by SVM if trained using:
all the seven best features selected at least once by the SFES algorithm (F,, -);
only the first four best features — arousing ratio, level 5, std_tonic and auc _phc_lsic
— (Fpes: 4); and only the best two features — arousing ratio and level_5— (Fp.s 2)-
We thereby use the LOGO protocol described in Section[3.3] The obtained results
are reported in Table and show that SVM achieves the highest recall (81%)
if it is trained with only the two best features (level 5 and arousing ratio).

Instead, SVM achieves the highest precision if the seven best features are
used as input, however at the cost of a significant loss in terms of recall (which
decreases to 59%).

Further, we note that the use of features derived from the phasic and tonic
components — in particular auc_phasic and std_tonic — does not lead to perfor-
mance improvements in terms of recall.

Overall, these results show that using only two of the novel momentary fea-
tures we proposed in combination with SVM allows us to achieve the best per-
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formance in terms of recall as well as a good balance between precision and
recall.

Performance obtained using different subsets of momentary features

We further compare the performance obtained by SVM trained using only the
new momentary features we proposed (F,,,, ) against the features extracted
using the method proposed by Cain et al. [90] (Frnom_cain)- Table shows that
using only the features in F,,,,, ... SVM achieves a recall that is 19 percentage
points higher than the recall obtained using the features in From cain- Similarly,
precision, F1 and F2 are significantly (p <0.05) higher and FDR significantly

lower when using F, instead of F

mom_new mom_cain*

We believe that the superiority of our features is due to the fact that our
method for identifying arousing moments is more robust against noise and arti-
facts with respect to the algorithm proposed by Cain et al. [90]].

Performance obtained using the individual feature subsets

To further investigate the discriminative power of different components of the
emotional engagement, we ran experiments using the individual feature subsets
Fomo> Fsyn> and F, as input to the classifiers as well as all of them together (F;;)

but without any feature selection process.

The corresponding results, reported in Table show that the performance
obtained using the single feature subsets are comparable. The combination of the
features provides a little improvement (1 percentage point) in terms of recall.

A part from the recall, the emotional arousal features provide slightly better
performance. We believe this is due to the fact that the phasic component of the
EDA signal presents a significant correlation with engagement as we discuss in
Section

These results show that considering separate feature subsets — and thus sep-
arate components of the emotional engagement — separately leads to the same
final performance. The combination of the subsets brings little improvement.

Furthermore, the lack of a feature selection process leads to low overall per-
formance. Analysing the different combinations of feature subsets and the results
of the feature selection process instead allows us to understand which features
— and which components of the emotional engagement — are the most relevant
and thus allows us to obtain significantly better overall performance.
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Figure 3.8. Students’ engagement distribution during lectures and their cor-
respondent FDR. The blue horizontal line represents the threshold used for
dividing the students in the engaged and non-engaged classes. The students’
username presented in this figure are randomly generated, to maintain the
privacy of the participants.

Per-student classification error

Lastly, we analyzed the impact of the data from individual students on the clas-
sification error of the most successful model (i.e., SVM with F,, 5).

To this end, we trained and tested the model using the LOSO validation
procedure described in Section We obtained the following results: preci-
sion: 62 (STD=37), accuracy: 68 (STD=31), recall: 77 (STD=37), FDR: 33
(STD=37), F1: 68 (STD=36), F2: 71 (STD=36). While for the LOGO valida-
tion approach we obtained: precision: 65 (STD=26), accuracy: 60 (STD=21),
recall: 81 (STD=25), FDR: 35 (STD=26), F1: 66 (STD=24), F2: 71 (STD=24).

The results we obtained using the LOSO validation procedure are similar
to the results obtained using the same model with the group-students cross-
validation approach. This similarity is not surprising since also the LOGO ap-
proach does not use the data of the same student for training and testing the
model.

At the same time, the standard deviation of the performance obtained across
different LOSO folds is significantly higher (12 percentage point higher in terms
of recall) than the corresponding standard deviation obtained using the LOGO.
We believe that this higher instability is due to the fact that with the LOSO val-
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idation procedure the size of the test sets varies significantly (i.e., between 1 to
21 data points) across folds.

Figure shows the distribution of the engagement score of each student
(upper plot) along with the corresponding FDR obtained with the LOSO proce-
dure when the data of the same student is used in the test set (lower plot).

We observe that the model recognizes the engagement of 11 students without
error (FDR = 0) and that, in general, it performs better for students who tend to
be non-engaged.

The worst performance is obtained for students who reported several times an
engagement score equal to four (e.g., u035, u065, u041), which is the threshold
we use to discriminate engaged and non-engaged students.

We believe that students who often display an engagement score of four were
not highly engaged and, thus, their physiological reaction is not appreciably dif-
ferent from that of the non-engaged students, leading them to be misclassified.
However, more data from highly engaged students as well as possibly additional
sources of information about students’ engagement is needed to verify this hy-
pothesis.

Lastly, Figure also shows that while most of the students show a variable
distribution of the engagement across lectures, many tend to be non-engaged.
This tendency of students to be non-engaged during lectures is reported also by
Wang et al. [34]] and outlines the need for devising interventions to re-engage
students.

3.4.2 Correlation of features with self-reported engagement

We computed the correlation between EDA features and the engagement score
using a per-student approach similar to the one followed in [[229]]. Specifically,
we first computed the mean - for each student and over all lectures — of both
the engagement score and the value of each feature. We do not compute the
correlation between engagement scores and features in each lecture because the
data for the same student is likely to be correlated across different lectures [230]].
The samples would thus not be independent, hampering the use of standard
correlation measures. We then explored the correlation between the resulting
values using the Spearman’s rank correlation, given the non-normal distribution
of the variables [[231]].

We observe that the percentage of time a student spent in the “very en-
gaged” level (level 5,(r = 0.49, p < 0.05)) and the ratio between arousing
and unarousing moments (arousing_ratio,(r = 0.44, p < 0.05) are positively
correlated with the emotional engagement. This suggests that the physiological
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response of an engaged student tends to show more frequently high levels of
electrodermal activity and that more engaged students tend to experience more
arousing moments (“highlights”) during lectures. This in turn confirms the rele-
vant role of these momentary feature as a proxy of engagement.

Lastly, we observe that most of the features extracted from the phasic compo-
nent of the EDA signal are also positively correlated with engagement: auc_phasic
(r=0.47,p <0.05), n_p_phasic (r =0.41, p < 0.05), avg_phasic (r=0.55, p
< 0.05). This underlines the fact that the phasic component models the response
to external stimuli and consequently is connected to engagement [[67]].

3.4.3 Summary of the main findings

In the study presented in this chapter, we demonstrate that it is feasible to auto-
matically recognize students’ engagement during lectures using EDA data. Our
main findings are:

* The SVM classifier achieved the highest performance in terms of recall
(81%), which is 25 and 28 higher than the one achieved respectively by
RG and BRG.

* Only seven features (F,,, ;), among the 30 used, were selected at least
once in the features selection procedure. The selected features belong to
the three considered subsets (F,,,,F;yn,Fmom)> indicating the contributions
of all the components (i.e., emotional arousal, physiological synchrony and

momentary engagement) in the engagement assessment.

* The momentary features resulted to be the most discriminative. Specif-
ically, the best overall performance are obtained when using two of the
momentary features we proposed i.e., arousing ratio and level 5, as input
to the SVM classifier. This result confirms the relevance of momentary en-
gagement for the assessment of students’ emotional engagement [[87] as
well as the strength of the new features we proposed.

* Correlation results indicate that the higher the number of “highlights” ex-
perienced by the students during the lecture, the higher is their perceived
engagement during the lecture.

Overall, we believe that the results we obtained can be generalized to other pop-
ulations of students. Our data set contains multiple data traces from multiple
students with a variable data distribution, as observable from Figure The
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plot shows that the number of data points across students varies (Min = 1, Max
= 21, Mean = 8.21, STD = 5.81) and that the data distribution is quite spread.

3.5 Implications

One practical implication from our results is the possibility of using EDA sensor
and wearable devices to monitor students’ engagement during actual lectures.
Therefore, researchers and practitioners aiming to design engagement-aware
systems for monitoring students in classroom, could rely on our approach.

In particular, wristbands equipped with EDA sensors could be used as in-
put device for the system. Momentary features could be extracted to quantify
the physiological activation expression of engagement. These features could be
used alone, or in combination with other source of information, as input to the
engagement model. For instance, the occurrence of laughter episodes automat-
ically recognized, for example using the method we present in Chapter 4, can
be combined with the momentary features to enrich the engagement represen-
tation.

Information about the inferred engagement can be then used by the system
to deliver appropriate interventions to the students or make the teachers aware
of the students’ perceived engagement.

We envision a system that provides insightful visualizations, accessible, for in-
stance, through a dashboard at the end of each lecture. The inferred engagement
could be paired together with lecture-specific information, such as teaching ma-
terial, length of the lecture, questions asked. These additional information could
be automatically gathered or manually input by the student or the teacher to al-
low them to reflect on the learning experience over one or multiple lectures and
courses.

Since the emotional engagement is a predictor of learning outcome [57],
reaching awareness on a recurring lack of engagement has the potential to mo-
tivate students to change their behavior — or to drop a specific course in favor
of another. This is in line with the trend towards a quantified-self in education,
which has been recently explored in the literature [212; 232; [233[] and that we
also discussed in [[234].

On the other side, teachers can benefit from feedback about students’ en-
gagement provided after individual lectures. For instance, teachers can observe
whether the same students are non-engaged across lectures and try to re-engage
them. Similarly, teachers can test different teaching methods and evaluate their
effect on students’ engagement.
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While we do not argue that this feedback alone can determine whether a
specific method is more effective than others, we do believe in the benefit of
providing feedback to teachers at the end of every lecture instead of just once
or few times per term. The importance of providing more and more diverse
feedback to teachers is also outlined by a recent, large-scale project aimed at
providing teachers with “information that they can trust from measures that are
fair and reliable” [235]].

While students can profit from feedback gained analyzing their data only,
teachers need to access students’ physiological data to obtain useful feedback.
The release of such data, even in anonymous form, can however have negative
impacts.

For instance, teachers may — consciously or unconsciously — de-anonymize
the data, which may in torn lead to a penalization of the non-engaged students.
Adequate procedures to preserve the privacy of the students must thus be put
in place. Moreover, teachers should be advised to rely on different feedback
measures (e.g., in class-tests, questionnaires) to obtain a comprehensive picture
of students’ engagement.

3.6  Limitations

While our results show that it is feasible to use EDA signals to discriminate be-
tween engaged and non-engaged students during lectures, further research is
needed to overcome some of the current limitations of our work.

First, a further improvement of the performance is needed in real settings. In
particular, reducing the FDR from the current 36% to a lower value is desirable
to prevent engagement-aware systems to send inappropriate interventions or to
provide students with wrong information about their engagement during lec-
tures. Using additional engagement cues, e.g., gestures, body moments, laughs,
could help improving the engagement recognition performance.

Second, collecting ground-truth data at a higher granularity and using dif-
ferent methods may open up new possibilities for the engagement recognition
analysis. In this study we collected ground-truth data only at the end of each
lecture, where a lecture lasted on average 42 minutes. An interesting possibil-
ity for future work is to embed short questionnaires about engagement in live
interaction platforms such as ASQ [236]].

Irrespectively of the method used, though, the collection of responses from
students during lectures is inherently critical, because it interferes with the nor-
mal flow of the lecture and it is a cause of distraction itself. This remains an open
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challenge that should be addressed in future work.

3.7 Summary of Chapter

In this chapter we presented our findings about the recognition of students’
engagement during lectures using EDA data gathered from wearable devices.
Specifically, we identified three components of students’ emotional engagement
in the educational research literature: emotional arousal, reaction to the teacher
and momentary engagement. We then derived a set of EDA features that could
represent these components.

To evaluate our approach we collected the SEED data set, which, at the time
it was collected, was the largest and more heterogeneous data set containing
physiological data of students during actual lectures.

We ran an extensive analysis and explored the role of different features and
classifiers. We observed that the best overall performance are provided by the
SVM classifier used in combination with two of the momentary features we pro-
posed (arousing ratio and level 5).

This confirms the importance of momentary engagement in the recognition
of students’ engagement [87] as well as the strength of the new features we
propose. Results of this study have been published in [Al].

Overall, our findings open up novel possibilities to design engagement-aware
systems for supporting students during learning activities. Feedback strategies
could be developed on top of the engagement recognition engine to, e.g., allow
students to self-reflect on their engagement (or lack thereof) and teachers to test
adequate strategies to re-engage non-engaged students.
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Chapter 4

Recognition of Laughter Episodes From
Physiological Signals and Body
Movement Data

Laughter is a multi-modal behavioural expression characterized by the combina-
tion of several body reactions such as facial expressions, vocal tone, movement,
respiration and physiological activation [[173]]. Laughter is an universal behav-
ioral sign of positive emotions, it is known for reducing boredom and boosting
engagement [[237]]. Laughter plays also a key role in communication giving pos-
itive feedback to the interlocutor and strengthening social bonds, as discussed
in [62].

In activities that involve social interactions such as in team projects, lectures,
meetings, presentations and breaks, laughter episodes often occur [238} 239
178].

For instance, researchers have investigated the role of humor and laughter in
the classroom [238};239] and observed that they are effective “tools” for teachers
to gain and maintain students’ attention and to create a positive climate in the
classroom [238}; [239]]. Humor and laughter have the potential of reducing ten-
sion and stress in the classroom, facilitating the learning experience and creating
a positive relation among students and teachers [238};239]].

The role of laughter in business meetings has been also extensively inves-
tigated in [[I78] in terms of interaction phenomenon. For instance, authors
of [[178]] observed that shared laughter is associated with task accomplishment,
and when strategically invited by the managers, shared laughs enable to create
a relaxed work environment [[178]].

Given the occurrence of laughs during work and learning activities, and their
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positive impact on students and workers’ mood, we believe that an engagement-
aware system aiming to support people in their daily activities should be able to
detect laughs.

In the study presented in this chapter, we propose and evaluate a novel method
to recognize laughter episodes. Specifically, we propose to use a combination of
physiological signals — to quantify a person’s electrodermal and cardiovascular
arousal [[176]] — and body movements — such as vibrations of the shoulders or the
trunk caused by laughter-induced exhalations [[174] collected using wristbands.

Most of the existing work in laughter recognition, consider laughter as an
audio-visual event and thus rely on the analysis of audio and video data only [|62}
240]]. The reliability of these methods is usually high, with typical accuracy val-
ues ranging between 70% and 90% [[173]]. However, using cameras and micro-
phones to obtain the necessary video and audio data is often unfeasible, espe-
cially in noisy environments or under poor light conditions, or when multiple
people interact with each other, e.g., during meetings or lectures [173; 241]]. To
overcome these limitations, we rely on physiological and body movement data
collected using wristbands. Indeed, as also discussed in the study presented in
Chapter 3] wristbands can be easily used for collecting data from multiple people
while guaranteeing the privacy of who do not want to be monitored.

We distinguish between laughter and non-laughter episodes and test different
combination of sensors and classifiers. Further, we test the robustness of our
method against confounding variables such as cognitive load and clapping hands,
which could generate similar physiological and movement responses to laughter
and consequently generate miss-classification errors.

Our results show that using a combination of the features extracted from the
physiological signals and the body movement data, as input to a Support Vector
Machine, we can achieve an accuracy of 81%. Further, we demonstrate that the
signatures left by laughter episodes on physiological and body-movement data
differ significantly from those caused by slightly intense motions or cognitive
load tasks.

To evaluate our approach we collected the USI Laughs data set and made it
available to the research community.

The study presented in this chapter targets the first research question of this
thesis (RQ1: How can features representing behavioral expressions of engagement
can be derived from physiological and movement data?). The results of the pre-
sented work have been published as conference paper [B] at the PervasiveHealth
conference (May 2019). Part of the text written in this chapter is reported from
the paper [B]].

The reminder part of this chapter is structured as follows. We provide an
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overview of the existing literature in laughter recognition in Section Sec-
tion describes the data collection of the USI_Laughs data set. Section
and Section provide an overview of the data analysis method we used and a
discussion of the obtained results. In Section |4.5|we discuss the implications of
our approach. In Section [4.6|we discuss the limitations of the presented method.
We conclude with a brief summary of the chapter.

4.1 Related work on laughter recognition

In this section we provide an overview of existing literature on laughter recog-
nition. A description of laughter and its characterization is presented in Sec-
tion

Several authors use acoustic features to distinguish laughter from speech.
Performance, in terms of correct classification rate, obtained using acoustic pro-
cessing only, ranges from 70% to 90% [[173]]. Recently, Hagerer et al. [37] de-
ployed a laughter detection system on smartphone and wearable using audio
data only.

More recently, several authors explored the use of other sensory channels in
addition to the audio source. The authors of [38}; 39]], for instance, combined
acoustic signals with visual-facial expressions. Reuderink et al. [39] integrated
the results of separate audio and visual models using a decision-level fusion ap-
proach to distinguish between laughter and non-laughter segments.

Petridis et al. [38] extensively analyzed the role of features derived from
audio, video (from which they extracted features for characterizing facial ex-
pression and head pose) and their combination through features-fusion tech-
nique [242]]. They also confirm that, on average, considering laughter as a multi-
modal behaviour rather than uni-modal, increases the performance of the model,
especially for female subjects [38]].

Our approach also exploits the multi-modal nature of laughter. However, we
focus on the role of physiological and body movement characteristics, which are
less investigated in comparison to the visual and vocal expressions.

Few approaches integrate body movements in the recognition of laughter [175}
40} [243]]. Niewiadomski et al. [[I75]] investigate the role of full-body movement
in laughter recognition during social interactions. They use a motion capture
system to identify and extract 13 features that could characterize typical body
movements during laughter episodes, which they provide as input to several clas-
sifiers. Their method achieves a F1 score of 74%. Even though this performance
may appear modest, the authors demonstrate that the use of body movement
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could be a valid alternative to audio and facial expression modalities, which are
not always available in real-world scenarios [[175]].

Urbain et al. [40] investigated laugh-induced movements and their combi-
nation with respiration sensors and audio. The authors positioned polystyrene
spheres on the participants’ shoulders to track their movements and propose a
Body Laughter Index (BLI) to capture those movements [40]]. Despite the ro-
bustness of their method, as the authors also report, the presented system is too
invasive to be used in real settings.

Even though the results presented in the above mentioned approaches are
very promising, they all suffer from the limitations related to the sensors in-
volved. In particular, performance derived from video and audio sources are
highly dependent on the environmental conditions in which the system is de-
ployed, for example in noisy or smoky places or in presence of poor light condi-
tions [[173; 241]]. They may also raise significant privacy concerns, especially if
used in public places.

To overcome these limitations, other methods have been proposed to detect
laughter [244}; 245]. For example, Consentino et al. [244] place a set of inertial
measurement units (IMUs) and electromyography sensors (EMG) on the subjects’
torso to measure the moments and the muscles activation during laughter.

Very few approaches consider the activation of the Sympathetic Nervous Sys-
tem (SNS), in terms of cardiovascular and electrodermal arousal in laughter
episodes and most of them are tested in laboratory settings [[173]] using bulky
and invasive devices.

Tatsumi et al. [246]] collected physiological data from 10 participants using
EDA, electrocardiogram (ECG), facial electromyogram (FEMG) and movement
of the diaphragm placing electrodes on participants’ body and face for detecting
“hidden laughter”, i.e., when participants almost laugh but without showing their
expressions [246]]. The method proposed by the authors achieves an accuracy of
85%.

Although the placement of several sensors could provide more precise mea-
surements, it is impracticable in real-world settings, furthermore it is invasive
and not ecological for the participants and can consequently alter their emotional
state [[173]].

As stated in the literature review on quantitative laughter detection from
Cosentino et al. [[173]], and we also demonstrated in this work, new advances in
wearable technologies could solve the above mentioned issues and allow laugh-
ter recognition to be integrated in real systems.
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4.2 Data collection of the USI Laughs data set

Most of the data sets publicly available for laughter recognition do not contain
physiological data. Only the RECOLA data set presented in [[247]], contains EDA
data and ECG data collected with an invasive device (Biopac MP36E]). How-
ever this data set does not contain movement data about body movement, an
important modality to investigate for describing laughter episodes [[173]] as also
confirmed by our results. A recent overview of the existing data sets suitable for
laughter recognition is provided in [[248]]. The lack of an appropriate data set
for investigating our research question, motivated us to collect a new data set.
In this section we provide details about the participants, the equipment we used
and the procedure we followed to collect the USI Laughs data set.

Participants

We recruited 34 participants (28 males and 6 females) of age between 22 and
37 (Mean = 26.70, SD = 4.04). We allowed the participants to decide whether
to take part to the experiment alone or with another participant. Given laughter
being a contagious behaviour [[172]], we considered that the possibility of par-
ticipating to the experiment with another person could increase the number of
laughter episodes. This procedure allowed us to collect data from 16 pairs and
two individuals.

Collected data

Sensor data. We gathered physiological data — blood volume pulse (BVP) and
electrodermal activity (EDA) — and body movement data — accelerometer (ACC)
— using the E4 wristband [|58]].

Ground-truth data. It is referred to the type of expressions and actions the par-
ticipants performed during the experiment. We asked three external observers to
annotate the video recordings of the participants, as common practice in the lit-
erature [|62]]. To collect the video recordings we used a GoPro camera equipped
with a microphone.

Data collection procedure

We conducted the study in a laboratory setting. Despite the constraints of lab-
oratory settings, this approach ensures a detailed analysis of the phenomenon

'https://www.biopac.com/product/mp36r-system-54/
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Figure 4.1. Experimental protocol we designed for collecting the USI Laughs
data set.

of interest, the replicability of the procedure [[10] and it is suitable for initial
investigation of new methods. Before starting the experiment, we asked the par-
ticipants to wear an Empatica E4 to each wrist. We did this step to guarantee
that even if one of the devices was malfunctioning, or the data was corrupted,
we could still use the data from the other device. Before starting the experiment
we provided a general description of the study and all the participants signed an
informed consent agreement. The study procedures were approved prior to the
start of the study by the faculty of Informatics ethics delegate. As suggested in
the literature we did not disguise the actual purpose of the study because this
should guarantee a spontaneous reaction of the participants [249]].

The participants were asked to follow the instructions presented in a video
and react as more spontaneously as possible. We put only two constraints: limit
the movements of the hands - to reduce the presence of motion artifacts in the
signals [216]] — and, if they participate with a friend, to avoid to talk to each
other — to exclude that the physiological response was due to a social interaction
rather than to a laughter episode.

Once all the instructions were given, the participants were left alone in the
room to not influence their behaviour. To elicit natural laughter we created a ten
minutes video concatenating ten funny video (average duration = 69 seconds,
Min = 7 seconds, Max = 151 seconds) from YouTube similarly to [249]. We
alternate tasks with moments where the participants were asked to relax and
breathe normally, we refer to them as relax. If the participants were two they
performed the tasks one after the other. Figure describes the protocol we
followed. In particular, participants were asked to relax for 60 seconds, after
that they watched the funny videos and then relax again. We asked them to
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perform an acted laughter — to analyze the difference between real and acted
laughter, however this analysis is not part of the scope of this contribution — .
After relaxing for other 30 seconds participants clapped their hands three times
— to analyze the difference between the body movements generated by laughter
episodes and the ones from slightly intense motions —. Additional 30 seconds of
relax then they performed the Stroop test — to compare the activation of the SNS
due to laughter episodes and the one due to cognitive load tasks —, designed and
widely used for cognitive load inference [[250]].

The experiment ended with final 60 seconds of relax. The total duration of
the experiment was 16 minutes.

We provided sweets as compensation for the participation in the study.

4.3 Data analysis

In this section we describe the procedure we followed for annotating and clean-
ing the data, pre-process sensors data, extract the features and classify the episodes.

Data annotation and cleaning

Three external annotators were asked to watch the video recordings of the par-
ticipants and annotate laughter and non-laughter episodes as explained below.

Laughter episodes. Several definitions of laughter exist and no standard rules
have been defined for the annotation, as also discussed in [[62]]. To annotate the
laughter episodes we rely on the broad definition provided in [251]] which states:
“Laughter is defined as being any perceptibly audible expression that an ordinary
person would characterize as laughter if heard under everyday circumstances” used
also in [|62]].

One annotator labeled the laughter episodes of each participants using video
and audio data and the ANVIL video annotation tool [[64]. From this step we
collected 612 data segments. These segments were then annotated by other
two raters. We asked the raters to use the following labels: laughter; smile;
not-sure and none. For annotating laughter episodes, raters were requested to
consider the definition presented before and suggested in [251]]. They should
have reported smile if no sound or movement was identified, not-sure if the rater
was not sure of the label and none if the segments could not be identified neither
as laughter nor smile.

Then two sub-labels for characterizing laughter episodes were also provided:
sound and intensity. In the sound category the raters were requested to identify
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whether the laughter was voiced or unvoiced based on the definition provided
in [38]]. We asked the annotators to rate the perceived intensity of the laughter
as low, medium or high as suggested in [[252]]. There is no a precise definition of
laughter’s intensity given the fact that the intensity dimension is naturally used by
people to describe laughter, as discussed in [253]]. We obtained the final labels
and sub-labels for each episode using majority voting among the three raters
similarly to [62]]. We discarded a segment if all the three raters provided different
labels. Out of the 612 segments 27 were discarded from this procedure. In this
study we focus on the medium and high intensity laughter episodes. Thus we
consider 316 laughter episodes (out of 585) of average duration of 3.18 seconds
(SD = 1.70 seconds) labeled as medium or high intensity.

Non-laughter episodes. In order to create a balanced data set we extracted
316 non-overlapping non-laughter segments using the following procedure. We
considered the section of the experiment between the first and second relax peri-
ods, from which we removed the segmented laughter episodes and an additional
segment of three seconds before and after the episode, to take into account the
onset and offset of the laugh [39]]. Moreover we discarded segments that one of
the raters identified as either movements or talking episodes, to reduce the pres-
ence of artifacts in the signals. For each laughter episode we selected a random
non-laughter segment of the same duration of the laughter segment.

Subset of the data set. Before proceeding with further analysis we considered
episodes of duration of at least three seconds. Indeed, we considered that an
EDA response’s rise time lasts 1-3 seconds [[35], so we considered three seconds
as minimum duration to be able to capture meaningful physiological informa-
tion. We also observe that to a lower intensity corresponds a shorter duration of
the episode, confirming what stated in [[252]]. This suggests that laughter recog-
nition using physiological signals is more suitable for higher intensity emotional
reactions, the short duration of the low intensity laughs (Mean = 1.52 sec) could
not allow a detectable change in the physiological parameters. The final data set
we use for this analysis consists of 189 laughter and 189 non-laughter episodes
from 31 subjects, the average number of laughter episodes per subject is 6 (Min
= 1, Max = 18) of average duration of 4.19 sec (Min = 3 sec, Max = 13 sec).

Pre-processing of sensor data

We used sensor-specific pre-processing techniques suggested in the literature [67;
254; [165); [255]] to remove noise and decompose the signals. We used the data
from the non-dominant hand of the subject and pre-process the signals collected
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Figure 4.2. Examples of EDA BVP and ACC signals. The laughter episodes
are highlighted in the corresponding segments.

over the whole experiments. We normalized the signals to allow a direct com-
parison among different individuals’ physiological responses. We normalized the
signals per-participant using the traces collected during the whole experimen-
tal procedure. All the signals are normalized using the min-max normalization
which brings the signal’s amplitude in a range between zero and one [[72].

EDA data. We visually inspected the EDA signals, and observed that the data of
four participants was significant affected by artifacts, probably due to the wrong
placement of the wristband (too tight or too lose). For those subjects we use
the data from the dominant hand. We filtered the EDA signal using first order
Butterworth low-pass filter with a cut-off frequency of 0.4 Hz similar to [254]
to remove noisy high frequency fluctuations. We decomposed the signal using
the cvxEDA approach [[71]]. In this work we used only the normalized mixed-EDA
and phasic signals, since the tonic component is not connected to short responses
to stimuli and it is thus unsuitable to quantify laughs. More details about the EDA
and its characteristics are presented in Section

BVP data. We filtered the BVP signal with a first order Butterworth FIR filter
with a cut off frequency of 5 Hz, similar to [[165]]. Before extracting the features
in the laughter and non-laughter segments we removed the segments that do
not confirmed with three rules presented in [255]]: the heart rate (HR) should
be in the range of 40-180 beats per minute (bpm), the gap between adjacent
peaks should be maximum of three seconds and the ratio between the maximum
and minimum of the peaks interval should be less than 2.2 seconds [[255]]. This
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procedure lead to the elimination of three instances from the non-laughter and
12 instances from the laughter class. More details about the BVP signal and its
characteristics are presented in Section [2.3.3]

ACC data. The E4 measures the gravitational force (g) applied to the three
axis and limit the range between £ 2g. Changes in the acceleration signal can
be observed during motions. To quantify the motion in the laughter and non-
laughter segments, we calculated the moving average of the ACC data with the
method suggested by Empaticaﬂ

Features

We extracted 56 features from EDA, BVP and ACC in the laughter and non-
laughter segments. Table presents an overview of the features.

Examples of these signals and corresponding laughter episodes are presented
in Figure We can observe that in correspondence of laughs the EDA presents
peaks while the BVP pulses’ amplitude and the peaks’ distance is significantly
reduced, these are all expressions of the activation of the SNS.

EDA features. We extracted 22 features from the EDA data proposed in litera-
ture [|67; [74]]. We quantified the skin conductance responses (SCRs) [35] using
the number of peaks and the peaks’ amplitudeﬂ To characterize the changes in
the signal we calculated the dynamic change [[74]], the slope of the signals (es-
timated with linear regression as in [[10]), the absolute value of the slope, the
mean and the standard deviation of the first derivative.

BVP features. We extracted 23 features from the BVP signal. We considered
time-domain statistical features, heart rate (HR) and heart rate variability (HRV)
features, moreover we computed features to describe the BVP pulses. We charac-
terized the BVP pulses using the mean and the standard deviation of the pulses
amplitude — difference between the pulse’s height and its preceding valley —.
To an increment of the amplitude of the BVP signal, corresponds a decrease of
the sympathetic arousal [256]]. We also calculate the mean and standard devia-
tion of the pulses’ length — time interval between two consecutive valleys —. As
suggested in [[163]] we consider the peak-to-peak amplitude variation, such as
the difference between the highest and the smallest peaks. This feature should
measure the activation of the SNS, in particular as the amplitude decreases, the
arousal increases [[163]]. We computed the HR as 60/IBI, IBI is the mean of the

2https://bit.ly/2FndpPE
3We considered an amplitude of the peak of at least 0.01 in the normalized signals as in [[67]].
If no peak was found in the segment both the number of peaks and the amplitude was set to 0
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Sensory channel Features extracted

Time-domain statistical features: minimum, maximum, mean, standard deviation,
difference between maximum and minimum value or dynamic change,
slope, absolute value of the slope, mean and standard deviation of the first derivative;

EDA (mix-EDA + Phasic)
(22 features)
From: [67}(68}[73} (74} 75]

SCR features: number of peaks, peaks’ amplitude;

Time-domain statistical features: minimum, maximum, mean, standard deviation,
dynamic change, slope, area under the curve, number of peaks,

ratio between number of peaks and length of the segment,

mean and standard deviation of the first and second derivative,

difference between the highest and smallest peak;

BVP Heart rate (HR);

(23 features)
From: [76}(77}[78}[79] HRYV statistical features: mean of all NN, standard deviation of all NN (SDNN),
standard deviation of differences between NN (SDSD),

the square root of the mean

of the sum of the squares of differences between NN (RMSSD);

BVP pulse features: mean and standard deviation
of pulses’ amplitude and pulses’ length;

Time-domain statistical features: minimum, maximum,

ACC mean, standard deviation, dynamic change,
(11 features) slope, absolute value of the slope
From: [29] pe; pe

mean and standard deviation of the first and second derivative;

Table 4.1. Overview of the 56 features extracted from the EDA, BVP and ACC
signals. NN stands for the distance between BVP adjacent peaks.

interbeat interval (IBI) in the segment [76]]. To quantify a short HRV we calcu-
late the distance between adjacent peaks (NN) and then computed the mean and
standard deviation of the NN (SDNN), the SDSD and the RMSSD [164ﬂ

ACC features. We calculated 11 statistical features from the ACC signal.

Laughter recognition pipeline

In order to distinguish between laughter and non-laughter episodes we use a
binary classification pipeline described below.

Labeling. We used the 189 identified laughter episodes by the external raters and
the corresponding 189 non-laughter episodes randomly extracted as explained

in Section

“If the number of peaks detected in the window was less than four, we set the SDSD and the
RMSSD to zero since no variation between difference in adjacent NN could be observed in those
cases.
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Classifiers. We tested five well-known classifiers. We used linear classifiers —
Support Vector Machine with linear kernel and C =100 (SVM-Linear) and Logis-
tic Regression (LR) — , a non-linear classifier - SVM with radial basic function
(SVM-RBF) - and an ensemble learning method — Random Forest (FR) — [65]].
We consider a Biased Random Guess (BRG) as baseline.

Metrics. To evaluate the performance of the classifiers we considered the fol-
lowing metrics: accuracy, precision, recall and F1 score [[65].

Feature selection. We used a filter features selection (FS) approach. Filter FS
algorithms select features independently from the specific learning model and
usually select the features with the strongest relationship with the output vari-
able [[257]]. In this work we used the non-parametric Kolmogorov-Smirnov (KS)
test which has been successfully used to extract relevant features in an emo-
tion recognition from speech [[258]]. The aim of the KS test is to reject the null-
hypothesis of identical distribution [258]. We applied the KS test to each feature
to discard the non-relevant features e.g. the features which present a similar dis-
tribution in the two classes. We kept only the features which present a significant
difference (p < 0.05) in the two classes as in [258]].

Validation procedure. To evaluate the performance of the models, we use the
leave-one-subject-out (LOSO) validation procedure. In this way, laughter and non-
laughter episodes derived from the physiological signals of a single subject are
not contained in the train and test sets simultaneously. As recommended in liter-
ature [227]], in the training phase we scaled the features using a standard scaler
which removes the mean and scale the features to unit Varianceﬂ To compare
the results with the baseline we used a paired t-test and set the significance level
to 0.05 as in [[38]]. We also considered the corrected threshold for the p-value
(a,) using the Bonferroni correction and report the Cohen’s d effect size, as done
for the analysis presented in Chapter 3

4.4  Results and discussion

To investigate the feasibility of recognizing laughter episodes using physiological
and movement data. In particular, we analyzed the role of each sensor separately
(uni-modal approach) and their combination (multi-modal approach). We an-
alyze which features present significant differences between the laughter and

Shttps://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
StandardScaler.html
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Sensors SVM-Linear LR RF SVM-RBF BRG
AP R F1 |A P R F1 |A P R F1|A P R F1 |A P R F1

EDA 67~ 71%* 52 56 67" 71 58" 59* 58* 52 46 46| 66 71%* 50 54° |44 40 42 40
BVP 66" 61* 64" 57* 66" 61* 62" 57* 58" 53 60 54| 63" 58" 60 54 |43 38 42 39
ACC 750% 7757 647 687 | 750 750 66F 68" | 67° 67" 54 57|74 71% 59 61" |48 41 45 48

Table 4.2. Performance of all the classifiers for the uni-modal approach. The re-
ported values refers to the mean of the metrics (Accuracy (A), Precision (P). Recall
(R) and F1 score (F1)) obtained across the 31 iterations of the LOSO approach. An
asterisk (*) identifies the significant difference (p < 0.05) from the baseline (BRG).
Two asterisks (**) identify the significant difference using the adjusted p-value (p <
0.016) from the baseline and a large effect size (Cohen’s d > 0.8).

non-laughter classes. Lastly, we considered how confounding variables, specif-
ically, movement generated by clapping hands, and cognitive load could affect
the laughter recognition task. In this section we report and discuss the obtained
results.
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Figure 4.3. Classification accuracy per subject of the SVM-Linear using single
sensors i.e., EDA, BVP and ACC.

Uni-modal laughter recognition

In this set of results, only the features extracted from one of the sensors are used
as input to the classifiers.

Table shows the results obtained for each sensor. We observe that in
general the linear classifiers perform better than the others and all their metrics
are significantly different and higher than the baseline.

The combination of the SVM-Linear classifier and the features extracted by
the ACC lead to the best performing model, with an accuracy of 75%, precision
of 77%, recall of 64% and F1 of 68%, outperforming the baseline by respectively
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Sensors SVM-Linear LR RF SVM-RBF BRG
A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

EDA +BVP | 69 72°% 66*  64° |68 73+ 65  62° |69%* 62 65 61° |68 67° 66° 63" |48 44 49 46
EDA + ACC | 78 84" 72t 74 | 785 78w 71*  72* | 76%% 75" 62 68° | 74%* 75" 62 65 |50 51 54 52
BVP +ACC | 775 77" 72 71* |76 75* 71 69" |72%* 64° 62 61 |70° 62 60 58 |57 55 58 55
ALL S5 G2 GIWH GOW | QN G4WT 7gRM 77N | 6N 5O 54 55 | 73 GOWH 67 654 | 50 47 53 49

Table 4.3. Performance of all the classifiers for the multimodal approach. An
asterisk (*) identifies the significant difference (p < 0.05) from the baseline
(BRG). Two asterisks (**) identify the significant difference using the adjusted
p-value (p < 0.012) from the baseline and a large effect size (Cohen’s d > 0.8).

27,36, 19 and 20 percentage points. This underlies the importance of considering
body movements in the automatic recognition of laughter [[173]].

When used alone, the BVP and the EDA features perform better than the
baseline but much worse than when the ACC features are used. We believe this
could be due to two facts, either the laughter episode was not intense enough to
generate a strong physiological reaction that could be captured by the EDA or BVP
sensors or some scenes in the videos attracted the attention of the user causing
the SNS activation while not eliciting a laughter as discussed also in [[176]].

We notice a large variability of the performance, in terms of accuracy, when
using a single sensor. This variability is reflected not only on the single participant
used in the test set, but also on the type of sensor used. For instance, using
the ACC only, the accuracy ranges from 25% to 100%. Figure shows the
classification accuracy per subject obtained using the SVM-Linear and the single
sensors. We can observe that some participants obtained roughly similar results
with all three sensors (i.d. s083, s049, s099), while others achieve much higher
results when using one or two sensors. For example the accuracy obtained when
using data from s097, s073, s044 for testing, is much higher with the BVP and
ACC rather than with the EDA, while s074, s048 and s052 performs significantly
better when using only the EDA. We believe this happens because laughter is not

uniquely expressed and people’s physiological reaction due to emotions often
differ.

However, we notice that groups of users present similar performance using
specific sensors. Based on that, we hypothesize that building models which con-
sider the similarity among users could ameliorate the performance, more data is
needed to confirm this assumption.
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Figure 4.4. Classification accuracy per subject of the SVM-Linear using all the
Sensors.

Multi-modal laughter recognition

In this section we present the results obtained when combining data from dif-
ferent sensors. To combine data from different sensors, we used a features level
fusion approach. Specifically we used the feature concatenation method, which
generates a single feature vector from the concatenation of all the features of
each sensor [242]]. Table shows the results for different combination of sen-
sors. We can observe that the best results — shown in bold — are obtained when
combining all the three sensors and using SVM-Linear, in particular an accuracy
of 81%, a precision of 82%, recall of 81% and F1 of 80% are obtained, the SVM-
Linear significantly outperforms the baseline respectively by 31, 35, 28 and 31
percentage points.

This result underlines the importance of considering laughter as a multi-
modal rather than an uni-modal expression [[173]]. Indeed in general we can
observe that despite the combination of sensors, the results obtained (especially
with linear classifiers) are higher than the ones obtained using a single sensor.

We underline also that the performance obtained using a multi-modal ap-
proach are less dependent on the subject used for testing, compared to the ones
obtained using the uni-modal approach.

Figure [4.4] shows the per-subject accuracy obtained using all the sensors and
the SVM-Linear, it goes from a minimum of 50% to a maximum of 100%. We
can notice that only four participants’ accuracy is close to the baseline’s accuracy,
while the others’ is much higher, indicating that the improvement given from the
fusion of information compensates the poor performance of one sensor for the
majority of the subjects.
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Sensors SVM-Linear BRG
A P R F1 |A P R F1

EDA + BVP | 92* 81" 79" 78" |52 44 45 41

Table 4.4. Performance of the SVM-Linear and the baseline for the recognition
of laughter episodes from cognitive load.An asterisk (*) identifies the significant
difference (p < 0.05) from the baseline (BRG) and a large effect size (Cohen’s
d > 0.8)

Significant features

Out of 56 features, 45 presented a significantly different distribution in the laugh-
ter and non-laughter classes (tested with the KS test). No features have been
discarded from the ACC set, only one from the EDA set (the minimun value of
the mixed-EDA), while 10 features of the BVP set did not show significant dif-
ference in particular: the area under the curve, the mean of the first and second
derivative, the min, mean and max of the BVE the number of peaks, the mean of
their amplitude and the slope. These results confirm the BVE EDA and ACC as
meaningful proxy for detecting laughter.

Laughter vs cognitive load

To understand whether cognitive load could elicit a reaction that could be misin-
terpreted as laughter, we extracted features presented in Table from the EDA
and BVP data during the cognitive load task.

The average length of the recorded cognitive load tasks performed by each
participant is 21.52 seconds (SD = 10.09 seconds). Given the considered laugh-
ter segments’ average duration equal to 4.19 seconds, to compare the laughter
episodes with the cognitive load task we extracted features from non-overlapping
windows of four seconds.

We obtained 175 cleaned instances of cognitive load which we compare against
177 laughter instances.

To understand the difference between cognitive load and laughter we per-
formed two steps. We applied first the KS algorithm then we ran the classifica-
tion pipeline described before using the SVM-Linear since we already observed
that was the best performing classifier.

From the first step we notice that the features that did not show significant
differences in the two conditions were only 12 out of 45: from the EDA only the



103 4.4 Results and discussion

number of peaks of the mixed-EDA and the phasic component and from the BVP:
HR, min, mean, max of the BVE the peaks’ distance, the length of the pulses, the
SDNN, the mean of the second derivative, the standard deviation of the pulses’
amplitude and the slope.

Table [4.4] shows the results of the classification task. We can observe that,
using the significant features, the SVM-Linear outperforms the baseline with an
high accuracy of 96%, precision of 88%, recall of 80% and F1 of 83%.

These results are particularly encouraging in terms of applicability of the
laughter recognition using physiological signals. Indeed they suggest that it is be
feasible to use unobtrusive wearable sensors in real-settings to recognize laugh-
ter episodes and that these episodes should not be confounded with cognitive
load.

Laughter vs clapping hands

To contextualize the laughter reaction in terms of body movements we extract the
same set of features from the ACC data presented in Table from the clapping
hands task. The average duration of the task is three seconds (SD = 1.09 sec-
onds). We tested the difference between the distribution of the laughter episodes
and the clapping hands segments using the KS test. We observe that all the 11
features extracted from the ACC present a significant difference in the two con-
ditions.

We can conclude that a laughter episode will unlikely be confounded with a
movement as clapping hand, however it might be confounded with less intense
movements such as writing or typing.

4.4.1 Summary of the main findings

In the study presented in this chapter, we demonstrated the feasibility of using
physiological and body movement data gathered from wristbands to distinguish
between laughter and non-laughter episodes. Our main findings are:

* The ACC - proxy for body movement — resulted the most informative sen-
sor in the uni-modal approach. Using ACC features as input to the SVM-
Linear classifier allowed to achieve a 75% accuracy in distinguishing laugh-
ter from non-laughter episodes.

* When combining the features derived from all the sensors, using a feature
concatenation strategy (multi-modal approach), as input to SVM-Linear,
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we obtained an increment of the performance. Specifically, in this configu-
ration laughter episodes can be distinguished from non-laughter episodes
with an accuracy of 81%, confirming the multi-modal nature of laughter.

* When distinguishing between laughter and cognitive load segments, we
obtained an average accuracy of 92%. This indicates that physiological
responses during laughter episodes can be reliably distinguished from the
ones during cognitive load.

* All the features from the ACC present a significantly different distribution
in the laughter and clapping hands conditions. This indicates that motions
generated by laughter are distinguishable from the ones caused by clapping
hands.

4.5 Implications

A practical implication from our results is the possibility of using physiological
data and body movement data collected using wristbands to recognize laughter
episodes. Researchers and practitioners aiming to integrate the expression of
laughter into their engagement-aware systems could rely on our approach.

In the context of this thesis, we consider laughter as possible additional cue
for assessing students and knowledge workers’ engagement in particular situ-
ations e.g., breaks, meetings, and lectures. In this direction, the engagement-
aware system should be able to recognize when the user in involved in one of
these situations and “activate” the laughter recognition engine. For instance,
with the method presented in Chapter |5, we show that is possible to distinguish
when knowledge workers take breaks from when they are involved in a work
activity. The system could use the information about when the worker takes a
break as a trigger for activating the laughter recognition.

Once information about laughter (presence, absence, number) are available,
they could be used as input to the engagement recognition model. For instance,
features about laughter episodes could be combined with the EDA features pro-
posed in the study presented in Chapter [3|for recognizing students’ engagement
during lectures. Further, laughter episodes could be used as an additional cue to
understand the overall classroom emotional climate (CEC) [|259]]. For instance, in
the work presented in [260]], we investigated the relation between the physiolog-
ical synchrony, measured using EDA, among students and the CEC. We observed
that the more students are synchrony with each other, the more positive is the
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emotional climate in the classroom [260]]. In this direction, the automatic recog-
nition of concurrent laughs from the students, or lack thereof, could be exploited
as an additional indicator of a positive or negative CEC .

Information about laughter episodes could be also retrieved to the user, for
tagging particularly enjoyable moments, e.g., through a “laughter counter” — to
make users gain awareness of their emotional expressions [241]].

Given the positive effect of laughter and humor on mood, systems might also
incorporate the ability of making the user laugh [246; [261]]. Virtual agents or
applications running on mobile and wearable devices, could for example send
funny videos or jokes with the aim of assessing [261]] or ameliorating the mood
of the user.

However, people have different perception of what is funny and what is not,
so in this case an automatic laughter recognition engine is fundamental for the
agent to verify the success of the intervention and adapt the contents of the
intervention to the users’ humor [|246]].

4.6 Limitations

In this chapter, we presented promising results towards the recognition of laugh-
ter episodes using physiological and body movement data. However further work
is needed to overcome the limitations of our current approach.

A limitation of our approach regards the setting of the study. We tested the
current solution in laboratory settings, thus neglecting the noise introduced in
real-settings. However, in our scenario participants were sitting in front of a
screen watching funny videos, this could be a similar setting as workers watching
videos during a work break, so equivalent responses could be expected. Future
research should validate our method in real-settings.

Another limitation of our approach derives from the fact that we excluded
from the recognition task all the moments when the participants were moving,
those moments might reduce the performance in terms of the ACC. However, we
performed this step to ensure the reliability of the physiological data not being
affected by motion artifacts.

Lastly, we observe that physiological data are suitable for recognizing more
intense laughs which also present longer duration.

Including additional information, in terms of e.g., short recordings of audio
and facial expression (if possible), could be explored in future research to over-
come this limitation.



106 4.7 Summary of Chapter

4.7 Summary of Chapter

In this chapter of the thesis we presented our novel method for recognizing a
multi-modal behavioural expression of engagement: laughter.

Building upon the existing literature describing laughter as a multi-modal
expression involving, among others, physiological and movement reactions, we
proposed to recognize laughter combining data from EDA, BVP and ACC sensors
gathered from wristbands.

To evaluate our approach we collected the USI Laughs data set using an ex-
perimental procedure in a laboratory setting with 34 participants.

We ran an extensive data analysis and showed that most of the features ex-
tracted from the considered modalities present a significant difference in laughter
and non-laughter segments, making those modalities a reliable source of infor-
mation for recognizing laughter episodes.

We analyzed the role of uni-modal and multi-modal approaches for recog-
nizing laughter. We observed that the best performance is obtained when the
features from all the modalities are used as input to the linear SVM classifier,
achieving an accuracy of 81% which outperforms the baseline of 31 percentage
points. These results confirm the multi-modal nature of laughter.

We contextualized laughter reactions and demonstrated their differences from
tasks that could elicit similar responses e.g., clapping hands and cognitive load.
In particular we reported that all the features extracted from the ACC present a
significant difference between laughing and clapping hands.

Furthermore we show that, despite cognitive load activate the SNS, as laugh-
ter should do, the responses generated by the two events are highly distinguish-
able. Indeed, using BVP and EDA significant features as input to a SVM with the
linear kernel, laughter and cognitive load segments could be distinguished with
an average accuracy of 92%. Results of this study have been published in [BI].

We believe that our findings can open plenty of new possibilities for the inte-
gration of laughter recognition into engagement-aware systems.



Chapter 5

Flow and Activity Recognition in the
Workplace Using Context, Physiological
Data, Movement Data, Laptop Usage
and Phone Usage

Flow is a positive state of mind occurring when people are totally immersed and
deeply engaged in an activity [32]]. Research demonstrates that flow experienced
at work is positively linked to job performance and well-being [26}; 92]].

Recent research shows that physiological parameters — from cardiac activ-
ity and electrodermal activity (EDA) — can be sued to measure flow [[192} [41};
118; [45]; [47]. Even though the relationship between physiological parameters
and flow during daily activities is still debated [41]], flow has been for instance
linked to a moderate level of arousal, neither too high (as stress or anxiety) or
too low (as boredom or relaxation) [[41;118[]. Researchers have also shown that
context, described for instance in terms of time of the day and activity, is a pre-
dictor of perceived engagement and flow [|50; (132 [128]]. For instance, Debus
et al. [132]], show that during programming activities flow occurs more often
than during personal or administrative activities. Nielsen et al. [[128]] demon-
strate that planning, problem solving, and evaluation activities are significant
predictors of flow, whereas brainstorming activities are not [[128]. Additional
discussion about flow at work is presented in Section |[2.1.3

Building upon previous research, we propose to combine phyisological data
(EDA and BVP data) gathered from unobtrusive wristbands with context infor-
mation (type of activity, time of the day, day of the week) collected using self-
reports. We experimented with several fusion strategies based on traditional
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machine learning and deep learning. Our results show that when the type of
activity, the raw EDA and BVP data are used in input to a sensor based late fusion
(SB-LF) strategy implemented using a convolutional neural network (CNN), it is
possible to distinguish between levels of flow with a balanced accuracy of 71%.

Despite the importance of flow at work, few approaches have been proposed
for its automatic recognition using sensor data [[155}; 45}, [47; 41]] and most of the
existing studies are conducted in laboratory settings with simulated work activi-
ties [[45};[41]] which might be not representative of the actual work ecosystem. In
contrast to previous work [|45; 41]], we validated our approach using data that
we collected “in-the-wild”, during actual work days and work activities.

Besides recognizing flow, we aim also to recognize activities in the work-
place. Previous work suggests that the activity is a relevant context information
to consider when creating interacting systems [27]]. Further, the results obtained
from the before-mentioned analysis indicates the type of activity as relevant for
recognizing flow at work.

Motivated by these reasons, we move a step towards the automatic recogni-
tion of activities at work. Specifically, we aim to distinguish between two types
of workplace activities such as work and break activities. More details about
definitions of these type of activities and existing methods for their automatic
recognition are also discussed in Section [2.6/and in in Section

As discussed in Section [1.2.2] activity recognition in the workplace is a chal-
lenging problem. People use different tools (both physical and digital), perform
several tasks, work alone and with others and in different locations (e.g., at
home, in the office).

To characterize the variability of work and breaks activities, we propose to
quantify cues such as the physiological activation, the physical movement, the
laptop and phone usage. To this end, we leverage data gathered from personal
devices i.e., wristband, laptop and smartphone, that people can use anywhere
and at any time.

Existing methods in assessing breaks, rely on simple heuristics, assuming that
a break takes place when, e.g., there is no laptop activity [3; 61]], the user is
not sitting at her desk [[56; [51]], or she is engaging with social media, news, or
shopping websites [51};[199; 200]]. However, browsing a news website, not being
at one’s own desk, or not interacting with a laptop, often do not imply that the
user is taking a break. Thus relying on fixed heuristics is limiting for dealing with
inherent intra-activity variability.

To overcome this limitation, in this study, we take a data driven approach
based on machine learning. Further discussions on the advantages of using this
method are presented in Section|1.2.2
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Our results show that using features from EDA, ACC, phone and laptop us-
age, in input to a gradient boosting classifier, breaks can be distinguished with
F1 score of 69% and work activities with a F1 score of 94%, corresponding to
an improvement against baseline methods of 12-54 and 5-10 percentage points
respectively.

To summarize, in this chapter we present two major contributions: (1) a
method for automatically recognizing flow during work activities based on the
combination of context and physiological data; and (2) a method for recognizing
activities in the workplace leveraging data from multiple sensors.

The first contribution targets the second research question of this thesis (RQ2:
How can information about context a) be fused with physiological data and b) im-
pact the recognition of workers’ engagement?). Results of the first contribution
have been accepted as conference paper [[C]] at the upcoming ACII conference
(September 2021). Part of the text written in this chapter is reported from [[C]].

The second contribution targets the third research question of this thesis,
RQ3: How can activities in the workplace be accurately recognized? Results of this
work have been published as journal paper [[D] in the PACM IMWUT (September
2020). Part of the text written in this chapter is reported from [ID]].

To evaluate our approaches we conducted a user study in-the-wild with 13
knowledge workers from Academia and collected the WorkplaceDataSet. We
gathered continuous streams of physiological and acceleration data (using a
wristband) as well as laptop and phone usage. We asked participants to report
their activities and perceived flow, while keeping their usual work routines. In
order to collect self-reports, we proposed to use a multi-device strategy. Specif-
ically, we provided participants with multiple instruments we designed for this
study such as a laptop widget, a mobile application, a paper-and-pen diary, and
a situated self-reporting (SSR) device. We then asked participants to use the
one(s) they preferred. We analyzed users’ attitude towards the different data
entry modalities and reported our observations. In each of the contributions of
this chapter we used a subset of the WorkplaceDataSet.

The remaining part of this chapter is structured as follows. We discuss ex-
isting literature in Section Section describes the data collection. In
Section |5.3| we discussed our observations on the use of a multi-device strategy
for collecting self-reports. Section[5.4land Section[5.5|provide an overview of the
data analysis method and results obtained for respectively the automatic recog-
nition of flow, and workplace activities. In Section5.6|we discuss the implications
of our results and in Section5.7]we present the limitations of the proposed meth-
ods. We conclude with a brief summary of the chapter.
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5.1 Related work on methods for collecting self-reports,
recognize flow and activities in the workplace

In this section we review existing literature. Specifically, we review literature
targeting data collection strategies for collecting self-reports in the workplace,
as well as activity and flow recognition in the workplace. Additional discussion
about the existing literature in this topic is presented in Chapter

Methods for collecting self-reports in the workplace

Most of the existing approaches designed to collect self-reports of knowledge
workers actively request user inputs at specific moments of the day. Notifica-
tions to remind the user to log self-reports are typically sent either through the
laptop [[15} 61]], or through the phone [262]] and are usually sent at pre-defined
moments [[15;51]], or triggered by specific events [263]]. This approach is widely
adopted but presents some drawbacks. First, a notification sent at an inappropri-
ate moment can disrupt the user and cause time loss and frustration [[264; 263]].
Second, as discussed by Lathia et al., random or context-based sampling could
bias self-reported data [265]]. Third, sending notifications at pre-determined mo-
ments may hamper the possibility to capture the duration of a work activity as
perceived by the users, who, as reported by Luo et al., tend to have different
preferences in setting the duration of their work activities [[197]]. To overcome
these limitations, we propose to let users decide when and for how long to log
their activities by starting and stopping an incremental timer.

Existing approaches for gathering self-reports at the workplace often use a
single device, e.g., the laptop [[15}61;[197]] or the phone [[262]]. However, taken
individually these devices present several disadvantages, as summarized in Ta-
ble To allow for flexibility and personalization, we instead adopt a multi-
device strategy to collect users’ input.

Also the authors of [266]] adopted a multi-device strategy and collected self-
reported mood in a participatory manner. The Quantified Workplace system de-
veloped by the authors and described in [266]] allows workers to report their
mood either using the personal smartphone or using shared tablets placed in the
office. The authors reported a significant preference of the workers towards the
use of tablets as input device compared to smartphones [[266]]. Using commonly
placed devices for gathering self-reports is a promising approach for quantifying
the workplace in terms of e.g., behavioural dynamics across employees, which
is the goal of the work presented in [266]]. In this work we aim of gathering
self-reports about individual’s activities when they occur and as they are defined
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by users. For this reason we use tools that workers can easily carry or can place
on their work station. Specifically, we rely on the use of paper-and-pen diary,
phone, laptop and we design a single-purpose, situated self-report device, in-
spired by Paruthi et al.’s work [|63[], which we called Devo.

Flow recognition during work activities

Flow is a subjective experience. The gold standard methods for measuring flow
in psychology research thus, consist of using questionnaires and experience sam-
pling methods (ESM) [[121]]. Despite the important knowledge gained with these
approaches, these methods prevent a continuous and unobtrusive measurement
of flow levels experienced during daily activities as well as the creation of adap-
tive systems that can promote flow. To overcome this limitation, Peifer [[118]
discusses the potential of leveraging physiological information, in combination
with self-reported measurements, as proxy for a continuous assessment of flow.

Recent studies in psychophysiology research have investigated the physiolog-
ical indicators of flow [[118];[125}; [124;[126]].

Electrodermal activity and cardiac activity measurements are in general the
most used physiological parameters considered in psychophysiolgy studies of
flow [[124}; [118}; [125]] as also discussed in Section Being EDA a direct
measure of the activation of the SNS and the cardiovascular measurements, that
can be derived from BVE providing information of both branches, they represent
promising proxies of flow[[124]]. For instance, Peifer et al. observed an inverted-
U relation between physiological arousal (derived from cardiovascular indices)
and flow [118]]. In particular authors observed experience of flow happening
in correspondence of a moderate level of activation of the sympathetic nervous
system measured with the low frequency of the HRV [[118]] in a lab study. Au-
thors argue that the highest levels of flow could be identified at moderate levels
of arousal while the lowest levels of flow were identified during lowest (bore-
dom) or highest (stress) levels of arousal [118]. Gaggioli et al. found a positive
relation between cardiovascular measurements in terms of LF/HF with flow dur-
ing daily activities performed in a natural environment by 10 participants [[125]].
Being the ratio between LF and HF a proxy for the balance of sympathetic and
parasympathetic nervous systems, their findings seem in line with the ones of
Pefeir et al. [[118]].

Even though the above-mentioned studies tried to connect physiological re-
sponses to flow, they are not specifically targeting work activities, and do not
consider a data-driven machine learning (ML) approach as we do in this work.

ML techniques have the potential to discover additional relations between
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Strengths

Weaknesses

Phone

Phones account for mobility and flexi-
bility [|63]], thus they could be suitable
when people work in different loca-
tions (for example when reading on
public transportation).

Being multi-purpose devices, phones
represent a source of distraction in
the workplace and workers tend to
not use them when they want to fo-
cus [|267]]. So using this device might
cause a collection of fewer labels and
risk to increase workers’ distraction.

Laptop

The Laptop is a widely used device
for knowledge workers so it is easy
to reach especially when workers deal
with type of activities that require the
use of this device (for example for
coding).

Might miss the opportunity of gath-
ering information when the user
is working in different locations or
using other devices or tools (e.g.
tablets, books). Given the large
amount of application already being
used for working purpose, the worker
might forget to use also the applica-
tions for gathering labels if not re-
minded. However, sending a re-
minder on such a device can disrupt
the workflow and cause stress and
frustration.

Situated Self-Report (SSR) device
The physical presence of an SSR can
act as reminder for workers to en-
ter self-reports [|63]]. Being single-
purpose devices, SSRs reduce the
time of usage and the user’s bur-
den [63]].

Being located in specific positions,
SSR devices might not be used by
workers when changing environment
(for example when working from
home).

Table 5.1. Strengths and weaknesses of devices typically used to collect self-

reports at the workplace.
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physiological information and flow [47]], allow a continuous automatic assess-
ment and enable systems to adapt to the users’ inferred flow. ML approaches have
been recently applied to physiological signals gathered from wearable devices to
infer flow in gaming [[192}; 268] and few during work activities [[47}; 41}; |45]].

The authors of [45]] and [|41]] conducted laboratory experiments in which
participants were asked to perform simulated work activities. However, being
flow connected to the type of activity the individuals perform and to the motiva-
tions they have to address them, building models using physiological reactions
occurring during simulated work activities might not generalize when applied to
actual work tasks. Further, the laboratory setting prevents to take into account
the noise and variability that happen in real-life settings. For instance, data col-
lected in laboratory settings is not affected by the noise in sensors’ recordings
due to device malfunctioning, the missing data due to users forgetting to wear
the device, the situations that generates physiological responses similar to flow
(e.g., physical activity, eating), the absence of these aspects limit the ecological
validity of the results.

In the study presented in this chapter, we use a data set collected in-the-wild
while workers performed their daily tasks. Recently Rissler et al. [47]] conducted
a in-the-wild study to recognize flow during work activities. They gathered HRV
measurements from 9 knowledge workers using a chest band, and sent notifica-
tions at random times during the day for collecting ground-truth about flow level.
They processed hand-crafted features extracted from 134 five-minute windows
using shallow classifiers and achieved 70.6% accuracy in distinguishing low and
high levels of flow.

In contrast to the approach presented in [47]], we use a data set that contains
data from 390 unique activities — corresponding to 284 hours — collected from
13 knowledge workers. To have a more complete picture of the activation of
the SNS and PSN, we combine cardiovascular and electrodermal activity mea-
surements collected using a wrist-worn device. We further investigate the role
of context information in the recognition of flow and experiment with different
fusion strategies based on classical machine learning and deep learning methods.

Activity recognition in the workplace

Many existing approaches for the passive monitoring and automatic recognition
of activities in the workplace consider digital activities as a proxy for work ac-
tivities [|61}; [53]]. However, as also pointed out by Koldijk et al. [53[], knowledge
workers typically use several physical tools and digital applications to accomplish
their tasks and do not think about their intended activities in terms of applica-
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tions used [53]]. Instead, they might use the same application in different type
of activities [53]]. In addition to that, considering only the laptop usage as main
source of information prevents the possibility of recognizing activities that do
not imply the use of the laptop, such as face-to-face meetings, reading books, or
taking a break [|53}; [55]].

Recently, Avrahami et al. [[55] explored the use of a RF-radar placed under
the desk for the recognition of activities that do not involve the use of the lap-
top, e.g.,reading papers. Oliver et al. [54]] leveraged data collected using micro-
phones, cameras and laptops as input to Layered Hidden Markov Models to infer
the type of activity the user was performing. These approaches focus on recogniz-
ing activities that happen in the office or at the desk and do not explicitly target
the recognition of breaks. On the contrary, we focus on the automatic recognition
of breaks and work activities, without making assumptions about their type and
location. We use multiple sensors collected using personal devices to account for
the different characteristics of work and break activities.

In contrast to external and internal interruptions [[196]], which are not trig-
gered or desired by the user, work breaks are defined as moments in which work-
ers voluntarily pause their work [[195]]. Breaks play a fundamental role in work-
ers’ productivity and overall well-being [3], yet there is no a unique definition for
them [[195]]. Indeed, knowledge workers may categorize several different activi-
ties as work breaks, and activities categorized as breaks might vary significantly
across individuals [[195]].

Most of the existing approaches use simple heuristics to determine when a
person is taking a break or not [|56; [3; 200} 515 161); [199]]. However, such heuris-
tics are not validated by letting workers confirm whether the system correctly
assessed when they were taking a break [|56;[3;/51;[199] nor is the correctness
of the assumptions made verified otherwise [200]. Thus, a direct comparison
of the performance obtained in our work with existing approaches is difficult to
perform.

The main cues used in previous work for determining whether a worker is
taking a break are: laptop inactivity [3; |61]], absence from the desk [56} 51]]
(sensed using cameras [51]] or Bluetooth beacons [[56]]), physical movement [56]]
( assessed by counting the number of steps), and time spent on digital breaks, de-
fined as moments when workers engage with websites and applications related
to social media, news or shopping [51}; [199; 200]. Considering such cues only
separately can lead to errors. For instance, laptop inactivity can or cannot indi-
cate that the user is taking a break. As phrased by Tseng et al.:“Physical breaks
necessarily result in periods of computer inactivity; however not all the periods of
inactivity are physical breaks” [[3]. Similarly, absence from the workstation does
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not necessarily imply a break from work, as workers might change their work
location or be involved in scheduled and unscheduled meetings at different lo-
cations. The use of specific websites or applications might vary depending on
the context. Workers might use messaging applications, social media or news for
both work and personal purposes [269]]. Considering their usage as the only hint
for detecting breaks can thus be misleading.

Given the complex nature of breaks as perceived by workers [[195]], in this
study, we explore the role of multiple cues derived from different sensory chan-
nels for recognizing breaks. In particular, we investigate the combination of lap-
top and phone usage, physical movement and physiological responses. Only two
of the above mentioned approaches use the input of multiple sensors to detect
breaks. Kaur et al. propose to determine that users are taking a break when both
absence from the desk and digital breaks are detected [51]]. Combo et al. [[56]
propose to use absence from the desk and movement to detect a physical break.
The validity of these heuristics in real settings has not been validated, though.
Instead, we extensively evaluate the performance of our approach using data
collected in-the-wild and also investigate how different sensory cues contribute
to the detection accuracy.

5.2 Data collection of the WorkplaceDataSet

In this section we describe the participants, the tools we used and the procedures
we followed for collecting the WorkplaceDataSet.

Participants

We recruited 14 knowledge workers from Academia employed as Professor (1),
Post-Doc (1), Researcher (1) and PhD student (10) at the Computer Science
department of our university. One participant failed to install our data collection
tools and did not provide valid data. Our data set thus contains data from 13
users (9 males and 4 females, 7 of age in the range 20-30 and two in 30-40).
At the onset of the study, we organized a workshop during which we explained
the data collection procedure and asked participants to sign an informed consent
agreement.

Collected data

Sensor data. We collected continuous traces of electrodermal activity (EDA),
blood volume pulse (BVP), acceleration (ACC), phone usage and laptop appli-
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Figure 5.1. Data collection instruments for gathering sensor data: E4 wrist-
band (left), MEMOTION Android application (center), RescueTime laptop
monitoring tool (right).

cation usage, using 3 devices — laptop (La), phone (Ph) and wristband (Wr).
Figure shows the tools used for collecting sensor data.

Since activities can affect the physiological arousal [217]] our expectation is
that EDA, and BVP data can help distinguishing work from break activities. Be-
ing the level of arousal connected with the level of activation [270], we expect
for example higher physiological arousal when workers take breaks and have
social interactions. Further, given electrodermal activity and cardiac activities
been studied in the physchophysiolgy of flow, as discussed in Section |2.1.4] we
consider them as relevant information to use for recognizing flow.

ACC is often used as an indicator of physical activity and to compute, e.g.,
the number of steps [56;271]]. Since knowledge workers are known to be seden-
tary [[197] and to spend most of their time at their workstations [[197],it is rea-
sonable to expect a generally low variation in their physical activity. Moments
of stronger physical activity could however hint to physical breaks, e.g., short
walks [[3} [56]].

To gather data from users’ phones, we developed an Android application
called MEMOTION. The application collects user interactions with the screen as
a proxy for phone usage [271]. In the workplace environment, the phone is
usually not the main work device and it is instead considered a source of distrac-
tion [267]]. We thus expect a more intense usage of the phone during breaks.

We further collected laptop application usage through the RescueTime mon-
itoring tooﬂ Since the laptop is typically the main work device for knowledge
workers, its usage is widely used as proxy for workers’ activity [[61]]. Previous
work, for instance, used laptop inactivity as cue to identify breaks [3}; [61]].

To ensure synchronization among devices we visually verified that the clock

Thttps://www.rescuetime. com/
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Construct Item

During this activity, I satisfied the personal
expectations I have of this activity

a. I was totally immersed in this activity.

b. I got my motivation from the activity itself,

Satisfaction with performance [272]

Flow [26] and not from the reward for it
c. I did this activity with a lot of enjoyment
Type of activity Select the type of activity you just completed

Table 5.2. Questionnaire used in the study to collect ground-truth.

Activity type Description

E-mail Dealing with e-mails.

Planning Editing work items/tasks/todos; creating/changing calendar entries.
Coding Reading/ editing/ navigating code (and other code related activities).
Meeting Meeting/call.

Information acquirement, learning, and knowledge gain.
Ex: taking seminars/ online courses, read books, read papers.

Learning
Read/Write Reading/editing documents, project reports.
Research project Conducting experiments, data analysis, design.

Other Other work activities not in the list.

Break -

Table 5.3. Type of activity and descriptions

of the phone and laptop of each participants matched the same time reference.
The E4 automatically synchronizes with the internal clock of the laptop, to which
it is connected at the beginning of and during the study.
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Ground-truth data. Refers to the type of activity performed by the workers
as well as the perceived flow level. We used the experience sampling method
(ESM), described in Section[2.2] and asked participants to fill-in a questionnaire
as common practice in the literature [263}; 61} 47]]. The questionnaire used in
this study is presented in Table Specifically, we used the Work-Related Flow
Inventory (WOLF) questionnaire developed by Bakker [[26]] to measure perceived
flow. It conceptualizes flow at work based on the constructs of (a) absorption,
which refers to the sense of total involvement in the activity; (b) intrinsic moti-
vation, which refers to the need of performing the work activity because of the
pleasure and satisfaction it elicits and (c) enjoyment which refers to the perceived
enjoyment during the activity [26]]. From each of the constructs we selected and
adapted an item to the work activity as common practice in the literature [273]].
More details about flow at work and its component are discussed in Section[2.1.3

For the type of activity, we asked participants to report the work activity they
were performing by selecting among eight categories — meeting, read /write, cod-
ing, learning, research project, email, planning and other —, which were used
also in previous work [61; [194]] and further added the break category. To en-
able participants to select the appropriate category we provided them with a
brief description of the work categories along with examples, similar to previous
work [|61; [194]]. We did not provide an explicit description of break activities
because, as reported by Epstein et al. [195], workers might consider different
activities as breaks. We thus avoided imposing specific definitions of non-work
activities and let users log whatever they consider to be a work break. Table
summarizes the type of activities and their description.

Lastly, participants reported their satisfaction with own performance using
the single item questionnaire adapted to the activity [272], original: “Today, I
satisfied the personal expectations I have of my work”, adapted version: “During
this activity, I satisfied the personal expectations I have of this activity”.

We adopted a multi-device strategy [274] to enable users to log self-report
data. Specifically, we allowed participants to use a paper-and-pen diary and fur-
ther provided them with three digital tools shown in Figure[5.2} the MEMOTION
application for the smartphone, a laptop widget, and a single-purpose, situated
self-report device called Devo described below. Each tool features an incremental
timer that users can freely start and stop to log the duration of their activities.
Each time the timer was stopped, the questionnaire was displayed to the user.

Since each data entry method has its own advantages, as summarized in Ta-
ble and users tend to have different attitudes towards different devices, we
assumed that offering a set of devices rather than a single one could ease data
entry and, ultimately, improve data quality.
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Figure 5.2. Data collection instruments for gathering ground-truth: Devo (left),
Laptop widget (center), MEMOTION Android application (right).

Devo

A situated self-report device is a “situated device intended to be placed in a location
to optimize user’s self-reporting efficacy” [|63]]. Being single-purpose, SSRs have a
short access time and represent a low burden for the user [63]].

We designed Devo according to the design dimensions of SSR systems pro-
posed by Paruthi et al. [[63]]. Devo has a simple, tangible interface, shown in
Figure designed to facilitate the interaction with the user. Data is stored in
the internal memory of the device and uploaded every night via Wi-Fi to a remote
server.

Devo consists of: a microcontroller equipped with Wi-Fi and Bluetooth mod-
ules, a LED, a small OLED screen, two buttons and a rotating knob. We chose
a wooden case, as suggested in [|63]], to give the device a pleasant appearance
and long durability. We produced six Devo devices at a cost per unit of approx-
imately 30$. While the screen increases the cost of the device, it also makes
it able to support multi-items questionnaires and to provide visual feedback to
users. Specifically, Devo displayed to users the number of logged activities per
day. We asked participants to position Devo on their desk and to use it to log
their activities. As suggested by Paruthi et al., the physical presence of a SSR de-
vice reminds participants to log their activities [[63]]. To log an activity, workers
started/stopped the timer using the (green/red) button below the screen, and
answered the questionnaire using the rotatory knob.

Data collection procedure

We asked participants to perform their work activities as usual, log them using
their preferred device — phone, laptop, Devo, or paper-and-pen diary — during
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at least one typical working week. We asked them to wear the wristband at the
beginning of their work day, keep it at least during the working hours, charge it
and upload the data using the E4 Manager by Empatica installed on their laptops.
We monitored the quality and quantity of the collected data using daily reports
automatically generated by our tools and reached participants for fixing issues
when needed.

To evaluate participants’ experience with our data collection strategy we used
a post-study questionnaire. We asked participants to report which was the de-
vice they preferred the most and why. We asked also to report whether logging
their activity in the workplace helped them to achieve their goal and feel more
productive at work. This is because the use of a timer is also a popular technique
to boost productivity and improve the scheduling of tasks at work [275]].

5.3 Using multiple devices to log self-reports: collected
data and our observations

In this section we describe the amount of self-report data we collected during
our study and discuss our experience with the use of a multi-device strategy for
gathering self-reports at work.

Collected self-report data

For the 13 participants that collected valid data, the number of days with at least
one self-report range from four to 13 (Mean=7, Std=3). In total, the participants
logged 625 activities. A subset of these entries (68) were incomplete due to either
the participants not completing the manual data entry or to errors in the remote
upload. The cleaned data set has 567 entries, of which 73 (13%) are breaks.
Taken together, these 567 entries correspond to 401 hours of labelled data.

On average, participants logged their activities for about 5 hours per day,
which corresponds to half of a “typical” work day of nine hours. Workers logged
activities from 6 a.m. to 11 p.m., the majority of which (95%) between 9 a.m.
and 5 p.m. The number of entries (both work or break activities) per participant
range from 24 to 82 (Mean=43, Std=19). The duration of individual activities
range from 100 seconds to 187 minutes (Mean=42 min, Std=32 min).

The total number of breaks is 73, reported by 10 participants. (Three par-
ticipants did not log any breaks and their data). The number of logged breaks
per participant ranges from 1 to 14 (Mean= 7, Std=3) and their duration ranges
from 3.3 to 113 minutes (Mean=42, Std=26).



5.3 Using multiple devices to log self-reports: collected data and our

121 observations
17.5
timer 15.0 s
15.0 = [APTOP
PHONE 125
125 s PAPER

= DEVO

Report frequency
Report frequency
~
o

50 ! ¢
25 '
oo HEEEEE ==L a

i
e
S § LAPTOP PHONE PAPER DEVO
articipants timer

Nmﬂ
w o o

w22 ||

wo7

wzo N

w37 |

05+ |

worz

wors NN

vose. |

wos? | S
woss I

w03t
Du043

Figure 5.4. Report frequency across devices.

Preferred devices to log self-report data

To evaluate participants’ preferences in choosing specific devices to log their self-
reports, we used the report frequency metric as suggested in [|63]]. This metric is
computed as the ratio of the number of self-reports and the number of days of
data collection for each participant. Figure shows the report frequency for
each participant and per device.

We notice that most of the participants (10) used multiple devices to log
their activities. Only three participants used only one device: u043 used only
the paper-and-pen diary, u072 only the laptop, and u027 only Devo.

These observations hint at the need to account for personal preferences and
use multiple devices to collect self-report data at the workplace. Future stud-
ies and practical deployments should foresee a setup phase during which par-
ticipants could test and choose their preferred set of devices, as also suggested
in [63]].

Figure|5.4]also shows that, on average, our study participants preferred using
Devo to log their work activities. In their answers to the post-study questionnaire,
most of the participants reported that Devo was easier and funnier to use com-
pared to the other data entry devices. They further indicated that Devo’s physical
presence reminded them to use it. One participant wrote: "[Devo | Was available
in no time and funnier than the other tools". Another participant said: "I can see
it [Devo | and remember to track my activities".

Figure [5.4] also shows that the phone was the least used device. This is not
surprising given the disruptive role of the phone in the workplace [[267]] and its
reduced usage in this context.
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Effects of data logging on (perceived) productivity

As part of the post-study questionnaire, we asked participants to rate two items:
I1: "Logging my activities helped me to achieve my goals at work" and I2: "Log-
ging my activities made me feel more productive" using a scale from one to five
(from Totally disagree to Totally agree). Most of the participants (7) reported
three (equivalent to "Neutral") to I1 indicating that in general participants felt
that logging their activities was neither positively nor negatively contributing in
achieving their goals. However, most of the participants (8) reported that log-
ging their activities made them feel more productive. This raises the question
whether the use of a timer can help improve productivity, as reported in existing
work [275]], or actually make workers perceive themselves as more productive.

5.4 Flow recognition during work activities using con-
text and physiological data

In this section we describe the procedure we followed and the results we obtained
in the automatic recognition of flow during work activities using a combination
of context and physiological data.

In the literature, flow is described both as a yes-or-no state (i.e., a person is
or is not in flow) and as a continuous phenomenon (i.e., “the more the factors
of flow are present the higher the experience of flow” [[92]]). When considering
flow as a continuous phenomenon, the flow experience could be divided into low
and high levels [92]]. In this study, we adopted the latter characterization and
describe the flow experience in terms of low and high levels of flow as in [47].
We refer to users to be in flow when they experience a high level of flow.

We first investigated the relation between context information on perceived
flow using linear mixed effects model. Then we investigated the feasibility of
distinguishing between low and high flow during work activities, and define the
problem as a binary classification task. In the followings we report details about
the cleaning and pre-processing procedure, the features we extracted, and classi-
fication pipeline, based on classical machine learning and deep learning. Results
are discussed in Section [5.4.1]

Data cleaning and pre-processing

For performing the flow recognition analysis, we used a subset of the Workplace-
DataSet. Specifically, we focused on work activities (we excluded the breaks)
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Figure 5.5. Overview of the amount of the collected activities and their type
for each participant used for the flow recognition task.

with a minimum duration of 5 minutes and use physiological data i.e., electro-
dermal activity (EDA), blood volume pulse (BVP) and questionnaires only. We
excluded 23 activities due to missing sensor data.

EDA data. We cleaned the EDA signals, sampled at 4Hz, using a first order But-
terworth low-pass filter with a cut-off frequency of 0.4 Hz similarly to [254], as
we did as well for the analysis presented in Chapter [4{ for laughter recognition.
We then applied the artifacts detection model EDArtifactEI, developed by our re-
search group and presented in [[70]], which is particularly suited for data sets
collected in-the-wild. We excluded 67 activities that contained artifacts for more
than 50% of the duration of the activity. Most of the activities (75%) contains
less than 25% of the time in artifacts (MEAN: 17%, STD: 24%), indicating the
overall good quality of the data collected. We decomposed the EDA signal using
the cvxEDA method [[71]] as we did in the previous studies.

BVP data. We cleaned the BVP signal, using a first order Butterworth FIR filter
with a cut off frequency of 5 Hz, similar to [[165]]. We down-sampled the BVP
signal to 4Hz as in [[192]].

Segmentation. We segmented the signals gathered during the activities using
the timestamps obtained from the timers, then used a five-minute window as
in [[47] with overlap of 50% to extract the features or the raw data to give as
input to the classifiers. We used the five-minutes segments to either compute the
features or as a direct input to the CNNs.

Subset of the WorkplaceDataSet. The final data set used for this analysis con-
tains 390 unique activities, corresponding to 284 hours in total and 6712 five-

2https://github.com/shkurtagashi/EDArtifact
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minutes segments, from 13 subjects. The average number of entries per subject
is 30 (SD: 17) collected over an average working week. Figure presents an
overview of the amount of activities and their type per each participant used in
this work. Most of the activities are logged between 9 a.m and 6 p.m. and during
workdays (from Monday to Friday), only 4 during Sunday. The average duration
of an activity is 44 minutes (MIN: 5 min, MAX: 187 min).

Features extraction

We extracted 99 features from physiological signals and context used in previous
work [68; [12; [47].

Physiological features. To characterize changes in the arousal levels, we ex-
tracted 17 features from the EDA-mixed and phasic component and 11 from
the tonic component. Specifically we extracted time-domain statistical features
(mean, min, standard deviation), wavelet-based features (e.g., mean and stan-
dard deviation of wavelet coefficient and 1Hz, 2Hz and 4Hz). We also extracted
features that characterize the skin conductance responses (SCR) [35]] (e.g., num-
ber of peaks, decay time, rise time) using the EDAExplorer [[68] publicly available
tool’]

We characterized the cardiovascular responses extracting 11 features from
the BVP signal in the time and frequency domain using the Heart toolkit [[80]].
In the time domain we extracted features as the heart rate (HR), the mean and
standard deviation of RR intervals (meani, SDNN), standard deviation and root
mean square of successive differences (SDSD, RMSSD). In the frequency domain,
we computed the absolute power of the low-frequency (LF) band (0.04-0.15 Hz)
and high-frequency (HF) band (0.15-0.4 Hz) and their ratio (LF/HF), which
should reflect the balance between the SNS and PNS [276] and an estimation
of the breathing rate [80]. Details about physiological signals and features are
also described in Section [2,3.3] of this thesis.

Context features. We considered the context information as categorical vari-
ables and used one-hot-encoding as done in [277]. For the type of activity we
used the 8 work categories presented in Section excluding the “break” activ-
ity since we focus on the work activities only. For the time of the day we used
6 categories corresponding to when the end of the activity was recorded: early
morning (6 a.m. - 8 a.m), morning (9 a.m. - 11 a.m), lunch (12 a.m. - 1 p.m),
early afternoon (2 p.m - 3 p.m), afternoon (4 p.m - 6 p.m), evening ( > 7 p.m).

3https://eda-explorer.media.mit.edu/
4https://github.com/paulvangentcom/heartrate,analysis,python
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Figure 5.6. Overview of the sensor fusion strategies investigated. CB stands
for convolutional base, FCN for fully connected network, Pr for probability.
The classifiers in the CE configurations are either shallow classifiers ( RF or
GB) or CNN.

For the day of the week we used seven categories representing Monday to Sunday.

Linear mixed effects model

We tested the association between each type of context and perceived flow using
a linear mixed effects model.

We conducted three tests, using the flow score as dependent variable, the
context type as independent variable, and the subject as random effect to take
in consideration the correlation among samples due to the repeated measure-
ments, as in [[132[]]. We encoded the context variables using the “dummy coding”
procedure, which assigns zeros and ones depending on the group membership
as in [[132]]. For the type of activity we use the coding activity as the reference
category and set all the samples belonging to that category to zero, while the
samples of the other categories were set either to zero or one depending on their
occurrence, similarly to [[132]. We set early morning as reference category for
the time of the day variable and Monday for the day of the week variable.

Flow recognition pipeline

We describe below the flow recognition pipeline we designed.

Labeling. We derived the flow score by averaging the answers to the three items
— absorption, motivation and enjoyment — of the WOLF questionnaire presented
in Table as common practice in the literature[[12; [47] and as we did for
students’ engagement study presented in Chapter
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We considered a participant to experience a high level of flow (high flow
class) when the flow score was higher or equal to four (corresponding to “Agree”
in the 5-points Likert scale) and a low level of flow otherwise (low flow class).
We used four as threshold assuming that workers who experience high level of
flow would report scores at the higher extremes of the scale, similar to what
discussed in [215]] and in Chapter 3]

From this procedure we obtained an imbalanced distribution of the two classes,
with 144 activities in the high_flow class and 246 activities in the low_flow class,
corresponding respectively to 2532 and 4180 five-minutes windows.

Sensor fusion. Figure summarizes the fusion strategies considered in this
work. Multi-modal fusion strategies can be divided in feature fusion and classifier
ensemble. More details about these approaches are discussed in Section [2.5.2]

We considered two feature fusion approaches implemented using raw signals
as input to CNN, namely early fusion [44] and sensor based late fusion [44]], and
compared with one based on hand-crafted features as input to shallow classi-
fiers, namely feature concatenation. We further considered two classifier ensemble
methods, one based on CNN and the other using shallow classifiers. Below we
describe in details the different fusion strategies.

Early Fusion (EF). The EF fuses data of all the modalities, independently on the
axis or channel, in the first layer [44]]. It is the simplest CNN-based fusion strategy
in terms of computational cost [[44]]. This strategy has been adopted in [192] to
recognize flow during gaming using EDA and BVP In this work we stack the EDA
and BVP on the depth as in [[192]] and concatenate the generated features from
the convolutional layers with the context features.

Sensor Based Late Fusion (SB-LF). The SB-LF splits the input in branches, corre-
sponding to different sensors, that are processed individually to generate sensor-
specific representations and then merged in a second moment [[44]. This ap-
proach is highly flexible since it allows the architectures of the single branches
to be tailored according to the sensors’ characteristic [[44]]. Rastgoo et al. suc-
cessfully used the SB-LF approach to recognize stress levels of drivers, combining
electrocardiogram data with vehicle and environmental data [[43]. In this work,
we process each signal with separate convolutional layers, and concatenate the
generated features with the context features.

Features concatenation (FC). The hand-crafted sensor-specific features, are con-
catenated with context features in a single vector and used as input to the shallow
classifier. Contrary to representation learning methods, this method allows a bet-
ter interpretation of the results in the feature space. Authors of [41]] used the



5.4 Flow recognition during work activities using context and physiological
127 data

FC approach to recognize flow levels during simulated work activities. In this
work we concatenate hand-crafted features extracted from BVP and EDA with
the context features and used them in input to shallow classifiers.

Classifier ensemble (CE). The prediction of different classifiers are aggregated to
obtain the final decision. In the Affective Computing field, the CE method has
been often shown to perform better than feature fusion strategies [[36]. In this
work, we combine the predictions of the classifiers trained with each modalities,
using the soft-voting approach, which often gives better performance and it is
more flexible than the hard-voting one [[66]. We combine the predicted proba-
bilities of the different classifiers using the median.

Shallow classifiers. We tested the performance of a popular shallow classifier
i.e., gradient boosting ( GB)ﬂ We chose this classifier because of its demonstrated
high performance and the possibility of getting a class probability [66]]. In the
training phase we scaled the features using the z-score normalization and to
account for the class imbalance, we applied the SMOTE algorithm [83]].

Convolutional neural network. We developed a CNN which takes as input the
raw physiological signals processed with an instance normalization layer [278]].
The CNN is composed by a convolutional base (CB) followed by a fully connected
network (FCN). The CB is composed by three convolutional layers (CL) (64 filters
in the first two and 32 in the last layer, kernel size of 10) connected through
an average pooling layers (window size of 5) that reduce the dimensionality of
the input [31]]. For the CLs we used a parametric leaky ReLU (PReLU) activation
function. We further used a normalization layer that normalizes the activations
of the previous layer of each example in the batch independently. The features
extracted from the CB are aggregated using a global average pooling layelﬂ The
context features are concatenated to the output of this layer and the whole vector
is then processed by the FCN composed of two fully-connected layers (FCL) of
256 and 128 hidden units and ReLu activation function. To reduce the risk of
overfitting, we used a dropout layer with dropout rate of 0.2 between the two
FCL, used a L2 regularization to all the layers with a rate of 0.0001 and early
stopping when the validation error reached the minimum. The batch size is set to
64. To take into account the class imbalance we assigned class weights inversely
proportional to the amount of samples per class in the training set. The aim of
this procedure is to penalize missclassifications on the underrepresented class to

5We use the Extreme Gradient Boosting (XGBoost) implementation https://xgboost.
readthedocs.1o/en/latest/python/python_api.html

®In case of the SB-LE the features extracted from each of the branches are first processed with
the global average pooling layer and the concatenated
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Figure 5.7. Mean and 95% confidence interval to show the relation between
context data, in terms of type of activity, day of the week and time of the day,
and self-reported flow score.

make the network “pay more attention” to the samples belonging to this class
(i.e, the high flow class) by assigning higher weights to the cost function in their
correspondence. We used the Adam optimizer with a learning rate of 0.001 which
is unaffected by the changed range of the loss introduced by the class weighting.
We selected the hyperparameters of the CNNs based on previous work [[192];
previous experience; and empirically. The output of the model is provided as
input to a sigmoid function which returns a value between 0 and 1 that can be
interpreted as the probability of the sample to belong to the positive class.

Baselines. We compared the performance of the before-mentioned approaches
with a biased random guess (BRG). We also considered models based on single
sensors to test the advantages of using fusion approaches and models that have
as input context data only to understand the impact of the combination with
physiological data.

Evaluation procedure and performance metrics. We used a 5-fold stratified
cross-validation approach guaranteeing that the data of the same participant of
a given day was not concurrently in the train and test as in [279]]. This approach
tests the ability of the model to generalize to data of activities performed on
unseen days.

We evaluated the performance using the balanced accuracy (BA) defined as
“the average accuracy obtained on either class” [[85]]. The BA is a combination
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of the sensitivity and specificity, as reported below:

_ Sensitivity + Specificity
B 2

Differently from the classical accuracy, the BA is more suitable for evaluat-
ing the performance of imbalanced data sets since it takes in consideration also
the unrepresented class. The BA is identical to the traditional accuracy if the
model performs well on both classes, but it reaches random chance (50%) if
the classifier takes advantage only of the imbalance in the two classes for the
prediction [|85]]. We further report the F1 metric obtained for each of the two
classes.

We report the performance on activity-basis obtained by computing the me-
dian of the probabilities of the windows in which the activity is split. A threshold
of 0.5 is then used to assign the sample to the low flow class, this approach is
suitable for engagement-aware systems that provide retrospective feedback at
the end of the activity. We also report performance on a window-basis, to con-
sider systems that provide real-time interventions.

BA (5.1)

5.4.1 Results and discussion

In this section we report and discuss the results obtained. We first analyse the
relation between self-reported flow and type of context. Then, we analyse the
impact of different sensors, contextual information and fusion techniques for the
recognition of flow. Lastly we analyze the relation between flow and satisfaction
with own performance.

Relation between context and self-reported flow

Results from the analysis described in Section [5.4|show that the type of activity is
a predictor of flow. Figure|5.7/shows the variation of the flow score in relation to
the type of activity, day of the week and time of the day. Overall, the level of flow
is the highest during coding activities. Signiﬁcanlﬂ pairwise differences emerged
between coding and research project (t = -0.39, p-value < 0.006), read/write (t
= -0.52, p-value < 0.006) and other (t = -0.88, p-value < 0.001).

The fact that the coding activity is generally more inductive to flow aligns
with prior findings [[132]]. Given participants being researchers from the Com-
puter Science department, their skills might match with the cognitive challenge
induced by the coding activity thereby promoting flow.

7a = 0.05, the adjusted p-value based on Bonferroni correction is 0.006
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Figure 5.8. Confusion matrix for SB-LF model with (left) and without (right)
context.

No significant associations are identified between the variables that quantify
the time of the day and the day of the week with the perceived flow. This might
due to the fact that workers have different habits and perceive themselves to be
more productive in different times of the day [[49]], this variability across subjects
might be reflected as well on the perceived flow.

Comparison of context information and single sensors

Table reports the performance of shallow and deep learning models trained
with single sensors and different types of context information. In all the cases,
except for when EDA is used as input to GB, the type of activity is the most
informative context information, in line with the results reported before.

The combination of the type of activity with physiological signals lead to an
improvement of the BA of 4 percentage points (pp), F1,,, of 6 pp and Fl;,, of 5
pp, on average, compared to when no context is considered. We observe that the
BVP signal is more informative than EDA and that the performance of the GB and
the CNN are similar when this signal is used as input. Interestingly, using only
the type of activity as input to the classifiers, the performance in terms of BA are
similar to those obtained when combining it with BVP However, the combination
with BVP results in an high improvement (about 10 pp) of F1;,,,.

These results hint to the need of combining physiological data together with
context information, in particular the type of activity, for improving the recog-
nition performance. Given the relevance of the type of activity, also based on
the results presented before, we continue the discussion using that as context
information.
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Model | Modality | Context type | BA | F1,,, | Flyi0n
None 52.35 (3.63) 46.48 (16.38) | 48.55 (4.57)
CNN EDA T 55.81 (5.82) 61.07 (9.11) | 48.39 (6.79)
A 60.15 (2.27) 61.62 (4.67) 54.04 (3.09)
T+ A 58.75 (8.76) 65.55 (8.37) | 49.98 (11.02)
None 59.04 (8.18) 70.25 (2.92) 46.92 (14.4)
GB EDA T 56.81 (2.09) 68.68 (8.55) 43.47 (7.38)
A 60.96 (6.13) 71.69 (4.31) | 49.81 (9.93)
T+A 62.91 (3.18) | 74.00 (4.77) | 51.14 (7.84)
None 64.25 (3.48) 71.47 (4.17) | 55.74 (4.50)
CNN BVP T 56.90 (8.28) 64.06 (8.79) | 48.69 (9.30)
A 67.75 (4.02) | 74.69 (3.10) | 59.86 (6.14)
T+A 62.49 (5.62) 71.17 (6.79) 53.08 (8.53)
None 61.07 (6.50) 69.27 (7.26) | 51.95 (7.00)
GB BVP T 54.46 (5.10) 66.10 (8.27) 42.43 (6.98)
A 67.46 (3.98) | 75.23 (4.37) | 59.45 (5.01)
T+ A 59.58 (4.16) 72.36 (3.54) | 46.82 (5.55)
T 50.97 (8.11) 54.48 (10.00) | 44.40 (7.88)
FCN Context | A 64.84 (5.09) | 63.03 (7.73) | 59.79 (5.69)
T+ A 58.91 (4.92) 64.77 (6.34) | 50.86 (6.28)
T 49.77 (6.59) 52.07 (8.46) | 44.00 (6.55)
GB Context | A 65.91 (4.01) | 64.81 (6.41) | 60.56 (5.37)
T+ A 58.08 (7.22) 66.42 (7.31) | 48.95 (7.69)
BRG - - 51.39 (5.16) 72.74 (2.34) | 24.46 (9.71)

Table 5.4. Performance results of shallow and deep learning classifiers trained
on single sensors and with different type of context information. Performance
are reported on activity-basis and averaged across cross-validation iterations,
standard deviation in parenthesis. A stands for activity, T for time.
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Model | Fusion strategy | BA | F1,,, | F1,
EF 67.60 (2.53) | 74.47 (1.37) | 59.58 (4.47)
CNN SB-LF 70.93 (4.80) | 77.71 (4.94) | 63.15 (7.16)
CEcny 64.81 (6.10) | 76.93 (3.34) | 57.33 (4.81)
GB FC 62.58 (7.16) | 73.54 (1.94) | 51.05 (11.83)
CE¢p 67.93 (3.68) | 71.71 (4.04) | 61.3 (4.36)

Table 5.5. Performance results of different fusion strategies based on shallow
and deep learning classifiers. Performance are reported on activity-basis and
averaged across cross-validation iterations, standard deviation in parenthesis.

Comparison of fusion strategies

Table reports the performance of the different fusion strategies investigated.
The best performance are obtained when using the SB-LF approach, to which we
refer as best model, with a BA of 70.93% (19 pp higher compared to BRG), F1,,,,
of 77.71% (5 pp higher compared to BRG) and F1,,, of 63.15% (39 pp higher
compared to BRG). This indicates the importance of processing separately the
sensors before concatenating them in a single vector. Further, we observe that
feature fusion strategies based on CNN perform better than the FC, especially in
terms of F1,,,,, 8 pp higher in case of EF and 12 pp in case of SB-LF). In this case,
deep learning methods are able to better use the complementary information
provided by the different sources and create a more efficient representation at
the feature level. Regarding the classifiers ensemble strategies, the performance
between CE; and CE.yy are similar, with CE;; performing better in the correct
identification of F1,,,, 4 pp increment, while CE.yy performs better in terms
of F1;,,,, 6 pp increment. Compared to when using a single sensor, in particular
BVE the SB-LF achieves an improvement of BA of about 4 pp, F1,,, of about 2
pp and F1,,, of about 3 pp higher. This indicates the importance of using the
fusion of complementary information to improve the performance.

Figure|5.8] shows the confusion matrices of the SB-LF model with and without
the activity type in input. We observe that when the activity type is used, the flow
level is correctly identified in most of the activities. When the activity type is not
included, a larger number of activities in low flow are miss-classified as high
flow (89 instead of 59). These miss-classifications prevent systems that aim to
reduce obstacles to flow to know in which conditions it is better to intervene, by
for example blocking distractions or sending suggestions. Not including the type
of activity causes also an increment of the false positives (FPs), when high flow
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are predicted as low flow, (64 instead of 50). A large number of FPs prevent the
system to correctly identify conditions of high flow and wrongly suggest activities
that are not conducive to flow.

We further test the performance of the best model in the recognition of flow
levels in single five-minutes windows, to enable real-time recognition of flow.
When using this approach we obtain a BA of 66.71%, F1;,,, of 73.26% and F1;,
of 58.97%. The performance are lower compared to when considering the whole
activity of about 4 pp per metric. Further investigation is needed to improve the
in-the-moment recognition of flow.

Results obtained by the best model, are comparable to those presented in
[47]. The authors achieved an accuracy of 70.6% using HRV features as input to
a Random Forest classifier, however, the size of the data set used in that work is
significantly smaller than the one we used (134 5-minutes segments against 390
activities for a total of 284 hours).

The size and the diversity of our data set makes our approach and results
more robust and generalizable.

Relation between flow and satisfaction with performance

We analyze the relationship between the flow score and the self-reported satisfac-
tion with performance. To take into account the correlated data, the correlation
of the samples due to the multiple self-reports from the same individuals, we
use the repeated measures correlation (rmcorr) technique [280]]. The rmcorr is
a statistical technique used to identify the relationship between two continuous
variables by taking into account the effect of a categorical variable (the differ-
ent individuals in our case) using a form of analysis of covariance (ANCOVA). In
rmcorr different parallel lines are fitted per each subject and the sign of the test
is given by the direction of the common slope. We implemente the rmcorr using
the Python package pingouirﬁ

The rmcorr test returned a positive significant correlation (p < 0.0001) with
a coefficient of 0.47, indicating that the higher the level of flow workers experi-
ence during the activity, the higher the satisfaction with their own performance.
This result hints to the importance of designing engagement-aware systems that
enable workers to experience high levels of flow with the goal of increasing their
satisfaction with performance.

8https ://pingouin-stats.org/generated/pingouin.plot_rm_corr.html
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5.4.2  Summary of the main findings in the recognition of flow using
context and physiological data

Results presented in this section indicate overall, that it is feasible to automati-
cally identify flow levels using context and physiological data. The main findings
from our analysis are:

* The type of activity resulted to be a predictor of flow while the time of the
day and the day of the week not. In general, the knowledge workers we
monitored were more likely to be in flow during coding activities compared
to when performing other type of activities.

* The type of activity is also the context information, that combined with
physiological data, enables the highest increment in the flow recognition
performance. Compared to when no context is used, using the type of
activity allows an average increment of: BA of 4 pp, F1,,, of 6 pp and
Flpep Of 5 pp.

* When using data from a single sensor, the BVP resulted to be more infor-
mative than EDA.

* The best performance, BA of 70.93% (19 pp higher than BRG), are achieved
when raw BVP and EDA are combined together with the type of activity and
used in input to a sensor based late fusion strategy implemented using a
CNN.

5.5 Automatic recognition of work and break activities
using a multi-sensor approach

To investigate the feasibility of distinguishing breaks and work activities, we de-
fine the problem as a binary classification task. We use a supervised approach
and classify the logged activities into work and break classes. In the remainder
of this section, we describe the pre-processing of sensor data, the classification
pipeline, and discuss the results obtained.

Sensor data pre-processing and feature extraction

We removed noise from sensor data using channel-specific pre-processing tech-
niques. We segmented the traces using a five-minute, non-overlapping sliding
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window, and extracted 106 representative features from EDA, ACC, BVE laptop
application usage and phone usage. We include also the hour of the day as in [[4].
The list of all the features used in this work is reported in Table

For this analysis, we chose a window of five minutes in line with previous
work in this context [|53; 200]. Furthermore, RescueTime provides application
usage logs at the granularity of five minutes (the exact timestamps of the open-
ing/closing of applications are not available). Thus, application usage could be
not be reconstructed for time window smaller than five minutes.

Wristband (Wr). We pre-processed EDA and BVP data using a similar procedure
to the one presented in Section However, in this analysis we did not use
the EDArtifacts tool for processing EDA due to this analysis being performed af-
ter the final implementation of the tool. Features from EDA were extracted using
the same methods presented in Section[5.4] From the BVP data we extracted 15
features derived from the literature [|76;(77;78;79]] such as time-domain statisti-
cal features, HR, time-domain HRV statistical features and features that describe
the BVP pulses. To gather information about participants’ variation in physical
movement we first calculate the magnitude of acceleration using the Euclidean
Norm Minus One as in [281]] and then extract seven statistical features [[29]].

Phone (Ph). We characterized phone usage by extracting the number of times
the user unlocks the phone or turns on the screen.

Laptop (La). To data about laptop usage we first re-sample the data to account
for missing RescueTime data, which signals no user interaction with the laptop,
and we thus label these segments as “laptop inactivity”. For each Web site visit
and application usage, RescueTime logs: name of the Web-site/application, sub-
category or categoryﬂ To characterized laptop application usage, we considered
for how long specific application categories are used within a window and ex-
tracted 15 representative features including, e.g., the total time each category of
applications is used and the number of categories used (as hint to multi-tasking).
To further account for laptop inactivity during the window we subtracted from
the total duration of the window the total duration of laptop usage in the win-
dow. We considered application categories rather than individual applications to
keep a higher level of abstraction, as done in [[61]] and also to reduce the number
of dimensions of the feature space.

°The list of categories and sub-categories is presented here: https://www.rescuetime.com/
categories. Note that a valid RescueTime account is needed to access this list
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Sensory channel Features extracted

Time-domain statistical features: minimum, maximum, mean,
median standard deviation, dynamic range, variance,slope,
mean and standard deviation of the first and second derivative;
EDA (mix-EDA + Phasic + Tonic)
(68 features) Wavelets features: mean, standard deviation of wavelets
From: [67} 168} (73} (74} B} 75] coefficients at 1Hz, 2Hz and 4Hz;

SCR features: number of peaks, peaks’ amplitude, rise time,
half-recovery time, width and area under the curve,
maximum derivative of SCR;

Time-domain statistical features: mean,
standard deviation, number of peaks, dynamic change;
Heart rate (HR);

BVP
(13 features)
From: [|76}77}[78}(79; B]

HRV statistical features: mean of all NN, standard

deviation of all NN (SDNN), standard deviation

of differences between NN (SDSD), the square root of the mean of
the sum of the squares of differences between NN (RMSSD);

BVP pulse features: mean and standard deviation of pulses’ length
and amplitude;

ACC Time-domain statistical features: mean, standard deviation,
(7 features) dynamic range, slope, absolute value of the slope,
From: [29}B] mean and standard deviation of the first derivative;

Phone usage
(2 features)
From: [271}282]

Number of unlock, number of screen on.

Duration of category of application: Social Networking,

Utilities, Uncategorized, Software Development, Shopping,

Laptop application usage News and Opinions, Entertainment, Learning and Reference,

(15 features) Design & Composition, Reference & Learning,

Communication & Scheduling, Business, Non used, Most used category,
Total duration of the laptop usage, Number of categories used.

Table 5.6. Summary of the 106 features extracted from the five sensory channels
used in the activity recognition pipeline presented in Section[5.5] NN stands for
the distance between BVP adjacent peaks. In addition to the features derived
from the sensors we consider the hour of the day as in [4].

Activity recognition pipeline

We report below details about the activity recognition pipeline we designed and
implemented.
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Labeling and cleaning. We assigned each five-minutes window to the work and
break class using the available self-report data. We assigned each window to
one of the two classes if at least 60% of the window belongs to a logged activity
(whose start and end were recorded with the timer), similar to [[283]].

We assigned the label work if one of the eight work activities categories was
selected and break if the “break" label was selected. To ensure the presence of
sufficient data of both classes in the test and train sets, we considered for the
analysis only data of the participants who logged more than one break, i.e., nine
participants. We further discarded 12 activities due to RescueTime installation
errors. From this procedure we obtained an imbalanced data set with 4008 in-
stances (an instance corresponds to a five-minutes window), which map to 449
activities logged by the study participants. Of the obtained 4008 instances, 3387
are in the work class and 621 in the break class.

Imputation. The subset of the data set used in this study has in total 279 in-
stances in which wristband sensor data is missing, probably due to the user not
wearing the device. To impute such values in the training phase, we consid-
ered the features corresponding to missing values as the target of a regression
model (Bayesian ridge regressor) and used the remaining features as input to
the model [[72]]. We then applied the same technique in the test set as recom-
mended in [[72]]. We implemented this imputation strategy since it is likely to
provide more accurate results than the replacement with statistical or constant

values [[72]]. For the implementation we used the IterativeImputer class from
scikit-learn[%]

Classifiers. We explored several classifiers such as Support Vector Machines [[65]],
Logistic Regression [65/], Gradient Boosting [284]] and Random Forests [65]]. The
gradient boosting classifier — instantiated using the XGBoost Python implemen-
tation [284] with the default parameters (i.e., learning rate of 0.1, max depth
of 3 and 100 estimators) El, which is used also in [[60]] — resulted to be the best
performing classifier. The results of all classifiers are reported in [ID]].

Baselines. We compared the performance of the classifiers described above to
that of three rule-based classifiers: a biased random guess classifier (BRG), a time-
based predictor (TB) and a laptop-inactivity-based predictor (LIB). TB considers as
breaks all the activities between 12:00 a.m. and 01:00 p.m. (typical lunch time).
LIB is based on the approach proposed by Tseng et al. in [3]]. The main goal of

Ohttps://scikit-learn.org/stable/modules/generated/sklearn.impute.
IterativeImputer.html#sklearn.impute.IterativeImputer.
Yhttps://xgboost. readthedocs.io/en/latest/python/python_intro.html
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Classifier | Devices |Pr, R, F1, Pr, R, F1,
La 934 90(5) 92(3) 56(18) 67 (21) 59 (17)
Ph 94(4) 844 89(4) 47(13) 74(14) 56(13)
Wrgpaipyp 94(4) 94(7) 94(5) 59(9 71(20) 63(12)
XGBoost | La + Wrypaiace 94 (4) 94(4) 94(3) 6814 69(19) 67 (15)
La + Ph 934 91(4) 92(3) 57(20) 65(22) 59(17)

Ph + Wryccimpmprr | 934 92(5) 92(4) 61(9) 65(17) 62 (10)
La + Ph +Wrgppace | 94 4) 95(3) 94 (3) 71(11) 69 (18) 69 (13)
BRG - 84(6) 84(3) 84(3) 16() 15(5) 15 (6)

Table 5.7. Performance of the automatic recognition of breaks and work activ-
ities reported as percentage of mean (standard deviation) of the LOSO itera-
tions, for selected combinations of sensors. The metrics considered are precision
(Pr), recall (R), and F1 score (F1), while the subscripts w and b indicate the
work and break class. Ph stands for phone, La for laptop and Wr for wristband.

the work presented in [3]] is to prevent cyberloafing, i.e., the use of the Internet
for non-work purposes. To this end, Tseng et al. implemented the UpTime system
that automatically blocks distracting websites when detecting workers to be back
from breaks. UpTime considers as breaks moments in which laptop inactivity is
detected for at least five minutes [3]]. Similarly, our implementation of the LIB
classifies a window as break if the laptop records no user input in the five-minutes
window.

Metrics. To test the ability of the classifiers to separate the two classes, we com-
puted the precision (Pr), recall (R), and F1 score (F1) — all defined as in [65]
— for both the work and break class. We thereby considered each five-minutes
window as a single data point. To reason about what causes classification errors,
we reported the confusion matrix.

Features selection. To reduce the dimensionality of the feature space, we used
the Kolmogorov-Smirnov (KS) non-parametric test as in the study presented in
Chapter [4| and also used in [|82].

Validation procedure. To train and test the models we used the leave-one-
subject-out (LOSO) validation approach. During the training phase, we imputed
missing values, re-scaled the features using the z-score normalization calculated
from the training samples (different participants and activities) [[72]], performed
feature selection, and — to account for the imbalanced nature of our data set we
used the SMOTE algorithm [|83]].
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Figure 5.9. Performance for each user when in test set, w stands for work and
b for break. Performance, in terms of F1 are consistent across users for the
work class. In the break class most of the user presents similar performance to

uo75

the mean, while two u037 and u029 present lower performance.

5.5.1 Results and discussion

We report in the followings the results obtained using the classification pipeline
mentioned above. We discuss how the classification performance vary depending
on the sensors considered as input and we report about the outcomes of the
feature selection process. We further compare the performance of supervised
classifiers to that of rule-based classifiers.

Performance of different combination of sensors and devices

Table reports the mean (standard deviation), computed over all iterations of
the LOSO procedure, of each of the considered metrics for the best performing
classifier (XGBoost) along with a baseline classifier (BRG). For XGBoost, each
line reports the results obtained using features computed from specific subsets
of sensor traces. Results for all combinations of sensors are presented in [D].
We observe that the best overall results are obtained when using features
extracted from all devices but only the EDA and ACC sensors from the wristband
(La + Ph + Wrgpaiace).- We hereinafter refer to this model as the best model.
The best model achieves a F1 for the work class (F1,,) of 94% — which is 10
percentage higher than the F1, of BRG classifier — and F1 for the break (F1,)
class of 69% — which is 54 percentage points higher than the F1, of the BRG.
Comparing the performance of the best model to the results obtained with
other combinations of sensors and devices, we observe that using single devices
results in similar performance for the work class — except for the case in which
only phone features (Ph) are used (F1,, is 89%, i.e., five percentage points lower
than the best model).
Larger differences are observable when considering the break class: the F1,
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of the best model is consistently higher than that obtained using features com-
puted from single sensors/devices — of 10 (for the laptop), 13 (for the phone),
and six (for the wristband) percentage points —. This underpins our assump-
tion that data from multiple sensors can better describe the characteristics of
the breaks. We also observe that when combining the phone with either the
wristband or the laptop the F1, is lower, of seven and 10 percentage points,
respectively, compared to the best model. Instead, the best model and the one
obtained when using the laptop and the wristband presents similar performance
(only two percentage lower F1,).

These results suggest that even though the phone usage data provides addi-
tional information to the model, it might not be as informative for the recognition
of breaks as data captured from the laptop and wristband. This could be due to
the fact that the phone is often used sparingly at work, both during breaks and
work activities, or used in equal measure in both situations. This minor role of
the phone data implies that users may also decline to let the system track their
phone usage, and accept only a small reduction in performance.

Further, we observe that among the wristband’s sensors, the EDA and ACC
sensors guarantee the best performance, hinting at the need of including infor-
mation about the workers’ physiological arousal and movement to discriminate
work from breaks. Figure |5.9shows the performance of the model when each
user is in the test set. We notice that for all the iterations for the work class and
for most of the iterations (7) for the break class, the performance are consistent
across users. This indicates an ability of the model to generalize to unseen users.
However, for users u037 and u029, the F1 score of the break class, is lower than
the mean of 13 and 27 percentage points, respectively. This might be due to the
these specific users having work habits significantly different to those of the other
participants. This is in line with the observation by Epstein et al. [195]], that there
is a large subjective variability in the way users define and take breaks. The same
activity, e.g., reading news, could indeed be categorized as work by some users
and as break by others [[195]].

Errors caused by interpersonal variability when training user-independent
models is a well-known problem in human activity recognition [|6]. Further re-
search is needed in this direction, e.g., considering the use of personal or hybrid
models [[285]].

Significant features

Out of the 93 features used, only 89 features were selected at least once using
the KS test in the training phase.
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Figure 5.10. Distribution of a subset of the selected features in the two classes.
The distribution of all these features in the two classes is significantly different
(p<0.05) in all the training sets according to the Kolmogorov-Smirnov test.

The four features that are never selected are extracted from the laptop and
are related to the duration of usage of the applications in the categories of Social
Networking, Entertainment, Shopping and News. Interestingly, these are the cat-
egories of applications usually included in digital breaks by previous work [200;
51]]. The fact that these features are never selected means that their duration
is never significantly different between work and break activities. We believe
that there might be two possible reasons for this. First, RescueTime’s application
categories are assigned statically, independently of the context in which the ap-
plications are used [269], and the same application can be used both for work
and personal purposes [269] (for example messaging applications to communi-
cate with colleagues or friends). Second, workers might tend not to log short
digital breaks either because unconsciously performed or because a general ten-
dency of users to forget to log breaks [[195]].To alleviate such problems the system
could learn, during an initial calibration phase, the habits of specific users and
ask them to indicate whether they are taking a break, whenever the likelihood
of a digital break taking place is high. A similar strategy has been used in [200]],
and it could help achieving further performance improvements.

Further, most of the features (61) are selected in all the iterations, while
features belonging to the mixed-EDA and tonic component are selected less often.
This implies that the phasic component, which reflects the physiological response
to stimuli [[35], has a higher discriminative role.

Figure|5.10/shows the difference in the distribution in the two classes of exem-
plary features. Phasic num_peaks represents the number of peaks of the phasic
component of the EDA signal and is used as a proxy of physiological arousal [35]].
The ACC_Magn_std represents the standard deviation of the vector magnitude of
the acceleration and thus captures physical movement. Phone num_unlock iden-
tifies the number of unlock of the phone and is a proxy for phone usage [271]].
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Figure 5.11. Comparison of the confusion matrices of our best model (using
XGBoost), the time-based (TB) classifier and the laptop-inactivity-based (LIB)
from [3]

Finally, Laptop_non_used_duration represents the percentage of the activities
during which workers do not use the laptop. We observe that during break ac-
tivities there is an increment of the physiological arousal, more frequent inter-
actions with the phone, higher variability in physical movement, and a reduced
usage of the laptop. This is in line with the general definition of breaks, which
are characterized by workers spending less time at the laptop, changing their
location or interacting with colleagues [[195}; (3} 56]].

Classifier | Pr, R, F1, Pr, R, Fl,
XGBoost (94 95 94 71 69 69

TB 95 8 89 47 74 57
LIB 91 80 85 33 56 42

Table 5.8. Comparison of the performance metrics of our best model (using
XGBoost), the time-based (TB) classifier and the laptop-inactivity-based (LIB)
from [3]. Pr stands for precision, R for recall, while w and b respectively for
work and break.

Comparison with rule-based classifiers

Table shows the performance of the LIB classifier, which equals laptop inac-
tivity to breaks as in [3]], the TB classifier, which always predicts breaks at lunch
time, and the best model (XGBoost with input La + Ph + Wrgpa,acc). We notice
that the best model achieves better performance compared to the TB and LIB
classifiers respectively of 12-27 pp for F1, and 5-9 pp for F1,,.

Figure shows the confusion matrices of the considered classifiers. We
observe that the LIB miss-classifies work activities often (692 instance, 513 more
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than the best model) as breaks (false negatives (FN)). The majority of these 692
FN belongs to the type of activity learning (201, 145 more than our model) and
meeting (324, 280 more than our model), which are activities that do not strictly
require the usage of the laptop [[195} [3]]. This confirms that, as also noted by
Tseng et al. [3]], using laptop inactivity only is a flawed heuristic to determine if
a person is working or taking a break.

The TB baseline presents negligible lower number (164, 26 lower than the
best model) of breaks predicted as work activities (false positive (FP)) compared
to the best model. On the other side, it has a significantly higher number of
FN (519, 340 more than the best model), corresponding to moments in which
workers were working during the “typical” lunch time. This shows that using
only the lunch time to infer a break also has severe limitations.

A system based on the TB and LIB has the advantage of being simpler (both
the rule-based classifier could work only with the laptop) than our approach
(which needs multiple devices and sensors). However, our approach is more
robust and less prone to errors, especially in terms of FN. A large number of
FN can have major consequences for personal informatics systems for promoting
workers’ productivity. For instance, it can make applications to be blocked too
often [3]], and, consequently, workers’ disappointment.

5.5.2  Summary of the main findings in the recognition of work and
breaks activities

With the results presented in this section, we demonstrated the feasibility of
using data derived from personal devices to correctly distinguish between work
and break activities. The main findings from our analysis are:

* The combination of data from different sources allowed an increment of
the performance compared to when using a single sensor, especially in the
recognition of breaks — F1, from 6 to 13 pp improvement.

* The best performance are obtained when using EDA data, along with ac-
celeration, laptop and phone usage data, in input to the XGBoost classifier.
With this model we achieved a F1 score of 69% for the recognition of breaks
and 94% for the work activities.

* The best model, outperformed the rule-based classifiers based on time and
laptop inactivity respectively of 12-27 pp for F1, and 5-9 pp for F1,,. Using
the best model allowed in particular to reduce the possibility of missclassi-
fying work activities as breaks.
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5.6 Implications

Taken together, our findings open up new possibilities in the design and develop-
ment of engagement-aware personal informatics systems for supporting knowl-
edge workers in the workplace.

Personal informatics systems can leverage information about work and break
activities to deliver interventions to promote workers’ productivity and well-
being. For instance, a break recommendation could be triggered when the sys-
tem detects that the user has taken no breaks for multiple consecutive work
windows [200; [199]]; to prevent cyberloafing, distracting applications could be
blocked when the system recognizes that the user is back from break (i.e., the
window state changes from break to work) [3]]; and workday summaries could
be automatically populated to allow self-reflection [[15}; 53]].

The automatic recognition of work and break activities could also serve as
initial step for the automatic segmentation of the work day. For instance, once
the work activity is determined (considered as consecutive 5-minutes window
recognized as work), the system could interrogate the user about the type of
activity performed until that moment. Once this information is available, the
system could then “activate” then flow recognition engine and determine the
level of flow of the participant during the activity.

Information about flow could be retrieved to the users at the end of the activ-
ity or day to allow self-reflection [28]]. In this direction, the system could enable
workers to identify patterns and habits that lead them to reach, or not, the flow
state by using personal analytics [[18]].

Once several work activities are collected from the users, and corresponding
flow levels are automatically inferred, the system could help users to schedule
their work and suggest times or activities that are more conducive to flow based
on learned patterns [286/]]. In a real-time scenario, when a prolonged state of
low flow is inferred, the system could trigger interventions that reduce obstacle
to flow e.g., by blocking distractions [[198]].

Further, a physical interruptability indicator as the FlowLight presented in [287],
could be integrated in the engagement-aware system and used to indicate co-
workers when the user is in flow and to avoid her to be interrupted.

5.7 Limitations

The contributions presented in this chapter show promising results in the recog-
nition of flow during work activities as well as in distinguishing between work
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and break activities. However, our approach presents limitations that should be
investigated in future work.

An important limitation of our study is that it relies on data collected for
an average of 7 days. This short time frame does not allow us to investigate
the impact of the novelty effect due to the use of new devices nor the level of
fatigue caused by the prolonged usage of multiple self-report devices. More data
is necessary to understand the long-term effectiveness of the proposed multi-
device strategy.

For gathering ground-truth about flow and activities we rely on timer-based
logging, self-initiated by the workers. This strategy avoids disruptions to the
users’ workflow (which would otherwise be caused by sending notifications as
reminders to log activities) and also allows workers to report with full flexibility
when and for how long they were working or taking a break. A limitation of this
strategy consists in its inability to capture digital breaks. Indeed, workers might
take short digital breaks during their work activities and not log them explicitly,
either because not consciously considered as breaks or because of the general
tendency of workers to forget to log breaks [195]]. To overcome this limitation,
researchers could design systems that actively inquire users when specific digi-
tal activities are detected in order to better understand their role in the overall
workflow.

With the results presented in Section |5.4.1}, we showed the importance of in-
tegrating information about the type of activity for improving the performance of
the automatic flow recognition. However, a limitation of our approach consists in
using the answers to self-reports to derive this information. In general, allowing
users to complement the automatic assessment of the system with manual inputs
could be beneficial for improving the effectiveness of self-tracking [[16]], it could
increase users’ awareness and thus the likelihood of behavioural change [[16].
However, the need of the model of knowing the type of work activity might be
problematic for long-term usage. The type of work activity could be derived from
personal calendars, to-do lists, or, automatically recognized using sensors. In the
second contribution of this chapter, presented in Section 5.5, we showed the pos-
sibility of distinguishing between work and break activities, however, due to the
complexity of the work environment, the automatic recognition of the type of
work activity is still an open challenge. We believe this is an important problem
to be targeted in future work.

Another limitation regards the labeling procedure, we used the same self-
reported flow score to label all the segments of an activity while the flow state
might change over time. This is a known problem as also reported by Lee at
al. [41]]. As we also discussed in the study presented in Chapter |3 obtaining
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continuous labels about engagement or flow during an activity is however im-
practical, because it would require to continuously ask workers (or students) to
provide flow labels. This would interrupt individuals’ and thus prevent them
from sustaining flow during the activity. Understanding when to ask workers
to enter labels — and thereby disrupting their activities — is still an open chal-
lenge that should be targeted in future work aiming to collect data sets for flow
recognition.

Lastly, even though the data set we used contains a large and heterogeneous
set of activities, it is obtained by 13 participants only. Future studies, carried
with higher number of subjects, are needed to further validate our approach.

5.8 Summary of Chapter

In this chapter we presented our observations and findings about the automatic
recognition of knowledge workers’ flow during work activities as well as about
the inference of the activities in the workplace.

Building upon existing literature, we proposed to recognize flow during work
activities using a combination of physiological data (i.e., electrodermal activity
and blood volume pulse), and context information (i.e., type of activity, time of
the day and day of the week) collected using self-reports.

To this end, we experimented with several fusion strategies implemented us-
ing shallow classifiers and convolutional neural networks.

We observed that the type of activity is a relevant context information that
should be taken into account when recognizing flow during work activities.

Further, we confirmed the importance of using cardiac activity information
(represented by the BVP) for the identification of flow during work activities as
also discussed in the literature [|47; [45]].

Our results underlined also the potential of adding information about the
physiological arousal (derived from the EDA signal) to have a more complete
picture of the flow state and further improve the recognition performance. In-
deed, the best performance, BA of 70.93%, is achieved when the raw BVP and
EDA signals, together with the type of activity are used in input to a SB-LF strat-
egy implemented using a CNN.

Besides recognizing flow, in this chapter we presented our method for recog-
nizing activities in the workplace. Specifically, we focused on distinguishing work
and break activities. For doing so, we proposed to characterize the physiological
activation, the physical movement, the laptop and phone usage using sensor data
collected using personal devices i.e., wristband, laptop and smartphone.
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Concatenating features from the before-mentioned sensory channels, and us-
ing them in input to a gradient boosting classifier, we achieved a F1 score of 94%
for the identification of work activities and of 69% for breaks.

We observed that combining sensor data allowed to improve the performance
in comparison to when using a single sensory channel, especially for the correct
recognition of breaks — F1, from 6 to 13 pp improvement. This indicates the
importance of using a multi-sensor approach for better characterize work and
break activities. Further, the best classifier (XGBoost), outperformed the rule-
based classifiers based on time and laptop inactivity, reducing in particular the
chance of misclassifying work activities as breaks. This indicates the potential of
a machine learning approach for addressing the activity recognition problem in
the workplace.

In this chapter we also discussed our experience with a multi-device strategy
to collect self-reports during work activities. We found that workers tend to use
multiple devices but have different preferred devices. A multi-device strategy
thus seems able to accommodate users’ needs. Thereby, we also found that SSR
devices can be used to replace or complement mobile phones and laptops to
gather self-reports in the workplace.

Taken together, our findings can open up new possibilities for the design of
engagement-aware systems aiming to support knowledge workers during their
daily activities.
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Chapter 6

Conclusions and Outlook

In this thesis, we investigated how data derived from personal devices — such as
wristbands, laptops and smartphones —, can be used to automatically recognize
engagement and activities. We focused on the specific use cases of recognizing
students’ engagement during lectures and knowledge workers’ engagement dur-
ing work activities.

We conducted three user studies and collected three data sets: Students En-
gagement Using EDA (SEED), USI_Laughs and the WorkplaceDataSet.

In the first user study, presented in Chapter |3 we investigated the use of
electrodermal activity data, collected with unobtrusive wristbands, to infer stu-
dents’ engagement during lectures. Building upon findings from educational re-
search, we identified three relevant components of students’ emotional engage-
ment: momentary engagement, reaction to the teacher, and emotional arousal.
We further identified a set of features to be extracted from EDA signals that can
characterize these components. We experimented with features used previously
in the literature as well as proposed a set of novel features. We observed that
the best performance, especially in the recognition of non-engaged students, are
obtained when using two of the features we proposed: the arousing ratio and
level 5, representing the momentary engagement. Specifically, using these fea-
tures as input to a SVM classifier, we achieved a recall of 81% which corresponds
to an improvement of 25 percentage points with respect to a Biased Random
classifier used as baseline.

Systems able to identify non-engaged students have several potential applica-
tions. They may enable teachers to devise and evaluate methods to (re-)engage
students. Students, on the other hand, could use information about their own
engagement, or lack thereof, to perform self-reflection and change behavior.

In the second users study, presented in Chapter[4] we investigated if and how
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accurately laughter episodes can be detected automatically from sensor data col-
lected using wristbands. Specifically, we proposed to quantify laughter through a
combination of physiological reactions (using electrodermal activity and cardiac
activity data), and body movement reactions. We analyzed the impact of the
combination of different data sources. We also tested the robustness of the pro-
posed method against confounding variables such as cognitive load and physical
movement.

We observed that laughter episodes, of medium and high intensity, can be
reliably distinguished from non-laughter episodes. Specifically, when using fea-
tures extracted from EDA, blood volume pulse (BVP) and accelerometer (ACC) as
input to a SVM classifier, we achieved an accuracy of 81% This corresponds to 6-
15 percentage point increment in performance with respect to the case in which
data from a single sensor only is used. Further, we showed that the physiological
responses generated during laughter episodes are different from the ones gener-
ated during tasks inducing a high cognitive load. Indeed, the episodes could be
distinguished with an accuracy of 92%. Lastly, body movement reactions during
laughs are different from the ones generated by other gestures such as clapping
hands, indeed all the features extracted from ACC present a significantly different
distribution in the two conditions.

Overall, these findings indicate the possibility of using physiological and body
movement data to recognize laughter episodes. Once laughter episodes are rec-
ognized, they can be used as additional information for recognizing engagement
of students and knowledge workers during activities such as lectures, business
meetings or breaks.

In the third user study, discussed in Chapter[5| we analyzed the role of multi-
ple devices to collect self-reports and sensor data from knowledge workers during
work days. Further, we investigated how this data can be leveraged to recognize
workers’ activities and flow levels. We adopted a multi-device strategy to collect
self-reports, allowing study participants to choose among a paper-based diary,
and three digital devices equipped with a timer: a laptop widget, an Android ap-
plication and a situated self-reporting device (SSR) called Devo we designed. We
observed that participants had different preferences in the choice of the device
but, overall, Devo resulted to be the most used device while the smartphone the
least used.

Building upon findings from existing literature, we proposed to combine both
physiological parameters and context information to infer flow during work activ-
ities. We investigated several fusion strategies based on classical machine learn-
ing and deep learning. We observed that combining raw EDA and BVP signals,
together with the type of activity using the sensor based late fusion strategy,
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implemented using a convolutional neural network, allowed to achieve a bal-
anced accuracy of 71%. This method reduced in particular the chance of miss-
classifying low flow states in high flow states compared to when the type of ac-
tivity was not included. This miss-classification error prevents a system aiming
to promote flow, to perform appropriate actions such as blocking distractions,
when prolonged low flow is assessed.

Besides recognizing flow during work activities, in the third study we also
focused on the automatic recognition of work activities from sensor data. As a
first step in this direction, we devised a novel method to distinguish between
work and break activities. For doing so, we extracted and combined features
that quantify cues such as the physiological activation, the physical movement,
the laptop and phone usage. We used the features as input to machine learning
algorithms.

Our results showed that features from EDA, ACC, laptop and phone usage as
input to a gradient boosting classifier, allow to identify work activities with a F1
score of 69% and break activities with F1 score of 94%, outperforming baseline
methods by 12-54 and 5-10 percentage points respectively.

Information about work and break could be retrieved to the user to allow
self-reflection, or used by an engagement-aware system as an entry point for “ac-
tivating” the flow recognition or the laughter recognition engine. For instance,
when the system recognizes the presence of a work activity (in terms of time
between two breaks, or multiple “work windows”), the system could interrogate
the user about the type of activity she performed and use the provided informa-
tion in combination with physiological data to infer the level of flow during the
activity.

Summary of contributions

In summary, the main goal of this thesis is to devise methods for recognizing en-
gagement using data gathered from unobtrusive personal devices with the broad
goal of contributing to the design of engagement-aware systems for supporting
students and knowledge workers. To achieve this goal we addressed the follow-
ing research questions:

* RQ1 How can features representing behavioral expressions of engagement
be derived from physiological and movement data?

* RQ2 How can information about context a) be fused with physiological
data and b) impact the recognition of workers’ engagement?
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* RQ3 How can activities in the workplace be accurately recognized?

The main outcomes of this thesis are:

* A set of theoretically-motivated EDA features that can be used as proxy for
recognizing students’ engagement during lectures — related to RQ1.

* Anovel method based on the combination of physiological and body move-
ment data to recognize laughter episodes — related to RQ1.

* A thorough investigation of the impact of different fusion strategies, based
on traditional machine learning and deep learning, to combine context and
physiological data to infer workers’ flow during activities — related to RQ2.

* An automatic, multi-sensor approach based on data collected from per-
sonal devices to recognize work and break activities — related to RQ3.

6.1 Limitations and possible directions for future re-
search

In this section we summarize the main limitations of the work done in this thesis
and outline potential directions for future research.

Physiological data as proxy of engagement. In this thesis we extensively lever-
aged physiological data. From the results obtained in our studies, we conclude
that, when adequately processed, physiological parameters represent valid prox-
ies for engagement. However, from the data we collected as well from find-
ings from existing literature, we observed that despite individuals present similar
physiological reactions under specific circumstances (e.g., presence of EDA peaks
when they laugh), large individual differences are also present (e.g., variability
in the EDA intensity or lack of peaks when expected). This inherent intra-subject
variability limits the transferability of the model parameters and often causes a
reduction in the performance of user-independent models. We believe that fu-
ture research should focus on understanding how to deal with this individuality
and investigate strategies for taking advantage of it. For instance by creating
personalized or hybrid models in which data of single or similar individuals are
used for training specialized models.
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Using multiple sensors and devices. In the work done in this thesis we of-
ten relied on the combination of multiple data sources for assessing individuals’
level of engagement and the performed activities. We used both manual entries
from study participants (e.g., self-reports) as well as sensor data. Confirming
existing literature, also in our studies we observed an overall improvement of
the performance of the models when combining data. This is due to the comple-
mentary information provided by the different inputs. However, we also notice
that not always more sensors brought more information to the model while they
could rise privacy concerns. We also experimented with a multi-device strategy
to collect self-reports, as reported in Chapter 5, This strategy allowed to adapt
to study participants’ preferences and needs. Despite the advantages of using
multiple tools, asking people to charge, wear and use multiple devices can add
significant burden in the long-term. This can cause study participants to drop the
study and users stop interacting with the system. We believe that future research
should focus on guaranteeing a trade-off between invasiveness and complete-
ness of information. Engagement and activity recognition systems should focus
on relevant information only and be able to work also in presence of missing
data. Further, researchers and practitioners should allow users to decide which
tools to use and when to use them, but still guarantee valid assessments.

6.2 Concluding remarks

The technical contributions and insights presented in this thesis show the poten-
tial and feasibility of using data derived from mobile and wearable devices to
infer the engagement of students and knowledge workers during learning and
work activities. Taken together, our findings open up novel possibilities for the
design and development of engagement-aware personal informatics systems for
supporting students and knowledge workers.
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