
Learning Dynamical Systems
Using Dynamical Systems
The Reservoir Computing Approach

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Pietro Verzelli

under the supervision of

Cesare Alippi and Lorenzo Livi

January 2022

Dissertation Committee

Andrea Emilio Rizzoli Universitá della Svizzera italiana, Switzerland
Rolf Krause Universitá della Svizzera italiana, Switzerland
Juan-Pablo Ortega Nanyang Technological University, Singapore
Peter Ashwin University of Exeter, UK
Alessio Micheli Universitá di Pisa, Italy

Dissertation accepted on 10 January 2022

Research Advisor Co-Advisor

Cesare Alippi Lorenzo Livi

PhD Program Director

Walter Binder

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Pietro Verzelli
Lugano, 10 January 2022

ii

To life and my love for it.

iii

iv

Intelligence does not aspire to
emancipate itself, but to submit.
Truth is the shine of necessity.

Nicolás Gómez Dávila

v

vi

Abstract

Dynamical systems have been used to describe a vast range of phenomena, in-
cluding physical sciences, biology, neurosciences, and economics just to name a
few. The development of a mathematical theory for dynamical systems allowed
researchers to create precise models of many phenomena, predicting their be-
haviors with great accuracy. For many challenges of dynamical systems, highly
accurate models are notably hard to produce due to the enormous number of
variables involved and the complexity of their interactions. Yet, in recent years
the availability of large datasets has driven researchers to approach these com-
plex systems with machine learning techniques. These techniques are valuable
in settings where no model can be formulated explicitly, but not rarely the work-
ing principles of these models are obscure and their optimization is driven by
heuristics. In this context, this work aims at advancing the field by “opening
the black-box” of data-driven models developed for dynamical systems. We fo-
cus on Recurrent Neural Networks (RNNs), one of the most promising and yet
less understood approaches. In particular, we concentrate on a specific neural
architecture that goes under the name of Reservoir Computing (RC). We address
three problems: (1) how the learning procedure of these models can be under-
stood and improved, (2) how these systems encode a representation of the inputs
they receive, and (3) how the dynamics of these systems affect their performance.
We make use of various tools taken from the theory of dynamical systems to ex-
plain how we can better understand the working principles of RC in dynamical
systems, aiming at developing new guiding principles to improve their design.

vii

viii

Acknowledgements

First of all, I would really like to thank Professor Cesare Alippi and Professor
Lorenzo Livi for their careful guidance. They guided me throughout this quest
with gentle yet firm suggestions. This achievement is mainly due to them. I
would also like to thank Professor Peter Tiňo for his precious advice during my
time spent in Birmingham. I also thank Professor Filippo Maria Bianchi for his
help.

I thank all my family members for the support that they gave me during the
course of my studies and for all the advice and suggestions gently offered. They
were never refused.

I am really grateful to my colleagues and friends since they made my time
in the lab a joyful one. I thank Daniele Z. for the calculations we did together,
Daniele G. for his boldness, Alberto for his friendship, Andrea for his nice tem-
per, Ivan for the gym sessions, Matteo for the cigarettes. I’d like also to thank
Alessandro, Stefano, Slobodan, and Kartik, as it was always a pleasure to talk to
them. A special thank goes to Lorenzo for the many adventures we had and to
Elena for her incredible kindness.

Among my friends in Como, it is foremost to thank Marta whose company
was always appreciated, way more than I was able to express. I’d also like to
thank Stefania and Elena for their niceness towards me in these years. I thank
Alessandro for the Ikea trip and all that followed and I thank Letizia for her sug-
gestions regarding my love struggles. I thank Alessia for the deep thoughts we
shared on many occasions and Claudio for his attitude towards life. I also thank
Gaia for her spirit and Clara for her advice on how to use Instagram.

A special thanks to my friends of the Comitato Ventotene: together we fought
many battles. In particular, I’d like to thank Jolyon, Luca M., Luca B., Dario,
Claudia, Jovana, Nadia, and Beatrice. I thank Alexandra for our long friendship

ix

x

and Michalina for the long philosophical discussion we had and the short time we
spent together, I also thank the many researchers I’ve met in these four years, Ayn
Rand, Lucio Battisti, Nietzsche, Battiato, Federico Fiumani, D. Hofstadter, Gödel,
Escher, Bach, Asimov, Von Neumann, Mozart, N.N. Taleb, Šklovskij, Barthes,
Poincaré, Buzzati, Morselli, Dalla, Phil Lynott, Conan Doyle, Dick, Tarkovsky,
David Lynch, Joni Mitchell, Buckingham and Nicks, Dario Bressanini, Bill With-
ers, John Fogerty, Bernhard, Cioran, and all the persons I have met because of
the phase flow.

And finally, I would like to thank Chiara, simply for everything.

Contents

Contents xi

1 Introduction 1
1.1 Structure of the Thesis . 4
1.2 Notation . 4
1.3 Papers Published from this Thesis . 5

2 Problem Formulation 7
2.1 Dynamical Systems . 7

2.1.1 Discrete-Time Dynamical Systems 7
2.1.2 Continuous-Time Dynamical Systems 7
2.1.3 Discretization . 8
2.1.4 Observables . 8
2.1.5 Noise . 9
2.1.6 Modelling . 9

2.2 Tasks . 10
2.2.1 Prediction . 10
2.2.2 Generation . 12
2.2.3 Classification . 13

2.3 Data-Driven Modelling of Dynamical Systems 13

3 Reservoir Computing 15
3.1 Temporal Tasks . 15
3.2 Recurrent Neural Networks . 16
3.3 Reservoir Computing . 17

3.3.1 Reservoir Computing Network 18
3.3.2 Universal Function Approximation Property 19

3.4 Research trends in RC . 20
3.4.1 Popular Variations . 20

xi

xii Contents

I Learning 23

4 Training 25
4.1 Training Strategies . 25

4.1.1 Reservoir Learning Algorithm 25
4.1.2 Fitting using Least-Squares . 26
4.1.3 Generating scenario . 27

4.2 Hyperpameters . 28
4.2.1 Reservoir Topology . 28
4.2.2 Spectral Radius . 30
4.2.3 Readout . 32
4.2.4 Other Hyperparameters . 33

5 Self-Normalizing Activation Function 35
5.1 Self-Normalizing Activation Function 35

5.1.1 Universal Function Approximation Property 36
5.2 Network State Dynamics: the Autonomous Case 37

5.2.1 Edge of Chaos . 38
5.3 Network State Dynamics: the Input-Driven Case 40

II Representation 43

6 Memory 45
6.1 Memory Capacity . 45
6.2 Memory Curves . 46
6.3 Different Activation Functions . 49
6.4 Memory-Nonlinearity Trade-off . 51

7 Echo State Property 57
7.1 The Echo-State Property . 57
7.2 ESP and Spectral Radius . 59
7.3 Dynamical System Representation . 59

7.3.1 Takens’s Theorem . 59
7.3.2 Takens in Reservoir Computing 61

8 Input-to-State Representation 63
8.1 Controllability Matrix . 63
8.2 The Encoded Input Signal . 65
8.3 Topologies . 67

xiii Contents

8.4 The Nullspace of C and the Network Memory 71
8.4.1 A Note on Numerical Issues 74

III Dynamics 77

9 Computing with dynamical systems 79
9.1 Computing with dynamical systems 79
9.2 Edge of Criticality . 80

10 Binary Reservoirs 81
10.1 Binary RCN . 81

10.1.1 System Description . 81
10.1.2 Edge of criticality in binary RCNs 82

10.2 Experiments . 83
10.2.1 Edge of Criticality . 83
10.2.2 Effects of Perturbations on State Evolution 84
10.2.3 Impact of Noise in the EoC . 86
10.2.4 Impact of a Signal . 88

11 Synchronization 93
11.1 Synchronization . 93

11.1.1 Synchronization of Identical Systems 93
11.1.2 Drive-Response Systems . 94
11.1.3 Complete Synchronization and Asymptotic Stability 96
11.1.4 Generalized Synchronization 96

11.2 Generalized Synchronization and Learning 97
11.2.1 ESP and GS . 97
11.2.2 Unsupervised System Reconstruction 98
11.2.3 Learning Realizability . 100
11.2.4 Error on the Whole Attractor 102
11.2.5 Synchronization Function . 104

11.3 Experimental Results . 106
11.3.1 The Mutual False Nearest Neighbors 106
11.3.2 Reservoir Computing Networks 108
11.3.3 Reservoir observer . 108
11.3.4 Results . 109

12 Conclusions 115

xiv Contents

Appendices 118

A Dynamical Systems 121
A.1 Autonomous Dynamical Systems . 121

A.1.1 Discrete Time Dynamical Systems 122
A.1.2 Continuous Time Dynamical Systems 123
A.1.3 Ordinary Differential Equations 125
A.1.4 Attractors . 126

A.2 Non-Autonomous Dynamical Systems 127

B Memory and Activation 129
B.1 Memory . 129
B.2 Memory loss . 131

C Systems and Datasets 135
C.1 Lorenz System . 135
C.2 Rössler System . 135
C.3 Mackey-Glass System . 136
C.4 Santa Fe Laser . 136
C.5 Multiple Superimposed Oscillators 136

D Cayley-Hamilton Theorem 137
D.1 The Theorem . 137
D.2 Implications . 138
D.3 The Companion Matrix . 139

Bibliography 141

Chapter 1

Introduction

Predicting the future has always been a crucial goal for humans. In a certain
sense, it can be said that it is the fundamental task of science: while it is basically
always possible to explain past observations, well-grounded scientific theories
must be able to predict future outcomes of experiments. Otherwise, they are
rejected (or, at least, questioned).

The study of phenomena that change in time goes under the name of Dynam-
ical Systems theory. Even if the origin of this field may be dated back to Isaac
Newton and his study of mechanics, the foundation of the modern theory of dy-
namical systems is usually attributed to Henri Poincaré. He laid down the basis
of the local and global analysis of nonlinear differential equations, introducing
concepts like stable and unstable manifolds, and using a geometric approach to
tackle these problems. The idea underlying this approach is that reality obeys
some unchanging laws that can be discovered and described using the language
of mathematics. Hence, with a perfect knowledge of the equations governing a
natural system, its future behaviour can be perfectly forecast. This faith in the
predicting role of mathematical modelization was evocatively exposed in 1814
by Pierre-Simon Laplace in his book Essai philosophique sur les probabilités (Philo-
sophical Essay on Probability):

We must consider the present state of Universe as the effect of its
past state and the cause of its future state. An intelligence that would
know all forces of nature and the respective situation of all its ele-
ments, if furthermore it was large enough to be able to analyze all
these data, would embrace in the same expression the motions of
the largest bodies of Universe as well as those of the slightest atom:
nothing would be uncertain for this intelligence, all future and all
past would be as known as present.

1

2

Difficulties related to this view were already evident to Poincaré, who real-
ized that some problems (like the famous three-body problem) were impossible
to solve, in the sense of obtaining precise formulas for the motion of the objects
under study. But an even more radical form of uncertainty was discovered. Leav-
ing aside the stochastic nature of quantum phenomena, also fully-deterministic
systems may display an inherent unpredictability, which goes under the name of
deterministic chaos. The findings of Edward Lorenz are usually considered the
beginning of the study of chaotic phenomena. He talked about his discovery in
an interview:

I wanted to examine some of the solutions in more detail. I had a
small computer in my office then so I typed in some of the intermedi-
ate conditions which the computer had printed out as new initial con-
ditions to start another computation and then went out for awhile.
When I came back I found that the solution was not the same as the
one I had before. The computer was behaving differently. I suspected
computer trouble at first. But I soon found that the reason was that
the numbers I had typed in were not the same as the original ones.
These were rounded off numbers. And the small difference between
something retained to six decimal places and rounded off to three
had amplified in the course of two months of simulated weather un-
til the difference was as big as the signal itself. And to me this implied
that if the real atmosphere behaved in this method then we simply
couldn’t make forecasts two months ahead. The small errors in ob-
servation would amplify until they became large.

The discovery that a 3-dimensional dynamical system displays sensitive de-
pendence to initial conditions undermined the belief about the predictability of
systems, even when they are modeled to be deterministic and low-dimensional.
Chaos theory has greatly developed since then due to theoretical studies and
the numerical simulations made possible by the improvement of computational
power.1 But yet, the unpredictability is still at the core of these systems. This
means that even when having a perfect model of a phenomenon, an accurate
prediction of its future state might be impossible.

Yet, the key-role of models in today science is far from being obsolete. In
fact, the discovery that even simple models can display complex behaviors led

1Lorenz’s electronic computer, the Royal McBee, was able to perform only sixty (60!) multi-
plications a second.

3

researchers to provide simple explanations to complicated phenomena. Scien-
tists in the past century have been able to describe behaviors which appeared
heterogeneous and intricate simply by starting from few assumptions. Particle
physics, neuroscience, fluidodynamics and, more recently, complex networks are
just some notable examples of this trend. Basically any scientific field involves
the creation of a (mathematical) model encoding the fundamental feature of a
natural (or artificial) phenomenon.

But for many of the most challenging applications in science exact models are
notably hard to produce due to the enormous number of variables involved and
the complexity of their interactions. Yet, in recent years the incredible amount
of available data has driven researchers to study these complex systems by using
machine learning techniques. These techniques are valuable in settings where no
model can be formulated explicitly. This approach led to incredible achievements
in fields like image classification, text and speech processing, and autonomous
driving, just to name a few. Machine learning uses the concept of model in a
novel sense: instead of formulating a mathematical model that aims at encoding
the fundamental feature of the object under study, the models used in machine
learning are constructed to learn a specific behavior, which would mimic the one
of the system of interest. This might seem to be something alien to the scientific
method: instead of understanding the rules governing reality, one simply tries
to imitate its behavior. This issue generates some vibrant discussions among
experts, not only from an epistemological point of view, but also regarding the
usage of machine learning in real word tasks, where some guarantees might be
needed.

In this work, we focus on a particular class of machine learning models,
namely Reservoir Computing (RC), which is particularly suited for the study of
dynamical systems (and time-related tasks in general), aiming at advancing our
understanding of this class models in order to better exploit their potential. This
is a particularly intriguing quest as these models have a two-fold relationship
with dynamical systems: on one hand, they are used to approximate and pre-
dict dynamical systems; therefore, they can be applied in their study. On the
other hand, they are dynamical systems, meaning that the theory of dynamical
systems can be used to study them. We explore this intriguing connections in
order to advance the knowledge in the field, explaining some salient behavior
of RC systems. Our research is aimed at opening the black box of such systems,
with the belief that a better understanding of their behaviours would lead to an
improvement in their performance too.

4 1.1 Structure of the Thesis

1.1 Structure of the Thesis

This work is organized as follows. Chapter 2 introduces the problem setting
and presents the state of the art. The RC framework is discussed in Chapter 3,
along with the most popular implementation called Reservoir Computing Net-
work (RCN). The thesis is then divided into three parts:

• Part I focuses on the Learning mechanism of RC systems. Chapter 4 ex-
plains how these systems are trained and which hyper-parameters affect
their performance and need to be optimized. Chapter 5 introduces a model
which provably alleviates the hyper-parameters optimization.

• In Part II, we study how the input Representation is encoded into the reser-
voir states. Chapter 6 discusses the role played by memory, while Chapter
7 examines the Echo State Property, a fundamental property of RC systems.
Chapter 8 presents a theoretical analysis of input-to-state representation.

• Part III discusses the Dynamics of RC systems. In Chapter 9 the relationship
between dynamical and computational properties of systems is shortly pre-
sented. In Chapter 10 a minimal model displaying the main computational
features of RCN is studied. Chapter 11 introduces the topic of synchroniza-
tion of dynamical systems and presents its implications in the context of RC
training and performance.

Finally, in Chapter 12, conclusions are drawn and possible future directions
are sketched. Various appendices, concerning insights or technical details, con-
clude this work.

1.2 Notation

We use R to denote the set of real numbers, Z for the integers and N for the nat-
urals. For vectors, we use bold lower case letters, e.g., v , while for matrices we
use bold upper case letters, e.g., M . Functions are denoted with bold font when
their image is a vector-space, whereas we use regular font when they are applied
element-wise. For instance, f (x) is a generic function of x = [x1, x2, . . . , xN],
while f (x) is a short-hand notation for [f (x1), f (x2), . . . , f (xN)]. Time deriva-
tives use the dot-notation, ẋ = dx

dt . We reserve the letter s for the states of the
source system generate by the map g . We use u to denote the observables of such
system. The reservoir states are denoted by r and the reservoir update function

5 1.3 Papers Published from this Thesis

by f . We refer to continuous-time systems by using the function notation x (t)
(as they are, in fact, functions of time), while we use the subscript for discrete-
time one, x t . Concerning the reservoir architecture, we will denote by W the
reservoir connection matrix and by ρ its spectral radius. The matrix (or vector)
mapping the input into the reservoir states is denoted by w . We use the symbol
σ for the activation function.

1.3 Papers Published from this Thesis

Part of this thesis presents the results of published research. Here we briefly
describe these publications.

• In [Verzelli et al., 2018] we studied which characteristics of the networks
are needed to display the main dynamical features of Recurrent Neural Net-
works (RNNs). This was done by proposing a binary RCN (bRCN), namely
a RCNs whose weights and states are binary. Due to its simplicity, an exact
theoretical analysis of the feature of such a model was possible, shedding
the light on the working principles of RNNs. This work in presented in
Chapter 10.

• In [Verzelli et al., 2019], we studied the properties of RCNs equipped with
an activation function that projects the network state on a hyper-sphere
at each time-step. First, we prove that the proposed model is a universal
approximator just like regular RCNs and we give sufficient conditions to
support this claim. Our theoretical analysis shows that the behavior of the
resulting network is never chaotic. This leads to networks that are glob-
ally stable for any hyper-parameter configuration. The proposed activation
function allows the model to display a memory capacity comparable with
the one of linear Echo State Networks (ESNs), but its intrinsic nonlinearity
makes it capable to deal with tasks for which rich dynamics are required.
The neural network introduced in this paper is presented and discussed in
Chapter 5 while Chapter 6 contains an experimental analysis of its memory
properties.

• In [Verzelli, Alippi, Livi and Tiňo, 2021] we proposed a methodology for
explaining how linear reservoirs encode inputs in their internal states. Our
theoretical findings allow to express the system state in terms of the con-
trollability matrix C and the network encoded input v . Our results show
that reservoirs with a cyclic topology give the richest possible encoding

6 1.3 Papers Published from this Thesis

of input signals, yet they also offer one the most parsimonious reservoir
parametrization. Some experimental facts that motivate this work are in-
troduced in Chapter 6, while the content of this paper is discussed in Chap-
ter 8.

• In [Verzelli, Alippi and Livi, 2021], we laid down the groundwork for estab-
lishing and analyzing the working principles of RC within the theoretical
framework of synchronization between dynamical systems. We showed
that the presence of a synchronization function allows to formally consider
the reservoir states as an unsupervised, high-dimensional representation of
an unknown source system that generates the observed data. We showed
that the realizability of learning, defined as the possibility of perfectly solv-
ing the task, crucially depends on the existence of a function connecting the
reservoir states with the source system states: the presence of Generalized
Synchronization (GS) implies the existence of a synchronization function
playing an analogous role, which is found in an unsupervised way in RC.
Moreover, the presence of such a synchronization function allows one to
make use of the ergodicity of the source system to grant results on the
generalization error for a given task. This work in presented in chapter 11.

Chapter 2

Problem Formulation

In this preliminary chapter, we introduce the reader to the main topics that we are
going to address. Section 2.1 presents the setting, describing dynamical systems.
Section 2.2 describes the tasks that one faces when dealing with temporal data,
namely prediction, generation and classification. In Sec. 2.3 the main data-driven
approaches to the problem are presented.

2.1 Dynamical Systems

In this section we briefly introduce the topic of dynamical systems. A complete
and more formal discussion is contained in Appendix A.

2.1.1 Discrete-Time Dynamical Systems

Let us consider a discrete-time autonomous source system, described by:

st+1 = g (st) (2.1)

where st ∈ Rds denotes the system state at time t. Assume the update function
g to be differentiable and invertible, and that st asymptotically approaches and
stays in a bounded attractor, As. We will be interested in the situation where g
is unknown and we do not have direct access to the source system states.

2.1.2 Continuous-Time Dynamical Systems

Continuous-time dynamical systems are usually described in term of differential
equations:

7

8 2.1 Dynamical Systems

ṡ(t) = q(s(t)) (2.2)

where we use the dot-notation for derivatives ṡ := ds/d t. Note that here we
describe the system in terms of its variation in time (the derivative reflects this
fact): it tells us how the system is changing, as opposed to (2.1) which directly
describes where the system will be at time t.

To recover this concept, we need the notion of flow Qt:

s(t) = Qt(s0) (2.3)

i.e., the flow evolves the initial point s0 in time.
The flow is expressed in terms of the integral of (2.2)

Qt(s) = s +

∫ t

0

dt ′q(s(t ′)) (2.4)

2.1.3 Discretization

Discrete-time systems can be thought of as a discretization of continuous ones.
In particular imagine, as common in practical cases, that our system is varying
continuously in time, but we are only able to sample it every∆t seconds. We then
have a series of measurements of the system x(0), x(∆t), x(2∆t), x(3∆t), . . .
and so on. The relation which relates each observation can be given in terms of
flow (2.3):

s(k∆t +∆t) = Q∆t s(k∆t) (2.5)

where k is the index of our sample. If we write sk := s(k∆t) the equation
above becomes:

sk+1 = Q∆t(sk) (2.6)

which is just (2.1) where Q∆t plays the role of the map and k is the time
index.

2.1.4 Observables

In many contexts, one does not have access to the full state of the system, s but
only to a limited set of observables (sometimes called measurements) u ∈ Rdu

ut = h(st) (2.7)

9 2.1 Dynamical Systems

When h is the identity, one has complete knowledge of the system state.
We consider the case where one is given a set of observations of the system

{ut} t = 0, 1, . . . , T −1 but no information is provided about its generating equa-
tion (2.1).

2.1.5 Noise

In the modelling of dynamical systems, one faces two kind of noise:

Dynamical Noise If the system dynamics is affected by a noise term ξt we use
the term dynamical noise. When the noise is additive, this means that equa-
tion (2.1) reads:

st = g (st−1) + ξt−1 (2.8)

Measurement Noise If the noise affects the observables instead, the term mea-
surement noise is used and we denote it with the symbol εt . If the noise is
additive, (2.7) reads:

ut = h(st) + εt (2.9)

This two kind of noise are not mutually exclusive and, in real applications,
one should generally account for both. In this work, which mainly deals we
methodological issues, we will mainly consider noiseless systems.

2.1.6 Modelling

In this setting, we have a series of observation {ut} given by (2.7) that are pro-
duced by a dynamical system like (2.1). The modelization of the system generat-
ing can be divided into different settings, according to the amount of information
one has [Bezruchko and Smirnov, 2010].

White Box This is the case in which the structure of the system model is per-
fectly known, but g = gθ depends on some parameters θ which need to be
estimated.

Grey Box In the grey box setting, one has only partial knowledge of the system
model (2.1). In particular, only some components of the function g are
unknown.

Black Box When no information about the source system (2.1) is available, one
is said to be in the Black Box setting. Here, a model which is able to estimate
salient features of the dynamical system must be constructed relying solely
on the set of observations.

10 2.2 Tasks

(a) Prediction (b) Generation (c) Classification

Figure 2.1. The possible tasks one deals with in dynamical systems. The blue
circles represent the inputs while the red dots are the outputs generated by the
model (the black box).

In this work, we focus on Black box modelling only. In particular we are
interested in estimating some salient features of the dynamical systems relying
only on a series of observations (2.7), without any further information about it.

2.2 Tasks

Given this setting, there are three different tasks that one may be interested in
studying, namely: prediction, generation, or classification.

2.2.1 Prediction

In this case, along with the set of observables {ut} we are also given a set of
targets {yt}. We assume that the target, just like the observable, is a function of
the (unknown) system-state only:

yt = k(st). (2.10)

It makes sense to consider the observables and the targets as pairs {(ut , yt)} in
which ut is the input and yt ∈ Rdy is the desired output. The task here is to learn
how to produce an approximated target ŷt for t ≥ T , while receiving a new ut .
In some contexts, this framework goes under the name of input-output systems
identification, as one needs to model an input-output relation.

This scenario assumes that for t = 0,1, . . . , T − 1 we can access both the
values of the observables ut and the corresponding targets yt . This is usually
called training set. Then, for t ≤ T (testing set), we still have access to ut but
not to yt . The approach consists in using the data of the training phase to learn

11 2.2 Tasks

how to generate an estimated target ŷt , which can be used in the testing (or
operational) phase. An example is depicted in Fig. 2.2.

20

10

0

10

20

M
ea

su
re

m
en

t

u

80 60 40 20 0 20 40 60 80
t

0

200

400

600

800

1000

1200

1400

Ta
rg

et

y
y

Figure 2.2. An example of a prediction problem, where both u and y are mono-
dimensional. The input value u is always provided (top figure), while the target
y is only accessible at training time, i.e., for t < 0 (bottom figure, blue solid
line). The goal is to generate a prediction ŷ for t > 0 by using the input
only. Here, the source system is the Rössler system (see Appendix C.2), the
input is u(t) = x(t) while the target is y(t) = z2(t), where x(t) and z(t) are,
respectively, the first and the third coordinate of the Rössler system.

Practical applications include:

12 2.2 Tasks

Forecasting In the forecasting scenario [Bianchi et al., 2017; Berry et al., 2015],
one aims at predicting the future value of the input at given forecasting
horizon d, i.e., one has yt = ut+d .

State Reconstruction In the reconstruction scenario [Brunton et al., 2017; Lu
et al., 2017; Zimmermann and Parlitz, 2018] the task is to reconstruct the
full state of the system by observing a limited part of it, i.e., yt = st , the
dimension of the input u being smaller than the dimension of the state s .

Denoising (or Filtering) In the denoising [Krishnagopal et al., 2020; Antonik
et al., 2018] scenario one assumes that the input can be decomposed as
ut = x t + nt , where x t is the signal of interest and nt is an additive noise
term which we wish to filter out. When, as discussed above, we assume
that our input comes from a deterministic dynamical system, this situation
implies that the observation function (2.7) is noisy, i.e., we have observa-
tional noise. The target for this task is given by the de-noised signal yt = x t .

From a theoretical point of view, the above tasks can be formulated using the
theory of filters (see for example Grigoryeva and Ortega [2018] and references
therein) between the input ut and the target yt . Yet, they are usually considered
distinct problems because, in practice, they present different difficulties. So, they
benefit from dedicated solutions.

2.2.2 Generation

In this scenario, the goal is to generate an approximation of the squence ût for
t ≥ T . This requires our system to be able to run autonomously in the generative
phase: the system goal is to learn how to generate ut+1 when receiving ut as
input. This is done using the training data. Then, in the generative phase, the
system runs autonomously by using the predicted output as input, implementing
a feedback mechanism. This task is particularly difficult (and interesting) when
the system to be learned is chaotic. Chaoticity implies a sensitive dependence to
the initial conditions, which - roughly speaking - means that trajectories starting
from two different points will eventually diverge, even when they are extremely
close to each other. This makes it inherently impossible to generate accurate
predictions in the long term because even an exact knowledge of the system
would still lead to a divergence due to measurement or approximation errors, or
noise. So, when predicting chaotic systems, it is challenging even to define what
a good prediction is. However, one would generally like to have two properties:

13 2.3 Data-Driven Modelling of Dynamical Systems

• A Short-Term Accuracy in which the predicted trajectory remains close to
the true one. This can be evaluated in several ways: the most common one
being the forecast horizon. It is defined as the time between the start of a
prediction and the point where it deviates from the test data more than a
fixed threshold.

• A Long-Term Climate Replication, which consists in correctly reproducing
some important features of the system attractor, instead of focusing on the
point-wise similarity. This can be achieved by studying global properties of
the attractor of the reproduced system, like the Lyapunov exponents or the
Correlation Dimension.

Notable instance of this task can be found in Pathak, Hunt, Girvan, Lu and Ott
[2018]; Vlachas et al. [2018]; Haluszczynski and Räth [2019]; Liu et al. [2020];
Fan et al. [2020]; Pathak, Wikner, Fussell, Chandra, Hunt, Girvan and Ott [2018];
Qi and Majda [2020] to name a few.

2.2.3 Classification

In this scenario, the data consist of pairs {Ui, li}, where U = {u(i)t } is a series
of Ti observations and li is a (possibly multidimensional) label associated to it.
The index i spans from 1 to N . One needs to learn a rule to produce the correct
label when a series of observations is presented so that it can generate an ap-
proximated label associated with previously unseen time series. Instances of this
scenario can be found in [Fawaz et al., 2019], [Baydogan and Runger, 2016] or
[Bianchi et al., 2020].

2.3 Data-Driven Modelling of Dynamical Systems

Various techniques have been developed to approximate dynamical systems from
data observations. A popular approach is based on the approximation of some
salient features of the system by making use of Reproducing Kernel Hilbert Space
(RKHS) [Bouvrie and Hamzi, 2017]. Koopman analysis [Koopman, 1931]) was
recently exploited in this direction [Brunton et al., 2021], starting from the fun-
damental ideas introduced by Schmid [2010] when developing the Dynamic
Mode Decomposition (DMD). These approaches can also be used in more so-
phisticated ways to study fundamental characteristics of the system of interest
[Brunton et al., 2017]. A popular algorithm that is based on looking for sparse

14 2.3 Data-Driven Modelling of Dynamical Systems

solutions in the model space is known as Sparse Identification of Nonlinear Dy-
namics (SINDy) [Brunton et al., 2016]. A comparison of various methods for
prediction was recently tested on a large collection of dynamical systems Gilpin
[2021].

Another way of facing this problem is by using neural networks to approxi-
mate the system. This can not be done without a careful design of the neural ar-
chitecture, i.e., exploiting a proper inductive bias Karniadakis et al. [2021]. The
first attempt of using neural networks to approximate dynamical systems was
conducted by González-García et al. [1998]. More advanced techniques have
been developed lately, based on exploiting various properties of the underlying
dynamical systems [Regazzoni et al., 2019; Gilpin, 2020; Liu and Theodorou,
2019; Qi and Majda, 2020]. When present, it is also possible to exploit the Hamil-
tonian [Greydanus et al., 2019] or Lagrangian [Cranmer et al., 2020] structure
of the system to properly tailor a neural network to perform predictions.

Recently, a review on how data-driven methods can prove useful in dynam-
ical systems was conducted by Berry et al. [2020]. In Karniadakis et al. [2021]
physics application are presented, while Brunton et al. [2020] discuss the role
played by machine learning in fluid dynamics.

Notably, methods based on dynamical systems also have proved useful to
study neural networks and to understand their working principles [Liu and Theodorou,
2019; Weinan, 2017]. Moreover, this relationship can be also exploited to de-
sign novel training strategies [Gaedke-Merzhäuser et al., 2020; Chaudhari et al.,
2019]: e.g., the popular momentum-based methods can also be seen as instances
of this trend [Kingma and Ba, 2014].

Chapter 3

Reservoir Computing

In this Chapter we present the main object of study of this work, the RC frame-
work. In Section 3.1 we introduce some basic terminology and briefly describe
how the machine learning approach for temporal tasks differs from the non-
temporal one. In Section 3.2 we provide a compact introduction to Recurrent
Neural Network (RNN), discussing the problems that their training mechanism
raise. We also mention some relevant applications. The Reservoir Comput-
ing (RC) framework is presented in Section 3.3, in which we expose its features.
We also mention the most common implementation, the Reservoir Computing
Network (RCN) and show that the architecture is a universal function approxi-
mator. Finally in 3.4 we review recent achievements in RC and mention some
relevant applications. We also list some popular variations of the basic RCN.

3.1 Temporal Tasks

In the context of machine learning, a problem or a task is defined as the issue of
estimating a functional relationship between an input {ut} and a desired output
{yt}, where t = 0,1, . . . , T and T is the number of data. In non-temporal tasks,
data-points are assumed to be independent and the goal is to learn a function
ψ(ut) =: ŷt which produces correct approximations of the output. This is usually
done by defining an Error or Loss function E(ŷt , yt) and then finding a ψ such
that it is minimized. In a temporal task, the input and the output are signals in
the (discrete) time t. Then, the function to learn is not limited to a point-to-point
relation, but has general formψ(ut , ut−1, ut−2, . . .). We can say that the function
ψ in a temporal task has memory and the output at time t depends also on the
inputs at preceding times, contrary to the previous case, which in fact does not
have a time structure.

15

16 3.2 Recurrent Neural Networks

Managing memory is a difficult problem as, in general, the input history might
be infinite. One needs to create a representation of the signal, i.e., define a
function f which creates and encoding of the signal, x t = f (ut , ut−1, ut−2, . . .),
when processed byψ=ψ(x t) = ŷt Since the number of arguments of a function
cannot be unbounded, one has to fix a past-horizon D and use a regressive model
which only considers the last D inputs, x t = f (ut , ut−1, . . . , ut−(D−1)). Choosing
f in this way results in model with a fixed memory, which might exceed or fall
short the memory required for the task. Selecting the optimal D might be hard
and requires some cross-validation.
A way to overcome this problem is to define a state-space representation of the
input in a recursive way, as:

x t = f (x t−1, ut−1). (3.1)

Which may be interpreted an input-driven dynamical system.1 The estimated
output is then constructed as ŷt =ψ(x t). The underlying assumption is that x t

will encode all the relevant information about the history of the input, so that
the temporal problem can be translated into a non-temporal one, i.e., finding the
mapping x t → ŷt using the time-independent mapping ψ.

The datasets are usually divided into a Training Set in which the model is
trained and a Test Set (unseen during the training) in which it is tested.2 As a
convention, we will denote with negative t the training-set and with positive t
the test set, such that the testing phase starts a t = 0.

3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a family of neural networks for process-
ing sequential data. They are modeled as an input-driven discrete-time dynami-
cal system. The most simple RNN was proposed by Elman [1990] and its model
reads:

x t = f (x t−1, ut−1) := σh(Whht−1 + Vhut−1 + bh) (3.2a)

ŷt =ψ(x t) = σy(Wy yt + by) (3.2b)

1Some authors use a different index convention for the time indexes of the arguments of
f , namely they write: x t = f (x t−1, ut) instead of using ut−1, to highlight the fact that the
information about the (t + 1)-th input is contained into the (t + 1)-th state. We prefer to use
the alternative notation as it better translates into the dynamical systems framework. They are,
however, perfectly analogous, being just a matter of labeling.

2We omit, for simplicity, the distinction between the test and the validation set.

17 3.3 Reservoir Computing

where ut is the input vector at time t, x t is the hidden layer vector, yt is the
output, Vh,Wh,Wy , bh and by are the network’s parameters, and σh and σy are
the activation functions (applied element-wise). RNNs are generally trained by
Back-Propagation Through Time (BPTT), which consists of “unfolding” the com-
putational graph and then propagating the gradient through it.

By (3.2), we can see that RNNs involve the composition of the same func-
tion multiple times. This results in the gradient being propagated through mul-
tiple applications of the same function, which may lead to exploding or (most
frequently) vanishing phenomena [Bengio et al., 1994; Pascanu, Mikolov and
Bengio, 2013]. This problem is particularly evident when one is trying to model
long-term dependencies, as the long-term interactions (involving the multiplica-
tion of many Jacobians) are given exponentially smaller weights than short-term
ones.

For this reason, Hochreiter and Schmidhuber [1997] introduced the Long
Short-Term Memory (LSTM), an architecture explicitly designed to overcome
this problem. In there, the idea of using self-loops to produce paths where the
gradient can easily flow was developed. This is achieved through the use of
gates, which explicitly control the computational flow. The current version of
the LSTM was proposed in Gers et al. [2000], where an additional gate - called
forget gate - is introduced to make the weight on this self-loop conditioned on
the context, rather than fixed. Another popular gated architecture is called Gated
Recurrent Unit (GRU), proposed by Cho et al. [2014], and it is based on a similar
idea. We mention that Neural Ordinary Differential Equations (NODEs) [Chen
et al., 2018] can be also described as a RNN with continuous time. This fact was
recently exploited to design a system with varying time constants [Hasani et al.,
2021].

3.3 Reservoir Computing

RC is a computational paradigm developed independently by Jaeger [Jaeger,
2001; Jaeger and Haas, 2004] (ESNs), Maas [Maass et al., 2002] (Liquid State
Machines (LSMs)), and Tiňo [Tiňo and Dorffner, 2001] (Fractal Predicting Ma-
chines (FPMs)).3 The basic idea is to create a representation of the input signal
using an untrained RNN, called the reservoir, and then use a trainable readout
layer to generate the network output.

3Actually, the idea of replacing optimization with randomization in RNNs had already been
explored by Schmidhuber in the ′90s [Schmidhuber and Hochreiter, 1996].

18 3.3 Reservoir Computing

The working principle of RC relies upon creating a representation of the input
sequence by feeding it to an untrained dynamical system, the reservoir, which
aims at encoding all relevant dynamics associated with the input. A generic
equation for a reservoir would read:

rt = f (rt−1, ut−1) (3.3)

Learning focuses solely on the readout function, which is trained to generate the
desired output, given the encoded dynamics and the task at hand.

ŷt =ψθ (rt) (3.4)

Here θ stands for the set of tunable parameters which characterize the particular
form of the readout function. The parameters are selected by a fitting procedure
yielding parameter configuration θ̂ , which is optimal according to some criteria.
In this work, when it does not lead to ambiguity, we will drop the θ̂ -notation and
simply write ψ for ψθ̂ .

3.3.1 Reservoir Computing Network

Practically, (3.3) is usually implemented in the form of a neural network. In this
case, we refer to it as Reservoir Computing Network (RCN). 4 Its equation reads:

rt−1 = σ(Wrt−1 + w ut−1 + b) (3.5)

where the reservoir size is N , rt ∈ RN is the reservoir state at time t, W ∈ RN×N

is the reservoir connection matrix, b ∈ RN is the bias; ut ∈ Rd
in is the input at time

t, w ∈ RN×din is the input matrix and σ is the activation function (usually tanh),
applied element-wise.

When the readout is linear, we will use Wout ∈ Rdout×N to denote its weights,
where dout is the dimension of y . Then, (3.4) reads:

ŷt = Wout · rt (3.6)

A diagram representing the RCN architecture is depicted in Fig. 3.1.

4We prefer this name over ESN, which is more popular in the engineering community, as the
reference to the echo state might be misleading, as we will see in Chapter 7.

19 3.3 Reservoir Computing

Figure 3.1. A schematic representation of a RCN. The dashed lines are the only
tunable weights, which are learned using the training data.

3.3.2 Universal Function Approximation Property

The fact that recurrent neural networks are universal function approximators
has been proven in previous works [Siegelmann and Sontag, 1995; Hammer,
2000] and some results on the universality of reservoir-based computation are
given in[Maass et al., 2002; Hammer and Tiňo, 2003]. Recently, Grigoryeva and
Ortega [2018] proved the universality of RCN: in there, they showed that, given
a task, there exist a RCN which is able to solve it with any given accuracy.

More in detail, let us define a squashing function:

Definition 1. A squashing function is a map f : R→ [−1,1] that is non decreasing
and saturating, i.e., limx→±∞ f (x) = ±1.

Then, RCN in the form (11.35),(11.36) for which σ is a squashing function is
a universal function approximator provided it satisfies the contractivity condition,
i.e., that for each x and y in the domain of the activation function σ, it holds:

‖σ(x)−σ(y)‖ ≤ ‖x − y‖ (3.7)

We highlight that this work discusses the expressivity of the RCN model class,
i.e., the existence of such a RCN is granted but this does not mean that any
random initialization of the reservoir weight will work. The question about the
possibility of solving any task using a RCN in which only the readout is trained
(i.e., the learnability of the correct RCN) is addressed in [Gonon et al., 2020a].

20 3.4 Research trends in RC

The universal approximation property, as exhaustively discussed in [Grigo-
ryeva and Ortega, 2018], can be proved for an RCN of the form (11.35), (11.36)
provided that it has the Echo State Property (ESP) (see Chapter (7)).

3.4 Research trends in RC

RC obtained state-of-the-art results in solving various tasks [Lu et al., 2018; Chat-
topadhyay et al., 2020; Vlachas et al., 2020; Bompas et al., 2020]. It also dis-
played outstanding results when combined with model-based approaches [Pathak,
Wikner, Fussell, Chandra, Hunt, Girvan and Ott, 2018; Doan et al., 2020]. Deep
approaches to the RCN have also been used [Gallicchio et al., 2017, 2020], along
with more sophisticated training strategies [Løkse et al., 2017; Herteux and Räth,
2020]. The simplicity of the approach makes RC also amenable for theoretical
investigations [Gonon et al., 2020c; Grigoryeva and Ortega, 2018; Rodan and
Tino, 2010; Tiňo, 2020; Goudarzi et al., 2016; Ganguli et al., 2008].

The research interest in RC in the contests of dynamical systems was re-
cently renewed due to the outstandings results obtained in [Pathak, Hunt, Gir-
van, Lu and Ott, 2018]. Successive studies were devoted to better understand
these findings [Lu et al., 2017, 2018; Lu and Bassett, 2020]. Also the state-
reconstruction capability of RC was exploited in a similar fashion [Lu et al., 2017;
Weng et al., 2019]. Moreover, results from dynamical systems theory have ap-
plied to the study of RC, concerning the dimensions of the learned attractor Car-
roll [2020b, 2021a], the stability of the reservoir system Gallicchio et al. [2021];
Engelken et al. [2020]; Vogt et al. [2020] and other relevant features Carroll
[2020c,a]. These findings have been used to design better suited RC systems
Carroll [2021b]; Haluszczynski and Räth [2019]; Herteux and Räth [2020].

RC is also particularly appealing for neuromorphic computing [Neftci et al.,
2017; Neftci, 2018] and other hardware implementations [Appeltant et al., 2011;
Larger et al., 2012], but also a bucket of water [Fernando and Sojakka, 2003] or
road traffic [Ando and Chang, 2021] have been used as reservoirs. See Tanaka
et al. [2019] for a recent review.

3.4.1 Popular Variations

Linear RCN We call a RCN linear when its activation function, i.e., σ in (3.5) is
the identity. Its equation reads:

rt+1 = Wrt + w ut + b (3.8)

21 3.4 Research trends in RC

When using a linear readout like (3.6), linear RCNs are as expressive as an
autoregressive models [Verzelli, Alippi, Livi and Tiňo, 2021; Bollt, 2021].
Therefore, they are interesting mainly for theoretical reasons, as their sim-
ple form renders the mathematics amenable and many analytical results
regarding their properties are already known. The tractability comes from
the fact that (3.8) can be expanded recursively:

rt+1 = Wrt + w ut + b (3.9)

= W (Wrt−1 + w ut−1 + b)
︸ ︷︷ ︸

rt

+w ut + b (3.10)

= W 2 (Wrt−2 + w ut−2 + b)
︸ ︷︷ ︸

rt−1

+W(w ut−1 + b) + w ut + b (3.11)

= W 3 (Wrt−3 + w ut−3 + b)
︸ ︷︷ ︸

rt−2

+W 2(w ut−2 + b) +W(w ut−1 + b) + w ut + b

(3.12)

and so on, leading to:

rt+1 =
∑

k

W k(w ut−k + b) =
∑

k

W kw ut−k +
∑

k

W kb (3.13)

in which W 0 is the identity.

Continuous-Time RCN It is possible to define RCN in continuous time. This is
typically done by defining the network in terms of an Ordinary Differential
Equation (ODE) of the form:

ṙ (t) = −
1
τ

r + f (r (t), u(t)) (3.14)

which is then numerically integrated. Here, τ is an hyperparameter con-
trolling the leakage of the network. Notable instances can be found in Lu
et al. [2018]; Carroll [2020b].

Leaky RCN The time-derivative which appears on (3.14) can be approximated
using the Euler discretizaion with time-step δ as:

ṙ (t)≈
rt+1 − rt

δ
(3.15)

22 3.4 Research trends in RC

which, rearranging the terms, leads to the leaky RCN Jaeger [2001]; Jaeger
et al. [2007]:

rt = (1−
δ

τ
)rt−1 +δ f (rt−1, ut−1) (3.16)

in this model, δ is treated as a hyperparameter to be optimized. Introduc-
ing the leakage allows the system to perform what is called a time-warp
Jaeger et al. [2007]; Tallec and Ollivier [2018], i.e., being invariant to the
change of the input time-scale. The idea of considering the discrete-time
RCN as a discretization of a continuous-time model can also be exploited
in more sophisticate ways, like [Gallicchio, 2021] which aims at improving
the reservoir stability.

Deep RCN Just like Feed-forward networks, RNNs can be constructed using mul-
tiple (recurrent) layers, leading to deep architectures Pascanu, Gulcehre,
Cho and Bengio [2013]. Thus, deep RCNs Gallicchio et al. [2017] can be
constructed by stacking different (untrained) layers of the form:

r (l+1)
t = f (l)(r (l)t−1, u(l)t−1) (3.17)

where l is the layer index. The input signal is then fed to the first layer,
u(0)t = ut , while for l ≥ 1 the input is given by an untrained mask of the
preceding layer:

u(l+1)
t = w (l+1)r (l)t . (3.18)

This approach showed encouraging results, in particular for the manag-
ing of multiple time-scales Gallicchio and Micheli [2011]; Gallicchio et al.
[2017, 2020, 2018].

Part I

Learning

23

Chapter 4

Training

In this chapter we describe the training procedure for RC systems. In Section 4.1,
we present the Reservoir Learning Algorithm, which is the most popular proce-
dure for training RCNs, which we name Reservoir Learning Algorithm (RLA),
highlighting some of its features. We also mention some other alternative tech-
niques that appeared in the literature. The main hyperparameters that one needs
to optimize are discussed in Section 4.2, along with their properties. We focus
on describing different topologies for the reservoir connection matrix W , which
will play a major role in our analysis of memory We also discuss different possi-
ble readout functions that one may use instead of the simple linear one, and the
spectral radius ρ, as it is the most studied hyperparameter.

4.1 Training Strategies

RC is characterized by an untrained dynamical reservoir and by a readout which
learns to solve the task, but different training procedures can be explored. These
procedures are generally less computationally expensive than BPTT, but their
performance tends to be sensibly affected by the hyper-parameters choice. So, a
hyper-parameters exploration needs to be carried to obtain good results.

4.1.1 Reservoir Learning Algorithm

The most common way for training RC-systems is the one developed by Jaeger
[2001] in his seminal work. We refer to it as the RLA. It is based on three phases,
whose current naming was given in [Lu et al., 2018]:

Listening In the listening phase, the training measurements {ut} are used as

25

26 4.1 Training Strategies

input to the reservoir (3.3). This creates a series of states {rt} that will be
later used for fitting.

Fitting Fitting consists in determining the readout function,ψθ , which reads the
reservoir state rt and provides an estimate for the output yt . Parameters θ
are selected by a fitting procedure yielding a parameter configuration θ̂ .

Predicting When fitting is completed, the system can be used to predict new
target values (predicting phase) for previously unseen data.

A schematic representation of the RLA is depicted in Figure 4.1.

Source System Measurements Reservoir Prediction

Target

Figure 4.1. Diagram representing the RC framework trained with the RLA for
a predicting scenario The source system st evolves autonomously and generates
the targets y(t) and the input measurements ut . The latter is coupled to the
reservoir rt so that its dynamics are dependent on (i.e., driven by) ut . The read-
out ψ is then trained to generate the prediction ŷt , which is an approximation
of yt .

It is important to point out that this is an offline learning procedure: the
enriched input representation is first created through the reservoir states and
only then the readout function is computed in one shot.

4.1.2 Fitting using Least-Squares

The most popular way of training the readout in the fitting phase is based on the
Least-Squares. Let us assume that our training data have times t ∈ [t0, 0]. First
we discard the initial states, as they may include some transient effects, so that
we only use states starting from ts > t0. Our goals is then to find the Wout that
minimizes the Mean Square Error (MSE):

27 4.1 Training Strategies

MSE(Y , Ŷ) =
1

Ttrain

t f
∑

t=ts

‖yt − ŷt‖2
2 (4.1)

where Y = [yts
, . . . , y0] and Ŷ = [ŷts

, . . . , ŷ0]. Each estimation ŷt is given by
(3.6).

To solve this problem, we define the state matrix as:

R =





| | | |
rts

rts+1 . . . r0

| | | |



 (4.2)

The minimum of (4.1) can be found in closed form by means of the pseudo-
inverse of this matrix:

Wout = YR† (4.3)

where

R† := R>(RR>)−1. (4.4)

Usually, the problem requires some form of regularization and slightly more
complex algorithms are used, like the Ridge Regression, which uses a regularized
pseudo inverse which reads:

R†
λ

:= R>(RR> −λI)−1, (4.5)

in which I is the identity matrix and λ is a regularization parameter.

4.1.3 Generating scenario

In the generating scenario, one uses the predicted output ŷt as an input, i.e., one
sets ut = ŷt . This leads to two very different situations: in the listening phase
the reservoir behaves like an externally-driven dynamical system (this is named
open loop phase). This procedure is usually named teacher forcing [Williams and
Zipser, 1989]. Instead, in the predicting phase the system output behaves as
feedback (closed loop phase), leading to an autonomous dynamical system of the
form:

rt+1 = f (rt ,ψ(rt)) (4.6)

28 4.2 Hyperpameters

Online learning procedures may be exploited as well. For instance, in [Lu
and Bassett, 2020] the (linear) readout is trained using a simple delta-rule of the
form

W (t+1)
out = W (t)

out +α(∆t · r>t) (4.7)

which aims at gradually minimizing the discrepancy ∆t := yt − ŷt between
the target and the output. A more sophisticated approach named FORCE learn-
ing [Sussillo and Abbott, 2009] was explicitely designed for the generating case.
The authors make use of the Recursive Least-Squares (RLS) [Plackett, 1950]
algorithm to directly adapt the network prediction ŷ to the desired output y ,
avoiding the teacher forcing.

4.2 Hyperpameters

The simplicity of the RC training procedure comes at the cost of a complex hyper-
parameters optimization, which is required due to the high variability of perfor-
mance. RCNs are known to be sensitive to the setting of hyper-parameters like
the Spectral Radius (SR), the input scaling and the sparseness degree [Jaeger
and Haas, 2004], which critically affect their behavior and, hence, the perfor-
mance on the task at hand. Various strategies can be applied to conduct this
hyper-parameters optimization [Doan et al., 2021; Ferreira et al., 2013; Thiede
and Parlitz, 2019] but it is hard to assess the performance of such procedures
[Lukoševičius and Uselis, 2019; Racca and Magri, 2021; Haluszczynski and Räth,
2019]. Moreover, some efforts have been devoted to eliminating the randomness
in the reservoir initialization to reduce the stochasticity of the optimization pro-
cedure [Rodan and Tino, 2010; Gallicchio et al., 2020]. In this section, we list
the parameters which are more relevant for the RCN and states how some prop-
erties of the reservoir depends on them. A detailed guide with suggestion on
how to tune them can be found in [Lukoševičius, 2012].

4.2.1 Reservoir Topology

The matrix connection W is usually generated at random, by sampling its el-
ement from a given distribution. Yet, other choices have been explored in the
literature.

Delay Line In a delay line each neuron is connected to the subsequent one to
form a chain-like architecture, so that the reservoir connection matrix Wd

29 4.2 Hyperpameters

reads:
Wd,i j = δi, j−1 (4.8)

where δ is the Kronecker delta. Note that the last neuron in the chain is
not connected to the first one. Moreover, the input weights vector is wd =
(1, 0,0, . . . , 0), meaning that the input enters the network only through the
first neuron of the chain. Mathematically, such a model setting corresponds
to the n-th order AR model, which is a really popular and studied tool in
time series analysis and system identification Bittanti [2019].

Cyclic Reservoir A reservoir is said to be cyclic when each neuron is connected
to another one, in a way that they form a ring. The reservoir matrix of a
cyclic reservoir has the form:

Wc,i j = δi, j−1 (4.9)

where, with an abuse of notation, δ0,−1 := δ0,n−1. From the product of
Kroenecker deltas, it follows that:

W 2
c,i j =

∑

k

Wc,ikWc,k j =
∑

k

δi,k−1δk, j−1 = δi, j−2 (4.10)

and the same holds for higher powers, so that W p
c,i j = δi, j−p.

Random Reservoir In a random reservoir the entries of the reservoir matrix Wp

are Independent and Identically Distributed (i.i.d.) random variables of
null mean and variance equal to ρ/N .

Wr,i j ∼P
�

0,
ρ2

N

�

(4.11)

In the sequel, we consider the generic i j component of the matrix to be
drawn from a Gaussian distribution, i.e., P

�

0, ρ
2

N

�

= N
�

0, ρ
2

N

�

as the
choice of the particular distribution does not effect the behavior [Zhang
et al., 2011].

Wigner Reservoir The diagonal elements are distributed as in (4.11), i.e., Ww,ii ∼
N (0,ρ2

1/n), while off-diagonal elements follow:

Ww,i j =Ww, ji ∼N
�

0,
ρ2

2

N

�

, i 6= j (4.12)

Wigner matrices are symmetric. In this work, we will always set 2ρ1 =
ρ2 = ρ. Notably, this leads to 〈ρ(Wp)〉= 〈σmax(Wp)〉= ρ.

30 4.2 Hyperpameters

Delay Line Cyclic Reservoir Random Reservoir Wigner Reservor

Figure 4.2. The different architectures discussed in this work. From left to
right: delay line, cyclic, random and Wigner topology. The thickness of the
arrow accounts for the strength of the connection. Notice that it has the same
value for all the connections in both the delay line and the cyclic reservoir,
while it varies for the other two. Note the presence of self loops in random
and Wigner architectures. Also consider that the Wigner reservoir has only
symmetric connections (double-headed arrows).

4.2.2 Spectral Radius

Given a square matrix W , its Spectral Radius (SR) ρ = ρ(W) is defined as the
largest absolute value of its eigenvalues. Let λ1, . . . ,λn be the eigenvalues of the
square matrix W ∈ Rn×n. The SR ρ is then defined as:

ρ := max
i=1,2,...,N

{|λi|} (4.13)

The name Spectral Radius is due to the fact that all the (possibly complex)
eigenvalues of W lie in a circle of radius ρ, see Figure 4.3 In particular when
the entries of the matrix W are i.i.d. like in (4.11) the so-called Circular Laws
applies:

Theorem 1 (Circular Law [Tao et al., 2010]). Let the Empirical Spectral Distribu-
tion (ESD) of a square matrix W ∈ RN×N be defined as:

µW :=
1
N
|{i : 1≤ u≤ N ,ℜ(λi)≤ s,ℑ(λi)≤ t}| (4.14)

where |·| denotes the cardinality of a set and ℜ and ℑ respectively denote the Real
and Imaginary part of λi, the eigenvalues of W . Moreover, let WN := Wp

N
Then, if the entries of of W are i.i.d. complex random variables with mean 0

and variance 1, the ESD of WN converges to the uniform distribution on the unit
disk as N →∞, both in the strong and weak senses.

31 4.2 Hyperpameters

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

Gaussian

SR
 =

 0
.8

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

Uniform

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

Bernoulli

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y
SR

 =
 1

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y
SR

 =
 1

.4

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

1.5 1.0 0.5 0.0 0.5 1.0 1.5
Real

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y

Figure 4.3. Eigenvalues for the of the connectivity matrix for different SR and
different distributions for the entries of the matrix. In the “Gaussian” case the
entries are drafted from the normal distribution with null mean and unit variance.
In the “Uniform” case we used a uniform distribution in [−1,1]. “Bernoulli”
accounts for entries that are equal to 1 or −1 with equal probability. Matrices
are then rescaled to match the reported SR values. The blue line accounts for
the unit circle.

32 4.2 Hyperpameters

In the context of RC and in particular of RCNs, the SR of the connectivity
matrix W plays a crucial role as it characterize the dynamics of the reservoir
state. In particular it affects the nonlinearity of the reservoir and its memory, i.e.,
the ability of encoding past inputs in its state.

The effect of the SR on the nonlinearity can be easility understood when
considering the shape of the reservoir of the RCN (11.35) in which the activation
functionσ is chosen to be tanh [Bollt, 2021]. For small SR, each neuron operates
near the origin where the tanh is approximately linear. Increasing the value of
the SR drives the network further from 0, thus moving the working point towards
the nonlinear regions of tanh.

SR plays a crucial role in the satisfaction of the so-called ESP, as discussed in
Section 7.2. The effect on memory of the SR is discussed throughout Chapter 6.
In the linear case, i.e., when σ(r) = r , a the role played by SR can be studied
analytically, see Chapter 8 for a detailed analysis.

4.2.3 Readout

In the spirit of RC a complete representation of the driving dynamics system
should be present in the reservoir state rt . For this reason, a linear readout like
(3.6) is usually the most common choice as it is both easy to train and it avoids
overfitting due to its simplicity.

Recently [Lu et al., 2017] a variation of the linear readout accounting for a
square term was proposed. Its general form can be written as:

ψ(rt) = W (1)
out rt +W (2)

out r
2
t (4.15)

in which we introduced the square state r 2
t := [r2

0,t , r2
1,t , . . . , r2

N ,t] and W (1)
out and

W (2)
out are the readout of the linear and square part respectively. Of course, (4.15)

can be also understood as a linear readout which operates on the extended state
r ext

t := [rt , r 2
t]:

ψ(rt) = Woutr
ext
t (4.16)

where Wout is simply the concatenation of W (1)
out and W (2)

out . This form empha-
sizes the equivalence with the linear readout (3.6). Note that this procedure is
different from a quadratic fitting, in which the mixed components (of the form
ri,t r j,t) are present.

The readout with quadratic term was first introduced in [Lu et al., 2017]
to overcome the impossibility of recovering the full state of the Lorenz system
(Appendix C.1) by reading only one of its component, due to the symmetry of its

33 4.2 Hyperpameters

dynamics. This issue was later extensively studied by Herteux and Räth [2020]
in which the authors compares various ways to deal with this symmetry. The
relationship between the quadratic term of the readout and the symmetry in the
source system is explored in Flynn et al. [2021]. Notice that it is also possible
to exploit these symmetries through a tailored design of the RCN Barbosa et al.
[2021].

4.2.4 Other Hyperparameters

Number of Units The number of units in the reservoir N controls the size of
the reservoir. In general, larger reservoirs lead to better results: this is
due to the fact that they generally lead to more diverse representation of
the input signal into the states and, so, the readout receives a more varied
input that is easier to fit. Yet, for this reason, using large reservoirs might
lead to overfitting, and some regularization measures must be employed
Lukoševičius [2012]. As a lower bound for N , one should consider the
minimal number of past-inputs that the network has to remember in order
to produce the correct output. See Section 6.1 for a detailed analysis.

Input Scaling The input scaling parameters controls the importance that the in-
put has on the network dynamics. Usually, it is tuned by controlling the
norm of the input matrix w . One first creates a matrix w̃ by sampling
its entries at random (usually from a Normal distribution N (0, 1) and the
setting w := ωw̃ , where ω is a scalar named input scaling factor. Choos-
ing small value of ω means that the input will have a minor influence on
the state dynamics, down to the limit case ω = 0 for which the input is
completely irrelevant. Instead, settingω to be large leads to a stronger de-
pendence of the state from the input driving the system. In general, it hard
to asses what the optimal value of ω should be for a given task, and some
hyper-parameter tuning must be carried by means of cross-validation.

Sparsity In the seminal paper by Jaeger [2001], the reservoir connection matrix
W was chosen to be sparse: 95% of its connections were set to 0. This was
done following the intuition that decoupling the state variables would lead
to a richer representation of the input signal they encode. Later studies
have empirically discredited this idea [Schrauwen et al., 2007; Xue et al.,
2007; Gallicchio and Micheli, 2011; Carroll and Pecora, 2019; Gallicchio,
2020], but sparse designs are still used both as a way to speedup com-
putations and to reduce the number of connections required in hardware

34 4.2 Hyperpameters

implementations of RC. Sparsification of W is usually controlled by a pa-
rameter α which controls the probability of the matrix entries Wi j to be
non-zero, meaning that the matrix is fully connected for α = 0. Another
possibility is to control the mean degree 〈k〉 of each neuron. The two ap-
proaches are related by the formula 〈k〉= αN , which is simply the expected
value of Bernoulli process. Notably, in a recent work, the sparsification of
the input matrix w lead to a performance improvement [Gallicchio, 2020].

Bias The role of the bias term (b in Eq. 3.5) has recently gained attention in the
community. The bias act as a (constant) shift in the input of each neuron
and controls whether the unit will operate near its linear region or near
the saturating one, as discussed above for the input signal – which can be
viewed as a time varying bias. In Herteux and Räth [2020] the role of
bias as a symmetry breaking tool was highlighted: there, it is shown that
the symmetries in the source systems give raise to the prediction of mirror
attractors which, in turn, may affect the performance in the task at hand.
The bias term breaks this symmetry, thus destroying the mirror attractors.

Chapter 5

Self-Normalizing Activation
Function

In this chapter we present a novel activation function for RCNs, namely the
self-normalizing activation function, based on projecting the reservoir state to an
hyper-sphere. In section 5.1 the model is described and a proof that it is a uni-
versal function approximator is given. Section 5.2 describes its autonomous dy-
namics, showing that it cannot display a chaotic behavior. Finally, in Section 5.3
an analysis of the dynamics of networks states when driven by an external input
is presented.

5.1 Self-Normalizing Activation Function

Here, we propose a new model for RCN characterized by the use of a particular
self-normalizing activation function that provides important features to the re-
sulting network. Notably, the proposed activation function allows the network
to exhibit nonlinear behaviors and, at the same time, provides memory proper-
ties similar to those observed for linear networks. This superior memory capac-
ity is linked to the fact that the network never displays a chaotic behavior: we
will show that the maximum Lyapunov exponent is always zero, implying that
the network operates on the Edge of Criticality (EoC). The proposed activation
function guarantees that the SR of the reservoir matrix (whose value is used as
a control parameter) can vary in a wide range without affecting the network
stability.

The proposed self-normalizing activation function is

35

36 5.1 Self-Normalizing Activation Function

at = Wrt−1 + w ut−1 (5.1a)

rt = p
at

‖at‖
(5.1b)

The normalization in Eq. 5.1b projects the network pre-activation at onto
an (N − 1)-dimensional hyper-sphere SN−1

p := {r ∈ RN ,‖r‖ = p} of radius p.
Fig. 5.1 illustrates the normalization operator applied to the state. Note that the
operation (5.1b) is not element-wise like most of activation functions as its effect
is global, meaning that a neuron’s activation value depends on all other values.

5.1.1 Universal Function Approximation Property

Here, we show that the universal function approximation property also holds
for the proposed RCNs model (5.1). To this end, we note that σi(x) := x i/‖x‖
can be intended as a squashing function (see Def. 1) for each i-th component.
As discussed in 3.3.2, a RCN is a universal function approximator provided it
satisfies the contractivity condition. In order to prove it for our system, let us
introduce the the notation x̂ := x/‖x‖ and ŷ := y/‖y‖, valid when both norms
are non-null. Taking the square of the norm, one gets:

‖σ(x)−σ(y)‖2 = p2(2− 2(x̂ · ŷ))≤ p2
��

‖x‖
‖y‖

+
‖y‖
‖x‖

�

− 2x̂ · ŷ
�

(5.2)

The inequality a
b+

b
a ≥ 2 follows from the fact that (a−b)2 = a2+b2−2ab > 0

for all a, b > 0. Now, we assume ‖x‖,‖y‖> p and show that:

‖σ(x)−σ(y)‖ ≤ p2 ·
�

‖x‖
‖y‖

+
‖y‖
‖x‖
− 2x̂ · ŷ

�

(5.3)

≤ ‖x‖‖y‖
�

‖x‖
‖y‖

+
‖y‖
‖x‖
− 2x̂ · ŷ

�

(5.4)

= ‖x‖2 + ‖y‖2 − 2(‖x‖)(‖y‖)x̂ · ŷ
︸ ︷︷ ︸

2x ·y

(5.5)

= ‖x − y‖2
2 (5.6)

proving the contractivity condition (3.7).

37 5.2 Network State Dynamics: the Autonomous Case

We see that the only condition needed is ‖x‖,‖y‖ > p, which means that
the linear part of the update (5.1a) must map states outside the hyper-sphere of
radius p. Finally, by applying properties of norms, we observe that:

‖W · x t + w · ut‖ ≥ ‖W · x t‖ − ‖w · ut‖ ≥ σmin(W)p− ‖w‖‖umax‖ (5.7)

and asking this to be larger than p results in the condition:

σmin(W)≥ 1+
‖w‖‖umax‖

p
(5.8)

where σmin(W) is the smallest singular value of matrix W and ‖umax‖ denotes
the largest norm associated to an input.

We emphasize that (5.8) results in a sufficient yet not necessary condition
that may be understood as requiring that the input will never be strong enough to
contrast the expansive dynamics of the system, leading the network state inside
the hyper-sphere of radius p. In fact, unless the signal is explicitly designed
for violating such a condition, it will very likely not bring the system inside the
hyper-sphere as long as the norm of W is large enough compared to the signal
variance.

5.2 Network State Dynamics: the Autonomous Case

We now discuss the network state dynamics in the autonomous case, i.e., in the
absence of input. This allows us to prove why the network cannot be chaotic.

From now on, we assume p = 1 as this does not affect the dynamics, provided
that condition (5.8) is satisfied. From (5.1), the system state dynamics in the
autonomous case reads:

σ(r) :=
Wr
‖Wr‖

(5.9)

At time-step t the system state is given by

rt = σ(rt−1) =
Wrt−1

‖Wrt−1‖
=

W
‖W W rt−2

���‖Wrt−2‖
‖

Wrt−2

�����‖Wrt−2‖
=

W 2rt−2

‖W 2rt−2‖
(5.10)

By iterating this procedure, one obtains:

rt := σt(r0) =
W t r0

‖W t r0‖
(5.11)

where r0 is the initial state. This implies that, for the autonomous case, a system
evolving for t time-steps coincides with updating the state by performing t matrix
multiplications and projecting the outcome only at the end.

38 5.2 Network State Dynamics: the Autonomous Case

W xk + Win uk+1

 xk

 xk+1

 xk+2

 xk+3

W xk+2 + Win uk+3

W xk+1 + Win uk+2

Figure 5.1. Example of the behavior of the proposed model in a 2-dimensional
scenario. The blue lines represent the linear update step of Eq. (5.1a), while
the dashed lines denote the projection of Eq. (5.1b). The red lines represent
the actual steps performed by the system. Note that condition (5.8) accounts
for the fact that the linear step must never bring the system state inside the
hyper-sphere.

It is worth to comment that this holds also if matrix W changes over time. In
fact, let Wt := W(t) be W at time time t. Then, the evolution of the dynamical
system reads:

rt := σt(r0) =
WtWt−1 . . . W2W1r0

‖WtWt−1 . . . W2W1r0‖
(5.12)

Furthermore, note that a system described by matrix W and a system character-
ized by W ′ = aW coincide. In turn, this implies that the SR of the matrix does
not alter the dynamics in the autonomous case.

5.2.1 Edge of Chaos

When tuning the hyper-parameters of RCNs, one usually tries to bring the system
close to the EoC, since it is in that region that their performance appears to be
optimal [Livi et al., 2017]. This can be explained by the fact that, when operating
in that regime, the system introduces rich dynamics without denoting chaotic

39 5.2 Network State Dynamics: the Autonomous Case

behavior. See Section 10.2.1
Here, we show that the proposed recurrent model (5.1) cannot enter a chaotic

regime. Notably, we prove that, when the number of neurons in the network
is large, the maximum (local) Lyapunov exponent cannot be positive, hence ne-
glecting the possibility to introduce a chaotic behavior. To this end, we determine
the Jacobian matrix of (5.1b) and then show that, since its spectral radius tends
to 1, the maximum Local Lyapunov Exponent (LLE) must be null. The Jacobian
matrix of (5.1b) reads:

Ji j =
∂

∂ x i
σ j(r) =

t
∑

l

∂ σ j

∂ al

∂ al

∂ x i
=

Wi j

‖a‖

�

1−
aia j

‖a‖2

�

(5.13)

where the time index k is omitted to ease the notation. We observe that, asymp-
totically for large networks (N → ∞), we have that ai/‖a‖ → 0 for each i,
meaning that the Jacobian matrix reduces to J(r) = W/‖Wr‖. As we are con-
sidering the case with p = 1, we know that ‖r‖= 1.

This allows us to approximate the norm of W with its SR ρ = ρ(W),

J ≈
W
‖Wr‖

≈
W
ρ

. (5.14)

Under this approximation (5.14), the largest eigenvalue of J must be 1 as the SR
ρ is the largest absolute value among the eigenvalues of W . We thus character-
ize the global behavior of (5.1b) by considering the maximum Local Lyapunov
Exponent (LLE) [Livi et al., 2017], which is defined as:

Λ := lim
t→∞

1
t

log

�

k
∏

t

ρk

�

(5.15)

where ρk is the spectral radius of the Jacobian at time-step k. Eq. 5.15 implies
that Λ= 0 as t →∞, hence proving our claim.

In order to demonstrate that Λ= 0 holds also for networks with a finite num-
ber N of neurons in the recurrent layer, we numerically compute the maximum
LLE by considering the Jacobian in (5.13). The results are displayed in Fig. 5.2.
Fig. 5.2 panel (a) shows the average value of the maximum LLE with the related
standard deviation obtained for different values of SR. Results show that the LLE
is not significantly different from zero. In Fig. 5.2 panel (b), instead, we show the
Lyapunov spectrum of a network with N = 100 neurons in the recurrent layer,
obtained for different SR values. Again, our results show that the maximum LLE
of (5.1b) is zero for finite-size networks, regardless of the values chosen for the
SR.

40 5.3 Network State Dynamics: the Input-Driven Case

Figure 5.2. Panel (a) shows LLEs for different value of the SR. Each point in
the plot represents the mean of 10 different realizations, using a network with
N = 500 neurons. In panel (b) examples of the Lyapunov spectrum for different
100-dimensional networks are plotted. The Lyapunov exponents are ordered by
decreasing magnitude. Note that the largest exponent is always zero.

5.3 Network State Dynamics: the Input-Driven Case

We now study the dynamics of (5.1b) when the system is driven by an input. To
simplify the notation, let us define the effective input contributing to the neuron
activation as

x t := w ut . (5.16)

Accordingly, Eq. 5.1a takes on the following form:

at = Wrt−1 + x t , (5.17)

where xk operates as a time-dependent bias vector. Let us define the normaliza-
tion factor as:

Nt = ‖Wrt−1 + x t‖, (5.18)

Consider (5.1): if we explicitly expand the first steps from the initial state r0

we obtain:

41 5.3 Network State Dynamics: the Input-Driven Case

r1 =
Wr0 + x1

‖Wr0 + x1‖
=

Wr0 + r1

N1
=

W
N1

r0 +
1
N1

x1 (5.19)

r2 =
Wr1 + x1

N2
=

W 2

N2N1
r0 +

W
N2N1

x1 +
1
N2

x2 (5.20)

r3 =
Wr2 + x3

N3
=

W 3

N3N2N1
r0 +

W 2

N3N2N1
x1 +

W
N3N2

x2 +
1
N3

x3 (5.21)

So that the general case can be written as:

rt =
Wrt−1 + x t

Nt
=

W t

Nt Nt−1 . . . N1
r0 +

W t−1

Nt Nt−1 . . . N1
x1 +

W t−2

Nt Nt−1 . . . N2
x2 + · · ·+

1
Nt

x t

(5.22)

Then, the state at time-step t can be written as:

rt = M (t,0)r0 +
t
∑

k=1

M (t,k)xk (5.23)

where

M (t,k) :=
W t−k

∏t
l=k Nl

. (5.24)

By looking at (5.23), it is possible to note that each x t is multiplied by a
time-dependent matrix, i.e., the network’s final state rt is obtained as a linear
combination of all previous inputs. Eq. 5.24 allows one to study the memory
properties of these networks from a theoretical perspective, see Appendix B for
details. An experimetal analysis is presented in Chapter 6, Sections 6.3 and 6.4.

42 5.3 Network State Dynamics: the Input-Driven Case

Part II

Representation

43

Chapter 6

Memory

In this Chapter we analyze the memory of RC systems, as it is fundamental a
feature that systems dealing with temporal data needs to display. In Section 6.1
we introduce the Memory Capacity, which is the most popular measure of mem-
ory in the field. The rest of the Chapter is dedicated to experiments concerning
the memory. In particular, Section 6.2 compares the memory of different archi-
tectures, showing that the circle-topology achieves leading results. Section 6.3
compares different activation functions, including the self-normalizing activation
described in Chapter 5. Finally, 6.4 explores the Memory-Nonlinearity Trade-off
typical of dynamical systems, in which the self-normalizing activation show bet-
ter results when both memory and nonlinearity are required.

6.1 Memory Capacity

To quantify the memory of a RC system, one can measure its ability to represent
past events in its state. The Memory Capacity (MC) [Jaeger, 2002] was defined
with this intent, as a measure correlating the past inputs with the network out-
puts. More in detail, consider a system like (3.3) driven by a 1-dimensional
signal {ut}. We then train the network to reproduce the input with a given delay
τ, i.e., we set the target yt = ut−τ and we obtain our approximation ŷt through
the readout (3.4). Then we define:

MCτ :=
Cov2(ut−τ, ŷt)
Var(st)Var(yt)

, (6.1)

where Cov and Var are the Covariance and the Variance, respectively. Eq.6.1
can be understood as the amount of information about the value of the input sig-
nal that can be retrieved from the state after τ time-steps have elapsed. Usually,

45

46 6.2 Memory Curves

one chooses ut to be an i.i.d. signal, so that the knowledge of different – more
recent – time-steps cannot be exploited by the network. Plotting the values of
(6.1) as a function of τ for a given system results in the Memory Curves [Jaeger,
2002] (see Section 6.2).

The total short-term Memory Capacity is then obtained by:

MC=
∞
∑

τ=0

MCd (6.2)

Note that in [Jaeger, 2002] it is proven that, under the assumption of i.i.d.
input signal, for any RNN with N recurrent units, the maximum MC achievable
is N . This result was later extended in [Gonon et al., 2020b], where a bound for
nonlinear networks is provided and conditions for the MC to equal N are given.

The analysis of the memory capacity (as measured by the ability of the net-
work to reconstruct or remember past inputs) of input-driven systems plays a
fundamental role in the study of RCNs [Tiňo and Rodan, 2013; Goudarzi et al.,
2016; Jaeger, 2002; Ganguli et al., 2008].

Moreover, it has been recently shown that optimizing memory capacity does
not necessarily lead to networks with higher prediction performance [Marzen,
2017].

6.2 Memory Curves

In order to study the memory properties of linear RCNs, we design networks
trained to remember a random i.i.d. input. We generate inputs of length T and
split them in a training set ranging in (−Ltrain, 0) and a test set ranging in (0, Ltest).
We set these values so that the training set contains Ltrain = 1000 samples and
the test set Ltest = 500 samples. In the task under consideration, the network
is trained to reproduce past input (a white noise signal) at a given past-horizon
τ, so that yt = ut−τ. The input signal {ut} is chosen to be Gaussian i.i.d. white
noise, ut ∼N (0, 1).

The readout is finally configured through a least-squares procedure and its
accuracy is then evaluated on the test set as γ=max{1−NRMSE, 0}, where the
Normalized Root Mean Squared Error (NRMSE):

NRMSE :=

√

√

√

√

∑T
t=t0
(yt − ŷt)2

∑T
t=t0
(yt − y)2

(6.3)

47 6.2 Memory Curves

yt denotes the system output at time t, y := 1
T

∑T
t=t0

yt is its empirical average
and ŷt stands for the predicted output. Note that (6.3) is an estimation of the
memory capacity (6.1).

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random
sr = 0.995
sr = 0.99
sr = 0.95

(a)

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wigner
sr = 0.995
sr = 0.99
sr = 0.95

(b)

0 50 100 150 200 250 300 350 400

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Delay line
sr = 0.995
sr = 0.99
sr = 0.95

(c)

0 50 100 150 200 250 300 350 400
Steps in the past

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Cyclic

sr = 0.995
sr = 0.99
sr = 0.95

(d)

Figure 6.1. Memory curves for the Random (a), Wigner (b), Delay Line (c)
and Cyclic (d) reservoirs with different values of ρ, for a reservoir of N = 100
neurons. Plotted values are averages over 10 different realizations, with the
shaded area accounting for a standard deviation: a side effect of plotting data
in this way is that the value may be negative even if the accuracy is defined as
a positive quantity. Note that having a high ability to reconstruct recent inputs
(τ < N) compromises the capacity to remember the more distant ones.

In Figure 6.1 the Memory Curves, are plotted for four different architectures.
The Random and the Wigner architectures appear to have a short memory. Their
accuracy dramatically decreases as τ grows. The behavior of the cyclic reservoir
appears to be radically different. As described in Rodan and Tino [2010], the
performance does not decrease gradually, but remains almost constant for some
time and then abruptly decreases. The drop in performance occurs when τ= N ,
N being the number of neurons in the reservoir. Note that in [Jaeger, 2002,

48 6.2 Memory Curves

Section 3] a similar shape for the memory curve is obtained by using an “almost
unitary” reservoir matrix, where all singular values equal a constant C < 1. We
note that also the cyclic reservoir Wc shares this feature, explaining why the
results are similar.

We comment on how the SR affects the performance: when the SR is close to
one, the accuracy in the reconstruction of ut−τ is lower for recent inputs samples
(i.e., smaller τ) but higher for distant in time ones. In other words, choosing a
large ρ allows the network to better remember the distant past, at the price of
compromising its ability to remember the recent one.

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Random
= 10
= 30
= 50

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Wigner
= 10
= 30
= 50

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Delay line
= 10
= 30
= 50

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Spectral radius

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Cyclic
= 10
= 30
= 50

(d)

Figure 6.2. Accuracy in remembering an i.i.d. past-input as function of the
spectral radius. All the networks have N = 100 neurons. Plotted values are
averages over 10 different realizations, with the shaded area accounting for a
standard deviation: a side effect of plotting data in this way is that the value
may be negative even if the accuracy is defined as a positive quantity.

We investigate the impact of the spectral radius on memory capacity in Fig-
ure 6.2, where the accuracy γ of the four architectures in recalling a past input
(at various τ) is plotted as function of the SR. We see that, a larger SR is required

49 6.3 Different Activation Functions

to correctly recall inputs that are further in past (but for which τ < N), since the
SR controls the magnitude of theφ(k)j , i.e., the permanence of uk on the state. We
notice that the Random and the Wigner architectures show a similar behavior,
with the former displaying a superior performance than the latter. Instead, the
Cyclic network has the same behavior as the SR increases, but displays an abrupt
fall as it approaches 1.

6.3 Different Activation Functions

We now study how the activation function σ affects the memory of RCNs. We
compare models with three different σ: a tanh activation, a linear one (3.8) and
the self-normalizing activation discussed in Chapter 5 (5.1). We use fixed, but
reasonable hyper-parameters for all networks, since in this case we are only in-
terested in analyzing the network behavior on different tasks. In particular, we
selected hyper-parameters that worked well in all cases taken into account; in
preliminary experiments, we noted that different values did not result in substan-
tial (qualitative) changes of the results. The number of neuron N is fixed to 1000
for all models. For linear and nonlinear networks, the input scaling (a constant
scaling factor of the input signal) is fixed to 1 and the SR equals ρ = 0.95. For
the proposed model (5.1), the input scaling is chosen to be 0.01, while the SR
is ρ = 15. For the sake of simplicity, in what follows we refer to RCNs resulting
from the use of (5.1) as “spherical reservoir”.

To evaluate the performance of the network, we use the accuracy metric de-
fined as γ=max{1−NRMSE,0}, where the NRMSE is defined in (6.3).

In the following, we report the accuracy γ while varying τ in the past for
various benchmark tasks. Each result in the plot is computed using the average
over 20 runs with different network initializations. The networks are trained on
a data set of length Ltrain = 5000 and the associated performance is evaluated
using a test set of length Ltest = 2000. The shaded area represents the standard
deviation. All the considered signals were normalized to have unit variance.

White noise In this task, the network is fed with white noise uniformly dis-
tributed in the [−1, 1] interval. Results are shown in Fig.6.3, panel (a).
We note that networks using the spherical reservoir have a performance
comparable with linear networks, while tanh networks do not correctly re-
construct the signal when τ exceeds 20. See Appendix B for a theoretical
analysis of these results.

50 6.3 Different Activation Functions

Figure 6.3. Results of the experiments on memory for different benchmarks.
Panel (a) displays the white noise memorization task, (b) the Multiple Super-
imposed Oscillator (MSO), (c) the x-coordinate of the Lorenz system, (d) the
Mackey-Glass series and (e) the Santa Fe laser dataset. As described in the
legend (f), different line types account for results obtained on training and test
data. The shaded areas represent the standard deviations, computed using 20
different realization for each point.

51 6.4 Memory-Nonlinearity Trade-off

Multiple superimposed oscillators The network is fed with Multiple Superim-
posed Oscillator (MSO) with 3 incommensurable frequencies. See Ap-
pendix C.5 for details. Results are shown in Fig.6.3, panel (b). We note the
performance of the linear and the spherical reservoirs are again similar and
both outperform the network using the hyperbolic tangent. The accuracy
peak when τ ≈ 60 is due to the fact that the autocorrelation of the signal
reaches its maximum value at that time-step.

Lorenz series We simulated Lorenz system (See Appendix C.1) in a chaotic con-
figuration then fed the network with the x-coordinate only. Results are
shown in Fig.6.3, panel (c). Also in this case, while the accuracy for spher-
ical and linear networks does not seem to be affected by τ, the perfor-
mance of networks using the tanh activation dramatically decreases when
τ is large. This stresses the fact that non-linear networks are significantly
penalized when they are requested to memorize past inputs.

Mackey-Glass system We simulated the Mackey-Glass system (Appendix C.3)
and use it an input signal. Results are shown in Fig.6.3, panel (d). Note
that in this case the performance of the network with spherical reservoir is
comparable with the one obtained using the hyperbolic tangent and both
of them are outperformed by the linear networks.

Santa Fe laser dataset The Santa Fe laser dataset (Appendix C.4) is a chaotic
time series obtained from laser experiments. Results are shown in Fig.6.3,
panel (e). Also in this case the hyperbolic tangent networks do not manage
to remember the signal, while the other systems show the usual behavior.

6.4 Memory-Nonlinearity Trade-off

It is known that RCNs are characterized by a memory–nonlinearity trade-off
Dambre et al. [2012]; Verstraeten et al. [2010]; Inubushi and Yoshimura [2017],
in the sense that introducing nonlinear dynamics in the network degrades mem-
ory capacity.

Here, we evaluate the capability of RCNs to deal with tasks characterized
by tunable memory and non-linearity features [Inubushi and Yoshimura, 2017].
The network is fed with a signal {ut} constituted of univariate random variables
drawn from a uniform distribution in [−1,1]. The network is then trained to
produce the following target output:

52 6.4 Memory-Nonlinearity Trade-off

yt = sin(ν · ut−τ). (6.4)

We see that τ accounts for the memory required to correctly solve the task,
while ν controls the amount non-linearity involved in the computation. For each
configuration of τ and ν chosen in suitable ranges, we run a grid search on the
range of admissible values of SR and input scaling. Notably, we considered 20
equally-spaced values of the SR and for the input scaling. Again, we compare
models with three different activation σ: a tanh activation, a linear one (3.8)
and the self-normalizing activation discussed in Chapter 5 (5.1). For networks
using hyperbolic tangent, the SR varies in [0.2,3]; [0.2, 1.5] for linear networks,
and [0.2,10] for networks with spherical reservoir. The input scaling always
ranges in [0.01, 2].1 We then choose the hyper-parameters configuration that
minimizes (6.3) on a training set of length Ltrain = 500 and then assess the error
on a test set with Ltest = 200.

0 25 50 75 100 125 150 175 200
k

2

1

0

1

2

y(
k)

test data
tanh
spherical
linear

Figure 6.4. Comparison of the network prediction the memory–nonlinearity task
for ν= 2.5 and τ= 10. The hyper-parameters of the networks are the same used
to generate Fig. 6.3. Here the accuracy values are γtanh = 0.12, γspherical = 0.63
and γlinear = 0.61.

In Figures 6.5, 6.6, and 6.7, we show the NRMSE for the task described above
for different values of ν and τ, and the ranges of the input scaling factor and
the spectral radius which performed best for the hyperbolic tangent, linear and
spherical activation function, respectively. The results of our simulations agree

1This choice of exploring large values of SR for the hyperspherical case is motivated by the
fact that condition (5.8) must be satisfied in order for the network to work properly: choosing a
large SR will also lead to larger σmin(W), as discussed in subsection 3.3.2.

53 6.4 Memory-Nonlinearity Trade-off

with those reported in [Inubushi and Yoshimura, 2017] and, most importantly,
confirm our theoretical prediction: the proposed model possess memory of past
inputs that is comparable with the one of linear networks but, at the same time, it
is also able to perform nonlinear computations. This explains why the proposed
model denotes the best performance when the task requires both memory and
nonlinearity, i.e., when both τ and ν are large. Predictions obtained for a specific
instance of this task requiring both features are given in Fig 6.4, showing how
the proposed model outperforms the competitors.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

NRMSE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

scaling factor

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

spectral radius

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6.5. Results for the hyperbolic tangent activation function. The network
performs as expected: the error grows with the memory required to solve the
task. The choice of the spectral radius displays a pattern, where larger SRs are
preferred when more memory is required. The scaling factor tends to be small
for almost every configuration.

We emphasize that in order to explore the memory-nonlinearity relation-
ship we followed the experimental design proposed in [Inubushi and Yoshimura,
2017]: our goal is to study the memory property of the proposed model and not
to develop a model specifically designed to maximize the compromise between
memory and nonlinearity. The reader interested in models that aim at explicitly
tackling the memory-nonlinearity problem may refer to recently-developed hy-
brid systems [Inubushi and Yoshimura, 2017; Di Gregorio et al., 2018] which try
to deal with the memory–nonlinearity trade–off by combining, in different ways,
linear and non-linear units so that the network can exploit a combination of

54 6.4 Memory-Nonlinearity Trade-off

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

NRMSE

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

scaling factor

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

spectral radius

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 6.6. Performance of linear networks. We note that τ seems to have no
significant effect on the performance. In fact, we note very large errors when
the nonlinearity of the task is high. The choice of the scaling factor and of the
spectral radius shows a really weak tendency to certain values, indicating that
the performance is only weakly influenced by the hyper-parameters.

them according to the problem at hand. These approaches introduce new hyper-
parameters which, basically, allow to control the memory–nonlinearity trade–off.

55 6.4 Memory-Nonlinearity Trade-off

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

NRMSE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

scaling factor

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5

4

3

2

1

0

1

2

Lo
g

spectral radius

2

4

6

8

10

Figure 6.7. Performance of the proposed model. We see that the network
performs reasonably well for all the tasks displaying only a weak dependency
on the memory. Moreover the spectral radius does not to play any role in the
network performance. The choice of the scaling factor denotes similar patterns
with the hyperbolic tangent case.

56 6.4 Memory-Nonlinearity Trade-off

Chapter 7

Echo State Property

This chapters describes and comment the Echo State Property (ESP), a property
at the base of the working principle of RCN, regarding the possibility of encoding
the signal history into the network state. After an introduction and various anal-
ogous definitions (Section 7.1, we discuss the impact that the Spectral Radius
play in the property (Section 7.2). In Section 7.3, we contextualize the ESP in
the framework of dynamical systems by means of the Takens’ Theorem.

7.1 The Echo-State Property

A crucial challenge in machine learning is managing to have a representation of
the data which allows solving the problem at hand i.e., to have a “good” (in some
sense) feature map. When using Reproducing Kernel Hilbert Space (RKHS) the
feature map is implicitly provided by the chosen kernel, which must be designed
carefully. Neural networks instead learn their own feature map. When learning
dynamical systems, the data are time-varying signals, which one must be able
to correctly represent in a state. In the context of RC, the possibility of having
a correct representation of the driving signal was given the name of Echo State
Property (ESP).

The ESP was introduced in the seminal work by Jaeger [2001] as a necessary
property for an effective and reliable computation. Basically, the ESP consists
in requiring that the reservoir state asymptotically (w.r.t. time) depends only
on the received input (i.e., the reservoir state echoes the input) and does not
depend on the initial conditions of the reservoir. Such a definition takes into
account a specific input sequence, with values within a compact set U ; in prac-
tical applications, the input will always be bounded. Also, the compactness of
the reservoir state-space is required, but it is automatically guaranteed if one

57

58 7.1 The Echo-State Property

considers bounded nonlinear activation functions (like tanh).

Definition 2 (Original Echo State Property [Jaeger, 2001]). The system has the
Echo State Property (ESP) if for every input sequence {ut} there exists an input
echo function

E = (e1, . . . , eN) (7.1)

where ei :U −N→ R. such that for all left-infinite input histories . . . , ut−1, ut the
system state at time t is given by:

rt = E(. . . , ut−1, ut) (7.2)

The motivation behind the original ESP formulation is the following: for
learning to be effective, the current network state rt must be uniquely deter-
mined by the input sequence {ut}.

Definition 3 (Compatibility). We say that a state sequence {rt} is compatible
with a bounded input sequence {ut} when, for all t:

rt+1 = f (rt , ut)

Definition 4 (Echo State Property [Jaeger, 2001]). The system has the Echo
State Property (ESP) if for every input sequence {ut}, for any state sequences
{rt} and {lt} compatible with {ut} it holds that rt = lt for each t.

A different definition might be given, going forward in time (as opposed to
Def. 4 that uses a backward approach).

Definition 5 (Forward Specification of ESP [Yildiz et al., 2012]). The system has
the Echo State Property (ESP) if and only if it has the uniform state contraction
property, i.e., there exist a null sequence {δt} such that for every input sequence
{ut} and for all {r 1

t } and {r 2
t } compatible with {ut} it holds that for all t ‖r 1

t −
r 2

t ‖ ≤ δt . It can be equivalently stated as:

lim
t→∞

sup
u∈U
‖r 1

t − r 2
t ‖= 0

We highlight that, in order to be equivalent to Def. 4, a stricter condition on
the convergence must be adopted. This is discussed in [Jaeger, 2001].

59 7.2 ESP and Spectral Radius

7.2 ESP and Spectral Radius

Notably, even though most theoretical results assume the ESP to hold [Grigo-
ryeva and Ortega, 2018; Hart et al., 2020], existing sufficient conditions are too
restrictive [Yildiz et al., 2012] to be used in most practical applications and neces-
sary ones seem to suffice in most cases [Zhang et al., 2011; Basterrech, 2017]. In
practice, some less restrictive criteria to verify satisfaction of the ESP have been
proposed over time [Yildiz et al., 2012; Manjunath and Jaeger, 2013; Caluwaerts
et al., 2013; Verstraeten et al., 2007] as well as a general formulation for the ESP
accounting for multiple, stable responses to a driving input sequence [Ceni et al.,
2020].

Theorem 2 (ESP – Sufficient Condition [Jaeger, 2001]). Assume a RCN like
(11.35). Let its activation function σ be a squashing function and let its reservoir
connection matrix W have a Maximum Singular Value (MSV) σmax(W)< 1. Then
the RCN has the ESP for all inputs {ut}.

For a Random Reservoir (4.11), the expected value for the SR is 〈ρ(Wp)〉= ρ
[Rivkind and Barak, 2017], while the MSV 〈σmax(Wp)〉 = 2ρ [Rudelson and
Vershynin, 2010]. So, the condition on the MSV of Theorem 2 result in SR
ρ(W)< 1

2 , which is smaller than the values used in most implementations.

Theorem 3 (ESP – Necessary Condition [Jaeger, 2001]). Assume a RCN like
(11.35). Let its activation function σ be a squashing function and let its reservoir
connection matrix W have a SR ρ(W)> 1. Then, the RCN does not have the ESP
when driven with a null input sequence.

Theorem 3 is often misinterpreted as stating that a RCN cannot possibly have
the ESP if its spectral radius exceeds unity. This is not the case, as the theorem
refers only to RCNs which are fed with a null signal (which is the same as having
no input, i.e., running autonomously). See [Yildiz et al., 2012] for a detailed
discussion about this misinterpretation.

7.3 Dynamical System Representation
of the Reservoir

7.3.1 Takens’s Theorem

Let us consider a dynamical system like (2.1) and a 1-dimensional measurement
of the form (2.7):

60 7.3 Dynamical System Representation

st = g (st−1) (7.3a)

ut = h(st) (7.3b)

Here, each orbit of (7.3a) {st} corresponds to a time realization of (7.3b)
{ut}. Since (7.3a) is an autonomous system, the initial condition st0

determines
the entire evolution of the system and, consequently, the entire realization of
the observable. This means that the entire sequence {ut} depends on the ini-
tial condition, in the sense that different initial conditions will lead to different
state sequences. We now wonder whether the opposite is true or not, i.e., if one
can reconstruct the state of the system by observing a series of one-dimensional
measures like (7.3b). The Takens’s theorem deals with this question. In order
to state the theorem, we now introduce a delay vector x t constructed from the
observation of our dynamical system as:

x t =









x1
t

x2
t

. . .
x D

t









=









ut

ut−1

. . .
ut−(D−1)









=









h(st)
h(st−1)

. . .
h(st−(D−1))









=: FD(st) (7.4)

where FD : Rd → RD is the D-delay map. Its smoothness depends on the
smoothness of g and h.

If we assume that the motion of (7.3a) occurs in manifoldM of dimension
d, we call HD ⊂ RD its image under the effect of FD. So, we can now present
a different formulation of the question above: is FD a diffeormorphism? The
answer to this question in given by the Takens’s Embedding Theorem, which we
now state.

Theorem 4 (Takens’s Embedding Takens [1981]). LetM be a compact d-dimensional
C2 manifold. For almost any pair of function g and h, which are continuously dif-
ferentiable onM , the mapping

FD :M → RD

given by (7.4) is a diffeomorphism for almost any D > 2d.

This implies thatHD is an embedding ofM which, in turn, means that each
vector x on HD corresponds to a unique vector s on M . So x t can be used
as a state vector to describe the dynamics of the original system (7.3). More
specifically, an operator Γ might be introduced, such that:

x t+1 = Γ (x t) (7.5)

61 7.3 Dynamical System Representation

where
Γ := FD ◦ g ◦ F−1

D . (7.6)

It is clear from (7.4) that x i
t+1 = Γ

i(x) = x i−1 = ut−i for i ≤ 2. The only
component which actually needs to be predicted is the first one, i.e.,

ut+1 = x1
t+1 = Γ

1(x t) := Ψ(ut , ut−1, . . . , ut−(D−1)). (7.7)

Where Ψ is a function that is able to produce the next element of our time
series (ut+1) by reading the past D elements – i.e., the vector x t . The function Ψ
is guaranteed to exist by Theorem 4, in particular by Eq. 7.6.

In real-world applications, it is impossible to check whether the conditions of
Theorem 4 are fulfilled and the dimension d is not known, so that it may appear
that it has few practical implications. Yet, the theoretical value of this result is
high. In fact, theorem 4 provides a formal justification for the autoregressive
models (introduced in [Yule, 1927]), which aim at predicting the future of time
series from past observations.

7.3.2 Takens in Reservoir Computing

The ESP was not introduced specifically for the dynamical system framework. By
(7.2) one has that the reservoir state rt must be an echo of input time series {ut}.
In our framework, we know that our input time-series is given by measurement
from a dynamical system (Eq. (7.3)). So, our reservoir plays the role of x t in
(7.4), and we can consider the input echo function (7.1) a delay map in which
D =∞.

rt = E(. . . , ut−1, ut) = F∞(st). (7.8)

But Theorem 4 guarantees that a finite amount of delays D will suffice, in
fact providing a solid ground for the use of RC (where D is at most equal to the
reservoir size N) for dynamical system. So, assuming that our reservoir can be
written as

rt = FD(st), (7.9)

any generic target in the form yt = k(st) (Eq.2.10) can in principle estimate
through RC, as:

yt = k(st) = k(F−1
D (rt)) (7.10)

so that one simply needs to set

ψ≡ k ◦ F−1
D (7.11)

62 7.3 Dynamical System Representation

as readout. In fact it was recently shown that RC can be interpreted as general-
ization of Taken’s Theorem [Grigoryeva et al., 2020]. This is particularly evident
when considering linear reservoirs, as in (7.4) one can recognize the delay line
(4.8). In fact, in [Grigoryeva et al., 2021] the authors prove that it is possible to
embed an attractor using a linear reservoir, generalizing Theorem 4 to a class of
functions larger than the delay functions like (7.4).

Chapter 8

Input-to-State Representation

In this Chapter, a novel method to study linear RCN is presented. It is based on
the Cayley-Hamilton (CH) theorem, which states that any real square matrix sat-
isfies its own characteristic equation. In Section 8.1 we show that CH theorem
allows one to rewrite the state equation of a linear network (Eq. 3.13) as a finite
sum of signals. We call this signals network encoded inputs. The states of the
network can then be constructed by multiplying this signals by the controllability
matrix. In Section 8.2 we study the network encoded inputs by examining their
relation with the signal driving the network. This analysis discloses some proper-
ties of the role played by the SR in the encoding of the signal. In Section 8.3, we
dive further into this analysis by studying the role that the different topologies
introduced in Section 4.2.1 have on the input representation. In particular we
make prediction about the memory capacity of various models by studying the
controllability matrix associated with each topology. Finally in Section 8.4 we
study the nullspace of these controllability matrices as a prominent factor for the
network MC. Our results explains the experimental findings in Section 6.2.

8.1 Controllability Matrix
and Network Encoded Input

Here we develop a representation for a linear RCN (see 3.4.1) in which we study
the network state making use of the CH theorem (see Appendix D.1 for details).

The Cayley-Hamilton (CH) theorem states that every real square matrix sat-
isfies its own characteristic equation, implying that

W N = ϕN−1W N−1 +ϕN−2W N−2 + · · ·+ϕ1W +ϕ0I (8.1)

63

64 8.1 Controllability Matrix

where the ϕi are the negated coefficients of the characteristic polynomial . Ac-
cordingly, any power of matrix W can be written as a linear combination of the
first N−1 powers, where N is the matrix order (and also the size of the reservoir):

W k =
N−1
∑

j=0

φ
(k)
j W j (8.2)

where the apex k denotes the fact that the N coefficients are expansion coeffi-
cients of the k-th power of W . In Appendix D.2 we also show how the coefficients
φ
(k)
j can be written in terms of ϕ j in (8.1).

The update of a linear RCN is given by (3.8), which we repeat here for read-
ability:

rt+1 = Wrt + wut . (8.3)

Note that we set, for simplicity, the bias b = 0. Here we consider a network
driven by a one-dimensional left-infinite signal {ut}0t=−∞.

We are interested in describing the current state r0 in terms on this input. By
inserting (8.2) in (3.13), we obtain:

r0 =
∞
∑

k=0

N−1
∑

j=0

φ
(k)
j W j wu−k (8.4)

=
N−1
∑

j=0

W j w
∞
∑

k=0

φ
(k)
j u−k =

N−1
∑

j=0

W j w v j (8.5)

where

v j :=
∞
∑

k=0

φ
(k)
j u−k (8.6)

is what we call the network encoded input. It is useful to interpret v =
(v0, v1, . . . , vN−1) as a vector with N components, which “encodes” the left-infinite
input signal u in the spatial representation provided by the network. In order for
the v j term to exist, the sum in (8.6) must converge; we will discuss this issue in
the next section. We emphasize the fact that the sum over j (the dimensionality
of our system) is a finite sum with N terms, as opposed to the infinite sum over
k (the time index).

Inspired by well-known tools from control theory (see e.g., [Sontag, 2013]),
we define the controllability matrix of the reservoir as

65 8.2 The Encoded Input Signal

C = [w W w W 2w . . . W N−1w] (8.7)

Then, the state-update equation (3.8) becomes

r0 =C v (8.8)

and the output (3.4) can then be expressed as:

y0 = rC v , (8.9)

i.e., the readout filters the input according to the controllability matrix.

8.2 The Encoded Input Signal

From (8.9), we see that the possibility for the readout to produce the correct
output (i.e., the output that solves the task at hand) depends on two distinct
elements: the controllability matrix C (function of W and w) and the network
encoded input v (which depends on W and u).

Under the assumption of bounded inputs u−k ∈ [−U , U],∀k, we see that

|v j|=

�

�

�

�

�

∞
∑

k=0

φ
(k)
j u−k

�

�

�

�

�

≤ U
∞
∑

k=0

�

�

�φ
(k)
j

�

�

�

allowing us to focus on the properties of the φ(k)j .
These terms are the element of v , which we rewrite as:













v0

v1

. . .
vN−2

vN−1













=













∑∞
k=0φ

(k)
0 u−k

∑∞
k=0φ

(k)
1 u−k

. . .
∑∞

k=0φ
(k)
N−2u−k

∑∞
k=0φ

(k)
N−1u−k













(8.10)

In Appendix D we show that for k < N , φ(k)j = δk j (Eq. D.6). This implies

66 8.2 The Encoded Input Signal

that the first N − 1 time steps are simply the inputs:












v0

v1

. . .
vN−2

vN−1













=













u0 +
∑∞

k=N φ
(k)
0 u−k

u−1 +
∑∞

k=N φ
(k)
1 u−k

. . .
u−(N−2) +

∑∞
k=N φ

(k)
N−2u−k

u−(N−1) +
∑∞

k=N φ
(k)
N−1u−k













=













u0

u−1

. . .
u−(N−2)

u−(N−1)













+













∑∞
k=N φ

(k)
0 u−k

∑∞
k=N φ

(k)
1 u−k

. . .
∑∞

k=N φ
(k)
N−2u−k

∑∞
k=N φ

(k)
N−1u−k













(8.11)

Then, we observe that the terms corresponding to time-step k = N follow from
Eq. D.4:













v0

v1

. . .
vN−2

vN−1













=













u0

u−1

. . .
u−(N−2)

u−(N−1)













+













u−Nϕ0

u−Nϕ1

. . .
u−NϕN−2

u−NϕN−1













+

+













∑∞
k=N+1φ

(k)
0 u−k

∑∞
k=N+1φ

(k)
1 u−k

. . .
∑∞

k=N+1φ
(k)
N−2u−k

∑∞
k=N+1φ

(k)
N−1u−k













(8.12)

successive terms corresponding to time steps k > N can be computed by using
(D.12). This procedure shows that, in general, the inputs from 0 to N − 1 time
steps in the past will always appear in their original form, and the “mixing” will
begin starting from the N -th time step in the past.

In Appendix D we also show that the coefficients φ(k+1)
i of (8.2) can be recur-

sively expressed in terms of φ(k)i as:














φ
(k+1)
0

φ
(k+1)
1
...

φ
(k+1)
N−2

φ
(k+1)
N−1















= M















φ
(k)
0

φ
(k)
1
...

φ
(k)
N−2

φ
(k)
N−1















(8.13)

67 8.3 Topologies

where M is the Frobenius companion matrix of W (see section D.3 for details).
Note that the characteristic polynomial of M is that of W ; as such, the two ma-
trices share the same eigenvalues. Thus, the series (8.6) converges, for bounded
inputs, when W has a spectral radius smaller than 1. Note that most theoretical
results (see e.g., Jaeger [2001]; Grigoryeva and Ortega [2018]; Tiňo [2020]) re-
quire the MSV to be smaller than one, which is a stricter condition compared to
ours, as SR≤MSV; it follows that our analysis can be applied to a larger class of
reservoirs.

The v vector can be written as:












v0

v1
...

vN−2

vN−1













=















∑∞
k=0φ

(k)
0 u−k

∑∞
k=0φ

(k)
1 u−k

...
∑∞

k=0φ
(k)
N−2u−k

∑∞
k=0φ

(k)
N−1u−k















(8.14)

In Appendix D we show that for k < N , φ(k)j = δk j holds. We also note that
terms corresponding to time-step k = N follow from (8.1). This means that
(8.14) can be written as:













v0

v1

. . .
vN−2

vN−1













=













u0

u−1

. . .
u−(N−2)

u−(N−1)













+













u−Nϕ0

u−Nϕ1

. . .
u−NϕN−2

u−NϕN−1













+













∑∞
k=N+1φ

(k)
0 u−k

∑∞
k=N+1φ

(k)
1 u−k

. . .
∑∞

k=N+1φ
(k)
N−2u−k

∑∞
k=N+1φ

(k)
N−1u−k













(8.15)

All other terms in (8.15) corresponding to time steps k > N can be computed
according to (8.2). Note that (8.15) implies that a larger SR amplifies the contri-
bution of past inputs over the more recent ones, since the input reproducibility
property is controlled by ρ j+pn. We see that, a larger SR is required to correctly
recall inputs that are further in past (but for which τ < N), since the SR controls
the magnitude of the φ(k)j , i.e., the permanence of uk on the state. This explains
the results obtained in Section 6.2, as we will now discuss.

8.3 Topologies

In general, the inputs from 0 to N−1 steps back in time will always appear in their
original form, and the cross-contribution starts only from u−N backwards in time.

68 8.3 Topologies

We will make use of this result to analytically examine the properties of the dif-
ferent networks topologies introduced in subsection 4.2.1. Moreover, by deriving
the expression for the φ(k)i we can study how the network is able to recall its past
inputs. In general, if theφ(k)i v are large then the network will not be able to recall
the inputs, since the input u− j can only be read through v j = u− j+

∑∞
k=N φ

(k)
j u−k.

It follows that having large expansion coefficientsφ(k)j prevents the network from
being able to recall its past inputs. We will show in the next section that, when
we can derive an analytical expression for theφ(k)i , it is possible to anticipate how
the network recalls its past inputs. Note that, as implied by (8.9), for a linear
network this is deeply related to its expressive power, since the network output
is basically a linear combination of past inputs. The inputs accessibility to the
readout is also due to C , which is a property of the network only, as it does not
depend on any input signal. A detailed discussion about the relation between
the network properties and the rank of the controllability matrix C was recently
presented in Gonon et al. [2020b]. There, the authors prove that the memory
capacity for linear reservoirs equals the rank of C . In the following, we analyze
the different architectures described in Section 4.2.1 discussing the properties of
their controllability matrices.

Random Reservoir In the random reservoir case the property ofC can be stud-
ied by considering the expected values of the norm of its columns,which describes
how the system accesses past inputs. Let us consider the N -by-N matrix Wr in (9)
and a vector with N components w = {w j} ∼ N (0, 1

N). Since w j are generated
independently, the expected value of the squared norm of the random vector w
is l(w) = N〈w2

i 〉. We drop the r in W , to simplify the notation. We now study
z := W w and obtain:

〈z2
i 〉= 〈(W w)2i 〉= 〈(

∑

j

Wi jw j)
2〉= N〈W 2

i j〉〈w
2
i 〉 (8.16)

where the last equality follows from the independence of the zero-mean entries
of W and w . Now, by the way we constructed W and w , we see that 〈W 2

i j〉 =
ρ2/N and that 〈w2

i 〉= 1/N . This results in:

〈z2
i 〉= N〈W 2

i j〉〈w
2〉= N

ρ2

N
1
N
=
ρ2

N
(8.17)

This means that l(z) = N〈z2
i 〉 = ρ

2 and that the standard deviation is
Æ

〈z2
i 〉 =

ρp
N

.
From the above the first column of C has a euclidean norm ‖w‖ = 1, the second

69 8.3 Topologies

ρ , the third ρ2; the last one ρ(N−1). Since ρ must be smaller than 1, the com-
ponents of the last columns of C shrink quickly. This fact explains the shading
observed in the column of C for the random case of Fig. 8.1 and Fig. 8.2.

Wigner Reservoir For the Wigner case the effect is emphasized by the correla-
tions introduced by the symmetry of Ww.

Delay Line The controllability matrix C for the delay line and the cyclic reser-
voir can instead be described in exact terms. A sample of each case in provided
in Fig. 8.1 and Fig. 8.2 for N = 100 and N = 1000, respectively. For the delay
line a complete analysis of the network output can be carried.

It is easy to see that, applying Wd to a vector v = (v1, v2, . . . , vn) results in a
vector

v ′ := Wdi j v = (0, v1, . . . , vN−1)

and because of the associativity of the matrix product, we see that applying Wdi j

to a vector k times results in permuting the vector k times and the substituting
the first k elements with the same number of 0v. So, the controllability matrix
for the delay line is:

C d = [wd Wdwd . . . W N−1
d wd] (8.18)

which would be a lower diagonal matrix for a generic v but for wd = (1, 0, . . . , 0)
is just the identity.

Now, consider the fact that

W N
d = 0 (8.19)

The CH theorem implies that any higher power will be null as well. So we
simply have:

v0 = u0

v1 = u1

and so on, because all the φ(m)j for m > N are null. If we define vd :=
(u0, u−1, u−2, . . . , u−(N−1)):

y0 = r ·C d · vd = r · I · vd =
N−1
∑

i=0

riu−i (8.20)

which, as expected, is simply a regressive model of order N .

70 8.3 Topologies

Cyclic Reservoir The characteristic polynomial of Wc is λN = 1 so that the CH
Theorem implies:

W n
c = I (8.21)

Meaning that, for all m> N ,

W m
c =

N−1
∑

j=0

φ
(m)
j W j

c = Wµ
c (8.22)

where µ := m mod N . Note that, in general:

(aWc)
m = amWµ

c (8.23)

So, if in our reservoir we fix W = ρWc (where ρ is the parameter control-
ling the spectral radius) we obtain a number of simplifications. First of all, the
elements of v assume a regular form. For example:

v0 = u0 +ρ
N u−N +ρ

2nu−2n + . . .

v1 = u−1 +ρ
N u−(N+1) +ρ

2nu−(2n+1) + . . .

so that their general form is

v j =
∞
∑

k=0

φ
(k)
j u−k =

∞
∑

p=0

ρpnu− j+pn (8.24)

Moreover, the controllability matrix C c assumes a simple form. If we define
the i-time permuted input weight vector as:

w (i) := W i
c w (8.25)

we obtain:
C c = [w ρw (1) ρ2w (2) . . . ρN−1w (N−1)] (8.26)

so that:

y0 = (r0, r1, · · · , rN−1)C c













v0

v1

v2
...

vN−1













(8.27)

71 8.4 The Nullspace of C and the Network Memory

The output can be written in compact form by defining:

ṽ j =
∞
∑

p=0

ρ j+pnu− j+pn (8.28)

C̃ c = [w w (1) w (2) . . . w (N−1)] (8.29)

so that, finally:
y0 = r C̃ c ṽ (8.30)

The fact that, as suggested in [Rodan and Tino, 2010], w should be non-
periodic for the network to work at its best, is now evident. In fact, if w is
periodic, it means that some columns of Ĉ c are linearly related and, therefore,
the rank degenerates, as supported by theoretical arguments in [Tiňo, 2020].

Note that u− j is only accessible through the term v j = u− j + ρN u−(j+N) + . . .
and, in order to do that, it must hold that u− j � ρN u−(j+N). This may suggest
to choose small spectral radii, but the smaller the spectral radius, the faster the
decay of the memory, since v̂ j = ρ j v j. This confirms previous intuitions Rodan
and Tino [2010], stating that by choosing a small spectral radius, the network
preserves an accurate representation of recent inputs, at the expense of losing
the ability to recall remote ones. Conversely, if one sets a large spectral radius
(i.e., close to 1) the network will be able to (partially) recall inputs from the past,
but its memory of more recent inputs will decrease.

8.4 The Nullspace of C and the Network Memory

By (8.9) one can understand how the rank of the controllability matrix C is
associated with the degrees of freedom (the effective number of parameters used
by the model to solve the task at hand) that can be exploited by the readout (i.e.,
the “complexity” of the model).

Note from Figures 8.1 and 8.2 that the cyclic reservoir always has the high-
est rank of C , while the Wigner the lowest. The difference increases with the
number of neurons. 1

The fact thatC is not full-rank is linked to the presence of the nullspace.2 This
means that there are some network encoded inputs v which are mapped to 0 by

1Note that this is coherent with the findings in [Tiňo, 2020], since the Q defined in that work
is simply Q =C >C and the number of motifs is related to the rank of Q (and so, of C).

2What we call the nullspace is practically the effective nullspace detected up to the numerical
precision, computed using the Numpy dedicated function [Harris et al., 2020].

72 8.4 The Nullspace of C and the Network Memory

0 20 40 60 80

0

20

40

60

80

Random W - rank =83

(a)

0 20 40 60 80

0

20

40

60

80

Wigner W - rank =42

(b)

0 20 40 60 80

0

20

40

60

80

Cyclic W - rank =100

(c)

0 20 40 60 80

0

20

40

60

80

Cyclic W - rank =100

(d)

Figure 8.1. The controllability matrix and its rank for different architectures.
The Spectral Radius is ρ = 0.99 and the reservoirs has N = 100 neurons. The
four architectures share the same randomly-generated w .

C (8.8) and hence are indistinguishable by the readout perspective. In Fig. 8.3,
we plot the rank of C as a function of the reservoir dimension N . In the experi-
ments using Wigner and cyclic reservoirs, the spectral radiusρ and the maximum
singular value σmax coincide and their values are set to 0.995 (Fig. 8.3a) and 0.9
(Fig. 8.3b). For the random reservoir, ρ and σmax are distinct, so we design an
experiment where the spectral radius is fixed and another one where the maxi-
mum singular value is set (we remind the reader that 〈ρ〉= 1

2〈σmax〉). But what
is the shape of the basis of this nullspace? We show its basis in two cases (see
Fig. 8.4). The controllability matrix obtained with a cyclic reservoir does not
have a nullspace for such a value of ρ, since C is full-rank. Note that, in order
to interpret each vector in Fig. 8.4 as a time series, one must consider the last
inputs seen as the ones closer to the origin. Given this interpretation, we clearly
see how the memory is linked to the rank of C : the reservoirs’ ability to recall
past inputs depend on the rank of C as inputs which only differ in the far-away

73 8.4 The Nullspace of C and the Network Memory

0 200 400 600 800

0

200

400

600

800

Random W - rank =284

(a)

0 200 400 600 800

0

200

400

600

800

Wigner W - rank =59

(b)

0 200 400 600 800

0

200

400

600

800

Cyclic W - rank =978

(c)

0 200 400 600 800

0

200

400

600

800

Cyclic W - rank =1000

(d)

Figure 8.2. The controllability matrix and its rank for different architectures.
The Spectral Radius is ρ = 0.99 and the reservoirs has N = 1000 neurons. The
four architectures share the same randomly-generated w .

past are mapped to the same final state.

Let us consider an example. Let v1 and v2 be two network encoded inputs,
which differ only in the last N −m elements. Denote by x i

0 the final state of the
system after being fed by the signal vi. We can then write v2 = v1 + d, where d
encodes the difference between the two representations. We see that the first m
elements of d are null. So, we can write:

r 2
0 =C v2 =C (v1 + d) =C v1 +Cd =C v1 + 0= r 1

0 (8.31)

since d lives in the nullspace of C . This results in the network not being able to
distinguish between the two signals.

74 8.4 The Nullspace of C and the Network Memory

8.4.1 A Note on Numerical Issues

It may be argued that all the above results are due to numerical issues. Theo-
retical results claim that a system like 8.3 constructed using a random reservoir
have a full-rank controllability matrix with probability one [Luh and O’Rourke,
2021]. Moreover, also Wigner reservoirs are controllable with high probability
[O’Rourke and Touri, 2015]. The fact that the properties of power iterations ren-
der the columns of C almost linearly dependent is a known issue is methods
relying on Krylov subspaces, which can be solved adopting a proper normaliza-
tion scheme. See, for instance, [Liesen and Strakos, 2013]. The topic in also
briefly discussed, in the context of RC, in [Gonon et al., 2020b].

Yet, computing the rank of C in this way lead to the prediction that the MC
of linear RCNs is the same for all values of SR smaller than 1. This is clearly
in contrast with the experimental findings in Chapter 6, which shows a strong
dependency on ρ. The same holds for the different topologies: the difference in
performance should not be observed according to theoretical arguments about
the rank ofC , as all topologies lead to a full rank matrix. We argue that different
topologies and values for the SR lead to different spectra for the eigenvalues
of C which, in turns, correspond to different values for the matrix rank when
computed numerically. We tried to convey this concept using the term effective
rank in the above. In fact, various ways have been proposed to deal with this
fact, which is known since the introduction of RCN Jaeger [2002].

On a side note, we mention that the equivalence between RNN and Turing
Machines is exactly due to the finite precision of neural networks Siegelmann
and Sontag [1995]. The field of Super-Turing Computation studies the properties
of systems with infinite precision [Siegelmann, 2003].

75 8.4 The Nullspace of C and the Network Memory

0 200 400 600 800 1000
Number of elements

0

200

400

600

800

1000

Ra
nk

 o
f C

random
random (MSV)
wigner
delay_line
cyclic

(a)

0 200 400 600 800 1000
Number of elements

0

200

400

600

800

1000

Ra
nk

 o
f C

random
random (MSV)
wigner
delay_line
cyclic

(b)

Figure 8.3. Ranks of the controllability matrix C as a function of the reservoir
dimension N , for ρ = 0.995 (a) and ρ = 0.9 (b). Note the saturation of the
delay line and the cyclic reservoir, which happens, because ρ is not close enough
to 1 for its powers to be numerically distinguishable from zero.

76 8.4 The Nullspace of C and the Network Memory

0 20 40 60 80 100
index in the network encoded input s

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
Random

(a)

0 20 40 60 80 100
index in the network encoded input s

0.4

0.2

0.0

0.2

0.4

Wigner

(b)

Figure 8.4. Nullspace basis for a Random (a) and a Wigner (b) reservoir ma-
trices. Each curve represents a basis vector of the nullspace of C , where the
x-axis accounts for the vector components. In both cases, we set the spectral
radius to ρ = 0.99, while the reservoirs size is N = 100. The vertical black lines
represent the ranks of C , i.e., the dimensions of the image spaces.

Part III

Dynamics

77

Chapter 9

Computing with dynamical systems

When using a dynamical system, like an RNN, to perform computation, the re-
sults will be determined by its dynamics. The final behavior will depend on
the input driving the system, on the selected hyper-parameters, and the training
strategy adopted, rendering it a very complex problem. Since in RC the dynam-
ical part is not trained, it is easier to address this issue and many results have
been derived. In this chapter, a summary of the most important results concern-
ing the dynamics of computational systems (with a focus on RNN) is reported in
Sec. 9.1. Sec. 9.2 discuss the concept of Edge of Criticality (EoC) which raised
great interest in the community.

9.1 Computing with dynamical systems

The relationship between dynamics and computation has been explored in the
scientific literature (e.g., see [Prokopenko et al., 2019] and reference therein).
An interesting problem is to determine the computational capacities of neural
networks. It is known that RNNs are Turing-complete [Siegelmann and Son-
tag, 1995], but the question of how to properly train them still remains open.
For example, in [Casey, 1996] they study second-order networks, or in [Ashwin
and Postlethwaite, 2018] where noisy networks are exploited. Neural Turing
Machines [Graves et al., 2014] explicitly address the matter. In fact, dynamical
systems seem to have some inherent computational properties [Dambre et al.,
2012], for example, they display a trade-off between the nonlinearity of their
dynamics and their memory Verstraeten et al. [2010]. This fact is of particular in-
terest in RNNs, as it has been known for a long time that they can display chaotic
behavior Sompolinsky et al. [1988], which would render the computation unfea-
sible. This led the researchers to search for the hyper-parameters configuration

79

80 9.2 Edge of Criticality

and network architecture that would avoid the erratic behavior associated with
chaos. For example in Chang et al. [2019]; Kerg et al. [2019] various properties
of the connectivity matrices were used to stabilize the dynamics, while in Lau-
rent and von Brecht [2016] a specific gating architecture was designed to avoid
chaos. In general, the gating mechanism can be studied using tools from dynam-
ical systems [Jordan et al., 2021]. More specifically, it was recently shown that it
enables the time warping (i.e., the possibility of managing different timescales)
in RNN Tallec and Ollivier [2018]. This fact had also been used in the context of
RC [Jaeger et al., 2007].

9.2 Edge of Criticality

Many dynamical systems display a change in their qualitative behavior when
their parameters vary. This naturally leads to a classification of their behavior. In
particular, many systems display an ordered regime, in which the dynamics are
regular, and a disordered one, where they are irregular. The latter is sometimes
referred to as the chaotic phase, even if it does not always match the definition
of chaoticity that is used in the dynamical system literature.

RCNs are known to be sensitive to the setting of hyper-parameters like the
SR, the input scaling and the sparseness degree [Jaeger and Haas, 2004], which
critically affect their behavior and, hence, the performance on the task at hand.
Fine-tuning of hyper-parameters requires cross-validation or ad-hoc criteria for
selecting the best-performing configuration. Experimental evidence [Legenstein
and Maass, 2007; Gallicchio, 2018; Legenstein and Maass, 2007; Livi et al., 2017]
and some results from the theory [Bertschinger and Natschläger, 2004; Rajan
et al., 2010; Rivkind and Barak, 2017] show that RCNs performance is usually
maximized in correspondence of a very narrow region in hyper-parameter space
called Edge of Chaos or Edge of Criticality (EoC) [Langton, 1990]. However, we
comment that beyond such a region RCs display disordered dynamics, resulting
in useless and unreliable computations. At the same time, it is everything but
trivial configuring the hyper-parameters to lie on the EoC still granting a non-
chaotic behavior.

Chapter 10

Binary Reservoirs

RCNs display a wide range of dynamics, which depends on the values of various
hyperparameters. In this chapter, we present a minimal model of RCN, having
binary states and weights. Its simplicity permits a theoretical analysis of some
important aspects of the transition to chaos. We study how the dynamics of these
networks are affected by their hyperparameters. In particular, we derive a closed-
form expression for the EoC in the autonomous case (Section 10.1), which is in
perfect agrement with the empirical data. We also perform simulations in order
to assess their behavior in the case of noisy neurons and in the presence of a
signal (10.1). We propose a theoretical explanation for the fact that the variance
of the input plays a major role in characterizing the EoC.

10.1 Binary RCN

10.1.1 System Description

In this section, we introduce binary RCNs (bRCNs) and study the dynamics of
a RCN constituted of binary neurons ri ∈ {−1,+1} for i = 1,2, ..., N and binary
weights Wi j ∈ {−1, 0,+1} for i, j=1,2, ..., N (the zero value accounts for the fact
that two neurons may not be linked). The bRCNs system model simplifies as:

St := Wrt−1 + ut−1 (10.1)

rt = sgn(St) , (10.2)

ut is the input signal, which we consider to be unfiltered (v = 1, i.e., the all-
ones vector), for simplicity. The sgn function is applied element-wise, being an
activation function. When ut = 0 for every t (i.e., there is no input), we say

81

82 10.1 Binary RCN

that the system is autonomous. The study of the autonomous system plays an
important role, since it allows us to investigate analytically the network dynamics
and its properties. Reservoir connections W = (Wi j) are instantiated according
to the Erdős–Rényi model where each link Wi j is created with probability α. If
the link is generated, the weight value is set to 1 with probability p or −1 with
probability 1− p.

The proposed bRCN model is controlled by three hyperparameters:

1. the number of neurons in the network N ;

2. the mean degree of the network 〈k〉 := αN ;

3. the asymmetry in the weights values d := p− 1
2 .

These hyperparameters are related to α and p, although they are easier to
understand: in fact, 〈k〉 has a natural interpretation in terms of mean neuron
degree that does not depend on the network size N . The choice of using d is
due to the symmetry of the model around the zero value and to the fact that,
with this choice, a positive (negative) value of the hyperparameter accounts for
majority of positive (negative) weights. Note that 〈k〉 can vary continuously from
0 to N and d ∈ (−1

2 , 1
2). A similar model was proposed in Rohlf and Bornholdt

[2002], but in their work the weights assume a positive or negative value with
equal probability, i.e., their model corresponds to ours in the p = 0 case.

10.1.2 Edge of criticality in binary RCNs

Here, we study two networks with the same weight matrix W , that are in the
states rt and r ′t ; the latter refers to the perturbed network and differs only in
one neuron whose state is flipped. The goal is here to understand under which
conditions the time evolution of the perturbed network differs from the origi-
nal one, i.e., whether the perturbation will spread and significantly impact the
network behavior or not.

For N →∞, the fraction of positive-valued neurons is equal to the probabil-
ity for a neuron of being positive, namely P+= p, while the fraction of negative
neurons is P−=q=1− p. By comparing the original network with the perturbed
one, the probability that the flipped neuron will have an influence on a neuron
connected to it will be given by two terms: the probability that neuron state
is positive P+ multiplied by the probability of switching from positive to nega-
tive π+−, plus an analogous terms accounting for the negative part (P− and π−+
respectively. Assuming that π+− = P− = q (i.e., that the probability of turning

83 10.2 Experiments

negative from positive is equal to the probability of being negative) and, anal-
ogously, that π−+ = P+ = p (that can be seen as a formulation of the annealed
approximation introduced in [Derrida and Pomeau, 1986]), one obtains:

P+ ·π+− + P− ·π−+ = pq+ qp = 2p(1− p) (10.3)

We now define kO and kI as the mean out-degree and in-degree of a neuron, respec-
tively. Since a single neuron has influence on kO neurons, the expected number
of changes is given by 2p(1− p)kO, to which one has to add the fact that at least
one neuron has changed due to the flip. Therefore, if this number is bigger than
half of the mean incoming links of a neuron, i.e., kI/2, then the perturbation will
dominate the network dynamics and will propagate. Since in an Erdös–Rényi
graph kI=kO=〈k〉, we obtain the following condition for the onset of chaos:

1+ 2p(1− p)〈k〉>
〈k〉
2

(10.4)

which using d := p− 1/2 can be rewritten as:

〈k〉< kc :=
1

2d2
(10.5)

Note that the mean degree 〈k〉 in (10.5) plays a “stabilizing” role (i.e., the higher
the degree, the larger the magnitude of d required for chaos), as opposed to
Random Boolean Networks (RBNs), where increasing the mean degree leads
towards a chaotic region [Kauffman, 1969].

10.2 Experiments

In Sec. 10.2.1, we assess the agreement of our theoretical expression for the EoC
with simulations. Initially, we consider an autonomous bRCN. In Sec. 10.2.2 we
analyze the effects of perturbations on network trajectories. In Sec. 10.2.3 we
take into account the effect of white Gaussian noise on the theoretical predictions
of the EoC; in Sec. 10.2.4 we consider periodic inputs.

10.2.1 Edge of Criticality

In order to assess the agreement between the prediction given by Eq. 10.5 and
experimental results, we conducted an exploration of the parameter space. Here,
we exploit the fact that our neurons assume binary states only and consider their

84 10.2 Experiments

Shannon entropy H as an indicator for the transition to chaos. The entropy H
was computed considering a time average H,

H :=
1

T − t0

T
∑

n=t0

H(rt) (10.6)

where the entropy of a configuration r is estimated as H(r) := −ρ(r) log(ρ(r))−
(1−ρ(r)) log(1−ρ(r)), in which ρ(r) is the number of neurons whose state is
+1 and 1−ρ(r) the number of neurons with state −1. We expect Eq.(10.6) to
be be almost zero in the frozen regime and almost one in the chaotic one, with
a sharp region of intermediate values that we consider to be the edge of chaos.

In order to explore the parameter space, we run a series of simulations using
a network of N = 1000 neurons with different random initial conditions and
connection matrices W , generated using specific values of 〈k〉 and d. In Eq.
10.6, we used T = 300 time-steps and t0 = 100 accounting for an initial transient
from the initial state to a stationary condition. Results are showed in Fig. 10.1
and demonstrate almost perfect agreement with the theoretical result (10.5).

10.2.2 Effects of Perturbations on State Evolution

In order to assess the effect of chaos on the network behavior, we compare the
evolution of a bRCN instantiated with weight matrix W but different initial con-
ditions. Starting from a random initial condition, we generated 50 additional
initial conditions by flipping the state of a single neuron (as in Sec. 10.1.2). Here,
an initial condition r0 is randomly generated with a biased probability c = 0.6
for a neuron to assume a positive value. This is necessary as the network in the
frozen phase could reach two different stable states – one with almost all posi-
tive neurons and another one with almost all negative neurons. Finally, we note
that the value of c has no impact on the EoC. We let the original and perturbed
networks evolve, and take into account the (normalized) Hamming distance, DH ,
between trajectories.

Results are summarized in Fig. 10.2. We observe that, in the ordered phase,
perturbations on the initial state have no effect on the network evolution and the
Hamming distance of the perturbed trajectory from the original one is zero. As
d decreases (i.e., the networks approach the chaotic regime), we observe how
the Hamming distance significantly increases, leading to chaos. Note that the
maximum value achievable by the (normalized) Hamming distance is 0.5, corre-
sponding to the distance of two random binary vectors (a larger distance would
imply a negative correlation). In the same set of figures, we show three addi-
tional indicators, called Energy, Activity, and Entropy. The mean Energy, defined

85 10.2 Experiments

Figure 10.1. Values of H for different configurations of the asymmetry and the
mean degree. The experiment shows a good agreement with the predicted EoC
region (dashed line), where we observe an abrupt change of the entropy from 0
to 1.

86 10.2 Experiments

as E(rt) := 1
N

∑N
i=1 r i

t , quantifies the average number of positive and negative
neurons. In the frozen phase, the network almost instantly evolves towards val-
ues close to 1 (cfr. the role of c, discussed above), and then rapidly decreases to
0, which is the expected value in the chaotic phase. The mean Activity of network
at time-step n is defined as the (normalized) Hamming distance of the current
state w.r.t the previous one, A(rt) = DH(rt , rt−1), i.e., the number of neurons
that changed their states in one step. As expected, networks operating in chaotic
regimes are characterized by an elevated activity. Lastly, we plot the evolution
of the Entropy (10.6) over time. As expected from the theory, transitioning to a
chaotic regime is signaled by a sharp increase of entropy.

10.2.3 Impact of Noise in the EoC

Here, we study how the EoC is influenced when considering an independent
noise term for each neuron, r i

t+1 = sgn
�

S i
t + ν · 〈k〉 · ξ

i
t

�

, where ν is the noise
gain, ξi ∼ N (0, 1), and S is the same as in Eq.(10.1). The choice of scaling
the noise with 〈k〉 was made to account for the fact that the network stability
increases with it, as we discuss below.

To explore the dependency from ν, we ran an experiment where we fixed 〈k〉
and plotted ν versus d. Results are shown in Fig. 10.3. We can recognize three
regimes: (1) for low noise values, the chaotic region remains almost constant;
(2) for intermediate values, the chaotic region linearly expands with the noise
intensity up until (3) there is only chaos. We repeated the experiments with
different values of 〈k〉 (not shown) and they all confirm the same linear expansion
of the chaotic region (in units of 〈k〉). To verify this fact for a wider range of
〈k〉, we repeated the experiment in Fig. 10.1 with noise intensity ν = 0.1. It
is possible to observe in Fig. 10.4 how the EoC maintains its shape for lower
values of 〈k〉, while for higher average degrees it deviates from the theoretical
prediction and the chaotic region depends on d only. We explain this fact as
follows. Neurons can only assume 1 or −1 values. The probability of a neuron
having j positive inputs is then Pk(j) =

�k
j

�

p jqk− j where k is its in-degree. If we

consider that j= k+s
2 , where s is the value of the sum of the positive and negative

inputs (whose sign determines the value of the neuron), then we obtain s=2 j−k.
The expectation of j is 〈 j〉=pk, so that the expectation of s and its variance are:

〈s〉= k(p− q) = 2kd (10.7)

〈(s− 〈s〉)2〉= 4kpq = k(1− 4d2) (10.8)

Note that these values are related to a single neuron. For a general understanding
of the network behavior, one simply uses 〈k〉 instead of k in the expressions

87 10.2 Experiments

(a) d = 0.25

(b) d = 0.184

(c) d = 0.157

(d) d = 0.144

(e) d = 0.131

(f) d = 0.105

Figure 10.2. Mean values of the Hamming distance, Energy, Activity and En-
tropy of the 50 perturbed networks, with N = 1000 and K = 22 for selected
values of d (see 10.2.2). The x-axis represents time. The values of the quan-
tities are plotted in blue, while the dashed red lines show the variance. The
predicted system should turn chaotic for d < 1/

p

2〈k〉 ≈ 0.15 , according to
the theoretical formula.

88 10.2 Experiments

Figure 10.3. Values of H for different configurations of d and the ν. Note that
ν is multiplied by the mean degree, which is here fixed to 〈k〉= 200.

above, so that it is possible to considerσ2 := 〈k〉(1−4d2) as a mean-field variance
of the total inputs to neurons. The impact of the noise on the network can then
be studied considering the ratio between ν and σ2. As previously discussed, the
noise expands the chaos region linearly with its ν.

The noise we are considering has a standard deviation θk = ν·〈k〉. This leads
us to a formula for the chaotic region which, for 〈k〉 � 1, is |d| < a · ν+ b. This
relation, as shown in Fig. 10.4, does not depend on 〈k〉. As such, having Gaussian
noise with standard deviation θ , the formula is |d| < a · θ〈k〉 , or in terms of 〈k〉,
we have 〈k〉 < knoise

c := aθ
|d| . In our experiments, constant a was determined as

a ≈ 0.65.

10.2.4 Impact of a Signal

As for the noise, the magnitude of the signal should have a major role in the
EoC, but this time the chaotic region should reduce instead of expanding, since
the signal is known to suppress chaos in certain conditions [Rajan et al., 2010].

89 10.2 Experiments

Figure 10.4. The same experiment of Fig.10.1, but with the presence of a noise
term with ν= 0.1 (multiplied by the mean degree, so that it increases along the
x-axis). Note how for higher degree the chaos region is constant (the predicted
value is the red dashed line), deviating from the autonomous-case prediction
(red dashed line).

The signal introduces a correlation among neurons, which makes the annealed
approximation ineffective. We drive the network with the signal as in (10.1), but
we scale ut with a gain factor A, since we are interested in its usage as an hyper-
parameter and not in relation with 〈k〉. We initially feed the network with white
noise (note that this is different from what we did in 10.2.3, since in this case
the noise is the same for each neuron): from Fig. 10.5 one can observe how the
chaotic region rapidly shrinks as A increases, but a region with an intermediate
value of entropy expands (linearly). This is due to the fact the signal prevents
the system from collapsing in a stable state, keeping the entropy above zero.

In Fig. 10.6 we show the results obtained for the MSO (see Appendix C.5):
again we note how the chaotic region shrinks as A increases, with the appear-
ance of the region characterized by intermediate entropy values which, instead,
expands.

90 10.2 Experiments

Figure 10.5. Network driven by white noise. Values of H for different configu-
rations of A and d. The mean degree was fixed to 〈k〉= 150.

91 10.2 Experiments

Figure 10.6. Network driven with the sum of three sinusoids. Values of H for
different configurations of A and d. The mean degree was fixed to 〈k〉= 150.

92 10.2 Experiments

Chapter 11

Synchronization

In this chapter, we propose a general framework to study RC systems, which is
based on Synchronization of dynamical systems. Synchronization is a well es-
tablished topic with a solid theoretical backbone. We discuss how results com-
ing form this theory can be exploited when dealing with temporal tasks in ma-
chine learning and show that they are particularly suited to RC. Section 11.1
introduces the topic of synchronization for dynamical system, building up the
theoretical background needed in the rest of the chapter. In section 11.1, we
introduce synchronization between identical systems, synchronization in drive-
response systems and finally GS, which is the main tool we will use to study RC
systems. In Section 11.2, we analyze the role played by GS when training a RC
system to solve a generic task. In particular, we show how RC allows the reser-
voir to correctly encode the system generating the input signal into its dynamics.
We also discuss necessary and sufficient conditions for the learning to be feasible
in this approach. Moreover, we explore the role that ergodicity plays in this pro-
cess, showing how its presence allows the learning outcome to apply to multiple
input trajectories. Finally, in Section 11.3 we show that satisfaction of the GS
can be measured by means of the Mutual False Nearest Neighbors index, which
makes effective to practitioners theoretical derivations.

11.1 Synchronization

11.1.1 Synchronization of Identical Systems

Following Ott [2002], we start by recalling the concept of sensitive dependence
on initial conditions. Consider two identical d-dimensional chaotic systems, say

93

94 11.1 Synchronization

a and b, described by:

x a
t = F(x a

t−1) (11.1a)

x b
t = F(x b

t−1) (11.1b)

where the function F is the same for both systems. If the initial conditions
differ even slightly, then the chaotic nature of the system will lead to exponential
divergence: the two systems posses the same attractor but their motion will be
uncorrelated over time.

In this context, an instance of chaos synchronization consists of designing
a coupling between the two systems such that the two trajectories, x a

t and x b
t ,

become identical asymptotically with time. That is, if x a
t ≈ x b

t then ‖x a
t −x b

t ‖ → 0
as t →∞. A possible coupling for (11.1) might be:

x a
t = F(x a

t−1) + ca
�

x a
t−1 − x b

t−1

�

(11.2a)

x b
t = F(x b

t−1) + cb
�

x b
t−1 − x a

t−1

�

(11.2b)

The ca = [ca,1, ca,2, . . . ca,d] and cb = [cb,1, cb,2, . . . cb,d] are the coupling con-
stants. If all the ca’s are null, we say that there is one-way coupling from a to b,
since the state of a influences b but b does no influence a. If ca,i 6= 0 and cb,i 6= 0
for at least one i, we say that there is a two-way coupling. See Fig. 11.1 for an
example.

System in (11.2) is, as a whole, a 2d-dimensional dynamical system resulting
from the coupling of the two original systems. Note that if synchronization is
achieved, x a

t = x b
t : this means that the coupling terms are null.

In the 2d-dimensional state-space of system (11.2), the synchronized state
x a = x b represents an d-dimensional invariant manifold. On this manifold,
(11.2) reduces to (11.1).

11.1.2 Drive-Response Systems

In this section we introduce the concept of GS and relate it to the concept of
ESP. To do so, we start by considering the source system (2.1) together with the
reservoir (3.3) in a drive-response system:

st = g (st−1) (Drive) (11.3a)

rt = f (rt−1, h(st−1)) (Response) (11.3b)

Where (11.3a) is the drive and (11.3b) the response. Together, they form an
autonomous (ds + dr)-dimensional dynamical system which can be written as:

x t = G(x t−1) (11.4)

95 11.1 Synchronization

x

15 10 5 0 5 10 15

y

20
10

0
10

20

z

5
10
15
20
25
30
35
40
45

Synchronized
Xa

Xb

x

15 10 5 0 5 10 15

y

20
10

0
10

20

z

5
10
15
20
25
30
35
40
45

Non synchronized
Xa

Xb

Figure 11.1. Two examples of (11.2) in which F is the Lorenz system (Ap-
pendix C.1). In both panels, x a

0 and x b
0 are the same but on the left one the

coupling strength is enough to lead to synchronization. In the right panel the
coupling is too weak for the synchronization to occur.

where x is simply the concatenation of s and r and, accordingly, G represents
the concatenation of the action of g and f .

Let us now assume that (11.4) has an attractorA with a basin of attraction
B .1 This attractor can be expressed as:

A =As ×Ar

where As (respectively, Ar) is the projection of A onto the ds(respectively, dr)
coordinates of system (11.3a) (respectively, (11.3b)). The same holds for the
basin of attractionB ofA , which can be expressed in an analogous way as

B =Bs ×Br

It is important to note that, because (11.3a) is an autonomous dynamical sys-
tem, As is its attractor and Bs its basin of attraction. The nature of Ar and Br

is more complex, as (11.3b) is a non-autonomous dynamical system, for which
the definition of attractor is more complicated (and non-uniquely defined, see
Appendix A.2 for a brief discussion): for our purpose,Ar andBr can be simply
thought of as sets obtained by a projection of the whole system considering only
the variables related to the response system.

1This assumption is required just to simplify the exposition. For the case where the system
has multiple attractors see, for instance, Lu and Bassett [2020].

96 11.1 Synchronization

11.1.3 Complete Synchronization and Asymptotic Stability

In the framework introduced for system 11.3, we now introduce a driven replica
subsystem:

r̃t = f (r̃t−1, h(st−1)) (11.5)

Note that f is the same as in (11.3b). We then take the sequence of states st

from (11.3a) and use h(s) to feed the replica subsystem (11.5). The complete
synchronization [Pecora and Carroll, 1990] between the response (11.3b) and
its replica (11.5) is defined as the identity of the trajectories of r and r̃ . In
more formal terms, we are requiring the asymptotic stability of the response with
respect to the replica subsystem [Boccaletti et al., 2002, Sec. 3.6].

Definition 6 (Asymptotic stability). A dynamical system is said to be asymptoti-
cally stable if, for any two copies r and r̃ of the system driven by the same input
ut and starting from different initial conditions in Br , it holds that

lim
t→∞
‖r (t, ut+1)− r̃ (t, ut+1)‖= 0 (11.6)

In our case, ut = h(st). The state of the full dynamical system is now consti-
tuted by (11.3) and (11.5), and thus it is ds+2dr dimensional. The synchronized
state r̂ = r represents an (ds+ dr)-dimensional manifold embedded in the state-
space of the full system.

11.1.4 Generalized Synchronization

As stated in the introduction, the concept of synchronization has been raising in-
terest in the RC community. Here we introduce the GS, which is a generalization
of the concept of synchronization for non-identical systems. A short introduction
of the simpler case in which the synchronization occurs between identical sys-
tem can be found in Appendix 11.1.1). We introduce GS following the definition
used in Parlitz [2012]:

Definition 7 (Generalized Synchronization). A system like (11.3) possesses the
property of Generalized Synchronization (GS) when there exists a transformation

φ : Rds → Rdr (11.7)

s 7→ φ(s) (11.8)

mapping the states of the drive (11.3a) into the states of the response (11.3b)
for which:

lim
t→∞
‖rt −φ(st)‖= 0 (11.9)

97 11.2 Generalized Synchronization and Learning

This means that the response state r is asymptotically given by the state of
the driving system s and there exists a invariant setM in the full state-space of
the system defined by the equation:

r = φ(s). (11.10)

i.e., M := {(s , r)∈A : r = φ(s)}. If we assume that φ is smooth, M is
indeed a manifold and we refer to it as the synchronization manifold. Moreover
we can define BM as the set of initial conditions for which (11.9) holds. Then
BM ⊆B . As noted in Rulkov et al. [1995], if a synchronizing relationship of the
form (11.10) occurs, it means that the motion of the system in the full space has
collapsed onto a subspace which is the manifold of the synchronized motionM .
This manifold is invariant, in the sense that rt = φ(st) implies rt+1 = φ(st+1).
Moreover, (11.9) implies that such a manifold must be attracting Parlitz [2012].

Since the relationship defined in (11.9) should hold on the attractor As,
which the drive system approaches asymptotically, it makes sense to write the
attractor of the response system asAr = φ(As).

We assume φ to be smooth (which can be theoretically granted for a large
class of systems Grigoryeva et al. [2020]). This is necessary as simple existence
M is not enough to guarantee any regularity, even when it is attracting [Stark,
1999]. In general, distinguishing the case in which φ does not exist from when
it is very very irregular is impossible, at least practically Parlitz [2012], so the
smoothness of φ is a fundamental assumption. The case in which the synchro-
nization function exists but is complicated or even fractal is called Weak Synchro-
nization Pyragas [1996]; this case is not taken into account in our paper.

Ifφ equals the identity transformation, this general definition of synchroniza-
tion coincides with the definition of identical synchronization (see Sec. 11.1.1).

11.2 Generalized Synchronization and Learning

11.2.1 ESP and GS

The assumption that the input ut is given by (2.7) (i.e., it is a function of the state
of an autonomous dynamical system) makes it possible to explore the matter in
more depth. We start by noticing that, in this framework, a sequence {ut} is
uniquely defined by an initial condition of (2.1) as:

ut = h(st) = h(g t(s0))

98 11.2 Generalized Synchronization and Learning

which holds for any t as g is assumed to be invertible. This means that each
left-infinite sequence of measurements can be uniquely associated to a state of
the source system (2.1) so that:

E(. . . , ut−1, ut) = E(. . . , h ◦ g−1 ◦ st , h ◦ st)

which is clearly a function of st only and is, in fact, (11.10). Within our frame-
work, the existence of an input echo function is equivalent to the existence of a
synchronization function, i.e.:

E(. . . , ut−1, ut) = φ(st)

Yet, the analogy is not perfect as the ESP requires φ to be unique. Non-
uniqueness means that there exists p > 1 different synchronization manifolds,
each one given by a different synchronization function M i := {(s , r) : r =
φ i(s)}, i = 1, . . . , p. In [Grigoryeva et al., 2020] the authors show that this
phenomenon can be avoided by ensuring local contractivity of f , i.e. f should
operate as a contraction on each separate manifoldM i.

When evaluating the reservoir system performance (which is needed in order
to perform hyper-parameters tuning), one usually compares single realizations of
the reservoir and of the input signal, i.e. a specific instance of the reservoir with
its initial condition is trained on an input signal. This means that the uniqueness
is not practically exploited in most practical context, and sometimes it might
even be detrimental (see the concept of “echo index” introduced in [Ceni et al.,
2020]): for this reason, in this paper we simply explore the GS disregarding its
uniqueness.

11.2.2 Unsupervised System Reconstruction
During the Listening Phase

In the scenario depicted above, one uses the reservoir r to create a representation
of the input, which is finally processed by the readoutψ. The goal is to generate
a mapping from s to y and then to use such readout for generating ŷt for values
of ut which are not in the training set (i.e., for t ≥ 0). Since s is unknown, what
one really assumes is that it is possible to predict y from the knowledge of the
whole history of u. This is, in fact, an implication of Takens embedding theorem
Takens [1981] and the feasibility of such a procedure was recently proved in the
context of RC by Hart et al. [2020]2.

2Note that what they call echo state map (see Theorem 2.2.2 in Hart et al. [2020]) corresponds
to the synchronization function in (11.10)

99 11.2 Generalized Synchronization and Learning

It is really important to emphasize the fact that we only consider the case
where the fitting of the readout does not affect the reservoir dynamics in any
way. The representation of the attractor of s into the reservoir states r by the
use of the input sequence u is done in the listening phase, which is (in machine
learning parlance) unsupervised. The fitting consists of trying to estimate the
static function k mapping the state s to the desired output y , i.e,

ŷt :=ψ(rt)≈ k(st) = yt (11.11)

for each t. We now discuss the role that the listening phase has on the learn-
ing process.

Let us consider the time interval (ts, 0), in which we assume that the GS has
occurred; remember that we assume negative times for the training phase, so
ts < 0. We consider the reservoir states generated in this interval,

R(ts ,0) =





| | | |
rts

rts+1 . . . r0

| | | |



=

=





| | | |
rts

f (rts
, uts
) . . . f (r−1, u−1)

| | | |



 (11.12)

GS guarantees that there exists a function mapping the source system states
to the reservoir states and also its invariance. This means that

rt = φ(st)⇒ rt+1 = φ(st+1) = φ(g (st)) (11.13)

so that (11.12) can be written as follows:

R(ts ,0) =





| | | |
φ(s(ts)) φ(sts+1) . . . φ(s0)
| | | |



 (11.14)

Note thatφ is a time-independent function that is the same for all s . Since by
assumption dr > ds, we can think ofφ as an attempt to expand the source system
state-space (which is unknown) into a higher-dimensional space, in the same
fashion as the well-known reproducing kernel Hilbert space mechanism behind
kernel methods [Shawe-Taylor and Cristianini, 2004]: the reservoir dynamics
performs a sort of nonlinear basis expansion of the (unknown) attractor of s . The
use of the synchronization function φ provides a sound theoretical framework

100 11.2 Generalized Synchronization and Learning

to the fitting process, and the relation (11.10) can be seen a sound formulation
of the “reservoir trick”; see [Shi and Han, 2007]. Moreover note that such an
expansion φ was not computed or estimated from data, but was obtained as a
result of driving the reservoir with the input sequence under consideration: this
means that the mapping is “informed” of the dynamics. Accordingly, we can
interpret (11.11) as follows:

ŷt =ψ(rt) =ψ(φ(st))≈ k(st) = yt (11.15)

11.2.3 Learning Realizability

We define the concept of “Realizable Learning” [Shalev-Shwartz and Ben-David,
2014] as the situation where the readout is perfectly able to reconstruct the tar-
gets by using the reservoir states. More formally,

Definition 8 (Learning Realizability). We say that the learning is realizable if
there exists a readout ψ such that,

yt =ψ(rt), ∀t (11.16)

The following theorem proves that for the learning to be realizable for a orbit
of the source system, there must be a function mapping that orbit into the orbit
of the reservoir. First we introduce some notation. Let us denote with S ⊂ As

the set containing all st , for all t (this is the orbit of a system). Analogously, we
defineR ⊂Ar as the set of all rt , for all t. We define Y as the result of applying
k to each point in S , in short Y := k(S).

Theorem 5. A necessary condition for learning to be realizable is that for each r ∈
R such that ψ(r) = y , there exists a function F : S → R such that r = F (s),
where s is such that by k(s) = y .

Proof. Realizability of learning implies thatψ is surjective when mappingR into
Y . The surjectivity of k is guaranteed by the way we constructedY . But because
different source system states could result in the same target, k may not be an
injective function. The same holds forψ. We defineψ†(y) as a function mapping
each y onto an r : if ψ is also injective, then ψ† corresponds to the inverse of
ψ, but in general it is not. These functions are called right-inverse since ψ ◦ψ†

is the identity but ψ† ◦ψ is not. Since by definition yt = k(st), it will then be
possible to construct the function F as follows:

F =ψ† ◦ k (11.17)

101 11.2 Generalized Synchronization and Learning

Such a function maps all s into the corresponding targets y and inverts the
readout functionψ so that it maps each target to a corresponding reservoir state
r .

So far, we have shown that (11.17) maps each s to an r . We also need to
make sure that each r can be written asF (s). This is granted by our assumption
(surjectivity ofψ) which tells us that each y can be written asψ(r). Then, using
an argument analogous to the one above, we can associate each y ∈ Y to an
s ∈ S by defining k†. Again, this corresponds to the inverse of k only if k is also
injective. Note that, in general, distinct values of r might be associated to the
same s (and viceversa). This shows that if learning is realizable, then F must
exist.

The theorem also implies that if F does not exist, then learning is not re-
alizable. So, any successful training procedure must (i) develop an (implicit)
mapping from S to R and (ii) find a suitable readout. Yet, the existence of F
does not necessarily imply the realizability of learning: we have no guarantees
that, in the presence of such a mapping, a readout solving the problem can be
found. Moreover, the fact that learning is not realizable does not necessarily im-
ply that F does not exist: the problem might simply be that we are not able to
conceive the right readout.

We now prove that, by requiring F to be injective, we can always construct
a readout which correctly solves the problem.

Theorem 6. A sufficient condition for the learning to be realizable is that there
exists a function F such that for all r ∈ R , r =F (s) and F is injective.

Before proving the theorem, we make a remark:

Remark 1. In Theorem 6, the condition that r = F (s) must hold for all r ∈ R
means thatF : S →R must be surjective. This means that whenF is injective,
it is in fact bijective and so, invertible.

The proof of the theorem in now trivial:

Proof. As discussed in Remark 1, the injectivity of F grants the existence of its
inverseF−1. The readout function solving (11.16) then exists and it is given by:

ψ= k ◦F−1 (11.18)

The fact that F is injective means that it always maps distinct s into distinct
r . Without it, F may map two distinct s1, s2 into the same r =F (s1) =F (s2):

102 11.2 Generalized Synchronization and Learning

the realizability of learning then depends on whether k(s1) = k(s2) = y or not.
This is why the existence of F is not sufficient by itself. An analogous concept
was introduced by Maass et al. [2002], where the authors use the term separation
property. We emphasize the fact that the separation property requires the system
to differentiate between distinct input signals ({ut} in our notation), while here
the discrimination must be performed on the source system states st

It is important to note that both k andF are unknown in our problem setting,
so that the theorem only guarantees the possibility of finding the right ψ but
does not provide a constructive way of finding it. Therefore, when learning is
not realizable it is generally impossible to understand whether the problem is
related to F , to ψ, or even to the both of them.

Notably, as we will discuss later, this problem can be bypassed by considering
the synchronization function φ as a surrogate for F . As φ is only related to
the dynamical evolution of the reservoir (listening phase), we can discuss its
existence and properties disregarding the readout.

This shows the importance of φ in the context of RC: it can be used to asses
the quality of the representation of the unknown source system that the reser-
voir has encoded in its state. This allows one to disentangle the problem of
embedding the input (which is done in an unsupervised way during the listein-
ing phase) from the the problem of finding the best readout to predict the target
(which is a supervised problem, faced in the fitting phase). This fact is of par-
ticular interest as most of the hyperparameters that are usually optimized (e.g.,
the spectral radius of the connectivity matrix, its sparsity, the input scaling, the
activation function) affect the listening phase only and, therefore, the synchro-
nization. Hence, their analysis and optimization can be performed disregarding
the fitting procedure.

Finally, we point out that Theorem 6 formally proves that – as suggested in
other works Lu et al. [2018]; Lu and Bassett [2020] – the existence of an invert-
ible synchronization function is sufficient for the RC paradigm to work (provided
that the readout is able to correctly approximate the target). We proved that this
condition applies not only in the generative frameworks (i.e., when yt = st+1)
which is the one studied in [Lu et al., 2018; Lu and Bassett, 2020], but to any
generic target yt = k(st).

11.2.4 Error on the Whole Attractor

Since the readoutψ is generated after the listening phase, we have no guarantees
that, in general, it will continue to correctly reproduce the target also in the
predicting phase. More in detail, after observing a series of measurements ut

103 11.2 Generalized Synchronization and Learning

and targets yt coming from an unknown trajectory of the source system st , we
want to learn a readout ψ which is able to predict the targets even for future
times.

Since we have assumed that the source system (2.1) has a unique attractor
A , this goal can be achieved by learning a readout valid for all the y = k(s),
for s ∈ A . In the machine learning parlance, this can be described as follows:
a single trajectory plays the role of a sample, while the attractor plays the role
of the data-generating process. This becomes possible by assuming the attractor
As to be ergodic [Birkhoff, 1931]. In fact, the existence of an ergodic attractor
guarantees that a sufficiently long trajectory will be a “good sampling” of the
whole attractor (see [Hart et al., 2021] for a discussion about the generative
framework). Moreover, as all trajectories starting from the basin of attraction
Bs will approachAs, this procedure allows to learn a prediction model suitable
for a full set of trajectories by observing only one.

To do so, let us define the loss function:

L (yt , ŷt) = ‖yt − ŷt‖2 (11.19)

where ‖·‖2 is the L2-norm. We refer to (11.19) as Root Mean Square Error
(RMSE).3 The learning realizability trivially implies that there exists a readout
for which:

1
T

T
∑

t=ts

L (yt , ŷt) = 0 (11.20)

since L (yt , ŷt) = 0, for each t. Note that time starts at t = ts because we want
to remove transient effects (as our discussion is valid on the attractor only).

By expanding y and ŷ , we get:

1
T

T
∑

t=ts

L (k(st),ψ(rt)) = 0 (11.21)

The existence of a functionF (Thm. 6) allows us to write rt =F (st), so that
our loss becomes

L (k(st),ψ(rt)) =L (k(st),ψ(F (st))) =L (st) (11.22)

where the last equality stresses the fact that L is a function of st only (with an
abuse of notation on the function L). Taking the limit for T →∞, we can now

3Note that different choices can be made forL and the results do not depend on its particular
form. We use the RMSE because it is the one we use in the esperimental section.

104 11.2 Generalized Synchronization and Learning

exploit the ergodicity4ofAs and obtain:

0= lim
T→∞

1
T

T
∑

t=ts

L (yt , ŷt) = lim
T→∞

1
T

T
∑

t=ts

L (st) = 〈L (s)〉As

︸ ︷︷ ︸

Ergodicity

(11.23)

In (11.23), 〈L (s)〉As
denotes the average loss by sampling trajectories over the

whole attractor As. This means that, if learning is realizable for a single trajec-
tory, then it will be realizable on the whole attractor of the source system.

Note that the crucial part of this approach is the dependence on s only, be-
cause only the source system attractorAs is assumed to be ergodic.

11.2.5 Synchronization Function

One would like to relax the definition of realizable learning (see Def. 8): in fact,
in realistic situations the error is not exactly zero. This is formalized by assuming
that L (yt , ŷt) = εt ≥ 0,∀t, so that:

ET =
1
T

T
∑

t=ts

L (yt , ŷt) (11.24)

As proved in the previous section, if a mappingF does not exist, then learning
cannot be realizable according to Def. 8. But assuming GS to hold, we can make
use of the synchronization function φ and write:

1
T

T
∑

t=ts

L (yt , ŷt) =
1
T

T
∑

t=ts

L (k(st),ψ(φ(st)))

=
1
T

T
∑

t=ts

L (st)

(11.25)

where, again, L depends only on st . In order to make use of the ergodicity of
the source system, we need to be sure that the above limit exists. An easy way
for guaranteeing this consists of requiring the error to be bounded, i.e., to have
L (yt , ŷt) = εt < C , where C ≥ 0 is a constant. So, when limT→∞ ET exists and
is finite, one can write:

E = lim
T→∞

ET = lim
T→∞

1
T

T
∑

t=ts

L (st) = 〈L (st)〉As
(11.26)

4This is indeed the celebrated Birkhoff ’s Ergodic Theorem Birkhoff [1931], which states that for
any ergodic system the time average from almost any initial condition equals the space average.
For a modern discussion about ergodicity in the context of RC see Hart et al. [2021].

105 11.2 Generalized Synchronization and Learning

The existence of the synchronization function guarantees that the error for
a single trajectory is the same as the error in the whole attractor of the source
system. This means that, by assuming GS, we can have some guarantees on the
performance of our model even when learning is not realizable, and this is due to
the fact that L depends only on the source system states s when assuming GS.
We emphasize that this argument applies not only to future time of the the same
trajectory, but also to any trajectory of the source system (2.1) which starts from
Bs. Practically speaking, this means that if we have a trajectory of the source
system starting at s ′(0) ∈ Bs, the readout that was previously trained will still
work, because this new trajectory will still approach the same attractor As and
the reservoir will approach the synchronization manifold. Note that if the GS is
granted but it is not unique (i.e, we do not have the ESP), the reservoir needs
to be initialized with the same initial condition, otherwise it may converge to
a different synchronization manifold, which would require a different readout;
which always exists as long as the new synchronization function is invertible. The
ESP ensures that the readout will be the same, as the synchronization function
will be unique. In fact, the definition of the synchronization function in Def. 7
has other implications for the training mechanisms.

Making use of its smoothness along with the attractivity of the synchroniza-
tion manifold, one can account not only for the error in the approximation, but
also for the observational noise of the source system.

In many real situations the input is corrupted by some noise, so that instead
of reading just ut one actually reads ut + εt , εt being i.i.d. noise. This lead to
the following state-update for the reservoir:

rt+1 = f (rt , ut + εt) (11.27)

≈ f (rt , ut) + f ′(rt , ut)εt

This will affect the reservoir dynamics in general, but when the noise is small
we can still hope that the trajectory will not be too far from the one generated
without noise. That is, we assume it is possible to write each point as rt + ηt .
This will be in fact guaranteed by the GS, which requires the synchronization
manifold not only to exist, but also to be attractive Kocarev and Parlitz [1996].
Note that ηt is not i.i.d. anymore.

The synchronization problem (w.r.t. to the true system state) becomes:

s = φ(r +η) (11.28)

We can make use of the smoothness of φ to write a first-order approximation
of the source system state as follows:

s ≈ φ(r) +φ′(r)η (11.29)

106 11.3 Experimental Results

Such an approximation allows us to introduce a measure of synchronization
error due to noise, which reads:

En := ‖s −φ(r)‖ ≈ ‖φ′η‖ ≤ ‖φ′‖‖η‖ (11.30)

For the observer task (see 11.3.3), in the common case of a linear readout, φ′

is simply the pseudo-inverse of the readout matrix W ∗
out, whose singular values

are the reciprocal of the singular values of Wout. This implies the following bound
on the synchronization error due to noise,

En ≤ ‖W ∗
out‖‖η‖=

‖η‖
miniσi(Wout)

(11.31)

where σi(Wout) denote the non-null singular values of Wout.
Finally, we stress that the existence of GS is a property which only involves

the source system (2.1) and its coupling with the reservoir (3.3) by means of
the measurements (2.7), disregarding the particular task at hand. In fact, in the
discussion above, we showed how using the synchronization function φ one can,
in some sense, decouple the learning task and separate the problem of finding a
suitable readout from the problem of granting the existence of a mapping from
the source system states, s , to the reservoir states, r .

11.3 Experimental Results

11.3.1 The Mutual False Nearest Neighbors

Identifying GS is hard due to the fact that the synchronization function (11.10)
is unknown and may take any form. For this reason, in Rulkov et al. [1995]
a method to empirically assess the occurrence of GS from data was proposed
under the name of Mutual False Nearest Neighbors (MFNN). It is based on the
fact that, under reasonable smoothness conditions for φ, (11.10) implies that
two states that are close in state-space of the response system correspond to two
close states in the state-space of the driving system. So, we are looking for a
geometric connection between the two systems which preserves the neighbor-
structure in state space.

Let us assume that we sample trajectories from a dynamical system at a fixed
sampling rate, resulting in a series of discrete times {tn}. The resulting measure-
ments for the two systems will be {xn} and {r n}, for the drive and the response
respectively, where we used the notation xn := x (tn) and r n := r (tn). For each
point xn of the driving system, we seek the closest point from its neighbors, which

107 11.3 Experimental Results

we will call time index nNND. Then, due to (11.10), the point r n = φ(s n) will
be close to r nNND

. If the distances between these pairs of points in state-space of
both the drive and response systems are small, one can write:

r n − r nNND
= φ(s n)−φ(s nNND

)≈ Dφ(s n)(s n − s nNND
) (11.32)

where Dφ(s n) is the Jacobian of φ evaluated at s n.
Now, we do a similar operation but in the response state space. We look for

the closer point to r n and we index it with nNNR. Again, due to (11.10), it holds:

r n − r nNNR
= φ(s n)−φ(s nNNR

)≈ Dφ(s n)(s n − s nNNR
) (11.33)

We highlight the fact that (11.33) requires the continuity of φ−1 since points
that are close in the response system’s domain are also close in the drive system’s
domain.

So, due to (11.32) and (11.33) we have two different ways of evaluating
Dφ(s n). This leads us to the definition of the MFNN as the following ratio:

MFNN(n) :=
‖r n − r nNND

‖
‖s n − s nNND

‖
‖s n − s nNNR

‖
‖r n − r nNNR

‖
(11.34)

If the two systems are synchronized in a general sense, then MFNN(n) ≈ 1.
If the synchronization relation does not hold, then (11.34) should instead be of
the order of (size of the attractor squared)/(distance between nearest neighbors
squared) which is, in general, a large number.

Note that in this work we use the full knowledge of the source system to mea-
sure the GS by means of MFNN. Generally, one would not have such a knowl-
edge: anyway the MFNN can be used also in this case, as showed in the paper
where it was proposed Rulkov et al. [1995], making use of the embedding theo-
rem. For simplicity, we do not deal with this more complex case, since it would
not be relevant for the discussion. See Boccaletti et al. [2002, Chapter 7.1] for a
review about the empirical detection of synchronization.

Another possible way of assessing GS is to verify the complete synchroniza-
tion (see Appendix 11.1.3) between multiple copies of the reservoir. While such
an approach might be hard to follow when considering physical systems, it poses
no problem and can be straightforwardly implemented in the context we are
interested in (See Platt et al. [2021]). Note that this method may misidentify
some form of synchronization. See Parlitz [2012] for a detailed discussion on
the different methods used to empirically detect synchronization.

108 11.3 Experimental Results

11.3.2 Reservoir Computing Networks

For simplicity, but without loss of generality, we will only deal with one-dimensional
inputs ut ∈ R. We use an RCN where the explicit form of the reservoir equation
(3.3) reads:

rt = tanh (Wrt−1 + wut−1 + b) (11.35)

W ∈ Rdr×dr is the connectivity matrix, which is an Erdos-Renyi matrix with aver-
age degree 6; dr indicates the dimension of the reservoir. The non-null elements
are drawn from a uniform distribution taking values in the interval (−1, 1). W
is re-scaled so that its SR equals the user-defined hyper-parameter ρ > 0. We
emphasize that having a SR smaller than 1 is not a sufficient nor necessary con-
dition for the ESP to hold Yildiz et al. [2012]. The elements w ∈ Rdr of the input
vector are drawn from a uniform distribution taking values in (−ω,ω); we refer
to ω as the input scaling hyper-parameter. b = [b, b, . . . , b] is a constant bias
term, which is useful to control the non-linearity of the system and to break the
symmetry with respect to the origin Lu et al. [2017]. Here, tanh stands for the
hyperbolic-tangent function applied element-wise.

We use a linear readout, so that the predicted output is given by:

ŷt =ψ(rt)≡ Woutrt (11.36)

where Wout is a dy×dr matrix, called readout matrix; dy is the output dimension.
We train the readout using ridge-regression with regularization parameter λ,
but more sophisticated, offline optimization procedures can be designed as well
[Gallicchio et al., 2017; Shi and Han, 2007; Løkse et al., 2017].

11.3.3 Reservoir observer

We test the hypothesis that learning in RC can happen only when the network is
synchronized with the source system (2.1). To do so, we adopt the framework
named reservoir observer Lu et al. [2017], which consists of setting h(s) = s1 = u
and y = s . This means that the network is trained to reconstruct the full state
of the source system by seeing only one component of it. Note that k in (2.10)
is the identity for this task, and (11.15) reduces to finding the right inverse of
the synchronization function (11.10). Practically, when using a linear readout
(as in fact we do here), one implicitly assumes that k ◦φ†(r) in (11.15) can be
expressed in linear form

φ†(r) = Woutr (11.37)

implying that
φ(s) = W ∗

outs (11.38)

109 11.3 Experimental Results

where W ∗
out is the left pseudo-inverse of the readout matrix.

11.3.4 Results

As for the source system (2.1), we use the Lorenz model (see Appendix C.1 for
details). In the listening phase, we use t in the interval of Ttrain = (−100,0). We
discarded the first 1/10 of the data points for training, to account for transient
effects in the synchronization process. The prediction phase was carried out for
values of t in Ttest = (0, 80). The integration step was always set to τ= 0.05. An
example of this task is provided in Fig. 11.2.

For each hyper-parameter configuration, we repeated the experiment 10 times,
generating a different realization of the source system (i.e., starting from distinct
random initial conditions) and a different realization of the RCN (11.35). For
each run, the MFNN between the driving system state st and the reservoir rt was
computed. As a performance measure for the prediction accuracy, we used the
RMSE computed on the y and the z coordinate of the Lorenz system (since x is
used as input). Following Rulkov et al. [1995], we plot the inverse of the MFNN.
Accordingly, we plot the inverse of the RMSE, which can be interpreted as a form
of accuracy. Unless differently stated, all hyperparameters are the ones reported
in Tab. 11.1. All the plots refer to the predicting phase.

Table 11.1. Default hyper–parameters used in all experiments, unless differently
stated.

ρ 1 Ttrain (−100, 0)
ω 0.1 Ttest (0, 80)
dr 300 τ 0.05
b 1 λ 10−6

In Fig. 11.3, we show the reciprocals of RMSE and of the MFNN index when
the SR of the reservoir connectivity matrix varies in a suitable range. For smaller
values of SR the reservoir dynamics are really simple and close to linear (since
tanh(x) ≈ x when x is small), so that the network it is not able to correctly
represent the Lorenz attractor in its state. Note that, as pointed out in Lymburn
et al. [2019], in this regime the reservoir is synchronized with the source sys-
tem, but the synchronization functiion is non-invertible as the reservoir cannot
display a correct representation of the source system in its states. This condition
has been correctly identified by the MFNN test and the RMSE (since the recon-
struction of the state is not possible,see Theorem 6). As the SR approaches 1 we

110 11.3 Experimental Results

20

15

10

5

0

5

10

15
x

20

10

0

10

20

y

20 10 0 10 20
t

5

10

15

20

25

30

35

40

45

z

True
True (unseen)
Prediction train
Prediction test

Figure 11.2. An example of the observer task using the Lorenz system. The top
panel show the measurement u (blue), which is always available. The middle
and the bottom panels represents the targets y : in the training phase they are
available (blue) while in the predicting phase (red) they cannot be accessed
anymore. The predicted targets ŷ (black dashed lines) are generated by means
of the RCN described in Sec. 11.3.2.

see that both measures improve, as a richer representation of the source system
is present into the reservoir states, which leads to an invertible φ. When the SR
started growing, the reservoirs becomes more and more unstable and it gradu-
ally de-synchronizes with the source system, such that the reconstruction of the
coordinates becomes less precise.

111 11.3 Experimental Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0

5

10

15

20

25

30

35

RM
SE

1

0.0

0.1

0.2

0.3

0.4

M
FN

N
1

Figure 11.3. Results for the reservoir observer when varying the SR of the
connectivity matrix, when using the Lorenz system as a source. Blue dots
account for the reciprocal of the RMSE (left axis) while red triangles accounts
for reciprocal of the MFNN (right axis).

In Fig. 11.4 we repeated the experiment, but this time varying the input scal-
ing ω and holding ρ fixed to its default value. We see that the two quantities
still correlates, with both the accuracy and the synchronization decreasing as the
input scaling grows.

To assess the generality of our findings, we performed additional simulations
by changing the source system (2.1). To this end, we consider now the Rössler
system as a source system (see Appendix C.2 for details). Since the dynamics of
the Rössler system are slower then the Lorenz ones, we set the integration step to
τ= 0.5, Ttrain = (−200,0) and Ttext = (0, 160). The remaining hyper-parameters
are set as shown in Tab. 11.1. Again, we use the x-coordinate as input and the
tasks consists of learning how to reproduce y and z. The results are displayed in
Fig. 11.5 and look similar to the one obtained for the Lorenz system (Fig. 11.3).

112 11.3 Experimental Results

0.0 0.2 0.4 0.6 0.8 1.0
Input Scaling

0

5

10

15

20

RM
SE

1

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

M
FN

N
1

Figure 11.4. Results for the reservoir observer on Lorenz system when varying
the input scaling ω. Blue dots account for the reciprocal of the RMSE (left
axis) while red triangles accounts for reciprocal of the MFNN (right axis).

To show that GS plays an important role not only in the observer task, we
also test our framework in a forecasting scenario (Fig. 11.6). To this end, we
use the x-coordinate of the Lorenz system as the input (ut := x t , but this time
the target y was chosen to be yt := u(t + 5τ). This means that the RCN is
required to correctly approximate the function g 5(s), which is highly nonlinear.
The RMSE is computed between yt and the network output ŷt . Notably, the
MFNN here is almost identical to the one in Fig. 11.3: both experiments use the
same hyperparameters, the same source system and construct u in the same way,
so that the only difference (up to the particular realization) is the task they are
trained to solve, which affects the readout and not on the dynamics. As in the
other cases, we notice that the MFNN and the RMSE display a similar behavior.

These results confirm that the GS can be exploited to assess the quality of

113 11.3 Experimental Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0

10

20

30

40

50

60

70

80

RM
SE

1

0.0

0.1

0.2

0.3

0.4

0.5

M
FN

N
1

Figure 11.5. Results for the reservoir observer when varying the SR, when using
the Rössler system as a source. Blue dots account for the reciprocal of the
RMSE (left axis) while red triangles accounts for reciprocal of the MFNN (right
axis).

the source system representation encoded in the reservoir states: in order to
correctly solve the task at hand, the reservoir and the the source system should
be synchronized.

114 11.3 Experimental Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Spectral Radius

0.5

1.0

1.5

2.0

RM
SE

1

0.0

0.1

0.2

0.3

0.4

M
FN

N
1

Figure 11.6. Results for the forecasting task on Lorenz system when varying
the SR. Blue dots account for the reciprocal of the RMSE (left axis) while red
triangles accounts for reciprocal of the MFNN (right axis).

Chapter 12

Conclusions

In this work, we studied the RC framework in the context of dynamical systems.
We aimed at analyzing RC systems in order to understand their properties: using
our findings to propose novel ways of improving the field, we exploit theoretical
results to both enhance the models used in the literature and to propose new
ones. Our analysis consists in the fact that the RC are inherently dynamical sys-
tems: hence, they can be used to study dynamical systems but, vice versa, also
dynamical systems can be used to study RC. We divided our analysis into three
parts.

Part I deals with how the learning occurs in RC. We reviewed the main
procedure used for training in RC, which we named Reservoir Learning Algo-
rithm (RLA). We also mentioned some relevant variations to it. This simple pro-
cedure for training displays a critical dependence on hyper-parameters, that need
to be carefully tuned and cross-validated. We analyzed these hyper-parameters
under the light of the state of the art, discussing how they affect the behaviors
of such systems. On top of that, we proposed a model for RCNs whose perfor-
mance is provably stable with regard to the most important hyper-parameter,
the Spectral Radius (SR). It is based on the projection of the system states into a
hyper-spherical surface, using a novel activation function designed for this scope.
We first proved that the proposed model is a universal approximator just like reg-
ular RCNs and gave sufficient conditions to support this claim. Our theoretical
analysis showed that the behavior of the resulting network is never unstable,
regardless of the setting of the main hyper-parameters affecting its dynamics in
phase space. This claim was supported both analytically and experimentally by
showing that the maximun Lyapunov exponent is always zero, implying that the
proposed model always operates on the Edge of Criticality (EoC). This leads to
networks which are (globally) stable for any hyper-parameter configuration, re-

115

116

gardless of the particular input signal driving the network, hence solving possible
stability problems that might affect RCNs.

Part II is concerned with the representation of the input signal in the states
of the reservoir. First we dealt with the memory of RC systems, showing exper-
iments comparing different models. We also examined the memory-nonlinearity
trade-off. The self-normalizing model proposed in the previous section displays a
competitive performance. We then moved to the analysis of ESP, a fundamental
property of RCN addressing their signal-encoding capability. Since we studied
signals that are generated by dynamical systems, we discussed how this property
can be linked to the celebrated Takens’s theorem. Finally, we proposed a method
to study RCNs which explicitly addresses their finite capacity. Starting from the
Cayley-Hamilton (CH) theorem, we expressed the system state in terms of the
controllability matrix C and the network encoded input v . The matrix properties
of C allowed us to compare different connectivity patterns for the reservoir in a
quantitative way by studying its rank. Results show that reservoirs with a cyclic
topology give the richest possible encoding of input signals, yet they also offer
one of the most parsimonious reservoir parametrization.

In Part III we addressed the study of the dynamics of the reservoir states as a
computational tool. At first, we briefly described the relationship between com-
putation and dynamics, with a particular emphasis on the topic of EoC. We later
introduced the binary RCNs which are in principle similar to regular RCNs, shar-
ing their fundamental features. However, their simplicity allowed a theoretical
analysis of some important aspects of the transition to instability. The expres-
sion we derived for the autonomous case perfectly matches the experimental
results. Our analysis of the noise applied to the neurons activations showed how
the network stability increases linearly with the mean degree of the recurrent
connections. The effects of input signals on the network dynamics are more
complex to understand, since they introduce correlations among neurons. Our
analysis partially explained the role that the signal magnitude and the mean de-
gree play in shaping the EoC of the non-autonomous case. At last, we laid down
the groundwork for establishing and analyzing working principles of RC within
the theoretical framework of synchronization between dynamical systems. We
showed that the presence of a synchronization function permits to formally con-
sider the reservoir states as an unsupervised, high-dimensional representation of
an unknown source system that generates the observed data. We proved that the
realizability of learning, defined as the possibility of perfectly solving the task,
crucially depends on the existence of a functionF connecting the reservoir states
with the source system states: the presence of Generalized Synchronization (GS)
implies the existence of a synchronization function φ playing an analogous role,

117

which is found in an unsupervised way by exploiting the RC dynamics. This for-
mally demonstrates that it is possible to solve the task at hand by firstly creating
an unsupervised representation of the source system (listening phase) and then
using a suitable readout to correctly represent the target (fitting phase), thus jus-
tifying the RC training principle in a formal way. Moreover, the presence of such
a synchronization function allows one to make use of the ergodicity of the source
system to grant some results on the generalization error for a given task. Finally,
we made use of an index (MFNN) to quantify the degree of synchronization and
experimentally validate our claims. Results show that the more the reservoir
is synchronized with the source, the better the system approximates the target,
hence stressing that synchronization is paramount and plays a fundamental role
within the RC framework.

The research in the field still faces numerous challenges. Among them, it
is particularly impelling to address the integration of domain knowledge (e.g.,
phyical) into the RC, particularly in the training procedure. Some steps have
been made toward this direction, like the hybrid-modeling presented in [Pathak,
Wikner, Fussell, Chandra, Hunt, Girvan and Ott, 2018] or the Physics-informed
ESP [Doan et al., 2020], but they rely on information about the source system
generating the data which are barely available in real applications. Moreover,
as previously discussed, theoretical and practical problems rise in the generating
scenario when the system switches from the non-autonomous training phase to
the autonomous testing phase. The theory of GS we presented is not suitable
for the latter, which instead involves a bidirectional synchronization between the
reservoir and the output. Therefore, the stability of the synchronization in the
training phase might not necessarily imply the stability of the autonomous system
during the testing. We are currently investigating this problem, studying the
properties of the approximated autonomous system that the RC system learns.
Another issue is related to the development of the theory of Non-Autonomous
Dynamical Systems [Manjunath et al., 2012], which is still in its infancy. The
exploitation of some relevant results from this field might lead to a more solid
theoretical base for the theory of RC (and RNNs in general). Finally, a more
advanced understanding of the role played by nonlinearity is needed in order
to progress in the field, both practically and theoretically. Most of the theory,
as we showed, relies on the linearization of the system around the fixed point,
e.g., [Bollt, 2021; Inubushi and Yoshimura, 2017], basically neglecting the role
of the nonlinear contributes. Currently, research is being carried to explore the
representation properties of nonlinear reservoirs.

118

Appendices

119

Appendix A

Dynamical Systems

In this Appendix, we give a formal introduction to the topic of dynamical systems.
Section A.1 presents the theory for Autonomous dynamical systems, both in con-
tinuous and discrete time. In our exposition, we mainly follow [Meiss, 2007].
In Section A.2 we briefly present the theory of Non-Autonomous Dynamical Sys-
tems, with a particular emphasis on Input-Driven Systems. We only discuss the
discrete-time scenario. We follow [Manjunath et al., 2012]. A detailed treatment
of the field can be found in [Kloeden and Rasmussen, 2011].

A.1 Autonomous Dynamical Systems

To define a Dynamical System we need two fundamental elements:

• a set X ;

• a map f : X → X .

Usually X is called the phase space. Starting from these simple and quite
general elements, we can define dynamical system. We note that for any point
x0 ∈ X , called initial condition, the map f gives us the new state of the system
x1 := f (x0). Since, by construction, x1 ∈ X we can apply the map again and
obtain x2 = f (x1) = f (f (x0)), i.e., the state of the system starting from x0 after
two application of the process. More generally, we can iterate the process any
number of times, so we define a compact notation for the k-th iteration, which
reads:

f k = f ◦ · · · ◦ f
︸ ︷︷ ︸

ktimes

(A.1)

121

122 A.1 Autonomous Dynamical Systems

where ◦ denotes the composition of maps. We also write the state of the
system starting from x0 after k iterations as:

xk := f k(x0). (A.2)

With the notation we developed, we now give some definitions.

Definition 9 (Forward Orbit). The forward orbit of x0 ∈ X is the set

O := {xn}n∈N

Definition 10 (Orbit). If f is invertible, the full orbit of x0 ∈ X is the set

O + := {xn}n∈N

Definition 11 (Fixed and Periodic Points). If f (x0) = x0 we call x0 a Fixed Point.
If f k(x0) = x0 we call x0 a Periodic Point of period k. If x j is periodic for some
j ≥ 0 we call x0 a Pre-periodic Point.

Definition 12 (Limit sets). Let X be a topological space and let f : X → X . For
x0 ∈ X we define the omega limit set ω(x0) as

ω(x0) := {y ∈ X : xn j
→ y for some n j →−∞ as j→∞}.

If f is invertible, for x0 ∈ X we define the alpha limit set α(x0) as

α(x0) := {y ∈ X : xn j
→ y for some n j →−∞ as j→∞}

Definition 13 (Transitive map). We say that f : X → X is transitive is there exists
x ∈ X with ω(x) = X .

Definition 14 (Attracting Fixed Point). The point p ∈ X is an attracting fixed
point if there exists a neighbourhood U of p such that ω(x) = {p} for all x ∈ U .

Definition 15 (Repelling Fixed Point). Assume f is invertible. The point p ∈ X is
a repelling fixed point if there exists a neighbourhood U of p such that α(x) = {p}
for all x ∈ U .

A.1.1 Discrete Time Dynamical Systems

We are now ready to give the definition of a discrete time dynamical system,

Definition 16 (Dynamical System). Given an arbitrary set X and an arbitrary
map f : X → X , we call Discrete Time Dynamical System the family { f t}t∈N.

123 A.1 Autonomous Dynamical Systems

Let Id : X → X be the identity function. It is easy to see that { f t}t∈N satisfies
the semi-group properties under composition, namely:

Closure f s ◦ f t = f s+t∀s, t ∈ N;

Identity f 0 = Id;

Associativity f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t∀r, s, t ∈ N.

Definition 17 (Invertible Discrete Time Dynamical System). Given an arbitrary
set X and an invertible map f : X → X , we call Discrete Time Invertible Dynamical
System the family { f t}t∈Z.

When f is invertible, the family { f t}t∈Z is a group, i.e., it satisfies:

Closure f s ◦ f t = f s+t ∀s, t ∈ Z;

Identity f 0 = Id;

Associativity f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t ∀r, s, t ∈ Z;

Inverse For every f n there exists f −n such that f n ◦ f −n = f −n ◦ f n = f 0.

A.1.2 Continuous Time Dynamical Systems

Definition 18 (Semi-Flow). Given a metric space X and an arbitrary map f :
X → X , we call (Non-invertible) Continuous Time Dynamical System or Semi-Flow
the family { f t}t∈R+ .

It is easy to see that { f t}t∈R+ satisfies the semi-group properties under com-
position, namely:

Closure f s ◦ f t = f s+t ∀s, t ∈ R+;

Identity f 0 = Id

Associativity f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t∀r, s, t ∈ R+.

Definition 19 (Flow). Given an arbitrary set X and an invertible map f : X → X ,
we call (Invertible) Continuous Time Dynamical System or Flow the family { f t}t∈R.

When f is invertible, the family { f t}t∈R is a group, i.e., it satisfies:

Closure f s ◦ f t = f s+t∀s, t ∈ R;

124 A.1 Autonomous Dynamical Systems

Identity f 0 = Id;

Associativity f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t ∀r, s, t ∈ Z;

Inverse For every f n there exists f −n such that f n ◦ f −n = f −n ◦ f n = f 0.

All the definitions given above can be easily generalized to the continuous
case. For example we can define the forward orbit as

O + := {xn}n∈R+ ,

and, for a flow, the (full) orbit as

O := {xn}n∈R

the same can be done for the ω− and α−sets.
Discrete- and continuous-time systems can be related. We now list some ways

in which this relation can be constructed.

Time-one Maps (Sampling) Given { f t}t∈R, one can construct the map g = f 1

which associates to each point x0 its position after one unit of time under
the flow g (x0) = x1. This is called the time-one map associated with the
flow. It is easy to see that {g n}n∈N constitutes a discrete-time dynamical
system. In an exactly analogous way, is it possible to define time-τ map for
any τ. The discrete trajectory obtained one obtains in this way can be seen
as a sampling from the original flow, with a sample frequency of 1

τ . Notice
the the time-τ map can be defined for any flow or semi-flow, but it is not
true that any discrete-time system is a sampling of continuous-time one.

Poincaré Section Another possible way to construct a discrete-time system out
of a continuous-time one is via the Poincaré section. Suppose that there
exists a subset Σ ⊂ X such that for all x ∈ Σ the first return time function
can be defined

τ(x) :=min{t > 0 : f (t)(x) ∈ Σ} (A.3)

such that f t(x) /∈ Σ for all t ∈ (0,τ(x) and f τ(x) ∈ Σ. We then cal Σ the
Poincaré section for the flow which, in turn, defines the Poincaré first return
time map F : Σ→ Σ, given by:

F(x) := f τ(x) (A.4)

125 A.1 Autonomous Dynamical Systems

One can recover properties of the flow by studying the discrete time dynam-
ical systems generated by the map F . For instance, note that any periodic
point defines a periodic orbit for the flow. But, while every flow and semi-
flow has a corresponding time-1 map, it is not the case that every flow or
semi-flow has a Poincaré map.

Suspension Flow It is also possible to go on the other direction, and build a
flow out of a discrete time dynamical systems. This is done by defining the
extended phase space

X̃ := X × [0, 1]/∼ (A.5)

where the relation∼ identifies the point (x , 1)with the point (f (x), 0). We
can then define a flow on X by a simple vertical translation with constant
speed 1. Notice that the original map f is exactly the time-one map of this
flow which in this special case also coincides with the first return Poincaré
map on the cross section X .

A.1.3 Ordinary Differential Equations

Let { f t}t∈R be a flow on Rn and suppose that the family f t depends continuously
on the point x and differentiably on the parameter t. In particular, this differen-
tiability means that the orbit of each point is a differentiable curve and that for
each t the derivative ẋ (t) := dx (t)

dt is a well defined vector tangent to the curve
of the orbit in x (t). Let U ⊆ Rn be an open set.

Definition 20 (Vector Field). A vector field on U is a function V : U → Rn.

We briefly discussed above how flows defines vector fields. The opposite also
holds, provided that the vector field is Lipschitz.

Definition 21 (Integral Curve). Let I ⊆ R be an open set. A function x : I → U
is a integral curve of a vector field V if

ẋ (t) = V(x (t)) (A.6)

for every t ∈ I . A function which satisfies (A.6) is called a local solution of the
differential equation. If moreover I = R, it is called a global solution.

126 A.1 Autonomous Dynamical Systems

Let V : U → Rn be a vector field and a point x0 ∈ U . We write an initial value
problem as:

¨

ẋ = V(x)

x (0) = x0

(A.7)

The following theorem deals with the existence and uniqueness of the solu-
tions of the system (A.7). To simplify its statement, we consider U = Rn.

Theorem 7 (Fundamental Theorem of Ordinary Differential Equations). Let V :
Rn→ Rn be a continuous vector field. For every x0 ∈ Rn:

1. There exists a local solution x : I → R for (A.7);

2. if V is locally Lipschitz, this solution is unique;

3. if V is Lipschitz, the solution is global and it depends continuously on the
initial condition.

A.1.4 Attractors

Informally, an attractor can be defined a set towards all nearby trajectory move.
To define it more formally, we generalize the concept of stability to a set.

Definition 22 (Trapping Region). A set N is a trapping region for ft if it is com-
pact and ft(N) ⊂ int(N) for each t.

Here, int(N) denotes the interior of N .

Definition 23 (Attracting Set). A set S is attracting if there is a compact trapping
region N such that S ⊂ N and

S =
⋂

t

ft(N)

Any attracting set has a maximal trapping region, which is usually called the
Basin of Attraction:

Definition 24 (Basin of Attraction). The basin of attraction B(S) of an invariant
set S is the set of all points x for which d(f t(x , S))→ 0 as t →∞.

Definition 25 (Attractor). A set A is an attractor if it is an attracting set and
there is some point x such thatA =ω(x).

Note that not every ω-limit set is an attractor.

127 A.2 Non-Autonomous Dynamical Systems

A.2 Non-Autonomous Dynamical Systems

Definition 26 (Non-Autonomous System). A (discrete-time) Non-Autonomous
System is a family of maps { fn} where each fn : X → X is a continuous map and
the state of the system xn at time n satisfies

xn+1 = fn(xn) (A.8)

Definition 27 (Input Driven System). An Input Driven System (IDS) comprises a
continuous map f : X × U → X and a sequence {un} such that

xn+1 = f (xn, un) (A.9)

We would like to generalize the concept of attractor for IDSs. To do so, we
first introduce the concept of process, which will ease the notation lately.

Definition 28 (Process). Let Z2
≥ := {(n, m) : n, m ∈ Z, n ≤ m}. A Process Φ on a

state space X is a mapping Φ : Z2
≥×X → X which satisfies the evolution properties:

1. Φ(m, m, x) = x for all m ∈ Z, x ∈ X ;

2. Φ(n, m, x) = Φ(n, k,Φ(k, m, x)) for all m, k, n ∈ Z with m≤ k ≤ n, x ∈ X ;

3. for given n, m, the map Φ(n, m, ·) is continuous.

Processes and Non-Autonomous Systems have a one-to-one correspondence.
It is straightforward to generate a process using a Non-Autonomous System { fn}.
One simply sets Φ(m, m, x) := x and Φ(n, m, x) := fn−1◦· · ·◦ fm(x), which clearly
possess the required properties. Instead, starting from a process Φ on X , a Non-
Autonomous System { fn(x)} can be defined as fn(x) := Φ(n+ 1, n, x).

To define attractors, we need to define invariant sets and orbits and solutions
converging to them.

Definition 29 (Entire Solution). Let Φ be a process on X . An Entire Solution of
Φ is sequence Θ = {θn}n∈Z such that θm ∈ X for all m and Φ(n, m,θm) = θn for
all m≤ n.

Definition 30 (Φ-invariant Set). A Non-Autonomous set A = {An : An ⊂ X } is
said to be Φ-invariant if Am ⊂ X for all m and Φ(n, m, Am) = An for all n> m. A
is said to be Φ-positively-invariant or Φ-+invariant if Φ(n, m, Am) ⊂ An.

Definition 31 (Natural Association). Let Φ be a process on compact space X . We
call Natural Association of Φ on X the sequence {Xn} defined by

Xn :=
⋂

m<n

Φ(n, m, X) (A.10)

128 A.2 Non-Autonomous Dynamical Systems

Proposition 8. Given a process Φ on a compact space X , let {Xn} be its Natural
Association. Then, it holds that:

• For each n> m, Φ(n, m, Xm) = Xn;

• A Non-Autonomous Set A = {Ak} is Φ-invariant if and only if for each pair
k ∈ Z, x ∈ Ak there exists an entire solution {θn} such that θk = x and
θk ∈ Ak for each k ∈ Z;

• A Φ-invariant set {Yn} is the natural association of Φ (i.e., Yn = Xn for each
n) if and only if every entire solution {θn} is such that θkinYk for each k ∈ Z.

Definition 32 (Hausdorff semi-distance). Let A, B ⊂ X be non-empty sets. We
define the Hausdorff semi-distance from A to B as:

dH(A, B) := sup d(x , B) : x ∈ A (A.11)

where d(x , B) is the distance between a point and a set.

It is called semi-distance as , in general, dH(A, B) 6= dH(B, A). Note that if
A ⊂ B then dh(A, B) = 0. The notion of approaching of two set sequences {Ak}
and {Bk} in some space X can be captured by stating that limn→∞ dH(An, Bn) = 0.

Let A⊂ Xk where {Xk} is the natural association of a process Φ on X .

B (i)
η
(A) := {x ∈ X i : d(x , A)< η} (A.12)

We can now define two distinct notion of attractor, namely the Pull-Back At-
tractor and the Forward Attractor.

Definition 33 (Non-Autonomous Attractors). Let Φ be a process on X , with a
natural association {Xn} and let A = {An} be a Φ+-invariant set such that each
An is compact and is a subset of Xn. Then

• We say thatA is a Local +Invariant Pull-Back Attractor if for some η > 0:

lim
j→∞

dH

�

Φ
�

n, n− j,B (n− j)
η
(An− j)

�

, An

�

∀n; (A.13)

• We say thatA is a Local +Invariant Forward Attractor if for some η > 0:

lim
j→∞

dH

�

Φ
�

n+ j, n,B (n)
η
(An)

�

, An+ j

�

∀n. (A.14)

IfA is Φ-invariant, then we say that they are Local Invariant Attractors of the
respective kind.

In general, the two notions do not coincide and some sets might be attrac-
tors according to a definition but not according to the other one. We refer to
[Manjunath et al., 2012] for further details.

Appendix B

Memory and Activation

B.1 Memory

Here, we theoretically analyze the ability of RCNs to retain memory of past in-
puts in the state. In order to perform such analysis, we define a measure of
network’s memory that quantifies the impact of past inputs on current state rt .
This proposal shares similarities with a memory measure called Fisher memory,
first proposed by Ganguli et al. [2008] and then further developed in [Tiňo and
Rodan, 2013; Tiňo, 2018]. However, our measure can be easily applied also to
non-linear networks like the one Eq. 5.1 proposed here, justifying the analysis
discussed in the following.

Considering one time-step in the past for the Self-Normalizing activation
function (5.1), we have:

rt =
W
Nt

rt−1 +
1
Nt

x t (B.1)

All past history of the signal is processed in rt−1. Note that (B.1) keeps the same
form for every t. Going backward in time one more step, we obtain:

rt =
W
Nt

�

W
Nt−1

rt−2 +
1

Nt−1
x t−1

�

+
1
Nt

x t (B.2)

As ‖rt‖ = ‖rt−1‖ = ‖rt−2‖ = 1, we see that there is a sort of recursive structure
in this procedure, where each incoming input is summed to the current state
and then their sum is normalized. This is a key feature of the proposed archi-
tecture. In fact, it guarantees that each input will have an impact on the state,
since the norm of the activations will not be too big or too small, because of the
normalization. We now express this idea in a more formal way.

129

130 B.1 Memory

The norm of (5.24) can be written as

‖M (t,k)‖=
1

∏t
l=k Nl

‖W t−k‖
t−k�1
≈

1
∏t

l=k Nl

ρ t−k (B.3)

where the approximation holds thanks to the Gelfand’s formula1. If the input is
null, we expect each Nl to be of the order of ρ as ‖x l‖= 1. So we write:

Nl = ‖W rl−1 + x l‖= ρ +δl (B.4)

where δl denotes the impact of the l-th input on the l-th normalization factor.
Its presence is due to the fact that without any input Nl would be approximately
equal to ρ, while the input modifies the state and so the normalization value
will be modified accordingly. The value δl is introduced to account for this fact:
δl := Nl −ρ.

If we assume that each input produces a similar effect on the state (i.e. δl = δ
for every l), we finally obtain:

‖M (t,k)‖ ≈
ρ t−k

(ρ +δ)t−k
(B.5)

We note that such assumption is reasonable for inputs that are symmetrically
distributed around a mean value with relatively small variance, e.g. for Gaussian
or uniformly distributed inputs (as demonstrated by our results). However, our
argument might not hold for all types of inputs and a more detailed analysis is
left as future research.

We define the memory of the network Mα(k|t) as the influence of input at
time k on the network state at time t. More formally, having defined α := ρ/δ
(since (B.5) only depends on this ratio), we use (B.5) to define the memory as:

Mα(k|t) :=
� α

α+ 1

�t−k
=
�

1−
1

α+ 1

�t−k

(B.6)

Eq. B.6 goes to 0 (i.e., no impact of the input on the states) as α → 0 and
tends to 1 for α→∞, implying that for an infinitely large SR the network per-
fectly remembers its past inputs, regardless of their occurrence in the past. Note
that (B.6) does not depend on k and t individually, but only on their difference
(elapsed time): the larger the difference, the lower the value ofMα(k|t), mean-
ing that far away inputs have less impact on the current state.

1The Gelfand’s formula Lax [2002] states that for any matrix norm ρ(A) = limk→∞

Ak

1
k .

131 B.2 Memory loss

B.2 Memory loss

By using (B.6), we define the memory loss between state rt and rm of the signal
at time-step k (with m> t > k and m= t +τ) as follows:

∆M (k|m, t) :=Mα(k|m)−Mα(k|t) =
� α

α+ 1

�m−k
−
� α

α+ 1

�t−k

=
(α+ 1)k

αk

αt

(α+ 1)t

�

ατ

(α+ 1)τ
− 1

�

=
�

1−
1

α+ 1

�t �

1+
1
α

�k ��

1−
1

α+ 1

�τ

− 1
�

≤ 0

(B.7)

For very large values of α, we have∆M (k|m, t)→ 0, meaning that in our model
(5.1b) larger spectral radii eliminate memory losses of past inputs. Now, we
want to assess if inputs in the far past have higher/lower impact on the state
more than recent inputs. To this end, we selected t > k > l and defined k = t−a
and l = t − b, leading to b > a > 0 and b = a+δ. Define:

∆M (k, l|t) =M (t − a|t)−M (t − a−δ|t) =
αa

(α+ 1)a
−

αa+δ

(α+ 1)a+δ
=

=
αa

(α+ 1)a

�

1−
αδ

(α+ 1)δ

�

=
�

1−
1

α+ 1

�a
�

1−
�

1−
1

α+ 1

�δ
�

≥ 0

(B.8)

We have that limδ→∞∆M (t − a, t − a−δ|t) =
�

1− 1
α+1

�a
, showing how the

impact of an input that is infinitely far in the past is not null compared with
one that is only a <∞ steps behind the current state. This implies that the
proposed network is able to preserve in the network state (partial) information
from all inputs observed so far.

Linear networks

In order to assess the memory of linear models, we perform the same analysis for
linear RNNs (i.e., rt = at) by using the definitions given in the previous section.
In this case, an expression for the memory can be obtained straightforwardly and
reads:

ML(k|t) := ρ t−k (B.9)

132 B.2 Memory loss

It is worth noting that there is no dependency on δ and, therefore, on the
input. Just like before, we have the memory loss of the signal at time-step k
between state rt and rm, as:

∆ML(k|m, t) =ML(k|m)−ML(k|t) (B.10)

=ML(k|t +τ)−ML(k|t) = (ρτ − 1)ρ t−k ≤ 0 (B.11)

where we set m > t > k and m = t + τ. As before, we also discuss the case
of two different inputs observed before time-step t. By selecting time instances
t > k > l, k = t − a and l = t − b, we have b > a > 0 allowing us to write
b = a+δ. As such:

∆ML(k, l|t) =ML(k|t)−ML(l|t) = (1−ρδ)ρa ≥ 0. (B.12)

We see that in both (B.10) and (B.12) the memory loss tends to zero as the spec-
tral radius tends to one, which is the critical point for linear systems. So, accord-
ing to our analysis, linear networks should maximize their ability to remember
past inputs when their SR in close to one and, moreover, their memory should
be the same disregarding the particular signal they are dealing with. We will see
in the next section that both these claims are confirmed by our simulations.

Hyperbolic tangent

We now extend the analysis to standard ESNs, i.e., those using a tanh activation
function. Define σ := tanh (applied element-wise). Then, for generic scalars a
and b, when |b| � 1 the following approximation holds:

σ(a+ b) =
σ(a) +σ(b)

1+σ(a)σ(b)
≈ σ(a) +σ(b) (B.13)

When a is the state and b is the input, our approximation can be understood
as a small-input approximation [Verstraeten and Schrauwen, 2009]. Then, the
state-update reads:

rt = σ(W rt−1 + x t)≈ σ(W rt−1) +σ(x t)

= σ(Wσ(W rt−2 + ut−1)) +σ(x t)

≈ σ(Wσ(W rt−2)) +σ(Wσ(x t−1)) +σ(x t)
(B.14)

Thus, applying the same argument used in the previous cases, it is possible

133 B.2 Memory loss

to write:

‖rt‖= S(0)
ρ
(σ(‖x t)‖) + S(1)

ρ
(σ(‖x t−1‖)) + · · ·+ S(t)

ρ
(σ(‖x0‖)) =

n
∑

k=0

S(t−k)
ρ
(σ(‖xk‖))

(B.15)

where we defined:
S(t)
ρ
(ξ) := σ(ρ · . . .σ(ρ ·σ(

︸ ︷︷ ︸

t times

ξ))) (B.16)

We see that, differently from the previous cases, the final state rt is a sum of
nonlinear functions of the signal x t . Each signal element xk is encoded in the
network state by first multiplying it by ρ and then passing the outcome through
the nonlinearity σ(·). This implies that, for networks equipped with hyperbolic
tangent function, larger spectral radii favour the forgetting of inputs (as we are
in the non-linear region of σ(·)). On the other hand, for small spectral radii the
network operates in the linear regime of the hyperbolic tangent and the network
behaves like in the linear case.

134 B.2 Memory loss

Appendix C

Systems and Datasets

In this appendix, we briefly present the main systems that we used to conduct
our experiments.

C.1 Lorenz System

The Lorenz system [Lorenz, 1963] is a 3-dimensional dynamical system charac-
terizing a simple model for atmospheric convection. Its equations read:

ẋ = σ(y − x)

ẏ = (ρ − z)x − y

ż = x y − βz

(C.1)

where x = x(t), y = y(t), z = z(t) are the variables, σ, ρ and β are the
model parameters and the dot denotes the first-order derivative with respect to
time t. In this work, we choose the commonly used values σ = 10, ρ = 28 and
β = 8/3, for which the system is known to be a chaotic one and to have a strange
attractor.

C.2 Rössler System

The Rössler system [Rössler, 1976] is a 3-dimensional chaotic dynamical system
defined as follows:

ẋ = −y − z

ẏ = x + a y

ż = b+ z(x − c)
(C.2)

135

136 C.3 Mackey-Glass System

where x = x(t), y = y(t), z = z(t) are the variables and a, b, and c are the
model parameters, which in our paper are set to a = 0.1, b = 0.1, and c = 14.
The dot denotes the first-order derivative with respect to time t.

C.3 Mackey-Glass System

The Mackey-Glass system [Mackey and Glass, 1977] is given by the following
delayed differential equation:

ẋ(t) = −β x(t) +
αx(t −λ)

1+ x(t −λ)
(C.3)

In our experiments, we simulated the system using standard parameters, that
is, λ= 17, α= 0.2 and β = 0.1.

C.4 Santa Fe Laser

The Santa Fe Laser [Weigend and Gershenfeld, 1993] is an experimental time-
series obtained from an physical experiments measuring the intensity of a NH3

laser. It is a standard benchmark for temporal tasks.

C.5 Multiple Superimposed Oscillators

In a standard benchmark task, the network is fed with Multiple Superimposed
Oscillator (MSO) with incommensurable frequencies. In our experiments, we
use 3 oscillators so that the input is generated according to:

ut = sin(0.2t) + sin(0.311t) + sin(0.42t) (C.4)

using a integer t. This task is know to be difficult because of the multiple
time scales characterizing the inputs [Jaeger and Haas, 2004].

Appendix D

Cayley-Hamilton Theorem

In this Appendix, we expose some facts regarding the Cayley-Hamilton (CH)
Theorem and its implications for the theory developed in Chapter 8. In Section
D.1 we briefly introduce and comment the theorem, while Section D.2 contains
some calculations based on it, that lead to some results contained Chapter 8.
Section D.3 briefly describes the Frobenius companion matrix.

D.1 The Theorem

The Cayley-Hamilton (CH) Theorem allows one to describe the n-th power of a
matrix in term of the first n− 1-powers (including the zero power, which is the
identity).

Let W ∈ Rn×n be a square matrix. Its characteristic polynomial is defined as:

det (λI −W) = 0 → λn +αn−1λ
n−1 + · · ·+α1λ+α0 = 0 (D.1)

where λ is an eigenvalue of W and the αk are the coefficients of the characteristic
polynomial.

Theorem 9 (Cayley-Hamilton). Every real square matrix satisfies its characteristic
equation, i.e.,

W n +αn−1W n−1 + · · ·+α1W 1 +α0I = 0. (D.2)

where n is the matrix dimension and I is the identity matrix.

For more details about this fundamental result see for example [Bernstein,
2009].

137

138 D.2 Implications

D.2 Implications

Rearranging the terms in (D.2) it is possible to show that the n-th power of the
matrix can be represented as a linear combination of its lower powers:

W n = −αn−1W n−1 − · · · −α1W 1 −α0I (D.3)

To ease the notation, we define ϕk := −αk so that (D.3) reads:

W n = ϕn−1W n−1 +ϕn−2W n−2 + · · ·+ϕ1W +ϕ0I (D.4)

It holds true that

W m = φ(m)n−1W n−1 +φ(m)n−2W n−2 + · · ·+φ(m)1 W +φ(m)0 I (D.5)

implying that any power m ≥ n of W can be specified by W and scalars
(φ(m)n−1, . . . ,φ(m)0). The apexes denote the fact that the n coefficients are those
proper of the m-th power for the φm

j coefficients. Note that, for m< n, we have

(φ(i)n−1, . . . ,φ(i)0) = (0, . . . , 0, 1, 0, . . . , 0), where the only non-zero term is the m-th
one, i.e.,

φ
(m)
j = δmj for m< n (D.6)

Moreover, note that for m= n, (φ(m)n−1, . . . ,φ(m)0) = (ϕn−1, . . . ,ϕ0).
For each m≥ n, we can derive the scalars in recursive way by noting that:

W m+1 = W mW (D.7)

= (φ(m)n−1W n−1 +φ(m)n−2W n−2 + · · ·+φ(m)1 W +φ(m)0 I)W (D.8)

= φ(m)n−1W n +φ(m)n−2W n−1 + · · ·+φ(m)1 W 2 +φ(m)0 W (D.9)

= φ(m)n−1

�

ϕn−1W n−1 +ϕn−2W n−2 + · · ·+ϕ1W +ϕ0I
�

+φ(m)n−2W n−1 + · · ·+φ(m)1 W 2 +φ(m)0 W (D.10)

= (ϕn−1φ
(m)
n−1 +φ

(m)
n−2)

︸ ︷︷ ︸

φ
(m+1)
n−1

W n−1 + (ϕn−2φ
(m)
n−1 +φ

(m)
n−3)

︸ ︷︷ ︸

φ
(m+1)
n−2

W n−2

+ · · ·+ (ϕ1φ
(m)
n−1 +φ

(m)
0)

︸ ︷︷ ︸

φ
(m+1)
1

W + (ϕ0φ
(m)
n−1)

︸ ︷︷ ︸

φ
(m+1)
0

I (D.11)

139 D.3 The Companion Matrix

which implies


























φ
(m+1)
0 = ϕ0φ

(m)
n−1

φ
(m+1)
1 = ϕ1φ

(m)
n−1 +φ

(m)
0)

. . .

φ
(m+1)
n−2 = ϕn−2φ

(m)
n−1 +φ

(m)
n−3

φ
(m+1)
n−1 = ϕn−1φ

(m)
n−1 +φ

(m)
n−2

(D.12)

D.3 The Companion Matrix

Eq. D.12 can be thought as a linear system:














φ
(m+1)
0

φ
(m+1)
1
...

φ
(m+1)
n−2

φ
(m+1)
n−1















= M















φ
(m)
0

φ
(m)
1
...

φ
(m)
n−2

φ
(m)
n−1















(D.13)

where M is defined as:

M =













0 0 ϕ0

1 0 . . . 0 ϕ1

. .
0 . . . 1 0 ϕn−2

0 0 . . . 1 ϕn−1













(D.14)

Note that the characteristic polynomial of M is equal to the one of W , so that
they also share the same eigenvalues. In fact, M is also know as the Frobenius
companion matrix of W .

140 D.3 The Companion Matrix

Bibliography

Ando, H. and Chang, H. [2021]. A model of computing with road traffic dynam-
ics, Nonlinear Theory and Its Applications, IEICE 12(2): 175–180.

Antonik, P., Gulina, M., Pauwels, J. and Massar, S. [2018]. Using a reservoir
computer to learn chaotic attractors, with applications to chaos synchroniza-
tion and cryptography, Physical Review E 98(1): 012215.

Appeltant, L., Soriano, M. C., Van der Sande, G., Danckaert, J., Massar, S.,
Dambre, J., Schrauwen, B., Mirasso, C. R. and Fischer, I. [2011]. Information
processing using a single dynamical node as complex system, Nature Commu-
nications 2: 468.

Ashwin, P. and Postlethwaite, C. [2018]. Sensitive finite-state computations us-
ing a distributed network with a noisy network attractor, IEEE transactions on
neural networks and learning systems 29(12): 5847–5858.

Barbosa, W. A. S., Griffith, A., Rowlands, G. E., Govia, L. C. G., Ribeill, G. J.,
Nguyen, M.-H., Ohki, T. A. and Gauthier, D. J. [2021]. Symmetry-aware reser-
voir computing, Phys. Rev. E 104: 045307.
URL: https://link.aps.org/doi/10.1103/PhysRevE.104.045307

Basterrech, S. [2017]. Empirical analysis of the necessary and sufficient condi-
tions of the echo state property, 2017 International Joint Conference on Neural
Networks (IJCNN), IEEE, pp. 888–896.

Baydogan, M. G. and Runger, G. [2016]. Time series representation and similarity
based on local autopatterns, Data Mining and Knowledge Discovery 30(2): 476–
509.

Bengio, Y., Simard, P. and Frasconi, P. [1994]. Learning long-term dependen-
cies with gradient descent is difficult, IEEE Transactions on Neural Networks
5(2): 157–166.

141

142 Bibliography

Bernstein, D. S. [2009]. Matrix mathematics, Princeton university press.

Berry, T., Giannakis, D. and Harlim, J. [2015]. Nonparametric forecasting of
low-dimensional dynamical systems, Physical Review E 91(3): 032915.

Berry, T., Giannakis, D. and Harlim, J. [2020]. Bridging data science and dynam-
ical systems theory, arXiv preprint arXiv:2002.07928 .

Bertschinger, N. and Natschläger, T. [2004]. Real-time computation at the edge
of chaos in recurrent neural networks, Neural computation 16(7): 1413–1436.

Bezruchko, B. P. and Smirnov, D. A. [2010]. Extracting knowledge from time series:
An introduction to nonlinear empirical modeling, Springer Science & Business
Media.

Bianchi, F. M., Maiorino, E., Kampffmeyer, M. C., Rizzi, A. and Jenssen, R. [2017].
Recurrent neural networks for short-term load forecasting: an overview and
comparative analysis.

Bianchi, F. M., Scardapane, S., Løkse, S. and Jenssen, R. [2020]. Reservoir com-
puting approaches for representation and classification of multivariate time
series, IEEE Transactions on Neural Networks and Learning Systems .

Birkhoff, G. D. [1931]. Proof of the ergodic theorem, Proceedings of the National
Academy of Sciences 17(12): 656–660.

Bittanti, S. [2019]. Model identification and data analysis, John Wiley & Sons.

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. and Zhou, C. [2002]. The
synchronization of chaotic systems, Physics Reports 366(1-2): 1–101.

Bollt, E. [2021]. On explaining the surprising success of reservoir computing
forecaster of chaos? the universal machine learning dynamical system with
contrast to var and dmd<? a3b2 show [feature]?>, Chaos: An Interdisciplinary
Journal of Nonlinear Science 31(1): 013108.

Bompas, S., Georgeot, B. and Guéry-Odelin, D. [2020]. Accuracy of neural net-
works for the simulation of chaotic dynamics: precision of training data vs
precision of the algorithm, arXiv preprint arXiv:2008.04222 .

Bouvrie, J. and Hamzi, B. [2017]. Kernel methods for the approximation of
nonlinear systems, SIAM Journal on Control and Optimization 55(4): 2460–
2492.

143 Bibliography

Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E. and Kutz, J. N.
[2017]. Chaos as an intermittently forced linear system, Nature communi-
cations 8(1): 1–9.

Brunton, S. L., Budišić, M., Kaiser, E. and Kutz, J. N. [2021]. Modern koopman
theory for dynamical systems, arXiv preprint arXiv:2102.12086 .

Brunton, S. L., Noack, B. R. and Koumoutsakos, P. [2020]. Machine learning for
fluid mechanics, Annual Review of Fluid Mechanics 52: 477–508.

Brunton, S. L., Proctor, J. L. and Kutz, J. N. [2016]. Discovering governing equa-
tions from data by sparse identification of nonlinear dynamical systems, Pro-
ceedings of the national academy of sciences 113(15): 3932–3937.

Caluwaerts, K., Wyffels, F., Dieleman, S. and Schrauwen, B. [2013]. The spectral
radius remains a valid indicator of the echo state property for large reservoirs,
The 2013 International Joint Conference on Neural Networks (IJCNN), IEEE,
pp. 1–6.

Carroll, T. [2020a]. Path length statistics in reservoir computers, Chaos: An In-
terdisciplinary Journal of Nonlinear Science 30(8): 083130.

Carroll, T. [2021a]. Low dimensional manifolds in reservoir computers, Chaos:
An Interdisciplinary Journal of Nonlinear Science 31(4): 043113.

Carroll, T. L. [2020b]. Dimension of reservoir computers, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 30(1): 013102.

Carroll, T. L. [2020c]. Do reservoir computers work best at the edge of chaos?,
Chaos: An Interdisciplinary Journal of Nonlinear Science 30(12): 121109.

Carroll, T. L. [2021b]. Optimizing reservoir computers for signal classification,
Frontiers in Physiology 12: 893.

Carroll, T. L. and Pecora, L. M. [2019]. Network structure effects in reservoir com-
puters, Chaos: An Interdisciplinary Journal of Nonlinear Science 29(8): 083130.

Casey, M. [1996]. The dynamics of discrete-time computation, with application
to recurrent neural networks and finite state machine extraction, Neural com-
putation 8(6): 1135–1178.

Ceni, A., Ashwin, P., Livi, L. and Postlethwaite, C. [2020]. The echo index and
multistability in input-driven recurrent neural networks, Physica D 412.

144 Bibliography

Chang, B., Chen, M., Haber, E. and Chi, E. H. [2019]. Antisymmetri-
crnn: A dynamical system view on recurrent neural networks, arXiv preprint
arXiv:1902.09689 .

Chattopadhyay, A., Hassanzadeh, P. and Subramanian, D. [2020]. Data-driven
predictions of a multiscale lorenz 96 chaotic system using machine-learning
methods: reservoir computing, artificial neural network, and long short-term
memory network, Nonlinear Processes in Geophysics 27(3): 373–389.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C.,
Chayes, J., Sagun, L. and Zecchina, R. [2019]. Entropy-sgd: Biasing gradient
descent into wide valleys, Journal of Statistical Mechanics: Theory and Experi-
ment 2019(12): 124018.

Chen, R. T., Rubanova, Y., Bettencourt, J. and Duvenaud, D. [2018]. Neural or-
dinary differential equations, Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pp. 6572–6583.

Cho, K., Van Merriënboer, B., Bahdanau, D. and Bengio, Y. [2014]. On the
properties of neural machine translation: Encoder-decoder approaches, arXiv
preprint arXiv:1409.1259 .

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P., Spergel, D. and Ho, S.
[2020]. Lagrangian neural networks, ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations.

Dambre, J., Verstraeten, D., Schrauwen, B. and Massar, S. [2012]. Information
processing capacity of dynamical systems, Scientific reports 2(1): 1–7.

Derrida, B. and Pomeau, Y. [1986]. Random networks of automata: a simple
annealed approximation, EPL (Europhysics Letters) 1(2): 45.

Di Gregorio, E., Gallicchio, C. and Micheli, A. [2018]. Combining memory and
non-linearity in echo state networks, International Conference on Artificial Neu-
ral Networks, Springer, pp. 556–566.

Doan, N. A. K., Polifke, W. and Magri, L. [2020]. Physics-informed echo state
networks, Journal of Computational Science 47: 101237.

Doan, N. A. K., Polifke, W. and Magri, L. [2021]. Short-and long-term prediction
of a chaotic flow: A physics-constrained reservoir computing approach, arXiv
preprint arXiv:2102.07514 .

145 Bibliography

Elman, J. L. [1990]. Finding structure in time, Cognitive science 14(2): 179–211.

Engelken, R., Wolf, F. and Abbott, L. F. [2020]. Lyapunov spectra of chaotic
recurrent neural networks, arXiv preprint arXiv:2006.02427 .

Fan, H., Jiang, J., Zhang, C., Wang, X. and Lai, Y.-C. [2020]. Long-term
prediction of chaotic systems with recurrent neural networks, arXiv preprint
arXiv:2004.01258 .

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. and Muller, P.-A. [2019]. Deep
learning for time series classification: a review, Data Mining and Knowledge
Discovery 33(4): 917–963.

Fernando, C. and Sojakka, S. [2003]. Pattern recognition in a bucket, European
conference on artificial life, Springer, pp. 588–597.

Ferreira, A. A., Ludermir, T. B. and De Aquino, R. R. [2013]. An approach
to reservoir computing design and training, Expert systems with applications
40(10): 4172–4182.

Flynn, A., Herteux, J., Tsachouridis, V. A., Räth, C. and Amann, A. [2021]. Sym-
metry kills the square in a multifunctional reservoir computer, Chaos: An In-
terdisciplinary Journal of Nonlinear Science 31(7): 073122.

Gaedke-Merzhäuser, L., Kopaničáková, A. and Krause, R. [2020]. Multilevel min-
imization for deep residual networks, arXiv preprint arXiv:2004.06196 .

Gallicchio, C. [2018]. Chasing the echo state property, Proceedings of the 27th
european symposium on artificial neural networks. .

Gallicchio, C. [2020]. Sparsity in reservoir computing neural networks, 2020
International Conference on INnovations in Intelligent SysTems and Applications
(INISTA), IEEE, pp. 1–7.

Gallicchio, C. [2021]. Reservoir computing by discretizing odes, Proceedings of
the 29th european symposium on artificial neural networks. 2021.

Gallicchio, C. and Micheli, A. [2011]. Architectural and markovian factors of
echo state networks, Neural Networks 24(5): 440–456.

Gallicchio, C., Micheli, A. and Antonio, S. [2020]. Simplifying deep reservoir
architectures.

146 Bibliography

Gallicchio, C., Micheli, A. and Pedrelli, L. [2017]. Deep reservoir computing: A
critical experimental analysis, Neurocomputing 268: 87–99.

Gallicchio, C., Micheli, A. and Pedrelli, L. [2018]. Design of deep echo state
networks, Neural Networks 108: 33–47.

Gallicchio, C., Micheli, A. and Silvestri, L. [2021]. Phase transition adaptation,
arXiv preprint arXiv:2104.10132 .

Ganguli, S., Huh, D. and Sompolinsky, H. [2008]. Memory traces in dynami-
cal systems, Proceedings of the National Academy of Sciences 105(48): 18970–
18975.

Gers, F. A., Schmidhuber, J. and Cummins, F. [2000]. Learning to forget: Con-
tinual prediction with lstm, Neural computation 12(10): 2451–2471.

Gilpin, W. [2020]. Deep learning of dynamical attractors from time series mea-
surements, arXiv preprint arXiv:2002.05909 .

Gilpin, W. [2021]. Chaos as an interpretable benchmark for forecasting and data-
driven modelling, arXiv preprint arXiv:2110.05266 .

Gonon, L., Grigoryeva, L. and Ortega, J.-P. [2020a]. Approximation
bounds for random neural networks and reservoir systems, arXiv preprint
arXiv:2002.05933 .

Gonon, L., Grigoryeva, L. and Ortega, J.-P. [2020b]. Memory and forecasting
capacities of nonlinear recurrent networks, Physica D: Nonlinear Phenomena
414: 132721.

Gonon, L., Grigoryeva, L. and Ortega, J.-P. [2020c]. Risk bounds for reservoir
computing, Journal of Machine Learning Research 21(240): 1–61.

González-García, R., Rico-Martìnez, R. and Kevrekidis, I. G. [1998]. Identifica-
tion of distributed parameter systems: A neural net based approach, Computers
& chemical engineering 22: S965–S968.

Goudarzi, A., Marzen, S., Banda, P., Feldman, G., Teuscher, C. and Stefanovic,
D. [2016]. Memory and information processing in recurrent neural networks,
arXiv preprint arXiv:1604.06929 .

Graves, A., Wayne, G. and Danihelka, I. [2014]. Neural turing machines, arXiv
preprint arXiv:1410.5401 .

147 Bibliography

Greydanus, S., Dzamba, M. and Yosinski, J. [2019]. Hamiltonian neural net-
works, arXiv preprint arXiv:1906.01563 .

Grigoryeva, L., Hart, A. and Ortega, J.-P. [2020]. Chaos on compact
manifolds: Differentiable synchronizations beyond takens, arXiv preprint
arXiv:2010.03218 .

Grigoryeva, L., Hart, A. and Ortega, J.-P. [2021]. Learning strange attractors with
reservoir systems, arXiv preprint arXiv:2108.05024 .

Grigoryeva, L. and Ortega, J.-P. [2018]. Echo state networks are universal, Neural
Networks 108: 495–508.

Haluszczynski, A. and Räth, C. [2019]. Good and bad predictions: Assessing and
improving the replication of chaotic attractors by means of reservoir comput-
ing, Chaos: An Interdisciplinary Journal of Nonlinear Science 29(10): 103143.

Hammer, B. [2000]. On the approximation capability of recurrent neural net-
works, Neurocomputing 31(1-4): 107–123.

Hammer, B. and Tiňo, P. [2003]. Recurrent neural networks with small weights
implement definite memory machines, Neural Computation 15(8): 1897–
1929.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe,
M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W.,
Abbasi, H., Gohlke, C. and Oliphant, T. E. [2020]. Array programming with
NumPy, Nature 585(7825): 357–362.
URL: https://doi.org/10.1038/s41586-020-2649-2

Hart, A. G., Hook, J. L. and Dawes, J. H. [2021]. Echo state networks trained by
tikhonov least squares are l2 (µ) approximators of ergodic dynamical systems,
Physica D: Nonlinear Phenomena 421: 132882.

Hart, A., Hook, J. and Dawes, J. [2020]. Embedding and approximation theo-
rems for echo state networks, Neural Networks 128: 234–247.

Hasani, R., Lechner, M., Amini, A., Rus, D. and Grosu, R. [2021]. Liquid time-
constant networks, Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35, pp. 7657–7666.

148 Bibliography

Herteux, J. and Räth, C. [2020]. Breaking symmetries of the reservoir equations
in echo state networks, Chaos: An Interdisciplinary Journal of Nonlinear Science
30(12): 123142.

Hochreiter, S. and Schmidhuber, J. [1997]. Long short-term memory, Neural
computation 9(8): 1735–1780.

Inubushi, M. and Yoshimura, K. [2017]. Reservoir computing beyond memory-
nonlinearity trade-off, Scientific reports 7(1): 1–10.

Jaeger, H. [2001]. The “echo state” approach to analysing and training recur-
rent neural networks-with an erratum note, Bonn, Germany: German National
Research Center for Information Technology GMD Technical Report 148(34): 13.

Jaeger, H. [2002]. Short term memory in echo state networks, Vol. 5, GMD-
Forschungszentrum Informationstechnik.

Jaeger, H. and Haas, H. [2004]. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication, science 304(5667): 78–
80.

Jaeger, H., Lukoševičius, M., Popovici, D. and Siewert, U. [2007]. Optimization
and applications of echo state networks with leaky-integrator neurons, Neural
networks 20(3): 335–352.

Jordan, I. D., Sokół, P. A. and Park, I. M. [2021]. Gated recurrent units viewed
through the lens of continuous time dynamical systems, Frontiers in computa-
tional neuroscience p. 67.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P., Wang, S. and Yang, L.
[2021]. Physics-informed machine learning, Nature Reviews Physics pp. 1–19.

Kauffman, S. [1969]. Homeostasis and differentiation in random genetic control
networks, Nature 224(5215): 177–178.

Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y. and
Lajoie, G. [2019]. Non-normal recurrent neural network (nnrnn): learning
long time dependencies while improving expressivity with transient dynamics,
Advances in Neural Information Processing Systems 32: 13613–13623.

Kingma, D. P. and Ba, J. [2014]. Adam: A method for stochastic optimization,
arXiv preprint arXiv:1412.6980 .

149 Bibliography

Kloeden, P. E. and Rasmussen, M. [2011]. Nonautonomous dynamical systems,
number 176, American Mathematical Soc.

Kocarev, L. and Parlitz, U. [1996]. Generalized synchronization, predictability,
and equivalence of unidirectionally coupled dynamical systems, Physical Re-
view Letters 76(11): 1816.

Koopman, B. O. [1931]. Hamiltonian systems and transformation in hilbert
space, Proceedings of the national academy of sciences of the united states of
america 17(5): 315.

Krishnagopal, S., Girvan, M., Ott, E. and Hunt, B. R. [2020]. Separation of
chaotic signals by reservoir computing, Chaos: An Interdisciplinary Journal of
Nonlinear Science 30(2): 023123.

Langton, C. G. [1990]. Computation at the edge of chaos: Phase transitions and
emergent computation, Physica D: Nonlinear Phenomena 42(1-3): 12–37.

Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutiérrez, J. M., Pesquera,
L., Mirasso, C. R. and Fischer, I. [2012]. Photonic information processing be-
yond turing: an optoelectronic implementation of reservoir computing, Optics
Express 20(3): 3241–3249.

Laurent, T. and von Brecht, J. [2016]. A recurrent neural network without chaos,
arXiv preprint arXiv:1612.06212 .

Lax, P. D. [2002]. Functional analysis, Pure and Applied Mathematics: A Wiley-
Interscience Series of Texts, Monographs and Tracts, Wiley.

Legenstein, R. and Maass, W. [2007]. Edge of chaos and prediction of computa-
tional performance for neural circuit models, Neural networks 20(3): 323–334.

Liesen, J. and Strakos, Z. [2013]. Krylov subspace methods: principles and analy-
sis, Oxford University Press.

Liu, G.-H. and Theodorou, E. A. [2019]. Deep learning theory review: An optimal
control and dynamical systems perspective, arXiv preprint arXiv:1908.10920 .

Liu, Y., Kutz, J. N. and Brunton, S. L. [2020]. Hierarchical deep learning of mul-
tiscale differential equation time-steppers, arXiv preprint arXiv:2008.09768 .

Livi, L., Bianchi, F. M. and Alippi, C. [2017]. Determination of the edge of crit-
icality in echo state networks through fisher information maximization, IEEE
transactions on neural networks and learning systems 29(3): 706–717.

150 Bibliography

Løkse, S., Bianchi, F. M. and Jenssen, R. [2017]. Training echo state networks
with regularization through dimensionality reduction, Cognitive Computation
9(3): 364–378.

Lorenz, E. N. [1963]. Deterministic nonperiodic flow, Journal of the Atmospheric
Sciences 20(2): 130–141.

Lu, Z. and Bassett, D. S. [2020]. Invertible generalized synchronization: A pu-
tative mechanism for implicit learning in neural systems, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 30(6): 063133.

Lu, Z., Hunt, B. R. and Ott, E. [2018]. Attractor reconstruction by machine learn-
ing, Chaos: An Interdisciplinary Journal of Nonlinear Science 28(6): 061104.

Lu, Z., Pathak, J., Hunt, B., Girvan, M., Brockett, R. and Ott, E. [2017]. Reservoir
observers: Model-free inference of unmeasured variables in chaotic systems,
Chaos: An Interdisciplinary Journal of Nonlinear Science 27(4): 041102.

Luh, K. and O’Rourke, S. [2021]. Eigenvectors and controllability of non-
hermitian random matrices and directed graphs, Electronic Journal of Prob-
ability 26: 1–43.

Lukoševičius, M. [2012]. A practical guide to applying echo state networks, Neu-
ral networks: Tricks of the trade, Springer, pp. 659–686.

Lukoševičius, M. and Uselis, A. [2019]. Efficient cross-validation of echo state
networks, International Conference on Artificial Neural Networks, Springer,
pp. 121–133.

Lymburn, T., Khor, A., Stemler, T., Corrêa, D. C., Small, M. and Jüngling, T.
[2019]. Consistency in echo-state networks, Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 29(2): 023118.

Maass, W., Natschläger, T. and Markram, H. [2002]. Real-time computing with-
out stable states: A new framework for neural computation based on pertur-
bations, Neural Computation 14(11): 2531–2560.

Mackey, M. C. and Glass, L. [1977]. Oscillation and chaos in physiological control
systems, Science 197(4300): 287–289.

Manjunath, G. and Jaeger, H. [2013]. Echo state property linked to an input:
Exploring a fundamental characteristic of recurrent neural networks, Neural
Computation 25(3): 671–696.

151 Bibliography

Manjunath, G., Tino, P. and Jaeger, H. [2012]. Theory of input driven dynamical
systems, dice. ucl. ac. be, number April pp. 25–27.

Marzen, S. [2017]. Difference between memory and prediction in linear recur-
rent networks, Physical Review E 96(3): 032308.

Meiss, J. D. [2007]. Differential dynamical systems, SIAM.

Neftci, E. O. [2018]. Data and power efficient intelligence with neuromorphic
learning machines, Iscience 5: 52–68.

Neftci, E. O., Augustine, C., Paul, S. and Detorakis, G. [2017]. Event-driven
random back-propagation: Enabling neuromorphic deep learning machines,
Frontiers in Neuroscience 11: 324.

O’Rourke, S. and Touri, B. [2015]. Controllability of random systems: Univer-
sality and minimal controllability, arXiv preprint arXiv:1506.03125 .

Ott, E. [2002]. Chaos in dynamical systems, Cambridge university press.

Parlitz, U. [2012]. Detecting generalized synchronization, Nonlinear Theory and
Its Applications, IEICE 3(2): 113–127.

Pascanu, R., Gulcehre, C., Cho, K. and Bengio, Y. [2013]. How to construct deep
recurrent neural networks, arXiv preprint arXiv:1312.6026 .

Pascanu, R., Mikolov, T. and Bengio, Y. [2013]. On the difficulty of training re-
current neural networks, International conference on machine learning, PMLR,
pp. 1310–1318.

Pathak, J., Hunt, B., Girvan, M., Lu, Z. and Ott, E. [2018]. Model-free prediction
of large spatiotemporally chaotic systems from data: A reservoir computing
approach, Physical review letters 120(2): 024102.

Pathak, J., Wikner, A., Fussell, R., Chandra, S., Hunt, B. R., Girvan, M. and Ott,
E. [2018]. Hybrid forecasting of chaotic processes: Using machine learning in
conjunction with a knowledge-based model, Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 28(4): 041101.

Pecora, L. M. and Carroll, T. L. [1990]. Synchronization in chaotic systems, Phys-
ical Review Letters 64(8): 821.

Plackett, R. L. [1950]. Some theorems in least squares, Biometrika 37(1/2): 149–
157.

152 Bibliography

Platt, J. A., Wong, A. S., Clark, R., Penny, S. G. and Abarbanel, H. D. [2021].
Forecasting using reservoir computing: The role of generalized synchroniza-
tion, arXiv preprint arXiv:2103.00362 .

Prokopenko, M., Harré, M., Lizier, J., Boschetti, F., Peppas, P. and Kauffman, S.
[2019]. Self-referential basis of undecidable dynamics: From the liar paradox
and the halting problem to the edge of chaos, Physics of life reviews 31: 134–
156.

Pyragas, K. [1996]. Weak and strong synchronization of chaos, Physical Review
E 54(5): R4508.

Qi, D. and Majda, A. J. [2020]. Using machine learning to predict extreme
events in complex systems, Proceedings of the National Academy of Sciences
117(1): 52–59.

Racca, A. and Magri, L. [2021]. Robust optimization and validation of echo state
networks for learning chaotic dynamics, Neural Networks .

Rajan, K., Abbott, L. and Sompolinsky, H. [2010]. Stimulus-dependent suppres-
sion of chaos in recurrent neural networks, Physical Review E 82(1): 011903.

Regazzoni, F., Dede, L. and Quarteroni, A. [2019]. Machine learning for fast and
reliable solution of time-dependent differential equations, Journal of Compu-
tational physics 397: 108852.

Rivkind, A. and Barak, O. [2017]. Local dynamics in trained recurrent neural
networks, Physical Review Letters 118(25): 258101.

Rodan, A. and Tino, P. [2010]. Minimum complexity echo state network, IEEE
transactions on neural networks 22(1): 131–144.

Rohlf, T. and Bornholdt, S. [2002]. Criticality in random threshold networks:
annealed approximation and beyond, Physica A: Statistical Mechanics and its
Applications 310(1-2): 245–259.

Rössler, O. E. [1976]. An equation for continuous chaos, Physics Letters A
57(5): 397–398.

Rudelson, M. and Vershynin, R. [2010]. Non-asymptotic theory of random ma-
trices: extreme singular values, Proceedings of the International Congress of
Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and
Ceremonies Vols. II–IV: Invited Lectures, World Scientific, pp. 1576–1602.

153 Bibliography

Rulkov, N. F., Sushchik, M. M., Tsimring, L. S. and Abarbanel, H. D. [1995].
Generalized synchronization of chaos in directionally coupled chaotic systems,
Physical Review E 51(2): 980.

Schmid, P. J. [2010]. Dynamic mode decomposition of numerical and experi-
mental data, Journal of fluid mechanics 656: 5–28.

Schmidhuber, J. and Hochreiter, S. [1996]. Guessing can outperform many long
time lag algorithms, IDSIA technical report .

Schrauwen, B., Verstraeten, D. and Van Campenhout, J. [2007]. An overview of
reservoir computing: theory, applications and implementations, Proceedings of
the 15th european symposium on artificial neural networks. p. 471-482 2007,
pp. 471–482.

Shalev-Shwartz, S. and Ben-David, S. [2014]. Understanding machine learning:
From theory to algorithms, Cambridge university press.

Shawe-Taylor, J. and Cristianini, N. [2004]. Kernel Methods for Pattern Analysis,
Cambridge University Press, Cambridge, UK.

Shi, Z. and Han, M. [2007]. Support vector echo-state machine for chaotic time-
series prediction, IEEE Transactions on Neural Networks 18(2): 359–372.

Siegelmann, H. T. [2003]. Neural and super-turing computing, Minds and Ma-
chines 13(1): 103–114.

Siegelmann, H. T. and Sontag, E. D. [1995]. On the computational power of
neural nets, Journal of computer and system sciences 50(1): 132–150.

Sompolinsky, H., Crisanti, A. and Sommers, H.-J. [1988]. Chaos in random neu-
ral networks, Physical review letters 61(3): 259.

Sontag, E. D. [2013]. Mathematical control theory: deterministic finite dimen-
sional systems, Vol. 6, Springer Science & Business Media.

Stark, J. [1999]. Regularity of invariant graphs for forced systems, Ergodic theory
and dynamical systems 19(1): 155–199.

Sussillo, D. and Abbott, L. F. [2009]. Generating coherent patterns of activity
from chaotic neural networks, Neuron 63(4): 544–557.

Takens, F. [1981]. Detecting strange attractors in turbulence, Dynamical Systems
and Turbulence, Springer, pp. 366–381.

154 Bibliography

Tallec, C. and Ollivier, Y. [2018]. Can recurrent neural networks warp time?,
International Conference on Learning Representation 2018.

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S.,
Numata, H., Nakano, D. and Hirose, A. [2019]. Recent advances in physical
reservoir computing: A review, Neural Networks 115: 100 – 123.

Tao, T., Vu, V. and Krishnapur, M. [2010]. Random matrices: Universality of esds
and the circular law, The Annals of Probability 38(5): 2023–2065.

Thiede, L. A. and Parlitz, U. [2019]. Gradient based hyperparameter optimization
in echo state networks, Neural Networks 115: 23–29.

Tiňo, P. [2018]. Asymptotic fisher memory of randomized linear symmetric echo
state networks, Neurocomputing 298: 4–8.

Tiňo, P. [2020]. Dynamical systems as temporal feature spaces., Journal of Ma-
chine Learning Research 21(44): 1–42.

Tiňo, P. and Dorffner, G. [2001]. Predicting the future of discrete sequences from
fractal representations of the past, Machine Learning 45(2): 187–217.

Tiňo, P. and Rodan, A. [2013]. Short term memory in input-driven linear dynam-
ical systems, Neurocomputing 112: 58–63.

Verstraeten, D., Dambre, J., Dutoit, X. and Schrauwen, B. [2010]. Memory versus
non-linearity in reservoirs, The 2010 international joint conference on neural
networks (IJCNN), IEEE, pp. 1–8.

Verstraeten, D. and Schrauwen, B. [2009]. On the quantification of dynamics
in reservoir computing, International Conference on Artificial Neural Networks,
Springer, pp. 985–994.

Verstraeten, D., Schrauwen, B., d’Haene, M. and Stroobandt, D. [2007]. An
experimental unification of reservoir computing methods, Neural Networks
20(3): 391–403.

Verzelli, P., Alippi, C. and Livi, L. [2019]. Echo state networks with self-
normalizing activations on the hyper-sphere, Scientific reports 9(1): 1–14.

Verzelli, P., Alippi, C. and Livi, L. [2021]. Learn to synchronize, synchronize to
learn, Chaos: An Interdisciplinary Journal of Nonlinear Science 31(8): 083119.

155 Bibliography

Verzelli, P., Alippi, C., Livi, L. and Tiňo, P. [2021]. Input-to-state representation in
linear reservoirs dynamics, IEEE Transactions on Neural Networks and Learning
Systems .

Verzelli, P., Livi, L. and Alippi, C. [2018]. A characterization of the edge of crit-
icality in binary echo state networks, 2018 IEEE 28th International Workshop
on Machine Learning for Signal Processing (MLSP), IEEE, pp. 1–6.

Vlachas, P. R., Byeon, W., Wan, Z. Y., Sapsis, T. P. and Koumoutsakos, P. [2018].
Data-driven forecasting of high-dimensional chaotic systems with long short-
term memory networks, Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 474(2213): 20170844.

Vlachas, P. R., Pathak, J., Hunt, B. R., Sapsis, T. P., Girvan, M., Ott, E. and
Koumoutsakos, P. [2020]. Backpropagation algorithms and reservoir comput-
ing in recurrent neural networks for the forecasting of complex spatiotemporal
dynamics, Neural Networks .

Vogt, R., Touzel, M. P., Shlizerman, E. and Lajoie, G. [2020]. On lyapunov ex-
ponents for rnns: Understanding information propagation using dynamical
systems tools, arXiv preprint arXiv:2006.14123 .

Weigend, A. S. and Gershenfeld, N. A. [1993]. Results of the time series pre-
diction competition at the santa fe institute, IEEE international conference on
neural networks, IEEE, pp. 1786–1793.

Weinan, E. [2017]. A proposal on machine learning via dynamical systems, Com-
munications in Mathematics and Statistics 5(1): 1–11.

Weng, T., Yang, H., Gu, C., Zhang, J. and Small, M. [2019]. Synchroniza-
tion of chaotic systems and their machine-learning models, Physical Review
E 99(4): 042203.

Williams, R. J. and Zipser, D. [1989]. A learning algorithm for continually run-
ning fully recurrent neural networks, Neural computation 1(2): 270–280.

Xue, Y., Yang, L. and Haykin, S. [2007]. Decoupled echo state networks with
lateral inhibition, Neural Networks 20(3): 365–376.

Yildiz, I. B., Jaeger, H. and Kiebel, S. J. [2012]. Re-visiting the echo state property,
Neural Networks 35: 1–9.

156 Bibliography

Yule, G. U. [1927]. On a method of investigating periodicities disturbed series,
with special reference to wolfer’s sunspot numbers, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character 226(636-646): 267–298.

Zhang, B., Miller, D. J. and Wang, Y. [2011]. Nonlinear system modeling with
random matrices: echo state networks revisited, IEEE Transactions on Neural
Networks and Learning Systems 23(1): 175–182.

Zimmermann, R. S. and Parlitz, U. [2018]. Observing spatio-temporal dynam-
ics of excitable media using reservoir computing, Chaos: An Interdisciplinary
Journal of Nonlinear Science 28(4): 043118.

	Contents
	Introduction
	Structure of the Thesis
	Notation
	Papers Published from this Thesis

	Problem Formulation
	Dynamical Systems
	Discrete-Time Dynamical Systems
	Continuous-Time Dynamical Systems
	Discretization
	Observables
	Noise
	Modelling

	Tasks
	Prediction
	Generation
	Classification

	Data-Driven Modelling of Dynamical Systems

	Reservoir Computing
	Temporal Tasks
	Recurrent Neural Networks
	Reservoir Computing
	Reservoir Computing Network
	Universal Function Approximation Property

	Research trends in RC
	Popular Variations

	I Learning
	Training
	Training Strategies
	Reservoir Learning Algorithm
	Fitting using Least-Squares
	Generating scenario

	Hyperpameters
	Reservoir Topology
	Spectral Radius
	Readout
	Other Hyperparameters

	Self-Normalizing Activation Function
	Self-Normalizing Activation Function
	Universal Function Approximation Property

	Network State Dynamics: the Autonomous Case
	Edge of Chaos

	Network State Dynamics: the Input-Driven Case

	II Representation
	Memory
	Memory Capacity
	Memory Curves
	Different Activation Functions
	Memory-Nonlinearity Trade-off

	Echo State Property
	The Echo-State Property
	ESP and Spectral Radius
	Dynamical System Representation
	Takens's Theorem
	Takens in Reservoir Computing

	Input-to-State Representation
	Controllability Matrix
	The Encoded Input Signal
	Topologies
	The Nullspace of C and the Network Memory
	A Note on Numerical Issues

	III Dynamics
	Computing with dynamical systems
	Computing with dynamical systems
	Edge of Criticality

	Binary Reservoirs
	Binary RCN
	System Description
	Edge of criticality in binary RCNs

	Experiments
	Edge of Criticality
	Effects of Perturbations on State Evolution
	Impact of Noise in the EoC
	Impact of a Signal

	Synchronization
	Synchronization
	Synchronization of Identical Systems
	Drive-Response Systems
	Complete Synchronization and Asymptotic Stability
	Generalized Synchronization

	Generalized Synchronization and Learning
	ESP and GS
	Unsupervised System Reconstruction
	Learning Realizability
	Error on the Whole Attractor
	Synchronization Function

	Experimental Results
	The Mutual False Nearest Neighbors
	Reservoir Computing Networks
	Reservoir observer
	Results

	Conclusions
	Appendices
	Dynamical Systems
	Autonomous Dynamical Systems
	Discrete Time Dynamical Systems
	Continuous Time Dynamical Systems
	Ordinary Differential Equations
	Attractors

	Non-Autonomous Dynamical Systems

	Memory and Activation
	Memory
	Memory loss

	Systems and Datasets
	Lorenz System
	Rössler System
	Mackey-Glass System
	Santa Fe Laser
	Multiple Superimposed Oscillators

	Cayley-Hamilton Theorem
	The Theorem
	Implications
	The Companion Matrix

	Bibliography

