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b Institute for Numerical Analysis, TU Braunschweig, Braunschweig, Germany 
c Department of Economics, University of Lausanne, Lausanne, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Covariance matrices 
Graphical model 
Optimization 
Gaussian Markov random field 
Machine learning application 

A B S T R A C T   

The ℓ1-regularized Gaussian maximum likelihood method is a common approach for sparse precision matrix 
estimation, but one that poses a computational challenge for high-dimensional datasets. We present a novel ℓ1- 
regularized maximum likelihood method for performant large-scale sparse precision matrix estimation utilizing 
the block structures in the underlying computations. We identify the computational bottlenecks and contribute a 
block coordinate descent update as well as a block approximate matrix inversion routine, which is then paral
lelized using a shared-memory scheme. We demonstrate the effectiveness, accuracy, and performance of these 
algorithms. Our numerical examples and comparative results with various modern open-source packages reveal 
that these precision matrix estimation methods can accelerate the computation of covariance matrices by two to 
three orders of magnitude, while keeping memory requirements modest. Furthermore, we conduct large-scale 
case studies for applications from finance and medicine with several thousand random variables to demon
strate applicability for real-world datasets.   

1. Introduction 

The inverse of the covariance matrix, referred to as the precision 
matrix, is fundamental in multivariate analysis. In many applications, 
for example, biological networks (see, e.g., [1,2]), finance (see, e.g., 
[3–5]), and pattern recognition (see, e.g., [6,7]), precision matrices are 
often estimated as sparse, meaning that many of the random variables 
are conditionally independent (see, e.g., [8,9]). In a Gaussian setting, 
the sparse precision matrix encodes the graphical structure of a Gaussian 
Markov random field (GMRF), which by itself is useful in elucidating the 
association between random variables. For large-scale or, equivalently, 
high-dimensional datasets, the estimation of precision matrices poses a 
computational challenge as the pairwise relationship of random vari
ables grows quadratically. The surge of large-scale datasets has 
emphasized the importance of scalable sparse precision matrix estima
tion methods, attracting attention and progressing algorithmic and 
computational developments. 

A common approach for the estimation of sparse precision matrices 
is the ℓ1-regularized maximum likelihood (ML) approach, commonly 

referred to as the “graphical lasso” problem (see, e.g., [9–11]). The 
QUadratic approximation of Inverse Covariance matrices (QUIC) algo
rithm [12] and its large-scale implementation BigQUIC [13], are 
second-order solution methods for the graphical lasso problem with 
superlinear convergence. Parallel to the graphical lasso approach, many 
recent methods have been proposed to estimate precision matrices using 
different objectives. For example, the authors in [14,15] utilize the co
ordinate wise minimization of a regression-based formulation which has 
been shown to have robust model selection properties compared to other 
Gaussian approaches. Alternative approaches include EQUAL [16], 
which utilizes penalized quadratic loss functions [17], and FASTCLIME 
[18,19], which casts sparse precision matrix estimation as a linear 
programming problem and solves it with the parametric simplex algo
rithm. Another recent contribution is the MDMC algorithm [20] that 
approximates the graphical lasso problem by soft thresholding the 
sample covariance matrix and performing a maximum determinant 
matrix completion. 

The Sparse QUIC (SQUIC) algorithm [21] continues the progress on 
large-scale, second-order methods, exploiting the underlying sparse 
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linear algebra operations. In [22] and references therein, it has been 
shown that SQUIC is significantly faster than QUIC, BigQUIC, and 
HP-CONCORD, in both synthetic and real-world examples. However, 
due to the reliance on sparsity throughout the computation, the per
formance of the algorithm is susceptible to any increase in density. In 
particular, SQUIC suffers from notable performance degradation when 
the intermediary matrices, such as the inverse of the precision matrix (i. 
e., the estimated covariance matrix), have an increased number of 
nonzeros. As we will show in Section 5, the key negatively affected 
components of the SQUIC algorithm are (a) the matrix inversion and (b) 
the coordinate-descent update. In part, SQUIC attempts to address this 
problem via a thresholded approximate matrix inversion, which, though 
effective in some scenarios, cannot always be applied successfully 
without a degradation to the overall ML objective function. Even if 
thresholding is applicable, reducing the sparsity in the precision matrix 
(say by a slight decrease in the ℓ1-regularization coefficient) is generally 
accompanied by an increase in the number of nonzeros in the inverse 
and, thus, a major increase in the runtimes. This deficiency is high
lighted for clustered dependencies in the precision matrix, a common 
observation in real-world datasets such as financial returns within the 
same sector, economic growth within the same geographical region, 
biological networks with groups of genes having a hub structure, and 
many others (see, e.g., [23–26]). The clustered dependencies in the 
precision matrix translate into dense block structures in the inverse, 
which cannot be adequately approximated as sparse. These deficiencies 
render the added performance of SQUIC to be only applicable in sce
narios of extreme sparsity, which are not commonly observed in most 
real-world applications. 

We propose an efficient scalable algorithm for sparse precision ma
trix estimation that performs well under real-world conditions, 
including cases with limited sparsity. From here on, we refer to the 
introduced algorithm as “block SQUIC”, as opposed to “scalar SQUIC” 
which denotes the prementioned algorithm. We mitigate the negative 
effects that reduced sparsity has on performance by introducing four 
algorithmic contributions. The primary introduced algorithms are (i) the 
block approximate matrix inversion and (ii) the block coordinate 
descent update. This blocking approach is a natural fit for the expected 
sparsity structures of real-world datasets. The block structures used by 
the noted algorithms are retrieved by (iii) incorporating CHOLMOD 
[27], a high-performance supernodal sparse Cholesky factorization 
routine. Next, we (iv) parallelize the block approximate matrix inversion 
using an efficient shared-memory approach. 2 Furthermore, we provide 
five sets of numerical results. We begin with (i) a performance and ac
curacy comparison of several of the above-mentioned sparse precision 
matrix estimation packages for synthetic datasets with up to 104 random 
variables. Second, we proceed with (ii) large-scale synthetic tests with 
105 random variables and validate the noted algorithmic deficiencies of 
scalar SQUIC. We note that only scalar and block SQUIC, and partially 
BigQuic, were able to scale to such high-dimensional datasets. Next, for 
the same large-scale datasets, we present (iii) strong scaling results and 
an analysis of memory efficiency. Following the synthetic tests, we 
present two didactic case studies where we highlight the applicability of 
block SQUIC for real-world datasets. For the first case study (iv) a 
high-dimensional regression-based financial application is formulated, 
where we forecast the daily price fluctuation of 105 option contracts. 
Here we see that relatively dense precision matrices provide better 
returns, and that only block SQUIC is capable of computing the fore
casting routine in less than a 24 h forecasting period. Finally, in (iv), we 
perform a linear discriminant analysis (LDA) to classify DNA microarray 
data of two cancer datasets. We report here that increased density in 
both the precision matrix and its inverse are critical for high classifica
tion accuracy. 

The remainder of the paper is organized as follows. In Section 2, we 

recap the quadratic approximation method and present, at a high level, 
the scalar-SQUIC algorithm. Sections 3 and 4 are dedicated to the main 
contributions of the paper and provide a detailed description of the main 
components of the introduced block-SQUIC algorithm and the employed 
parallelization scheme, respectively. In Section 5, we perform numerical 
experiments on synthetic datasets and compare with the state-of-the-art 
in order to validate our proposed routine. In Section 6, we present case 
studies using real-world datasets. Finally, in Section 7 we draw con
clusions from this work. 

Notation. In what follows, we denote scalar quantities with lower
case, vectors with lowercase bold, sets by uppercase, and matrices with 
uppercase bold characters. The (i, j)th entry of a matrix A is symbolized 
by Aij and all entries in row i or column j by Ai: and A:j, respectively. Sets 
are denoted by capital calligraphic characters, for example, 𝒜, and the 
identity matrix as I. 

2. Background 

Let Y ∈ ℝp×n be a dataset of n independently drawn samples from a p- 
variate Gaussian distribution 𝒩(μ∗, Σ∗), where Σ∗ ∈ ℝp×p and μ∗ ∈ ℝp 

are the true covariance matrix and mean, respectively. A ubiquitous 
problem in mathematical statistics is the estimation of such a probability 
distribution and, in particular, the estimation of the true precision ma
trix Θ∗ := (Σ∗)

− 1. We focus our attention on the case where (i) the true 
precision matrix is, or can be, approximated as sparse, and (ii) where we 
have a limited number of samples n ≪ p from a high-dimensional dis
tribution p ≫ 104. 

The ML method is a common approach for a sparse precision matrix 
estimation. Given the sparsity parameter λ > 0, we aim to solve the 
following ℓ1 − regularized negative log-likelihood problem, that is, 

argmin
Θ≻0

{ − logdetΘ + tr[SΘ] + λ ‖ Θ‖1}, (1)  

where S ∈ ℝp×p is the sample covariance matrix, and Θ ≻ 0 denotes 
positive-definiteness of the estimated precision matrix Θ. The optimi
zation problem in (1) is convex. In Section 2.1 we will outline the 
quadratic approximate method for ℓ1-regularized ML sparse precision 
matrix estimation. Then, in Section 2.2, we will describe the sparse 
scalar SQUIC algorithm, which employs the quadratic approximation 
method. 

2.1. Quadratic approximation — QUIC 

We will follow the arguments given in [12] to describe the outline of 
the quadratic approximation method. Let g : Θ→ℝ be the smooth part of 
the objective function (nonregularized negative log-likelihood function) 
in (1). Up to a constant, the second-order Taylor expansion of g around Θ 
is 

ĝ(Δ) := tr[(S − Θ− 1)Δ] +
1
2

tr[Θ− 1ΔΘ− 1Δ]. (2)  

The Newton direction Δ ∈ ℝp×p of the approximate objective function 
around Θ can be written as the solution of the following problem: 

argmin
Δ

{ĝ(Δ) + λ ‖ Θ + Δ‖1} (3)  

The principal idea of quadratic approximation is to solve (1) as a 
sequence of optimization problems. In each step, given an appropriate 
step size α ∈ [0, 1), we update our current estimate of the optimizer Θ 
with αΔ. More information on the selection of α can be found in Section 
2.2. Next, we repeat the process by generating the quadratic expansion 
around the updated optimizer. 

This solution method has two key attributes: first, the Newton di
rection in (3) has a closed-form solution and can be solved by coordinate 
descent updates and, second, that only a subset of the elements of Δ and, 2 CHOLMOD provides internal parallelization from BLAS Level-3 routines. 
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in turn, Θ need to be computed at each iteration. The indices that need to 
be updated are referred to as free, and those that remain unchanged are 
fixed. It has been proven in [12] that the collection of these indices forms 
the following two disjoint sets: 

ℐ fixed :=
{{

i, j} ∈ ℐ : |Sij − Θ− 1
ij |⩽λ and Θij = 0

}
,

ℐ free := ℐ\ℐ fixed,
(4)  

where ℐ := {1,2,…,p}× {1,2,…,p}. The key assumption here is that for 
a properly selected λ, we will have |ℐ free|≪p2. For further details on the 
solution to (3) and proof for (4) we refer the reader to [12] and refer
ences therein. 

2.2. Sparse quadratic approximation — scalar SQUIC 

Scalar SQUIC extends the original QUIC algorithm [12] for 
large-scale applications and is effective for problems that exhibit a high 
degree of sparsity in both Θ and intermediary computations. Its key 
computational steps are shown in Algorithm 1. The inputs of the algo
rithm are Y, λ, T, and τ, corresponding to the dataset, sparsity parameter, 
maximum iterations, and convergence tolerance, respectively. In step 1 
we compute a sparse representation of the sample covariance matrix S 
(refer to Section 4.2 and [21] for further details). Entering the iterative 
portion of the algorithm in steps 3–12, we compute ℐ free, g(Θ) + λ||Θ||1, 
and Δ. The line-search procedure takes place in step 7 where the current 
iterate Θ is updated by selecting the largest α ∈ [0, 1) such that the 
update optimizer is positive-definite (checked using sparse Cholesky 
factorization) and passes an Armijo-type criterion, denoted as AC (see 
[13] for details). Next, convergence is checked in step 8 by computing 
the objective function at the updated Θ. Finally, in step 11, using the 
Cholesky factors computed in step 7, the approximate matrix inversion 
routine computes the sparse approximate inverse Θinv ≈ Θ− 1 to be used 
in the next iteration. 

Algorithm 1. Scalar SQUIC  

Input: Y, λ, T, τ 
1: S ⟵ sparse _ cov(Y) 
2: Θ ⟵ Θinv ⟵ I 
3: for t = 1 to T do 
4: compute : ℐ free  

5: obj ⟵ g(Θ) + λ||Θ||1 
6: compute : Δij ∀ (i, j) ∈ ℐ free given : Θinv  

7: Θ ⟵ Θ + αΔ st . Θ ≻ 0 and AC(Θ) 
8: 

if
|obj − (g(Θ) + λ‖Θ‖1)|

obj
< τ then  

9: break 
10: end if 
11: Θinv ⟵ approx _ inv(Θ) 
12: end for 
Output: Θ  

In scenarios with a limited number of samples, scalar SQUIC suffers 
from a significant degradation in performance. This is primarily due to 
the decrease in the underlying diagonal dominance of Θ, which in turn 
increases both the fill-in and computational cost of the approximate 
matrix inversion routine. From empirical observation, such scenarios are 
subject to the underlying GMRF and vary case by case. Depending on the 
sparsity of Θinv and the size of the ℐ free, the components of scalar SQUIC 
have a different impact on the total runtime. As long as Θinv is relatively 
sparse, the computation time is dominated by the computation of the 
sparse sample covariance matrix S, whereas the other components are 
negligible. However, this changes when Θinv becomes denser and/or the 
size of ℐ free increases significantly. In this case, the importance of other 
components increases. Among these components are the (i) coordinate 
descent update for the Newton direction and (ii) the approximate matrix 
inversion. Notably, the performance of the Cholesky decomposition, 
though less expensive than the other components, is also negatively 

affected. This motivates Section 3 which discusses a block variant of 
SQUIC that provides a significant increase in the computational effi
ciency when the underlying matrices have limited sparsity. 

3. Block sparse quadratic approximation — block SQUIC 

In this section, we introduce the block SQUIC algorithm, which aims 
to address the noted bottlenecks of the scalar variant of SQUIC. These 
bottleneck operations are identified as (i) Cholesky factorization 
routine, (ii) approximate matrix inversion, and (iii) coordinate descent 
update, corresponding to steps 7, 11, and 6 in Algorithm 1. In Section 5, 
we provide numerical results that highlight the scenarios in which these 
performance impediments are significant. We begin in Section 3.1 by 
outlining the supernodal sparse Cholesky factorization, which provides 
the selection of the blocking structures used in the remaining portion of 
the algorithm. Next we outline the block approximate matrix inversion 
and block coordinate descent update in Sections 3.2 and 3.3, 
respectively. 

3.1. Supernodal sparse Cholesky factorization 

This decomposition strategy makes use of an a priori combinatorial 
analysis to reduce the number of nonzeros in the Cholesky factor by 
permuting the given matrix Θ in advance. Next, block-oriented data 
structures (referred to as supernodes) are set up for the factorization. 
These block structures are computed in advance as part of the symbolic 
analysis and will also be employed for the approximate block inversion 
in Section 3.2. It finally computes a sparse block Cholesky factorization 
using dense matrix kernels.3 The mechanism and theory of sparse direct 
solvers are beyond the scope of this paper, and we refer the interested 
reader to [29] and, for more recent developments, to [28,30]. Alterna
tively, many other high-performance sparse direct solver packages can 
be used [31–34]. Since we will employ the Cholesky decomposition of Θ 
for the inversion of Θ, we reformulate the Cholesky decomposition in a 
slightly different form as LDL decomposition, 

Θ = PLDL⊤P⊤, (5)  

where P is a permutation matrix, D a block diagonal matrix with sym
metric positive-definite submatrices as diagonal blocks, and L is a block 
lower triangular matrix with identities as its diagonal blocks. The pre
sumption here is that Θ is sparse, and thus we expect L to also be sparse. 
This, of course, is dependent on both Θ* and the selected parameter λ. 
Using the decomposition in (5), it is easy to confirm that the log- 
determinant and the inverse can be written as follows: 

logdetΘ =
∑q

b=1
logdetDbb, (6) 

Θ− 1 = PL− ⊤D− 1L− 1P⊤, (7)  

where we assume that D consists of q diagonal blocks. The sparse Cho
lesky factorization also factorizes Dbb = LbbL⊤

bb as a dense Cholesky 
decomposition such that Lbb is a lower triangular matrix. This in turn 
allows us to compute log det Dbb = 2 log det Lbb = 2

∑
i log Lii easily from 

the diagonal entries of Lbb. 
To compute Θ− 1, the exact inversion of D is straightforward using its 

diagonal blocks. In contrast, the inversion of L and/or the product of the 
factors in (7) will be problematic since it may lead to a densely popu
lated matrix. As we will discuss in the next section, we address this issue 
by using a sparse approximate inversion of L. 

3 Dense matrix operations are implemented using level-3 BLAS and LAPACK. 
For HPC applications, one can employ multithreaded libraries like the Intel(R) 
Math Kernel Library (MKL). For details, we refer the reader to [28]. 
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3.2. Block approximate matrix inversion 

We now discuss a scheme for computing a sparse approximate in
verse matrix Θinv ≈ Θ− 1. The computation requires two major steps; one 
part requires computing Linv ≈ L− 1; the other part requires computing 
the product of the terms in (7). Let L = I − E, where − E refers to the 
strictly lower triangular part of L. The exact inverse can be computed 
using the Neumann series as 

L− 1 = (I − E)− 1
=

∑p− 1

k=0
Ek. (8)  

Note that we only require at most k = p − 1 terms in the summation as E 
is strictly lower triangular and thus Ep = 0. To compute Linv we will 
approximate (8) successively via Horner’s scheme 

Linv
k+1 = Linv

k E + I, k = 1, 2…, p − 1, (9)  

where Linv
1 := I+ E. Given a dropout threshold τinv > 0, we stop the 

iteration process when |(Linv
k+1)ij − (Linv

k )ij|⩽τinv is fulfilled. To prevent the 
computation from increased error propagation in the values of Linv

k+1⟵ 
Linv

k E + I we use a scaling factor γ ∈ (0, 1) to reduce the approximate 
inversion tolerance such that only |(Linv

k+1)ij − (Linv
k )ij| > γτinv are updated. 

In practice we use γ = 0.1. As soon as the iteration stops the final Linv will 
be sparsified according to τinv and Θinv is computed as per (7) accom
panied by a final sparsification thresholding |Θinv

ij |
2
> τ2

invΘinv
ii Θinv

jj . 
For adequate computational performance in this approach, we need 

to assume, first, that the number of iterations k in (9) is small and, 
second, that both matrices L− 1 and Θ− 1 are, or can be, approximated as 
sparse. Though these assumptions are problem dependent, in our tests 
outlined in Section 5, we observed that the approximate block matrix 
inversion scheme performed well. Furthermore, the authors in [22] 
show corroborating test results for specific synthetic and real-world 
datasets. 

3.3. Block coordinate descent update 

The optimization of the negative log-likelihood function with respect 
to the active set ℐ free in (1), requires the computation of Δij in step 6 of 
Algorithm 1 for a large sequence of {i, j} ∈ ℐ free. The QUIC method 
computes the exact solution of each 2×2 subproblem associated with {i, 
j} and updates Δ via Δ′

ij := Δij + u, where Δ denotes the Newton direc
tion of the previous iteration initially starting with Δ = 0. The authors in 
[12] have shown that each u can be computed as follows. Denote 
W = Θ− 1 and recall that S denotes the sample covariance matrix. Then 

u = − Cij + 𝒮(Cij − Bij/Aij,λ/Aij), where 𝒮(x, y) := sign(x)max(|x| − y,0)
denotes the soft-thresholding function with 

Aij = W2
ij + WiiWjj,

Bij = Sij − Wij + Wi:ΔW:j, and
Cij = Θij + Δij.

(10)  

For large sparse matrices, recomputing intermediary matrices A, B, and 
C for all indices in ℐ free can become a computational burden, particularly 
when W = Θ− 1 (or Θinv) is less sparse. Using a blocking strategy, we 
mitigate this computational burden and reduce cache misses. Instead of 
employing a completely randomized sequence of indices {i,j} ∈ ℐ free, we 
regroup the indices {i, j} ∈ ℐ free into blocks such that {i1, j}, …, {il, j} 
refer to the same column j, and sort them such that i1 < i2 < ⋯ < il. Using 
this approach we accelerate the computation by accessing columns W:j, 
S:j, and Θ:j, only once in increasing order of row indices in contrast to a 
time-consuming random access which would require us to completely 
recompute these properties. This also allows one to efficiently compute 
the matrices A, B, and C in (10), and to update B and C whenever Δ is 
updated. 

4. Parallelization 

In this section, we will outline the parallelization scheme for the 
block SQUIC algorithm. In Section 4.1, we provide a brief overview of 
the parallelized sparse sample covariance matrix, which was introduced 
in [21]. In Section 4.2, we will introduce the key parallelized component 
of block SQUIC: the parallel block approximate matrix inversion. We 
note that the CHOLMOD supernodal sparse Cholesky factorization li
brary provides internal parallelization, as it utilizes the optimized BLAS 
Level-3 library. We will provide a brief discussion on the parallel per
formance of the supernodal sparse Cholesky factorization component in 
Section 5.3. 

In Fig. 1, we can see the overall algorithmic schemes of both variants 
of SQUIC, with the different components of block SQUIC marked with 
“★”. Both start with the parallel computation of the sparse sample 
covariance matrix. After that, ℐ free is generated, and block SQUIC min
imizes the log-likelihood function using a sequential but block-oriented 
coordinate descent update strategy described in Section 3.3. Once 
completed, we potentially perform several line-search steps employing 
the multithreaded sparse supernodal Cholesky factorization described in 
Section 3.1. As soon as the factorization is successfully computed, the 
parallel block approximate matrix inversion routine, outlined in Section 
3.2, is used to compute the sparse inverse approximation of Θ. This 
process is then repeated until the desired convergence tolerance is 
reached. 

4.1. Parallel sparse sample covariance matrix 

The kernel operation in computing the sparse sample covariance 
matrix is matrix-matrix multiplication, which is highly parallelizable. 
Though the sample covariance matrix is approximated as being sparse, 
the computation is dense due to the undetermined sparsity pattern. 
Using OpenMP, parallel dense matrix-matrix multiplication is performed 
by allocating the available threads to respective submatrices of S. 
Initially, the off-diagonal values |Sij| < λ are discarded. Later during each 
Newton iteration, all values of S, which are not computed and have a 
corresponding nonzero in Θinv are computed on the fly. This approach 
ensures that the nonzero pattern of S overlaps that of Θinv. We also note 
that a scalable distributed-memory version was presented in [22]. 

Fig. 1. A visual representation of the block SQUIC algorithm with the four 
main components in bold. The components that are different from the scalar 
variant of SQUIC are marked with ★. 
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Algorithm 2. Parallel block approximate matrix inversion.  

Input: L, Dinv :=D− 1, P, τinv 
1: E ⟵ I − L 
2: Linv ⟵ I + E 
3: u ⟵ 0 
4: repeat 
5: for b = 1, …, q parallel do 
6: r ⟵ thread _ id 
7: V ⟵ LinvE:b 
8: ur⟵max(ur ,maxi ‖ Linv

ib − Vi:‖∞)

9: for alli > b and ‖ Linv
ib − Vi:‖∞ > γτinv  

10: Linv
ib ⟵Vi:

11: end for 
12: end for 
13: Linv⟵Linv  

14: untilmax(u) ⩽ τinv 
15: Linv ⟵ sparsify(Linv) 
16: compute block graph (Linv)

⊤

17: for b = 1, …, q parallel do 
18: Θinv

:b ⟵(Linv)
⊤DinvLinv

:b  
19: end for 
20: Θinv ⟵ sparsify(PΘinvP⊤) 
Output: Θinv  

4.2. Parallel block approximate matrix Inversion 

To compute Θinv, we have to perform a sequence of sparse matrix- 
matrix multiplications. In order to accelerate the overall computation, 
we employ both a parallelization scheme and the block structure ob
tained from the supernodal Cholesky decomposition described in Sec
tion 3.1. The kernel operation within the algorithm is sparse block 
matrix-matrix multiplication, where each product relies on dense ma
trix operations. The parallelized block approximate matrix inversion 
Algorithm 2 comprises two parts: first, the computation of Linv and the 
reconstruction of Θinv as per (9) and (7), respectively. Notice that D in 
(7) is a block diagonal matrix and its exact inversion does not pose 
computational or storage problems. 

Thus the inputs of the algorithm are L, Dinv :=D− 1, P, and a dropout 
threshold τinv. We begin by initializing the appropriate variables and 
buffer u of size equal to the maximum number of threads.This buffer will 
store the maximum magnitude of the incremental updates of the Neu
mann iteration, and in step 14 is used to evaluate the convergence of the 
approximate Neumann iteration. Each subdiagonal block of L, E, and Linv 

is stored as some dense matrix, where the rows are compressed and refer 
to nonzero rows, possibly with gaps, whereas the columns are contig
uous. Let q be the number of diagonal blocks in L. In steps 4–14 the 
approximate Neumann series is parallelized, where each thread id r is 
allocated to specific block b. Here V is a dense buffer of size t × s, E:b 
consists of a dense block Q associated with rows i1, …, ir and columns j, 
j + 1, …, j + s − 1. Now Linv is unit block lower triangular and its columns 
i1, …, ir have nonzero entries in rows i1, …, ir as well as in further rows 
ir+1, …, it. We compute V for each block column c of Linv that intersects 
with {i1, …, ir} by (i) gathering the associated columns of c into a buffer 
R and then (ii) computing V ⟵ RQ. These operations are summarized in 
Fig. 2. Next in steps 8–11, we apply the dropout rule and scatter the 
remaining rows of {i1, …, it} and columns j, …, j + s − 1 from V to the 
new approximate inverse factor Linv

:b . Notice that the index i refers to a 
single row. This process is repeated until the condition in step 14 is 
satisfied. 

Before proceeding to the next portion of the algorithm, we sparsify 
and then compute the block graph of (Linv)

⊤ with respect to the parti
tioning induced by the diagonal blocks and store the physical start of 
each superdiagonal block, if any. Following this, we begin the second 
critical operation of the algorithm in steps 17–19, where we compute the 
sparse approximate Θinv. Notice that (Linv)

⊤ is unit upper triangular with 
dense superdiagonal blocks but where only the nonzero columns are 
stored. When performing the matrix multiplications in step 18 the 

nonzero rows of Linv
:b , say i1, …, ir, are associated with diagonal blocks c1, 

…, cr of Dinv and block columns c1, …, cr of (Linv)
⊤, which now can be 

easily accessed via the computed block graph. These multiplications can 
be performed similarly to the procedure outlined for step 7, where due to 
symmetry, we only compute the block lower triangular part of Θinv. 
Finally, before outputting Θinv, we apply the permutation matrix and 
sparsify. 

5. Analysis and validation on synthetic data 

This section outlines the analysis and test results that validate the 
performance, accuracy, and scalability of the proposed block SQUIC 
algorithm. We begin in Section 5.1 by providing a comparative analysis 
on performance and accuracy for a set of midscale datasets of di
mensions p ⩽ 104.We include various sparse precision matrix estimation 
packages: Scalar SQUIC (Algorithm 1) [21,22], GLASSO [9], EQUAL 
[16], BigQuic [13], FASTCLIME [18,19], and MDMC [20]. To evaluate 
the “correctness” of the structure of the recovered precision matrix we 
use the F − score ∈ [0, 1], where F − score = 1 suggests an exact recov
ery of the sparsity structure of the underlying true precision matrix 
(refer to [35] for further details). In Section 5.2 we proceed with tests on 
large-scale datasets at p = 105 and provide an in-depth analysis of the 
performance, single node scalability, and memory profiling of block 
SQUIC. Here we also include scalar SQUIC in our numerical tests, as it is 
the only package that produces comparable results on a large scale. 

We base our results on two synthetic datasets generated from 
Gaussian distributions with a mean of zero and the following types of 
predefined true precision matrices:  

• Tridiagonal, Θ * (1) — A tridiagonal matrix with off-diagonal values of 
− 0.5 and 1.25 on the diagonal, and  

• Clusters, Θ * (2) — A random structured matrix representing a 
graphical structure of p/100 clusters of size 100 and an average 
degree of 20 with 90% of the edges contained within the clusters 
[36]. 

The nonzero structure of the noted precision matrices is visualized in 
Fig. 3a. In what follows, we refer to the respective datasets with the 
terms described above. In all tests outlined below, the number of sam
ples is fixed at n = 500, and the convergence and approximate inversion 
tolerance are τ = τinv = 10− 4 unless noted otherwise. 

These datasets are selected to highlight three key points. First, the 
accuracy of the introduced block SQUIC is equivalent or better 
compared with the aforementioned packages. Second, block SQUIC 
provides significant speedups in comparison to scalar SQUIC in sce
narios when W exhibits reduced sparsity, and third both scalar and block 
SQUIC are equivalently performant when both Θ and W can be 
approximated as being very sparse.4 We also note that the exact inverse 
of Θ * (1) is dense but has exponentially decaying values as we move 
further from the diagonal. This property makes the tridiagonal dataset 
well suited for a sparse approximation of the inverse precision matrix via 
a thresholded Neumann approach, which is shared by both scalar and 
block SQUIC (see Section 3.2 for further details). For Θ * (2) we also have 
a dense exact inverse; however, the magnitude difference between large 
and small values is much less exaggerated than the tridiagonal example, 
and thus an appropriately selected dropout tolerance τinv will still result 
in an increasing number of nonzeros in the computation of W. This 
behavior is illustrated in Fig. 3b. For this reason, we can expect that the 
Clusters dataset will pose a more significant computational challenge in 
both the approximate matrix inversion (see Section 3.3) and, in turn, the 
coordinate descent update as W will most likely have reduced sparsity. 

4 Based on our experiments, a “very sparse matrix” is a matrix with an order 
of tens of nonzeros per row. 
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Our algorithm is written in C++ with all numerical experiments 
conducted on a single node with 1 TB main memory and 4 Intel(R) Xeon 
E7-4880 v2 @ 2.5 GHz each with 15 cores per socket, totaling 60 cores. 

5.1. Midscale tests 

The tests outlined in Fig. 4 are for the two synthetic datasets with 
dimensions 102 ⩽ p ⩽ 104. Each runtime represents a path of 10 different 

λ values, which have been determined experimentally as the range for 
the best recovery of the true precision matrix. For a given dimension p, 
the equidistant path of λ values reads 0.0380

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
to 0.1140

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
, 

and 0.0380
̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
to 0.1140

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
, for the tridiagonal and synthetic 

clusters datasets, respectively. We note that for FASTCLIME, only the 
minimum λ value and the size of the path can be set, with the rest of the λ 
values calculated internally [19]. The timing results for EQUAL, 

Fig. 2. Sketch of computing V ⟵ RQ.  

Fig. 3. The sparsity structure of the precision matrices of the two synthetic datasets with dimension p = 103 are shown in (a) with the left panel being the tridiagonal 
matrix Θ * (1) and, on the right side, the random clusters matrix Θ * (2). The respective inverse of the precision matrices is shown in (b), where the colors represent the 
magnitude of the matrix values in log base 10. Note that both inverse matrices are dense; however, the tridiagonal matrix’s inverse has exponentially decaying values 
in the off-diagonals. 

Fig. 4. A comparison of the runtimes of precision matrix estimation packages for (a) the tridiagonal and (b) the cluster dataset. At each dimension p, the runtime is 
the total compute time for a path of 10 sparsity parameters λ. 
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FASTCLIME, GLASSO, and MDMC are excluded for p > 6400 if the 
runtimes exceed 105 s. For the MDMC method, we include the soft
thresholding of the covariance matrix in the calculation of the total time 
for the solution path. For all the methods under question, the conver
gence tolerance, which is equal to the approximate dropout tolerance for 
both variants of SQUIC, is set to τ = τinv = 10− 4. In Fig. 4 we observe that 
both block and scalar SQUIC outperform the competing algorithms 
when p ⩾ 500 for both datasets. For the tridiagonal dataset tests pre
sented in Fig. 4a, both variants of SQUIC are equivalent in runtime and 
consistently 5 times faster than the second-fastest method (MDMC) and 
orders of magnitude faster than the other methods. As visualized in 
Fig. 3 and described in Section 5, the equivalent runtime of scalar and 
block SQUIC are as expected, as the true underlying inverse of a tri
diagonal precision matrix can be well approximated as a sparse matrix. 
In the noted tests, there were approximately 3 nonzeros per row in the 
approximate inverse of the precision matrix W; far too few for both 
blocking approaches introduced in Section 3 to provide a computational 
advantage. That being said, it is worth noting that the introduced block 
algorithm does not add a measurable overhead. 

While the tridiagonal dataset is a didactic example that outlines the 
similarities between scalar and block SQUIC, the cluster dataset aims to 
highlight the differences between the methods. As shown in Fig. 4b, the 
block SQUIC is 5 to 6 times faster than the scalar algorithm and orders of 
magnitude faster than the other methods. Unlike the tridiagonal case, 
the inverse of the cluster dataset precision matrix will have limited 
sparsity (see Fig. 3b), which is the cause of the degradation in the per
formance of scalar SQUIC. 

In Fig. 5, we show the F-scores for the various algorithms for 
dimension p = 103 with respect to the regularization parameters λ. 
Notice that both variants of SQUIC, BigQUIC, and GLASSO solve the 
same ℓ1 regularized ML estimation (MLE) problem in (1) and, thus, the 
recovered precision matrices have the same or similar F-Score. Any 
differences between these MLE methods are due to numerical errors or 
the approximation approach, which, our experiments show, to have a 
negligible impact on the graphical structure of estimated precision 
matrices. For the tridiagonal dataset in Fig. 5a, we can see that all 
methods reach the maximum F-score of 1. For the clusters dataset in 
Fig. 5b, the MLE methods reach a maximum F-score of 0.48 while 
EQUAL is slightly higher at 0.49. In contrast to the tridiagonal dataset, 
the remaining algorithms do not reach the same F-score level. 

5.2. Large-scale tests 

In Fig. 6 we present the large-scale runtime performance of block and 
scalar SQUIC for the two synthetic datasets at p = 105 for a varying 
tolerance level τ = τinv = {10− 2, 10− 3, 10− 4, 10− 5, 10− 6}. Having 
demonstrated in the previous Section 5.1 the equivalence in the run
times of block and scalar SQUIC for the sparse tridiagonal dataset Θ∗

(1), 
and a perfect recovery rate with F − score = 1, we decrease further the 
number of samples for this dataset to n = 125 in order to observe the 
effect of increased uncertainty in the computations. For the clusters 
dataset Θ∗

(2) we keep n = 500 and investigate whether the computational 
gains of block SQUIC, observed in the midscale, are extended in the 
large-scale tests too. The only other package that scales to datasets of 
this size is BigQUIC. However its runtimes are approximately 102 to 103 

times slower for the retrieval of Θ∗
(1) and 102 to 102 times slower for the 

retrieval of Θ∗
(2), and are thus excluded from the following study. 

The selected sparsity parameters are λ = 0.5 and 0.15 for the tri
diagonal and clusters datasets, respectively. At these values, the recov
ered precision matrices of the datasets have roughly 3 and 20 nonzeros 
per row, which correspond to the true underlying sparsity of Θ∗

(1) and 
Θ∗

(2). In Fig. 6a we show the total runtime for the tridiagonal dataset and 
the runtimes for the important algorithmic components. The reduced 
sample size (n = 125) leads to an increased number of nonzeros in W, 
ranging from 6 to 103 for the decreasing τ levels, and thus to an increase 

in the computational runtime of both scalar and block SQUIC. For 
τ = 10− 2, block SQUIC is over 4 times faster than scalar SQUIC, and in 
cases where W is less sparse or, equivalently, has increased fill-in, for 
example, in the extreme case of τ = 10− 6, the introduced blocking 
strategy is 6 times faster than scalar SQUIC and provides similar per
formance. For more realistic convergence thresholds such as τ = 10− 3 or 
10− 4, block SQUIC is 4 times faster than the scalar variant. The same set 
of tests for the clusters dataset is illustrated in Fig. 6b. Similarly to the 
tridiagonal case, we see that the runtimes of both algorithms increase 
with decreasing τ values. Here the number of nonzeros in W ranges from 
10 to 1000 for a decreasing τ. In these scenarios, the bottleneck com
ponents of scalar SQUIC become apparent as for both datasets approx
imately 80% of the total runtime is consumed in the approximate 
inversion and coordinate descent updates. For a moderate tolerance of 
τ = 10− 4 for the clusters case, block SQUIC is 6 time faster in both 
approximate inversion and coordinate descent update components. This 
results in the overall runtime of block SQUIC being 5.1× less than scalar 
SQUIC. For the remaining tolerance levels τ = {10− 2, 10− 3, 10− 5, 10− 6} 
the speedups achieved by block SQUIC are 2.6 times, 2.7 times, 5.8 
times, and 9.6 times, respectively. 

5.3. Scalability 

In Fig. 7 we present the strong scaling results of block SQUIC and its 
internal parallel components discussed in Section 4: the introduced 
parallel block approximate matrix inversion, the supernodal sparse 
matrix factorization package CHOLMOD, and the sparse sample covari
ance matrix. In both plots, the dashed red line indicates the ideal scal
ability. For the tridiagonal dataset, shown in Fig. 7a, the dominant 
algorithmic component is the approximate matrix inversion, which has a 
similar scalability profile to the total runtime. In contrast, the Cholesky 
factorization component accounts for very little of the runtime, and 
scale equivalently. In total, the parallel implementation of the algorithm 
exhibits 13 times speedup over its sequential variant. Similarly to the 
tridiagonal case, the block approximate matrix inversion for the clusters 
dataset in Fig. 7b requires over 79% of the serial runtime. As such, the 
overall scalability matches the approximate matrix inversion, which 
scales well to 60 cores with minimal degradation. Overall the parallel 
execution of block SQUIC is 7 times faster than its single-core execution 
for the clusters dataset, respectively. 

Last, Fig. 8 shows the memory utilization over time for block SQUIC 
for 60 cores. For reference, we also show the maximum memory foot
print of scalar SQUIC. We can see that both variants have similar 
memory requirements, with the block algorithm structures requiring 
slightly higher resources. In both the tridiagonal test, shown in Fig. 8a, 
and the clusters dataset, shown in Fig. 8b, the memory profiles follow a 
similar trajectory. In both cases over 90% of the runtime is due to the 
Newton iterations. In each Newton iteration, the supernodal Cholesky 
factorization, followed by the approximate matrix inversion, is visible as 
a step-up in memory requirements. Discarding the Cholesky factors and 
clearing the memory buffers corresponds to the subsequent step-down in 
memory requirements. 

6. Numerical experiments with real-world data 

In this section, we illustrate the applicability and efficiency of block 
SQUIC in the estimation of sparse precision matrices emerging from real- 
world problems. In Section 6.1, we apply the scalar and block SQUIC to a 
high-dimensional regression-based financial application and study the 
effect of the sparsity parameter λ on the overall runtime of the algorithm. 
Finally, in Section 6.2 we utilize both SQUIC variants to classify DNA 
microarray data by performing an LDA study that demonstrates the 
importance of efficient computations at low tolerance levels when 
dealing with real-world data of limited sparsity. 
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Fig. 5. A comparison of the F-score achieved by the different methods in the recovery of the precision matrices with respect to the regularization parameter λ for (a) 
Θ∗

(1) the tridiagonal and (b) Θ∗
(2) the clusters datasets. 

Fig. 6. The total runtime and the runtimes of the significant algorithmic components of block and scalar SQUIC for (a) Θ∗
(1) the tridiagonal dataset with n = 125, and 

(b) Θ∗
(2) clusters dataset with n = 500. The sparsity parameters used for the respective datasets are λ = 0.5 and 0.15. The runtimes for BigQUIC are 102 to 103 and 102 

to 102 times slower than block SQUIC, for the respective datasets, and thus have been excluded from the plots for visual clarity. 

Fig. 7. Strong scaling for block SQUIC at dimension p = 105 for (a) the tridiagonal and (b) the cluster datasets. The sparsity parameters used for the respective 
datasets is λ = 0.5 and 0.15. For all tests τ = τinv = 10− 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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6.1. Case study: option return forecast 

In this section, we use block SQUIC in a stylized financial application 
to forecast the direction (or sign) of the future returns of all tradable 
options5 for the largest 500 companies listed on stock exchanges in the 
United States (S&P 500 index) for 30 days in the spring of 2017, totaling 
roughly 200 k options on any given day.6 We emphasize that the case 
study presented here is intended to highlight the capabilities of the 
proposed algorithm and not the economic viability of the results 
presented. 

Let pt ∈ ℝp be the price of options i ∈ {1, …, p} at time t. Defining the 
log-returns as (yt)i := ln((pt)i/(pt− 1)i) (see [37] for further details), we 
propose the following linear relationship between the current and his
torical log-returns: 

yt = βyt− 1 + ε, ε ∼ 𝒩(0, σ2I), (11)  

where β ∈ ℝp×p is the unknown operator, and ε is normally distributed 
with zero mean and uncorrelated errors with variance σ2. Here we as
sume that log-returns follow a locally stationary Gaussian distribution, 
that is, yt+1 can be sufficiently approximated with an estimate of 𝒩(μt ,

Σt). Using ordinary least squares we can write the estimate of the un
known operator as 

β̂ = E[yt− 1y⊤
t ]E[yty⊤

t ]
− 1
. (12)  

Given n historical samples Yt := [yt− n− 1,…, yt ] ∈ ℝp×n we will use block 
SQUIC and the empirical mean to recover a biased estimate of the 
expectation E[yty⊤

t ] = Θ− 1
t + μtμ⊤

t . The biased estimate of the operator 
can now be written as 

β̂
bias

=
1
n
Yt− 1Y⊤

t (Θ
− 1
t + μtμ⊤

t )
− 1
. (13)  

Notice the explicit inversion of the rank-one updated Θ− 1 will result in a 
dense matrix. We can sidestep this issue by using the Sherman–Morrison 
formula [38] and write the future forecast of the log-returns as 

ŷ t+1 =
1
n
Yt− 1Y⊤

t

(
Θ −

ΘμμΘ
1 + μ⊤Θμ

)
yt. (14) 

Using the proposed model in (14) we want to forecast the future 
direction of the return sign(yt). For testing, we use 5 of the previous days 

as samples (n = 5) to forecast the next day’s log-returns (cf. (15) below). 
This is repeated for a rolling window of 100 days. Notice that the 
number of option contracts varies from day to day as some options 
expire and others are issued. For our test, we only consider options that 
exist during the rolling windows,7 thus depending on the day, the 
number of options p varies by a relatively small value. Throughout the 
length of the time series, there are about p = 105 option contracts per 
day. For each day we use the historical samples to compute the Θ using 
sparsity parameters λ = {10, 5, 2, 3, 1.5, 1.3} with tolerance fixed at 
τ = 10− 4. The adopted accuracy metric for the forecast at time t for the 
future log-returns yt+1 is defined as 

rt := y⊤
t+1sign(ŷ t+1). (15) 

In Fig. 9a, we present the average number of nonzeros per row for the 
recovered matrices by block and scalar SQUIC at varying sparsity pa
rameters and corresponding statistics8 of the returns. We highlight the 
significant increase in the number of nonzeros in the recovered matrices 
for a decreasing sparsity parameter λ. We can see that the minimum 
values of the returns decrease, while the mean values of the returns 
increase,9 with decreasing λ or, equivalently, with increased density in 
the recovered precision and covariance matrix. At the same time, we see 
that maximum returns and variance remain relatively constant with 
respect to λ. This implies a better estimation of future price fluctuation 
with a decrease in the sparsity parameter. 

In Fig. 9b, we show the return statistics and average runtime on the 
left and right axes, respectively. Here scalar SQUIC is not a fitting choice 
in this setting, as the overall runtime exceeds 24 h for λ < 2. The number 
of nonzeros in the precision, and covariance matrix, are relatively high, 
and the overall performance of scalar SQUIC is heavily degraded. These 
findings have substantial practical implications: if a hypothetical trading 
strategy needs to be rebalanced in a frequency that is shorter than the 
compute time to determine its composition, it becomes impossible to be 
implemented. In the stylized case above, the daily strategy thus cannot 
be implemented with scalar variate SQUIC. On the other hand, the 
proposed block SQUIC took no more than 10 min. per iteration for 

Fig. 8. Memory profiling of block SQUIC for dimension p = 105 for (a) the tridiagonal and (b) the cluster dataset. The red line in the memory profiles is the maximum 
memory footprint of scalar SQUIC during identical tests. The convergence tolerance used for all tests are τ = τinv = 10− 4. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 

5 Options are derivative contracts giving the holder the right to buy or sell a 
security at a predetermined price.  

6 The options prices are from the database https://optionmetrics.com. 

7 The rolling window consists of 7 days—that is, 5+1 days to calibrate the 
model, plus one day to make an out of sample forecast.  

8 The Max/Min is defined as the 0.1/99.9 percentile of the distribution.  
9 In options markets, the bid-ask spread is on the order of 0.005 to 5% 

depending on the instrument’s liquidity. This implies that a trading strategy 
based on the model discussed cannot be considered sufficiently profitable. 
Nonetheless, the results are positive in the sense that they show that the model 
can successfully capture relevant signals to create a profitable strategy in a 
frictionless market. 
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λ = 1.3 and, thus, such a strategy could become feasible. Furthermore, 
on the left axis of Fig. 3, we show normalized minimum, mean, and 
maximum returns at varying sparsity parameters. It becomes apparent 
that significant negative returns are eliminated with a decrease in the 
sparsity parameter value while the maximum return remains relatively 
constant. This then translates into increasing overall returns with 
decreasing values of the sparsity parameter, which implies that the block 
SQUIC allows for even more benefits for the investor by being able to 
follow a quantitative strategy where the data used result in denser 
intermediary matrices. 

6.2. Case study: classification of medical data 

As a final study case, we apply the block SQUIC algorithm to the 
classification of samples for the purpose of medical diagnosis. We 
consider two datasets from the RSCTC’2010 Discovery Challenge [39], 
concerning the recognition of multiple human cancer types and the 
diagnosis of human Burkitt lymphoma. We list the statistics of these 
datasets in Table 1. The challenging ratio between the available samples 
and the dimensionality of the dataset renders such data unfavorable for 
discriminant analysis approaches. As a result, various approximate LDA 
methods have been introduced to reduce the data’s dimensionality in 
question [40,41]. We demonstrate here that the block variant of SQUIC 
enables applying traditional LDA with high classification scores within a 
reasonable time. 

We estimate the inverse covariance matrix for these cases and apply 
the LDA method to group them into classes. Based on the accuracy in 
grouping the DNA microarray genes, we determine the precision in the 
computation of the inverse covariance. For a detailed analysis of the 
method, we refer to [42]. 

We follow the approach of [18,43,44] and randomly select 85% of 
the genes from each class to form the training set, with the rest of the 
genes being in the testing set. This process is repeated 50 times for each 
dataset. The accuracy of the assignment is measured according to the 
F-score and according to the additional metric unsupervised clustering 
accuracy (ACC) [35]. Note that, similarly to the F-score, a value of 
ACC = 1 corresponds to a perfect classification. 

Let k ∈ ℕ+ be the class index of a given sample, with each class 

having mean μk, and all classes sharing the same precision matrix. 
Assuming a Gaussian distribution 𝒩(μk,Θ− 1) for the normalized medi
cal data the linear discriminant function is defined as 

ρk(x) = x⊤Θμk −
1
2
μ⊤

k Θμk + logπ̂k, (16)  

where π̂k = nk/n is the ratio of the number of samples of each class nk 
over the number of total number of samples n. The class-average vector 

for each class is computed as μk =

(
1
nk

)
∑

i∈kxi. Then, the class C of a 

vector of pixels x is defined as 

C(x) := arg max
k

ρk(x). (17) 

In these numerical experiments we consider a decreasing tolerance 
τ = {10− 1, 10− 2, 10− 2, 10− 3, 10− 3} in order to demonstrate that an 
increased density in the computation of the inverse of the precision 
matrix results in higher classification scores, thus a more accurate rep
resentation of Θ itself. The regularization term accounts for the changes 
in p and n and is set to λ = c⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logp/n

√
. The scalar parameter c is selected 

with an exhaustive search, and is c1 = 2.5 for the Various cancers (VC) 
dataset and c2 = 2.8 for the Burkitt lymphoma (BL), respectively. This 
approach leads to an almost constant number of nonzeros in the esti
mated precision matrix Θ, while its inverse Θinv becomes denser as the 
tolerance level decreases. This behavior is illustrated in Fig. 10a. The 
additional information in the off-diagonals of the estimated Θinv 

matrices results in an improvement in the classification accuracies, as 
demonstrated in Fig. 10b, at the expense of computational runtime. The 
breakdown of the time-to-solution for the different algorithmic com
ponents of the SQUIC variants is shown in Fig. 11. 

For both datasets, the improvements on the classification accuracy 
increase as the tolerance level decreases, and the number of nonzeros 
considered in the inverse of the precision matrix Θinv increases. This 
improvement demonstrates the necessity for efficient intermediate 
computations in estimating precision matrices emerging from real-world 
medical data. The improvements stagnate at τ = 10− 3, while the addi
tional nonzeros in Θinv at τ = 10− 3 do not provide an improved classifi
cation performance. At even smaller tolerance levels with τ < 10− 4 the 
classification accuracy is reduced due to an excessive number of non
zeros in Θinv. We do not report these tolerances here, as they are unre
alistic for real-world problems. For the VC dataset, the ACC metric at 
τ = 10− 3 is 0.79, a 3.2% improvement over its value in the first tolerance 
level and the F-score is 0.77, a 4.4% improvement. For the BL case the 
ACC metric was improved by 5.8% and the F-score by 9.5%, achieving 
final values of 0.85 and 0.63, respectively. These improvements are a 

Fig. 9. Using SQUIC to forecast the direction of the future returns of tradable options. (a) Average number of nonzeros in the precision matrix Θ and its approximate 
inverse Θinv and return statistics. (b) The normalized returns (left y-axis) and average runtime per daily forecast, in seconds, of scalar and block SQUIC (right y-axis) 
with respect to the sparsity parameter λ. 

Table 1 
The summary of the datasets used. The number of dimensions (p), sample size 
(n), and classes (k) are listed.  

Case Classes Dimensions Samples 

Various cancers (VC) 9 54,675 383 
Burkitt lymphoma (BL) 3 22,283 220  
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consequence of both the increased accuracy in the computation of the 
precision matrix and the decreased sparsity in the intermediate level of 
estimating its inverse. The final tolerance level leads to 254 nonzeros per 
row in Θinv, as opposed to 1 in the first level for the VC dataset, and in 
768 nonzeros per row as opposed to 1.3 for BL. This significant reduction 
in sparsity affects the computational runtime of both scalar and block 
SQUIC (Fig. 11, notice the logarithmic y-scale). At a tolerance of 
τ = 10− 3, where the maximum improvements have already been reached 
(see Fig. 10), block SQUIC achieves a 4.5 times overall speedup over its 
scalar variant for the BL dataset. The approximate matrix inversion is 
accelerated 4 times and the coordinate descent update, which accounts 
for ~97% of the total runtime in both variants, by 5 times. For the VC 
dataset at the same tolerance level τ = 10− 3 the total speedup achieved 
by block SQUIC is 5 times, with the approximated matrix inversion 
being 2 times faster and the block coordinate descent update, which 
again is responsible for more than 90 % of the total runtime for both 
algorithms, being 5 times faster. In the remaining tolerance levels 

(
τ =

10− 1,10− 2,10− 4) block SQUIC achieves total speedups of 3 to 7 times 
for the BL dataset and 3 to 9 times for the VC dataset, respectively. These 
consistent improvements become more important for tolerance levels 
τ ≤ 10− 3 as the total runtime of Algorithm 1 at τ = 10− 4 reaches 60 min 
for the BL dataset and 20 min for VC. 

7. Conclusion 

In this work, we developed a performant, scalable algorithm for the 
accurate retrieval of precision matrices, fitting for real-world datasets, 
where the underlying computations are characterized by reduced spar
sity. This was achieved by introducing (i) a block approximate matrix 
inversion and (ii) block coordinate descent updates. The block structures 
utilized were retrieved by (iii) incorporating a high-performance 
supernodal sparse Cholesky factorization routine. Next, we (iv) paral
lelized the block approximate matrix inversion using an efficient shared- 
memory scheme. Our method is compared with various state-of-the-art 
methods in a series of midscale and large-scale tests showcasing that the 
introduced algorithm performs equivalently in terms of accuracy and 
offers significant performance gains. For the synthetic clusters dataset, 
exhibiting limited sparsity, for p = 104 we observed that block SQUIC 
was 10 to 100 times faster than the other methods. For the large-scale 
clusters tests with p = 105, the only other algorithms capable of 
scaling to such dimensions were scalar SQUIC and BigQUIC.Here block 
SQUIC was 10 to 500 times faster than scalar SQUIC and BigQUIC, 
respectively. The midscale experiments for the sufficiently sparse tri
diagonal dataset validate that the block algorithmic components do not 
introduce any significant overhead, as the runtimes of both scalar and 
block SQUIC are equivalent, with both methods being 3 to 103 times 
faster than the other packages. For the large-scale tridiagonal experi
ments, block SQUIC is 1.2 times faster than its scalar version and 104 

Fig. 10. LDA study for the datasets listed in Table 1 using precision matrices estimated by Algorithm 2. (a) Average number of nonzeros per row in Θ and Θinv for a 
decreasing tolerance. (b) Percentage improvements in F-score and ACC. 

Fig. 11. Runtimes in logarithmic y-scale of the major components of both variants of SQUIC (scalar, block) for the retrieval of the inverse covariance matrices from 
the medical data listed in Table 1, with respect to a varying tolerance level τ. (a) Runtimes for the Various cancers dataset. (b) Runtimes for the Burkitt lypm
homa dataset. 
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faster than BigQUIC. Furthermore, we saw in the limited sparsity sce
narios that the parallelized approximate matrix inversion exhibits strong 
scaling up to 60 cores. The memory footprint is equivalent for scalar and 
block SQUIC, reaching a maximum of 80 to 45 GB for the large-scale 
tridiagonal and clusters datasets, respectively. Our results from the nu
merical experiments on real-world datasets, highlight that block SQUIC 
is 6 to 9 faster than the scalar SQUIC. In the options return forecasting 
case study, we saw that block SQUIC allows daily forecasting with better 
returns, which would not be possible with scalar SQUIC slower run
times. Furthermore, in the LDA case study we saw that block SQUIC 
enables an accurate classification of DNA microarray data in reasonable 
time. The consistency of the results, from the synthetic tests to the real- 
world case studies, highlights the effectiveness of the introduced 
blocking components and the broad applicability of the presented work. 
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