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DNA breaks may arise accidentally in vegetative cells or in a

programmed manner in meiosis. The usage of a DNA template

makes homologous recombination potentially error-free,

however, recombination is not always accurate. Cells possess

a remarkable capacity to tailor processing of recombination

intermediates to fulfill a particular need. Vegetatively growing

cells aim to maintain genome stability and therefore repair

accidental breaks largely accurately, using sister chromatids as

templates, into mostly non-crossovers products.

Recombination in meiotic cells is instead more likely to employ

homologous chromosomes as templates and result in

crossovers to allow proper chromosome segregation and

promote genetic diversity. Here we review models explaining

the processing of recombination intermediates in vegetative

and meiotic cells and its regulation, with a focus on MLH1–

MLH3-dependent crossing-over during meiotic recombination.
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Introduction
DNA double-strand breaks (DSBs) can be repaired by

non-homologous end-joining (NHEJ) or homologous

recombination (HR). NHEJ is template-independent,

and thus frequently leads to mutations at the break site.

In cases when multiple DSBs are present, NHEJ can join

the wrong pieces of DNA together, leading to gross

genome rearrangements. HR is instead template-

directed, and therefore largely accurate [1]. Mutations

during HR can arise during DNA synthesis, which has a

much higher error rate compared to DNA replication [2],

or when DNA sequence other than from the same locus
www.sciencedirect.com 
on the sister chromatid is used as a template. Allelic

recombination represents an event whereby the broken

DNA is repaired according to a sequence from the same

locus on the sister chromatid (Figure 1a, point 1), or from

the same locus, but on the homologous chromosome

(Figure 1a, point 2). Allelic recombination with the sister

chromatid is the most common recombination process in

vegetative cells that generally leads to faithful outcomes,

since sister chromatids have the identical sequence.

Usage of the homolog as a template, which is rare in

vegetative cells, can lead to a loss of heterozygosity

(LOH). Such LOH events have been linked to cellular

transformation [1]. In meiotic cells, there is a bias

towards the use of a homolog as a template at the

expense of the sister chromatid, which is achieved by

preferential disruption of intermediates arising between

the sister chromatids to favor interhomolog recombina-

tion [3,4]. A repair event that utilizes a template from a

different locus, such as in repetitive DNA regions or

between sequences that underwent duplications, is

termed ectopic recombination, or non-allelic homolo-

gous recombination (NAHR), and is often mutagenic

(Figure 1a, points 3a and 3b).

Each of the above recombination events, irrespectively of

the template used, may result in crossover (CO) or non-

crossover (NCO) products (Figure 1b). CO is a recombi-

nation outcome in which the arms of the recombining

DNA molecules exchange. COs between sister chroma-

tids are defined as sister chromatid exchanges (SCEs).

Although not mutagenic per se, elevated SCEs are har-

bingers of genome instability. COs taking place between

homologs are detrimental since they may lead to LOH

after mitotic division, which could ultimately reveal the

expression of recessive alleles. COs occurring during

NAHR automatically yield gross chromosomal rearrange-

ments, which include chromosome translocations, dele-

tions, duplications and inversions (Figure 1b). During

NCO events, on the other hand, DNA sequences flanking

the recombination site are not exchanged. Nevertheless,

local transfer of genetic information between the recom-

bining molecules can occur, leading to gene conversion

tracts. NCOs between allelic sites on sister chromatids are

accurate, whereas NCOs between homologs or ectopic

sites can reveal the expression of recessive and deleteri-

ous alleles upon gene conversion.

Mechanistically, HR is initiated by resection of the DSB

ends, leading to 30-ssDNA overhangs. These overhangs

are bound by RecA family strand exchange proteins that
Current Opinion in Genetics & Development 2021, 71:39–47
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Figure 1
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Overview of recombination-based DSB repair pathways and their genetic outcomes.

(a) DSBs can be repaired based on templates from various parts of the genome. HR-mediated repair of a DSB can be allelic if the respective

template position is on a sister chromatid (1, most common) or on a homologous chromosome (2, uncommon in vegetative cells, more common in

meiotic cells). In ectopic recombination, the template is located at a different locus in the genome (3a and 3b, rare event).

(b) Genetic outcomes of HR-mediated repair events depending on the template sequence position depicted in (a). Each event can result in

crossover or non-crossover products. For simplicity, genetic transfer from the template into the broken DNA was depicted, although, depending

on the pathway used, the transfer can occur in both directions (not shown). Crossover with sister chromatid is defined as a sister chromatid

exchange (1, bottom). Crossovers with the homologous chromosome constitute typical meiotic crossovers (2, bottom). Crossovers with ectopic

sites have the most serious consequences in terms of genome instability (3a and 3b, bottom parts).

(c) Main steps in DSB repair by HR. First, the DSB is resected to expose a 30-terminated overhang (3), which subsequently invades the template

DNA forming the D-loop (4). In the synthesis-dependent strand-annealing (SDSA) subpathway, the D-loop is disrupted and the newly synthetized

strand anneals with the exposed ssDNA from the other side of the break. Gaps are filled-in by DNA synthesis and the integrity of the DNA

molecule is restored by ligation. The template molecule is unaffected in this process (right side). In the canonical DSB repair pathway (DSBR) the

displaced strand of the template molecule is annealed to the second end of the broken DNA molecule. Subsequent DNA synthesis results in the

formation of a double Holliday junction intermediate, nicked (5) or ligated (6), which can be processed by the dissolution, random resolution or

directed resolution pathways.
include RAD51 and DMC1, which catalyze the search,

pairing and invasion of the template DNA, leading to the

formation of a D-loop intermediate (Figure 1c). In vege-

tatively growing cells, the main recombinase is RAD51,

which is less proficient upon imperfect pairing with

the template, thereby reducing the likelihood of inter-

homologue recombination. In meiosis, the key recombi-

nase is instead DMC1, which can better tolerate

mismatches in theheteroduplex, licensingalso inter-homo-

logue recombination, while RAD51 has only an accessory

role [5]. The invading 30-end at D-loops then primes DNA

synthesis. In synthesis-dependent strand annealing

(SDSA) subpathway, the joint molecule intermediate is

subsequently dismantled, and annealed back to the

resected second end of the broken DNA (Figure 1c). SDSA

leads to exclusively NCOs. Only the originally broken
Current Opinion in Genetics & Development 2021, 71:39–47 
DNA contains heteroduplex DNA, while template DNA

in SDSA remains unchanged. Because of its limited muta-

genic potential, SDSA constitutes a major recombination

pathway in vegetative cells. SDSA is also frequently used in

meiotic cells, where it accounts for the majority of NCOs

[3]. Here, we focus on mechanisms of processing of joint

molecule intermediates arising in the canonical DSB repair

pathway (DSBR) [1,6]. In DSBR, the D-loop is stabilized

and the second end of the broken DNA is then annealed to

the displaced strand (termed as second-end capture).

After DNA synthesis and DNA ligation, the double

Holliday junction (dHJ) is formed (Figure 1c). This recom-

bination intermediate can be processed by at least three

diverse mechanisms, including dissolution, unbiased reso-

lution or crossover-directed resolution as discussed in the

next sections.
www.sciencedirect.com
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Dissolution: non-crossover products only
Dissolution likely represents the default mode of dHJ

processing in vegetatively growing cells. Mechanistically,

dissolution involves convergent migration of the two HJs

until the junctions collapse on each other and the

DNA molecules separate into exclusively NCO products

(Figure 2) [7–10]. Similarly as in SDSA, only the originally

broken DNA contains heteroduplex DNA, but in a dif-

ferent configuration, while the template remains

unchanged. HJ migration in dissolution is powered by

the motor activity of a RecQ family helicase, such as

Bloom (BLM) in human cells or Sgs1 in Saccharomyces
cerevisiae. As dHJs in a chromosomal setting are
Figure 2
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Overview of the dissolution process leading to non-crossovers.

In dissolution, the two HJs are migrated towards each other by the

motor activity of the helicase component of the dissolvasome (Sgs1 in

yeast and BLM in human cells). The convergent branch migration

creates positive supercoiling between the junctions (2), which is

relaxed by the type IA topoisomerase activity of the complex (Top3 in

yeast or TopoIIIa in human cells), allowing thus further migration (3).

Yeast Rmi1 or human RMI1–RMI2, respectively, stimulate the last

steps of the reaction when the junctions are close to each other (4).

Ultimately, the two branch points collapse on each other and the

molecules are decatenated by TopoIIIa/Top3 (5). The template is

unchanged in this process.

www.sciencedirect.com 
topologically constrained, initial helicase-driven conver-

gent branch migration gives rise to positive supercoiling

between the junctions, which would stall further move-

ment (Figure 2). To this point, BLM associates with the

type IA topoisomerase TopoIIIa and OB-fold proteins

RMI1 and RMI2 in humans, while Sgs1 binds Top3-

Rmi1 in yeast (BTR/STR complex, also known as the

dissolvasome) to relieve the torsional stress. Only the

concerted action of BLM/Sgs1 and TopoIIIa/Top3

allows the convergent branch migration to proceed

[7,10,11]. The most critical phase of dissolution occurs

when the two junctions are in close proximity, and the two

DNA molecules are held together by a few remaining

linkages. Rmi1 was found to stabilize the open gate

conformation of Top3, which likely increases the time

available for strand passage [10,12]. The stabilization of

the reaction intermediate by Rmi1 becomes particularly

important during the last steps of dissolution. Top3-Rmi1

also promote the motor activity of Sgs1, highlighting the

functional integration of the complex [13,14]. A similar

interplay was also observed with the human proteins [15].

Mutations in BLM are associated with the Bloom syn-

drome, an autosomal recessive disorder characterized by

cancer predisposition. At the cellular level, BLM-deficient

cells display highly elevated levels of COs. These rearran-

gements are thought to result from unbiased resolution of

undissolved dHJs by structure-specific endonucleases,

which are employed as a backup in BLM-deficient cells

(see below), leading to LOH, thus explaining the cancer

risk. Mutations in TopoIIIa cause a Bloom syndrome-like

disorder, underpinning the functional interaction with the

BLM helicase [16].

Sgs1 activity was found to be controlled in a cell cycle

dependent manner. Sgs1 is stimulated by cyclin-

dependent kinase (CDK)-catalyzed phosphorylation,

which enhances its activity in S-phase, indicating that

dissolution can likely take place early in the cell cycle

[17]. Whether BLM is regulated in a similar manner

remains undefined. BLM physically and functionally

interacts with TopBP1, which was described to stabilize

its protein levels in S-phase [18], although this result was

later disputed [19]. Nevertheless, the interaction of BLM

and TopBP1 is required to prevent SCEs [18,19], but the

underlying mechanism of potential TopBP1 requirement

for dissolution is not clear. Activation of Sgs1 and hence

dissolution early in the cell cycle, as observed in yeast

[17], may explain why it is likely a dominant mechanism

of dHJ processing in vegetative cells. In mitotic and

meiotic cells, the STR complex also facilitates non-

crossovers by disrupting or dissolving D-loops to promote

SDSA [20,21]. In genetic experiments, however, it is often

impossible to unambiguously distinguish whether NCOs

arise from SDSA or dHJ dissolution [20,22��]. Top3-Rmi1,

with or without Sgs1, were also shown to disentangle

pathologically intertwined meiotic chromosomes, which
Current Opinion in Genetics & Development 2021, 71:39–47
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likely involves their decatenation activity [7,21,23]. It is not

established whether, or to which extent, dHJ dissolution

occurs in meiotic cells [22��].

Unbiased resolution: a random mixture of
crossover and non-crossover products
The mechanism of unbiased resolution of HJs by struc-

ture-specific endonucleases (SSNs) involves simple endo-

nucleolytic cleavage at or near the branch points of the

DNA junctions in both vegetative and meiotic cells

[24,25]. Canonical dHJs are thought to be cleaved in

an unbiased manner; therefore, depending on the orien-

tation of the cuts, both COs and NCOs are produced

(Figure 3a). Both the originally broken and the template

DNA molecules contain heteroduplex DNA, in contrast

to dissolution.

Enzymes closest to a prototypical resolvase in eukaryotes

are yeast Yen1 and human GEN1 [26]. GEN1/Yen1 is

activated very late in the cell cycle. In S-phase, Yen1 is

phosphorylated by CDK, which limits its nuclear import

and inhibits its catalytic activity. Only in anaphase of M-

phase, Cdc14 dephosphorylates Yen1 to activate it, which

indicates that Yen1 is used as a last resort to process

structures generated by homologous recombination such

as HJs or anaphase bridges [27–29]. Human GEN1 is

instead primarily regulated by nuclear exclusion inde-

pendently of phosphorylation, and gains access to DNA

upon the breakdown of the nuclear envelope in M-phase

[30]. Untimely and premature activation of Yen1 leads to

genome instability [31�]. In meiotic cells, Yen1 becomes

fully activated late in meiosis II, showing that it provides a

backup for the disentanglement of unresolved recombi-

nation intermediates also in meiosis [31�]. MUS81–

EME1 or MUS81–EME2 (or Mus81–Mms4 in yeast

cells) and SLX1–SLX4/Slx1–Slx4 are additional enzymes

capable to process HJs. In yeast, the catalytic activity of

Mus81 is activated upon sequential phosphorylation of

Mus81–Mms4 by kinases that operate in the G2-M phase,

including M-CDK, Cdc5 and Dbf4-dependent kinase

(DDK) [24,32–34]. As with Yen1, premature activation

of Mus81 leads to genome instability [35]. To prevent any

aberrant Yen1 or Mus81 activity in the next cell cycle,

their function must be subsequently extinguished, which

is achieved by SUMO-targeted modification of Yen1 by

Slx5–Slx8, or phosphorylation of Mms4 by the STUbL-

Esc2-Cullin8 E3 ubiquitin ligase complexes, respec-

tively, leading to Yen1 and Mus81 degradation [36,37].

Slx1–Slx4 is activated upon formation of the heterocom-

plex. The Mus81–Mms4 and Slx1–Slx4 dimers act mostly

independently of each other in yeast, while human

MUS81–EME1 synergizes with SLX1–SLX4 [38]. To

cleave HJs, SLX1 makes the first cut, and MUS81 subse-

quently cleaves the opposite strand. The activity of the

MUS81–EME1–SLX1–SLX4 complex is further stimu-

lated by physical interactions with the nucleotide excision

repair factors XPF–ERCC1 and the mismatch repair
Current Opinion in Genetics & Development 2021, 71:39–47 
(MMR) heterodimer MSH2–MSH3 (MutSb) [39,40].

As the resolution enzymes are thought to be activated

later than BTR/STR, they mostly act on structures that

escaped the attention or were unsuitable for the dissolva-

some, making them a second choice for joint molecule

processing to avoid as much as possible CO formation in

mitotic cells.

Biased resolution in meiosis: crossovers only
In many organisms, the majority of meiotic COs are

dependent on the enzymatic activity of the mamma-

lian/yeast MLH1–MLH3/Mlh1–Mlh3 (MutLg) nucle-

ase, which processes recombination joint molecules

exclusively into COs [41,42]. COs resulting from

directed resolution are more evenly spaced along

the chromosomes than expected from a random distri-

bution, a phenomenon known as CO interference [3].

CO interference facilitates proper chromosome segre-

gation to prevent aneuploidy, and helps repress dele-

terious COs in centromere/telomere  proximal regions

[43,44]. Two closely spaced crossovers largely cancel

each other out in terms of a genetic outcome, so

interference may also help maximize diversification

of the recombined molecules. Implementation of

interfering CO formation is dependent on the activity

of the ZMM proteins, originally identified in yeast, but

now found in many other eukaryotes [45]. The ZMM

proteins comprise, among others, the synaptonemal

complex and SUMO ligase proteins such as Zip1, Zip2,

Zip3 and Zip4, Spo16, the Mer3 helicase and the

Msh4–Msh5 (MutSg) complex. The Msh4–Msh5 het-

erodimer is related to mismatch recognition factors

Msh2–Msh6 (MutSa) and Msh2–Msh3 (MutSb),
although it has no MMR function per se [45]. Recom-

binant MutSg was found to bind HJs and their pre-

cursors, on which it forms a sliding clamp. MutSg
clamp is thought to embrace adjacent homologous

DNA arms to stabilize recombination intermediates

[46]. The levels of MutSg must be tightly controlled to

guarantee its proper function [47].

MutLg is not described as a ZMM protein, although it

is similarly required for CO formation, together with

EXO1/Exo1 [41,48]. MutLg is also related to MMR

proteins. In fact, the MLH1/Mlh1 subunit is shared

with the key MMR factors MLH1–PMS2 (MutLa) in

humans or Mlh1–Pms1 (MutLa) in yeast. MutLg has a

minor function in MMR, and recently was shown to act

pathologically in triplet repeat expansion together with

MutSb [49,50,51�,52,53]. The endonuclease activity of

MLH3 was also implicated during the late step of

homologous recombination in mammalian somatic cells

[54]. However, the key physiological function of

MutLg lies in the directed resolution pathway in mei-

osis, and its deficiency leads to infertility in humans

[55,56].
www.sciencedirect.com
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Figure 3

(a)

(b)

(c)
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Overview of random and crossover-biased resolution pathways.

(a) In unbiased resolution of double Holliday junctions, the two branch points can be cleaved by SSNs symmetrically with respect to one another

(top), resulting in a non-crossover (NCO), or asymmetrically (bottom), resulting in a crossover event (CO). Because of the random nature of this

process, SSN-mediated resolution of dHJs in mitotic cells leads to the formation of both NCO and CO products. For simplicity, only one of the

two possibilities for CO and NCO formation is shown. The model explains generation of COs in mitotic cells.

(b) A model for crossover-directed processing of double Holliday junctions in meiosis. Following the formation of an unligated dHJ (1), the

junctions partially migrate towards each other (2, 3). Structures depicted in (3) and (4) are isoforms that reflect possible chromosome arm rotation

around the junction. PCNA is loaded at strand discontinuities on the outer side of the junctions and directs DNA cleavage by MLH1–MLH3 (5). If

junctions are ligated, both (a) and (b) cuts are required (in total at least 4 cuts per dHJ). If junctions remained unligated, only (b) cuts are needed

(5). The recombining DNA molecules ultimately separate upon branch migration or unwinding of the DNA stretch between the branch points and

incision sites, or after nucleolytic degradation of the same DNA region (6). Separated DNA molecules are filled-in by DNA synthesis and sealed by

www.sciencedirect.com Current Opinion in Genetics & Development 2021, 71:39–47
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The mechanism employed by the directed resolution

pathway is likely related to MMR. In MMR, MutSa or

MutSb bound to a mismatch help activate the MutLa
nuclease. The key strand discrimination signal is a dis-

continuity in the newly replicated strand, which, by

definition, contains the mismatch [57]. The replication

clamp proliferating cell nuclear antigen (PCNA) plays a

crucial role to activate the MutLa nuclease to nick the

newly synthesized strand. Mechanistically, the strand to

be incised is determined by the specific loading orienta-

tion of PCNA directed by the nick [58]. Therefore, in

MMR, the MutLa nuclease cleaves DNA in a biased

manner, followed by EXO1-mediated exonucleolytic

excision of the DNA stretch from the incision site past

the mismatch [57]. Similar asymmetric DNA cleavage by

MutLg has been likely repurposed in meiotic recombi-

nation to bias joint molecule processing towards COs

[59��,60��].

MutLg is an endonuclease that nicks one strand of a DNA

duplex, but it does not have a structure-specific nuclease

activity, despite it is preferentially binding HJs [53,61–63].

In vitro, the endonuclease activity of MutLg is stimulated

by MutSg, EXO1 and the clamp loader replication factor C

(RFC) together with PCNA [59��,60��]. The activation by

EXO1 is in agreement with genetic observations in yeast

and mice, which indicated a structural function of EXO1 to

promote MLH3-dependent COs [48,64]. Exo1 in S. cere-
visiae also helps recruit the Polo kinase Cdc5, which may

provide an additional way to facilitate the activation of

MutLg [65,66]. Exo1 thus appears to be a central regulator

of MutLg-dependent COs, able to coordinate CO forma-

tion stimulation, chromatin remodeling and cell cycle

control through its interaction with MutLg, the chromatin

remodeler Chd1 and the Cdc5 kinase, respectively [65,66].

The physical and functional interaction of MutLg with

PCNA likely determines the directionality of DNA cleav-

age. In experiments with negatively supercoiled dsDNA

in vitro, RFC loads PCNA indiscriminately, promoting

random DNA nicking by MutSg–EXO1–MutLg
[59��,60��]. During recombination, PCNA assists Pold
in DNA synthesis, which only extends the broken

DNA strand. PCNA may be retained asymmetrically at

the joint molecule intermediates until the resolution

stage to provide the critical discrimination signal. Indeed,

RFC and PCNA were found to localize to prospective
(Figure 3 Legend Continued) ligation (7). In this model, PCNA directs MLH

mismatch repair. However, a new molecule of PCNA would be likely neede

(c) Alternative model for crossover-biased processing of double Holliday jun

sequencing studies (see text), the D-loop is initially migrated (2, 3) before se

depicted in 4, 4a/b and 5 are equivalent. PCNA remaining after DNA synthe

DNA. The model depicts unligated junctions, which lack the topological con

SSNs could also resolve the intermediate into COs, upon cutting the strand

gets separated and repair process completes as in (b). In this model, the M

contrast to canonical mismatch repair. However, the model employs the sa

are theoretical concepts that require experimental validation.
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crossover sites along meiotic chromosomes [59��,60��,67].
Additionally, whereas dHJs are symmetric structures,

they arise from D-loops that are asymmetric. Using struc-

tured illumination microscopy in Caenorhabditis elegans,
one distinct population of MutSg was observed on early

recombination intermediates. Later, as dHJs formed,

MutSg relocated into two distinct foci, possibly to sites

internal to the two HJs [68�]. Notably, MLH1–MLH3 is

absent in C. elegans, and CO-directed resolution is instead

catalyzed by SSNs. However, such regulated distribution

of MutSg will likely be common to other organisms. In

case MutSg is located asymmetrically with respect to the

junctions, it might provide additional signal for direc-

tional DNA cleavage. The presence of MutSg between

the junction points of HJs may also prevent convergent

branch migration by dissolution, preventing thus NCOs

[68�].

Although the exact structures of the meiotic recombina-

tion intermediates and their occupancy by MutLg and co-

factors are not known, several models can be proposed to

explain CO-directed processing (Figure 3b and c)

[60��,69�]. The model depicted in Figure 3b, originally

proposed by Hunter and colleagues [60��], employs par-

tial convergent branch migration. PCNA is then loaded on

either side of the junctions to direct DNA cleavage by

MutLg, reminiscent of MMR. Figure 3c shows a related

model, in which PCNA, retained after DNA synthesis,

directs cleavage from sites between the junction points. It

should be also considered that not all dHJs may be fully

ligated, limiting the number of MutLg-dependent nicks

required to resolve the junctions, and removing also

topological constraints during the processing [69�]. Fur-

thermore, the unligated nicks may serve as discrimination

sites themselves. Residual nicks depicted in Figure 3c

could also explain CO-directed processing in organisms

that rely on SSNs instead of MutLg, such as in

C. elegans. Prematurely activated yeast Yen1 could par-

tially compensate for CO defects in mlh3 cells and pro-

moted CO-biased resolution when expressed during mei-

otic pachytene, at which point CO-designated HR

intermediates have formed [31�]. This shows that SSNs

can drive biased processing when ZMM proteins are

intact, even in organisms that possess MutLg. Indeed,

cutting the DNA strand at junction points opposite to

nicks, a known activity of SSNs, would also result in CO-

biased processing (Figure 3c). Both models envision the
1–MLH3 to nick DNA ‘upstream’, that is, analogously to canonical

d to be loaded after branch migration at step 5.

ctions. To accommodate for one-sided events suggested from

cond end-capture and DNA synthesis takes place (4). Structures

sis between the junctions directs the MLH1–MLH3 nuclease to nick

strains of ligated junctions, and only require 2 cleavage events (6).

 opposite to strand discontinuities (4a and 4b). Following the cuts, DNA

LH1–MLH3 catalyzed nicking takes place downstream of PCNA, in

me molecule of PCNA as used for DNA synthesis. Models in (b) and (c)

www.sciencedirect.com
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possibility of multiple cleavage events adjacent to the

junction by MutLg, in accord with sequencing of meiotic

recombination products resulting from complex events in

yeast [22��]. In the canonical DSB repair model (Figures 1c

and 3a), dHJ resolution yields heteroduplex DNA tracts on

both sides of the initiating DSB. However, extensive

branch migration depicted in the model (Figure 3c) would

give rise to heteroduplex DNA tracts only on one side, as

seen in yeast and mice [22��,70��]. Nevertheless, the exact

mechanism of CO-directed resolution is unknown and

requires experimental validation.

DNA cleavage at sites away from the branch points of the

junctions does not per se separate the recombining DNA

molecules. DNA segregation might ultimately require

limited nucleolytic activity or DNA unwinding. Although

the nuclease activity of Exo1 was found dispensable for

meiotic CO resolution in yeast [48], it cannot be

excluded, as it may be redundant with another process,

such as degradation by another nuclease or DNA unwind-

ing. The involvement of the EXO1 nuclease to degrade

DNA from the nicking sites to the junctions would be

consistent with MMR models [57]. Alternatively, a

helicase could separate the DNA strands between the

incision sites, allowing chromosomes to separate. The

excellent candidate for this function is the BTR/STR

complex. Indeed, Sgs1 was found to play a role in the

Mlh3-dependent pro-CO pathway in genetic experi-

ments [41], and footprints of extended branch migration

were observed in the products of meiotic recombination

in yeast and mice [22��,70��]. Similarly, BLM helicase

localizes to sites of meiotic recombination in C. elegans and

mice [42,68�,71].

Conclusion and perspectives
Mechanisms of Holliday junction dissolution and unbi-

ased resolution are relatively well understood, and the

reactions have been reconstituted with purified compo-

nents. More recent research provided insights into the

regulation of these pathways. In contrast, crossover-

directed resolution in meiotic cells remains poorly under-

stood. Recent genetic and biochemical studies allowed to

propose the first models showing how biased crossing-

over might be enforced, and are hinting at similarities

with MMR. Elucidating the precise nature of meiotic

recombination intermediates, their occupancy by MutLg
and co-factors and the underlying mechanism of DNA

cleavage leading to COs remains a challenging goal for the

future.
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