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Bézier curves are indispensable for geometric modelling and computer graphics. They 
have numerous favourable properties and provide the user with intuitive tools for editing 
the shape of a parametric polynomial curve. Even more control and flexibility can be 
achieved by associating a shape parameter with each control point and considering rational 
Bézier curves, which comes with the additional advantage of being able to represent all 
conic sections exactly. In this paper, we explore the editing possibilities that arise from 
expressing a rational Bézier curve in barycentric form. In particular, we show how to 
convert back and forth between the Bézier and the barycentric form, we discuss the effects 
of modifying the constituents (nodes, interpolation points, weights) of the barycentric form, 
and we study the connection between point insertion in the barycentric form with degree 
elevation of the Bézier form. Moreover, we analyse the favourable performance of the 
barycentric form for evaluating the curve.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A planar rational Bézier curve P : [0, 1] → R2 of degree n ∈ N is defined by a set of control points P0, . . . , Pn ∈ R2 and a 
set of weights α0, . . . , αn ∈R as

P (t) = (
x(t), y(t)

) =
∑n

i=0 αi Bn
i (t)Pi∑n

i=0 αi Bn
i (t)

, (1)

where Bn
i (t) =

(n
i

)
(1 − t)n−iti are the Bernstein polynomials. If α0 = αn = 1, then the curve is said to be in standard form, 

which can always be achieved, if the given weights α0 and αn are non-zero and have the same sign, by uniformly scaling 
all weights and applying a linear rational parameter transformation (Patterson, 1985; Farin and Worsey, 1991). The curve P
can also be written in homogeneous form and understood as the (central) projection of the spatial polynomial Bézier curve 
P̂ : [0, 1] →R3,

P̂ (t) = (
x̂(t), ŷ(t), ẑ(t)

) =
n∑

i=0

Bn
i (t) P̂ i, (2)

with homogeneous control points P̂ i = (αi P i,αi) ∈R3 into the ẑ = 1 plane, because x(t) = x̂(t)/ẑ(t) and y(t) = ŷ(t)/ẑ(t). If 
all weights αi are equal, then P reduces to a planar polynomial Bézier curve.
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Fig. 1. (a) A rational Bézier curve of degree n = 4 with weights α = (1, 3/2, 1, 1/2, 1); (b) the effect of moving the control point P2; (c) the effect of 
increasing the weight α2 from 1 to 3. The dots visualize the curve points P (i/16) for i = 0, . . . , 16.

Fig. 2. (a) Converting a rational Bézier curve in (1) to the barycentric form in (3); (b) the effect of moving the interpolation point Q 2; (c) the effect of 
decreasing the weight β2 by 50%. The dots visualize the curve points P (i/16) for i = 0, . . . , 16.

Among the key properties that justify the popularity of rational Bézier curves for shape design, we recall that such a 
curve can be translated, scaled, or rotated by simply translating, scaling, or rotating its control polygon, and the same holds 
more generally for projective transformations (Farin, 2001). Moreover, the shape of the curve can be controlled intuitively by 
modifying the control points Pi and the weights αi (see Fig. 1), or by changing the Farin points Fi = (αi P i +αi+1 Pi+1)/(αi +
αi+1) ∈ R2 that can be associated with the i-th edge [Pi , Pi+1] of the control polygon for i = 0, . . . , n − 1 (Farin, 1983). 
However, except at the endpoints, this control is indirect in the sense that it is difficult for the user to let the curve pass 
exactly through a specific point Q ∈R2.

To overcome this limitation, we propose to convert the curve P to barycentric form and express it as

P (t) =
∑n

i=0(−1)i βi
t−ti

Q i∑n
i=0(−1)i βi

t−ti

, (3)

for certain distinct nodes t0, . . . , tn ∈ R with corresponding interpolation points Q 0, . . . , Q n ∈ R2 and non-zero weights
β0, . . . , βn ∈R. Since P (ti) = Q i , by construction (Schneider and Werner, 1986), this representation allows for direct control, 
as we can force the curve to pass through some Q ∈R2 by simply moving one of the Q i to Q . Moreover, the “flatness” of 
the curve at Q i can be controlled by modifying the weight βi (see Fig. 2).

To the best of our knowledge, the barycentric form has been studied only in the functional setting, so far. For polynomi-
als, it can be traced back to Taylor (1945) and Dupuy (1948), and Berrut and Trefethen (2004) provide a detailed summary 
of its favourable properties. For rational functions, Salzer (1981) and Schneider and Werner (1986) were the first to identify 
the advantages of the barycentric form, and Berrut and Mittelmann (1997) show that every rational interpolant can be ex-
pressed in barycentric form for a suitable choice of weights. For very specific weights, barycentric rational interpolants are 
guaranteed to have no poles and a high approximation order (Berrut, 1988; Floater and Hormann, 2007), with slow-growing 
Lebesgue constants, in particular for equidistant nodes (Bos et al., 2012). The barycentric form is also a key ingredient of the 
AAA algorithm (Nakatsukasa et al., 2018), which extends the work of Antoulas and Anderson (1986) and uses an adaptive 
node selection scheme for efficiently computing robust rational approximations of real and complex functions.

1.1. Contributions

In contrast to this previous work, the aim of this paper is to explore the use of the barycentric form in the context 
of curve design. We first show that rational Bézier curves (1) and barycentric rational curves (3) are essentially equivalent 
(Section 2), in the sense that any rational Bézier curve can be expressed in barycentric form and vice versa. We then discuss 
the shape editing possibilities offered by the barycentric form (Section 3), we show how to raise the degree from n to n + 1
without changing the curve (Section 4), and provide numerical evidence that the barycentric form is advantageous for curve 
evaluation (Section 5).
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2. Equivalence of Bézier and barycentric form

Let us first recall how to derive the barycentric form for a polynomial p : R → R of degree n (Berrut and Trefethen, 
2004). Clearly, the Lagrange form of p is

p(t) =
n∑

i=0

n∏
j=0, j �=i

t − t j

ti − t j
pi

where pi = p(ti), i = 0, . . . , n. Factoring out the polynomial �(t) = ∏n
j=0(t − t j), we get the first barycentric form

p(t) = �(t)
n∑

i=0

wi

t − ti
pi,

with the Lagrange weights wi defined as

wi =
n∏

j=0, j �=i

1

ti − t j
, i = 0, . . . ,n. (4)

Further dividing by the constant function 1, expressed in first barycentric form as 1 = �(t) 
∑n

i=0
wi

t−ti
, and cancelling the 

common factor �(t), then yields the second barycentric form

p(t) =
∑n

i=0
wi

t−ti
pi∑n

i=0
wi

t−ti

.

To convert the rational Bézier curve in (1) to the barycentric form in (3), it remains to express the two components x̂(t), 
ŷ(t) in the numerator of P (t) and its denominator ẑ(t) in the first barycentric form.

Proposition 1. For any nodes 0 ≤ t0 < t1 < · · · < tn ≤ 1, we can express the rational Bézier curve (1) with control points Pi and 
weights αi in barycentric form (3) with interpolation points Q i = P (ti) and weights βi = (−1)n+i wi zi , where zi = ẑ(ti) and wi as 
in (4).

Proof. Let us first write the denominator of P (t) in first barycentric form as

ẑ(t) =
n∑

i=0

αi Bn
i (t) = �(t)

n∑
i=0

wi

t − ti
zi . (5)

Likewise, the numerator of P (t) can be expressed in first barycentric form as

n∑
i=0

αi Bn
i (t)Pi = ẑ(t)P (t) = �(t)

n∑
i=0

wi

t − ti
zi P (ti). (6)

The statement then follows after dividing (6) by (5), substituting P (ti) = Q i and wi zi = (−1)n+iβi , and cancelling the 
common factor (−1)n�(t). �

In principle, the nodes ti do not have to be ordered or restricted to the interval [0, 1], as long as they are distinct; 
however, in the context of interactive curve design, it seems natural to make these assumptions. Likewise, it is reasonable 
to set t0 = 0 and tn = 1, so that Q 0 = P0 and Q n = Pn mark the endpoints of the curve.

Under the usual assumption of positive weights αi , which guarantees that ẑ(t) > 0 for all t ∈ [0, 1], so that the curve 
is non-singular,1 we conclude that the weights βi are positive, too, because sign(wi) = (−1)n−i , which follows from the 
observation that the factors of wi in (4) are negative, if and only if i < j ≤ n. This is in line with a result by Schneider and 
Werner (1986, Proposition 8), which implies that the positivity of the βi is a necessary condition for the non-singularity of 
the barycentric rational curve in (3).

Example 1. Consider the quadratic rational curve P in Bézier form (1) with control points P0 = (1, 0), P1 = (1, 1), P2 = (0, 1)

and weights α0 = 1, α1 = 1/
√

2, α2 = 1, which describes a quarter circle (see Fig. 3.a). Sampling this curve at the nodes 
t0 = 0, t1 = 2 − √

2, t2 = 1 yields the interpolation points Q 0 = (1, 0), Q 1 = (3/5, 4/5), Q 2 = (0, 1), and the weights of the 
barycentric form (3) turn out to be β0 = 1 + 1/

√
2, β1 = 5/

√
2, β2 = 1 + √

2 (see Fig. 3.b).

1 It is actually sufficient to assume α0, αn > 0 and αi ≥ 0 for i = 1, . . . , n − 1.
3



A. Ramanantoanina and K. Hormann Computer Aided Geometric Design 88 (2021) 102003
Fig. 3. Different representations of the quarter circle as a quadratic rational curve: (a) standard Bézier form with α0 = α2 = 1 (instead of the weights αi we 
show the Farin points Fi to visualize the ratios αi/αi+1); (b) corresponding barycentric form (cf. Proposition 1) for t0 = 0, t1 = 2 − √

2, t2 = 1; (c) standard 
barycentric form with β̃0 = β̃2 = 1 after reparameterization (cf. Proposition 3); (d) corresponding (non-symmetric) Bézier form (cf. Proposition 4); (e) after 
sliding the interpolation point Q̃ 1 to the new position Q̄ 1 (cf. Proposition 5); (f) as a cubic rational curve after inserting an additional interpolation point 
(cf. Proposition 7), in barycentric and Bézier form. The dots visualize the curve points P (i/16) for i = 0, . . . , 16.

Once a rational curve is represented in barycentric form, we can use a linear rational reparameterization to bring it into 
standard barycentric form with β0 = βn = 1, very similarly to how the Bézier representation can be brought into standard 
form (Patterson, 1985).

Lemma 2. For any λ ∈ (0, 1), consider the linear rational reparameterization ϕ : [0, 1] → [0, 1],

ϕ(t) = (1 − λ)t

λ(1 − t) + (1 − λ)t
. (7)

Let P be the barycentric rational curve (3) with nodes ti , interpolation points Q i , and weights βi and let P̃ be the barycentric rational 
curve with nodes ̃ti = ϕ(ti), the same interpolation points Q̃ i = Q i , and weights β̃i = βiλt̃i/ti . Then, P = P̃ ◦ ϕ .

Proof. Denoting the denominator of ϕ(t) by δ(t) = λ(1 − t) + (1 − λ)t , we first observe that

t̃i

ϕ(t) − t̃i
= ϕ(ti)

ϕ(t) − ϕ(ti)
=

(1−λ)ti
δ(ti)

(1−λ)t
δ(t) − (1−λ)ti

δ(ti)

= tiδ(t)

tδ(ti) − tiδ(t)
= tiδ(t)

λ(t − ti)

for any i = 0, . . . , n. Therefore,

β̃i

ϕ(t) − t̃i
= βiλ

ti
· t̃i

ϕ(t) − t̃i
= βi

t − ti
δ(t).

After substituting this into the numerator and the denominator of ( P̃ ◦ ϕ)(t) and cancelling the common factor δ(t) we get 
( P̃ ◦ ϕ)(t) = P (t). �

Note that β̃0 in Lemma 2 is well-defined, even if t0 = 0, because

lim
t→0

ϕ(t)

t
= lim

t→0
ϕ′(t) = 1 − λ

λ
,

so that β̃0 = β0(1 − λ) in that case. Moreover, we observe that sign(β̃i) = sign(βi) for i = 0, . . . , n. Therefore, if the βi are all 
positive, then so are the new weights β̃i .

Proposition 3. The barycentric rational curve (3) with nodes ti , interpolation points Q i , and weights βi can be expressed in standard 
form by first reparameterizing it with ϕ in (7) for

λ = β0tn − βnt0

β0(2tn − 1) − βn(2t0 − 1)
(8)

and then dividing all weights β̃i by β̃0 , as long as λ ∈ (0, 1).

Proof. According to Lemma 2, the first and the last weight of the reparameterized curve are

β̃0 = β0λ
ϕ(t0)

t0
= β0

δ(t0)
λ(1 − λ) and β̃n = βnλ

ϕ(tn)

tn
= βn

δ(tn)
λ(1 − λ), (9)

where δ(t) is again the denominator of ϕ(t). It remains for us to show that the choice of λ in (8) guarantees β̃0 = β̃n , which 
is equivalent to β0δ(tn) = βnδ(t0) by (9), so that both weights are 1 after dividing them by β̃0. But as (8) implies
4
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λβ0(2tn − 1) − λβn(2t0 − 1) = β0tn − βnt0

and further

βnt0 − 2λβnt0 + λβn = β0tn − 2λβ0tn + λβ0,

we get the desired identity after noting that δ(t0) = λ − 2λt0 + t0 and δ(tn) = λ − 2λtn + tn . �
The curve cannot be brought into standard form, if λ in (8) is outside the open interval (0, 1), because ϕ is singular and 

no longer a monotonic reparameterization of [0, 1] in that case. However, if t0 = 0, tn = 1, and all βi are positive, then λ
simplifies to λ = β0/(β0 + βn) ∈ (0, 1) and β̃0 = β̃n = β0βn/(β0 + βn) > 0.

Example 2. Applying Proposition 3 to the barycentric rational curve P from Example 1 (see Fig. 3.b), it turns out that 
the quarter circle can be described in standard barycentric form with nodes t̃0 = 0, t̃1 = 2/3, t̃2 = 1, interpolation points 
Q̃ 0 = (1, 0), Q̃ 1 = (3/5, 4/5), Q̃ 2 = (0, 1), and weights β̃0 = 1, β̃1 = 5/3, β̃2 = 1 (see Fig. 3.c).

A natural question to ask at this point is: how does one get back from barycentric to Bézier form? To this end, it helps 
to recall that P̂ i = (αi P i, αi) and to let Q̂ i = (zi Q i, zi), so that the assignments Q i = P (ti) and zi = ẑ(ti) for i = 0, . . . , n in 
the statement of Proposition 1 can be written compactly as Q̂ = B P̂ , where2

B =
⎛
⎜⎝

Bn
0(t0) · · · Bn

n(t0)
...

. . .
...

Bn
0(tn) · · · Bn

n(tn)

⎞
⎟⎠ , P̂ =

⎛
⎜⎝

P̂0
...

P̂n

⎞
⎟⎠ , Q̂ =

⎛
⎜⎝

Q̂ 0
...

Q̂ n

⎞
⎟⎠ . (10)

Proposition 4. The barycentric rational curve (3) with nodes ti , interpolation points Q i , and weights βi can be expressed in Bézier 
form (1) with control points Pi = (x̂i, ŷi)/ẑi and weights αi = ẑi , where the vector P̂ of points P̂ i = (αi P i, αi) = (x̂i, ŷi, ̂zi) is defined 
as P̂ = B−1 Q̂ and Q̂ is the vector of points Q̂ i = (zi Q i, zi) with zi = (−1)n+iβi/wi and wi as in (4).

Proof. First recall that the Bernstein–Vandermonde matrix B in (10) is non-singular, because the Bernstein basis is a Cheby-
shev system. The assertion then follows immediately by applying Proposition 1 to the rational Bézier curve with the stated 
control points Pi and weights αi and verifying that it gives back the interpolation points Q i and weights βi . �

Note that P̂ = B−1 Q̂ can be computed fast and accurately with O (n2) time complexity (Marco and Martínez, 2007). 
If the last coordinate αi = ẑi of the homogeneous control point P̂ i happens to vanish for some i, it means that the given 
barycentric rational curve cannot be written as a classical rational Bézier curve with control points in R2. Instead, the 
control point Pi needs to be replaced by the control vector αi P i = (x̂i, ŷi) ∈R2, representing an infinite control point in this 
case (Piegl, 1987; Farin, 2001).

Example 3. Using Proposition 4 to convert the barycentric rational curve P̃ in standard form from Example 2 (see Fig. 3.c) 
back to Bézier form, we find that the quadratic rational Bézier curve with control points P̃0 = (1, 0), P̃1 = (1, 1), P̃2 = (0, 1)

and weights α̃0 = 2/3, α̃1 = 1/3, α̃2 = 1/3 also describes a quarter circle (see Fig. 3.d). Bringing these weights into standard 
form, we return to the rational Bézier curve P that we started with in Example 1 (see Fig. 3.a).

3. Shape editing using the barycentric form

Once a rational curve is given in barycentric form (3), several new options arise for manipulating the curve by modifying 
the different parameters of the barycentric form: the nodes ti , the interpolation points Q i , and the weights βi .

Changing one of the nodes, say tk , in isolation, while keeping the Q i and the βi fixed, has a rather unpredictable 
effect. However, it is possible to preserve the shape (and the parameterization) of the curve by simultaneously adapting the 
corresponding Q k and all βi , so that the effect amounts to “sliding” Q k along the curve. This can be achieved by first using 
Proposition 4 to express the curve in Bézier form and then applying Proposition 1 with the modified nodes to get back 
to the barycentric form. However, it turns out that we do not have to carry out these conversions explicitly, as the new 
interpolation points and weights can be expressed directly in terms of the given parameters of the barycentric form.

Proposition 5. Suppose we change the node tk for some k ∈ {0, . . . , n} to some new value t̄k /∈ {t0, . . . , tn} and keep the other nodes 
fixed, that is, we let ̄ti = ti for i �= k. The barycentric rational curve (3) with nodes ti , interpolation points Q i , and weights βi can then 
be expressed alternatively in terms of the nodes ̄ti , the interpolation points Q̄ k = P (t̄k) and Q̄ i = Q i for i �= k, and the weights

2 The observant reader may have already noticed that throughout this paper we write points (in R2 and R3) as row vectors, so as to avoid excessive use 
of the transposition operator and to be able to conveniently stack them into matrices, like P̂, Q̂ ∈R(n+1)×3.
5
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β̄k =
n∑

i=0

(−1)n+k+i t̄k − tk

t̄k − ti
βi, β̄i = ti − tk

ti − t̄k
βi, i �= k. (11)

Proof. To prove this statement, we stick to the idea sketched out above. After converting the given curve to Bézier form, it 
follows directly from Proposition 1 that the new interpolation points are Q̄ i = P (t̄i), which simplifies to Q̄ i = P (ti) = Q i for 
i �= k. Moreover, we know that the given weights satisfy βi = (−1)n+i wi ẑ(ti), where wi is defined in (4) and the denomi-
nator polynomial ẑ can be written, independently of the Bézier form, in first barycentric form as ẑ(t) = �(t) 

∑n
i=0 (−1)i βi

t−ti
. 

Likewise, the new weights satisfy β̄i = (−1)n+i w̄ i ẑ(t̄i), where w̄i = ∏n
j=0, j �=i

1
t̄i−t̄ j

. If i �= k, then this expression simplifies to

β̄i = (−1)n+i 1

t̄i − t̄k

n∏
j=0, j �=i,k

1

t̄i − t̄ j
ẑ(t̄i) = (−1)n+i 1

ti − t̄k

n∏
j=0, j �=i,k

1

ti − t j
ẑ(ti) = ti − tk

ti − t̄k
βi,

because t̄i = ti for i �= k. For the remaining weight β̄k , note that �(t̄k) = ∏n
j=0(t̄k − t j) = (t̄k − tk)/w̄k , hence

β̄k = (−1)n+k w̄k�(t̄k)

n∑
i=0

(−1)i βi

t̄k − ti
=

n∑
i=0

(−1)n+k+i t̄k − tk

t̄k − ti
βi . �

In an interactive application, this “sliding” of Q k can be realized, for example, by letting the user click on the desired 
interpolation point, while holding the ‘shift’ key (to distinguish the action from a displacement of Q k; see below), and 
translating the subsequent mouse movement (left/right or up/down) into an increase or decrease of tk until the mouse 
button is released. Note that the time complexity for updating βk is O (n), O (1) for updating each of the other βi , and O (n)

for updating Q k (see Section 5), hence O (n) overall, which is much more efficient than computing the conversion to Bézier 
form and back.

For the reasons pointed out in Section 2, it seems reasonable to prevent sliding the endpoints Q 0 and Q n , that is, to 
exclude the cases k = 0 and k = n in Proposition 5, and to restrict t̄k to the open interval (tk−1, tk+1), so that Q̄ k remains 
between its neighbours Q k−1 and Q k+1 along the curve. In this case, it follows immediately from (11) that sign(β̄i) =
sign(βi) for i �= k, hence the positivity of the weights βi carries over to the new weights β̄i . For β̄k , this is not obvious 
from (11), but implied by the fact that changing tk does not change the curve, so that the non-singularity of the curve still 
guarantees that all βi have the same weight (Schneider and Werner, 1986).

Example 4. Applying Proposition 5 to the barycentric rational curve P̃ in standard form from Example 2 (see Fig. 3.c) and 
changing t̃1 = 2/3 to t̄1 = 1/3, thus sliding Q̃ 1 = (3/5, 4/5) to Q̄ 1 = (12/13, 5/13), we find that the quarter circle can also 
be described in barycentric form with nodes t̄0 = 0, t̄1 = 1/3, t̄2 = 1, interpolation points Q̄ 0 = (1, 0), Q̄ 1 = (12/13, 5/13), 
Q̄ 2 = (0, 1), and weights β̄0 = 2, β̄1 = 13/6, β̄2 = 1/2 (see Fig. 3.e).

The most direct control over the shape of the curve is given by displacing one of the interpolation points, say Q k , while 
keeping all other parameters fixed. By the interpolation property of the barycentric form, this will force the curve to pass 
through the new position of Q k at tk (see Fig. 2.b). Compared to moving a Bézier control point Pk , it should be noted that 
the basis function Ck(t) = (−1)k βk

t−tk

/∑n
i=0 (−1)i βi

t−ti
that corresponds to Q k (see Fig. 4.a) is neither non-negative nor as 

nicely “bell-shaped” as the basis function αk Bn
k(t)

/∑n
i=0 αi Bn

i (t) that corresponds to Pk . Hence, for large displacements, the 
shape may change less intuitively as it does in the case of editing the control polygon. However, while the general shape 
of the curve is more easily controlled with the Bézier control points Pi , changing the interpolation points Q i , combined 
with the “sliding” procedure outlined above and inserting points with ease (see Section 4) provides a useful tool for “micro-
editing” the curve shape. For example, it can be used to “snap” the curve to some point Q that must be interpolated exactly 
and the interpolation property guarantees that Q remains a point on the curve during subsequent editing operations, as 
long as Q is identical to one of the Q i .

It remains for us to discuss what happens to the curve if we change one of the weights, say βk , and it turns out that 
we can use this parameter to modify the “flatness” of the curve at Q k . Indeed, Schneider and Werner (1986) show that the 
derivative of P at Q k = P (tk) is

P ′(tk) =
∑n

i=0, i �=k (−1)k+i+1 βi
tk−ti

(Q k − Q i)

βk
.

As the numerator, which determines the direction of the tangent at Q k , does not depend on βk , which in turn appears 
only in the denominator, it follows that βk controls the length of the tangent, but not its direction. Therefore, decreasing 
βk “flattens” the curve locally at Q k , while increasing βk has the effect of letting the curve bend more tightly at Q k (see 
Fig. 2.c and Fig. 5). However, some limits on the possible values of βk need to be respected, if we want to guarantee that 
the curve remains non-singular.
6
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Fig. 4. Plots of (a) the basis functions Ck(t) for k = 0, . . . , n of a barycentric rational curve of degree n = 9 with equidistant nodes ti = i/n and weights 
(β0, . . . , βn) = (1, 8, 3, 2, 5, 6, 2, 5, 8, 1), (b) the denominator D(t), and (c) the function Sk(t) for k = 3. The horizontal lines represent M∗ and M∗ .

Fig. 5. The effect of changing the central weight of a quadratic rational curve P in barycentric form (3): (a) β1 = 4; (b) β1 = 2; (c) β1 = 1; (d) β1 = 1/2; (e) 
β1 = 1/4. The direction of the derivative P ′(t1) at Q 1 is fixed, but its length is inverse proportional to β1. The dots visualize the curve points P (i/16) for 
i = 0, . . . , 16.

Proposition 6. Consider a non-singular barycentric rational curve (3) with nodes 0 = t0 < t1 < · · · < tn = 1, interpolation points Q i , 
and weights βi > 0 and suppose we change the weight βk for some k ∈ {0, . . . , n} to some new value β̄k. Then the modified curve P̄
remains non-singular as long as β̄k ∈ (M�, M�), where

M� = max{. . . , Mk−2, Mk, Mk+2, . . . }, M� = min{. . . , Mk−3, Mk−1, Mk+1, Mk+3, . . . },
with

Mk+i =
{

max{Sk(t) : t ∈ (tk+i+i� , tk+i+i� )}, i even,

min{Sk(t) : t ∈ (tk+i+i� , tk+i+i� )}, i odd,
i� =

{
−1, i ≤ 0,

0, i > 0,
i� =

{
0, i < 0,

1, i ≥ 0,
(12)

and

Sk(t) =
n∑

i=0 i �=k

(−1)k+i+1 t − tk

t − ti
βi .

Proof. First recall from (5) that the denominator D(t) = ∑n
i=0 (−1)i βi

t−ti
of a non-singular barycentric rational curve with 

positive weights βi (see Fig. 4.b) satisfies

(−1)n�(t)D(t) = ẑ(t) > 0, t ∈ [0,1], (13)

where �(t) = ∏n
i=0(t − ti). Next observe that the denominator

D̄(t) = (−1)k β̄k

t − tk
+

n∑
i=0, i �=k

(−1)i βi

t − ti

of the modified curve P̄ vanishes at t̄ , if and only if β̄k = Sk(t̄). By the interpolation property of barycentric rational curves, 
it is clear that t̄ /∈ {t0, . . . , tn}. Therefore, P̄ is non-singular for t ∈ [0, 1], as long as β̄k is not in the image of I = [0, 1] \
{t0, . . . , tn} under Sk . To better understand the behaviour of Sk , note that

Sk(t) = (−1)k+1(t − tk)D(t) + βk

and assume that t ∈ (t j, t j+1) for some j ∈ {0, . . . , n − 1}. Since (−1)n− j�(t) is clearly positive, it follows from (13) that 
(−1) j D(t) is positive too, with limt→t j (−1) j D(t) = limt→t j+1 (−1) j D(t) = +∞. Therefore, Sk(t) −βk is positive, if j ≥ k and 
j + k is odd, or if j < k and j + k is even, and negative otherwise, converging to +∞ or −∞ as t approaches t j or t j+1, 
except at tk , because Sk(tk) = 0. Consequently, the image of (t j, t j+1) under Sk is
7
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Sk[(t j, t j+1)] =
{

[M j+1,+∞),

(−∞, M j+1], if j < k − 1 and j + k is

{
even,

odd,

Sk[(t j, t j+1)] =
{

[M j,+∞),

(−∞, M j], if j ≥ k + 1 and j + k is

{
odd,

even,

and

Sk[(tk−1, tk+1)] = (−∞, Mk],
for the M j in (12) (see Fig. 4.c). Combining these images, we find that Sk[I] = (−∞, M�] ∪ [M�, +∞), which, together with 
the considerations above, shows that the stated condition for β̄k guarantees P̄ to be non-singular. �

Note that M� in Proposition 6 is always non-negative, because Sk(tk) = 0 and thus M� ≥ Mk ≥ 0, which is in line with 
our expectation that β̄k should be positive, just like βk , in order for P̄ to be non-singular. In general, it does not seem 
feasible to determine the bounds M� and M� analytically, but they can be computed numerically by first finding the roots 
of S ′

k over the relevant intervals with Newton’s method, using, for example, the midpoint of the interval as initial value, and 
then evaluating Sk at these roots to get the M j in (12).

Example 5. The derivative of the quadratic barycentric rational curve P with nodes t0 = 0, t1 = 1/2, t2 = 1, interpolation 
points Q 0 = (−1, 0), Q 1 = (0, 1), Q 2 = (1, 0), and weights β0 = β1 = β2 = 1 at t1 is P ′(t1) = (4, 0) (see Fig. 5.c). Increasing 
the weight β1 to 2 or 4 shortens the derivative by a factor of 1/2 or 1/4, respectively (see Fig. 5.a,b), while decreasing 
β1 to 1/2 or 1/4 extends the derivative by a factor of 2 or 4, respectively (see Fig. 5.d,e). In this example, the curve is 
well-defined for all β1 > 0. Instead, if we want to modify β0, then we must ensure that β0 ∈ (0, 9).

4. Point insertion and degree elevation

A common tool for increasing the flexibility of a rational Bézier curve is degree elevation, which can be used to represent 
a given curve of degree n as a curve of degree n + 1 without changing its shape. This increases the number of control points 
and weights by one and hence gives the user more control to model the desired shape. The equivalent of degree elevation in 
the barycentric form simply amounts to adding an interpolation point Q � = P (t�) for some t� ∈ [0, 1] \ {t0, . . . , tn}, adapting 
the weights βi , and computing the appropriate new weight for Q � .

Proposition 7. Let k ∈ {0, . . . , n + 1} and t� ∈ (tk−1, tk), where t−1 = 0 and tn+1 = 1. The barycentric rational curve P of degree n
in (3) with nodes ti , interpolation points Q i , and weights βi can then be expressed alternatively as a barycentric rational curve P̆ of 
degree n + 1 with parameters

t̆i =

⎧⎪⎪⎨
⎪⎪⎩

ti,

t�,

ti−1,

Q̆ i =

⎧⎪⎪⎨
⎪⎪⎩

Q i,

Q � = P (t�),

Q i−1,

β̆i =

⎧⎪⎪⎨
⎪⎪⎩

βi
t�−ti

,∑n
i=0 (−1)n+k+i βi

ti−t�
,

βi−1
ti−1−t�

,

if

⎧⎪⎪⎨
⎪⎪⎩

i < k,

i = k,

i > k.

(14)

Proof. As in the proof of Proposition 5, we first use Proposition 4 to convert P to Bézier form and then conclude from 
Proposition 1 that the given weights satisfy βi = (−1)n+i wi ẑ(ti), where wi is defined in (4) and ẑ(t) = �(t) 

∑n
i=0 (−1)n βi

t−ti
. 

Likewise, applying Proposition 1 to the nodes t̆0, . . . , ̆tn+1, it follows that Q̆ i = P (t̆i), which simplifies to what is stated 
in (14), and that β̆i = (−1)n+1+i w̆ i ẑ(t̆i), where w̆i = ∏n+1

j=0, j �=i
1

t̆i−t̆ j
. If i < k, then this expression simplifies to

β̆i = (−1)n+1+i 1

t̆i − t̆k

n+1∏
j=0, j �=i,k

1

t̆i − t̆ j
ẑ(t̆i) = (−1)n+1+i 1

ti − t�

n∏
j=0, j �=i

1

ti − t j
ẑ(ti) = βi

t� − ti
,

because t̆i = ti for i < k and t̆i = ti−1 for i > k, and similarly to

β̆i = (−1)n+1+i 1

t̆i − t̆k

n+1∏
j=0, j �=i,k

1

t̆i − t̆ j
ẑ(t̆i) = (−1)n+1+i 1

ti−1 − t�

n∏
j=0, j �=i

1

ti−1 − t j
ẑ(ti−1) = βi−1

ti−1 − t�
,

if i > k. For the remaining weight β̆k , note that �(t̆k) = ∏n
j=0(t̆k − t j) = 1/w̆k , hence

β̆k = (−1)n+1+k w̆k�(t̆k)

n∑
(−1)i βi

t̆k − ti
=

n∑
(−1)n+k+i βi

ti − t�
. �
i=0 i=0

8
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At this point, one may ask: what happens if we convert the barycentric rational curve P̆ of degree n + 1 with the 
parameters in (14) to Bézier form? But as P̆ is just a different representation of the same curve P , its Bézier form must 
simply be the degree-elevated Bézier form of P . Indeed, since degree elevation does not change the denominator polynomial 
ẑ, this fact can also be observed by applying Proposition 1 to the degree-elevated Bézier form of P and noticing that this 
gives the parameters in (14).

Example 6. Adding the point Q � = P (1/3) to the quadratic barycentric rational curve P̄ from Example 4 (see Fig. 3.e), it 
follows from Proposition 7 that the quarter circle can be described as a cubic barycentric rational curve with nodes t̆0 = 0, 
t̆1 = 1/3, t̆2 = 2/3, t̆3 = 1, interpolation points Q̆ 0 = (1, 0), Q̆ 1 = (12/13, 5/13), Q̆ 2 = (3/5, 4/5), Q̆ 3 = (0, 1), and weights 
β̆0 = 3, β̆1 = 13/2, β̆2 = 5, β̆3 = 3/2 (see Fig. 3.f). Applying Proposition 4 to this curve, we find that its Bézier form is given 
by the control points P̆0 = (1, 0), P̆1 = (1, 1/2), P̆2 = (2/3, 1), P̆3 = (0, 1) and the weights ᾰ0 = 2/3, ᾰ1 = 4/9, ᾰ2 = 1/3, 
ᾰ3 = 1/3 (see Fig. 3.f), which is just the degree-elevated quadratic rational Bézier curve from Example 3 (see Fig. 3.d).

5. Performance of the barycentric form for curve evaluation

The classical way to evaluate a rational Bézier curve (1) at some parameter t ∈ [0, 1] is by applying the de Casteljau 
algorithm to the numerator and the denominator of P (t) and dividing through, which has time complexity O (n2). The 
rational de Casteljau algorithm (Farin, 1983) provides a more robust, but less efficient alternative with the same time 
complexity. A recent paper by Woźny and Chudy (2020) presents a novel evaluation procedure for rational Bézier curves 
with a nice geometric interpretation. Like the de Casteljau algorithm, it is based on robust convex combinations, but it has a 
favourable linear time complexity. Yet another option is to use Proposition 1 to convert the curve into the barycentric form 
in (3) and to evaluate the latter. This can clearly be done in linear time, too, by first computing the sums in the numerator 
and the denominator and then dividing through (see Algorithm 1).

Algorithm 1 Evaluation of P using the barycentric rational form.
Input: nodes t0 . . . , tn , interpolation points Q 0, . . . , Q n , and weights β0, . . . , βn of P and parameter t
Output: P (t)

N := 0
D := 0
σ := 1
for i from 0 to n do

d := t − ti

if d = 0 then
return Q i

a := σβi/d
N := N + aQ i

D := D + a
σ := −σ

return N/D

To compare the efficiency of these three algorithms (classical de Casteljau, linear-time geometric, barycentric), we imple-
mented them in C++ on an Ubuntu 20.04.2 LTS laptop with 1.8 GHz Intel Core i7-10510U processor and 16 GB RAM. The 
time complexities of the algorithms are confirmed by the plots in Fig. 6.a, which show the average running times for eval-
uating a rational Bézier curve of degree n with random control points Pi ∈ [−1, 1]2 and random weights αi ∈ [0.01, 10] at 
106 random parameters t for n = 3, 5, 10, 20, . . . , 80. Regardless of n, the evaluation in barycentric form is the fastest, even 
though the running time includes the time for pre-computing the interpolation points Q i (with Woźny and Chudy’s linear-
time algorithm) and the weights βi (with the polynomial de Casteljau algorithm) for equidistant nodes ti = i/n and Lagrange 
weights wi = (−1)n−i(n

i

)
nn/n! (Berrut and Trefethen, 2004). Compared to the 106 evaluations, this pre-computation is neg-

ligible, but for fewer evaluations it is not. This effect can be seen in Fig. 6.b, which reports the running times for evaluating 
a cubic rational Bézier curve at M = 100, 200, . . . , 1000 random parameters t ∈ [0, 1]. While the linear-time algorithm is the 
fastest for small M , the pre-computation needed for the barycentric evaluation pays off for large M , with the break-even at 
about M = 300 evaluations.

While we use equidistant nodes in this comparison, we should point out that this may lead to numerical inaccuracies 
for n ≥ 50, due to the large variance of the wi , which carries over to the βi . Instead, stable results can be obtained by using 
Chebyshev points of the second kind as nodes, that is, ti = (1 − cos iπ

n )/2, because the corresponding Lagrange weights 
satisfy |w0| = |wn| = |wi |/2 for i = 1, . . . , n − 1 (Berrut and Trefethen, 2004).

6. Conclusion

In this paper, we explored the use of barycentric rational curves in the context of shape design, and we studied their 
properties. Converting a given rational Bézier curve to barycentric form is simple and comes with several advantages. On 
the one hand, the barycentric form offers new tools for controlling the shape of the curve that are complementary to the 
9
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Fig. 6. Comparison of different algorithms for evaluating a rational Bézier curve: (a) running times (in seconds) for 106 evaluations of curves of different 
degree n; (b) running times (in milliseconds) for M evaluations of a curve of degree 3.

classical way of manipulating rational Bézier curves. As the barycentric form provides neither a convex hull, nor a vanishing 
diminishing property, these new tools may be less intuitive, but we believe that they are still useful, at least for “micro-
editing”. After a modification in the barycentric form, the curve can easily be transformed back into Bézier form. On the 
other hand, the barycentric form is very efficient to evaluate in linear time.

Analogously to rational Bézier curves, the barycentric rational curve P in (3) can be seen as the projection of 
the polynomial curve P̂ that interpolates the homogeneous interpolation points Q̂ i = (zi Q i, zi) at the nodes ti , where 
zi = (−1)n+iβi/wi , into the ẑ = 1 plane. In this homogeneous setting, the proposed editing operations can be understood 
as follows: (1) “sliding” Q k along P is equivalent to “sliding” Q̂ k along P̂ , and as the modification of tk entails a change of 
the wi , the βi need to be updated for i �= k as in Proposition 5, so that the corresponding zi and Q̂ i remain the same; (2) 
moving Q k is like moving Q̂ k in the ẑ = zk plane; (3) modifying βk is tantamount to displacing Q̂ k along the line through 
Q̂ k and the origin. The larger βk , the further Q̂ k is from the origin, and the more the projected curve P bends at Q k , very 
similarly to how increasing the weight αi pulls P towards the control point Pk in the case of rational Bézier curves.

For the important class of non-singular rational curves, there is an interesting difference between the Bézier and the 
barycentric form. While the positivity of the αi is sufficient, the positivity of the βi is only necessary for the non-singularity 
of the curve. Consequently, the set of all Bézier curves with positive αi does not contain all non-singular curves, while 
the set of all barycentric rational curves with positive βi does, but also contains singular curves. In both cases, additional 
non-linear constraints are needed to fix this (cf. Proposition 6).

Another difference is that the barycentric form can describe curves that cannot be represented in Bézier form, at least 
not with the same degree. For example, a semi-circle can be modelled as a quadratic rational curve in barycentric form (see 
Fig. 5.c), but not in Bézier form without using control vectors, and likewise for a full circle as a quartic rational curve.
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