
Journal of Computational Science 53 (2021) 101389

Available online 12 May 2021
1877-7503/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Block-enhanced precision matrix estimation for large-scale datasets

Aryan Eftekhari a,1, Dimosthenis Pasadakis a,1, Matthias Bollhöfer b, Simon Scheidegger c,
Olaf Schenk a,*
a Institute of Computing, Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
b Institute for Numerical Analysis, TU Braunschweig, Braunschweig, Germany
c Department of Economics, University of Lausanne, Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
Covariance matrices
Graphical model
Optimization
Gaussian Markov random field
Machine learning application

A B S T R A C T

The ℓ1-regularized Gaussian maximum likelihood method is a common approach for sparse precision matrix
estimation, but one that poses a computational challenge for high-dimensional datasets. We present a novel ℓ1-
regularized maximum likelihood method for performant large-scale sparse precision matrix estimation utilizing
the block structures in the underlying computations. We identify the computational bottlenecks and contribute a
block coordinate descent update as well as a block approximate matrix inversion routine, which is then paral
lelized using a shared-memory scheme. We demonstrate the effectiveness, accuracy, and performance of these
algorithms. Our numerical examples and comparative results with various modern open-source packages reveal
that these precision matrix estimation methods can accelerate the computation of covariance matrices by two to
three orders of magnitude, while keeping memory requirements modest. Furthermore, we conduct large-scale
case studies for applications from finance and medicine with several thousand random variables to demon
strate applicability for real-world datasets.

1. Introduction

The inverse of the covariance matrix, referred to as the precision
matrix, is fundamental in multivariate analysis. In many applications,
for example, biological networks (see, e.g., [1,2]), finance (see, e.g.,
[3–5]), and pattern recognition (see, e.g., [6,7]), precision matrices are
often estimated as sparse, meaning that many of the random variables
are conditionally independent (see, e.g., [8,9]). In a Gaussian setting,
the sparse precision matrix encodes the graphical structure of a Gaussian
Markov random field (GMRF), which by itself is useful in elucidating the
association between random variables. For large-scale or, equivalently,
high-dimensional datasets, the estimation of precision matrices poses a
computational challenge as the pairwise relationship of random vari
ables grows quadratically. The surge of large-scale datasets has
emphasized the importance of scalable sparse precision matrix estima
tion methods, attracting attention and progressing algorithmic and
computational developments.

A common approach for the estimation of sparse precision matrices
is the ℓ1-regularized maximum likelihood (ML) approach, commonly

referred to as the “graphical lasso” problem (see, e.g., [9–11]). The
QUadratic approximation of Inverse Covariance matrices (QUIC) algo
rithm [12] and its large-scale implementation BigQUIC [13], are
second-order solution methods for the graphical lasso problem with
superlinear convergence. Parallel to the graphical lasso approach, many
recent methods have been proposed to estimate precision matrices using
different objectives. For example, the authors in [14,15] utilize the co
ordinate wise minimization of a regression-based formulation which has
been shown to have robust model selection properties compared to other
Gaussian approaches. Alternative approaches include EQUAL [16],
which utilizes penalized quadratic loss functions [17], and FASTCLIME
[18,19], which casts sparse precision matrix estimation as a linear
programming problem and solves it with the parametric simplex algo
rithm. Another recent contribution is the MDMC algorithm [20] that
approximates the graphical lasso problem by soft thresholding the
sample covariance matrix and performing a maximum determinant
matrix completion.

The Sparse QUIC (SQUIC) algorithm [21] continues the progress on
large-scale, second-order methods, exploiting the underlying sparse

* Corresponding author.
E-mail addresses: aryan.eftekhari@usi.ch (A. Eftekhari), dimosthenis.pasadakis@usi.ch (D. Pasadakis), m.bollhoefer@tu-bs.de (M. Bollhöfer), simon.

scheidegger@unil.ch (S. Scheidegger), olaf.schenk@usi.ch (O. Schenk).
1 Equal contribution.

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

https://doi.org/10.1016/j.jocs.2021.101389
Received 6 March 2021; Received in revised form 1 May 2021; Accepted 5 May 2021

mailto:aryan.eftekhari@usi.ch
mailto:dimosthenis.pasadakis@usi.ch
mailto:m.bollhoefer@tu-bs.de
mailto:simon.scheidegger@unil.ch
mailto:simon.scheidegger@unil.ch
mailto:olaf.schenk@usi.ch
www.sciencedirect.com/science/journal/18777503
https://www.elsevier.com/locate/jocs
https://doi.org/10.1016/j.jocs.2021.101389
https://doi.org/10.1016/j.jocs.2021.101389
https://doi.org/10.1016/j.jocs.2021.101389
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2021.101389&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Computational Science 53 (2021) 101389

2

linear algebra operations. In [22] and references therein, it has been
shown that SQUIC is significantly faster than QUIC, BigQUIC, and
HP-CONCORD, in both synthetic and real-world examples. However,
due to the reliance on sparsity throughout the computation, the per
formance of the algorithm is susceptible to any increase in density. In
particular, SQUIC suffers from notable performance degradation when
the intermediary matrices, such as the inverse of the precision matrix (i.
e., the estimated covariance matrix), have an increased number of
nonzeros. As we will show in Section 5, the key negatively affected
components of the SQUIC algorithm are (a) the matrix inversion and (b)
the coordinate-descent update. In part, SQUIC attempts to address this
problem via a thresholded approximate matrix inversion, which, though
effective in some scenarios, cannot always be applied successfully
without a degradation to the overall ML objective function. Even if
thresholding is applicable, reducing the sparsity in the precision matrix
(say by a slight decrease in the ℓ1-regularization coefficient) is generally
accompanied by an increase in the number of nonzeros in the inverse
and, thus, a major increase in the runtimes. This deficiency is high
lighted for clustered dependencies in the precision matrix, a common
observation in real-world datasets such as financial returns within the
same sector, economic growth within the same geographical region,
biological networks with groups of genes having a hub structure, and
many others (see, e.g., [23–26]). The clustered dependencies in the
precision matrix translate into dense block structures in the inverse,
which cannot be adequately approximated as sparse. These deficiencies
render the added performance of SQUIC to be only applicable in sce
narios of extreme sparsity, which are not commonly observed in most
real-world applications.

We propose an efficient scalable algorithm for sparse precision ma
trix estimation that performs well under real-world conditions,
including cases with limited sparsity. From here on, we refer to the
introduced algorithm as “block SQUIC”, as opposed to “scalar SQUIC”
which denotes the prementioned algorithm. We mitigate the negative
effects that reduced sparsity has on performance by introducing four
algorithmic contributions. The primary introduced algorithms are (i) the
block approximate matrix inversion and (ii) the block coordinate
descent update. This blocking approach is a natural fit for the expected
sparsity structures of real-world datasets. The block structures used by
the noted algorithms are retrieved by (iii) incorporating CHOLMOD
[27], a high-performance supernodal sparse Cholesky factorization
routine. Next, we (iv) parallelize the block approximate matrix inversion
using an efficient shared-memory approach. 2 Furthermore, we provide
five sets of numerical results. We begin with (i) a performance and ac
curacy comparison of several of the above-mentioned sparse precision
matrix estimation packages for synthetic datasets with up to 104 random
variables. Second, we proceed with (ii) large-scale synthetic tests with
105 random variables and validate the noted algorithmic deficiencies of
scalar SQUIC. We note that only scalar and block SQUIC, and partially
BigQuic, were able to scale to such high-dimensional datasets. Next, for
the same large-scale datasets, we present (iii) strong scaling results and
an analysis of memory efficiency. Following the synthetic tests, we
present two didactic case studies where we highlight the applicability of
block SQUIC for real-world datasets. For the first case study (iv) a
high-dimensional regression-based financial application is formulated,
where we forecast the daily price fluctuation of 105 option contracts.
Here we see that relatively dense precision matrices provide better
returns, and that only block SQUIC is capable of computing the fore
casting routine in less than a 24 h forecasting period. Finally, in (iv), we
perform a linear discriminant analysis (LDA) to classify DNA microarray
data of two cancer datasets. We report here that increased density in
both the precision matrix and its inverse are critical for high classifica
tion accuracy.

The remainder of the paper is organized as follows. In Section 2, we

recap the quadratic approximation method and present, at a high level,
the scalar-SQUIC algorithm. Sections 3 and 4 are dedicated to the main
contributions of the paper and provide a detailed description of the main
components of the introduced block-SQUIC algorithm and the employed
parallelization scheme, respectively. In Section 5, we perform numerical
experiments on synthetic datasets and compare with the state-of-the-art
in order to validate our proposed routine. In Section 6, we present case
studies using real-world datasets. Finally, in Section 7 we draw con
clusions from this work.

Notation. In what follows, we denote scalar quantities with lower
case, vectors with lowercase bold, sets by uppercase, and matrices with
uppercase bold characters. The (i, j)th entry of a matrix A is symbolized
by Aij and all entries in row i or column j by Ai: and A:j, respectively. Sets
are denoted by capital calligraphic characters, for example, 𝒜, and the
identity matrix as I.

2. Background

Let Y ∈ ℝp×n be a dataset of n independently drawn samples from a p-
variate Gaussian distribution 𝒩(μ∗, Σ∗), where Σ∗ ∈ ℝp×p and μ∗ ∈ ℝp

are the true covariance matrix and mean, respectively. A ubiquitous
problem in mathematical statistics is the estimation of such a probability
distribution and, in particular, the estimation of the true precision ma
trix Θ∗ := (Σ∗)

− 1. We focus our attention on the case where (i) the true
precision matrix is, or can be, approximated as sparse, and (ii) where we
have a limited number of samples n ≪ p from a high-dimensional dis
tribution p ≫ 104.

The ML method is a common approach for a sparse precision matrix
estimation. Given the sparsity parameter λ > 0, we aim to solve the
following ℓ1 − regularized negative log-likelihood problem, that is,

argmin
Θ≻0

{ − logdetΘ + tr[SΘ] + λ ‖ Θ‖1}, (1)

where S ∈ ℝp×p is the sample covariance matrix, and Θ ≻ 0 denotes
positive-definiteness of the estimated precision matrix Θ. The optimi
zation problem in (1) is convex. In Section 2.1 we will outline the
quadratic approximate method for ℓ1-regularized ML sparse precision
matrix estimation. Then, in Section 2.2, we will describe the sparse
scalar SQUIC algorithm, which employs the quadratic approximation
method.

2.1. Quadratic approximation — QUIC

We will follow the arguments given in [12] to describe the outline of
the quadratic approximation method. Let g : Θ→ℝ be the smooth part of
the objective function (nonregularized negative log-likelihood function)
in (1). Up to a constant, the second-order Taylor expansion of g around Θ
is

ĝ(Δ) := tr[(S − Θ− 1)Δ] +
1
2

tr[Θ− 1ΔΘ− 1Δ]. (2)

The Newton direction Δ ∈ ℝp×p of the approximate objective function
around Θ can be written as the solution of the following problem:

argmin
Δ

{ĝ(Δ) + λ ‖ Θ + Δ‖1} (3)

The principal idea of quadratic approximation is to solve (1) as a
sequence of optimization problems. In each step, given an appropriate
step size α ∈ [0, 1), we update our current estimate of the optimizer Θ
with αΔ. More information on the selection of α can be found in Section
2.2. Next, we repeat the process by generating the quadratic expansion
around the updated optimizer.

This solution method has two key attributes: first, the Newton di
rection in (3) has a closed-form solution and can be solved by coordinate
descent updates and, second, that only a subset of the elements of Δ and, 2 CHOLMOD provides internal parallelization from BLAS Level-3 routines.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

3

in turn, Θ need to be computed at each iteration. The indices that need to
be updated are referred to as free, and those that remain unchanged are
fixed. It has been proven in [12] that the collection of these indices forms
the following two disjoint sets:

ℐ fixed :=
{{

i, j} ∈ ℐ : |Sij − Θ− 1
ij |⩽λ and Θij = 0

}
,

ℐ free := ℐ\ℐ fixed,
(4)

where ℐ := {1,2,…,p}× {1,2,…,p}. The key assumption here is that for
a properly selected λ, we will have |ℐ free|≪p2. For further details on the
solution to (3) and proof for (4) we refer the reader to [12] and refer
ences therein.

2.2. Sparse quadratic approximation — scalar SQUIC

Scalar SQUIC extends the original QUIC algorithm [12] for
large-scale applications and is effective for problems that exhibit a high
degree of sparsity in both Θ and intermediary computations. Its key
computational steps are shown in Algorithm 1. The inputs of the algo
rithm are Y, λ, T, and τ, corresponding to the dataset, sparsity parameter,
maximum iterations, and convergence tolerance, respectively. In step 1
we compute a sparse representation of the sample covariance matrix S
(refer to Section 4.2 and [21] for further details). Entering the iterative
portion of the algorithm in steps 3–12, we compute ℐ free, g(Θ) + λ||Θ||1,
and Δ. The line-search procedure takes place in step 7 where the current
iterate Θ is updated by selecting the largest α ∈ [0, 1) such that the
update optimizer is positive-definite (checked using sparse Cholesky
factorization) and passes an Armijo-type criterion, denoted as AC (see
[13] for details). Next, convergence is checked in step 8 by computing
the objective function at the updated Θ. Finally, in step 11, using the
Cholesky factors computed in step 7, the approximate matrix inversion
routine computes the sparse approximate inverse Θinv ≈ Θ− 1 to be used
in the next iteration.

Algorithm 1. Scalar SQUIC

Input: Y, λ, T, τ
1: S ⟵ sparse _ cov(Y)
2: Θ ⟵ Θinv ⟵ I
3: for t = 1 to T do
4: compute : ℐ free

5: obj ⟵ g(Θ) + λ||Θ||1
6: compute : Δij ∀ (i, j) ∈ ℐ free given : Θinv

7: Θ ⟵ Θ + αΔ st . Θ ≻ 0 and AC(Θ)
8:

if
|obj − (g(Θ) + λ‖Θ‖1)|

obj
< τ then

9: break
10: end if
11: Θinv ⟵ approx _ inv(Θ)
12: end for
Output: Θ

In scenarios with a limited number of samples, scalar SQUIC suffers
from a significant degradation in performance. This is primarily due to
the decrease in the underlying diagonal dominance of Θ, which in turn
increases both the fill-in and computational cost of the approximate
matrix inversion routine. From empirical observation, such scenarios are
subject to the underlying GMRF and vary case by case. Depending on the
sparsity of Θinv and the size of the ℐ free, the components of scalar SQUIC
have a different impact on the total runtime. As long as Θinv is relatively
sparse, the computation time is dominated by the computation of the
sparse sample covariance matrix S, whereas the other components are
negligible. However, this changes when Θinv becomes denser and/or the
size of ℐ free increases significantly. In this case, the importance of other
components increases. Among these components are the (i) coordinate
descent update for the Newton direction and (ii) the approximate matrix
inversion. Notably, the performance of the Cholesky decomposition,
though less expensive than the other components, is also negatively

affected. This motivates Section 3 which discusses a block variant of
SQUIC that provides a significant increase in the computational effi
ciency when the underlying matrices have limited sparsity.

3. Block sparse quadratic approximation — block SQUIC

In this section, we introduce the block SQUIC algorithm, which aims
to address the noted bottlenecks of the scalar variant of SQUIC. These
bottleneck operations are identified as (i) Cholesky factorization
routine, (ii) approximate matrix inversion, and (iii) coordinate descent
update, corresponding to steps 7, 11, and 6 in Algorithm 1. In Section 5,
we provide numerical results that highlight the scenarios in which these
performance impediments are significant. We begin in Section 3.1 by
outlining the supernodal sparse Cholesky factorization, which provides
the selection of the blocking structures used in the remaining portion of
the algorithm. Next we outline the block approximate matrix inversion
and block coordinate descent update in Sections 3.2 and 3.3,
respectively.

3.1. Supernodal sparse Cholesky factorization

This decomposition strategy makes use of an a priori combinatorial
analysis to reduce the number of nonzeros in the Cholesky factor by
permuting the given matrix Θ in advance. Next, block-oriented data
structures (referred to as supernodes) are set up for the factorization.
These block structures are computed in advance as part of the symbolic
analysis and will also be employed for the approximate block inversion
in Section 3.2. It finally computes a sparse block Cholesky factorization
using dense matrix kernels.3 The mechanism and theory of sparse direct
solvers are beyond the scope of this paper, and we refer the interested
reader to [29] and, for more recent developments, to [28,30]. Alterna
tively, many other high-performance sparse direct solver packages can
be used [31–34]. Since we will employ the Cholesky decomposition of Θ
for the inversion of Θ, we reformulate the Cholesky decomposition in a
slightly different form as LDL decomposition,

Θ = PLDL⊤P⊤, (5)

where P is a permutation matrix, D a block diagonal matrix with sym
metric positive-definite submatrices as diagonal blocks, and L is a block
lower triangular matrix with identities as its diagonal blocks. The pre
sumption here is that Θ is sparse, and thus we expect L to also be sparse.
This, of course, is dependent on both Θ* and the selected parameter λ.
Using the decomposition in (5), it is easy to confirm that the log-
determinant and the inverse can be written as follows:

logdetΘ =
∑q

b=1
logdetDbb, (6)

Θ− 1 = PL− ⊤D− 1L− 1P⊤, (7)

where we assume that D consists of q diagonal blocks. The sparse Cho
lesky factorization also factorizes Dbb = LbbL⊤

bb as a dense Cholesky
decomposition such that Lbb is a lower triangular matrix. This in turn
allows us to compute log det Dbb = 2 log det Lbb = 2

∑
i log Lii easily from

the diagonal entries of Lbb.
To compute Θ− 1, the exact inversion of D is straightforward using its

diagonal blocks. In contrast, the inversion of L and/or the product of the
factors in (7) will be problematic since it may lead to a densely popu
lated matrix. As we will discuss in the next section, we address this issue
by using a sparse approximate inversion of L.

3 Dense matrix operations are implemented using level-3 BLAS and LAPACK.
For HPC applications, one can employ multithreaded libraries like the Intel(R)
Math Kernel Library (MKL). For details, we refer the reader to [28].

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

4

3.2. Block approximate matrix inversion

We now discuss a scheme for computing a sparse approximate in
verse matrix Θinv ≈ Θ− 1. The computation requires two major steps; one
part requires computing Linv ≈ L− 1; the other part requires computing
the product of the terms in (7). Let L = I − E, where − E refers to the
strictly lower triangular part of L. The exact inverse can be computed
using the Neumann series as

L− 1 = (I − E)− 1
=

∑p− 1

k=0
Ek. (8)

Note that we only require at most k = p − 1 terms in the summation as E
is strictly lower triangular and thus Ep = 0. To compute Linv we will
approximate (8) successively via Horner’s scheme

Linv
k+1 = Linv

k E + I, k = 1, 2…, p − 1, (9)

where Linv
1 := I+ E. Given a dropout threshold τinv > 0, we stop the

iteration process when |(Linv
k+1)ij − (Linv

k)ij|⩽τinv is fulfilled. To prevent the
computation from increased error propagation in the values of Linv

k+1⟵
Linv

k E + I we use a scaling factor γ ∈ (0, 1) to reduce the approximate
inversion tolerance such that only |(Linv

k+1)ij − (Linv
k)ij| > γτinv are updated.

In practice we use γ = 0.1. As soon as the iteration stops the final Linv will
be sparsified according to τinv and Θinv is computed as per (7) accom
panied by a final sparsification thresholding |Θinv

ij |
2
> τ2

invΘinv
ii Θinv

jj .
For adequate computational performance in this approach, we need

to assume, first, that the number of iterations k in (9) is small and,
second, that both matrices L− 1 and Θ− 1 are, or can be, approximated as
sparse. Though these assumptions are problem dependent, in our tests
outlined in Section 5, we observed that the approximate block matrix
inversion scheme performed well. Furthermore, the authors in [22]
show corroborating test results for specific synthetic and real-world
datasets.

3.3. Block coordinate descent update

The optimization of the negative log-likelihood function with respect
to the active set ℐ free in (1), requires the computation of Δij in step 6 of
Algorithm 1 for a large sequence of {i, j} ∈ ℐ free. The QUIC method
computes the exact solution of each 2×2 subproblem associated with {i,
j} and updates Δ via Δ′

ij := Δij + u, where Δ denotes the Newton direc
tion of the previous iteration initially starting with Δ = 0. The authors in
[12] have shown that each u can be computed as follows. Denote
W = Θ− 1 and recall that S denotes the sample covariance matrix. Then

u = − Cij + 𝒮(Cij − Bij/Aij,λ/Aij), where 𝒮(x, y) := sign(x)max(|x| − y,0)
denotes the soft-thresholding function with

Aij = W2
ij + WiiWjj,

Bij = Sij − Wij + Wi:ΔW:j, and
Cij = Θij + Δij.

(10)

For large sparse matrices, recomputing intermediary matrices A, B, and
C for all indices in ℐ free can become a computational burden, particularly
when W = Θ− 1 (or Θinv) is less sparse. Using a blocking strategy, we
mitigate this computational burden and reduce cache misses. Instead of
employing a completely randomized sequence of indices {i,j} ∈ ℐ free, we
regroup the indices {i, j} ∈ ℐ free into blocks such that {i1, j}, …, {il, j}
refer to the same column j, and sort them such that i1 < i2 < ⋯ < il. Using
this approach we accelerate the computation by accessing columns W:j,
S:j, and Θ:j, only once in increasing order of row indices in contrast to a
time-consuming random access which would require us to completely
recompute these properties. This also allows one to efficiently compute
the matrices A, B, and C in (10), and to update B and C whenever Δ is
updated.

4. Parallelization

In this section, we will outline the parallelization scheme for the
block SQUIC algorithm. In Section 4.1, we provide a brief overview of
the parallelized sparse sample covariance matrix, which was introduced
in [21]. In Section 4.2, we will introduce the key parallelized component
of block SQUIC: the parallel block approximate matrix inversion. We
note that the CHOLMOD supernodal sparse Cholesky factorization li
brary provides internal parallelization, as it utilizes the optimized BLAS
Level-3 library. We will provide a brief discussion on the parallel per
formance of the supernodal sparse Cholesky factorization component in
Section 5.3.

In Fig. 1, we can see the overall algorithmic schemes of both variants
of SQUIC, with the different components of block SQUIC marked with
“★”. Both start with the parallel computation of the sparse sample
covariance matrix. After that, ℐ free is generated, and block SQUIC min
imizes the log-likelihood function using a sequential but block-oriented
coordinate descent update strategy described in Section 3.3. Once
completed, we potentially perform several line-search steps employing
the multithreaded sparse supernodal Cholesky factorization described in
Section 3.1. As soon as the factorization is successfully computed, the
parallel block approximate matrix inversion routine, outlined in Section
3.2, is used to compute the sparse inverse approximation of Θ. This
process is then repeated until the desired convergence tolerance is
reached.

4.1. Parallel sparse sample covariance matrix

The kernel operation in computing the sparse sample covariance
matrix is matrix-matrix multiplication, which is highly parallelizable.
Though the sample covariance matrix is approximated as being sparse,
the computation is dense due to the undetermined sparsity pattern.
Using OpenMP, parallel dense matrix-matrix multiplication is performed
by allocating the available threads to respective submatrices of S.
Initially, the off-diagonal values |Sij| < λ are discarded. Later during each
Newton iteration, all values of S, which are not computed and have a
corresponding nonzero in Θinv are computed on the fly. This approach
ensures that the nonzero pattern of S overlaps that of Θinv. We also note
that a scalable distributed-memory version was presented in [22].

Fig. 1. A visual representation of the block SQUIC algorithm with the four
main components in bold. The components that are different from the scalar
variant of SQUIC are marked with ★.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

5

Algorithm 2. Parallel block approximate matrix inversion.

Input: L, Dinv :=D− 1, P, τinv
1: E ⟵ I − L
2: Linv ⟵ I + E
3: u ⟵ 0
4: repeat
5: for b = 1, …, q parallel do
6: r ⟵ thread _ id
7: V ⟵ LinvE:b
8: ur⟵max(ur ,maxi ‖ Linv

ib − Vi:‖∞)

9: for alli > b and ‖ Linv
ib − Vi:‖∞ > γτinv

10: Linv
ib ⟵Vi:

11: end for
12: end for
13: Linv⟵Linv

14: untilmax(u) ⩽ τinv
15: Linv ⟵ sparsify(Linv)
16: compute block graph (Linv)

⊤

17: for b = 1, …, q parallel do
18: Θinv

:b ⟵(Linv)
⊤DinvLinv

:b
19: end for
20: Θinv ⟵ sparsify(PΘinvP⊤)
Output: Θinv

4.2. Parallel block approximate matrix Inversion

To compute Θinv, we have to perform a sequence of sparse matrix-
matrix multiplications. In order to accelerate the overall computation,
we employ both a parallelization scheme and the block structure ob
tained from the supernodal Cholesky decomposition described in Sec
tion 3.1. The kernel operation within the algorithm is sparse block
matrix-matrix multiplication, where each product relies on dense ma
trix operations. The parallelized block approximate matrix inversion
Algorithm 2 comprises two parts: first, the computation of Linv and the
reconstruction of Θinv as per (9) and (7), respectively. Notice that D in
(7) is a block diagonal matrix and its exact inversion does not pose
computational or storage problems.

Thus the inputs of the algorithm are L, Dinv :=D− 1, P, and a dropout
threshold τinv. We begin by initializing the appropriate variables and
buffer u of size equal to the maximum number of threads.This buffer will
store the maximum magnitude of the incremental updates of the Neu
mann iteration, and in step 14 is used to evaluate the convergence of the
approximate Neumann iteration. Each subdiagonal block of L, E, and Linv

is stored as some dense matrix, where the rows are compressed and refer
to nonzero rows, possibly with gaps, whereas the columns are contig
uous. Let q be the number of diagonal blocks in L. In steps 4–14 the
approximate Neumann series is parallelized, where each thread id r is
allocated to specific block b. Here V is a dense buffer of size t × s, E:b
consists of a dense block Q associated with rows i1, …, ir and columns j,
j + 1, …, j + s − 1. Now Linv is unit block lower triangular and its columns
i1, …, ir have nonzero entries in rows i1, …, ir as well as in further rows
ir+1, …, it. We compute V for each block column c of Linv that intersects
with {i1, …, ir} by (i) gathering the associated columns of c into a buffer
R and then (ii) computing V ⟵ RQ. These operations are summarized in
Fig. 2. Next in steps 8–11, we apply the dropout rule and scatter the
remaining rows of {i1, …, it} and columns j, …, j + s − 1 from V to the
new approximate inverse factor Linv

:b . Notice that the index i refers to a
single row. This process is repeated until the condition in step 14 is
satisfied.

Before proceeding to the next portion of the algorithm, we sparsify
and then compute the block graph of (Linv)

⊤ with respect to the parti
tioning induced by the diagonal blocks and store the physical start of
each superdiagonal block, if any. Following this, we begin the second
critical operation of the algorithm in steps 17–19, where we compute the
sparse approximate Θinv. Notice that (Linv)

⊤ is unit upper triangular with
dense superdiagonal blocks but where only the nonzero columns are
stored. When performing the matrix multiplications in step 18 the

nonzero rows of Linv
:b , say i1, …, ir, are associated with diagonal blocks c1,

…, cr of Dinv and block columns c1, …, cr of (Linv)
⊤, which now can be

easily accessed via the computed block graph. These multiplications can
be performed similarly to the procedure outlined for step 7, where due to
symmetry, we only compute the block lower triangular part of Θinv.
Finally, before outputting Θinv, we apply the permutation matrix and
sparsify.

5. Analysis and validation on synthetic data

This section outlines the analysis and test results that validate the
performance, accuracy, and scalability of the proposed block SQUIC
algorithm. We begin in Section 5.1 by providing a comparative analysis
on performance and accuracy for a set of midscale datasets of di
mensions p ⩽ 104.We include various sparse precision matrix estimation
packages: Scalar SQUIC (Algorithm 1) [21,22], GLASSO [9], EQUAL
[16], BigQuic [13], FASTCLIME [18,19], and MDMC [20]. To evaluate
the “correctness” of the structure of the recovered precision matrix we
use the F − score ∈ [0, 1], where F − score = 1 suggests an exact recov
ery of the sparsity structure of the underlying true precision matrix
(refer to [35] for further details). In Section 5.2 we proceed with tests on
large-scale datasets at p = 105 and provide an in-depth analysis of the
performance, single node scalability, and memory profiling of block
SQUIC. Here we also include scalar SQUIC in our numerical tests, as it is
the only package that produces comparable results on a large scale.

We base our results on two synthetic datasets generated from
Gaussian distributions with a mean of zero and the following types of
predefined true precision matrices:

• Tridiagonal, Θ * (1) — A tridiagonal matrix with off-diagonal values of
− 0.5 and 1.25 on the diagonal, and

• Clusters, Θ * (2) — A random structured matrix representing a
graphical structure of p/100 clusters of size 100 and an average
degree of 20 with 90% of the edges contained within the clusters
[36].

The nonzero structure of the noted precision matrices is visualized in
Fig. 3a. In what follows, we refer to the respective datasets with the
terms described above. In all tests outlined below, the number of sam
ples is fixed at n = 500, and the convergence and approximate inversion
tolerance are τ = τinv = 10− 4 unless noted otherwise.

These datasets are selected to highlight three key points. First, the
accuracy of the introduced block SQUIC is equivalent or better
compared with the aforementioned packages. Second, block SQUIC
provides significant speedups in comparison to scalar SQUIC in sce
narios when W exhibits reduced sparsity, and third both scalar and block
SQUIC are equivalently performant when both Θ and W can be
approximated as being very sparse.4 We also note that the exact inverse
of Θ * (1) is dense but has exponentially decaying values as we move
further from the diagonal. This property makes the tridiagonal dataset
well suited for a sparse approximation of the inverse precision matrix via
a thresholded Neumann approach, which is shared by both scalar and
block SQUIC (see Section 3.2 for further details). For Θ * (2) we also have
a dense exact inverse; however, the magnitude difference between large
and small values is much less exaggerated than the tridiagonal example,
and thus an appropriately selected dropout tolerance τinv will still result
in an increasing number of nonzeros in the computation of W. This
behavior is illustrated in Fig. 3b. For this reason, we can expect that the
Clusters dataset will pose a more significant computational challenge in
both the approximate matrix inversion (see Section 3.3) and, in turn, the
coordinate descent update as W will most likely have reduced sparsity.

4 Based on our experiments, a “very sparse matrix” is a matrix with an order
of tens of nonzeros per row.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

6

Our algorithm is written in C++ with all numerical experiments
conducted on a single node with 1 TB main memory and 4 Intel(R) Xeon
E7-4880 v2 @ 2.5 GHz each with 15 cores per socket, totaling 60 cores.

5.1. Midscale tests

The tests outlined in Fig. 4 are for the two synthetic datasets with
dimensions 102 ⩽ p ⩽ 104. Each runtime represents a path of 10 different

λ values, which have been determined experimentally as the range for
the best recovery of the true precision matrix. For a given dimension p,
the equidistant path of λ values reads 0.0380

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
to 0.1140

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
,

and 0.0380
̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
to 0.1140

̅̅̅̅̅̅̅̅̅̅̅̅̅
log(p)

√
, for the tridiagonal and synthetic

clusters datasets, respectively. We note that for FASTCLIME, only the
minimum λ value and the size of the path can be set, with the rest of the λ
values calculated internally [19]. The timing results for EQUAL,

Fig. 2. Sketch of computing V ⟵ RQ.

Fig. 3. The sparsity structure of the precision matrices of the two synthetic datasets with dimension p = 103 are shown in (a) with the left panel being the tridiagonal
matrix Θ * (1) and, on the right side, the random clusters matrix Θ * (2). The respective inverse of the precision matrices is shown in (b), where the colors represent the
magnitude of the matrix values in log base 10. Note that both inverse matrices are dense; however, the tridiagonal matrix’s inverse has exponentially decaying values
in the off-diagonals.

Fig. 4. A comparison of the runtimes of precision matrix estimation packages for (a) the tridiagonal and (b) the cluster dataset. At each dimension p, the runtime is
the total compute time for a path of 10 sparsity parameters λ.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

7

FASTCLIME, GLASSO, and MDMC are excluded for p > 6400 if the
runtimes exceed 105 s. For the MDMC method, we include the soft
thresholding of the covariance matrix in the calculation of the total time
for the solution path. For all the methods under question, the conver
gence tolerance, which is equal to the approximate dropout tolerance for
both variants of SQUIC, is set to τ = τinv = 10− 4. In Fig. 4 we observe that
both block and scalar SQUIC outperform the competing algorithms
when p ⩾ 500 for both datasets. For the tridiagonal dataset tests pre
sented in Fig. 4a, both variants of SQUIC are equivalent in runtime and
consistently 5 times faster than the second-fastest method (MDMC) and
orders of magnitude faster than the other methods. As visualized in
Fig. 3 and described in Section 5, the equivalent runtime of scalar and
block SQUIC are as expected, as the true underlying inverse of a tri
diagonal precision matrix can be well approximated as a sparse matrix.
In the noted tests, there were approximately 3 nonzeros per row in the
approximate inverse of the precision matrix W; far too few for both
blocking approaches introduced in Section 3 to provide a computational
advantage. That being said, it is worth noting that the introduced block
algorithm does not add a measurable overhead.

While the tridiagonal dataset is a didactic example that outlines the
similarities between scalar and block SQUIC, the cluster dataset aims to
highlight the differences between the methods. As shown in Fig. 4b, the
block SQUIC is 5 to 6 times faster than the scalar algorithm and orders of
magnitude faster than the other methods. Unlike the tridiagonal case,
the inverse of the cluster dataset precision matrix will have limited
sparsity (see Fig. 3b), which is the cause of the degradation in the per
formance of scalar SQUIC.

In Fig. 5, we show the F-scores for the various algorithms for
dimension p = 103 with respect to the regularization parameters λ.
Notice that both variants of SQUIC, BigQUIC, and GLASSO solve the
same ℓ1 regularized ML estimation (MLE) problem in (1) and, thus, the
recovered precision matrices have the same or similar F-Score. Any
differences between these MLE methods are due to numerical errors or
the approximation approach, which, our experiments show, to have a
negligible impact on the graphical structure of estimated precision
matrices. For the tridiagonal dataset in Fig. 5a, we can see that all
methods reach the maximum F-score of 1. For the clusters dataset in
Fig. 5b, the MLE methods reach a maximum F-score of 0.48 while
EQUAL is slightly higher at 0.49. In contrast to the tridiagonal dataset,
the remaining algorithms do not reach the same F-score level.

5.2. Large-scale tests

In Fig. 6 we present the large-scale runtime performance of block and
scalar SQUIC for the two synthetic datasets at p = 105 for a varying
tolerance level τ = τinv = {10− 2, 10− 3, 10− 4, 10− 5, 10− 6}. Having
demonstrated in the previous Section 5.1 the equivalence in the run
times of block and scalar SQUIC for the sparse tridiagonal dataset Θ∗

(1),
and a perfect recovery rate with F − score = 1, we decrease further the
number of samples for this dataset to n = 125 in order to observe the
effect of increased uncertainty in the computations. For the clusters
dataset Θ∗

(2) we keep n = 500 and investigate whether the computational
gains of block SQUIC, observed in the midscale, are extended in the
large-scale tests too. The only other package that scales to datasets of
this size is BigQUIC. However its runtimes are approximately 102 to 103

times slower for the retrieval of Θ∗
(1) and 102 to 102 times slower for the

retrieval of Θ∗
(2), and are thus excluded from the following study.

The selected sparsity parameters are λ = 0.5 and 0.15 for the tri
diagonal and clusters datasets, respectively. At these values, the recov
ered precision matrices of the datasets have roughly 3 and 20 nonzeros
per row, which correspond to the true underlying sparsity of Θ∗

(1) and
Θ∗

(2). In Fig. 6a we show the total runtime for the tridiagonal dataset and
the runtimes for the important algorithmic components. The reduced
sample size (n = 125) leads to an increased number of nonzeros in W,
ranging from 6 to 103 for the decreasing τ levels, and thus to an increase

in the computational runtime of both scalar and block SQUIC. For
τ = 10− 2, block SQUIC is over 4 times faster than scalar SQUIC, and in
cases where W is less sparse or, equivalently, has increased fill-in, for
example, in the extreme case of τ = 10− 6, the introduced blocking
strategy is 6 times faster than scalar SQUIC and provides similar per
formance. For more realistic convergence thresholds such as τ = 10− 3 or
10− 4, block SQUIC is 4 times faster than the scalar variant. The same set
of tests for the clusters dataset is illustrated in Fig. 6b. Similarly to the
tridiagonal case, we see that the runtimes of both algorithms increase
with decreasing τ values. Here the number of nonzeros in W ranges from
10 to 1000 for a decreasing τ. In these scenarios, the bottleneck com
ponents of scalar SQUIC become apparent as for both datasets approx
imately 80% of the total runtime is consumed in the approximate
inversion and coordinate descent updates. For a moderate tolerance of
τ = 10− 4 for the clusters case, block SQUIC is 6 time faster in both
approximate inversion and coordinate descent update components. This
results in the overall runtime of block SQUIC being 5.1× less than scalar
SQUIC. For the remaining tolerance levels τ = {10− 2, 10− 3, 10− 5, 10− 6}
the speedups achieved by block SQUIC are 2.6 times, 2.7 times, 5.8
times, and 9.6 times, respectively.

5.3. Scalability

In Fig. 7 we present the strong scaling results of block SQUIC and its
internal parallel components discussed in Section 4: the introduced
parallel block approximate matrix inversion, the supernodal sparse
matrix factorization package CHOLMOD, and the sparse sample covari
ance matrix. In both plots, the dashed red line indicates the ideal scal
ability. For the tridiagonal dataset, shown in Fig. 7a, the dominant
algorithmic component is the approximate matrix inversion, which has a
similar scalability profile to the total runtime. In contrast, the Cholesky
factorization component accounts for very little of the runtime, and
scale equivalently. In total, the parallel implementation of the algorithm
exhibits 13 times speedup over its sequential variant. Similarly to the
tridiagonal case, the block approximate matrix inversion for the clusters
dataset in Fig. 7b requires over 79% of the serial runtime. As such, the
overall scalability matches the approximate matrix inversion, which
scales well to 60 cores with minimal degradation. Overall the parallel
execution of block SQUIC is 7 times faster than its single-core execution
for the clusters dataset, respectively.

Last, Fig. 8 shows the memory utilization over time for block SQUIC
for 60 cores. For reference, we also show the maximum memory foot
print of scalar SQUIC. We can see that both variants have similar
memory requirements, with the block algorithm structures requiring
slightly higher resources. In both the tridiagonal test, shown in Fig. 8a,
and the clusters dataset, shown in Fig. 8b, the memory profiles follow a
similar trajectory. In both cases over 90% of the runtime is due to the
Newton iterations. In each Newton iteration, the supernodal Cholesky
factorization, followed by the approximate matrix inversion, is visible as
a step-up in memory requirements. Discarding the Cholesky factors and
clearing the memory buffers corresponds to the subsequent step-down in
memory requirements.

6. Numerical experiments with real-world data

In this section, we illustrate the applicability and efficiency of block
SQUIC in the estimation of sparse precision matrices emerging from real-
world problems. In Section 6.1, we apply the scalar and block SQUIC to a
high-dimensional regression-based financial application and study the
effect of the sparsity parameter λ on the overall runtime of the algorithm.
Finally, in Section 6.2 we utilize both SQUIC variants to classify DNA
microarray data by performing an LDA study that demonstrates the
importance of efficient computations at low tolerance levels when
dealing with real-world data of limited sparsity.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

8

Fig. 5. A comparison of the F-score achieved by the different methods in the recovery of the precision matrices with respect to the regularization parameter λ for (a)
Θ∗

(1) the tridiagonal and (b) Θ∗
(2) the clusters datasets.

Fig. 6. The total runtime and the runtimes of the significant algorithmic components of block and scalar SQUIC for (a) Θ∗
(1) the tridiagonal dataset with n = 125, and

(b) Θ∗
(2) clusters dataset with n = 500. The sparsity parameters used for the respective datasets are λ = 0.5 and 0.15. The runtimes for BigQUIC are 102 to 103 and 102

to 102 times slower than block SQUIC, for the respective datasets, and thus have been excluded from the plots for visual clarity.

Fig. 7. Strong scaling for block SQUIC at dimension p = 105 for (a) the tridiagonal and (b) the cluster datasets. The sparsity parameters used for the respective
datasets is λ = 0.5 and 0.15. For all tests τ = τinv = 10− 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

9

6.1. Case study: option return forecast

In this section, we use block SQUIC in a stylized financial application
to forecast the direction (or sign) of the future returns of all tradable
options5 for the largest 500 companies listed on stock exchanges in the
United States (S&P 500 index) for 30 days in the spring of 2017, totaling
roughly 200 k options on any given day.6 We emphasize that the case
study presented here is intended to highlight the capabilities of the
proposed algorithm and not the economic viability of the results
presented.

Let pt ∈ ℝp be the price of options i ∈ {1, …, p} at time t. Defining the
log-returns as (yt)i := ln((pt)i/(pt− 1)i) (see [37] for further details), we
propose the following linear relationship between the current and his
torical log-returns:

yt = βyt− 1 + ε, ε ∼ 𝒩(0, σ2I), (11)

where β ∈ ℝp×p is the unknown operator, and ε is normally distributed
with zero mean and uncorrelated errors with variance σ2. Here we as
sume that log-returns follow a locally stationary Gaussian distribution,
that is, yt+1 can be sufficiently approximated with an estimate of 𝒩(μt ,

Σt). Using ordinary least squares we can write the estimate of the un
known operator as

β̂ = E[yt− 1y⊤
t]E[yty⊤

t]
− 1
. (12)

Given n historical samples Yt := [yt− n− 1,…, yt] ∈ ℝp×n we will use block
SQUIC and the empirical mean to recover a biased estimate of the
expectation E[yty⊤

t] = Θ− 1
t + μtμ⊤

t . The biased estimate of the operator
can now be written as

β̂
bias

=
1
n
Yt− 1Y⊤

t (Θ
− 1
t + μtμ⊤

t)
− 1
. (13)

Notice the explicit inversion of the rank-one updated Θ− 1 will result in a
dense matrix. We can sidestep this issue by using the Sherman–Morrison
formula [38] and write the future forecast of the log-returns as

ŷ t+1 =
1
n
Yt− 1Y⊤

t

(
Θ −

ΘμμΘ
1 + μ⊤Θμ

)
yt. (14)

Using the proposed model in (14) we want to forecast the future
direction of the return sign(yt). For testing, we use 5 of the previous days

as samples (n = 5) to forecast the next day’s log-returns (cf. (15) below).
This is repeated for a rolling window of 100 days. Notice that the
number of option contracts varies from day to day as some options
expire and others are issued. For our test, we only consider options that
exist during the rolling windows,7 thus depending on the day, the
number of options p varies by a relatively small value. Throughout the
length of the time series, there are about p = 105 option contracts per
day. For each day we use the historical samples to compute the Θ using
sparsity parameters λ = {10, 5, 2, 3, 1.5, 1.3} with tolerance fixed at
τ = 10− 4. The adopted accuracy metric for the forecast at time t for the
future log-returns yt+1 is defined as

rt := y⊤
t+1sign(ŷ t+1). (15)

In Fig. 9a, we present the average number of nonzeros per row for the
recovered matrices by block and scalar SQUIC at varying sparsity pa
rameters and corresponding statistics8 of the returns. We highlight the
significant increase in the number of nonzeros in the recovered matrices
for a decreasing sparsity parameter λ. We can see that the minimum
values of the returns decrease, while the mean values of the returns
increase,9 with decreasing λ or, equivalently, with increased density in
the recovered precision and covariance matrix. At the same time, we see
that maximum returns and variance remain relatively constant with
respect to λ. This implies a better estimation of future price fluctuation
with a decrease in the sparsity parameter.

In Fig. 9b, we show the return statistics and average runtime on the
left and right axes, respectively. Here scalar SQUIC is not a fitting choice
in this setting, as the overall runtime exceeds 24 h for λ < 2. The number
of nonzeros in the precision, and covariance matrix, are relatively high,
and the overall performance of scalar SQUIC is heavily degraded. These
findings have substantial practical implications: if a hypothetical trading
strategy needs to be rebalanced in a frequency that is shorter than the
compute time to determine its composition, it becomes impossible to be
implemented. In the stylized case above, the daily strategy thus cannot
be implemented with scalar variate SQUIC. On the other hand, the
proposed block SQUIC took no more than 10 min. per iteration for

Fig. 8. Memory profiling of block SQUIC for dimension p = 105 for (a) the tridiagonal and (b) the cluster dataset. The red line in the memory profiles is the maximum
memory footprint of scalar SQUIC during identical tests. The convergence tolerance used for all tests are τ = τinv = 10− 4. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

5 Options are derivative contracts giving the holder the right to buy or sell a
security at a predetermined price.

6 The options prices are from the database https://optionmetrics.com.

7 The rolling window consists of 7 days—that is, 5+1 days to calibrate the
model, plus one day to make an out of sample forecast.

8 The Max/Min is defined as the 0.1/99.9 percentile of the distribution.
9 In options markets, the bid-ask spread is on the order of 0.005 to 5%

depending on the instrument’s liquidity. This implies that a trading strategy
based on the model discussed cannot be considered sufficiently profitable.
Nonetheless, the results are positive in the sense that they show that the model
can successfully capture relevant signals to create a profitable strategy in a
frictionless market.

A. Eftekhari et al.

https://optionmetrics.com

Journal of Computational Science 53 (2021) 101389

10

λ = 1.3 and, thus, such a strategy could become feasible. Furthermore,
on the left axis of Fig. 3, we show normalized minimum, mean, and
maximum returns at varying sparsity parameters. It becomes apparent
that significant negative returns are eliminated with a decrease in the
sparsity parameter value while the maximum return remains relatively
constant. This then translates into increasing overall returns with
decreasing values of the sparsity parameter, which implies that the block
SQUIC allows for even more benefits for the investor by being able to
follow a quantitative strategy where the data used result in denser
intermediary matrices.

6.2. Case study: classification of medical data

As a final study case, we apply the block SQUIC algorithm to the
classification of samples for the purpose of medical diagnosis. We
consider two datasets from the RSCTC’2010 Discovery Challenge [39],
concerning the recognition of multiple human cancer types and the
diagnosis of human Burkitt lymphoma. We list the statistics of these
datasets in Table 1. The challenging ratio between the available samples
and the dimensionality of the dataset renders such data unfavorable for
discriminant analysis approaches. As a result, various approximate LDA
methods have been introduced to reduce the data’s dimensionality in
question [40,41]. We demonstrate here that the block variant of SQUIC
enables applying traditional LDA with high classification scores within a
reasonable time.

We estimate the inverse covariance matrix for these cases and apply
the LDA method to group them into classes. Based on the accuracy in
grouping the DNA microarray genes, we determine the precision in the
computation of the inverse covariance. For a detailed analysis of the
method, we refer to [42].

We follow the approach of [18,43,44] and randomly select 85% of
the genes from each class to form the training set, with the rest of the
genes being in the testing set. This process is repeated 50 times for each
dataset. The accuracy of the assignment is measured according to the
F-score and according to the additional metric unsupervised clustering
accuracy (ACC) [35]. Note that, similarly to the F-score, a value of
ACC = 1 corresponds to a perfect classification.

Let k ∈ ℕ+ be the class index of a given sample, with each class

having mean μk, and all classes sharing the same precision matrix.
Assuming a Gaussian distribution 𝒩(μk,Θ− 1) for the normalized medi
cal data the linear discriminant function is defined as

ρk(x) = x⊤Θμk −
1
2
μ⊤

k Θμk + logπ̂k, (16)

where π̂k = nk/n is the ratio of the number of samples of each class nk
over the number of total number of samples n. The class-average vector

for each class is computed as μk =

(
1
nk

)
∑

i∈kxi. Then, the class C of a

vector of pixels x is defined as

C(x) := arg max
k

ρk(x). (17)

In these numerical experiments we consider a decreasing tolerance
τ = {10− 1, 10− 2, 10− 2, 10− 3, 10− 3} in order to demonstrate that an
increased density in the computation of the inverse of the precision
matrix results in higher classification scores, thus a more accurate rep
resentation of Θ itself. The regularization term accounts for the changes
in p and n and is set to λ = c⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
logp/n

√
. The scalar parameter c is selected

with an exhaustive search, and is c1 = 2.5 for the Various cancers (VC)
dataset and c2 = 2.8 for the Burkitt lymphoma (BL), respectively. This
approach leads to an almost constant number of nonzeros in the esti
mated precision matrix Θ, while its inverse Θinv becomes denser as the
tolerance level decreases. This behavior is illustrated in Fig. 10a. The
additional information in the off-diagonals of the estimated Θinv

matrices results in an improvement in the classification accuracies, as
demonstrated in Fig. 10b, at the expense of computational runtime. The
breakdown of the time-to-solution for the different algorithmic com
ponents of the SQUIC variants is shown in Fig. 11.

For both datasets, the improvements on the classification accuracy
increase as the tolerance level decreases, and the number of nonzeros
considered in the inverse of the precision matrix Θinv increases. This
improvement demonstrates the necessity for efficient intermediate
computations in estimating precision matrices emerging from real-world
medical data. The improvements stagnate at τ = 10− 3, while the addi
tional nonzeros in Θinv at τ = 10− 3 do not provide an improved classifi
cation performance. At even smaller tolerance levels with τ < 10− 4 the
classification accuracy is reduced due to an excessive number of non
zeros in Θinv. We do not report these tolerances here, as they are unre
alistic for real-world problems. For the VC dataset, the ACC metric at
τ = 10− 3 is 0.79, a 3.2% improvement over its value in the first tolerance
level and the F-score is 0.77, a 4.4% improvement. For the BL case the
ACC metric was improved by 5.8% and the F-score by 9.5%, achieving
final values of 0.85 and 0.63, respectively. These improvements are a

Fig. 9. Using SQUIC to forecast the direction of the future returns of tradable options. (a) Average number of nonzeros in the precision matrix Θ and its approximate
inverse Θinv and return statistics. (b) The normalized returns (left y-axis) and average runtime per daily forecast, in seconds, of scalar and block SQUIC (right y-axis)
with respect to the sparsity parameter λ.

Table 1
The summary of the datasets used. The number of dimensions (p), sample size
(n), and classes (k) are listed.

Case Classes Dimensions Samples

Various cancers (VC) 9 54,675 383
Burkitt lymphoma (BL) 3 22,283 220

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

11

consequence of both the increased accuracy in the computation of the
precision matrix and the decreased sparsity in the intermediate level of
estimating its inverse. The final tolerance level leads to 254 nonzeros per
row in Θinv, as opposed to 1 in the first level for the VC dataset, and in
768 nonzeros per row as opposed to 1.3 for BL. This significant reduction
in sparsity affects the computational runtime of both scalar and block
SQUIC (Fig. 11, notice the logarithmic y-scale). At a tolerance of
τ = 10− 3, where the maximum improvements have already been reached
(see Fig. 10), block SQUIC achieves a 4.5 times overall speedup over its
scalar variant for the BL dataset. The approximate matrix inversion is
accelerated 4 times and the coordinate descent update, which accounts
for ~97% of the total runtime in both variants, by 5 times. For the VC
dataset at the same tolerance level τ = 10− 3 the total speedup achieved
by block SQUIC is 5 times, with the approximated matrix inversion
being 2 times faster and the block coordinate descent update, which
again is responsible for more than 90 % of the total runtime for both
algorithms, being 5 times faster. In the remaining tolerance levels

(
τ =

10− 1,10− 2,10− 4) block SQUIC achieves total speedups of 3 to 7 times
for the BL dataset and 3 to 9 times for the VC dataset, respectively. These
consistent improvements become more important for tolerance levels
τ ≤ 10− 3 as the total runtime of Algorithm 1 at τ = 10− 4 reaches 60 min
for the BL dataset and 20 min for VC.

7. Conclusion

In this work, we developed a performant, scalable algorithm for the
accurate retrieval of precision matrices, fitting for real-world datasets,
where the underlying computations are characterized by reduced spar
sity. This was achieved by introducing (i) a block approximate matrix
inversion and (ii) block coordinate descent updates. The block structures
utilized were retrieved by (iii) incorporating a high-performance
supernodal sparse Cholesky factorization routine. Next, we (iv) paral
lelized the block approximate matrix inversion using an efficient shared-
memory scheme. Our method is compared with various state-of-the-art
methods in a series of midscale and large-scale tests showcasing that the
introduced algorithm performs equivalently in terms of accuracy and
offers significant performance gains. For the synthetic clusters dataset,
exhibiting limited sparsity, for p = 104 we observed that block SQUIC
was 10 to 100 times faster than the other methods. For the large-scale
clusters tests with p = 105, the only other algorithms capable of
scaling to such dimensions were scalar SQUIC and BigQUIC.Here block
SQUIC was 10 to 500 times faster than scalar SQUIC and BigQUIC,
respectively. The midscale experiments for the sufficiently sparse tri
diagonal dataset validate that the block algorithmic components do not
introduce any significant overhead, as the runtimes of both scalar and
block SQUIC are equivalent, with both methods being 3 to 103 times
faster than the other packages. For the large-scale tridiagonal experi
ments, block SQUIC is 1.2 times faster than its scalar version and 104

Fig. 10. LDA study for the datasets listed in Table 1 using precision matrices estimated by Algorithm 2. (a) Average number of nonzeros per row in Θ and Θinv for a
decreasing tolerance. (b) Percentage improvements in F-score and ACC.

Fig. 11. Runtimes in logarithmic y-scale of the major components of both variants of SQUIC (scalar, block) for the retrieval of the inverse covariance matrices from
the medical data listed in Table 1, with respect to a varying tolerance level τ. (a) Runtimes for the Various cancers dataset. (b) Runtimes for the Burkitt lypm
homa dataset.

A. Eftekhari et al.

Journal of Computational Science 53 (2021) 101389

12

faster than BigQUIC. Furthermore, we saw in the limited sparsity sce
narios that the parallelized approximate matrix inversion exhibits strong
scaling up to 60 cores. The memory footprint is equivalent for scalar and
block SQUIC, reaching a maximum of 80 to 45 GB for the large-scale
tridiagonal and clusters datasets, respectively. Our results from the nu
merical experiments on real-world datasets, highlight that block SQUIC
is 6 to 9 faster than the scalar SQUIC. In the options return forecasting
case study, we saw that block SQUIC allows daily forecasting with better
returns, which would not be possible with scalar SQUIC slower run
times. Furthermore, in the LDA case study we saw that block SQUIC
enables an accurate classification of DNA microarray data in reasonable
time. The consistency of the results, from the synthetic tests to the real-
world case studies, highlights the effectiveness of the introduced
blocking components and the broad applicability of the presented work.

Conflict of interest

The authors declare no conflict of interest.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

We would like to acknowledge the financial support from the Swiss
National Science Foundation (SNSF) under the projects “Balanced Graph
Partition Refinement Using the Graph p-Laplacian” and “Can Economic
Policy Mitigate Climate-Change?”, and from the Swiss Platform for
Advanced Scientific Computing (PASC) under the project “Computing
Equilibria in Heterogeneous Agent Macro Models on Contemporary HPC
Platforms”. We are grateful for resources from the Swiss National
Supercomputing Center under project ID 995. Computing time on “Piz
Daint” at the Swiss National Supercomputing Center was provided by a
USI-CSCS allocation contract. Additionally, this work was supported by
a grant from the Swiss National Supercomputing Centre (CSCS) under
project ID s555.

References

[1] M.O. Kuismin, M.J. Sillanpää, Estimation of covariance and precision matrix,
network structure, and a view toward systems biology, Wiley Interdiscip. Rev.
Comput. Stat. 9 (6) (2017) e1415, https://doi.org/10.1002/wics.1415.

[2] J. Ye, J. Liu, Sparse methods for biomedical data, SIGKDD Explor. Newsl. Spec.
Interest Group (SIG) Knowl. Discov. Data Min. 14 (1) (2012) 4–15, https://doi.org/
10.1145/2408736.2408739.

[3] J. Fan, Y. Fan, J. Lv, High dimensional covariance matrix estimation using a factor
model, J. Econom. 147 (2008) 186–197, https://doi.org/10.1016/j.
jeconom.2008.09.017.

[4] A. Eftekhari, S. Scheidegger, O. Schenk, Parallelized dimensional decomposition
for large-scale dynamic stochastic economic models, in: Proceedings of the
Platform for Advanced Scientific Computing Conference, PASC’17, Association for
Computing Machinery, New York, NY, USA, 2017, https://doi.org/10.1145/
3093172.3093234.

[5] O. Ledoit, M. Wolf, Improved estimation of the covariance matrix of stock returns
with an application to portfolio selection, J. Empir. Finance 10 (5) (2003)
603–621, https://doi.org/10.1016/S0927-5398(03)00007-0.

[6] G.J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition, Wiley,
1992, https://doi.org/10.1002/0471725293.

[7] A.K. Jain, R.P.W. Duin, Jianchang Mao, Statistical pattern recognition: a review,
IEEE Trans. Pattern Anal. Mach. Intell. 22 (1) (2000) 4–37, https://doi.org/
10.1109/34.824819.

[8] K. Khare, S. Oh, S. Rahman, A scalable sparse Cholesky based approach for learning
high-dimensional covariance matrices in ordered data, Mach. Learn. 108 (2019)
2061–2086, https://doi.org/10.1007/s10994-019-05810-5.

[9] J. Friedman, T. Hastie, R. Tibshirani, Sparse inverse covariance estimation with the
graphical lasso, Biostatistics 9 (3) (2007) 432–441, https://doi.org/10.1093/
biostatistics/kxm045.

[10] O. Banerjee, L.E. Ghaoui, A. d’Aspremont, Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data, J. Mach.
Learn. Res. 9 (15) (2008) 485–516. http://jmlr.org/papers/v9/banerjee08a.html.

[11] M. Yuan, Y. Lin, Model selection and estimation in the Gaussian graphical model,
Biometrika 94 (1) (2007) 19–35, https://doi.org/10.1093/biomet/asm018.

[12] C.-J. Hsieh, M.A. Sustik, I.S. Dhillon, P. Ravikumar, Sparse inverse covariance
matrix estimation using quadratic approximation, in: Proceedings of the 24th
International Conference on Neural Information Processing Systems, NIPS’11,
Curran Associates Inc., Red Hook, NY, USA, 2011, pp. 2330–2338, in: https://proc
eedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Pa
per.pdf.

[13] C.-J. Hsieh, M.A. Sustik, I.S. Dhillon, P. Ravikumar, R.A. Poldrack, BIG & QUIC:
sparse inverse covariance estimation for a million variables, in: Proceedings of the
26th International Conference on Neural Information Processing Systems – vol. 2,
NIPS’13, Curran Associates Inc., Red Hook, NY, USA, 2013, pp. 3165–3173,
urlhttps://proceedings.neurips.cc/paper/2013/file/
1abb1e1ea5f481b589da52303b091cbb-Paper.pdfhttps://proceedings.neurips.cc/
paper/2013/file/1abb1e1ea5f481b589da52303b091cbb-Paper.pdf.

[14] S. Oh, O. Dalal, K. Khare, B. Rajaratnam, Optimization methods for sparse pseudo-
likelihood graphical model selection, in: Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, K.Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems, vol. 27, Curran Associates, Inc, 2014, in: https://proceedings.neurips.cc
/paper/2014/file/877a9ba7a98f75b90a9d49f53f15a858-Paper.pdf.

[15] P. Koanantakool, A. Ali, A. Azad, A. Buluc, D. Morozov, L. Oliker, K. Yelick, S.-
Y. Oh, Communication-avoiding optimization methods for distributed massive-
scale sparse inverse covariance estimation, in: A. Storkey, F. Perez-Cruz (Eds.),
Proceedings of the Twenty-First International Conference on Artificial Intelligence
and Statistics, Vol. 84 of Proceedings of Machine Learning Research, PMLR, Playa
Blanca, Lanzarote, Canary Islands, 2018, pp. 1376–1386, in: http://proceedings.
mlr.press/v84/koanantakool18a.html.

[16] C. Wang, B. Jiang, An efficient ADMM algorithm for high dimensional precision
matrix estimation via penalized quadratic loss, Comput. Stat. Data Anal. 142 (C)
(2020), https://doi.org/10.1016/j.csda.2019.106812.

[17] W. Liu, X. Luo, Fast and adaptive sparse precision matrix estimation in high
dimensions, J. Multivar. Anal. 135 (2015) 153–162, https://doi.org/10.1016/j.
jmva.2014.11.005.

[18] T. Cai, W. Liu, X. Luo, A constrained l1 minimization approach to sparse precision
matrix estimation, J. Am. Stat. Assoc. 106 (494) (2011) 594–607, https://doi.org/
10.1198/jasa.2011.tm10155.

[19] H. Pang, H. Liu, R. Verbei, The FASTCLIME package for linear programming and
large-scale precision matrix estimation in R, J. Mach. Learn. Res. 15 (14) (2014)
489–493. http://jmlr.org/papers/v15/pang14a.html.

[20] R. Zhang, S. Fattahi, S. Sojoudi, Large-scale sparse inverse covariance estimation
via thresholding and max-det matrix completion, in: J. Dy, A. Krause (Eds.),
Proceedings of the 35th International Conference on Machine Learning Vol. 80 of
Proceedings of Machine Learning Research, PMLR, Stockholmsmssan, Stockholm
Sweden, 2018, pp. 5766–5775, in: http://proceedings.mlr.press/v80/zhang18c.
html.

[21] M. Bollhöfer, A. Eftekhari, S. Scheidegger, O. Schenk, Large-scale sparse inverse
covariance matrix estimation, SIAM J. Sci. Comput. 41 (1) (2019) A380–A401,
https://doi.org/10.1137/17M1147615.

[22] A. Eftekhari, M. Bollhöfer, O. Schenk, Distributed memory sparse inverse
covariance matrix estimation on high-performance computing architectures, ACM/
IEEE International Conference on High Performance Computing, Networking
Storage and Analysis (SC18) (2018), https://doi.org/10.1109/SC.2018.00023.

[23] F. Moscone, E. Tosetti, V. Vinciotti, Sparse estimation of huge networks with a
block-wise structure, Econom. J. 20 (3) (2017) S61–S85, https://doi.org/10.1111/
ectj.12078.

[24] B.M. Marlin, K.P. Murphy, Sparse gaussian graphical models with unknown block
structure, in: Proceedings of the 26th Annual International Conference on Machine
Learning, ICML’09, Association for Computing Machinery, New York, NY, USA,
2009, pp. 705–712, https://doi.org/10.1145/1553374.1553465.

[25] E. Treister, J.S. Turek, A block-coordinate descent approach for large-scale sparse
inverse covariance estimation, in: Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, K.Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems, vol. 27, Curran Associates, Inc., 2014, in: https://proceedings.neurips.cc
/paper/2014/file/46922a0880a8f11f8f69cbb52b1396be-Paper.pdf.

[26] D. Hao, C. Ren, C. Li, Revisiting the variation of clustering coefficient of biological
networks suggests new modular structure, BMC Syst. Biol. 6 (1) (2012) 34, https://
doi.org/10.1186/1752-0509-6-34.

[27] Y. Chen, T. Davis, W. Hager, S. Rajamanickam, Algorithm 887: CHOLMOD,
supernodal sparse Cholesky factorization and update/downdate, ACM Trans. Math.
Softw. 35 (14) (2008), https://doi.org/10.1145/1391989.1391995.

[28] T.A. Davis, S. Rajamanickam, W. Sid-Lakhdar, A survey of direct methods for
sparse linear systems, Acta Numer. 25 (2016) 383–566, https://doi.org/10.1017/
S0962492916000076.

[29] T.A. Davis, Direct Methods for Sparse Linear Systems, Society for Industrial and
Applied Mathematics, 2006, https://doi.org/10.1137/1.9780898718881.

[30] O. Kaya, E. Kayaaslan, B. Uçar, I.S. Duff, Fill-in Reduction in Sparse Matrix
Factorizations Using Hypergraphs, Research Report RR-8448, INRIA, 2014.
https://hal.inria.fr/hal-00932882/file/RR-8448.pdf.

[31] P. Hénon, P. Ramet, J. Roman, PaStiX: a high-performance parallel direct solver for
sparse symmetric definite systems, Parallel Comput. 28 (2) (2002) 301–321,
https://doi.org/10.1016/S0167-8191(01)00141-7.

[32] D. Irony, G. Shklarski, S. Toledo, Parallel and Fully Recursive Multifrontal
Supernodal Sparse Cholesky, 2002, pp. 335–344, https://doi.org/10.1007/3-540-
46080-2_35.

[33] P. Amestoy, I. Duff, J. Koster, J. L’Excellent, A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (1)
(2001) 15–41, https://doi.org/10.1137/S0895479899358194.

A. Eftekhari et al.

https://doi.org/10.1002/wics.1415
https://doi.org/10.1145/2408736.2408739
https://doi.org/10.1145/2408736.2408739
https://doi.org/10.1016/j.jeconom.2008.09.017
https://doi.org/10.1016/j.jeconom.2008.09.017
https://doi.org/10.1145/3093172.3093234
https://doi.org/10.1145/3093172.3093234
https://doi.org/10.1016/S0927-5398(03)00007-0
https://doi.org/10.1002/0471725293
https://doi.org/10.1109/34.824819
https://doi.org/10.1109/34.824819
https://doi.org/10.1007/s10994-019-05810-5
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
http://jmlr.org/papers/v9/banerjee08a.html
https://doi.org/10.1093/biomet/asm018
https://proceedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/2ba8698b79439589fdd2b0f7218d8b07-Paper.pdf
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0065
https://proceedings.neurips.cc/paper/2014/file/877a9ba7a98f75b90a9d49f53f15a858-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/877a9ba7a98f75b90a9d49f53f15a858-Paper.pdf
http://proceedings.mlr.press/v84/koanantakool18a.html
http://proceedings.mlr.press/v84/koanantakool18a.html
https://doi.org/10.1016/j.csda.2019.106812
https://doi.org/10.1016/j.jmva.2014.11.005
https://doi.org/10.1016/j.jmva.2014.11.005
https://doi.org/10.1198/jasa.2011.tm10155
https://doi.org/10.1198/jasa.2011.tm10155
http://jmlr.org/papers/v15/pang14a.html
http://proceedings.mlr.press/v80/zhang18c.html
http://proceedings.mlr.press/v80/zhang18c.html
https://doi.org/10.1137/17M1147615
https://doi.org/10.1109/SC.2018.00023
https://doi.org/10.1111/ectj.12078
https://doi.org/10.1111/ectj.12078
https://doi.org/10.1145/1553374.1553465
https://proceedings.neurips.cc/paper/2014/file/46922a0880a8f11f8f69cbb52b1396be-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/46922a0880a8f11f8f69cbb52b1396be-Paper.pdf
https://doi.org/10.1186/1752-0509-6-34
https://doi.org/10.1186/1752-0509-6-34
https://doi.org/10.1145/1391989.1391995
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1017/S0962492916000076
https://doi.org/10.1137/1.9780898718881
https://hal.inria.fr/hal-00932882/file/RR-8448.pdf
https://doi.org/10.1016/S0167-8191(01)00141-7
https://doi.org/10.1007/3-540-46080-2_35
https://doi.org/10.1007/3-540-46080-2_35
https://doi.org/10.1137/S0895479899358194

Journal of Computational Science 53 (2021) 101389

13

[34] O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equations
with PARDISO, J. Future Gener. Comput. Syst. 20 (3) (2004) 475–487, https://doi.
org/10.1016/j.future.2003.07.011.

[35] H. Dalianis, Evaluation Metrics and Evaluation, Springer International Publishing,
Cham, 2018, pp. 45–53, https://doi.org/10.1007/978-3-319-78503-5_6.

[36] J. Ballani, D. Kressner, Sparse Inverse Covariance Estimation with Hierarchical
Matrices, 2014 (Tech. rep., EPFL Technical Report), http://sma.epfl.ch/anchpc
ommon/publications/quic_ballani_kressner_2014.pdf.

[37] J. Cochrane, Asset Pricing: (Revised Edition), Princeton University Press, 2009.
[38] J. Sherman, W.J. Morrison, Adjustment of an inverse matrix corresponding to a

change in one element of a given matrix, Ann. Math. Stat. 21 (1) (1950) 124–127,
https://doi.org/10.1214/aoms/1177729893.

[39] M. Wojnarski, A. Janusz, H.S. Nguyen, J. Bazan, C. Luo, Z. Chen, F. Hu, G. Wang,
L. Guan, H. Luo, J. Gao, Y. Shen, V. Nikulin, T.-H. Huang, G.J. McLachlan,
M. Bošnjak, D. Gamberger, Rsctc’2010 discovery challenge: mining dna microarray
data for medical diagnosis and treatment, in: Proceedings of the 7th International
Conference on Rough Sets and Current Trends in Computing, RSCTC’10, Springer-
Verlag, Berlin, Heidelberg, 2010, pp. 4–19, https://doi.org/10.1007/978-3-642-
13529-3_3.

[40] E.I.G. Nassara, E. Grall-Mas, M. Kharouf, Linear discriminant analysis for large-
scale data: application on text and image data, 2016 15th IEEE International
Conference on Machine Learning and Applications (ICMLA) (2016) 961–964,
https://doi.org/10.1109/ICMLA.2016.0173.

[41] B. Tu, Z. Zhang, S. Wang, H. Qian, Making fisher discriminant analysis scalable, in:
E.P. Xing, T. Jebara (Eds.), Proceedings of the 31st International Conference on
Machine Learning. Vol. 32 of Proceedings of Machine Learning Research, PMLR,
Bejing, China, 2014, pp. 964–972, in: http://proceedings.mlr.press/v32/tu14.ht
ml.

[42] D. Calvetti, E. Somersalo, Linear Discriminant Analysis, Data Science, SIAM, 2020,
pp. 49–61 (Ch. 4).

[43] J. Fan, Y. Feng, Y. Wu, Network exploration via the adaptive lasso and scad
penalties, Ann. Appl. Stat. 3 (2) (2009) 521–541, https://doi.org/10.1214/08-
AOAS215.

[44] D. Bertsimas, J.B. Lamperski, J. Pauphilet, Certifiably optimal sparse inverse
covariance estimation, Math. Program. 184 (1) (2020) 491–530, https://doi.org/
10.1007/s10107-019-01419-7.

Aryan Eftekhari received a graduate degree in Applied
Mathematics and Computational Science (2016) from the
Universit della Svizzera italiana, Switzerland. He is a Ph.D.
candidate (2017-present) at the Institute of Computational
Science at the Università della Svizzera italiana. His research
focuses on scalable algorithms in mathematical statistics and
machine learning.

Dimosthenis Pasadakis is a Ph.D. candidate at the Faculty of
Informatics at Università della Svizzera italiana. He graduated
in Physics from the Aristotle University of Thessaloniki, and
earned a Msc degree in Computational Science from Università
della Svizzera italiana. His research is centered around algo
rithms for graph learning and combinatorial optimization for
graph partitioning and clustering.

Matthias Bollhöfer is professor for Numerical Analysis at TU
Braunschweig. His research area covers several aspects at the
interface of Numerical Analysis and applications in Computa
tional Science and Engineering. His contributions include nu
merical methods for partial differential equations, scientific
parallel computing, sparse numerical linear algebra, numerical
methods for data science applications as well as numerical
methods for model order reduction. He has (co-)authored
several sparse linear algebra software packages that are
frequently used.

Simon Scheidegger is an assistant professor for advanced data
analytics at the Department of Economics, HEC, University of
Lausanne. Prior to this, he was a senior research associate at the
University of Zürich (2012-2015), a visiting fellow at the
Hoover Institution at Stanford University (2015-2017), a
visiting faculty member at the Department of Economics at
Yale University (2018-2019), and at MIT Sloan Finance (2019).
He holds a Ph.D. in theoretical physics from the University of
Basel. His research is centered around computational eco
nomics, machine learning, and high-performance computing.

Olaf Schenk is a professor for computing at the Faculty of
Informatics at Universita della Svizzera italiana. He graduated
in Applied Mathematics from Karlsruhe Institute of Technology
(KIT), Germany, and earned his PhD from ETH Zurich. Olaf
Schenk is an elected Fellow of the Society of Industrial and
Applied Mathematics (SIAM), and a senior member of IEEE and
ACM. His research interests are centered around the topic of
multicore and manycore algorithms for computational science
simulations on emerging high-performance computing (HPC)
architectures.

A. Eftekhari et al.

https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1016/j.future.2003.07.011
https://doi.org/10.1007/978-3-319-78503-5_6
http://sma.epfl.ch/anchpcommon/publications/quic_ballani_kressner_2014.pdf
http://sma.epfl.ch/anchpcommon/publications/quic_ballani_kressner_2014.pdf
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0185
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1007/978-3-642-13529-3_3
https://doi.org/10.1007/978-3-642-13529-3_3
https://doi.org/10.1109/ICMLA.2016.0173
http://proceedings.mlr.press/v32/tu14.html
http://proceedings.mlr.press/v32/tu14.html
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0210
http://refhub.elsevier.com/S1877-7503(21)00077-6/sbref0210
https://doi.org/10.1214/08-AOAS215
https://doi.org/10.1214/08-AOAS215
https://doi.org/10.1007/s10107-019-01419-7
https://doi.org/10.1007/s10107-019-01419-7

	Block-enhanced precision matrix estimation for large-scale datasets
	1 Introduction
	2 Background
	2.1 Quadratic approximation — QUIC
	2.2 Sparse quadratic approximation — scalar SQUIC

	3 Block sparse quadratic approximation — block SQUIC
	3.1 Supernodal sparse Cholesky factorization
	3.2 Block approximate matrix inversion
	3.3 Block coordinate descent update

	4 Parallelization
	4.1 Parallel sparse sample covariance matrix
	4.2 Parallel block approximate matrix Inversion

	5 Analysis and validation on synthetic data
	5.1 Midscale tests
	5.2 Large-scale tests
	5.3 Scalability

	6 Numerical experiments with real-world data
	6.1 Case study: option return forecast
	6.2 Case study: classification of medical data

	7 Conclusion
	Conflict of interest
	Declaration of Competing Interest
	Acknowledgements
	References

