
Learning Structured Neural Representations
for Visual Reasoning Tasks

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Sjoerd van Steenkiste

under the supervision of

Jürgen Schmidhuber

November 2020

Dissertation Committee

Cesare Alippi Università della Svizzera Italiana, Switzerland
Natasha Sharygina Università della Svizzera Italiana, Switzerland
Bernhard Schölkopf Max Planck Institute for Intelligent Systems, Germany
Michael C. Mozer University of Colorado Boulder, USA
Leslie P. Kaelbling Massachusetts Institute of Technology, USA

Dissertation accepted on 23 November 2020

Research Advisor PhD Program Director

Jürgen Schmidhuber Silvia Santini

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Simon Jacob “Sjoerd” van Steenkiste
Lugano, 23 November 2020

ii

Abstract

Deep neural networks learn representations of data to facilitate problem-solving
in their respective domains. However, they struggle to acquire a structured
representation based on more symbolic entities, which are commonly understood
as core abstractions central to human capacity for generalization. This dissertation
studies this issue for visual reasoning tasks. Inspired by how humans solve these
tasks, we propose to learn structured neural representations that distinguish
objects: abstract visual building blocks that can separately be composed and
reasoned with. We investigate the limitations of current deep neural networks at
effectively discovering, representing, and relating these more symbolic entities,
and present several improvements.

To address the problem of discovering and representing objects, we propose
two novel approaches. In one case, we formalize this problem as a pixel-level
clustering problem and formulate a neural differentiable clustering algorithm
that solves it. We demonstrate how, unlike standard representation learning
techniques, it can be trained to learn about objects in an unsupervised manner
and acquire corresponding representations that can be treated as symbols for rea-
soning. In the other case, we adopt a purely generative approach and demonstrate
how a neural network equipped with the right inductive bias can learn about
objects in the process of synthesizing images, even in complex visual settings.

Concerning the problem of relating symbolic entities with neural networks,
we investigate how object representations can help facilitate building structured
models for common-sense physical reasoning that generalize more systematically.
We extend our previous representation learning approach to facilitate model
building in this way and demonstrate how it can learn about general relations
between objects to reason about their (future) physical interactions.

Finally, we investigate the utility of a representational format that isolates inde-
pendent sources of information for encoding the features of individual objects. We
conduct a large-scale study of such ‘disentangled’ representations that includes var-
ious methods and metrics on two new abstract visual reasoning tasks. Our results
indicate that better disentanglement enables quicker learning using fewer samples.

iii

iv

Acknowledgements

I would like to thank Jürgen Schmidhuber for providing me with the opportunity
to pursue a PhD under his supervision, and for giving me the freedom to research
the topics in this dissertation. Through our discussions, I learned to think critically
and to develop my own understanding of AI.

Next, I would like to thank Klaus Greff in particular, for being my main
collaborator and a friend throughout all these years. Several of the ideas we
published together would not have existed if it were not for his initial curiosity
and tenaciousness regarding the binding problem in neural networks. Through
countless hours of discussion and collaboration, we went far beyond what I could
have independently achieved.

I would also like to thank my other colleagues at IDSIA for providing an
inspirational research environment throughout the years. It were the interactions
with Jan Koutník, Bas Steunebrink, Rupesh Srivastava, and Marijn Stollenga that
led me to join IDSIA, and with Paulo Rauber and Imanol Schlag that kept me
going. I would also like to thank Paulo Rauber for feedback on this dissertation
and Louis Kirsch, Aleksandar Stanić, Róbert Csordás, and Anand Gopalakrishnan
for collaborations.

Throughout my PhD, I was fortunate to intern at Google Brain in Zürich with
Karol Kurach and Sylvain Gelly, which I would like to thank for this opportunity
and as collaborators. I am also grateful for collaborations with many others
at Google, including Olivier Bachem, Francesco Locatello, Thomas Unterthiner,
Raphaël Marinier, and Marcin Michalski. I would like to thank Michael Chang for
collaborating during his visit at IDSIA in the summer of 2018.

Many thanks go out to Kari for helping me balance work with much needed
distraction during all these years, and to Wiebke for her patience and support. I
would also like to thank Stefano and Dina for their continued support and good
faith.

Finally, I would like to thank my brother, Job, and my parents, Ben & Marion,
for their unconditional support and enthusiasm, and for all the memories we have
made over the years. Without you, none of this would have been possible.

v

vi

Contents

Contents vii

1 Introduction 1
1.1 Problem Statement and Contributions 3
1.2 Structure of the Dissertation . 6

2 Background 9
2.1 Notation . 9
2.2 Machine Learning . 10

2.2.1 Statistical Modeling . 11
2.2.2 Classification . 19

2.3 Neural Networks . 20
2.3.1 Architectures . 21
2.3.2 Learning . 25

3 Challenges & Related Work 31
3.1 The Binding Problem . 33

3.1.1 Importance of Symbols . 33
3.1.2 Symbolic Processing in Connectionist Methods 34
3.1.3 The Binding Problem in Connectionist Methods 36

3.2 Representation . 39
3.2.1 Representational Format . 40
3.2.2 Representational Dynamics 41
3.2.3 Methods . 43

3.3 Segregation . 48
3.3.1 Objects . 49
3.3.2 Segregation Dynamics . 51
3.3.3 Methods . 53

3.4 Composition . 59
3.4.1 Structure . 60

vii

viii Contents

3.4.2 Reasoning . 64
3.4.3 Methods . 66

3.5 Disentangling Factors of Variation . 71
3.5.1 Informative Factors of Variation 71
3.5.2 Learning Disentangled Representations 72

4 Neural Expectation Maximization 75
4.1 Method . 76

4.1.1 Neural Spatial Mixture Model 77
4.1.2 Expectation Maximization . 77
4.1.3 Trainable Clustering Procedure 79
4.1.4 Training Objective . 80

4.2 Related work . 82
4.3 Experiments . 83

4.3.1 Static Shapes . 84
4.3.2 Flying Shapes . 85
4.3.3 Flying MNIST . 87

4.4 Discussion . 89

5 Relational Neural Expectation Maximization 91
5.1 Method . 92

5.1.1 RNN-EM as a Predictive World Model 92
5.1.2 Interaction Function . 95

5.2 Related Work . 97
5.3 Experiments . 99

5.3.1 Bouncing Balls . 100
5.3.2 Hidden Factors . 103
5.3.3 Space Invaders . 103

5.4 Discussion . 104

6 Object Compositionality in GANs 107
6.1 Method . 108

6.1.1 Generative Adversarial Networks 108
6.1.2 Incorporating Architectural Structure 109

6.2 Related Work . 113
6.3 Experiments . 115

6.3.1 Qualitative Analysis . 118
6.3.2 Quantitative Analysis . 121

6.4 Discussion . 124

ix Contents

7 Evaluating Disentangled Representations 127
7.1 Methodology . 128

7.1.1 Disentanglement . 129
7.1.2 Abstract Visual Reasoning . 130

7.2 Results . 134
7.2.1 Learning Disentangled Representations 134
7.2.2 Abstract Visual Reasoning . 135

7.3 Discussion . 141

8 Conclusion 143
8.1 Future Directions . 146

A Additional Experiment Details 149
A.1 Neural Expectation Maximization . 149

A.1.1 Static Shapes . 149
A.1.2 Flying Shapes . 150
A.1.3 Flying MNIST . 151

A.2 Relational Neural Expectation Maximization 152
A.2.1 Bouncing Balls . 152
A.2.2 Space Invaders . 154

A.3 Object Compositionality in GANs . 155
A.3.1 Model specifications . 155
A.3.2 Hyperparameter Configurations 156
A.3.3 Instance Segmentation . 157
A.3.4 Human Study . 158

A.4 Evaluating Disentangled Representations 160
A.4.1 Architectures . 160
A.4.2 Abstract Visual Reasoning Data 162

B Additional Results 165
B.1 Object Compositionality in GANs . 165

B.1.1 FID Study . 165
B.1.2 Human Study - Properties . 168
B.1.3 Examples of Generated Images 171

B.2 Evaluating Disentangled Representations 186
B.2.1 Learning Representations . 186
B.2.2 Abstract Visual Reasoning . 188

Bibliography 193

x Contents

Chapter 1

Introduction

The study of Artificial Intelligence (AI) is concerned with programming machines
to behave intelligently [Russell et al., 1995; Hutter, 2004]. Broadly speaking,
such behavior is characterized by the capacity to achieve meaningful goals in a
variety of situations, and by the ability to improve based on prior experiences.
The most prominent examples of intelligent behavior are found among animals
and humans, which have acquired general ‘programs’ throughout the course of
evolution that enable them to learn from experiences and act as general problem
solvers. In its most general form, the study of AI is therefore also concerned
with certain aspects of neuroscience and cognitive psychology, which focus on
understanding human intelligence and cognition.

The possibility of (an) AI to rival or surpass human capacity for problem-
solving offers tremendous potential for automation and innovation in numerous
domains. Conversely, the typical more ‘narrow’ approach to AI that is concerned
with a particular domain, or problem setting, and that may sooner yield promising
application, can serve as an intermediate step towards achieving this more general
overarching goal. Indeed, several decades of AI research have led to significant
advances in natural language understanding, computer vision, planning, and
automated reasoning.

In recent years, artificial Neural Networks (NNs) have re-emerged as a promis-
ing technique for AI in several of these domains [Schmidhuber, 2015a]. Modern
NNs consist of simple connected nodes (neurons) organized in layers that each
compute a non-linear transformation of their input (i.e. the output of the previous
layer) based on the weights on the incoming connections. Like other Machine
Learning (ML) approaches [Mitchell et al., 1997], they can be programmed to
produce the desired input-output mapping (in this case by adjusting their weights)
through learning from data. This makes it possible to teach NNs to perform tasks

1

2

that are otherwise difficult to manually program efficiently, such as recognizing
objects in images, but for which corresponding data (e.g. in the form of correct
input-output pairs) is more easily obtained.

Part of the reason for the success of recent ‘deep’ neural networks — neu-
ral networks consisting of many layers — is that their intermediate layers form
alternative descriptions, or representations, of the input data [Ivakhnenko and
Lapa, 1965; Bengio et al., 2013]. Indeed, the importance of using the right
representation (or features) for machine learning is well-established in the litera-
ture [Murphy, 2012]. For example, a representation that focuses only on relevant
information content is less susceptible to noise and generally easier to learn from.
Similarly, when considering more abstract ‘high-level’ features that are robust to
certain changes in the input, it becomes easier to learn programs that generalize
to other inputs. It is for this reason that a lot of previous work in ML has focused
on engineering input features, whose primary purpose was to enrich the input
data based on prior knowledge about relevant aspects for solving a given task
(e.g. Lowe [1989]; Dalal and Triggs [2005] for vision).

Deep neural networks are capable of learning representations of the input
data together with the desired output for the task under consideration. This sig-
nificantly reduces the need for feature engineering and has led neural networks to
become the default choice for learning directly from unprocessed data, such as raw
visual images [Ciresan et al., 2011, 2012; Krizhevsky et al., 2012; Sharif Razavian
et al., 2014]. It also makes NNs an attractive choice for representation learning
specifically, where the main goal is to learn useful representations of the input
data for the purpose of some other ‘down-stream’ application [Lee et al., 2009;
Bengio et al., 2013]. In this case, learning can take place through more generic
unsupervised learning objectives that do not require access to data that is labeled
or include rewards [Schmidhuber, 1991b, 1992c; Vincent et al., 2008]. This is
highly advantageous, since human labor is costly, especially when considering
that deep neural networks trained on unprocessed data require access to large
amounts of inputs to even learn a single task. Nonetheless, in either of these
cases, several key challenges remain.

One major challenge is that it can not be guaranteed that the desired represen-
tation simply emerges as a by-product of learning, even when large amounts of su-
pervised data are provided. Spurious correlations due to data set bias may corrupt
the learned representation, while in other cases not enough data can be provided
so that all possible invariances are observed. These issues are known to have impor-
tant consequences for generalization, while at the same time being difficult to ad-
dress during learning (since only a finite amount of data is considered) without in-
corporating additional assumptions [Jo and Bengio, 2017; Lake and Baroni, 2018].

3 1.1 Problem Statement and Contributions

Indeed, in neural networks the quality of the learned representations is primar-
ily due to inductive bias [Mitchell, 1980], requiring careful consideration of the
neural network architecture, objective function, and optimization procedure.

A related challenge is encountered specifically in the unsupervised case, where
representations are learned based on some auxiliary task. In this case, to ensure
that the learned representations turn out useful for other down-stream tasks,
it is important to incorporate prior knowledge (often based on assumptions)
about how such tasks are solved and the corresponding utility of a particular
representational format [Kansky et al., 2017; Locatello et al., 2018]. This then
also implies a trade-off, where more useful representations can often be obtained
by making additional assumptions about a particular task, but which may come at
the cost of their relevance to other tasks. Striking the right balance between utility
and generality is another challenge that must be addressed in this framework.

1.1 Problem Statement and Contributions

The central focus of this dissertation is on unsupervised representation learning for
(relational) reasoning tasks from vision1. The capacity to perform reasoning is a
core aspect of human cognition and an essential ingredient to how humans solve
many everyday tasks. Traditionally, this has made reasoning one of the focus
areas of AI [Russell et al., 1995]. In the real world, reasoning often proceeds from
vision, which offers a rich source of information that can readily be obtained and
is not contingent on any form of pre-processing. On the contrary, it is difficult to
reason directly in terms of low-level features, such as the color values of individual
pixels. This has led researchers to consider alternative representations based on
manual feature engineering or large-scale supervised learning for the purpose
of solving a specific task. Unfortunately, this approach is highly laborious and
therefore difficult to extend to the much broader class of visual reasoning tasks as
encountered in the real world, which makes unsupervised representation learning
an important problem in this domain.

To arrive at a good representation for solving visual reasoning tasks (e.g.
for common-sense physical reasoning) in the unsupervised case, we will draw
inspiration from how humans learn to solve such tasks. In particular, we note how
human perception is structured around the discovery and representation of objects,
which serve as abstract ‘building blocks’ for many aspects of cognition [Spelke
and Kinzler, 2007]. For example, they allow humans to view a complex visual

1We define reasoning as the process of making inferences about the world based on one’s
understanding of how various entities influence each other.

4 1.1 Problem Statement and Contributions

scene in terms of separate (independent) parts and describe relations between
them, which can then be reasoned with. Two important properties of objects for
the purpose of representing complex visual information are their modularity and
their generality. The former ensures that they can be composed in different ways
to efficiently describe a variety of encountered scenes, which enables humans
to reuse knowledge about an object across many different contexts. The latter
implies that the notion of an object can be used to describe a wide variety of
visual appearances according to a shared format, which allows them to easily be
compared, and reasoned with.

We hypothesize that a representation based on objects2 offers similar benefits
to neural networks for visual reasoning tasks. Indeed, there are interesting paral-
lels between the idea of incorporating ‘object representations’ (that are modular
and can be composed) and the use of symbols in more classic symbolic approaches
to AI [Nillson, 1980]. While the latter relied on hand-crafted symbols and rules
of manipulation that required a prohibitive amount of human engineering, their
underlying compositionality (due to treating reasoning as a symbol manipulation
process) did allow them to generalize in predictable and systematic ways akin to
humans. In contrast, while standard neural network approaches that learn repre-
sentations are naturally able to overcome this issue of ‘symbol grounding’ (i.e. how
to obtain abstractions that have meaning in the real world [Harnad, 1990]), their
failure at generalizing more systematically suggest that they lack an inductive
bias to acquire the ability to process information more symbolically [Lake and
Baroni, 2018; Santoro et al., 2018b].

To this extent, we make the following contributions:

The Binding Problem in Artificial Neural Networks We investigate the inability
of existing neural networks to effectively form, represent, and relate symbol-
like entities (i.e. objects). We propose that the underlying cause for this is the
binding problem: The inability to dynamically and flexibly bind information that
is distributed throughout the network. The binding problem affects their capacity
to form meaningful entities from unstructured sensory inputs (segregation), to
maintain this separation of information at a representational level (representation),
and to use these entities to perform new inferences, predictions, and behaviors
(composition). Based on connections to neuroscience and cognitive psychology
(e.g. Treisman [1999]), where the binding problem has been extensively studied in

2We define objects as abstract patterns in the (visual) input that serve as modular building
blocks (i.e. they are self-contained and reusable independent of context) for solving a particular
task, in the sense that they can be separately intervened upon or reasoned with.

5 1.1 Problem Statement and Contributions

the context of the human brain, we work towards a solution to the binding problem
in neural networks and identify several important challenges and requirements.
We also survey relevant mechanisms from the machine learning literature that
either directly or indirectly already address some of these challenges. Our analysis
provides a starting point for identifying the right inductive bias to enable neural
networks to process information more symbolically and thereby generalize in a
more systematic fashion.

Discovering and Representing Objects We propose two novel approaches to
discover and represent objects in a way that allows them to be treated as symbols
for reasoning, unlike the representations learned by standard neural network
approaches. Learning about objects is particularly difficult in the unsupervised
case, where the notion of an object must be acquired solely through observing
statistical regularities in the data. Moreover, due to the binding problem, it is not
trivial how to best encode their information with a neural network.

In order to learn about objects, we will focus on their functional role as
abstract computational units that are modular and reusable across many different
contexts. In one case, this allows us to treat this problem as a pixel-level clustering
problem, where pixels are related through belonging to the same cluster, and
where each cluster corresponds to a particular object. We propose a trainable
clustering procedure called Neural Expectation Maximization (N-EM) that can be
formalized as maximum likelihood estimation (using generalized EM [Dempster
et al., 1977]) in a spatial mixture model, where each component is parametrized
by a shared neural network. The weights of the neural network act as the similarity
function according to which to cluster pixels, and we demonstrate how one can
backpropagate gradients through the generalized EM procedure so that they can
be adjusted to learn about objects in a purely unsupervised fashion.

We also investigate an alternative approach to learning about objects based on
more powerful implicit generative models. In this case, this requires learning a
generative process that explicitly considers such abstractions at a representational
level, which can be addressed by incorporating a corresponding inductive bias
that encourages the learned generative process to be compositional. We propose
a structured neural network generator that allows for compositionality in this way
and demonstrate how it learns about objects, relations, and background. Using
this approach, we find that it is possible to learn about objects in more complex
visual settings that previous approaches (including N-EM) find difficult. We also
demonstrate how to leverage the learned structured generative process, which is
now interpretable and semantically understood, to perform inference and recover

6 1.2 Structure of the Dissertation

information about individual objects without additional supervision.

Common-sense Physical Reasoning We propose a novel approach to learning
structured models for common-sense physical reasoning that takes advantage of
the underlying compositionality of learned object representations to generalize in
more predictable and systematic ways. To address this problem, a neural network
should learn about possible relations between objects in a way that is general and
reusable, and incorporate a mechanism for dynamically evaluating corresponding
interactions at a representational level. Our neural approach combines N-EM
with a compositional interaction function that is capable of modeling interactions
between objects in this way. It decomposes complex interactions in the environ-
ment into much simpler local pair-wise interactions between individual objects
and dynamically decides which objects will interact. We demonstrate how this
enables it to learn a structured world model capable of making predictions about
physical interactions between objects, without access to supervision, in a way
that applies to scenes consisting of more or fewer objects.

Abstract Visual Reasoning using Disentangled Representations We study the
usefulness of representations that are disentangled, which provide a particular
representational format for representing information about visual scenes. In a dis-
entangled representation, information about informative factors of variation (e.g.
the color, or shape of an object) can be readily accessed and is robust to changes
in the input that do not affect this factor. While ‘disentanglement’ may be used to
refer to different ways of imposing structure at a representational level, here we
are mainly concerned with disentanglement as a way of encoding information
about the features of individual objects. We conduct a large-scale evaluation of
disentangled representations on two abstract visual reasoning tasks (similar to
Raven’s Progressive Matrices [Raven, 1941]) that challenge the current capabil-
ities of state-of-the-art deep neural networks. On these tasks, we demonstrate
how representations that are more disentangled yield better sample-efficiency for
learning the considered down-stream reasoning tasks.

1.2 Structure of the Dissertation

In Chapter 2 we provide a succinct overview of relevant concepts from statistical
modeling and deep learning, which serve as technical background material. A
reader that is already familiar with these concepts is welcome to skip this chapter
or refer back to it on a case-by-case basis as indicated in the proceeding chapters.

7 1.2 Structure of the Dissertation

In Chapter 3 we provide a detailed overview of the challenges and related work
relevant to the topic of this dissertation. The focus of this chapter is on the binding
problem, which will be introduced there since it provides a useful framework
for identifying important challenges and requirements for incorporating object
representations in neural networks. We also survey relevant mechanisms from the
machine learning literature that either directly or indirectly already address some
of these challenges. Towards the end of this chapter, we provide an overview of
the challenges and related work for learning disentangled representations.

In Chapter 4 we introduce Neural Expectation Maximization (N-EM), which
offers a trainable clustering approach based on neural networks. We demonstrate
how N-EM is able to learn about objects in a purely unsupervised fashion and can
be applied to images and videos to compute object representations.

In Chapter 5 we introduce Relational Neural Expectation Maximization (R-
NEM), which combines N-EM with a relational mechanism to learn a structured
model for common-sense physical reasoning. We demonstrate how it is able to
leverage object representations to learn about physical interactions in a way that
can be extrapolated to scenes consisting of more or fewer objects.

In Chapter 6 we introduce an alternative approach to learning about objects
based on more powerful implicit generative models. In particular, we propose
several modifications to a standard neural network generator to enable it to learn
about objects, relations, and background, in the process of synthesizing complex
visual scenes. We also demonstrate how to perform inference in this model and
extract information about individual objects in unseen images.

In Chapter 7 we investigate the benefits of disentangled representations as a
format for encoding information about individual objects on several abstract vi-
sual reasoning tasks. We conduct a large-scale study that spans multiple different
approaches to learning disentangled representations, notions of disentanglement,
data sets and hyperparameters. We present compelling evidence that more disen-
tangled representations are beneficial for down-stream abstract visual reasoning
tasks in the few-sample regime.

Chapter 8 provides a summary of our contributions and offers an outlook on
promising directions for future research.

8 1.2 Structure of the Dissertation

Chapter 2

Background

This chapter reviews background material on Machine Learning (ML) and Neural
Networks (NNs) that is relevant to the methods developed in this dissertation.
Regarding ML, most emphasis will be placed on unsupervised learning using sta-
tistical models, while for NNs we limit ourselves to a discussion of basic concepts.
The reader is referred to Bishop [2006]; Bousquet et al. [2011]; Goodfellow et al.
[2016] for a more detailed exposition of these topics. Prior knowledge about
probability theory and statistics is assumed and we recommend Casella and Berger
[2002] for an overview.

2.1 Notation

Throughout this dissertation, we will adopt the following notation. We will write
a variable x as x if it is a scalar, x for (column) vectors, and X for a matrix or
higher-order tensor. Capital letters are used to denote scalar random variables,
e.g. X , while vector-valued or higher-order random variables are written as X .
Regarding the latter, we will clarify if X is a random variable or not if this is can
not be determined from the surrounding context. Individual elements of vector-
valued, or higher-order tensors (or random variables) are accessed via indices
i, j, k. For example, we will write Xi, j to refer to the i, j-th element of a matrix
X . To select the j-th slice, we will write X:, j. In other cases, we will make use of
subscripts to denote separate variables e.g. x1, . . . , xN , which will be made clear
from the surrounding context. The use of the element-wise product (or Hadamard
product) will be indicated using �, otherwise, the standard dot-product or matrix
product is assumed.

We will write X ⇠ pX to denote that X is distributed according to the probability
density (or mass) function pX . The dependency on X is typically clear from the

9

10 2.2 Machine Learning

surrounding context and will normally be omitted. Similarly, depending on
whether X is a discrete or a continuous random variable, we will use pX to either
refer to a probability mass function (pmf) or probability density function (pdf).
We will use the common shorthand p(x) to refer to p(X = x), which is the value
of the pdf or pmf of a particular realization of X under pX . In certain cases, we will
also write p(x) to refer to the function p(·) when this improves readability. The
possible values that a random variable X can take will be denoted with calligraphy
letters, e.g. X .

Often we will assume the existence of a ‘true’ or otherwise optimal value for
a parameter ✓ , which will be denoted with an asterisk ✓ ⇤. The shorthand f✓ is
sometimes used to refer to a function f having parameters ✓ .

In all other circumstances, we will either make use of standard notation or
clarify particular notation in the respective chapters.

2.2 Machine Learning

Machine learning is the field of research dedicated to the study of algorithms and
statistical models that learn from data. At a high level, the ‘machine’ may be given
by an agent, a model, or a function, whose behavior (output) in response to some
input is governed by parameters. Learning then corresponds to the process of
changing these parameters in relation to the observed data to achieve the desired
behavior.

Broadly speaking, ML can be partitioned into supervised learning, unsuper-
vised learning, and reinforcement learning1. The main distinction between su-
pervised and unsupervised learning is due to requiring a data set containing
correct input-output pairs in the supervised case. This makes it possible to apply
supervised ML directly to learn to solve some task of interest, i.e. via classification
(categorical output) or regression (real-valued output). In the unsupervised case,
this is not possible, which typically limits its application to discovering patterns in
the data to form alternative (potentially more effective) representations. On the
other hand, since acquiring supervised data is costly, this alternative way of de-
scribing the input data can have a profound impact on ‘down-stream’ applications
that focus on prediction or analysis.

1For an overview of reinforcement learning, which is concerned with the study of agents that
interact with an environment according to a policy as to maximize a form of reward, we refer the
reader to Kaelbling et al. [1996]; Sutton et al. [1998].

11 2.2 Machine Learning

2.2.1 Statistical Modeling

In the context of unsupervised learning, we will primarily concern ourselves
with statistical models in this work. Let D = {x1, x2, . . . , xN} be a sample drawn
from a sequence of random variables X1, X2, . . . , XN that are independent and
identically distributed (i.i.d.) according to p(· | ✓ ⇤)2. Our goal is to model D with
a parametrized model m that specifies some probability distribution p(· | ✓ , m)
over X based on parameters ✓ 2 ⇥3. The probability distribution p(x | ✓ , m) is
referred to as the likelihood, since it determines the likelihood of observing x
under ✓ . The prior p(✓ | m) encodes our initial beliefs about likely parameter
values before observing the data, which treats ✓ as a random variable.

Bayesian inference suggests a natural approach to unsupervised learning by
computing the posterior distribution using Bayes’s rule, which updates our beliefs
about the parameters upon observing the data:

p(✓ | D, m) =
p(D | ✓ , m)p(✓ | m)

p(D | m) . (2.1)

The posterior distribution p(✓ | D, m) tells us not only about the most likely
parameter value that was used to generate D, but also provides a measure of
uncertainty. The quantity in the denominator of (2.1) is referred to as the model
evidence (or as a marginal likelihood), which here acts as a normalization term
that is independent of ✓ . It can be computed by marginalizing (integrating) the
joint likelihood p(D | ✓ , m)p(✓ | m) over all possible parameter values ⇥. In
order to make predictions about the probability of observing new data (that is
i.i.d. as before) we can compute the posterior predictive:

p(x | D, m) =
Z

⇥

p(x | ✓ , m)p(✓ | D, m)d✓ . (2.2)

The posterior predictive weighs the likelihood of observing x under the current
model using a particular choice of ✓ , by our beliefs about ✓ after observing D as
encoded by the posterior (i.e. following the result of learning).

While making predictions using (2.2) (also known as the fully Bayesian ap-
proach) is advantageous for a number of reasons [Bishop, 2006], it is usually
difficult to compute the exact posterior due to the normalization term in (2.1).
Therefore, a standard technique that we will adopt is to use a point estimate ✓̂ in

2For simplicity we will mostly focus on the univariate case in this section, although it is
straightforward to extend these results to the multivariate setting.

3The dependence on m is normally left implicit whenever possible.

12 2.2 Machine Learning

place of the full posterior, such as the Maximum Likelihood (ML) estimate that is
obtained by maximizing the likelihood function L(✓ | D, m) := p(D | ✓ , m):

✓̂M L := argmax
✓

L(✓ | D, m) = arg max
✓

NY

i=1

p(xi | ✓ , m). (2.3)

The maximum likelihood estimate corresponds to the largest mode of the
posterior when assuming a Uniform prior for ✓ over ⇥. This makes it a natural
choice, although note that normally ✓ is not treated as a random quantity in this
framework. During learning it is often easier to use the (natural) logarithm of
the likelihood to compute ✓̂M L. The product of likelihoods in (2.3) then becomes
a sum, while monotonicity of the logarithm leaves the location of the maximum
unchanged. When using a point estimate, the predictive distribution reduces to
the likelihood of the model at the estimated parameter value.

Let us now briefly consider the following example of computing ✓̂M L for a
Gaussian model, which will allow us to introduce some useful results for later in
this dissertation.

Gaussian Example We assume that D = {x1, x2, . . . , xN} is an i.i.d. sample of
p(· | ✓ ⇤) and use a univariate Gaussian model with mean parameter µ, and
variance �2, having the following probability density function:

N (x | µ,�2) :=
1

�
p

2⇡
exp
ß
�1

2

⇣ x �µ
�

⌘2™
. (2.4)

For simplicity we will treat �2 as a fixed hyperparameter using �2 = 1, which
leaves ✓ = µ. In this case, the likelihood becomes:

L(✓ | D) =
NY

i=1

p(xi | ✓) =
NY

i=1

1p
2⇡

exp
ß
�1

2
(xi � ✓)2
™

=
1

(2⇡)N/2
exp

®
�1

2

NX

i=1

(xi � ✓)2
´

,

(2.5)

where we have left the dependence on the model m implicit.
In order to compute the ML estimate we will make use of (2.3), but then using

the log of the likelihood:

13 2.2 Machine Learning

✓̂M L = argmax
✓

log L(✓ | D)

= argmax
✓
�N

2
log 2⇡� 1

2

NX

i=1

(xi � ✓)2

= argmin
✓

1
2

NX

i=1

(xi � ✓)2

= argmin
✓

1
2

NX

i=1

(xi � x̄)2 +
1
2

NX

i=1

(x̄ � ✓)2
Ç

with x̄ =
1
N

NX

i=1

xi

å

=
1
N

NX

i=1

xi.

(2.6)

In some cases, as we will encounter, it will be more difficult to compute these
estimates analytically. Using gradient-based optimization may then provide a
good alternative. The gradient of the log-likelihood of a univariate Gaussian
model with fixed variance and mean parameter ✓ = µ is given by:

d
d✓

log L(✓ | D) = d
d✓

ñ
�N log�

p
2⇡� 1

2

NX

i=1

Å
xi � ✓
�

ã2ô

= �1
2

NX

i=1

d
d✓

Å
xi � ✓
�

ã2

=
NX

i=1

Å
xi � ✓
�2

ã
.

(2.7)

Notice how this gradient points in the direction of ✓̂M L, which in this case is
given by the sample mean.

Latent Variable Models

The purpose of statistical modeling usually varies between tasks. In some cases the
primary goal of learning is density estimation, i.e. accurately estimating the prob-
ability density function (or pmf in the case of discrete observations) from which
the observed data was generated. In other cases, the emphasis is on uncovering
‘hidden’ latent structure in the data or representation learning. Representations
are alternative ways of describing the data that focus on particular properties,

14 2.2 Machine Learning

which will be of primary interest in this dissertation. The prototypical unsuper-
vised learning techniques to learning representations focus on dimensionality
reduction and clustering, which can be expressed using latent variable models that
additionally include unobserved latent variables.

Consider a latent variable model of the form p(x , z | ✓) = p(x | z,✓)p(z),
where X captures the observed data, Z the unobserved latent variables, and ✓ 2 ⇥
are the parameters as before. In order to use this latent variable model to model
p(· | ✓ ⇤) we need to integrate over all possible values that Z can take:

p(x | ✓) =
Z

Z
p(x , z | ✓)dz =

Z

Z
p(x | z,✓)p(z)dz. (2.8)

The assumptions about the interaction between Z and X dictate the structure of
the model, and thereby of the learned representation. For example, if we assume
that Z is a K-dimensional binary random variable that can take on K possible
one-hot encoded states, and that the conditional likelihood p(x | Zk = 1,✓k) is
Gaussian, then we recover the well-known Gaussian Mixture Model (GMM):

p(x | ✓) =
KX

k=1

N (x | Zk = 1,µk,�2
k)p(Zk = 1 | ⇡k). (2.9)

In this model, we have K sets of parameters ✓ = {(µ,�2)1, . . . , (µ,�2)K} for the
conditional likelihood and the latent variable Z determines which were used to
generate x . The prior p(z | ⇡), having parameters ⇡, encodes our initial beliefs
about the proportion of data assigned to each component. In order to perform
inference about z we can compute the posterior p(z | x ,✓ ,⇡), which tells us
which of the Gaussian components (clusters) x is expected to belong to. Together
with the learned cluster centers µ1 . . .µK and variances �2

1 . . .�2
K this provides an

alternative description for x . Indeed, we will explore an adaptation of standard
GMMs for representation learning in Chapter 4.

Another relevant model that we will make use of in this dissertation is based
on the linear Gaussian model. In this case, we assume that Z is Gaussian and that
the conditional likelihood p(x | z,✓) is also Gaussian, but that its mean linearly
depends on z through the matrix W of parameters:

p(x | ✓) =
Z

Z
N (x | W z,⌃)N (z | µ

z

,⌃z)dz. (2.10)

where ✓ = (W ,⌃) and ⇡ = (µ
z

,⌃z). If x is high-dimensional and z of lower
dimension, then we can think of z as being a compressed representation of x

that can be inferred (after learning ✓) by computing p(z | x ,✓ ,⇡). Several other

15 2.2 Machine Learning

models used for representation learning, such as Factor Analysis and Probabilistic
PCA, have a similar functional form [Roweis and Ghahramani, 1999].

Expectation Maximization In principle, we can make use of the same techniques
from Bayesian inference to perform unsupervised learning and make predictions
when using latent variable models. However, unlike before, log p(x | ✓) now
includes an integration (or summation) term, which complicates maximization
with respect to ✓ .

An alternative approach to Maximum Likelihood Estimation (MLE) for latent
variable models (that is typically easier to work with) can be obtained by formu-
lating a lower-bound based on some auxiliary distribution q:4

log p(x | ✓) = log

Z

Z
p(x , z | ✓)dz

= log

Z

Z
q(z)

p(x , z | ✓)
q(z)

dz

�
Z

Z
q(z) log

p(x , z | ✓)
q(z)

dz.

(2.11)

where the final expression is obtained by applying Jensen’s inequality. This enables
us to increase the data log-likelihood log p(x | ✓) and fit the model by maximizing
(2.11) with respect to ✓ .

In order to determine how to choose q, we can make the following observation:

q⇤ = arg max
q(z)

Z

Z
q(z) log

p(x , z | ✓)
q(z)

dz
�

= arg max
q(z)

Z

Z
q(z) log p(x | ✓) + q(z) log

p(z | x ,✓)
q(z)

dz
�

= arg max
q(z)

Z

Z
q(z) log

p(z | x ,✓)
q(z)

dz
�

= arg min
q(z)

DK L[q(z) || p(z | x ,✓)] = p(z | x ,✓).

(2.12)

where DK L[q || p] =
R
Z q(z) log q(z)/p(z | x ,✓)dz is the KL divergence, which

is minimized if and only if both distributions are identical. Hence, (2.11) is
4The conceptually simpler alternative of using Monte Carlo to approximate the expecta-

tion Ep(z)[p(x | z,✓)] with a sample average is extremely sample inefficient when x is high-
dimensional [Doersch, 2016].

16 2.2 Machine Learning

maximized wrt. q when choosing q(z) = p(z | x ,✓). In fact, it is easy to see that
in this case the lower-bound is tight:

log p(x | ✓)�
Z

Z
q(z) log

p(x , z | ✓)
q(z)

dz

=
Z

Z
p(z | x ,✓) log p(x | ✓)dz = log p(x | ✓).

(2.13)

Together, these results suggest a simple iterative algorithm to maximizing
log p(D | ✓) wrt. ✓ , which is known as the Expectation Maximization algorithm
[Dempster et al., 1977]. In each iteration, we first compute the E-step for each
observation xi 2 D based on the previous parameter estimate ✓ old (here we
assume a single i.i.d. latent variable Zi for each observation), which tightens the
lower-bound in (2.11) while holding the parameters fixed:

qi = arg max
qi(zi)

ñZ

Zi

qi(zi) log
p(xi, zi | ✓ old)

qi(zi)
dzi

ô
= p(zi | xi,✓

old). (2.14)

Next, we compute the M-step, which produces a new parameter estimate by
maximizing (2.11) wrt. ✓ across the data set:

✓ = argmax
✓

ñX

i

Z

Zi

qi(zi) log
p(xi, zi | ✓)

q(zi)
dzi

ô

= argmax
✓

ñX

i

Z

Zi

p(zi | xi,✓
old) log p(xi, zi | ✓)dzi

ô
.

(2.15)

By iterating this EM algorithm until convergence, we are guaranteed to find a
local optimum of the data log-likelihood [Wu, 1983]. However, it can sometimes
still be difficult to analytically compute (2.15). In this case, we can use a gradient-
based approach (similar to before), where we update ✓ in the direction of steepest
ascent by differentiating (2.15) (optionally using a Monte Carlo approximation
of the expectation). This procedure, which we will make use of in Chapter 4, is
sometimes referred to as generalized EM.

Variational Inference

When using latent variable models for representation learning, we will some-
times make us of Variational Inference (VI) [Wainwright and Jordan, 2008] (see

17 2.2 Machine Learning

Blei et al. [2017]; Zhang et al. [2018a] for more recent overviews). It provides a
framework for approximating the posterior distribution over a set of unobserved
latent variables p(z | x ,✓) by an approximate ‘variational’ distribution q. In this
case, inference can be treated as an optimization problem where the goal is to find
a good approximate distribution q from a family of distributions Q over Z that
minimizes some divergence between itself and the true posterior. The standard
choice of divergence is the reverse KL-divergence, which yields the following
optimization problem:

q⇤ = argmin
q2Q

DK L[q(z) || p(z | x ,✓)]. (2.16)

The accuracy of the approximation is determined both by the flexibility of the
distributions in Q, and by the ability to perform the optimization adequately.
Although it is possible to use other divergences to perform variational inference
(including the forward KL [Minka, 2001]), we will make use of the reverse KL,
which has a closer resemblance to EM, as we will see next.

Note that it is not possible to optimize (2.16) directly due to its dependence
on the marginal likelihood p(x | ✓) (here due to marginalizing Z), which is
usually intractable to compute and the main reason that we can not use the exact
posterior in the first place. Indeed, we have that:

DK L[q(z) || p(z | x ,✓)] =
Z

Z
q(z) log q(z)� q(z) log p(x , z | ✓)dz + log p(x | ✓)

= �LELBO(q,✓) + log p(x | ✓),
(2.17)

where LELBO is known as the Evidence Lower Bound (ELBO), defined as:

LELBO(q,✓) :=
Z

Z
q(z) log p(x , z | ✓)� q(z) log q(z)dz

=
Z

Z
q(z) log p(x | z,✓)dz � DK L[q(z) || p(z)].

(2.18)

Because log p(x | ✓) acts as a constant in this optimization problem, we can now
optimize (2.16) by maximizing the ELBO wrt. q. Moreover, by moving LELBO(q,✓)
to the left-hand side in (2.17), it can also be seen how the ELBO forms a valid
lower-bound to log p(x | ✓) (hence the name) as the KL-divergence is always
positive.

18 2.2 Machine Learning

Indeed, we note how the ELBO closely relates to our previous result for EM in
(2.11), which was obtained by attempting to estimate the parameters of a latent
variable model, i.e. to increase the marginal log-likelihood log p(x | ✓) wrt. ✓ .
Meanwhile, the ELBO was obtained by attempting to find an accurate variational
approximation to the posterior p(z | x ,✓), i.e. to minimize DK L[q(z) || p(z | x ,✓)]
wrt. q. It turns out that these different optimization problems can be related
through (2.17) and give rise to a similar objective.

It is straightforward to make use of this connection. In the E-step (2.14) of
EM we found that we could tighten the lower-bound on log p(x | ✓) by choosing
q⇤ = p(z | x ,✓). Hence, if this is not possible, for example, because it is intractable
to compute the exact posterior under the current model, then it can now be seen
how we can use a variational approximation to the posterior by using the ELBO to
optimize q. This gives rise to the Variational Expectation Maximization algorithm,
which uses (2.18) to minimize the variational objective in (2.16) in the E-step5.

Choosing a flexible family of variational distributions Q that also yields
tractable optimization of the ELBO may still require careful inspection of the
model. An alternative approach is to use “black-box” variational inference using
a parametrized family of distributions Q = {q(· | �) : � 2 ⇤} [Ranganath et al.,
2014]. In this case, we can optimize � by treating the integral in (2.18) as an
expectation and use Monte Carlo approximation to compute stochastic gradients.
Unbiased low variance gradients can often be obtained for continuous latent
variables by using the ‘reparametrization trick’ [Kingma and Welling, 2014].

In the standard VI framework, the optimization problem in (2.16) is solved
for each sample individually and therefore qi need not functionally depend on
the actual observation. On the other hand, this makes plain VI computationally
expensive for learning on large data sets. An alternative approach is to use an
inference model f� : x 7! � (e.g. a neural network having weights�) that amortizes
variational inference over an entire data set [Gershman and Goodman, 2014].
The inference model outputs variational parameters �i for a given observation xi

to implement q(· | xi,�i). The parameters � of the model are trained to optimize
(2.16) for all data points simultaneously.

Variational Auto Encoder A well-known framework, which we will make use
of in Chapter 7 for representation learning, is that of Variational Auto-Encoders
(VAEs) [Kingma and Welling, 2014]. VAEs employ amortized variational inference

5Note that the use of VI is not limited to finding ML estimates in latent variable models as
is EM. Rather, VI can be used to perform learning in fully Bayesian models, where the model
parameters are themselves treated as latent variables that are optimized via (2.16).

19 2.2 Machine Learning

using inference models to learn a statistical latent variable model of the observed
data. The model is similar to the Linear Gaussian model in that it assumes a con-
tinuous vector-valued random variable Zi for each observation and a conditional
likelihood (often Gaussian) whose parameters depend on zi. However, unlike
in the linear case, it uses a neural network f✓ to implement this mapping. This
makes exact posterior inference intractable and amortized variational inference
is used to approximate the posterior. The inference model in this case is also
implemented by a neural network f�, which allows (2.18) to be interpreted as a
regularized auto-encoding objective: an observation is ‘encoded’ by the inference
model to obtain q(zi | f�(x i)) (from which we can sample zi) and then ‘decoded’
by the model to obtain p(x i | f✓ (zi)) to evaluate the first term. The KL-term then
acts as the regularizer. Typically the dependence on the neural network is left
implicit and we will write q�(zi | x i) and p✓ (x i | zi) in this case as shorthand.

2.2.2 Classification

In other parts of this dissertation we will make use of supervised learning for
classification tasks [Bishop, 2006]. We will also adopt a statistical approach in
this case, and assume that D = {(x1, y1), (x2, y2), . . . , (xN , yN)} is a sample drawn
from a sequence of random variables (X1, Y1), (X2, Y2), . . . , (XN , YN) that are i.i.d.
according to p(x , y | ✓ ⇤). Since we are concerned with classification, the Yi are
discrete random variables that each take on one of {0, 1, . . . , C � 1} values (class
labels). Our goal will be to learn a function h : X 7! Y (the classifier) which
assigns the correct label y to any (new) observation x that is drawn from the
corresponding conditional distribution.

In order to decide about h we introduce a loss function L : Y ⇥ Y 7! R,
which measures how different the prediction ŷi is from the true class yi for an
observation xi. Next, we let the risk associated with h be given by:

R(h) =
Z

X

Z

Y
L(ŷ , y)p(x , y)d yd x . (2.19)

This then gives rise to a natural optimization objective for learning h 2 H ,
i.e. find the h that minimizes the risk. In most problems p(x , y) is not available
and we will resort to minimizing the empirical risk based on D (i.e. the training
data) in stead:

Remp(h) =
1
N

NX

i=1

L(ŷi, yi). (2.20)

20 2.3 Neural Networks

Notice how, in this case of Empirical Risk Minimization (ERM), we are prone
to an issue known as overfitting. Depending on the function classH , it may be
possible to minimize Remp(h) in a way that does not generalize to new instances
drawn from the same distribution. Similarly, it may occur that the sample D that
is available to us was obtained with low probability (i.e. it is not representative)
and can mislead the classifier. The framework of Probably Approximately Correct
(PAC) learning is concerned with providing guarantees about generalization for a
particular hypothesis class in these situations, and we refer the reader to Shalev-
Shwartz and Ben-David [2014] for an overview. In this work, we will protect
against overfitting by measuring the capacity to generalize explicitly using a
separate validation data set, which is standard practice.

There exist multiple approaches to minimizing Remp [Bishop, 2006]. One
approach is to learn a discriminant function that directly maps inputs to outputs.
Another common approach, which we will make use of in this work is to learn
a discriminative model that models the posterior class probabilities p(y | x ,✓)
directly (the class label with the highest probability is chosen as the output).
In this case, we can choose L as the negative log-likelihood and empirical risk
minimization becomes equivalent to maximum likelihood estimation of ✓ . As
we will see, it is natural to train neural networks in this way, i.e. when treating
their output for a given input x as a probability distribution over Y . Finally,
one can attempt to model the joint p(x , y | ✓) in its entirety and use Bayes’ rule
to derive the posterior class probabilities, which will additionally incorporate
uncertainty about ✓ and help against overfitting. However, similar to before, the
issue of obtaining the marginal likelihood prevents us from using this approach
in practice.

2.3 Neural Networks

In this disseration, we will focus heavily on machine learning using artificial
Neural Networks (NNs). Generally speaking, NNs consist of simple connected
nodes (neurons) that each compute an activation. Inputs may be received directly
from the environment (e.g. sensory inputs) or indirectly in the form of the outputs
(activations) of other nodes in the network. A real-valued multiplicative weight
is associated with each connection that, together with its input, determines the
activation of each neuron. The activation of a subset of the neurons is treated as
the output of the network, which can be adjusted by changing the neural network
weights. Hence, it is useful to think of neural networks as simply implementing a
mapping from input to output, based on the value of its weights.

21 2.3 Neural Networks

In modern neural networks [Schmidhuber, 2015b], neurons are organized in
layers, such that each node in a layer is only connected to nodes in the previous
layer. Deep neural networks consist of many layers of non-linear transformations
and their ‘depth’ is determined by the number of consecutive layers that are used6.
Hence, deep neural networks can be viewed as successively transforming the
input data to produce the desired output. In this case, the activations of the nodes
in each intermediate (or ‘hidden’) layer provide an alternative representation
of the input data, where each successive transformation contributes towards
a representation that is better suited to produce the desired output [Lee et al.,
2009]. This has recently allowed deep neural networks to overcome the limitations
of manual feature engineering in several application domains (e.g. Fernández
et al. [2007]; Ciresan et al. [2011]; Hinton et al. [2012]; Ciresan et al. [2012];
Krizhevsky et al. [2012]; He et al. [2017]). More important in the context of this
work, is that (deep) neural networks learn representations that are also useful for
solving other (related) tasks (e.g. Rumelhart et al. [1985]; Schmidhuber [1991a];
Zemel and Hinton [1994]; Bengio et al. [2013]; Zeiler and Fergus [2014]). This
allows us to apply them for representation learning purposes directly, which will
be our main use case in this work.

2.3.1 Architectures

Many different types of neural network architectures exist. Early approaches
were often designed to function as (somewhat) plausible computational models
of the human brain and include a number of specific components [Rosenblatt,
1958; Fukushima, 1980]. In contrast, the more modern architectures that we
will consider mostly differ in how they combine a number of standard layers that
essentially function as composable building blocks. These have little resemblance
to how the human brain processes information, although there is evidence that
in some cases similar activation patterns can be obtained during information
processing [Yamins et al., 2013; Nayebi et al., 2018].

At a fundamental level, one can distinguish between feedforward neural net-
works and recurrent neural networks. In feedforward neural networks the first
layer receives its input directly from the environment, and the activations of the
neurons in the final layer serve as the output of the network. Recurrent Neural
Networks (RNNs) additionally incorporate circular dependencies between nodes
that are resolved through time. Depending on the choice of architecture and

6Recently, this has popularized the term deep learning to refer to machine learning using deep
neural networks.

22 2.3 Neural Networks

availability of data, feedforward neural networks are in principle able to learn
any required transformation of the input data [Hornik, 1991; Lu et al., 2017],
while an RNN can in principle simulate any Turing machine [Siegelmann and
Sontag, 1991].

In the following, we will briefly introduce several standard neural network
architectures that we will make use of throughout this dissertation. Variations on
these architectures can be obtained by mixing and combining different layer types.
We refer the reader to Goodfellow et al. [2016] for a more detailed overview.

Multi-Layer Perceptrons

Fully-connected layers are the basic building block of many modern neural net-
work architectures. In a fully-connected layer, every unit in a layer receives as
input the output of every unit in the previous layer. A well-known architecture
that consists of L ‘hidden’ layers and an output layer that are fully-connected is
the Multi-Layer Perceptron (MLP). In an MLP the j th unit in layer l computes:

z

(l)
j =

N�1X

i=0

W

(l)
i, j · a(l�1)

i + b

(l)
j , (2.21)

a

(l)
j = �(z

(l)
j), (2.22)

where W

(l) 2 RN⇥M contains the weights on the edges from units i in layer l � 1
to units j in layer l, and b

(l) 2 RM contains the bias for units j in layer l. Here
a

(l�1) 2 RN is the output of the previous layer l � 1, where a

(0) = x acts as the
input layer, and ŷ = a

(L+1) as the output. Together, the weights and biases of
each unit in each layer form the parameters of the MLP.

Activation Functions The quantities z

(l)
j and a

(l)
j are sometimes referred to as

the pre-activation and the activation of a unit. The latter is obtained by applying an
activation function � to each unit. Standard activation functions we will make use
of include the Sigmoid: 1/(1� ez), the Hyperbolic Tangent: tanh(z), the Rectified
Linear Unit (ReLU): max(0, z) [von der Malsburg, 1973], and variations on the
ReLU, such as the Leaky ReLU [Maas et al., 2013] and the Exponential Linear Unit
(ELU) [Clevert et al., 2015].

It is important to note that when using a linear activation function, i.e. �(z) =
z, the discriminative power of an MLP with multiple hidden layers is equivalent
to that of an MLP with a single hidden layer7. Hence, � usually takes the form of
a non-linearity in order to make effective use of the depth of the network.

7There may still be an advantage to using multiple layers in the linear case due to possible

23 2.3 Neural Networks

Output Layers The dimensionality of the output layer and its activation function
typically depends on the task itself, especially since we will often treat neural
network outputs as implementing probability distributions. In a binary classifica-
tion setting, where inputs x are said to either belong to class Y = 0 or Y = 1, the
output layer consists of a fully-connected layer with a single unit and a Sigmoid
activation function. The output of the network ŷ can then be interpreted as the
probability that the input belongs to the first class:

p(Y = 0 | x) = ŷ and p(Y = 1 | x) = 1� ŷ . (2.23)

Alternatively, this can be viewed as the network f✓ parametrizing a Bernoulli
random variable Y ⇠ Bernoulli(p = f✓ (x)). Notice also the similarity between an
MLP that computes the output for a given input in this way, and the well-known
logistic regression model [Bishop, 2006].

In a multi-class classification setting whereY = {0, 1, . . . , C�1}, which we will
explore in Chapter 7, we will let the network implement a categorical distribution
in a similar fashion. In this case, the activation function needs to consider the
pre-activation of all output neurons simultaneously in order to obtain a valid
probability mass function. More specifically, for a classification problem having C
classes, the output layer consists of a (fully-connected) layer with C units and the
following softmax activation function [Bridle, 1990]:

p(Y = j | x) = softmax(z j) =
ez j

PC�1
j0=0 ez j0

. (2.24)

In this case, the possible values Y can take are essentially one-hot encoded by the
output neurons.

In other settings, like when using a neural network to implement a conditional
Gaussian distributionN (x | f✓ (z)), we will take a similar approach. We will let the
output of the neural network correspond to the parameters of the corresponding
distribution (in this case µ,�2), which will then dictate the choice of activation
function or output dimensionality.

Convolutional Neural Networks

When modeling images we will often make use of Convolutional Neural Networks
(CNNs) [Fukushima, 1979; Waibel et al., 1989; LeCun et al., 1989, 1998]. The
basic building block of a CNN is the convolutional layer whose activation A

(l) 2
differences in error back-propagation and the resulting credit assignment [Baldi and Hornik,
1995].

24 2.3 Neural Networks

Rhl⇥wl⇥cl is given by a three-dimensional volume. Here hl and wl are the spatial
dimensions whose size is derived from the corresponding spatial dimensions of
the input image, and cl is the feature dimension.

The computations of a convolutional layer are best described at the level of
two-dimensional activation maps A

(l)
c 2 Rhl⇥wl . Each map contains the activations

of the neurons that are co-located in the feature dimension. Neurons that belong
to this same feature map share their weights, hence the naming of this dimension
as the feature dimension. The activation of a neuron at spatial location (i, j) in A

(l)
k

is computed as a weighted sum of the activations of the neurons in the previous
layer at the same spatial locations (i, j) and the surrounding neighborhood. In
other words, the activations in feature map k are obtained by first convolving a
kernel W

(l)
k 2 Rkh,kw,cl�1 with A

(l�1) across the spatial dimensions, followed by a
sum across the feature dimension (and adding a bias term for each feature). Here
kh, kw are the width and height of the kernel (hyperparameters) that determine
the size of the neighborhood, and cl�1 is the number of feature maps in the
previous layer.

It is desirable in a CNN to gradually decrease the size of the spatial dimensions
with each consecutive layer as a means of increasing their receptive field and
encourage more global (hierarchical) features to be learned [Fukushima, 1979;
LeCun et al., 1989]. The approach that we will make use of in this case is to use
strided convolutions, where the kernel is applied only at regular intervals along
the spatial dimensions.

Note that it is trivial to combine convolutional layers with fully-connected
layers via reshaping. In that sense, convolutional layers are also compatible with
the fully-connected output layers discussed previously. Similarly, a convolutional
layer may itself act as the output layer by appropriately choosing the output
dimensionality and activation function as before.

Weight-sharing across the spatial dimensions as encountered in CNNs provides
an inductive bias that is particularly helpful when processing images. In particular,
this spatial invariance in lower layers makes it easy to learn features that capture
local image statistics, such as edges or other local patterns, that can be re-used
across a variety of image locations [Lee et al., 2009; Zeiler and Fergus, 2014].
Meanwhile, higher layers that act on the image more globally (i.e. due to having
a larger receptive field) are able to learn more specialized (hierarchical) features,
such as a ‘face feature’ [Lee et al., 2009], that use low-level features as building
blocks.

25 2.3 Neural Networks

Recurrent Neural Networks

The neural network architectures discussed previously only propagate information
forward. A Recurrent Neural Network (RNN) also incorporates cyclic dependen-
cies that are resolved through time [McCulloch and Pitts, 1943; Kleene, 1956;
Werbos, 1988; Hochreiter and Schmidhuber, 1997; Gers et al., 2000; Chung et al.,
2014]. From this perspective, an RNN can also be viewed as a dynamical system
whose state evolves over time and which can function as a type of memory when
processing sequential inputs [Schmidhuber, 1992b; Hochreiter and Schmidhuber,
1997].

Although an RNN can incorporate a number of fully-connected, convolutional,
or other layers, it includes at least one recurrent layer. The most basic RNN
consists of a single fully-connected recurrent layer that computes:

z j[t] =
N�1X

i=0

Wi, j · x i[t] +
M�1X

i=0

Ri, j · a j[t � 1] + b j, (2.25)

a j[t] = �(z j), (2.26)

where W 2 RN⇥M contains the weights on the edges from units i in the input
layer to the hidden units j, R 2 RM⇥M contains the weights on the edges from
the hidden units i at time-step t � 1 to hidden units j at time-step t, and b 2 RM

contains the bias for the hidden units j. Here x [t] 2 RN is the input (layer),
z[t] 2 RM the pre-activations, and a[t] 2 RM the activations at timestep t. The
output of the RNN at timestep t are given by the activations a[t], although more
commonly a fully-connected output layer is used to decouple the dimensionality
of the hidden state (the memory) from the task under consideration.

The weights of the RNN are shared across time, which is an architectural
inductive bias that simplifies learning solutions that are invariant across time.
Moreover, this makes it possible to apply and train RNNs on sequences of varying
time-length. A common choice of activation function is the Sigmoid, which
squashes the pre-activation to [0, 1] and prevents the activations from ‘exploding’
when increasing the sequence length.

2.3.2 Learning

In order to train neural networks, we will make use of a loss function L(✓ ,D) that
relates the neural network weights and the observed data. The goal of learning
is then to find the neural network weights ✓ that minimizes L(✓ ,D). Due to
the non-linearity of neural networks, it is usually not possible to solve for ✓

26 2.3 Neural Networks

analytically, which leaves gradient-based optimization or search as alternatives.
If L(✓ ,D) is differentiable with respect to ✓ it is often more efficient to train a
neural network using gradients, which is the approach that we will adopt in this
work.

In order to derive a suitable loss function, we will normally treat neural
networks as part of probabilistic models and train their weights via gradient-
based maximum likelihood estimation. In the unsupervised case this means
L(✓ ,D) = � log p(D | m,✓), where the model m is (based on) the neural network.
Analogously, in the supervised case we will have L(✓ ,D) = � log p(Dy | Dx , m,✓).
Depending on the exact model implemented by the neural network, e.g. a Gaus-
sian, or a Categorical distribution, a precise functional form can be derived.

In certain cases, we will additionally incorporate some form of regularization.
Standard approaches to regularization discourage a NN to learn a solution that is
complex, based on some a priori definition of complexity (e.g. a lack of sparsity)
that relates to generalization [Krogh and Hertz, 1992; Srivastava et al., 2014].
For other optimization-based regularization techniques that we will make use of
it is less clear how the structure they impose relates to generalization and their
utility is verified empirically [Ioffe and Szegedy, 2015; Ba et al., 2016b].

Throughout this work, we will split the available data in separate training,
validation, and test sets to protect against overfitting. The training set will be used
to train the network and normally contains the largest fraction of the available
data. The validation set contains a small fraction of the data and is used to
evaluate a trained model during the development stage (i.e. during architectural
design, or hyperparameter tuning). To report the final results, we will evaluate
trained models on the test set.

Backpropagation

To compute gradients for neural network weights, we will make use of the back-
propagation algorithm [Linnainmaa, 1970; Werbos, 1982]. In this case, gradients
are computed by proceeding backward through the network, which is efficient
due to the recursive application of the chain-rule. In the following, we will briefly
discuss backpropagation for fully-connected feedforward networks and RNNs. A
similar derivation follows for other layer types, such as convolutional layers, and
we refer to Goodfellow et al. [2016] for a more detailed overview.

Feedforward Networks For a fully-connected feedforward neural network, back-
propagation proceeds as follows. First, let us define the error of neuron i seperately

27 2.3 Neural Networks

for each datapoint in D as:8

�(l)i :=
@ L(✓ ,D)
@ z

(l)
i

. (2.27)

Although this term is easy to compute via the chain rule for neurons in the last
layer, it is more difficult to compute for lower layers. In particular, there exist
many different ways (involving different ‘credit assignment paths’ [Schmidhuber,
2015b] through the network) in which a neuron at a lower level can influence the
neurons at the higher levels, which all must be accounted for. This is where back-
propagation comes in, namely through computing �(l)i recursively via repeated
application of the chain-rule for intermediate layers:

�(l)i =
@ a

(l)
i

@ z

(l)
i

@ L(✓ ,D)
@ a

(l)
i

= �0(z(l)i)
N�1X

j=0

@ L(✓ ,D)
@ z

(l+1)
j

@ z

(l+1)
j

@ a

(l)
i

= �0(z(l)i)
N�1X

j=0

�(l+1)
j ·W (l+1)

i, j .

(2.28)

Notice how, when proceeding backwards through the network to compute
(2.28) starting from �(L+1)

i (which can easily be computed for the output units,
e.g. as in (2.7)) we are able to compute �(l)j for all other layers efficiently. In this
case, backpropagation requires only a single computation for each neuron when
additionally storing the pre-activations z that were computed in the ‘forward
pass’ (i.e. when computing the output of the network) in memory. Once we have
obtained the errors for each neuron it is straightforward to compute the partial
derivatives:

@ L(✓ ,D)
@W

(l)
i, j

= �(l)j · a(l�1)
i and

@ L(✓ ,D)
@ b

(l)
j

= �(l)j . (2.29)

Recurrent Neural Networks The backpropagation algorithm can be extended
to efficiently compute gradients for RNNs, although in this case, we need to
consider credit assignment paths that flow both through depth and through time.

8Since D is an i.i.d. sample, p(D | m,✓) factorizes and log p(D | m,✓) becomes a sum, such
that gradients can be computed for each individual datapoint separately.

28 2.3 Neural Networks

The Backpropagation Through Time (BPTT) algorithm [Werbos, 1988; Williams,
1989] resolves this issue by essentially ‘unrolling’ the computational graph of an
RNN for a fixed number of time steps. Like that, it can be treated similar to a
feedforward network of depth T, but that receives an additional input at each
‘layer’.

Similar to backpropagation, BPTT proceeds backwards in depth (and in time)
to compute errors �(l)i [t] from which one can efficiently compute gradients:

�(l)i [t] = �
0(z(l)i [t])

ñ
N�1X

j=0

�(l+1)
j [t] ·W (l+1)

i, j +
M�1X

j=0

�(l)j [t + 1] ·R(l)i, j

ô
. (2.30)

where �(l)i [t] := @ L(✓ ,D)/@ z

(l)
i [t]. Notice the similarity to (2.28), where the

main difference in (2.30) is due to the addition of a second term that accounts for
the temporal dependencies in the recurrent case. Finally, we note how additional
care must be taken when computing the partial derivatives in this case, since
weights are shared across time.

Optimization

The gradients obtained previously can be used to improve the current parameter
estimate (weights) in several ways. A straightforward choice is to make use of
gradient descent, which is a simple iterative optimization algorithm that updates
the parameters in the direction of the gradient:

✓ new = ✓ old �↵@ L(✓ old,D)
@ ✓ old

. (2.31)

The step-size ↵, also known as the learning rate, determines the magnitude of
the increment. Rather than using the full gradient, computed across the entire
data set, we will normally make use of stochastic gradients that are obtained by
sampling a batch of data fromD to compute the gradient. The resulting Stochastic
Gradient Descent (SGD) algorithm is known to find good solutions of ✓ when
using deep neural networks, even though the loss landscape is typically highly
non-convex.

An obvious direction to improve upon SGD is by computing second-order
gradients, however, the incurred variance usually outweighs performance, espe-
cially in high-dimensional settings. A more common approach is to incorporate
some form of momentum to accelerate convergence speed [Polyak, 1964]. In our
work, we will often make use of ADAM [Kingma and Ba, 2015], which computes

29 2.3 Neural Networks

individual adaptive learning rates for different weights based on estimates of the
first and second moments of the gradients.

30 2.3 Neural Networks

Chapter 3

Challenges & Related Work

The techniques discussed in Chapter 2 provide a method for unsupervised rep-
resentation learning using neural networks. By using neural networks to define
statistical models, it becomes natural to optimize their weights via maximum
likelihood estimation to model the observed data and learn representations. This
combination of statistical modeling and deep neural networks is particularly fruit-
ful for learning representations of high-dimensional input data, such as images,
that are otherwise difficult to model using a simpler choice of (latent variable)
model.

Previously, we have discussed how the utility of representations learned in this
way is contingent on having a suitable inductive bias [Mitchell, 1980]. In deep
learning, the inductive bias is determined by a combination of factors, including
the choice of neural network architecture (i.e. the function class) and the learning
objective. Incorporating the right inductive bias for representation learning
is challenging since it requires considering what properties make a particular
representational format desirable and how they can be translated into a particular
choice of neural network architecture or learning objective. In the unsupervised
case, one must additionally ensure that the learned representations are sufficiently
general and thereby useful for solving a variety of potential ‘down-steam’ tasks.

In this chapter, we will discuss these challenges in detail and review related
work. Since the focus of this dissertation is on representation learning for visual
reasoning tasks, which was motivated in Chapter 1, we will center our discussion
around object representations and the notion of disentanglement.

Sections 3.1 to 3.4 of this chapter are based on Greff et al. [2020], which was first presented
as a workshop paper at ICML 2019 [van Steenkiste⇤ and Greff⇤ et al., 2019]. These works were
done in close collaboration and both authors made substantial contributions.

31

32

Object Representations act as basic ‘building blocks’ for neural processing to
behave symbolically. Like symbols, they are self-contained and separate from
one another such that they can be related and assembled into structures without
losing their integrity. But unlike symbols, they retain the advantages of distributed
feature-based internal structure of connectionist representations. Object repre-
sentations are motivated by the fact that human perception is structured around
objects [Spelke and Kinzler, 2007], which serve as compositional building blocks
for many aspects of higher-level cognition, including reasoning.

Evidence indicates that existing neural networks lack a suitable inductive bias
to acquire the ability to process information symbolically in this way (e.g. [Lake
and Baroni, 2018; Santoro et al., 2018b]). We propose that this is because of the
binding problem: The inability to dynamically and flexibly bind information that
is distributed throughout the network. The binding problem affects their ability
to form meaningful entities from unstructured sensory inputs (segregation), to
maintain this separation of information at a representational level (representation),
and to use these entities to construct new inferences, predictions, and behaviors
(composition).

The primary contribution of Sections 3.1 to 3.4 in this chapter is to introduce
the binding problem in neural networks and work towards a solution. We will
identify several important challenges and requirements that must be addressed
(some of which we will address in later chapters) and review relevant mechanisms
from the machine learning literature. Together, these provide a starting point
for identifying the right inductive bias to enable neural networks to incorporate
object representations and generalize more systematically.

Representations that are Disentangled adopt a particular representational for-
mat where there is a local correspondence between informative ‘factors of vari-
ation’ of the input and the activation of (individual) neurons at a representa-
tional level. Disentangled representations exploit the insight that complex high-
dimensional data, such as the visual appearance of an object, can be compactly
described using a number of informative features that are general and that focus
on separate properties. A representational format that separates information
about factors of variation is here viewed as complementary to incorporating object
representations in this regard, and is expected to offer additional benefits in terms
of sample efficiency and generalization to unknown feature combinations. In
Section 3.5, we will review the challenge of learning representations that are
disentangled and include a brief overview of existing approaches.

33 3.1 The Binding Problem

3.1 The Binding Problem

We begin our discussion of object representations by reviewing the importance
of symbols as units of computation and highlight several symptoms that point
to the lack of emergent symbolic processing in existing neural networks. We
argue that this is a major obstacle for achieving human-level generalization and
posit that the binding problem in neural networks is the underlying cause of
this weakness. This section serves as an introduction of the binding problem
and provides the necessary context for the subsequent in-depth discussion of its
aspects in Sections 3.2 to 3.4.

3.1.1 Importance of Symbols

Human capacity to comprehend reaches far beyond their direct experiences.
We can reason causally about unfamiliar scenes, understand novel sentences
with ease, and use models and analogies to make predictions about entities far
outside the scope of everyday reality, like atoms, and galaxies. This seemingly
infinite expressiveness and flexibility of human cognition have long fascinated
philosophers, psychologists, and AI researchers alike. The best explanation for this
remarkable cognitive capacity revolves around symbolic thought: the ability to
form, manipulate, and relate mental entities that can be processed like symbols. By
decomposing the world in terms of abstract and reusable ‘building blocks’, humans
are able to understand novel contexts in terms of known concepts, and thereby
leverage their existing knowledge in nearly infinite ways. This compositionality
underlies many high-level cognitive abilities such as language, causal reasoning,
mathematics, planning, analogical thinking, etc.

Human understanding of the world in terms of objects develops at an early
age [Spelke and Kinzler, 2007] and infants as young as five months old seem to
understand that objects continue to exist in the absence of visual stimuli (object
permanence) [Baillargeon et al., 1985]. Arguably, this decoupling of mental
representation from direct perception is the first step towards a compositional
description of the world in terms of more abstract entities. By the age of eighteen
months, young children have acquired the ability to use gestures symbolically to
refer to objects or events [Acredolo and Goodwyn, 1988]. This ability to relate
sensory entities is then key to the subsequent development of language. As the
child grows up, entities become increasingly more general and start to include
categories, concepts, events, behaviors, and other abstractions, together with a
growing number of universal relations such as “same”, “greater than”, “causes”,
etc. This growing set of composable building blocks yields an increasingly more

34 3.1 The Binding Problem

powerful toolkit for constructing structured mental models of the world [Johnson-
Laird, 2010].

The underlying compositionality of such symbols is equally potent for AI, and
numerous methods that model intelligence as a symbol manipulation process
have been explored. Early examples included tree-search over abstract state
spaces (e.g. General Problem Solver [Newell et al., 1959]) for theorem proving,
or chess [Campbell et al., 2002]; Expert systems that made use of decision trees to
perform narrow problem solving for hardware design [Sollow, 1987] and medical
diagnosis [Shortliffe et al., 1975]; Natural language parsers that used a dictionary
and a fixed set of grammatical rules to interpret written English; And knowledge
bases such as semantic networks (networks of concepts and relations) that could
be used to answer basic questions [Weizenbaum, 1966], solve basic algebra word
problems [Bobrow, 1964], or control simple virtual block worlds [Winograd,
1971]. All of these examples of symbolic AI relied on manually designed symbols
and rules of manipulation, which allowed them to generalize in predictable and
systematic ways. Since then, many of these approaches have become part of the
standard computer-science toolbox1.

3.1.2 Symbolic Processing in Connectionist Methods

Connectionism takes a different, brain-inspired, approach to Artificial Intelligence
that stands in contrast to symbolic AI and its focus on the conscious mind [Fodor,
1975; Newell and Simon, 1981]. Rather than relying on hand-crafted symbols
and rules, connectionist approaches such as neural networks focus on learning
suitable distributed representations directly from low-level sensory data. In
this way, neural networks have resolved many of the problems that haunted
symbolic AI, including their brittleness when confronted with inconsistencies
or noise, and the prohibitive amount of human engineering and interpretation
that would be required to apply these techniques on more low-level perceptual
tasks. Importantly, the distributed representations learned by neural networks are
directly grounded in their input data, unlike symbols whose connection to real-
world concepts is entirely subject to human interpretation (see symbol grounding
problem [Harnad, 1990]). Modern neural networks have proven highly successful
and superior to symbolic approaches in perceptual domains, such as in visual
object recognition [Ciresan et al., 2011, 2012; Krizhevsky et al., 2012] or speech
recognition [Fernández et al., 2007; Hinton et al., 2012], and even in some

1They are hardly called AI anymore since it is now well understood how to solve the problems
that they address. This redefinition of what constitutes AI is sometimes called the AI effect,
summarized by Douglas Hofstaedter as “AI is whatever hasn’t been done yet”.

35 3.1 The Binding Problem

inherently symbolic domains such as language modelling (e.g. BERT [Devlin
et al., 2019], GPT2 [Radford et al., 2019]), translation [Wu et al., 2016], board
games [Silver et al., 2017], and symbolic integration [Lample and Charton, 2020].

On the other hand, it has become increasingly evident that neural networks fall
short in many aspects of human-level generalization, including those that symbolic
approaches exhibit by design. For example, it is difficult for neural language
models to generalize syntactic rules such as verb tenses or embedded clauses in a
systematic manner [Lake and Baroni, 2018; Loula et al., 2018; Hupkes et al., 2019;
Keysers et al., 2020]. Similarly, in vision, neural approaches often learn overly
specialized features that do not easily transfer to different data sets or held-out
combinations of attributes [Yosinski et al., 2014; Atzmon et al., 2016; Santoro
et al., 2018b]. In reinforcement learning, where the use of neural networks has
led to superhuman performance in gameplay [Mnih et al., 2015; Silver et al.,
2017; Berner et al., 2019], it is found that agents are fragile under distributional
shift [Kansky et al., 2017; Zhang et al., 2018b; Gamrian and Goldberg, 2019]
and require substantially more training data than humans [Tsividis et al., 2017].
These failures at systematically reusing knowledge suggest that neural networks
do not learn a compositional knowledge representation. In some cases, such as
in vision, it may appear that object-level abstractions can emerge naturally as a
byproduct of learning [Zhou et al., 2015]. However, it has repeatedly been shown
that such features are best understood as “a texture detector highly correlated
with an object” [Sundararajan et al., 2017; Ancona et al., 2017; Geirhos et al.,
2019; Brendel and Bethge, 2019; Olah et al., 2020]. In general, evidence indicates
that neural networks learn mostly about surface statistics (eg. between textures
and object categories in images) in place of the underlying concepts [Karpathy
et al., 2015; Jo and Bengio, 2017; Lake and Baroni, 2018].

A hybrid approach that combines the seemingly complementary strengths of
neural networks and symbolic approaches may help address these issues, and
several variations have been explored [Bader and Hitzler, 2005]. A common
variant uses a neural network as a perceptual interface (or pre-processor) tasked
with learning symbols from raw data, which then serve as input to a symbolic
reasoning system (e.g. Mao et al. [2019]). Similarly, ‘bottom-up’ neural networks
have been used to make inference more tractable in probabilistic generative
models that contain the desired symbolic structure (eg. in the form a symbolic
graphics renderer [Kulkarni et al., 2015a]). Neural networks have also been
combined with search-based methods to improve their efficiency [Silver et al.,
2016]. Countless other variations that vary in terms of the division of labor
between the symbolic and neural components, and the choice of the mechanism
used to couple them, are possible [McGarry et al., 1999; Bader and Hitzler, 2005].

36 3.1 The Binding Problem

Unstructured Input Segregation Representation Composition

on top

le
an

s
on

sm
a
ller

ne
xt

to

Figure 3.1. The binding problem in neural networks can be understood in terms
of segregation, representation, and composition, which each focus on a different
functional aspect of binding neurally processed information in the context of
facilitating more symbolic information processing.

In this dissertation, we will adopt a more unified approach that addresses
these problems from within the framework of connectionism. It is concerned
with incorporating a suitable inductive bias in neural networks that enable them
to efficiently learn about symbols and the processes for manipulating them. We
believe that this is advantageous for several reasons. Firstly, it reduces the required
amount of task-specific engineering2, and helps generalize to domains where
expert knowledge is not available. Secondly, by tightly integrating multiple
different layers of abstraction they can continuously co-adapt, which avoids the
need for rigid interfaces. We also note that, as is evident from the brain, it is
sufficient to simply behave as an emergent symbol manipulator, and therefore
explicit (discrete) symbolic structure is not a requirement.

3.1.3 The Binding Problem in Connectionist Methods

We claim that there exists an underlying cause for the lack of emergent symbolic
processing in neural networks, which we refer to as the binding problem. The
binding problem is about the inability to dynamically and flexibly combine infor-
mation that is distributed throughout the network, which is required to effectively
form, represent, and relate symbol-like entities. In regular neural networks, in-
formation routing is largely determined by the architecture and weights, both
of which are fixed at training time. This limits their ability to dynamically route

2 This leaves the question of the innateness of aspects like causality or three-dimensional space
open. Such priors might be helpful or eventually even necessary, however, an intelligent system
must also be capable of independently discovering and using novel concepts and structures.

37 3.1 The Binding Problem

information based on a particular context and thereby to provide for certain
patterns of generalization.

The binding problem originates from neuroscience, where it is about the
explanatory gap in our understanding of information processing in the brain.
It includes perceptual binding problems such as visual binding (color, shape,
texture), auditory binding (a voice from a crowd), binding across time (motion),
cross-modal binding (sound and vision into joint events), motor-behavior (an
action) and sensorimotor binding (hand-eye coordination) [Treisman, 1996;
Roskies, 1999; Feldman, 2013]. Another class sometimes referred to as cognitive
binding problems, includes binding semantic knowledge to a percept, memory
reconstruction, and variable binding in language and reasoning3.

In the case of neural networks, the binding problem is not just a gap in
understanding but rather characterizes a limitation of existing neural networks.
Hence, it poses a concrete implementation challenge to address the need for
binding neurally processed information, which is common to all of the above
subproblems. To tackle this challenge for the purpose of faciliating more symbolic
information processing, we propose a functional division of the binding problem
(inspired by Treisman [1999]) into three aspects: representation, segregation, and
composition (Figure 3.1).

The Representation Problem is about encoding relevant information in a way
that combines the richness of neural representations with the compositionality
of symbols. It revolves around object representations, which act as basic building
blocks for neural processing to behave symbolically. We chose the term “object”
representation because it is evocative of physical objects, which are processed as
symbols in many important cognitive tasks, such as visual reasoning. However,
we emphasize that object representations are in principle also meant to encode
non-visual entities such as spoken words, imagined or remembered entities, and
even more abstract entities such as categories, concepts, behaviors, and goals4.

Interestingly, even the seemingly basic task of incorporating object representa-
tions in neural networks faces several problems, such as the “superposition catas-
trophe” [Von Der Malsburg, 1986] portrayed in Figure 3.2. It suggests that fully-

3The term binding problem has also been used in the context of consciousness, namely as the
problem of how a single unitary experience arises from the distributed sensory impressions and
processing in the brain [Singer, 2001].

4 We have considered a number of other terms for “object” representations, including entity,
gestalt, icon, and concept, which perhaps better reflect their abstract nature but are also less
accessible at an intuitive level. The fact that objects are more established in the relevant literature
gave them the final edge.

38 3.1 The Binding Problem

Figure 3.2. Illustration of the superposition catastrophe: A distributed repre-
sentation in terms of disentangled features like color and shape (a, b) leads to
ambiguity when confronted with multiple objects (c): The representation in (c)
could equally stand for a red apple and green pear, or a green apple and red
pear. It leads to an indiscriminate bag of features because there is no association
of features to objects. A simple form of this problem in neural networks was
first pointed out in Rosenblatt [1961] and has been debated in the context of
neuroscience since [Milner, 1974; von der Malsburg, 1981].

connected neural networks suffer from an “inherent tradeoff between distributed
representations and systematic bindings among units of knowledge” [Hummel
and Holyoak, 1993]. A general treatment of object representation in neural
networks involves addressing the superposition catastrophe and other challenges,
which we discuss in Section 3.2.

The Segregation Problem is about the process of forming grounded object
representations from raw unstructured inputs. It relates to the problem of instance
segmentation in that it also produces a division of the input into meaningful parts,
but it is complicated by the fact that it is concerned with objects in their most
general form. Indeed, the notion of an object is context- and task-dependent, and
difficult to formalize even for concrete objects like a tree, a mirror, or a house,
which are self-evident to humans. The incredible variability among objects makes
it intractable to resolve this issue through supervision. Hence, the segregation
problem (Section 3.3) is about enabling neural networks to acquire an appropriate,
context- and task-dependent, notion of objects in an unsupervised fashion.

The Composition Problem is about leveraging the modularity of object rep-
resentations to build structured models for inference, prediction and behavior
that generalize in predictable and systematic ways. This relies on the ability to
learn abstract relations that can be arbitrarily and recursively applied to object
representations, not unlike the way variables can be bound to placeholder sym-
bols in a mathematical expression. Often the desired structure is not known
in advance and has to be inferred and adapted to a given context or task. To

39 3.2 Representation

Figure 3.3. A visual scene composed of various unseen objects.

address the composition problem (Section 3.4), a neural network thus requires a
mechanism that provides the flexibility to quickly restructure its information flow
and that ultimately enables it to leverage object representations to generalize
systematically.

3.2 Representation

We have argued that exploiting the benefits of more symbolic information pro-
cessing using neural networks, requires some form of object representations that
combine the richness of neural representations with the compositionality of sym-
bols. These object representations are intended as modular ‘building blocks’ from
which to efficiently compose structured models of the world. This provides several
requirements for the representational format and underlying dynamics.

Consider for example Figure 3.3, where you are clearly able to distinguish
between five different objects. You can readily describe each object in terms of
their shape, color, material, and other properties, despite most likely never having
encountered them before. Notice also how these properties relate to individual
objects as opposed to the entire scene, which is also evident from the fact that you
can tell that the color green occurs multiple times for different objects. Finally,
notice how you are readily able to perform comparisons, for example, to tell that
the shape of the blue object is the same as that of the green one in the back, but
that they differ in color.

In this section we take a closer look at the format of object representations

40 3.2 Representation

Man

Woman

King

Queen

Uncle

Aunt

Semantic structure in word embeddingsEdges
(layer conv2d0)

Textures
(layer mixed3a)

Patterns
(layer mixed4a)

Parts
(layers mixed4b&c)

Objects
(layers mixed4d&e)

Figure 3.4. Left: Interpretable features learned on ImageNet as observed in
Olah et al. [2017]. Right: Semantic structure of text emerges among learned
word embeddings [Mikolov et al., 2013] (although to lesser extent than initially
reported [Nissim et al., 2019]).

(Section 3.2.1). We work towards a format that separates information about
objects and is general enough to accommodate unfamiliar objects in a meaningful
way so that they can readily be compared. Additionally, we will consider the
representational dynamics that are required to support stable and coherent object
representations over time (Section 3.2.2). Towards the end, we review relevant
approaches from the literature that may help incorporate these aspects of object
representations into neural networks (Section 3.2.3).

3.2.1 Representational Format

We seek a representational format that distinguishes objects, while retaining
the advantages of learned distributed representations by modern deep neural
networks. These representations have proven highly successful and are known to
partially capture the semantic structure of a task (Figure 3.4), such as interpretable
image features [Zeiler and Fergus, 2014; Olah et al., 2020], or the semantic
structure of text [Mikolov et al., 2013] (but compare Nissim et al. [2019]). In
this way, learned object representations can also benefit from existing techniques
that focus on feature hierarchies [Lee et al., 2009], equivariance to symmetry
transformations [Cohen et al., 2019], spatio-temporal coherence [Becker and
Hinton, 1992], sparsity [Olshausen and Field, 1996], non-euclidean feature
spaces [Nickel and Kiela, 2017], and in particular disentanglement as we will
discuss in Section 3.5.

41 3.2 Representation

Separation

In order to support the construction of structured models, object representations
need to act as modular building blocks. This requires information about individual
objects to remain separated at a representational level, such that their features do
not interfere with one another, even when composed. Additionally, the features
that belong to an object must be able to act as a unit, which implies strong
dependencies between its features. For example, when an object representation
appears or ceases to exist, all of its features are equally affected.

The separation of information has to be flexible enough to ensure that objects
can be formed from novel (unseen) feature combinations. Hence, it is important
that it is not purely determined by the representational content of the objects but
rather acts as an independent degree of freedom. Regarding the capacity of this
working memory, it may suffice to represent only a few objects simultaneously,
even though a typical scene potentially contains a large number of objects. Indeed,
the capacity of the human working memory is normally believed to only be around
3–9 objects [Miller, 1956; Fukuda et al., 2010], where the observed variability is
due to differences in the amount of mental resources required to track various
objects [Alvarez and Franconeri, 2007; Frank et al., 2008].

Common Format

To be able to efficiently relate and compare a wide variety of object representations
they must be described in a common format. Recall how in Figure 3.3 you were
able to freely compare several unfamiliar objects in terms of their properties, such
as their size, shape, and location. On the one hand, this is possible because you
have acquired a number of general relationships, such as bigger than, left of, etc.,
which we will discuss in detail in Section 3.4. What is more important here is
that such relations can only be applied if object representations provide a shared
interface. More generally, a common format helps to ensure that any learned
relation, transformation, or skill (like grasping) transfers between similar objects
independent of context. Similarly, a common set of features helps carry over
experiences between objects during learning.

3.2.2 Representational Dynamics

When interacting with the real world, the input stream of sensory information
continuously evolves. It is therefore important not only to consider instantaneous
representations, but also their dynamics over time.

42 3.2 Representation

Temporal Dynamics

An object representation requires ongoing updates across time in several cases.
Firstly, with objects constantly moving and transforming in the real world, their
corresponding representations need adjustments to remain accurate. Secondly,
certain temporal attributes such as movement or behavior can only be estimated
when considering the history of information. Finally, with the limited amount of
information that can be observed about an object at any given time, accumulating
information over multiple partial views can help produce more informative object
representations.

An important aspect of all these cases is the need for an object representation
to consider not only the input but also its history (recurrence). This requires a
stable identity to help ensure that information across time-steps is associated with
the correct object representation. Note that the identity of an object cannot be tied
exclusively to its visible properties, as illustrated by the extreme example of a fairy-
tale prince that is transformed into a frog [Marcus, 2003; BamBini et al., 2012].

Reliability

Structured mental models critically depend on object representations (iconic
representations) to provide a stable foundation for reasoning and other types of
information processing [Johnson-Laird, 2010]. The reliability of this foundation
is especially important for more abstract computations to whom such represen-
tations provide the only connection to the world. However, perfect reliability is
unattainable since sensory information about the world is noisy and incomplete,
and the capacity of any model is inherently limited.

Explicitly quantifying uncertainty can help mitigate this issue and prevent
noise and errors from accumulating undetectably. In addition, certain small
amounts of noise in an object representation may be continually corrected by
leveraging dependencies among its features (i.e. through the features of an object
acting as a unit). An important source of uncertainty accumulation is due to
objects that are temporarily not perceived (e.g. as a result of occlusion). In
this case, a ‘self-correcting’ representation may help maintain a stable object
representation, even in the absence of sensory input (object permanence).

Uncertainty about object representations may also arise due to ambiguous
inputs that allow for several distinct but coherent interpretations. The ability to (at
least implicitly) encode multi-modal uncertainty is crucial to effectively treat such
cases. Top-down feedback may then help disambiguate different interpretations
(see also Section 3.3.2).

43 3.2 Representation

3.2.3 Methods

In order to fulfill the desiderata outlined above, we require a number of specialized
mechanisms to implement a corresponding inductive bias. Indeed, it should now
also be clear that a simple MLP falls short at adequately representing multiple
objects simultaneously: If it attempts to avoid the superposition catastrophe by
learning features that are specific to each object, then they lack a common format
and become difficult to compare5. Therefore, in the following, we will review
several techniques for representing multiple objects in neural networks. Our focus
is in particular on mechanisms for separation of information, which is critical to
incorporating object representations in neural networks, yet often overlooked.

Slot-based Approaches

The simplest approach to separation is to provide a separate representational
‘slot’ for each object. This provides a (typically) fixed capacity working memory
with independent object representations that can all be accessed simultaneously.
Weight sharing can then be used to ensure a common format among the individual
slots.

Instance Slots In their most general form, which we call instance slots, all slots
share a common format and their information can be kept separate independent
of their representational content6. Instance slots are very flexible and general in
that they have no preference for content or ordering. However, this generality
introduces a routing problem when a common format is obtained via weight
sharing: with all slots being identical, bottom-up information processing needs
to break this symmetry to avoid assigning the same content to each slot. Hence,
in this case, the allocation of information to each slot must be determined by
taking the other slots into account, which complicates the process of segregation.
Instance slots have been used in several approaches to learning object representa-

5Others have suggested ways in which MLPs could in principle circumvent this problem [Pollack,
1990; O’reilly and Busby, 2002]. However, neither of these offer a solution that is able to
convincingly fulfill all of the above desiderata simultaneously. For plain RNNs it was found that
when they are trained to explicitly remember multiple objects internally, they resort to more
localist representations [Bowers et al., 2014].

6The notion of a finite number of discrete ‘instance slots’ as working memory closely relates to
the traditional notion of visual working memory used in psychology [Baddeley and Hitch, 1974;
Luck and Vogel, 1997], although it was later shown that this format does not capture human
capacity for object-tracking well [Alvarez and Franconeri, 2007; Frank et al., 2008] (but see
Barton et al. [2009]).

44 3.2 Representation

tions, including Masked Restricted Boltzman Machines (M-RBMs [Le Roux et al.,
2011]) and IODINE [Greff et al., 2019]. We will also make use of instance slots
ourselves in Neural Expectation Maximization (N-EM [Greff⇤ and van Steenkiste⇤
et al., 2017a] and Chapter 4) and its relational extension (R-NEM [van Steenkiste
et al., 2018a] and Chapter 5). Instance slots can also be found in the memory of
memory-augmented neural networks [Graves et al., 2016; Joulin and Mikolov,
2015], in self-attention models [Vaswani et al., 2017; Dehghani et al., 2019], and
in certain graph neural networks [Battaglia et al., 2018], where they are treated
as internal representations that can be accessed simultaneously (via attention).

Sequential Slots Sequential slots break slot symmetries by imposing an order
on the representational slots, typically across time. They are commonly found in
RNNs and, when paired with an attention mechanism that attends to a different
object at each step, can serve as object representations. With weights typically
being shared across (time)steps, sequential slots naturally share a common for-
mat and unlike other slot-based representations can dynamically adjust their
representational capacity. Sequential slots in RNNs have been used as object
representations, for example in Attend Infer Repeat (AIR [Eslami et al., 2016])
and to a lesser degree in DRAW [Gregor et al., 2015]. However, due to recurrent
connections, these slots may not always be fully independent, which impedes their
function as modular building blocks. Recent approaches, such as Multi-Object
Networks (MONet [Burgess et al., 2019]) and GENESIS [Engelcke et al., 2019],
alleviate this by using recurrence only for information routing but not for the
object representations themselves. In general, a potential limitation of sequential
slots is that they are not simultaneously accessible at any given (time-)step for
down-stream processing. This can be addressed via a set function over sequential
slots, such as the attention mechanism in certain neural machine translation
methods [Bahdanau et al., 2014] or pointer networks [Vinyals et al., 2015].

Spatial Slots In spatial slots, each slot is associated with a particular spatial
coordinate (e.g. in an image), which helps to break slot symmetries and simplifies
information routing. They can still accommodate a common format through
weight-sharing, but lack generality because their content is tied to a specific
spatial location. Because location and separation are entangled, changes to the
location of an object potentially correspond to a change of slot, which complicates
maintaining object identity across time. Spatial slots are commonly found in
CNNs, where multiple convolutional layers share filter weights across the spatial
dimensions to yield a spatial map of representational slots. Although they are not

45 3.2 Representation

usually advertised as object representations in this way, several recent approaches,
such as Relation Networks [Santoro et al., 2017], the Multi-Entity VAE [Nash
et al., 2017], or the work by Zambaldi et al. [2019] explicitly treat each spatial
position in the filter-map of a CNN as a candidate object representation. Even
more recent approaches, such as SPAIR [Crawford and Pineau, 2019], SPACE [Lin
et al., 2020], and SCALOR [Jiang et al., 2020], expand on this by incorporating
explicit features for the presence of an object and its bounding box into each
spatial slot. Nonetheless, a current limitation of these approaches is that their
spatial slots are only suitable for objects that are reasonably well separated, and
whose size is compatible with the corresponding receptive field (or the bounding
box) in the image.

Category Slots A related approach is to allocate slots according to some catego-
rization of objects based on properties other than location. In this case, because
now category and separation are entangled, it is then no longer possible to rep-
resent multiple objects of the same category7. The main example of category
slots is capsules [Hinton et al., 2011, 2018], although other approaches such as
Recurrent Entity Networks [Henaff et al., 2017] can also be viewed from this
perspective.

Augmentation

Augmentation based approaches, unlike slot based ones, keep a single set of
features shared among all object representations and instead augment each
feature with additional grouping information. This grouping information is
usually continuous, which may help to encode uncertainty about the separation.
Object representations based on augmentation will trivially be in a common
format, although extracting information about individual objects now requires first
processing the grouping information. An important limitation of augmentation is
that it requires substantial deviations from standard neural networks and is thus
more difficult to integrate with state of the art systems. Due to features being
shared, augmentation may also suffer from capacity and ambiguity problems
when a feature is active in multiple object representations at the same time
(e.g. two red objects), similar to when representing multiple objects of the same
category using category slots.

7There is evidence that humans similarly struggle with representing multiple tokens of the
same type [Mozer, 1989]. Hence, it could also suggest that this apparent weakness may be
advantageous for other aspects of information processing.

46 3.2 Representation

Temporal Codes An early approach to object representation using augmentation
in neural networks made use of the temporal structure of spiking neurons for
separation (temporal codes). Here, the activation of a feature encoded by the firing
rate is augmented with grouping information encoded by the temporal correlation
between firing patterns [Singer, 2009]. In other words, the features that form an
object are represented by neurons that fire in synchrony [Milner, 1974; von der
Malsburg, 1981; Singer, 1999]. Rather than using unrestricted spiking networks,
most work on object representation using temporal codes focuses on oscillatory
networks, where the firing pattern takes the form of a regular frequency rhythm
(for an overview see Wang [2005]). Because temporal codes rely on spiking
neurons, they are non-differentiable and also require simulating the dynamics of
each neuron even for static inputs. This makes them incompatible with gradient-
based training and necessitates a completely different training framework typically
based on Hebb’s rule [Kempter et al., 1999], or Spike-Timing Dependent Plasticity
(STDP [Caporale and Dan, 2008]).

Complex Valued Codes An alternative approach to augmentation uses complex-
valued neurons (features) in place of oscillatory neurons. Hence, instead of
explicitly simulating the temporal behavior of an oscillator, its activation and
grouping information can now be described as the absolute value and angle of a
complex-valued neuron. Similar to before, the grouping is implicit and continuous,
with neurons that “fire at similar angles” being grouped together. Complex-valued
neurons are differentiable and more compatible with existing gradient-based
learning techniques. On the other hand, they require specialized activation
functions that consider both real and imaginary parts, which tend to be difficult to
integrate into existing methods. Successful integrations include complex-valued
Boltzmann Machines [Zemel et al., 1995; Reichert and Serre, 2013] and complex-
valued RNNs that could be trained either with backpropagation [Mozer et al.,
1992] or via Hebbian learning [Rao et al., 2008].

Tensor Product Representations

A Tensor Product Representation (TPR) consists of a real-valued matrix (tensor)
that is the result of combining distributed representations of fillers with distributed
representations of roles. TPRs can be used for representing multiple objects by
associating fillers with object representations and using roles to encode grouping
information. A TPR is formed by combining each filler with a corresponding
role via an outer product (“binding operation”), which are then composed to
accommodate multiple object representations (“conjunction operation”). When

47 3.2 Representation

the role representations are linearly independent, then the object representations
can be retrieved from the TPR via matrix multiplication (“unbinding operation”).
Notice that, when the role-vectors are one-hot encodings, the TPR reduces to
instance slots. However, the additional freedom afforded by a general distributed
role vector can be used to encode structural information or uncertainty about the
separation of objects8. TPRs always assume that the object representations are
described in a common format but note that, similar to augmentation, extracting
information about individual objects first requires processing the grouping infor-
mation (in this case via the unbinding operation). TPRs were first introduced
in Smolensky [1990] and several modifications have since been proposed that
consider different binding, unbinding, and conjunction operations [Plate, 1995;
Kanerva, 1996; Gayler, 1998] (see Kelly et al. [2013] for an overview). In recent
literature, TPR-like mechanisms have been incorporated into neural networks
using fast-weights [Schlag and Schmidhuber, 2018] or self-attention [Schlag et al.,
2019] to perform reasoning in language.

Attractor Dynamics

Up until this point, we have focused on methods that address the representational
format of object representations. Now we consider attractor dynamics as an
approach for addressing their representational dynamics. Robust object represen-
tations are well described by a stable attractor state in a larger dynamical system
(e.g. implemented by an RNN) that models its representational dynamics based
on the input. In this case, inferring a coherent object representation corresponds
to running the dynamical system forward until it converges to an attractor state.
A stable attractor is naturally self-correcting, and multiple competing interpre-
tations (from ambiguous inputs) can easily be described by separate attractor
states. Top-down feedback can then be used to switch interpretations, namely
by pushing the state of the system enough to cause it to cross over to a different
basin of attraction. By adapting the system dynamics to changing inputs, they
allow for moving attractors (changes of the object) or bifurcations (creation or
vanishing of particular interpretations).

Attractor Networks incorporate attractor dynamics in neural networks and
have a long history in connectionist research. Early work includes Hopfield
networks [Hopfield, 1982], Boltzmann machines [Ackley et al., 1985] (see also
Glauber [1963]; Sherrington and Kirkpatrick [1975]) and associative memory

8Alternatively, it can be used to implement a weaker inductive bias where a factorizable
representation is only encouraged, i.e. by constraining the role representations to not be fully
linearly independent.

48 3.3 Segregation

Figure 3.5. Photo of two leaf-tailed geckos “young and old”©2015 by Paul Bertner.

[Kohonen, 1989]. Attractor states were also found to occur naturally in RNNs,
especially when using symmetric recurrent weights [Almeida, 1987; Pineda,
1987]. In recent years, however, they have received little attention (but see
[Mozer et al., 2018; Iuzzolino et al., 2019]), which might be in part because they
can be difficult to train. In particular, the fact that each weight participates in the
specification of many attractors can lead to spurious (unintended) attractors and
ill-conditioned attraction basins [Neto and Fontanari, 1997]. Localist attractor
networks [Zemel and Mozer, 2001] and flexible kernel memory [Nowicki and
Siegelmann, 2010] are two approaches that address this issue by introducing
a separate representation for each attractor. However, it should be noted that
spurious attractors may also be advantageous for generalization, e.g. when they
correspond to novel feature combinations.

3.3 Segregation

The problem of segregation is about forming object representations from raw
(unstructured) sensory information, such as images. Humans effortlessly perceive
objects, yet the process of perceptual organization is surprisingly intricate. Even
for everyday objects like a mirror, a chair, or a house, it is difficult to formulate
precise boundaries or a definition that generalizes across multiple different con-
texts. Nonetheless, we argue that an important aspect common to all objects is
that they may act as stable and self-contained abstractions of the raw input. This
then implies several requirements for the process of segregation.

49 3.3 Segregation

Consider for example Figure 3.5, which demonstrates several challenges that
must be overcome. To recognize the two geckos sitting on a branch you have
to segment out two unfamiliar objects (zero-shot) even though they belong to
the same class (instance segmentation) and their use of camouflage (texture
similarity). Both the large gecko and the branch are visually disconnected due to
occlusion, and yet you perceive them as independent wholes (amodal completion).
Beyond separating these objects, you have also formed separate representations
for them that enable you to efficiently relate, describe, and reason about them.

In this section we take a closer look at this process of segregation9. We first
work towards a general notion of an object built around modularity and hierarchy
(Section 3.3.1). Next, we focus on the process of forming object representations
based on this notion (Section 3.3.2). Unlike segmentation, which is typically
only concerned with a static split of information at the input-level, segregation is
inherently task-dependent and aims to produce stable object representations that
are grounded in the input and which maintain their identity over time. Towards
the end, we review relevant approaches from the literature that may help neural
networks perform segregation (Section 3.3.3).

3.3.1 Objects

The question of what constitutes a meaningful object (i.e. for the purpose of
building structured models of the world) is central to segregation. However,
despite long-standing debates in many fields including philosophy, linguistics, and
psychology, there exists no general agreed-upon definition of objects [Cantwell-
Smith, 1998; Green, 2018]. Here, we take a pragmatic stance that focuses on
the functional role of objects as compositional building blocks. Hence, we are not
interested in debating the “true” (i.e. metaphysical) nature of objects, but rather
consider object representations as components of a useful representational “map”
that refers to (but is not identical to) parts of the “territory” (world)10.

Modularity

From a functional perspective, the defining quality of an object is that it is modular,
i.e. it is self-contained and reusable independent of context. While this suggests
choosing objects with minimal information content (to improve reusability), it

9Calling this process “segregation” as opposed to “grouping” emphasizes the fact that it typically
requires a separation of the inputs and features into meaningful parts.

10“A map is not the territory it represents, but, if correct, it has a similar structure to the territory,
which accounts for its usefulness.” [Korzybski, 1958].

50 3.3 Segregation

Figure 3.6. For par-
tial objects (A) or only
background (C), the oc-
cluded regions can be
inpainted reasonably
well, while in the case
of full objects (B) that
is impossible.

A

B

C

is equally important that objects can be represented efficiently based on their
internal predictive structure. We argue that this trade-off induces a Pareto front
of valid decompositions into objects that have both strong internal structure, yet
remain largely independent of their surroundings. By organizing information in
this way, objects are expected to capture information that is due to independent
causes, which matches our own intuitive notion of objects in the real world [Chater,
1996; Green, 2018].

Consider the example of three balloons in front of a forest as depicted in
Figure 3.6. When a balloon is partially occluded (as in A), you are still able to
make a reasonable guess about the occluded part purely based on its internal
predictive structure. On the other hand, when an entire balloon is occluded (as
in B) it is impossible to infer its presence from the (unoccluded) context, and the
most reasonable reconstruction is to fill in based on the background (as in C).
Notice that each balloon is modular in the sense that it is possible to reuse them in
many different contexts (e.g. when placed in a different scene). In contrast, this
would not be possible if an object were to be formed from the background and the
balloon. Hence, by carving up perception at the “borders of predictability”, objects
allow for an approximate divide and conquer (i.e. a compositional) approach to
modeling the world.

Hierarchical

Objects are often hierarchical in the sense that they are composed of parts that can
themselves be viewed as objects. Consider, for example, a house consisting of a
roof and walls, which themselves may consist of several windows and a door, etc.
Depending on the desired level of detail, a scene can, therefore, be decomposed
in terms of coarser or finer scale objects, corresponding to different solutions on
the Pareto front. In most cases, these decompositions relate to each other in the
sense that they correspond to different levels in the same part-whole hierarchy.

51 3.3 Segregation

a) b) c)
Figure 3.7. Examples of visual illusions that demonstrate multistable perception
(a, b) and amodal completion (c).

However, in rare cases, two decompositions may also consider incompatible
parts, for example in a page of text that can be decomposed either into lines or
sentences11. Notice that there is a difference between this part-whole hierarchy
and the feature hierarchy commonly found in deep neural networks. Here, parts
are themselves objects, which are the result of dynamically separating information
into object representations (segregation). Hence, a part-whole hierarchy can also
be viewed in terms of a number of general “is-part-of” relations that can be reused
between objects (see also Section 3.4).

3.3.2 Segregation Dynamics

Segregation needs not only infer a decomposition into objects, but also corre-
sponding object representations. As is evident from our previous discussion, there
is no universal choice of objects that is appropriate in all circumstances, which
requires segregation to consider both context- and task-dependent information.
Together with the need for a stable outcome, this has several consequences for
the segregation dynamics, which we will consider next.

Multistability

Most scenes afford many different useful decompositions that either stem from
choosing different levels of granularity (i.e. levels of hierarchy) or from ambiguous
inputs that allow for multiple distinct but coherent interpretations (hence the
need for multi-modal separation uncertainty in Section 3.2.2). Together, these
result in a massive number of potential object representations (e.g. � 3000

11A unique hierarchy is favored by modularity because in the case of incompatible decomposi-
tions (i.e. not corresponding to the same part-whole hierarchy) their objects cross the borders of
predictability, which implies a weaker internal structure.

52 3.3 Segregation

letters per page of text). Simultaneously representing all of them is not only
intractable but also undesirable, as the majority of object representations will
not be useful for any particular situation. A practical solution to this problem
is a dynamical segregation process that has multiple stable equilibria that each
correspond to a particular decomposition of a given scene. Indeed, humans
resolve this problem via multistable perception, which allows us to seamlessly
switch back and forth between different interpretations [Attneave, 1971]. This
effect is often demonstrated with visual illusions as in Figure 3.7a), but is in fact
much more common than these constructed examples suggest. For example, a
simple tile pattern (as in Figure 3.7b) can easily be perceived in a number of ways,
including rows or columns of tiles. Notice that it is possible to simultaneously
perceive multiple objects from the same decomposition, but not from different
decompositions (e.g. perceiving 13 and B simultaneously in Figure 3.7a). This
inherent limitation of multistable segregation can also act as an advantage since
it ensures a single coherent decomposition of the input and avoids mixing objects
from different incompatible decompositions. Further, this implies that the process
of segregation also has to be able to efficiently resolve conflicts from competing
decompositions (explaining away).

Incorporating Top-Down Feedback

Certain decompositions lead to a set of building blocks (objects) that are more
useful than others for a given task or situation. For example, when moving a stack
of chairs to another room it is useful to group information about the individual
chairs together as a single object. On the other hand, when the goal is to count
each of the individual chairs, a more fine-grained decomposition is preferred
(and perhaps when repairing a chair an even more fine-grained decomposition is
needed). These building blocks underlie the structure of downstream models that
can be used for inference, prediction, and behavior, and the choice of decomposi-
tion, therefore, affects the ability to generalize in predictable and systematic ways.
Hence, it is important that the outcome of the segregation process can be steered
towards the most useful decomposition, based on contextual information. One of
the main sources of contextual information is top-down feedback, for example in
the form of task-specific information (e.g. to guide visual search) or based on a
measure of success at performing the given task. Another source of contextual
information could be memory, for example by recalling a decomposition that has
previously proven useful in the given situation.

53 3.3 Segregation

Consistency

It is important that the grounding of object representations, as provided by the
segregation process, is both stable and consistent across time (i.e. it maintains
object identity). This helps to correctly accumulate partial information about
objects, to infer temporal attributes from prior observations, and to ensure that
the outcome of more abstract computations in terms of object representations
remain valid in the environment (Section 3.2.2). It may also help to avoid
“double-counting” of evidence (e.g. during learning)12. Object identity depends
on a reliable mechanism for re-identification i.e. a mechanism for identifying an
object as being the same despite changes in appearance, perspective, or temporary
absence of sensory information. Consider, for example, a game of cups and balls,
which involves tracking a ball hidden under one of three identical cups that are
being moved around. In this case, a stable object identity requires maintaining
separate identities for the cups despite their identical appearance, as well as
re-identifying the ball as it reappears from under the cup. When an object is
re-encountered after a prolonged period of time, re-identification may require
interfacing with some form of long-term memory.

3.3.3 Methods

To succeed at segregation (in the sense outlined above) a neural network must
acquire a comprehensive notion of objects and incorporate mechanisms to dy-
namically route their information. Due to the prohibitive amount of potentially
useful objects, it is unlikely that an adequate notion can be engineered directly
or taught purely through large-scale supervision. Therefore, in the following,
we will review a wide range of approaches, including more classic non-neural
approaches that have produced promising results despite incorporating domain-
specific knowledge (albeit to a lesser degree). The latter serve as inspiration for
the development of neural approaches that can learn about objects directly from
raw data (e.g. by focusing on modularity) and indeed in Chapters 4 and 6 we will
present examples of this.

12Consider the example from Marcus [2003] about owning a three-legged dog. Even though you
will likely see your dog much more often than other dogs, this series of observations does not affect
your overall belief about the number of legs that dogs typically have, since these observations are
all associated with the same dog.

54 3.3 Segregation

Clustering Approaches to Image Segmentation

Image segmentation is concerned with segmenting the pixels (or edges [Arbeláez
et al., 2011]) belonging to an image into groups (e.g. objects) and therefore
provides a good starting point for segregation. A common approach to image
segmentation is to cluster the pixels of an image based on some similarity func-
tion [Jain et al., 1988]. One particularly successful approach is the spectral
graph-theoretic framework of normalized cuts [Shi and Malik, 2000], which
treats image segmentation as a graph partitioning problem in which nodes are
given by pixels and weighted edges reflect the similarity between pairs of (neigh-
boring) pixels. Partitioning is performed by trading-off the total dissimilarity
between different groups with the total similarity within the groups. To the extent
that the similarity function is able to capture the predictive structure of the data,
this is then analogous to the trade-off inherent to modularity discussed before. It
is straightforward to achieve a hierarchical segmentation in this graph clustering
framework either via repeated top-down partitioning [Shi and Malik, 2000] or
bottom-up agglomerative merging [Mobahi et al., 2011; Hoiem et al., 2011].

In the context of segregation, a central challenge is to define a good similarity
function between pixels that leads to useful objects. As we have argued, a
hardwired similarity function (e.g. as in Shi and Malik [2000]; Malik et al. [2001])
has little chance at facilitating this required flexibility, although different initial
seedings of the clustering may still account for multiple different groupings (i.e.
multistability). Labeled examples can be used to address this challenge in a
multitude of ways, e.g. to learn a similarity function between segments [Ren
and Malik, 2003; Endres and Hoiem, 2010; Kong and Fowlkes, 2018] or discrete
graphical patterns [Lun et al., 2017], to learn boundary detection [Martin et al.,
2004; Hoiem et al., 2011], or as a means of top-down feedback [Mobahi et al.,
2011]. Unsupervised approaches (based on self-supervision) provide a more
promising alternative. One approach is to learn a similarity function between
pairs of pixels, e.g. based on their point-wise mutual information using kernel-
density estimation [Isola et al., 2014] or based on a self-supervised prediction
task using a neural network [Isola et al., 2015]. Alternatively, one can attempt to
steer the clustering process based on the unsupervised principle of compressibility
(minimum description length) [Mobahi et al., 2011].

We note that, since clustering-based approaches to image segmentation focus
on low-level similarity structures, their understanding of objects at a more high-
level is limited (i.e. at the level of object representations).

55 3.3 Segregation

Neural Approaches to Image Segmentation

An alternative approach to image segmentation that leverages the success of
end-to-end learning, is to directly output the segmentation with a deep neural
network. Unlike clustering-based approaches, which focus on the similarity
structure between pixels (or small segments), learning now takes place at the
(global) image level, which allows objects to be modeled at multiple levels of
abstraction. On the other hand, due to the one-to-one (feedforward) mapping
from image to segmentation, it may now be more difficult to provide multiple
different segmentations (multistability), or a hierarchical segmentation, for a
given input.

Recent approaches based on supervised learning from ground-truth segmenta-
tions have produced high-quality instance segmentations of real-world images13.
For example, approaches based on R-CNN [Girshick et al., 2014] decompose
the instance segmentation problem into the discovery of bounding boxes using
region-proposal networks [Ren et al., 2015] and mask prediction [Dai et al., 2016;
He et al., 2017] to provide instance segmentations. Other approaches output an
energy function from which the segmentation is easily derived, e.g. based on the
Watershed transformation [Bai and Urtasun, 2017]. Instance segmentation has
also been phrased as an image-to-image translation problem using conditional
generative adversarial networks [Mo et al., 2018]. Moreover, approximate in-
stance segments can be obtained as a by-product of performing some other task,
such as learning to interpolate between multiple images [Zhang et al., 2020],
or minimizing mutual information between image segments [Yang et al., 2020].
Unsupervised approaches that directly infer the segmentation (and that do not
require large-scale supervision) are more relevant in the context of segregation
but have received far less attention. One approach is to train a neural network to
directly output the segment that an input belongs to by maximizing the mutual
information between paired inputs in representational space [Ji et al., 2018]
(although it operates at the level of patches as opposed to the global image). In
the context of video, motion segmentation often produces segments that corre-
spond to instances (provided that they move), which can be learned through
unsupervised multi-task learning [Ranjan et al., 2019].

13 We would like to emphasize the distinction between instance segmentation and semantic
segmentation. In the context of segregation, we are more interested in the former, which is
concerned with the more general notion of each segment being an object (instance). In contrast,
semantic segmentation associates a particular semantic interpretation (in the form of a label)
with each segment and therefore does not segregate multiple objects belonging to the same class.

56 3.3 Segregation

Attention

In the context of segregation, attention mechanisms provide a means to selectively
attend to different objects sequentially. Compared to image segmentation, this
does not require exhaustively partitioning the image but instead allows one to
focus only on the relevant locations in the image (e.g. as a result of top-down
feedback). Here we focus mainly on hard attention mechanisms that attend
to a strict (i.e. spatially delineated) subset of the available information in the
form of an attention window (e.g. in the shape of a bounding-box [Stanley and
Miikkulainen, 2004] or a fovea [Schmidhuber and Huber, 1991]). Their strong
spatial bias (due to the shape of the attention window) makes them particularly
relevant for the domain of images, but also more difficult to adapt to modalities in
which meaningful objects are not characterized by spatial closeness. On the other
hand, the rigid shape of the attention window may interfere with modularity due
to potential difficulties in extracting information about objects with incompatible
shapes or that are subject to occlusion.

The main challenge in incorporating attention mechanisms is to correctly
place the window. Early approaches by-pass this problem by evaluating a fixed
attention window exhaustively at each possible image location, or using several of
many heuristics [Lampert et al., 2008; Alexe et al., 2010; Uijlings et al., 2013]. A
classifier can then be trained to determine which window contains an object [Row-
ley et al., 1998; Viola and Jones, 2001; Harzallah et al., 2009]. Other approaches
compute a two-dimensional topographical saliency map that reflects the presence
of perceptually meaningful structures at a given location. This facilitates an
efficient control strategy to direct an attention window in an image by visiting
image locations in order of decreasing saliency [Itti et al., 1998]. Salient regions
can be learned based on bottom-up information, such as self-information of local
image patches [Bruce and Tsotsos, 2006]. Alternatively, they can be derived by
also incorporating top-down information, e.g. by highlighting locations that are
(maximally) informative for a discriminative task [Gao and Vasconcelos, 2005;
Cao et al., 2015; Zhmoginov et al., 2019]. Recently, there has been renewed
interest in saliency-based approaches through the discovery of keypoints [Jakab
et al., 2018; Kulkarni et al., 2019; Minderer et al., 2019].

It is also possible to directly learn the control strategy for placing the window
of attention, which naturally accommodates top-down feedback. For example,
learning the control strategy can be viewed as a reinforcement learning problem,
in which the actions of an “agent” determine the location of the window. A
policy for the agent (frequently implemented by a neural network) can then be
evolved [Stanley and Miikkulainen, 2004], trained with Q-learning [Paletta et al.,

57 3.3 Segregation

2005], or via Policy Gradients [Butko and Movellan, 2009]. Alternatively, it can
be incorporated as a separate action in an agent trained to perform some task (e.g.
classification) or to interact with an environment [Mnih et al., 2014; Ba et al.,
2014]. AIR [Eslami et al., 2016] and its sequential extension SQAIR [Kosiorek
et al., 2018] deploy a similar strategy for an unsupervised learning task with the
purpose of extracting object representations. They make use of an attention mech-
anism that is fully differentiable based on spatial transformer networks [Jaderberg
et al., 2015], but see also DRAW [Gregor et al., 2015] for an alternative mech-
anism. Similarly, Tang et al. [2014] incorporates a window of attention in a
deep belief network to extract object representations by performing (stochastic)
inference over the window parameters alongside the belief states.

Soft attention mechanisms implement attention as a continuous weighing of
the input (i.e. a mask) and can be seen as a generalization of hard attention.
For example, in MONet [Burgess et al., 2019] and GENESIS [Engelcke et al.,
2019] a recurrent neural network is trained to directly support the learning of
object representations by outputting a mask that focuses on different objects at
each step14. A similar soft-attention mechanism has also been used to facilitate
supervised learning tasks, such as caption generation [Xu et al., 2015], image
classification [Wang et al., 2017], instance segmentation [Ren and Zemel, 2017],
or (multi-)object tracking [Kosiorek et al., 2017; Fuchs et al., 2019]. Soft atten-
tion mechanisms have also been applied internally (self-attention) to support
segregation. For example, Mott et al. [2019] incorporates a form of dot-product at-
tention [Vaswani et al., 2017] in an agent to attend to the internal feature maps of
a bottom-up convolutional neural network that processes the input image. A simi-
lar self-attention mechanism was also used to support image classification [Zoran
et al., 2020].

Probabilistic Generative Approaches

A probabilistic approach to segregation is via inference in a generative model
that models the observed data in terms of multiple components (objects)15. An
advantage of explicitly modeling the constituent objects is that it is easy to
incorporate assumptions about their structure, including modularity and hierarchy.
This then enables inference (segregation) to go beyond low-level similarities or

14Notice, however, that these specific methods enforce an exhaustive partition of the image
similar to image segmentation methods.

15Human perception is also said to be generative in the sense that we can perceive objects
as coherent wholes even when they are only partially observed (amodal completion), e.g. as in
Figure 3.7c.

58 3.3 Segregation

spatial proximity, and recover object representation based on their high-level
structure as implied by the model. On the other hand, as we will see below,
inference usually becomes more difficult as the complexity of the generative
model increases, and especially when considering multi-modal distributions (e.g.
for multistability).

The most basic assumption to incorporate in a generative model, for the
purpose of segregation, is to assume that the input is directly composed of multiple
parts (objects) that are each modeled individually. Inference in such models then
allows one to recover a partitioning of the input in addition to a description of
each part (object representation). Early approaches model images with a mixture
model that treats the color values of individual pixels as independent data points
that are identically distributed [Samadani, 1995; Friedman and Russell, 1997].
Alternatively, the decomposition can be based on other features such as optical
flow [Jepson and Black, 1993] or the coefficients of a wavelet transform [Guerrero-
Colón et al., 2008]. Mixture models can also be biased towards spatial coherence
to explicitly account for the spatial structure of visual objects [Weiss and Adelson,
1996; Blekas et al., 2005]. Independent Component Analysis (ICA) models the
observed data as linear combinations (mixtures) of unobserved random variables
(sources) that are statistically independent [Hyvärinen and Oja, 2000]. This
approach has been particularly successful at blind source separation (segregation)
in the auditory domain (e.g. the cocktail party problem [Cherry, 1953]), although
it has also seen application in the context of images [Lee and Lewicki, 2002].

In order to more accurately model complex data distributions, it is possible
to incorporate domain-specific knowledge in the generative model (and thereby
improve the result of inference). For example, a generative model that captures
the geometry of 3D images of indoor scenes, as well as the objects that are in
it “[. . .] integrates a camera model, an enclosing room ‘box’, frames (windows,
doors, pictures), and objects (beds, tables, couches, cabinets), each with their
own prior on size, relative dimensions, and locations” [Del Pero et al., 2012]. The
results that can be obtained in this way are impressive [Tu and Zhu, 2002; Tu et al.,
2005; Zhao and Zhu, 2011; Del Pero et al., 2012, 2013]. However, performing
inference in highly complex generative models of this type is problematic and
frequently relies on custom inference methods tailored to this particular task (e.g.
Markov Chain Monte Carlo using jump moves to remove or add objects or specific
initialization strategies [Del Pero et al., 2012]). In recent years, probabilistic
programming languages have emerged as a general-purpose framework to simplify
the design of complex generative models and the corresponding inference process.
For example, they have enabled the use of symbolic graphic renderers as forward
models [Mansinghka et al., 2013] and incorporated deep neural networks to

59 3.4 Composition?
(a) (b) (c)

Figure 3.8. Three different objects (Ñ, •, ∆) appear in different pairings on a
scale (a) and (b). By evaluating their relationships, it can be inferred how the
scale will tip in (c).

help make inference more tractable [Kulkarni et al., 2015a]. Nonetheless, in
the context of segregation, the amount of domain-specific engineering that is
still required limits their generality and applicability to other domains (similar to
when overly relying on supervised labels originating from a particular domain).

An alternative approach to more accurately modeling complex data distribu-
tions is to incorporate fewer assumptions, but rather parameterize the generative
model with a neural network that can learn a suitable generative process from
many different observations. For example, in Chapter 6 we will demonstrate how
a (spatial) mixture model that combines the output of multiple deep neural net-
works is able to learn to generate images as compositions of individual objects and
background [van Steenkiste et al., 2020] (see also Nguyen-Phuoc et al. [2020]).
However, in order to perform segregation we must also be able to perform infer-
ence in these models, which can be very challenging. This has been addressed
by simultaneously learning an amortized iterative inference process based on
de-noising [Greff et al., 2016], generalized expectation maximization [Greff⇤ and
van Steenkiste⇤ et al., 2017a] (and Chapter 4) or variational inference [Greff
et al., 2019]. While these methods still struggle at modeling complex real-world
images, they are capable of learning object representations that incorporate many
of the previously mentioned desiderata (e.g. common format, modularity), in a
completely unsupervised manner.

3.4 Composition

Composition is about leveraging the modularity of object representations to build
structured models of the world that are compositional. Compositionality is an

60 3.4 Composition

important aspect of human cognition and underlies our ability to understand
novel situations in terms of existing knowledge. It enables humans to generalize
far beyond their direct experiences and is similarly important for systematic
generalization in neural networks.

Consider the sequence of observations in Figure 3.8, which allows you to
infer the relative weights of the three depicted objects (Ñ, • and ∆). Several
interesting observations can be made. For example, from panel (a) you can tell
that • is heavier than Ñ, and likewise, that∆ is heavier than • from panel (b).
This information does not describe a property of any of the individual objects, but
rather more generally applicable relations between them. On the other hand, it
can still be used to update the properties of the participating objects in response
to new information (e.g. the precise weight of Ñ) or to respond to generic queries,
such as answering which of the objects is the heaviest. The latter, in this case,
also requires comparing the weights of Ñ and∆ (panel (c)). Notice how this is
only possible through transitivity of the “heavier than” relation, which allows you
to combine the relations from panels (a) and (b) to infer that∆ is heavier than
Ñ. Finally, it is worth pointing out that you are able to apply this comparative
reasoning to arbitrary (possibly unfamiliar) objects appearing in novel contexts.

In this section, we take a closer look at how to enable neural networks to
dynamically implement structured models for a given task, with the ultimate goal
of generalizing in a more systematic (human-like) fashion. First, we focus on
incorporating compositional structure that combines relations and object rep-
resentations without undermining their modularity (Section 3.4.1). Next, we
consider how a neural network can dynamically infer the appropriate structure
and leverage it for reasoning (Section 3.4.2). Towards the end, we survey rel-
evant approaches from the literature that address these aspects of composition
(Section 3.4.3).

3.4.1 Structure

To implement structured models, a neural network must organize its computations
based on the desired structure in terms of objects and their relations. This structure
can generally be described by a graph where nodes correspond to objects and
edges to relations16. By representing relations separately (independent of object

16In our discussion, we focus mainly on binary relations (e.g. A is bigger than B) that are well
represented by individual edges. However, keep in mind that it is also possible to represent
higher-order relations (e.g. A divides B from C), either by using a higher-order graph (e.g. a factor
graph) or with the help of auxiliary nodes (e.g. by adding a ‘division node’ with binary relations
to A, B, and C).

61 3.4 Composition

factor
rela�on

role

Figure 3.9. Three different ways in which structure can be defined in terms of
relations between objects.

representations) it is possible to freely compose relations and objects to form
arbitrary structures (i.e. corresponding to different graphs). However, certain
types of relations may also impose constraints on the structure to ensure internal
consistency between relations (e.g. symmetry or transitivity).

Relations

Relations encode the different computational interactions between the object
representations in a structured model. Many different types of relations are
possible, including causal relations (e.g. “collides with”), hierarchical relations
(“is part of”), or comparative relations (e.g. “bigger than”). Moreover, these
general relations can often be specialized to include the nature or strength of an
interaction (e.g. “elastic collision”, “much bigger than”). Arguably, to efficiently
account for this variability and support learning, relations are best encoded using
flexible (neural) representations. Similar to object representations, it may then
also be desirable to use a common format that provides a measure of similarity
between relations and ensures that they can be used interchangeably17. The way
structure is defined in terms of relations may also have implications for their
corresponding representations. When the structure is given by a regular (directed)
graph or a factor graph (see Figure 3.9 a & b), then each relation is encoded by a
single representation corresponding to either an edge or a factor. Alternatively, it
is possible to encode a relation with multiple representations that each correspond
to a possible role that an object plays in their interaction as determined by the
relation (see Figure 3.9 c). Finally, it is important that relations are represented
separately from and independent of the object representations (see also role-filler-
independence [Hummel et al., 2004]). This enables relations and objects to be
composed in arbitrary ways to form a wide variety of (potentially novel) structures.

17Doumas et al. [2008] even argues that objects and relations should use a shared ‘feature pool’
with which both can be described.

62 3.4 Composition

Variable Binding

To enable a single neural network to implement different structured models, it
requires a suitable ‘variable binding’ mechanism18 that can dynamically combine
modular object representations and relations. Consider the classic example of
Mary and John adapted from Fodor and Pylyshyn [1988]: Depending on a given
task or context it may be more important to consider that “Mary loves John”,
that “John is taller than Mary”, or that “Mary hit John”. In general, the number
of possible structures that can be considered is potentially very large, and it
is, therefore, intractable to represent all of them simultaneously. Apart from
being dynamic, a suitable variable binding mechanism should also preserve the
modularity of individual objects representations. This is critical to implement
structured models that are compositional, which enables the neural network to
generalize systematically and predictably with respect to the underlying objects.

In many cases, only a single level of variable binding that directly combines
individual object representations and relations is needed. However, in certain
other cases (e.g. “Bob knows that Mary loves John”) it may be required to first
build composite structures that can themselves act as ‘objects’, and that can then
be combined recursively. When using a role-based representation for relations,
multiple levels of variable binding are also needed to avoid ambiguity when a
low-level object representation plays the same role in multiple relations.

Relational Frames

Each type of relation focuses on a particular aspect of the broader interaction
among objects, and thereby defines a particular relational frame that is internally
consistent. Consider again the example in Figure 3.8, which was concerned with
the “heavier than” relation. This corresponds to a relational frame of comparison
that induces an ordering among the objects in terms of their weight. In this
case, an internally consistent ordering requires the relation to be transitive (i.e.
A > B \ B > C) A > C) and anti-symmetric (i.e. A > B) B 6> A). More
generally, a relational frame is characterized by a particular type of relation,
and by the logical consequences (i.e. different entailments) that are implied
by having (multiple) relations of this type within the structure. We adopted
the term relational frame from Relational Frame Theory (RFT [Barnes-Holmes
and Roche, 2001; Hughes and Barnes-Holmes, 2016]), which distinguishes two

18The term variable binding is adapted from mathematics, where it refers to binding the
free variables in an expression to specific values. In our case, variables correspond to object
representations that are bound to the structure determined by the relations.

63 3.4 Composition

Linear Ordering

bigger than

mouse cat table house

Color

Circular
Hierarchy

H

Li Be

Na Mg

K Ca

Rb Sr

Cs Ba

Fr Ra

Sc

La

Ac

Cl

Ti V

Zr Nb

Hf Ta

Rf Db

Cr Mn

Mo Tc

W Re

Sg Bh

Fe Co

Ru Rh

Os Ir

Hs Mt

Ni Cu

Pd Ag

Pt Au

Ds Rg

Zn Ga

Cd In

Hg Tl

Cn Nh

Ge As

Sn Sb

Pb Bi

Fl Mc

Se Br

Te I

Po At

Lv Ts

Kr

Xe

Rn

Og

B

Al

C N

Si P

O F

S

Ne

Ar

He

Y

Tabular

Periodic Table
of Elements

Causal Graph Clustering

Figure 3.10. Examples of different structural forms [Kemp and Tenenbaum, 2008]
that each can be used to define relations among objects but imply different
patterns of generalization.

types of entailment that humans primarily use to derive (unobserved) relations:
mutual entailment and combinatorial entailment. Mutual entailment is used to
derive additional relations between two objects based on a given relation between
them, e.g. anti-symmetry for a frame of comparison, or symmetry for a frame
of coordination (i.e. deriving B = A from A = B). Analogously, combinatorial
entailment is used to derive new relations between two objects based on their
relations with a shared third object, e.g. transitivity for a frame of coordination
(i.e. deriving A= C from A= B and B = C).

Many different types of relational frames can be distinguished, which can be
organized into a number of general classes, including ‘coordination’ (e.g. same
as), ‘comparison’ (e.g. larger than), ‘hierarchy’ (e.g. part of), ‘temporal’ (e.g.
after), or ‘conditional’ (e.g. if then) [Hughes and Barnes-Holmes, 2016]. Their
corresponding rules for entailment give rise to different structural forms [Kemp
and Tenenbaum, 2008] among their relations, such as trees, chains, rings, and
cliques (see Figure 3.10). In this way, each relational frame can also be seen as
encoding a particular (systematic) pattern of generalization among the objects.
Multiple different relational frames may co-occur within the same structure, which
allows for rules of entailment to interact across different frames to facilitate more
complex generalization patterns (e.g. A= B and B > C implies A> C).

64 3.4 Composition

3.4.2 Reasoning

The appropriate structure for a model depends on the task and context, and
should, therefore, be dynamically inferred by the neural network to focus only on
relevant interactions between the objects. Likewise, it is important to consider
the computational interactions between relations and object representations to
make use of the inferred structure e.g. for prediction.

Relational Responding

In order to leverage a given structure in terms of relations between object represen-
tations, a neural network must be able to organize its computations accordingly.
A common use case involves adjusting the (task-specific) response to an object
based on its relation to other objects (relational responding). For example, if it is
known that Ñ is heavier than •, then learning that • is too heavy for a particular
purpose (task) also changes your behavior concerning Ñ. More generally, rela-
tional responding of this kind may involve evaluating multiple (derived) relations
between objects and combining information across different relational frames.
Another use case is in implementing so-called structure sensitive operations [Fodor
and Pylyshyn, 1988] that require responding directly to the structure given by the
relations (independent of the object representations). This is especially important
for solving abstract reasoning tasks, e.g. when applying the distributive law to a
given mathematical expression (i.e. turning a · (b+ c) into a · b+ a · c).

To facilitate relational responding in a neural network, a natural choice is to
organize its internal information flow (i.e. computations) in a way that reflects
the graph structure of relations and objects. This ensures that newly available
information affects the object representations in accordance with the dependency
structure implied by the relations (and therefore also with the generalization
patterns due to the relational frames). Most information processing of this kind
can then be implemented in terms of only local interactions between object rep-
resentations and relations, which maximally leverages their modularity. These
local interactions, which can either be instantaneous (e.g. collides with) or persis-
tent (e.g. is part of), can facilitate both directed (e.g. for causal relations) and
bidirectional (e.g. for comparison) information flow. On the other hand, local
interactions are ill-suited for implementing structure sensitive operations that
require simultaneously considering multiple different parts of the larger structure.

65 3.4 Composition

The old man the boat. The old man the boat.

NP VP NP VP

S S

Adj N Det N

Det Nom V Det N V NP

Figure 3.11. Two parse-trees of a garden-path sentence.

Inferring Structure

Inferring the most desirable structure is an inherently difficult task. It requires
making many individual choices at the level of individual relations that all have
to be coordinated to ensure that the structure as a whole is useful. One important
guiding constraint is the internal consistency of the structure with respect to the
rules of entailment as implied by the choice of relational frames. Inconsistencies
between the observed information and predictions by the structured model are
another indicator of a wrong or incomplete structure. The ‘garden-path’ sentence
“The old man the boat.” (see Figure 3.11) provides a good example of such a
violation of expectations, which then triggers a revision of the structure. Upon
first reading, “The old man” is likely parsed as the subject of the sentence, which
implies a structure where the next word is expected to be a verb. However,
since “the boat” is not a verb (and therefore does not match this expectation),
the sentence cannot be parsed in this way. The problem is resolved by revising
the structure so that it takes “The old” as the subject and “man” as the verb of
the sentence. This example also illustrates the need for collaboration between
composition and segregation: It was the initial grouping of “The old man” as a
single object that gave rise to inconsistencies at the level of structure, which could
only be resolved by also changing the outcome of the segregation process. Hence,
the process of inferring structure must be able to provide (top-down) feedback to
help guide the process of segregation.

Inferring structure at the level of individual relations between objects involves
making choices about the type of relation, or about which of the properties of
an object to relate. These decisions can be guided by contextual cues from the
environment, such as the scales in Figure 3.9 that trigger a comparison of the
objects in terms of their masses (as opposed to e.g. their relative position or shape).
Inferring a relation between objects may also be triggered upon discovering their

66 3.4 Composition

relation to other objects (e.g. due to combinatorial entailment). However, for
the sake of efficiency it may not always be desirable to explicitly represent such
relations, but rather model their effect implicitly due to appropriately organizing
the computations of the network (i.e. via relational responding). More generally,
the process of inferring structure has to interface closely with the mechanism for
variable binding (i.e. for dynamically composing modular object representations
and relations).

3.4.3 Methods

To succeed at composition, a neural network requires a mechanism for organizing
its internal computations in a way that facilitates relational responding based
on the desired structure. A natural approach is to incorporate the structure
at an architectural level by focusing directly on the local interactions between
objects representations and relations. Alternatively, one can also use a more
generic (recurrent) neural network “processor” that (sequentially) operates on a
representation of the desired structure. In the following we will review both of
these different approaches, focusing in particular on relational responding and
the difficulty of inferring structure19.

Graph Neural Networks

Graph Neural Networks (GNNs [Scarselli et al., 2009]) are a promising approach
for composition that incorporates the desired structure for relational responding
at an architectural level (see Wu et al. [2020] for an overview)20. At a high level,
a GNN is a neural network that is structured according to a graph whose edges
determine how information is exchanged among the nodes. In the context of com-
position, nodes correspond to object representations and edges to relations, which
together form the structure, i.e. using (static) variable binding at the architectural
level. A GNN fundamentally distinguishes two kinds of information processing,
one that requires evaluating the relations between the object representations,
and another that is concerned with combining (aggregating) the effect of the

19We note, however, that the problem of inferring structure has also received considerable
attention in the causality literature, often specifically focusing on cause-effect discovery (e.g.
see Hoyer et al. [2009]; Lopez-Paz et al. [2015]; Peters et al. [2016] or Peters et al. [2017] for
an overview). More generally, we expect structural causal models to become highly relevant
for composition, due to their robustness under intervention and utility for reasoning about
hypothetical or unobserved scenarios [Pearl, 2019; Schölkopf, 2019].

20See also earlier work on NNs that can manipulate graphs e.g. [Pollack, 1990; Sperduti, 1994;
Sperduti et al., 1995]

67 3.4 Composition

incoming relations to update the object representations. By implementing these
in a general way that applies equally to different objects and relations, a GNN
can accommodate many different structures. In general, the local information
processing in a GNN ensures that information affects the object representations
in accordance with the dependency structure implied by the relations (relational
responding).

Graph Convolutional Networks Graph Convolutional Networks (GCNs) are
types of GNNs based on a generalization of convolutional neural networks (which
operate on grids) to non-euclidean geometries such as graphs [Bronstein et al.,
2017]. A GCN consists of several layers that each produce an updated set of node
representations by applying graph-convolutions to a local neighborhood in the
graph. They have been successfully applied to a wide variety of graph-structured
data including social networks [Hamilton et al., 2017], citation networks [Kipf and
Welling, 2017], 3d surfaces [Litany et al., 2018], and bio-chemical modeling [At-
wood and Towsley, 2016]. However, while they excel at modeling large-scale
graphs, one disadvantage of GCNs in the context of composition is that they
assume a given graph in the form of an adjacency matrix and node representa-
tions as input. For composition, scalability is less important since we are most
interested in relatively small graphs (restricted by working memory) that are
composed dynamically. On the other hand, some GCNs (e.g. Henaff et al. [2015];
Lee et al. [2019]) have used a mechanism for coarsening (down-sampling) the
graph between layers to reduce computational complexity, which could possibly
also provide a mechanism for refining the structure (i.e. structure inference).

Message Passing Neural Networks Message Passing Neural Networks (MPNNs
[Gilmer et al., 2017]) iteratively update the node representations of a given graph
by exchanging messages along its edges (until convergence)21. Compared to GCNs,
both the graph structure and weights are shared across layers (iterations), and the
messages (corresponding to the incoming relations) are typically implemented
as a pairwise function of both adjacent node representations. Hence, edges play
a more prominent role in information processing and by explicitly considering
pairwise interactions it is easier to model comparative relations between objects.
MPNNs were initially conceived as a generalization of RNNs to graph-structured
inputs [Sperduti and Starita, 1997; Gori et al., 2005] and have since been adapted
to consider modern deep neural networks [Li et al., 2016]. A more general

21 Recently, MPNNs have also been extended to allow for continuous updates [Deng et al., 2019;
Liu et al., 2019a].

68 3.4 Composition

framework that accommodates both MPNNs and GCNs was proposed in Battaglia
et al. [2018].

MPNNs have been shown to generalize more systematically (e.g. compared to
standard neural networks) on a number of different tasks that require relational re-
sponding in terms of objects, including common-sense physical reasoning [Chang
et al., 2016; Battaglia et al., 2016; Mrowca et al., 2018; Janner et al., 2019; Ajay
et al., 2019], visual question answering [Santoro et al., 2017; Palm et al., 2018],
abstract visual reasoning [Andreas, 2019], natural language processing [Tai et al.,
2015], physical construction [Hamrick et al., 2018], and multi-agent interac-
tions [Sun et al., 2019]. In these cases, the desired structure is either specified
directly or inferred dynamically based on some heuristic (e.g. based on proximity
[Chang et al., 2016; Mrowca et al., 2018] or a language parser [Tai et al., 2015]).
Alternatively, MPNNs have been used to implement a relational inductive bias
based on a generic structure, e.g. by assuming it to be fixed and fully connected
(as in Relation Networks [Santoro et al., 2017]). In this case, information can
still be exchanged among all the nodes, although the generalization implied by
having the correct structural dependencies is lost (e.g. for entailment).

A more desirable approach is to (dynamically) infer the desired structure,
although this is challenging due to the discreteness of graphs and difficulties in
comparing them efficiently. One approach is to first learn a continuous embedding
for all possible graph structures and then optimize for the right structure in the
corresponding space, e.g. using VAEs [Kusner et al., 2017; Zhang et al., 2019],
or GANs [Yang et al., 2019]. Similarly, it is possible to search over meta-learned
node and edge ‘modules’ to dynamically assemble the graph [Alet et al., 2019].
Another approach is to directly infer the connectivity between nodes in an iterative
fashion based on message passing, e.g. for a fixed number of nodes as in Neural
Relational Inference (NRI [Kipf et al., 2018]) or adaptively as in Graph Recurrent
Attention Networks (GRANs [Liao et al., 2019]).

Approaches based on Self Attention Graph Neural Networks based on self-
attention are closely related to MPNNs. The main difference to MPNNs is that they
use self-attention to compute a weighted sum of the incoming messages (based
on the relations) for updating the node representations. This provides a useful
mechanism for dynamically adapting the information routing (here a kind of
implicit variable binding) and thereby infer the desired structure for a fixed set of
nodes. However, note that this may be computationally inefficient since it still
requires computing all possible messages and only affects which of them end up
being used in the final summation.

69 3.4 Composition

The approach by Wang et al. [2018] is based on a kind of (learned) dot-
product attention to infer relations between spatial slots. In this case, the attention
coefficients are computed for pairs of nodes while the messages are based only on
a single node, which may make it more difficult to implement multiple different
relations. The use of multiple attention heads (i.e. as in Vaswani et al. [2017]),
may help mitigate this issue and has been successfully applied for the purposes
of relational reasoning about objects [Santoro et al., 2018a; Zambaldi et al.,
2019; Goyal et al., 2019; van Steenkiste et al., 2020] (see also Chapter 6) and
question answering [Dehghani et al., 2019]. Alternatively, this can be addressed
by also conditioning the message on the receiving object representation when
using attention e.g. as we will explore in R-NEM [van Steenkiste et al., 2018a]
(see also Chapter 5).

The idea of using (self-)attention as a mechanism for inferring structure (and
dynamic information routing) has also been applied outside the scope of graph
neural networks, e.g. in Pointer Networks [Vinyals et al., 2015], energy-based
models [Mordatch, 2018], and Capsules [Sabour et al., 2017; Kosiorek et al.,
2019].

Neural Computers

Neural computers offer an alternative approach to composition by learning to
perform reasoning operations sequentially on some appropriate representation
of the desired structure. In this case, the ‘processor’ is typically given by an
RNN that interfaces with other components, such as a dedicated memory, via a
prescribed set of differentiable operations. Compared to a GNN, the architecture
of a neural processor is more generic and does not directly reflect the desired de-
pendency structure in terms of relations between object representations. Instead,
by considering structure at a representational level, it can more easily be adjusted
depending on task or context. Similarly, by having a central processor that is
responsible for relational responding (as opposed to a distributed GNN) it is easier
to support operations that require global information (e.g. structure-sensitive
operations). On the other hand, the ability of neural computers to learn more
general algorithms comes at the cost of a weaker inductive bias for relational
reasoning specifically. Hence, it is often necessary to incorporate more special-
ized mechanisms to efficiently learn algorithms for relational responding that
generalize in accordance with the desired structure.

The most common type of neural computer consists of an RNN (the processor)
that interfaces with an external differentiable memory component. The latter
provides an interface for routing information content (now stored separately) to

70 3.4 Composition

the variables that take part in processing (i.e. the program executed by the RNN
processor). Indeed, while an RNN can in principle perform any kind of compu-
tation using only its hidden state as memory [Siegelmann and Sontag, 1991],
its dual purpose for representing structure and information processing makes it
difficult to learn programs that generalize systematically [Lake and Baroni, 2018].
Early examples of memory-augmented RNNs [Das et al., 1992; Mozer and Das,
1993] use a continuous adaptation of stacks based on the differentiable push and
pop operations introduced in Giles et al. [1990] (cf. Joulin and Mikolov [2015]
for an alternative implementation). Although a stack-based memory has proven
useful for learning about the grammatical structure of language (e.g. Das et al.
[1992]), its utility for more general reasoning tasks is limited by the fact that only
the top of the stack is accessible at each step.

The addressable memory used in the Neural Turing Machine (NTM [Graves
et al., 2014]) offers a more powerful alternative, which can be accessed via
generic read and write operations (but see memory networks for a read-only
version [Weston et al., 2014; Sukhbaatar et al., 2015]). In this case, all memory
slots (and thereby all parts of the structure) are simultaneously accessible through
an attention mechanism (responsible for variable binding) that supports both
content- and location-based addressing. Together, these operations have shown
to provide a useful inductive bias for learning simple algorithms (e.g. copying
or sorting) that generalize to longer input sentences (i.e. more systematically).
Additional memory addressing operations, e.g. based on the order in which mem-
ory locations are accessed (DNC [Graves et al., 2016]), based on when they
were last read [Munkhdalai and Yu, 2017], or based on a key-value addressing
scheme [Csordas and Schmidhuber, 2019] may confer additional generalization
capabilities that are especially relevant for relational reasoning. For example, the
DNC has shown capable of learning traversal and shortest path algorithms for
general graphs by writing an input sequence of triples (‘from node’, ‘to node’,
‘edge’) to memory, and iteratively traverse this structure using content-based
addressing [Graves et al., 2016]. Moreover, given a family tree consisting of
ancestral relations between family members, the DNC can successfully derive rela-
tionships between distant members, which demonstrates a form of combinatorial
entailment.

Other memory-based approaches take a step towards GNNs by updating each
memory location in parallel [Kaiser and Sutskever, 2016; Henaff et al., 2017] or
incorporate specialized structure for reasoning into the processor, e.g. for visual
question answering using a read-only memory (knowledge base) [Hudson and
Manning, 2018]. Alternatively, certain (Hebbian) forms of fast weights [Schmid-
huber, 1992a] can be viewed as a type of internal associative memory based on

71 3.5 Disentangling Factors of Variation

previous hidden states [Ba et al., 2016a]. TPR-RNN [Schlag and Schmidhuber,
2018] extends this idea by equipping a fast-weight memory with specialized
matrix operations inspired by Tensor Product Representations (TPRs [Smolen-
sky, 1990]), which makes it easier to respond to relational queries. In contrast,
Reed and de Freitas [2015] and Kurach et al. [2016] take a step towards modern
computer architectures by, respectively, incorporating a call-stack with an explicit
compositional structure or a mechanism for manipulating and dereferencing
pointers to a differentiable memory tape.

3.5 Disentangling Factors of Variation

In the previous sections, we have focused on incorporating object representations
in neural networks, which required addressing the challenges of representation,
segregation and composition. In this section, we take another look at represen-
tation but focus on a particular representational format in which informative
‘factors of variation’ are disentangled. In Section 3.5.1 we argue for the utility
of identifying these factors, while Section 3.5.2 is concerned with (learning)
disentangled representations.

3.5.1 Informative Factors of Variation

The idea that complex high-dimensional data, such as the visual appearance of an
object, can be efficiently described in terms of a number of informative factors of
variation plays a central role in disentanglement. Their existence can be motivated
by observing that the semantic features that humans use to describe concepts,
such as visual objects, can be organized according to a relatively small number of
comparable dimensions that focus on particular properties [Hong et al., 2014;
Zheng et al., 2019]. These include more general perceptual dimensions focusing
on color and shape, but also functional dimensions that often assume a particular
context [Devereux et al., 2014]. By describing the concept that underlies the raw
visual representation of an object in terms of these more general features (i.e. that
equally apply to many other objects) it becomes easier to relate and compare
novel instances [Zheng et al., 2019]. Indeed, recall Figure 3.3, which allowed you
to experience your own capabilities in describing and comparing unseen objects.

In machine learning, informative factors of variation are typically viewed as a
consequence of the generative process that underlies the observed data [Bengio
et al., 2013; Higgins et al., 2018a]. They are in part characterized by (1) account-
ing for a significant fraction of the observed variation among the data, and (2)

72 3.5 Disentangling Factors of Variation

corresponding to separate degrees of freedom that can be varied independently.
These properties closely relate to the principle of Independent Causal Mechanisms,
which states that the causal generative process of a system’s variables is composed
of autonomous modules that do not inform or influence each other [Schölkopf
et al., 2012; Peters et al., 2017]. Hence, it may be helpful to think of factors of
variation as belonging to the causal mechanisms (or elementary ingredients [Suter
et al., 2019]) that define the structural causal model according to which the
observed data was generated. This relationship then also highlights their sig-
nificance for machine learning. Firstly, since they can be separately intervened
upon, they may act as an efficient (i.e. compact) ‘basis’ for the space of all possible
combinations of feature values according to which a significant fraction of the
observed variability can be described. For example, by assuming independent
mechanisms responsible for generating the color and shape of an object, one can
efficiently explain a large chunk of their variability encountered in image space.
Secondly, when a continuous stream of observations is due to sparse changes to
the underlying causal mechanisms (i.e. as in the real world), they offer a degree
of invariance that makes it easier to relate high-dimensional observations [Ben-
gio et al., 2013]. Finally, due to their modularity, the same causal mechanism
may play a part in different generative processes, which makes it easier to reuse
knowledge [Schölkopf et al., 2012].

3.5.2 Learning Disentangled Representations

A disentangled representation adopts a particular representational format for
encoding information about informative factors of variation. Although the precise
properties of the format that make a representation disentangled remains a topic
of debate, the core concept of a local correspondence between factors of variation
and learned (latent) codes is generally agreed upon [Eastwood and Williams,
2018; Higgins et al., 2018a; Locatello et al., 2018; Ridgeway and Mozer, 2018;
Suter et al., 2019].

In prior work, Eastwood and Williams [2018] and Ridgeway and Mozer [2018]
put forth three criteria of disentangled representations:

• Modularity: The degree to which each neuron in a learned representation
encodes information about only a single factor of variation.

• Compactness: The degree to which information about each factor of varia-
tion is encoded by only a single neuron in a learned representation.

73 3.5 Disentangling Factors of Variation

• Explicitness: To what extent the mapping between factors and learned
codes can be implemented with a simple (i.e. linear) model.

Together, modularity and compactness imply that a disentangled representation
implements a one-to-one mapping between informative factors of variation and
the learned codes. However, while modularity is commonly agreed upon, com-
pactness is a point of contention. Ridgeway and Mozer [2018] argue that some
features (eg. the rotation of an object) are best described with multiple codes,
although this is essentially less compact. Other formulations of disentanglement,
including the frameworks based on symmetry transformations [Higgins et al.,
2018a] or based on causal mechanisms [Suter et al., 2019] decouple the notion
of compactness from the number of latent codes.

It is easy to see how a representation that is more disentangled (according
to the notion of modularity, compactness, and explicitness) is better able to
harness the power of learning about informative factors of variation. Modularity
partitions the representation according to factors of variation, which ensures that
each part is robust (or invariant) to changes in the input due to other factors (or
due to noise). Meanwhile, compactness and explicitness ensure that information
about a specific factor can readily be accessed. Hence, learning to solve a down-
stream task from a disentangled representation has generally been found to be
easier [Achille et al., 2018; Lopez et al., 2018] and more efficient [Hsu et al.,
2017; Higgins et al., 2017b; Steenbrugge et al., 2018]. We offer our own evidence
from a large-scale study regarding their sample-efficiency in Chapter 7 and in van
Steenkiste et al. [2019]. Moreover, since different factors of variation focus on
independent properties, this factorization captures a product space that has been
found to make it easier to generalize to unseen feature combinations [Esmaeili
et al., 2019; Greff et al., 2019].

Learning disentangled representations requires incorporating a suitable induc-
tive bias, especially in the unsupervised case, where normally the auxiliary task of
statistical modeling offers no guarantees about disentanglement of the underlying
representation [Locatello et al., 2018; Caselles-Dupré et al., 2019]. Many recent
unsupervised approaches to learning disentangled representations take an infor-
mation bottleneck approach based on (Variational) Auto-Encoders [Tschannen
et al., 2018]. In this case, the capacity of the bottleneck (i.e. the output of the
encoder) is regularized to contain features that are maximally informative about
the observed data and that factorize (e.g. Schmidhuber et al. [1996]; Makhzani
et al. [2015]; Higgins et al. [2017a]; Kumar et al. [2018]; Kim and Mnih [2018]).
Similarly, purely generative approaches such as InfoGAN [Chen et al., 2016] can
learn disentangled features by maximizing mutual information between a number

74 3.5 Disentangling Factors of Variation

of factored latent variables and the observed image.
Stronger guarantees can be obtained by incorporating a degree of supervision

in the form of data selection. For example, Kulkarni et al. [2015b] propose an
approach based on VAEs that assumes access to an oracle that is able to organize
the data according to the value of a particular factor, while Karaletsos et al. [2016]
requires the oracle to group the data according to a factor-specific similarity score.
In this setting, it is also possible to learn disentangled representations via deep-
embedding methods, which learn to embed high-dimensional observations such
that their distance in this space reflects their semantic similarity [Ustinova and
Lempitsky, 2016]. In this context, Veit et al. [2017] incorporates a masking
mechanisms that makes it possible to learn disentangled embeddings that can
be compared across multiple different subspaces (corresponding to a particular
factor), but which requires a factor-specific oracle. Alternatively, Ridgeway and
Mozer [2018] evaluates their dissimilarity objective only on the dimensions that
are most separated, and does not require the oracle to communicate which of the
factors is being varied. An advantage of this more weakly-supervised framework
is that it is easier to obtain the required amount of supervision. Indeed, Locatello
et al. [2020] demonstrates how, by departing from the i.i.d. setting, they can
obtain paired observations as consecutive frames from an input stream of images
in a self-supervised manner.

Chapter 4

Neural Expectation Maximization

The focus of this chapter is on learning object representations, and in particular on
the challenges of representation and segregation that were discussed in Section 3.2
and Section 3.3 respectively. Learning object representations requires learning
about the notion of an object (in this case directly from raw images) and incorpo-
rating suitable mechanisms for extracting and representing this information.

In order to learn about objects, we will focus on their functional role as
abstract computational units that are modular and reusable across many different
contexts. Hence, we adopt the intuitive notion of an object as being a common
cause for multiple observations (the pixels that depict the object), which induces a
dependency structure among the affected pixels, but leaves other pixels (largely)
independent. It implies that we assume that objects are self-contained, in that
knowledge about some pixels of an object helps in predicting its remainder,
whereas it does not improve the predictions for pixels of other objects.

These assumptions allow us to treat segregation as a pixel-level clustering
problem, where pixels are related through belonging to the same cluster, and
where each cluster corresponds to a particular object. In order to attempt to
solve this clustering problem, we require a trainable clustering procedure that
can adapt to accommodate various definitions of an object, based solely on the
observed statistical regularities in the data. When separately representing the
information content associated with each cluster in a common format, it can then
also address the superposition problem. Taken together, such an approach is
expected to be capable of learning a representation of an image that is composed

This chapter is based on Greff⇤ and van Steenkiste⇤ et al. [2017a], which was published as a
conference paper at NIPS 2017. A preliminary version of this work [Greff⇤ and van Steenkiste⇤
et al., 2017b] appeared as a workshop paper at ICLR 2017. These works were done in close
collaboration and both authors contributed equally.

75

76 4.1 Method

of multiple object representations, unlike standard approaches that are only
capable of learning a single monolithic representation of an image [Kingma and
Welling, 2014; Chen et al., 2016; Higgins et al., 2017a].

The primary contribution in this chapter is to formalize this approach as
maximum likelihood estimation (using generalized EM [Dempster et al., 1977])
in a spatial mixture model, where each component is parameterized by a shared
neural network. The weights of the neural network act as the similarity function
according to which to cluster pixels, and we demonstrate how one can back-
propagate gradients through the generalized EM procedure so that they can
be trained to learn about objects. Empirically it is shown how the resulting
trainable clustering algorithm can be applied to images and videos to learn object
representations.

4.1 Method

We will treat segregation as a pixel-level clustering problem and assume that
images are composed of K objects, such that each pixel is determined by exactly
one object. Which objects are present, as well as the corresponding assignment of
pixels to objects, varies from image to image. To acquire object representations,
we seek to describe each object k = 1 . . . K with a lower-dimensional distributed
representation ✓k that captures the information content of the affected pixels but
carries no information about the remainder of the image.

The key insight underlying our approach is that if we assume access to the
family of distributions {p(x | ✓k) : ✓k 2 ⇥k}, then we can model each image with
a mixture model. In this case, the parameter vectors ✓k (object representations)
and the corresponding assignment of pixels to components (objects), for a given
image, can be obtained via maximum likelihood estimation using Expectation
Maximization (EM). The central problem we therefore address in this section is
how to learn this family of distributions in a completely unsupervised fashion.

At a high level, we overcome this problem by formulating a spatial mixture
model that parametrizes {p(x | ✓k) : ✓k 2 ⇥k} with a neural network f�(✓k)
(Section 4.1.1). In this case, the corresponding generalized EM procedure to
perform maximum likelihood estimation is fully differentiable (Section 4.1.2),
which allows us to obtain a differentiable clustering procedure (Section 4.1.3)
that can be trained to learn about objects based on an appropriate ‘outer’ loss
(Section 4.1.4). In the remainder of this section, we formalize and derive this
trainable clustering algorithm, which we call Neural Expectation Maximization
(N-EM).

77 4.1 Method

4.1.1 Neural Spatial Mixture Model

D
Figure 4.1. The probabilistic
graphical model that under-
lies N-EM.

We propose to model each image x 2 RD as a
spatial mixture of K components parameterized
by vectors ✓1, . . . ,✓K 2 RM . A differentiable non-
linear function f� (a neural network) is used to
transform these representations ✓k into parameters
 i,k := f�(✓k)i for separate pixel-wise distributions.
These are typically assumed to be either Bernoulli
or Gaussian, in which case i,k corresponds to the
mean parameter or the mean and variance param-
eters respectively. This parametrization assumes
that given the representation, the pixels are inde-
pendent but not identically distributed (unlike in
standard mixture models). A set of binary latent
variables Zi 2 [0,1]K encodes the unknown true
pixel assignments, such that Zi,k = 1 iff pixel i was generated by component k, andP

k zi,k = 1. A graphical representation of this model can be seen in Figure 4.1,
where ⇡ = (⇡1, . . .⇡K) are the mixing coefficients that determine the categorical
prior p(zi). The full likelihood for x given ✓ = (✓1, . . . ,✓K) is given by:

p(x | ✓) =
DY

i=1

X

zi2Z i

p(x i, zi | i) =
DY

i=1

KX

k=1

p(Zi,k = 1)| {z }
⇡k

p(x i | Zi,k = 1, i,k). (4.1)

4.1.2 Expectation Maximization

Directly optimizing log p(x | ✓)with respect to ✓ is difficult due to marginalization
over z, while for many standard choices of distributions optimizing log p(x ,z | ✓)
is much easier. Expectation Maximization (EM [Dempster et al., 1977])1 takes
advantage of this and instead optimizes a lower bound given by the expected
log-likelihood (see Section 2.2.1 for a derivation):

log p(x | ✓)�Q(✓ ,✓ old) :=
DX

i=1

X

zi2Zi

p(zi | x i,
old
i) log p(x i,zi | i). (4.2)

1See von der Malsburg [1973] for an early application of EM to NNs.

78 4.1 Method

Figure 4.2. Illustration of the unrolled computational graph of generalized EM
for the neural spatial mixture model under consideration. By backpropagating
gradients through this graph (using backpropagation through time) it becomes
possible to train the neural network parameters � based on an appropriate
“outer” loss. Two steps of this trainable clustering procedure, which we call
Neural Expectation Maximization (N-EM), are shown.

Iterative optimization of this bound alternates between two steps. In the
E-step we compute a new estimate of the posterior probability distribution over
the latent variables given ✓ old from the previous iteration. In the case of a (spatial)
mixture model, this re-estimation essentially corresponds to an update of the soft
assignment of the pixels to the components (clusters) based on the old model
parameters:

�i,k := p(Zi,k = 1 | x i,
old
i,k) =

⇡k · p(x i | Zi,k = 1, old
i,k)P

k0 ⇡k0 · p(x i | Zi,k0 = 1, old
i,k0)

. (4.3)

In the M-step we then perform maximum likelihood estimation by choosing ✓
as to maximally increase the expected log-likelihood using the posteriors computed
in the E-step. Due to the non-linearity of f� it is difficult to formulate an analytical
solution to arg max✓ Q(✓ ,✓ old). However, since f� is differentiable, we can
improve Q(✓ ,✓ old) and increase the likelihood by taking a gradient ascent step:2

✓ new = ✓ old +⌘
@Q
@ ✓

where
@Q
@ ✓k
/

DX

i=1

�i,k(i,k � x i)
@ i,k

@ ✓k
. (4.4)

The resulting algorithm belongs to the class of generalized EM algorithms and
is guaranteed (for a sufficiently small learning rate ⌘) to converge to a (local)
optimum of the data log-likelihood [Wu, 1983].

2Here we assume that p(x i | Zi,k = 1, i,k) is given by N (x i | µ= i,k,�2) for some fixed �2

as in (2.7), yet a similar update arises for many typical parametrizations of pixel distributions.

79 4.1 Method

4.1.3 Trainable Clustering Procedure

The similarity function that determines what pixels end up clustered together
(after applying generalized EM) is largely determined by the neural network f�,
and in particular by its weights �. So far, we have considered f� to be fixed
and have shown how we can compute a maximum likelihood estimate for ✓ =
(✓1, . . . ,✓K) (which acts as the representation) alongside the appropriate clustering.
We now observe that by unrolling the iterations of the presented generalized EM
algorithm, we obtain an end-to-end differentiable clustering procedure based on
the spatial mixture model parameterized by f� (see Figure 4.2). This enables us
to train f� to capture the statistical regularities corresponding to objects, namely
by considering the outcome of clustering on an entire data set of images. In
particular, using backpropagation through time (BPTT [Werbos, 1988; Williams,
1989]), we are now able to compute gradients of an appropriate ‘outer’ loss (see
Section 4.1.4) with respect to � and train f� via (stochastic) gradient descent.
We refer to this trainable procedure as Neural Expectation Maximization (N-EM).

RNN-EM Upon inspection of the structure of N-EM (Figure 4.2) we find that it
resembles K copies of a recurrent neural network with hidden states ✓k that at
each timestep receive �:,k�(:,k�x) as their input (due to application of the chain-
rule in (4.4)). Each copy computes a new :,k, which is then used by the E-step to
re-estimate the soft-assignments �. In order to accurately mimic the M-Step (4.4)
with an RNN, we must impose several restrictions on its weights and structure:
the ‘encoder’ (that processes the input before it is combined with the hidden
state) must correspond to the Jacobian @ :,k/@ ✓k, and the recurrent update must
linearly combine the output of the encoder with ✓k from the previous step. Instead,
we introduce a variation of N-EM called RNN-EM, which substitutes that part of
the computational graph with an actual RNN (without imposing any restrictions
and using a standard neural network encoder). Although RNN-EM can no longer
guarantee convergence of the data log-likelihood, its recurrent weights, and the
use of an encoder increase the overall flexibility of the clustering procedure. In
particular, by essentially amortizing the approximate M-step3 across the entire
data set it is foreseeable that RNN-EM is better able to leverage the top-down

3One way of understanding this modification is through the lens of amortized variational
inference [Kingma and Welling, 2014]. If one were to treat ✓ as a random variable, then learning
would additionally involve computing the posterior p(✓ | x), which can be approximated using
an inference model such as a neural network encoder, similar to the one considered here. In fact,
such a formalization but based on iterative amortized inference [Marino et al., 2018] was later
studied in Greff et al. [2019].

80 4.1 Method

Figure 4.3. Illustration of a single step of RNN-EM. Compared to N-EM (Figure 4.2),
the gradient in the M-step is approximated by the output of an encoder that
receives the top-down error �:,k � (:,k � x) as input. The parameters ✓k now
act as the hidden state of a recurrent neural network, which is updated at each
(time-)step based on the output of the encoder and the previous estimate of the
parameters. By training the encoder across a data set of images we essentially
amortize the M-step.

error �:,k � (:,k � x) to improve ✓k. Moreover, by using a fully parameterized
recurrent weight matrix, RNN-EM naturally extends to sequential data, as we
will see next. Figure 4.3 presents the computational graph of a single RNN-EM
timestep.

4.1.4 Training Objective

N-EM is a trainable clustering procedure that clusters the pixels in an image
and computes a distributed representation (that has a common format) for each
cluster. Its outcome relies on the neural network f�, which can be trained across
an entire data set of images to learn about statistical regularities corresponding
to objects. This necessitates a suitable training objective that teaches f� to map
representations ✓ to parameters that correspond to pixel-level distributions for
such objects.

We accomplish this with a two-term loss function that guides the neural
network to focus on regularities in the images that are modular and self-contained.
More specifically, each of the K neural network copies is encouraged to model
the pixels belonging to a cluster independently of any other information in the
image by minimizing:

81 4.1 Method

L(x | �) =�
DX

i=1

KX

k=1

�i,k log p(x i,Zi,k = 1 | i,k)| {z }
intra-cluster loss

+
DX

i=1

KX

k=1

(1� �i,k)DK L[p(x i) || p(x i | Zi,k = 1, i,k)]| {z }
inter-cluster loss

.

(4.5)

The intra-cluster loss corresponds to the same expected data log-likelihood Q
that is optimized during the M-step in EM. It encourages each neural network
copy to increase the likelihood for pixels that have been assigned to it, and in
the case of RNN-EM, it will encourage the encoder to perform a similar role as
the M-step. From the perspective of RNN-EM, the intra-cluster loss is analogous
to a standard reconstruction loss used for training autoencoders but weighted
by the soft assignment of pixels to clusters. Similar to autoencoders, this objec-
tive is prone to trivial solutions in case of overcapacity, which would prevent
the network from modeling the statistical regularities that we are interested in.
Standard techniques can be used to overcome this problem, such as making ✓ a
bottleneck (i.e. to put emphasis on information that can be compactly encoded) or
by feeding a noisy version of x to the encoder (i.e. to put emphasis on information
that has internal predictive structure). It can also be seen how this loss can be
adapted to become a next-step prediction loss to extend RNN-EM to sequential
data x [1], . . . , x [T], namely by evaluating (4.5) using x [t + 1] and treating each
EM step as a single time-step4.

Weighing the loss pixel-wise is crucial since it allows each network to specialize
its predictions to an individual object5. However, it also introduces a problem:
the loss for out-of-cluster pixels (�i,k = 0) vanishes. This leaves the network free
to predict anything for pixels that have not been assigned to it, which corrupts
the underlying representation. Therefore, we add a second term (the inter-
cluster loss), for regularization, which penalizes the KL divergence between out-
of-cluster predictions and the pixel-wise prior of the data p(x i) (hyperparameter).

4This way of applying RNN-EM can essentially be thought of as solving a moving target problem,
where the target x updates after applying an approximate EM step. Alternatively, it is possible to
consider multiple approximate EM steps per time-step. However, this would necessitate a separate
update rule (i.e. a separate weight matrix) to distinguish between “refining” the representation
for a given time-step, and “updating” it to capture information about the next time-step.

5A potential disadvantage of the interaction between � and in (4.5) is that it could yield
conflicting gradients. For any ✓k the loss for a given pixel i can be reduced by better predicting
 i,k, or by decreasing �i,k (i.e. taking less responsibility) which is, due to the form of the E-step,
essentially equivalent to doing a worse job at predicting i,k. A practical solution to this problem
is obtained by stopping the � gradients, i.e. by setting @ L/@ � to 0 during backpropagation.

82 4.2 Related work

Intuitively this prevents each representation ✓k from containing information about
non-assigned pixels, i.e. in this case p(x i | Zi,k = 1, i,k) = p(x i).

4.2 Related work

A closely related method to our approach is Tagger [Greff et al., 2016], which
similarly learns perceptual grouping in an unsupervised fashion using K copies of
a neural network that work together by reconstructing different parts of the input.
Unlike in the case of N-EM, these copies additionally learn to output the grouping,
which gives Tagger more direct control over the segmentation and supports its use
on complex texture segmentation tasks. Our work maintains a close connection
to EM and relies on exact posterior inference using the E-step as a grouping mech-
anism. This facilitates theoretical analysis and simplifies the task for the resulting
networks, which we find can be markedly smaller than in Tagger. While N-EM
produces modular object representations, Tagger critically relies on Ladder Net-
works [Rasmus et al., 2015], which spread the representational content of objects
across many different layers. Finally, Tagger does not include any recurrent con-
nections at the level of hidden states, precluding it from next-step prediction on se-
quential tasks. RTagger [Prémont-Schwarz et al., 2017]: a recurrent extension of
Tagger that does support sequential data, was developed concurrently to this work.

N-EM is also related to Attend Infer Repeat (AIR) [Eslami et al., 2016], which
models an image in a sequential fashion by attending to different regions (cor-
responding to objects) at each step. Unlike AIR, which uses sequential slots,
N-EM makes use of instance slots that are described in a common format and
further decouples the number of iterations (EM steps) from the number of objects.
Moreover, the use of attention in AIR introduces a stronger spatial bias, which
potentially makes it more difficult to model objects consisting of parts that are not
spatially near. However, unlike N-EM, AIR learns a generative model of the data
distribution and is in principle also able to synthesize new images. While AIR
could only be applied to static images, the later work by Kosiorek et al. [2018]
was able to extend AIR to sequential data.

A broader connection of N-EM is to unsupervised segmentation, which has
been studied in several different contexts [Schmidhuber, 1992c]: from random
vectors [Hyvärinen and Perkiö, 2006] and textures [Guerrero-Colón et al., 2008]
to images [Kannan et al., 2007; Isola et al., 2015]. Early work in unsupervised
video segmentation [Jojic and Frey, 2001] used generalized EM to infer how
to split frames of moving sprites. More recently, optical flow has been used to
train convolutional networks to do figure/ground segmentation [Pathak et al.,

83 4.3 Experiments

2017; Vijayanarasimhan et al., 2017]. A related line of work under the term
of multi-causal modeling [Saund, 1995] has formalized perceptual grouping as
inference in a generative compositional model of images. For example, Masked
RBMs [Le Roux et al., 2011] extend Restricted Boltzmann Machines with a latent
mask inferred through Block-Gibbs sampling.

Gradient backpropagation through inference updates has previously been used
in the context of sparse coding with (Fast) Iterative Shrinkage/Thresholding Algo-
rithms ((F)ISTA [Daubechies et al., 2004; Rozell et al., 2008; Beck and Teboulle,
2009]). Here, the unrolled graph of a fixed number of ISTA iterations is replaced
by a recurrent neural network that parametrizes the gradient computations and
is trained to predict the sparse codes directly [Gregor and LeCun, 2010]. We
derive RNN-EM from N-EM in a similar fashion and likewise obtain a trainable
procedure that has the structure of iterative pursuit built into the architecture
while leaving tunable degrees of freedom that can improve their modeling ca-
pabilities [Sprechmann et al., 2015]. From this perspective RNN-EM can also
be viewed as performing a kind of meta-learning (i.e. learning to learn) using
RNNs [Hochreiter et al., 2001].

4.3 Experiments

We evaluate our approach on a perceptual grouping task for generated static
images and video. By composing images out of simple shapes we have control
over the statistical structure of the data, as well as access to the ground-truth
clustering. This allows us to verify that the proposed method indeed recovers
the intended grouping and learns representations corresponding to these objects.
Additionally, we are interested in studying the role of next-step prediction as an
unsupervised objective for perceptual grouping, the effect of the hyperparameter
K , and the usefulness of the learned object representations.

In all experiments we use ADAM [Kingma and Ba, 2015] with default parame-
ters and a batch size of 64 to train the neural networks. We use 50K observations
for training, 10K for validation, and 10K for testing. For simplicity we choose
to ignore the mixing prior p(z | ⇡) in any of the proceeding computations by
assuming fixed equal mixing probabilities for all components. We use a pixel prior
with zero mean, which is either Bernoulli or Gaussian depending on the choice of
likelihood. Consistent with earlier work [Greff et al., 2015, 2016], we evaluate the
quality of the learned groupings with respect to the ground truth while ignoring
the background and overlap regions. This comparison is done using the Adjusted
Mutual Information (AMI [Vinh et al., 2010]) score, which provides a measure of

84 4.3 Experiments

Figure 4.4. Groupings learned by RNN-EM (bottom row) and N-EM (middle
row) for six input images (top row). Both methods recover the individual shapes
accurately when they are separated (a, b, f), even when confronted with the
same shape (b). RNN-EM is able to handle most occlusion (c, d) but sometimes
fails (e). The exact assignments are permutation invariant and depend on the
initialization as can be seen by comparing (a) and (f).

clustering similarity between 0 (random) and 1 (perfect match). We use early
stopping when the validation loss has not improved for 10 epochs6. A detailed
overview of the experimental setup can be found in Appendix A.1. All reported
results are averages computed over five seeds7.

4.3.1 Static Shapes

To validate that our approach yields the intended behavior, we consider a simple
perceptual grouping task that involves grouping three randomly chosen regular
shapes (45É) located in random positions of 28⇥ 28 binary images [Reichert
and Serre, 2013]. This simple setup serves as a test-bed for comparing N-EM and
RNN-EM, before moving on to more complex scenarios.

We implement f� using a single layer fully-connected neural network with a sig-
moid output i,k for each pixel, which corresponds to the mean of a Bernoulli dis-
tribution. The representation ✓k is a real-valued 250-dimensional vector squashed
to the (0, 1) range by a Sigmoid function before being fed into the network. Simi-

6Note that we do not use AMI for early stopping and neither is it part of the training objective.
All learning is done unsupervised and AMI is only measured for evaluation purposes.

7Code to reproduce all experiments is available at https://github.com/
sjoerdvansteenkiste/Neural-EM.

85 4.3 Experiments

Figure 4.5. A sequence of 5 shapes flying along random trajectories (bottom row).
The next-step prediction (i.e. the output) of each neural network copy (rows 2 to
5) and the soft-assignment of the pixels to each of the copies (top row). Notice
how RNN-EM has learned to separate each of the individual shapes as a means
to efficiently model the observed sequence when using the next-step prediction
objective. Even when many of the shapes are overlapping, as can be seen in
time-steps 18-20, the network is still able to separate the individual shapes from
the clutter.

larly, for RNN-EM we use a recurrent neural network with 250 sigmoidal hidden
units and an equivalent output layer. Both networks are trained with K = 3 and
unrolled for 15 EM steps.

As shown in Figure 4.4, we observe that both approaches can recover the
individual shapes as long as they are separated, even when confronted with
identical shapes. N-EM performs worse if the image contains occlusion, and we
find that RNN-EM is in general more stable and produces considerably better
groupings. This observation is in line with findings for Sparse Coding [Gregor
and LeCun, 2010] and we argue that the tunable degrees of freedom in RNN-EM
similarly help speed-up the optimization process resulting in a more powerful
approach that requires fewer iterations. This benefit is reflected in the large
score difference between the two: 0.826 ± 0.005 AMI for RNN-EM compared
to 0.475± 0.043 AMI for N-EM. In comparison, Tagger achieves an AMI score
of 0.79± 0.034 (and 0.97± 0.009 with layer normalization [Ba et al., 2016b]),
while using about twenty times more parameters [Greff et al., 2016].

4.3.2 Flying Shapes

We consider a sequential extension of the static shapes dataset in which the
shapes (45É) are floating along random trajectories and bounce off walls. An

86 4.3 Experiments

Training configuration Different Test Configuration

obj. K AMI # obj. K AMI

3 3 0.970 ± 0.005 3 5 0.972 ± 0.007
3 5 0.997 ± 0.002 3 3 0.914 ± 0.015
5 3 0.614 ± 0.003 3 3 0.886 ± 0.010
5 5 0.878 ± 0.003 3 5 0.981 ± 0.003

Table 4.1. AMI scores obtained by RNN-EM on the test-set of flying shapes.
On the side, the same number of objects and components K is used during
training and testing. On the right side, the number of objects or the number of
components K is changed at test time.

example sequence with 5 shapes can be seen in the bottom row of Figure 4.5.
We use a convolutional encoder and decoder inspired by the discriminator and
generator networks of infoGAN [Chen et al., 2016], with a recurrent neural
network of 100 sigmoidal units (for details see Appendix A.1.2)8. At each time-
step t (corresponding to a single approximate EM step) the network receives
�:,k[t�1]�(:,k[t�1]� x̃ [t]) as input, where x̃ [t] is the current frame corrupted
with additional bitflip noise (p = 0.2). The next-step prediction objective is
implemented by replacing x with x [t + 1] in (4.5), and is evaluated for each
time-step.

Table 4.1 summarizes the results on flying shapes. For 3 shapes we observe that
the produced groupings are close to perfect (AMI: 0.970±0.005) and even in very
cluttered scenes when using 5 shapes, RNN-EM is able to separate the individual
objects and learn object representations in almost all cases (AMI: 0.878± 0.003).
A representative example of applying a trained RNN-EM with K = 5 to a sequence
of input observations can be seen in Figure 4.5.

These results demonstrate the adequacy of the next-step prediction objective
for perceptual grouping. However, we find that the converse also holds: the
factorization into separate object representations is useful for the prediction task.
In Figure 4.6 we compare the next-step prediction error, i.e. the Binary Cross-
Entropy (BCE), of RNN-EM with K = 1 (which reduces to a recurrent autoencoder
that receives the difference between its previous prediction and the current frame
as input) to RNN-EM with K = 5 on this task. To evaluate RNN-EM on next-step
prediction we computed the BCE using the heuristic p(x i[t+1] | ✓ [t])⇡ p(x i[t+

8Using a convolutional encoder and decoder adds a spatial inductive bias in this case. It reflects
that pixels belonging to the same object are often spatially connected.

87 4.3 Experiments

Figure 4.6. Binary Cross Entropy (BCE) error obtained by RNN-EM and a recurrent
autoencoder (RNN-EM with K = 1) on the denoising and next-step prediction
task (flying Shapes). RNN-EM produces significantly lower BCE across multiple
different datasets that vary the numbers of objects.

1] | maxk i,k[t]) as opposed to p(x i[t + 1] | ✓ [t]) = Pk �i,k[t] · p(x i[t + 1] |
Zi,k = 1, i,k[t]). This ensures that we do not include information from the
next time-step through the E-step, while we expect this heuristic to perform only
slightly worse as a replacement for evaluation. Regardless, from the figure, we
observe that RNN-EM produces significantly lower errors, especially when the
number of objects increases.

Finally, in Table 4.1 we also provide insight into the impact of choosing the
hyperparameter K , which is unknown for many real-world scenarios. Surprisingly
we observe that training with too large K is in fact favorable and that the network
learns to leave the excess groups empty. When training with too few components
we find that the network still learns about the individual shapes and we observe
only a slight drop in score when correctly setting the number of components at
test time. We conclude that RNN-EM is robust towards different choices of K , and
specifically that choosing K to be too high is not detrimental.

4.3.3 Flying MNIST

To incorporate greater variability among the objects we consider a sequential ex-
tension of MNIST [LeCun et al., 1998]. Here, each sequence consists of gray-scale
24⇥ 24 images containing two down-sampled MNIST digits that start in random
positions and float along randomly sampled trajectories within the image for T
time-steps. An example sequence can be seen in the bottom row of Figure 4.7.

88 4.3 Experiments

Figure 4.7. A sequence of 3 MNIST digits flying across random trajectories in
the image (bottom row). The next-step prediction of each copy of the network
(rows 2 to 4) and the soft-assignment of the pixels to each of the copies (top row).
Although the network was trained (stage-wise) on sequences with two digits, it
is accurately able to separate three digits.

We deploy a slightly deeper version of the architecture used on flying shapes
and its precise configuration can be found in Appendix A.1.3. Since the images
are gray-scale, we now use a Gaussian distribution for each pixel with fixed
�2 = 0.25 and µ= i,k as computed by each neural network copy. The training
procedure is identical to that for flying shapes except that we replace the bitflip
noise with masked uniform noise: we first sample a binary mask from a multi-
variate Bernoulli distribution with p = 0.2 and then use this mask to interpolate
between the original image and samples from a Uniform(0,1) distribution (range
is the same as for the input data).

We train with K = 2 and T = 20 on flying MNIST having two digits and
obtain an AMI score of 0.819± 0.022 on the test set. In earlier experiments, we
also observed that, given the large variability among the 50000 unique digits,
we can boost the model performance by training in stages using a curriculum of
20, 500, 50 000 digits. Here we exploit the generalization capabilities of RNN-EM
to quickly transfer knowledge from a less varying set of MNIST digits to unseen
variations. We used the same hyperparameter configuration as before and obtain
an AMI score of 0.917± 0.005 on the test set.

We study the generalization capabilities and robustness of these trained RNN-
EM networks by means of three experiments. In the first experiment, we evaluate
them on flying MNIST having three digits (one extra) and likewise set K = 3.
Even without further training, RNN-EM is already able to obtain a high AMI score
of 0.729± 0.019 (stage-wise: 0.838± 0.008) on the test-set. A test example can
be seen in Figure 4.7. In the second experiment we test whether the grouping
mechanism that has been learned can be transferred to static images. We find
that when using 50 steps, RNN-EM is able to transfer a large part of the learned

89 4.4 Discussion

Figure 4.8. Average AMI score (blue line) measured for RNN-EM (trained for 20
steps) on the flying MNIST test-set and corresponding quartiles (shaded areas),
computed for each of 50 time-steps. The learned grouping dynamics generalize
to longer sequences and even further improve the AMI score.

grouping dynamics and obtains an AMI score of 0.619±0.023 (stage-wise: 0.772±
0.008) for two static digits. In the final experiment, we evaluate the previously
trained network on the same dataset for a larger number of timesteps. Figure 4.8
displays the average AMI score across the test set as well as the range of the upper
and lower quartile for each time-step.

The results of these experiments confirm our earlier observations for flying
shapes, namely that the learned grouping dynamics are robust and generalize
across a wide range of variations. Moreover, we find that the AMI score further
improves at test time when increasing the sequence length.

4.4 Discussion

In this chapter, we introduced Neural Expectation Maximization (N-EM), a train-
able clustering algorithm that combines neural spatial mixture models with gen-
eralized Expectation Maximization. N-EM closely resembles a recurrent auto-
encoder but incorporates several mechanisms to address key aspects of the seg-
regation and representation problem. Regarding the latter, N-EM makes use of
instance slots that are described in a common format and separate information
about individual objects. It breaks slot symmetries by iteratively refining its pre-
dictions through competing components, which allows each slot to specialize to a
specific object. To use N-EM to learn about objects, we proposed an unsupervised
training objective that embraces the idea of objects being modular building blocks

90 4.4 Discussion

that can be represented efficiently. In our experiments, we were able to confirm
that N-EM is able to learn to group pixels according to objects and represent an
image as a composition of object representations.

We also introduced RNN-EM, a variation of N-EM that treats each object
representation as the hidden state of a recurrent neural network and adds a
recurrent update rule. Together with a learned encoder, it parametrizes the M-
step and this increased flexibility was shown to yield a significant improvement
over N-EM. A key advantage of RNN-EM is that it can be applied to sequential
data by modifying its learning objective to make predictions about the future. This
makes it easier to learn about objects since pixels belonging to the same object
usually share a common fate [Hatfield and Epstein, 1985]. Indeed, we were able
to show how RNN-EM is able to learn about objects even in the presence of heavy
occlusion, and that a representation that explicitly distinguishes individual objects
makes it easier to make predictions about their future state in the environment.

As is typical in clustering methods, in (RN)N-EM there is no preferred assign-
ment of objects to groups and so the grouping numbering is arbitrary and only
depends on initialization. This property renders our results permutation invariant
and naturally allows for instance segmentation, as opposed to semantic segmen-
tation where groups correspond to pre-defined categories. (RN)N-EM learns to
segment in an unsupervised fashion, which makes it applicable to settings with
little or no labeled data. On the downside, this lack of supervision means that
the resulting segmentation may not always match the intended outcome. This
problem is inherent to this task since in real-world images the notion of an object
is task- and context-dependent. A more severe limitation of (RN)N-EM is that
the inter-cluster loss hinders in modeling more complex varying backgrounds
since the background component would have to predict the pixel prior for pre-
dictions made by every other component. This could potentially be resolved by
also learning the grouping, which would alleviate the need for this regularization
term to discourage undesirable solutions that access information about the future
through the E-step.

Another direction to improve (RN)N-EM is to consider a richer feature repre-
sentation in place of only low-level pixels as input. For example, it is well known
that humans extract 3D structure from monocular images very early on in the
time course of visual information processing (e.g. Enns and Rensink [1990]).
Similarly, RNN-EM may profit from an input representation that additionally
considers optical flow, as was also explored in later work [Liu et al., 2019b].

Chapter 5

Relational Neural Expectation
Maximization

The focus of this chapter is on the challenge of composition that was discussed in
Section 3.4. Our aim is to build structured models for inference and prediction
that take advantage of the underlying compositionality of object representations
to generalize in more predictable and systematic ways. This requires learning
about relations between object representations that are general, and incorporating
a suitable variable binding mechanism so that they can be dynamically applied.

We work towards this goal in the context of common-sense physical reason-
ing, which is central to many physics-related tasks that humans solve on a daily
basis [Lake et al., 2017]. For example, this ability enables humans to make predic-
tions about the consequences of their actions (via simulation and planning) or to
infer the state of parts of the world that are currently unobserved. Generally, such
a causal understanding of the world is assumed to be an essential ingredient for
any intelligent agent [Schmidhuber, 1990; Kaelbling, 1993; Ha and Schmidhuber,
2018].

The discovery and representation of objects play an important role in common-
sense physical reasoning. They allow humans to decompose a complex visual
scene into distinct parts, describe relations between them, and efficiently reason
about their dynamics as well as the consequences of their interactions [Battaglia
et al., 2013; Ullman et al., 2017]. The most successful machine learning ap-
proaches to common-sense physical reasoning incorporate such prior knowledge
in their design. They maintain explicit object representations, which allow for

This chapter is based on van Steenkiste et al. [2018a], which was published as a conference
paper at ICLR 2018. A preliminary version of this work [van Steenkiste et al., 2017] appeared as
a workshop paper at NIPS 2017.

91

92 5.1 Method

general physical dynamics to be learned between object pairs in a compositional
manner [Chang et al., 2016; Battaglia et al., 2016; Watters et al., 2017]. However,
in these approaches learning is supervised, as it relies on object representations
from external sources (e.g. a physics simulator) that are typically unavailable
in real-world scenarios. Neural approaches that learn to directly model motion
or physical interactions in pixel space offer an alternative solution [Sutskever
et al., 2009; Srivastava et al., 2015]. However, while unsupervised, these methods
suffer from a lack of compositionality at the representational level of objects. This
complicates learning about complex physical interactions and makes it difficult to
generalize to different contexts.

The primary contribution in this chapter is Relational N-EM (R-NEM), a struc-
tured model for common-sense physical reasoning that learns about physical
interactions between objects from raw visual images in a purely unsupervised
fashion. At its core is Neural Expectation Maximization (N-EM) [Greff⇤ and van
Steenkiste⇤ et al., 2017a], which learns compositional object representations, but
is unable to model relations and interactions between objects. Therefore, we
endow a variation of N-EM with a relational mechanism to enable it to model
complex interactions between objects, in a way that leverages their underlying
compositionality as to generalize more systematically.

5.1 Method

In order to build a structured model for common-sense physical reasoning, we
require a method that is capable of learning object representations. One such
approach is Neural Expectation Maximization (N-EM [Greff⇤ and van Steenkiste⇤
et al., 2017a]), which was described in Chapter 4. In the following, we first
offer a computational description of N-EM that focuses on RNN-EM as a (world)
model for making predictions about the future (Section 5.1.1). Next, we describe
an interaction function that can be combined with RNN-EM to model relations
between objects and perform dynamic variable binding (Section 5.1.2).

5.1.1 RNN-EM as a Predictive World Model

RNN-EM consists of K copies (i.e. shared weights) of a recurrent neural net-
work with hidden state ✓k that can be applied to a sequence of observations
x [1], . . . , x [T] to make predictions about the future1. It is trained to divide the

1In Chapter 4 it was shown how RNN-EM can also be applied to a single static image. Here
we will limit our discussion to the sequential setting, which is most relevant in the context of

93 5.1 Method

pixels associated with each observation into groups, such that each group contains
the pixels belonging to a single object. In this case, each RNN makes predictions
only about the pixels belonging to a single object, such that its hidden state ✓k

yields an object representation.
To divide the input into groups and acquire corresponding representations,

RNN-EM alternates between grouping and representation learning (see also
Figure 5.1). Starting from the hidden state ✓k[t], a neural network decoder
outputs parameters i,k[t] that are associated with pixel-level likelihoods at the
next timestep p(x i[t+1] | i,k[t]). Next, each pixel is soft-assigned to each of the
RNNs based on their relative success in modeling p(x i[t + 1] | i,k[t]) using the
E-step (4.3). The resulting grouping is stored in �[t] and the output of RNN-EM at
time-step t is used to compute p(x i[t+1] | ✓ [t]) =Pk �i,k[t]·p(x i[t+1] | i,k[t])
for each pixel during training2.

The representation ✓k[t+1] at the next time-step is computed by first encoding
the top-down error �:,k[t]� (:,k[t]� x [t + 1]) using a neural network encoder
(this particular form assumes that :,k[t] are the mean parameters of a simple
Bernoulli or Gaussian for each pixel). The top-down error tells each network
about the mismatch between its predictions about the future that were made in
the previous time-step :,k[t] and the actual future x [t + 1] (which is now the
present) filtered by the soft-assignment of pixels to networks �[t]. The latter is
critical since it forces each neural network to focus its predictions on a particular
subset of the information content. The representation ✓k[t + 1] is then computed
by combining the output of the encoder with the representation at the previous
time-step ✓k[t] using a standard RNN update. Notice how the input (i.e. the
top-down error) vanishes as each network becomes better at predicting the future,
in which case it becomes possible to simulate future states of the environment
purely in latent space [Ha and Schmidhuber, 2018].

RNN-EM is trained on a data set of sequences by backpropagating gradients
through this iterative procedure. A two-term loss function (4.5) allows it to
learn about statistical regularities in the data set corresponding to objects and
acquire object representations. In our case, this loss function is evaluated using
observations at the next time-step, and we perform additional regularization
by adding pixel-level noise to the input. One intuitive interpretation of using
denoising or next-step prediction as part of the training objective is to guide the
network to learn about essential properties of objects, i.e. those that correspond to
the Gestalt Principles of prägnanz and common fate [Hatfield and Epstein, 1985].

common-sense physical reasoning.
2Similar to before, during evaluation and testing we instead use p(x i[t + 1] |maxk i,k[t]) to

prevent accessing information about the future via the E-step.

94 5.1 Method

Figure 5.1. Illustration of the different computational aspects of R-NEM when
applied to a sequence of images of bouncing balls (bottom row). In the mid-
dle, an overview of two iterations of RNN-EM is shown with different colors
corresponding to different cluster components (object representations). Here
�, at the Representations level correspond to the same � (E-step), (Group
Reconstructions) from the previous time-step. On the right side, a computational
overview of ⌥ R-NEM is shown, which performs physical reasoning by modeling
pair-wise interactions between the object representations. The entire system is
trained end-to-end in an unsupervised fashion to perform next-step prediction
by adapting (4.5) to use observations at the next time-step.

95 5.1 Method

5.1.2 Interaction Function

When applied to sequences of images, RNN-EM is able to capture the dynamics of
individual objects through the parametrized recurrent connection that acts on the
object representation ✓

k

across consecutive time-steps. However, the relations
and interactions that take place between objects can not be captured in this way.
To overcome this shortcoming we propose Relational N-EM (R-NEM), which adds
relational structure to the recurrent update to model interactions between objects
without violating key properties of the learned object representations.

Consider a generalized form of the standard RNN-EM dynamics equation,
which computes the object representation ✓k at time t as a function of all object
representations ✓ := [✓1, . . . ,✓K] at the previous time-step through an interaction
function ⌥ :

✓k[t] = RNN(x̂ [t],⌥k(✓ [t � 1])) := �(W · x̂ [t] +R · ⌥k(✓ [t � 1])). (5.1)

Here W ,R are weight matrices, � is the Sigmoid activation function, and x̂ [t] is
the input to the recurrent model at time t (possibly transformed by an encoder).
When ⌥k(✓) = ⌥ RNN-EM

k (✓) := ✓k, these dynamics coincide with a standard RNN
update rule, thereby recovering the original RNN-EM formulation.

The inductive bias incorporated in ⌥ reflects the modeling assumptions about
the interactions between objects in the environment, and therefore the nature of
✓k’s interdependence. If ⌥ is to incorporate the assumption that no interaction
takes place between objects, then the ✓k’s should be fully independent and we
recover ⌥ RNN-EM. On the other hand, if we do assume that interactions among
objects take place, but assume very little about the structure of the interdepen-
dence between the ✓k’s, then we forfeit useful properties of ✓k such as their
compositionality. In particular, if we naively choose ⌥k(✓) =MLP(✓) we can no
longer extrapolate learned knowledge to environments with more or fewer than
K objects and lose overall data efficiency [Santoro et al., 2017]. Instead, we can
make efficient use of compositionality among the learned object representations
✓k to incorporate general but guiding constraints on how these may influence
one another [Battaglia et al., 2016; Chang et al., 2016]. In doing so we constrain
⌥ to capture the interdependence between the ✓k’s in a compositional manner
that enables physical dynamics to be learned efficiently and allow for learned
dynamics to be extrapolated to a variable number of objects.

Compositional Interaction Function We propose a parametrized interaction
function ⌥ R-NEM that incorporates these modeling assumptions and updates ✓k

based on the total effect of the pair-wise interactions between all other objects

96 5.1 Method

i 6= k and k. First, each ✓i is transformed using an MLP to obtain ✓̂i, which allows
information that is relevant for the object dynamics to be made more explicit in
the representation:

✓̂k =MLP enc(✓k). (5.2)

Next, each pair (✓̂k, ✓̂i)i 6=k is concatenated and processed by another MLP, which
computes a shared embedding ⇠k,i that encodes the causal interaction between
object k and object i:

⇠k,i =MLP emb([✓̂k; ✓̂i]). (5.3)

Notice how this is achieved by explicitly distinguishing between the focus object
k and the context object i as also done in prior work [Chang et al., 2016].

From ⇠k,i we compute the vector ek,i, which encodes the effect of the context
object i on the focus object k, and we compute an attention coefficient ↵k,i that
encodes whether interaction between object i and object k takes place, using
separate MLPs:

ek,i =MLP eff(⇠k,i). (5.4)

↵k,i =MLPatt(⇠k,i). (5.5)

The vector Ek captures the total effect of ✓i 6=k on ✓k and is computed as a weighted
sum of the pair-wise effects multiplied by their attention coefficients:

Ek =
X

i 6=k

↵k,i · ek,i. (5.6)

The attention coefficients [Bahdanau et al., 2014; Xu et al., 2015] help select
relevant context objects and they can be seen as a more flexible unsupervised re-
placement of the distance based heuristic that was used in previous work [Chang
et al., 2016]. Alternatively, they can be viewed as an implicit mechanism for
dynamic variable binding, since they determine what information is routed into
MLP eff, which essentially is a function of two variables that encodes their interac-
tion3.

The final output of the interaction function ⌥ R-NEM for object k is obtained by
concatenating ✓̂k and Ek, which are then combined with the output of the encoder
using (5.1). A visual overview of ⌥ R-NEM can be seen on the right side of Figure 5.1,
which clearly depicts its compositional structure. It can be viewed as a graph,
whose nodes correspond to objects and edges reflect relations (interactions)

3It is implicit because it only affects which of all the possible ways of routing information into
MLP eff ends up being used in the final summation in (5.6). Because of this, it is computationally
inefficient when the number of objects is large and interactions are sparse.

97 5.2 Related Work

between the objects. From this perspective, the role of the attention coefficients
can also be seen as performing structure inference, namely by masking out edges
of the otherwise fully-connected interaction graph to infer the correct causal
interactions. Finally, it is worth emphasizing that we learn about interactions
between objects in the form of a general relation (encoded by MLP eff) that is
applicable to different pairs of object representations due to them being described
in a common format. This makes it easier to apply the learned physical interactions
to different contexts as we will find in our experiments.

5.2 Related Work

Machine learning approaches to common-sense physical reasoning can roughly be
divided into two groups: symbolic approaches and approaches that perform state-
to-state prediction. The former group performs inference over the parameters of
a symbolic physics engine [Battaglia et al., 2013; Wu et al., 2015; Ullman et al.,
2017], which restricts them to synthetic environments. The latter group employs
machine learning methods to make state-to-state predictions, often describing the
state of a system as a set of compact object-descriptions that are either used as an
input to the system [Grzeszczuk et al., 1998; Fragkiadaki et al., 2015; Battaglia
et al., 2016; Chang et al., 2016] or for training purposes [Watters et al., 2017].
By incorporating information (e.g. position, velocity) about objects these methods
have achieved excellent generalization and simulation capabilities.

Purely unsupervised approaches for state-to-state prediction [Sutskever et al.,
2009; Michalski et al., 2014; Agrawal et al., 2016; Lerer et al., 2016] that use raw
visual inputs as state-descriptions have yet to rival these capabilities. Our method
is the first purely unsupervised state-to-state prediction method that operates
in pixel space while also leveraging the underlying compositionality of learned
object representations. In that sense, it takes a first step towards common-sense
physical reasoning under more realistic real-world assumptions.

The proposed interaction function ⌥ R-NEM can be viewed as a type of Message
Passing Neural Network (MPNN; Gilmer et al. [2017]) that incorporates a variant
of neighborhood attention [Duan et al., 2017]. In that case, the ‘effect vector’
acts as the edge embedding (or message) that is passed to the receiving nodes (if
a connection is present) to update the node embedding (object representation).
It suggests that one could iterate these two stages to allow for higher-order
interactions between the objects, but we did not explore this connection further
in this work. In light of other recent work [Zaheer et al., 2017] ⌥ R-NEM can also
be seen as a permutation equivariant set function.

98 5.3 Experiments

Figure 5.2. R-NEM applied to a sequence of 4 bouncing balls. Each column
corresponds to a time-step, which coincides with an approximate EM step. At
each time-step, R-NEM computes K = 5 new representations ✓k according to (5.1)
(see also Representations in Figure 5.1) from the input x with added noise (bottom
row). From each new ✓k the mean parameters :,k of the pixel-level likelihoods
are produced (rows 2-6 from bottom) that model the state of the environment at
the next time-step. Attention coefficients are visualized by overlaying a colored
reconstruction of a context object on the focus object (see Attention in Section 5.3
for details). Based on the prediction accuracy of , the E-step (see Figure 5.1)
computes new soft-assignments � (row 7 from bottom), visualized by coloring
each pixel i according to their distribution over components �i. Row 8 visualizes
the total prediction by the network (

P
k :,k · �:,k) and row 9 the ground-truth

sequence at the next time-step.

Other related works have also taken steps towards combining the learn-
ability of neural networks with the compositionality of symbols in modeling
physics [Chang et al., 2016; Battaglia et al., 2016], playing games [Kansky et al.,
2017; Denil et al., 2017], learning algorithms [Reed and de Freitas, 2015; Li et al.,
2017; Cai et al., 2017; Bošnjak et al., 2017], visual understanding [Johnson et al.,
2017b; Ellis et al., 2018], and natural language processing [Andreas et al., 2016;
Hu et al., 2017].

99 5.3 Experiments

Figure 5.3. Performance of each method on the bouncing balls task. Each method
was trained on a data set with 4 balls and evaluated on a test set with 4 balls
(left), and on a test-set with 6-8 balls (middle). The losses are reported relative
to the loss of a baseline for each data set that always predicts the current frame.
The ARI score (right) is used to evaluate the degree of compositionality that is
achieved.

5.3 Experiments

In this section, we evaluate R-NEM on three different physical reasoning tasks
that each vary in their dynamical and visual complexity: bouncing balls with
variable mass, bouncing balls with an invisible curtain, and the Arcade Learning
Environment [Bellemare et al., 2013]. We compare R-NEM to other unsupervised
neural methods but that lack an inductive bias aimed at modeling relations
between learned object representations. Our results demonstrate that adding such
structure is indeed beneficial, which validates our design choices, and highlight
the usefulness of object representations for more systematic generalization4.

All experiments use ADAM [Kingma and Ba, 2015] with default parameters,
50K train, 10K validation, and 10K test sequences, and early stopping with a
patience of 10 epochs. For each of MLP enc, MLP emb,MLP eff we use a different
single layer neural network with 250 ReLU units. For MLPatt we use a two-layer
neural network: 100 Tanh units followed by a single Sigmoid unit. A detailed
overview of the experimental setup can be found in Appendix A.2.

4Code is available at https://github.com/sjoerdvansteenkiste/Relational-NEM.

100 5.3 Experiments

5.3.1 Bouncing Balls

We study the physical reasoning capabilities of R-NEM on the bouncing balls task, a
standard environment to evaluate physical reasoning capabilities that exhibits low
visual complexity but complex non-linear physical dynamics5. We train R-NEM on
sequences of 64⇥64 binary images over 30 time-steps that contain four bouncing
balls with different masses corresponding to their radii. The balls are initialized
with random initial positions, masses, and velocities. Balls bounce elastically
against each other and the image window.

Qualitative Evaluation Figure 5.2 presents a qualitative evaluation of R-NEM
on the bouncing balls task. After 10 time-steps it can be observed that the pixels
that belong to each of the balls are grouped together and assigned to a unique
component (with a saturated color); and that the background (colored grey)
has been divided among all components. This indicates that the representation
✓k from which each component produces the predictions :,k does indeed only
contain information about a unique object, such that together the ✓k’s yield
a compositional object representation of the scene. The total prediction (that
combines the predictions for each group and the soft-assignments) yields an
accurate depiction of the input sequence at the next time-step, indicating that
R-NEM has learned to model the dynamics of bouncing balls.

Comparison We compare the modeling capabilities of R-NEM to an RNN, LSTM
[Hochreiter and Schmidhuber, 1997; Gers et al., 1999], and RNN-EM in terms of
the Binary Cross-Entropy (BCE) loss between the predicted image and the ground-
truth image of the last frame, as well as the relational BCE that only takes into
account those objects that take part in a collision. Unless specified we use K = 5.

On a test set with sequences containing four balls, we observe that R-NEM
produces markedly lower losses when compared to all other methods (left plot in
Figure 5.3). Moreover, to validate that each component captures only a single ball
(and thus compositionality is achieved), we report the Adjusted Rand Index (ARI
[Hubert and Arabie, 1985]) score between the soft-assignments � and the ground-
truth assignment of pixels to objects. In the left column of the ARI plot (right side
in Figure 5.3) we find that R-NEM achieves an ARI score of 0.8, which roughly
indicates that in 80% of the cases each ball is modeled by a single component.
This suggests that a compositional object representation is achieved for most
of the sequences. Together these observations are in line with our qualitative

5Videos are available at https://sites.google.com/view/r-nem-gifs/.

101 5.3 Experiments

evaluation and validate that incorporating real-world priors is greatly beneficial
(comparing to RNN, LSTM) and that ⌥ R-NEM enables interactions to be modeled
well compared to RNN-EM in terms of the relational BCE.

Similar to the results presented in Chapter 4, we find that further increasing
the number of components during training (leaving additional groups empty)
increases the quality of the grouping, see R-NEM K = 8 in Figure 5.3. In addition,
we observe that the loss (in particular the relational BCE) is reduced further,
which is in line with our hypothesis that compositional object representations are
greatly beneficial for modeling physical interactions.

Extrapolating Learned Knowledge We use a test set with sequences containing
6-8 balls to evaluate the ability of each method to extrapolate their learned
knowledge about physical interactions between four balls to environments with
more balls. We use K = 8 when evaluating R-NEM and RNN-EM on this test-set
to accommodate the increased number of objects. As can be seen from the middle
plot in Figure 5.3, R-NEM again greatly outperforms all other methods. Notice
that, since we report the loss relative to a baseline, we roughly factor out the
increased complexity of the task. Perfect extrapolation of the learned knowledge
would, therefore, amount to no change in relative performance. In contrast, we
observe far worse performance for the LSTM (relative to the baseline) when
evaluated on this data set with extra balls. It suggests that the gating mechanism
of the LSTM has allowed it to learn a sophisticated and overly specialized solution
for sequences with four balls that does not generalize to a data set with 6-8 balls.

R-NEM and RNN-EM scale markedly better to this data set than LSTM, al-
though the RNN also appears to suffer to a lesser extent from this type of “over-
fitting”. We speculate that this is because of its inability to learn a reasonable
solution on sequences of four balls to begin with. In general, we conclude that
the superior extrapolation capabilities of RNN-EM and R-NEM are inherent to
their ability to factor a scene in terms of compositional object representations.

Attention Further insight in the role of the attention mechanism can be gained by
visualizing the attention coefficients, as is done in Figure 5.2. For each component
k we draw ↵k,k0 · k0 on top of the reconstruction :,k, colored according to
the color of component k0. These correspond to the colored balls (that are for
example seen in time-steps 13, 14), which indicate whether component k took
information about component k0 into account when computing the new state
(recall (5.6)). It can be observed that the attention coefficient ↵k,k0 becomes
non-zero whenever collision takes place, as is evident from the colored ball being

102 5.3 Experiments

Figure 5.4. Left: Three sequences of 15 time-steps corresponding to ground-truth
(top), R-NEM (middle), RNN (bottom). The last ten time-steps of the sequences
produced by R-NEM and RNN are simulated. Right: The BCE loss on the entire
test-set for these same time-steps.

visible in the following time-steps. The attention mechanism learned by R-NEM
thus assumes the role of inferring the underlying interaction graph, matching our
own intuitions of how this mechanism would best be utilized.

A quantitative evaluation of the attention mechanism is obtained by comparing
R-NEM to a variant of itself that does not incorporate attention (R-NEM no att).
Figure 5.3 shows that both methods perform equally well on the regular test set
(4 balls), but that R-NEM no att performs worse at extrapolating from its learned
knowledge (6-8 balls). A likely reason for this behavior is that the range of the
sum in (5.6) changes with K . Thus, when extrapolating to an environment with
more balls, the total sum may exceed previous boundaries and impede learned
dynamics.

Simulation Once a scene has been accurately modeled, R-NEM can approxi-
mately simulate its dynamics through recursive application of (5.1) for each ✓k

6.
In Figure 5.4, we compare the simulation capabilities of R-NEM to RNN-EM and
an RNN on the bouncing balls environment5. On the left, it displays a sequence
with five normal steps followed by 10 simulation steps for R-NEM and an RNN,
as well as the ground-truth sequence. From the last frame in the sequence, it
can clearly be observed that R-NEM has managed to accurately simulate the
environment. Each ball is approximately in the correct place, and the shape of
each ball is preserved. The balls simulated by the RNN, on the other hand, deviate
substantially from their ground-truth position and their size has increased. In
general, we find that R-NEM produces mostly very accurate simulations, whereas
the RNN consistently fails. Interestingly, we found that the cases in which R-NEM
frequently fails are those for which a single component models more than one

6Note that in this case the input to the neural network encoder in component k corresponds to
�:,k[t �1]� (x [t]� :,k[t �1]), such that the output of the encoder vanishes when :,k[t �1] =
x [t].

103 5.3 Experiments

Figure 5.5. R-NEM applied to a sequence of bouncing balls with an invisible
curtain. The ground truth sequence is displayed in the top row, followed by the
prediction of R-NEM (middle) and the soft-assignments of pixels to components
(bottom). R-NEM models objects, as well as their interactions, even when certain
objects are completely occluded (step 36). Only a subset of the steps is shown.

ball. The right side of Figure 5.4 summarizes the BCE loss for these same time-
steps across the entire test-set. Although this is a crude measure of simulation
performance, since it does not take into account the identity of the balls, we still
observe that R-NEM consistently outperforms RNN-EM and an RNN.

5.3.2 Hidden Factors

Occlusion is abundant in the real world, and the ability to model (temporarily)
unobserved objects is crucial for any physical reasoning system. We therefore
evaluate the capability of R-NEM to handle occlusion using a variant of bouncing
balls that contains an invisible “curtain”. Figure 5.5 shows that R-NEM accurately
models the sequence and can maintain object states, even when confronted with
occlusion5. For example, notice how in step 36 the “blue” ball is completely
occluded and is about to collide with the “orange” ball. Nonetheless, in step 38
the ball is accurately predicted to re-appear at the bottom of the curtain (since
collision took place) as opposed to the left side of the curtain. This demonstrates
that R-NEM has a notion of object permanence and implies that it understands the
scene on a level beyond pixels: it assigns persistence and identity to the objects
as a result of its (architectural) inductive bias.

In terms of test-set performance we find that R-NEM (BCE: 46.22, relational
BCE: 2.33) outperforms an RNN (BCE: 94.64, relational BCE: 4.14) and an LSTM
(BCE: 59.32, relational BCE: 2.72).

5.3.3 Space Invaders

To test the performance of R-NEM in a visually more challenging environment,
we train it on sequences of 84⇥ 84 binarized images over 25 time-steps of game-
play on Space Invaders from the Arcade Learning Environment [Bellemare et al.,

104 5.4 Discussion

Figure 5.6. R-NEM accurately models a sequence of frames obtained by an agent
playing Space Invaders. A group no longer corresponds to a single object, but
instead assumes the role of high-level entities that engage in similar movement
patterns.

2013]7. We use K = 4 and also feed the action of the agent to the interaction func-
tion. Figure 5.6 confirms that R-NEM is able to accurately model the environment,
even though the visual complexity has increased. Notice that these visual scenes
comprise a large number of (small) primitive objects that behave similarly. Since
we trained R-NEM with four components it is unable to group pixels according
to individual objects and is forced to consider a different grouping. We find
that R-NEM assigns different groups to every other column of aliens together
with the space ship, and to the three large ‘shields’. These groupings seem to be
based on movement, which to some degree coincides with their semantic roles
in the environment. In other examples (not shown) we also found that R-NEM
frequently assigns different groups to every other column of the aliens, and to
the three large ‘shields’. Individual bullets and the space ship are less frequently
separated, which may have to do with the action-noise of the environment (that
controls the movement of the space ship) and the small size of the bullets at the
current resolution that makes them less predictable.

5.4 Discussion

In this chapter, we have focused on the challenge of composition. We introduced
Relational Neural Expectation Maximization (R-NEM), a structured model for
common-sense physical reasoning that combines the learned object representa-
tions of RNN-EM with a compositional interaction function to model relations
between objects. Due to the underlying compositionality of object representations
and a mechanism for dynamic variable binding, it is able to learn about physical
interactions between objects in a way that can be extrapolated to scenes consisting

7Binarization ensures that the color group of the entities on the screen does not give away
their grouping.

105 5.4 Discussion

of more or fewer objects.
In our experiments, we found that R-NEM indeed captures the (physical)

dynamics of various environments more accurately than other methods and that
it is able to generalize from its learned knowledge more systematically in this
way. We also found that R-NEM can be used as an approximate simulator of the
environment, and to predict movement and collisions of objects, even when they
are completely occluded. This demonstrates a notion of object permanence and
aligns with evidence that young infants seem to infer that occluded objects move
in connected paths and continue to maintain object-specific properties [Spelke,
1990]. Moreover, young infants also appear to expect that objects only interact
when they come into contact [Spelke, 1990], which is analogous to the behavior of
R-NEM to only attend to other objects when a collision is imminent. In that sense,
we argue that our method presents a step towards learning a more human-like
model of the world in a completely unsupervised fashion.

Current limitations of our approach revolve around grouping and prediction.
We found that the interaction in the E-step among the groups makes it difficult to
increase the number of components above ten without causing harmful training
instabilities. Similarly, the computational complexity of the proposed interaction
function scales quadratically in the number of components due to the choice of
variable binding mechanism. In terms of prediction, we have implicitly assumed
that objects in the environment behave according to rules that can be inferred.
This poses a challenge when objects deform in a manner that is difficult to predict
(as is the case for objects in Space Invaders due to downsampling). However,
in practice, we find that (once pixels have been grouped together) the masking
of the input helps each component in quickly adapting its representation to any
unforeseen behavior across consecutive time-steps.

106 5.4 Discussion

Chapter 6

Object Compositionality in GANs

In this chapter we investigate an alternative approach to learning object represen-
tations based on more powerful implicit generative models. Using a generative
approach, our goal is to recover the process according to which the observed
data was generated, which in the case of images requires learning about objects,
background, and their interactions. Using an appropriate inference procedure,
this knowledge can then be extracted.

Our focus is on deep generative models, which leverage the expressiveness
of deep neural networks to learn the generative process almost entirely from
data [Goodfellow et al., 2014; Kingma and Welling, 2014; Van Oord et al., 2016].
In this case, the structure of the generative model (and thereby the interpretation
of any latent variables) is mostly due to the inductive bias of the neural network,
since this affects how it learns to generate the data and what abstractions are
considered [Dinh et al., 2017; Donahue et al., 2017; Dumoulin et al., 2017]. For
example, when a deep generative model is equipped with an inductive bias for
disentanglement, it has shown capable of learning to generate images of human
faces in a way that allows meaningful factors of variation, such as pose and
lighting, to be recovered via inference [Chen et al., 2016; Higgins et al., 2017a].

In order to use a deep generative model to learn about objects, it should learn a
generative process that explicitly considers such abstractions at a representational
level. This requires incorporating a corresponding inductive bias that encourages
the learned generative process to be compositional, in the sense that visual scenes
are generated as a composition of reusable parts (i.e. objects). By ‘inverting’
this generative process, we can then attempt to recover knowledge about the

This chapter is based on van Steenkiste et al. [2020], which was published as a journal article
in Neural Networks. A preliminary version of this work [van Steenkiste et al., 2018b] appeared as
a workshop paper at NeurIPS 2018.

107

108 6.1 Method

individual parts.
The primary contribution of this chapter is to formulate an implicit deep gen-

erative model based on Generative Adversarial Networks (GANs) that includes a
corresponding inductive bias. We investigate a minimal modification to a standard
neural network generator to allow for compositionality and demonstrate how
it enables GANs to learn about objects, without prior access to this information.
Using this general design as a backbone, we then propose two useful extensions
that enable the generator to model dependencies between objects and to model
background. This makes it possible to use this approach for segregation on
more complex images that previous approaches, including N-EM (see Chapter 4),
struggle at. To that extent, we demonstrate how one can leverage the learned
structured generative process, which is now interpretable and semantically un-
derstood, to perform inference and recover information about individual objects
without additional supervision. Finally, we demonstrate how our structured GAN
is better at generating multi-object images that are more faithful to the reference
distribution compared to standard GAN approaches.

6.1 Method

We investigate how we can leverage the power of implicit generative models [Mo-
hamed and Lakshminarayanan, 2017] to learn about objects through the process
of synthesizing images. If successful, then this offers an alternative approach to
learning object representations that is expected to be more easily adaptable to
complex datasets. In the following, we will first briefly introduce GANs, which
are our choice of implicit generative models (Section 6.1.1). Next, we describe
several architectural modifications that can be incorporated in the generator to
guide it to consider objects at a representational level (Section 6.1.2).

6.1.1 Generative Adversarial Networks

We will make use of Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014]1, which are powerful implicit generative models that learn a stochastic
procedure to generate samples from a distribution p

X

. We chose GANs for two rea-
sons. Firstly, despite their optimization difficulties, they have shown remarkably
successful at generating complex (high-resolution) images [Brock et al., 2019].
Secondly, it has been shown that by incorporating structure in (the generator of)

1There exist interesting parallels between GANs and earlier approaches [Schmidhuber, 1990,
1992b], and we refer the reader to Schmidhuber [2020] for a comparison.

109 6.1 Method

a GAN it is possible to exert considerable influence over the learned generative
process, which is especially important for representation learning purposes [Chen
et al., 2016; Lin et al., 2018; Nguyen-Phuoc et al., 2019].

Traditionally GANs consist of two deterministic functions: a generator G(z)
and a discriminator (or critic) D(x). The goal is to find a generator that accu-
rately transforms samples from a prior distribution Z ⇠ p

Z

to match samples
from the target distribution X ⇠ p

X

. This can be done by using the discriminator
to implement a suitable objective for the generator, in which it should behave
adversarially with respect to the goal of the discriminator in determining whether
samples x were obtained from p

X

or pG(Z) respectively. These objectives can be
summarized as a minimax game with the following value function:

min
G

max
D

V (D, G) = E
X⇠p

X

[log D(x)] +E
Z⇠p

Z

[log(1� D(G(z)))] . (6.1)

When the generator and the discriminator are implemented with neural networks,
optimization may proceed through alternating (stochastic) gradient descent up-
dates of their parameters with respect to (6.1). However, in practice this procedure
might be unstable and the minimax formulation is known to be hard to optimize.
Many alternative formulations have been proposed and we refer the reader to
Lucic et al. [2018] and Kurach et al. [2019] for a comparison.

Based on the findings of Kurach et al. [2019] we consider two practical
reformulations of (6.1) in this work: Non-Saturating GAN (NS-GAN) [Goodfellow
et al., 2014], in which the generator maximizes the probability of generated
samples being real, and Wasserstein GAN (WGAN) [Arjovsky et al., 2017] in
which the discriminator minimizes the Wasserstein distance between pG(Z) and p

X

.
In both cases we consider two additional techniques to improve optimization that
have proven to work best on a variety of datasets and architectures: the gradient
penalty from Gulrajani et al. [2017] to regularize the discriminator, and spectral
normalization [Miyato et al., 2018] to normalize its gradients.

6.1.2 Incorporating Architectural Structure

We propose three architectural changes to the generator of a GAN so that it
learns a generative process based on object representations. In the following, we
first present a simple modification to a neural network generator to facilitate a
generative process that is compositional, which is the main type of invariance
that objects provide. Afterward, we present two useful extensions that allow it
to additionally reason about relations between objects, and to explicitly model
background and occlusion.

110 6.1 Method

z1

z2

z3

z4

zB

z1 z2 z3 z4

Dot-Product
Attentionq

k

v

q k v

∑

Background Generator

Relational Structure

Object Generators

Generator

Generator

ẑ1

ẑ2

ẑ3

ẑ4

ẑB

∑

∑

∑

Figure 6.1. We propose three modifications to a standard neural network genera-
tor to generate images as a composition of individual objects and background.
In this case, it consists of K = 4 object generators (shared weights) that each
generate an image from separate latent vector zi, which serve as the backbone for
compositionality. On the left side, relational structure is shown as one possible
extension to model relations between objects by first computing ẑi from zi that
are then fed to the object generators. At the top, a second extension is shown that
incorporates a background generator (unique weights) to generate a background
image from a separate latent vector zb. The whole system is trained end-to-end as
in the standard GAN framework, and the final image is obtained by composing
(here using alpha compositing) the outputs of all generators.

Compositionality at the Representational Level of Objects

A minimal modification to a neural network generator is to assume that images x

are composed of objects that are independent of one another. For images having
K objects, we consider K i.i.d. vector-valued random variables Zi ⇠ p

Z

that each
describe an object at a representational level. K copies of a deterministic generator
G(z) transform samples from each Zi into images, such that their superposition
results in the corresponding output image:

x =
KX

i=1

G(zi). (6.2)

When each copy of G generates an image of a single object, the resulting
generative model efficiently generates images in a compositional manner (Fig-
ure 6.2). Each object in (6.2) is described in a common format (i.e. the Zi ’s are
i.i.d) and the weights among the generators are shared, such that any acquired
knowledge in generating a specific object is transferred across all others. Hence,

111 6.1 Method

rather than having to learn about all combinations of objects (including their own
variations) that may appear in an image, it suffices to learn about the different
variations of each individual object. This greatly simplifies the generative process
without losing generality.

The superposition of generators in (6.2) can be viewed as a single generator
of the form GK(z = [z1, · · · , zK]) and trained as before using the objective in (6.1).
The generators in (6.2) do not interact, which prevents degenerate solutions and
encourages G to learn about modular parts that correspond to objects. On the
other hand, this also implies that relations between objects within a scene cannot
be modeled in this way. Finally, we note that the sum in (6.2) assumes that images
only consist of objects and that their values can be summed in pixel-space. We will
now present two extensions that focus on each of these aspects and incorporate
additional structure besides the superposition of generators that serves as the
basis for object compositionality.

Modeling Relations Between Objects

In the real world, objects are not strictly independent of one another. Certain
objects may only occur in the presence of others or affect their visual appearance
in subtle ways (e.g. shadows). To facilitate relationships of this kind, the first
extension we propose consists of relational structure, in which the representation
of an object is updated as a function of all others before each generator proceeds
to generate its image.

The relational structure is implemented by a graph neural network which,
in this case, consists of one or more self-attention blocks that compute these up-
dates [Battaglia et al., 2018]. At the core of each attention block is Multi-Head Dot-
Product Attention (MHDPA) [Vaswani et al., 2017] that performs message-passing
when one associates each object representation with a node in a graph [Gilmer
et al., 2017]. This is a natural choice since graph neural networks of this kind
were previously found to excel at modeling interactions between objects at a rep-
resentational level in a way that reflects their underlying relationships [Zambaldi
et al., 2019].

Similar to Zambaldi et al. [2019], a single ‘head’ of an attention block first
projects each latent vector zi (associated with an object) into a query, key, and
value vector:2

2The role of the key and value vectors are analogous to those in a key-value database. However,
in this case, access takes place on the basis of similarity between key and query vectors (i.e. the
attention weights), which allows this process to be differentiated.

112 6.1 Method

qi =MLPquery(zi), ki =MLPkey(zi), vi =MLPvalue(zi), (6.3)

where dim(qi) = dim(ki) = dim(vi) = d.
Next, the interaction of an object k with all other objects i = 1, . . . , K (including

itself) is computed as a weighted sum of their value vectors, where the weights
(attention coefficients) are computed as dot-products between its query vector
and all key vectors, followed by softmax normalization:

ak,i =
exp{q¸k · ki/

p
d}

PK
j=1 exp{q¸k · k j/

p
d} . (6.4)

ek =
KX

i=1

ak,i · vi. (6.5)

The update vector ek now contains the result of attending to all other object
representations, or equivalently, a representation of the incoming ‘messages’ vi

that are used to update the representation belonging to each node (in this case
node k) in the underlying interaction graph. Similar to the interaction function
presented in Chapter 5, the role of the attention coefficients ak,i is then to mask
out edges when no interaction should take place.

In order to compute the final update to the object representations (node
representations) we project the update vector ei back to the original size of zi:

ẑi =MLPproject(ei) + zi. (6.6)

Additional heads (capable of modeling interactions due to other relations) use
different parameters, and their outputs are concatenated and fed to a separate
MLP to arrive at a final ẑi. Similarly, more complex interactions can be modeled by
using multiple attention blocks to iteratively update zi through repeated message
passing. Details about the exact implementation of these computations can be
found in Appendix A.3 and a schematic in Figure 6.1.

Background and Occlusion

The second extension that we propose explicitly distinguishes what we refer to
as ‘background’ from objects. Background contains the remaining information
content of an image that does not occur frequently enough in the data to be
modeled separately as objects (or that lacks a regular visual appearance). This
is often encountered when modeling more complex visual scenes, where the

113 6.2 Related Work

observations a learner is given access to are typically biased towards a particular
context, in the sense that only certain invariances can be observed.

One assumption that we have made is that objects can be compactly encoded
in a representation zi that is described in a common format. Treating background
as an extra “object” violates this assumption as the latent representations zi (and
corresponding generator) now need to describe objects that assume a regular
visual appearance, as well as the remaining background that is not regular in
its visual appearance at all. Therefore, we consider an additional background
generator (see also Figure 6.1) having its own set of weights to generate the
background from samples from a separate vector-valued latent variable Zb ⇠
p

Zb
. We will explore two different variations of this addition, one in which zb

participates in the relational structure, and one in which it does not.
A remaining challenge is then in combining objects with background and

in modeling occlusion. A straightforward adaptation of the sum in (6.2) to
incorporate pixel-level weights (e.g. as in N-EM) would require the background
generator to assign a weight of zero to all pixel locations where objects appear,
thereby increasing the complexity of generating the background exponentially.
Instead, we require the object generators to generate an additional alpha channel
for each pixel (while treating the output of the background generator as opaque),
and use alpha compositing to combine the K different outputs of the object
generators (x i,↵i) and background generator (x

b

, 1) as follows:

x =
KX

i=1

ñ
x i↵i

i�1Y

j=1

(1�↵ j)

ô
+ xb

KY

i=1

(1�↵i). (6.7)

Using alpha compositing as in (6.7) is a standard technique in computer
graphics, and therefore a natural choice for synthesizing images. A potential
disadvantage of alpha compositing is that it uses a fixed ordering, which assumes
that the generated images (when overlapping) are ordered correctly. In principle,
the relational structure can ensure that this is the case, although this may be diffi-
cult to learn in an adversarial setting. An alternative choice is to learn to composit,
for example by using a conditional GAN that starts from images of individual
objects [Lin et al., 2018; Azadi et al., 2019], but which is not explored here.

6.2 Related Work
Prior works on incorporating an inductive bias aimed at object compositionality
also model an image as a spatial mixture of image patches, and utilize multiple
copies of the same function to arrive at a compositional solution. Different

114 6.2 Related Work

implementations use RBMs [Le Roux et al., 2011], VAEs [Nash et al., 2017],
or (recurrent) auto-encoders inspired by EM(-like) inference procedures as in
Chapter 4 [Greff⇤ and van Steenkiste⇤ et al., 2017a] (but see also Greff et al.
[2016]) to model these patches. It was also shown that interactions between
objects can be modeled efficiently in this framework [van Steenkiste et al., 2018a]
(Chapter 5). In contrast, neither of these approaches have shown to be capable of
modeling more complex visual scenes that incorporate unstructured background
as well as relations between objects. By observing that GANs are often superior
in terms of image generation capabilities, and by adding structure, we are able to
improve upon these works in this regard. Indeed, compared to the later proposed
IODINE [Greff et al., 2019] that also utilizes a spatial mixture formulation (but
is based on iterative amortized variational inference [Marino et al., 2018]), we
will demonstrate in Section 6.3.2 how our approach better succeeds at modeling
complex image distributions.

A conceptually similar line of related work uses variational inference to learn re-
current neural networks to iteratively generate an image, one patch at a time [Gre-
gor et al., 2015; Eslami et al., 2016; Kosiorek et al., 2018]. The work by Eslami
et al. [2016] incorporates a strong inductive bias that associates each image
patch with a single object. However, also their approach is limited to generating
(sequences) of binary images without background [Eslami et al., 2016; Kosiorek
et al., 2018]. Related settings have also been explored with GANs using a recur-
rent generator [Im et al., 2016; Kwak and Zhang, 2016], while other work [Yang
et al., 2017] additionally considers a separate generator for the background that
uses spatial transformations to integrate a foreground image. From these, only
the work of Yang et al. [2017] briefly explores the problem of multi-object image
generation on a dataset consisting of two non-overlapping MNIST digits. Their
approach is only moderately successful while making extra assumptions about
the size of the digits. Importantly, their approach does not provide a means to
‘invert’ the learned model and perform inference.

Other recent work in GANs has focused on conditional image generation to
simplify the task of multi-object image generation. Johnson et al. [2018] generate
multi-object images from explicit scene graphs, while Xu et al. [2018] condition
on a stochastic and-or graph instead. Azadi et al. [2019] propose a framework
to generate images composed of two objects by combining the images of each
individual object. Similarly, Lin et al. [2018] present an iterative scheme to
remove or add objects to a scene based on prior knowledge about the individual
objects. Hinz et al. [2019] require object labels and bounding boxes to generate
complex visual scenes consisting of multiple objects and background. While these
works generate realistic multi-object scenes, they require prior information (scene

115 6.3 Experiments

graphs, segmentations, etc.) about individual objects or scenes that is typically
not available in many real-world settings. Our approach serves a complementary
purpose in terms of image generation in that regard: while we consider visually
simpler scenes, we do not require extra information about scenes or objects. In
the context of representation learning, we are also able to ‘invert’ the learned
generative model by leveraging its structure to learn about objects. This sets
us firmly apart from these methods and also from standard unstructured GANs
that do not require conditioning. Indeed, as we have argued, without explicitly
considering objects at a representational level (e.g. in the form of architectural
structure), one is unable to reliably recover object representations in this way.

In the context of unsupervised instance segmentation, three very recent works
propose to structure the generator of a GAN to directly learn to perform instance
segmentation. The copy-paste GAN in Arandjelović and Zisserman [2019] uses a
generator to generate a mask that interpolates between two images and learns to
discover objects. Chen et al. [2019] decomposes the generative process in a seg-
mentation step that separates foreground and background, and a generation step
that in-paints the foreground segment. Finally, Bielski and Favaro [2019] present
a layered generator that distinguishes between the foreground and background
by perturbing the foreground image relative to the background. Our approach is
different insofar we present a structured generator that facilitates both generation
and segmentation of visual scenes that are composed of multiple objects and
background, and which can be trained through the process of synthesizing images
alone.

6.3 Experiments
We investigate different aspects of the proposed architectural structure on several
multi-object datasets3. We are particularly interested in verifying that images
are generated as compositions of objects and that the relational and background
structure is properly utilized. Moreover, we study the degree to which the incor-
porated structure helps model these more complex image distributions, and how
we can perform inference to recover which image regions correspond to objects
for unseen images.

Data Sets We consider five multi-object datasets4. The first three are different
variations of Multi-MNIST (MM), in which each image consists of three MNIST

3Code is available online at https://git.io/JePuK.
4Datasets are available online at https://goo.gl/Eub81x.

116 6.3 Experiments

digits [LeCun et al., 1998] that were rescaled and drawn randomly onto a 64⇥64
canvas. In Independent MM, digits are chosen randomly and there is no relation
among them. The Triplet variation imposes that all digits in an image are of
the same type, requiring relations among the digits to be considered during the
generative process. Similarly in RGB Occluded MM each image consists of exactly
one red, green, and blue digit. The fourth dataset (CIFAR10 + MM) is a variation
of CIFAR10 [Krizhevsky et al., 2009] in which the digits from RGB Occluded MM
are drawn onto a randomly chosen (resized) CIFAR10 image. Our final dataset is
CLEVR [Johnson et al., 2017a], which we downsample to 160⇥ 240 followed by
center-cropping to obtain 128⇥ 128 images. Samples from each dataset can be
seen in Appendix B.1.3.

Evaluation A popular evaluation metric to evaluate GANs is the Fréchet Inception
Distance (FID) [Heusel et al., 2017]. It computes the distance between two em-
pirical distributions of images as the Fréchet distance between two corresponding
multivariate Gaussian distributions that were fit to each dataset using the features
of a pre-trained Inception network for each image. Although prior work found
that FID correlates well with perceived human quality of images on standard im-
age data sets [Lucic et al., 2018], we find that FID is less useful when considering
images consisting of multiple salient objects. Our results in Section 6.3.2 suggest
that FID is not a good indicator of performance during later stages of training,
and may easily be fooled by a GAN that focuses on image statistics rather than
content (e.g. generating the correct number of objects). We hypothesize that this
inability is due to the Inception network having been trained only for single object
classification [Szegedy et al., 2015].

Therefore, in addition to FID, we conduct two different studies among humans,
1) to compare images generated by our models to a baseline, and 2) to answer
questions about the content of generated images. The latter allows us to verify
whether generated images are probable samples from the true image distribution.
As conducting a human evaluation of this kind is not feasible for large-scale
hyperparameter search, we will continue to rely on FID to select the “best” models
during hyperparameter selection. Details of these human studies can be found in
Appendix A.3.4.

Set-up Each model is optimized with ADAM [Kingma and Ba, 2015] using a
learning rate of 10�4, and batch size 64 for 1M steps. We compute the FID (using
10K samples) every 20K steps and select the best set of parameters accordingly.
On each data set, we compare GANs that incorporate our proposed structure to a

117 6.3 Experiments

Figure 6.2. Generated images by 3-GAN on Multi-MNIST: Independent (top),
Triplet (middle), and RGB Occluded (bottom). The three columns on the left
show the output of each object generator, and the right column the composed
image.

strong baseline that does not. In both cases we conduct extensive grid searches,
covering on the order of 40-50 hyperparameter configurations for each data
set, using ranges that were previously found good for GANs [Lucic et al., 2018;
Kurach et al., 2019]. Each configuration is run with 5 different seeds to be able
to estimate its variance. A description of the hyperparameter search and samples
of our best models can be seen in Appendix A.3.2 and B.1.3 respectively. For
IODINE [Greff et al., 2019], we make use of the official trained model released
by the authors.

Composing On the binary Independent MM and Triplet MM we sum the outputs
of the object generators as in (6.2), followed by clipping to (0,1), since there
is no need for compositing. On all other data sets, we use alpha compositing
with a fixed order, i.e. using (6.7). In this case, the object generators output an
additional alpha channel, except for RGB Occluded MM in which we obtain alpha
values by thresholding the output of each object generator at 0.1 for simplicity
since there is no background.

118 6.3 Experiments

Figure 6.3. Generated samples by 5-GAN rel. bg. on CIFAR10 + MM (top), and
CLEVR (bottom). The left column corresponds to the output of the background
generator. The next five columns are the outputs of each object generator, and
the right column the composed image. Images are displayed as RGBA, with
white denoting an alpha value of zero.

Notation In reporting our results we will break down the results obtained in
terms of the structure that was incorporated in the generator. We will denote
k-GAN to describe a generator consisting of K = k components, k-GAN rel. if
it incorporates relational structure and k-GAN ind. if it does not. Additionally,
we will append “bg.” when the model includes a separate background generator.
We will use k-GAN to refer more generally to GANs that incorporate any of the
proposed structure, and GAN to refer to the collection of GANs with different
hyperparameters in our baseline.

6.3.1 Qualitative Analysis

Utilizing Structure We begin by analyzing the output of each (object) generator
for k-GAN. Among the best performing models in our search, we consistently
find that the final image is generated as a composition of images consisting of
individual objects and background. It can be seen that in the process of learning
to generate images, k-GAN learns about what are individual objects, and what is

119 6.3 Experiments

step 0 step 1 step 2 step 3 step 5step 4

step 0 step 1 step 2 step 3 step 4 step 5

Figure 6.4. Generated images by 5-GAN rel. bg. (top) and GAN (bottom), when
traversing the latent space of a single (object) generator. For k-GAN only a single
digit is transformed, while for GAN the entire scene changes.

background, without relying on prior knowledge or conditioning. This learned
knowledge can then be extracted to learn unsupervised instance segmentation
for the purpose of segregation, which we shall explore later. Examples generated
by k-GAN for each data set can be seen in Figures 6.2 and 6.3.

On CLEVR, where images often have a greater number of objects than the
number of components K that was used during training, we find that the generator
continues to learn a factored solution (i.e. using visual primitives that consist
of 1-3 objects)5. This is interesting, as it suggests that using compositionality is
preferable even when the factorization is sub-optimal (compare also to our result
for Space Invaders in Chapter 5). A similar tendency was found when analyzing
generated images by k-GAN ind. when k > 3 on the Multi-MNIST data sets. The
generator decodes some latents as “no digit” in attempting to generate the correct
number of digits.

From the generated samples by k-GAN rel. we observe that relations among
the objects are correctly captured in most cases and that the relational mechanism
can be used to more reliably generate the correct number of digits when K is
greater than the number of objects in the data set. We also observe that sometimes
the background generator generates a single object together with the background.
It rarely generates more than one object, which is further evidence that it is indeed
more efficient to use the object generators.

5At the time of public release our results on C LEVR were state of the art in the sense that
there existed no other unconditional object-centric deep generative model that was capable of
generating C LEVR images (or more complicated multi-object images) at the level of quality as
was presented in van Steenkiste et al. [2018b].

120 6.3 Experiments

Figure 6.5. The best FID obtained by GAN and k-GAN on all data sets following
our grid search. The best configurations were chosen based on the smallest
average FID (across 5 seeds). Standard deviations across seeds are illustrated
with error bars. For IODINE we made use of the official trained model for CLEVR
released by the authors [Greff et al., 2019].

Latent Traversal We explore the degree to which the relational extension affects
our initial independence assumption about objects. If it were to cause the latent
representations to become fully dependent on one another then it could negate the
benefits of compositionality. We conduct an experiment in which we traverse the
latent space of a single latent vector in k-GAN rel. by adding a random vector to
the original sample with fixed increments and generate images from the resulting
latent vectors. An example can be seen in Figure 6.4 (top), where we find that
traversing the latent space of a single component affects only the green digit,
whereas the visual presentation of the others remains unaffected.

We observe this behavior (i.e. the relational mechanism does not unnecessarily
interfere) for the majority of the generated samples, confirming to a large degree
our own intuition of how the relational mechanism should be utilized. When
traversing the latent space of GAN, for which information about different objects
is entangled, it results in a completely different scene (see Figure 6.4 bottom).
Hence, by decomposing the underlying representation it is more robust to common
variations in image space.

121 6.3 Experiments

(a) Independent MM (b) Triplet MM

Figure 6.6. Result of segmenting unseen test-images using a segmenter that
was trained on images (and labels) generated by 3-GAN. Note that this way
of ‘inverting’ the learned generative model is only possible due to the added
structure, wich makes the generative process interpretable and semantically
understood.

6.3.2 Quantitative Analysis

Fréchet Inception Distance We train k-GAN and GAN on each data set, and
compare the FID of the models with the lowest average FID across seeds (Fig-
ure 6.5). On all data sets but CLEVR we find that k-GAN compares better or
similar to GAN, although typically by a small margin. Importantly, compared to
the later proposed IODINE [Greff et al., 2019], which also incorporates archi-
tectural structure to facilitate object compositionality, we observe that k-GAN
significantly outperforms.

An analysis, using different variations of k-GAN, leads to several interesting
observations. On the relational data sets (Figure B.1) it can be observed that the
relational extension is important to obtain good performance, while it does not
harm performance when no relations are present. Likewise on the background
data sets (Figures B.2 and B.3) we find that the background extension is important,
although some mitigation is possible using the relational mechanism. Finally, we
observe several small differences in FID when changing the number of object
generators K. Surprisingly, we find that the lowest FID on Independent MM is
obtained by 4-GAN without relational structure, which by construction is unable
to consistently generate 3 digits. It suggests that FID is unable to capture these
properties of images (motivating our human study), and renders any subtle
differences in terms of FID between k-GAN and GAN inconclusive.

Instance Segmentation We train a segmenter on data sampled from 3-GAN by
treating the output of each object generator as pixel-level segmentation labels
for the generated image (a similar technique was explored in Spampinato et al.
[2019] for motion segmentation in videos). Note that this labeled data is obtained

122 6.3 Experiments

Data set Ground Truth 3-GAN

Independent MM 0.890 0.886 ± 0.003
Triplet MM 0.911 0.903 ± 0.002
RGB Occluded MM 0.928 0.955 ± 0.003
CIFAR10 + MM 0.950 0.814 ± 0.131

Table 6.1. ARI scores obtained by training a segmenter on ground truth data,
and on samples from 3-GAN. Standard deviations are computed using generated
data from the 5 best 3-GAN models according to FID.

in a purely unsupervised fashion by exploiting the fact that, through incorporating
structure, the learned generative process is now interpretable and semantically
understood. We test how the segmenter generalizes to real images (Figure 6.6) for
which we have ground-truth segmentations available and measure its accuracy
using the Adjusted Rand Index (ARI [Hubert and Arabie, 1985]) score. As a
comparison, we also train a segmenter in a purely supervised fashion using
ground-truth segmentations (additional details are available in Appendix A.3.3).

In Table 6.1 we find that using unsupervised data from 3-GAN is often as good
as using ground-truth (and can even have a positive regularization effect). These
results strengthen our initial findings that k-GAN reliably generates images as
compositions of objects. Moreover, it presents a novel approach to unsupervised
instance segmentation that does not rely on an “encoder”, but rather leverages
the structure of the learned generative process to perform inference.

Human Evaluation We asked humans to compare the images generated by k-
GAN rel. to our baseline on RGB Occluded MM, CIFAR10 + MM and CLEVR, using
the configuration with a background generator for the last two data sets6. For
each model, we selected the 10 best hyperparameter configurations (lowest FID),
from which we each generated 100 images. We asked up to three raters for each
image and report the majority vote or “Equal” if no decision was reached.

Figure 6.7a reports the results when asking human raters to compare the
visual quality of the generated images by k-GAN to those by GAN. It can be seen
that k-GAN compares favorably across all data sets and in particular on RGB
Occluded MM and CIFAR10 + MM we observe large differences. We find that
k-GAN performs better even when k > 3, which can be attributed to the relational

6On CLEVR we instructed the raters to ignore visual implausibilities due to floating objects (for
both k-GAN and GAN) that may arise due to the fixed order in (6.7), and measured this effect
separately in Figure B.5.

123 6.3 Experiments

(a) Comparing image quality (b) Properties on RGB Occluded MM

Figure 6.7. Results of human evaluation a) comparing the quality of the generated
images by k-GAN (k=3,4,5) to GAN b) Properties of generated images by k-GAN
(k=3,4,5) and GAN on RGB Occluded MM. It can be seen that k-GAN generates
better images that are more faithful to the reference distribution.

mechanism, allowing all components to agree on the correct number of digits.
In a second study, we asked humans to report specific properties of the gen-

erated images, a complete list of which can be found in Appendix A.3.4. Here
our goal was to assess if the generated images by k-GAN are more faithful to the
reference distribution compared to GAN, which is particularly important in the
context of representation learning. The results on RGB Occluded MM are summa-
rized in Figure 6.7b. It can be seen that k-GAN more frequently generates images
that have the correct number of objects, number of digits, and that satisfy all
properties simultaneously. The differences in the response to the correct number
of digits and the correct number of objects suggest that the generated objects are
often not recognizable as digits. This does not appear to be the case from the
generated samples in Appendix B.1, suggesting that the raters may not have been
familiar enough with the variety of MNIST digits.

On CIFAR10 + MM (Figure B.4), it appears that GAN is able to accurately
generate the correct number of objects, although the addition of background
makes it more difficult to interpret these results. Indeed, on the number of digits,
k-GAN outperforms GAN by the same margin as one would expect compared to
the results in Figure 6.7b.

124 6.4 Discussion

Finally, in comparing the generated images by k-GAN and GAN on CLEVR, we
noticed that the former generated more crowded scenes (containing multiple
large objects in the center), and more frequently generated objects with distorted
shapes or mixed colors. On the other hand, we found cases in which k-GAN
generated scenes containing ‘flying’ objects, a by-product of the fixed order in
which we apply (6.7). We asked humans to score images based on these properties,
which appears to confirm these observations (see Figure B.5).

6.4 Discussion

In this chapter, we have investigated an alternative approach to learning about
objects based on more powerful implicit generative models. We found that
by incorporating architectural modifications to the generator of a GAN, it is
able to learn to generate images as a composition of individual objects and
background. It was also shown how it can resolve dependencies between objects
at a representational level in this way.

The key motivation for using an approach based on GANs was that it can
more easily be applied to more complex multi-object image distributions that
were previously unattainable. Through extensive experiments, we empirically
validated that this is the case, and our approach was the first of its kind that
was able to scale to the challenging CLEVR data set [Johnson et al., 2017a].
Compared to a strong baseline of GANs, we were able to demonstrate how the
proposed structure helps in learning a generative process that is more faithful to
the observed reference distribution. On CLEVR, it was shown how our GAN-based
approach is able to improve over the later proposed IODINE [Greff et al., 2019]
in terms of generative capabilities.

For the purpose of segregation, it is important that the learned generative
process can be ‘inverted’ to learn about objects. In the case of GANs, this requires
incorporating suitable architectural structure in the generator that distinguishes
objects at a representational level, and more generally, that the learned generative
process utilizes this structure as intended. Empirically it was shown how our
approach addresses both, which allowed us to formulate an inference procedure
that leveraged the output of the object (and background) generator(s) to learn to
perform instance segmentation. We demonstrated how the resulting segmentation
model was able to generalize to unseen images for the purpose of segregation.

One area of improvement is in being able to correctly order objects according
to their depth when combining the outputs of the object generators using alpha
compositing. On CLEVR we observed cases in which objects appear to be flying,

125 6.4 Discussion

which is the result of being unable to route the information content of a “fore-
ground” object to the corresponding “foreground” generator as induced by the
fixed order in which images are composed. Although in principle the relational
mechanism may account for this distinction, in practice we found that this is not
sufficient.

Another interesting avenue for improvement is to also incorporate structure in
the discriminator, which implements the loss function for the generator. Similar to
how we found that the usefulness of the pre-trained Inception embedding is limited
for reasoning about the validity of multi-object images, the discriminator may
also experience difficulties in accurately judging images from being real or fake
without an appropriate inductive bias. Ideally, we would have the discriminator
reason about the plausibility of the appearance of each object individually, as
well as the image as a whole. Adding additional ‘patch discriminators’ [Isola
et al., 2017], where patches correspond to objects, may serve a starting point for
pursuing this direction.

126 6.4 Discussion

Chapter 7

Evaluating Disentangled
Representations

In this chapter we are concerned with disentangled representations (Section 3.5),
which encode information about salient (or explanatory) factors of variation in
the data using only a select few dimensions for each factor. We set out to conduct
a large-scale study to evaluate the merits of this particular representational format
as a way of encoding information about objects for the purpose of learning down-
stream (abstract) visual reasoning tasks.

Following the success of learning distributed representations that efficiently
encode the content of high-dimensional sensory data [Vincent et al., 2008; Kingma
and Welling, 2014; Lotter et al., 2017], there has been an increasing interest in
pursuing representations that disentangle informative factors of variation. In a
disentangled representation, information about an individual factor value can be
readily accessed and is robust to changes in the input that do not affect this factor.
Hence, learning to solve a down-stream task from a disentangled representation
is expected to require fewer samples and be easier in general [Schmidhuber et al.,
1996; Bengio et al., 2013; Higgins et al., 2017b; Peters et al., 2017; Higgins et al.,
2018b].

Several of these purported benefits can be traced back to empirical evidence
presented in the recent literature. Learning from disentangled representations
was found to be more sample-efficient [Higgins et al., 2018b], less sensitive to
nuisance variables [Lopez et al., 2018], and yield better generalization perfor-
mance [Higgins et al., 2017b; Hsu et al., 2017; Achille et al., 2018; Eastwood and
Williams, 2018; Steenbrugge et al., 2018]. However, in other cases, it was less

This chapter is based on van Steenkiste et al. [2019], which was published as a conference
paper at NeurIPS 2019.

127

128 7.1 Methodology

clear whether the observed benefits were actually due to disentanglement [Kumar
et al., 2018; Locatello et al., 2018]. Indeed, while these results are generally
encouraging, a systematic evaluation on a complex down-stream task of a wide
variety of disentangled representations obtained by training different models,
using different hyperparameters, and data sets, is lacking.

The primary contribution of this chapter is a large-scale evaluation1 of dis-
entangled representations to systematically evaluate some of these purported
benefits. Rather than focusing on a simple single factor classification task, we eval-
uate their usefulness on abstract visual reasoning tasks that challenge the current
capabilities of state-of-the-art deep neural networks [Santoro et al., 2018b]. On
these tasks, we are able to observe compelling evidence that more disentangled
representations yield better sample-efficiency. This offers a more positive outlook
for learning disentangled representations compared to a prior study, which did
not find evidence of increased sample efficiency on a much simpler down-stream
task [Locatello et al., 2018].

7.1 Methodology

The approach taken in our study is as follows. First, we create two new abstract
visual reasoning tasks similar to Raven’s Progressive Matrices [Raven, 1941]
based on two disentanglement data sets: dSprites [Higgins et al., 2017a], and
3dshapes [Kim and Mnih, 2018]. A key design property of these tasks is that
they are hard to solve based on statistical co-occurrences and require reasoning
about the relations between different objects. Second, we train a large number
of unsupervised disentanglement models (spanning four different approaches
from the literature) on the individual images of these two data sets and extract
their representations. Finally, we train several reasoning models that use these
disentangled representations to perform abstract reasoning and measure their
accuracy at various stages of training. This then allows us to evaluate the use-
fulness of disentangled representations, namely by comparing the accuracy of
these abstract reasoning models to the degree of disentanglement of the learned
representations (measured according to five different disentanglement metrics).

In the remainder of this section, we will first describe the metrics used for
evaluating disentanglement and the methods for learning disentangled represen-
tations (Section 7.1.1). Next, we introduce the abstract visual reasoning tasks
that we will consider and the reasoning models that we will train to perform
these tasks (Section 7.1.2).

1Reproducing these experiments requires approximately 2.73 GPU years (NVIDIA P100).

129 7.1 Methodology

7.1.1 Disentanglement

Metrics for Measuring Disentanglement

Multiple metrics have been proposed that leverage the ground-truth generative
factors of variation in the data to measure disentanglement in learned represen-
tations2. In a prior study [Locatello et al., 2018] several of these metrics were
considered, which we will adopt for our purposes in this work: the BetaVAE
score [Higgins et al., 2017a], the FactorVAE score [Kim and Mnih, 2018], the
Mutual Information Gap (MIG) [Chen et al., 2018], the disentanglement score
from Eastwood and Williams [2018] referred to as the DCI Disentanglement score,
and the Separated Attribute Predictability (SAP) score [Kumar et al., 2018].

The BetaVAE score, FactorVAE score, and DCI Disentanglement score focus
primarily on modularity (see Section 3.5.2 for a description of modularity, com-
pactness, and explicitness). The former assess this property through interventions,
i.e. by keeping one factor fixed and varying all others, while the DCI Disentan-
glement score estimates this property from the relative importance assigned to
each feature by a random forest regressor in predicting the factor values. The
SAP score and MIG are mostly focused on compactness. The SAP score reports
the difference between the top two most predictive latent codes of a given factor,
while MIG reports the difference between the top two latent variables with the
highest mutual information to a certain factor.

The degree of explicitness captured by any of the disentanglement metrics
remains unclear. In prior work, it was found that there is a positive correlation
between the value of disentanglement metrics and down-stream performance
on single factor classification [Locatello et al., 2018]. However, it is not obvious
whether disentangled representations are useful for down-stream performance
per se, or if the correlation is driven by the explicitness captured in the scores.
In particular, the DCI Disentanglement score and the SAP score compute disen-
tanglement by training a classifier on the representation. The former uses a
random forest regressor to determine the relative importance of each feature, and
the latter considers the gap in prediction accuracy of a support vector machine
trained on each feature in the representation. MIG is based on the matrix of
pairwise mutual information between factors of variations and dimensions of the
representation, which also relates to the explicitness of the representation. On

2 Current disentanglement metrics each require access to the ground-truth factors of variation,
which may hinder the practical feasibility of learning disentangled representations. On the other
hand, our goal is to assess the usefulness of disentangled representations more generally (i.e.
regardless of whether they can be obtained or not without making additional assumptions), which
can be verified independently.

130 7.1 Methodology

the other hand, the BetaVAE and FactorVAE scores predict the index of a fixed
factor of variation and not the exact value.

Methods for Learning Disentangled Representations

Several methods have been proposed to learn disentangled representations. Here
we are interested in evaluating the benefits of disentangled representations that
have been learned through unsupervised learning. In order to control for poten-
tial confounding factors that may arise when using a single model, we use the
representations learned from four state-of-the-art approaches from the literature:
� -VAE [Higgins et al., 2017a], FactorVAE [Kim and Mnih, 2018], � -TCVAE [Chen
et al., 2018], and DIP-VAE [Kumar et al., 2018].

Using notation from Tschannen et al. [2018], we can view all of these models
as autoencoders that are trained with a regularized variational objective (compare
with (2.18) in Section 2.2.1, but which is here written as a loss function) of the
form:

Ep(x)[Eq�(z|x)[� log p✓ (x | z)]] +�1Ep(x)[R1(q�(z | x))] +�2R2(q�(z)). (7.1)

The output of the neural network encoder that parametrizes q�(z | x) yields
the representation. Regularization serves to control the information flow through
the bottleneck induced by the encoder, while different regularizers primarily vary
in the notion of disentanglement that they induce. �-VAE restricts the capacity
of the information bottleneck by penalizing the KL-divergence, using � = �1 > 1
with R1(q�(z | x)) := DK L[q�(z | x) || p(z)], and �2 = 0; FactorVAE penalizes the
Total Correlation (TC [Watanabe, 1960]) of the latent variables via adversarial
training, using �1 = 0 and �2 = 1 with R2(q�(z)) := T C(q�(z)); �-TCVAE
also penalizes the Total Correlation but estimates its value via a biased Monte
Carlo estimator; and finally DIP-VAE penalizes a mismatch in moments between
the aggregated posterior and a factorized prior, using �1 = 0 and �2 � 1 with
R2(q�(z)) :=|| Covq�(z) � I ||2F .

7.1.2 Abstract Visual Reasoning

Datasets for Abstract Visual Reasoning

We evaluate the benefits of disentangled representations on abstract visual reason-
ing tasks. Abstract reasoning tasks require a learner to infer abstract relationships
between multiple entities (e.g. objects in images) and re-apply this knowledge in

131 7.1 Methodology

Figure 7.1. Examples of RPM-like abstract visual reasoning tasks based on dSprites
(left) and 3dshapes (right). Focusing on the right example, note that the correct
answer cannot be determined by solely considering the incomplete context
sequence and the answer panels. In particular, we can not tell whether 1, 2,
or 3 relationships hold, and if for example the wall color or the object color is
constant. As a result, one must consider the other two rows of context panels
to deduce that it is the background color, the azimuth, and the shape-type, that
are equal among the panels in a sequence. Then, this insight can be applied to
the bottom row to observe that a cylinder, a specific viewpoint, and a lighter
blue background are required in the correct solution. Based on this, the correct
answer panel fulfilling these criteria can be selected (middle right).

newly encountered settings [Kemp and Tenenbaum, 2008]. Humans are known
to excel at this task, as is evident from experiments with simple visual IQ tests
such as Raven’s Progressive Matrices (RPMs) [Raven, 1941]. An RPM consists of
several context panels organized in multiple sequences, with one sequence being
incomplete. The task consists of completing the final sequence by choosing from
a given set of answer panels. Choosing the correct answer panel requires one
to infer the relationships between the panels in the complete context sequences,
and apply this knowledge to the remaining partial sequence.

In recent work [Santoro et al., 2018b], the abstract reasoning capabilities of
deep neural networks were evaluated on this task. Using a data set of RPM-like
matrices it was found that standard deep neural network architectures struggle
at abstract visual reasoning under different training and generalization regimes.
Their results indicate that it is difficult to solve these tasks by relying purely on
superficial image statistics, and suggest that they can only be solved efficiently
through some form of relational reasoning. This makes this setting particularly
appealing for investigating the benefits of disentangled representations.

132 7.1 Methodology

Generating RPM-like Matrices Rather than evaluating disentangled represen-
tations using the Procedurally Generated Matrices (PGM) dataset [Santoro et al.,
2018b] we construct two new abstract RPM-like visual reasoning datasets based
on two existing datasets for disentangled representation learning. Our motivation
for this is twofold: it is not clear what a ground-truth disentangled representation
should look like for the PGM dataset, while the two existing disentanglement data
sets include the ground-truth factors of variation. Secondly, in using established
data sets for disentanglement, we can reuse hyperparameter ranges that have
proven successful. We note that the scope of our study is much broader (e.g. in
terms of the considered metrics, methods, and hyperparameters) compared to
prior work [Steenbrugge et al., 2018] that evaluates the representation of a single
trained � -VAE [Higgins et al., 2017a] on the original PGM data set.

To construct the abstract reasoning tasks, we use the ground-truth generative
model of the dSprites [Higgins et al., 2017a] and 3dshapes [Kim and Mnih, 2018]
data sets with the following changes:3 For dSprites, we ignore the orientation
feature for the abstract reasoning tasks as certain objects such as squares and
ellipses exhibit rotational symmetries. To compensate, we add background color
(5 different shades of gray linearly spaced between white and black) and object
color (6 different colors linearly spaced in HUSL hue space) as two new factors
of variation. Similarly, for the abstract reasoning tasks (but not when learning
representations), we only consider three different values for the scale of the object
(instead of 6) and only four values for the x and y position (instead of 32). For
3dshapes, we retain all of the original factors but only consider four different
values for scale and azimuth (out of 8 and 16) for the abstract reasoning tasks.
We refer to Appendix A.4.2 for samples from these data sets.

For the modified dSprites and 3dshapes, we now create corresponding abstract
reasoning tasks. The key idea is that one is given a 3⇥ 3 matrix of context image
panels with the bottom right image panel missing, as well as a set of six potential
answer panels (see Figure 7.1 for an example). One then has to infer which
of the answers fits in the missing panel of the 3⇥ 3 matrix based on relations
between image panels in the rows of the 3⇥ 3 matrices. Due to the categorical
nature of ground-truth factors in the underlying data sets, we focus on the AND
relationship in which one or more factor values are equal across a sequence of
context panels [Santoro et al., 2018b].

We generate instances of the abstract reasoning tasks in the following way:
First, we uniformly sample whether 1, 2, or 3 ground-truth factors are fixed across

3These were implemented to ensure that humans can visually distinguish between the different
values of each factor of variation.

133 7.1 Methodology

rows in the instance to be generated. Second, we uniformly sample without
replacement the set of factors in the underlying generative model that should be
kept constant. Third, we uniformly sample a factor value from the ground-truth
model for each of the three rows and for each of the fixed factors4. Fourth, for all
other ground-truth factors we also sample 3⇥ 3 matrices of factor values from
the ground-truth model with the single constraint that the factor values are not
allowed to be constant across the first two rows (in that case we sample a new
set of values). After this, we have obtained ground-truth factor values for each of
the 9 panels in the correct solution to the abstract reasoning task, and we can
sample corresponding images from the ground-truth model. To generate difficult
alternative answers, we take the factor values of the correct answer panel and
randomly resample the non-fixed factors as well as a random fixed factor until
the factor values no longer satisfy the relations in the original abstract reasoning
task. We repeat this process to obtain five incorrect answers and finally insert the
correct answer in a random position. Examples of the resulting abstract reasoning
tasks can be seen in Figure 7.1 as well as in Figure A.1 and Figure A.2.

Abstract Visual Reasoning Model

We will make use of the Wild Relation Network (WReN) to solve the abstract visual
reasoning tasks [Santoro et al., 2018b]. It incorporates a relational inductive
bias and was introduced in prior work specifically for such tasks. The WReN is
evaluated for each answer panel a 2 A= {a1, ..., a6} in relation to all the context-
panels C = {c1, ..., c8} as follows: First an embedding is computed for each panel
using a deep Convolutional Neural Network (CNN):

E = {CNN(c1), ..., CNN(c8)}[{CNN(a)}, (7.2)

which then serve as input to a Relation Network (RN) module [Santoro et al.,
2017]:

WReN(a, C) = f�(
X

e1,e22E

g✓ (e1, e2)), (7.3)

where f� and g✓ are neural networks, each with their respective parameters. The
Relation Network reasons about the different relationships between the context
and answer panels and outputs a score. The answer panel a 2 A with the highest
score (after applying softmax normalization) is chosen as the final output. The
entire system is trained in a supervised fashion using the standard cross-entropy
loss.

4Note that different rows may have different values.

134 7.2 Results

The Relation Network implements a suitable inductive bias for (relational)
reasoning [Battaglia et al., 2018]. It separates the reasoning process into two
stages. First g✓ is applied to all pairs of panel embeddings to consider relations
between the answer panel and each of the context panels, and relations among
the context panels. Weight-sharing of g✓ between the panel-embedding pairs
makes it difficult to overfit to the image statistics of the individual panels. Finally,
f� produces a score for the given answer panel in relation to the context panels
by globally considering the different relations between the panels as a whole. By
using the same WReN for different answer panels it is ensured that each answer
panel undergoes the same reasoning process.

Notice how the relational inductive bias is here implemented at the level of
visual scenes as opposed to the level of individual objects as was encountered in
Chapters 5 and 6. This is not problematic since the comparisons that need to be
performed in this case are between the features of different scenes (referring to
the same object or background), which are described in a common format. In
that sense, the representation of each visual scene for this task can be viewed as
a single ‘object representation’. Therefore, we expect any findings regarding the
utility of this particular representational format for abstract visual reasoning about
the content of different scenes, to equally apply to reasoning about individual
objects in a shared context (i.e. as encountered in Chapters 4 to 6), provided that
their representations are similarly structured (i.e. disentangled).

7.2 Results

7.2.1 Learning Disentangled Representations

We train �-VAE [Higgins et al., 2017a], FactorVAE [Kim and Mnih, 2018], �-
TCVAE [Chen et al., 2018], and DIP-VAE [Kumar et al., 2018] on the panels
from the modified dSprites and 3dshapes data sets5. For � -VAE we consider two
variations: the standard version using a fixed � , and a version trained with the
controlled capacity increase presented in Burgess et al. [2017]. Similarly for DIP-
VAE we consider both the DIP-VAE-I and DIP-VAE-II variations of the proposed
regularizer [Kumar et al., 2018]. For each of these methods, we considered six
different values for their (main) hyperparameter and five different random seeds.
The remaining experimental details are presented in Appendix A.4.

After training, we end up with 360 encoders, whose outputs are expected to
cover a wide variety of different representational formats with which to encode

5Code is made available as part of disentanglement_lib at https://git.io/JelEv.

135 7.2 Results

(a) FactorVAE trained on dSprites. (b) DIP-VAE-I trained on 3dshapes.

Figure 7.2. Reconstructions for different data sets and models (representative
samples of median reconstruction error). Odd columns show real samples and
even columns their reconstruction. 3dshapes appears to be easier than dSprites
where disentangling the shape was found to be more difficult.

information about the images. Figures B.23 and B.24 in Appendix B.2 show
histograms of the reconstruction errors obtained after training, and the scores
that various disentanglement metrics assigned to the corresponding representa-
tions. The reconstructions are mostly good (see also Figure 7.2), which confirms
that the learned representations tend to accurately capture the image content.
Correspondingly, we expect any observed difference in down-stream performance
when using these representations to be primarily the result of how information
is encoded. In terms of the scores of the various disentanglement metrics, we
observe a wide range of values. It suggests that in going by different definitions
of disentanglement, there are large differences among the quality of the learned
representations.

7.2.2 Abstract Visual Reasoning

We train different WReN models where we control for two potential confounding
factors: the representation produced by a specific model used to embed the input
images, as well as the hyperparameters of the WReN model. For hyperparameters,
we use a random search space as specified in Appendix A.4. We used the following
training protocol: We train each of these models using a batch size of 32 for 100K
iterations where each mini-batch consists of newly generated random instances
of the abstract reasoning tasks. Similarly, every 1000 iterations, we evaluate the
accuracy on 100 mini-batches of fresh samples. We note that this corresponds
to the statistical optimization setting, sidestepping the need to investigate the

136 7.2 Results

Figure 7.3. Average down-stream accuracy of baselines, and models using pre-
trained representations on dSprites (left) and 3dshapes (right). Shaded area
indicates min and max accuracy.

impact of empirical risk minimization and overfitting6.

Initial Study

First, we trained a set of baseline models to assess the overall complexity of the
abstract reasoning task. We considered three types of representations: (i) CNN
representations which are learned from scratch (with the same architecture as
in the disentanglement models) yielding standard WReN, (ii) pre-trained frozen
representations based on a random selection of the pre-trained disentanglement
models, and (iii) directly using the ground-truth factors of variation (both one-hot
encoded and integer encoded). We trained 30 different models for each of these
approaches and data sets with different random seeds and different draws from
the search space over hyperparameter values.

An overview of the training behavior and the accuracies achieved can be seen
in Figure 7.3. We observe that the standard WReN model struggles to obtain
good results on average, even after having seen many different samples at 100K
steps. This is because training from scratch is hard and runs may get stuck in
local minima where they predict each of the answers with equal probabilities.
Given the pre-training and the exposure to additional unsupervised samples, it is
not surprising that the learned representations from the disentanglement models
perform better. The WReN models that are given the true factors also perform

6Note that the state space of the data generating distribution is very large: 106 factor combina-
tions per panel and 14 panels for each instance yield more than 10144 potential instances (minus
invalid configurations).

137 7.2 Results

Figure 7.4. Rank correlation between various metrics and down-stream accuracy
of the abstract visual reasoning models throughout training (i.e. for different
number of samples).

well, already after only a few steps of training. We also observe that different
runs exhibit a significant spread, which motivates why we analyze the average
accuracy across many runs in the next section.

It appears that dSprites is the harder task, with models reaching an average
score of 80%, while reaching an average of 90% on 3dshapes. Finally, we note
that most learning progress takes place in the first 20K steps, and thus expect the
benefits of disentangled representations to be most clear in this regime.

Full Study

Based on the results from the initial study, we train a full set of WReN models in
the following manner: We first sample a set of 10 hyperparameter configurations
from our search space and then train WReN models using these configurations
for each of the 360 representations from the disentanglement models (in this
case replacing (7.2) with the pre-trained representation). We then compare the
average down-stream validation accuracy of WReN with the BetaVAE score, the
FactorVAE score, MIG, the DCI Disentanglement score, and the Reconstruction error
obtained by the decoder on the unsupervised learning task. Out of curiosity, we
also compare with the accuracy of a Gradient Boosted Tree (GBT10000) ensemble
and a Logistic Regressor (LR10000) on single factor classification (averaged across
factors) as measured on 10K samples.

138 7.2 Results

Figure 7.5. Down-stream accuracy of the abstract visual reasoning models through-
out training, binned in quartiles based on the values assigned by the FactorVAE
score (left), and Reconstruction error (right).

Differences in Disentanglement Metrics Figure 7.4 displays the rank corre-
lation (Spearman) between these metrics and the down-stream classification
accuracy, evaluated after training for 1K, 2K, 5K, 10K, 20K, 50K, and 100K steps.
If we focus on the disentanglement metrics, several interesting observations can
be made. In the few-sample regime (up to 20K steps) and across both data sets it
can be seen that both the BetaVAE score and the FactorVAE score are highly corre-
lated with down-stream accuracy. The DCI Disentanglement score is correlated
less, while the MIG and SAP score exhibit even weaker correlation.

These differences between the different disentanglement metrics are perhaps
not surprising, as they are also reflected in their overall correlation (see Fig-
ure B.22). Note that the BetaVAE score and the FactorVAE score directly measure
the effect of intervention, i.e. what happens to the representation if all factors
but one are varied, which is expected to be beneficial in efficiently comparing the
content of two representations as required for this task. Similarly, it may be that
the MIG and SAP score have a more difficult time in differentiating representations
that are only partially disentangled, due to only comparing the top two latent
codes. Finally, we note that the best performing metrics on this task are mostly
measuring modularity, as opposed to compactness. A more detailed overview of
the correlation between the various metrics and down-stream accuracy can be
seen in Figures B.25 and B.26.

139 7.2 Results

Figure 7.6. Difference in down-stream accuracy between top 50% and bottom
50% of the abstract visual reasoning models throughout training, according to
various metrics on dSprites (left) and 3dshapes (right). Note the different scale of
the y-axis in both plots.

Disentangled Representations in the Few-Sample Regime If we compare the
correlation of the disentanglement metric with the highest correlation (FactorVAE)
to that of the Reconstruction error in the few-sample regime, then we find that
disentanglement correlates much better with down-stream accuracy. Indeed,
while low Reconstruction error indicates that all information is available in the
representation (to reconstruct the image) it makes no assumptions about how
this information is encoded. We observe strong evidence that disentangled repre-
sentations (according to this metric) yields better down-stream accuracy using
relatively few samples, and we therefore conclude that they are indeed more
sample efficient compared to entangled representations in this regard.

Figure 7.5 demonstrates the down-stream accuracy of the WReNs throughout
training, binned into quartiles according to their degree of being disentangled
as measured by the FactorVAE score (left), and in terms of Reconstruction error
(right). It can be seen that representations that are more disentangled give rise
to better relative performance consistently throughout all phases of training. If
we group models according to their Reconstruction error then we find that this
(reversed) ordering is much less pronounced. An overview for all other metrics
can be seen in Figures B.27 and B.28.

Disentangled Representations in the Many-Sample Regime In the many-sample
regime (i.e. when training for 100K steps on batches of randomly drawn instances
in Figure 7.4) we find that there is no longer a strong correlation between the

140 7.2 Results

Figure 7.7. Rank correlation between various metrics and down-stream accuracy
of the abstract visual reasoning models throughout training (i.e. for different
numbers of samples). The results in the top row are based on the worst 50% of
the models (according to final accuracy), and those in the bottom row based on
the best 50% of the models. Columns correspond to different data sets.

scores assigned by the various disentanglement metrics and down-stream perfor-
mance. This is perhaps not surprising as neural networks are general function
approximators that, given access to enough labeled samples, are expected to
overcome potential difficulties in using entangled representations. The observa-
tion that Reconstruction error correlates much more strongly with down-stream

141 7.3 Discussion

accuracy in this regime further confirms that this is the case.
A similar observation can be made if we look at the difference in down-stream

accuracy between the top and bottom half of the models according to each metric
in Figure 7.6. For most disentanglement metrics, larger positive differences are
observed in the few-sample regime that gradually reduce as more samples are
provided. Meanwhile, the gap gradually increases for Reconstruction error upon
seeing additional samples.

Differences in terms of Final Accuracy In our final analysis, we consider the
rank correlation between down-stream accuracy and the various metrics, split
according to their final accuracy. Figure 7.7 shows the rank correlation for the
worst-performing fifty percent of the models after 100K steps (top), and for the
best performing fifty percent (bottom). While these results should be interpreted
with care, as the split depends on the final accuracy, we can still make several
interesting observations: It can be seen that disentanglement (i.e. FactorVAE
score) remains strongly correlated with down-stream performance for both splits
in the few-sample regime. At the same time, the benefit of lower Reconstruction
error appears to be limited to the worst 50% of models. This is intuitive, as
when the Reconstruction error is too high there may not be enough information
present to solve the down-stream tasks. However, regarding the top-performing
models (best 50%), it can be seen that the relative gains from further reducing
reconstruction error are of limited use, and in fact in some cases yield positive
correlation.

7.3 Discussion

In this chapter, we investigated whether disentangled representations enable
one to learn non-trivial down-stream tasks using fewer samples. First, we cre-
ated two abstract visual reasoning tasks based on existing data sets for which
the ground-truth factors of variation are known. Then, we trained a diverse
set of disentanglement models based on four state-of-the-art disentanglement
approaches and evaluated their representations using multiple abstract reasoning
models. This allowed us to observe compelling evidence that more disentangled
representations are more sample-efficient in the considered down-stream learning
task.

We draw two main conclusions from these results: First, they provide concrete
motivation for why one might want to pursue disentanglement as a property
of learned representations in the unsupervised case, e.g. as a format for object

142 7.3 Discussion

representations. Second, we still observed differences between disentanglement
metrics, which should motivate further work in understanding what different
properties they precisely capture. This should include an analysis of how different
metrics respond when information is missing from the representation and to
what extent they measure explicitness. None of the metrics achieved perfect
correlation in the few-sample regime, which also suggests that it is not yet fully
understood what makes one representation better than another in terms of learn-
ing. Finally, we point out that it might be useful to extend the methodology in this
study to other complex down-stream tasks, or include an investigation of other
purported benefits of disentangled representations, such as out of distribution
generalization.

Chapter 8

Conclusion

This dissertation provides several contributions towards solving the problem of
representation learning for visual reasoning tasks using deep neural networks.

Underlying several of our contributions is the binding problem in neural
networks, which was proposed in Chapter 3 as the principal cause for the inability
of existing neural networks to efficiently form, represent and relate symbol-like
entities that are essential to many high-level cognitive tasks, such as reasoning.
This perspective allowed us to identify several challenges and requirements that
must be overcome to address this issue and point out commonalities between
seemingly independent methods that are part of a rich history of research on
vision and more symbolic reasoning tasks using neural networks.

Our other contributions in Chapters 4 to 7 demonstrate how several of these
challenges can be addressed in the context of visual reasoning, namely through
formulating neural networks that incorporate a suitable inductive bias. In that
sense, these contributions can be viewed as working towards a solution to the
binding problem in neural networks. An alternative perspective is that of the
methods proposed in each of these chapters contributing to problem-solving in
their respective domains. However, in this case, several of the restrictions that
we imposed (e.g. regarding access to supervised data) may be regarded as overly
limiting and certain other design choices become more difficult to justify.

In the following we highlight our contributions included in Chapters 3 to 7
of this disseration, followed by an outlook on open problems and promising
directions for future research.

The Binding Problem in Artificial Neural Networks [Greff et al., 2020]
We have proposed that there exists an underlying cause for the lack of emergent
symbolic processing in existing neural networks, which we refer to as the binding

143

144

problem. It is due to their inability to dynamically and flexibly combine informa-
tion that is distributed throughout the network, which is required to effectively
form, represent, and relate symbol-like entities. We have proposed to view the
binding problem in terms of three subproblems: representation, segregation, and
composition.

The representation problem revolves around object representations, which act
as basic building blocks for neural processing to behave symbolically. Encoding
information about object representations in neural networks is difficult, which
we have argued is mostly due to the lack of a suitable mechanism for information
separation when pursuing a common format. Another challenge is concerned
with ensuring their utility as a stable foundation for reasoning and other types of
information processing in a dynamic world that constantly changes.

The segregation problem is about the process of forming grounded object
representations from raw unstructured inputs. We have argued how this is
complicated by the notion of an object, which is context- and task-dependent
and therefore difficult to formalize. To overcome this problem we have put forth
several criteria that characterize their functional properties, such as modularity
and hierarchy. Moreover, we have argued how incorporating a form of top-down
feedback, multistability, and object identity, provide key challenges that must be
addressed.

The composition problem is about leveraging the modularity of object repre-
sentations to build structured models for inference, prediction, and behavior that
generalize more systematically. It involves learning about general relations that
can be combined with object representations to build structures that imply differ-
ent patterns of generalization. We have argued how this requires mechanisms
for dynamic variable binding, structure inference, and a means to interface with
segregation and representation.

Our primary contribution in Sections 3.2 to 3.4 was to outline these challenges
and requirements in detail, while also providing a survey of (recent) prior works
that offer promising techniques for addressing some of these.

Neural Expectation Maximization [Greff⇤ and van Steenkiste⇤ et al., 2017a]
In Chapter 4 we have proposed Neural Expectation Maximization (N-EM), which
addresses several key aspects of segregation and representation. It learns about
objects by focusing on their functional role as abstract computational units that
are modular and reusable across many different contexts. Moreover, it makes use
of instance slots that are described in a common format and separate information
about individual objects.

145

N-EM combines neural spatial mixture models with generalized EM to imple-
ment a trainable clustering algorithm that can adapt to accommodate various
definitions of an object, based solely on the observed statistical regularities in
the data. In our experiments, we were able to confirm that N-EM is able to learn
to group pixels according to objects and represent an image as a composition of
object representations, unlike standard representation learning approaches.

We also contributed RNN-EM, a variation of N-EM that treats each object
representation as the hidden state of a recurrent neural network. RNN-EM
naturally extends to sequential data when modifying its learning objective to
make predictions about the future. This makes it easier to learn about objects
since pixels belonging to the same object usually share a common fate, and we
were able to show how RNN-EM is able to learn object representations even in
the presence of heavy occlusion.

Relational Neural Expectation Maximization [van Steenkiste et al., 2018a]
In Chapter 5 we have proposed Relational Neural Expectation Maximization (R-
NEM), a structured model for common-sense physical reasoning that addresses
several aspects of composition. It combines the learned object representations of
RNN-EM with a compositional interaction function, which provides a mechanism
for modeling general relations between objects via a kind of dynamic variable
binding. R-NEM was the first end-to-end neural approach to leverage the un-
derlying compositionality of learned object representations to perform physical
prediction in a purely unsupervised fashion.

In our experiments, we found that the incorporated structure allows R-NEM
to capture the (physical) dynamics of various environments more accurately than
other methods. It was also shown how, due to its compositional structure, this
learned knowledge can be extrapolated to environments with different numbers
of objects. In that sense, R-NEM was found to be able to generalize more system-
atically and more predictably in a way that is similar to how one would expect
humans to be able to generalize. Finally, it was demonstrated how R-NEM can be
used as an approximate simulator of the environment.

Object Compositionality in GANs [van Steenkiste et al., 2020]
In Chapter 6 we have investigated an alternative approach to learning about
objects based on GANs. We found that by incorporating architectural structure in
the generator of a GAN, it is able to learn to generate images as a composition of
individual objects and background, while also considering their relations.

We demonstrated how this approach can more easily be applied to images

146 8.1 Future Directions

containing color, background, and complex object shapes. In particular, our
approach was the first purely unsupervised object-centric approach that was able
to scale to the complex CLEVR dataset. Compared to a strong baseline of GANs,
we were able to demonstrate how the proposed structure helps in learning a
generative process that is more faithful to the observed reference distribution.

In the context of segregation, we have argued how it is important that the
learned generative process can be ‘inverted’ to learn about objects. To that extend,
we formulated an inference procedure that facilitates instance segmentation. It
leverages the empirical observation that the proposed structured generator distin-
guishes objects at a representational level and that it learns a generative process
that can be semantically understood in terms of this structure. We demonstrated
how the resulting instance segmentation model is able to generalize to unseen
images for the purpose of segregation.

Evaluating Disentangled Representations [van Steenkiste et al., 2019]
In Chapter 7 we contributed a large-scale evaluation of disentangled representa-
tions as a way of encoding information about objects for the purpose of learning
down-stream tasks. Rather than focusing on a simple single factor classification
task, we evaluated their usefulness on two new abstract visual reasoning tasks that
challenge the current capabilities of state-of-the-art deep neural networks. On
these tasks, we were able to observe compelling evidence that more disentangled
representations yield better sample-efficiency.

These observations offer a more positive outlook for learning disentangled
representations compared to a prior study and provide concrete motivation for
why one would want to pursue this particular format. We were also able to
observe large differences between metrics that measure different notions of
disentanglement, which motivates further work in understanding what different
properties they precisely capture. None of the metrics achieved perfect correlation
in the few-sample regime, which indicates that it is not yet fully understood what
makes one representational format better than another in terms of down-stream
learning.

8.1 Future Directions

In Sections 3.2 to 3.4 we have hinted at many avenues for future research that
specifically focus on addressing the binding problem. In addition, we would like
to emphasize the following three high-level directions in particular.

147 8.1 Future Directions

The Friction Between Architectural Structure and Flexibility It can not go un-
noticed that several of the results presented in this dissertation focus on synthetic
tasks that are still far from real-world complexity. In contrast, there exist neural
network approaches that have shown capable of modeling more complex (real-
world) visual settings, e.g. [Babaeizadeh et al., 2018; Brock et al., 2019; Donahue
and Simonyan, 2019]. A defining characteristic of these models is that they do
not incorporate structure at the representational level of objects, which we have
argued is problematic for the purpose of more systematic generalization. Nonethe-
less, they can be applied to these more visually complex settings and generalize
reasonably well under i.i.d. assumptions. This may suggest that the architectural
inductive biases that we have considered in this work are too restrictive.

One source of friction, which we already encountered in Chapter 6, is due
to learning objectives that operate on the level of pixels. When paired with a
representation that distinguishes objects, this requires prescribing how objects
are combined to form realistic images, which is a complex process that involves
many subtle interactions, such as lighting, occlusion, depth, and shadow. These
interactions appear to conflict with the understanding that, at a representational
level, objects should act as modular (and independent) building blocks, and which
drives current approaches to segregation. We believe that an important future
direction is to address this friction (between incorporating more structure and
offering flexibility) to scale structured models that address the binding problem
to more real-world datasets.

Extending Object Representations to Other Sensory Domains In this disser-
tation, we have mostly focused on learning object representations in the visual
domain, although the notion of an object in its most general form equally applies
to many other sensory domains such as audio or tactile. For example, auditory
objects may correspond to different sources of sound, such as speakers talk-
ing simultaneously in the same room (cocktail-party problem [Cherry, 1953]).
Likewise, it implies that objects can be simultaneously grounded in sensory in-
formation from multiple domains, which may help resolve ambiguities (e.g. the
McGurk Effect [Mcgurk and Macdonald, 1976]). A promising avenue for research,
therefore, is to investigate how existing techniques for the image domain, like
those explored in this dissertation, can be applied to other sensory domains, and
whether more general principles can be derived for discovering, representing,
and relating abstract concepts across (multiple) different domains. Similarly, this
may let us refine our current understanding of what visual objects are, and help
pave the way towards a practical definition of objects in their most general form.

148 8.1 Future Directions

Synergistic Interactions between Problem-Solving Agents and Model Building
The problems of segregation, representation, and composition in this work were
treated mostly from the perspective of model building and unsupervised learning.
Indeed, while R-NEM provides a single system that addresses several aspects of
each of these subproblems, it did not address several others that critically rely on
interaction with an agent. Studying how model-building and problem-solving, e.g.
in the form of an agent interacting with the world that seeks to maximize reward,
can mutually benefit each other is crucial to take this next step. Neural Controller-
Model (CM) systems [Schmidhuber, 2015b] where the controller ‘steers’ the
model to provide a form of top-down feedback is one promising direction, and
recent work is taking a step in that direction [Mott et al., 2019]. Future research
should address how such feedback can be used to guide segregation, and explore
other synergistic interactions between interacting agents and model building.
For example, unsupervised reinforcement learning objectives based on artificial
curiosity [Schmidhuber, 1991b; Haber et al., 2018] may help a model acquire
a biased set of observations (focusing on a particular aspect of the world) from
which it may be easier to learn corresponding representations.

Appendix A

Additional Experiment Details

A.1 Neural Expectation Maximization

In all experiments we use ADAM [Kingma and Ba, 2015] with default parameters
(unless otherwise mentioned) and a batch size of 64 to train the neural networks.
We use 50K observations for training, 10K for validation, and 10K for testing.
The quality of the learned groupings is evaluated by computing the Adjusted
Mutual Information (AMI [Vinh et al., 2010]) with respect to the ground-truth,
while ignoring the background and overlap regions (as is consistent with earlier
work [Greff et al., 2015, 2016]). We use early stopping when the validation loss
has not improved for 10 epochs.

A.1.1 Static Shapes

Each input consists of a 28⇥ 28 binary image containing three regular shapes
(45É) located in random positions [Reichert and Serre, 2013].

For N-EM we implement f� using a single-layer fully-connected neural network
with a Sigmoid activation function. It receives a real-valued 250-dimensional
vector ✓k as input and outputs for each pixel a value that parametrizes a Bernoulli
distribution. We squash ✓k with a Sigmoid before passing it to the network and
train an additional weight ⌘ to implement the learning rate that is used to combine
the gradient ascent updates into the current parameter estimate.

For RNN-EM we use an RNN with 250 Sigmoidal hidden units and a fully-
connected output-layer with a Sigmoid activation function that parametrizes a
Bernoulli distribution for each pixel in the same fashion.

We train both networks with K = 4 for 15 EM steps and add bitflip noise
(p = 0.1) to each of the pixels. The prior for each pixel in the data is set to a

149

150 A.1 Neural Expectation Maximization

Bernoulli distribution with p = 0. The outer-loss is only evaluated at the final
EM-step.

A.1.2 Flying Shapes

Each input consists of a sequence of binary 28⇥ 28 images containing a fixed
number of shapes (45É) that start in random positions and float along randomly
sampled trajectories within the image for 20 steps.

We use a convolutional encoder-decoder architecture based on Chen et al.
[2016]with a recurrent neural network as bottleneck (Table A.1). Instead of using
transposed convolutions (to implement the “up-convolution”) we first reshape
the image using the default nearest-neighbor interpolation followed by a normal
convolution to avoid frequency artifacts [Odena et al., 2016]. Note that we do
not add LayerNorm [Ba et al., 2016b] on the recurrent connection.

Encoder

4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
4⇥ 4 conv, 64 ELU, stride 2, LayerNorm
FC, 512 ELU, LayerNorm

Recurrent

RNN, 100 Sigmoid, LayerNorm (on output)

Decoder

FC, 512 ReLU, LayerNorm
FC, 7⇥ 7⇥ 64 ReLU, LayerNorm
4⇥ 4 upconv, 32 ReLU, stride 2, LayerNorm
4⇥ 4 upconv, 1 Sigmoid, stride 2

Table A.1. Encoder, Recurrent, and Decoder architectures on Flying Shapes.

At each time-step t we feed �:,k[t � 1] � (:,k[t � 1] � x̃ [t]) as input to
the network, where x̃ is the input with added bitflip noise (p = 0.2). RNN-
EM is trained with a next-step prediction objective implemented by replacing x

with x [t + 1] in (4.5), which we evaluate at each time-step. A single RNN-EM
step is used for each time-step. The prior for each pixel in the data is set to a
Bernoulli distribution with p = 0. We prevent conflicting gradient updates by not
backpropagating any gradients through �.

151 A.1 Neural Expectation Maximization

A.1.3 Flying MNIST

Each input consists of a sequence of gray-scale 24 ⇥ 24 images containing a
fixed number of down-sampled (by a factor of two along each dimension) MNIST
digits [LeCun et al., 1998] that start in random positions and “fly” across randomly
sampled trajectories within the image for T time-steps.

We use a slightly deeper version of the architecture used for flying shapes
(Table A.2).

Encoder

4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
4⇥ 4 conv, 64 ELU, stride 2, LayerNorm
4⇥ 4 conv, 128 ELU, stride 2, LayerNorm
FC, 512 ELU, LayerNorm

Recurrent

RNN, 250 Sigmoid, LayerNorm (on output)

Decoder

FC, 512 ReLU, LayerNorm
FC, 3⇥ 3⇥ 128 ReLU, LayerNorm
4⇥ 4 upconv, 64 ReLU, stride 2, LayerNorm
4⇥ 4 upconv, 32 ReLU, stride 2, LayerNorm
4⇥ 4 upconv, 1 linear, stride 2

Table A.2. Encoder, Recurrent, and Decoder architectures on Flying MNIST.

The training procedure is largely identical to the one described for flying
shapes except that we replace the bitflip noise with masked uniform noise: we
first sample a binary mask from a multivariate Bernoulli distribution with p = 0.2
and then use this mask to interpolate between the original image and samples
from a Uniform(0,1) distribution (range is the same as for the input data). We use
a learning rate of 0.0005 (from the second stage onwards in case of stage-wise
training), scale the second-loss term by a factor of 0.2 and find it beneficial to
normalize the masked differences between the prediction and the image (zero
mean, standard deviation one) before passing it to the network.

152 A.2 Relational Neural Expectation Maximization

A.2 Relational Neural Expectation Maximization
In all experiments we use ADAM [Kingma and Ba, 2015] with default parameters
and a batch size of 64 to train the neural networks. We use 50K observations
for training, 10K for validation, and 10K for testing. The quality of the learned
groupings is evaluated by computing the Adjusted Rand Index (ARI [Hubert and
Arabie, 1985]) with respect to the ground-truth while ignoring the background and
overlap regions (as is done in N-EM). We use early stopping when the validation
loss has not improved for 10 epochs.

At each time-step t we feed �:,k[t � 1]� (:,k[t � 1]� x̃ [t]) as input to the
encoder, where x̃ is the input with added bitflip noise (p = 0.2). Consistent with
RNN-EM, R-NEM is trained with a next-step prediction objective by adapting
(4.5) and we use a Bernoulli for each pixel likelihood since observations are
binary. Similarly, the pixel prior is set to a Bernoulli with p = 0, and we prevent
conflicting gradient updates by not backpropagating any gradients through �. We
also assume fixed equal mixing probabilities for all components and ignore the
mixing prior p(z|⇡).

A.2.1 Bouncing Balls

The bouncing balls data set is similar to previous work [Sutskever et al., 2009]
with a few modifications. It consists of sequences of 64⇥64 binary images over 30
time-steps and balls are randomly sampled from two types: one ball is six times
heavier and 1.25 times larger in radius than the other. The balls are initialized
with random initial positions and velocities. Balls bounce elastically against each
other and the image window.

We use the convolutional encoder-decoder architecture with a recurrent neural
network as bottleneck described in Table A.3 for the RNN-EM part, which is similar
to Table A.2, that is updated according to (5.1).

The Interaction Function ⌥ R-NEM is structured as in Table A.4. We experimented
with deeper architectures but were unable to observe significant improvements.

Comparison and Extrapolation In the comparison experiment both R-NEM and
RNN-EM are trained with K = 5 (unless otherwise mentioned), following our
insight in Chapter 4 that training with slightly larger K is beneficial. On the
extrapolation task, we adjusted the number of components at test-time to K = 8.

When comparing to RNN-EM, we used ⌥ = ⌥ RNN-EM. For comparing to RNN
we set K = 1, and used ⌥ = ⌥ RNN-EM, yielding a standard recurrent autoencoder
that receives at each time-step the difference between its previous prediction and

153 A.2 Relational Neural Expectation Maximization

Encoder

4⇥ 4 conv, 16 ELU, stride 2, LayerNorm
4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
4⇥ 4 conv, 64 ELU, stride 2, LayerNorm
FC, 512 ELU, LayerNorm

Recurrent

RNN, 250 Sigmoid, LayerNorm (on output)

Decoder

FC, 512 ReLU, LayerNorm
FC, 8⇥ 8⇥ 64 ReLU, LayerNorm
4⇥ 4 upconv, 32 ReLU, stride 2, LayerNorm
4⇥ 4 upconv, 16 ReLU, stride 2, LayerNorm
4⇥ 4 upconv, 1 Sigmoid, stride 2

Table A.3. Encoder, Recurrent, and Decoder architectures on Bouncing Balls.

Interaction Function

MLP enc : FC, 250 ReLU, LayerNorm
MLP emb : FC, 250 ReLU, LayerNorm
MLP eff : FC, 250 ReLU, LayerNorm
MLPatt : FC, 100 Tanh, LayerNorm! FC, 1 Sigmoid

Table A.4. Interaction Function architecture on Bouncing Balls.

the noisy ground-truth as input. In case of LSTM, we additionally replace the
RNN update in (5.1) with an LSTM update. The R-NEM no att model is the same
as R-NEM but without MLPatt, such that ↵ is always 1 in (5.6).

Simulation Since the E-step relies on the ground-truth, which is not available for
simulation, we used a thresholded version of maxk :,k at 0.1 (such that everything
below becomes 0 and everything above becomes 1) as � instead. The observation
at time-step t for simulation steps is computed as x [t]⇡Pk �:,k[t�1]� :,k[t�1],
from which we can then compute the top-down error as before that is fed to
the encoder. In this way, we were able to replicate the dynamics when real
observations are available as much as possible.

154 A.2 Relational Neural Expectation Maximization

Occlusion On the occlusion data set, we used three balls with equal mass. The
curtain was spawned at a random location for each sequence. We trained R-NEM
with K = 5.

A.2.2 Space Invaders

We used a pre-trained DQN [Mnih et al., 2015] to produce a data set with
sequences of 25 time-steps. The DQN receives a stack of four frames as input and
we recorded every first frame of this stack. These frames were first pre-processed
as in Mnih et al. [2015] and then thresholded at 0.0001 to obtain binary images.

Since the images are 84 ⇥ 84, we used a different encoder and decoder
(Table A.5). We used the same architecture for ⌥ R-NEM (Table A.4), with the only
difference that at each time-step we concatenated an embedding of the action
produced by the agent to the hidden state. We used a single-layer MLP with 10
units and a ReLU activation function to compute this embedding.

In the Atari experiment, we trained with K = 4 and reduced the input noise
to 0.02 in order to preserve tiny elements such as bullets (that only occupy 1-2
pixels) as much as possible.

Encoder

4⇥ 4 conv, 16 ELU, stride 2, LayerNorm
4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
4⇥ 4 conv, 32 ELU, stride 2, LayerNorm
FC, 512 ELU, LayerNorm

Recurrent

RNN, 250 Sigmoid, LayerNorm (on output)

Decoder

FC, 512 ReLU, LayerNorm
FC, 8⇥ 8⇥ 64 ReLU, LayerNorm
4⇥ 4 upconv 32 ReLU, stride 2, LayerNorm
4⇥ 4 upconv 32 ReLU, stride 2, LayerNorm
4⇥ 4 upconv 16 ReLU, stride 2, LayerNorm
4⇥ 4 upconv 1 Sigmoid, stride 2

Table A.5. Encoder, Recurrent, and Decoder architectures on Space Invaders.

155 A.3 Object Compositionality in GANs

A.3 Object Compositionality in GANs

A.3.1 Model specifications

The generator and discriminator neural network architectures in all our experi-
ments are based on DCGAN [Radford et al., 2015].

Object Generators k-GAN ind. introduces K = k copies of an object generator
(i.e. tied weights, DCGAN architecture) that each generate an image from an
independent sample zi of a 64-dimensional Uniform(�1, 1) prior p

Z

.

Relational Structure When relational structure is incorporated (k-GAN rel.) each
of the zi is first updated, before being passed to the generators. These updates
are computed using one or more attention blocks, which integrate Multi-Head
Dot-Product Attention (MHDPA) [Vaswani et al., 2017] with a post-processing
step [Zambaldi et al., 2019]. A single head of an attention block updates zi

according to (6.3), (6.4), (6.5), and (6.6).
In our experiments, we implement the relational structure as in Table A.6.

Different heads in the same block use different parameters for these MLPs. If
multiple heads are present, then their outputs are concatenated and transformed
via a single-layer neural network (FC, 64 ReLU, LayerNorm) to obtain the new ẑi.
If the relational structure incorporates multiple attention blocks that iteratively
update zi, then we consider two variations: using unique weights for each MLP
in each block or sharing their weights across blocks.

Relational Structure

MLPquery : FC, 32 ReLU, LayerNorm
MLPkey : FC, 32 ReLU, LayerNorm
MLPvalue : FC, 32 ReLU, LayerNorm
MLPproject : FC, 64 ReLU! FC, 64 ReLU! LayerNorm (after adding to zi)

Table A.6. Neural network architectures used to implement the relational struc-
ture. Different heads use their own parameters for these MLPs.

Background Generation When a background generator is incorporated (e.g.
k-GAN rel. bg) it uses the same DCGAN architecture as the object generators, yet
maintains its own set of weights. It receives as input its own latent sample zb

156 A.3 Object Compositionality in GANs

where p
Zb

is again Uniform(�1, 1) similar to for the object generators, although
one may, in theory, choose a different distribution. We explore both variations in
which zb participates in the relational structure, and in which it does not.

A.3.2 Hyperparameter Configurations

Each model is optimized with ADAM [Kingma and Ba, 2015] using a learning rate
of 0.0001, and batch size 64 for 1M steps. Each generator step is followed by 5
discriminator steps, as is considered best practice in training GANs. Checkpoints
are saved every 20K steps and we consider only the checkpoint with the lowest
FID for each hyperparameter configuration. FID is computed using 10K samples
from a hold-out set.

Baseline We conduct an extensive grid search over 48 different GAN config-
urations to obtain a strong GAN baseline on each data set. It is made up of
hyperparameter ranges that were found to be successful in training GANs on
standard data sets [Kurach et al., 2019].

We consider [SN-GAN / WGAN], using [NO / WGAN] gradient penalty with
� [1 / 10]. In addition, we consider these configurations [WITH / WITHOUT]
spectral normalization. We consider [(0.5, 0.9) / (0.5, 0.999) / (0.9, 0.999)] as
(�1, �2) in ADAM. We explore 5 different seeds for each configuration.

k-GAN We conduct a similar grid search for the GANs that incorporate our
proposed structure. However, in order to maintain a similar computational
budget compared to our baseline, we consider a subset of the previous ranges
to compensate for the additional hyperparameters of the different structured
components that we would like to search over.

In particular, we consider SN-GAN with WGAN gradient penalty, with a default
� of 1, [WITH / WITHOUT] spectral normalization. We use (0.9, 0.999) as fixed
values for (�1, �2) in ADAM. Additionally, we consider K = [3 / 4 / 5] copies of
the generator, and the following configurations for the relational structure:

• Independent

• Relational (1 block, no weight-sharing, 1 head)

• Relational (1 block, no weight-sharing, 2 heads)

• Relational (2 blocks, no weight-sharing, 1 head)

157 A.3 Object Compositionality in GANs

• Relational (2 blocks, weight-sharing, 1 head)

• Relational (2 blocks, no weight-sharing, 2 heads)

• Relational (2 blocks, weight-sharing, 2 heads)

This results in 42 hyperparameter configurations, for which we each consider
5 seeds. We do not explore the use of a background generator on the non-
background data sets. On the background data sets, we explore variations with
and without the background generator. In the former case, we search over an
additional hyperparameter that determines whether the latent representation of
the background generator should participate in the relational structure or not,
while for the latter we increment all values of K by 1.

IODINE We made use of the official trained model for CLEVR released by the
authors [Greff et al., 2019]. We used K = 7 to compute the FID, which was also
used for training. Lower values of K were considered but were not found to yield
any improvements.

A.3.3 Instance Segmentation

We select the 5 best 3-GAN models (according to FID) on Independent MM, Triplet
MM, RGB Occluded MM, CIFAR10 + MM. These include relational, and purely
independent models, although on CIFAR10 + MM we ensure that we select only
models that also incorporate the background extension. Segmentation data is
obtained by either thresholding the output of the object generators at 0.1 (on
Independent MM, Triplet MM) or using the (implicit) alpha masks (RGB Occluded
MM, CIFAR10 + MM). Ground-truth data is obtained in the same fashion, but
using the real images of digits and background before combining them.

Our segmentation architecture is similar to the one considered in Chen et al.
[2019] but trained in a supervised fashion. We use a straight-through estimator
that first considers all viable permutations of assigning segmentation outputs
to labels, and then backpropagates only the gradients of the permutation for
which we measured the lowest cross-entropy loss. We trained for 150 epochs
using ADAM with a learning rate of 0.002 and a batch size of 64. The training
data consisted of 50K images and corresponding segmentations (obtained via the
procedure described above) and model selection was performed using a separate
validation set consisting of 10K data points.

Reported results were obtained by evaluating on a separate test set of 10K
ground-truth data points. In particular, we test the trained segmenter using

158 A.3 Object Compositionality in GANs

ground-truth segmentations and report the Adjusted Rand Index (ARI [Hubert
and Arabie, 1985]) score on all pixels that correspond to digits (similar to as was
done for N-EM and R-NEM). On Independent MM, and Triplet MM we additionally
ignore overlapping pixels due to ambiguities.

A.3.4 Human Study

We asked human raters to compare the images generated by k-GAN (k = 3, 4, 5)
to our GAN baseline on RGB Occluded MM, CIFAR10 + MM and CLEVR, using the
configuration with a background generator for the last two data sets. For each
model, we selected the 10 best hyperparameter configurations, from which we
each generated 100 images. We conduct two different studies 1) in which we
compare images from k-GAN against GAN and 2) in which we asked raters to
answer questions about the content (properties) of the images. In all cases, human
raters were shown several samples of real images, a description of the generative
process, and examples of correct ratings for the “properties” experiments (but not
for the subjective evaluation).

Comparison We asked raters to compare the quality of the generated images.
We asked up to three raters for each image and report the majority vote or “equal”
if no decision can be reached. Note that on C LEVR we instructed the raters to
ignore visual implausibilities due to floating objects (for both k-GAN and GAN)
that may arise due to the fixed order in (6.7), and measured this effect separately
in Figure B.5.

Properties For each data set, we asked (up to three raters for each image) the
following questions.

On RGB Occluded MM we asked:

1. How many [red, blue, green] shapes are in the image? [0, 1, 2, 3, 4, 5]

2. How many are recognizable as digits? [0, 1, 2, 3, 4, 5]

3. Are there exactly 3 digits in the picture, one of them green, one blue, and
one red? Yes / No

On CIFAR10 + MM we asked these same questions, and additionally asked:

4. Does the background constitute a realistic scene? Yes / No

On CLEVR we asked the following set of questions:

159 A.3 Object Compositionality in GANs

1. How many shapes are in the image? [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

2. How many are recognizable as geometric objects? [0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10]

3. Are there any objects with mixed colors (e.g. part green part red)? Yes / No

4. Are there any objects with distorted geometric shapes? Yes / No

5. Are there any objects that appear to be floating? Yes / No

6. Does the scene appear to be crowded? Yes / No

160 A.4 Evaluating Disentangled Representations

A.4 Evaluating Disentangled Representations

A.4.1 Architectures

Disentanglement Methods

We use the same architecture, hyperparameters, and training setup as in prior
work [Locatello et al., 2018], which we report here for completeness. The encoder
and decoder architectures are depicted in Table A.7. All models share the following
hyperparameters: We used a batch size of 64, 10-dimensional latent space, and
Bernoulli decoders. We trained the models for 300K steps using ADAM [Kingma
and Ba, 2015] with �1 = 0.9, �2 = 0.999, ✏ = 10�8 and a learning rate of 0.0001.

For � -VAE, we perform a sweep on � on the interval [1, 2, 4, 6, 8, 16]. For � -
VAE with controlled capacity increase, we perform a sweep on cmax on the interval
[5, 10, 25, 50, 75, 100]. The iteration threshold is set to 100K and � = 1000. For
FactorVAE, we perform a sweep on � on the interval [10, 20, 30, 40, 50, 100]. For
the discriminator of the FactorVAE we use the architecture described in Table A.8.
Its other hyperparameters are: Batch size = 64, Optimizer = Adam with �1 = 0.5,
�2 = 0.9, ✏ = 10�8, and learning rate = 0.0001. For DIP-VAE-I, we perform a
sweep on �od on the interval [1, 2, 5, 10, 20, 50], and set �d = 10. For DIP-VAE-II,
we perform a sweep on � on the interval [1, 2, 5, 10, 20, 50], and set �d = 10.
For � -TCVAE, we perform a sweep on � on the interval [1, 2, 4, 6, 8, 10]. Each
model is trained using 5 different random seeds.

Abstract Visual Reasoning Method

To solve the abstract reasoning tasks, we implemented the Wild Relation Networks
(WReN) model as in Santoro et al. [2018b]. For the experiments, we use the
following random search space over the hyperparameters: We uniformly sample
a learning rate for ADAM from the set {0.01,0.001,0.0001} while �1 = 0.9,
�2 = 0.999, and ✏ = 10�8. For the edge MLP g in the WReN model, we uniformly
choose either 256 or 512 hidden units and we uniformly sample whether it has
2, 3, or 4 hidden layers. Similarly, for the graph MLP f in the WReN model,
we uniformly choose either 128 or 256 hidden units and we uniformly sample
whether it has 1 or 2 hidden layers before the final linear layer to compute the
final score. We also uniformly sample whether we apply no dropout, dropout of
0.25, dropout of 0.5, or dropout of 0.75 to units before this last layer [Srivastava
et al., 2014] (Frazier-Logue and Hanson [2018] note that dropout is a variation
of Hanson [1990]).

161 A.4 Evaluating Disentangled Representations

Encoder

4⇥ 4 conv, 32 ReLU, stride 2
4⇥ 4 conv, 32 ReLU, stride 2
4⇥ 4 conv, 64 ReLU, stride 2
4⇥ 4 conv, 64 ReLU, stride 2
FC, 256 ReLU
FC 2⇥ 10

Decoder

FC, 256 ReLU
FC, 4⇥ 4⇥ 64 ReLU
4⇥ 4 upconv, 64 ReLU, stride 2
4⇥ 4 upconv, 32 ReLU, stride 2
4⇥ 4 upconv, 32 ReLU, stride 2
4⇥ 4 upconv 3, stride 2

Table A.7. Encoder and Decoder architectures.

Discriminator

FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 1000 leaky ReLU
FC, 2

Table A.8. Architecture for the discriminator in FactorVAE.

162 A.4 Evaluating Disentangled Representations

A.4.2 Abstract Visual Reasoning Data

Figures A.1 and A.2 contain additional examples (including answers) of the visual
reasoning tasks for each data set respectively.

Figure A.1. Additional examples (including answers) of the RPM-like abstract
visual reasoning task using dSprites.

163 A.4 Evaluating Disentangled Representations

Figure A.2. Additional examples (including answers) of the RPM-like abstract
visual reasoning task using 3dshapes.

164 A.4 Evaluating Disentangled Representations

Appendix B

Additional Results

B.1 Object Compositionality in GANs

B.1.1 FID Study

Figures B.1 to B.3 and Table B.1.

Figure B.1. Analysis. The best FID obtained by GAN and k-GAN on Independent
MM, Triplet MM, and RGB Occluded MM following our grid search. The best
configurations were chosen based on the smallest average FID (across 5 seeds).
Standard deviations across seeds are illustrated with error bars.

165

166 B.1 Object Compositionality in GANs

Figure B.2. Analysis. The best FID obtained by GAN and k-GAN on MM +
CIFAR10, and CLEVR following our grid search. In this figure all k-GAN variations
make use of the background extension. The best configurations were chosen
based on the smallest average FID (across 5 seeds). Standard deviations across
seeds are illustrated with error bars.

Figure B.3. Analysis. The best FID obtained by GAN and k-GAN on MM +
CIFAR10, and CLEVR following our grid search. In this figure all k-GAN variations
do not use the background extension. The best configurations were chosen based
on the smallest average FID (across 5 seeds). Standard deviations across seeds
are illustrated with error bars.

167 B.1 Object Compositionality in GANs

model gan type norm. penalty blocks heads share bg. int. �1 �2 �

GAN NS-GAN spec. none x x x x 0.5 0.999 10
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
4-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
5-GAN rel. NS-GAN spec. WGAN 2 1 no x 0.9 0.999 1

GAN NS-GAN spec. none x x x x 0.5 0.999 1
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN spec. WGAN 1 1 no x 0.9 0.999 1
4-GAN rel. NS-GAN spec. WGAN 1 2 no x 0.9 0.999 1
5-GAN rel. NS-GAN spec. WGAN 2 1 no x 0.9 0.999 1

GAN NS-GAN spec. none x x x x 0.5 0.999 1
3-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
4-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
5-GAN ind. NS-GAN spec. WGAN x x x x 0.9 0.999 1
3-GAN rel. NS-GAN none WGAN 2 2 yes x 0.9 0.999 1
4-GAN rel. NS-GAN none WGAN 2 2 no x 0.9 0.999 1
5-GAN rel. NS-GAN none WGAN 2 2 yes x 0.9 0.999 1

GAN NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
4-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
5-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN rel. bg. NS-GAN none WGAN 2 1 yes yes 0.9 0.999 1
4-GAN rel. bg. NS-GAN none WGAN 2 1 yes yes 0.9 0.999 1
5-GAN rel. bg. NS-GAN none WGAN 2 2 yes no 0.9 0.999 1

GAN WGAN none WGAN x x x x 0.9 0.999 1
3-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
4-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
5-GAN ind. bg. NS-GAN none WGAN x x x x 0.9 0.999 1
3-GAN rel. bg. NS-GAN none WGAN 2 1 no yes 0.9 0.999 1
4-GAN rel. bg. NS-GAN none WGAN 1 2 no no 0.9 0.999 1
5-GAN rel. bg. NS-GAN none WGAN 2 2 no no 0.9 0.999 1

Table B.1. Best hyperparameter configuration for each model that were obtained
following our grid search. Configurations were chosen based on the smallest
average FID (across 5 seeds) as reported in Figure 6.5. Each block corresponds
to a data set (from top to bottom: Independent MM, Triplet MM, RGB Occluded
MM, CIFAR10 + MM, CLEVR).

168 B.1 Object Compositionality in GANs

B.1.2 Human Study - Properties

Figures B.4 to B.6 .

Figure B.4. Additional results of human evaluation. Properties of generated
images by k-GAN (k=3,4,5) and GAN on CIFAR10 + MM.

169 B.1 Object Compositionality in GANs

Figure B.5. Additional results of human evaluation. Properties of generated im-
ages by k-GAN (k=3,4,5) and GAN on CLEVR. Note that on CLEVR all evaluated
properties are undesirable, and thus a larger number of “False” responses is
better.

170 B.1 Object Compositionality in GANs

Figure B.6. Additional results of human evaluation. Number of (geometric)
objects in generated images by k-GAN (k=3,4,5) and GAN on CLEVR. A value
of -1 implies a majority vote could not be reached.

171 B.1 Object Compositionality in GANs

B.1.3 Examples of Generated Images

Generated samples (8⇥ 8 grid) are shown for the best (lowest FID) structured
GAN following our grid search, as well as the best baseline GAN for each data set.
Real samples from the data set can also be seen.

Independent Multi MNIST

Figures B.7 to B.9.

Figure B.7. Real images of Independent MM.

172 B.1 Object Compositionality in GANs

Figure B.8. Generated images by NS-GAN with spectral norm on Independent
MM.

173 B.1 Object Compositionality in GANs

Figure B.9. Generated images by 4-GAN ind. with spectral norm and WGAN
penalty on Independent MM.

174 B.1 Object Compositionality in GANs

Triplet Multi MNIST

Figures B.10 to B.12.

Figure B.10. Real images of Triplet MM.

175 B.1 Object Compositionality in GANs

Figure B.11. Generated images by NS-GAN with spectral norm on Triplet MM.

176 B.1 Object Compositionality in GANs

Figure B.12. Generated images by 4-GAN rel. (1 block, 2 heads, no weight
sharing) with spectral norm and WGAN penalty on Triplet MM.

177 B.1 Object Compositionality in GANs

RGb-Occluded Multi MNIST

Figures B.13 to B.15.

Figure B.13. Real images of RGB Occluded MM.

178 B.1 Object Compositionality in GANs

Figure B.14. Generated images by NS-GAN with spectral norm on RGB Occluded
MM.

179 B.1 Object Compositionality in GANs

Figure B.15. Generated images by 3-GAN rel. (2 blocks, 2 heads, no weight
sharing) with spectral norm and WGAN penalty on RGB Occluded MM.

180 B.1 Object Compositionality in GANs

CIFAR10 + MM

Figures B.16 to B.18.

Figure B.16. Real images of CIFAR10 + MM.

181 B.1 Object Compositionality in GANs

Figure B.17. Generated images by WGAN with WGAN penalty on CIFAR10 +
MM.

182 B.1 Object Compositionality in GANs

Figure B.18. Generated images by 5-GAN rel. (1 block, 2 heads, no weight
sharing) bg. (no interaction) with WGAN penalty on CIFAR10 + MM.

183 B.1 Object Compositionality in GANs

CLEVR

Figures B.19 to B.21.

Figure B.19. Real images of CLEVR.

184 B.1 Object Compositionality in GANs

Figure B.20. Generated images by WGAN with WGAN penalty on CLEVR.

185 B.1 Object Compositionality in GANs

Figure B.21. Generated images by 3-GAN rel. (2 heads, 2 blocks, no weight
sharing) bg. (with interaction) with WGAN penalty on CLEVR.

186 B.2 Evaluating Disentangled Representations

B.2 Evaluating Disentangled Representations

B.2.1 Learning Representations

This subsection contains additional results to evaluate the training phase of the 360
disentanglement models. Figure B.22 displays the rank correlation between the
various metrics on the learned representations, and Figures B.23 and B.24 present
histograms of the scores assigned by various metrics to the learned representations
on dSprites and 3dshapes respectively.

Figure B.22. Rank correlations between the different metrics considered in this
paper.

187 B.2 Evaluating Disentangled Representations

Figure B.23. Distribution of scores assigned by various metrics to the learned
representations on dSprites.

Figure B.24. Distribution of scores assigned by various metrics to the learned
representations on 3dshapes.

188 B.2 Evaluating Disentangled Representations

B.2.2 Abstract Visual Reasoning

This subsection contains additional results obtained after training 3600 WReN
models on the down-stream abstract visual reasoning tasks. Figures B.25 and B.26
provide an in-depth view of the correlation between the scores assigned by various
metrics and the down-stream accuracy.

Figures B.27 and B.28 present the down-stream accuracy at various stages
of training of models, grouped in quartiles according to the scores assigned by a
given metric on dSprites and 3dshapes respectively.

Figure B.25. Correlation between GBT10000, LR10000, and Reconstruction
error (rows) and down-stream accuracy of the abstract visual reasoning models.
Columns correspond to 1K, 5K, 10K, 100K training steps (i.e. number of samples).

189 B.2 Evaluating Disentangled Representations

Figure B.26. Correlation between BetaVAE score, FactorVAE score, MIG, DCI
Disentanglement score, and SAP score (rows) and down-stream accuracy of the
abstract visual reasoning models. Columns correspond to 1K, 5K, 10K, 100K
training steps (i.e. number of samples).

190 B.2 Evaluating Disentangled Representations

Figure B.27. Down-stream accuracy of abstract visual reasoning models on
dSprites throughout training (i.e. for different number of samples) binned in
quartiles based on different metrics.

191 B.2 Evaluating Disentangled Representations

Figure B.28. Down-stream accuracy of abstract visual reasoning models on
3dshapes throughout training (i.e. for different number of samples) binned in
quartiles based on different metrics.

192 B.2 Evaluating Disentangled Representations

Bibliography

Alessandro Achille, Tom Eccles, Loic Matthey, Chris Burgess, Nicholas Watters,
Alexander Lerchner, and Irina Higgins. Life-long disentangled representation
learning with cross-domain latent homologies. In Advances in Neural Information
Processing Systems, pages 9873–9883, 2018.

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm
for boltzmann machines. Cognitive science, 9(1):147–169, 1985.

Linda Acredolo and Susan Goodwyn. Symbolic gesturing in normal infants. Child
development, pages 450–466, 1988.

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine.
Learning to poke by poking: Experiential learning of intuitive physics. In
Advances in Neural Information Processing Systems, pages 5074–5082, 2016.

Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua B Tenenbaum, Alberto
Rodriguez, and Leslie P Kaelbling. Combining physical simulators and object-
based networks for control. In 2019 International Conference on Robotics and
Automation (ICRA), pages 3217–3223. IEEE, 2019.

Ferran Alet, Erica Weng, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. Neural
relational inference with fast modular meta-learning. In Advances in Neural
Information Processing Systems, pages 11827–11838, 2019.

Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference On,
pages 73–80. ieeexplore.ieee.org, 2010.

Luis B. Almeida. A learning rule for asynchronous perceptrons with feedback in a
combinatorial environment. In Proceedings, 1st First International Conference
on Neural Networks, volume 2, pages 609–618. ci.nii.ac.jp, 1987.

193

194 Bibliography

George A Alvarez and Steven L Franconeri. How many objects can you track?:
Evidence for a resource-limited attentive tracking mechanism. Journal of vision,
7(13):14–14, 2007.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. A unified
view of gradient-based attribution methods for deep neural networks. Neural
Information Processing Systems (NIPS) Workshop on Interpreting, Explaining and
Visualizing Deep Learning-Now What?, 2017.

Jacob Andreas. Measuring compositionality in representation learning. In Inter-
national Conference on Learning Representations, 2019.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 39–48, 2016.

Relja Arandjelović and Andrew Zisserman. Object discovery with a copy-pasting
gan. arXiv preprint arXiv:1905.11369, 2019.

P Arbeláez, M Maire, C Fowlkes, and J Malik. Contour detection and hierarchi-
cal image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 33(5):898–916, 2011.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative
adversarial networks. In International Conference on Machine Learning, pages
214–223, 2017.

Fred Attneave. Multistability in perception. Scientific American, 225(6):62–71,
1971. ISSN 0036-8733(Print). doi: 10.1038/scientificamerican1271-62.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In
Advances in Neural Information Processing Systems, pages 1993–2001, 2016.

Yuval Atzmon, Jonathan Berant, Vahid Kezami, Amir Globerson, and Gal Chechik.
Learning to generalize to new compositions in image understanding. arXiv
preprint arXiv:1608.07639, 2016.

Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, and Trevor Darrell. Compo-
sitional gan: Learning image-conditional binary composition. arXiv preprint
arXiv:1807.07560, 2019.

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition
with visual attention. arXiv preprint arXiv:1412.7755, 2014.

195 Bibliography

Jimmy Ba, Geoffrey E Hinton, Volodymyr Mnih, Joel Z Leibo, and Catalin Ionescu.
Using Fast Weights to Attend to the Recent Past. In Advances in Neural Informa-
tion Processing Systems, pages 4331–4339, 2016a.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016b.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H. Campbell, and
Sergey Levine. Stochastic variational video prediction. In International Confer-
ence on Learning Representations, 2018.

Alan D Baddeley and Graham Hitch. Working memory. In Psychology of learning
and motivation, volume 8, pages 47–89. Elsevier, 1974.

Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration –
A structured survey. arXiv:cs/0511042, November 2005.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Min Bai and Raquel Urtasun. Deep watershed transform for instance segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5221–5229, 2017.

Renee Baillargeon, Elizabeth S. Spelke, and Stanley Wasserman. Object perma-
nence in five-month-old infants. Cognition, 20(3):191–208, 1985.

Pierre F Baldi and Kurt Hornik. Learning in linear neural networks: A survey.
IEEE Transactions on neural networks, 6(4):837–858, 1995.

Valentina BamBini, Cristiano Chesi, and Andrea Moro. A conversation with Noam
Chomsky: New insights on old foundations. Phenomenology and Mind, (3):
166–178, 2012.

Steven C Hayes Dermot Barnes-Holmes and Bryan Roche. Relational frame theory:
A post-Skinnerian account of human language and cognition. Springer Science &
Business Media, 2001.

Brian Barton, Edward F Ester, and Edward Awh. Discrete resource allocation in
visual working memory. Journal of Experimental Psychology: Human Perception
and Performance, 35(5):1359, 2009.

196 Bibliography

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and
others. Interaction networks for learning about objects, relations and physics.
In Advances in Neural Information Processing Systems, pages 4502–4510, 2016.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an
engine of physical scene understanding. Proceedings of the National Academy of
Sciences, 110(45):18327–18332, 2013.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and
graph networks. arXiv preprint arXiv:1806.01261, 2018.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
with application to wavelet-based image deblurring. In Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE International Conference On, pages
693–696. IEEE, 2009.

Suzanna Becker and Geoffrey E. Hinton. Self-organizing neural network that
discovers surfaces in random-dot stereograms. Nature, 355(6356):161–163,
1992.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279, 2013.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys\ law
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, and
Chris Hesse. Dota 2 with Large Scale Deep Reinforcement Learning. arXiv
preprint arXiv:1912.06680, 2019.

Adam Bielski and Paolo Favaro. Emergence of object segmentation in perturbed
generative models. In Advances in Neural Information Processing Systems, pages
7254–7264, 2019.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

197 Bibliography

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A
review for statisticians. Journal of the American statistical Association, 112
(518):859–877, 2017.

Konstantinos Blekas, Aristidis Likas, Nikolas P Galatsanos, and Isaac E Lagaris. A
spatially constrained mixture model for image segmentation. IEEE transactions
on Neural Networks, 16(2):494–498, 2005.

Daniel G. Bobrow. Natural language input for a computer problem solving system.
1964.

Matko Bošnjak, Tim Rocktäschel, Jason Naradowsky, and Sebastian Riedel. Pro-
gramming with a differentiable forth interpreter. In International Conference on
Machine Learning, pages 547–556, 2017.

Olivier Bousquet, Ulrike von Luxburg, and Gunnar Rätsch. Advanced Lectures
on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February
2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures, volume
3176. Springer, 2011.

Jeffrey S. Bowers, Ivan I. Vankov, Markus F. Damian, and Colin J. Davis. Neural
networks learn highly selective representations in order to overcome the su-
perposition catastrophe. Psychological Review, 121(2):248–261, 2014. ISSN
1939-1471, 0033-295X. doi: 10.1037/a0035943.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-
features models works surprisingly well on imagenet. In International Conference
on Learning Representations, 2019.

John S Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocomputing,
pages 227–236. Springer, 1990.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for
high fidelity natural image synthesis. In International Conference on Learning
Representations, 2019.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine, 34(4):18–42, 2017.

Neil D. B. Bruce and John K. Tsotsos. Saliency based on information maximization.
In Advances in Neural Information Processing Systems, pages 155–162, 2006.

198 Bibliography

Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guil-
laume Desjardins, and Alexander Lerchner. Understanding disentangling in
�-vae. Neural Information Processing Systems (NIPS) Workshop on Learning
Disentangled Representations: From Perception to Control, 2017.

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina
Higgins, Matthew Botvinick, and Alexander Lerchner. MONet: Unsupervised
scene decomposition and representation. arXiv:1901.11390 [cs, stat], January
2019.

Nicholas J. Butko and Javier R. Movellan. Optimal scanning for faster object
detection. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 2751–2758. ieeexplore.ieee.org, June 2009. doi: 10.1109/CVPR.2009.
5206540.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming
architectures generalize via recursion. In International Conference on Learning
Representations, 2017.

Murray Campbell, A. Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial
intelligence, 134(1-2):57–83, 2002.

Brian Cantwell-Smith. On the Origin of Objects. A Bradford Book. MIT Press,
Cambridge, Mass., 1st paperback ed edition, 1998. ISBN 978-0-262-69209-0.

Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang, Yongzhen
Huang, Liang Wang, Chang Huang, Wei Xu, et al. Look and think twice: Cap-
turing top-down visual attention with feedback convolutional neural networks.
In Proceedings of the IEEE international conference on computer vision, pages
2956–2964, 2015.

Natalia Caporale and Yang Dan. Spike timing–dependent plasticity: A hebbian
learning rule. Annual Review of Neuroscience, 31:25–46, 2008.

George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury Pacific
Grove, CA, 2002.

Hugo Caselles-Dupré, Michael Garcia Ortiz, and David Filliat. Symmetry-based
disentangled representation learning requires interaction with environments.
In Advances in Neural Information Processing Systems, pages 4608–4617, 2019.

199 Bibliography

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum.
A compositional object-based approach to learning physical dynamics. In
International Conference on Learning Representations, 2016.

Nick Chater. Reconciling simplicity and likelihood principles in perceptual organi-
zation. Psychological review, 103(3):566–581, 1996. doi: 10.1037/0033-295X.
103.3.566.

Mickaël Chen, Thierry Artières, and Ludovic Denoyer. Unsupervised object seg-
mentation by redrawing. In Advances in Neural Information Processing Systems,
pages 12705–12716, 2019.

Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating
sources of disentanglement in vaes. In Advances in Neural Information Processing
Systems, pages 2610–2620, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maxi-
mizing generative adversarial nets. In Advances in neural information processing
systems, pages 2172–2180, 2016.

E Colin Cherry. Some experiments on the recognition of speech, with one and
with two ears. The Journal of the acoustical society of America, 25(5):975–979,
1953.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. Neural
Information Processing Systems (NIPS) Workshop on Deep Learning, 2014.

Dan C. Ciresan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for
image classification. In International Joint Conference on Artificial Intelligence,
pages 1237–1242, 2011.

Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural
networks for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

200 Bibliography

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivari-
ant convolutional networks and the icosahedral cnn. In International Conference
on Machine Learning, pages 1321–1330, 2019.

Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection
with convolutional neural networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 3412–3420, 2019.

Robert Csordas and Juergen Schmidhuber. Improving differentiable neural com-
puters through memory masking, de-allocation, and link distribution sharpness
control. In International Conference on Learning Representations, 2019.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via
multi-task network cascades. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3150–3158, 2016.

Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-
tion. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 886–893 vol. 1. ieeexplore.ieee.org,
June 2005. doi: 10.1109/CVPR.2005.177.

Sreerupa Das, C. Lee Giles, and Guo-Zheng Sun. Learning context-free grammars:
Capabilities and limitations of a recurrent neural network with an external
stack memory. In Proceedings of The Fourteenth Annual Conference of Cognitive
Science Society. Indiana University, page 14, 1992.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint. Communications
on pure and applied mathematics, 57(11):1413–1457, 2004.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz
Kaiser. Universal transformers. In International Conference on Learning Repre-
sentations, 2019.

Luca Del Pero, Joshua Bowdish, Daniel Fried, Bonnie Kermgard, Emily Hartley,
and Kobus Barnard. Bayesian geometric modeling of indoor scenes. In 2012
IEEE Conference on Computer Vision and Pattern Recognition, pages 2719–2726.
ieeexplore.ieee.org, June 2012. doi: 10.1109/CVPR.2012.6247994.

Luca Del Pero, Joshua Bowdish, Bonnie Kermgard, Emily Hartley, and Kobus
Barnard. Understanding Bayesian rooms using composite 3d object models.
In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference On,
pages 153–160. cv-foundation.org, 2013.

201 Bibliography

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the royal statistical society., pages 1–38,
1977.

Zhiwei Deng, Megha Nawhal, Lili Meng, and Greg Mori. Continuous Graph Flow.
arXiv:1908.02436 [cs, stat], September 2019.

Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando
de Freitas. Programmable agents. arXiv preprint arXiv:1706.06383, 2017.

Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen, and Billi Randall. The centre
for speech, language and the brain (cslb) concept property norms. Behavior
research methods, 46(4):1119–1127, 2014.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, 2019.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using
real nvp. In Fifth International Conference on Learning Representations, 2017.

Carl Doersch. Tutorial on variational autoencoders. arXiv preprint
arXiv:1606.05908, 2016.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learn-
ing. In Advances in Neural Information Processing Systems, pages 10542–10552,
2019.

Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learn-
ing. In Fifth International Conference on Learning Representations, 2017.

Leonidas A. A. Doumas, John E. Hummel, and Catherine M. Sandhofer. A theory
of the discovery and predication of relational concepts. Psychological Review,
115(1):1–43, 2008. ISSN 1939-1471, 0033-295X. doi: 10.1037/0033-295X.
115.1.1.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Jonathan Ho, Jonas Schneider,
Ilya Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation
learning. In Advances in Neural Information Processing Systems, pages 1087–
1098, 2017.

202 Bibliography

Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb,
Martin Arjovsky, and Aaron Courville. Adversarially learned inference. In Fifth
International Conference on Learning Representations, 2017.

Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative
evaluation of disentangled representations. In International Conference on
Learning Representations, 2018.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learn-
ing to infer graphics programs from hand-drawn images. In Advances in Neural
Information Processing Systems, pages 6059–6068, 2018.

Ian Endres and Derek Hoiem. Category independent object proposals. In Lec-
ture Notes in Computer Science, pages 575–588. Springer, Berlin, Heidelberg,
September 2010. doi: 10.1007/978-3-642-15555-0_42.

Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis:
Generative scene inference and sampling with object-centric latent representa-
tions. In International Conference on Learning Representations, 2019.

James T Enns and Ronald A Rensink. Sensitivity to three-dimensional orientation
in visual search. Psychological Science, 1(5):323–326, 1990.

SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,
Geoffrey E Hinton, et al. Attend, infer, repeat: Fast scene understanding with
generative models. In Advances in Neural Information Processing Systems, pages
3225–3233, 2016.

Babak Esmaeili, Hao Wu, Sarthak Jain, Alican Bozkurt, N Siddharth, Brooks Paige,
Dana H Brooks, Jennifer Dy, and Jan-Willem Meent. Structured disentangled
representations. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 2525–2534, 2019.

Jerome Feldman. The neural binding problem (s). Cognitive neurodynamics, 7(1):
1–11, 2013.

Santiago Fernández, Alex Graves, and Jürgen Schmidhuber. An application of
recurrent neural networks to discriminative keyword spotting. In International
Conference on Artificial Neural Networks, pages 220–229. Springer, 2007.

Jerry A. Fodor. The Language of Thought, volume 5. Harvard university press,
1975.

203 Bibliography

Jerry A. Fodor and Zeno W. Pylyshyn. Connectionism and cognitive architecture:
A critical analysis. Cognition, 28(1-2):3–71, March 1988. ISSN 0010-0277.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learn-
ing visual predictive models of physics for playing billiards. arXiv preprint
arXiv:1511.07404, 2015.

Michael Frank, Edward Vul, Vikash Mansinghka, and George Alvarez. What limits
performance in multiple object tracking? Journal of Vision, 8(6):498–498,
2008.

Noah Frazier-Logue and Stephen José Hanson. Dropout is a special case of the
stochastic delta rule: Faster and more accurate deep learning. arXiv preprint
arXiv:1808.03578, 2018.

Nir Friedman and Stuart Russell. Image segmentation in video sequences: A
probabilistic approach. In UAI’97, pages 175–181, San Francisco, CA, USA,
1997. Morgan Kaufmann Publishers Inc.

Fabian B. Fuchs, Adam R. Kosiorek, Li Sun, Oiwi Parker Jones, and Ingmar Posner.
End-to-end Recurrent Multi-Object Tracking and Trajectory Prediction with
Relational Reasoning. arXiv preprint arXiv:1907.12887, 2019.

Keisuke Fukuda, Edward Awh, and Edward K. Vogel. Discrete capacity limits in
visual working memory. Curr Opin Neurobiol, 20(2):177–182, April 2010. ISSN
0959-4388. doi: 10.1016/j.conb.2010.03.005.

Kunihiko Fukushima. Neural network model for a mechanism of pattern recogni-
tion unaffected by shift in position — Neocognitron. Trans. IECE, J62-A(10):
658–665, 1979.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

Shani Gamrian and Yoav Goldberg. Transfer learning for related reinforcement
learning tasks via image-to-image translation. In International Conference on
Machine Learning, pages 2063–2072, 2019.

Dashan Gao and Nuno Vasconcelos. Discriminant saliency for visual recognition
from cluttered scenes. In Advances in Neural Information Processing Systems,
pages 481–488, 2005.

204 Bibliography

Ross W. Gayler. Multiplicative binding, representation operators & analogy. Cog-
prints, 1998.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. Imagenet-trained CNNs are biased towards
texture; increasing shape bias improves accuracy and robustness. In Interna-
tional Conference on Learning Representations, 2019.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Contin-
ual prediction with LSTM. In Artificial Neural Networks, 1999. ICANN 99. Ninth
International Conference on (Conf. Publ. No. 470), volume 2, pages 850–855,
1999.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with lstm. Neural Computation, 12(10):2451–2471, 2000.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic
reasoning. In Proceedings of the annual meeting of the cognitive science society,
volume 36, 2014.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen.
Higher order recurrent networks and grammatical inference. In Advances in
Neural Information Processing Systems, pages 380–387, 1990.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In International Confer-
ence on Machine Learning, pages 1263–1272, 2017.

Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 580–587. cv-foundation.org, 2014.

Roy J Glauber. Time-dependent statistics of the ising model. Journal of mathe-
matical physics, 4(2):294–307, 1963.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press,
2016. ISBN 978-0-262-03561-3.

205 Bibliography

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning
in graph domains. In Proceedings. 2005 IEEE International Joint Conference on
Neural Networks, 2005., volume 2, pages 729–734 vol. 2. ieeexplore.ieee.org,
July 2005. doi: 10.1109/IJCNN.2005.1555942.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. Recurrent independent mechanisms.
arXiv preprint arXiv:1909.10893, 2019.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv
preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Ag-
nieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette,
Tiago Ramalho, John Agapiou, Adrià Puigdomènech Badia, Karl Moritz Her-
mann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King, Christopher Sum-
merfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis. Hybrid
computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, October 2016. ISSN 0028-0836. doi: 10.1038/nature20101.

Edwin James Green. A theory of perceptual objects. Philos. Phenomenol. Res.,
106:7345, June 2018. ISSN 0031-8205. doi: 10.1111/phpr.12521.

Klaus Greff⇤, Sjoerd van Steenkiste⇤, and Jürgen Schmidhuber. Neural expectation
maximization. In Advances in Neural Information Processing Systems, pages
6694–6704, 2017a.

Klaus Greff⇤, Sjoerd van Steenkiste⇤, and Jürgen Schmidhuber. Neural expectation
maximization. International Conference on Learning Representations, Workshop
Track, 2017b.

Klaus Greff, Rupesh K. Srivastava, and Jürgen Schmidhuber. Binding via re-
construction clustering. International Conference on Learning Representations,
Workshop Track, 2015.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Juergen
Schmidhuber. Tagger: Deep unsupervised perceptual grouping. In Advances in
Neural Information Processing Systems, pages 4484–4492, 2016.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher
Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerch-
ner. Multi-object representation learning with iterative variational inference.
In International Conference on Machine Learning, pages 2424–2433, 2019.

206 Bibliography

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding
problem in artificial neural networks. In preparation, 2020.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
International Conference on Machine Learning, pages 399–406, 2010.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image generation. In International
Conference on Machine Learning, pages 1462–1471, 2015.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. Neuroanimator:
Fast neural network emulation and control of physics-based models. In Pro-
ceedings of the 25th annual conference on Computer graphics and interactive
techniques, pages 9–20. ACM, 1998.

Jose A. Guerrero-Colón, Eero P. Simoncelli, and Javier Portilla. Image denoising
using mixtures of Gaussian scale mixtures. In Image Processing, 2008. ICIP
2008. 15th IEEE International Conference On, pages 565–568. IEEE, 2008.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Advances in Neural Infor-
mation Processing Systems, pages 5767–5777, 2017.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. In Advances in Neural Information Processing Systems, pages 2450–
2462, 2018.

Nick Haber, Damian Mrowca, Stephanie Wang, Li F Fei-Fei, and Daniel L Yamins.
Learning to play with intrinsically-motivated, self-aware agents. In Advances in
Neural Information Processing Systems, pages 8388–8399, 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems, pages
1024–1034, 2017.

Jessica B. Hamrick, Kelsey R. Allen, Victor Bapst, Tina Zhu, Kevin R. McKee,
Joshua B. Tenenbaum, and Peter W. Battaglia. Relational inductive bias for phys-
ical construction in humans and machines. arXiv preprint arXiv:1806.01203,
2018.

Stephen José Hanson. A stochastic version of the delta rule. Physica D: Nonlinear
Phenomena, 42(1-3):265–272, 1990.

207 Bibliography

Stevan Harnad. The symbol grounding problem. Physica D, 42(1):335–346, June
1990. ISSN 0167-2789. doi: 10.1016/0167-2789(90)90087-6.

Hedi Harzallah, Frédéric Jurie, and Cordelia Schmid. Combining efficient object
localization and image classification. In 2009 IEEE 12th International Conference
on Computer Vision, pages 237–244. ieeexplore.ieee.org, 2009. doi: 10.1109/
ICCV.2009.5459257.

Gary Hatfield and William Epstein. The status of the minimum principle in the
theoretical analysis of visual perception. Psychological Bulletin, 97(2):155,
1985.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN.
In Proceedings of the IEEE International Conference on Computer Vision, pages
2961–2969, 2017.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on
Graph-Structured Data. arXiv:1506.05163 [cs], June 2015.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
Tracking the world state with recurrent entity networks. In International
Conference on Learning Representations, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. In Advances in Neural Information Processing Systems,
pages 6626–6637, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework. In International
Conference on Learning Representations, 2017a.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexan-
der Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner.
Darla: Improving zero-shot transfer in reinforcement learning. In International
Conference on Machine Learning, pages 1480–1490, 2017b.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo
Rezende, and Alexander Lerchner. Towards a definition of disentangled repre-
sentations. arXiv preprint arXiv:1812.02230, 2018a.

208 Bibliography

Irina Higgins, Nicolas Sonnerat, Loic Matthey, Arka Pal, Christopher P Burgess,
Matko Bošnjak, Murray Shanahan, Matthew Botvinick, Demis Hassabis, and
Alexander Lerchner. Scan: Learning hierarchical compositional visual concepts.
In International Conference on Learning Representations, 2018b.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups. IEEE Signal processing magazine,
29(6):82–97, 2012.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders.
In International Conference on Artificial Neural Networks, 2011.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em
routing. In International conference on learning representations, 2018.

Tobias Hinz, Stefan Heinrich, and Stefan Wermter. Generating multiple objects at
spatially distinct locations. In International Conference on Learning Representa-
tions, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning to learn
using gradient descent. In Proc. International Conference on Artificial Neural
Networks, pages 87–94. Springer, 2001.

Derek Hoiem, Alexei A. Efros, and Martial Hebert. Recovering occlusion bound-
aries from an image. Int. J. Comput. Vis., 91(3):328–346, February 2011. ISSN
0920-5691. doi: 10.1007/s11263-010-0400-4.

Ha Hong, Ethan Solomon, Dan Yamins, and James J DiCarlo. Large-scale charac-
terization of a universal and compact visual perceptual space. space (P-space),
10(20):30, 2014.

John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):
2554–2558, 1982.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

209 Bibliography

Patrik O. Hoyer, Dominik Janzing, Joris M. Mooij, Jonas Peters, and Bernhard
Schölkopf. Nonlinear causal discovery with additive noise models. In Advances
in Neural Information Processing Systems, pages 689–696, 2009.

Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised learning of disentangled
and interpretable representations from sequential data. In Advances in neural
information processing systems, pages 1878–1889, 2017.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
Learning to reason: End-to-end module networks for visual question answering.
In Proceedings of the IEEE International Conference on Computer Vision, pages
804–813, 2017.

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classifica-
tion, 2(1):193–218, 1985.

Drew A Hudson and Christopher D Manning. Compositional attention networks
for machine reasoning. In International Conference on Learning Representations,
2018.

Sean Joseph Hughes and Patrick Michael Dermot Barnes-Holmes. Relational
frame theory: the basic account. In The Wiley handbook of contextual behavioral
science, pages 129–178. Wiley-Blackwell, 2016.

John E. Hummel and Keith J. Holyoak. Distributing structure over time. Behavioral
and Brain Sciences, 16(3):464–464, September 1993. ISSN 1469-1825, 0140-
525X. doi: 10.1017/S0140525X00031083.

John E. Hummel, Keith J. Holyoak, Collin Green, Leonidas AA Doumas, Derek
Devnich, Aniket Kittur, and Donald J. Kalar. A solution to the binding problem
for compositional connectionism. In Compositional Connectionism in Cognitive
Science: Papers from the AAAI Fall Symposium, Ed. SD Levy & R. Gayler, pages
31–34, 2004.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. The composi-
tionality of neural networks: Integrating symbolism and connectionism. arXiv
preprint arXiv:1908.08351, 2019.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on
algorithmic probability. Springer Science & Business Media, 2004.

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and
applications. Neural networks, 13(4-5):411–430, 2000.

210 Bibliography

Aapo Hyvärinen and Jukka Perkiö. Learning to Segment Any Random Vector. In
The 2006 IEEE International Joint Conference on Neural Network Proceedings,
pages 4167–4172. IEEE, 2006.

Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland Memisevic.
Generating images with recurrent adversarial networks. arXiv preprint
arXiv:1602.05110, 2016.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Crisp boundary
detection using pointwise mutual information. In Lecture Notes in Computer
Science, pages 799–814. Springer, Cham, September 2014. doi: 10.1007/
978-3-319-10578-9_52.

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H. Adelson. Learning
visual groups from co-occurrences in space and time. arXiv:1511. 06811 [cs],
November 2015.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image
translation with conditional adversarial networks. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 5967–5976. IEEE, 2017.

Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual
attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell., 20
(11):1254–1259, November 1998. ISSN 0162-8828. doi: 10.1109/34.730558.

Michael Iuzzolino, Yoram Singer, and Michael C. Mozer. Convolutional bipartite
attractor networks. arXiv:1906.03504 [cs, stat], June 2019.

Aleksĕı Grigor’evich Ivakhnenko and Valentin Grigorévich Lapa. Cybernetic Pre-
dicting Devices. CCM Information Corporation, 1965.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu.
Spatial transformer networks. In Advances in Neural Information Processing
Systems 28, pages 2017–2025, 2015.

Anil K. Jain, Richard C. Dubes, et al. Algorithms for Clustering Data, volume 6.
Prentice hall Englewood Cliffs, NJ, 1988.

211 Bibliography

Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Unsupervised
learning of object landmarks through conditional image generation. In Advances
in Neural Information Processing Systems, pages 4016–4027, 2018.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea
Finn, and Jiajun Wu. Reasoning about physical interactions with object-centric
models. In International Conference on Learning Representations, 2019.

Allan D. Jepson and Michael J. Black. Mixture models for optical flow computation.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
pages 760–761. ieeexplore.ieee.org, June 1993. doi: 10.1109/CVPR.1993.
341161.

Xu Ji, Joao F Henriques, and Andrea Vedaldi. Invariant information distil-
lation for unsupervised image segmentation and clustering. arXiv preprint
arXiv:1807.06653, 2(3):8, 2018.

Jindong Jiang, Sepehr Janghorbani, Gerard De Melo, and Sungjin Ahn. Scalor:
Generative world models with scalable object representations. In International
Conference on Learning Representations, 2020.

Jason Jo and Yoshua Bengio. Measuring the tendency of cnns to learn surface
statistical regularities. arXiv preprint arXiv:1711.11561, 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2901–2910,
2017a.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Judy Hoffman, Li Fei-
Fei, C. Lawrence Zitnick, and Ross Girshick. Inferring and executing programs
for visual reasoning. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2989–2998, 2017b.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1219–1228, 2018.

Philip N. Johnson-Laird. Mental models and human reasoning. Proceedings of the
National Academy of Sciences, 107(43):18243–18250, 2010.

212 Bibliography

Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites in video layers. In
Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the
2001 IEEE Computer Society Conference On, volume 1, pages I–I. IEEE, 2001.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-
augmented recurrent nets. In Advances in Neural Information Processing Systems,
pages 190–198, 2015.

Leslie Pack Kaelbling. Learning in embedded systems. MIT press, 1993.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In International
Conference on Learning Representations, 2016.

Pentti Kanerva. Binary spatter-coding of ordered K-tuples. In Artificial Neural
Networks — ICANN 96, pages 869–873. Springer Berlin Heidelberg, 1996. doi:
10.1007/3-540-61510-5_146.

Anitha Kannan, John Winn, and Carsten Rother. Clustering appearance and shape
by learning jigsaws. In Advances in Neural Information Processing Systems, pages
657–664, 2007.

Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,
Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep
George. Schema networks: Zero-shot transfer with a generative causal model
of intuitive physics. In International Conference on Machine Learning, pages
1809–1818, 2017.

Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian representa-
tion learning with oracle constraints. In International Conference on Learning
Representations, 2016.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding
recurrent networks. arXiv:1506.02078 [cs], November 2015.

Matthew A Kelly, Dorothea Blostein, and Douglas JK Mewhort. Encoding structure
in holographic reduced representations. Canadian Journal of Experimental
Psychology/Revue canadienne de psychologie expérimentale, 67(2):79–93, 2013.

Charles Kemp and Joshua B Tenenbaum. The discovery of structural form. Pro-
ceedings of the National Academy of Sciences, 105(31):10687–10692, 2008.

213 Bibliography

Richard Kempter, Wulfram Gerstner, and J Leo Van Hemmen. Hebbian learning
and spiking neurons. Physical Review E, 59(4):4498, 1999.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer,
Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Ti-
bor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet.
Measuring compositional generalization: A comprehensive method on realistic
data. In International Conference on Learning Representations, 2020.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International
Conference on Machine Learning, pages 2654–2663, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Inter-
national Conference on Learning Representations, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems. In International Conference
on Machine Learning, pages 2688–2697, 2018.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations,
2017.

SC Kleene. Representations of events in nerve nets and finite automata. Automata
Studies [Annals of Math. Studies 34], 1956.

Teuvo Kohonen. Self-Organization and Associative Memory. Springer, third edition,
1989. ISBN 978-0-387-18314-5.

Shu Kong and Charless C. Fowlkes. Recurrent pixel embedding for instance
grouping. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9018–9028, 2018.

Alfred Korzybski. Science and Sanity: An Introduction to Non-Aristotelian Systems
and General Semantics. Institute of GS, 1958.

Adam Kosiorek, Alex Bewley, and Ingmar Posner. Hierarchical attentive recurrent
tracking. In Advances in Neural Information Processing Systems, pages 3053–
3061, 2017.

214 Bibliography

Adam Kosiorek, Hyunjik Kim, Yee Whye Teh, and Ingmar Posner. Sequential
attend, infer, repeat: Generative modelling of moving objects. In Advances in
Neural Information Processing Systems, pages 8606–8616, 2018.

Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E. Hinton. Stacked
capsule autoencoders. In Advances in Neural Information Processing Systems,
pages 15486–15496, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

Anders Krogh and John A Hertz. A simple weight decay can improve general-
ization. In Advances in neural information processing systems, pages 950–957,
1992.

Tejas D. Kulkarni, Pushmeet Kohli, Joshua B. Tenenbaum, and Vikash K. Mans-
inghka. Picture: A probabilistic programming language for scene perception.
In Proceedings of the Ieee Conference on Computer Vision and Pattern Recognition,
pages 4390–4399. openaccess.thecvf.com, 2015a.

Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep
convolutional inverse graphics network. In Advances in Neural Information
Processing Systems, 2015b.

Tejas D. Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm
Reynolds, Andrew Zisserman, and Volodymyr Mnih. Unsupervised learning of
object keypoints for perception and control. In Advances in Neural Information
Processing Systems, pages 10723–10733, 2019.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational
inference of disentangled latent concepts from unlabeled observations. In
International Conference on Learning Representations, 2018.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural Random-Access
Machines. In International Conference on Learning Representations, 2016.

Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski, and Sylvain Gelly. A
large-scale study on regularization and normalization in gans. In International
Conference on Machine Learning, pages 3581–3590, 2019.

215 Bibliography

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar
variational autoencoder. In International Conference on Machine Learning, pages
1945–1954, 2017.

Hanock Kwak and Byoung-Tak Zhang. Generating images part by part with
composite generative adversarial networks. arXiv preprint arXiv:1607.05387,
2016.

Brenden Lake and Marco Baroni. Generalization without Systematicity: On
the Compositional Skills of Sequence-to-Sequence Recurrent Networks. In
International Conference on Machine Learning, pages 2873–2882, 2018.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.
Building machines that learn and think like people. Behavioral and brain sciences,
40, 2017.

Christoph H. Lampert, Matthew B. Blaschko, and Thomas Hofmann. Beyond
sliding windows: Object localization by efficient subwindow search. In 2008
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. ieeex-
plore.ieee.org, June 2008. doi: 10.1109/CVPR.2008.4587586.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics.
In International Conference on Learning Representations, 2020.

Nicolas Le Roux, Nicolas Heess, Jamie Shotton, and John Winn. Learning a gener-
ative model of images by factoring appearance and shape. Neural Computation,
23(3):593–650, 2011.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

Yann LeCun et al. Generalization and network design strategies. Connectionism
in perspective, 19:143–155, 1989.

Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical repre-
sentations. In International Conference on Machine Learning, pages 609–616,
2009.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In
International Conference on Machine Learning, pages 3734–3743, 2019.

216 Bibliography

Te-Won Lee and Michael S Lewicki. Unsupervised image classification, segmenta-
tion, and enhancement using ica mixture models. IEEE Transactions on Image
Processing, 11(3):270–279, 2002.

Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block
towers by example. In International Conference on Machine Learning, pages
430–438, 2016.

Chengtao Li, Daniel Tarlow, Alexander L Gaunt, Marc Brockschmidt, and Nate
Kushman. Neural program lattices. In International Conference on Learning
Representations, 2017.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. In In Proceedings of the International Conference on
Learning Representations (ICLR), 2016.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K. Du-
venaud, Raquel Urtasun, and Richard Zemel. Efficient graph generation with
graph recurrent attention networks. In Advances in Neural Information Process-
ing Systems, pages 4257–4267, 2019.

Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey. St-
gan: Spatial transformer generative adversarial networks for image compositing.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 9455–9464, 2018.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei
Deng, Jindong Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented
scene representation via spatial attention and decomposition. In International
Conference on Learning Representations, 2020.

Seppo Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a taylor expansion of the local rounding errors. Master’s Thesis (in
Finnish), Univ. Helsinki, pages 6–7, 1970.

Or Litany, Alex Bronstein, Michael Bronstein, and Ameesh Makadia. Deformable
Shape Completion with Graph Convolutional Autoencoders. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1886–1895, Salt
Lake City, UT, USA, June 2018. IEEE. ISBN 978-1-5386-6420-9. doi: 10.1109/
CVPR.2018.00202.

217 Bibliography

Jenny Liu, Aviral Kumar, Jimmy Ba, Jamie Kiros, and Kevin Swersky. Graph
Normalizing Flows. In Advances in Neural Information Processing Systems, pages
13578–13588, 2019a.

Zhijian Liu, Jiajun Wu, Zhenjia Xu, Chen Sun, Kevin Murphy, William T. Freeman,
and Joshua B. Tenenbaum. Modeling parts, structure, and system dynamics
via predictive learning. In International Conference on Learning Representations,
2019b.

Francesco Locatello, Stefan Bauer, Mario Lucic, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised
learning of disentangled representations. In International Conference on Machine
Learning, 2018.

Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier
Bachem, and Michael Tschannen. Weakly-supervised disentanglement without
compromises. In International Conference on Machine Learning, 2020.

Romain Lopez, Jeffrey Regier, Michael I Jordan, and Nir Yosef. Information con-
straints on auto-encoding variational bayes. In Advances in Neural Information
Processing Systems, pages 6114–6125, 2018.

David Lopez-Paz, Krikamol Muandet, Bernhard Schölkopf, and Iliya Tolstikhin.
Towards a learning theory of cause-effect inference. In International Conference
on Machine Learning, pages 1452–1461, 2015.

William Lotter, Gabriel Kreiman, and David Cox. Deep predictive coding networks
for video prediction and unsupervised learning. In International Conference on
Learning Representations, 2017.

João Loula, Marco Baroni, and Brenden Lake. Rearranging the familiar: Testing
compositional generalization in recurrent networks. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pages 108–114, 2018.

David G Lowe. Organization of smooth image curves at multiple scales. Interna-
tional Journal of Computer Vision, 3(2):119–130, 1989.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The
expressive power of neural networks: A view from the width. In Advances in
neural information processing systems, pages 6231–6239, 2017.

218 Bibliography

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet.
Are gans created equal? a large-scale study. In Advances in Neural Information
Processing Systems, pages 700–709, 2018.

Steven J Luck and Edward K Vogel. The capacity of visual working memory for
features and conjunctions. Nature, 390(6657):279–281, 1997.

Zhaoliang Lun, Changqing Zou, Haibin Huang, Evangelos Kalogerakis, Ping Tan,
Marie-Paule Cani, and Hao Zhang. Learning to group discrete graphical patterns.
ACM Trans. Graph., 36(6):225:1–225:11, November 2017. ISSN 0730-0301.
doi: 10.1145/3130800.3130841.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. International Conference on Machine
Learning (ICML) Workshop on Deep Learning for Audio, Speech and Language
Processing, 2013.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan
Frey. Adversarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

Jitendra Malik, Serge Belongie, Thomas Leung, and Jianbo Shi. Contour and
texture analysis for image segmentation. Int. J. Comput. Vis., 43(1):7–27, June
2001. ISSN 0920-5691. doi: 10.1023/A:1011174803800.

Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, and Joshua B. Tenen-
baum. Approximate Bayesian image interpretation using generative probabilis-
tic graphics programs. In Advances in Neural Information Processing Systems,
pages 1520–1528, 2013.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun
Wu. The neuro-symbolic concept learner: Interpreting scenes, words, and
sentences from natural supervision. In International Conference on Learning
Representations, 2019.

Gary F. Marcus. The Algebraic Mind: Integrating Connectionism and Cognitive
Science. MIT press, 2003. ISBN 978-0-262-63268-3.

Joseph Marino, Yisong Yue, and Stephan Mandt. Iterative amortized inference.
In Jennifer Dy and Andreas Krause, editors, Proceedings of Machine Learning
Research, volume 80, pages 3403–3412, Stockholmsmässan, Stockholm Sweden,
2018. PMLR.

219 Bibliography

David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect
natural image boundaries using local brightness, color, and texture cues. IEEE
transactions on pattern analysis and machine intelligence, 26(5):530–549, 2004.

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Kenneth McGarry, Stefan Wermter, and John MacIntyre. Hybrid neural systems:
from simple coupling to fully integrated neural networks. Neural Computing
Surveys, 2(1):62–93, 1999.

Harry Mcgurk and John Macdonald. Hearing lips and seeing voices. Nature, 264
(5588):746, December 1976. ISSN 1476-4687. doi: 10.1038/264746a0.

Vincent Michalski, Roland Memisevic, and Kishore Konda. Modeling deep tem-
poral dependencies with recurrent "grammar cells". In Advances in Neural
Information Processing Systems, pages 1925–1933, 2014.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of
Word Representations in Vector Space. In International Conference on Learning
Representations, 2013.

George A. Miller. The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychological review, 63(2):81, 1956.

Peter M Milner. A model for visual shape recognition. Psychological review, 81(6):
521, 1974.

Matthias Minderer, Chen Sun, Ruben Villegas, Forrester Cole, Kevin P. Murphy,
and Honglak Lee. Unsupervised learning of object structure and dynamics from
videos. In Advances in Neural Information Processing Systems, pages 92–102,
2019.

Thomas P Minka. Expectation propagation for approximate bayesian inference. In
Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence,
pages 362–369, 2001.

Thomas M Mitchell et al. Machine learning, 1997.

Tom M Mitchell. The need for biases in learning generalizations. Department of
Computer Science, Laboratory for Computer Science Research, 1980.

220 Bibliography

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. In International Conference
on Learning Representations, 2018.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu. Recurrent
models of visual attention. In Advances in Neural Information Processing Systems
27, pages 2204–2212, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, and
Georg Ostrovski. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Instagan: Instance-aware image-
to-image translation. In International Conference on Learning Representations,
2018.

Hossein Mobahi, Shankar R Rao, Allen Y Yang, Shankar S Sastry, and Yi Ma.
Segmentation of natural images by texture and boundary compression. Inter-
national journal of computer vision, 95(1):86–98, 2011.

Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative
models. International Conference on Learning Representations, Workshop Track,
2017.

Igor Mordatch. Concept learning with energy-based models. International Confer-
ence on Learning Representations, Workshop Track, 2018.

Alexander Mott, Daniel Zoran, Mike Chrzanowski, Daan Wierstra, and Danilo
Jimenez Rezende. Towards Interpretable Reinforcement Learning Using Atten-
tion Augmented Agents. In Advances in Neural Information Processing Systems,
pages 12350–12359, 2019.

Michael C. Mozer. Types and tokens in visual letter perception. Journal of
experimental psychology: Human perception and performance, 15(2):287–303,
1989. doi: https://psycnet.apa.org/doi/10.1037/0096-1523.15.2.287.

Michael C. Mozer and Sreerupa Das. A connectionist symbol manipulator that dis-
covers the structure of context-free languages. In Advances in Neural Information
Processing Systems, pages 863–870, 1993.

221 Bibliography

Michael C. Mozer, Richard S. Zemel, and Marlene Behrmann. Learning to segment
images using dynamic feature binding. In Advances in Neural Information
Processing Systems, pages 436–443, 1992.

Michael C Mozer, Denis Kazakov, and Robert V Lindsey. State-denoised recurrent
neural networks. arXiv preprint arXiv:1805.08394, 2018.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh
Tenenbaum, and Daniel L Yamins. Flexible neural representation for physics
prediction. In Advances in neural information processing systems, pages 8799–
8810, 2018.

Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In Proceedings
of the Conference. Association for Computational Linguistics. Meeting, volume 1,
page 397. NIH Public Access, 2017.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Charlie Nash, SM Ali Eslami, Chris Burgess, Irina Higgins, Daniel Zoran, Theo-
phane Weber, and Peter Battaglia. The multi-entity variational autoencoder.
Neural Information Processing Systems (NIPS) Workshop on Learning Disentan-
gled Representations: from Perception to Control, 2017.

Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David
Sussillo, James J DiCarlo, and Daniel L Yamins. Task-driven convolutional
recurrent models of the visual system. In Advances in Neural Information
Processing Systems, pages 5290–5301, 2018.

C Rodrigues Neto and JF Fontanari. Multivalley structure of attractor neural
networks. Journal of Physics A: Mathematical and General, 30(22):7945, 1997.

Allen Newell and Herbert A. Simon. Computer science as empirical inquiry:
Symbols and search. Mind design, page 4l, 1981.

Allen Newell, John C. Shaw, and Herbert A. Simon. Report on a general problem
solving program. In IFIP Congress, volume 256, page 64. Pittsburgh, PA, 1959.

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. Hologan: Unsupervised learning of 3d representations from natural
images. In Proceedings of the IEEE International Conference on Computer Vision,
pages 7588–7597, 2019.

222 Bibliography

Thu Nguyen-Phuoc, Christian Richardt, Long Mai, Yong-Liang Yang, and Niloy
Mitra. BlockGAN: Learning 3D Object-aware Scene Representations from
Unlabelled Images. arXiv preprint arXiv:2002.08988, 2020.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierar-
chical representations. In Advances in Neural Information Processing Systems,
pages 6338–6347, 2017.

Nils J Nillson. Principles of artificial intelligence. Tioga, Palo Alto, CA, 1980.

Malvina Nissim, Rik van Noord, and Rob van der Goot. Fair is Better than
Sensational:Man is to Doctor as Woman is to Doctor. arXiv:1905.09866 [cs],
May 2019.

Dimitri Nowicki and Hava T. Siegelmann. Flexible kernel memory. PLoS One, 5(6):
e10955, June 2010. ISSN 1932-6203. doi: 10.1371/journal.pone.0010955.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and Checker-
board Artifacts. Distill, 2016. doi: 10.23915/distill.00003.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization.
Distill, 2(11):e7, November 2017. ISSN 2476-0757. doi: 10.23915/distill.
00007.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and
Shan Carter. Zoom In: An Introduction to Circuits. Distill, 5(3):e00024.001,
March 2020. ISSN 2476-0757. doi: 10.23915/distill.00024.001.

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):
607–609, June 1996. ISSN 0028-0836. doi: 10.1038/381607a0.

Randall C O’reilly and Richard S Busby. Generalizable relational binding from
coarse-coded distributed representations. In Advances in neural information
processing systems, pages 75–82, 2002.

Lucas Paletta, Gerald Fritz, and Christin Seifert. Q-learning of sequential attention
for visual object recognition from informative local descriptors. In International
Conference on Machine Learning, pages 649–656, 2005.

Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. In
Advances in Neural Information Processing Systems, pages 3368–3378, 2018.

223 Bibliography

Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell, and Bharath Hariha-
ran. Learning features by watching objects move. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2701–2710, 2017.

Judea Pearl. The seven tools of causal inference, with reflections on machine
learning. Communications of the ACM, 62(3):54–60, 2019.

Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by
using invariant prediction: Identification and confidence intervals. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 78(5):947–1012,
2016.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal
Inference: Foundations and Learning Algorithms. MIT press, 2017.

Fernando J Pineda. Generalization of back-propagation to recurrent neural
networks. Physical review letters, 59(19):2229–2232, 1987.

Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural
networks, 6(3):623–641, 1995.

Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence, 46
(1-2):77–105, 1990.

Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):
1–17, 1964.

Isabeau Prémont-Schwarz, Alexander Ilin, Tele Hao, Antti Rasmus, Rinu Boney,
and Harri Valpola. Recurrent ladder networks. In Advances in neural information
processing systems, pages 6009–6019, 2017.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,
1(8):9, 2019.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference.
In Artificial Intelligence and Statistics, pages 814–822, 2014.

224 Bibliography

Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing Sun, Jonas
Wulff, and Michael J. Black. Competitive collaboration: Joint unsupervised
learning of depth, camera motion, optical flow and motion segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 12240–12249, 2019.

R. A. Rao, G. Cecchi, C. C. Peck, and J. R. Kozloski. Unsupervised segmentation
with dynamical units. Neural Networks, IEEE Transactions on, 19(1):168–182,
2008.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. Semi-supervised learning with ladder networks. In Advances in neural
information processing systems, pages 3546–3554, 2015.

John C Raven. Standardization of progressive matrices, 1938. British Journal of
Medical Psychology, 19(1):137–150, 1941.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In Interna-
tional Conference on Learning Representations, November 2015.

David P. Reichert and Thomas Serre. Neuronal Synchrony in Complex-Valued
Deep Networks. arXiv preprint arXiv:1312.6115, 2013.

Mengye Ren and Richard S. Zemel. End-to-End Instance Segmentation with
Recurrent Attention. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 293–301, Honolulu, HI, July 2017. IEEE. ISBN
978-1-5386-0457-1. doi: 10.1109/CVPR.2017.39.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmentation.
In Proceedings Ninth IEEE International Conference on Computer Vision, pages 10–
17 vol.1. ieeexplore.ieee.org, October 2003. doi: 10.1109/ICCV.2003.1238308.

Karl Ridgeway and Michael C Mozer. Learning deep disentangled embeddings
with the f-statistic loss. In Advances in Neural Information Processing Systems,
pages 185–194, 2018.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

225 Bibliography

Frank Rosenblatt. Principles of neurodynamics. perceptrons and the theory of
brain mechanisms. Technical report, DTIC Document, 1961.

Adina L. Roskies. The binding problem. Neuron, 24(1):7–9, 111–25, September
1999. ISSN 0896-6273.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models.
Neural computation, 11(2):305–345, 1999.

Henry A Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-based face
detection. IEEE Transactions on pattern analysis and machine intelligence, 20
(1):23–38, 1998.

Christopher J. Rozell, Don H. Johnson, Richard G. Baraniuk, and Bruno A. Ol-
shausen. Sparse coding via thresholding and local competition in neural circuits.
Neural computation, 20(10):2526–2563, 2008.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and
Douglas D Edwards. Artificial Intelligence: a Modern Approach, volume 2.
Englewood Cliffs: Prentice Hall, 1995.

Sara Sabour, Nicholas Frosst, and Geoffrey E. Hinton. Dynamic routing between
capsules. In Advances in Neural Information Processing Systems, pages 3856–
3866, 2017.

Ramin Samadani. A finite mixtures algorithm for finding proportions in sar images.
IEEE Transactions on Image Processing, 4(8):1182–1186, 1995.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural network
module for relational reasoning. In Advances in Neural Information Processing
Systems, pages 4967–4976, 2017.

Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Theo-
phane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy
Lillicrap. Relational recurrent neural networks. In Advances in Neural Informa-
tion Processing Systems, pages 7299–7310, 2018a.

226 Bibliography

Adam Santoro, Felix Hill, David Barrett, Ari Morcos, and Timothy Lillicrap. Mea-
suring abstract reasoning in neural networks. In International Conference on
Machine Learning, pages 4477–4486, 2018b.

E. Saund. A multiple cause mixture model for unsupervised learning. Neural
Computation, 7(1):51–71, 1995.

F Scarselli, M Gori, Ah Chung Tsoi, M Hagenbuchner, and G Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 1(20):
61–80, 2009.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order
tensor products. In Advances in Neural Information Processing Systems, pages
9981–9993, 2018.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen Schmid-
huber, and Jianfeng Gao. Enhancing the transformer with explicit relational
encoding for math problem solving. arXiv preprint arXiv:1910.06611, 2019.

J. Schmidhuber. Learning to control fast-weight memories: An alternative to
dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992a.

J. Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015a. doi: 10.1016/j.neunet.2014.09.003. Published online
2014; 888 references; based on TR arXiv:1404.7828 [cs.NE].

J. Schmidhuber, M. Eldracher, and B. Foltin. Semilinear predictability mini-
mization produces well-known feature detectors. Neural Computation, 8(4):
773–786, 1996.

Juergen Schmidhuber and Rudolf Huber. Learning to generate artificial fovea
trajectories for target detection. International Journal of Neural Systems, 2
(01n02):125–134, 1991.

Jürgen Schmidhuber. Making the world differentiable: On using fully recurrent
self-supervised neural networks for dynamic reinforcement learning and plan-
ning in non-stationary environments. Technical Report FKI-126-90, Institut für
Informatik, Technische Universität München, 1990.

Jürgen Schmidhuber. Neural sequence chunkers. Technical report, Institut für
Informatik, Technische Universität München, April 1991a.

227 Bibliography

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in
model-building neural controllers. In Proc. of the international conference on
simulation of adaptive behavior: From animals to animats, pages 222–227,
1991b.

Jürgen Schmidhuber. Learning Factorial Codes by Predictability Minimization.
Neural Computation, 4(6):863–879, November 1992b. ISSN 0899-7667. doi:
10.1162/neco.1992.4.6.863.

Jürgen Schmidhuber. Learning Complex, Extended Sequences Using the Principle
of History Compression. Neural Computation, 4(2):234–242, March 1992c.
ISSN 0899-7667. doi: 10.1162/neco.1992.4.2.234.

Jürgen Schmidhuber. On learning to think: Algorithmic information theory for
novel combinations of reinforcement learning controllers and recurrent neural
world models. arXiv preprint arXiv:1511.09249, 2015b.

Jürgen Schmidhuber. Generative adversarial networks are special cases of artificial
curiosity (1990) and also closely related to predictability minimization (1991).
Neural Networks, 2020.

Bernhard Schölkopf. Causality for Machine Learning. arXiv preprint
arXiv:1911.10500, 2019.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang,
and Joris Mooij. On causal and anticausal learning. In International Conference
on Machine Learning, pages 459–466, 2012.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson.
Cnn features off-the-shelf: an astounding baseline for recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition workshops,
pages 806–813, 2014.

David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical
review letters, 35(26):1792, 1975.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.

228 Bibliography

Edward H. Shortliffe, Randall Davis, Stanton G. Axline, Bruce G. Buchanan,
C. Cordell Green, and Stanley N. Cohen. Computer-based consultations in
clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN
system. Computers and biomedical research, 8(4):303–320, 1975.

Hava T Siegelmann and Eduardo D Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77–80, 1991.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, and Marc Lanctot. Mastering the game of Go with deep neural networks
and tree search. nature, 529(7587):484, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, and Thore
Graepel. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Wolf Singer. Neuronal synchrony: A versatile code for the definition of relations?
Neuron, 24(1):49–65, 111–25, September 1999. ISSN 0896-6273.

Wolf Singer. Consciousness and the binding problem. Annals of the New York
Academy of Sciences, 929(1):123–146, 2001.

Wolf Singer. Distributed processing and temporal codes in neuronal networks.
Cognitive neurodynamics, 3(3):189–196, 2009.

Paul Smolensky. Tensor product variable binding and the representation of
symbolic structures in connectionist systems. Artificial intelligence, 46(1-2):
159–216, 1990.

Elliot Sollow. Assessing the Maintainability of XCQN-in-RIME: Coping with the
Problems of a VERY Large Rule-Base. 1987.

C Spampinato, S Palazzo, P D’Oro, D Giordano, and M Shah. Adversarial frame-
work for unsupervised learning of motion dynamics in videos. International
Journal of Computer Vision, pages 1–20, 2019.

Elizabeth S. Spelke. Principles of object perception. Cognitive science, 14(1):
29–56, 1990.

Elizabeth S. Spelke and Katherine D. Kinzler. Core knowledge. Developmental
science, 10(1):89–96, 2007.

229 Bibliography

Alessandro Sperduti. Encoding labeled graphs by labeling raam. In Advances in
Neural Information Processing Systems, pages 1125–1132, 1994.

Alessandro Sperduti and Antonina Starita. Supervised neural networks for the
classification of structures. IEEE Transactions on Neural Networks, 8(3):714–735,
1997.

Alessandro Sperduti, Antonina Starita, and Christoph Goller. Learning distributed
representations for the classification of terms. In IJCAI, pages 509–517. Citeseer,
1995.

Pablo Sprechmann, Alexander M. Bronstein, and Guillermo Sapiro. Learning
efficient sparse and low rank models. IEEE transactions on pattern analysis and
machine intelligence, 37(9):1821–1833, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised
learning of video representations using lstms. In International Conference on
Machine Learning, pages 843–852, 2015.

Kenneth O Stanley and Risto Miikkulainen. Evolving a roving eye for go. In
Genetic and Evolutionary Computation Conference, pages 1226–1238. Springer,
2004.

Xander Steenbrugge, Sam Leroux, Tim Verbelen, and Bart Dhoedt. Improving
generalization for abstract reasoning tasks using disentangled feature represen-
tations. Neural Information Processing Systems (NeurIPS) Workshop on Relational
Representation Learning, Montréal, Canada., 2018.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-To-End
Memory Networks. In Advances in Neural Information Processing Systems, pages
2440–2448, 2015.

Chen Sun, Per Karlsson, Jiajun Wu, Joshua B Tenenbaum, and Kevin Murphy.
Stochastic prediction of multi-agent interactions from partial observations. In
International Conference on Learning Representations, 2019.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In International Conference on Machine Learning, pages 3319–3328,
2017.

230 Bibliography

Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Ro-
bustly disentangled causal mechanisms: Validating deep representations for
interventional robustness. In International Conference on Machine Learning,
pages 6056–6065, 2019.

Ilya Sutskever, Geoffrey E. Hinton, and Graham W. Taylor. The recurrent temporal
restricted boltzmann machine. In Advances in Neural Information Processing
Systems, pages 1601–1608, 2009.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9, 2015.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1556–1566, 2015.

Yichuan Tang, Nitish Srivastava, and Ruslan R. Salakhutdinov. Learning generative
models with visual attention. In Advances in Neural Information Processing
Systems, pages 1808–1816, 2014.

Anne Treisman. The binding problem. Current opinion in neurobiology, 6(2):
171–178, 1996.

Anne Treisman. Solutions to the binding problem: Progress through controversy
and convergence. Neuron, 24(1):105–10, 111–25, September 1999. ISSN
0896-6273.

Michael Tschannen, Olivier Bachem, and Mario Lucic. Recent advances in
autoencoder-based representation learning. Neural Information Processing
Systems (NeurIPS) Workshop on Bayesian Deep Learning, Montreal, Canada.,
2018.

Pedro A. Tsividis, Thomas Pouncy, Jaqueline L. Xu, Joshua B. Tenenbaum, and
Samuel J. Gershman. Human learning in Atari. In 2017 AAAI Spring Symposium
Series, March 2017.

231 Bibliography

Zhuowen Tu and Song-Chun Zhu. Image segmentation by data-driven Markov
chain Monte Carlo. IEEE Trans. Pattern Anal. Mach. Intell., 24(5):657–673, May
2002. ISSN 0162-8828. doi: 10.1109/34.1000239.

Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-Chun Zhu. Image parsing:
Unifying segmentation, detection, and recognition. International Journal of
computer vision, 63(2):113–140, 2005.

Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer
vision, 104(2):154–171, 2013.

Tomer D. Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B. Tenenbaum.
Mind games: Game engines as an architecture for intuitive physics. Trends in
Cognitive Sciences, 21(9):649–665, 2017.

Evgeniya Ustinova and Victor Lempitsky. Learning deep embeddings with his-
togram loss. In Advances in Neural Information Processing Systems, pages
4170–4178, 2016.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International Conference on Machine Learning, pages 1747–1756,
2016.

Sjoerd van Steenkiste⇤, Klaus Greff⇤, and Jürgen Schmidhuber. A perspective
on objects and systematic generalization in model-based rl. International
Conference on Machine Learning (ICML) Workshop on Generative Modeling and
Model-Based Reasoning for Robotics and AI, 2019.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber.
Relational neural expectation maximization. Neural Information Processing
Systems (NIPS) Workshop on Cognitively Informed Artificial Intelligence, 2017.

Sjoerd van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber.
Relational neural expectation maximization: Unsupervised discovery of objects
and their interactions. In International Conference on Learning Representations,
2018a.

Sjoerd van Steenkiste, Karol Kurach, and Sylvain Gelly. A case for object composi-
tionality in deep generative models of images. Neural Information Processing
Systems (NeurIPS) Workshop on Modeling the Physical World: Perception, Learn-
ing, and Control, 2018b.

232 Bibliography

Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier
Bachem. Are disentangled representations helpful for abstract visual reasoning?
In Advances in Neural Information Processing Systems, pages 14222–14235,
2019.

Sjoerd van Steenkiste, Karol Kurach, Jürgen Schmidhuber, and Sylvain Gelly.
Investigating object compositionality in generative adversarial networks. Neural
Networks, 130:309 – 325, 2020. ISSN 0893-6080. doi: https://doi.org/10.
1016/j.neunet.2020.07.007.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in Neural Information Processing Systems, pages 5998–6008, 2017.

Andreas Veit, Serge Belongie, and Theofanis Karaletsos. Conditional similarity
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 830–838, 2017.

Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Suk-
thankar, and Katerina Fragkiadaki. SfM-Net: Learning of Structure and Motion
from Video. arXiv preprint arXiv:1704.07804, 2017.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, pages
1096–1103. ACM, 2008.

N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance.
JMLR, 11:2837–2854, 2010.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances
in Neural Information Processing Systems, pages 2692–2700, 2015.

Paul Viola and Michael J. Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR 2001, volume 1, pages I–
511–I–518 vol.1. ieeexplore.ieee.org, 2001. doi: 10.1109/CVPR.2001.990517.

Chr von der Malsburg. Self-organization of orientation sensitive cells in the striate
cortex. Kybernetik, 14(2):85–100, 1973.

233 Bibliography

Christoph von der Malsburg. The Correlation Theory of Brain Function. Depart-
mental technical report, MPI, 1981.

Christoph Von Der Malsburg. Am i thinking assemblies? In Brain theory, pages
161–176. Springer, 1986.

Alex Waibel, Toshiyuki Hanazawa, Geoffrey Hinton, Kiyohiro Shikano, and Kevin J
Lang. Phoneme recognition using time-delay neural networks. IEEE transactions
on acoustics, speech, and signal processing, 37(3):328–339, 1989.

Martin J Wainwright and Michael I Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends® in Machine Learning, 1
(1-2):1–305, 2008.

DeLiang Wang. The time dimension for scene analysis. IEEE Transactions on
Neural Networks, 16(6):1401–1426, 2005.

Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang,
Xiaogang Wang, and Xiaoou Tang. Residual Attention Network for Image Clas-
sification. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6450–6458, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-
0457-1. doi: 10.1109/CVPR.2017.683.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural
networks. The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), April 2018.

Satosi Watanabe. Information theoretical analysis of multivariate correlation.
IBM Journal of research and development, 4(1):66–82, 1960.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pas-
canu, and Andrea Tacchetti. Visual interaction networks: Learning a physics
simulator from video. In Advances in Neural Information Processing Systems,
pages 4539–4547, 2017.

Yair Weiss and Edward H. Adelson. A unified mixture framework for motion
segmentation: Incorporating spatial coherence and estimating the number of
models. In Proceedings CVPR IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 321–326. ieeexplore.ieee.org, June 1996.
doi: 10.1109/CVPR.1996.517092.

234 Bibliography

Joseph Weizenbaum. ELIZA—a computer program for the study of natural lan-
guage communication between man and machine. Communications of the ACM,
9(1):36–45, 1966.

Paul J Werbos. Applications of advances in nonlinear sensitivity analysis. In
System modeling and optimization, pages 762–770. Springer, 1982.

Paul J. Werbos. Generalization of backpropagation with application to a recurrent
gas market model. Neural networks, 1(4):339–356, 1988.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv
preprint arXiv:1410.3916, 2014.

Ronald J. Williams. Complexity of exact gradient computation algorithms for
recurrent neural networks. Technical report, Technical Report Technical Report
NU-CCS-89-27, Boston: Northeastern University, College of Computer Science,
1989.

Terry Winograd. Procedures as a representation for data in a computer program
for understanding natural language. Technical report, MASSACHUSETTS INST
OF TECH CAMBRIDGE PROJECT MAC, 1971.

C. F. Jeff Wu. On the convergence properties of the EM algorithm. The Annals of
statistics, pages 95–103, 1983. ISSN 0090-5364.

Jiajun Wu, Ilker Yildirim, Joseph J. Lim, Bill Freeman, and Josh Tenenbaum.
Galileo: Perceiving physical object properties by integrating a physics engine
with deep learning. In Advances in Neural Information Processing Systems, pages
127–135, 2015.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, and Klaus Macherey.
Google’s neural machine translation system: Bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144, 2016.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In International conference on
machine learning, pages 2048–2057, 2015.

235 Bibliography

Kun Xu, Haoyu Liang, Jun Zhu, Hang Su, and Bo Zhang. Deep structured genera-
tive models. arXiv preprint arXiv:1807.03877, 2018.

Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical
modular optimization of convolutional networks achieves representations simi-
lar to macaque it and human ventral stream. In Advances in neural information
processing systems, pages 3093–3101, 2013.

Carl Yang, Peiye Zhuang, Wenhan Shi, Alan Luu, and Pan Li. Conditional structure
generation through graph variational generative adversarial nets. In Advances
in Neural Information Processing Systems, pages 1338–1349, 2019.

Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. Lr-gan: Layered
recursive generative adversarial networks for image generation. In Fifth Inter-
national Conference on Learning Representations, 2017.

Yanchao Yang, Yutong Chen, and Stefano Soatto. Learning to manipulate individ-
ual objects in an image. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6558–6567, 2020.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information Processing
Systems, pages 3320–3328, 2014.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R.
Salakhutdinov, and Alexander J. Smola. Deep sets. In Advances in Neural
Information Processing Systems, pages 3391–3401, 2017.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart,
Murray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick,
Oriol Vinyals, and Peter Battaglia. Deep reinforcement learning with relational
inductive biases. In International Conference on Learning Representations, 2019.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833. Springer,
2014.

Richard S Zemel and Geoffrey E Hinton. Developing population codes by mini-
mizing description length. In Advances in neural information processing systems,
pages 11–18, 1994.

236 Bibliography

Richard S Zemel and Michael C Mozer. Localist attractor networks. Neural
Computation, 13(5):1045–1064, 2001.

Richard S Zemel, Christopher KI Williams, and Michael C Mozer. Lending direction
to neural networks. Neural Networks, 8(4):503–512, 1995.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances
in variational inference. IEEE transactions on pattern analysis and machine
intelligence, 41(8):2008–2026, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on
overfitting in deep reinforcement learning. arXiv:1804.06893 [cs, stat], April
2018b.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae:
A variational autoencoder for directed acyclic graphs. In Advances in Neural
Information Processing Systems, pages 1588–1600, 2019.

Yang Zhang, Ivor W Tsang, Yawei Luo, Chang-Hui Hu, Xiaobo Lu, and Xin Yu.
Copy and paste gan: Face hallucination from shaded thumbnails. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7355–7364, 2020.

Yibiao Zhao and Song-Chun Zhu. Image parsing with stochastic scene grammar.
In Advances in Neural Information Processing Systems, pages 73–81, 2011.

Charles Y. Zheng, Francisco Pereira, Chris I. Baker, and Martin N. Hebart. Revealing
interpretable object representations from human behavior. In International
Conference on Learning Representations, 2019.

Andrey Zhmoginov, Ian Fischer, and Mark Sandler. Information-bottleneck ap-
proach to salient region discovery. arXiv preprint arXiv:1907.09578, 2019.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Object detectors emerge in deep scene CNNs. In International Conference on
Learning Representations, 2015.

Daniel Zoran, Mike Chrzanowski, Po-Sen Huang, Sven Gowal, Alex Mott, and
Pushmeet Kohli. Towards robust image classification using sequential attention
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9483–9492, 2020.

