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Chapter 1

Introduction

The current study is all about the elusive nature of market predictability. This
topic has captured huge attention because of its intrinsic economic value and be-
cause it is intimately related to financial theory. Indeed, accordingly, to the neo-
classical theory of finance market are unpredictable beyond the risk premia. Still,
in recent years, the efficient market hypothesis and the related random-walk as-
sumption of financial markets felt under rising pressure, and evidence is mounting
that financial markets are far from being completely efficient. This new evidence is
closely linked with the recent spur in the field of artificial intelligence and a more
mature understanding of the behavioral dynamics of financial markets.

The first part of this work involves the study of the famous sentiment index
proposed by Baker and Wurgler [2006] (B-W from now on). Indeed, while a big
literature proposes alternative measures of sentiment, we still lack a precise un-
derstanding of what ultimately sentiment is. The empirical analyses performed
show how the B-W sentiment index is effective only in detecting situations of
abnormally low levels of risk pricing but fails in detecting abnormally high lev-
els of risk pricing consequently the B-W index can be better understood as an
index of greed. Interestingly, the results show how the B-W sentiment index is
tightly linked with uncertainty (defined as the dispersion in investors’ views) and
is Granger caused by the changes in the most optimistic views in the investors’
spectrum. These results point in favor of an understanding of financial markets
in which during bull markets, prices are driven by the most optimistic (less risk-
averse) investors. Furthermore, our results point in favor of an understanding of
financial markets in which a dichotomy exists between the asset prices estimated
by the representative investor, which reflects the investors value-weighted average
views, and market asset prices (marginal investor prices in the text), which re-
flect the investors constrained value-weighted average among all investors views.
Indeed, in the real world investors are constrained by many legal and regulatory



constraints that deter them from implementing their views. The dichotomy holds
in equity markets and explains why the B-W index, which is extrapolated from
equity-based measures, can detect only abnormally low levels of risk pricing. Af-
ter that, we propose a fear proxy, which is complementary in terms of time series
and cross-sectional predictive power to the B-W index. Our measure is indeed
effective in detecting abnormally high levels of risk pricing only. Our measure of
fear is based on a measure of illiquidity and skewness coming from the risk-neutral
distribution extrapolated from options. Indeed, options markets are largely driven
by hedging needs and are intrinsically forward-looking and consequently are well
suited to detect abnormally high levels of risk aversion. Importantly, our results
hold well in forecasting the S&P500, both in-sample and out-of-sample. Subse-
quently, we find that our fear measure is specular to the B-W sentiment index
even at the cross-sectional level completing with the ability to time the short leg
of the anomalies the results of Stambaugh et al. [2012] which proved how the B-W
sentiment index was effective in timing the long leg of the anomalies. Finally, the
results found at the cross-sectional level shows how conditionally on a high level
of fear the expected return per unit of risk is higher than on average while the
opposite holds for the B-W sentiment proxy.

The second part of this research studies the three key ingredients of out-of-
sample predictability: predictive models, predictors, and the function of market
uncertainty that we aim at predicting. At first, we merge machine learning and
model selection approaches to achieve superior predictive accuracy using as in-
puts the well-known predictors of Welch and Goyal [2008]. The results show how
combining more and more powerful predictive approaches is possible to raise the
predictive accuracy out-of-sample for the returns of the S& P500 and that our re-
sults hold even for the most recent years. After that, we employ as predictors the
spread returns of the eleven anomalies employed by Stambaugh et al. [2012], and
we observe how these predictors exhibit a record high predictive power in terms of
R%¢ and A Utility with regards to the S& P500 even when employed in univariate
linear regressions. Finally, the approach proposed by Bakshi and Madan [2000]
is studied under the lenses of out-of-sample predictability. Our results show how
the returns of the moments’ contracts introduced by Bakshi and Madan [2000],
which are built through a linear combination of call and put options, exhibit R
and A Utility values well above the ones traditionally recorded for the S& P500.
Consequently, given the flexibility of the approach proposed by Bakshi and Madan
[2000] it becomes possible to synthesize new securities with highly predictable re-
turns revering the traditional issue of market predictability: instead of working
on highly sophisticated models to predict hard to forecast securities, it becomes
possible to create and trade new complex securities which are easier to forecast.
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The third part of this work studies the dynamics of predictability itself. The
starting point is the understanding that the time series of the R%¢ coming from
different models and-or predictors can provide a valuable source of information
on the genesis of predictability. After that, the analyses focus on understanding
whether predictability stems from changes in economic fundamentals or investors’
sentiment. From a theoretical point of view, this study is linked to the ongoing
debate between behavioral and neoclassical finance. Indeed, the theory on asset
pricing is divided into two main conflicting schools of thought: the neoclassical
approach, which states that higher expected returns are a consequence of higher
risks and the behavioral approach, which explains how human biases lead investors
to deviate from full rationality. Empirical results show how the interaction among
risks and the pricing of risks is at the very base of predictability, and consequently,
both behavioral and neoclassical theories provide useful tools in understanding fi-
nancial markets. After that, our results combined suggest how different typologies
of market predictors have a changing predictive power accordingly to the prevail-
ing market regime. More in detail, fundamentals are the main drivers and are
more precisely incorporated into prices during bear markets, while during bullish
markets, the dynamics of risk pricing are more relevant, and non-fundamental
(technical, trend following, behavioral) signals have a higher impact. Finally, we
study the causality dynamics among behavioral and fundamentals variables, and
we document how, on average, are changes in fundamentals (risks) that trigger
changes in behavioral variables (risk premia). These relations are stronger (in
terms of magnitude, statistical power, and the number of statistically significant
predictors) during the bear than during the bull regime. This helps to explain
the dominant role played by fundamentals in forecasting market returns during
recessions. Our results reject the theory advanced by Julien and Michael [2017],
who explains the higher probability detected during economic recessions through
the existence of an uncertainty risk premium. Indeed, all our analyses confirm
how the level of uncertainty has no explanatory power for predictability dynamics
in bear markets. In bull markets, on the other hand, the impact of fundamen-
tals is weaker, and the dynamics of uncertainty, which drive risk premia, have
a larger impact in explaining predictability. From a theoretical perspective the
habit theory introduced by Campbell and Cochrane [1999], which explains market
time-varying risk premia through a utility function which discounts more risks in
bad than in good times, is largely consistent with our empirical evidence: prices
are driven by changes in current fundamentals (risks) which trigger changes in
behavioral variables (risks pricing).
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Chapter 2

Greed and Fear

2.1 Introduction

In the last decade, financial economists have devoted huge efforts to study the
impact of sentiment on financial markets. Surprisingly, while an extensive list of
studies employs sentiment proxies!, it is still not clear what sentiment really is.
With this study, we aim at providing an empirically based answer. To achieve it,
we explore the links among uncertainty, sentiment, and fear. These findings allow
us to reconcile, inside a unified framework, the puzzling evidence coming from the
research on options? and on the relative underlying stocks?.

We build on the existing literature on uncertainty* to understand the main drivers
of sentiment and fear. The empirical evidence emerging from our analysis suggests
that the currently employed proxies for sentiment are driven by both uncertainty
and the most optimistic investors while the proxies for fear are driven by uncer-
tainty and the most pessimist views. Our results show that sentiment and fear
proxies are complementary in their out of sample predictive ability, with sentiment
(fear) indexes especially powerful in predicting negative (positive) returns. Con-
sequently, these indexes are effective in detecting abnormally low (sentiment) or
high (fear) levels of risk aversion but not both of them jointly. After that, we show
how conditioning on the presence or absence of high levels of fear or sentiment

!See, e.g., Baker and Wurgler [2006]; Baker et al. [2012]; Stambaugh et al. [2012]; Israel and
Moskowitz [2013]

2 Andersen et al. [2015] and Bollerslev et al. [2015] show how factors driving the left tail of the
risk-neutral distribution can predict the market while the same does not apply for the factors
coming from the right tail

3The impact of sentiment and fear on cross-sectional returns has been recently addressed by
Stambaugh et al. [2015], and Farago and Tédongap [2018]

4Among the studies which influenced our subsequent analysis we especially highlight Diether
et al. [2002], Buraschi and Jiltsov [2006],and Yu [2011] and Barinov [2013]



the out-of-sample predictability and the risk-return relation for the most relevant
anomalies detected in the empirical literature varies dramatically. Depending on
the prevailing market conditions, we observe subsequent high or low return per unit
of risk. Consequently, we prove how the same indicators which are complementary
in timing the aggregate market are even complementary in timing the anomalies:
a unique logic drive returns both at a market wide and at a cross-sectional level.
The empirical analysis makes use of an extensive amount of indexes of uncertainty®
and fear® coming from the existing literature and it is further augmented by newly
proposed indexes of fear following Barone-Adesi et al. [2008] and Barone-Adesi
[2016]. This paper enrich the existing literature building simple, yet powerful,
measures of fear coming from the left tail and the skewness of the option risk-
neutral distribution. These measures exploit the forward-looking nature of op-
tions to detect abnormally high levels of risk aversion (fear). We show how the
differences between option implied percentiles have a remarkable predictive power
out-of-sample. To the best of our knowledge, this is the first study that makes
use of option implied information to time cross-sectional returns (the so-called
‘anomalies’) both in sample and out of sample.

Acting as one of the main driver of the paper, we introduce the conceptual di-
chotomy between the marginal and the representative investor which provides a
theoretical rationale for our empirical analysis. Prices reflect the views of the opti-
mistic investors (the marginal ones) and these views can diverge from mean views
(the representative investor’s ones). The divergence occurs because in many cases
legal and regulatory constraints do not allow for short selling. Consequently, from
stocks, it is only possible to infer proxies that detect excessive low risk aversion
(overbought or greed) while options are needed to infer the complementary mea-
sures which detect excessive high risk aversion (oversold). On the ground of the
stated dichotomy, this work addresses inside a coherent framework, some of the
issues that are still left open by the previous literature.

The first issue concerns the relationship between sentiment and uncertainty. In
their work Stambaugh et al. [2012] do not assign a role for a time varying cross-
sectional dispersion of views. They simply hypothesize that the views of the most
optimistic investors in the cross-section are more likely to be too optimistic when
the measure of investor sentiment is high than when it is low. That can occur
for different reasons. As the sentiment measure rises, the cross-sectional mean of
investors views can remain near to a reasonable valuation level while the cross-
sectional dispersion of views increases. Alternatively, as the sentiment measure

®E.g. the analysits dispersion of the views of Yu [2011] and the macroeconomic and financial
uncertainty indexes of Jurado et al. [2015]. See the section 2 on Data for the full list

6F.g. the VIX index, the Variance Risk Premium, the Crash Confidence Index, the tail
measure of Bollerslev et al. [2015], the pricing kernel tail measure of Almeida et al. [2017]. See
the section 2 on Data for the full list.
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increases, the dispersion of opinions can remain relatively constant, or even fall,
while the mean of investors views increases significantly above a rational valuation
level. This paper addresses this critical dilemma, and analyzes the link between
uncertainty and sentiment. In our empirical analysis, we show how sentiment and
uncertainty are closely linked and how sentiment is driven by the most optimist
views which are Granger caused by uncertainty.

The second issue comes from Andersen et al. [2015]. The authors find that the
left tail factor extrapolated from the risk-neutral distribution of options predicts
both the equity and the variance risk premia. Their finding are consistent with
Bollerslev and Todorov [2011] who find that the equity and variance risk premia
embed a common component stemming from the compensation of left tail jump
risk. The fact that both the equity and variance risk premia depend on the left
tail risk factor, coupled with the significant persistence of the latter, rationalizes
the predictive power of the variance risk premium for future excess returns, doc-
umented in Bollerslev et al. [2009]. Crucially the authors document a substantial
time variation in the pricing of market risks and provide strong evidence that the
factors driving risks and risk premia differ systematically. The fact that the option
implied left tail factor can forecast equity and variance risk premia without being
able to predict the risk is a puzzle which we address. We find that fear and finan-
cial uncertainty are linked and that fear proxies capture abnormally high levels of
risk aversion, which result in subsequent positive returns.

The third issue regards the apparent conflict between two series of empirical stud-
ies related to uncertainty and return predictability. One set of studies, started by
Diether et al. [2002] and continued by Chen et al. [2002] and Yu [2011], shows
how an increase in uncertainty predicts negative returns. To justify their findings,
the authors refers to the seminal work of Miller [1977] which shows how the mix-
ture of uncertainty and short-term constraints create an upward bias in prices.
The second path of studies introduces the concept of risk premium for uncertainty
(Buraschi and Jiltsov [2006], Buraschi et al. [2014]) and shows how an increase
in uncertainty brings to a concomitant fall in prices and predicts positive returns.
Our empirical results point against the existence of an uncertainty risk premium.
We observe how uncertainty rises before extreme market movements. The pres-
ence of a risk premium would call for a rise in market uncertainty during market
crashes and a concomitant rising in the related risk premium. Our results prove
that high uncertainty predicts subsequent higher volatility, but it has no predic-
tive power on the subsequent direction of the market. An intimately connected
result involves the rationale underpinning the existence of higher predictability
during bear markets. The recent literature explains this predictability through
the existence of an uncertainty risk premium (Cujean and Hasler [2017]), but our
results imply that a different explanation is needed. We argue that high levels of
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fear, or excessively high levels of risk aversion, are at the base of the high level of
predictability detected.

The fourth issue regards the connection between fear and the cross-section of stocks
returns. Fear, like sentiment, should prevent arbitrageurs to enter the market and
should magnify the anomalies. After that, the long leg of each long-short anomaly
strategy should have high returns (greater profits) following high fear periods than
following low fear ones. To the extent that an anomaly represents mispricing, the
profits in the long leg should reflect relatively greater underpricing than the stocks
in the short leg. In this setting, underpricing should be the prevalent form of
mispricing. Our option-based measures of fear capture exactly this phenomenon.
Our analysis also allows us empirical results show the existence of a link between
the work of Andersen et al. [2015], based on the predictive power of the left tail
factor driving the risk-neutral distribution, and the study of Farago and Tédongap
[2018], which explains how fear is reflected in the cross-section of stock returns.
Our analysis also allows us to gain novel insight into the rationale underpinning
the temporary movements in aggregate stock markets driven by movements in the
equity risk premium”.

The fifth issue involves the relationship between risk and returns for different
factors-anomalies. The literature on empirical asset pricing is divided into two
opposite interpretations, some authors explain the extra profits in terms of related
additional risks® while others authors believe that the phenomenon arises because
of behavioural biases unrelated to actual risks”. In this paper, we will investigate
the risk-return relationship for the anomalies and factors detected by the litera-
ture!?. Our empirical analysis shows how, conditioning on a high (low) level of fear
the risk-return relationship breaks up: we observe subsequent high (low) returns
per unit of risk. The reverse holds for sentiment.

Perhaps the studies most closely related to ours ones are these of Baker and Wur-
gler [2006], Stambaugh et al. [2012] and Andersen et al. [2015]. The first study
proposes a measure of market-wide sentiment and explains how it exerts a stronger
impact on stocks that are difficult to value and hard to arbitrage. In their study,
the authors examine returns on stocks judged most likely to possess both char-
acteristics. They prove that sentiment is associated with cross-sectional return

"Campbell et al. [2010] show how the cash flows of stocks are particularly sensitive to tempo-
rary movements in aggregate stock prices driven by changes in the equity risk premium. With our
work we study the drivers and analyze the dynamics at the base of changes in the risk premium

8Fama and French [1993] motivate the finding that small stocks over perform big ones through
differences in default probabilities.

9See Lakonishok et al. [1994] for an empirical analysis and Daniel and Titman [1997] for a
theoretical one

10We employ the eleven anomalies introduced by Stambaugh et al. [2012] and Stambaugh and
Yuan [2017]
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differences that are consistent with stocks’ characteristics. We explore the com-
ponents of the Baker and Wurgler index of sentiment and its predictive power to
gain a better understanding of what it captures. The second study explains how
anomalies are stronger in periods of higher sentiment and how the profitability of
long-short portfolios relies heavily on the short part of it and on the stocks which
are more difficult to arbitrage (higher IVOL). These results suggest that sentiment
and the related overpricing are largely at the base of many of the anomalies de-
tected in the existing literature but ignore the related issue of under-pricing. We
proposes measures of fear which fulfil the under-pricing gap finding results spec-
ular to the ones presented by Stambaugh et al. [2012]. Finally, the third study
introduces a new left tail driver of the risk-neutral surface and shows how this tail
factor predicts subsequent positive returns for the underlying index not matched
by higher subsequent risks. We build on this idea and we show how the risk return
trade-off changes conditionally on fear, sentiment or uncertainty.

While the three works just cited are probably among the closest to our work,
our study is also related to other studies on behavioural asset pricing. The first
study which proves how stocks exhibit excessive volatility in comparison with the
volatility of fundamentals dates back to Shiller [1980]. For our analysis, this ar-
ticle is critical because it proves that not only risks but even the pricing of the
risks affects stocks. Consequently, sentiment indexes which capture risk pricing
become an essential element of analysis in asset pricing. Subsequently, remarkable
studies have proposed a way to decompose market returns on the base of changes
in expected dividend and expected returns (Campbell and Shiller [1988]) and a re-
lated approach to decompose the variance of returns (Campbell [1991], Campbell
and Ammer [1993]). These seminal works, showing the relevant role played by the
pricing of risks, provide a sound theoretical ground for our analysis of sentiment
and fear. After that, a number of studies have investigated whether we can ex-
plain the cross-sectional variation of stocks’ returns on the ground of a risk-based
explanation'! or a behavioural one '? reaching opposite conclusions. Our analy-
sis provides novel elements to the ongoing debate showing how conditioning on
fear and sentiment proxies, which are complementary in capturing the pricing of
risk, it is possible to time the risk-return trade-off of both factors and anomalies.
Another promising line of research, close to our study, introduces the concepts
of a behavioral pricing kernel (Shefrin [2008]; Barone-Adesi et al. [2012, 2016]),
a Behavioural Capital Asset Pricing Theory (Shefrin and Statman [1994]) and a
related Behavioural Portfolio Theory (Shefrin and Statman [2000]). Recently, the
work of Stambaugh and Yuan [2017] sheds new light on the commonalities among

HExtremely insightful studies on the role of risks as drivers of cross-sectional returns comes
from Vuolteenaho [2002], Campbell and Vuolteenaho [2004] and Campbell et al. [2010]

12 A characteristic based explanation has been proposed in the empirical works of Lakonishok
et al. [1994], Daniel and Titman [1997] and Hong et al. [2000]
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anomalies while the study of Greenwood and Shleifer [2014] investigates the rela-
tionship between sentiment and market predictability finding a negative relation.
Our findings confirm the results coming from these studies. While the sentiment
proxies employed in our analysis follow the approaches proposed by Baker and
Wurgler [2006], and Huang et al. [2015] other works extend these findings: Baker
et al. [2012] introduce the concept of global and local sentiment while Kumar and
Lee [2006] and Da et al. [2015] provide further evidence of the relevance of senti-
ment in financial markets.

The rest of the paper is organized as follows. Section 2 presents the data used and
introduces our novel fear proxies. Section 3 introduces the dichotomy between
the representative and the marginal investor providing a conceptual justification
for our study. Section 4 analyzes sentiment and fear proxies and their relation
with uncertainty. Section 5 studies the risk-return relations at the cross-sectional
level conditionally on high (low) level of sentiment, fear or uncertainty. Section 6
concludes.

An online appendix reports all the empirical analysis and details which, for seek
of brevity, are unreported in the main text.

2.2 Data

The following pages detail all the data and indexes employed for the current anal-
ysis. We report further details in the online appendix.

2.2.1 Sentiment

To build proxies for sentiment, we follow Baker and Wurgler [2006] and Huang
et al. [2015]. These approaches are the most commonly employed in the empirical
literature and are a natural benchmark for our analysis. Consequently, when we
argue that we explain sentiment, we mean that we explain what these indexes
capture. The monthly time series span the period from 07-1965 to 12-2016. The
indexes are built using the following monthly data!:

e Close-end fund discount rate (cefd): value-weighted average difference be-
tween the net asset values of closed-end stock mutual fund shares and their
market prices.

e Share turnover (turn): log of the raw turnover ratio detrended by the past
b-year average. Here the raw turnover ratio is the ratio of reported share
volume to average shares listed from the NYSE Fact Book.

13Professor Guofu Zhou website, http://apps.olin.wustl.edu/faculty/zhou/
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e Number of IPOs (nipo): number of monthly initial public offerings

e First-day returns of IPOs (ripo): monthly average first-day returns of initial
public offerings.

e Dividend premium (pdnd): log difference of the value-weighted average
market-to-book ratios of dividend payers and nonpayers.

e Equity share in new issues (s): gross monthly equity issuance divided by
gross monthly equity plus debt issuance.

The methodologies employed to build the sentiment indexes are the ones detailed
by Baker and Wurgler [2006] and by Huang et al. [2015]. The first approach makes
use of the first principal component (PC6) to synthesize the information coming
from the six proxies of sentiment listed above while the second approach makes
use of the partial least squares (PLS6) to summarize the information coming from
the same six proxies of sentiment. A single equation succinctly summarizes this
procedure:

SPES = X InX'JrR(R' JrX Iy X' JrR) 'R JrR (2.1)

where where X denotes the T x N matrix of individual investor sentiment measures,
X = (x,2h,...,2%), and R denotes the T x 1 vector of excess stock returns as
R = (Rs, ..., Rr11) . The matrices Jp and Jy, Jp = IT—%iTii[ and Jy = [N—%z'Nz"N
enter the formula because each regression is run with a constant. Ip is a T-
dimensional identity matrix and i7 is a T-vector of ones.

2.2.2 Fear

Specular to sentiment, fear is a key variable in our analyses. To best capture fear
we employ a large set of different indexes. We divide these indexes into three main
groups: one based on surveys, one based on macroeconomic and equity measures
and one based on option-based measures. Some of the latter measures are new,
and we detail them in section 2.3 and 2.4.

In the surveys based indexes we list:

e Crash Confidence Index (CRASH). Data comes from the Yale School of Man-
agement website!®. The time series considered ranges from 01-1990 to 12-
2016.

https://som.yale.edu/faculty-research /our-centers-initiatives/international-center-
finance/data/stock-market-confidence-indices
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e The Anxious Index (ANX). Data come from the Federal Reserve Bank of
Philadelphia!®. In this study, we consider the forecast for the second quarter

after the quarter in which the survey takes place. Data spans the period
from 01-1990 to 12-2016.

e Bull-Bear spread (Bull-Bear). These indicators come from the American
Association of Individual Investors'®. The time series available starts the

07-1988 and ends in the 12-2016.

e The difference: (Upper view-Mean view) - (Mean view-Lower view) (UM-
MD). Data come from the IBES database and spans the period 07/1988-
12/2016.

e Livingston six months ahead Skewness (LIV skew). This index is built com-
puting the average skewness of the six months ahead forecasts using a list
of economic variables coming from the Livingston survey'”. The time series
used involves the period 07/1988-12/2016.

e Livingston RGDPX (RGDPX skew) six month ahead Skewness. The time
series used involves the period 07/1988-12/2016"%.

The list of macroeconomic and equity-based indexes is so composed:

e The tail risk measure of Kelly and Jiang [2014] (KJ). Data comes row from
the authors' and spans the period 01-1973/12-2010.

e The Economic uncertainty measure of Bali et al. [2014] (Macro). Data
comes from the authors® and includes the period 01-1993/08-2013.

e The CATFIN measure of aggregate systemic risk proposed by Allen et al.
[2012]. Data comes from the authors?! and includes the period 01-1973/12-
2010

e The tail-risk measure (TAIL) based on the risk-neutral excess expected short-
fall of a cross-section of stock returns proposed by Almeida et al. [2017]. The
available time series include the period 01-1973/12-2010%.

https:/ /www.philadelphiafed.org/research-and-data/real-time-center /survey-of-
professional-forecasters/anxious-index

http: / /www.aaii.com /sentimentsurvey

Thttps:/ /www.philadelphiafed.org/research-and-data/real-time-center /livingston-survey

Bhttps:/ /www.philadelphiafed.org/research-and-data/real-time-center /livingston-survey

19We thank the authors for sharing the data

20We thank the authors for sharing the data

2I'We thank the authors for sharing the data

22We warmly thank the authors for sharing their codes and data
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The list of option-based fear indexes is so composed:

e The VIX index. The time series employed come from the Federal Reserve of
Philadelphia and spans the period from 01-1990/12-2016.

e The Variance Risk Premium (VRP) Zhou [2017]. Data come from the website
of the author?®. The available data spans the period from 01-1990 to 12-2016.

e The left tail risk proxy of Bollerslev et al. [2015] (BTX). The available data
spans the period 01-1996/08-2013*.

2.2.3 First new measure of Fear: GARCH-FHS approach

Our first option proxy of fear, called Fear FHS (henceforth: FFHS), exploits and
extends the semi-parametric GARCH-FHS approach of Barone-Adesi et al. [2008].
Consequently, at first, we briefly summarize Barone-Adesi et al. [2008], recalling
how to extrapolate a time-varying risk-neutral distribution from a panel of options,
and subsequently, we introduce our novel measure of fear which is based on the
skewness of the distribution.

For each month? in the period 01-2002/08-2015 we fit two asymmetric GJR
GARCH models (Glosten et al. [1993]). To describe the index dynamic under the
historical distribution, a first GJR GARCH model is fitted to the historical daily
returns of the S&P 500. The estimation is obtained via Gaussian Pseudo Max-
imum Likelihood. Subsequently, to capture the dynamic under the risk-neutral
distribution, and using the just estimated historical parameters as a starting point
for the optimization, another GJR GARCH model is calibrated to the cross section
of out-of-the-money (OTM) put and call options written on the S&P 500. The cal-
ibration is achieved minimizing the sum of squared pricing errors with respect to
the GARCH parameters. Starting from the just estimated risk-neutral parameters,
the risk-neutral distribution is estimated numerically by Monte Carlo Simulation.
Using the Empirical Martingale Simulation method of Duan and Simonato [1998],
we simulate 50,000 trajectories of the S&P 500 from ¢ to ¢ 4+ 7, where e.g. 7 is the
desired time-to-maturity. Key for the estimation and for our analysis, the distri-
butions of the innovations are estimated non parametrically following the filtered
historical simulation (FHS) approach of Barone-Adesi et al. [1999]%.

Starting from the time series of monthly risk-neutral densities, our measure of fear
FFHS, is defined as the spread between the values of the underlying for the 95"

Zhttps:/ /sites.google.com/site/haozhouspersonalhomepage/

24We thank Professor Todorov for the support in replicating the model
ZPrecisely each last Wednesday of the month.

26Further details needed for the replication can be found in the original paper
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and 5" percentiles:

where UVg; and UV; represent the underlying value at the 95" and 5 percentile
of the risk-neutral distribution. To prevent possible liquidity and mispricing issues
both percentiles are estimated discarding the first and using the second shortest
maturity available. While we report only the difference between the 95 and the
5" percentiles, the differences between other percentiles (90""-10"" and 85t"-15")
give rise to qualitatively similar results®’.

2.2.4 Second new measure of Fear: the Option implied
VaR approach

Our second proxy of fear, called Fear VaR (henceforth: FVaR), exploits and ex-
tends the non-parametric approach of Barone-Adesi [2016] and Barone-Adesi et al.
[2018]. The key idea of the model is that extracting the VaR from the option sur-
face converts the mathematical nature of statistically-based risk measures into
economic-grounded risk measures. The VaR is in fact just a quantile, a single
numeric value determined at a specific threshold over the cumulative distribution
of the profit and loss distribution. Under the Arrow-Debreu representation and
following Breeden and Litzenberger [1978], the first derivative of a put price,

p=c T fOK(K — S)f(S)dS over its strike price, K is:

. dpyr

T=— (2.3)
dlenr T (K — Sp) f(Syr)dSr]
= 0 e (2.4)

K
= e_Tt’TT/ f(ST)dSt’T (25)
0

= e_”’TTF(K) (26)
=1l (2.7)

where 7, represent the risk-free rate, the lower bound of the integral has been
changed with no loss of generality from —oo to 0*® and « represents the chosen risk
level. For all values, ;7 identifies the today value with respect to a forward-looking
future value T'. The option-implied VaR{'; is then the difference between the time
¢ portfolio value minus the strike price of a European put option at level K

VaR{, = S, — K{ (2.8)

2TResults are available upon request.
28This corresponds to the natural assumption of holding a portfolio with limited liability.
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Being alpha proportional to the probability that the portfolio value will be below
K{r, the obtained risk measure is naturally forward-looking and directly linked to
the perceived future market’s beliefs. The use of put options links the analysis to
the left tail of the distribution. By the same token, the use of call options leads
to the same results, but linked to the right tail of the distribution. After that, the
CVaR measure follows naturally:

CVaRey = VaRy + T 2eL (2.9)

QT

where p® represents the put option contract at the risk level a. Just relying on
the option market data, the option-implied CVaR is the sum of the VaR and an
additional term. This extra term is the compounded put price divided by the
probability of the underlying being smaller than the selected strike .

The approach just introduced allows us to estimate the percentiles of the risk-
neutral distribution using calls or puts only. The intuition of our measure of fear
is the following: the 15th percentile (left tail) coming from the risk-neutral dis-
tribution estimated employing puts only give us a measure of the risk aversion of
pessimist investors while the 15th percentiles (left tail) of the risk-neutral distri-
bution estimated using calls only gives us a measure of the risk aversion of the
optimistic investors. The difference between the two percentiles provides a mea-
sure which captures abnormal levels of risk aversion or fear. Consequently, it is
now straightforward to define the FVaR index as:

FVaR = VaRCall 15 — VaRput 15 (210)

where the VaRgan 15 and VaRpy; 15 are the values-at-risk extrapolated from call
and put options and based on the 15" percentile. Indeed, whether the primary
function of index options is the transfer of unspanned crash risk (Johnson et al.
[2018] and Chen et al. [2018]), the demand for options will be especially high
during and immediately after major market falls and, in these circumstances, the
left tail of the risk-neutral distribution would provide a sound proxy of fear. Our
intuition is further confirmed by the recent study of Cheng [2018] where the newly
introduced VIX premium exhibits dynamics aligned with the FVaR ones.

As did for the FFHS, we report only the difference between the 15" percentiles,
the differences between other percentiles (VaRcan 10 — VaRpy 10 and VaRcap 20 —
VaRpy; 20) give rise to similar results®®. As a natural extension, we also propose
the FCVaR measure, which is obtained in the same way of the VaR L15— L15 but
employing CVaR measures instead of VaR ones.

29Results are available upon request
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2.2.5 Uncertainty

To model uncertainty, we propose three separate approaches. The first one relies
on modeling the aggregate volatility of analyst forecasts about firms’ earnings (Yu
[2011]). The second one is based on the dispersion of the economists’ forecast
about different economic variables (Buraschi and Jiltsov [2006]). The third one is
based on the uncertainty indexes proposed by Jurado et al. [2015].

The first approach was originally introduced by Diether et al. [2002]. The authors
employed one (fiscal) year earnings estimates (coming from the I-B-E-S database)
for stocks which are covered by two or more analysts, and which have a price greater
than five dollars. Unfortunately, the one-year earning forecasts are strongly influ-
enced by the management of the firm under scrutiny. Consequently, Yu [2011]
employs the long earning per share long-term I — B — F — S growth rate for stocks
which are covered by two or more analysts. This measure of uncertainty is shown
to be less affected by the managers. In conclusion, we employ this more robust
methodology using the number of views each firm receive to weight the standard
deviation of the views (DEVST). Our analysis run from December 1981 to De-
cember 2016. As extension, we further decompose this measure of uncertainty in
two part: upward (downward) uncertainty measured as the difference between the
highest (lowest) views and the mean ones: UP-UNC (DOWN-UNC).

The second measure of uncertainty comes from the work of Jurado et al. [2015].
The authors distinguish between two uncertainty measures: a financial one (UF)
and a macroeconomic one (UM). Our analysis runs from 7/1960 to 12/2016 and
uses monthly data?.

The third and final measure of uncertainty employs the forecasts dispersion com-
ing from different professional surveys. A similar approach has been successfully
employed by Buraschi and Jiltsov [2006] and Colacito et al. [2016]. Following the
studies just cited we employ :

e The Survey of Professional Forecasters (SPF).

e The Livingston Survey (LIV).
The detailed methodologies used for building these indicators are detailed in the
appendix while the resulting time series span the period 01-1982/12-2016.

2.2.6 Anomalies

In this section, we detail the factors and anomalies employed in this study. An
anomaly is a statistically significant difference in cross-sectional average returns
that persist after the adjustment for exposures to the Fama and French [1993]

30Data comes from the website of Professor Sydney https://www.sydneyludvigson.com/.
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three factors model. Our empirical analysis makes use of i) the eleven anomalies
proposed by Stambaugh et al. [2015], ii) the four factors of the extended Fama
and French [2015] model, iii) three widely accepted ratios of economic variables on
prices (dividend yield, price-earnings, and cash flow price). All data are monthly
and span the period from 01-1965 to 12-2016 except the net operating assets,
the accruals, the return on assets and the distress anomaly for which data are
available respectively only from 8-1965, 1-1970, 5-1976, and 1-1977. The considered
anomalies are:

e Anomalies 1 and 2: Financial distress. Campbell et al. [2008] show that
firms with high failure probability have lower, not higher, subsequent returns
(anomaly 1). Another closely related measure of distress is the Ohlson [1980]
O-score (anomaly 2).

e Anomalies 3 and 4: Net stock issues and composite equity issues. Loughran
and Ritter [1995] show that, in post-issue years, equity issuers under-perform
non-issuers with similar characteristics (anomaly 3). Daniel and Titman
[2006] propose an alternative measure, composite equity issuance (anomaly
4), defined as the amount of equity issued (or retired by a firm) in exchange
for cash or services.

e Anomaly 5: Total accruals. Sloan [1996] demonstrates that firms with high
accruals earn abnormal lower returns on average than firms with low accruals.

e Anomaly 6: Net operating assets. Hirshleifer et al. [2004] find that net
operating assets, computed as the difference on the balance sheet between
all operating assets and all operating liabilities divided by total assets is a
negative predictor of long-run stock returns.

e Anomaly 7: Momentum. The momentum effect, proposed by Jegadeesh
and Titman [1993] is one of the most widespread anomalies in asset pricing
literature.

e Anomaly 8: Gross profitability premium. Novy-Marx [2013] shows that sort-
ing on gross-profit-to-assets creates abnormal benchmark-adjusted returns,
with more profitable firms having higher returns than less profitable ones.

e Anomaly 9: Asset growth. Cooper et al. [2008] show how companies that
grow their total assets more earn lower subsequent returns.

e Anomaly 10: Return on assets. Chen et al. [2011] show that firms with
higher past return on assets gain higher subsequent returns.
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e Anomaly 11: Investment-to-assets. Titman et al. [2003] show that higher
past investment predicts abnormally lower future returns.

e Anomaly 12, 13, 14, and 15: the four factors proposed by the extended model
of Fama and French [2015].

e Anomaly 16, 17 and 18: motivated by Gerakos and Linnainmaa [2018] we
focus on three of the most notorious financial ratios: dividend yield, earning
price and cash-flow price.

Further details are listed in the online appendix.

2.3 The dichotomy between the Representative
and the Marginal investor

This paper proposes complementary measures of risk aversion coming from stocks
and options markets. In what follows we explain how the existence of a dichotomy
between the representative and the marginal investor motivates the need to use
indicators coming from both the stock and the option markets. Empirically, stock-
based indicators are especially successful in detecting abnormally low levels of risk
aversion while the specular holds for option-based indicators. The dichotomy arises
because legal constraints and the relatively high cost of shorting stocks are imped-
iments for broad classes of investors (mutual funds, pension funds, and insurances)
which account for a relevant share of the overall market. When these investors
are optimists about a particular stock, they can easily buy it, but when they are
pessimists, they cannot so easily short sell it. This asymmetry implies that the
representative investor (or the weighted sum of investors’ expectations) probability
distribution of expected returns diverges from the marginal investor one (which is
a constrained version of the previous). Indeed, the prices seen on the market are
defined by marginal investors or the investors who not only have given views on
the market at a given moment but also investors who can effectively implement
their views. This fundamental mismatch is at the base of a number of puzzling
asymmetries detected by the literature on stocks®' and options®?. Stock prices
reflect mainly optimistic views and, from them, it is possible to build measures
which detect abnormally low levels of risk aversion but not abnormally high levels
of risk aversion. This occurs because the views of the most pessimist investors

31The works of Miller [1977], Hong and Stein [2003] and Edmans et al. [2015] are fundamental
in explaining how short-selling constraints affect the informativeness of prices.

32The recent studies of Bollerslev et al. [2015] and Andersen et al. [2015] show how the left
tail of the risk-neutral distribution is informative of future movements of the underlying S&P500
index but the same does not hold for the right tail.
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are not incorporated into stock prices (Chen et al. [2012]). Options, on the other
hand, are widely used instruments to hedge risks. Being mostly used by sophisti-
cated investors with weaker regulatory and legal constraints, options market data
can naturally reflect the views of the most pessimist investors®® and allow for the
construction of measures which capture abnormally high levels of risk aversion.
To study empirically the implications of this theoretically grounded dichotomy we
start by looking at the interaction between changes in volumes and stock returns.
Uncertainty is the dispersion of the investors’ views around the representative in-
vestor one, and a higher dispersion in belief leads to higher stock volatility and
trading volumes®!. Consequently, increasing volumes likely imply a high level of
uncertainty. We study the impact of the joint dynamics of prices and volumes
on subsequent returns to gain a first empirical assessment of the relevance of the
dichotomy in bullish and bearish markets.
We start our empirical analysis in the simplest way: we take monthly returns and
volumes data for the S&P500 for the period 01-1982/12-2015, we detrend volumes
to account for the structural increase in volumes through the period considered
and we divide our data into four sets, one for each possible combination between
the dynamics of prices and volumes (positive/negative returns and rising/declining
volumes). After that for each of the four monthly categories in which we have di-
vided our sample, we compute the average return recorded by the S&P500 one
month, three months and six months after the starting month. To provide an even
more comprehensive picture, we also provide the cumulated returns spanning from
month t+1 to month t+3, from month t+1 to month t+6 and from month t+4 to
month t+6.

Insert Table 2.1

Table 2.1 provides a first representation of the impact of the dichotomy on the
US financial markets. It is immediate to see the different impact of the rising
volumes in bullish and bearish markets in predicting subsequent market returns.
We observe how rising volumes, joined with negative returns, are evidence of a
strong bearish movement which is likely to continue while rising volumes, joined
with positive returns, are followed on average by subsequent high returns. Con-
sequently, the impact of a high level of uncertainty on subsequent market returns
depends on the prevailing market regime. Declining volumes matched by negative
returns are evidence of a bearish market which is likely to revert and we report
how they over perform, in terms of average returns, increasing volumes matched by
negative returns for all the subsequent considered horizons. When bullish markets
are considered, we observe how at month t+1 the average return of the S&P500

33Han [2008] shows how options prices timely reflect investor sentiment
34This idea is first introduced in the seminal work of Diether et al. [2002] and further developed
both theoretically and empirically by Adem and Suleyman [2018]
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following a month t characterized by rising volumes and positive returns is close
to the performance following a month t characterized by declining volumes and
positive returns. Crucially, when average returns at month t+3 are considered
average returns are higher after a month t associated with positive returns and
declining volumes than after a month t associated with positive returns and rising
volumes, while the reverse applies for average returns at month t+6.

Our results imply that the dynamics of volumes and prices need to be scrutinized
jointly because the existence of the dichotomy implies that uncertainty has a differ-
ent informative content in bullish and bearish markets. Months characterized by
negative returns and growing volumes are “fire sales” months (Shleifer and Vishny
[2011]) and, because of liquidity spirals, (Brunnermeier and Pedersen [2009]) and
cash flow based momentum (Vayanos and Woolley [2013]) are likely to be followed
by months characterized by poor returns. On the other hand, months with neg-
ative returns and declining volumes imply that the bearish movement is ending
or that is not robust enough to trigger liquidity spirals or massive fire sales: this
implies that positive returns are likely to follow.

Even more interesting is the pattern which emerges when returns at time t are
positive. At medium-short time horizons (months t+3), the average return of the
following months (time t) characterized by declining volumes and positive returns
over perform the average return following months characterized by rising volumes
and positive returns, but the pattern reverse at longer horizons (t+6). This ev-
idence seems to point to a “calm before the storm” explanation (Akbas [2016]).
Indeed, when many investors enter the market in the same period (bullish market,
rising volumes), a relevant share of investors expect markets to continue to rise.
Even more importantly loss aversion® explains why it is unlikely for these investors
to close their position in the following months if a negative shock arises. This re-
duces the possibility of a major drawdown. On the other hand, after months of
rising prices and declining volumes, it is more common for investors who entered
before the low volumes months to cash in the gains as soon as negative returns
materialize. Indeed, the most optimist investors are usually fully invested in the
market: if these investors are mutual funds, they cannot employ leverage, while if
they can employ leverage, they are already marking full use of it. Consequently,
when the market declines leveraged investors cannot buy much more. Another
possible interpretation is that unusually low trading volumes during bull markets
signals negative information since, under short-selling constraints, informed agents
with bad news stay by the sidelines®.

These results are coherent with the existing literature. Gervais et al. [2001] show

35The Prospect theory (Kahneman and Tversky [1979]) and the related disposition effect
(Shefrin and Statman [1985]) provide a solid rationale to these findings
36See, e.g., Miller [1977] and Akbas [2016]
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how stocks which experience unusually high trading volumes over a day or a week
tend to appreciate over the course of the following month. The specular applies for
stocks which experience unusually low trading volumes. Differently from them, we
consider aggregate market volumes and he discriminate between rising or declining
de-trended volumes not very high (low) ones. Consequently, what we analyze is
a different aspect of the issue while agreeing on the main point: because a lot of
investors cannot go short when they are bearish, they simply do not invest in the
market reducing the volumes. Finally, Kaniel et al. [2008] prove that individu-
als tend to buy stocks following declines in the previous month and sell following
price increases. The latter result is coherent with our understanding that, when
a lot of investors has just bought stocks they are reluctant to sell and to realize
losses in case negative returns occurs. Furthermore the authors also show how, in
agreement with our findings, stocks register positive excess returns in the month
following strong buying by individuals and negative excess returns after individuals
strong sell.

2.4 Greed and Fear

In this section we study the empirical performance of the sentiment and fear proxies
to understand what these indexes capture. At first, we examine their predictive
power both in and out-of-sample. Then, we analyze which are the drivers of
sentiment and fear and how they relate to uncertainty.

The first objects of study are sentiment proxies. To address what these indexes
reflect we study how they interact with uncertainty. We aim at verifying whether
rising sentiment relates to an increasing dispersion in the views (uncertainty).
To study this relation, we make use of correlation, Granger causality, and lasso
analysis among uncertainty proxies and sentiment indexes. After that, we analyze
the existence of an uncertainty risk premium, and we consider the predictive power
of uncertainty. Before proceeding with the formal analysis, we plot the time series
of interest to gain first qualitative insights into the variables under study.

In Figure 2.1, upper part, we introduce the proxies considered in this study for
sentiment while in the same Figure, lower part, we provide a first visualization of
the relationship between sentiment and uncertainty.

Insert Figure 2.1

From Figure 1 emerges how all the sentiment proxies exhibit a procyclical dy-
namic: they pick at the end of prolonged bull markets, and bottom after market
crashes. Interestingly, after the financial crisis of 2008, the PC 6 sentiment proxy
remains well below its long-term average despite an extremely prolonged period of
rising markets. In the same period, all other sentiment proxies stayed in a more
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conservative range and close to their historical average. The lower part of Figure
2.1 shows us how sentiment and uncertainty proxies are closely related: they ex-
hibit similar patterns both during bull and bear markets. Consequently, Figure
2.1 seems to suggest that the dispersion of investors views is linked to sentiment.
We also report a surprising fact: sentiment indicators proposed by the existing lit-
erature (PC 6 and PLS 6) appear to spike right in the middle of some of the most
violent market downturns of the last decades. These findings lead us to consider
carefully the role played by the constituents from which the sentiment indexes are
estimated. A deep investigation tells us that two (turnover and number of IPOs)
of the six proxies initially employed are biased proxies of sentiment. First, share
turnover is very high both in bull and in bear markets and, accordingly to our anal-
ysis of the previous section, the dynamics of volumes should be analysed jointly
with the market dynamics to be insightful about future expected returns. Second,
the mumber of IPOs’ is largely driven by historical dynamics, like the dot.com
wave or the development of a specific country or sector. Consequently, we argue
that the number of IPOs is a biased proxy for sentiment. In the online appendix (
Figure 2.3), we provide a visualization of our intuition: we plot the time series of
turnover and of the number of IPOs with the sentiment proxy estimated using the
Principal Component methodology and the remaining four sentiment indicators
initially proposed by Baker and Wurgler. We observe how after the IPOs wave
of the late nineties, the last few years of the sample which are characterized by
extraordinarily high returns are matched by a relatively low number of IPOs in
the US. In conclusion, we propose to estimate the sentiment indexes making use of
only four of the six sentiment proxies originally proposed by Baker and Wurgler:
these new indexes (PC4 and PLS4) are both plotted in Figure 2.1 next to the
original ones (PC6 and PLS6).

The second object of study regards the fear proxies. As previously stated, the
dichotomy between representative and marginal investor implies that it is not pos-
sible to accurately extrapolate fear from the stock market: the most optimistic
investors can in fact express themselves directly on stock markets buying stocks,
but the same does not apply to the most pessimistic ones. On the other hand, the
opaqueness of over the counter markets foreshadows the possibility to extrapolate
reliable information from that side. To circumvent these limitations, we rely on
surveys which explicitly address the concerns of the investors and on the options
market which is both transparent and liquid. The nature of the options market
and the composition of the pool of investors who work on it make the option
market perfectly suitable for those analyses that are not feasible on the stock
exchange. The existence of liquid put and call options with different maturities
and moneynesses, allows traders to express their views without the constraints at
the base of the dichotomy between marginal and representative investors. As a
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consequence the left tail of the risk-neutral distribution emerges as a natural can-
didate for better understanding the nature of fear and its relation with downward
uncertainty about fundamentals. Johnson et al. [2018] analyze the demand for
options in the market and conclude that the primary function of index options is
the transfer of unspanned crash risk. A vast literature®” finds that while the left
tail of the distribution has a strong predictive content the same is not true for
the right tail of the risk-neutral distribution. The asymmetry occurs because the
optimist investors can freely express themselves on the stock market and they do
not need to make use of options to speculate on optimistic views. After that, the
percentage of investors which is short on the market is a low fraction of the total,
and consequently, the need to hedge against markets upside movements is limited.
As done previously for sentiment, we start our analysis of fear indexes from visual
inspection. Figure 2.2, upper part, shows how fear proxies interact with volatility
and with the lower bound of the analysts’views. The lower part of the same Figure,
shows how fear proxies relate to uncertainty measures.

Insert Figure 2.2

Figure 2.2 shows how, while linked, volatility and fear are two separate phenomena.
It also show how the lower bound of the EPS long term growth views (LOW in
the Figure) follows a path close to the fear measures ones. Furthermore, the lower
plot reports how the downward uncertainty proxy is closely linked to the FVaR
proxy while the financial uncertainty proxy (UF, in the Figure) is closely matched
by the Crash Confidence Index measure of fear.

To better define the relation among measures of sentiment, fear, and uncertainty we
analyze the correlation between sentiment and uncertainty variables and between
fear and uncertainty ones (Table 2.2).

Insert Table 2.2

From the upper panel of Table 2.2 emerges how all sentiment indexes exhibit a
strong positive correlation among themselves. Secondly, it is immediately clear
how the weighted standard deviation of the forecast (DEVST) is more positively
correlated with the upper bound of the forecasts than negatively correlated with
the lower bound of the forecasts. Consequently, the upper bound of the views
appears to affect the dispersion of the views more than the lower bound. Af-
ter that, we observe how correlations between sentiment indexes and uncertainty
proxies are positive (UF, UM, SPF, LIV) or close to zero (DEVST, UP-UNC,
DOWN-UNC). Finally, the uncertainty proxies, as expected, are positively corre-
lated among themselves.

37See, e.g., Andersen et al. [2015], Bollerslev et al. [2015] Christoffersen et al. [2012], Amaya
et al. [2015]
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Three main findings emerge from the lower panel of Table 2.2. First, option-based
measures of fear are positively correlated among themselves (VaR L15-L15, BTX,
FFHS, VRP, VIX). Second, the correlations between our newly proposed fear
proxies (FFHS, VaR L15-L15, TAIL) and the lower bound of analysts forecast are
higher than the correlations between the same fear proxies and the upper bound
of analysts forecasts. The asymmetry is clear evidence that the most optimist and
the most pessimist investors react differently to changes in the aggregate market
risk aversion, a result coherent with what we found in our previous analysis of
sentiment where our results are specular (upper panel of Table 2.2). Third, the
correlations between fear proxies (Bull-Bear, CRASH, FVaR, FFHS) and uncer-
tainty ones (UM, UF, DEVST) are negative or close to zero, and the results are
stronger conditionally on a decline of the FVaR measure’®.

To unveil what our sentiment, fear and uncertainty proxies capture we start study-
ing their predictive performance out of sample using the R, and delta utility met-
rics. The former metric is further decomposed to disentangle the capability of the
proxy to forecast positive and negative returns only (Bull and Bear in Table 2.3).
For the analysis, the out-of-sample performance metrics considered are:

e The R2, statistic proposed by Campbell and Thompson [2008]

R2 —1— Z?:l(rt B rf‘t>2 (211)
- Zthl(rt —7y)?

R?, measures the percent reduction in mean squared forecast error (MSFE)
between the forecasts generated by the chosen predictive model, 7, and the
historical average benchmark forecast, 7. To assess the statistical signifi-
cance of R2, we employ the p-values coming from the Clark and West (2007)
MSFE-adjusted statistic. This indicator tests the null hypothesis that the
historical average MSFE is less than or equal to the forecasting method
MSFE against the alternative that the historical average MSFE is greater
than the forecasting method MSFE (corresponding to Hy : R, < 0 against
H,: R%, >0).

e The Delta Utility measure proposed by Campbell and Thompson (2008) Camp-
bell and Thompson [2008]. Following the original paper, we estimate the
variance using a ten-year rolling window of returns. We consider a mean-
variance investor who forecasts the equity premium using the historical av-
erages. She will decide at the end of period t to allocate the following share

38The tables which report conditional correlation are reported in the online appendix (Table
2.19 and 2.25).

28



of her portfolio to equity in the subsequent period t+1:

(2.12)

where 0,1 is the rolling-window estimate of the variance of stock returns.
Over the out-of-sample period, she will obtain an average utility of:

o= o — 3103 (2.13)
where jig and 6 are the sample mean and variance, over the out-of-sample
period for the return on the benchmark portfolio formed using forecasts of
the equity premium based on the historical average. Then we compute the
average utility for the same investor when she forecasts the equity premium
using one of the predictive approaches proposed in this paper. In this case,
the investor will choose an equity share of:

Wit = —= (214)

and she will realize an average utility level of:

b= iy~ 510 (2.15)
where [ and 6,1 are the sample mean and variance, over the out-of-sample
period for the return on the portfolio formed using forecasts of the equity
premium based on one of the methodologies proposed. In this paper, we
measure the utility gain as the difference between 0; and 9y, and we multiply
this difference by 100 to express it in average annualized percentage return.
In our analysis, following the existing literature®, we report results for v = 3.

To make our results comparable, in light of the heterogeneity of the length of the
different time series considered, we apply the same percentages to split each time
series into an in sample, hold out and out-of-sample period: 40%, 10% and 50%
respectively.

Insert Table 2.3

The results of the out-of-sample predictive performance are extremely insightful.
Table 2.3 shows how, overall, the most powerful predictor among sentiment proxies

39 Among the most cited works on the subject Campbell and Thompson [2008] and Rapach
et al. [2010] impose the same level of risk aversion
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employs six inputs and the PLS approach (R%¢=2.11). Interestingly, disaggregat-
ing the overall predictive ability (Tot) in the capability to forecast positive (Bull)
or negative (Bear) returns only, other results emerge. At first, it appears how
original sentiment proxy of Baker and Wurgler [2006] (PC6) is more effective in
forecasting positive (R%¢=0.80) than negative returns (R%¢=-0.03). Similarly, the
turnover variable is powerful in predicting positive returns (R3¢=2.31) and weak
in predicting negative ones (R%¢=-1.30). The omission of this variable® makes
the PC 4 and PLS 4 sentiment proxies good predictors for bear markets and
weak predictors for bull ones. Consequently, the capability to forecast correctly
bear markets but not bull ones means that the PC 4 and PLS 4 indexes capture
overbought situations or situations of abnormally low risk aversion. The PLS 6
sentiment proxy presents a similar performance (Bull R%4=0.42, Bear R%¢=3.47)
and this implies that the employment of a more powerful statistical procedure
(PLS) is a viable alternative in effectively synthesizing the predictive power of the
six original proxies for sentiment into an effective overbought indicator.

Then we analyze the predictive power of uncertainty proxies. The obtained re-
sults are aligned and clear: while overall their predictive performance is weak, all
the financial and macroeconomic uncertainty indexes are effective in forecasting
negative returns but not positive ones. The evidence that the overall predictive
performance is weak is in line with our previous finding that high uncertainty
precedes both positive and negative returns depending on the prevailing market
conditions. Moreover, the capability to forecast negative but not positive returns
is in line with the predictive ability of the PC 4, PLS 4 and PLS 6 proxies for sen-
timent and confirms the strong links between sentiment and uncertainty proxies.
We now study fear proxies. Here the most powerful predictors are option-based:
FVaR (R%4=9.54), FCVaR (R%,=18.79), and VRP (R%=6.06). When we dis-
entangle the overall predictive performance in the capability to forecast positive
and negative returns, we observe how a clear pattern emerges. The indexes which
make use of surveys (UM-MD, the LIV Skew, the RGDPX Skew, CRASH) and
the indexes that make use of option implied information (FFHS, FVaR, FCVaR)
achieve a robust predictive performance in forecasting positive returns and a weak
performance in predicting negative ones. On the other hand, stock based indexes
(TAIL, KJ, CATFIN), the MACRO uncertainty proxy, and the Anxious index
(ANX) are all better able to forecast negative than positive returns. Finally, the
VIX index shows no sign of having a predictive power, while the variance risk pre-
mium (VRP) has an overall positive and statistically significant predictive power
coming from its ability to forecast both negative and positive returns. Overall, the
predictive performances out-of-sample of the indexes considered lead us to classify
them in two categories: indexes of uncertainty, which concentrate their predictive

40The number of IPOs sentiment proxy has a different impact in different historical periods.
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power in forecasting negative results only; and indexes of fear, which have an over-
all statistically significant predictive power that comes mostly from their ability
to forecast positive results.

Analyzing the predictive power of the same proxies at longer horizons, other in-
teresting patterns emerge'. At short time horizons (t+2, t+3) the option implied
measures of fear that perform better are the VRP and the VaR-based ones. Dif-
ferently, at intermediate horizons (t+6) the most potent predictors are the BTX
and the FFHS measures. The different performances of the indexes at different
horizons can be explained understanding how the various measures are built. The
FVaR and CVaR indicators are built using options with monthly maturity and,
not surprisingly, have reliable predictive power at short horizons. On the other
hand, the FFHS measures are built with a panel of options with maturities in
the range between 8 and 365 days, and consequently, their predictive performance
grows at intermediate time horizons. Interestingly, while option-based measures
of fear have a robust out-of-sample predictive performance there is no trace of
predictive ability for the VIX index. These results jointly confirm that volatility
and fear are two separate concepts.

Having studied the out-of-sample predictive performances of sentiment, fear and
uncertainty proxies, we now investigate whether the in-sample results confirm the
out-of-sample ones. We consider the in-sample linear relationship between excess
returns, and standard deviation, of the S&P500 at month t+1 and the level of the
previously reviewed predictors at month t. The standard deviation is computed
through a forty months rolling window. All t statistics (and the R? values) are
based on the heteroscedasticity-consistent standard errors of White (1980). The
methodology employed is based on univariate linear regressions estimated through
GMM.

)/;/4_1 =+ ﬁXt + €t (216)

where Y;,; are next month excess returns or standard deviations of the S&P500
and X, is the level of the chosen regressor this month.

Insert Table 2.4

The obtained results confirm our previous findings for the out-of-sample analysis.
Three strong findings emerge. First, the level of sentiment is negatively related to
subsequent S&P500 excess returns. Second, uncertainty predicts subsequent high
volatility while it has a weak predictive power on subsequent excess returns. Third,
short-term option-based measures of fear (VRP, FVaR) predict subsequent high
excess returns. Extending the analysis at longer horizons (t+3, t46, t+12) the
predictive power of the intermediate-term option-based measures of fear (FFHS,

“1Results are documented in Tables 2.18, 2.22, and 2.28 in the online appendix
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BTX) on excess returns, match their performance out-of-sample®?.

The previous findings led us to investigate the existence of a risk premium for un-
certainty. Our first visual inspection pointed against it (Figure 2.1); our empirical
results indicate in the same direction (Tables 2.3 and 2.4). Whether an uncertainty
risk premium exists a spike in uncertainty should be linked with a contemporane-
ous price drop and a related increase in expected returns. To test the existence
of this risk premium, we consider the 30 best and worst returns for the S&P500
for the period 01-1992/12-2016, and we compute the average percentile the month
before the occurrence of the extreme return. The percentiles are computed with
regard to the distribution of the level of the chosen index in the previous ten years.

Insert Table 2.5

We observe how, on average, the month before a major market fall the uncertainty
indexes are already high: the weighted standard deviation of the views (DEVST)
is at its ten-year 82"? percentile, the financial uncertainty index at its 78 per-
centile and the macroeconomic uncertainty indexes are all between their 70** and
60" percentile. Consequently, we argue that uncertainty was already high before
major market drops. A careful investigation of timing of the falls implies that is
unlikely that an uncertainty risk premium might exists. Interestingly, even before
significant market rises the level of the uncertainty indexes was high: the financial
uncertainty index was in its 77" percentile while the weighted standard deviation
of the views was in its 84" percentile. The reported results imply that, when
uncertainty is high, the probability of a major market movement is high, and the
market movement could be positive or negative. We argue that when uncertainty
is high, the arrival of new information can trigger a sharper reaction than when
there is broad consensus on the future market direction. These results are consis-
tent with the work of Zhang [2006] which, in the cross-sectional contest, shows how
greater information uncertainty should produce relatively higher expected returns
following good news and relatively lower expected returns following bad news.

Having found that sentiment indexes capture abnormally low levels of risk
aversion and that they are tightly linked with uncertainty proxies we now study
which are the main drivers of sentiment indexes. To achieve this goal we make
use of the Granger causality test and the lasso approach. Our approach for the
Granger causality test considers two time series per time and tells us if one leads
the other (or more precisely whether one moves before and in the same direction
of the other). Out tests are designed in the following way:

e At first, 4 legs are chosen as default initial size and the AIC criteria is
employed to identify the best number of lags.

42Results are reported in the online appendix Tables 2.23 and 2.29
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e Once the correct number of legs is identified we compute the value of the
F-statistic and the related critical value from the F-distribution at the 5 %
significance level.

o If F' > critical value, we reject the null hypothesis that y does not Granger
cause X.

As in Rapach et al. [2013] the role of the Lasso model selection methodology is
to confirm the robustness of the results of the Granger causality and involves the
following minimization problem:

1 d
By 2~ b —lBf A 1A (2.17)
where N is the number of observations, y; is the response observation, x; is a vector
(of length p) of values at observation i, A is a non-negative regularization param-
eter, parameters By and [ are a scalar and a vector of length p. The algorithm
calculates the largest value of lambda that gives a non-null model and after that
the smallest alpha value is found imposing that the ratio of the smallest lambda
value divided by the highest equals le-4. The remaining lambda values are found
employing a geometric sequence. We report the parameters related to the 60"
(and 90™) lambdas values because they provide restrictive (and very restrictive)
selections of the most powerful predictors.

Insert Table 2.6

The first remarkable result relates to sentiment indexes. Here we observe a clear
difference between the PC6 sentiment proxy and the others sentiment indexes: the
former appears to be driven by the weighted mean view (the representative investor
one) while the others sentiment proxies are led by upper view and by macroeco-
nomic uncertainty. The results that emerge lead us to confirm our understanding
of sentiment indexes as indicators of overbought because the most optimistic in-
vestors drive them (UP), but the most pessimist ones do not (LOW)*3.

Also the results coming from the lasso approach confirm this intuition: the up-
per view is selected for the PLS6, PLS4 and PC4 sentiment proxies at the 90%
percentile of the distribution of the lambda parameter. We then consider the
interaction between sentiment and uncertainty indexes. At first, we report how
sentiment and uncertainty indexes are cointegrated** and that macroeconomic un-
certainty (DEVST, UP-UNC) drives the most optimist views (Table 2.6).

43The full sample of Granger tests is in the online appendix, Table 2.21
44 Johansen tests on cointegration are reported in the online appendix, Table 2.20

33



In summary, being a powerful predictor of negative returns and being Granger-
caused by the upper bound of the views we interpret sentiment as an indicator of
overbought driven by upside uncertainty about fundamentals. More precisely, a
high level of sentiment captures situations in which a minority of over-optimists in-
vestors push prices far from the representative investor valuations (weighted mean
expectation of the investors). In conclusion, when sentiment is high, prices reflect
the risk aversion of optimist investors leading to sharp corrections when exogenous
news does not confirm the existing trend.

Insert Table 2.7

The next empirical analysis studies fear proxies (Table 2.7). The first remark-
able result is that the option based measures of fear (FVaR, FFHS, VRP) neither
Granger cause nor are Granger-caused by the VIX index and the two phenomena
appear to be distinct. Indeed, the VIX appears to be linked mostly with uncer-
tainty and its most powerful driver, among the ones considered, is the financial
uncertainty measure of Jurado et al. (2015). After that, we observe how the up-
per bound of the views (UP) appears to be Granger-caused by uncertainty indexes
(DEVST) but to Granger cause volatility (VIX). Interestingly, the lower bound
of the views (LOW) follows a different pattern: it is Granger caused not only by
uncertainty (DEVST) but also by fear indexes (TAIL, BTX, CRASH, Bull-Bear,
ANX) and by the VIX index. The result just stated is a further evidence of the
existence of an asymmetry between optimistic and pessimistic views: optimistic
views have a direct impact on the market, while pessimistic views do not own such
a property.

We also study the relationship between uncertainty and fear. At first, we docu-
ment how option-based fear indexes (FVaR, VRP, FFHS, BTX) are cointegrated
with uncertainty proxies (DEVST, UF, UM)%. Secondly, we document how our
short-term option implied proxy of fear (FVaR) appears to be driven by financial
uncertainty (UF) and by the representative investor view (MEAN). As a conse-
quence this index reflects the average market view that is unable to express itself
directly on stocks prices. Finally, we report how the indexes of fear coming from
long-term maturity options (FFHS) are Granger-caused by indexes of fear com-
ing from short-term maturity options (FVaR) and how indexes of fear based on
surveys on the expected dynamics of the stock market (CRASH CI) are Granger
caused both by option based indexes of fear (FVaR, BTX) and by volatility (VIX).
The picture that emerges from this analysis is clear: the causality dynamics among
indexes are consequence of the time needed by the different indexes to reflect the
views of the investors. When financial uncertainty is high, options, being used
by a set of sophisticated investors, are the first one to reflect expectations on fu-

45Results on cointegration are reported in the online appendix, Table 2.22
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ture markets falls through the left tail of the risk-neutral distribution. After that,
uncertainty about a possible adverse event is reflected in the views of analysts
(LOW, UM-UD) and the economists (LIV skew, RGDPX skew). Only later, when
the negative returns are already occurring, and volatility is rising, the views of in-
vestors (CRASH CI, Bull-Bear) indicate abnormally high level of risk aversion®S.
In conclusion, we have seen how uncertainty is tightly linked not only with senti-
ment but even with fear. Fear indexes have a predictive power that is specular to
sentiment ones because it comes from the capability to forecast positive returns
while the predictive performance of sentiment indexes is linked to their ability
to predict negative returns. Consequently, while sentiment indexes, built using
equity-based indicators capture situations of excessive optimism (low-risk aver-
sion), option-based fear indexes, detect situations of excessive pessimism (high-
risk aversion). In a nutshell while upward uncertainty about fundamentals drives
sentiment, downward financial uncertainty leads fear.

2.5 Timing Cross-sectional risks and returns

In their seminal paper, Stambaugh et al. [2012] prove that anomalies, to the extent
they reflect mispricing, should be stronger following high sentiment. Moreover, if
the primary form of mispricing is overpricing, then mispricing should be more
prevalent when sentiment is high. In the previous section, we have shown that
sentiment can effectively identify only situations characterized by abnormally low
levels of risk aversion. In this analysis, we show that having identified sound
proxies for fear, which is specular to sentiment, the reverse applies: anomalies are
stronger even following high levels of fear and, in such case, the primary source of
mispricing is underpricing. This means that while conditioning on a high sentiment
level the main driver of the factors and anomalies is the short leg, conditioning
on a high level of fear the main driver of returns is the long leg. We also show
how, conditionally on a high level of sentiment or fear, the risk-return relationship
breaks up: we observe respectively low or high excess returns per unit of risk.
Finally, we link our results to the ones coming from the recent literature on the
topic.
Insert Table 2.8

We start representing the summary statistics of monthly returns in Table 2.8.
In the upper part we report the correlations among the long-short benchmark-
adjusted returns, which in this paper we define as return net of what is attributable
to the three factors of Fama and French [1993]. Consequently, the benchmark-

46The full table of Granger causality is in the online appendix Table 2.23
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adjusted return is the sum of a; and the fitted value of ¢;,; in the regression:
Ri,t :al+bMK7—’t+CSMBt+dHMLt+€Lt (218)

The lower part of Table 2.8 reports the averages excess monthly returns (returns
in excess of the monthly Treasury bill rate) for the long and short legs and the
long-short return spread. In the lower panel of the table, we report the second,
third and fourth moments, the Sharpe ratio and the Cornish-Fisher ratio*” for long
and short legs and the long-short return spread. The first interesting result is the
difference between the excess returns of anomalies (1-11), built following the ap-
proach detailed by Stambaugh and Yuan [2017], and factors (12-18), coming from
the French data library. The excess returns coming from the short leg of the first
set is negative while it is positive for the second set. The spread of the monthly
excess returns ranges from a minimum of 43 basis points for the yield ratio to a
maximum of 210 for the default probability anomaly. The skewness of the long
leg of the anomalies-factors appears to be on average more negative for the long
leg than for the short leg while the reverse applies for kurtosis. No remarkable
differences are discernible between the long leg and the short leg regarding stan-
dard deviation. Finally, looking at the Sharpe and Corner-Fisher ratios we notice
how the results provided by these two indicators are aligned: the highest values
come from the investment factor the composite equity issue anomaly, the failure
probability anomaly and the investment to assets anomaly.

The first step of our empirical analysis studies the performance of the anomalies
at month t+1 conditionally on having at month t a high (low) level of sentiment,
uncertainty or fear. A month t with high (low) level of sentiment, uncertainty or
fear is one in which the value of the chosen index is above (below) its median value
for the whole sample period. This procedure, originally introduced by Stambaugh
et al. [2012] for sentiment indexes, is employed by us to analyze the impact of
the level of uncertainty and fear indexes on the subsequent risk-return dynamics
of the long and short leg of the anomalies. Differently, from Stambaugh et al.
[2012] we do not consider only excess returns but also conditional Sharpe ratios
for all the eleven anomalies and the seven factors-ratios considered. In the online
appendix, we report even conditional standard deviations, skewness, kurtoses, and
Cornish-Fisher ratios. The proposed approach allows us to assess the conditional
risk-return profile of the anomalies studied. To further analyze the proxies we in-
troduce a combination strategy that invests equally in all the 18 factor-anomalies.
Such an approach provides a useful summary indicator of the overall conditional
behavior of all the anomalies-factors considered.

Insert Table 2.9

47 Average return minus risk-free divided by the Cornish-Fisher 99*" percentile VaR
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We start considering the performance of the anomalies-factors conditionally on a
high (low) level of sentiment or uncertainty. The chosen proxy for sentiment is the
PLS 6 sentiment index of Huang et al. [2015] while the chosen proxy for uncertainty
is the macroeconomic uncertainty (UM) of Jurado et al. [2015]. We have chosen
the PLS 6 proxy for sentiment because it is the sentiment index with the strongest
predictive power out-of-sample in timing the aggregate market and it has the
strongest predictive performance even regarding the timing of the anomalies. The
employment of the other sentiment measures (PLS 4, PC 6 and PC 4) give rise
to the same qualitative results*®*. The UM metric is chosen in light of its close
relationship with the sentiment indexes and because it is tightly linked with all
other measures of uncertainty. Also here, the employment of others uncertainty
proxies (UF, LIV, SPF) gives rise to the same qualitative results?®. The findings,
conditioning on high (low) levels of sentiment (Table 2.9), Stambaugh et al. [2012].
After months of high sentiment, the returns for both the long and the short leg are
lower than after months of weak sentiment. The combination strategy shows how
the long leg has an average return of 12 basis points after month of high sentiment
but 96 basis points after low sentiment months. Similarly, the short leg of the
combination strategy switches from minus 58 basis point after months of high
sentiment to plus 58 basis point after months of low sentiment. Interestingly, the
returns after months of high sentiments are strongly negative for all the anomalies
of the long leg and all the anomalies, two factors and the combination strategy for
the short leg. Moreover, the standard deviations of the anomalies-factors are higher
after high sentiment than after low sentiment months. These two results jointly
imply that after high levels of sentiment lower (and often negative) returns are
matched by higher risks while after a low level of sentiment the reverse applies.
We also observe how for all the anomalies-factors (long-short in the table) the
excess returns are higher after a high level of sentiment than after a low level of
sentiment: a result driven by the short leg.

A possible explanation for the mismatch between conditional excess return and
standard deviation, is that standard deviation is an incomplete measure of risk
which could manifest itself otherwise through skewness or kurtosis. To address
this concern, we analyze conditional skewness and kurtosis, and we make use of
the ratio of excess returns on the 99% Cornish-Fisher VaR estimated with the
four conditional moments of the considered returns (results reported in Table 2.30
in the online appendix). Our results on the skewness are even more striking:
after low sentiment, skewness is positive while turns strongly negative after high
sentiment months. Finally, the performance of Sharpe ratios is exactly matched
by the performance of Cornish-Fisher ratios. The obtained results confirm that

48Results are available upon request
49Results are available upon request
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sentiment is a crucial driver of the performances of both anomalies and factors, but
we add the critical insight that, conditionally on a high (low) level of sentiment,
we observe subsequent low (high) excess returns per unit of risk.

Insert Table 2.10

As a next step we consider the behavior of anomalies conditionally on a high (low)
level of macroeconomic uncertainty. Conditionally on a high level of uncertainty
the excess returns are lower, the standard deviations higher (and the skewness
are more negative)®, than conditionally on a low level of uncertainty. Overall
the results from uncertainty are similar to the results coming from sentiment,
but they are weaker. Indeed, they are valid on average (combination strategy)
but, differently from sentiment, they do not hold for all the anomalies-factors
considered. The similarity between sentiment and uncertainty with respect to
their predictive ability in timing the anomalies is consistent with our previous
results on their predictive strength in timing the aggregate market: the results are
precisely aligned.
Insert Table 2.11 Table 2.12

We now study the risk-return profile conditioning on the VIX index and the Vari-
ance Risk Premium (VRP). The results are fascinating: conditioning on a high
level of the VIX index we observe higher excess returns than conditioning on a
low level of the index (for the combination strategy 84 and 33 bps against 43
and minus 2 bps for the long and short leg respectively), but the higher returns
are matched by higher risks both in terms of standard deviation and skewness.
Consequently, the differences between Sharpe ratios (and Cornish-Fisher ratios)®!,
conditionally on a high-low level of the VIX are remarkably low. Precisely, the
differences in terms of Sharpe ratios between months following high volatility and
months following low volatility are respectively equal to 0.38 for the long leg and
to 4 for the short leg of the combination strategy.

The results conditioning on the VRP are different: here, similarly to the previ-
ous case, a high-level of the index is linked to higher subsequent excess returns
and standard deviations than in the case of a low-level of the index. The crucial
difference is that the risk-return proportions are now different: the Sharpe ratios
conditionally on a high level of VRP are much higher than conditionally on a low
level of the VRP (20.2 against 2.2 for the long leg and 10.1 against -6.6 for the
short leg of the combination strategy). Our results are coherent with Feunou et al.
[2017] who show how the downside variance risk premium is the dominant com-
ponent of the VRP and consequently the VRP can be interpreted as a proxy for

50As documented in Table 2.31 of the online appendix
51Table 2.32 in the online appendix
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fear.
Insert Table 2.13 and Table 2.14

Finally, we consider the performance of the anomalies conditionally on our newly
proposed measures of fear (FVaR and FCVaR). The results are striking: condi-
tionally on a high level of fear the subsequent excess returns are higher and the
risks (in term of standard deviation)®? are lower than conditioning on a low level
of fear.Indeed, we document how for the combination strategy, conditionally on a
high level of the FVaR index, the subsequent average returns are 84 bps for the
long leg and 61 bps for the short leg against minus 13 bps and minus 31 bps condi-
tionally on a low level of the index. Interestingly, now the abnormal performance
of the anomalies-factor is driven by the long leg: a result precisely specular to
the one find for sentiment indexes. It also emerges how conditionally on a high
level of the FCVaR proxy, factor-anomalies are on average (combination strategy)
21 basis point higher than conditionally on a low level of the FCVaR proxy (the
same applies for the VRP measure). Consequently, a high fear level, by detecting
under pricing, forecasts a subsequent higher average performance of the considered
factors-anomalies. In conclusion, our fear proxies are complementary to the senti-
ment indexes in timing the anomalies, and this allows us to complete the picture
proposed by Stambaugh et al. [2012]. Our new understanding of the comple-
mentarity of sentiment and fear enables us to time the mispricing reflected in the
returns of anomalies and factors. This applies both in the case when overpricing
is the dominant mispricing component (high sentiment) and when under-pricing
is the dominant component (high fear).

To gain further insight into the dynamics previously detected we perform an in-
sample analysis of the relation between sentiment, uncertainty and fear proxies at
month t and excess returns and standard deviation at month t+1 (Table 2.15).
At first, we compute the volatility of the long and short legs of the anomalies
through the standard deviation of a rolling window of forty months. Then, we
regress the level of the selected variables at month t on excess returns; and the
newly computed standard deviations at month t+1.

Insert Table 2.15

At first, it emerges how the negative relationship between the level of sentiment and
subsequent excess return is matched by a positive relationship between sentiment
and standard deviation. Consequently, and coherently with our previous results, a
high level of sentiment implies subsequent lower returns and higher volatility. All
the coefficient are statistically significant, thus confirming the robustness of the
findings. We also observe that uncertainty predicts future higher volatility while

52In Tables 2.34 and 2.36 of the online Appendix we document how differences in conditional
skewness are marginal, while conditional kurtoses are lower after high fear months.

39



the betas of the regressions on future excess returns are almost unanimously nega-
tive but not statistically significant. This result is coherent with our understanding
of uncertainty as a valuable predictor of future volatility but not of future excess
returns. Aligned with our previous findings it emerges how the relationships be-
tween the VIX and subsequent excess returns and volatility are positive. Finally,
our measure of fear exhibits a positive relationship with future excess returns and
a negative one with future subsequent volatility. In a nutshell, a high level of fear
(sentiment) implies that stocks are underpriced (overpriced).

To strength the analysis, we consider the out-of-sample performance generated
by a portfolio exercise that uses as inputs the above analyzed elements. At each
time t, the portfolio allocation is divided between the risk-free security and a risky
investment. The risky investment is one leg of the anomalies or one leg of the com-
bination strategy. At first, a univariate regression is employed to forecast returns
at time t+1 using one of the chosen predictors. After that, on the base of the
forecast, an optimization is performed, and the two portfolios weights are identi-
fied (one for the risky and one for the risk-free security). To avoid results driven
by extreme and unrealistic allocations we follow the literature®® and impose the
following bounds to the weight of the risky asset: -1°* and +1.5. Considering the
different length of the available time series and to make the results comparable we
implement the out-of-sample performance in the following way: 25% of the avail-
able data for each time series is used to estimate the univariate linear regression
in sample, 15% is used as holdout period, and the remaining 60% is employed for
the out-of-sample performance analysis. We focus on the capability of the chosen
predictors to forecast the long and the short leg of the combination strategy: this
approach provides a succinct summary of their predictive power for the long and
the short leg of the individual factors-anomalies®.

Insert Table 2.17

As expected the predictive power of sentiment indexes and fear ones is specular:
sentiment measures are powerful in forecasting the short leg while fear ones are
powerful in predicting the long leg. Previously we found that sentiment indexes
are indicators of overbought. Here we report how they are indeed especially pow-
erful in predicting the short leg that is coherently driven by overbought. On the
other hand, we have seen how fear indexes are oversold indicators. Here we report
how they are mostly effective in predicting the long leg of the anomalies.

3See, e.g, Campbell and Thompson [2008], Rapach et al. [2010], and Pettenuzzo et al. [2014]
who impose similar bounds

54Reducing further the bound would rise the profitability of the strategies at the expense of
making the dynamic asset allocation more unrealistic.

55Details for all the individual anomalies are reported in the online appendix in Table 2.38
and 2.39
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Looking at the predictive performance of the uncertainty indicators, we observe
how these indicators, like the sentiment proxies, are better suited in predicting the
short than the long leg of the factor-anomalies. Once more, the predictive power
of sentiment and uncertainty for anomalies matches the their predictive power for
the aggregate market.

Finally, we observe how the one-week Bull-Bear spread, the Tail index, and CATFIN
measure are the strongest predictors for both the legs of the combination strategy.
In conclusion, both in-sample and out-of-sample analysis confirm that the predic-
tive complementarity between sentiment and fear indexes, previously detected for
the aggregate market (proxied by the S&P500), holds strong even at the cross-
sectional level.

To conclude we put the obtained result in perspective, linking our findings with
the ones coming from the existing literature. In an influential paper, Campbell
and Shiller [1988] show how unexpected returns are equivalent to the revision in
expectation about future dividends minus the revision in expected returns. Co-
hen et al. [2003] and Vuolteenaho [2002] adapt the same logic to decompose the
Value Spread. The authors show how, analogously to the Campbell-Shiller model,
the book-to-market ratio can be (temporarily) low if future cash flows are high
and/or future excess stock returns are low. Crucially for a better understand-
ing of our results, the same authors prove how news about expected returns are
highly correlated across firms while cash flows news can largely be diversified away
in large portfolios. More recently, Gerakos and Linnainmaa [2018] explain that
corporations move between growth and value because of changes in either size or
book value of equity and that the value premium is specific to variation in book-
to-market that emanates from size changes only. All these findings jointly imply
that the value spread is driven by changes in the expectations about returns and
that these changes are relevant only when they affect the relative level of prices.
What stated is equivalent to saying that it is the risk aversion that drives the
value spread and it confirms our understanding of sentiment and fear proxies as
two complementary sets of predictors for timing the dynamics of the anomalies.
Even more interestingly, the empirical evidence that conditionally on sentiment
and fear proxies the anomalies exhibit a similar behavior, suggests that the recent
understanding of the dynamics underpinning the profitability of the value spread
could be extended to all the other anomalies and factors.

Consequently, having seen that fear and sentiment predict the returns both at
an aggregate market level and at a cross-sectional level, it is possible to conclude
that risk aversion is a key driver of the markets. Because sentiment and fear,
or broadly speaking risk aversion, drive the cross-sectional returns, it comes with
little surprise that it is possible to extract from cross-sectional returns (anomalies
and factors) powerful predictors for the aggregate market (Kelly and Pruitt [2015]
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and Maio [2016]). The results of the last cited authors imply that the same risk
aversion, which drives the anomalies, can be extracted from the cross section of
returns and used to successfully forecast the dynamics of the aggregate market.
Our results also relate to Daniel and Titman [1997], Campbell et al. [2010] and
Kozak et al. [2018]. The first paper argues that characteristics, not market-wide
risk factors are responsible for factors’ returns. The second paper shows how the
systematic risks of stocks with similar accounting characteristics are driven by the
systematic risks of their fundamentals, and consequently, fundamentals explain
the genesis of the anomalies. Finally, the third paper argues that independently
on the source of variation (sentiment or risk) a risk-return balance must arise if
arbitrageurs are present.

This paper adds new insight into the literature showing how, conditionally on hav-
ing a high level of sentiment or fear, the risk-return relationship breaks up: we
observe low or high excess returns per unit of risk. Our empirical results suggest
that risk aversion (of which fear and sentiment are two manifestations) is anchored
to fundamental rationales and it is not a manifestation of irrationality. Still, risk
aversion can be successfully timed and this implies that markets tend to overreact
to economic news allowing investors the possibility to gain returns unbalanced by
risk or to take risks unbalanced by returns. Indeed, not necessarily arbitrageurs
can intervene or are willing to do it in a risky environment (Shleifer and Vishny
[1997] and Hong et al. [2012]).

2.6 Conclusion

While sentiment and fear are two widely employed concepts in empirical financial
economics, there is a visible shortage of studies that analyze what these measures
ultimately are. With this study, we provide a first empirically rooted answer: sen-
timent and fear are two complementary measures of risk aversion that are linked
with uncertainty. The two measures are specular regarding their predictive power
both for the aggregate market and for the cross-sectional dispersion of returns
(anomalies-factors).

All the analyses performed are based on the key insight that there is a distinction
between the representative and the marginal investor, or that the prices reflect the
views of the optimistic investors while the views of the pessimist ones are reflected
on the options market. In light of this fundamental insight, we started developing
our analysis.

At first, we show how volumes are a bad proxy for sentiment because their dynamic
has a different relationship with future returns conditionally on being in bullish
or bearish markets. After that, IPOs occur in waves linked to specific historical
situations. When we remove the number of IPOs and volumes from the list of six
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sentiment proxies at the base of the estimation of the Principal Components and
Partial Least Squares sentiment indexes, we observe how these new indexes con-
centrate their predictive capability in forecasting negative returns. Consequently,
they are authentic indicators of an excessively low level of risk aversion (they are
indicators of overbought or greed).

After that, we concentrate on the relationship between sentiment and uncertainty;,
and we show how uncertainty is closely linked with sentiment. Indeed, we observe
how the upper bound of the analyst’s EPS (Earning Per Share) long-term growth
Granger cause sentiment, and this implies that sentiment is driven by the most
optimist investors or the marginal ones. Even more strikingly we find that ex-
treme negative and positive returns occur when uncertainty indexes are already
high, and consequently, there is no evidence of an uncertainty risk premium: high
uncertainty predicts subsequent high volatility but it has no significant predictive
power on subsequent returns.

Subsequently, we study the relationship between fear and uncertainty. We em-
ploy indexes coming from surveys, and we propose new measures inferred from
the percentiles of the option implied risk-neutral distributions. We observe how
financial uncertainty is closely linked with fear proxies and we document how fear
indexes have a strong predictive power for positive returns only, and consequently,
they can be interpreted as indexes of excessively high-risk aversion (or indicators
of oversold).

Finally, we consider the impact of sentiment and fear proxies on the cross-section
of returns (anomalies and factors), and we find that they can properly time both
the legs of the anomalies. Remarkably, the risk-return relationship breaks up: con-
ditionally on a high (low) level of fear at month t we observe a high (low) return
per unit of risk in month t+1. The specular applies for sentiment.

Overall, our results show how the dynamics of risk aversion captured by sentiment
and fear drive financial markets both at the aggregate and at the cross-sectional
level. Our findings are coherent with the view that macroeconomic shocks impact
simultaneously both risks and the prices of risks (Campbell and Cochrane [1999]),
but subsequently their dynamics diverge (Moreira and Muir [2017]) allowing for a
timing of the expected risk-return trade off.
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Figure 2.1: The upper figure depicts the monthly time series of the sentiment proposed Baker and Wurgler (PC)
and by Huang et al. (PLS). Both the indexes are computed with 6 (Close-end fund discount rate, Share Turnover,
Number of IPOs, First day return of IPOs, Dividend premium, Equity share in new issues) and 4 proxies (Close-

end fund discount rate, First day return of IPOs, Dividend premium, Equity share in new issues).

The lower

figure shows the PLS 6 sentiment proxy with the financial uncertainty (UF) measure of Jurado et al. (2015) and

the view weighted standard deviation of the long-term EPS growth forecasts (DEVST). All the indexes in the

figure are standardized and span the period from 12-1981 to 12-2016
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Figure 2.2: The upper figure, shows the time series of the crash confidence index (Crash CI), the VaR L15-L15
proxy, the VIX index and the lower bound of the analysts’ EPS long-term growth forecasts (LOW).

The lower plot presents the same two fear proxies with the financial uncertainty measure of Jurado et al.(UF) and
the downward uncertainty measure (DOWN-UNC) defined as the number of view weighted mean EPS long term
growth minus lower bound of the EPS long term growth. All the indexes in the figure are monthly, standardized
and span the period 01-2005/08-2015.
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Table 2.1: The joint dynamics of volumes and prices and subsequent returns. The first three panels show the
number of observations, the cumulated and the average returns at months t+1, t+3 and t+6 conditionally on
being, at time t, in one of the following four conditions: positive (negative) return in month t and rising (declining)
detrended volumes. The mean used to detrend the growth in volumes is built using all observations available up
to time t. In the last three panels we present the returns of a trading strategy that buys at the beginning of time
t+1 or t+4 conditionally on being in time t in one of the 4 possible return volumes combinations and hold the
stock until the end of month t+3 or t+6 (t+1:t+3, t+1:t4+6 and t+4:t+6 in the table respectively).

1982-2015 positive returns ~ positive returns = negative returns  negative returns
Monthly rising volatility —declining volatility =~ rise volatility  declining volatility
t+1
N observations 111 146 7 84
Cumulated return 0.89 0.94 0.22 1.11
Average Return 0.008 0.006 0.003 0.013
t+3
N observations 110 145 7 84
Cumulated return 0.69 1.48 0.30 0.67
Average Return 0.006 0.010 0.004 0.008
t+6
N observations 109 145 76 83
Cumulated return 1.19 0.43 0.26 1.27
Average Return 0.011 0.003 0.003 0.015
t+1:64+3
N observations 110 145 77 84
Cumulated return 2.40 3.86 1.11 2.03
Average Return 0.022 0.026 0.014 0.024
t+4:t4+6
N observations 109 145 76 83
Cumulated return 5.46 6.54 2.43 4.43
Average Return 0.028 0.018 0.017 0.029
t+1:4+6
N observations 109 145 76 83
Cumulated return 5.46 6.54 2.43 4.43
Average Return 0.049 0.045 0.032 0.053
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Table 2.2: Monthly Correlations of the deltas and Summary Statistics of the levels. In the upper panel we report
results for sentiment and uncertainty proxies while in the lower panel we present results for fear and uncertainty
proxies. For each statistic we use all the data available for that proxy (summary statistics) or each pair of proxies
(correlations). Detail on the length of each time series are listed in section 2 on Data. We present summary
statistics and correlation for the deltas of the sentiment, fear and uncertainty proxies employed in this study.

Correlations n @ B @ (6 ® (M (8 (9 ) A (12 (13 (14 (15 (16 (17 (18 (19 (20) (1)
PC6 (1) 1.00
PC4(2) 0.85 1.00
PLS 6 (3) 0.65 0.70 1.00
PLS 4 (4) 0.85 0.80 0.94 1.00
cefd (5) -0.28 -0.37 -0.19 -0.34 1.00
turn (6) 0.44 0.22 0.08 0.17 -0.01 1.00
nipo (7) 0.44 0.01 -0.11 0.18 -0.05 0.08 1.00
ripo (8) 0.73 0.81 0.72 0.75 0.01 0.22 0.10 1.00
pdnd (9) -0.67 -0.83 -0.44 -0.53 0.25 -0.17 0.12 -0.42 1.00
s (10) 0.16 -0.14 047 0.42 0.14 -0.05 0.21 -0.09 0.10 1.00
DEVST (11) -0.03 -0.02 -0.04 -0.01 -0.06 -0.05 -0.02 0.00 1.00
UP-UNC (12) -0.04 20.03 -0.06 001 -0.05 -0.09 000 002 086 100
DOWN-UNC (13) 0.00 -0.03  0.00 0.06 -0.02 0.01 -0.01 -0.07 0.82 0.64 1.00
MEAN (14) 0.26 027 -0.16 0.03 0.12 0.20 -0.16 0.05 0.17 031 -0.03 1.00
MEDIAN (15) 0.30 0.28 -0.14 0.06 0.15 0.26  -0.18 0.02 0.05 0.12  -0.02 0.94 1.00
UP (16) 0.07 0.08 -0.11 0.02 0.01 0.01 -0.07 0.04 0.75 0.92 0.50 0.66 0.48 1.00
LOW (17) 0.16 0.19 -0.10 -0.02 0.09 0.12 -0.09 0.09 -0.51 -0.30 -0.78 0.65 0.60 0.03 1.00
UF (18) 0.16 0.18 -0.11 0.11 0.12 0.08 0.00 0.14 0.00 0.05 0.00 0.10 0.09 0.08 0.06 1.00
UM (19) 0.12 0.18 0.04 0.05 -0.08 0.13 -0.11 0.16 0.00 0.01 0.01 0.01 0.02 0.01 0.00 0.45 1.00
SPF (20) -0.02 001 007 005 -0.15 005 -0.03 -0.01 -0.01 -0.02 -0.05 -0.03 -0.05 -0.03 002 003 0.4 1.00
LIV (21) 0.05 0.07 0.04 0.13 -0.22 0.05 -0.19 0.02 0.05 0.04 0.07 0.00 0.00 0.03 -0.06 0.11 0.24 0.09 1.00

Summary Statistics (1) (2)  (3) G 6 M ® (9 (0 (1) (12 (13 (4 (15 (16 (17 (18) (19 (20) (21)

MEAN 0.34 0.40 0.01 -0.30  -0.03 0.18 0.02 -0.36 -0.31 4.38 6.12 5.11 15.14  14.87 21.25 10.02 0.94 0.79 0.11 0.95
MEDIAN 0.14 023 -0.02 -0.14 035  -0.27 -0.25 -0.27 -0.53 4.28 5.87 495 14.59 14.26 20.60 9.79 0.91 0.78 0.10 0.90
STDEV 119 088 026 060 109 100 093 064 090 083 L1 075 209 204 281 18 014 008 004 020
SKEW 0.79 2.12 1.70 -0.26  -0.74  0.80 3.01 -0.58 1.87 0.38 1.16 0.84 1.12 1.12 1.23 0.63 0.84 1.98 1.51 1.23
KURT 3.07 9.31 6.78 1.91 2.78 2.66 1227 451 6.84 1.90 4.16 2.98 3.60 3.54 3.97 2.82 8.40 5.15 4.58
MAX 3.84 4.50 1.08 1.08 2.19 2.74 4.40 1.42 3.21 6.47 1050 7.31  21.19 20.79 29.65 14.94 1.17 0.28 1.63
MIN -1.29  -1.27  -0.40 -1.62  -2.60 -1.18 -0.98 -2.56 -1.45 3.12 4.44 397 11.32 11.19 16.40 6.44 0.69 0.07 0.60
Correlations n @ B @ (6 ® (7 (8 (9 0 a1 (12 (13 (4 (15 (6 (17 (18 (19 (0) (1) (22) (23
MEAN 1.00
UpP 0.66 1.00
LOW 0.65 0.03 1.00
UP-UNC 0.31 0.92 -0.30 1.00
DOWN-UNC -0.03 0.50 -0.78 0.64 1.00
DEVST 0.17 0.75 -0.51 0.86 0.82 1.00
UF 0.10 0.08 0.06 0.05 0.00 0.00 1.00
UM 0.01 0.01 0.00 0.01 0.01 0.00 0.45 1.00
UM-MD 0.32 0.68 0.17 0.67 0.05 0.25 0.09 0.02 1.00
LIV skew 008 008 004 005 001 004 -0.01 022 007 1.00
RGDPX skew 0.12 0.16 -0.01 0.13 0.11 0.16 0.04 0.01 0.08 0.03 1.00
Bull-Bear 0.07 -0.01 0.10 -0.05 -0.07 -0.03 -0.16 -0.20 -0.01 -0.05 -0.01 1.00
BTX 0.02 0.14 -0.09 0.19 0.14 0.10 0.23 0.21 0.10 0.05 0.01  0.00 1.00
Macro -0.10 -0.02 -0.14 0.05 0.10 0.08 0.00 0.05 -0.06 0.01 0.02 0.01 -0.19 1.00
VIX 0.06 0.03 0.11  0.00 -0.10 -0.11 0.46 0.28 0.14 0.05 -0.01 -0.07 0.33 -0.19 1.00
ANX -0.09 -0.07 -0.08 -0.02 0.03 0.00 0.16 0.34 -0.07 0.17 -0.10 -0.27 0.13 0.27 0.15 1.00
Crash CI -0.13 -0.07 -0.06 0.00 -0.03 0.00 -0.10 -0.15 0.04 -0.12 0.07 0.05 -0.08 -0.08 -0.08 -0.22 1.00
VRP 2010 -0.04 -0.09 002 004 005 -0.06 -0.12 -0.02 003 -0.02 004 -0.15 -0.04 018 003 -0.08  1.00
KJ -0.02 0.03 -0.03 0.05 0.03 0.06 -0.27 -0.23 0.03 -0.04 0.08 -0.08 -0.19 0.04 -0.28 -0.01 0.09 0.16 1.00
Catfin 0.00 0.01 0.00 0.02 0.00 0.01 0.25 0.09 0.03  0.00 0.00 -0.02 0.06 -0.06 0.52 0.01 0.04 0.19 0.02 1.00
TAIL 0.01 -0.05 003 -0.06 -0.03 -0.06 018 003 -0.07 006 -0.02 003 -0.04 -0.08 006 -0.03 005 025 003 006 1.00
FFHS 0.03 -0.04 0.08 -0.08 -0.09 -0.05 0.06 0.03 0.02 0.02 0.01 0.01 0.03 -0.06 0.20 -0.01 0.18 -0.02 -0.03 0.11  0.05 1.00
FVaR 0.06 -0.09 0.12 -0.17 -0.12 -0.18 -0.10 -0.13 -0.03 -0.05 -0.03 0.06 0.07 -0.14 0.07 0.01 -0.03 0.10 0.04 -0.05 0.07 0.00 1.00
Summary Statistics (1) (2) (3) (4) (5) (7) (8) (9) (10) (11) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23)
MEAN 1514 2125 1002 612 512 094 079 084 -0.00 -0.01 043 000 1970 1674 3329 1656 000 028 000 27197 -176
MEDIAN 14.59  20.61 9.79 5.87 4.95 0.91 0.78 0.79  -0.08 -0.02 031 -0.79 18.01 12.65 32.80 13.45 0.24 0.26  0.00 226.67 0.00
STDEV 2.08 2.81 1.88 1.11 0.75 0.14 0.08 0.50 0.17 0.10 0.44 2.14 748 7 20.69 1.00 0.11 0.00  258.09 16.74
SKEW 1.13 1.24 0.64 1.15 0.83 0.85 1.96 0.55 1.83  -0.66 2.85 2.23 1.72 -0.91 1.25 267 838 -1.24
KURT 3.61 3.98 2.82 4.15 2.96 3.44 8.20 3.39 1254 4.75 13.32 8.24 7.55 55.39 3.32 523 14.04 89.53 5.85
MAX 2119 29.65 y 143 117 242 100 028 284 853 59.89 11585 189 074 0.00 309755 30.00
MIN 11.32  16.40 6.44 4.44 3.97 0.73 0.69 -0.30 -0.55 -0.45 0.02 -2.01 1042 4.04 18.02 -21856 -3.03 0.10  0.00 76.83 -80.00
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Table 2.3: Out-of-sample predictability. The table shows the R2OS and the A Utility metrics using sentiment,
uncertainty and fear proxies to forecast the monthly returns of the weighted S&P500 index at month t+1. Our
analysis employs all data available for each time series. The first 40% of the existing data are used to estimate
the model in-sample, 10% are used as hold out period while the remaining 50% is for the reported out-of-sample
analysis. For both indicators we consider the overall predictability (Tot), and the capability to forecast positive
(Bull) or negative (Bear) returns only. Results in bold are significant at the 5% level using the Clark and West
(2007) approach.

A Utility Tot  Bull Bear R% ¢ Tot pval Bull pval Bear pval
PC6 037 038 0.34 PC6 0.34 0.01 0.80 0.00 -0.03 0.51
PC4 0.36 -0.37 142 PC4 0.16 0.13 -0.33 091 0.55 0.00
PLS6 3.33 194 5.36 PLS6 2.11 0.00 042 0.19 3.47 0.00
PLS4 1.76  -0.02 4.39 PLS4 1.14 0.00 0.08 0.35 2.00 0.00
cefd -0.27 1.04 -2.18 cefd -0.12 0.80 0.99 0.00 -1.02 1.00
turn 0.55 220 -1.83 turn 0.31 006 2.31 000 -1.30 1.00
nipo -1.05 -3.48 2.56 nipo -0.62 095 -2.84 1.00 1.17 0.00
ripo -0.02 048 -0.80 ripo 0.88 0.07 -0.51 0.35 201 0.06
pdnd -0.04 220 -3.28 pdnd -0.17 0.69 1.69 0.00 -1.68 1.00
S 2.19 14.80 -15.22 s 1.26 0.01 13.66 0.00 -8.76 1.00
DEVST 0.54 -7.18 10.23 DEVST -1.07 0.56 -9.05 1.00 4.20 0.00
MEAN 0.84 6.67 -5.92 MEAN 0.09 021 11.71 0.00 -7.59 1.00
MEDIAN 0.61 557 -5.13 MEDIAN -0.03 0.24 10.49 0.00 -6.98 1.00
UP 0.62 6.716 -6.54 UpP 0.21 0.18 10.63 0.00 -6.67 1.00
LOW 0.50 8.00 -8.18 LOW 0.15 020 12.04 0.00 -7.71 1.00
UF 449 -8.65 21.28 UF 1.84 0.08 -17.11 1.00 14.36 0.00
UM 3.59 -3.06 11.76 UM 1.84 0.11 -9.20 0.91 9.13 0.01
SPV 048 -3.53 5.35 SPV -1.21  0.62 -7.78 0.97 3.13 0.05
LIV 1.57 -145 5.25 LIV -0.31 0.37 -3.63 0.76 1.89 0.15
UP-UNC -0.46  2.04 -348 UP-UNC 0.03 035 070 0.18 -0.42 0.59

DOWN-UNC -1.02 -3.33 1.78 DOWN-UNC -0.93 0.51 -5.12 0.95 1.84 0.08

A Utility Tot Bull Bear R% Tot, pval Bull pval Bear  pval
UM-MD -0.98 10.33 -13.57 UM-MD -0.46 0.23 10.15 0.00 -6.74 0.97
LIV skew -0.08 0.71  -0.98 LIV skew -0.04 047 077 0.16 -0.52 0.79
RGDPX skew 1.05 7.53 -6.32 RGDPX skew 1.00 0.02 8.70 0.00 -3.56 0.68
Bull-Bear -1.39 055 -3.77 Bull-Bear -0.67 059 -0.10 0.30 -1.01 0.72
BTX -0.24 -5.93 8.36 BTX -460 0.89 -6.70 1.00 -3.04 0.64
MACRO 1.23  -6.90 13.51 MACRO -14.04 0.38 -60.89 0.96 20.67 0.04
VIX -4.32 -1.46 -8.06 VIX -3.00 0.93 -213 0.68 -3.51 0.93
ANX -0.44 -2.11  1.58 ANX -1.33 057 -7.01 0.88 2.03 0.19
CRASH -0.44 406 -5.91 CRASH -1.17 051 3.69 0.00 -4.05 1.00
VRP 439 -094 11.04 VRP 6.06 0.02 7.10 0.04 545 0.08
KJ -0.52  -2.75  2.56 KJ -0.05 0.22 -1.65 0.56 1.25 0.10
CATFIN -0.32 -3.59 4.22 CATFIN -0.80 0.60 -6.60 1.00 3.92 0.01
TAIL 7.86 272 15.04 TAIL 4.60 0.01 -2255 0.71 26.67 0.00
FFHS -0.40 042 -1.58 FFHS 0.08 034 0.82 0.03 -0.50 0.97
FVaR 10.75 16.10 0.64 FVaR 9.54 0.00 14.44 0.00 -1.83 0.33
FCVaR 17.84 27.89 -0.55 FCVaR 18.79 0.00 28.24 0.00 -3.07 0.25
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Table 2.4: In-sample predictability. The table presents the result for in sample univariate linear regressions. At
each time time t the level of the chosen variable is regressed on the SP500 excess returns and on the SP500
standard deviation at time t+1. Standard deviations are computed trough a 40 months based rolling window. All
t-statistics are based on the heteroskedasticity-consistent standard errors of White (1980). For each time series
all available monthly data are employed. Results significant at the 5% are reported in bold with the related R?

statistic.

Excess Returns b tstat  R? Volatility b tstat  R?
PC6 -0.004 -2.01 0.01 PC6 -0.001  -1.87 0.01
pPC4 -0.006 -2.27 0.01 PC4 -0.001  -1.59 0.01

PNLG6 -0.026 -2.78 0.03 PNLG6 0.006 2.99 0.01
PNL4 -0.023 -3.12 0.03 PNL4 -0.002 -0.78 0.00
MEAN -0.002 -1.69 0.01 MEAN 0.000 -0.78 0.00
MEDIAN -0.002 -1.63 0.01 MEDIAN 0.000 -1.01 0.00
DEVST -0.002 -0.68 0.00 DEVST 0.004 5.31 0.07
Up -0.001 -1.72  0.01 Up 0.001 4.61 0.02
LOW -0.002 -1.61 0.01 LOW -0.001 -4.37 0.05
UF -0.048 -2.15 0.02 UF 0.046 12.52 0.29
UM -0.071 -1.92  0.02 UM 0.039 5.55 0.06
SPV -0.005  -0.07 0.00 SPV 0.091 6.52 0.07
LIV -0.017 -1.37 0.01 LIV 0.016 8.15 0.07
UP-UNC -0.002 -1.24 0.00 UP-UNC 0.006 14.09 0.26
DOWN-UNC -0.003  -0.92 0.00 DOWN-UNC 0.008 13.87 0.23
Excess Returns b tstat  R? Volatility b tstat  R?
UM-MD -0.009 -2.06 0.01 UM-MD 0.367 5.06 6.32
LIV skew -0.013 -1.02  0.00 LIV skew 4.275 11.12 24.56
RGDPX skew -0.050 -2.30 0.02 RGDPX skew 3.493 4.29 4.62
Bull-Bear -0.020 -0.83 0.00 Bull-Bear 0.735 5.54 8.31
BTX 0.001 0.08 0.00 BTX -1.046  -1.47 0.63
Macro -0.001  -0.54 0.00 Macro -0.300  -0.80 0.19
VIX 0.000 0.13  0.00 VIX 0.431 0.67 0.13
ANX 0.000 -1.00  0.00 ANX 0.856 4.52 8.91
CRASH 0.000 0.14  0.00 CRASH 0.321 9.68 28.35
VRP 0.000 4.23 0.05 VRP 0.073 9.00 20.13
KJ 0.004 1.10  0.00 KJ 0.021 4.09 4.71
Catfin -0.022 -1.10  0.00 Catfin -0.053 -6.51 11.56
TAIL -40.537 -7.02 0.11 TAIL 0.015 4.66 6.33
FFHS 0.000 -0.56  0.00 FFHS -0.214 -1.99 1.27
FVaR 0.001 2.82 0.06 FVaR 576 3.36 3.16
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Table 2.5: The table shows the average percentile of the considered index, on the previous 10 years index values,
the month before one of the worst/best 30 returns of the S&P500 for the period 01/1993-12/2016.

Percentiles 30 Worst 30 Best

Sent PC 6 55.75 49.11
Sent PLS 6 56.17 41.75
Sent PC 4 64.83 50.94
Sent PLS 4 61.50 44 .42
DEVST 82.14 83.81
UP-UNC 64.75 66.00
DOWN-UNC 71.33 75.92
MEAN 53.39 59.67
MEDIAN 52.19 59.47
Uup 57.44 61.25
LOW 48.44 55.17
UF 77.81 77.39
UM 69.83 57.25
SPF 60.47 48.69
LIV 71.47 68.72
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Table 2.8: Summary Statistics. The table reports properties of returns across all months for the 11 anomalies and
the 7 factors listed in section 2. The length of the time series depends on the availability of data. For anomalies,
1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18 returns are available from 01/1965 to 11/2016, for anomalies 5, 6,
7, 8, 9 the returns available cover the periods from 08/1965, 01/1970, 02/1965, 05/1976, 01/1977 to 11/2016.
The correlations are for the benchmark adjusted average returns, computed as fitted values €;; in the regression
Rit =a; +bM KTy +cSMBy+dHM Ly +¢€;; where R; ; is a strategy’s excess return in month t and MKT, SMB
and HML come from the French data library. The Excess return is reported in percent terms. The remaining of
the table shows Standard Deviation, Skewness, Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio of the considered

anomalies.
Rromaly 0 ® 0 @ ® ® O ® ® (0 () 7 3 5 05 (0 0 0
Correlations: Spreads
(1) Asset Growth 1.00
(2) Gross Profitability -0.35  1.00
(3) Investment to Assets 0.83 -0.22 1.00
(4) Net Stock Issues 0.38  0.15 041 1.00
(5) Net Operating Assets 040 -0.03 049 -0.14 1.00
(6) Total Accruals 041 -0.19 0.33 0.13 0.16 1.00
(7) Ohlson’s O 035 -0.14 033 027 -0.16 0.17 1.00
(8) Return on Assets -0.35  0.39 -0.26 0.09 -0.14 -0.10 -0.21 1.00
(9) Failure Probability -0.10 0.07 -0.10 -0.04 -0.12 0.00 -0.08 -0.31 1.00
(10) Momentum 0.05 -0.02 0.05 0.04 0.07 0.01 -0.05 0.01 0.01 1.00
(11) Composite Equity Issues 0.02  0.08 0.02 0.10 -0.04 0.08 0.09 0.03 0.04 -0.04 1.00
(12) Size 0.11  0.02 011 0.08 0.07 013 012 0.03 -0.15 -0.17 0.08 1.00
(13) Book to Market 0.01  0.04 0.07 008 0.09 002 000 -004 005 020 037 012 1.00
(14) Operating Profitability  -0.10 0.08 -0.08 0.04 -0.05 -0.10 -0.04 0.03 0.11 0.21 039 -0.61 0.12 1.00
(15) Investments 0.15 -0.07 0.08 0.01 0.04 014 001 -0.01 -0.03 0.05 0.07 040 036 -0.48 1.00
(16) Earning to Price 0.01 0.09 007 004 014 -0.02 -0.01 0.02 007 020 021 -0.10 058 025 0.08 1.00
(17) Cash Flows to Price -0.02 0.04 005 0.05 0.05 001 003 0.05 009 018 013 -0.02 053 012 016 080 1.00
(18) Dividend Yield 0.09 -0.03 0.09 001 012 005 0.02 -007 003 -0.14 -0.14 0.05 022 -026 024 035 022 1.00
Excess Returns
Long Leg 033 023 036 020 023 026 006 -0.16 051 020 035 088 120 086 117 1.11 115 0.85
Short Leg -0.27 -0.12 -0.32 -0.19 -0.31 -0.48 -0.16 -0.58 -1.21 -0.32 -0.42 0.56 045 082 048 065 0.61 0.81
Spread 099 0.75 1.07 078 093 113 062 080 210 092 117 071 115 044 1.08 085 094 0.43
Standard Deciation
Long Leg 0.06 0.06 0.06 005 0.06 0.06 006 0.06 0.06 006 0.05 006 0.06 006 0.06 005 006 0.04
Short Leg 0.06 0.05 0.06 006 0.06 006 006 0.06 006 006 006 005 0.07 007 007 006 0.06 0.05
Spread 0.02 0.02 0.02 002 0.02 002 002 0.02 004 004 002 004 003 003 002 002 0.02 0.03
Skewness
Long Leg -0.83 -0.87 -0.82 -0.98 -0.78 -0.86 -0.98 -1.19 -0.73 -1.25 -1.18 0.05 0.14 -0.38 0.13 -0.05 -0.10 0.05
Short Leg -0.90 -0.90 -0.91 -0.85 -0.96 -0.99 -0.70 -1.05 -1.43 -0.38 -0.96 -0.35 -0.20 0.15 -0.19 -0.34 -0.36 -0.56
Spread 054 -0.16 044 018 0.26 033 07 -029 0.74 -086 128 092 0.17 -1.59 0.76 0.05 0.06 0.33
Kurtosis
Long Leg 634 640 6.26 729 565 6.69 7.14 7.66 635 754 804 556 695 604 574 717 7.08 7.60
Short Leg 6.07 6.15 6.46 581 6.82 705 5.63 697 956 556 577 4.88 529 584 556 521 535 583
Spread 418 373 476 654 7.71 535 876 356 944 7.64 1383 6.50 576 14.18 6.03 4.50 429 4.30
Sharpe Ratio
Long Leg 0.06 0.04 006 004 0.04 005 001 -003 008 003 007 014 021 015 018 021 021 020
Short Leg -0.04 -0.02 -0.05 -0.03 -0.05 -0.08 -0.03 -0.10 -0.21 -0.05 -0.07 0.12 0.07 012 0.07 011 0.10 0.15
Spread 049 031 057 038 052 045 026 032 054 024 048 018 038 016 053 036 043 0.17
CF Ratio
Long Leg 0.03 0.02 0.04 002 0.02 003 001 -001 005 002 004 009 015 0.09 013 014 0.14 0.14
Short Leg -0.02 -0.01 -0.03 -0.02 -0.03 -0.04 -0.02 -0.05 -0.09 -0.03 -0.04 0.07 0.04 008 0.05 0.07 0.06 0.09
Spread 049 022 059 032 050 041 022 023 060 015 060 015 031 008 060 029 036 0.12
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Table 2.9: Anomalies during periods of high and low level of sentiment. The table reports returns in months
following high and low levels of sentiment, as identified on the base of the median level of the sentiment PLS
6 proxy. Also reported is the performance on a strategy that equally combines the strategies available within a
given month (Combination). For each anomaly we make use of all data available. Details of the length of the time
series can be found in the section 2 dedicated on Data. We report conditional Excess Returns (in percentage),
and Sharpe Ratio for the long and short leg and for the Spread of the anomalies. We even report their difference.

PLS 6 Long Leg Short Leg Long-Short

Excess Returns High Sent Low Sent High-Low High Sent Low Sent High-Low High Sent Low Sent High-Low
(1) Asset Growth -0.18 0.84 -1.01 -0.96 0.41 1.28 0.72 0.57
(2) Gross Profitability -0.26 0.73 -0.99 -0.66 0.43 0.90 0.59 0.30
(3) Investment to Assets -0.13 0.85 -0.98 -0.97 0.32 1.35 0.82 0.53
(4) Net Stock Issues -0.24 0.64 -0.88 -0.85 0.47 1.11 0.46 0.65
(5) Net Operating Assets -0.34 0.76 -1.10 -0.93 0.29 1.10 0.76 0.33
(6) Total Accruals -0.12 0.62 -0.74 -1.08 0.13 1.47 0.78 0.68
(7) Ohlson’s O -0.44 0.57 -1.02 -0.59 0.26 0.65 0.61 0.05
(8) Return on Assets -0.80 0.48 -1.28 -1.12 -0.02 0.83 0.75 0.07
(9) Failure Probability 0.16 0.88 -0.72 -2.01 -0.39 2.68 1.53 1.15
(10) Momentum -0.33 0.72 -1.05 -0.88 0.24 1.05 0.78 0.28
(11) Composite Equity Issues -0.03 0.72 -0.74 -1.08 0.21 1.55 0.80 0.75
(12) Size 0.33 1.42 -1.08 0.23 0.90 0.60 0.81 -0.21
(13) Book to Market 0.84 1.56 -0.73 -0.17 1.07 1.51 0.79 0.72
(14) Operating Profitability 0.46 1.26 -0.80 0.20 1.43 0.76 0.13 0.63
(15) Investments 0.68 1.65 -0.97 -0.13 1.08 1.31 0.86 0.46
(16) Earning to Price 0.88 1.34 -0.46 0.09 1.21 1.29 0.42 0.87
(17) Cash Flows to Price 0.88 1.41 -0.53 0.05 117 1.34 0.54 0.80
(18) Dividend Yield 0.77 0.93 -0.16 0.44 1.18 0.82 0.04 0.78
Combination 0.12 0.96 -0.85 -0.58 0.58 1.20 0.68 0.52

Sharpe Ratio
(1) Asset Growth -2.75 18.17 -20.93 -12.89 8.16 -21.05 54.87 44.22 10.64
(2) Gross Profitability -3.85 15.34 -19.19 -11.18 9.94 -21.12 33.25 27.66 5.60
(3) Investment to Assets -1.98 18.03 -20.01 -13.08 6.47 -19.56 60.19 56.60 3.59
(4) Net Stock Issues -4.11 15.48 -19.58 -12.43 9.62 -22.05 46.41 29.40 17.01
(5) Net Operating Assets -5.01 15.85 -20.86 -13.35 6.08 -19.43 56.01 48.52 7.49
(6) Total Accruals -1.81 13.12 -14.93 -15.32 2.62 -17.95 58.14 32.49 25.65
(7) Ohlson’s O -6.59 12.26 -18.84 -9.12 5.47 -14.59 23.86 29.10 -5.24
(8) Return on Assets -11.85 10.96 -22.81 -17.31 -0.35 -16.96 30.97 33.10 -2.13
(9) Failure Probability 2.26 18.51 -16.25 -29.38 -9.16 -20.22 57.17 53.68 3.49
(10) Momentum -4.75 15.33 -20.08 -12.40 4.79 -17.19 24.08 25.43 -1.35
(11) Composite Equity Issues -0.47 18.97 -19.44 -15.47 4.55 -20.02 51.99 48.90 3.10
(12) Size 4.49 26.30 -21.81 4.13 21.98 -17.84 13.61 22.36 -8.75
(13) Book to Market 12.96 31.28 -18.32 -2.19 20.44 -22.63 41.59 34.89 6.70
(14) Operating Profitability 6.89 26.81 -19.92 2.56 25.30 -22.75 23.36 5.43 17.92
(15) Investments 9.35 30.10 -20.75 -1.71 20.53 -22.24 61.23 45.70 15.53
(16) Earning to Price 14.66 28.89 -14.23 1.22 25.28 -24.05 45.56 24.49 21.07
(17) Cash Flows to Price 14.20 29.89 -15.69 0.66 24.78 -24.11 52.98 30.90 22.08
(18) Dividend Yield 16.21 25.62 -9.41 7.09 26.33 -19.23 27.86 2.15 25.71
Combination 2.10 20.61 -18.50 -8.34 11.82 -20.17 42.40 33.06 9.34
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Table 2.10: Anomalies during periods of high and low level of uncertainty. The table reports returns in months
following high and low levels of macroeconomic uncertainty, as identified on the base of the median level of the
macroeconomic uncertainty measure of Jurado et al. (2015). Also reported is the performance of a strategy that
equally combines the strategies available within a given month (Combination). For each anomaly we make use of
all data available. Details of the length of the time series can be found in the section 2 dedicated on Data. We
report conditional Excess Returns (in percentage), Standard Deviation, and Sharpe Ratio for the long and short
leg and for the Spread of the anomalies. We even report their difference.

UM Long leg Short Leg Long-Short

Excess Returns High Unc Low Unc High-Low High Unc Low Unc High-Low High Unc Low Unc High-Low
(1) Asset Growth 0.31 0.56 -0.24 -0.28 -0.10 -0.18 0.97 0.92 0.05
(2) Gross Profitability 0.44 0.31 0.13 -0.20 0.19 -0.39 1.03 0.39 0.64
(3) Investment to Assets 0.32 0.49 -0.16 -0.16 -0.28 0.11 0.87 1.03 -0.16
(4) Net Stock Issues 0.29 0.40 -0.12 -0.14 -0.03 -0.11 0.81 0.70 0.11
(5) Net Operating Assets 0.24 0.36 -0.12 -0.18 -0.22 0.04 0.80 0.85 -0.05
(6) Total Accruals 0.34 0.30 0.04 -0.20 -0.38 0.18 0.93 0.95 -0.02
(7) Ohlson’s O 0.26 0.10 0.16 -0.17 0.05 -0.21 0.81 0.32 0.49
(8) Return on Assets -0.11 -0.10 -0.01 -0.77 -0.25 -0.52 1.04 0.42 0.62
(9) Failure Probability 0.51 0.50 0.01 -1.32 -0.99 -0.33 2.22 1.76 0.46
(10) Momentum -0.13 0.54 -0.67 -0.28 -0.10 -0.18 0.54 0.91 -0.37
(11) Composite Equity Issues 0.27 0.71 -0.44 -0.63 -0.11 -0.53 1.29 1.09 0.20
(12) Size 0.70 0.95 -0.25 0.51 1.00 -0.49 0.57 0.22 0.36
(13) Book to Market 1.04 1.40 -0.36 0.34 0.56 -0.22 1.08 111 -0.03
(14) Operating Profitability 0.81 1.01 -0.20 0.58 0.90 -0.32 0.61 0.37 0.24
(15) Investments 1.05 1.32 -0.27 0.30 0.57 -0.28 1.14 1.02 0.12
(16) Earning to Price 1.04 1.20 -0.15 0.51 0.85 -0.34 0.92 0.61 0.31
(17) Cash Flows to Price 1.13 1.16 -0.04 0.47 0.86 -0.39 1.05 0.58 0.47
(18) Dividend Yield 0.86 1.01 -0.15 0.73 1.02 -0.30 0.51 0.26 0.26
Combination 0.52 0.68 -0.16 -0.05 0.20 -0.25 0.95 0.75 0.20

Sharpe Ratio
(1) Asset Growth 5.62 11.31 -5.69 -4.41 -1.76 -2.65 44.02 56.60 -12.58
(2) Gross Profitability 7.53 6.00 1.53 -3.72 3.91 -7.63 43.87 18.42 25.44
(3) Investment to Assets 5.76 10.08 -4.33 -2.52 -5.12 2.60 39.18 65.37 -26.19
(4) Net Stock Issues 6.04 9.77 -3.73 -2.24 -0.53 -1.70 32.49 34.67 -2.18
(5) Net Operating Assets 3.93 7.03 -3.10 -3.05 -4.26 1.21 38.83 48.77 -9.94
(6) Total Accruals 6.02 5.93 0.09 -3.49 -7.03 3.54 34.18 41.83 -7.65
(7) Ohlson’s O 4.51 1.99 2.53 -2.68 0.89 -3.57 28.71 16.19 12.52
(8) Return on Assets -1.85 -1.81 -0.04 -12.59 -4.80 -7.80 39.18 18.56 20.62
(9) Failure Probability 7.62 9.30 -1.68 -23.31 -18.46 -4.84 46.24 63.21 -16.97
(10) Momentum -1.89 12.44 -14.34 -4.23 -2.19 -2.04 12.04 34.18 -22.14
(11) Composite Equity Issues 5.23 22.05 -16.83 -9.56 -2.31 -7.26 39.48 49.77 -10.29
(12) Size 10.11 19.56 -9.45 8.88 26.53 -17.65 13.84 6.42 7.42
(13) Book to Market 17.12 32.78 -15.66 4.43 10.86 -6.44 29.76 48.37 -18.61
(14) Operating Profitability 13.12 24.83 -11.71 7.69 17.10 -9.41 16.23 14.77 1.46
(15) Investments 14.54 25.64 -11.10 4.04 11.74 -7.69 49.96 54.93 -4.98
(16) Earning to Price 18.43 31.70 -13.27 7.7 19.36 -11.59 33.29 35.76 -2.47
(17) Cash Flows to Price 18.94 29.40 -10.46 7.24 19.95 -12.71 42.72 34.04 8.69
(18) Dividend Yield 18.09 35.12 -17.03 12.73 27.33 -14.60 19.30 14.70 4.60
Combination 8.83 16.29 -7.46 -1.06 5.07 -6.12 33.52 36.48 -2.96
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Table 2.11: Anomalies during periods of high and low level of volatility. The table reports returns in months

following high and low levels of volatility, as identified on the base of the VIX index.

Also reported is the

performance on a strategy that equally combines the strategies available within a given month (Combination).
For each anomaly we make use of all data available. Details of the length of the time series can be found in the
section 2 dedicated on Data. We report conditional Excess Returns (in percentage), and Sharpe Ratio for the
long and short leg and for the Spread of the anomalies. We even report their difference.

VIX Long leg Short Leg Long-Short

Excess Returns High VIX Low VIX High-Low High VIX Low VIX High-Low High VIX Low VIX High-Low
(1) Asset Growth 0.77 0.20 0.57 0.03 -0.29 0.32 0.98 0.71 0.27
(2) Gross Profitability 0.67 0.06 0.61 0.06 -0.05 0.11 0.85 0.33 0.52
(3) Investment to Assets 0.68 0.16 0.52 0.17 -0.46 0.63 0.76 0.84 -0.09
(4) Net Stock Issues 0.46 0.27 0.19 0.18 -0.23 0.41 0.52 0.72 -0.20
(5) Net Operating Assets 0.51 0.09 0.43 0.11 -0.33 0.44 0.64 0.64 0.00
(6) Total Accruals 0.62 0.03 0.59 -0.07 -0.38 0.31 0.93 0.63 0.30
(7) Ohlson’s O 0.56 -0.11 0.66 0.12 -0.12 0.24 0.69 0.24 0.45
(8) Return on Assets 0.20 -0.18 0.38 -0.13 -0.64 0.51 0.57 0.68 -0.11
(9) Failure Probability 1.09 0.14 0.95 -0.84 -0.93 0.09 218 1.29 0.88
(10) Momentum 0.08 0.29 -0.21 -0.04 -0.26 0.22 0.36 0.77 -0.41
(11) Composite Equity Issues 0.56 0.46 0.11 -0.44 -0.30 -0.13 1.24 0.98 0.26
(12) Size 1.18 0.74 0.44 0.91 0.54 0.37 0.51 0.42 0.09
(13) Book to Market 1.36 1.13 0.23 0.97 0.21 0.76 0.64 1.15 -0.51
(14) Operating Profitability 1.19 0.74 0.44 1.20 0.60 0.60 0.23 0.37 -0.14
(15) Investments 1.73 0.89 0.83 0.66 0.38 0.28 1.31 0.73 0.58
(16) Earning to Price 1.24 0.96 0.28 1.03 0.60 0.43 0.45 0.58 -0.13
(17) Cash Flows to Price 1.26 0.99 0.27 1.02 0.56 0.47 0.48 0.66 -0.18
(18) Dividend Yield 1.00 0.81 0.19 1.03 0.75 0.28 0.22 0.28 -0.06
Combination 0.84 0.43 0.42 0.33 -0.02 0.35 0.75 0.67 0.08

Sharpe Ratio
(1) Asset Growth 12.70 5.05 7.65 0.49 -6.54 7.04 41.62 45.39 -3.77
(2) Gross Profitability 10.54 1.36 9.19 0.97 -1.30 2.27 34.77 15.28 19.50
(3) Investment to Assets 11.29 4.08 7.21 2.41 -10.74 13.15 32.33 57.32 -24.99
(4) Net Stock Issues 9.23 8.34 0.89 2.57 -5.30 7.87 16.95 44.13 -27.18
(5) Net Operating Assets 7.62 2.09 5.53 1.75 -7.96 9.72 25.52 45.19 -19.67
(6) Total Accruals 9.95 0.85 9.10 -1.08 -8.85 7T 30.88 27.93 2.94
(7) Ohlson’s O 9.19 -2.64 11.82 1.71 -3.03 4.74 22.20 12.78 9.42
(8) Return on Assets 3.18 -4.18 7.37 -1.91 -15.13 13.23 20.07 30.95 -10.88
(9) Failure Probability 14.69 3.33 11.35 -13.76 -21.30 7.53 40.76 55.02 -14.26
(10) Momentum 1.18 7.46 -6.28 -0.49 -7.01 6.52 7.11 32.63 -25.52
(11) Composite Equity Issues 11.15 15.85 -4.70 -6.01 -7.89 1.88 31.87 50.94 -19.07
(12) Size 15.13 19.16 -4.03 14.67 19.08 -4.42 10.13 17.41 -7.28
(13) Book to Market 19.86 32.60 -12.75 11.41 5.14 6.28 16.29 52.86 -36.57
(14) Operating Profitability 18.67 22.27 -3.60 13.94 14.51 -0.57 5.16 19.48 -14.31
(15) Investments 20.76 22.51 -1.75 8.23 9.82 -1.59 48.25 49.54 -1.30
(16) Earning to Price 20.14 29.83 -9.69 15.03 17.22 -2.19 16.38 37.66 -21.28
(17) Cash Flows to Price 19.23 30.31 -11.08 15.34 16.05 -0.71 19.51 43.13 -23.62
(18) Dividend Yield 20.21 29.68 -9.48 17.57 24.01 -6.44 8.06 18.90 -10.85
Combination 13.04 12.66 0.38 4.60 0.60 4.00 23.77 36.47 -12.70
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Table 2.12: Anomalies during periods of high and low level of Variance Risk Premium. The table reports returns
in months following high and low levels of VRP as identified on the base of the approach proposed by Zhou
(2017). Also reported is the performance on a strategy that equally combines the strategies available within a
given month (Combination). For each anomaly we make use of all data available. Details of the length of the time
series can be found in the section 2 dedicated on Data. We report conditional Excess Returns (in percentage),
and Sharpe Ratio for the long and short leg and for the Spread of the anomalies. We even report their difference.

VRP Long Leg Short Leg Long-Short

Excess Returns High VRP Low VRP High-Low High VRP Low VRP High-Low High VRP Low VRP  High-Low
(1) Asset Growth 0.84 0.13 0.72 0.11 -0.36 0.47 0.99 0.70 0.28
(2) Gross Profitability 0.77 -0.05 0.82 0.02 -0.01 0.03 1.00 0.18 0.83
(3) Investment to Assets 0.79 0.06 0.73 0.21 -0.50 0.71 0.83 0.77 0.06
(4) Net Stock Issues 0.62 0.10 0.52 0.24 0.53 0.64 0.61 0.03
(5) Net Operating Assets 0.59 0.01 0.58 0.09 0.40 0.75 0.53 0.23
(6) Total Accruals 0.53 0.12 0.41 -0.06 0.32 0.85 0.72 0.13
(7) Ohlson’s O 0.56 -0.10 0.66 0.35 0.70 0.46 0.46 0.00
(8) Return on Assets 0.28 -0.25 0.53 -0.07 0.63 0.60 0.66 -0.06
(9) Failure Probability 1.10 0.13 0.97 -0.82 0.14 2.17 1.30 0.87
(10) Momentum 0.82 -0.45 1.27 0.56 1.41 0.51 0.62 -0.11
(11) Composite Equity Issues 1.08 -0.06 1.15 0.30 .0 1.34 1.04 1.19 -0.15
(12) Size 1.85 0.06 1.79 1.37 0.09 1.28 0.74 0.19 0.55
(13) Book to Market 2.09 0.40 1.70 1.52 -0.34 1.86 0.83 0.95 -0.12
(14) Operating Profitability 1.68 0.25 1.43 1.88 -0.08 1.97 0.05 0.55 -0.50
(15) Investments 2.37 0.25 2.11 1.33 -0.28 1.61 1.29 0.75 0.54
(16) Earning to Price 1.85 0.34 1.50 1.55 0.08 1.47 0.55 0.48 0.07
(17) Cash Flows to Price 1.85 0.41 1.44 1.56 0.02 1.54 0.54 0.60 -0.05
(18) Dividend Yield 1.54 0.26 1.28 1.51 0.26 1.25 0.28 0.22 0.06
Combination 1.18 0.09 1.09 0.65 -0.33 0.98 0.78 0.64 0.15

Sharpe Ratio
(1) Asset Growth 14.87 2.81 12.05 1.65 -7.57 9.22 42.06 44.67 -2.61
(2) Gross Profitability 12.70 -1.09 13.79 0.34 -0.28 0.62 41.71 8.25 33.46
(3) Investment to Assets 14.10 1.24 12.86 3.14 -10.44 13.58 35.98 50.70 -14.72
(4) Net Stock Issues 13.59 2.73 10.85 3.66 -5.95 9.62 21.45 32.84 -11.39
(5) Net Operating Assets 9.33 0.16 9.17 1.47 -6.68 8.15 3243 30.94 1.49
(6) Total Accruals 9.27 2.57 6.70 -1.07 -8.14 7.07 30.43 28.09 2.34
(7) Ohlson’s O 9.72 -2.33 12.05 5.33 -7.73 13.06 15.96 21.24 -5.29
(8) Return on Assets 4.56 -5.61 10.16 -1.05 -14.79 13.74 22.39 27.07 -4.68
(9) Failure Probability 15.89 2.67 13.22 -13.92 -20.41 6.49 44.63 40.27 4.36
(10) Momentum 14.06 -8.85 2291 8.36 -16.63 24.99 11.65 17.79 -6.13
(11) Composite Equity Issues 24.77 -1.74 26.51 4.81 -19.52 24.33 34.72 37.50 -2.78
(12) Size 26.68 1.23 25.45 25.04 2.19 22.85 15.23 7.01 8.23
(13) Book to Market 33.97 9.02 24.94 20.41 -6.02 26.43 24.43 32.66 -8.23
(14) Operating Profitability 29.20 5.98 23.23 24.85 -1.49 26.33 1.32 19.56 -18.25
(15) Investments 32.19 4.71 27.48 18.68 -5.35 24.02 50.69 42.82 7.88
(16) Earning to Price 33.36 8.57 24.79 25.39 1.81 23.58 23.01 23.41 -0.39
(17) Cash Flows to Price 31.46 9.51 21.95 26.14 0.52 25.62 25.12 30.86 -5.74
(18) Dividend Yield 34.89 7.73 27.16 28.71 6.65 22.06 11.33 11.94 -0.62
Combination 20.26 2.19 18.07 10.11 -6.66 16.76 26.92 28.20 -1.28
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Table 2.13: Anomalies during periods of high and low level of fear. The table reports returns in months following
high and low levels of fear as identified on the base of the FVaR proxy. Also reported is the performance on a
strategy that equally combines the strategies available within a given month (Combination). For each anomaly
we make use of all data available. Details of the length of the time series can be found in the section 2 dedicated
on Data. We report conditional Excess Returns (in percentage), and Sharpe Ratio for the long and short leg and
for the Spread of the anomalies. We even report their difference.

FVaR Long Leg Short Leg Long-Short

Excess Returns High Fear Low Fear High-Low High Fear Low Fear High-Low High Fear Low Fear High-Low
(1) Asset Growth 0.28 0.08 0.20 -0.02 -0.20 0.18 0.36 0.44 -0.07
(2) Gross Profitability 0.31 0.04 0.27 0.09 0.09 0.00 0.29 0.11 0.18
(3) Investment to Assets 0.17 0.03 0.14 -0.02 -0.17 0.15 0.25 0.35 -0.10
(4) Net Stock Issues 0.22 -0.02 0.25 0.09 -0.14 0.24 0.20 0.28 -0.08
(5) Net Operating Assets 0.30 0.12 0.18 0.10 -0.11 0.22 0.26 0.39 -0.13
(6) Total Accruals -0.24 0.52 -0.76 -0.01 0.12 -0.13 -0.16 0.55 -0.72
(7) Ohlson’s O 0.20 0.06 0.15 -0.12 -0.03 -0.09 0.39 0.24 0.15
(8) Return on Assets 0.31 0.16 0.14 -0.19 -0.61 0.42 0.56 0.93 -0.37
(9) Failure Probability 0.40 0.68 -0.28 -0.10 -0.79 0.69 0.57 1.63 -1.06
(10) Momentum 0.64 -0.95 1.60 0.75 -1.04 1.79 -0.04 0.24 -0.28
(11) Composite Equity Issues 0.98 -0.80 1.78 0.50 -1.09 1.59 0.55 0.45 0.10
(12) Size 1.39 -0.28 1.67 1.59 -0.28 1.88 -0.14 0.16 -0.30
(13) Book to Market 1.62 -0.37 1.99 1.40 -0.26 1.66 0.29 0.05 0.24
(14) Operating Profitability 1.67 -0.18 1.85 1.40 -0.29 1.69 0.34 0.27 0.07
(15) Investments 1.80 -0.27 2.07 1.21 -0.32 1.54 0.65 0.21 0.44
(16) Earning to Price 1.68 -0.37 2.05 1.48 -0.11 1.59 0.27 -0.10 0.37
(17) Cash Flows to Price 1.84 -0.21 2.05 1.40 -0.18 1.59 0.50 0.12 0.38
(18) Dividend Yield 1.61 -0.51 2.12 1.49 -0.24 1.74 0.18 -0.11 0.29
Combination 0.84 -0.13 0.97 0.61 -0.31 0.93 0.30 0.34 -0.05

Sharpe Ratio
(1) Asset Growth 4.91 1.47 3.44 -0.34 -3.59 3.25 22.95 32.27 -9.32
(2) Gross Profitability 5.98 0.77 5.21 1.57 1.68 -0.11 15.01 5.78 9.22
(3) Investment to Assets 2.85 0.49 2.36 -0.26 -2.77 2.51 13.57 24.76 -11.19
(4) Net Stock Issues 4.63 -0.50 5.12 1.57 -2.45 4.02 12.07 18.11 -6.04
(5) Net Operating Assets 5.16 2.21 2.95 1.71 -1.95 3.66 18.04 26.73 -8.69
(6) Total Accruals -3.81 9.16 -12.97 -0.15 2.29 -2.45 -5.81 19.00 -24.81
(7) Ohlson’s O 3.37 1.05 2.32 -2.10 -0.57 -1.53 24.68 12.06 12.62
(8) Return on Assets 5.55 3.19 2.36 -3.34 -10.15 6.81 21.40 38.63 -17.23
(9) Failure Probability 6.69 10.02 -3.33 -2.04 -15.33 13.30 17.73 36.25 -18.52
(10) Momentum 14.03 -14.99 29.02 12.99 -15.79 28.78 -0.93 6.62 -7.55
(11) Composite Equity Issues 24.09 -14.45 38.54 10.85 -17.62 28.47 32.14 30.46 1.69
(12) Size 25.72 -4.45 30.17 35.27 -5.16 40.43 -5.16 8.07 -13.22
(13) Book to Market 29.82 -6.08 35.91 27.35 -4.17 31.52 12.40 2.18 10.22
(14) Operating Profitability 32.40 -2.97 35.37 25.26 -4.48 29.74 16.48 15.59 0.89
(15) Investments 29.80 -4.23 34.03 23.39 -4.96 28.35 32.78 14.71 18.07
(16) Earning to Price 33.88 -5.93 39.81 31.17 -1.88 33.06 19.26 -6.29 25.55
(17) Cash Flows to Price 34.64 -3.23 37.87 29.90 -3.16 33.06 29.60 6.99 22.61
(18) Dividend Yield 35.88 -9.37 45.24 31.72 -4.08 35.80 7.87 -4.46 12.33
Combination 16.42 -2.10 18.52 12.47 -5.23 17.70 15.78 15.97 -0.19
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Table 2.14: Anomalies during periods of high and low level of fear. The table reports returns in months following
high and low levels of fear as identified on the base of the FCVaR proxy. Also reported is the performance on a
strategy that equally combines the strategies available within a given month (Combination). For each anomaly
we make use of all data available. Details of the length of the time series can be found in section 2 dedicated on
Data. We report conditional Excess Returns (in percentage), and Sharpe Ratio for the long and short leg and for
the Spread of the anomalies. We even report their difference.

FCVaR Long Leg Short Leg Long-Short

Excess Returns High Fear Low Fear High-Low High Fear Low Fear High-Low High Fear Low Fear High-Low
(1) Asset Growth 0.05 0.26 -0.21 -0.28 0.07 -0.36 0.52 0.23 0.29
(2) Gross Profitability 0.10 0.40 -0.31 -0.13 0.20 -0.33 0.41 0.24 0.17
(3) Investment to Assets -0.06 0.27 -0.33 -0.18 0.04 -0.22 0.30 0.27 0.03
(4) Net Stock Issues -0.03 0.28 -0.31 -0.27 0.19 -0.46 0.42 0.13 0.29
(5) Net Operating Assets -0.05 0.48 -0.53 -0.13 0.15 -0.29 0.26 0.36 -0.10
(6) Total Accruals -0.10 0.25 -0.35 -0.05 0.02 -0.08 0.13 0.26 -0.13
(7) Ohlson’s O -0.08 0.26 -0.33 -0.39 0.34 -0.73 0.50 -0.04 0.54
(8) Return on Assets 0.12 0.53 -0.41 -0.54 -0.44 -0.11 0.84 1.00 -0.16
(9) Failure Probability 0.14 0.80 -0.65 -0.46 -0.33 -0.13 0.79 1.17 -0.38
(10) Momentum 1.54 -1.83 3.37 1.38 -1.56 2.94 0.34 -0.24 0.58
(11) Composite Equity Issues 1.43 -1.13 2.56 1.24 -1.78 3.03 0.37 0.70 -0.32
(12) Size 1.99 -0.87 2.86 1.98 -0.59 2.56 0.20 -0.24 0.44
(13) Book to Market 2.21 -0.91 3.12 1.81 -0.65 2.46 0.59 -0.22 0.81
(14) Operating Profitability 2.23 -0.66 2.88 1.97 -0.91 2.88 0.44 0.29 0.15
(15) Investments 2.40 -0.82 3.22 1.76 -0.90 2.66 0.82 0.12 0.70
(16) Earning to Price 2.09 -0.68 2.77 1.97 -0.57 2.54 0.30 -0.08 0.38
(17) Cash Flows to Price 2.36 -0.68 3.04 1.85 -0.57 2.41 0.70 -0.07 0.77
(18) Dividend Yield 1.75 -0.52 2.27 1.99 -0.66 2.65 -0.06 0.18 -0.23
Combination 1.00 -0.25 1.26 0.75 -0.44 1.19 0.44 0.23 0.21

Sharpe Ratio
(1) Asset Growth 1.07 4.13 -3.06 -6.51 1.09 -7.60 36.90 14.65 22.25
(2) Gross Profitability 2.36 6.47 -4.10 -2.98 3.32 -6.30 22.24 12.27 9.97
(3) Investment to Assets -1.27 3.99 -5.25 -3.76 0.53 -4.30 21.49 14.80 6.69
(4) Net Stock Issues -0.74 5.04 -5.78 -5.77 2.77 -8.54 28.89 8.08 20.81
(5) Net Operating Assets -1.12 7.36 -8.48 -3.01 2.22 -5.23 25.81 19.24 6.57
(6) Total Accruals -2.21 3.70 -5.91 -1.22 0.38 -1.61 5.37 8.40 -3.04
(7) Ohlson’s O -1.70 3.85 -5.55 -8.78 5.50 -14.28 27.13 -2.07 29.20
(8) Return on Assets 2.66 8.68 -6.01 -12.17 -6.52 -5.65 35.00 40.72 -5.71
(9) Failure Probability 3.30 10.51 -7.21 -10.02 -6.03 -3.98 28.41 25.91 2.51
(10) Momentum 39.48 -28.91 68.39 38.88 -20.05 58.93 15.29 -4.61 19.90
(11) Composite Equity Issues 48.62 -19.15 67.77 34.73 -27.26 61.99 26.59 38.29 -11.70
(12) Size 49.01 -12.34 61.35 70.44 -9.41 79.85 9.28 -9.40 18.67
(13) Book to Market 56.15 -13.27 69.42 47.44 -9.28 56.72 30.59 -8.97 39.56
(14) Operating Profitability 64.16 -9.52 73.68 46.84 -12.61 59.45 26.53 14.22 12.31
(15) Investments 51.84 -11.09 62.94 48.14 -12.47 60.61 43.83 7.28 36.56
(16) Earning to Price 59.82 -9.95 69.77 59.68 -8.68 68.36 24.57 -4.19 28.76
(17) Cash Flows to Price 65.13 -9.31 74.44 56.34 -8.78 65.12 52.49 -3.75 56.24
(18) Dividend Yield 56.58 -8.71 65.29 60.73 -10.08 70.81 -3.27 6.10 -9.37
Combination 27.40 -3.81 31.21 22.72 -6.41 29.13 25.40 9.83 15.57

68



Table 2.15: Risk Return relationship. The following table considers the PLS 6 sentiment measure, the UM
uncertainty proxy, the VIX index, and the FVaR fear proxy at time t, and regress them on the excess returns
and standard deviation at time t4+1. Y;; = a + bX;_1 + ut where Y;; is the excess return or standard deviation
in month t on either the long leg, short leg, or their difference, X is one of the following predictors: PLS6, UM,
VIX, VRP, FVaR.

Excess Returns Long Leg Short Leg Spread Standard Deviation Long Leg Short Leg Spread

PLS 6 b t stat b t stat b PLS 6 b t stat b t stat b t stat
(1) Asset Growth -0.81  -3.57 -1.06  -4.09 0.38 (1) Asset Growth 033  6.22 0.50  8.39 022 10.76
(2) Gross Profitability -0.78 0.15 (2) Gross Profitability 0.33  6.14 0.28 575 0.06  3.09
(3) Investment to Assets -0.79 0.36 (3) Investment to Assets 0.28  5.05 0.46  7.55 0.24 1291
(4) Net Stock Issues -0.76 0.33 (4) Net Stock Issues 0.33  5.33 042 7.84 0.19  5.14
(5) Net Operating Assets -0.82 0.28 (5) Net Operating Assets 0.36  6.58 042  6.85 0.17  5.69
(6) Total Accruals -0.61 0.51 (6) Total Accruals 022  3.69 031  4.58 -0.01  -0.50
(7) Ohlson’s O -0.87 0.04 (7) Ohlson’s O 0.34  5.66 0.36  6.79 022 714
(8) Return on Assets -0.88 0.04 (8) Return on Assets 0.31  4.85 0.37  5.00 0.14  6.65
(9) Failure Probability -0.57 0.53 (9) Failure Probability 0.50  6.47 0.21 289 048 598
(10) Momentum -0.90 0.21 (10) Momentum 0.16 285 0.62 898 0.39  7.10
(11) Composite Equity Issues -0.71 0.47 (11) Composite Equity Tssues 3 3.87 045 828 023 423
(12) Size -0.97 018 (12) Size 7.62 037 720 030 540
(13) Book to Market -0.75 0.39 (13) Book to Market 0.15 213 0.74 1091 0.46 10.88
(14) Operating Profitability -0.81 0.33 (14) Operating Profitability 0.34 563 0.54 763 0.28  4.84
(15) Investments -0.89 0.26 (15) Investments 0.34  5.07 0.61  9.16 011  4.76
(16) Earning to Price -0.60 0.47 (16) Earning to Price 0.07  1.04 0.65 11.43 0.49 17.88
(17) Cash Flows to Price -0.66 0.41 (17) Cash Flows to Price 0.11  1.65 0.66 11.58 0.40 17.93
(18) Dividend Yield -0.42 0.46 (18) Dividend Yield 0.08  1.36 0.36  6.09 023 881
Comination -0.49 0.39 Comination 0.19  3.56 0.34  6.09 0.17 10.18
UM b tstat b tstat b t stat UM b tstat b t stat b t stat
(1) Asset Growth -2.11 -0.67 -2.52 -0.71 0.70  0.60 (1) Asset Growth 11.97 6.11  7.19 0.30  0.88
(2) Gross Profitability 047  0.14 -3.62  -1.18 4.38  3.29 (2) Gross Profitability 7.51 595  7.87 -0.51  -2.31
(3) Investment to Assets -1.92 -0.61 -1.04 -029  -0.59 -0.51 (3) Investment to Assets 13.86 8.03  9.23 176 5.26
(4) Net Stock Issues -2.31 -0.87 -2.82  -0.81 0.79  0.59 (4) Net Stock Issues 10.94 6.67 811 -0.87 -1.34
(5) Net Operating Assets 143 -0.43 174 052 059 052 (5) Net Operating Assets 9.36 780 9.60 028 055
(6) Total Accruals 0.59 018 -0.45  -0.14 134 0.89 (6) Total Accruals 12.55 481 6.14 220 647
(7) Ohlson’s O -0.84  -0.26 -0.89 -0.26 035 0.24 (7) Ohlson’s O 11.36 588  6.86 -0.41  -0.76
(8) Return on Assets -0.97  -0.29 -0.72 174 117 (8) Return on Assets 6.93 8.01  9.00 185  6.94
(9) Failure Probability 1.00 0.27 =225 -0.68 3.54 151 (9) Failure Probability 10.60 3.50  4.21 441 4.26
(10) Momentum -7.78  -2.34 -1.36 -0.39  -6.13  -2.79 (10) Momentum 5.15 10.33  11.22 6.15  6.80
(11) Composite Equity Issues -5.49  -2.14 -5.29  -1.54 0.09  0.05 (11) Composite Equity Issues 10.83 553  6.26 -241  -2.57
(12) Size -5.03  -1.73 4.02 1.79 (12) Size 9.36 8.44 10.83 -1.47  -1.65
(13) Book to Market -1.02  -0.26 -1.68  -0.93 (13) Book to Market 11.78 729  6.25 232 3.10
(14) Operating Profitability -1.21 -0.31 -0.59  -0.31 (14) Operating Profitability 13.83 797  7.05 -0.71  -0.71
(15) Investments -1.80  -0.48 106  0.85 (15) Investments 9.89 773 7.50 162 434
(16) Earning to Price -2.65 -0.80 0.68  0.49 (16) Earning to Price 12.58 8.19 10.73 238 4.52
(17) Cash Flows to Price -2.72 -0.83 142 113 (17) Cash Flows to Price 13.09 8.41 11.69 2.74 707
(18) Dividend Yield -3.60 -1.25 0.81  0.60 (18) Dividend Yield 13.24 9.37 14.79 391 13.68
Comination -2.36 -0.94 0.70  1.27 Comination 12.14 6.48 10.07 047  2.06
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Table 2.16:

Continues from above

Excess Returns Long Leg Short Leg Spread Standard Deviation Long Leg Short Leg Spread

VIX b t stat b t stat b t stat VIX b t stat b t stat b

(1) Asset Growth 0.02 145 0.02  1.20 0.00  0.53 (1) Asset Growth 0.10 11.03 0.08  8.06 0.02

(2) Gross Profitability 0.02  1.59 0.02  1.08 0.01 1.47 (2) Gross Profitability 0.08 8.72 0.09 9.73 0.01

(3) Investment to Assets 0.02  1.20 0.02 149  -0.01 -0.99 (3) Investment to Assets 0.10 10.11 0.09  7.60 0.03

(4) Net Stock Issues 0.01 1.26 0.02 133 -0.01  -0.77 (4) Net Stock Issues 0.07  7.50 0.10  9.57 0.05

(5) Net Operating Assets 0.02  1.44 0.02  1.03 0.01  1.46 (5) Net Operating Assets 0.11 1130 0.08  7.68 0.04

(6) Total Accruals 0.02  1.22 0.01 083 0.01 094 (6) Total Accruals 0.09 10.23 0.07  8.46 0.03

(7) Ohlson’s O 0.01 1.00 0.02 148 -0.01  -1.02 (7) Ohlson’s O 0.09  8.89 0.10  9.02 0.03

(8) Return on Assets 0.02  1.49 0.03 191 -0.01  -0.88 (8) Return on Assets 0.06  7.08 0.12 1021 0.02

(9) Failure Probability 0.03  1.59 0.01  0.88 0.01 1.33 (9) Failure Probability 012 9.56 0.07 7.82 0.09

(10) Momentum 0.05  3.44 0.05  3.30 0.00 -0.08 (10) Momentum 0.09  8.63 0.12 941 0.09 7.
(11) Composite Equity Issues 0.04 3.74 0.05 320 -0.01 -0.89 (11) Composite Equity Issues 0.07  6.77 011  9.70 0.06 4.
(12) Size 005 331 005 418 000 022  (12) Size 013 11.02 011 1027 006 4.8
(13) Book to Market 0.05  3.57 0.06  3.47 -0.01  -0.99 (13) Book to Market 0.12  10.66 014 9.17 0.07  6.74
(14) Operating Profitability 0.05 3.72 0.06  3.34 -0.01  -0.89 (14) Operating Profitability 0.09 851 0.15 10.41 0.08  6.39
(15) Investments 0.06  3.43 0.06  3.46 0.00  0.49 (15) Investments 0.15 11.87 013 9.37 0.04  9.44
(16) Earning to Price 0.05 ¢ 0.05  3.80 0.00 -0.56 (16) Earning to Price 0.10  8.32 0.10  10.00 0.04 582
(17) Cash Flows to Price 0.05 ¢ 0.05  3.87 0.00 -0.14 (17) Cash Flows to Price 0.11 858 0.10  10.53 0.03  6.43
(18) Dividend Yield 0.05 4 0.04  3.60 0.00 0.72 (18) Dividend Yield 0.08  6.55 0.09  9.46 0.03  7.25
Comination 0.03 347 0.04  3.33 0.00 -0.03 Comination 0.07  8.63 0.08  9.07 0.02  6.18
FVaR b t stat b t stat b t stat FVaR b b b

(1) Asset Growth 0.02  0.65 0.02  0.64 0.00 -0.41 (1) Asset Growth -0.03 -0.03 -0.01

(2) Gross Profitability 0.03  1.10 0.01  0.39 0.02  1.60 (2) Gross Profitability -0.03 -0.02 0.00

(3) Investment to Assets 0.02  0.74 0.01 045 0.01  0.61 (3) Investment to Assets -0.03 -0.04 -0.01

(4) Net Stock Issues 0.02  0.79 0.02  0.64 0.00 -0.34 (4) Net Stock Issues -0.03 -0.03 0.00

(5) Net Operating Assets 0.02  0.69 0.01 041 0.01  0.62 (5) Net Operating Assets -0.03 -0.03 0.00

(6) Total Accruals 0.00  0.03 0.02 0.68  -0.02 44 (6) Total Accruals -0.03 -0.03 -0.01

(7) Ohlson’s O 0.02  0.52 0.01  0.42 0.00 . (7) Ohlson’s O -0.03 -0.03 0.00

(8) Return on Assets 0.02  0.71 0.02 082 -0.01 .6 (8) Return on As: -0.03 -0.03 -0.01

(9) Failure Probability 0.00 -0.02 0.03 130 -0.04 -1.96 (9) Failure Probability -0.04 -0.02 -0.03

(10) Momentum 0.05 161 0.06  1.95 -0.02  -0.94 (10) Momentum -0.02 -0.04 -0.03

(11) Composite Equity Issues 0.06 233 0.06  1.95 0.00 -0.05 (11) Composite Equity Issues -0.03 -0.02 0.00

(12) Size 0.06  2.02 0.06  2.37 0.00 -0.18 (12) Size -0.03 -0.03 -0.01

(13) Book to Market, 0.07 .26 0.06  2.03 0.00  0.30 (13) Book to Market -0.04 -0.03 -0.01

(14) Operating Profitability 0.06  2.03 0.07  2.09 -0.01  -0.98 (14) Operating Profitability -0.03 -0.03 -0.01

(15) Investments 0.07 220 0.06 1.91 0.01 1.22 (15) Investments -0.04 -0.03 -0.01

(16) Earning to Price 0.06 218 0.05  1.93 0.01 084 (16) Earning to Price -0.04 -0.03 -0.01

(17) Cash Flows to Price 0.07  2.10 0.06  2.00 0.01  0.77 (17) Cash Flows to Price -0.04 -0.03 -0.01

(18) Dividend Yield 0.06 247 0.06 197 0.00  0.36 (18) Dividend Yield -0.04 -0.03 -0.01
Comination 0.04 182 0.04 178 0.00 -0.81 Comination -0.03 -0.03 0.00
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Table 2.17: Anomalies out-of-sample predictability. This table shows the performance of employing the forecasts
coming from the considered indexes in determining the weight of a portfolio optimization problem which has the
predicted portfolio and the risk free rate as only possible assets and a weight of the risky asset bounded between
-1 and 4+1.5. We report the out-of-sample performance generated by such strategies in terms of average return,
standard deviation and Sharpe Ratio. Mean returns and standard deviation are reported in percentage. All
forecasts are for month t+1 using the chosen index value at month t. All time series are divided accordingly to
the following criteria: 25 % of the data are used for the in sample estimation, 15% are use as hold out period and
the remaining is employed for the out of sample performance evaluation of the predictive power of the relevant
variables. In this table we report the performance generated for the combination strategy: the long leg is an
equally weighted combination of the long legs of the 18 anomalies-factors considered and the short leg is an
equally weighted combination of the short legs of the 18 anomalies-factors considered.

Long Leg Short Leg
Combination Mean Vol SR Combination Mean Vol SR
Sentiment Sentiment
PC6 -0.13 0.02 -6.07 PC6 0.28 0.03 10.77
PLS 6 0.11 0.02 5.16 PLS 6 0.53 0.03 17.81
Uncertainty Uncertainty
DEVST -0.04 0.02 -2.19 DEVST 0.15 0.03 4.64
UF 0.32 0.03 9.56 UF 0.39 0.04 10.64
UM 0.18 0.03 5.87 UM 0.25 0.03 7.33
Investors views Investors views
MEAN 0.12 0.02 5.91 MEAN 0.38 0.03 13.53
Uup 0.02 0.02 0.88 UpP 0.27 0.03 9.60
LOW 0.27 0.02 11.73 LOW 0.52 0.03 18.67
Fear Fear
Bull-Bear 1.17 0.04 32.70 Bull-Bear 0.88 0.03 26.31
BTX 0.03 0.03 0.96 BTX -0.11 0.03 -3.44
MACRO 0.13 0.03 4.51 MACRO 0.05 0.03 1.50
VIX 0.71 0.04 19.91 VIX 0.64 0.04 17.22
ANX -0.21 0.03 -6.30 ANX -0.25 0.02 -10.37
VRP 0.04 0.04 1.00 VRP -0.25 0.04 -6.84
KJ -0.08 0.01 -6.42 KJ 0.30 0.04 8.41
CATFIN 1.15 0.04 28.42 CATFIN 1.19 0.04 28.69
TAIL 1.46 0.04 37.43 TAIL 1.30 0.04 33.97
FVaR 0.63 0.03 21.84 FVaR 0.39 0.03 13.11
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2.8 Online Appendix

The online appendix is divided into two parts: the first one provide further details
on the indexes employed during the paper while the second part provides a number
of additional tests and empirical analysis that for seek of brevity have been removed
from the main text.

2.8.1 Fear Indexes

Fear is defined as the complement of sentiment. Consequently, we have employed
a large set of indexes which are good candidates to capture this phenomenon. We
divide the indexes into three main groups: one based on surveys, the second based
on macroeconomic and equity measures and the third one based on option-based
measures. In the list of surveys based indexes we list:

e Crash Confidence Index®: the percent of the population who attach little
probability to a stock market crash in the next six months. We consider both
the institutional and the Individual Survey. Data comes from the Yale School
of Management website. The time series considered ranges from 01-1990 to
12-2016.

e The Anxious Index”: the survey asks to estimate the probability that real
GDP will contract in the quarter in which the survey is taken and the follow-
ing four quarters. The anxious index is the average probability of a decline in
real GDP in the quarter after a survey is taken. Data come from the Federal
Reserve Bank of Philadelphia. In this study, we consider the forecast for the
second quarter after the quarter in which the survey takes place. Data spans
the period from 01-1990 to 12-2016.

e Bull-Bear, Bull-Neutral and Bear-Neutral spreads®®. These indicators come
from the American Association of Individual Investors. The survey on weekly
base reports the percentage of bullish, bearish and neutral investors. For
each series, we compute the 47 weeks average, and then we compute the
three spreads. The time series available starts the 07-1988 and ends in the
12-2016.

e The difference: (Upper view-Mean view) - (Mean view-Lower view). The in-
dicator captures the relationship between the mean view and extreme views.

S6https://som.yale.edu/faculty-research /our-centers-initiatives/international-center-
finance/data/stock-market-confidence-indices

SThttps://www.philadelphiafed.org/research-and-data/real-time-center /survey-of-
professional-forecasters/anxious-index

8http: //www.aaii.com/sentimentsurvey
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The mean view (or the representative investor one) is the number of forecast
weighted average view of the EPS long-term growth. Data come from the
IBES database and spans the period 07/1988-12/2016.

e Livingston six months ahead Skewness®. This index is built computing

the average skewness of the six months ahead forecasts about a list of eco-
nomic variables coming from the Livingston survey. The list includes the
following economic variables RGDPX (Real Gross Domestic Product), gdpx
(Nominal Gross Domestic Product), IP (Industrial Production Index), CPI
(Consumer Price Index), WMFG (Average Weekly Earnings in Manufactur-
ing), RTTR (Nominal Retail Sales and Food Services). Missing data are
estimated through interpolation. The time series used involves the period
07/1988-12/2016.

e Livingston RGDPX% six month ahead Skewness. These two indexes are built
using the skewness of the 6 and 12 months ahead forecasts about RGDPX
coming from the Livingston survey. Missing data are estimated through
interpolation. The time series used involves the period 07/1988-12/2016.

In the list of macroeconomic and equity-based indexes we list:

e The tail risk measure of Kelly and Jiang [2014]%!. This risk measure is
directly estimable from the cross-section of returns. The authors exploit
firm-level price crashes every month to capture common fluctuations in tail
risk. Data comes row from the authors and spans the period 01-1973/12-
2010.

e The economic uncertainty measure of Bali et al. [2014]%%. The authors use
the PCA to extract a common component from the eight macroeconomic risk
factors that capture different dimensions of the business cycle: uncertainty
about default risk, about short-term and long-term interest rate changes,
about aggregate dividend yield, about the equity market, about inflation,
about output growth, and about unemployment. Data comes row from the
authors and includes the period 01-1993/08-2013.

e The CATFIN measure of aggregate systemic risk proposed by Allen et al.
[2012]%3. CATFIN comes from the first principal component extracted from
the 1% VaR measures for a cross-section of financial firms. Data comes row
from the authors and includes the period 01-1973/12-2010

Shttps://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey
6Ohttps://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey
61We thank the authors for sharing the data
62We thank the authors for sharing the data
63We thank the authors for sharing the data
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e The tail-risk measure based on the risk-neutral excess expected shortfall of a
cross-section of stock returns proposed by Almeida et al. [2017]%%. Remark-
ably, the authors rely on an innovative way to risk neutralize the returns
without relying on option price information. The available time series in-
clude the period 01-1973/12-2010. We warmly thank the authors for sharing
their code.

In the list of option-based fear indexes we list:

e The VIX index. While Fear and volatility are often considered synonyms,
this is improper. Indeed trading opportunities are largely linked to the mis-
match between Fear and Volatility (Schneider and Trojani [2015]). The time
series employed come from the Federal Reserve of Philadelphia and spans
the period from 01-1990,/12-2016.

e The Variance Risk Premium (VRP)%. In this study we make use of the
version of the VRP proposed by Zhou Hao and the data come from the
website of the author. In the paper, it is shown (Zhou [2017]) the predictive
power of the index and how it interacts with other predictors. The available
data spans the period from 01-1990 to 12-2016.

e The tail risk proxy extrapolated from options proposed by Bollerslev et al.
[2015]%. This measure captures the compensation demanded by investors for
bearing jump tail risk. The authors show how it has a strong predictive power
at intermediate horizons and that it summarizes much of the predictability
coming from the variance risk premium. Available data spans the period
01-1996/08-2013. We thank the author for the support in replicating the
model.

2.8.2 Uncertainty Indexes

To model uncertainty, we will rely on three separate approaches. The first one relies
on modeling the aggregate volatility of analyst forecasts about firms’ earnings. The
second is based on the volatility and skewness of the economists’ forecast about
economic variables. Finally, the third approach is based on the uncertainty indexes
proposed by Jurado et al. [2015].

The first approach was originally introduced by Diether et al. [2002]. The authors
employed one (fiscal) year I — B — E — S earnings estimates for stocks which
are covered by two or more analysts, and which have a price greater than five

64We warmly thank the authors for sharing their codes and data
65https:/ /sites.google.com /site /haozhouspersonalhomepage/
66We thank Professor Todorov for the support in replicating the model
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dollars. Unfortunately, one-year earning forecasts are strongly influenced by the
management of the firm under scrutiny. Consequently, Yu [2011] employs the
long earning per share long-term I — B — F — S growth rate for stocks which are
covered by two or more analysts. This measure of uncertainty is shown to be less
affected by the managers and accordingly it is more reliable. In conclusion, we will
employ this more robust methodology using the number of views each firm receive
to weight the standard deviation of the views. We employ Analysts forecasts from
December 1981 to December 2016.

The second measure of uncertainty comes from the work of Jurado et al. [2015].
Monthly data, which spans the period from 7/1960 to 12/2016, come from the
website of Professor Sydney. The authors distinguish between two uncertainty
measures: a financial one and a macroeconomic one: this allows us to perform
further analysis on different dimensions of uncertainty. After that, we employ as
proxies for uncertainty the dispersion of the forecasts coming from surveys. A
similar approach has been successfully employed by Buraschi and Jiltsov [2006]
and Colacito et al. [2016]. The surveys which we employ are:

e The Survey of Professional Forecasters: it surveys economic variable fore-
casts (including output, inflation, and interest rates) prepared by private
sector economists. We focus on GDP, the GDP implicit price deflator, cor-
porate profits after tax, civilian unemployment, industrial production, and
the start of new housing units. These are the variables most related to our
definition of economic fundamentals. For each series and each time t we
estimate the coefficient of variation. Finally, we employ the first principal
component as the proxy for uncertainty; missing data are fulfilled through
linear interpolation.

e The Livingston Survey: was started in 1946 and it is the oldest contin-
uous survey of economists’ expectations. It summarizes the forecasts of
economists from industry, government, banking, and academia. Every June
and December, the Livingston Survey asks participants to forecast a set of
key macroeconomic variables, including real and nominal GDP. Survey par-
ticipants are asked to provide forecasts for these variables for the end of the
current month, six months ahead, and 12 months ahead. For each date, we
have a cross-section of up to 50 forecasts. We focus on six months ahead
forecasts for the following time series: Real Gross Domestic Product, Nomi-
nal Corporate Profits after taxes real gross domestic product, Nominal Gross
Domestic Product, Industrial Production, Civilian Unemployment Rate, Av-
erage Weekly Earnings. As a measure of dispersion, we employ the difference
between the Log 75th Percentile and the Log 25th Percentile of the Forecasts
for Levels. The difference is multiplied by 100. After that, each data is di-
vided by the average of the last ten observation plus the observation itself.
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The uncertainty proxy at time t arises computing the simple average on the
seven times series found with the methodology just detailed. Finally, missing
data are found through linear interpolation.

2.8.3 Anomalies

In this part, we analyze documented differences in cross-sectional average returns
that resist adjustment for exposures to the three factors model of Fama and French
[1993]. We employ the list of eleven anomalies proposed by Stambaugh et al. [2015]
plus the four factors of Fama and French [2015], plus three additional ratios of
economic variables on prices (dividend yield, price-earnings, cash flow price). All
data are monthly and span the period from 01-1965 to 12-2016 except the Net Op-
erating Assets, the Accruals, the Return on Assets and the Distress anomaly for
which data are available respectively only from 8-1965, 1-1970, 5-1976, and 1-1977.

Anomalies 1 and 2: Financial distress. Campbell et al. [2008] show that firms
with high failure probability have lower, not higher, subsequent returns (anomaly
1). In their model, the failure probability is estimated by a dynamic logit model
which employs both accounting and equity market variables. Another measure of
distress is the O-score (Ohlson [1980], anomaly 2) . The Ohlson O-score is com-
puted as the probability of bankruptcy in a static model using accounting variables
only.

Anomalies 3 and 4: Net stock issues and composite equity issues. The stock
issuing market is by definition related to sentiment-driven mispricing: smart man-
agers issue shares when sentiment-driven traders move prices to overvalued levels.
Loughran and Ritter [1995] show that, in post-issue years, equity issuers under-
perform non-issuers with similar characteristics (anomaly 3). We compute net
stock issues as the growth rate of the split-adjusted shares outstanding in the pre-
vious fiscal year. Daniel and Titman [2006] propose an alternative measure, com-
posite equity issuance, defined as the amount of equity a firm issues (or retires)
in exchange for cash or services. Consequently, seasoned issues and share-based
acquisitions increase the issuance aggregate measure, while repurchases and divi-
dends, reduce the issuance measure (anomaly 4).

Anomaly 5: Total accruals. Sloan [1996] demonstrates that firms with high ac-
cruals earn abnormal lower returns on average than firms with low accruals. In
this paper, total accruals are estimated as changes in non-cash working capital mi-
nus depreciation expense scaled by average total assets for the previous two fiscal
years.

Anomaly 6: Net operating assets. Hirshleifer et al. [2004] find that net operating
assets, computed as the difference on the balance sheet between all operating as-
sets and all operating liabilities divided by total assets is a negative predictor of
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long-run stock returns. They motivate this finding on the ground that investors
with limited attention tend to focus on accounting profitability, ignoring informa-
tion about cash profitability.

Anomaly 7: Momentum. The momentum effect, proposed by Jegadeesh and Tit-
man [1993] is one of the most widespread anomalies in asset pricing literature. The
intuition is that very negative and very positive returns performance is expected
to persist on average for a few months. The portfolios employed in this paper are
ranked on cumulative returns from month -7 to month -2, and the holding period
for each portfolio is six months.

Anomaly 8: Gross profitability premium. Novy-Marx [2013] discovers that sorting
on gross-profit-to-assets creates abnormal benchmark-adjusted returns, with more
profitable firms, having higher returns than less profitable ones.

Anomaly 9: Asset growth. Cooper et al. [2008] show how companies that grow
their total asset more earn lower subsequent returns. They explain that this phe-
nomenon is the consequence of investors’ initial overreaction to changes in future
business prospects implied by asset expansions. Asset growth is computed as the
growth rate of the total assets (item AT) in the previous fiscal year.

Anomaly 10: Return on assets. Chen et al. [2011] show that firms with higher past
return on assets gain higher subsequent returns. Return on assets is measured as
the ratio of the quarterly earnings (item IBQ) to last quarter’s assets (item ATQ).
Anomaly 11: Investment-to-assets. Titman et al. [2003] show that higher past
investment predicts abnormally lower future returns. Here, investment-to-assets is
computed as the annual change in gross property, plant, and equipment plus the
annual change in inventories scaled by the lagged book value of assets.

Anomaly 12, 13, 14, and 15: these are the four factors proposed by the extended
model of Fama and French (2015) Fama and French [2015]. In this case and the
next one data comes from the Kennet French library. Anomaly 16, 17 and 18:
recently Gerakos and Linnainmaa [2018] have shown how the value premium is
specific to variation in book-to-market that emanates from size changes, while
no premium stems from the remaining variation. The new understanding of the
value factor calls for a new reintroduction of old anomalies based on financial ra-
tios which were previously considered to be summarized by the Fama and French
model (Fama and French [1993]) . Among the possible ratios we focus on three of
the most notorious ones: Dividend Yield, Earning Price and Cash-flow Price.

2.8.4 Predictive models

In the following pages we detail the predictive models employed in the tables of
this appendix.
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Basic linear models

The “Kitchen Sink” Regression is a simple OLS multivariate regression which
includes all the predictors at once. The estimation is performed employing all
observations up to time t (the last available information) to perform the parameter
estimation and then to use the estimated parameters to make inference for time
t+1 employing regressors values at time t. In formulas this can be summarize in
a two step procedure:

Riy1 = a+ BX; + ¢

where R is a t*1 vector and X is a t*N and N is the number of predictors considered
in the analysis.

Tir1 = O + Brxy

where 7,47 is the univariate forecast produced by the model &; and Bt are the
coefficient estimated in the previous step employing data up to time t and x; is
the value of predictors at time t.

Schwartz Information Criterion

A possible way to mitigate the possibility of in sample over-fitting is to select
a criterion that accounts for both the benefits and costs of adding variables to
the regression. Accordingly, we employ the SIC (Schwartz Information Criterion),
constraining the choice to up to 3 predictors for each regression. The actual
implementation is extremely intuitive. For each date t, we use all data available up
to that moment, we consider all individual regressors and all possible combinations
among two or three regressors, and we compute the related SIC values

log(SIC) = log(g) + k * longT)

where T is the number of observations and k is the number of predictors. After
that, for each date t, we pick the model with the lowest SIC, and we employ it to
make inference using the values of predictors at time t to forecast the value of r
at time t+1

Trr1 = Gy + Bexy
Combination Forecasts

Combination forecasts are the most common machine learning approach employed
in the literature (Rapach et al. [2010], Aiolfi and Timmermann [2006], Strauss and
Detzel [2017]). This approach is based on a two-stage estimation.
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1. At first for each date t, we run a separate univariate regression for each
regressor on the equity premium at time t+1 using all data available up to
that date

Rt+1 = o+ 61‘1‘115 -+ €t

2. After that each univariate OLS model previously estimated is employed to
make inference at time t+1

Tir1 = Gy + By

3. Finally, we combine the forecasts generated by univariate regressions via
combination forecasts methods.

N

f’t+1,cmnb = Z wz‘,tftﬂ
i=1
Finally, a the POOLED-DMSPE approach computes the weights in the third
step in the following way:

-1
o
D ket opp
where
t—1
it = Z 97&7175(7,8“ — Tist1)
S=m

0 is a discount factor equal to 0.5 in this study, m+1 is the start of the holdout pe-
riod and K is the number of past periods considered to compute the weights (K=13
in this paper). The DMSPE method thus assigns greater weight to individual
forecasts that had better forecasting performance in terms of lower mean-squared
prediction errors.

Diffusion Indices

The diffusion index approach assumes a latent factor model structure for the po-
tential predictors:

/
Tig = N ft +e€is

with (i=1, ..., K) where f; is a g-vector of latent factors, \; is a g-vector of factor
loadings, and e;; is a zero-mean disturbance term. Co-movements in the predictors
are primarily governed by movements in the small number of factors (the number
of factors is much smaller than the number of predictors). For either the strict
or approximate factor model, the latent factors can be consistently estimated by
principal components. To implement this approach we started standardizing all
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the predictors (standard deviation of 1 and zero mean). After that for each date
t, we compute the first principal component employing all data available up to
t-1. The first principal component is then employed as a regressor to estimate the
following univariate regression model:

re = apr + Bprfio1 + €

where f; is the t*1 vector of the values of the first principal component and €,
is the disturbance term. Finally, the model previously estimated with data up to
t-1 and the value f; of the first principal component at time t, is used to make
inference for time t+1

ree1 = apr + Bprfi
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2.8.5 Additional Tables and Figures

Table 2.18: Long term predictive power of sentiment indexes. This table shows the A Utility and the R%S metrics
for forecasts of the S&P500 returns at months t+2, t+3, t+6 and t+12 using sentiment predictors at month t.

A Utility t+2 Tot  Bull  Bear R3¢ t+2 Tot pval Bull pval Bear pval A Utility t+3 Tot Bull Bear R2gt+3  Tot pval Bull pval Bear pval
PC6 0.49  0.81 0.03 PC6 0.43 0.00 1.17 0.00 -0.21 0.81 PC6 039 072 -0.09 PC6 0.30 0.01 0.93 0.00 -0.26 0.94
PC4 0.44 -0.19 1.35 PC4 0.16 0.15 -0.27 0.84 0.54 0.01 PC4 0.33  -0.22 112 PC4 0.06 031 -0.25 0.88 0.33 0.06
PLS6 246 10.60 -8.82 PLS6 2.96 000 7.51 000 -1.03 048 PLS6 232 973 -7.96 PLS6 2.88 000 6.92 000 -0.67 0.42
PLS4 1.58 047 3.18 PLS4 1.37 0.00 -0.26 0.58 2.80 0.00 PLS4 140  0.10 3.28 PLS4 1.16 0.00 -0.41 0.72 2.53 0.00
cefd -0.39 075 -2.03 cefd -0.19 093 0.80 0.00 -1.05 1.00 cefd -047 058  -1.99 cefd -0.24 096 0.67 0.00 -1.03 1.00
turn 058 232 -1.90 turn 036 007 2.35 0.00 -1.38 0.99 turn 040 1.61 -1.35 turn 0.19 015 1.35 0.00 -0.83 0.96
nipo -0.18  -1.41 1.60 nipo -0.37 095 -221 100 1.24 0.00 nipo 0.00 -1.49 2.16 nipo -0.33 0.86 -2.66 100 1.72 0.00
ripo -0.66  1.55 3 ripo 1.08 0.08 -248 0.73 4.20 0.02 ripo -0.63  1.07 ripo 1.02 0.08 -231 076 3.95 0.01
pdnd -0.05  1.75  -2.63 pdnd -0.27 077 1.11 0.00 -1.48 1.00 pdnd -0.04  1.61 pdnd -0.29 077 0.96 0.00 -1.39 1.00
s 1.52 13.66 -14.98 s 1.24 0.02 11.94 0.00 -815 1.00 s 143 11.92 s 1.17 0.02 10.50 0.00 -7.02 1.00
SIC 16.39 -15.49 SIC 2.19 0.00 10.51 0.00 -5.12 0.89 SIC 2.84 15.64 SIC 2.51 0.00 10.27 0.00 30 0.84
Pool Mean 258 -0.94 Pool Mean 1.01 0.00  2.33 0.00 -0.15 0.57 Pool Mean 101 213 Pool Mean 0.87 0.00 1.89 0.00 .01 0.47
DMSFE 2.66 -1.06 DMSFE 0.98 0.00 2.26 0.00 -0.14 0.54 DMSFE 101 219 DMSFE 0.86 0.00 1.82 0.00 0.01 044
Diff Index 0.68 1.60 Diff Index  0.92 0.00 1.06 0.01 0.80 0.03 Diff Index 093 0.44 Diff Index  0.76 0.00 0.81 0.01 0.70 0.03
A Utility t+6 Tot  Bull R3¢ t+6  Tot pval Bull pval Bear pval A Utility t+12 Tot Bull R t+12 Tot pval Bull  pval pval
PC6 030 0.93 PC6 0.17 0.06 0.95 0.00 -0.51 1.00 PC6 -0.22 253 PC6 -0.34 0.82  1.76 0.00 1.00
PC4 0.10  0.22 PC4 -0.15  0.77 021 0.10 0.93 PC4 -0.61  2.79 PC4 -0.74 0.88 2.54  0.00 1.00
PLS6 2.00 8.05 PLS6 2.65 0.00 5.86 0.00 0.36 PLS6 122 411 PLS6 1.34 0.00 3.84 0.00 0.84
PLS4 117 -0.21 PLS4 0.89 0.00 -0.44 083 0.00 PLS4 -025  1.04 PLS4 -028 0.86 1.11 0.00 1.00
cefd -0.69  0.73 cefd 0.97 0.87 0.00 1.00 cefd -149  3.24 cefd -0.62 0.87 3.33 0.00 1.00
turn 0.62 175 turn . 0.08  1.62 0.00 0.88 turn 0.13 210 turn -0.05 0.39 0.87 0.03 0.98
nipo 037 -0.76 nipo -0.21 067 -2.66 1.00 0.00 nipo 1.00  2.50 nipo 0.18 027 -1.25 0.90 0.02
ripo -0.53  0.80 ripo 0.90 0.09 -1.66 0.73 0.02 ripo -0.62  1.90 ripo -0.36 0.82 1.76 0.00 1.00
pdnd -0.05  1.92 pdnd -0.35 0.75  1.16 0.00 1.00 pdnd -0.06  2.94 pdnd -0.27 0.66 2.18 0.00 1.00
B 118 10.70 -11.92 s 0.94 0.03 9.56 0.00 1.00 s 0.87 7.72 s 0.51 0.08 6.96 0.00 1.00
SIC 2.34 13.03 -12.25 SIC 2.27 0.01 8.80 0.00 0.80 SIC 1.26 732 SIC 0.51 0.09 6.93 0.00 1.00
Pool Mean 0.87 203 -0.80 Pool Mean  0.73  0.00 1.82 0.00 0.72 Pool Mean 0.14 294 Pool Mean  0.03 0.37  2.43 0.00 1.00
DMSFE 0.88 208 -0.84 DMSFE 0.72 0.00 1.78  0.00 0.68 DMSFE 0.15 296 DMSFE 0.04 037 2.44 0.00 1.00
Diff Index 0.76 041 1.27 Diff Index  0.57 0.00 0.73  0.00 0.05 Diff Index -0.18  1.94 Diff Index  -0.27 0.79  1.63 0.00 1.00

81



Table 2.19: This table shows the conditional correlations among the monthly returns of the sentiment and
uncertainty indexes under study for the period 01-1982/12-2016. Six cases are considered: correlation when the
returns on the SP500 are positive, negative, when the returns pf the PC4 sentiment proxy are positive, negative
and when the returns of the Macro uncertainty index are positive, negative.

Rising PC4 1) @ B @ (G 6 (M (8 (9 (10 (1) (12) (13) (14)  Declining PCY 1) @ B @ G 6 O ® (9 () (1) (12 (13) (14
PC 6 (1) 1.00 PC6 (1) 100
PC4(2) 076 1.00 PC4(2) 077 1.00
PLS 6 (3) 051 021 100 PLS 6 (3) 048 017 100
PLS 4 (4) 076 072 052 100 PLS 4 (4) 081 072 060 100
DEVST (5) 016 -0.09 004 -0.09 1.00 DEVST (5) 007 008 -007 003 100
MEAN (6) 007 009 001 004 007 100 MEAN (6 026 022 024 030 026 100
MEDIAN (7) 012 010 001 003 -008 093 100 MEDIAN (7) 027 023 024 030 015 094 100
UP (8) 2010 -0.03 004 -0.05 072 060 040 1.00 UP (8) 016 012 007 015 078 070 053 100
LOW (9) 012 011 003 010 -061 066 065 -0.06 100 LOW (9) 015 012 027 022 044 064 057 009 100
UF (10) 006 000 016 015 000 009 004 009 009 1.00 UF (10) 016 002 011 015 000 008 009 007 003 1.00
UM (11) 2003 -007 014 000 006 -005 -0.04 004 -009 038 100 UM (11) 018 024 019 029 004 003 003 -001 005 047 100
SPF (12) 002 -0.01 007 003 003 008 -011 -005 -002 000 002 100 SPF (12) 004 008 -0.04 001 -003 001 -002 -002 004 004 019 100
LIV (13) 002 008 009 001 001 -003 -005 004 -004 007 018 006 1.00 LIV (13) 009 020 001 012 008 001 002 002 -0.07 013 028 011 100
SP500 (14) 017 -023 012 -024 007 001 005 002 -006 -0.33 021 001 -0.14 100  SP500 (14) 002 010 008 000 007 010 011 007 002 025 -020 -011 001 100
Rising UM ) 2 B @ G (® (M (8 (9 (10) (1) (12) (13) (14)  Declining UM M @ @B @ (B ® @ () (9 (1) (1) (12 (13) (14)
1.00 PC6 (1) 1.00
087 1.00 PC 084 1.00
050 032 1.00 051 024 100
083 082 057 100 086 0.79 057
004 002 -0.03 003 100 5 2003 -0.03 -0.08 -
MEAN (6) 027 029 020 030 013 100 MEAN (6) 026 021 013
MEDIAN (7) 033 035 020 032 004 091 100 MEDIAN (7) 020 024 015 100
UP (8) 010 014 011 018 071 060 053 100 UP (8) 006 0.03 -0.03 045 1.00
LOW (9) 015 013 021 017 -047 070 062 016 100 LOW (9) 018 0.16 0.4 059 -0.07 100
UF (10) 002 -004 015 009 016 011 010 019 -0.05 1.00 UF (10) 026 0.3 010 012 -0.01 021 100
UM (11) 006 000 020 016 006 -0.03 -0.04 004 -006 049 1.00 UM (1) 017 024 011 021 -0.03 011 022 100
SPF (12) 2008 -0.07 007 -0.03 005 007 004 008 004 100 SPF (12) 0.01 0.04 012 -010 000 002 005 100
LIV (13) 2005 000 005 005 016 -002 -002 009 -0.14 011 1.00 LIV (13) 011 017 -0.04 002 -0.01 002 -005 012 006 100
SP500 (14) 000 001 -0.13 -004 002 006 006 003 003 - 004 -0.16 100  SP500 (14) 2017 016 007 - 007 007 008 -0.13 0.09 -015 004 100
Positive Ret SPS00 (1) () (3 () (5) (6 (D (8 (9 (100 (1) (12) (13) (14) NegativeRetSP500 (1) (2 () () () (6 () (9 (9 (1) (1) (12) (13) (14)
PC G (1) 1.00 1.00
PC4(2) 082 100 088 1.00
PLS 6 (3) 055 029 100 045 025 100
PLS 4 (1) 085 076 065 100 085 084 049 100
DEVST (5) 003 002 001 001 100 014 -004 014 007 1.00
MEAN (6) 025 022 015 024 019 100 MEAN (6) 028 029 019 032 014 100
MEDIAN (7) 028 025 016 026 006 094 100 MEDIAN (7) 035 033 020 034 004 094 100
UP (8) 012 009 004 010 078 064 045 1.00 UP (8) 000 006 000 008 067 071 054 100
LOW (9) 013 011 012 015 -058 060 059 -0.08 100 LOW (9) 020 018 024 025 043 072 062 021 100
UF (10) 022 014 013 024 001 010 011 006 007 1.00 UF (10) 008 002 016 010 004 014 013 014 006 1.00
UM (1) 014 021 006 016 001 006 008 004 004 039 1.00 UM (11) 008 003 030 019 000 -0.03 -0.02 -003 -0.04 048 100
SPF (12) 003 004 003 003 -004 -002 -004 003 003 002 022 100 SPF (12) 001 002 -003 000 005 005 -007 -0.04 001 005 003 100
LIV (13) 005 003 -016 -0.05 004 004 004 006 -0.02 009 011 012 1.00 LIV (13) 017 021 011 019 006 -0.06 -0.06 -0.02 -0.11 013 041 006 1.00
SP300 (14) 024 -0.10 025 -0.22 0.6 -0.06 -0.07 0.0 -021 0.10 -0.07 -0.08 -0.05 100  SP500 (14) 009 001 -0.04 005 -0.00 006 008 -0.07 013 -042 -020 -021 -0.15 1.00

Table 2.20: Johansen Cointegration test. We provide the p value for rank 0 and 1 Cointegration test between
Sentiment proxies and uncertainty ones. The data are monthly and spans the period 12/1981-12/2016

PC6 10 rl PC 4 10 rl PLS 6 10 rl PLS 4 r0 rl DEVST 0 rl MEAN 10 rl
PC6 0.00  0.00 PC6 0.00 0.30 PC6 0.00 0.00 PC6 0.95 0.85 PC6 0.73  0.57 PC6 091 1.00
PC 4 0.00 0.30 PC 4 0.00  0.00 PC4 0.00  0.00 PC 4 0.04 0.12 PC4 0.87 0.64 PC 4 0.02 0.52
PLS 6 0.00  0.00 PLS 6 0.00  0.00 PLS 6 0.00 0.00 PLS 6 0.00 0.00 PLS 6 0.20 0.45 PLS 6 0.20 0.99
PLS 4 0.95 0.85 PLS4 |0.04 0.12| PLS4 0.00 0.00 PLS 4 0.00  0.00 PLS 4 0.81 0.55 PLS4 |0.02 0.48
DEVST | 0.73 0.57 | DEVST | 0.87 0.64 | DEVST | 0.20 0.45 | DEVST | 0.81 0.55 | DEVST | 0.00 0.00 | DEVST | 0.07 0.89
MEAN 0.91  1.00 MEAN |0.02 0.52 | MEAN 0.20  0.99 MEAN | 0.02 0.48 MEAN | 0.07 0.89 | MEAN 0.00  0.00
MEDIAN | 0.93 1.00 | MEDIAN | 0.00 0.44 | MEDIAN | 0.26 0.99 | MEDIAN | 0.01 0.38 | MEDIAN | 0.02 0.88 | MEDIAN | 0.17 1.00
up 0.88 0.79 up 0.87 0.84 Up 0.13  0.78 upP 0.47 0.83 up 0.64 0.95 up 0.00 0.92
LOW 0.28 091 LOW 0.01 0.17 LOW 0.08 0.88 LOW 0.02 0.41 LOW 0.28 0.64 LOW 0.00 0.84
UF 0.01 0.08 UF 0.72 048 UF 0.02 0.16 UF 020 0.14 UF 0.08 0.23 UF 0.01 0.59
UM 0.05 0.79 UM 0.09 0.54 UM 0.05 0.32 UM 0.11  0.65 UM 0.02 0.04 UM 0.00 0.07
SPF 0.02 0.75 SPF 0.09 0.53 SPF 0.03 0.30 SPF 0.11  0.63 SPF 0.31 037 SPF 0.14 0.78
LIV 0.00 0.01 LIV 0.00 0.00 LIV 0.10 0.22 LIV 0.00 0.04 LIV 0.37 0.34 LIV 0.01 0.58

UpP 10 rl LOW 10 rl UF r0 rl UM r0 rl SPF 10 rl LIV 10 rl
PC 6 0.88 0.79 PC6 0.28 091 PC6 0.01 0.08 PC6 0.05 0.79 PC6 0.02 0.75 PC 6 0.00 0.01
PC4 0.87 0.84 PC 4 0.01 0.17 PC4 0.72 048 PC 4 0.09 0.54 PC4 0.09 0.53 PC 4 0.00  0.00
PLS 6 0.13  0.78 PLS 6 0.08 0.88 PLS 6 0.02 0.16 PLS 6 0.05 0.32 PLS 6 0.03 0.30 PLS 6 0.10 0.22
PLS 4 047 0.83 PLS 4 0.02 0.41 PLS 4 0.20 0.14 PLS 4 0.11  0.65 PLS 4 0.11  0.63 PLS 4 0.00 0.04
DEVST | 0.64 0.95 | DEVST | 0.28 0.64 | DEVST | 0.08 0.23 | DEVST | 0.02 0.04 | DEVST | 0.31 0.37 | DEVST | 0.37 0.34
MEAN |0.00 0.92| MEAN |0.00 0.84 | MEAN |0.01 0.59 | MEAN |0.00 0.07| MEAN | 014 0.78 | MEAN |0.01 0.58
MEDIAN | 0.00 0.94 | MEDIAN | 0.00 0.88 | MEDIAN | 0.00 0.59 | MEDIAN | 0.00 0.04 | MEDIAN | 0.03 0.72 | MEDIAN | 0.00 0.49
Up 0.00  0.00 Up 0.01 0.77 Up 0.93  0.88 Up 022 0.79 Up 0.68 0.80 Up 0.96 0.87
LOW 0.01 0.77 LOW 0.00  0.00 LOW 0.00 0.01 LOW 0.00  0.00 LOW 0.32 0.34 LOW 0.01 0.06
UF 0.93 0.88 UF 0.00 0.01 UF 0.00 0.00 UF 0.06 0.59 UF 0.15  0.52 UF 0.29 0.71
UM 0.22  0.79 UM 0.00 0.00 UM 0.06 0.59 UM 0.00  0.00 UM 0.00 0.01 UM 0.00  0.00
SPF 0.68  0.80 SPF 0.32  0.34 SPF 0.15 0.52 SPF 0.00 0.01 SPF 0.00  0.00 SPF 0.21 045
LIV 0.96 0.87 LIV 0.01 0.06 LIV 0.29 0.71 LIV 0.00  0.00 LIV 0.21 045 LIV 0.00  0.00
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Table 2.21: Granger causality analysis employing monthly data from 12/1981 to 12/2016. 12 legs are chosen as
default initial size and the AIC criteria is employed to identify the best number of lags. The table report the
difference between the value of the F-statistic and the critical value from the F-distribution. If F > critical value,
we reject the null hypothesis that y does not Granger Cause x.

PCG Caused by _causes | PC 4 Caused by _causes | PLS 6 caused by _causes | PLS 4 caused by _causes | DEVST __caused by MEAN _ caused by _causes
PCG 000 000 |PCG 580 439 |PCG 355  3.06 [PCG 525 300 |PCG 21 PCG 273 272
PC 4 139 580 |PC4 000 000 |PC4 3.21 759 | PC4 084 1029 |PC4 2.62 PC4 270 4.03
PLS 6 3.06  -3.55 | PLS 6 750 321 | PLSG 000 000 | PLS 6 1151 -0.26 ] 174 342 |PLSG 296 7.24
PLS 4 300 525 |PLS4 1020 081 |PLS4 026 11.51 | PLS 4 000 0.00 271 -043 |PLS4 3.97 7.75
DEVST 320 -321 | DEVST 254 -262 | DEVST 342 -174 | DEVST 043 271 000 000 | DEVST 142 -117
MEAN 272 -2.73 | MEAN 403 270 | MEAN 7.24  -2.96 | MEAN 7.75 3.97 4117 142 | MEAN 000  0.00
MEDIAN 521  -3.04 | MEDIAN 497 340 |MEDIAN 841  -3.40 | MEDIAN 887 428 |MEDIAN  -0.67  -061 | MEDIAN  4.56  -2.77
UP 237 071 | UP 520  -1.12 | UP 3.74  -0.13 | UP 6.81  -0.96 | UP 297 623 | UP 552 2450
LOW 200 151 | LOW 390 276 | LOW 003 -301 | LOW 307 472 |LOW 2022 3.95 | LOW 168 848
UF -1.04 -0.93 | UF -2.74 -2.85 | UF -3.82 0.61 UF -0.25 -1.69 | UF 4.96 -3.84 | UF 1.07 0.92
UM 2.98 3 | UM 0.93  -1.78 | UM 372 uM 106 <169 | UM 5.94  -3.08 | UM 614 042
SPF 113 67 | sPF 020  -3.68 | SPF 361 SPF 020  -3.59 | SPF 145  -3.33 | SPF 054 537
LIV 409 -0.87 | LIV 614 303 | LIV 2.34 LIV 596 -0.28 | LIV 156 -3.74 | LIV 054 158
P Caused by _causes | LOW Caused by _causes | UF caused by _causes | UM Caused by _causes | SPF causes | LIV Caused by _causes
PCG 071 237 | PC6 151 -1.00 | PC6 093 104 [PCG 253 208 |PCG 3.6 113 [PCG 0.87  4.09
PC 4 112 520 |PC4 276 3.90 |PC4 28 274 |PC4 178 0.93 |PC4 .6 0.20 [PC4 303 614
PLS 6 -0.13  3.74 |PLSG 301 -0.03 | PLSG 0.61  -3.82 252 PLS 6 361 -361 |PLSG 011 234
PLS 4 -0.96  6.81 |PLS4 472 307 | PLS4 169 -0.25 169 PLS 4 359 0.20 |PLS4 028  5.96
DEVST 6.23  -2.97 | DEVST 395 022 |DEVST  -3.84  4.96 -3.08 DEVST 333 145 |DEVST  -3.74  1.56
MEAN 2450 552 | MEAN 8.48 168 | MEAN 0.92 107 0.42 MEAN 537 054 | MEAN 158  -0.54
MEDIAN ~ 23.42  -0.27 | MEDIAN 949  -0.11 | MEDIAN 098  0.66 | MEDIAN 0.3 MEDIAN ~ 5.83  -0.09 | MEDIAN  1.99  -0.62
UP 000 000 |UP 199 2144 | UP 062 116 | UP -1.39 UP 358 015 | UP 043 -113
LOW 2144 199 | LOW 000 000 |LOW 122 891 | LOW 1.99 LOW 192 580 |LOW 108 3.69
UF 116 UF 8.91 122 | UF 000 000 |UF 2.85 UF 116 -3.67 | UF 628 0.66
UM 041 uM 1814 199 | UM 216 285 | UM 0.00 UM 714 -3.00 | UM 9.21  -3.07
SPF 0.15 SPF 580 492 | SPF 3.67 116 | SPF -3.00 SPF 000 000 |SPF 363 132
LIV 113 LIV 3.60 108 | LIV 066 628 | LIV -3.07 LIV 132 363 | LIV 000 0.00

Table 2.22: Long term predictive power of uncertainty indexes.
metrics for forecasts of the S&P500 returns at months t+2, t+3, t+6 and t+12 using uncertainty predictors at

This table shows the A Utility and the Rzos

month t.

A Utility t+2 Tot  Bull  Bear  Rbgt+2  Tot pval Bull pval Bear pval A Utility t+3 Tot Bull Bear  Rbg t+3  Tot pval pval Bear pval
DEVST 191 631 1161 DEVST  -147 058 -1697 1.00 7.92 0.00 DEVST 249 723 1402 DEVST 107 045 100 0.00
MEAN 071 681 - MEAN 019 022 884 000 100 MEAN 024 753 MEAN 020 0.30 0.00 1.00
MEDIAN 0.62 6.13 MEDIAN 0.13 0.25 7.88 0.00 1.00 MEDIAN 0.07 6.88 MEDIAN  -0.32 0.36 0.00 1.00
up 037 650 up 015 023 712 000 093 UP 021 715 up 0.07 023 0.00 0.99
LOW 031 929 LOW 011 023 11.63 000 100 LOW 003 10.24 LOW 008 0.26 0.00 1.00
UF 4.09 0.75 UF 218 0.10 -10.18 0.97 0.00 UF 3.20 1.45 UF 1.57 0.13 0.93 0.01
UM 357 072 UM 166 015 -9.62 092 850 002 UM 249 150 UM 0.95 022 0.85 0.05
SPV 091 -0.19 SPV 134 064 803 095 271 008  SPV 004 115 SPV 141072 0.86 0.35
LIV 222 221 LIV -0.60 044 -4.12 0.77 1.53 0.20 LIV 2.13 2.58 LIV -0.42  0.42 0.64 0.29
sic 257 059 496 SIC 19 040 -1081 094 4.63 004 SIC 266 062 512 SIC 238 058 -1047 093 253 007
Pool Mean 217 205 243 Pool Mean 070 020 056 049 147 015  Pool Mean 174 276 070  PoolMean 044 024 091 022 015 038
DMSFE 221 2.09 245 DMSFE 0.74 020 -0.80 0.53 1.68 0.14 DMSFE 1.81 2.78 0.83 DMSFE 046 0.24 0.72  0.26 0.31  0.35
Diff Index 295 426 161  Difflndex 077 012 513 000 -1.88 073  Diff Index 281 476 074  Difflndex 054 015 597 000 -275 085
A Utility t+6 Tot  Bull Rigt+6  Tot pval Bull  pval pval A Utility t+12 Tot Bull  Bear  Rjgt+12 Tot pval Bull  pval pval
DEVST 390 -1247 DEVST 048 013 4151 1.00 0.00  DEVST 390 1120 2222 DEVST 043 012 -3343 1.00 0.00
MEAN -0.08 7.98 MEAN -0.47 0.36  10.95 0.00 1.00 MEAN -0.07 5.91 -6.60 MEAN -1.09 0.53 8.61  0.00 1.00
MEDIAN -0.39 7.34 MEDIAN  -0.80 0.46 10.26 0.00 1.00 MEDIAN -0.35 5.50 76 MEDIAN  -1.44 0.61 8.40 0.00 1.00
up 142 735 up 1.87 003 549 0.00 041 UP 113 492 305 UP 138 007 216 0.08 0.21
LOW -1.78 9.42 LOW -2.25 0.74 13.47 0.00 1.00 LOW -1.15 7.63 -10.70 LOW -1.83 0.72 11.19 0.00 1.00
UF 347 180 UF 0.08 -3.88 0.84 001 UF 493 -157 1257  UF 313 0.03 942 0.99 0.00
UM 279 034 UM 017 634 089 003 UM 392 255 1152 UM 239 012 -1143 099 0.00
SPV -1.42 2.82 SPV 0.92 1.40 0.16 1.00 SPV -1.79 17 -6.31 SPV -1.34 0.96 1.66  0.07 1.00
LIV 121 229 LIV 018 581 083 003 LIV 556 -044 1263 LIV 145 010 -13.94 0.99 0.00
sIC 142 112 1098 SIC 582 049 -3632 100 12.67 000  SIC 77T 888 SIC 136 030 1713 100 819 0.00
Pool Mean 244 1.95 3.11 Pool Mean  1.05 0.11 -0.34  0.46 1.90 0.07 Pool Mean 0.13 6.85 Pool Mean 1.31 0.09 -2.70 0.89 3.74 0.01
DMSFE 258 186 349 DMSFE 114 011 -0.82 055 2.33 005 DMSFE 323 002 706 DMSFE 142 009 -326 092 425 000
Diff Index 372 488 255  Difflndex 156 005 454 001 -0.25 039  Diff Index 351 313 407  Diffilndex 127 008 171 012 099 020
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Table 2.23: In this table we presents the result univariate linear regressions. Monthly data for the period 01/1982-
12/2016 are employed. A list of predictors at time t is regressed on the SP500 returns at time t+1, t+3, t+6 and
t+12. The estimated betas with the related t statistic and R? are reported. In the upper panel we regress the
level of the variables on the SP500 returns, while in the lower panel we regress the deltas on the SP500 returns.

Level t+1 t+3 t+6 t+12
b t stat R2 b t stat  R2 b t stat  R2 b t stat  R2
Sentiment PC 4  -0.006 -2.46 0.014 -0.006 -2.34 0.013 -0.006 -2.33 0.013 -0.005 -2.16 0.011
Sentiment PLS 4 -0.023 -3.33 0.026 -0.020 -2.83 0.019 -0.017 -2.36 0.013 -0.013  -1.80 0.008
DEVST -0.002 -0.66 0.001 -0.002  -0.92 0.002 -0.004 -1.64 0.006 -0.002  -0.80 0.002
MEAN -0.002 -1.96 0.009 -0.002 -1.97 0.009 -0.002  -1.94 0.009 -0.002 -1.64 0.007
MEDIAN -0.002 -1.90 0.009 -0.002 -1.87 0.008 -0.002 -1.80 0.008 -0.002 -1.58 0.006
UP -0.001 -1.96 0.009 -0.002 -2.05 0.010 -0.002 -2.44 0.014 -0.001 -1.79 0.008
LOW -0.002  -1.79 0.008 -0.002 -1.85 0.008 -0.002  -1.42 0.005 -0.002  -1.44 0.005
UF -0.048 -3.15 0.023 -0.023 -1.51 0.005 -0.009 -0.60 0.001 -0.012  -0.77 0.001
UM -0.071 -2.75 0.018 -0.037  -1.42 0.005 -0.012  -0.46 0.001 -0.015 -0.59 0.001
SPV -0.005 -0.10 0.000 0.018  0.33 0.000 0.055 1.00 0.002 0.052  0.94 0.002
LIV -0.017  -1.61 0.006 -0.011  -1.04 0.003 -0.013  -1.25 0.004 -0.013  -1.25 0.004
Delta t+1 t+3 t+6 t+12
b t stat  R? b t stat  R? b t stat  R? b t stat  R?

Sentiment PC 4 -0.024 -1.34 0.004 -0.006 -2.34 0.013 -0.006 -2.33 0.013 -0.005 -2.16 0.011
Sentiment PLS 4 -0.081 -1.47 0.005 -0.020 -2.83 0.019 -0.017 -2.36 0.013 -0.013  -1.80 0.008
DEVST -0.008 -0.65 0.001 -0.002 -0.92 0.002 -0.004 -1.64 0.006 -0.002 -0.80 0.002
MEAN 0.003  0.23 0.000 -0.002 -1.97 0.009 -0.002 -1.94 0.009 -0.002 -1.64 0.007
MEDIAN -0.001  -0.07 0.000 -0.002 -1.87 0.008 -0.002  -1.80 0.008 -0.002 -1.58 0.006
UP -0.003 -0.49 0.001 -0.002 -2.05 0.010 -0.002 -2.44 0.014 -0.001  -1.79 0.008
LOW 0.008  0.96 0.002 -0.002 -1.85 0.008 -0.002 -1.42 0.005 -0.002 -1.44 0.005
UF -0.084 -0.96 0.002 -0.023  -1.51 0.005 -0.009 -0.60 0.001 -0.012  -0.77 0.001
UM -0.020 -0.11 0.000 -0.037  -1.42 0.005 -0.012  -0.46 0.001 -0.015  -0.59 0.001
SPV -0.217  -0.72 0.001 0.018  0.33 0.000 0.055 1.00 0.002 0.052  0.94 0.002
LIV -0.066 -1.03 0.003 -0.011  -1.04 0.003 -0.013  -1.25 0.004 -0.013  -1.25 0.004

Table 2.24: In this table we perform a series of univariate regression employing monthly data for the period
01/1982-12/2016. At first a time series of deltas is computed, after that for each deltas time series an ARMA
model is estimated. At first 4-4 lags are employed and the best form of the model is identified through the BIC
criterion. Finally, the residual coming from the chosen ARMA model are employed as the independent variable
of the regression. The estimated betas of the univariate regressions are reported with the related t statistic and
the R? of the regression.

t+1 | Sen PC4 Sen PLS4 DEVST MEAN MEDIAN UP LOW UF UM SPV LIV
Beta -0.017 -0.045 0.000 -0.005 -0.011 0.000 -0.002 -0.433 -1.097 -0.222 -0.081
t Beta | -0.620 -0.654 0.023 -0.444 -0.753  -0.008 -0.350 -4.416 -4.116 -0.726 -0.806
R? 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.045 0.039 0.001 0.002
t+3 | Sen PC4 Sen PLS4 DEVST MEAN MEDIAN UP LOW UF UM SPV LIV
Beta -0.013 -0.073 0.003 0.022 0.031 0.005 0.006 -0.201 -0.078 0.270 -0.092
t Beta | -0.460 -1.066 0.302 1.878 2.124 1.228 1.008 -2.012 -0.286 0.882 -0.920
R? 0.001 0.003 0.000 0.008 0.011 0.004 0.002 0.010  0.000 0.002 0.002
t+6 | Sen PC4 Sen PLS4 DEVST MEAN MEDIAN UP LOW UF UM SPV LIV
Beta -0.019 -0.073 0.014  -0.007 -0.002 0.001 -0.012  0.093 -0.347 -0.175 0.006
t Beta | -0.660 -1.068 1.336 -0.635 -0.146 0.333 -1.891 0.930 -1.276 -0.571 0.060
R? 0.001 0.003 0.004 0.001 0.000 0.000 0.009 0.002 0.004 0.001 0.000
t+12 | Sen PC4 Sen PLS4 DEVST MEAN MEDIAN UP LOW UF UM SPV LIV
Beta 0.013 0.000 0.003 0.004 0.001 0.000 -0.001 -0.038 -0.243 -0.530 0.089
t Beta | 0.445 0.006 0.247 0.348 0.037 -0.052 -0.086 -0.376 -0.896 -1.743 0.892
R? 0.000 0.000 0.000 0.000 0.000 0.000  0.000  0.000  0.002 0.007 0.002
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Table 2.25: This table shows the conditional correlation using for fear and uncertainty proxies. Three cases are
considered positive-negative returns of the SP500, rising-declining macroeconomic uncertainty (UM) and rising-
declining Fear (FVaR)
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Table 2.26: This table shows the results of the Johansen test for the cointegration for fear and

uncertainty proxies.

MEAN (1) 0 UP(@) 01 LOW (3) W 1l DEVST (4) 0 UF(5) 0 UM 10 vl UMMD(7) W0 1l LIV skew (8) Wl
000 0.00 MEAN (1) 0.00 0.92 MEAN (1) 0.00 0.84 MEAN (1) MEAN (1) 001 0.59 MEAN (1) 000 007 MEAN (1) 005 099 MEAN (1) 038 100
0.00 0.92 UP (2) 000 000 UP (2) 0.01 077 UP (2) 093 088 UP (2) 022 079 UP(2) 009 094 UP (2) 050 095
0.00 0.84 LOW 0.01 077 LOW (3) 000 000 LOW (3) 000 001 LOW (3) 0.00 i 014 094 LOW (3) 048 092
0.07 0.89 DEVST (4) 064 0.95 DEVST (4) 028 064 DEVST (4) 008 023 DEVST (4) 0.02 045 0.62 DEVST (4) 046 0.59
001 0.59 UF (5) 093 085 UF (5) 000 001 UF (5) 000 000 UF (5) 0.06 057 082 UF (3) 057 050
0.00 0.07 UM (6) 022 079 UM (6) 000 0.00 UM (6) UM (6) 006 059 UM (6) 0.00 0.19 065 UM (6) 0.02 047
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G kew (9) 093 100 RGDPXskew (9) 084 095 RGDPXskew (9) 094 097 RGDPXskew (9) 052 056 RGDPXskew (9) 091 079 RGDPXskew (9) 002 0. 008 047 RGDPX skew (9) 036 041
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FVaR 10 (25) 0.00 0.7 FVaR 10 (25) 0.00 059 FVaR10(25)  0.00 0.54 FVaR 10 (25) 0.00 FFVaR 10 (25) 0.00 000 FVaR 10 (25) 0.00 0.94 FVaR 10 (25) 0.00 003 FVaR 10 (25) 0.00 0.86
CRASH (17) W0 1l VRP(18) W0 1 KI(19) W 1l CATFIN (20) 0 rl TAIL (21) 0 vl FFHS2(22) W0 vl FFHS3(23) W0 1l FVaR (24) Wl
060 100 MEAN (1) 000 100 MEAN (1) 0.00 1.00 MEAN (1) 0.00 1.00 MEAN (1) 0.00 1.00 MEAN (1) 000 0.00 MEAN (1) 000 0.00 MEAN (1) 0.00 0.84
082 099 UP (2) 0.00 0.99 UP (2) 0.00 0.81 UP(2) 00 0.85 UP (2 000 0.81 UP(2) 000 0.00 UP (2) 000 000 UP (2) 0.00 083
033 091 LOW 0.00 097 LOW (3) 0.00 091 LOW (3) 000 0.72 LOW (3) 0.00 i 0.00 0.22 LOW (3) 0.00 0.75
043 051 DE 0.00 056 DEVST (4) 0.00 071 DEVST (4) 0.00 0.5 DEVST (4) 0.00 0.00 0.34 DEVST (4) 0.00 047
009 0.7 0.00 0.83 UF (5) 0.00 0.59 UF (5) .00 0. 0.00 0.64 UF (5) 0.00 0.00 0.87 UF (5) 0.00 0.94
UM (6) 061 050 0.00 0.79 UM (6) 0.00 0.05 UM (6) 0.00 0.06 UM (6) 000 005 UM (6) 0.00 0.00 0.95 UM (6) 0.00 0.99
UM-MD (7) 048 0.40 0.00 038 UM-MD (7) 0.00 010 UM-MD (7) 0.00 0.06 UMD (7) 0.00 007 UM-MD (7) 0.00 0.00 0.1 UM-MD (7) 0.00 0.15
LIV skew (8) 007 0.06  (8) 0.00 0.06 LIV skew (5) 0.00 014 LIV skew (5) 0.00 012 LIV skew (5) 000 009 LIV skew () 0.00 0.00 0.50 LIV skew (8) 0.00 0.55
RGDPX skew (9) 000 0.03 RGDPX skew (9)  0.00 0.36 RGDPX skew (9) 0.00 0.60 RGDPXskew (9)  0.00 0.47 RGDPXskew (9) 000 0.55 RGDPX skew (9)  0.00 0. E 0.00 0.72 RGDPX skew (9)  0.00 0.76
Bull-Bear (10) 031 062 Bull-Bear (10) 0.00 070 Bull-Bear (1) 0.00 0.7 Bull-Bear (10) 0.00 0.70 Bull-Bear (10) 0.00 0.73 Bull-Bear (10) 0.00 0.83 Bull-Bear (10) 0.00 0.83 Bull-Bear (10) 0.00 0.57
Bull-Newrtal (1) 043 0.92 Bull-Newttal (1) 0.00 0.95 Bull-Neurtal (11) 0.00 0.51 Bull-Neurtal (1)~ 0.00 0.52 Bull-Neurtal (1) 0.00 0.48 Bull-Newrtal (1)  0.00 0.95 Bull-Newrtal (11)  0.00 0.95 Bull-Neurtal (11)  0.00 0.54
cor-Neutral (12)  0.50 086 Bear-Neutral (12)  0.00 0.97 atral (12) 0.00 049 Bear-Neutral (12)  0.00 0.48 Bear-Neutral (12)  0.00 0.58 Bear-Neutral (12)  0.00 0.99 Bear-Newtral (12) 000 0.99 Bear-Nentral (12)  0.00 0.97
BTX (13) 0.00 0.25 BTX (13) 000 000 BTX (13) 000 000 BTX (13) 000 000 BTX (13) 000 000 BTX (13) 000 000 BTX (13) 000 000 BTX (13) 000 0.00
MACRO (14) 037 059 MACRO (14) .00 0.69 MACRO (14)  0.00 0.63 MACRO (14) 0.00 0.55 MACRO (14) .00 0.69 MACRO (14) 0.00 0.86 MACRO (14) 0.00 0.86 MACRO (14) 0.00 0.93
VIX (15) 000 005 VIX (15) 000 000 VIX (15) 000 000 VIX (15) 000 000 VIX (15) 000 000 VIX (15) 000 001 VIX (15) 000 001 VIX (15) 000 003
ANX (16) 042 046 ANX (16) 0.00 041 ANX (16) 0.00 056 ANX (16) .00 036 ANX (16) 0.00 0.49 ANX (16) 0.00 0.46 ANX (16) 0.00 0.46 ANX (16) 0.00 0.85
CRASH (17) 0.00 000 CRASH (17) 0.00 010 CRASH (I7) 0.00 0.27 CRASH (I7) 0.00 014 CRASH (17) 0.00 015 CRASH (17) 0.00 0.19 CRASH (17) 0.00 0.19 CRASH (17) 0.00 022
VRP (18) 0.00 0.10 VRP (15) 000 000 VRP (15) 000 000 VRP (15) 0.00 000 VRP (18) 000 000 VRP (18) 0.00 000 VRP (15) 000 000 VRP (15) 0.00 000
KJ (19) 0.00 0.27 KJ (19) 0.00 000 KJ (19) 000 000 KJ(19) 0.00 000 KJ(19) 000 000 KJ(19) 0.00 000 KJ (19) 000 000 KJ (19) 000 0.00
CATFIN (20) 0.00 0.14 CATFIN (20) 000 0.00 CATFIN (20) 0.00 000 CATFIN (20) 0.00 000 CATFIN (20) 0.00 000 CATFIN (20) 000 0.00 CATFIN (20) 000 0.00 CATFIN (20) 000 002
TAIL (21) 0.00 0.15 TAIL (21) 000 000 TAIL (21) 000 000 TAIL (21) 00 000 TAIL (21) 000 000 TAIL (21) 000 000 TAIL (21) 000 0.00 TAIL (21) 000 0.00
FFHS 2 (22) 0.00 019 FFHS 2 (22) 000 000 FFHS 2 (22) 000 000 FFHS 2 (22) 000 000 FFHS 000 000 FFHS?2 (22) 000 000 FFHS 2 (22) 000 000 FFHS 2 (22) 000 0.00
FFHS 3 (23) 0.00 019 FFHS 3 (23) 000 0.00 FFHS 3 (23) 000 000 FFHS 3 (23) 000 0.00 000 000 FFHS 3 (23) 000 000 FFHS 3 (23) 000 0.00 FFHS 3 (23) 000 0.00
FVaR (24) 0.00 0.22 FVaR (24) 000 000 FVaR (24) 000 000 FVaR (24) 000 002 ) 000 000 FVaR (24) 000 000 FVaR (24) 000 000 FVaR LI5-L15 (24) 000 0.00
FVaR 10 (25) 0.00 0.22 FVaR 10 (25) 000 0.00 FVaR 10 (25) 0.00 000 FVaR 10 (25) 000 002 FVaR 10 (25) 000 0.00 FVaR 10 (25) 000 0.00 FVaR 10 (25) 000 000 FVaR 10 (25) 000 0.00
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Table 2.27: In this table we report the Granger causality tests of the time series listed in table 14. The methodology
employed is the same of Table 8. At first 12 legs are chosen as default initial size and the AIC criteria is employed
to identify the best number of legs. The table report the difference between the value of the F-statistic and the
critical value from the F-distribution. If F>critical value, we reject the null hypothesis that y does not Grangr

Cause x.
MEAN (1) caused by causes UP (2) caused by causes LOW (3) caused by causes DEVST (1) caused by causes UF (5) caused by causes UM (6) caused by causes UM-MD (7) caused by causes LIV skew (8) caused by causes
MEAN (1) 0.00 0.00 MEAN (1) 24.50 5.52 848 MEAN (1) -L17 142 MEAN (1) 092 MEAN (1) 042 614 059

UP (2) 552 24.50 UpP (2) 000 000 1.99 UP (2) -297 623 UP (2) UP (2) -1.39 -041 1147

Low Ye e owd o be Wwth e s owd Lowth T
PRSIl ta - ol b e DA RSl e bes

s T in e U oo omi | OR(y Or pr i

UM (6) 0.42 041 -1.39 18.14 UM (6) 594 -3.08 UM (6) UM (6) 000 0.00
UM-MD (7) 16.25 1147 1449 -3.23 UM-MD (7). -0.75 ur (] TM-MD (7) 13.75

RGP e (1) o RGO e () i sin RODPmel)  be am RGDPXae (o RODPY e ()
ke 1 3% arbenn . by, G 35 Dwkbe iy Bl 10, ot ke 0y oy
Bull-Neurtal (11) 156  Bull-Neurtal (11) . L] Bull-Neurtal (11) -3.72 052 256 Bull-Neurtal (1) Bull-Neurtal (11) 2.2 Baull-Neurtal (11} Bull-Neurtal (11)
Bear-Neutral (12) 302 Newtral (12) 1010 -2.71 Bear-Neutral (12) 043 200 336 Bear-Neutral (12) Bear-Neutral (12)  -2.61  6.28  Bear-Neutral (12) Bear-Neutral (12)
h MAAGGs Lk o wAGhgw  am e MACHO (1) MAGRO () na e MAGRO(D MACRO ()
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F (5) -3.85 UF (5) UF (5) UF (5) 1.02 -3.82 UF (5) UF (5) 54 -3.85 UF (5) 3863 UF (5)
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Table 2.28: Long term predictive power of sentiment indexes. This table shows the A Utility and the Rzo g metrics
for forecasts of the S&P500 returns at months t+2, t+3, t+6 and t+12 using fear predictors at month t.

t+2 t+3

A Utility Tot Bull Bear R Tot  pval Bull pval Bear pval A Utility Tot  Bull Bear R pval Bull  pval Bear pval
UM-MD -021 1470 -16.44 UM-MD 0.78 0.07 10.16 0.00 -4.77 0.72 UM-MD -0.04 13.81 -15.20 UM-MD 0.05 8.64 0.00 -3.06 0.56
LIV skew -0.69 089 -2.52 LIV skew -0.41 0.86 0.80 0.06 -1.13 0.99 LIV skew -0.98 LIV skew 0.78 031 020 -0.55 0.94
RGDPX skew  0.58 10.84 -10.80 RGDPX skew  0.57 0.02 10.13 0.00 -5.09 0.71 RGDPX skew -10.04 RGDPX skew 0.02  9.68 0.00 -4.33 0.68
Bull-Bear -170 184 587 Bull-Bear 0.75 0.89 010 -218 095 Bull-Bear -6.43 Bull-Bear 0.86 036 022 -233 097
Bull-Neurtal 3.87 -5.53 1513 Bull-Neurtal 0.07 -10.87 1.00  7.60 0.00 Bull-Neurtal Bull-Neurtal 0.10 -10.90 1.00 7.21 0.00
Bear-Neutral 273 -4.00 10.73 Bear-Neutral 0.44 -17.03 1.00 8.69 0.00 Bear-Neutral Bear-Neutral 042 -1921 1.00 9.94 0.00
BTX -1.08 023 -3.13 BTX 0.84 -7.18 046 -15.76 0.86 BTX BTX 0.91 -10.56 0.93 -14.41 0.85
MACRO 275 3.66 1.49 MACRO 0.35 -70.00 0.95 21.27 0.04 MACRO MACRO 0.35 -55.18 0.93 18.77 0.05
VIX -4.720 274 -13.93 VIX 091  4.55 0.01 -859 1.00 VIX VIX 0.95 025 036 -4.71 1.00
ANX 029  1.07  -0.65 ANX 0.58  -6.36 0.87 180 0.20 ANX ANX 045  -7.12 0.90 347 0.09
CRASH -024 410 551 CRASH 0.57 -3.29  1.00 CRASH CRASH 023  5.09 000 -3.34 1.00
VRP 3.63  2.20 5.51 VRP 0.03 4.89 0.07 VRP VRP 0.01  8.86 0.03 5.820.06
KJ 0.04 245 -3.25 KJ 0.20 0.00 0.34 KJ KJ 0.20 0.04 027 0.17 027
CATFIN 322 -10.68 CATFIN 0.66 -4.34 099 CATFIN CATFIN 0.44 0.17 035  -0.43 0.55
TAIL y -11.64 TAIL 0.99 -5.75  1.00 TAIL TAIL 100 -047 043 -10.98 1.00
FFHS 2 -2.18  1.94  -7.94 FFHS 2 0.90 -2.27 099 FFHS 2 FFHS 2 0.34 0.34 017  -0.15 0.82
FFHS 3 -0.71 140 -3.67 FFHS 3 0.86. -1.17 091 FFHS 3 FFHS 3 017 1.01 0.04 -0.21 0.64
FVaR 315 643 278 FVaR 7.27 0.00 3.51 025 FVaR FVaR 0.26 0.96 0.08 -1.25 0.83
VaR 10 230 483  -2.30 JaR 10 4.38 000 6.31 000 -0.07 043 /aR 10 VaR 10 0.00 6.97 0.00 -259 0.70
t+6 t+12

A Utility Tot Bull Bear  Rg Tot  pval Bull pval Bear pval A Utility Tot R Tot  pval Bull pval Bear pval
UM-MD 133 14.01 -12.65 UM-MD 1.58 0.01 -0.04 0.04 2.53 0.08 UM-MD 1.22 UM-MD 209 006 -7.60 085 7.83 0.01
LIV skew LIV skew 0.33 015 1.54 0.00 -0.39 0.77 LIV skew -0.25 LIV skew -0.22 078  -1.55 1.00  0.57 0.03
RGDPX skew RGDPX skew  1.10 0.02 9.01 0.00 -3.57 0.61 RGDPX skew  1.05 RGDPX skew  1.55 0.02 820 0.00 -239 0.71
Bull-Bear Bull-Bear -1.740.94 0.89 0.16  -3.30 1.00 Bull-Bear -1.93 Bull-Bear -1.10 0.85 1.74 0.03 -278 0.99
Bull-Neurtal Bull-Neurtal -0.61 040 -6.95 1.00 3.14 0.00 Bull-Neurtal — -0.83 Bull-Neurtal -2.80 094 -196 0.79 -3.30 0.91
Bear-Neutral Bear-Neutral -0.90 0.41 -19.09 1.00 9.86 0.00 Bear-Neutral 157 -1.41 Bear-Neutral -0.92 053 -9.35 0.99  4.07 0.04
BTX BTX -0.40 039 517 0.00 -4.53 0.90 BTX 032 1.59 BTX -10.85 0.69 022 0.15 -19.04 0.91
MACRO MACRO -13.42 057 -49.52 0.96 13.32 0.06 MACRO 343 6.02 MACRO -0.52 0.26 221 011 -254 0.79
VIX VIX 1.78 010 -2.12 0.67 4.09 0.02 VIX -2.58 191 VIX -1.31 097 0.0 042 -214 1.00
ANX ANX 0.06 029 -13.88 094 8.33 0.02 ANX 0.69  2.03 ANX -0.40  0.57 0.06 042 -0.67 0.68
CRASH CRASH 0.00 035 2.57 0.00 -1.52 1.00 CRASH -0.11 791 CRASH -1.00 021 7.95 0.00 -6.31 1.00
VRP VRP -246 1.00 -1.75 084 -288 1.00 VRP 0.29  4.00 VRP 120 0.13  5.62 000 -1.42 0.73
KJ KJ -0.08 0.16 -0.25 024  0.06 024 KJ 0.01  4.08 KJ 0.55 012  2.40 0.02 -0.95 0.65
CATFIN CATFIN 024 020 5.43 000 -398 098 CATFIN -1.71 3.87 CATFIN -0.29 0.63 2.51 0.00 -257 1.00
TAIL TAIL 3.88 0.00 1.95 001 5.45 001 TAIL 113 420 TAIL 1.02 0.04 3.31 000 -0.85 0.77
FFHS 2 -12.13 FFHS 2 -0.36 0.63 -4.72 1.00 FFHS 2 -1.00  7.78 FFHS 2 112 0.10 11.04 0.00 -6.58 1.00
FFHS 3 -12.18 FFHS 3 -0.70 0.75 -4.51  1.00 FFHS 3 -3.57  9.16 FFHS 3 -0.25 033 12.72 0.00 -10.30 1.00
FVaR -7.60 FVaR -16.00 1.00 -8.04 0.73 FVaR 6.17 14.05 FVaR 9.82 0.00 14.08 0.00 -0.05 0.32
FVaR 10 -4.31 FVaR 10 -11.52 1.00 -2.23 0.56 FVaR 10 5.38 12,08 FVaR 10 7.71 0.00 12.94 0.00 -4.38 0.54
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Table 2.29: Regression of the level and deltas of the uncertainty and Fear indexes at month t on the SP500 excess
return at month t+1, t+3, t4+6 and t+12

t+1 t+3 t+6 t+12
Level b t-stat b t-stat b t-stat b t-stat
MEAN (1) -0.0020 -1.96 -0.0020 -1.97 -0.0020 -1.94 -0.0017  -1.64
UP (2) -0.0015 -1.96 -0.0015 -2.05 -0.0019 -2.44 -0.0014  -1.79
LOW (3) -0.0020 -1.79 -0.0021  -1.85 -0.0016  -1.42 -0.0017  -1.44
DEVST (4) -0.0017  -0.66 -0.0023  -0.92 -0.0042 -1.64 -0.0021  -0.80
UF (5) -0.0483 -3.15 -0.0233  -1.51 -0.0092  -0.60 -0.0119  -0.77
UM (6) -0.0710 -2.75 -0.0367  -1.42 -0.0121  -0.46 -0.0153  -0.59
UM-MD (7) -0.0093 -2.06 -0.0114 -2.51 -0.0147 -3.22 -0.0053 -1.13
LIV skew (8) -0.0133  -1.02 -0.0089  -0.68 -0.0087 -0.66 0.0038  0.29
RGDPX skew (9) -0.0495 -2.30 -0.0531 -2.46 -0.0468 -2.15 -0.0432 -1.97
Bull-Bear (10) -0.0196  -0.83 -0.0156  -0.66 -0.0128 -0.54 -0.0210 -0.87
Bull-Neurtal (11) -0.0413 -1.88 -0.0441 -1.98 -0.0387 -1.71 -0.0246  -1.04
Bear-Neutral (12) -0.0218  -1.04 -0.0268 -1.27 -0.0235  -1.11 -0.0036  -0.17
BTX (13) 0.0006  0.08 0.0088  1.21 0.0158 2.20 0.0102  1.43
MACRO (14) -0.0007 -0.54 0.0004  0.27 0.0002  0.14 0.0009  0.65
VIX (15) 0.0000  0.13 0.0001  0.41 0.0004  1.28 0.0001  0.16
ANX (16) -0.0002 -1.00 0.0000 -0.20 -0.0001 -0.71 0.0000  0.25
CRASH (17) 0.0000  0.14 -0.0001  -0.32 -0.0001  -0.30 0.0000 -0.11
VRP (18) 0.0005 4.23 0.0004 3.60 -0.0001  -0.85 0.0001  0.55
KJ (19) 0.0041  1.10 0.0044  1.19 0.0040  1.08 0.0060 1.63
CATFIN (20) -0.0224  -1.12 -0.0130  -0.65 0.0083  0.42 0.0145  0.73
TAIL (21) -40.5764 -7.02 6.6113 1.08 5.0678 0.83 -1.1121  -0.18
FFHS 2 (22) 0.0000 -0.56 0.0000 -0.61 0.0000  0.50 0.0000 -1.77
FFHS 3 (23) 0.0000 -0.21 0.0000 -1.04 0.0000  0.87 0.0000 -2.00
FVaR (24) 0.0006 2.82 0.0000 -0.07 -0.0002 -0.92 0.0003  1.45
FVaR 10 (25) 0.0002 2.12 0.0001  0.58 -0.0001  -0.82 0.0002  1.50
t+1 t+3 t+6 t+12
Delta b t-stat b t-stat b t-stat b t-stat
MEAN (1) -0.0045 -0.35 0.0156  1.22 -0.0129 -1.01 0.0030  0.23
UP (2) 0.0018  0.35 0.0096  1.83 -0.0031  -0.59 -0.0026  -0.49
LOW (3) -0.0043 -0.53 -0.0015 -0.19 -0.0122 -1.51 0.0078  0.96
DEVST (4) 0.0068  0.56 0.0176  1.44 0.0041  0.34 -0.0080 -0.65
UF (5) -0.5340 -6.40 -0.2470 -2.85 0.0668  0.76 -0.0841  -0.96
UM (6) -0.8377 -4.62 -0.3341  -1.80 -0.1436  -0.77 -0.0195 -0.11
UM-MD (7) 0.0230  1.63 0.0020  0.14 -0.0363 -2.58 0.0100  0.70
LIV skew (8) -0.0376  -0.91 0.0112  0.27 0.0007  0.02 0.0109  0.26
RGDPX skew (9) 0.1006  1.05 -0.0453  -0.47 -0.0212  -0.22 -0.0525  -0.55
Bull-Bear (10) -0.0164 -0.12 0.0985  0.74 -0.0575  -0.43 -0.0143  -0.11
Bull-Neurtal (11) 0.0034  0.02 0.1411  0.85 -0.1890 -1.13 -0.2296  -1.37
Bear-Neutral (12) 0.0398  0.21 -0.0207  -0.11 -0.1318  -0.68 -0.2808 -1.44
BTX (13) -0.0112 -1.44 -0.0005 -0.06 0.0141 1.81 0.0024  0.31
MACRO (14) -0.0092 -1.46 0.0019  0.30 -0.0010 -0.16 -0.0037  -0.58
VIX (15) -0.0010 -1.82 -0.0002 -0.27 0.0010  1.88 -0.0003  -0.55
ANX (16) -0.0017 -2.22 -0.0002 -0.22 0.0001  0.12 0.0003  0.37
CRASH (17) 0.0010  1.00 0.0003  0.31 0.0004  0.46 -0.0010 -1.01
VRP (18) 0.0001  1.43 0.0001  0.70 0.0000  0.00 0.0000  0.07
KJ (19) 0.0084  1.33 0.0039  0.61 -0.0112  -1.79 -0.0029 -0.46
CATFIN (20) -0.0418  -1.56 -0.0398  -1.49 0.0383  1.44 -0.0109 -0.41
TAIL (21) -30.4340 -5.49 1.9190 0.33 3.7233  0.65 1.4804  0.26
FFHS 2 (22) 0.0000 -0.96 0.0000  0.31 0.0000  0.47 0.0000 -1.08
FFHS 3 (23) 0.0000 -0.81 0.0000 -0.21 0.0000  1.02 0.0000 -1.32
FVaR (24) 0.0003  1.68 0.0000 -0.14 -0.0003  -1.50 -0.0001  -0.39
FVaR 10 (25) 0.0001  1.21 0.0000 -0.09 -0.0002 -1.86 0.0000 -0.36
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Table 2.30: Anomalies during periods of high and low investor Sentiment (PLS 6). The table reports values in
months following high and low levels of investor Sentiment, as identified on the base of the median level of PLS 6
Sentiment proxy. Also reported is the performance on a strategy which equally combines the strategies available
within a given month (Combination). For each anomaly we make use of all data available. Details of the length
of the time series can be found in the section dedicated on Data. We report conditional Excess Returns, Standard
Deviation, Skewness, Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the Long and short leg and for the
Spread of the anomalies. We even report their difference.

Sentiment PLS 6 Long Leg Short Leg Long-Short Long Leg Short Leg Long-Short
Excess Returns High Sont_Low Sent__ High-Low _High Sent_Low Sent__High-Low _High Sent_Low Sent__HighLow _Skewness High Seut_Low Sent__High-Low_High Seut_Low Seut__ High-Low_High Sent_Low Sent___High-Low
1) Assct Growth E 08t 0 057 (1) Asset Growth 07 061
(2) Gross Profitability 02 059 030 (2) Gross Profitability 0 005
(3) Investment to Assets 013 052 053 (3) Investment to Assets 047
(1) Net Stock Tssues 021 0.6 065 1) Net Stock Issues 001
(3) Net Operating Asscts 031 076 033 (5) Net Operating Asscts 012
(5) Total Accruals 012 07 068 (6) Total Accrual 0.0
(7) Ohlson's O 04 061 005 (7) Ohilson’ 002
(5) Return on Asse 080 07 007 (5) Return on Asset 020
(9) Failure Proability 016 088 153 115 (9) Failure Probability 061
(10) Momentum 03 072 07 025 (10) Momentu 089
(1) Comporite Equity Tsues 003 072 080 075 (1) Composite Equity sues .23
(12) Size 03 112 081 021 (12) Size 085
(13) Book to Market 081 156 07 012 (13) Baok to Market 016
(14) Operating Profitability 046 126 013 063 (14) Operating Profitabilty 103
15) Investments 06 165 086 0.46 (15) Investuments 121
(16) Easning to Price 0% 131 0. 087 (16) Earnin to Prico 023
(17) Cash Flows to Pricc 088 L1 051 080 (17) Cash Flows to Price 023
jvidend Yield 077 093 001 078 (18) Dividend Yield 011
Combination 012 096 068 052 Combination 000
Standard Deviation Kurtosis
(1) Aset Growth [ 160 072 1) Aset Growih 13 110 019
(2) Gross Profitability 650 473 055 (2) Gross Profiability 154 371 020
(3) Tnvestment to Assets 646 a7 079 (3) Investment to Assets Lio 385 027
(4) Net Stock Iss 501 an 052 Net Stock Issues L7 ) 095
(5) Net Operating Asscts 6.0 180 030 (5) Net Operating Assets 181 165 373
(6) Total Acerual 637 476 012 (6) Total Aceruals 32 381 273
(7) Ohlsons O I 167 065 (7) Ohlson’s L1 321 652
(8) Return on Assts 136 030 (8) Retun on Asse 280 350 018
(9) Fuilure Probability 476 181 (9) Failure Probability 400 458 366
(10) Momentum 470 132 (10) Momentum 021 563 Lis
(1) Composite Equity Isues 378 135 (1) Composite Equity lssues 3 308 745
(12) Size 538 080 (12) Size 003 671 072
(13) Book to Market 500 138 (13) Book to Market 008 511 03
(14) Operating Profitabilty 410 089 (14) Operating Profitabilty 198 724 a7
(15) Investments 547 027 (15) Investments e 3 S0
(16) Earuing to Price 162 113 (16) Earning to Price 0 352 550
(17) Cash Flows to Price 473 079 (17) Cash Flows to Price e 356 510 EEN
(18) Dividend Yield 362 093 (19) Dividend Yield 017 357 160 103
Combination 164 054 Combination 090 626 496 130
Sharpe Ratio Cornis-Fisher Ratio
(1) Amet Growth 17 122 1061 (1) Asset Growth
(2) Gross Profitability 1534 2766 560 (2) Gross Profitability
(3) Investment to As 1803 5660 350 (3) Investment to Assets
(4) Net Stock Issues. 15.48 2040 1701 (4) Net Stock Issues
(5) Net Operating Assets 1585 1852 740 (5) Net Operating Assets
(6) Total Accruals 1312 2.4 265 (6) Total Aceruals
(7) Ohison's O 1226 2010 (7) Ohison's O
cturn on 109 310 (5) Return on Asset
(9) Failure Probability 1851 .65 (9) Failure Probability
(10) Momentum 1533 243 (10) Momentum
(1) Composite Equity Isses 1807 1890 310 (1) Composite Equity Issues
(12) Size 230 236 87 (12) Size
13) Book to Market 328 3150 670 (13) Book to Market
(14) Oparating Profitabilty 281 543 179 (14) Operating Profitability
(15) Investuments 30.10 570 155 (15) nvestuments
(16) Eaming to Price 28580 209 2007 (16) Eamning to Price
(17) Cash Flows to Price 2050 30.90 208 (17) Cash Flows to Price
(18) Dividend Yield 5.62 215 1) Dividend Yield
Combination 2061 3306 034 Combination
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Table 2.31: Anomalies during periods of high and low macroeconomic uncertainty (UM). The table reports values
in months following high and low levels of macroeconomic uncertainty, as identified on the base of the median
level of the UM uncertainty proxy. Also reported is the performance on a strategy which equally combines the
strategies available within a given month (Combination). For each anomaly we make use of all data available.
Details of the length of the time series can be found in the section dedicated on Data. We report conditional
Excess Returns, Standard Deviation, Skewness, Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the Long
and short Leg and for the Spread of the anomalies. We even report their difference. Excess Returns, Standard
Deviation, Sharpe Ratio and Cornish-Fisher Ratio are reported in percentage.

UM Long Leg Short Leg Long Short Long Loy Short Leg Long Short

Excess Returns High Unc_Low Une _HighLow_High Une_Low Unc_HighLow High Unc Low U Highlow  Skewness High Une_Low Unc_HighLow _High Une_Low Unc_HighLow_High Unc_Low Unc__ HighLow
(1) Asset Growth 018 a7 002 005 (1) Asset Growth 04
(2) Gross Profitability 039 103 039 061 (2) Gross Profitability 042
(3) Investment o Assets 0.1 087 103 016 (3) Investment to Assets 048
(4) Net Stock Issues 0 031 070 011 (4) Net Stock Issues 060
(5) Net Operating Assets 001 030 085 005 (5) Net Operating Assets 048
(6) Total Accruals 018 093 095 002 (6) Total Accrual 047
(7) Ollson’s O 021 051 032 0.1 (7) Oblson'’s O 066
(8) Retura on Assets 052 Lot 042 062 (8) Retun i 0.5
(9) Failure Probability 033 22 176 046 (9) Failure Probability 018
(10) Momentum 018 051 001 037 (10) Momentum 135
(1) Composite Equity Issues 033 120 Lo9 020 (1) Composite Equity Issues 174
(12) Size 0.9 0.7 022 036 (12) Size 000
(18) Book to Market 022 108 111 003 (13) Book to Market 042
(14) Operating Proftability 032 061 a7 021 (14) Operating Profitability 061
(15) Investments 028 L1 102 012 (15) Invest 001
(16) Eamning to Price 031 092 061 031 (16) Earning to Price 061
(17) Cash Flows to Price 039 105 058 047 (17) Cash Flows to Price 061
(18) Dividend Yield 030 051 026 0.26 (18) Dividend Yield 047
Combination 025 095 075 020 Combination 055

Standard Deviation Kurtosis

(1) Asset Growth [ (1) Asset Growth 351 1518 1035
(2) Gross Profitability 02 (2) Gross Profitability 350 1468
(3) Investment to Assets 061 (3) Investment to Assets 01 1475
(1) Net Stock Issues 047 (1) Net Stock Issues L2 25
(5) Net Operating Assets 032 (5) Net Operating Assets 366 1228
(6) Total Accrual 0.4 (6) Total Accruals 13 1330
(7) Oblson’s O 053 (7) Oblson'’s O 01 1
(8) Return on Asse 030 (8) Return on Assets 348 186
(9) Failuse Probability 201 (9) Failure Probability 403 138
(10) Momentum 183 (10) Momentum 817 721
(1) Composite Equity Issues 107 (11) Composite Equity lssues 1070 651
(12) Size am (12) Size 561 547
(13) Book to Market 135 (13) Book to Market 551 617
(1) Operating Profitability 125 (14) Operating Profitability  6.37 530
(15) Investments 013 (15) Investments 510 581
(16) Easning to Pricc 105 (16) Earning to Price 620 521
(17) Cash Flows to Price 075 (17) Cash Flows to Price 650 517
(18) Dividend Yield 0.2 (18) Dividend Yield 623 102
Combination 05 Combination S0 1036
Sharpe Ratio Cornis Fisher Ratio
(1) Asset Growth 5660 1258 (1) Asset Growth 217 206
(2) Gross Profitability 1542 25,44 (2) Gross Profitability 205 155
(3) Investment to Assets 6537 2610 (3) Investment to Assets 220 267

(1) Net Stock Issues (1) Net Stock lssues 227
(5) Net Operating Assets (5) Net Operating Assots Lo2
(6) Total Accruals (6) Total Accruals L2
(7) Oblson's O (7) Oblson's O 048
(8) Return on (8) Retum on Assets 0.5
(9) Failure Probability (9) Failure Probability 270
(10) Momentum (10) Momentum 401
(1) Compasite Equity Tssues (1) Composite Equity lssues 147 767
(12) Size (12) Size 155 859
(13) Book to Market (13) Book to Market 605 1ass
ting Profitability (14) Operating Profitabilty 196 9.3
(15) Investments 616 121
(16) Earing to Pr 19.36 (16) Earning to Price et 1315
(17) Cash Flows to Price 1095 (17) Cash Flows to Price T 122
8) Dividend Yield (18) Dividend Yield 726 1656
Combination 507 36,48 296 Combination 35 6
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Table 2.32: Anomalies during periods of high and low Volatility (VIX). The table reports values in months
following high and low levels of Volatility, as identified on the base of the median level of the VIX index. Also
reported is the performance on a strategy which equally combines the strategies available within a given month
(Combination). For each anomaly we make use of all data available. Details of the length of the time series can
be found in the section dedicated on Data. We report conditional Excess Returns, Standard Deviation, Skewness,
Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the long and short leg and for the Spread of the anomalies.
We even report their difference. Excess Returns, Standard Deviation, Sharpe Ratio and Cornish-Fisher Ratio are
reported in percentage.

vix Long L Short Log Long Short Long Loy Short Leg Short
Escss Returns High VIX Low VIX _High-Low_High VIX_Low VIX _High-Low_High VIX_Low VX HighlowSkewaes High VIX Low VIX_HighLow High VIX Low High VIX Low VX High-Low
(1) Asset Growth 0rr 0 057 003 02 (1) Asset Growth o on
(2) Gross Proftabilty 06T 006 05 006 005 (2) Gross Proftabiliy w00 on
(3) Investment to Assets 065 016 0 o (3) Investment. 1o Assets o ox
(1) Net Stock Issues 0i6 02 01 018 02 1) Net Stock Issues 0.0
(5) Net Operating Assets 05 000 043 ol s 5) Net Operating Assets 0.5
(6) Total Aceruals 0e2 008 05 007 nas 6) Total Accruals o1
(7) Oblson’s O 036 a1 0 01 012 130
(8) Return on Asse 0, 0as 03 03 06 032
() Fuilure Probabiliy o ou 0% 08 0% 010
(10) Momentum 00 020 02 00i 02 ) 12
(11) Composite Equity lssues 036 046 011 04b 030 11) Composite Equity Issues 050
(12) size L8 om 0w o9 051 (12) Siae o071
(13) Book to Market 1%L 02 oo o2 (13) Book to Market 065
(14) Operating Proftabilty o 0mo 0w 120 o6 (14) Operating Profitablity o7
(15) Investments 13 0s 0s 06 03 (15) Investaments 018
(16) Earning to Price 20 0% 03 L8 0w 16) Earning to Price 001
(17) Cash Flows to Price 16w 02 L2 0w 17) Cash Flows to Price 008
(18) Dividend Yield oo oo0s 01 L 07 (18) Dividend Yield 19
Combination oSt 0w o 03 e Conbination 003
Standard Deviation Kurtosis
(1) Aset Growhs [T a7 (1) Aseet Growth T T
(2) Gross Proftabilty 633 110 108 2) Gross Profitabilty 510 0w
(3) Investment to Assets 601 408 125 () Investment: to Assets T AT
(1) Net Stock Issucs 9 320 133 (1) Net Stock Isues a6 00
(5) Net Operating Assets 613 L8 113 (5) Net Operating Assels 351 s
(6) Total Accrunls 62 a1 126 (6) Total Accruals 0 098
7) Olison's O 600 500 i 7) Ohlson's O 321 6l
(5) Return on Assets 620 12 122 ) Retuen on A 3% 016
(9) Failure Probabilty Tan 42 13 () Failue Probability 505 213
(10) Momentum 6 as 372 (10) Momentum 67 02
(11) Composite Equity Iswes 501 288 381 (11) Composite Equity Tsues 37 806
(12) Size T as 285 (12) Size 33 3
(13) Book to Market [ 10 13) Book to Market 0 06
(11) Operating Profiabilcy 637 3 112 11) Operating Proficabilty 41
(13) Investments. sa aor 90 (15) Investments s 20
(16) Eoming to Price 61 820 350 (16) Earning to Price 2w
(17) Cash Flows to Price 655 828 318 (17) Cash Flows to Price 313 o
(15) Dividend Yield LTt 311 (18) Dividend Yield 200 057
Combination 630 570 s Combination 0 1l
Sharpe Ratio Conis-Fisher Ratio
(1) Asset Growts PRI (1) Asst Growth s
(2) Gross Proftabilty 051 L3 (2) Gross Profitability 701
(3) Investment to Assets 12 a0 (3) Tnvestment. 1o Assts 30.60
(1) Net Stock Issues [ 1) Net Stock Issues 3478
(5) Net Operating Asets 762 5) Net Operating Assets 2015
(6) Total Aceruals 095 (6) Total Accruals e
(7) Oblson’s O 019 (7) Oblson's O 551
() Return on Assets 318 (8) Retum on Assts 1581
() Fuilure Probabiliy e 33 (9) Failure Probability 331
(10) Momentum s T 10) Momentum 1931
(11) Composite Equity lssues 1115 1585 750 11) Composite Equity Issues 3150
(12) sice BB 1916 e (12) Sie 026
(13) Book to Market 10356 514 (13) Book to Market 537
(1) Operating Proftability 1867 151 (11) Operating Profitablity s
(15) Investments 076 052 3143
(16) Earning to Price 011 1722 3215
(17) Cash Flows to Price 1023 1605 %76
(18) Dividend Yield FETR. 2101 990
Combination 101 1266 060 Conbination %72
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Table 2.33: Anomalies during periods of high and low Variance Risk Premium (VRP). The table reports values
in months following high and low levels of Variance, as identified on the base of the median level of the VRP
index. Also reported is the performance on a strategy which equally combines the strategies available within
a given month (Combination). For each anomaly we make use of all data available. Details of the length of
the time series can be found in the section dedicated on Data. We report conditional Excess Returns, Standard
Deviation, Skewness, Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the long and short Leg and for the
Spread of the anomalies. We even report their difference. Excess Returns, Standard Deviation, Sharpe Ratio and
Cornish-Fisher Ratio are reported in percentage.

VRP.

Long Leg

Short Leg

Long:Short

Excoss Returis High VR Low VRP _High-Low_High VRP_Low VRP _HighLow_High VRP_Low VRP_HighLow_Skewnoss High Low High-Low
(1) Asset Growth 081 070 EE 051
(2) Gross Profitability 017 018 027 0355
(3) Investment. to Assets 079 077 041 049
(1) Net Stock Issues 062 061 031 0355
(5) Net Operating Assets 039 053 039 0359
(6) Total Acerusl 058 07 017 012
) Oblsors C 036 046 066 036
(8) Retum on Asse 028 066 013 1
(9) Failure Probability 110 130 020 008
(10) Moweut 082 062 02 071
(1) Composite Equity ssues 108 119 (1) Composite Equity Tssues 123 0.30
(12) Size 155 019 (12) Size 056 082
(13) Book to Market 005 (1) Baok to Market 100 07
(1) Operating Profitability 055 (14) Operating Profitability 099 073
(15) Investments 07 5) Iuvestmen 061 057
(16) Earning to Pric 048 (16) Earning to Price 128 060
(17) Cash Flows to Price 060 (17) Cash Flows to Price 139 0.0
(18) Dividend Yield 02 0 (18) Dividend Yield 178 008
Combination 061 015 Combination 035 0.16

Standard Deviation

Kurtosis

1) Asset Growth 508 235 (1) Asset Growth
(2) Gross Profitability 608 241 02
(3) Investment. to Assets 550 231 0.0
(4) Net Stock Issues 160 297 112
(5) Net Operating Assets 634 232 062
(6) Total Aceruals 576 250 021
(7) Oblson’s O 574 200 073
(3) Retumn on Ass 608 267 023
(9) Failure Probability 693 156 163
0) Momentum 581 140 00
(1) Composite Equity sues 437 208 019
(12) Size 695 1% 216
(13) Book to Market 617 340 0.8
(14) Operating Proficabiity 576 397 L7
735 255 0.0
551 237 033
588 216 02
112 218 0.66
Combination 581 301 0
Sharpe Ratio Cornis-Fisher Ratio
(1) Asset Growth 1487 206 (1) Aset Growth o7
(2) Gross Profitability 1270 71 (2) Gross Profitability 160
(3) Investment. to Assets 1110 3508 (3) Investment. to Assets 87
(1) Net Stock Tssues 1350 2045 (4) Net Stock Isties 668
(5) Net Operating Assets 933 3243 (5) Net Operating Assets 560
(6) Total Aceruals 027 3043 (6) Total Accruals 626
(7) Oblson's O 072 15.96 7) Oblson’s O 600
(8) Retum on Asset 56 23 (%) Retum on Asse 655
(9) Failure Probability 15.50 1163 (9) Failure Probability 1301
(10) Moweutum 1406 16 (10) Momentum 1018
(1) Composite Equity Issues 2477 372 (1) Composite Equity Issues 1492
) Size 268 1523 (12) Size 1349
(13) Book to Market 3307 2043 (13) Baok to Market 1931
(14) Operating Profitability 2020 132 (14) Operating Profitability 1350
(15) Investuents 3210 5069 (15) Investments. 1961
(16) Earning to Price 33,36 201 (16) Eamning to Price 1505
(17) Cash Flows to Price 3146 2.12 (17) Cash Flows to Price 190
(15) Dividend Yiel 3180 3 (18) Dividend Yield 1638
Combination 2026 2602 Combination 1126
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Table 2.34: Anomalies during periods of high and low Fear (FVaR). The table reports values in months following
high and low levels of Fear, as identified on the base of the median level of the FVaR index. Also reported is the
performance on a strategy which equally combines the strategies available within a given month (Combination).
For each anomaly we make use of all data available. Details of the length of the time series can be found in
the section dedicated on Data. We report conditional Excess Returns, Standard Deviation, Skewness, Kurtosis,
Sharpe Ratio and Cornish-Fisher Ratio for the long and short leg and for the Spread of the anomalies. We even
report their difference. Excess Returns, Standard Deviation, Sharpe Ratio and Cornish-Fisher Ratio are reported

in percentage.

FVaR Long Leg Short Leg Long-Short Long Leg Short Leg Long-Short
Excess Returns High Fonr_Low Foar _ High-Low _High Foar_Low Fear _ High-Low High Fear_Low Fear __ HiglLow _Skewness High Fonr_Low Fear _High Low_High Fear_Low Fear _ High-Low _High Fear_Low Fear __ HighLow
(1) Asset Growth [y 020 002 020 [ 036 [ 007 (1) Aset Growth 120 008 112 202
2) Gross Profitability 031 027 011 0.5 (2) Gross Profitability L 007 155 131
(3) Investment to Assets 017 014 035 010 (3) Investment to Assets 130 009 EEY 219
1) Net Stock Issues 02 025 028 008 (1) Net Stock Issues. 167 001 159
5) Net Operating Assots 030 018 013 (5) Net Operating Asscts 160 019 211
(6) Total Accrusi 021 0.76 072 (6) Total Acerual Lo 041 156
7) Oblson’s O 020 015 015 (7) Olison's O T 00 208
(8) Retum on 031 011 037 (8) Retum on 181 011 127
9) Failure Probability 0.0 2% 106 (9) Failure Probability 156 061 035
(10) Momentum 061 160 028 (10) Momentum 081 101 200
(11) Composite Equity Isues 0,95 17 010 (1) Compesite Equity lssus 0,45 s 062
12) Size 139 L7 030 (12) Size 0.5 036 001
(13) Book to Market 162 199 024 (13) Book to Market 080 0.96
14) Operating Profitability 167 155 007 (14) Operating Profitabiliey 078 Loo
(15) Investment 150 207 044 (15) Investments 079 101
16) Earning to Price 168 205 037 (16) Eaning to Price o0 5 125
17) Cash Flows to Price 181 205 038 (17) Cash Flows to Price 109 Lo e
(18) Dividend Yield 161 212 020 (1%) Dividend Yicld 081 076 0.3
Combination 081 007 005 Combination 052 042 027
Standard Deviation Kurtosis
(1) Assot Growth 567 551 016 023 (1) At Growth 215 512
2) Gross Proftability 522 549 027 000 (2) Gross Profitability 288 35
3) Investment to Assets 501 585 0.00 0.1 (3) Investment to Assets L0 173
(4) Net Stock Issues. 456 180 0.06 012 (1) Net Stock Issues 363 354
5) Net Operatiug Assets 583 550 0.33 000 (5) Net Operating Assets 332 502
(6) Total Accrusl 619 567 052 015 (6) Total Aceruals 195 186
7) Oblson’s O 605 544 061 044 (7) Ol 450 305
(8] Return on A: 556 514 0.42 022 (8) Return on 110 105
(9) Failure Probability 593 670 0.86 120 (9) Failure Probability 133 008
10) Momentum 158 636 061 (10) Momentum 068 350
(1) Composite Equity Isues 409 553 144 024 (1) Composite Equity sues 208 213
12) Size 540 627 057 061 (12) Size 03s 020
(13) Book to Market 543 611 068 019 (13) Baok to Market 156 022
(14) Operating Profitability 515 605 0.0 035 (14) Operating Profitability L8 011
15) Tnvestments 603 640 037 056 (15) nvestments Lis 057
(16) Earning to Price 496 623 126 022 (16) Eaming to Price 288 067
17) Cash Flows to Price 530 662 BEY 000 (17) Cash Flows 1o Price 320 09
(18) Dividend Yield 149 544 005 020 (18) Dividend Yield 7 0.66
Combination 537 581 047 007 Combination 151
Sharpe Ratio Coruis-Fisher Ratio
) Asset Growth a7 (1) At Growth 156 062 001 156 1
(2) Gross Profitabilty 077 (2) Gross Profitability 178 031 1 178 111
3) nvestuent (o Assets 0.49 (3) Investment 1o Assets 03 022 066 0% 214
(4) Net Stack Issues 050 (1) Net Stock Issues 132 021 153 132 23
5) Net Operatiug Assets 221 (5) Net Operating Assets 150 Loz 047 150 236
6) Total Accruals 916 (6) Total Aceruals Rt I 586 -l 28
(7) Ohlson's O 105 (7) Ohlson's O 091 05 049 091 123
) Return on As 319 (5) Return on Assts 154 146 008 154 586
(9) Failure Prabability 1002 (9) Failure Probability 196 561 368 196 728
10) Momentum 1490 (10) Momentum 504 “162 067 501 1003
(11) Composite Eaquity Tssues 1045 (1) Composite Equity Issues 995 106 ot oo 1523
(12) Size %72 145 (12) Size 1477 Lis 626 1477 1645
13) Book to Market 082 608 (13) Book to Market 73 et 67 0B 2015
(14) Operating Proftability  32.40 207 (14) Operating Profitability 2270 001 e w0
15) Investment 50 42 (15) Investuments 2061 Bl 20 2060
(16) Eaming to Price 3.8 509 (16) Eaming to Price a2 o6 2oy om0 2766
) Cash Flows to Price 31.61 323 (17) Cash Flows to Price EE T 3 280 30,38
) Dividend Yiel T 1) Dividend Yield 212wl 2% %612 2718
Combination 1642 210 019 Combination 1037 0% 0w 1087 1217

94




Table 2.35: Anomalies during periods of high and low level of Fear (FVaR L15-R15). The table reports values
in months following high and low levels of Fear, as identified on the base of the median level of the Fear (FVAR
L15-R15). Also reported is the performance on a strategy which equally combines the strategies available within
a given month (Combination). For each anomaly we make use of all data available. Details of the length of
the time series can be found in the section dedicated on Data. We report conditional Excess Returns, Standard
Deviation, Skewness, Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the long and short leg and for the
Spread of the anomalies. We even report their difference. Excess Returns, Standard Deviation, Sharpe Ratio and
Cornish-Fisher Ratio are reported in percentage.

FVaR LISRI5 Long Leg Short Leg Long Short Long Leg Short Leg Long Short
Excess Returns High Fear_Low Fear_HighLow_High Fear _Low Foar _HighLow _High Fear_Low Fonr _ HighLow  Skewness High Fear_Low Fear_High-Low_High Fear_Low Fear_High-Low_High Fear _Low Fear _ High Low
(1) Asset Growth 071 a7 6 (1) Asset Growth ot om0 om
(2) Gross Profitabilty on 028 2) Gross Profitabilty 32 093 126
(3) Investiment 1o Assets 06T 05 3) Investment to Assets 011 07 093
N 048030 (4) Net Stock Issues 002 o4 102
(5) Net Operating Assets 06 027 (5) Net Operating Assets 009 001 06
(6) Total Accruals 086 08 (6) Total Accruals 005 076 07
(7) Ohlson’s O 06 061 (7) Oblson'’s O 007 L6 108
(5) Roturn on Assets 066 012 (8) Retum on Assets 03 16 082
(9) Failuze Probability L6 02 (9) Failure Probability 0 066 Lt
(10) Momentum IR (10) Momentum 091 073 018
(11) Composite Equity Issues 151 -130 (11) Composite Equity Issues 017 115 132
(12) Size 231 127 (12) Size 071 076 LT
(13) Book to Market 5 137 13) Book to Market s 096 205
(14) Operating Profitability 108 (14) Operating Profitability 120 0.6 185
(15) Investmer 120 (15) Investments 002 066 158
(16) Eaming to Pric 123 (16) Earning to Price 131 086 207
(17) Cash Flows to Price 124 (17) Cash Flows to Price [E T T ]
(15) Dividend Yield 096 (18) Dividend Yield 155 amo 2
Combination 083 Combination 05 080 131
Standard Devistion Kurtosis
(1) Asset Growth 193 605 (1) Asset Growth 060
(2) Gros Profitability 160 591 (2) Gross Profitability 080
(3) Investiment to Assets 510 647 (3) Investment to Assets
(4) Net Stock Issucs 101 535 (4) Net Stock Issues
(5) Net Operating Assets 500 621 (5) Net Operating Assets 142
(6) Total Accruals 510 637 ©) 019
(7) Ohlson’s O i 650 (7) Oblson’s O 233
(5) Return on Assets. pedt 584 (8) Return on Ass 21
(9) Failure Probability 547 67 (9) Failure Probability 231
(10) Momentum 130 619 (10) Momentum 052
(1) Composite Equity Isues 349 546 (11) Composite Equity Issues 18
(12) Size 522 508 (12) Size 058
(13) Book to Market 511 572 (13) Book to Market 214
(14) Operating Profitability 173 58 (14) Operating Profitability 200
(15) Investments 581 616 (15) Investments 146
(16) Earming to Price 1476 572 (16) Earning to Price 328
(17) Cash Flows to Price 508 601 (17) Cash Flows to Price 330
(15) Dividend Yield 423 503 (18) Dividend Yield 361
Combination 430 508 Combination 0.6
arpe Ratio Cornis Fisher Ratio
(1) Asset Growth 1119 07 (1) Asset Growth
(2) Gross Profitability 1545 S0t (2) Gross Profitability
(3) Investment to Assets 1306 -13.05 3) Investment to Assets
(1) Net Stock Issues 1180 922 (1) Net Stock Issues
(5) Net Operating Assets 1306 10,66 (5) Net Operating Asscts
(6) Total Accr 1693 L5t (6) Total Accruals
(7) Oblson’s O 1471 517 (7) Oblson’s O
(8) Retum o 1107 1935 (8) Return on Ass
(9) Failure Probability 2165 1160 (9) Failure Probability
(10) Momentum 27.06 3273 (10) Momentum
(1) Composite Equity Issues 44,09 2791 (11) Composite Equity Issues
(12) Size 131 (12) Size
(13) Book to Market 0.4 (13) Book to Market
(14) Operating Proftability  54.62 (14) Operating Profitability

(15) Investments

Combination

106

Combination

3240

95



Table 2.36: Anomalies during periods of high and low level of Fear (FCVaR). The table reports values in months
following high and low levels of Fear, as identified on the base of the median level of the Fear (FCVaR). Also
reported is the performance on a strategy which equally combines the strategies available within a given month
(Combination). For each anomaly we make use of all data available. Details of the length of the time series can
be found in the section dedicated on Data. We report conditional Excess Returns, Standard Deviation, Skewness,
Kurtosis, Sharpe Ratio and Cornish-Fisher Ratio for the long and short leg and for the Spread of the anomalies.
We even report their difference. Excess Returns, Standard Deviation, Sharpe Ratio and Cornish-Fisher Ratio are
reported in percentage.

FevaR Lowg Leg Short Leg. Long Short Long Leg Short Leg Long:Short
Excess Returns High FCVaR_Low FCVaR_High-Low High FCVaR_Low FCVaR_High-Low High FOVaR_Low FOVAR_HighLowSkewness High FOVaR_Low FCVaR_High-Low High FCVaR_Low FCVaR_High-Low _High FOVaR_Low FCVaR_HighLow
1) Avwet Growly I3 1) Aset Growih
2) Gross Proftabilty o0 2) Gross Profitabiley
006 (3) Investment to Assets
003 1) Net Stok Issucs
005 (5) Net Operating Assts
.10 6) Total Accruals
00 (7) Oblson's O
012 8) Return on Ass
o1 (9) Failure Prababilty
154 (10) Momentum
1 (11) Compasite Equity Issucs
e 100 (12) Size
Book to Market 2 (13) Book to Market
(14) Operating Profitabiliy 221 (14) Operating Profitabiliy
(15) Investments 210 (15) Investments
(16) Earning to Price 200 (16) Earning to Price
(17) Cash Flows to Prie 230 (17) Cash Flows to Pric
(18) Dividend Yield 17 (18) Dividend Yield
Coubination o0 Combination
Standard Devintion Kuttosis
1) Awet Growily I 1) Aset Growih
2) Gross Profitabilty a2 2) Gross Profitabilty
3) Tavestment to Asscts an 3) Investiment to Assets
1) Net Storck Issues 366 1) Net Stok Issucs
5) Net Operating Assets 167 (5) Net Operating Assts
6) Total Accruals AT 6) Total Accruals
(7) Ohlson's O 151 (7) Ohlson's O
() Return on Ass w40 ) Returm on
9) Falure Probability a7 (9) Failure Prababilty
(10) Momentim 390 (10) Momentum
(11) Compasite Equity lssues 295 (11) Compasite Equity Tssues
(12) Sie 106 (12) Size
(13) Book to Market, 10 (13) Book to Market,
(14) Operating Profitabiliy 547 (14) Operating Profitabiliy
(13) Investments 62 (15) Investments
(16) Eorming to Price 540 (16) Earning to Price
(17) Cash Flows to Prie 362 (17) Cash Flows to Pric
(18) Dividend Yield 300 (15) Dividend Yield
Coubination 105 Combination
Sharpe Ratio Comis-Fisher Ratio
1) Awet Growily 7 1) Aset Growih
2) Gross Profitabilty 236 (2) Gross Profitabilty
3) Tavestment to Asscts 1 3) Investment to Assets
1) Net Stork I a (1) Net Stock I
5) Net Operating Assts 1 (5) Net Operating Assts
6) Total Accrual 2 6) Total Acerual
(7) Ohlson 1 (7) Ohlson's O
(8) Return on Asse 5) Return on Ass
9) Falure Probabilty x (9) Falure Probabilty
(10) Momentin 3045 (10) Momentum
(1) Composite Bty lsues 4862 (11) Compasite Equity Issues

(12) Size
(13) Book o
(14) Operating Profitabiliy
(13) Investments

(16) Eorming to Price
(17) Cash Flows to Price
(15) Dividend Yield
Coubination

Market

96

(12) Size
(13) Book to Market,
(14) Operating Proitabiliy

(15) Dividend Yield
Coubination




Table 2.37: In this table we present the result of predictive regressions on long-short strategies. The table reports
estimates of b in the regression R;; = a + bX;_1 + ur where R;; is the excess return in month ton either the
long leg, short leg, or the difference, T is the length of the lag and is equal to 1, 3 or 6, while X is one of the
following predictors: PLS6, UM, VIX, VRP, FVaR. The values of b are multiplied by 100 in the table.

Tong Leg Short Leg SPREAD Tong Leg Short Leg SPREAD Long Leg Short Leg SPREAD

PLS6 [ER tstat b Ustat b tstat 43 b Tstat b tstat b tstal 46 b Ustal b Tstat b
(1) Asset Growth -0.81 -1.06 -4.09 0.38 4.65 -0.71 -0.96 0.38 4.66 -0.71 72 0.43
(2) Gross Profitability -0.78 -0.80 r'i 80 0.15 154 -0.68 -0.72 0.17 ¢ -0.51 0.22
(3) Tnvestment to Assets -0.79 -1.02 0.36 170 -0.70 -0.92 0.35 -0.66 0.37
(4) Net Stock Issues -0.76 -0.96 0.33 4.00 -0.66 -0.84 0.32 -0.60 0.35
(5) Net Operating As: -0.82 -0.96 028 383 -0.72 -0.87 0.28 -0.60 0.25
(6) Total Accruals -0.61 -0.96 0.51 4.42 -0.47 -0.87 0.55 -0.63 0.56
(7) Ohlson’s O -0.87 -0.78 0.04 0.43 -0.80 -0.68 0.01 -0.51 0.09
(8) Return on Assets -0.88 -0.75 0.04 0.33 -0.67 -0.53 0.03 -0.09 -0.01
(9) Failure Probability -0.57 -0.93 0.53 2.76 -0.38 -0.77 0.56 -0.40 0.61
(10) Momentum -0.90 -0.98 0.21 135 -0.91 0.21 -0.74 0.16
(11) Composite Equity -0.71 -1.05 0.47 4.75 -0.63 -0.96 0.47 -0.81 0.49
(12) Size -0.97 -0.65 <018 -L11 -0.95 -0.57 -0.25 -0.42 <018 -1.09
(13) Book to Market -0.75 -1.00 0.39 3.12 -0.71 -0.97 0.39 -0.82 0.48 3.91
(14) Operating Profitability -0.81 -1.00 0.33 280 -0.70 -1.00 0.43 -0.79 043 3.67
(15) Investments -0.89 -1.01 0.26 3.10 -0.87 -0.96 0.22 2.70 -0.77 0.27 3.30
(16) Earning to Price -0.60 -0.94 0.47 4.91 -0.52 -0.88 0.49 5.12 -0.73 0.58 6.05
(17) Cash Flows to Price -0.66 -0.93 0.41 4.57 -0.57 -0.87 -3.53 0.42 474 -0.71 0.49 5.55
(18) Dividend Yield -0.42 -0.75 0.46 4.46 -0.33 -0.65 -2.91 0.45 4.34 -0.48 0.52 5.04
Comination -0.49 -0.70 0.39 9.57 -0.35 -0.57 -2.77 0.40 9.68 -0.25 0.42 10.40
UM t+1 b b tstat b tstat  t+3 b tstat b tstat  t+6 b tstat b tstat b t stat
(1) Asset Growth -2.52 -0.71 0.60 0.14 103 229 0.65 0.98 0.85
(2) Gross Profitability -3.62 -1.18 3.29 -0.42 1.34 0.29 3.53 2.62
(3) Investment to Assets -1.04 -0.29 -0.51 0.64 114 119 -0.62 -0.54
(4) Net Stock Issues -2.82 -0.81 0.59 -0.02 . 105 0.60 0.76 0.56
(5) Net Operating Assets -1.74 -0.52 0.52 0.46 2.80 0.83 112 -0.90 -0.79
(6) Total Accruals -0.45 -0.14 0.89 0.71 517 160 130 0.85 0.57
(7) Ohlson’s O -0.89 -0.26 0.24 0.41 4.65 146 0.75 2.10 143
(8) Return on As -243 072 117 0.16 3.12 0.92 094 -006  -0.04
(9) Failure Probability -2.25 -0.68 -0.28 5.74 0.21 5.08 217
(10) Momentum 36 -0.39 1.04 -1.49 177 -7.66 -3.48
(11) Compusm Equity Issues -1.54 -0.38 0.15 159 0.22 0.86 0.52
(12 -1.73 -0.33 6.54 0.56 4.94 2.18
(13) Book to Market -0.26 0.84 5.81 L18 119 0.65
(14) Operating Profitability -0.31 0.89 5.69 152 -0.27 -0.14
(15) Investments -0.48 0.76 7.65 127 2.94 2.37
(16) Earning to Price -0.80 0.55 5.55 117 164 120
(17) Cash Flows to Price -0.83 0.51 6.77 113 3.08 245
(18) Dividend Yield -1.25 0.31 4.76 1.26 114 0.85
Comination -0.94 0.48 4.35 1.31 1.09 2.00
VIX t+1 b tstat b tstat b tstat 143 b tstat b tstat b tstat  t46 b tstat b tstat b t stat
(1) Asset Growth 0.05 141 0.06 151 0.04 103 0.02 0.57 0.76 0.03 0.81 0.01 0.30 0.01 0.94

0.07 177 0.04 104 0.05 125 0.00 0.10 247 0.03 0.71 0.01 0.34 0.01 0.62

0.05 1.37 0.08 1.88 0.04 0.98 0.04 0.87 0.03 0.77 0.04 086 -0.01

0.03 0.96 0.06 147 0.02 0.58 0.03 0.61 0.01 0.02 048 -0.01

0.07 1.67 0.06 0.04 0.98 0.02 0.01 0.03 0.62 -0.01

0.07 1.87 0.07 0.08 1.92 0.02 0.03 0.02 0.48 0.01

0.06 1.55 0.08 0.05 120 0.04 0.03 0.00 0.10 0.02
( 0.06 1.60 0.07 0.04 0.98 0.04 0.01 0.05 119 -0.04
( 0.14 3.08 0.01 0.07 159 0.01 0.06 -0.01 -0.14 0.06
(10) \Iouwmum -0.06 -1.37 0.02 0.01 0.21 0.08 0.01 0.13 2.99 -0.12
(11) Composite Equity Issues -0.03 -0.90 -0.03 0.02 0.73 0.03 0.06 0.05 114 0.01
(12) Size 0.00 -0.11 0.03 0.11 2.43 0.05 0.15 0.08 2.09 0.07
(13) Book to Market -003  -086 005 0.08 1.88 0.14 012 239 002
(14) Operating Profitability 0.01 0.23 0.01 0.08 200 0.11 015  3.03  -0.04
(15) Investments 0.01 0.14 0.02 0.13 2.63 0.18 0.11 2.32 0.07
(16) Earning to Price -0.01 -0.36 0.01 0.06 168 0.12 0.09 2.21 0.02
(17) Cash Flows to Price -0.01 -0.28 0.02 0.07 1.94 0.13 3.36 0.09 2.35 0.03
(18) Dividend Yield -0.02 -0.58 0.00 . 0.03 0.91 0.10 3.38 0.08 2.28 0.02
Comination 0.03 0.90 0.04 122 0.06 197 0.07 247 0.06 1.94 0.01
VRP t+1 b b tstat b t stat t+3 b tstat b b t stat. t+6 b tstat b b t stat
(1) Asset Growth 0.02 0.02 1.20 0.00 0.53 0.03 2.14 0.03 0.01 0.95 -0.83 -0.02 0.01 1.78
(2) Gross Profitability 0.02 0.02 108 0.01 147 0.03 1.78 0.03 0.00 -0.01 0.01 1.13
(3) Investment to Assets 0.02 0.02 149 -0.01 -0.99 0.03 2.04 0.03 0.00 -0.02 0.01 127
(4) Net Stock Issues 0.01 0.02 133 -0.01 -0.77 0.03 2.24 0.03 0.00 -0.02 0.01 1.06
(5) Net Operating Assets 0.02 0.02 103 0.01 1.46 0.03 181 0.03 0.00 -0.02 0.01 181
(6) Total Accruals 0.02 0.01 0.83 0.01 0.94 0.01 0.89 0.01 0.00 -0.02 -0.01 -141
(7) Ohlson’s O 0.01 0.02 148 -0.01 -1.02 0.03 2.02 0.02 0.01 -0.02 0.00 017
(8) Return on Assets 0.02 0.03 -0.01 0.02 156 0.03 -0.01 -0.02 000  -041
(9) Failure Probability 0.03 0.01 0.01 0.04 227 0.02 0.01 -0.01 -0.01 075
(10) Momentum 0.05 0.05 0.00 0.05 3.33 0.05 0.00 -0.04 0.04 4.06
(11) Composite Equity Issues 0.04 0.05 -0.01 0.05 4.18 0.05 0.00 -0.01 0.00 -0.27
(12) Size 0.05 0.05 0.00 0.05 2.82 0.04 0.00 -0.02 0.01 0.91
(13) Book to Market 0.05 0.06 -0.01 0.05 3.77 0.04 0.01 -0.02 0.00 0.45
(14) Operating Profitability 0.05 0.06 -0.01 0.05 3.93 0.04 0.01 -0.01 -0.02 -1.67
(15) Investments 0.06 0.06 0.00 0.05 3.10 0.04 0.01 -0.02 0.01 2.23
(16) Earning to Price 0.05 0.05 0.00 0.05 4.25 0.04 0.01 -0.03 0.00 0.15
(17) Cash Flows to Price 0.05 0.05 0.00 0.05 3.84 0.04 0.01 L -0.02 -0.01 -1.01
(18) Dividend Yield 0.05 0.04 0.00 0.05 1.92 0.05 0.01 0.93 -0.02 000 -017
Comination 0.03 0.04 0.00 0.04 3.84 0.04 0.00 1.84 -0.02 0.00 1.43
FVaR t+1 b tstat b tstat b t stat +3 b b tstat b t stat t+6 b tstat b b t stat
(1) Asset Growth 0.02 0.65 0.02 0.64 0.00 -0.41 -0.01 -0.64 0.02 0.71 0.01 1.06
(2) Gross Profitability 0.03 0.01 0.39 0.02 160 -0.01 0.01 0.36 0.00 -0.23
(3) Investment to 4 0.02 0.01 0.45 0.01 0.61 0.00 0.02 0.58 0.01 138
(4) Net Stock Tssues 0.02 0.02 0.64 000 -0.34 0.00 0.02 0.86 0.01 0.75
(5) Net Operating / 0.02 0.01 0.41 0.01 0.62 -0.01 0.01 041 0.01 0.75
(6) Total Accruals 0.00 0.02 0.68 -0.02 -1.44 -0.02 -1.19 -0.01 -0.18 -0.01 -0.7
(7) Ohlson’s O 0.02 0.01 0.42 0.00 0.06 -0.02 -0.43 0.61 -0.01 -0.85
(8) Return on Assets 0.02 0.02 0.82 -0.01 -0.60 -0.01 -0.36 0.33 -0.01 -0.84
(9) Failure Probability 0.00 0.03 1.30 -0.04 -1.96 -0.01 -0.30 0.86 0.03 1.36
(10) Momentum 0.05 0.06 195 -0.02 -0.94 0.00 0.38 -0.03 -1.34
(11) Composite Equity Issues 0.06 0.06 195 0.00 -0.05 0.01 0.35 0.00 0.13
(12) Size 0.06 0.06 2.37 0.00 -0.18 0.01 -0.25 -0.01 -0.92
(13) Book to Market 0.07 0.06 203 0.00 0.30 0.02 0.03 000  -0.22
(14) Operating Profitability 0.06 0.07 209 -001 098 0.00 0.29 000 -0.42
(15) Investments 0.07 0.06 1.91 0.01 1.22 0.01 0.18 -0.01 135
(16) Earning to Price 0.06 0.05 1.93 0.01 0.84 0.01 0.24 -0.01 -1.05
(17) Cash Flows to Price 0.07 0.06 2.00 0.01 077 0.00 0.32 -0.03 -3.16
(18) Dividend Yield 0.06 0.06 197 0.00 0.36 0.02 0.07 0.01 0.85
Comination 0.04 0.04 L78 0.00 -0.81 0.00 -ﬂ 01 -0.29 0.00 -1.01




Table 2.38: This table shows the performance of employing the forecasts coming from the considered indexes in
determining the weight of a portfolio optimization problem which has the predicted portfolio and the risk free rate
as only possible assets and a weight of the chosen risky asset bounded between -1 and +1.5. We report the out
of sample performance generated by such strategies in terms of average return, standard deviation and Sharpe
Ratio. Mean returns and standard deviation are reported in percentage. All forecasts are at for month t+1 using
the chosen index value at month t. All time series are divided accordingly to the following criteria: 25 % of the
data are used for the in sample estimation, 15% are use as hold out period and the remaining is employed for the
out of sample performance evaluation of the predictive power of the relevant variables. In this table we report

the performance generated for all the 11 anomalies and the 7 factors considered in this paper.

Long Leg 1 2 3 4 5 6 7 8 9

Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR
Sentiment
PC6 -0.18 0.15 -1.19 -0.10 0.13 -0.77 -0.18 0.01 -12.89 -0.12 0.02 -6.35 -0.01 0.02 -041 -0.17 0.01 -1564 -0.15 0.02 -8.59 0.14 003 514 -028 0.02 -11.73
PLS 6 000 014 -0.03 015 022 072 -002 001 -153 -0.06 001 -587 022 002 931 004 001 265 -0.03 002 -215 044 004 1257 -007 002 -373
Uncertainty
DEVST -0.13 017 -0.80 -0.11 0.16 -0.66 -0.11 0.01 -8.30 0.00 0.02 028 -0.08 0.02 -345 -0.13 0.01 -9.25 -0.08 0.02 -512 012 003 369 -012 0.02 -7.52
UF 0.09 033 028 013 032 039 016 004 467 023 003 687 014 003 411 010 003 296 014 0.04 38 026 004 653 003 004 087
UM 007 031 024 -001 028 -004 009 003 28 024 003 774 008 003 252 -005 003 -1.80 -0.02 003 -059 002 0.03 064 -011 003 -323
Investors views
MEAN -0.01 0.15 -0.10 0.09 0.16 0.55 0.01 0.0 1.28 0.09 0.01 6.34 0.08 0.02 4.78 0.03 0.01 243 0.02 0.38 0.03 12.68 0.05 0.02 2.79
upP 007 014 050 000 0.04 001 -0.04 001 -368 004 001 323 002 002 147 -0.03 0.0l -361 0.02 027 003 940 -006 001 -4.11
LOW 0.05 0.19 029 020 020 0.99 0.07 0.02 4.84 0.14 0.02 8.57 0.14 0.02 7.20 0.10 0.02 6.49 0.02 0.51 0.03 16.63 022 0.02 9.02
Fear
Bull-Bear 023 028 082 -011 022 -048 020 003 7.03 019 003 694 007 003 266 005 002 213 019 003 571 -0.15 0.03 -508 003 002 138
BTX -0.27 023 -1.19 -0.31 028 -1.09 -0.24 0.02 -10.75 -0.15 0.02 -6.94 -0.26 0.02 -10.44 -0.30 0.02 -1459 -0.17 0.02 -7.09 -0.26 0.04 -7.19 -0.38 0.03 -13.40
MACRO 005 026 -0.19 005 027 0.8 -0.02 0.03 -087 -013 003 -525 004 003 128 014 0.03 404 004 003 145 001 004 017 0.04 0.04 122
VIX -0.09 020 -045 -0.15 021 -0.72 -0.07 0.02 -299 -003 0.02 -1.38 -0.12 0.02 -642 -0.11 0.02 -583 0.01 0.02 0.58 -0.04 0.03 -1.73 -0.33 0.03 -10.57
ANX 024 023 -1.05 -0.38 030 -1.25 -0.20 0.02 -945 -031 003 -11.73 -0.20 0.02 -11.37 -0.24 0.02 -1163 -038 003 -13.04 -0.25 0.03 -9.57 -0.33 0.03 -10.89
VRP 028 025 114 048 029 1.66 0.29 0.02 11.68 0.19 0.02 8.20 0.39 0.03 1478 0.37 0.02 1542 0.27 0.02 2.14 043 0.04 1221 0.49 0.03 14.20
KJ 013 012 -1.02 -0.01 0.8 -0.04 -0.01 001 -11.85 002 002 103 -0.03 0.02 -147 -0.07 0.01 -591 012 003 410 050 0.04 11.04 -0.11 0.01 -11.39
CATFIN 0.05 031 017 0.02 027 0.06 0.11 0.03 3.40 0.24 0.03 7.36 0.03 0.03 0.88 0.03 0.03 1.24 020 0.04 5.31 0.37 004 843 -0.05 0.03 -1.67
TAIL 1.38 046 299 1.29 050 259 143 0.05 3048 1.18 0.04 28.58 1.32 0.05 26.87 1.36 0.05 2845 123 0.05 2599 1.14 0.04 26.90 1.01 0.05 19.83
FVaR 027 032 082 050 033 154 031 003 927 043 003 1420 041 003 1371 -003 003 -119 010 003 313 054 0.03 1747 066 004 1825
Short Leg 1 2 3 4 5 6 7 8 9

Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR
Sentiment
PC6 0.22 0.71 032 028 1.13 0.09 0.03 317 0.11 0.02 4.59 0.04 0.03 1.29 0.17 0.03 5.10 0.12 0.03 4.03 0.39 0.04 10.12 0.78 0.05 16.28
PLS 6 0.50 133 059 036 165 035 004 972 039 003 1173 023 003 721 041 0.04 1095 040 003 1153 0.60 0.04 1497 084 005 1727
Uncertainty
DEVST 028 041 0.68 020 039 0.52 0.16 0.03 4.79 0.14 0.03 024 0.04 6.40 0.25 0.04 6.06 0.08 0.03 227 0.35 0.04 826 0.61 0.05 13.17
UF 043 044 099 040 042 097 032 004 7.53 030 0.04 037 0.04 862 038 004 865 020 004 530 061 0.05 1233 079 005 1569
UM 031 039 078 0.32 039 0.82 0.09 0.04 2.55 0.19 0.04 021 0.04 5.24 0.20  0.04 5.21 0.18 0.04 5.21 0.62 0.05 1291 0.69 0.05 14.31
Investors views
MEAN 44 033 134 020 026 L1l 032 003 1082 027 002 1080 037 003 1131 051 0.04 1361 029 002 1272 050 0.04 1425 076 0.05 1653
UP 037 032 115 025 027 093 0.25 0.03 8.48 0.21 0.02 8.51 031 0.03 9.48 0.44 0.04 11.56 022 0.02 9.60 0.46 0.04 12.40 0.71 0.05 5.32
LOW 48032 152 032 027 121 040 0.03 1336 031 002 1260 042 003 1300 057 0.04 1552 036 002 1523 054 003 1612 078 0.04 1805
Fear
Bull-Bear 0.16 0.36  0.44 0.19 034 0.57 0.16  0.04 4.24 0.19 0.04 5.31 0.16 0.04 4.14 0.09 0.04 248 0.04 0.03 0.51  0.05 0.62 0.05
BTX 0.05 040 012 -013 035 -038 -001 004 -026 -0.08 0.04 -232 001 004 034 -0.08 004 -223 -0.01 0.03 006 0.05 016 0.05
MACRO 0.13 040 033 -0.13 037 -0.36 0.19 0.04 4.42 0.07 0.04 1.88 0.08 0.04 192 -0.04 0.04 -1.17 0.13 0.04 031 0.04 0.33 0.05
VIX 0. 030 048 010 003 322 003 003 137 015 004 401 014 003 406 -0.03 0.02 045 0.04 0.62 0.05
ANX 025 034 -017 003 -632 -0.19 0.02 -835 -017 003 -623 -0.16 003 -553 -0.11 0.02 041 0.04 059 0.05
VRP 029 1.32 049 0.03 14.15 0.50 0.04 14.24 025 0.03 8.86 042 0.04 1117 0.61 0.04 0.67 0.04 0.72 0.04
KJ 026 036 072 044 004 1109 032 0.04 885 049 004 1146 064 005 1391 023 0.03 064 0.05 140 0.05
CATFIN 0.23 038 0.62 040 0.05 8.89 0.32 0.04 7.79 042 0.05 9.19 0.49 0.04 10.94 021 0.04 0.63 0.05 1.40  0.05
TAIL 116 043 269 118 0.05 2456 125 005 2696 LIS 0.05 2560 121 0.04 2808 102 004 128 0.05 164 0.05
FVaR 022 031 0.70 0.34 033 103 023 0.03 7.70 0.20 0.03 6.22 021 0.03 6.74 0.08 0.03 2.74 0.28 0.03 0.04 0.03 -0.20 0.03
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Table 2.39: Continues

from above

Long Leg 10 11 12 13 14 15 16 17 18
Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR
Sentiment
PC6 0.01 15 004 -0.05 020 -027 -0.20 0.03 -6.23 0.13 0.04 3.00  0.03 003 103 006 0.04 1.4 0.21 0.04 525 0.14 0.04 347 017 003 535
PLS 6 020 021 096 -007 020 -0.34 -0.01 003 -0.37 030 004 690 011 003 402 031 004 723 023 004 542 016 004 400 012 004 3.19
Uncertainty
DEVST 0.00 025 001 -0.09 016 -0.58 -0.09 003 -3.26 012 004 339 004 003 168 015 004 352 019 004 491 016 004 425 033 004 887
ur 41 040 1.00 029 036 080 0.02 004 063 036 004 855 038 004 971 013 0.04 340 041 0.04 9.64 042 0.04 9.64 041 0.04 1088
UM 0.35 100 0.24 074 -0.04 004 -1.00 027 004 628 0.5 0.04 421 016 004 392 024 004 583 019 004 452 032 004 844
Investors views
MEAN <002 012 -0.19 -0.07 012 -0.55 000 003 -0.17 025 0.04 625 012 003 404 021 0.04 019 003 538 018 0.03 514 019 003 598
up -0.05 013 -040 -0.08 0.11 -0.69 -0.07 0.03 -284 0.16 0.04 410 0.05 003 202 014 0.04 0.15 0.03 459 013 0.03 3.87 019 003 628
LOW -0.01 012 -0.06 -0.05 0.15 -0.33 0.16 0.03 4.82 038 0.04 8.80 025 0.03 T7.60 039 005 0.28 0.04 741 031 0.04 798 021 003 642
Fear
Bull-Bear 1.27 045 283 1.61 040 4.01 193 0.06 221 0.06 39.44 1.83 0.05 3820 221 006 3536 199 0.05 1.95 0.05 39.68 141 0.04
BTX 0.14 047 029 007 0.04 0.62 005 1191 047 005 1012 028 005 610 0.73 0.05 0.78 005 1499 056 0.05
MACRO -0.27 039 -0.69  0.11 0.04 0.15 0.05 276 018 0.04 414 0.28  0.05 557 010 0.05 0.19  0.06 3.45 016 0.05
VIX 123 044 283 134 005 167 005 3277 159 0.05 3245 135 005 2725 159 0.05 L71 005 3249 121 0.04
ANX -0.15 029 -0.51 -0.22 0.04 0.14 0.05 2.82 -0.09 004 -212 -011 004 -262 019 0.05 0.120.05 256 037 0.04
VRP 0.00 041 0.01  0.05 0.05 0.54 0.06 9.58 049 0.05 1004 021 0.05 3.85  0.57 0.05 0.58 0.05 10.62 051 0.04
KJ 0.18 028 063 -0.10 0.03 025 004 589 012 002 709 021 005 443 030 0.03 0.26 003 868 028 0.02
CATFIN 165 042 394 253 0.06 279 006 5028 207 0.05 4048 274 006 44.65 228 0.05 2.38 005 4486 167 0.04
TAIL 0.89 252 079 0.04 114 005 2380 1.09 004 2514 087 005 1874 121 0.05 120 0.05 2511 086 0.04
FVaR -0.11 0.30 -0.37  0.59 0.04 0.56 004 1440 0.69 0.04 1917 0.66 004 1596 0.72 0.04 0.93 004 2574 053 0.03
Short Leg 10 11 12 13 14 15 16 17 18
Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR Mean Vol SR
Sentiment
PC6 015 035 042 055 039 143 014 003 471 0.06 0.03 188 -0.05 0.03 -140 -0.09 003 -29 -0.14 002 -591 -0.15 0.02 -640 0.13 003 453
PLS 6 0.35 036 096 068 041 167 055 0.03 17.67 026 0.04 737 014 004 391 021 003 6.15  0.12 0.02 0.120.02 516 0.16 003 6.01
Uncertainty
DEVST 0.19 040 046 045 046 099 -0.06 0.03 -2.28 -0.12 003 -434 -0.10 0.03 -298 -0.14 0.03 -525 -0.05 002 -2.83 -0.07 002 -3.71 005 002 227
ur 0.4 0.50 088 072 051 140 037 003 1117  0.01 0.03 033 0.02 003 049 0.10 0.04 259 019 0.03 551 018 0.03 546 042 0.04 11.86
UM 0.31 048 064 054 047 116 027 003 785 -0.09 003 -271 -003 004 -0.86 -0.01 004 -035 007 003 207 007 003 211 022 003 6.61
Tnvestors views
MEAN 026 029 088 044 034 130 012 003 431 002 002 08 002 003 080 001 002 041 008 0.02 0.07 002 335 012 002 533
up 0.21 030 071 042 035 118 003 003 122 -0.05 0.02 -0.05 003 -1.62 -007 002 -314 0.01 0.02 0.00 002 -0.22 008 0.02 341
LOW 033 029 113 045 031 147 022 003 730 018 0.03 0.20 0.03 578 0.15 0.03 578 023 0.03 0.20 0.0: 832 020 0.03 7.57
Fear
Bull-Bear 164 0.53 141 048 297 138 004 3071 157 0.05 2920 183 006 3099 150 005 2868 173 0.05 .53 181 0.05 3669 1.82 0.04 4052
-0.24 045 5% 015 044 034 -0.09 0.04 44 -0.09 0.04 -235 -0.03 0.04 -0.78 4 0.11 0.04 2.68 0.07 0.04 163 043 0.05 928
0.32 046 0.71 025 041 0.61 035 004 933 030 0.04 793 024 004 662 0.24  0.03 743 018 0.03 578 012 004 326
113 056 200 143 051 282 150 0.04 3358 122 0.05 2545 126 0.05 26.04 149 005 3161 143 005 3105 161 005 3417
0.09 032 028 022 029 077 -0.14 003 -492 -0.34 003 -11.90 -027 0.03 -8.59 X -0.19 -0.21 0.03  -629 0.00 0.04 -0.04
-0.04 050 -0.08 -0.18 048 -0.37 027 004 630 -0.14 0.04 48 -0.08 0.05 -1.86 04 - 0.26 3 027 004 619 041 005 8.94
044 044 099 073 049 149 015 0.03 526 -0.14 001 -10.44 -0.09 0.04 -2.63 -0.11 001 -11.17 -0.13 3. -0.12 0.01 -1537 024 0.02 11.87
2.03 056 3.65 210 055 382 155 005 3275 1.96 0.06 3455 238 0.06 40.52 221 0.06 3863 210 005 3918 2.08 0.05 39.60 186 0.05 38.90
107 048 222 124 047 262 095 0.04 2460 077 0.04 1850 072 0.04 1689 094 004 2179 095 0.04 3 114 0.04 27.34
FVaR -0.19 037 -0.53 -0.15 0.33 -046 039 003 1317 041 0.04 1157 048 0.04 11.80 042 0.04 1118 0.69 0.03 1518 044 0.03 12.77
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Figure 2.3: This figure shows the Sentiment Index proposed Baker-Wurgler’s employing the 4 of the 6 variables
originally proposed (PC4) and the two variables excluded: precisely the turnover (turn) and the number of ipos

(nipo) The monthly series include the period 07-1965/12-2016.
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Figure 2.4: The upper figure shows the PLS 6 sentiment proxy proposed by Huang et al. with the upper (UP),
lower (LOW) and number of views weighted mean forecast (MEAN) of the EPS long term growth for the period

07-1965/12-2016. All series are monthly and standardized.
The lower figure presents three fear proxies: the Crash Confidence Index (Crash CI), the Variance Risk Premium

(VRP) of Hao and the FVaR proxy. All series are monthly and standardized and span the period from 01/2005

to 08,/2015.

0
g
X
<)
H a
= ©
. [y
fig
©
z
8%
»#861/71/10
< ]
Yp6t/€0/10 Qs ...mwﬁsqs
-~
< ...v.m.ﬂ.\mo:o . ..wSQS\s
A\I\ = z89/60/10 . .WSQE\S
-’ *
Mididaiald %002/10/10
s s s = s < s s
8 8 8 8 8 8 8 8 < ~ ° N v © ®
3 - 5 E 3 i & - Y v 0 ;

-10



102



Chapter 3

The Keys of Predictability

3.1 Introduction

The equity premium predictability literature typically introduces a new model or
a new predictor and shows how it can rise the out-of-sample R? or Delta Util-
ity. Differently from the typical studies on the field, we acknowledge how stocks’
pricing and predictability are intimately related': being able to predict the mar-
ket out-of-sample enrich our understanding of what ultimately the market prices.
Consequently, we write this paper with the joint goal to provide both a compre-
hensive study of the out-of-sample predictability in equity markets and to trigger
a fruitful discussion on the asset pricing implications of our findings. To gain a full
understanding of the issues and potentials involved by a deeper understanding of
financial market predictability we decompose the topic into three parts: predictive
models, predictors and the functions of market uncertainty we aim at forecasting.
Each one provides new insight into our understanding of asset pricing and poses
a variety of questions which aim at triggering a fruitful debate.

At first, we focus on predictive modeling. We re-examine the challenge posed by
Welch and Goyal [2008] by employing the same predictors but combining model
selection and machine learning predictive models. We observe how employing
more and more powerful techniques our capability to accurately forecast out-of-
sample increases steadily. Indeed, when model selection techniques are preven-
tively adopted to alleviate multicollinearity, the results coming from the subse-
quent forecasts of machine learning techniques improve dramatically reaching R%
values above 5% for ensembles of Neural Networks. The remarkable results in
terms of precision have substantial economic value for investors: delta Utility
(concerning the traditional average mean return benchmark) rises by 2.5% with
an even higher value of 4.5% during periods of recession when economic gains

LA relevant exception comes from Campbell [1991] who first introduces this relation
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are more valuable. Our findings suggest that prices reflect inputs in a non-linear
fashion. Consequently, the current research on the mathematical foundations of
neural networks has a huge potential to widen our understanding of asset pricing?.
Indeed, we stress the need for the identification of regime-dependent nonlinear
pricing factors. Our results are also a direct challenge to the Efficient Market Hy-
pothesis (Fama [1970]). This widely held assumption states that econometricians
cannot systematically outperform the market using widely available information.
In sharp contrast with this theory, it is becoming more and more evident how
artificial intelligence is consistently able to achieve risk-returns performances well
above market. Even more surprisingly, with the progressing of technology, we ob-
serve steady and, apparently, unbounded improvements. At this stage, a question
naturally arises: how predictability originates? Indeed, it becomes apparent how
some components of the pricing kernel are not fully reflected into prices, and this
gives rise to the predictability phenomenon reported in our results. The identifi-
cation of these predictable components and their dynamics is a major point in the
financial literature agenda of the future. While the debate on the amount and the
rationale of financial markets predictability is still in its infancy, on some points
the consensus is broad:

e Equity premium predictability to some extent exists®;

It is linked to the the business cycle?;

It is linked to sentiment and liquidity®.

It is stronger in bear markets®

It is time-varying and affected by financial research”.

e it can be enhanced by imposing economically motivated constraints®

2See, e.g., Shrikumar et al. [2016], Wei Koh and Liang [2017], Montavon et al. [2017], Mon-
tavon et al. [2018]

3See, e.g., Dangl and Halling [2012], Rapach et al. [2010], Golez and Koudijs [2018]

4See, e.g., the seminal work of Fama and French [1989] and the recent works coming from
Rapach et al. [2010] and Zhu [2015]

5Chen et al. [2018] show how to isolate a powerful liquidity predictor while Huang et al. [2015]
propose a powerful sentiment one.

5Cujen and Hasler [2017] explain this phenomenon through the existence of a risk premium
for uncertainty.

"Lo [2004] formulates a fascinating adaptive market hypothesis while Mclean and Pontiff
[2015] proving how academic research reduce predictability implicitly confirm the hypothesis.

8Campbell and Thompson [2008] impose constraints on the regression coefficients and on the
predicted returns (when the predicted returns are negative, they are replaced with zero) while
Pettenuzzo et al. [2014] successfully introduces a constraint on the conditional Sharpe ratio.
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Our paper is also related to the data-science, and the machine learning approaches
previously employed in the field of financial market predictability. Among the most
remarkable machine learning approaches, we report the Kalman filter approach of
Van Binsberg and Koijen [2010], the Markov Switching approach of Guidolin and
Timmermann [2008], and the Bayesian system approach of Johannes et al. [2013].
This last paper gave rise to a whole line of research which leverages the Bayesian
statistic to make accurate financial forecasts. Among the most successful imple-
mentations in this area of study, we report the Bayesian latent threshold approach
of Nakajima and West [2013], the dynamic dependent sparse factor model of Zhou
et al. [2014], the dynamic dependence networks methodology of Yi et al. [2016],
the simultaneous graphical dynamic linear proposal of Gruber and West [2016],
and the Bayesian predictive synthesis of Johnson and West [2018]. Finally, the
papers most closely related to our one come from Gu et al. [2018] and Feng et al.
[2018] who employ neural networks and machine learning techniques in the same
framework. Differently from their works, we combine model selection and machine
learning techniques boosting the final predictive performance. After that, we fo-
cus even on predictors and on a rich number of functions of market uncertainty
in the second and third section of the paper. Finally, in the ever-growing list of
significant works on machine learning applied to financial forecasting we remark
the stochastic neural network combination approach of Sermpinis et al. [2012], the
adaptive evolutionary neural networks methodology of Georgios et al. [2015], the
evolutionary support vector machines model of Karathanasopoulos et al. [2015],
and the genetic programming approach of Karatahansopoulos et al. [2014]°.

The second part of this paper focuses on predictors. At first, we consider as
predictors for the S&P500 the 12 different industries indexes. Accordingly, we
perform an out-of-sample analysis of the study originally performed in-sample by
Hong et al. [2007]. We document big and rising monthly Delta Utility gains which,
for the most recent 2001-2017 period, are well above the 4% for the Money sec-
tor index and 3% Chemical sector one. After that, we employ as predictors the
returns coming from the long-short portfolio strategies commonly named in the
literature factors (Fama and French [2015]) or anomalies (Stambaugh and Yuan
[2017]). Here, for the 2001-2017 period, we document a record-high monthly R2
of 28.6% for the Net Stock Issue matched by a 28% increase in terms of utility
gains. Other return spreads sorting on the base of the Investment to Asset (Tit-
man et al. [2003]), and (Ohlson [1980]) O-score metric provide extremely powerful
out-of-sample forecasts too.

Our results are related to the literature which proposes new predictors. Among
them we report the Sentiment Index of Huang et al. [2015], the Trend Factor of Han

9A comprehensive review of the existing literature on machine learning financial forecasting
can be found in the works of Dunis et al. [2016] and de Prado [2018]
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et al. [2016], the short interest measure of Rapach et al. [2016], the Gold-Platinum
ratio Huang and Kilic [2019] and the aggregate Asset Growth indicator of Wen
[2019]. The studies more closely related to our one come from Huang and Kilic
[2019] who employ industries and Greenwood and Hanson [2012] who employ the
net issuance spread. For both cases, we extend their findings in an out-of-sample
framework. More recently, even technical'® and economic!! indicators have been
added to the list of powerful market predictors. Finally, powerful signals have been
extrapolated from options. Bakshi et al. [2011] build an option positioning that
allows inferring forward variances from option portfolios, Bollerslev and Todorov
[2011] build a fear measure from the left tail of the risk-neutral distribution, and
Christoffersen and Pan [2017] show how oil option-implied information allows pre-
dicting stock market returns.

After having studied the predictive power of the listed predictors, we propose to
employ an out-of-sample approach to identify the relevant pricing factors both
for the S&P500 and for the French double-sorted portfolios. The identification
of the most relevant predictors can shed new light on the drivers of the factorial
profitability'?. We observe how the predictive power of the different predictors is
largely complementary in the spectrum of cross-sectional returns and while some
stock are highly predictable by sentiment others are largely unaffected by it. This
suggests that, contrary to the commonly held assumptions, a one-fits-all approach
to the identification of the market pricing kernel could be misleading. Our simple
approach is complementary to the blossoming literature on model selection in the
asset pricing environment which, differently from our methodology, is entirely in-
sample based. This line of literature has the goal to identify the relevant factors
at the cross-sectional level. Among the newest approaches, we report the three
pass method of Feng et al. [2017], the (Adaptive) Lasso methodology proposed
by Messmer and Audrino [2017], the Tree-Based Conditional Portfolio Sorts of
Moritz and Zimmermann [2016] and the deep learning methodology introduced by
Feng et al. [2019]. Other remarkable approaches to select a parsimonious amount
of factors have been recently proposed by Fama and French [2018], Kozak et al.
[2017Db], and Stambaugh and Yuan [2017].

In the third part of the paper, we extend our analysis to include a broad sample
of US stocks. We start by employing the French double-sorted portfolios: on the
base of size and momentum, or size and the book-market ratio. We prove how

19 Among the research on the value of technical analysis we report the seminal study of Lo
et al. [2002] followed by the works of Neely et al. [2013] and Lin [2018]

HSee, e.g.,Hong et al. [2007],Li and Tsiakas [2017] and Luo and Zhang [2017]

12This line of research stems from the seminal work of Fama and French [1993]. Subsequently,
a rich literature introduces a huge list of other anomalies Campbell et al. [2016]. Among the most
notorious we list Frazzini and Pedersen [2014], Chan et al. [1996], Sloan [1996], and Novy-Marx
[2013]
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predictability is not confined to small illiquid stocks only, but it is present even
for the stocks of firms with big market capitalization. After that, we employ all
the stocks available in the CRSP dataset to build 30 portfolios on the basis of a
list of 10 characteristics. For each portfolio we employ the predictors coming from
Baker and Wurgler, the anomalies spread returns and the methodologies which
combine the predictors applied in the first part of the paper. We show how overall
the Clark and West [2007] p-value for the R? out-of-sample statistics are less then
0.1 for the 20% of the cases considered and it is less then 0.05 for the 12% of the
cases considered. In terms of economic value, the total average out-of-sample delta
Utility is 4.84% with an average maximum delta utility for each portfolio of 9.96%.
These results suggest that predictability is not only an attribute of the S&P500,
but it is a generalized phenomenon in the US stock market.

The fourth and last topic regards the functions of the market we aim at forecast-
ing. In an influential paper Bakshi and Madan [2000] prove how it is possible to
replicate any function of stock uncertainty through the dynamic use of options.
After that, Bakshi et al. [2003] show an application of this approach in the re-
building of the first four moments of the risk-neutral distribution. More recently,
Schneider and Trojani [2015] show how it is possible to trade these functions in
real markets through a class of swap trading strategies. These recent advances
allow us to prove how some functions of market uncertainty are easier to predict
than common market returns. These findings open a new pattern of research in
the field of market predictability and provide practitioners a new understanding
of the potential of this line of research.

The third and last topic regards the functions of the market we aim at forecasting.
At first, we focus on forecasting the returns generated by the long-short portfolios
considered by Stambaugh et al. [2015]: predictability appears almost ubiquitous.
After that, we focus on volatility, downside-volatility and correlation swaps (Buss
et al. [2018]). Again we observe positive and statistically significant R%4 values.
Finally, we generalize our intuition leveraging on the influential paper of Bakshi
and Madan [2000]. The authors prove how, given a set of conditions, it is possible
to replicate any function of stock uncertainty through the dynamic employment
of options. After that, Bakshi et al. [2003] show an application of this approach
in the rebuilding of the first four moments of the risk-neutral distribution extrap-
olated from option pricing. While this approach has been widely employed in the
asset pricing literature, its out-of-sample potential is largely unexplored. We start
studying the predictability of the first four moments contracts of Bakshi et al.
[2003] and we report remarkable values of the R%y metric matched by positive
Delta Sharpe ratios. In conclusion, in this final section, we prove how the possi-
bility to synthesize and trade new securities (spread returns, swaps, and securities
built accordingly to Bakshi and Madan [2000]) allows us to build securities with
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returns that can be consistently forecasted. These findings open a new pattern of
research in the field of market predictability and provide practitioners with a new
understanding of the potential of this line of research.

The remaining of this paper is structured in the following way. Part ii) present the
data employed. Part iii) introduces the predictive modeling approaches employed
and comments on the related empirical results inside the Welch and Goyal [2008]
framework. Part iv) employs different sets of predictors and document their pre-
dictive performance. Part v) shows how predictability is a generalized feature of
the US equity market. Part vi) illustrates the results coming from the study of
different functions of market uncertainty. Part vii) concludes.

3.2 Data

In this section, we list all the data employed in our empirical analysis. We start
from the Welch and Goyal predictors. Subsequently, we list data about industries
and cross-sectional returns (anomalies and factors). Finally, we introduce data on
options and swaps.

3.2.1 Welch and Goyal Predictors

The study of Welch and Goyal [2008] (W-G) is a benchmark and a challenge
for the existing literature on market predictability. Consequently, we start with
the fourteen predictors used in this provocative work'?. The updated database is
coming directly from the website of Goyal'*. In more detail the predictors are:

e log Dividend-price ratio (DP): the difference between the log of dividends
paid on the S&P 500 index and the log of prices, where dividends are mea-
sured using a twelve-month moving sum.

e log Dividend yield (DY): the difference between the log of dividends and the
log of lagged prices.

e log Earnings-price ratio (EP): the difference between the log of earnings on
the S&P 500 index and the log of prices, where earnings are measured using
a twelve-month moving sum.

e log Dividend payout ratio (DE): the difference between the log of dividends
and the log of earnings.

13 Table 3.13 in the online appendix reports the correlation among the W-G predictors and
the results for the autoregressive analysis of these predictors
“http: //www.hec.unil.ch/agoyal/
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e Stock variance (SVAR): the sum of squared daily returns on the S&P 500
index.

e Book to market (BM): the ratio of book value to market value for the Dow
Jones Industrial Average.

e Net equity expansion (NTIS): the ratio of twelve-month moving sums of net
issues by NYSE-listed stocks to the total end-of-year market capitalization
of NYSE stocks.

e T-bill rate (TBL): the interest rate on a 3-month Treasury bill (secondary
market).

e Long-term yield (LTY): long-term government bond yield.
e Long-term return (LTR): return on long-term government bonds.

e Term spread (TMS): the difference between the long-term yield and the T-
bill rate.

e Default yield spread (DFY): the difference between BAA- and AAA-rated
corporate bond yields.

e Default return spread (DFR): the difference between long-term corporate
bond and long-term government bond returns.

e Inflation (INF lag): calculated from the CPI (all urban consumers); since
inflation rate data are released in the next month, we use ;.

In addition we employ the Sentiment Index of Huang et al. [2015]. Data come
directly from Zhou website!®.

3.2.2 Anomalies and Industries

In this section, we detail the factors and anomalies employed in this study. An
anomaly is a statistically significant difference in cross-sectional average returns
that persist after the adjustment for exposures to the Fama and French [1993]
three factors model. Our empirical analysis makes use of i) the eleven anomalies
proposed by Stambaugh et al. [2015], ii) the four factors of the extended Fama and
French [2015] model iii) Momentum, Long and Short term reversal. All data are
monthly and span the period from 01-1965 to 12-2016 except the net operating
assets, the accruals, the return on assets, and the distress anomaly for which

http://apps.olin.wustl.edu/faculty /zhou/
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data are available respectively only from 8-1965, 1-1970, 5-1976, and 1-1977. The
considered factors-anomalies are:

Financial distress. Campbell et al. [2008] show that firms with high failure
probability have lower, not higher, subsequent returns (Distress). Another
closely related measure of distress is the Ohlson [1980] O-score (O).

Net stock issues and composite equity issues. Loughran and Ritter [1995]
show that, in post-issue years, equity issuers under-perform non-issuers with
similar characteristics (Net Stock Issues). Daniel and Titman [2006] propose
an alternative measure, composite equity issuance (Comp eq Issue), defined
as the amount of equity issued (or retired by a firm) in exchange for cash or
services.

Total accruals. Sloan [1996] demonstrates that firms with high accruals earn
abnormal lower returns on average than firms with low accruals (Accruals).

Net operating assets. Hirshleifer et al. [2004] find that net operating assets,
computed as the difference on the balance sheet between all operating assets
and all operating liabilities divided by total assets is a negative predictor of
long-run stock returns (NOA).

Momentum. The momentum effect, proposed by Jegadeesh and Titman
[1993] is one of the most widespread anomalies in asset pricing literature
(Mom).

Gross profitability premium. Novy-Marx [2013] shows that sorting on gross-
profit-to-assets creates abnormal benchmark-adjusted returns, with more
profitable firms having higher returns than less profitable ones (Gross Prof).

Asset growth. Cooper et al. [2008] show how companies that grow their total
assets more earn lower subsequent returns (Asset Growth).

Return on assets. Chen et al. [2011] show that firms with higher past return
on assets gain higher subsequent returns (ROA).

Investment-to-assets. Titman et al. [2003] show that higher past investment
predicts abnormally lower future returns (Inv to Assets).

The four factors proposed by the extended model of Fama and French
[2015]: Small Minus Big (SMB), High Minus Low (HML), Robust Minus
Weak (RMW), and Conservative Minus Aggressive (CMA).

The Short and Long Term Reversal factors (ST, LT): as presented in the
website of Professor Kenneth R. French.
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Data for the four factors chosen by Fama and French [2015], the Momentum, and
the two Short-Long Reversal Factors comes from the website of Professor Ken-
neth R. French'® while anomalies are build matching CRSP and Compustat data
following the approach detailed in Stambaugh and Yuan [2017]. After that, we
consider monthly data on the 12 industries indexes coming from the website of
Professor Kenneth R. French. The time series span the period from January 1927
to December 2017. In detail, the indexes are: Consumer NonDurables, Consumer
Durables, Manufacturing, Energy, Chemicals, Business Equipment, Telecommuni-
cations, Utilities, Shops, Healthcare, Finance and Others (Mines, constructions,
Hotels, Entertainment, Business Services, Transportation).

3.2.3 Options and Swaps

We use European options on the S&P500 Index (symbol: SPX) to build the Bakshi
et al. [2003] four moment contracts. All option data comes from OptionMetric.
The market for these options is one of the most active in the world. The options
are Furopean and have no wild card features. SPX options can be hedged using
the active market on the S&P500 futures. Consequently, these options have been
object of many empirical investigations, including Ait-Sahalia and Lo [1998], He-
ston and Nandi [2015] and Barone-Adesi et al. [2008].

To be consistent with the original paper of Bakshi et al. [2003], the data were
screened to eliminate (i) bid-ask option pairs with missing quotes, or zero bids,
and (ii) option prices violating arbitrage restrictions that C(t,7, K) < S(t) or
C(t,7,K) > S(t) — PVD|D] — PVD|K], for present value function PV D[.] and
dividends D. As longer- (and very short-) maturity stock option quotes may not
be active, options with less than 9 days and more than 120 days to expiration
were also discarded. Finally, we only keep OTM calls and puts. Consequently,
puts have moneyness corresponding to %|% < 1 and calls have moneyness cor-
responding to % % > 1. We consider prices for each last day of the month from
January 1996 to December 2017. At each point in time, we consider options with
20 or 40 business days to maturity. When needed, data are obtained interpolating
the two contracts whose maturities straddle the needed one.

Using the term structure of zero-coupon default-free interest rate, the riskless in-
terest rate for each given maturity 7 is obtained by linearly interpolating the two
interest rates whose maturities straddle 7. This procedure is repeated for each
contract, and each day in the sample!”.

Shttp : //mba.tuck.dartmouth.edu/pages/ faculty/ken.french/datayibrary.html

1"The summary statistics for the options analyzed are reported in Table 3.14 of the online
appendix. There we report mean and standard deviations of the available options clustered for
Maturity and Moneyness. The variables detailed are: Price in dollars, % Black-Sholes implied
volatility, Bid-Ask spread, Volumes, Open Interest, Delta in % and number of observations.
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After that, we employ implied correlation (Buss et al. [2018]), model-free implied
volatility, model-free downside implied volatility (Jackwerth and Vilkov [2018]),
Realized Correlation and the Variance Risk premium. All these data come from
Professor Vilkov website'®. Monthly data span the period from April 1996 to
December 2017.

3.3 Predictive Models

In this section, we first list the predictive models employed and subsequently we
detail the methodology for each one of them. After that, we present the perfor-
mance metrics employed in our analysis. Finally, we report our empirical results,
and we discuss them in light of the existing literature.

3.3.1 Econometric and Machine Learning Methodologies

To study the informative content which is possible to extrapolate from the predic-
tors of Welch and Goyal [2008] we employ a wide list of models coming from the
empirical financial literature and the Machine Learning one. While the list is far
from being exhaustive, it is one of the first efforts to compare the predictive power
of traditional econometric techniques with advanced machine learning ones in the
field of empirical finance. Our approach combines model selection with machine
learning and statistical approaches.

In this subsection, we list the methodologies considered while full details are re-
ported in the following pages. Our list of models includes:

1. Univariate OLS regressions for each predictor.

2. A predictive OLS multivariate regression model (kitchen-sink) that incorpo-
rates all predictors jointly ("OLS” in the Tables ).

3. A median combination forecasts approach which employ the median fore-
cast among the ones generated by the univariate OLS regressions (”Pooled
forecast: median”, in the Tables).

4. The pooled DMSPE forecasts method proposed by Stock and Watson [2004]
and successfully employed by Rapach et al. [2010] (" Pooled forecast: MDSFE”
in the Tables).

5. Sum-of-the-parts forecast model of Ferreira and Santa-Clara [2011] (Sum-of-
the-parts).

Bhttp: //www.vilkov.net /codedata.html
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10.

11.

12.

. The Multivariate Adaptive Regression Splines approach Friedman [1991]

for variable selection and a multivariate Support Vector Machine regression
model (Boser et al. [1992] and Drucker et al. [1997]) to make out-of-sample
forecasts ("MARS”, in the Tables).

The SIC (Schwartz Information Criterion) for the variable selection and a
multivariate Support Vector Machine regression model (Boser et al. [1992]
and Drucker et al. [1997]) to make out-of-sample forecasts ("SVM SIC”, in
the Tables)

. The Lasso for the variable selection and a multivariate Support Vector Ma-

chine regression model (Boser et al. [1992] and Drucker et al. [1997]) to make
out-of-sample forecasts (”Lasso SVM” in the Tables).

. The Regression Forest approach of Breiman [2001, 1996] built using regres-

sion trees (CART) Breiman and Friedman [1985] ("Random Forest”, in the
Tables).

The diffusion index approach employed by Ludvigson and Ng [2007] to filter
the information and the univariate Support Vector Machine regression model
(Boser et al. [1992] and Drucker et al. [1997]) to make out-of-sample forecasts
(" Diffusion Index”, in the Tables).

The Partial Least Squares approach of Kelly and Pruitt [2013] to filter the
information and the univariate Support Vector Machine regression model
(Boser et al. [1992] and Drucker et al. [1997]) to make out-of-sample forecasts
("PLS” in the Tables).

Variable selection made on the base of the MSFE performance of univariate
OLS regressions. Out-of-sample forecasts generated though the Trimmed-
Mean or Median of an ensemble of multi layer Neural Networks (Minsky and
Papert [1969], Miller et al. [1995]) (?Neural Networks T-Mean” and ”Neural
Networks Median” in the Tables).

3.3.2 Basic linear models

The Kitchen Sink Regression is a simple OLS multivariate regression which in-
cludes all the predictors at once. The estimation is performed employing all pre-
dictors up to time t-1 (the last available information) to perform the parameter
estimation. After that, we use the estimated parameters to make inference for time
t+1 employing regressors values at time t. In formulas this can be summarized in
a two step procedure:

Rt =+ /BXt_l + € (31)
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where R is the t*1 vector of the S&P500 returns and X is the t*N matrix of the
N predictors considered in the analysis.

Tiy1 = Oy + BtXt (3.2)

where 7,1 is the univariate forecast produced by the model, a4, Bt are the coef-
ficient estimated in the previous step employing data up to time t-1, and X; is
the 1*N vector of predictors at time t. For univariate model N (the number of
predictors) is equal to 1.

3.3.3 Combination Forecasts

Combination forecasts are common methodologies employed in the literature (Ra~
pach et al. [2010], Aiolfi and Timmermann [2006], Strauss and Detzel [2017]). The
DMSPE approach is based on a three-stages estimation.

1. At first for each date t, we run a separate univariate regression for each
regressor, z;_1, on the equity premium at time t using all data available up
to that date.

Ri=a+ Pz 1+ e (3.3)

2. After that, each univariate OLS model previously estimated is employed with
predictors available at time z; to make inference on the equity premium for
the subsequent period, R

Rt+1 =0y + tht (3.4)

3. Finally, we combine the forecasts generated by univariate regressions via
combination forecasts methods.

N
Rt+1,Comb = Zwi,thJrl (3-5)

i=1
In the Pooled-DMSPE approach we computes the weights for the third step in the
following way:

wp = =2 5.6
By
where
t—1
G =Y _ 07 (repr — Fisrn) (3.7)

0 is a discount factor (equal to 0.5 in this study), m+1 is the start of the holdout
period and K is the number of past periods considered to compute the weights
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(K=13 in this paper). The DMSPE method thus assigns greater weight to indi-
vidual forecasts that had better forecasting performance in terms of lower mean-
squared prediction errors.

The Pooled-Median, instead of using equation (5), simply employs the median of
the univariate regression forecasts from equation (4).

3.3.4 Sum-of-the-Parts Method

The Sum-of-the-Parts Method has been proposed by Ferreira and Santa-Clara
[2011]. The authors start decomposing returns in the following manner:

Pi1+ D
Rt+1 - % - CGt+1 + D}/t—i-l (38)
t
where P, is the stock price, D; is the dividend, CGy11 = Pgl is the gross capital
gain, and DY, | = Dgl is the dividend yield. After that, the gross capital gain

can be expressed as

P
B L1 M1 B
CGi = =5 = =GMGE 3.9
t+1 % E, M, E t+1G L (3.9)
where F; denotes earnings, M; = % is the price-earnings multiple, GM;1 = MAZ L

is the gross growth rate of the price-earnings multiple (earnings), and GE;;1 =

E}E—:l. Now the dividend yield can be written as
Dy P
DYy = =22 — DB GMy GEyy (3.10)
P B
where %‘ is the dividend-price ratio. Based on these results the gross return
becomes

Rt+1 == GMH_lGEH_l(l + DPt+1) (311)

which for the log return can be expressed as

log(Riy1) = gme1 + gerrr + dpega (3.12)

The authors argue that, since price-earnings multiples and dividend-price ratios
are highly persistent and nearly random walks, reasonable forecasts for gm,,; and
dp;+1 based on information available at time t are zero and dp,. Finally, a 20-year
moving average of log earnings growth through t ge?°, is employed as a forecast of
gesr1. The sum-of-the-parts equity premium forecast is then given by

ffﬁp = ge;’ +dp, — rpi (3.13)

where 7441 is the log risk-free rate for time t+1, which is known at the end of
time t.
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3.3.5 Multivariate Adaptive Regression Splines and Sup-
port Vector Machines for Regression

Given a set of predictors the MARS model (Friedman [1991]) selects and breaks
a predictor into two groups and models linear relationships between the predictor
and the outcome in each group. To determine the cut point each data point for each
predictor is evaluated as a candidate cut-point by creating a linear regression model
with the candidate features, and the corresponding model error is calculated. The
predictor /cut point combination that achieves the smallest error is then used for
the model. After the initial model is created with the first two features, the model
conducts another exhaustive search to find the next set of features that, given
the initial set, yield the best model fit. This process continues until a stopping
point is reached. Omnce the full set of features has been created, the algorithm
sequentially removes individual features that do not contribute significantly to the
model equation. This “pruning” procedure assesses each predictor variable and

estimates how much the error rate was decreased by including it in the model.
MARS builds models of the form:

f(@) =2 _ciBi(x) (3.14)

where ¢; is a fix coefficient and B; can be equal to 1 or to a hinge function (a hinge
function has the form max(0, x-const) or max(0, const-x)) or a product of hinge
functions.

Our implementation of the algorithm builds the model in two phases: forward
selection and backward deletion. In the forward phase, the algorithm starts with
a model consisting of just the intercept term and iteratively adds reflected pairs of
basis functions giving the largest reduction of training error (Mean Squared Error).
We set the maximum number of basis functions to min(200, max(20,2d))+1, where
d is the number of input variables. We do not allow for self-interaction. We impose
no penalty for adding a new variable to a model in the forward phase, and we
employ hinge functions only. The forward phase is executed until adding a new
basis function changes R? by less than le-4.

At the end of the forward phase we have a large model which over-fits the data,
and so a backward deletion phase is engaged. In the backward phase, the model
is simplified by deleting one least important basis function (i.e., deletion of which
reduces training error the least) at a time until the model has only the intercept
term. At the end of the backward phase, from those “best” models of each size, the
one with the lowest Generalized Cross-Validation (GCV) is selected and outputted
as the final one. GCV, as an estimator for Prediction Mean Squared Error, for a
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MARS model is calculated as follows:

MSEtrain
CVGE = ——F1rns 3.15
(1 =y 1)
where M S FEy,.qin is the Mean Squared Error of the model in the training data, n is
the number of observations in the training data, and enp is the effective number
of parameters:

enp=k+cx(k+1)/2 (3.16)

where k is the number of basis functions in the model (including the intercept
term), and ¢=3 is the Generalized Cross-Validation (GCV) penalty. We impose
no further constraints on the Maximum number of basis functions (including the
intercept term) in the final pruned model?.

Once the model is built we perform variable importance assessment. The criterion
counts the number of model subsets that include the variable. Where by ”subsets”
we mean the subsets of terms generated by the pruning pass. There is one subset
for each model size (from 1 to the size of the selected model) and the subset is the
best set of terms for that model size. Obviously, only subsets that are smaller than
or equal in size to the final model are used for estimating variable importance. We
select only variables with a score bigger than 12. After that, we use the selected
variables to estimate a machine vector regression model.

The intuition of SVM for regression is to modify the traditional simple linear
regression regularized error function

N A
S — ta)* + Sl (3.17)
n=1

N | —

by introducing an € insensitive error function.

|0 if |y(x) —t|<e
Ee(y(z) —t) = { ly(z) —t|—e otherwise (3.18)
This implies that we minimize a regularized error function given by
al 1
O Edly(za) —tn) + 5wl (3.19)
n=1

where C is a regularization parameter.
Now for each data point x,, we now need two slack variables &, > 0 and &, > 0,

19To boost computational performance, and following Friedman [1991], we employ piecewise-
cubic modelling for the final model only after both the forward and the backward phases.
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where &, > 0 corresponds to a point for which ¢,, > y(x,)+€ and fn < 0 correspond
to a point for which ¢, < y(z,) + €. Consequently, a target point lies inside the €
tube whether y,, — e < t,, <y, + € where y,, = y(z,,). The introduction of the two
slack variables allows points to lie outside the tube provided the slack variables
are different from zero:

th <ylr,)+e+&, and  t, >y(x,) —e— én (3.20)

This implies that the error function for support vector regression can then be

written as
N

O 6 +E0) + gl (321)

n=1

which should be minimized subject to the constraints &, > 0 and én > 0 plus the
conditions t, < y(z,)+e€e+¢, and t, > y(x,) — € — én. Consequently, the problem
can be solved optimizing the Lagrangian with multipliers a,, > 0, a,, > 0, @, > 0
and fi, > 0

N ) 1 N R
L=C) (&t &)+ 5llwlP= D (Hnbn + fins)
n=1 N n=1 N A
—Zan(e‘f‘fn‘f‘yn_tn)_Z&n(6+€n_yn+tn) (322)
n=1 n=1

Computing the partial derivatives and replacing gives

N N N N

. 1

L(a,a) = ) E E (@n—an)(Qm—am) k(X T)—€ E (an—i—dn)—l—g (@n—ap)*ty,
n=1 m=1 n=1 n=1

(3.23)

where k(z,2') = ¢(z)T¢(2') is the kernel.

Replacing w = Zf:f:l(an — a,)¢(x,) in the general case y(z) = wl¢(z) + b where
¢(z) denotes a fixed feature-space transformation, ¢(z) * ¢(z) = k(z,z,), and b is
the bias parameter, we see that predictions can be made using

N

y(x) = Z(an —ap)k(z,x,) + 0 (3.24)

n=1

We implement the regularized support vector machines regression presented above
in the following manner. The half width of the epsilon-insensitive band is set equal
to the ratio of the interquartile range of the independent variable distribution and

118



the scalar value 1.349. The regularization Lambda is set equal to one divided
the training sample size. The objective function minimization technique chosen is
SpaRSA (sparse reconstruction by separable approximation optimization, Wright
et al. [2009]). Initial estimates of regression coefficients are all set to zero except the
bias one which is initially fixed to the weighted median of the dependent variable
in the training set. The criteria for convergence during the optimization process
are?’:

e Relative tolerance on linear coefficients and bias term: le-4
e Absolute gradient tolerance: 1le-6

e Size of history buffer for Hessian approximation: 15

e Maximal number of optimization iterations: 1000

For each date t, the model is estimated with predictors data up to t-1. Then the
values of the regressors at time t are employed to make inference for date t+1.

3.3.6 Diffusion Indices and Partial Least Squares

The diffusion index approach assumes a latent factor model structure for the po-
tential predictors:

Tip = Nifi + €it (3.25)

with (i=1,..., K) and f; is a g-vector of latent factors, \; is a g-vector of factor load-
ings, and e;; is a zero-mean disturbance term. Co-movements in the predictors are
primarily governed by movements in the small number of factors (the number of
factors is much smaller than the number of predictors). The latent factors can be
consistently estimated by principal components. To implement this approach we
started standardizing all the predictors (standard deviation of 1 and zero mean).
After that for each date t, we compute the first principal component employing
all data available up to t-1. The first principal component is then employed as
a regressor to estimate a support vector machine regression. Finally, the support
vector machine regression previously estimated with data up to t-1 and the value
fi of the first principal component are used to make inference for time t+1. The
approach employed for the estimation of the support vector machine regression is
the same explained in the previous subsection: Multivariate Adaptive Regression
Splines and Support Vector Machines for Regression.

20Further details on the optimization procedure can be found looking at the details of the
Matlab function ”fitrlinear”
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The approach followed for the PLS is similar. At first, the PLS predictor is es-
timated following the approach of Kelly and Pruitt [2015] and Kelly and Pruitt
[2013]:

YPES = X Iy X'JpR(R Jp X X' JrR) 'R JrR (3.26)

where X denotes the T x N matrix of predictors, X = (2!, 2}, ..., 2/), and R denotes
the T x 1 vector of excess stock returns as R = (R, ..., Rr+1)’. The matrices Jr
and Jy, Jr = Iy — —’lT’LT and Jy = Iy — %zm?v enter the formula because
each regression is run with a constant. Iy is a T-dimensional identity matrix,
and 77 is a T-vector of ones. The PLS predictor is then employed to estimate a
univariate support vector machine regression. Finally, the support vector machine
regression previously estimated with data up to t-1 and the value Y;"L% of the
PLS predictor are used to make inference for time t+1. The approach employed
for the estimation of the support vector machine regression is the same explained
in the previous subsection: Multivariate Adaptive Regression Splines and Support
Vector Machines for Regression.

3.3.7 Regression Trees and Regression Forest

Classification and regression trees or CART models (Breiman and Friedman [1985)),
also called decision trees are defined by recursively partitioning the input space,
and defining a local model in each resulting region of the input space.

M
f(z) = Ely|x] = Z Wyl (x € Ry, Z Wi (2, V) (3.27)

where R,, is the m*" region, w,, is the mean response in this region, and v,, encodes
the choice of the variables to split on, and the threshold values, on the path from
the root to the m** leaf. Consequently, a CART is just an adaptive basis-function
model, where the basic functions define the regions, and the weights specify the
response value in each region. The split function chooses the best feature (j), and
the best value for that feature (t), as follows:

(j*,t*) = arg jegl,.i.?p) ?el%n cost(z;,y; : xi; < t)+cost(x;,y; cxij >t)  (3.28)

Tree regressions extend the idea of CART but terminal nodes instead of providing
the simple average employ a linear model to predict the outcome. Finally, Re-
gression Forest follows an extension of the tree regression based on bootstrapping.
The approach of the random forest consists of forecasting through the average
(mean) of regression trees generated by bootstrapping the original data. At first,
a number (m) of wanted regression trees is fixed. For each m a bootstrap sample of
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the original data is generated, and with them, trees regressions are trained. This
approach introduces a change in the building of each tree: for each split, the model
randomly selects k (less than P) of the total original predictors (P) and partitions
the data selecting the best predictor among the k predictors.

To calibrate this model we follow the suggestions of Kuhn and Johnson [2013].
First, all trees are decision trees with binary splits for regression. Second, only 2%
of data are employed (with replacement) for building each tree. After that, the
number of predictor or feature variables to select at random for each decision split
is set to three. We grow the tree using MSE (mean squared error) as the splitting
criterion. The stopping criteria for the building of the tree are:

e The maximal number of decision splits (or branch nodes) per tree is equal
to the number of observations-1

e Fach leaf must have at least five observations

e Each splitting node in the tree must have at least ten observations.

No pruning is performed after the creation of the trees, and no cost function is
imposed on errors. Finally, the forecasts generated by each tree are the result of
the forecasts coming from leaves only, not from a weighted average of leaves and
nodes. This procedure is employed to create 1000 different trees. Once every tree
is grown we compute the average prediction from all individual trees and this mean
is our forecast of market return at month t+1.

We repeat this procedure for each date t: the model is estimated with predictors
up to t-1, then the values of the predictors at time t and the previously estimated
parameters are employed to make inference for t+1.

3.3.8 SIC - Lasso Support Vector Machine

The joint employment of all the available predictors is likely to give rise to severe
multicollinearity and poor out-of-sample performance. Consequently, employing
variable selection is likely to boost the performance of the predictive model. Fol-
lowing this intuition, we consider two separate model selection approaches, and
subsequently, we make use of the selected variables into a Support Vector Machine
regression model. The first model selection approach considered is the Schwartz
Information Criterion (SIC)(Schwarz [1978]).

We employ the SIC, imposing a maximum of 2 predictors for the model selection.
For each date t, we use all data available up to that moment, we consider all
individual regressors and all possible combinations among two regressors, and we
compute the related SIC values

SSR

log(SIC) = log (T) oy Loo(T)

T

(3.29)
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where T is the number of observations, k is the number of predictors and SSR
is the sum of squared residuals. After that, for each date t, we pick the model
with the lowest SIC. Subsequently, we use the predictors of the chosen model to
estimate a support vector machine regression model. Finally, we employ it to make
inference using the values of predictors at time t to forecast the S&P500 returns
at time t+1.

The alternative approach which we employ for model selection is Lasso. At each
time t, we run a 10-fold Cross-validated Lasso.

N
min 55 + A 1Bl (3.30)

J=1

where N is the number of regressors, A is the Lagrange multiplier, RSS is the sum
of squared residuals. The value of lambda selected is the 95 higher from a default
geometric sequence of 100 values, with only the largest able to produce a model
which exclude all predictors.

After that, the predictors selected by Lasso are employed to estimate the Linear
Support Vector Machine. Finally, we employ it to make inference using the values
of predictors at time t to forecast the S&P500 returns at time t+1.

3.3.9 Ensemble of Neural Networks

Feed-forward Network functions are extensions of classical models for regression
and classification, which are based on linear combinations of fixed nonlinear basis
functions ¢(z) and take the form

y(z,w) = f(Z w;d;(x)) (3.31)

here f(.) is a nonlinear activation function in the case of classification and is
the identity in the event of regression. Neural networks use basis functions that
follow the same form so that each basis function is itself a nonlinear function of a
linear combination of the inputs, where the coefficients in the linear combination
are adaptive parameters. Consequently, the basic neural network model can be
described as a series of functional transformations. At first we construct M linear

combinations of the input variables z1, zs,...,zp in the form
D
1 1
aj = wiw +wly (3.32)
i=1

where j=1,..., M and the superscript (1) indicates that the corresponding pa-
rameters are in the first ‘layer’ of the network. The quantities a; are known as
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activations. Fach of them is then transformed using a differentiable, nonlinear
activation function h(.) to give
Zj = h(aj) (333)

These quantities correspond to the outputs of the basis function y(x,w) above
that in the context of neural networks are called hidden units. In our approach,
the non-linear functions h(.) are sigmoid. Finally, these values are again linearly
combined to give output unit activations.

M
j=1
where k=1,... K, and K is the total number of outputs. We can combine these

various stages to give the overall network function that takes the form
M D
2 1 1 2
yi(w, k) = > w3 wl e+ wl)) + wiy (3.35)
j=1 i=1

Thus, the neural network model is simply a nonlinear function from a set of input
variables x; to a set of output variables ¥, controlled by a vector w of adjustable
parameters.

Our approach involves a preliminary variable selection step. Consequently, only the
4 variables which up to time t have the highest cumulated R3¢ value in univariate
predictive regressions are subsequently employed for the estimation of the neural
networks. Our neural networks have a structure composed of six layers in which
each higher layer has half the number of neurons of the subsequent one, and the
first layer has 32 neurons.

Insert Figure 3.8

Inputs are connected to all the neurons of the first and fourth layer. All neurons
of one layer are fully connected with the neurons of the subsequent layer. To train
the network, we minimize the Mean Absolute Error changing the weights of the
network. Training is performed through the Resilient backpropagation algorithm.
To avoid overfitting issues we adopt the following procedures:

e We estimate an ensemble of 100 networks with different initialization points.
e We employ the Early Stopping approach.
e We adopt regularization.

e We include a network in the ensemble only whether it generates an R? above
20% in the training sample and 25% for the validation one.
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e Before the training of each network we randomly divide the data available
into three parts: training sample (60%), validation sample (30%) and test
sample (10%).

After the estimation of the ensemble, we use the most updated predictors available
at time t to forecast the equity premium at time t+1. Finally, we employ the
median, and 40" percentile forecasts generated by the ensemble (Neural Networks
Median and Neural Networks 40" in the Tables).

3.3.10 Performance Metrics

To asses the out-of-sample predictive performance of the models and predictors
considered in this study we follow the literature*® and employ the RZ, Delta
Utility and Delta Sharpe ratios metrics:

e The R2, statistic:

R2 — 1 _ Z?Zl(rt B TAI‘/)Q (336)
- Z;f:l(rt —T)?

R?, measures the percent reduction in mean squared forecast error (MSFE)
between the forecasts generated by the chosen predictive model, 7, and the
historical average benchmark forecast, 7. To assess the statistical signifi-
cance of R%, we employ the p-values coming from the Clark and West [2007]
MSFE-adjusted statistic. This indicator tests the null hypothesis that the
historical average MSFE is less than or equal to the forecasting method
MSFE against the alternative that the historical average MSFE is greater
than the forecasting method MSFE (corresponding to Hy : R%, <= 0 against
H,: R%, >0).

e The Delta Utility measure. Following the literature (Campbell and Thomp-
son [2008], Rapach et al. [2010]), we estimate the expected variance (67,;)
using a ten-year rolling window of monthly returns. We consider a mean-
variance investor who forecasts the equity premium using the historical av-
erages. She will decide at the end of period t to allocate the following share
of her portfolio to equity in the subsequent period t+1:

(3.37)

21Both these measures are introduced in the seminal work of Campbell and Thompson [2008]
and subsequently employed in a number of studies among which Rapach et al. [2010], Strauss
and Detzel [2017] and Rapach et al. [2016]
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where 6,4 is the rolling-window estimate of the variance of stock returns.
Over the out-of-sample period, she will obtain an average utility of:

o = fio — 5703 (3.38)
where iy and 62 are the sample mean and variance, over the out-of-sample
period for the return on the benchmark portfolio formed using forecasts of
the equity premium based on the historical average. Then we compute the
average utility for the same investor when she forecasts the equity premium
using one of the predictive approaches proposed in this paper. In this case,
the investor will choose an equity share of:

17
wje = = (3.39)
Y Ot+1
and she will realize an average utility level of:
AU S

where fi; and 0; are the sample mean and variance, over the out-of-sample
period for the return on the portfolio formed using forecasts of the equity
premium based on one of the methodologies proposed. In this paper, we
measure the utility gain as the difference between 9, and 0y, and we multiply
this difference by 100 to express it in average annualized percentage return.
In our analysis, following the existing literature,?? we report results for v = 3
and constraint the final weight for the risky asset in the range between -0.5
and 1.5.

3.3.11 Empirical Results and Discussion

Now we turn to the detailed results for the out-of-sample analysis, which are pre-
sented in Table 3.1 and Table 3.2. These tables report R statistics and average
utility gains for each of the individual predictive regression models and machine
learning models relative to the historical average benchmark model. For the R%
statistics statistical significance is assessed with the Clark and West [2007] MSPE-
adjusted statistic, as discussed in section 3.10. For brevity, the two tables included
in the main text are the ones which report results for the longest out-of-sample
period 1986:1-2017:12. For univariate OLS models, the restrictions imposed fol-
lows the approach of Campbell and Thompson [2008] while for all the machine

22 Among the most cited works on the subject Campbell and Thompson [2008] and Rapach
et al. [2010] impose the same level of risk aversion
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learning approaches the only restriction is that if the forecasted return is negative,
it is replaced with zero. The upper part of Table 3.1 based on the out-of-sample
predictive performance of univariate linear regression largely confirms the results
of Welch and Goyal [2008]: out of 14 predictors, only 2 have a positive R% 4, and
no one of them has a p-value under 0.1. Imposing the constraint of Campbell and
Thompson [2008] results improve but again no positive R3¢ statistics exhibit a
p-value under 0.1. Our results diverge from the one originally presented by Camp-
bell and Thompson [2008] confirming how the R% 4 metric fluctuates dramatically
changing the out-of-sample period. The average utility gains stemming from the
same predictors confirms the previous conclusions: only the Earning Price ratio
produces an increment of more than 1%, and this result is entirely due to its per-
formance in Recession periods.

For predictive models, results are striking. While, as expected the R%¢ value for
the multivariate OLS model is negative, even the well-known Pooled forecast ap-
proach of Rapach et al. [2010] and the Sum-of-the parts methodology of Ferreira
and Santa-Clara [2011] do not obtain statistically significant R3¢ values. These
results hold even for the restricted version of the previous predictive models. When
yearly utility gains are considered only the Sum-of-the-Parts approach generates
increments around 1% but again this performance arises almost entirely in reces-
sion periods. Our newly introduced methodologies, which combine model selection
(MARS, SIC, and Lasso) with support vector machines all produce positive RZ
values which are significant at the 10% level. The related utility gains are rel-
atively small ranging from 0.86% for the SIC Support Vector Machine approach
to 2.29% for the MARS Support vector machine approach. These predictive ap-
proaches perform, as before, especially well during recession periods, but now the
gains are positive even during expansions. After that, diffusion indexes produces a
R% ¢ of 0.73 which with a related p-value of 0.05 but fail to produce positive utility
gains. Finally, our approach which employs neural networks is the winner of the
horse race: R%g values are above 3 — 4% and are statistically significant at the
10% level while the delta utility gains are around 1.5 %, and for the 40" percentile
approach the performance is stable both in expansion and recession periods. In
Figure 3.2 we compare the cumulated returns arising by a buy and hold strategy
on the S&P500 and the returns generated by the median restricted forecast of
our ensemble of neural networks. It is immediately apparent how the strategy is
superior in terms of returns per unit of risk.

Insert Table 3.1

Insert Table 3.2

Insert Figure 3.2
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To test the robustness of our findings, we repeat the analysis performed in Tables
3.1 and 3.2 using other out-of-sample periods: 2001:1-2017-12 and 2011:1-2017:12.
Results for these robustness checks are reported in the online appendix in Tables
3.15-3.17 and confirm our main results. Indeed the R%q statistics generated by
our Neural Network approach are above 5% for the 2001-2017 window and re-
main above 3% for the shorter 2011-2017 period. The related Delta Utility gains
are equally important and amount to an average yearly 2.7% for the 2001-2017
window and 2.3% for the 20011-2017 one. Interestingly, the performances of the
constrained versions of the Neural Networks are weaker than the performance of
their unconstrained counterparts suggesting how these models are successful in
the timing of market declines. In these more recent periods, remarkably positive
performances are generated even by MARS and Random Forest predictive ap-
proaches. For these algorithms, the R%g statistics are above 1% with a p-value
close or lower to 0.1 The related delta utility gains are approximately 2% for the
MARS approach while they reach a recession dependent average 5% for the Ran-
dom Forest approach.

The findings just recorded implies that some of the most influential papers pub-
lished in the literature are sample dependent and unable to account for markets
structural breaks? while our Neural Networks approach appears to remain mostly
unaffected by them. These considerations are relevant in light of the highly com-
petitive and fast-changing environment which characterizes stock markets nowa-
days. Indeed, some studied include in their out-of-sample window even remote
periods when the understanding of financial markets was more limited (and mar-
ket were less efficient) and consequently returns of that time are highly predictable
with our state-of-the-art technology. Consequently, the results reported in those
studies are biased and unlikely to hold in the current financial market environ-
ments.

The results just detailed confirm and augment the finding of Gu et al. [2018]. Over-
all, these results pose a significant challenge to the Efficient Market Hypothesis,
which states that prices incorporate all the information efficiently, and return in
excess to the risk-free rate must be matched by higher risks. Now, it is becoming
apparent how relatively simple machine learning techniques can consistently beat
the market without incurring in higher risks. While neural networks are black
boxes and the precise genesis of rationale underpinning predictability remains
largely unexplained is getting apparent how more and more powerful machine
learning models continuously improve our capability to forecast returns out-of-
sample. This poses two fundamental challenges:

BLettau and Van Nieuwerburgh [2007] identifies structural breaks in the dynamics of US
stock markets in the early nineties. We prove the robustness of our result by choosing a hard
out-of-sample window (1986:1-2017:12) which starts soon before the structural breaks.
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1) Understand the genesis of the predictability: which are the factors (linear and
non-linear) which the market is unable to reflect promptly and which ultimately
generate the predictability detected by our models?

2) Does exist an upper bound to our capability to precisely time the market? Or
the only limits are technological and informative? Whether this hypothesis holds
financial markets are not efficient but adaptive (Lo [2004]).

3.4 Predictors

The identification of powerful stock predictors is the second pillar of market pre-
dictability. While well known, the predictors of Welch and Goyal [2008] are not
necessarily the best predictors for the S&P500 index. We start by re-examining
the results of Hong et al. [2007] who employs industry indexes as predictors. The
authors perform extensive in-sample analysis and conclude that the returns of
industry portfolios can predict the movements of the aggregate market. We re-
examine their findings adopting an out-of-sample approach. The predictive models
employed in our analysis are the same ones adopted in the previous part and in-
clude both univariate OLS regressions and machine learning methodologies. To
make our results consistent with the ones of the previous literature we consider two
windows of monthly returns: a long one spanning the period 1986:1-2017:12 and a
shorter one considering the period 2001:1-2017:12. The most striking evidence is
that predictability appears to be higher when we consider only the last seventeen
years of monthly data. These results are against the hypothesis that the effect
captured by Hong et al. [2007] is due to mispricing and consequently it is desti-
nated to disappear. The R% metrics for the predictions of univariate regressions
are positive and statistically significant at the 10% level only for three industries:
Health care (1.27%), Money (1.97%) and Others (1.90%). Interestingly, the yearly
delta utility percentage gains are positive for all the individual predictors in both
the out-of-sample windows considered. These gains appear remarkable and, in the
period 2001:1-2017:12, pick to 4.3% and 3.74% for the Money and the Chemical
index respectively.

Overall, our results confirm and augment the seminal findings of Hong et al. [2007]:
industries lead the stock market. After that, we focus on the performance gener-
ated by combining the predictors through our machine learning techniques. Here
the results are surprisingly disappointing: R%¢ metrics are usually negative, and
their p-value is never below the 0.05 threshold. The related yearly percentage of
delta utility increments are consistently positive only for Pooled forecasts and for
Random Forests, but these values are below the ones generated by the forecasts of
the most performing univariate regressions employed before. In conclusion, when
industry indexes are employed as predictors for the S&P500 there is no evidence
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that by combining predictors we obtain improvements relatively to employing in-
dividual predictors only. Our results imply that the results of Rapach et al. [2010]
are linked to a specific set of predictors (the Welch and Goyal [2008] ones) and
can not be generalized to all typologies of predictors.

Insert Table 3.3

The second alternative set of predictors which we employ to forecast the S&P500
is composed by the 17 spread returns of the factors-anomalies listed in section
2.2. These returns are the results of the difference between long and short factors-
anomalies portfolios returns. As before, two out of sample windows are considered
1986:1-2016:12 and 2001:1-2016:12 and forecasts are performed both through uni-
variate OLS regressions and machine learning techniques which consider all this
set of predictors. The results which emerge from the univariate OLS out-of-sample
forecasts are impressive. Out of 17 predictors, 3 generate high R%4 results with a
p-value close to zero in both the out-of-sample evaluation windows. More precisely
for the 1986:1-2016:12 window the R% ¢ resulting from the Asset Growth spread,
the Net Stock Issue spread and of the Ohlson spread are respectively equal to
13.2%, 23,5%, and 6.4%. Remarkably the 23,5% R%¢ value stemming from the
Net Stock Issue spread is record-high in the financial literature on out-of-sample
forecasting. The related yearly delta utility spreads are equally impressive: for the
1986:1-2016:12 period the percentage gains generated by the Asset Growth return
spread, the Investment to Asset return spread, the Net Stock Issue return spread
and the Ohlson spread are respectively of 11.47%, 10.30%, 23.7%, and 4.53%.
These results are confirmed by the 2001:1-2016:12 window. These results while
novel and impressive are not entirely unexpected: a relatively unknown study,
Greenwood and Hanson [2012], shows how the difference between the attributes
of stock issuers and repurchasers can forecast characteristic factor returns.

While seminal and elegant, the analysis performed by the authors remains confined
into the in-sample domain. We borrow and extend this intuition to forecast the
S&P500 with a variety of spread returns coming from different firms’ character-
istics. After that, the results of the employment of the spread return predictors
in our machine learning approaches provide equally satisfactory results. Neural
networks achieve an especially positive performance reaching a R%4 of 17.15% for
the 1986:1-2016:12 out-of-sample period and of an 8.8% (delta utility of 17.15%)
for the 2001:01-2016:12 one (delta utility of 15.85%). Remarkably, even OLS,
Pooled MDSFE forecasts, and the Diffusion index approach are performing ex-
tremely well: for the 1986:1-2016:12 approach in terms of R%¢ the performances
are 17.69%, 12.36%, and 13.54%. While for the same out-of-sample window the
yearly percentage Utility Gains of the three approaches are respectively 12.39%,
10.56%, and 7.11%. These results prove the economic value of our methodolo-
gies which is well beyond the ones commonly reported in the current academic
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literature.
Insert Table 3.4

Now we study a new, often ignored, feature of predictors. They are relevant
not only because they allow to achieve better forecasts but even because they
indirectly provide novel information on what ultimately the market prices. Indeed,
as stressed by Campbell [1991] the field of asset pricing and predictability are
intimately connected and represent two sides of the same issue. While, these
ideas are largely accepted, nowadays persists a visible shortage of studies address
this aspect of the problem?!. We address it by showing how the study of the
predictive power of the different predictors allows us to gain a deeper understanding
of the drivers of stock prices and of spread returns. Our approach is closely linked
to the vibrant literature which is currently employing powerful model selection
techniques® to identify the key factors among the "factor zoo” denounced by
Cochrane [2011] but our model selection technique is applied to identify the best
predictors out-of-sample and only indirectly to measure their impact on the cross-
section of stock returns.

Indeed, while predictors are pivotal components in any predictive approach, they
can also be employed to gain a better understanding of equity markets both at the
aggregate level (S&P500) and at the cross-sectional one (portfolios built on the
base of sorting on size, financial ratios or firms characteristics). It is reasonable
to believe that the predictors which are better able to forecast out-of-sample an
index are somehow informative of the index or portfolio which they can consistently
predict. Following this intuition, we propose an extremely simple, yet effective out-
of-sample model selection approach, which can be complementary to the commonly
employed in sample ones. For the S&P500, six portfolios sorted on the base of size
and Momentum, and for six portfolios sorted on the base of size and the Book
to Market ratio we identify the four predictors which in univariate regressions
achieve the highest R% (Best Individuals in Table 3.5) AND the combination
of four predictors which jointly provides the highest R%4 in a multivariate linear
regression (Combination in Table 3.5). Our results are based on the monthly
out-of-sample period 1998:1-2016:12.

Insert Table 3.5

Our results imply that the most relevant predictors for the S&P500 are Sentiment
and Variance followed by measures extracted from the fix income market: the t-bill

24 A recent exception comes from Cujen and Hasler [2017] who explain the higher predictability
detected during recessions through the existence of an uncertainty risk premium.

Z>There is a vast blossoming literature on model selection both in therm of the identification
of the relevant pricing kernel factors Feng et al. [2017] and on the cross-sectional ones ?,Fama
and French [2018] Feng et al. [2017], Kelly et al. [2018], Barillas and Shanken [2018], Hwang and
Rubesam [2018],Messmer and Audrino [2017], Kozak et al. [2017a)]
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rate, the Long-Term yield, and the Long term return. After that, the most effective
spread returns predictors for the S&P500 are the Net-Stock-Issue and the Ohlson
ones followed by the Asset Growth and the Small minus Big Spread. Overall it
appears how the most influential predictors for the S&P500 index can be clustered
into two main categories: sentiment based and default risk-based. The first set
of predictors do not include only the Sentiment index itself but even measures
which are closely linked like Asset Growth and Net-stock-issue. The second set of
predictors is linked to the default risk and include the Ohlson spread the Small
minus Big spread, the long term yield, and the Long term return. In conclusion,
our results agree with the broadly accepted view that risks and risks pricing are
the driving forces of financial markets®. In conclusion, an effective predictor needs
to be able to predict one of these two key features®’.

Looking at double-sorted portfolios, we report many novel findings. As before the
upper panel employs the Welch and Goyal [2008] predictors while the lower panel
employs the spread returns coming from factor-anomalies. First, we observe how,
coherently with the results of Baker and Wurgler, sentiment is especially power-
ful in predicting stocks with a low book to market ratio: it is the most powerful
predictors when individual regressions are considered and is one of the predictors
included in the combination of the four most powerful predictors. Second, stocks
with a high book to market value appear to be driven mostly by fundamentally
driven predictors, like inflation and volatility. After that, default yield and long
term bond returns are especially successful in forecasting the returns of the port-
folios of stocks which experienced negative returns (low prior) while stocks which
reported positive performances in the recent past (high prior) are better predicted
by volatility, sentiment and long term yield. The lower panel (anomalies) reinforce
the previous findings. The stocks which have a high book to market value are
forecasted by the Net stock issue spread (a variable linked to the Baker-Wurgle
Sentiment index formulation) while the Distress spread strongly predicts stocks
which have a low book to market value. Now firms with relatively poor past stock
returns are forecasted by the Distress spread while Net stock issue spread predicts
stocks which experienced high past returns. Finally, the low-high Book/Market
spread is strongly forecasted by the Asset Growth spread, and by the Net Operat-
ing Asset spread suggesting how profitability is linked to the relative performance

26The first seminal studies which address this topic comes from Campbell and Shiller [1988] and
Campbell [1991] who introduce the key conceptual framework at the base of our understanding
of financial markets. More recently Fuss et al. [2016] and Campbell et al. [2013] applied this
framework to the study of the 2008 financial crisis. Remarkable studies on behavioural asset
pricing include Shefrin [2008] and Shefrin and Statman [1994] for stocks and Barone-Adesi et al.
[2016] for options.

2TA first promising way to study the genesis of the out-of-sample predictability comes from
Rapach et al. [2016] and Wen [2019]
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of Book to Market sorted stocks. On the other hand, the High minus Low prior
spread is better forecasted by the Ohlson, Distress, and Return on Asset spreads
suggesting that default risk is the dominant issue here.

The results of this section while far from being conclusive aim at triggering fruitful
discussions:

1. Market efficiency is challenged not only by more and more powerful mod-
els but even by more and more powerful predictors. This implies that we
can address the challenge posed by Goyal even by using a simple univariate
regression whether the predictor employed is powerful enough.

2. We suggest how commonly employed model selection techniques which per-
form well in-sample should be backed by complementary out-of-sample ones.

3. More broadly, out-of-sample analyses are as informative as in-sample ones
to gain a better understanding of financial market dynamics.

3.5 Predictability as a generalized phenomenon

In the previous sections, we proved how using more powerful predictive models
or more powerful predictors it is possible to forecast out-of-sample the returns of
the S&P500. These results are interesting because of the high efficiency of the
U.S. stock market and suggest that in less efficient markets predictability should
be even higher. In this section, we address this issue while remaining focused on
the US equity stock market. Whether efficiency is directly linked to predictabil-
ity, less efficient markets should be more predictable than more efficient ones. In
the universe of US equities, small stocks are a natural candidate to test this hy-
pothesis. Indeed, small caps are intrinsically less liquid, it is not always possible
to short them and when it is possible this procedure is more expensive. After
that, to reduce transaction costs, passive funds try to minimize their investments
in them while they receive less attention from analysts and media. Even more
importantly due to their illiquidity risk and high transaction costs some categories
of institutional investors ( like high-frequency trading funds and hedge funds) are
less prone to invest in them. On the other hand, big capitalization stocks are the
natural counterpart of small stocks to verify our hypothesis. Finally, our analysis
allows us to test whether the predictability is driven by small stocks only.

To perform our empirical investigation, for each variable out-of-sample evaluation
is based on the most recent 30% of the available monthly time series. To be con-
sistent with our previous analyses we report the R%¢ metric and the A Utility
one. To anchor our result to the existing literature on the field we make use of
the double sorted portfolio returns coming from the French data library: the six
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double-sorted portfolios formed on the base of size and the Book to market ratio
and the six double-sorted portfolios formed on the base of size and the previous
returns performance (Momentum). For each portfolio, we report the average R% g
generated by the univariate OLS forecasts and all the machine learning method-
ologies detailed in section 2. We repeated these analyses twice: at first by making
use of the Welch and Goyal [2008] predictors and subsequently by employing the
17 spread returns predictors introduced in section 2.22%.

Insert Table 3.6

In the upper panel of the table, we present averages of R% g for individual portfolios
with the related subtotals R%g. After that, we perform a difference between means
hypothesis test between portfolios which diverge on size only (e.i. both have a low
Book-Market ratio but have a different size). The null hypothesis is that the two
means are equal against the general alternative hypothesis. The p-values generated
by our analysis are reported in the lower panel of Table 3.6. Our results confirm
that small stocks are more predictable than Big ones confirming that efficiency
and predictability are closely linked. Indeed, the bottom line of the SMALL-BIG
columns shows that the difference in mean is statistically significant at the 0.01
level for the Delta Utility and at the 0.05/0.1 level for the R4 metrics while the
summary Delta Utility and R% g metrics are always higher for Small than for Big
caps. After that, the table shows how while Small stocks are more predictable,
predictability is a broad phenomenon which includes even big caps: we observe
how using return spreads predictors (Anomalies in the Table) it is possible to
achieve utility gains for each portfolio of big stocks considered. These results are
confirmed by the average R%q values achieved using return spreads predictors:
0.68% and 1.16% for portfolios built on Book to market and Momentum sorting.
Finally, some predictability patterns emerge: stocks with low Book-to-Market ratio
are more predictable than stocks with a high Book-to-Market ratio while stocks
with lower previous market returns are more predictable than stock with higher
previous market returns. While a study on the genesis of this predictability is
beyond the scope of this paper, our out-of-sample analysis in the previous section
could provide some preliminary hints.

Having studied the dynamics of predictability inside the French double sorted
portfolio framework, now we want to address the issue in a more general framework
employing a broader set of stocks. Consequently, we studied the predictability for
the returns of thirty equally weighted portfolios and ten related returns spreads®

28The detailed results for both the RQO < and A Utility metrics are reported, for brevity, in the
online appendix: Tables 3.18-3.25

A return spread for a given anomaly implies taking a long position on the portfolio which
has the highest expected return and short on the portfolio which has the lowest expected return.
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built following the method proposed by Stambaugh and Yuan [2017] who consider
a set of eleven anomalies (we do not include Momentum because we have already
analyzed it in Table 3.6). We consider the monthly out-of-sample period 1:1986-
12:2017 to perform our out-of-sample analyses. Forecasts are based on the Welch
and Goyal [2008] predictors: we consider both univariate regressions and all the
machine learning techniques detailed in the second part of this paper. For each
portfolio and spread we report the average, median, maximum, and minimum
value for the R%¢ metric, for the related Clark and West [2007] p-value (Table
3.7) and, for the yearly percentage Delta Utility (Table 3.8). In Table 3.7 for each
portfolio, we report even the percentage of forecasts which have a R%g p-value
lower than 0.1 and 0.05. Finally, in the lower panels of table 3.7 and 3.8, we report
summary statistics from the panels above.

Insert Table 3.7

Insert Table 3.8

Our results document the existence of an extensive degree of predictability in
financial markets: the 20% of the R% g values is positive with a p-value under 0.1
while the average Maximum R%g documented for each portfolio is 1.9%. Even
more remarkable are the results in terms of utility gains where the comprehensive
average value for all the portfolios and spreads is 4.8%, and the average maximum
delta utility is close to 10%. These results imply that on average it is possible
to add value through predictive models. Even more importantly these results are
not confined to the S&P500, to small stocks or a specific subset of the US equity
market, but they are generalizable to the average U.S. equity stock. We want
to stress how our results are conservative because they relay on the Welch and
Goyal [2008] predictors which are less powerful than the spread return ones. The
results of these last two table confirm and augment the ones coming from Gu
et al. [2018] and Rasekhschaffe and Jones [2019] who used a broad set of machine
learning predictors to identify the stocks which are more likely to perform relatively
better or worse than the others. Differently, from them, we focused on portfolios
built under a variety of criteria reaching similar conclusions: machine learning
techniques can consistently time the market.

3.6 Predictable Functions

The existing literature is focused on predicting future stocks returns while it ne-
glects the opportunity coming from forecasting and trading other function of the
future market uncertainty. With this section, we aim at fulfilling this gap.

The first and most obvious case which we consider concerns return spreads. These
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returns arise from going long on a security (or portfolio of securities) and go-
ing short on another security (or portfolio of securities). The literature on this
topic is large and fast-growing, and it includes both studies on so-called factor-
anomalies and statistical arbitrage trading strategies.?’. For brevity, we focus on
factor-anomalies only leaving the study of the predictability of statistical arbitrage
strategies to a subsequent study. The factor-anomalies spread returns considered
in this section are the same ones considered in the previous one: we zoom into
the results succinctly summarised in the previous section by focusing on spread
returns only. To make our results comparable with the ones of the previous sec-
tions we always employ the R% ¢ metric and related Clark and West [2007] p-value.
In Table 3.9 we report results arising by employing the Welch and Goyal [2008]
predictors while in Table 3.10 we repeat the same analyses using as predictors
lagged (t-1) spread portfolio returns. In both cases to make the forecasts we em-
ploy both univariate regressions and the machine learning approaches detailed in
section 3.1. Coherently with the analyses of the previous sections, when anomalies
are employed as predictors, the out-of-sample monthly window spans the period
1986:1-2016:12. Finally, for the forecasts based on the Welch and Goyal [2008]
predictors the monthly out-of-sample period considered is the most recent 30% for
each predicted variable.

Insert Table 3.9

Insert Table 3.10

The results which come from the tables are striking we observe R%g values well
above the levels typically recorded for the S&P500: we observe a lot of values above
10% with peaks above 50%. After that, it is apparent how the spread-anomalies
returns predictors are much more powerful than the Welch and Goyal ones. The
key pattern to notice is that Welch and Goyal [2008] predictors are effective in fore-
casting the Investment to Asset, the NOA, the Accruals, and the Distress spread.
On the other hand, returns spread predictors are more successful in forecasting
the SMB, HML, RMW, CMA, LT, ST, Momentum and Composite equity Issue
spreads. Overall, out of 17 return spreads 12 exhibits high, statistically significant
R% ¢ values®!. Our results raise new challenging questions for future research:

1) Which are the connections among spread returns which give rise to the pre-
dictability detected by our models?

30The first branch of this literature includes the so-called ”factor zoo” (Cochrane [2011]) In-
terested readers can find a valid summary study in Campbell et al. [2016]. On the other hand,
the literature on statistical arbitrages is less known but includes above 90 studies. An updated
review of the literature comes from Krauss [2015]

31Tn the online appendix, Tables 3.26 and 3.27 we report our complementary results in terms
of yearly percentage utility gains. The empirical evidence which emerges suggests that the
capability to forecast return spreads has remarkable economic potential.
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2) Which are the links between the spread predictability and the real economy?
While spread returns portfolios exhibit a promising degree of predictability, now
we extend our analysis to consider others directly or indirectly tradable variables.
We consider Implied correlations (IC), model-free implied variance (IV), variance
risk premium (VRP), down semivariance (IVD) and realized correlation (RC). For
seek of coherence, all these measures are based on the S&P500 index and its com-
ponents. IC comes from OptionMetrics Surface File using Simple Variance Swaps
estimated following the methodology introduced by Martin and Wagner [2019], IV
is computed through Simple Variance Swaps, VRP is computed as IV minus re-
alized variance from high-frequency and overnight S&P returns, IVD is computed
as corridor variance from OTM puts following the approach of Andersen and Bon-
darenko [2007], RC is computed as equicorrelation from daily stock returns (same
formula as for IC). We focus on standard maturities of 30 and 91 days. As before
we employ monthly returns, but now available time series span only the shorter
period 1996:1-2016:12. Consequently, we employ the briefer out-of-sample window
2005:1-2016:12 and the 17 spread-portfolio returns as predictors for the returns of
the variables just introduced (IC, IV, VRP, IVD, and RC). As before we make use
of the R4 metric and the related Clark and West [2007] p-values®?.

Insert Table 3.11

The results which emerge show how the Net Stock Issue is extremely effective even
in the forecasting of implied volatility, implied downside volatility and implied
correlation for all the considered horizons. The related R%¢ values are 8.8% and
14.11% for the 30 and 91 days ahead implied correlations, 10.59% and 15.82% for
the implied volatility and 10.96% and 16.18% for the downside implied volatility.
All these results are statistically significant and robust through subperiods. After
that, the Composite Equity issue, the HML, and the RMW factors are effective in
forecasting the VRP at the 91 days horizon (R%g values are respectively 2.17%,
2.52%, and 1.56%). The results coming from the machine learning methodologies
introduced in section 2 show how the Neural Networks achieve highly significant
R2 ¢ values for all the variables forecasted but the 30 days Realized Correlation (RC
30). Finally, we report how both the pooled MDSFE forecast and the OLS ones
produce positive R3¢ values for 91 days ahead Implied correlations, implied volatil-
ity and implied downside volatility. In conclusion, we proved how predictability is
an attribute of a broader set of financial variables than previously believed. The
predictability documented stems both from the employment of powerful predic-
tors (Net Stock Issue and Asset Growth spread returns) and by the adoption of

32The complementary out-of-sample A Utility performance is reported in Table 3.28, online
appendix. We document machine learning approaches can generate remarkable utility gains for
all the variables studied out-of-sample.
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powerful machine learning methodologies like Neural Networks.

We conclude this paper generalizing our results on predictability: we aim to show
how it is possible to synthesize arbitrary functions which own highly predictable
returns. To achieve this goal we build on the influential paper of Bakshi and Madan
[2000]. The authors show how from the characteristic function of the state-price
density, we could price options on almost any arbitrary transformation of the un-
derlying uncertainty. Crucially, the authors show how by differentiating the char-
acteristic function, limitless spanning and pricing opportunities can be designed.
In a subsequent application of this first intuition Bakshi et al. [2003] show how
it is possible to analytically recover from the market prices of out-of-the-money
European calls and puts contracts which approximate the risk-neutral volatility,
skewness, and kurtosis. These recent advances make the study of the predictability
of risk-neutral implied measures of stringent interest for both academics and prac-
titioners. While in the current study we focus only on better known risk-neutral
central moments contracts, the same logic can be easily extended to contracts
which approximate other more complex functions like differential multi-assets mo-
ments and whole families of trading signals.

In Bakshi et al. [2003] the authors prove how a position in bonds, stocks, and out-
of-the-money options can span any twice differentiable payoff function allowing to
replicate risk-neutral moments. Importantly, these moments making use of options
data only are intrinsically forward-looking, and by definition rely only on options
and stocks prices to be estimated. More in detail, let q denote the probability
distribution function under the risk-neutral measure. Now we define the "M2”,
"M3” and "M4” contracts as having a payoff function equal to the squared return,
cubed return, and quadratic return respectively, for a given horizon 7. The fair
value of these contracts are:

M2 = e " E9[RY] (3.41)
M3 = e B[R] (3.42)
M4 = e E9[RY] (3.43)

Crucially, Bakshi et al. [2003] show that under any martingale pricing measure,
the Var, Cubic and Quad contract prices can be recovered from the market prices
on portfolios of out-of-the-money European calls C(7, K) and puts P(7, K), where
K is the strike price and 7 denotes the time to maturity.
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The price of the Var, Cubic and Quad contract are:

MO — /oo 2(1—_[71[%])0(7_7 K)dK — /S QO_—M[%])P(T, K)dK (3.44)

K2 K2
s /Soo 6ln[X] [_(231”[%]20(7, KK — /OS 6in[Z] [+(23ln[%]2p(77 )i
(3.45)
< 12(In[5])* — 4(n[5])* S 12(In[])* + 4(In[F])°
M4 = /S g e 52 C(r,K)dK — /0 e P(r,K)dK
(3.46)

where S is the price of the underlying security and using a fourth order approxi-

mation the risk-neutral mean can be approximated by:
e'l’T eT‘T eT’T

E°9R]=¢"—1——M2——M3— —M4 3.47

[F] =e 2 6 24 (3.47)

allowing us to recover the "M1” contract having a payoff function equal to the

return for a given horizon 7
M1 = e ""E9[R] (3.48)

To make our results comparable with the others coming from the previous sections
of the paper, we test the out-of-sample performance with the R%¢ metric and the
related Clark and West [2007] p-values®*. The out-of-sample monthly window
spans the period 1:2005-12:2017. The variable forecasted are the returns of the
first four 20 and 40 days ahead moments contracts. We employ as predictors both
the Welch and Goyal [2008] variables (W-G), and the portfolio spread returns
(Anomalies). For brevity, we report only the results generated by the machine
learning methodologies detailed in section 3.1 of this paper.

Insert Table 3.12

The results which emerge exhibit high and statistically significant values for the
R statistic for the majority of the considered contracts. These values are very
heterogeneous: they are especially high for the M3-40 contract (with picks above
50%) while they are low for the M2 20 contract (the few positive values are not
significant at the 10% level). Overall R% ¢ values are higher for forecasts made with
the spread return predictors than with the Welch and Goyal [2008] ones providing

33Tn Table 3.29 of the online appendix we test the out-of-sample Delta Sharpe ratio. We
decided to employ this measure instead of the traditional Delta Utility one because, in this
special context, the sensitivity of Delta Utility to small changes in the risk aversion parameters
is excessive.
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further confirmation that the former predictors are more powerful than the latter.
We further document how out of the eight contracts considered four exhibit R% g
above 4% suggesting how the returns of these contracts are predictable.

In conclusion, the results documented in this section show how different functions
of market uncertainty are highly predictable. Even more importantly, the capabil-
ity to synthesize and trade contracts with arbitrary payoff opens the way to a new
research pattern: instead of searching for more powerful predictive models and
predictors we can aim at identifying functions of the market uncertainty which
are highly predictable. This new approach has both an economic and academic,
largely unexplored, potential and provides a new further challenge to the efficient
market hypothesis and more broadly to our understanding of asset pricing.

3.7 Conclusions

In this paper we examine the three key aspects of financial market predictability:
predictive modeling, predictors and the functions of market uncertainty we aim at
forecasting.

At first, we focus on predictive models employing as inputs the well known Baker-
Wurgler predictors. We show how combining machine learning and model selection
techniques the capability to forecast out-of-sample the S&P500 rises dramatically.
Remarkably, when model selection techniques are combined with Ensembles of
multilayer Neural Networks the monthly R%q riches a statistically significant 4.4%
for the period 1986-2017 and 6.14% for the shorter 2001-2017 period. The related
annualized utility gains are of an equally relevant magnitude picking at 3% for the
2001-2017 interval. The implications of these findings for the theory of finance
are twofold. From one side our results pose a significant challenge to the efficient
market hypothesis proving how machine learning experts can build algorithms
capable of consistently outperforming the market, on the other side they suggest
how new asset pricing models should include nonlinear interdependencies in the
formulation of the pricing kernel.

In the second section of the paper, we consider a variety of different predictors.
We show how the returns generated from the long-short strategies (often addressed
as anomalies in the literature) have a surprisingly strong out-of-sample predictive
power for the S&P500. The most successful predictors are the spread returns based
on Asset Growth, Net Stock Issue, Olshon and Investment to Asset characteristics
which, for the 1986-2016 out-of-sample period reach a record high R level of 13%,
23.5%, 6.4% and 11.1%. The Delta Utility gains generated by these predictors
confirm their profitability. After that, we study the predictability of the double-
sorted portfolios of Fama and French, and we find that while small stocks are
on average more predictable then big ones, predictability is a generalized feature
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of financial markets when machine learning techniques are employed. Finally, in
this section, we propose to employ an out-of-sample approach as a complement to
the traditional in sample techniques to identify which characteristics are ultimately
reflected into stock prices. Our simple method opens the ground to a much-needed
study on the relationship between predictability and pricing.

In the third part of our analysis, we propose a new approach to address the issue
of financial market predictability, by conceptually reversing the issue. Instead of
focusing on powerful predictive models or powerful predictors we propose to study
highly predictable functions of market uncertainty. We focus on the well known
Bakshi-Madan contracts for the first four moments of the risk-neutral distribution
and volatility and correlation swaps. We detect surprisingly high predictability for
the contracts analyzed out-of-sample both regarding R% ¢ and Delta Utility-Sharpe
ratios. While remarkable in their own, the results showed are only examples of a
much general approach which has unexplored potential.
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Table 3.1: Monthly equity premium out-of-sample forecasting results for individual forecasts, and
machine learning methods. The RzOS is the Campbell Thompson (2008) out-of-sample R? statistic. Statistical
significance for the R statistic is based on the p-value for the Clark and West (2007) out-of-sample MPSE-
adjusted statistic; the statistic corresponds to a one-sided test of the null hypothesis that the competing forecasting
model has equal expected square prediction error relative to the historical average benchmark forecasting model
against the alternative hypothesis that the competing forecasting model has a lower expected square prediction
error than the historical average benchmark forecasting model. The results refer to monthly forecasts for the out-
of-sample period 1986-2017. For predictions based on univariate forecasts the restrictions are the ones suggested
by Campbell and Thompson (2008) while for the machine learning methods when equity premium forecasts are
negative they are replaced with zero. * ** and *** indicate significance level at the 10%, 5% and 1%. Bold
indicates a pvalue for the R2OS statistic less than 0.1. .

Standard 1986-2017 Restricted 1986-2017
Predictor R%4(%)  pval Predictor R%g(%)  pval
DP -1.34 0.52 DP -1.00 0.50
DY -1.99 0.48 DY -1.17 0.52
EP -1.41 0.32 EP 0.07 0.20
DE -0.54 0.54 DE -0.03 0.31
SVAR 0.39 0.16 SVAR 0.32 0.13
BM -2.28 0.57 BM -1.29 0.56
NTIS -1.77 0.65 NTIS -1.77 0.65
TBL -0.21 0.47 TBL -0.20 0.46
LTY -0.06 0.44 LTY -0.06 0.44
LTR -0.31 0.40 LTR -0.36 0.44
TMS -0.83 0.64 TMS -0.83 0.64
DFY -0.20 0.92 DFY -0.20 0.92
DFR 0.18 0.29 DFR -0.19 0.43
INFL lag -0.35 0.84 INFL lag -0.35 0.84
Model R%4(%)  pval Model R%4(%)  pval
OLS -5.83 0.36 OLS -1.83 0.24
Pooled forecast: median 0.08 0.32 Pooled forecast: median 0.08 0.32
Pooled forecast: DMSFE -0.01 0.42 Pooled forecast: DMSFE -0.01 0.42
Sum-of-the-parts 0.24 0.21 Sum-of-the-parts 0.47 0.12
MARS 0.89** 0.02 MARS 0.95%** 0.01
SVM SIC 0.49* 0.06 SVM SIC 0.71%* 0.02
Lasso SVM 0.37* 0.10 Lasso SVM 0.58%* 0.05
Random Forest 0.52%* 0.10 Random Forest 0.59* 0.08
Diffusion index 0.73** 0.05 Diffusion index 0.73%* 0.05
PLS 0.02 0.15 PLS 0.31%* 0.09
Neural Networks Median 3.22% 0.09 Neural Networks Median 0.03* 0.06
Neural Networks 40" 4.38% 0.10 Neural Networks 40" 0.85%* 0.03
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Table 3.2: Monthly equity premium out-of-sample forecasting results for individual forecasts, and
machine learning methods. Utility gain (A Utility) is the portfolio management fee (in annualized percentage
return) that an investor with mean-variance preferences and risk aversion coefficient of three would be willing to
pay to have access to the forecasting model considered relative to the historical average benchmark forecasting
model; the weight on stocks in the investor’s portfolio is restricted to lie between -0.5 and 1.5 (inclusive). The
restriction imposed for the restricted case are the same of Table 1. The results refer to monthly forecasts for the
out-of-sample period 1986-2017. The division between Recession and Expansion months comes from the NBER
database. *,** and *** indicate a A Utility % increase above 1%, 5% and 10%. Bold indicates a A Utility above

1.00%.
A Utility 1986-2017 A Utility 1986-2017
Standard Total Expansion Recession Restricted Total Expansion Recession
DP -2.59 -5.29 23.72%%* DP -1.23 -3.78 23.62%**
DY -2.66 -6.10 31.22%%* DY -1.16 -4.44 31.14%**
EP 1.83% -1.50 34.59%F* EP 2.01* -1.17 33.32%F%
DE -0.26 -0.21 -0.43 DE -0.05 -0.06 0.00
SVAR -0.58 -0.42 -2.07 SVAR 0.05 0.03 0.35
BM -2.67 -6.40 34.25%** BM -1.03 -4.56 33.86
NTIS -0.66 -0.10 -6.53 NTIS -0.66 -0.10 -6.53
TBL 0.00 0.45 -4.49 TBL 0.00 0.45 -4.49
LTY 0.06 0.23 -1.63 LTY 0.06 0.23 -1.63
LTR -0.18 -0.63 3.73* LTR -0.26 -0.60 2.65*
TMS -1.08 -0.73 -4.61 TMS -1.08 -0.73 -4.61
DFY -0.90 -0.58 -4.68 DFY -0.90 -0.58 -4.68
DFR 0.96 0.26 7.81%* DFR 0.87 0.21 7.46%*
INFL lag -0.74 0.08 -8.41 INFL lag -0.74 0.08 -8.41
Standard Total Expansion Recession Restricted Total Expansion Recession
OLS -1.23 -4.76 33.46*** OLS 0.72 -2.22 29,427+
Pooled forecast: median 0.07 0.28 -1.89 Pooled forecast: median 0.07 0.28 -1.89
Pooled forecast: DMSFE -0.05 -0.24 1.90%*+* Pooled forecast: DMSFE -0.05 -0.24 1.90%**
Sum-of-the-Parts 0.60 -0.44 10.77F%* Sum-of-the-Parts 0.91 -0.31 12.79%**
MARS 2.29% 1.45% 10.48%** MARS 2.37* 1.47* 11.13%*%*
SVM SIC 0.86 0.28 6.86%* SVM SIC 1.20* 0.28 10.33%**
Lasso SVM 1.17*% 0.47 8.14** Lasso SVM 1.35% 0.47 10.05%**
Random Forest 1.54% -0.08 17.39%%* Random Forest 1.54% -0.08 17.39%%*
Diffusion Index -0.24 0.12 -4.32 Diffusion Index -0.24 0.12 -4.32
PLS 0.22 0.60 -3.64 PLS 0.27 0.66 -3.64
Neural Networks Median 1.38% 1.80* -1.34 Neural Networks Median 1.18* 1.52% 2.10*
Neural Networks 40" 1.71% 1.71% 1.71% Neural Networks 40" 1.64* 1.62* 1.92%
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Table 3.3: Industry predictors: monthly equity premium out-of-sample forecasting results for individual fore-

casts, and machine learning methods.

We consider two monthly out-of-sample windows:

1986:1-2017:12 and

2001:1-2017:12. For the R?)S statistic *** and *** indicate significance level at the 10%, 5% and 1%. For
AUtility % * indicates an yearly increase above 1%. Bold indicates a AUtility above 1.00% or a R% . with a

p-value lower than 0.1.

1986-2017 2001-2017 1986-2017 2001-2017
Predictor R% pval R% pval Predictor A Utility A Utility
NoDur -0.60 0.41 0.00 0.34 NoDur 0.46 1.94%
Durbl -0.37 0.29 0.94 0.14 Durbl 0.53 2.45%
Manuf -0.31 0.33 0.99 0.18 Manuf 0.40 2.80%*
Enrgy -0.42 0.67 0.08 0.36 Enrgy 0.81 1.85%*
Chems -0.24 0.30 1.12 0.15 Chems 1.08%* 3.74*
BusEq -0.38 0.18 1.45 0.11 BusEq 0.31 3.21*
Telem -0.28 0.47 0.79 0.17 Telem 0.13 2.61*
Utils 0.30 0.21 0.98 0.17 Utils 2.03* 3.44*
Shops 0.32 0.18 0.73 0.17 Shops 1.35% 2.50*
Hlth -0.11 0.27 1.27*% 0.09 Hlth 0.60 2.91*
Money 0.07 0.17 1.97* 0.08 Money 1.27* 4.37*
Other 0.50 0.14 1.90* 0.09 Other 1.75% 3.90*
1986-2017 2001-2017 1986-2017 2001-2017
Model R, pval R, pval Model A Utility A Utility
OLS -2.79 0.12 -1.20 0.14 OLS 0.09 3.17*
Pooled forecast:median 0.21 0.23 1.07 0.13 Pooled forecast:median 1.37* 3.21%
Pooled forecast:MDSFE 0.18 0.24 1.29 0.12 Pooled forecast:MDSFE 1.49* 3.57*
MARS -3.00 0.97 -3.00 0.89 MARS -3.47 -1.61
SVM SIC -0.60 0.38 -1.52 0.64 SVM SIC -0.93 -0.94
Lasso SVM -0.64 0.39 -1.59 0.66 Lasso SVM -0.94 -0.96
Radom Forest 0.06 0.30 0.90* 0.09 Radom Forest 1.37* 2.61%*
Diffusion index -0.35 0.26 -1.00 0.49 Diffusion index -0.41 -0.49
PLS -1.29 0.56 -2.08 0.65 PLS -0.96 -1.01
Neural Networks Median -0.01 0.22 -1.21 0.52 Neural Networks Median 0.02 -0.94
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Table 3.4: Factors-Anomalies spread return predictors: monthly equity premium out-of-sample forecasting
results for individual forecasts, and machine learning methods. We consider two monthly out-of-sample windows:
1986:1-2016:12 and 2001:1-2016:12. For the R%S statistic * ** and *** indicate significance level at the 10%, 5%
and 1%. For AUtility % * ** and *** indicate an increase above 1%, 5% and 10%. Bold indicates a AUtility

above 1.00% or a RQOS with a p-value lower than 0.05.

1986-2016 2001-2016 1986-2016 2001-2016
Predictor R% pval R pval Predictor A Utility A Utility
SMB -0.45 0.29 -0.98 0.49 SMB -0.58 -1.44
HML -0.22 0.35 0.07 0.33 HML 0.11 1.23*
RMW -0.40 0.43 -0.41 0.41 RMW 0.39 1.20*
CMA 0.19 0.07 0.55 0.17 CMA 0.99 1.51%
LT -0.42 0.39 -0.87 0.54 LT 0.45 0.46
ST -0.76 0.82 -2.15 0.97 ST -0.68 -2.20
Mom -0.78 0.90 -1.12 0.89 Mom -0.61 -0.66
Asset Growth 13.20%**  0.00  3.55%**  0.00 Asset Growth 11.47%%* 6.96**
Gross Prof -0.15 0.00 -11.67 0.83 Gross Prof 1.06* -6.68
Inv to Assets 11.13***  0.00 -1.17 0.01 Inv to Assets 10.30%** 6.29%*
Net Stock Issues 23.54*%%*  0.00 28.67*** 0.00 Net Stock Issues 23.56%** 28.53***
NOA -2.95 0.36 -4.18 0.80 NOA -2.31 -3.64
Accruals -1.72 0.01 -10.18 0.56 Accruals 2.39% -1.85
O 6.43%+* 0.00 6.69%* 0.01 O 4.53%* 5.43%*
ROA -3.64 0.04 -12.88 0.95 ROA 0.05 -5.50
Distress 0.71 0.08 0.14 0.25 Distress 2.36* 2.59*
Comp Eq Issue -0.38 0.49 -0.19 0.32 Comp Eq Issue -0.10 0.77
1986-2016 2001-2016 1986-2016 2001-2016
Model Ry pval Ry pval Model A Utility A Utility
OLS 15.71%%*  0.00 17.69%**  0.00 OLS 14.13%** 12.39%**
Pooled Forecast median 2.37*%*  0.00 3.50* 0.00 Pooled Forecast median 5.05%* 3.38*
Pooled Forecast MDSFE ~ 10.89***  0.00 12.36*** 0.00 Pooled Forecast MDSFE — 12.76*** 10.56%**
MARS 11.82%* 0.00 4.90* 0.00 MARS 5.11%* 13.10%**
SVM SIC -20.13 0.34 -12.36 0.18 SVM SIC 0.24 0.16
Lasso svm -12.46 0.24 -9.03 0.18 Lasso svm 0.00 0.86
Random Forest -0.01 0.40 0.12 0.18 Random Forest 0.08 0.47
Diffusion Index 4.16%** 0.01 13.54***  0.00 Diffusion Index 10.97*** 7.11%*
PLS -30.75 0.92 -32.40 0.97 PLS -9.67 -4.99
Neural Networks Median ~ 16.06***  0.00 8.72%* 0.00 Neural Networks Median 7.96** 15.64%%*
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Table 3.5: Out-of-sample model selection approach. This table considers the S&P500 index, six portfolios
built sorting on the base of size and the Book/Market ratio, six portfolios built sorting on the base of size and
Momentum, and four portfolios spreads. The out-of-sample monthly evaluation period is 1998:1-2016:12. The
upper panel of the table shows the results by employing the Welch and Goyal [2008] variables plus the Sentiment
index of Huang et al. [2015] (W-G in the Table) while the lower panel considers the 16 spreads of factors-anomalies
considered in this paper plus the sentiment index of Huang et al. [2015] (Anomalies in the Table). For each variable
considered the table ranks the 4 predictors which individually exhibit the highest R(Qj 5 In univariate regression
forecasting (Best Individual in the Table) and the four variables which jointly have the highest R?D g in multivariate
OLS forecasting (Combination). Data are monthly and the R%S metrics are based on the out-of-sample period
from 1998 to 2016. Where for the W-G panel the numbers mean: DP(1), DY(2), EP(3), DE(4), SVAR(5),
BM(6), NITIS(7), TBL(8), LTY(9), LTR(10), TMS(11), DFY(12), DFR(13), INFlag(14), SENT(15). While
for the Anomalies panel the numbers means: SMB(1), HML(2), RMW(3), CMA(4), LT(5), ST(6), MOM(7),
Asset Growth(8), Gross Profitability(9), Investment to Assets(10), Net Stock Issues(11), NOA(12), Accruals(13),
Ohlson(14), ROA(15), Distress(16), Composite Equity Issue(17).

Combination Best individual
W-G W-G 1) (2) 3) (1)
S&P 500 5 10 14 15 S&P 500 15 5 9 8
SMALL LoBM 5 9 10 15 SMALL LoBM 15 10 9
ME1 BM2 5 10 11 12 ME1 BM2 5 9 15 8
SMALL HiBM 5 10 11 14 SMALL HiBM 5 9 15 11
BIG LoBM 5 10 14 15 BIG LoBM 15 5 9 10
ME2 BM2 5 10 14 15 ME2 BM2 5 15 14 9
BIG HiBM 5 10 14 15 BIG HiBM 5 14 15 9
SMALL LoPRIOR 1 2 10 12 SMALL LoPRIOR 5 10 12 9
ME1 PRIOR2 5 10 11 12 ME1 PRIOR2 5 10 9 15
SMALL HiPRIOR 5 8 9 10 SMALL HiPRIOR 5 9 15 10
BIG LoPRIOR 10 12 14 15 BIG LoPRIOR 5 10 14 6
ME2 PRIOR2 5 10 14 15 ME2 PRIOR2 15 5 8 14
BIG HiPRIOR 5 9 10 15 BIG HiPRIOR 5 15 9 13
SMALL LoBM-SMALL HiBM 7 11 12 15 SMALL LoBM-SMALL HiBM 5 5 12 14
BIG LoBM-BIG HiBM 5 10 14 15 BIG LoBM-BIG HiBM 14 5 11 15
SMALL HiPRIOR- SMALL LoPRIOR 1 2 3 9 SMALL HiPRIOR- SMALL LoPRIOR 4 3 12 9
BIG HiPRIOR-BIGLoPRIOR 6 10 12 14 BIG HiPRIOR-BIGLoPRIOR 12 10 5 4
Anomalies Anomalies 1) 2 B3 @
S&P 500 1 11 12 14 S&P 500 11 14 8 10
SMALL LoBM 5 6 7 11 SMALL LoBM 1 8 10 14
ME1 BM2 6 11 14 16 ME1 BM2 11 16 7 10
SMALL HiBM 6 11 14 16 SMALL HiBM 1 16 7 6
BIG LoBM 1 5 11 14 BIG LoBM 1 14 8 10
ME2 BM2 6 11 12 14 ME2 BM2 1 16 14 10
BIG HiBM 9 11 12 15 BIG HiBM 1 16 10 14
SMALL LoPRIOR 5 6 11 16 SMALL LoPRIOR 1 16 10 38
ME1 PRIOR2 6 7 11 16 ME1 PRIOR2 11 16 10 7
SMALL HiPRIOR 1 6 11 14 SMALL HiPRIOR 1 7 5 3
BIG LoPRIOR 11 12 14 16 BIG LoPRIOR 16 11 10 8
ME2 PRIOR2 11 12 14 16 ME2 PRIOR2 11 14 16 8
BIG HiPRIOR 1 5 6 11 BIG HiPRIOR 1 14 3 17
SMALL LoBM-SMALL HiBM 8 11 12 16 SMALL LoBM-SMALL HiBM 1 8 14 10
BIG LoBM-BIG HiBM 6 8 12 15 BIG LoBM-BIG HiBM 14 15 8 12
SMALL HiPRIOR- SMALL LoPRIOR 12 14 15 16 SMALL HiPRIOR- SMALL LoPRIOR 16 15 10 12
BIG HiPRIOR-BIGLoPRIOR 12 14 15 16 BIG HiPRIOR-BIGLoPRIOR 16 15 14 12
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Table 3.7: Out-of-sample predictability of anomalies portfolios: RQOS. In the Upper Panel we report the
Average, Median, Maximum and Minimum RQOS values for 30 portfolios based on characteristics sorting and 10
spread portfolios returns. The monthly out-of-sample period considered is the most recent 30% for each variable.
Forecasts are based on Welch and Goyal [2008] predictors: we consider both univariate regression and all the
machine learning techniques detailed in the second part of this paper. Subsequently, we reported the related
Clark and West [2007] p-values. Finally, for each portfolio and spread we report the % of p-values under 0.1 and
under 0.05. In the Lower Panel we briefly summarize the results coming from the upper panel. We use bold to
remark Maximum RQO g values above 1% and Minimum p-values under 0.1.

R3¢ Average Median Max Min % Pval<0.1 % Pval<0.05 Ry Average Median Max Min % Pval<0.1 % Pval<0.05
Asset Growth Low 0.09 0.42 242 -5.98 Accruals Low -0.33 -0.14 0.36  -2.81
pval 0.27 0.14 0.88  0.01 0.38 0.27 pval 0.35 0.31 073  0.14 0.00 0.00
Medium -0.48 0.15 1.81 -8.37 Medium -0.89 -0.44 0.65 -3.42
pval 0.30 0.17 0.86  0.03 0.35 0.15 pval 0.46 0.47 0.76  0.11 0.00 0.00
High -1.41 -0.52 1.42 -1224 High -1.57 -0.47 1.06 -7.67
pval 0.45 0.48 0.83  0.02 0.08 0.08 pval 0.52 0.50 0.96  0.04 0.08 0.04
Spread -4.40 -4.49 2.55 -17.88 Spread 122 0.49 8.51 -4.78
pval 0.43 0.35 0.97  0.01 0.19 0.12 pval 0.38 0.06 1.00  0.00 0.54 0.50
Gross Prof Low -0.39 -0.20 1.82  -6.95 (o] Low -0.31 -0.01 1.30  -3.67
pval 0.38 0.32 0.94 0.03 0.27 0.15 pval 0.37 0.29 0.88  0.02 0.12 0.04
Medium -1.07 -0.41 1.31  -8.64 Medium -0.73 -0.28 1.74 -5.32
pval 0.40 0.33 0.86  0.01 0.08 0.04 pval 0.34 0.26 0.79  0.02 0.04 0.04
High -0.91 0.08 1.65 -11.87 High -0.63 -0.16 1.65 -4.72
pval 0.21 0.90  0.00 0.27 0.15 pval 0.32 0.29 0.78  0.03 0.19 0.04
Spread -1.93 0.94 -21.68 Spread -2.02 -1.01 3.00 -17.49
pval 0.65 0.84  0.06 0.08 0.00 pval 0.51 0.56 0.99  0.00 0.19 0.08
Inv to Assets Low 0.73 2.35 -6.21 ROA Low -0.24 -0.28 2.00 -3.04
pval 0.09 0.87  0.02 0.50 0.31 pval 0.45 0.48 0.82  0.01 0.08 0.08
Medium 0.03 1.74 -8.01 Medium -0.01 -0.01 1.90 -1.95
pval 0.31 0.87  0.01 0.19 0.15 pval 0.37 0.29 0.95 0.01 0.19 0.04
High -0.60 0.85 -11.51 High -0.34 -0.06 2.05 -3.70
pval 3 0.61 0.98  0.02 0.08 0.04 pval 0.47 0.34 0.98  0.01 0.08 0.04
Spread -0.73 0.34 3.59 -10.89 Spread -2.45 -1.44 0.33 -11.41
pval 0.30 0.09 1.00  0.00 0.50 0.46 pval 0.81 0.92 1.00  0.09 0.04 0.00
Net Stock Issues Low -0.70 0.07 2.82 -11.69 Distress Low -0.37 1.67 -4.00
pval 0.29 0.18 0.89  0.01 0.35 0.12 pval 0.30 1.00  0.02 0.31 0.15
Medium -0.39 0.31 2.16 -7.79 Medium -0.10 0.64 -2.96
pval 0.30 0.22 0.82  0.01 0.31 0.12 pval 0.45 0.96  0.12 0.00 0.00
High -0.64 0.00 1.45 -7.76 High -0.26 033 -7.65
pval 0.35 0.30 0.80  0.02 0.19 0.15 pval 0.37 0.88  0.20 0.00 0.00
Spread -1.55 -1.77 0.25 -4.07 Spread 0.03 2.51 -25.32
pval 0.60 0.59 098 0.13 0.00 0.00 pval 0.06 0.99  0.00 0.58 0.46
NOA Low 0.42 017 3.58 -2.05 Comp Eq Issue Low -0.67 1.67 -16.04
pval 0.26 0.15 0.89 0.31 0.19 pval 0.20 0.89  0.04 0.27 0.12
Medium -0.10 -0.07 3.20 Medium -0.54 0.93 -13.32
pval 0.31 0.28 0.68  0.00 0.19 0.12 pval 0.24 0.81  0.09 0.15 0.00
High -0.99 -0.14 2.07 -5.27 High -0.37 -12.22
pval 0.50 0.44 0.99  0.01 0.12 0.04 pval 0.40 093 0.20 0.00 0.00
Spread 2.04 2.69 5.50 -2.04 Spread -5.83 1.14 -33.87
pval 0.20 0.00 0.85  0.00 0.69 0.65 pval 0.59 0.60 0.97  0.01 0.04 0.04
2 2
Totals % Pval<0.1 0.2 Average Max Ry 193 % Max Rpg >2 0.38

%Pval <0.05 (.12 % Max R%4 >1 0.75 Number of Variables 40.00
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Table 3.8: Out-of-sample predictability of anomalies portfolios:

A Utility.

In the Upper Panel we

report the Average, Median, Maximum and Minimum yearly percentage A Utility values for 30 portfolios based
on characteristics sorting and 10 spread portfolios returns. The monthly out-of-sample period considered is the
most recent 30% for each variable. Forecasts are based on Welch and Goyal [2008] predictors: we consider both

univariate regression and all the machine learning techniques detailed in the second part of this paper which
jointly consider all these predictors. In the Lower Panel we briefly summarize the results coming from the upper
panel. We use bold to remark yearly A Utility gains above 5%.
A Utility Average Median Max Min A Utility Average Median Max Min
Asset Growth Low 7.63 8.43 11.44 1.88 Accruals Low 13.79 13.81 15.04 12.45
Medium 5.46 6.01 8.53 0.59 Medium 5.47 6.20 8.26 0.72
High 1.87 2.33 497 -1.84 High 1.70 2.08 5.28 -2.19
Spread -0.74 1.47 1.69 -5.23 Spread 0.46 -0.79 4.36  -0.89
Gross Prof Low 11.56 10.57 17.87 4.15 o Low 9.85 6.81 18.21 3.28
Medium 10.49 10.39 15.44 4.22 Medium 7.64 8.11 11.71  3.22
High 7.38 7.62 11.95 1.75 High 10.42 10.85 14.07  3.73
Spread -0.72 -0.79 2.25  -3.75 Spread -0.04 0.19 1.75  -1.89
Inv to Assets Low 10.63 10.85 15.44 4.72 ROA Low 1.94 1.84 544 -1.29
Medium 6.77 6.92 10.74 194 Medium 2.83 -0.31 11.77 -5.61
High 7.99 1.26 23.03 -3.29 High 2.62 -0.75 10.42 -3.96
Spread -0.70 0.59 0.81 -4.54 Spread -2.42 0.49 2.99 -9.47
Net Stock Issues Low 4.34 4.97 7.89 -0.63 Distress Low 0.37 0.19 3.71 -0.59
Medium 8.50 8.76 13.31 1.84 Medium 4.27 -0.96 15.99 -7.68
High 10.51 6.44 21.70 1.82 High 4.68 1.81 14.09 -5.01
Spread -0.90 0.07 0.44 -3.42 Spread -2.89 -0.85 -0.59  -7.90
NOA Low 12.41 11.17 18.08 594 Comp Eq Issue Low 4.01 4.80 6.98 -0.05
Medium 7.24 7.87 11.24 1.72 Medium 7.03 7.37 10.49 1.42
High 7.05 0.47 21.27 -2.39 High 7.76 2.03 20.51 -3.39
Spread -0.29 -0.20 017 -2.32 Spread -2.52 -0.53 -0.20  -8.21
Totals
Average Total 4.84 Number Variables 40

Average Max 9.96
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Table 3.9: Out-of-sample predictability of spread portfolio returns with Welch and Goyal [2008]
predictors: R2 .. In this table we compare the out-of-sample predictability of a set 17 spread portfolio returns:
SMB (1), HML (2), RMW (3), CMA (4), LT (5), ST (6), Mom (7), Asset Growth (8), Gross Prof (9), Inv to
Asset (10), Net Stock Issue (11), NOA (12), Accruals (13), O (14), ROA (15), Distress (16), Comp Eq Issue (17).
The monthly out-of-sample period considered is the most recent 30% for each variable. Forecasts are based on
Welch and Goyal [2008] predictors: we consider both univariate regression and all the machine learning techniques
detailed in the third part of this paper which jointly consider all these predictors. * and ** indicate a p-value for
the RZ ¢ metric under 10%, and 5%. Bold and Blue indicate respectively a Clark and West [2007] p-value for the
RQOS metric under 10% and under 5%.

Rhs (1) B @ G (6) (7 (®) (10) (a1 (12 (13) (4) (@15 (@6 (17
DP -5.75 -0.65 -1.99  2.01**% -1.00 -17.88 -10.78  -2.07 -4.78  -115  -0.51  0.53* -8.29
DY -10.96 -046  -1.82  1.98%%  -159  -17.09 -10.89  -1.91 -1.67  -0.56 0.37 -7.71
EP -2.28 0.44  -1.75 1.54* -0.36 -9.64 -5.93  -1.18 § 0.09 -1.40 -0.53 -3.42
DE 0.11 -0.48  2.577  -1.17 -049  1.95 0.67 0.20 -0.34 -0.06  -0.08 0.29 -0.59
SVAR -0.56 -0.81  -0.14 -0.80 0.52* -0.43  -4.90 036 -0.18 0.38"F 185 -1.14  -0.67 -0.05
BM -3.03 0.26  -0.08 1.10% -0.03 -4.49  -1.38 257 -097 0.56 -243 017 -147 0.28 -2.70
NTIS -0.02 -0.01 071 0.07 -0.55  2.55 -0.89 0.53 0.15  0.64* -0.50  -3.42  -0.58  -0.55 0.78
TBL -0.08 -1.10  -0.86 -0.23 -0.32 -0.36 -0.61 0.52* -0.38 3.2/"" 0.60% 1.47* -0.31 -0.03 -0.98
LTy -0.22 048 -0.54 034  -1.56 -0.33 0.01 -0.67  -0.21 0.29 023 2.337" 200 -012 -0.12 0.23 -0.25
LTR -1.51  -0.03 043 -021 -0.07 -0.97 -0.36 -1.02  -032  -111  -0.24 -0.18 0.10 0.49  -0.94 0.10 -0.47
TMS 011 -027 1.23% -2.07 -1.35 -0.06 -0.32 -0.10 0.37 0.09 0.25 0.85 -0.06  3.00% -0.07 0.08  1.147
DFY -0.49  -127  -0.57 023 0.04 0.55 -0.21 -0.42 283  -0.69 -0.29 1.05" -2.80  -026  -0.15 1.617" -0.53
DFR -0.11 066 001 -0.53 -0.20 -0.39 -0.08 0.75%  -1.17 033  -013  -0.11 -022 237 -041  -0.70 0.27
INFL lag 0.48  -1.02 -0.33 -0.11  -0.67 -0.19 0.08 -0.70  0.94%  -0.57 -0.96  -0.24 -0.49  -1.00  0.33 0.40 -0.09
Rbs

-5.46 -1.32  -2.56 -4.26 -4.80 -11.31  -21.68 -0.89 -3.48 2.06"* 8.31"" -815 -578 0.82"" -13.34
-2.05 -221  -0.40 0.02 -1.17 -5.04 -1.92 0.547F -248 3.90** 2.52** -1.02 -3.29 -1.41 -6.25

OLS
Pooled forecast:median

Pooled forecast: MDSFE -2.38  -0.47 0.22 -1.27 -5.52 -2.10 0.42 -2.59  4.06"* 2.12 -0.73  -3.41 -1.40 -6.71
MARS -2.10  0.86 1.78%%  1.74* -2.90 -1.15 274 3.85%%  8.51°F -1.07T  -532 -0.69 -8.51

SVM SIC -1.38 0 -1.12 0.72 -1.76 -2.01  1.23"F 207  4.147F 4767 -1.69 287 1.437F  -6.02

Lasso SVM -0.99  -1.03 0.94% -1.96 -3.62  1.117%% -219  3.45%F 3.11** -121 -437 -11.87 -5.82

-2.01  -0.81 -0.12 -1.21
-1.37  -0.22 0.94* -2.21
-3.65 -1.24 -2.62 -1.78
-3.82 1.04* -0.06 -2.42

-1.94  0.547F 222 4.37* 3.10% -1.05  -3.21 -1.60 -6.34
=275 0.75%F -1.64 3.98%* 3.20** -1.37 -232 1.57*" -584
-7.31 -0.08 276 4.24"° 1.697" 1.28% -11.41 -25.32 -6.05
<159 2.447F -3.92  4.43% 4.02%% -17.49 -548  -0.92 -33.87

Radom Forest
Diffusion index
PLS

Neural Networks Median

Table 3.10: Out-of-sample predictability of spread portfolio returns with lagged spread portfolio
returns: R?) g+ In this table we compare the out-of-sample predictability of a set 17 spread portfolio returns:
SMB (1), HML (2), RMW (3), CMA (4), LT (5), ST (6), Mom (7), Asset Growth (8), Gross Prof (9), Inv to
Asset (10), Net Stock Issue (11), NOA (12), Accruals (13), O (14), ROA (15), Distress (16), Comp Eq Issue (17).
The monthly out-of-sample period considered is 1:1986-12:2016. Forecasts are based on the same lagged (t-1) 17
spread portfolio returns. We consider both univariate regression and all the machine learning techniques detailed
in the third part of this paper which jointly consider all these predictors. * and ** indicate a p-value for the RZ
metric under 10%, and 5%. Bold and Blue indicate respectively a Clark and West [2007] p-value for the R g
metric under 10% and under 5%.

Rbs 1 3) (5) (©) M ®) © 0o an (2 @13 149 @05 (16) (17)
SMB -1.98 -1.07 -0.73 0.73 -0.53  -0.37  -0.26 <026 1.23*  -0.90 -1.10 -1.35
HML -0.64 -0.36 -1.00 -0.63  -0.95 -0.38 -0.40 -1.57 -0.01
RMW -4.71 -3.19 72 -1.82 -1.10 -2.08  -2.15 -0.45 -3.46 -1.83
CMA -0.84 -0.72 -0.88 -0.62 -0.65 -0.37  -0.51 -0.31 -0.77
LT -1.10 2.29 -0.51 -0.61 -044  -0.77  -0.36 -0.49 0.01
ST -1.71 -0.21 -1.04 -1.50 -0.69  -098 -0.77  -1.71 -0.11 -0.42
Mom -0.09 -1.10 -1.28 020  -0.64 -1.51 -1.36 -0.61 -2.26
Asset Growth 21.54 -2.82 0.68 -117 0 -031 045 -0.96 -0.52 17.60
Gross Prof -3.00 -0.72 2.01%% -0.75  0.977F 043 0.16 -0.71
Inv to Assets 2.76 0.75 -0.57  0.32 -0.72 1.03 11.09
Net Stock -4.79 -0.60 -1.09 -0.63  -0.92 -0.22 -2.03 71.67%*
NOA -1.18 2.55 -0.68 -1.28  -0.70  -1.55 -1.99 5.05%*
Accruals 4.17 -0.78 -0.95 -0.68  -0.68  -0.86 -1.03 1.74
10.80** 1.34% -0.84 -0.77 <092 -1.04 -0.95 8.42%
ROA 8.54 0.77 -0.86  0.40 -0.27 -0.09 -2.80
Distress -1.11 o -0.40 -1.21 -0.66  -0.11 -1.00 -2.05
Comp Eq Issue -1.11 -1.03 0.02 -1.32 <075 -1.77 -2.16 -0.19
Rbs
OLS 30.47 44.34 59.28 26.00 53.07 -17.09  -9.83  -1248 -10.98 -16.65 -8.51  -12.20 -10.79 71.91
Pooled forecast:median " " 1.82%* 0.71* 0.38 0.15 0.09 0.03 0.59 -0.14 0.14  -0.12 3.01%*
Pooled forecast:MDSFE 9.07** 16.99* 0.40 024  -023  -0.16 -0.28 0.08 0.34 -0.21 35.01%*
MARS 6.24 40.59 -6.05 -1.56 -8.11  -1.31 -6.09 -3.79 -0.38 38.34
SVM SIC -7.01 -1.86 -1.19 -1.13 0.04 -0.01 0.34 0.39 0.23 0.24 -14.71
Lasso SVM -5.07 -28.27 -1.34 -1.08  0.30 -0.20 033 0.70 0.28

0.15 -0.15 0.08 -0.06 0.21 -0.03 0.05
-2.15 -1.98 -1.38  0.24 0.35 -0.31 -0.73 0.85
-58.83 -7.76 -7.52 0 =273 -10.36  -7.47 -3.65 -4.46 5.
-5.26 -8.47 -6.39  0.03*  -0.81 -6.15 -0.45 012 -10.78

Radom Forest
Diffusion index
PLS
Neural Network Median
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Table 3.11: Out-of-sample predictability of volatility-correlations swaps and risk premia: RQOS. We
document the RQOS metric and the related Clark and West [2007] p-values. We report the results employing
the 17 spread returns portfolios as predictors for the monthly out-of-sample period 1:2005-12:2016. The variable
forecasted are: the 30 and 90 days ahead implied correlation (IC 30 and IC 91), the 30 and 90 days ahead implied
volatility (IV 30 and IV 90), the implied variance risk premium at 30 and 90 days ahead (VRP 30 and VRP 91)
the 30 and 90 days ahead implied downside variance risk premium (IVD 30 and IVD 90) and the 30 days-91 days
realized correlation (RC 30 and RC 90). * and ** indicate a p-value for the R% s metric under 10%, and 5%.
Bold and Blue indicate respectively a p-value for the R2O g metric under 10% and under 5%.

s
Predictors IC 30 1IC91 1V 30 IV91 VRP 30 VRP91 IVD 30 IVD 91 RC 30
SMB -0.84 -0.56 -0.86 -0.78 -7.13 0.55 -0.88 -0.85 -0.44
HML -0.32 0.40 -0.33 -0.43 -1.38 2.52% -0.47 -0.67 -0.21
RMW -0.53 0.09 -0.19 -0.08 0.17 1.56* -0.17 0.02 -0.13
CMA 0.31 0.75 0.44 0.18 -0.60 -0.06 0.50 0.23 -0.10
LT -1.67 -1.04 -0.46 -0.72 -8.73 -1.44 -0.60 -0.84 -1.17
ST -0.47 -0.06 -0.19 -0.24 -0.17 0.32 -0.02 -0.05 -0.41
Mom -0.38 -1.03 1.29 1.78% -0.81 -0.27 1.23% 1.68* -1.01
Asset Growth -0.37 -0.13 0.63 1.25% -0.23 -1.43 1.21% 2.18* -1.58
Gross Prof -0.88 -1.26 -1.15 -1.72 -1.06 -1.22 -1.29 -2.06 -1.34 .
Inv to Assets -3.24 -6.17 -2.39 -2.14 -0.62 -2.44 -2.16 -1.48 -1.41 0.29
Net Stock Issues 8.80** 14.11** 10.59** 15.82** 0.34 -0.58 10.96%*  16.18** 0.59 10.68**
NOA 1.15% 2.15% 0.61 0.48 -2.42 -0.74 0.46 -0.03 -0.18 -0.02
Accruals -2.01 -3.04 -1.70 -1.92 -4.82 -0.82 -1.98 -2.33 -0.77 -0.01
(0] -3.29 -4.83 -1.02 -1.75 0.11 0.82 -1.04 -1.82 1.05 -0.68
ROA -0.57 0.75 -1.11 -1.17 -2.62 -0.86 -0.78 -0.58 -0.43 -1.25
Distress -0.11 -0.11 0.30 1.62* -5.30 -1.48 0.12 1.38%* 0.42 0.03
Comp Eq Issue -0.04 0.54 0.23 0.14 -0.12 2.17** 0.27 0.20 -0.33 0.55
Model
OLS -0.41 3.51%F  4.82%F  10.70** -61.23 -7.83 5.51%%  10.93** -4.24 6.79%*
Pooled forecast:median 0.01 0.64 0.07 0.10 -0.07 0.07 0.09 0.26 0.04 0.70**
Pooled forecast:MDSFE  0.68* 2.39%* 1.21%* 2.12%* -0.39 0.07 1.41%* 2.48%** -0.06 1.66**
MARS -0.44 1.93* -2.10 2.10* 2.05 0.38 -0.84 -0.34 -4.12 -0.25
SVM SIC -2.72 -2.08 -4.29 -2.78 0.50 -5.12 -3.47 -5.82 2.01%*
Lasso SVM -5.59 -7.36 -6.46 -3.49 1.99%* 0.69 -7.96 -5.60 -5.47 2.46%*
Radom Forest -0.34 0.54 -0.08 0.12 0.26 0.12 -0.12 0.29 -0.11 -0.27
Diffusion index -2.93 -1.55 -3.82 -2.28 2.47 0.88 -4.78 -4.18 -5.21 1.13
PLS -5.47 -7.48 -8.33 -9.67 1.76 -0.37 -9.50 -10.45 -4.88 -4.98
Neural Networks Median 5.27*%  5.03** 2.48%** 4.70%* 3.10%* 1.52%* 3.39%* 6.05%* -4.56 9.40%*
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Table 3.12: Out-of-sample predictability the moments contracts: R%S. ‘We document the R%S metric and
the related Clark and West [2007] p-values. We report the results employing as predictors the 17 spread returns
portfolios (Anomalies), or the Welch and Goyal [2008] (W-G) variables for the monthly out-of-sample period
1:2005-12:2016. The predictive approaches used are the same detailed in section 3.1. The variables forecasted
are the returns of the first four 20 and 40 business days ahead moments contract (M1 20, M1 40, M2 20, M2 40,
M3 20, M3 40, M4 20, M4 40) built following Bakshi et al. [2003]. *, ** and *** indicate a p-value for the R?)S
metric under 10%, 5% and 1%. Bold indicates a p-value for the R ¢ metric under 5%.

Rps
Anomalies M1 20 pval M220 pval M3 20 pval M4 20 pval M140 pval M240 pval M3 40 pval M4 40 pval
OLS -1282 075 -044 015 -7.56  0.01 -4445 084 -858 0.28 -82.04 0.13 -1045.00 0.11 -31.15 0.35
Pooled Forecast median ~ -0.13 ~ 0.96  -0.01  0.51 5.40*** 0.00 -0.23  0.86 0.02 042  -011  0.73  -17.82 1.00  -0.31  0.99
Pooled Forecast MDSFE ~ -0.20 0.89 0.15 0.23  5.67*%* 0.00 -0.65 0.82 0.03 0.39 -0.14 0.52 -4.81 0.27 -0.47 0.91
MARS 1.46** 0.04 -1.87 0.46 5.19%%* 0.00 4.50*** 0.00 1.78%* 0.02 3.70*** 0.00 54.86*** 0.00 0.69* 0.08
SVM SIC 1.46** 0.04 -2.05 0.49 4.20%%* 0.00 4.47*F* 0.00 1.85*** 0.01 3.47*** 0.00 54.78%** 0.00 0.62* 0.10
Lasso SVM 0.99  0.10%* -214 050 4.97%* 0.00 4.49*** 0.00 1.71** 0.04 3.29%** 0.00 54.73** 0.00 0.62* 0.09
Random Forest 0.15%* 0.02 -0.26 0.98 4.86*** 0.00 -0.81 0.85 0.25% 0.09 -0.64 0.70 -0.58 0.24 0.07 0.41
Diffusion Index 0.96*  0.08 -2.01 048 4.92%* 0.00 4.49*** 0.00 1.47** 0.02 3.67*** 0.00 54.75*** 0.00 0.66* 0.09
PLS 0.39 0.25 -2.01 0.49 5.02%%% 0.00 4.49*** 0.00 0.63 0.11 3.58%%* 0.00 54.73** 0.00 0.53 0.13
Neural Networks Median ~ 0.66%  0.07  -1.97  0.47 4.80*** 0.00 4.47*** 0.00 0.82 0.13  3.39%** 0.00 54.37*** 0.00 0.93* 0.06
W-G M1 20 pval M220 pval M3 20 pval M4 20 pval M140 pval M2 40 pval M3 40 pval M4 40 pval
OLS -4241 056 -19.22 022 -22.32  0.00 -116.53 0.84 -4587 0.50 -152.88 0.84 -943.07 0.00 -49.48 0.81
Pooled Forecast median ~ -1.34  0.77 027 021 5.42%** 0.00 0.71*%* 0.00 -1.16 0.64 2.31** 0.05 39.43*** 0.00 -0.15 0.94
Pooled Forecast MDSFE ~ -1.75 0.63 0.52 0.11 5.24*%% 0.00 2.37*** 0.00 -0.49 046  2.29%%  0.02 51.99%** 0.00 -0.50 0.71
MARS 1.47%* 0.03 -1.88 046 5.00%** 0.00 4.46*** 0.00 -0.22 043 3.50*** 0.00 54.79*** 0.00 0.67* 0.09
SVM SIC 1.26* 0.08 -1.85 0.45 5.02%%F 0.00 4.49*** 0.00 1.72*** 0.01 3.92*** 0.00 54.80*** 0.00 0.62* 0.10
Lasso SVM 0.02 043  -1.85 043 4.98%* 0.00 4.46*** 0.00 0.3 0.38 3.87** 0.01 54.80*** 0.00 0.72*% 0.08
Random Forest 0.11 0.18 -0.10 0.71 5.25%%% 0.00 -0.96 0.82 0.18* 0.10 0.30 0.27 -2.80 0.50 0.00 0.43
Diffusion Index -0.86  0.67  -1.91 047 5.10%* 0.00 4.50*** 0.00 -2.02 092 4.03*** 0.01 54.80*** 0.00 0.57 0.3
PLS -6.22 0.76 -1.81 0.45 5.06"** 0.00 4.49*** 0.00 -5.96 0.72  4.03*** 0.00 54.80*** 0.00 0.67* 0.10
Neural Networks Median ~ -3.61 ~ 0.68  -1.85 0.40 -0.07  0.00 2.00** 0.03 -7.64 070 4.22%** 0.01 -49595 0.03 020 0.22
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3.9 Online Appendix

3.9.1 Toolboxes Employed

The making of this paper leveraged on many libraries. We list them both because
we want to help the replicability of our results and because we want to express our
genuine gratitude for all the people who worked to build and maintain them. The
current paper makes use of Matlab only, and consequently, all the libraries which
we will list are in this language. In detail the libraries employed are:

e The Statistic and Machine Learning Toolbox and the Deep Learning Toolbox
of Matlab.

The Optimization Toolbox and the Financial toolbox of Matlab.

The ARESLab Toolbox by Gints Jekabsons.

The website of by Professor Guofu Zhou
e The website of by Professor Grigory Vilkov

e The website of Attilio Meucci

3.9.2 Additional Performance Metric

Delta Sharpe Ratio. It is computed as the difference between the Sharpe ratio
arising from returns coming from a portfolio optimization which employs as proxies
for expected returns forecasts coming from a given model and the Sharpe ratio
generated from a portfolio optimization which employs the historical average return
as a proxy for expected returns. A a ten-year rolling window of monthly returns
is used in both optimizations to estimate expected variance. As before optimal
weight for the risky asset is constrained between 0 and 1.5 .

A Sharpe Ratio = SRyroder — SRarean (3.49)

where SRjpjoqer 18 the average Sharpe Ratio generated using the reference model
to proxy expected returns in the portfolio optimization and SRjpjeq, is the aver-
age Sharpe Ratio generated using the historical average return to proxy expected
returns in the portfolio optimization.

3.9.3 Additional Tables

In the following pages we report the tables, which for brevity have been omitted
from the main text, these include:
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Summary statistics for the Welch and Goyal [2008] predictors and the euro-
pean options employed (A1-A2)

Robustness checks for the out-of-sample predictability of the S&P500 for
different time horizons: 2001:1-2017:12, 2006:1-2017:12, 2011:1-2017:12 (A3-
Ab5)

The detail of the monthly out-of-sample predictability (1986:1-2016:12) both
in term of R%4 and A Utility for:

1. six double-sorted portfolios of French: on the basis of Size and the Book
to Market ratio (A6-A9)

2. six double-sorted portfolios of French: on the basis of Size and Momen-
tum (A10-A13).

The out-of-sample A Utility and A Sharpe ratios for the variables predicted
in Section 6 (A14-A17).
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Table 3.13: Welch-Goyal predictors: Summary Statistics. In the upper panel we report the correlation
matrix for the deltas of the W-G predictors. Correlations higher than 0.5 are reported in red while negative ones
in blue. In the lower panel for each predictor we estimate the autoregressive coefficients up to the sixth lag and
we report the related t-statistic.

Correlation‘ DP DY EP DE SVAR BM NTIS TBL LTY LTR TMS DFY DFR INFL lag

DP 1.00

DY 0.11  1.00

EP 0.76  0.00 1.00

DE 0.10 0.14 -0.57  1.00

SVAR 023 0.01 020 -0.01 1.00

BM 0.81 0.10 0.66 0.01 0.13 1.00

NTIS 0.05 -0.12 0.05 -0.01 0.06 -0.03 1.00

TBL 0.07 -0.02 011 -0.08 0.04 0.06 0.01 1.00

LTY 0.10 -0.07 0.14 -0.09 0.00 0.12 0.01 0.34  1.00

LTR -0.02 012 -0.05 0.04 0.04 -0.05  -0.01 0.02  -0.65 1.00

TMS -0.01 -0.03 -0.02 0.02 -0.04 0.02 -001 -0.78 033 -045 1.00

DFY 027 040 013 0.14 0.07 033 -0.14 -0.14 -0.14 0.04 0.05 1.00
DFR -0.07 0.02 -0.07 0.01 -0.05  -0.06 0.02 -001 027 -053 019 -0.01 1.00
INFL lag 0.01 -0.05 0.02 -0.01 -0.05  -0.01 0.03 0.04 0.04 0.01 -0.01 -0.07 -0.03 1.00

Coeﬂicients‘ DP DY EP DE SVAR BM NTIS TBL LTY LTR TMS DFY DFR INFL lag

AR1 0.10 0.11 0.25  0.69 -0.46 0.19 0.13 038 007 -0.80 010 021 -0.98 -0.59
AR2 0.00 -0.01 0.08 0.10 -044  -0.10 002 -0.19 -0.08 -0.72 -0.10 -0.07 -0.88 -0.47
AR3 -0.09 -0.09 0.00 0.10 -0.33  -0.17  -0.04 0.03 -0.07 -0.58 0.01 -0.15 -0.69 -0.37
AR4 0.05 0.04 0.05 -015 -0.24 0.04 0.07 -0.07 0.02 -0.38 -0.05 -0.06 -0.48 -0.20
AR5 0.08 0.08 0.05 0.00 -0.20 0.09 0.11 0.11 002 -025 0.00 002 -0.26 -0.20
ARG -0.05 -0.06 -0.07 -0.03 -0.09 -0.10 0.02 -0.22 0.02 -0.09 -0.09 0.00 -0.08 -0.15
t-stat ‘ DP DY EP DE SVAR BM NTIS TBL LTY LTR TMS DFY DFR INFL lag
AR1 5.54 5.79 1445 6442 -55.03 19.23 6.63  39.57 4.02 -37.68 781 15.12 -53.13 -28.19
AR2 -0.09 -0.30 4.03 589 -22.77 -7.34 088 -13.62 -446 -29.20 -4.46 -3.73 -30.60 -19.83
AR3 -4.40 -441 -013 11.05 -18.74 -13.69 -1.98 1.79 -4.32 -18.69 0.38 -10.48 -23.85 -14.37
AR4 238 1.65 195 -1046 -13.45 245 3.66 -474 091 -11.31 -252 -6.25 -1548 -7.10
AR5 3.62 327 195 014 -10.70  4.96 5.93 921 077 -815 023 086 -9.94 -7.62
ARG -2.18 -2.71 -290 -148 -493 -631 085 -19.71 1.12 -3.80 -6.67 0.22 -4.07 -7.39
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Table 3.14: Options data: Summary Statistics. Mean, standard deviation (Std.), and number of observations
for each moneyness/maturity category of out-of-the-money SPX options observed every last trading day of the
month from January 1996 to December 2017, after applying the filtering criteria described in the text. Moneyness
is the strike price divided by the spot asset price, K/S. o is the Black-Scholes implied volatility. Bid-Ask % is
100 * (ask price — bid price)/marketprice. Maturity is measured in business days

Maturity
Moneyness <60 60-120
K/S Mean Std. Mean Std.
<0.85 Put Price $ 1.32 2.05 Put Price $ 4.43 5.29
a5 % 39.03 12.44 oB5 % 35.07 10.65
Bid-Ask % 31.11 43.93 Bid-Ask % 15.68 40.73
Volumes 200.22 1422.96 Volumes 136.43 853.71
Open Interest 5135.27  14906.66 Open Interest 6604.79  15440.84
Delta % -1.53 1.97 Delta % -3.32 3.64
Observations  35075.00 Observations  12175.00
Mean Std. Mean Std.
0.85-1 Put Price $ 10.82 11.38 Put Price $ 32.90 18.04
a5 % 20.85 6.89 B9 % 20.32 5.55
Bid-Ask % 6.82 17.98 Bid-Ask % 4.31 3.64
Volumes 735.60 2693.43 Volumes 395.11 1398.86
Open Interest 8130.73  20563.74 Open Interest 9777.22 19181.20
Delta % -16.14 13.41 Delta % -25.79 11.35
Observations 51238.00 Observations  7375.00
Mean Std. Mean Std.
1-1.15 Call Price $ 8.56 11.18 Call Price $ 21.23 19.70
a5 % 13.33 5.65 oB5 % 14.26 5.22
Bid-Ask % 7.99 38.47 Bid-Ask % 5.65 22.71
Volumes 661.74 2252.22 Volumes 288.35 1161.07
Open Interest 6984.85 16651.28 Open Interest 7594.63  15801.82
Delta % 17.05 15.68 Delta % 23.43 15.65
Observations  32393.00 Observations  6304.00
Mean Std. Mean Std.
>1.15 Call Price $ 1.23 2.22 Call Price $ 2.51 4.22
oB5 % 24.91 8.63 oB5 % 17.74 6.06
Bid-Ask % 45.82 53.96 Bid-Ask % 27.85 53.91
Volumes 261.49 1297.35 Volumes 100.16 720.94
Open Interest 10657.80 23800.44 Open Interest 8265.54 16989.17
Delta % 2.77 3.40 Delta % 3.97 4.83
Observations 1421.00 Observations  1619.00
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Table 3.15: Monthly equity premium out-of-sample forecasting results for individual forecasts, and
machine learning methods. The RQOS is the Campbell Thompson (2008) out-of-sample R? statistic. Statistical
significance for the RQOS statistic is based on the p-value for the Clark and West (2007) out-of-sample MPSE-
adjusted statistic; the statistic corresponds to a one-sided test of the null hypothesis that the competing forecasting
model has equal expected square prediction error relative to the historical average benchmark forecasting model
against the alternative hypothesis that the competing forecasting model has a lower expected square prediction
error than the historical average benchmark forecasting model. The results refer to monthly forecasts for the
out-of-sample period 2001:01-2017:12. For predictions based on univariate forecasts the restrictions are the ones
suggested by Campbell and Thompson (2008) while for the machine learning models when equity premium
forecasts are negative they are replaced with zero. Bold indicates at least a significance level above 5%.

Standard 2001-2017 Restricted 2001-2017
Predictor R%4(%)  pval Predictor R%4(%)  pval
DP 0.13 0.20 DP -0.02 0.24
DY 0.17 0.17 DY -0.11 0.25
EP -0.88 0.28 EP 1.23 0.08
DE -1.34 0.69 DE -0.31 0.51
SVAR 1.06 0.10 SVAR 0.73 0.10
BM -0.10 0.24 BM 0.00 0.24
NTIS -3.53 0.87 NTIS -3.53 0.87
TBL 0.21 0.25 TBL 0.21 0.25
LTY 0.49 0.03 LTY 0.49 0.03
LTR -0.01 0.34 LTR -0.17 0.40
TMS -1.15 0.76 TMS -1.15 0.76
DFY -0.28 0.92 DFY -0.28 0.92
DFR -0.33 0.43 DFR -1.13 0.68
INFL lag -0.86 0.93 INFL lag -0.86 0.93
Model R:4(%)  pval Model R%4(%)  pval
OLS -6.63 0.36 OLS -1.91 0.17
Pooled forecast: median 0.18 0.13 Pooled forecast: median 0.18 0.13
Pooled forecast: DMSFE 0.42 0.18 Pooled forecast: DMSFE 0.42 0.18
Sum-of-the-parts 0.89 0.10 Sum-of-the-parts 1.35 0.03
MARS 1.18 0.04 MARS 1.29 0.01
SVM SIC 0.16 0.17 SVM SIC 0.60 0.09
Lasso SVM 0.33 0.17 Lasso SVM 0.77 0.08
Random Forest 1.01 0.11 Random Forest 1.16 0.07
Diffusion index 0.36 0.27 Diffusion index 0.36 0.27
PLS 0.51 0.12 PLS 0.80 0.08
Neural Networks Median 5.77 0.13 Neural Networks Median -2.19 0.29
Neural Networks 40" 6.14 0.12 Neural Networks 40" -0.87 0.21
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Table 3.16: Monthly equity premium out-of-sample forecasting results for individual forecasts, and
machine learning methods. Utility gain (A Utility) is the portfolio management fee (in annualized percentage
return) that an investor with mean-variance preferences and risk aversion coefficient of three would be willing to
pay to have access to the forecasting model considered relative to the historical average benchmark forecasting
model; the weight on stocks in the investor’s portfolio is restricted to lie between -0.5 and 1.5 (inclusive). The
restriction imposed for the restricted case are the same of Table 3.15. The results refer to monthly forecasts for
the out-of-sample period 2001:01-2017:12. The division between Recession and Expansion months comes from
the NBER database. Bold indicates a AUtility above 1.00%.

A Utility 2001-2017 A Utility 2001-2017

Standard Total Expansion Recession Restricted Total Expansion Recession

DP 1.84 -1.90 26.15 DP 1.70 -2.04 26.05

DY 2.38 -2.43 33.89 DY 2.13 -2.68 33.67

EP 4.75 -1.20 44.07 EP 3.89 -1.18 37.23

DE 0.82 0.13 5.31 DE 1.24 0.33 7.18

SVAR 2.35 0.55 14.03 SVAR 2.21 0.50 13.27

BM 2.57 -2.82 38.05 BM 2.55 -2.75 37.44

NTIS -1.23 1.38 -18.24 NTIS -1.23 1.38 -18.24

TBL -0.71 1.11 -12.41 TBL -0.71 1.11 -12.41

LTY 0.30 0.92 -3.65 LTY 0.30 0.92 -3.65

LTR -0.09 -0.21 0.25 LTR -0.24 -0.17 -0.97

TMS -1.83 -0.02 -13.56 TMS -1.83 -0.02 -13.56

DFY -0.94 -0.14 -6.13 DFY -0.94 -0.14 -6.13

DFR 1.23 -0.14 9.95 DFR 0.96 -0.45 10.03

INFL lag -1.66 0.15 -13.04 INFL lag -1.66 0.15 -13.04
Standard Total Expansion Recession Restricted Total Expansion Recession

OLS 4.57 1.95 21.56 OLS 4.56 2.05 21.04

Pooled forecast: median 0.33 0.21 1.15 Pooled forecast: median 0.33 0.21 1.15

Pooled forecast: DMSFE 1.18 0.24 7.45 Pooled forecast: DMSFE 1.18 0.24 7.45

Sum-of-the-parts 2.22 2.23 2.63 Sum-of-the-parts 2.40 2.31 3.40

MARS 1.78 1.93 0.86 MARS 1.85 1.93 1.40

SVM SIC 1.12 1.87 -3.10 SVM SIC 1.53 2.03 -1.19

Lasso SVM 1.15 1.64 -1.48 Lasso SVM 1.59 1.82 0.47

Random Forest 4.54 0.22 32.76 Random Forest 4.40 0.27 31.37

Diffusion index -1.25 1.45 -19.07 Diffusion index -1.25 1.45 -19.07

PLS 1.11 2.81 -9.32 PLS 1.40 2.91 -7.88

Neural Networks Median 2.93 4.20 -4.97 Neural Networks Median 2.49 3.82 -5.62

Neural Networks 40" 2.75 3.81 -3.73 Neural Networks 40" 2.44 3.6 -4.35
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Table 3.26: Out-of-sample predictability of spread portfolio returns with Welch and Goyal [2008]
predictors: A Utility %. In this table we compare the out-of-sample predictability of a set 17 spread portfolio
returns: SMB (1), HML (2), RMW (3), CMA (4), LT (5), ST (6), Mom (7), Asset Growth (8), Gross Prof (9),
Inv to Asset (10), Net Stock Issue (11), NOA (12), Accruals (13), O (14), ROA (15), Distress (16), Comp Eq
Issue (17). The monthly out-of-sample period considered is the most recent 30% for each variable. Forecasts are
based on Welch and Goyal [2008] predictors: we consider both univariate regression and all the machine learning
techniques detailed in the second part of this paper. Bold indicates an yearly percentage utility gain of more

than 1%.

A Utility 1 @ G @ (6) 6 (7 () (9 (10) (11) (12) (13) (14) (15) (16) (17)
DP -149 1.72 -0.86 1.39 0.69 4.63 2.27 1.69 -2.07 064 030 -0.18 -0.79 0.34 1.91 -0.82 -0.32
DY -2.17 1.66 -0.94 1.42 0.68 4.43 2.21 1.69 -2.16 064 030 -0.20 -0.79 0.18 1.83 -0.80 -0.40
EP -1.47 1.02 -0.34 058 075 3.50 3.81 1.69 0.05 064 038 -0.26 -0.79 0.28 1.22 -0.59 -0.38
DE 0.36 -0.20 -0.59 0.60 3.94 0.15 3.82 1.43 2.25 064 040 -0.34 -0.85 0.61 2.33 -0.72 -041
SVAR -0.77 -0.98 -0.72 0.59 1.24 0.13 5.30 1.53 0.51 056 0.04 -035 -0.79 1.35 1.05 -0.61 -0.33
BM -1.14 1.17 046 0.71 096 4.05 4.17 1.69 0.02 064 034 -0.15 -0.79 040 059 -0.71 -0.34
NTIS -0.30 1.07 0.06 0.71 3.58 0.33 4.24 1.68 0.11 081 040 -0.26 -0.79 -0.59 0.38 -0.61 -0.23
TBL -0.02 0.28 046 -0.08 0.60 0.19 3.80 1.51 1.45 0.64 0.16 -0.07 -0.83 045 2.33 -0.66 -0.57
LTY 0.01 058 -0.44 034 0.72 020 4.45 1.55 1.14 0.64 028 -0.15 -0.79 0.12 2.52 -0.73 -0.50
LTR -0.78 0.51 031 035 1.42 057 5.11 1.56 1.06 0.62 0.11 -0.36 -0.79 0.30 1.08 -0.78 -0.44
TMS 0.16 0.86 -0.41 0.43 030 0.39 4.08 1.57 2.02 0.64 044 -0.27 -0.89 1.75 2.46 -0.75 -0.20
DFY -0.14 -0.29 0.16 0.62 1.35 098 4.05 1.66 -0.07 0.64 0.22 -0.20 -0.79 0.10 2.54 -0.87 -0.48
DFR 0.10 1.67 020 0.14 1.34 0.11 4.95 1.55 0.66 0.64 026 -0.34 -0.79 0.66 1.97 -0.71 -0.42
INFL lag 0.14 -0.32 0.20 046 0.77 -0.06 4.67 1.64 2.04 064 043 -0.31 -0.79 0.73 2.99 -0.68 -0.39

A Utility
4.26 -1.50 0.58 2.61 1.21 0.60 -3.04 -2.28 -1.66 -249 -0.28 4.36 -1.04 -9.47 -4.89 -5.65
1.94 -1.76 -0.17 1.96 3.03 2.56 -350 -224 -1.80 -2.09 0.17 1.38 -0.78 -7.10 -4.46 -5.02
1.68 -1.76 -0.17 1.79 3.22 2.28 -350 -221 -1.80 -2.09 0.17 1.38 -0.67 -7.26 -4.45 -5.02
1.77 -160 -1.16 2.59 4.52 10.87 -523 -3.75 -454 -342 -1.01 4.27 -098 -9.13 -7.90 -8.21
1.66 -1.76 -0.30 1.50 3.65 1.53 -3.50 -2.16 -1.80 -2.09 0.17 1.34 -1.89 -6.77 -4.95 -5.02
Lasso SVM -1.21 1.64 -1.76 -0.03 1.52 3.91 093 -350 -2.88 -1.80 -2.09 0.17 1.38 -1.77 -7.08 -580 -5.02
Radom Forest -0.87 2.13 -1.76 -0.17 1.64 2.80 2.70 -3.50 -2.20 -1.80 -2.09 0.17 1.38 -1.02 -7.05 -4.39 -5.02
Diffusion index -1.38 2.21 -1.76 -0.14 2.20 3.88 0.84 -3.50 -2.69 -1.80 -2.13 0.17 1.37 -1.10 -6.10 -5.00 -5.02
PLS -1.13 1.15 -1.77 -0.41 2.11 2.55 1.79 -4.09 -2.36 -2.10 -2.17 0.17 1.19 089 -855 -577 -5.02
Neural Networks Median 0.65 2.74 -3.21 -2.24 3.90 2.54 2.71 -233 0.85 -1.74 -1.70 -2.32 0.74 0.55 -4.86 -4.88 -2.61
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Table 3.27: Out-of-sample predictability of spread portfolio returns with lagged spread portfolio
returns predictors: A Utility %. In this table we compare the out-of-sample predictability of a set 17 spread
portfolio returns: SMB (1), HML (2), RMW (3), CMA (4), LT (5), ST (6), Mom (7), Asset Growth (8), Gross
Prof (9), Inv to Asset (10), Net Stock Issue (11), NOA (12), Accruals (13), O (14), ROA (15), Distress (16), Comp
Eq Issue (17). The monthly out-of-sample period considered is 1:1986-12:2016. Forecasts are based on lagged
(t-1) spread portfolio returns predictors: we consider both univariate regression and all the machine learning
techniques detailed in the second part of this paper Bold indicates an yearly percentage utility gain of more than

1%.
A Utility W ® B @ 6 ©® (M ® © ) ) (2 (13 49 05 16 (1)
SMB 0.52 -0.71  -0.44 -0.40 -0.67 0.27 -0.26 -0.43 -0.03 -0.02 0.15 -0.04 -0.08 2.26 0.73 -0.24 -0.42
HML -0.31 3.41 0.08 -0.24 0.24 1.12 1.62 -0.32 -0.22 -0.03 0.09 0.11 -0.02 -0.66 -0.41 -0.26 -0.45
RMW -1.41 -1.51 2.41 -0.68 0.46 2.10 -0.22  -0.14 -0.21 0.00 -0.94 -0.11 0.05 056 024 -1.30 -0.53
CMA 2.65 2.09 -0.46 0.32 0.25 213 -0.71 -0.14 -0.22 0.29 -0.17 093 0.07 -0.55 0.05 -0.13 -0.35
LT -0.28 2.13 1.22 0.79 1.70 0.27 -0.67 -0.05 -0.39 0.00 -0.24 0.00 -0.01 -0.35 -0.55 -0.04 0.08
ST 3.21 1.84 -0.63 0.15 0.16 -1.57  -1.88 -0.01 -0.37 0.00 091 023 014 040 -0.54 -0.58 0.05
Mom 2.04 0.39 0.10 -0.28 0.63 -0.64 -1.24 -049 -0.17 -0.01 042 -0.14 -0.03 0.34 -0.58 -0.64 -0.72
Asset Growth 1.46 12.61 -0.01 12.61 9.24 2.26 -2.15 -0.71 -0.06 -0.06 -0.37 0.04 -0.25 0.98 -0.62 -0.06 3.84
Gross Prof 3.91 4.27 3.83 2.82 -047 1.68 -289 -0.25 0.28 0.00 0.10 0.61 0.09 1.06 -0.17 0.14 -0.31
Inv to Assets 0.84 7.87 0.21 10.10 6.60 2.49 4.44 -0.77 083 -0.31 -0.28 0.06 0.20 1.54 -0.50 -0.32 2.79
Net Stock Issues 6.91 9.23 10.15 7.67 -0.05 3.83 -0.02 -0.17 0.07 -0.01 0.80 0.08 -0.15 0.36 -0.58 -0.10 12.04
NOA 2.45 4.47 6.89 -0.38 1.43 0.08 2.99 -022 023 -0.13 054 071 015 033 -0.78 095 1.43
Accruals 1.11 5.25 0.14 3.63 3.58 -0.33  -0.47 -0.71 -0.51 -0.24 -0.34 -0.25 -0.24 -0.13 -0.48 0.06 0.35
O 6.06 11.79 -0.58 6.32 4.51 -1.07 0.25 -0.15 -0.27 0.00 -0.19 026 -0.06 1.00 -0.42 -0.11 040
ROA 2.32 8.88 4.97 3.31 6.27 0.83 9.98 -0.21 -0.96 0.03 -0.22 0.08 -0.23 0.06 -0.10 -0.01 -0.64
Distress 0.45 3.31 -1.38 -0.05 -0.85 12.59 23.23 -049 -0.65 -0.31 044 055 -0.08 1.07 -0.21 -0.81 -0.40
Comp Eq Issue 1.66 0.84 1.76 -0.62 -0.30 0.62 -0.02 -0.05 -0.38 0.35 -0.58 -0.12 0.27 -0.43 0.57 -0.16 0.55
A Utility
OLS 16.06 18.32 11.60 11.84 10.38 12.74 22.85 -1.93 0.17 -1.61 045 0.16 -1.04 1.52 1.02 -4.20 11.59
Pooled forecast:median ~ 2.39 5.25 1.54 2.63 2.24 1.11 0.63 -0.04 0.07 0.00 -0.10 0.03 -0.02 0.35 -0.15 -0.02 0.18
Pooled forecast: MDSFE  6.01 15.15 5.93 10.04 8.03 5.84 13.19 -0.07 -0.04 0.00 -0.05 0.04 -0.01 066 -0.29 0.00 7.28
MARS 10.36 6.73 5.18 5.55 3.79 9.19 13.33 -5.15 -2.68 -6.57 -2.23 -505 -545 0.65 -144 -586 4.16
SVM SIC 2.35 0.46 1.07 -0.46 0.81 0.18 -1.37 -0.81 -0.17 0.00 0.15 0.11 0.09 0.57 019 -0.30 -2.16
Lasso SVM 1.30 0.56 0.74 -0.40 0.80 -0.52 1.24 -0.82 -0.03 0.00 -041 0.11 0.17 054 024 -0.29 -0.90
Radom Forest 0.38 1.15 -0.12 0.72 0.59 0.11 0.95 0.00 0.05 0.00 0.01 003 0.01 012 -0.04 0.01 0.02
Diffusion index 1.11 11.54 -0.10 10.78 8.49 4.01 -1.01 -241 -035 -0.09 -0.21 0.28 -0.05 1.59 -0.46 -0.23 2.05
PLS -0.33  -0.26 -0.63 -1.98 1.11 -1.01 -575 -3.15 -0.58 -0.26 -0.02 -0.36 -0.58 1.54 -0.19 -1.33 -2.23
Neural Network Median -12.52  0.43 0.97 2.66 -1.30  -13.96 -22.74 -5.75 -0.14 -0.23 -0.04 0.59 039 0.72 -1.05 -0.81 -0.32
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Table 3.28: Out-of-sample predictability of swaps and volatility-correlations risk premia: yearly
percentage A Utility.. We report the results employing the 17 spread returns portfolios as predictors for the
monthly out-of-sample period 1:2005-12:2017. The variable forecasted are: the 30 and 90 days ahead Implied
Correlation (IC 30 and IC 91), the 30 and 90 days ahead Implied Volatility (IV 30 and IV 90), the Implied
Variance Risk Premium at 30 and 90 days ahead (VRP 30 and VRP 91) the 30 and 90 days ahead Implied
Downside Variance Risk Premium (IVD 30 and IVD 90) and the 30 days-91 days Realized Correlation (RC 30
and RC 90). Bold indicates a percentage A Utility above 1%.

A Utility IC30 IC91 IV 30 IV91 VRP 30 VRP91 IVD 30 IVD 91 RC 30 RC91

SMB -2.87  -3.32  -291 -1.59 24.87 2.47 -3.06 -1.60 -5.00 -0.05

HML 0.06 -0.72 -0.84 0.41 24.98 2.36 -1.20 0.17 -2.94 -1.06

RMW -1.91 -3.44 -3.94 -1.85 25.04 2.46 -5.28 -2.04 -12.63 -0.45

CMA -8.28 -10.03 -5.90  -4.20 25.05 2.21 -5.52 -3.99 -6.41 -10.29

LT -12.01 -15.32 -9.16 -8.44 25.02 2.26 -9.55 -8.04 -9.06 -5.26

ST -1.64 -2.63 -2.09 -0.14 25.10 2.35 -2.38 -0.39 -4.82 -4.38

Mom 0.20 -0.26 -0.99 0.57 24.97 2.44 -1.34 0.29 -2.96 -2.22

Asset Growth -1547 -20.78 -5.97  -5.95 24.65 1.55 -5.47 -4.64 -9.04 -20.21
Gross Prof -1.72 064 -228 -0.11 25.01 2.57 -2.38 -0.15 -4.73 0.80

Inv to Assets -11.47  -11.94  -4.21 -2.64 24.79 1.75 -4.37 -3.06 -11.61 -12.04

Net Stock Issues -23.45 -26.43 -9.29 -9.32 25.54 2.56 -8.74 -8.42 -11.21 -31.30
NOA -4.40 -7.09 -2.30 -1.60 25.25 2.78 -2.45 -1.47 -2.91 -5.69
Accruals -3.16  -6.80 -1.22 -0.84 24.58 -0.08 -1.54 -1.08 -3.39 -7.74

(0] -24.59 -21.71 -11.65 -11.25 24.83 2.96 -10.38 -10.09 -7.99 -28.04

ROA -1.88 -2.04 -1.72 -0.53 24.92 2.60 -1.83 -0.49 -4.53 -4.35

Distress 1.84 0.77 0.29 1.39 24.94 2.56 -0.03 1.19 -2.71 -0.24
Comp Eq Issue 0.85 -0.66 -0.81 0.23 24.98 2.45 -1.14 -0.02 -2.75 0.64

Model

OLS -4.12  6.14 -18.15 -10.93  -557.29 -466.70 -16.98 -30.09 -13.57 6.21
Pooled forecast:median 0.27 0.80 0.38 0.25 1.95 -0.18 0.61 0.70 0.11 0.91
Pooled forecast: MDSFE 1.37 2.94 1.60 2.31 -2.20 -1.07 1.57 1.75 0.10 2.06
MARS -0.15 2.51 -4.62 0.80 23.91 0.09 -2.10 -1.41 -5.50 -0.30

SVM SIC -5.60 -4.24 -8.31 -6.28 23.98 1.38 -9.46 -7.08 -8.88 2.70

Lasso SVM -10.25 -9.17  -12.53  -6.81 24.01 0.14 -15.09 -9.75 -8.23 3.43
Radom Forest -0.40 0.63 -0.09 0.20 2.42 1.16 0.15 0.56 -0.08 -0.71
Diffusion index -6.06 -2.98 -7.63 -4.56 24.98 2.99 -8.69 -8.06 -7.59 1.61
PLS 995 -9.08 -19.45 -17.93 23.07 -0.22 -22.75 -22.75 -7.80 -7.61

Neural Networks Median ~ 3.87 3.33 0.42 3.27 26.53 5.64 -0.10 3.90 -5.82 11.47
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Table 3.29: Out-of-sample predictability the moments contracts: A Sharpe ratio. We document the
A Utility metric. We report the results employing as predictors the 17 spread returns portfolios (Anomalies), or
the Welch and Goyal [2008] (W-G) variables for the monthly out-of-sample period 1:2005-12:2017. The predictive
approaches used are the same detailed in section 3.1. The variables forecasted are the returns of the first four 20
and 40 business days ahead moments contract (M1 20, M1 40, M2 20, M2 40, M3 20, M3 40, M4 20, M4 40) built
following Bakshi et al. [2003]. Bold indicates a A Sharpe ratio higher than 0.5.

M120 M220 M320 M4 20 M140 M2 40 M3 40 M4 40

Benchmark -0.33 0.60 0.29 -0.44 -0.46 -0.47 -0.32 3.57

A SR Anomalies
OLS 0.29 -0.20 -0.01 0.18 0.49 0.18 0.58 -3.17
Pooled Forecast median -0.03 0.00 0.01 0.01 -0.04 -0.01 0.00 -0.97
Pooled Forecast MDSFE  -0.03 0.00 0.01 0.02 -0.03 -0.02 0.00 -0.93
MARS 6.59 10.32 0.08 3.34 2.26 0.97 0.63 7.08
SVM SIC 0.67 0.18 -0.55 2.05 1.10 0.76 0.58 4.13
Lasso svim 0.65 0.40 0.77 3.46 0.94 0.80 0.07 7.10
Random Forest -0.01 -0.02 0.01 0.00 0.01 0.38 0.00 -2.09
Diffusion Index 0.45 1.77 -0.27 3.39 0.73 0.85 0.66 7.07
PLS 0.74 0.57 0.55 3.26 0.55 0.29 0.11 1.75
Neural Netwok Median 1.06 0.69 -0.47 1.41 1.71 0.82 0.07 0.31

A SR W-G

OLS 0.54 -0.04 -0.01 0.07 0.77 0.04 0.61 -3.89
Pooled Forecast median -0.23 -0.07 -0.01 -0.01 -0.26 0.20 0.58 -3.51
Pooled Forecast MDSFE  -0.22 -0.04 -0.03 0.02 -0.11 0.24 0.62 -3.46
MARS 0.24 0.36 1.04 1.79 0.04 0.76 0.61 -2.23
SVM SIC -0.01 -0.33 0.25 1.19 -0.04 0.88 0.62 -2.27
Lasso svim -0.07 -0.38 -0.34 1.38 0.10 0.88 0.62 -2.33
Random Forest -0.21 -0.09 -0.01 0.00 -0.29 0.13 0.00 -3.46
Diffusion Index -0.13 -0.70 -0.01 0.86 -0.34 0.95 0.60 -2.78
PLS -0.02 -0.92 -0.04 1.23 0.00 0.92 0.61 -2.28
Neural Netwok Median 0.19 -0.91 0.10 0.15 0.38 0.79 -0.01 -2.83
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Implied Variance and Variance Risk Premium
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Figure 3.3: Implied Variance and Variance Risk Premium. This table plots the time series of the model
free impled variance swap computed following Martin and Wagner [2019] and the related Variance Risk Premium.
Monthly data sapans the period 1996:1-2017:12.
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Implied and Realized Correlation
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Figure 3.4: Implied and Realized Correlation. This table plots the time series of the model free Implied
Correlation Swaps built following Buss et al. [2018] and of the related Realized Correltion. Monthly data sapans

the period 1996:1-2017:12.
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Chapter 4

The Magnificent Enigma

4.1 Introduction

This paper links equity predictability and pricing through the study of the ratio-
nale underpinning predictability. The cornerstone of this article is equity premium
predictability: the magnificent enigma. This enigma is of the utmost relevance not
only because of its apparent economic value but also because the analysis of pre-
dictability’s rationale allows us to shed new light on the link between behavioral
and neoclassical finance. Indeed, the capability to understand the genesis of out-
of-sample predictability implies that we have gained a deep understanding about
the dynamics of risk and risk pricing!.

From a theoretical point of view, this study is linked to the ongoing debate be-
tween behavioral and neoclassical finance. Indeed, the theory on asset pricing is
divided into two main conflicting schools of thought: the neoclassical approach
which states that higher expected returns are consequence of higher risks? and the
behavioral approach, which explain how human biases lead investors to deviate
from full rationality®. We show how the interaction among risks and the pricing of
risks is at the very base of predictability, and consequently, both behavioral and
neoclassical theories provide useful tools in understanding financial markets.

All the results provided in this paper are built on the key idea that real knowledge
of financial markets should imply the capability to forecast their behavior and to
explain the rationale which is driving the predictions. Consequently, we start ana-
lyzing the out-of-sample predictive power of a comprehensive set of behavioral and

IThe idea that predictability and pricing are intimately related is not new and is formulated
in the seminal work of Campbell [1991].

2 Among the most complete books which summarizes the state of the art we cite the remarkable
works of Ross [2004], Cochrane [2005], and Duffie [2001]

3In the list of books which offer a rich analysis of the main achievements in the field we list
Shleifer [2000], Thaler [2005], Shefrin [2008], and Forbes [2009]
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fundamental predictors, both unconditionally and conditionally to being in period
of economic recession-expansion. Consistently, with the prevailing literature?, we
observe how it is possible to beat the forecasts provided by the mean returns both
in terms of positive R and Utility gains. Even more importantly, we observe
how the predictability detected by our econometric and machine learning mod-
els is higher during the more recent 2001-2016 out-of-sample period than during
the longer 1986-2016 one, suggesting how the phenomenon is not disappearing.
Remarkably, some of the proposed spread returns predictors (Asset Growth, Net
Stock Issue and Investment to Assets)® achieve statistically significant monthly
R% ¢ values well above the 10% threshold matched by equally important utility
gains. After that, we document how predictability is on average higher during
periods of economic recession and conditionally on the subsequent return being
negative.

After that, we start considering individual predictors and their capability to fore-
cast the discount rate and cash flows component of asset prices. We observe how
all the three most powerful predictors (Asset Growth, Net Stock Issue and In-
vestment to Assets) are especially effective in forecasting the cash flow component
of returns suggesting that the fundamental component is the pivotal one. Af-
ter that, we notice how fundamentally based predictors (e.g., the dividend-price
the dividend-yield, the book-to-market), are especially effective in forecasting the
S& P500 returns in periods of economic recession, while behaviourally based pre-
dictors (e.g., Net Equity Expansion, Momentum, Long and Short Term reversal)
are more effective predictors during periods of economic expansion. These results
jointly point out toward an interpretation of financial markets in which fundamen-
tals play the dominant role during recessions while behavioral variables become
more relevant during expansions.

To gain a better understanding of the drivers of predictability we employ three
behavioural (the Greed index of Huang et al. [2015]%, the Fear index coming from
the corridor variance approach of Andersen and Bondarenko [2007]7, and the Fi-
nancial Uncertainty index of Jurado et al. [2015]) and five fundamental variables
(the five Fama and French [2015] factors) and we perform a pooled regression anal-
ysis on all the returns time series of the R%¢ previously estimated. Our results

4See e.g. Rapach et al. [2009], Neely et al. [2014] and Rapach and Zhou [2013]

SWe employed the 11 anomalies considered by Stambaugh et al. [2012] following the detailed
report in the appendix of the work of Stambaugh and Yuan [2017]

6In the original paper the authors named this paper as a Sentiment index but Barone-Adesi
et al. [2018] show how this index is effective only in the timely detection of abnormally low levels
of risk aversion

"Fear index which we employ in this paper is the downside variance risk premium estimated
by Grigory Vilkov. Our choice is motivated by the empirical analyse performed by Feunou et al.
[2017]

186



show how both fundamental and behavioral variables are important in explaining
predictability. Motivated by the concern that the Fama and French factors could
be largely affected by market behavioral dynamics (Stambaugh et al. [2012]) we
employ alternative macroeconomic variables: the five principal components (which
we name Income, Industrial Production, Labor, House, and Inflation) estimated
from five large sets of macroeconomic time series clustered on the base of their eco-
nomic meaning®. Subsequently, we employ the three behavioral variables and the
new five macroeconomics ones as independent variables in the adaptive elastic net
framework of Zou and Zhang [2009] while the dependent variable is now the total
market predictability computed as the average R%q return of all the univariate
OLS and multivariate machine learning predictive models. The results which arise
confirm how both fundamental and behavioral factors are linked to predictability.
Importantly, even the interactions between behavioral and fundamental variables
are critical components in explaining predictability. These finding on predictabil-
ity are consistent with a theory of equity prices which involves both fundamental
and behavioral components®.

Subsequently, we estimate VAR(1) models which include the time series of the total
R% ¢ returns and a rich set of five macroeconomic (Income, Industrial Production,
House, Labor, and Inflation) and the three behavioral variables (Greed, Fear, and
Uncertainty). In the first case considered the returns of the macroeconomic and
behavioral variables are included in the VAR(1) system while in the second case,
we include the levels of the variables. The related impulse response functions show
us how predictability reacts to macroeconomic and behavioral shocks. After that,
we employ regime Markov Switching Regressions to test which macroeconomic and
behavioral variables explain the dynamics of aggregate predictability in the bull
and bear market regimes. Finally, we computed threshold regressions based on the
prevailing filtered probabilities to perform a regime dependent pairwise causality
analysis between behavioral and fundamental variables. Overall our results doc-
ument how changes in fundamentals trigger changes in the behavioral variables,
and the effects are stronger during bear markets.

Our results have broad theoretical implications because they offer a different em-
pirical approach to test the mainstream asset pricing theories: the long-term-risk
model of Bansal and Yaron [2005], the habit model introduced by Campbell and
Cochrane [1999] and the rare disaster approach of Barro [2006] and Gabaix [2012].
At first, we point out how the widespread evidence that Fear is a key element in
explaining predictability in bear market regimes brings favorable evidence in favor

8We followed an approach close to the one successfully employed byLudvigson and Ng [2007]
and Ludvigson and Ng [2009]

9 Among the pioneering studies which propose this understanding of securities prices we report
the works of Shefrin and Statman [2000], Shefrin and Statman [1994], Shefrin [2008], and Barone-
Adesi et al. [2016]
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of the rare disaster theory!'®. After that, the impact of current income changes on
the dynamics of predictability shows how short term changes in consumption have
a relevant impact on investors risk aversion. In conclusion, our empirical evidence,
while does not exclude the influence of changes in long-term risks, is more favor-
able to the habit asset pricing model.

The paper proceeds as follows; Part II briefly reviews and comments on the lit-
erature. Part III details the data employed. Part IV studies the out-of-sample
predictive performance of the chosen models-variables. Part V studies the inter-
actions and characteristics of the forecasts generated by our sets of predictors.
Part VI studies aggregate equity market predictability in terms of macroeconomic
and behavioral variables. Part VII studies the interaction between behavioral and
fundamental variables. Finally, part VIII discusses our results and concludes.

4.2 Literature review

The theory of finance is largely divided into competing approaches: the neoclassi-
cal one which explains the dynamics of prices in terms of changes in the underlying
fundamental risks and the behavioral one, which studies the impact of human psy-
chology on the dynamics of financial markets. In this brief review, we focus on the
main attempts to reconcile the evidence coming from the two pieces of literature.
An effort to reconcile these positions is due to Shefrin and Statman [1994] and
Daniel et al. [2002]. In their innovative works, these authors explain how asset
prices reflect both covariance risk and misperceptions of firms’ prospects. The
cited studies have subsequently led to a new formulation of the modern portfolio
theory (Shefrin and Statman [2000]) and a related approach to estimate the pric-
ing kernel (Barone-Adesi et al. [2016]).

Another attempt to reconcile the existing positions involves the theory of rational
bubbles (Diba and Grossman [1988b] and Diba and Grossman [1988a]), it assumes
that rational investors with short expected holding periods (i.e., traders) are driven
only by expectations of future price increments (Froot et al. [1992]) while ignor-
ing fundamentals. This approach is fascinating because it introduces a behavioral
component while retaining the Campbell and Shiller [1988] decomposition frame-
work (C-S from now). C-S assume that the rational bubble component is zero,
and an empirical investigation performed by Cochrane [2008] seems to confirm this
assumption. Still, Cochrane assumes expectations about a continuous growth in
prices, while rational bubbles, by definition, involve both price surges and falls.
Consequently, the evidence of an unconditional expected return of zero naturally
arises from the "boom and bust” dynamics of the bubble but it does not rule out

00ur results are consistent with the ones provided by Andersen et al. [2015] and Wachter
2013]
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the possibility that conditionally to the current market’s regime, the rational bub-
ble component of the C-S decomposition can be significantly different from zero.

Finally, a third possible approach to reconcile the opposing theories comes from
Campbell and Cochrane [1999]. The authors assume that investors have a utility
function affected by habit. This implies that losses can change the risk aversion of
individuals leading them to follow a behavior which would be labeled “irrational”
if their utility curve were wealth invariant. This reasoning calls for the introduc-
tion of multi-dimensional utility functions which can account for the complexity
of human psychology and in a setting were investors have both financial and real
sources of income!.

The second literature closely related to our study involves market predictability.
The literature on market predictability stems from the traditional asset pricing
one. At the beginning market predictability was studied to test the efficient mar-
ket hypothesis (Fama [1970]), but over time; the focus has switched toward mar-
ket predictability itself (Welch and Goyal [2008], Lettau and Van Nieuwerburgh
[2008]). The debate on the amount and the rationale of financial markets pre-
dictability is still in its infancy. Luckily, at least on some points, the consensus is
broad:

e Equity premium predictability to some extent exists'?, ;

It is linked to the the business cycle!?;

It is linked to sentiment and liquidity'4

It is stronger in bear markets!®

It is time varying and affected by financial research®®.

e it can be enhanced by imposing economically motivated constraints'”

HCochrane [2013] explain the relevance of understanding the source of real income in portfolio
optimization

12Gee, e.g., , Dangl and Halling [2012], F et al. [2010], Golez and Koudijs [2018]

13See, e.g., the seminal work of Fama and French [1989] and the recent works coming from F
et al. [2010] and Cochrane [2011]

14 Chen et al. [2018] show how to isolate a powerful liquidity predictor while Huang et al. [2015]
propose a powerful sentiment one.

15 Julien and Michael [2017] explain this phenomenon through the existence of a risk premium
for uncertainty.

1610 [2004] formulates a fascinating adaptive market hypothesis while Mclean and Pontiff
[2015] proving how academic research reduce predictability implicitly confirm the hypothesis.

17Campbell and Thompson [2008] impose constraints on the regression coefficients and on the
predicted returns (when the predicted returns are negative, they are replaced with zero) while
Pettenuzzo et al. [2014] successfully introduces a constraint on the conditional Sharpe ratio.
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After that, it has become clear how employing more and more powerful predictive
models the capability to forecast the equity premium out-of-sample is steadily
increasing. Among the most successful methodologies we report the Kalman filter
approach of Van Binsbergen and Koijen [2010], the Markov Switching approach
of Guidolin and Timmermann [2008], and the bayesian system approach of Pastor
and Stambaugh [2009].

Another, closely linked, line of works proposes new powerful predictors. Huang
et al. [2015] introduce a partial least squares sentiment index, Rapach et al. [2016]
show the predictive power of short interest, Huang and Kilic [2019] propose the
Gold-Platinum ratio, Kelly and Pruitt [2013] employ their three-pass regression
filter (Kelly and Pruitt [2015]) to extrapolate a powerful predictor from the cross-
section of stock returns, and Almeida et al. [2017] prove how the left tail of their
non-parametric pricing kernel exhibits a strong predictive power.

While far from the mainstream financial literature two others lines of research have
provided relevant contributions to the research on market predictability:

e the Bayesian data-science oriented approach
e the machine learning approach.

Among the relevant contributions inside the first line of research, we report the
Bayesian latent threshold approach of Nakajima and West [2013], the dynamic
dependent sparse factor model of Zhou et al. [2014], the dynamic dependence net-
works methodology of Yi et al. [2016], the simultaneous graphical dynamic linear
proposal of Gruber and West [2016], and the Bayesian predictive synthesis of John-
son and West [2018].

Among the most intriguing works on machine learning financial forecasting we
report the the stochastic neural network combination approach of Sermpinis et al.
[2012], the adaptive evolutionary neural networks methodology of Georgios et al.
[2015], the evolutionary support vector machines model of Karathanasopoulos
et al. [2015], and the genetic programming approach of Karatahansopoulos et al.
[2014]18.

Finally, we consider the two open debates which are related with our study. The
first debated issue is about long and short-term predictability. The early literature
(Fama and French [1988a] and Fama and French [1988b]) found evidence of weak
predictability at the short horizons but higher predictability at long horizons peak-
ing at five years. With time, some studies have questioned the soundness of the
econometric procedure employed!® and pointed out the role played by parameter

18 A comprehensive review of the existing literature on machine learning financial forecasting
can be found in the works of Dunis et al. [2016] and de Prado [2018]

19See. e.g., Nelson and Kim [1993], Valkanov [2003], Campbell and Yogo [2006], and Boudoukh
et al. [2008]
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and model uncertainty at long horizons (Pastor and Stambaugh [2012]). These
findings led to a new wave of studies which ultimately reverted the early results:
equity premium predictability is higher at the short horizon (Dangl and Halling
[2012], and Kostakis et al. [2015]).

The second widely debated issue involves the predictability of dividend growth.
Indeed, the work of C-S implies that returns and dividend growth predictability are
intimately related, as explained in the influential work of Cochrane [2008]. Here
the author explains how the weak predictive power of the dividend yield is mainly
due to the positive correlation between dividend growth and discount rates. Con-
sequently, the inclusion of a dividend growth predictor can significantly improve
the out of sample predictive power of dividend yields (Golez [2014]). Similarly,
Ang [2012] has shown how dividend yields can predict future dividends, and that
the predictability of dividend growth is much stronger than the predictability of
returns on a yearly horizon. It follows that coherently with the Campbell-Shiller
present value identity, the combination of expected dividend growth and dividend
yield results in an enhanced capability to forecast returns as detailed in Detzel
and Strauss [2016]. Finally, the time-varying dynamics of returns and dividend
growth predictability are discussed in McMillan [2015], Zhu [2015] and Ghosh and
M. Constantinides [2010]. In the current study we prove how dividend growth is
effectively predicted by machine learning models.

In conclusion, the literature on these topics is extensive but often polarized in con-
flicting interpretations on the rationale underpinning financial markets dynamics.
With the current study we dissect financial market predictability to gain novel
insights into the mechanism driving financial markets. Finally, we use the results
emerging from our analyses to test empirically the most prominent asset pricing
theories: the habit model of Campbell and Cochrane [1999], the long term risk
model of Bansal and Yaron [2005] and the rare disaster theory of Barro [2006].

4.3 Data

In this section we detail the data employed in the subsequent analysis. For seek of
brevity the full list of macroeconomic time series, with the related transformations,
is reported in the appendix.

4.3.1 Welch and Goyal Predictors

The study of Welch and Goyal [2008] (W-G) is a benchmark and a challenge for
the existing literature on market predictability. Consequently, we start with the
fourteen predictors used in this provocative work. The updated database is coming
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directly from the website of Goyal?’. In more detail, the predictors are:

log Dividend-price ratio (DP): the difference between the log of dividends
paid on the S&P 500 index and the log of prices, where dividends are mea-
sured using a twelve-month moving sum.

log Dividend yield (DY): the difference between the log of dividends and the
log of lagged prices.

log Earnings-price ratio (EP): the difference between the log of earnings on
the S&P 500 index and the log of prices, where earnings are measured using
a twelve-month moving sum.

log Dividend payout ratio (DE): the difference between the log of dividends
and the log of earnings.

Stock variance (SVAR): the sum of squared daily returns on the S&P 500
index.

Book to market (BM): the ratio of book value to market value for the Dow
Jones Industrial Average.

Net equity expansion (NTIS): the ratio of twelve-month moving sums of net
issues by NYSE-listed stocks to the total end-of-year market capitalization
of NYSE stocks.

T-bill rate (TBL): the interest rate on a 3-month Treasury bill (secondary
market).

Long-term yield (LTY): long-term government bond yield.
Long-term return (LTR): return on long-term government bonds.

Term spread (TMS): the difference between the long-term yield and the T-
bill rate.

Default yield spread (DFY): the difference between BAA- and AAA-rated
corporate bond yields.

Default return spread (DFR): the difference between long-term corporate
bond and long-term government bond returns.

Inflation (INF lag): calculated from the CPI (all urban consumers); since
inflation rate data are released in the next month, we use x;;_;.

2Ohttp: //www.hec.unil.ch/agoyal /

192



4.3.2 Spread Returns

In this section, we detail the factors and anomalies employed in this study. An
anomaly is a statistically significant difference in cross-sectional average returns
that persist after the adjustment for exposures to the Fama and French [1993]
three factors model. Our empirical analysis makes use of i) the eleven anomalies
proposed by Stambaugh and Yuan [2017], ii) the five factors of the extended Fama
and French [2015] model iii) Momentum, Long and Short term reversal. All data
are monthly and span the period from 01-1965 to 12-2016 except the net operating
assets, the accruals, the return on assets, and the distress anomaly for which
data are available respectively only from 8-1965, 1-1970, 5-1976, and 1-1977. The
considered factors-anomalies are:

e Financial distress. Campbell et al. [2008] show that firms with high failure
probability have lower, not higher, subsequent returns (Distress). Another
closely related measure of distress is the Ohlson [1980] O-score (O).

e Net stock issues and composite equity issues. Loughran and Ritter [1995]
show that, in post-issue years, equity issuers under-perform non-issuers with
similar characteristics (Net Stock Issues). Daniel and Titman [2006] propose
an alternative measure, composite equity issuance (Comp eq Issue), defined
as the amount of equity issued (or retired by a firm) in exchange for cash or
services.

e Total accruals. Sloan [1996] demonstrates that firms with high accruals earn
abnormal lower returns on average than firms with low accruals (Accruals).

e Net operating assets. Hirshleifer et al. [2004] find that net operating assets,
computed as the difference on the balance sheet between all operating assets
and all operating liabilities divided by total assets is a negative predictor of
long-run stock returns (NOA).

e Momentum. The momentum effect, proposed by Jegadeesh and Titman
[1993] is one of the most widespread anomalies in asset pricing literature
(Mom).

e Gross profitability premium. Novy-Marx [2013] shows that sorting on gross-
profit-to-assets creates abnormal benchmark-adjusted returns, with more
profitable firms having higher returns than less profitable ones (Gross Prof).

e Asset growth. Cooper et al. [2008] show how companies that grow their total
assets more earn lower subsequent returns (Asset Growth).

193



e Return on assets. Chen et al. [2011] show that firms with higher past return
on assets gain higher subsequent returns (ROA).

e Investment-to-assets. Titman et al. [2003] show that higher past investment
predicts abnormally lower future returns (Inv to Assets).

e The four factors proposed by the extended model of Fama and French
[2015]: Small Minus Big (SMB), High Minus Low (HML), Robust Minus
Weak (RMW), and Conservative Minus Aggressive (CMA).

e The Short and Long Term Reversal factors (ST, LT): as presented in the
website of Professor Kenneth R. French.

Data for the four factors chosen by Fama and French [2015], the Momentum,
and the two Short-Long Reversal Factors comes from the website of Professor
Kenneth R. French?' while anomalies are build matching CRSP and Compustat
data following the approach detailed in Stambaugh and Yuan [2017].

4.3.3 Fundamental and Behavioural Data

In a closely related study Barone-Adesi et al. [2018] show how commonly em-
ployed sentiment proxies®? are effective in capturing abnormally low level of risk
aversion (Greed) while option-based measures of fear are needed to timely detect
abnormally high levels of risk-aversion (Fear). Consequently, we employ sentiment
index of Huang et al. [2015] as a proxy for Greed®® and the Downside Variance
Risk Premium (estimated trough the corridor variance approach of Andersen and
Bondarenko [2007]) as a proxy for Fear?*. After that, we employ the three month
ahead financial uncertainty index proposed by Jurado et al. [2015] as our Uncer-
tainty measure (UNC)?°.

The construction of the five macroeconomic proxies is performed in the following
way. At first each time series?® is, where needed, transformed following the guide-
lines of Ludvigson and Ng [2007]. Then, the transformed time series are clustered
in five sets on the basis of their economic rationale: Income, Industrial Production,
Labor, House, and Inflation. Finally, the first principal component is recurrently

pttp : | /mba.tuck.dartmouth.edu/pages/ faculty/ken. french/dataibrary.html

22 Among the most influential sentiment proxies we liste the ones of Baker and Wurgler [2006],
Baker et al. [2012] and Huang et al. [2015]

BData comes from the website of Professor Guofu Zhou
http://apps.olin.wustl.edu/faculty /zhou/

24Data come from the website of Gergory Vilkov https://www.vilkov.net/codedata.html

25Data coming from the website of  Professor Sydney Ludvingson,
https://www.sydneyludvigson.com/data-and-appendixes/

26 All data comes from the Federal Reserve of St. Louis, https://fred.stlouisfed.org/

194



estimated from each macroeconomic set. The resulting five time series are em-
ployed as inputs in our subsequent analyses. The full list of macroeconomic time
series with the related transformations is in Appendix 10.3 on Macro Data.

4.4 Out-of-sample Predictability

This part is a comprehensive study of the out-of-sample performance of a rich set
of predictors and predictive models when applied to forecast the S&P500 returns
and dividend growth. We start introducing the performance metrics and the mod-
els employed, and subsequently, we report the results coming from our empirical
analysis on the out-of-sample capability to predict the returns and the dividend
growth of the S& P500

4.4.1 Performance Metrics

To assess the out-of-sample predictive performance of the models and predictors
considered in this study we follow the literature*” and employ the R?, and A utility
metrics. The former metric is further decomposed to disentangle the capability
of the proxy to forecast positive and negative returns only. For the analysis, the
out-of-sample performance metrics considered are:

e The RZ, statistic

R, =1 - Sl 1) (@)
Do (re — 1)

R?, measures the percent reduction in mean squared forecast error (MSFE)
between the forecasts generated by the chosen predictive model, 7, and the
historical average benchmark forecast, 7. To assess the statistical signifi-
cance of R?, we employ the p-values coming from the Clark and West (2007)
MSFE-adjusted statistic. This indicator tests the null hypothesis that the
historical average MSFE is less than or equal to the forecasting method
MSFE against the alternative that the historical average MSFE is greater
than the forecasting method MSFE (corresponding to Hy : R%, <= 0 against
H1 . st > 0)

e The A Utility measure. Following the original paper, we estimate the vari-
ance using a ten-year rolling window of returns. We consider a mean-variance
investor who forecasts the equity premium using the historical averages. She

2TBoth these measures are introduced in the seminal work of Campbell and Thompson [2008]
and subsequently employed in a number of studies among which F et al. [2010], Detzel and
Strauss [2017] and Rapach et al. [2016]
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will decide at the end of period t to allocate the following share of her port-
folio to equity in the subsequent period t+1:

(4.2)

where 6;, is the rolling-window estimate of the variance of stock returns.
Over the out-of-sample period, she will obtain an average utility of:

N

b0 = fio — 5760 (4.3)
where fip and 62 are the sample mean and variance, over the out-of-sample
period for the return on the benchmark portfolio formed using forecasts of
the equity premium based on the historical average. Then we compute the
average utility for the same investor when she forecasts the equity premium
using one of the predictive approaches proposed in this paper. In this case,
the investor will choose an equity share of:

17
Wy = — L (4.4)
Y Ot+1
and she will realize an average utility level of:
.1
Uj = ,uj — 5’70'j (45)

where [t and 6,1 are the sample mean and variance, over the out-of-sample
period for the return on the portfolio formed using forecasts of the equity
premium based on one of the methodologies proposed. In this paper, we
measure the utility gain as the difference between 9; and 0y, and we multiply
this difference by 100 to express it in average annualized percentage return.
In our analysis, following the existing literature®®, we report results for v = 3.

4.4.2 Predictive models

In this subsection, we list the predictive models employed while a detailed de-
scription will follow in the following subsections. To study the informative content
which is possible to extrapolate from the joint use of predictors, we employ a
wide list of models coming from the empirical financial literature and the Machine
Learning one. Our approach combines model selection with machine learning and
statistical approaches. Our list of models includes)®.:

28 Among the most cited works on the subject Campbell and Thompson [2008] and F et al.
[2010] impose the same level of risk aversion
29Codes comes from http://apps.olin.wustl.edu/faculty/zhou/
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. Univariate OLS regressions for each predictor.

. A predictive OLS multivariate regression model (kitchen-sink) that incorpo-
rates all predictors jointly ("OLS” in the Tables ).

. A median combination forecasts approach which employ the median fore-
cast among the ones generated by the univariate OLS regressions (”Pooled
forecast: median”, in the Tables).

. The pooled DMSPE forecasts method proposed by Stock and Watson [2004]
and successfully employed by F et al. [2010] (”Pooled forecast: MDSFE” in
the Tables).

. The Multivariate Adaptive Regression Splines approach Friedman [1991]
for variable selection and a multivariate Support Vector Machine regression
model (Boser et al. [1992] and Drucker et al. [1997]) to make out-of-sample
forecasts ("MARS”, in the Tables).

. The SIC (Schwartz Information Criterion) for the variable selection and a
multivariate Support Vector Machine regression model (Boser et al. [1992]
and Drucker et al. [1997]) to make out-of-sample forecasts ("SVM SIC”, in
the Tables)

. The Lasso for the variable selection and a multivariate Support Vector Ma-
chine regression model (Boser et al. [1992] and Drucker et al. [1997]) to make
out-of-sample forecasts (”Lasso SVM” in the Tables).

. The diffusion index approach employed by Ludvigson and Ng [2007] to filter
the information and the univariate Support Vector Machine regression model
(Boser et al. [1992] and Drucker et al. [1997]) to make out-of-sample forecasts
(" Diffusion Index”, in the Tables).

. The sum-of-the-parts approach of Ferreira and Santa-Clara [2011]

4.4.3 OQOut-of-Sample Predictability

To gain a first insight into the problem considered we plot the time series of
the cumulative square prediction error using the historical average mean return
minus the cumulative square prediction error of the total average forecast of all
the predictive models considered (times 100). We also disaggregate the second
average in the average forecast coming from all univariate OLS regression and of
all the machine learning predictive models.

Insert Figure 4.1 about Here
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We observe how, on average, the models considered provide an improvement in
terms of R%4 with respect to the historical average. After that, it is immediately
apparent how predictability on average rises during bear markets characterized by
high uncertainty and economic recessions, while it is stable or even decline during
periods of prolonged economic expansions and of bullish markets like the ones of
the nineties or the ones which followed the 2008 financial crisis. In Figure 4.2 upper
plot, we draw the cumulated returns for the S&P500 index and the uncertainty
proxies proposed by Jurado et al. [2015]. We observe how the uncertainty indexes
rise before the market crisis and pick during recessions. These results are consistent
with the work of Barone-Adesi et al. [2018], who shows how uncertainty is already
high when extreme market movements occur, and consequently, there is limited
evidence in favor of an uncertainty risk premium. Subsequently, in the lower plot
of Figure 4.1 we represent the cumulated returns of the S&P500 with the PLS
Sentiment index of Huang et al. [2015] and with the Downside Variance Risk
Premium of Andersen and Bondarenko [2007]: the former measure is effective in
the detection of abnormally low levels of risk pricing (it captures overbought or
greed) while the latter is effective in detecting abnormally high levels of risk pricing
(it is an index of oversold or fear) Barone-Adesi et al. [2018]. The figure shows
how the sentiment index of Huang et al. [2015] rises before market crashes and
declines subsequently, while the downside volatility premium rises during market
crashes and declines quickly afterward.

Insert Figure 4.2 about Here

We start our empirical analysis on the genesis of predictability by considering the
out-of-sample performance generated both by univariate OLS regression and a set
of advanced predictive models considering both the R% ¢ metrics and the A Utility
one. The two measure capture two different aspects of the same phenomenon: the
R% ¢ metric is about the capability to forecast precisely subsequent returns while
the delta utility provides a measure of the profitability of the model employed.
The two measure do not necessarily generate similar results. Indeed, a predictive
model could detect the direction of the subsequent market returns while missing
precision. On the other hand, the A Utility measure relies on the choice of a
risk aversion parameter and not necessarily a higher degree of precision traduce
itself into a higher utility because of the timing of the risk-return relationship.
In Table 4.1, we present the results for univariate OLS forecasts and machine
learning models which employ the predictors employed in the influential study
of Welch and Goyal [2008]. We consider monthly forecasts for the out-of-sample
periods 1986:01-2017:12 and 2001:01-2017:12. Similarly, in Table 4.2 we consider
the monthly out-of-sample forecasts for the periods 1986:01-2016:12 and 2001:01-
2016:12 employing as predictors the spreads returns coming from the 11 anomalies
chosen by Stambaugh et al. Stambaugh and Yuan [2017] and from the four factors
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of Fama and French [2015] extended model. The R%¢ metrics are matched by the
related Clark and West [2007] p-values.

Insert Table 4.1 about Here

Our results from Table 4.1 are largely consistent with the existing literature: for
the long 1986-2017 period no individual predictors can generate a positive and
statistically significant R%¢ while the delta utility gains are above 1% only for the
EP ratio. The picture changes slightly for the briefer 2001-2017 window where
the R% statistic is variance, and long term yield predictors achieve positive and
statistically significant values. Even more, interestingly, the delta utility gains
generated by profitability ratios like the Dividend-Price, Dividend Yield, Earning
Price and Book to Market now positive and above the 1% threshold. After that,
among predictive models, only the MARS SVM reaches R%4 values of 0.9% and
1.18% which are statistically significant at the 5% for, respectively, the 1986-2017
and the 2001-2017 periods. In conclusion, the predictive power of the Welch and
Goyal [2008] predictors appear weak while surprisingly rising in the more recent
out-of-sample window.

Insert Table 4.2 about Here

The findings emerging from Table 4.2 are different. At first, it is clear how the
four anomalies return spreads (Asset Growth, Investment to Assets, Net Stock
Issues and the Ohlson metric) generate out-of-sample return forecasts which are
both accurate and economically valuable. Indeed, the R%¢ metric for Net Stock
Issue univariate OLS forecasts reach record-high values of 23.5% and 28.7% for
the 1986-2016 and 2001-2016 periods with p-values well under 1% and with re-
lated A Utility gains above 23% and 28%. The predictive models which select and
combine spread returns predictors are equally powerful. Differently from Table
4.1 now multivariate OLS and pooled forecasts methods can generate strong and
highly significant R% ¢ values matched by equally robust A Utility gains. Even the
simple multivariate OLS approach provides remarkable Utility gains of 14% and
12% for the two out-of-sample time windows considered. After that, the Diffusion
Index and the MARS SVM approach provide statistically robust R%g values of
11.8% and 4.1% for the 1986-2016 period.

These results are not entirely unexpected, Greenwood and Hanson [2012] show
how the difference between the characteristics of firms which issue stocks and firms
which repurchase stocks can forecast characteristic factor returns. The aggregate
short interest measure of Rapach et al. [2016] shows is a powerful predictors both
for the aggregate market and for the cross-sectional returns Maio and Santa-Clara
[2017]. Similarly, Wen [2018] shows how the aggregate asset growth can forecast
the S&P500 index and Kelly and Pruitt [2013] extrapolate from the cross-section
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of Book-Market portfolios returns a powerful predictor for the S&P500. In con-
clusion, it is apparent how predictability is a stable and rising feature of US equity
markets.

4.5 On predictors

In this section, we focus on the forecasts generated by predictors in univariate
OLS regressions only. At first, we present the summary statistics for the time
series of return forecasts generated by the univariate OLS models which consider
both the Welch and Goyal [2008] and the spread returns predictors individually
for the monthly out-of-sample window 1986:01-2016:12. For each model, we report
the mean and median of the forecasted returns, the 1st and the 99th percentile of
the forecasted returns, the standard deviation, and the skewness of the forecasted
returns.
Insert Table 4.3 about Here

The results which emerge from these tables provide evidence on the characteristics
of effective predictors. First, effective predictors like Asset Growth, Investment
to Asset, and Net Stock Issue spread returns generate time series of expected
returns with high median values and high standard deviations. Interestingly, these
extremely well-performing predictors generate both extremely high (99th) and low
(1st) percentiles of the distribution of forecasted returns are more extreme than
the average ones while the skewness is of marginal relevance. On average the
predictors employed in this univariate OLS setting generate an average monthly
return forecast of 0.4% a median return of 0.5% and a null skewness and a weak
standard deviation of 0.8. Realized monthly market returns for the S&P500 on
the same 1986:01-2016:12 period generates an average return of 0.4%, a median
return of 0.8% and negative skewness of —0.68 and a high standard deviation of
4. In conclusion, many predictors fail to be effective because the median of the
forecasted returns is too low, and the volatility of the predicted returns are too
low to match the realized ones. After that, we report the correlation matrix of the
time series of forecasted monthly returns for all the predictive models considered.

Insert Table 4.4 about Here

The correlation between the time series of predicted returns are surprisingly low
and often even slightly negative. The results confirm that the predictors’ studied
capture different economic dimensions. After that, we focus on the highest cor-
relations. At first, we notice how, as expected, financial ratios (Dividend Price,
Dividend Yield, Earning Price, Book to Market) provide time series of forecasted
returns which are extremely highly correlated among themselves: Pearson correla-
tion values are well above 0.5. After that, we stress how the forecasts coming from
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the four most powerful spread return predictors are strongly correlated among
themselves with correlation values above 0.3. Subsequently, we notice how the
forecasts coming from the four Fama and French spread returns factors are also
highly correlated among themselves with correlation values ranging between 0.13
and 0.72. Finally, we point out how the Composite Equity Issue spread return
generates forecasts which are highly correlated with the Fama and French spread
factor returns ones while the correlation with the forecasts coming from the Net
Stock Issue spread return are weak (0.08).

To gain a better insight on what the individual predictors capture we borrow the
methodology introduced by Rapach et al. [2016]. The authors propose a way to
assess whether return predictability stems by anticipating discount rate and/or
cash flows news, where news components are measured using the VAR method-
ology of Campbell [1991] and Campbell and Ammer [1993]. Following Campbell
and Shiller [1988] the log stock return r, 1 = log[(Piy1 + Diy1)/P)], where P, (Dy)
is the month-t stock price (dividend), can be approximated by

Tey1 R k4 ppryr + (1= p)dira — pe (4.6)

where 4
P + exp(d — p) (4.7
k= —log(p) — (1 = p)log[(1/p) — 1] (4.8)

where p; (d;) is the log stock price (dividend), and d — p is the mean of d — p. We
can rewrite equation (6) as

pe k4 ppr + (1 — p)dipr — e (4.9)

Solving this equation forward and imposing the no-bubble transversality condition
we recover the Campbell and Shiller [1988] stock price decomposition:

k

pr=> P (L=p)diprs;— > Prevs + - (4.10)
j=0 Jj=0

Letting E; denote the expectation operator conditional on information through
month t it is possible to recover the following decomposition for the log stock
innovation:

rin = Erep = (B — E0) Y p Adiyy — (B — B Y prensy  (411)

j=0 7=0

This last equation implies that the stock return innovation can be decomposed
into cash flow news and discount rate news components:

Wiy = i — U (4.12)
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where

Ui =141 — Eyrer (stock return innovation) (4.13)

\Ifgi = (Ey1 — Ey) ijAdHHj (cash flow news) (4.14)
=0

\Ifgﬁ = (B — Ey) Z P'rii14y (discount rate news) (4.15)
=0

Following Campbell [1991] we use a VAR framework to extract the cash flow and
discount rate news components of stock return innovations. Consequently, we
introduce the following VAR(1) model:

Yt+1 = Ayt + U1 (416)

where y; = (14, dy — 1, 2;)’, 2 is an n-vector of predictor variables, A is an (n+2)-
by-(n-2) matrix of VAR slope coefficients, and u; is an (n+2)-vector of zero-mean
innovations. Letting e; denote an (n+2)-vector with one as its first element and
zeros for the remaining elements, the stock return innovation and discount rate
news components can be rewritten as:

\I/:+1 = 6/1Ut+1 (417)

and
VPl = el pA(I — pA) M upy (4.18)

The cash flow news is then residually defined:
Uik =0+ U (4.19)

The expected stock return for t41 based on information through t can expressed
as:
Etrt+1 = 6,1Ayt (420)

Now knowing that r;11 = Eyriq + Vi, the log stock return can be decomposed
as

rep1 = Bireg + \Ijgﬂ — \ng (4.21)

With sample observations for y;, (with t = 1,...,T) we can use OLS to estimate A
and uy,1 (with t=1,...,T-1) for the VAR model given by Eq. (16); It is possible to
estimate even p using Eq (7) and the sample mean of the log dividend-price ratio.
The related estimates are A and 41 and p which plugged into equations (17),
(18), (19) and (20) yields WRE WCE W7 | and Fyryyy, for t=1,...,T-1.

Now it becomes possible to analyze the sources of each predictor x;’s predictive
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power for future stock returns by investigating its capability to predict the indi-
vidual components comprising the total stock return. At first, we run a simple
regression model for the log stock return based on the chosen predictor x;:

Tt41 :Oé+5xt+€t+1 fOT’ t= 1,,T—1 (422)

We then consider the following predictive regression models for the individual
components on the right side of equation (21).

Eyrey = o + By + €5, (4.23)
\ilngl = Borx; + e,gﬂ (4.24)
UPH = Bpra + € (4.25)
for t=1,...,T-1. By the properties of the OLS the following relation holds:
B = BE + Bor + Bor (4.26)

By comparing the estimated slope coefficients we can understand the extent to
which x;’s ability to predict total stock returns relate to its capability to anticipate
the individual components on the right-hand-side of equation (12).

Insert Table 4.5 about Here

Our results document how, among the Welch and Goyal [2008] predictors, only the
dividend-price (DP) and the dividend yield (DY) exhibit an in-sample predictive
power which is statistically significant and this predictive power is largely due to
the capability to forecast the expected return. The results change remarkably for
spread return predictors. Here, eight out of eleven spread return built following
Stambaugh exhibit statistically significant betas. Among these eight predictors,
we find the three (Asset Growth, Investment to Assets and Net Stock Issues) which
recorded record high values in terms of R% 4. Importantly, for all these three pre-
dictors the Cash Flow component is the most important one while the Expected
returns component while of statistically significant is of secondary relevance. Fi-
nally, for all the remaining five spread returns predictors the most relevant and
statistically significant beta component arises is the expected return one. In con-
clusion, our results suggest that the most powerful predictors are the ones which
capture changes in the economic fundamentals.

Having analyzed which components of stock returns each predictor forecasts, now
we want to shed light on how predictability changes across different market condi-
tions. Following the literature we consider two complementary approaches: first,
we report the R% ¢ metrics conditionally on being in a period of expansion or reces-
sion as identified by the national bureau of economic research, second, we consider
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the R% generated in forecasting returns conditionally on being subsequently pos-
itive or negative. To make our result robust, we focus on the longest out-of-sample
windows which are 1986:1-2017:12 for the Welch and Goyal [2008] predictors and
1986:1-2016:12 for the spread returns predictors.

Insert Table 4.6 about Here

Now we observe how the average R%g for the Welch and Goyal [2008] and spread
returns univariate OLS predictors are, respectively, equal to —0.9% and to 1.68%
during periods of economic expansion against —0.28% and 6.28% in periods of
economic recession. Similarly, the capability to forecast returns which are ex-post
positive results in averages R3¢ of —6.24% and 1.70% for the Welch and Goyal
[2008] and the spread returns predictors against average R%4 of 2.94% and 3.30%
for returns which are ex-post negative. In conclusion, the average R%¢ are higher
for the periods characterized by economic recession and for returns, which are ex-
post negative. After that, we notice how only three predictors produces positive
and statistically significant R%¢ in all the four cases considered: Asset Growth,
Investment to Assets, and Net Stock Issue spread returns. On the other hand, ten
predictors exhibit no statistically significant R%g values in either case: Treasury
Bill (TBL), Default Yield (DFY), Default Returns (DFR), Lagged Inflation (INF
lag), Long Term (LT) spread returns, Short Term (ST) spread returns, Momen-
tum (Mom) spread returns, Net Operating Assets (NOA) spread returns, Accruals
spread returns (Accruals), Return on Assets (ROA) spread returns, Distress (Dis-
tress) spread returns, and Composite Equity (Comp Eq Issue) spread returns.
All the other predictors are effective in forecasting returns only conditionally to
economic conditions or to the subsequent sign of the predicted returns.

4.6 Dissecting Predictability

In what follows, we want to study the relationship between macroeconomic-behavioral
variables and predictability. To achieve this goal, we proceed in two stages. In the
first stage, we conduct time-series tests based on the Fama-French multi-factors
model and behavioral indexes. In the second stage, we perform a model selection
analysis based on the adaptive elastic net approach of Zou and Hastie [2005] and
Zou and Zhang [2009]. Here we employ the behavioral indexes previously consid-
ered plus a list of 12 principal components: each one synthesizing a rich set of
financial or macroeconomic variables.

The first part of the analysis involves the estimation of a series of factor models,
using time-series regressions on the monthly difference between historical aver-
age benchmark forecasting model square prediction error minus predictive model
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forecasting model square prediction error.

4
(ries1—FCu1)* = (rey1—FCi41)* = b+ B nrcr(Rmg—Rpi)+ Y BjiFactor; 4,41

i=1

(4.27)

In this model 7,44 is the S&P500 return at time t+1, FC,; is the forecast made at
month t for the S&P500 return at month t+1 using the historical average bench-
mark model, F'C;y, is the forecast made at month t for the S&P500 return at
month t+1 using the predictive model j. R,,; — Ry is the return on the value-
weighted market portfolio minus the U.S. one month T-bill rate. The 4 Fama and
French [2015] factors considered are: SM By, HM L;, RMW,; and CM A;.
Following Jo et al. [2018], to incorporate behavioral variables into the multifac-
tor approach, we estimate general specifications involving the five Fama-French
factors, two complementary behavioral proxies for greed and fear (Barone-Adesi
et al. [2018]) and the financial uncertainty index of Jurado et al. [2015]. The
specification considered are as follow:

(rev1 — FCu1)? = (reg1 — FCjppn)” =

4
&+ Bk (Rmy — Ryy) + Z B;iFactor;; + Z BjmBlImi + ejir1 (4.28)

i=1 m=1

(Tt+1 - F_Ct+1)2 - (T‘t+1 - FCj,t+1)2 =
4

4
dj+Bj,MKT(Rm,t_Rf,t)+Z Bj,iFactom-,t—i—Z Bj,mBIm,t—i_Z Bj7l-Fact0?"i7t*ret B[t+€j,t+l

i=1 m=1 =1

where the behavioral indexes considered (BI) are the level (return) of the Huang
et al. [2015] index (Greed in the tables), the Downside-Variance Risk Premium
of Andersen and Bondarenko [2007] (Fear in the tables), and the uncertainty in-
dex introduced by Jurado et al. [2015](UNC in the tables). Equation (29) can be
regarded as a version of a standard factor pricing model, but where factor load-
ings are functions of behavioral indicators and the interaction between the return
of behavioral indicators and the Fama and French [2015] factors. In this regard,
the estimation of equation (29) indicates how behavioral indicators impact the di-
rection and magnitude of each factor on the predictive performance of the models
considered. We repeat the same analyses regressing the monthly difference between
historical average benchmark forecasting model square prediction error minus pre-
dictive model forecasting model square prediction error at time t on the factor
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and behavioral indicator at the contemporaneous time t. The two analysis are
complementary because they present two different aspects of predictability. When
we regress the predictability metric on the contemporaneous factor-behavioral re-
turns, we are analyzing how predictability originates, while when we regress the
predictability metric at time t+1 on the factor-behavioral returns at time t we are
studying what factors-behavioral returns forecast predictability.

To summarize our finding on the explanatory power of the variables considered we
estimate the pooled versions of equations (27), (28) and (29) including all the time
series of squared predictive error between the benchmark return forecast and the
forecasts of the predictive models listed in tables 4.4 and 4.5. The estimation is
based on the approach introduced by Hjalmarsson [2010] and Rapach et al. [2013]
which imposes that 53‘,1':6@' for all j and i. The results are based on the monthly
time series spanning the period 1986:01-2016:12.

Insert Table 4.7 about Here

Table 4.7 reports the results for the pooled contemporaneous regressions consider-
ing all individual predictors or models time series of predictive performances. The
results which emerge from this table are striking. First, when we consider the base
model with only the intercept and the 4 Fama and French factors the betas of the
market and the SMB factors are, as expected, negative and statistically significant
while the beta of the CMA factor is positive. These results are coherent with
our previous ones, which highlight how predictability in negatively correlated with
market returns. The statistically robust values of the SMB and CMA factors for
both Predictors and models pooled regressions confirm how predictability is linked
to fundamentals. On the other hand, the presence of a positive and statistically
significant intercept suggests the need for the inclusion of additional regressors.
When we add the Greed and Fear indexes in our analysis, we observe two funda-
mental changes: the intercept is no more statistically significant, and the beta for
the levels of the Greed and Fear indexes are positive and statistically significant.
Consequently, we can argue that behavioral components matters in explaining the
dynamics of predictability. The further inclusion of the financial uncertainty index
results in the raising of the statistical significance of the fear index at the expense
of the greed one while the significance of the beta of the uncertainty index itself
remains mixed. Finally, we consider the interaction between factors and fear-greed
returns. We observe how the interaction between greed returns and the five Fama
and French [2015] factors give rise to factor loadings, which are not statistically
significant. On the other hand, the interaction between fear returns and the mar-
ket factor give rise to highly negative and statistically significant betas while the
interaction between fear returns and the HML is positive and statistically signifi-
cant. These results point out how fear interacts with fundamentals in the genesis
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of predictability.
Insert Table 4.8 about Here

Table 4.8 repeats the same analysis for the predictive performance t time t41,
which implies the capability to forecast the predictive performance of the models
under scrutiny. The outcomes which we observe are different from the previous
ones. At first, for the most parsimonious model specification, which involves only
the 5 Fama and French factor, the only statistically significant factor loadings are
the intercept and the one coming from the CMA factor. Interestingly, adding un-
certainty, fear, and greed indexes in the pooled regression model generate positive
and statistically significant factor loading for the greed and fear index but not for
uncertainty. Finally, the factor loading for the interaction between the Greed level
and market returns is positive and statistically significant while the factor loading
for the interaction between the fear return and the market return is negative and
statistically significant. Even more strikingly the level of fear interacts in a sta-
tistically significant manner with both the HML and the RMW factors while the
fear returns interact in a positive statistically significant manner with the SMB
return. In conclusion, greed and especially fear do not only directly drive financial
market predictability, but they interact with fundamental factors in the genesis of
predictability.

The second approach considered involves the elastic net methodology of Zou and
Hastie [2005] and Zou and Zhang [2009]. The approach proposed by these au-
thors is extremely powerful because it performs both parameter shrinkage and
variable selection, providing stable and interpretable estimates in models with a
large number of regressors. Indeed, this weighted version of adaptive elastic net
achieves optimal large-sample performance in terms of variable selection and pa-
rameter estimation. Formally the adaptive elastic net estimation is based on a

penalized sum of squared errors objective functions’:
T-1 K K
min D (Rbsieer — :B:)° + M ) wel Birl+X22 Y B2 (4.30)
* Lit=0 k=1 k=1

where \; and )y are regularization parameters corresponding to [y and [, penalty
terms, and w = (wq,ws,...,wg) is a K * 1 vector of weighting factors for the
Bik parameters in the [; penalty. We select A\; and Ay employing twenty-fivefold
cross-validation. To assess the statistical significance of the betas estimated by
the adaptive elastic net, we employ the wild bootstrapping confidence intervals
approach. The methodology reported is the one proposed by Rapach et al. [2013]
and Clark and McCracken [2012]. The authors employ the fixed-design boostrap

30We thank Guofu Zhou for sharing the code on his website
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in time-series contexts. Given the regression model
Y1 = o + 51Xy + €41 i=1,..,N (4.31)

Let X R
€1 = g1 — (Bo + B1Xe) i=1,..,N (4.32)

where Bo and Bl are the OLS estimates of the parameters equation (84). After
that, we simulate data for r;,1; via the following process:

riv = Bo + BiXs + G, i=1,..,N. (4.33)

where w;,; is a draw from the standard normal distribution. This procedure
employs the regressor observations from the original sample, making it a ”fixed-
design” wild bootstrap. We use this last equation and the the original observations
to generate 2,000 pseudo samples. For each simulated sample, we calculate the
OLS estimates and store the Bj estimates. Based on the empirical distributions,
we compute a biased-corrected bootstrapped confidence interval for each 3;. Let
[B;,b]szl denote the bootstrapped draws of Bj, where B=2.000. Define the bootstrap
standard error as:

* 1 & o o9]00
Sp; = [ﬁ bZ(ﬁj,b - 55) ] (4.34)

1

where 37 = (1/8) S B]*b The bias-corrected wild bootstrapped 90% confidence
interval for 3, is then given by:

[28; — B; — s7,1.645,28; — B; + s}, 1.645] (4.35)

Instead of feeding predictors directly into the adaptive elastic net, we employ an
indirect methodology. Our goal is to maximize the informative content of our
analysis while retaining a parsimonious model specification which can be highly
interpretable. Consequently, we follow an approach close to the one proposed by
Ludvigson and Ng [2007] and Ludvigson and Ng [2009]. We start considering a
broad list of financial and macroeconomic variables, and we cluster them in five
macroeconomic (Income, Industrial Production, Labor, House, Inflation) and four
financial (Fixed Income, Forex, Commodities, Industries) sets®!. After that, for
each cluster, the time series of the first principal component is extrapolated. Fi-
nally, the resulting nine principal components are employed in the adaptive elastic

31The full list of the time series considered with the related transformations is available in
Table A1 of the appendix, the clustering is done following the guidelines of Ludvigson and Ng
[2007]. The out-of-sample predictive performance, both in terms of R% 4 and of AUtility, of each
transformed variable for the monthly period 2000-2017, is reported in the Appendix in Tables
A5 and 77
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net model. In addition to the newly introduced macroeconomic and financial pre-
dictors, we include the Greed, Fear and Uncertainty proxies previously employed
in Tables 4.7 and 4.8 and the interaction between the return of these three behav-
ioral variables and the five macroeconomic principal components.

At first, we report how often a variable is selected (in percentage) by the Adaptive
Elastic Net. Precisely, we consider the time series of the predictive performances
for all the individuals OLS models and machine learning predictive approaches
reported in Tables 4.3 and 4.4 and for each of them we employ the adaptive elastic
net to select the relevant predictors. The results in Table 4.9 show the percentage
of times a variable is chosen in a given model specification. In the left panel (Time
t) results come from an adaptive elastic net where the dependent variable and the
independent ones are all contemporaneous while in the right panel (Time t+1)
results come from an adaptive elastic net where the dependent variable is more
recent than the independent ones. In the following analysis for each model spec-
ification, we perform model selection considering either the levels or the returns
of the variables employed. All results in Tables 4.9-4.11 are based on monthly
returns for the period 1986:01-2016:12.

Insert Table 4.9 about Here

When we specify the model to include only the five macroeconomic principal com-
ponents we observe how for the contemporaneous case (Time t) the variable which
is selected most often is the Inflation, with a high ratio of 72% for the level and of
65% for the return case, followed by Income, with a ratio of 59% for the level and
of 35% for the return case. The results change for the predictive case (Time t+1):
here the most selected variables are Income (50%), Industrial Production (54%)
and Labor (48%) for the Level and Income (24%) and Labor (33%) for the Return
case. After that, when behavioral variables are introduced we observe how the out-
comes for both the Time t and Time t+1 are homogeneous: when the level of the
behavioral indexes are employed the chosen variables are the Greed and Fear ones
while when the returns are employed the most chosen variable is Uncertainty (with
percentage above 60% in both cases). Subsequently, when the four financial prin-
cipal components are added we observe how, as expected, the one which is chosen
more often, both in the Time t and Time t+1 cases, is the one extrapolated from
the industries returns indexes. When we introduce the interaction between the
returns of the Greed and Fear indexes and the macroeconomic principal compo-
nents we observe how the percentages of selection are almost unanimously higher
for the interaction between fear returns and macroeconomic principal components
than for the interaction between greed returns and macroeconomic principal com-
ponents. For the model specifications, which employs the Level of the principal
components, the interaction variables most commonly selected are fear-Labor and

209



fear-Industrial-Production both for the Time t and Time t+1 cases. Remark-
ably, for the Time t+1 specification only, the Labor-Ret-Fear interaction variable
achieves a high selection percentage of 63. Finally, we document how, for both the
Time t and Time t+1 cases, the interaction between the uncertainty return and
the returns of the Income-Inflation principal components are selected in a relevant
number of cases: a steady 37% for the Uncertainty-Income returns interaction
case and 57% (Time t) and 46% (Time t+1) for the Uncertainty-Inflation returns
interaction case. Having studied the percentage of cases the adaptive elastic net
chooses a given parameter, we apply the same adaptive elastic net model to the
time series of the historical mean benchmark forecast model cumulative square pre-
diction error minus the average of all individual and machine learning predictive
models (Figure 4.2, Total). The 95% confidence intervals are estimated through
the wild bootstrapping procedure presented above.

Insert Table 4.10 about Here

Insert Table 4.11 about Here

The outcomes resulting from Tables 4.10 and 4.11 provide us further confirmation
of our previous results. First, looking at the variable selected among macroeco-
nomic, financial, and behavioral returns, we observe how only uncertainty is always
selected, and the resulting factor loadings are always positive and statistically sig-
nificant. Other return variables which are the product of uncertainty returns and
the returns of the principal components of macroeconomic variables (Income, La-
bor, Inflation) are also chosen and overall augment the original effect of uncertainty
returns. Second, when we look at the levels, we observe how, for Table 4.10, all
macroeconomic and behavioral variables are selected, and the estimated factor
loadings are statistically significant. Table 4.11 confirms these findings, but now
the factor loadings for Inflation and Industrial Production are negative while the
principal component extracted from Labor is discarded. The interaction variables
between uncertainty returns and the level of the macroeconomic principal compo-
nents are almost always selected. Finally, differently from the Return case, some
of the interaction variables between Greed-Fear and the macroeconomic level of
the principal component are selected, and the resulting beta coefficients are inside
the confidence intervals.

In conclusion, three key results emerge from the analyses performed in this section:

e both fundamental and behavioral factors concur in the genesis of predictabil-
ity.

e the interactions between fundamental and behavioral variables are also key
drivers of equity market predictability.
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e the level of uncertainty has weak explanatory power for predictability, but
uncertainty returns are very powerful.

4.7 The link between behavioral and neoclassical
finance

One of the main implications of the previous analyses is that both behavioral and
fundamental factors drive market predictability. The previous results open the
question of how the different predictability drivers coevolve over time. To inves-
tigate this issue, we employ Vector Auto Regression (VAR) models that focus on
the dynamic relationship between the R%¢ metrics and their drivers. The VAR
model is an elegant extension of the univariate autoregressive model to a dynamic
multivariate time series and is a tool to observe predictable relationships among
variables. In the VAR model, all variables are assumed endogenous, indicating
that one equation exists for each variable as a dependent variable, and each equa-
tion has lagged values of all of the included variables as independent variables,
including the dependent variable itself. The VAR model also captures the linear
interdependencies among multiple time series because they include the joint gen-
eration mechanisms of the variables involved.

A VAR(p) model for the set of m variables yiy, ..., Ym¢ listed in the mxl vector

Yo = (Y1t - Yme)" 182

Yy = b+ Srya o+ Py +

€t ,
maxl maxl mxm mam maxl

e~ WN (o, mzm) (4.36)
Consequently, in a VAR(p) each variable depends on up to p of its own lags and up
to p lags of each other variable, with coefficients grouped in p matrices ®4, ..., ®,,
each of dimension maxm. After that, it depends on intercepts grouped in the mx1
vector 1 = (i1, ..., ttm) and on an error term grouped into €, = (€, ..., €)', such
that the error term of each equation has zero mean and it is uncorrelated over time
and homoskedastic, but it can be contemporaneously correlated with the errors in
other equations.

In our analyses, we separately consider a VAR model for both the returns and the
levels of the variables considered. In each case, we always include the returns of
the total R34 index, which is the average predictability performance for all the
predictors and machine learning approaches considered. After that, we include the
five macroeconomic principal components (Inflation, House, Industrial Production,
Labor, and Income) and the three behavioral ones (Greed, Fear, and Uncertainty).
All the time series analyzed are monthly and span the period 01:1996-12-2016.
At first, we consider the VAR for the time series of returns. We observe how both
the four lags Augmented Dickey-Fuller and the four lags Phillips-Perron Unit Root

211



test are in favor of the absence of unit roots for all the series considered. After
that, we perform a battery of tests (Akaike information criterion, Hannan—Quinn
information criterion, the Schwarz Criterion and the Final Prediction Error Cri-
terion (FPE)) to identify the proper number of lags for the VAR system. All the
four tests considered confirm that the best approach is the most parsimonious one
which includes only on lag. Table 4.12 reports our results for the VAR(1) system
while Figure 4.3 shows the related impulse response functions when the dependent
variable is the total R%g, and we perturb one of the nine variables under study.

Insert Table 4.12 about Here

Insert Figure 4.3 about Here

The results which emerge from these analyses confirm and augment our previous
ones: returns of the uncertainty measure are the most robust predictors of the
subsequent total R%¢ measure. Interestingly all the other variables studied ex-
hibit a low statistical significance confirming the results of the Adaptive Elastic
Net. Differently, the impulse response functions provide novel insights on the dy-
namics of predictability. At first, a positive shock to the R%¢ measure results in a
subsequent positive values at time t+1 which abruptly turn negative in the subse-
quent periods. As expected shocks to the Fear and Uncertainty measures trigger
a higher level of the R?¢ measure in the subsequent periods while the pattern for
shocks to the Greed measure are more complex: null at time t+1, negative at time
t+2 and positive for longer horizons. After that, shocks to the House and to the
Income factors are associated to positive response at time t+2 which vanish at
longer horizons. Finally, we remark how shocks to the inflation measure trigger
a positive response for the R% g variable in the short term (first two periods) and
negative one at longer horizons while the opposite holds for shocks to the Labor
and industrial production variables.

The analyses for the VAR in levels pose new challenges. While the tests for the
selection of the most appropriate number of lags unanimously confirm the VAR(1)
structure the tests for stationarity highlight how for 4 time series (Greed, Uncer-
tainty, Labour and House) the presence of a unit root cannot be rejected®?. This
poses the challenge of the estimation of a VAR system with both stationary and
non-stationary time series. To address this issue, we follow Stock et al. [1990].
The authors prove how ”individual coefficients in the estimated autoregressive
equations are asymptotically normal with the usual limiting variance unless they
are coefficients of a variable which is nonstationary and which does not appear
in any of the system’s stationary linear combinations”. Consequently, we perform

32 A1l details for the 4 lags Augmented Dickey-Fuller and the 4 lags Phillips-Perron Unit Root
test are reported in Table A6 in the Appendix
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the Engle-Granger pairwise cointegration tests and the Johansen test, which con-
siders all the four non-stationary time series jointly. The empirical results®® all
unanimously suggest that the series considered are cointegrated: the Johansen
test points out how the number of cointegration vectors is equal to one while the
pairwise Engle-Granger tests suggest that all the series are cointegrated. Our em-
pirical results jointly confirm that the estimation of a simple VAR(1) model is
not inappropriate in this setting. As before we always include the returns of the
total R%¢ index, with the level of the five macroeconomic principal components
(Inflation, House, Industrial Production, Labor, and Income) and of the three
behavioral ones (Greed, Fear and Uncertainty). All the time series analyzed are
monthly and span the period 01:1996-12-2016.

Insert Table 4.13 about Here

The results emerging from Table 4.13 confirm that the level of fear has a pos-
itive and statistically significant impact on subsequent predictability, while the
level of uncertainty lacks statistical significance. After that, we notice how uncer-
tainty has a positive and statistically significant impact on the subsequent levels of
both Greed and Fear, while these two latter variables are, as expected, negatively
related. Remarkably, the Industrial Production and the Labor variables have a
strong statistically significant relationship with the Greed and Fear measures while
the Inflation index has a robust negative relationship with the subsequent level of
the Fear proxy. In conclusion, the level of the Greed and Fear measures are linked
with the level of uncertainty and to some macroeconomic variables while uncer-
tainty is connected with the level of Industrial Production and of Labor.

The impulse response functions for the R% ¢ returns of this second VAR(1) system
which employs the time series of levels confirm the previous results coming from
the VAR(1) system which employs the time series of returns. The only significant
differences come from the response to shocks to Greed (the subsequent effect R% g
are now positive) and to Income (after an initial positive impact for the first two
periods the effect turns negative).

Having studied how the different macroeconomic and behavioral variable trigger
changes in the predictability of financial markets, we are now ready to study how
behavioral and macroeconomic variables interact one with the others in different
market regimes. To achieve this goal, we employ two regimes Markov Switching
Dynamic models. At first, we propose a formulation in which the intercept, all
the regression coefficients, and the volatility of the normal errors change across
regimes. We propose different combinations of independent variables, while the
dependent variable is the total average of all R% ¢ previously employed in our anal-
yses. We focus on contemporaneous regression to identify which fundamental and

33For brevity the results of the cointegration tests are reported in table A6 in the Appendix
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behavioral components explain predictability in the two different market regimes
identified in this study. To perform our empirical analysis, we make use of monthly
returns for the period 01:1996-12:2016. For seek consistency, the predictors em-
ployed the same as before, and all details can be found in Section 3 and the online
appendix.

Y = Bo,s, + Z Bi s, Tt + € (4.37)
=1
e~ N(0,07g,) (4.38)

Figure 4.3 shows us the different, forward regimes probabilities identified by our
empirical approach. It is immediately apparent how one regime is linked to finan-
cial and economic turmoil, is less frequent, and when is dominant lasts less: it is
a bear regime. The specular applies for the other regime which we label as a bull
regime.

Insert Figure 4.3 about Here

Insert Table 4.14 about Here

The result which emerges from Table 4.14 help us to gain a better understanding
of the genesis of predictability. The upper panel, which employs the time series
of returns as independent variables provides a clear picture. At first, when we
consider only the intercept and the three behavioral variables (Greed, Fear, and
Uncertainty), we observe how as expected, the intercept is negative in bull regimes
and positive in bear ones. After that, the only statistically significant coefficient
is the one for Fear returns in the bear regime. Interestingly, the Greed and Uncer-
tainty coefficients flip signs in the two regimes being positive during bull regimes
and negative in bear ones. Subsequently, we find no statistically significant re-
gressors when including only the five macroeconomic returns time series (Income,
Labor, House, Industrial Production, and Inflation). Subsequently, we regress the
returns of the three behavioral time series and the product of return uncertainty
and the return of the five macroeconomic time series. We observe now how uncer-
tainty returns are positively related to predictability only during bull regimes and
that always only in bull regimes the interaction between the Labor, House and
Inflation returns and the uncertainty returns are statistically significant. Finally,
we employ as independent variables the greed and fear return time series plus the
product of the fear returns and the returns of the five macroeconomic time series.
We observe how the fear returns are positively linked to predictability only during
bear markets and that the only statistically significant regression coefficient are
the ones for the interaction between fear returns and the returns of income and
industrial production time series. In conclusion, uncertainty returns are positively
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linked to predictability during bull regimes, while fear returns are linked to pre-
dictability only during bear ones*

The lower panel of Table 4.14 repeats the same analyses employing the levels of
the same variables. Before entering into the detail of the different model formu-
lations, one results appear strikingly clear: the signs of the relationship between
the level of the studied variables and the dynamics of predictability flip sign in
the large majority of the cases considered suggesting the relevance of employing
a Markov Switching regression model. We observe how the level of uncertainty is
positively related to predictability only during bull regimes while fear negatively
related to predictability only in bear ones. Subsequently, we observe how the level
of the Industrial production variable and the Labor one are positively linked to
predictability respectively in the bear and bull regime only. Finally, our results
show how the interaction between the level of uncertainty and the level of the
five macroeconomic variables are statistically robust only in bull regimes while the
interaction between the level of fear and the level of the same five macroeconomic
variables is more pronounced in bear ones.

Having understood the relevance of market regimes in the understanding of pre-
dictability, it becomes pivotal to understand the relationships between fundamen-
tal and behavioral variables. Indeed, the understanding of the link between funda-
mental and behavioral variables provides further guidance not only for dissecting
the genesis of predictability but also for the related pricing of financial securities.
To address this challenging task at first, we make use of the impulse response
functions coming from our VAR(1) system based on the time series of macroeco-
nomic and behavioral returns (Table 4.12). At first, the impulse response function
shows how when Greed rises, it triggers a decline in Fear, and the vice versa holds.
After that, coherently with Barone-Adesi et al. [2018], we observe how a shock to
uncertainty triggers a positive reaction for both Greed and Fear. Subsequently,
we found how shocks to Greed have a weak impact on subsequent macroeconomic
variables, while shocks to Fear trigger an unambiguously negative response to the
Labor variable. Finally, in the short shocks to uncertainty trigger, an increase for
all the macroeconomic variables but the Inflation one®.

After that, we employ the pairwise Granger causality approach employed by Ra-
pach et al. [2013]. Accordingly, we consider the five macroeconomic and the three
behavioral time series of returns, and we perform a univariate regression of each

34 Employing Greed instead of Uncertainty provides no statistically significant results, con-
firming how in this framework Uncertainty captures and subsumes the informational content of
Greed.

35For seek of brevity the impulse response functions are reported in the Appendix Figures 4.6,
4.7 and 4.8
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variable on all the other ones.

Titt1 = Bio + BijTjt + €ipr1 1 FJ (4.39)

The employed Newey-West t-statistic is heteroskedasticity and autocorrelation ro-
bust. Subsequently, to account for the differences across regimes, we repeat the
same analysis making use of the following threshold regression:

iy = { Bio,Buit + Bij,BuiTjt,Buil + €it+1,Bull 7'é J ‘if‘ Dt,Bull > Dt,Bear
' Bi,O,Bear + ﬁi,j,Bearrj,t,Bear + €it+1,Bear 7é J 2f DPt,Bull < Pt,Bear
(4.40)
where the probabilities p; g, and pt peqr are the filtered probabilities coming from
the previously estimated regression Markov switching model (Equation 37) which
employs only the three behavioral variables returns as regressors. All data em-
ployed in this analysis are monthly and span the period 1996:01-2016:12.

Insert Figure 4.4 about Here

Insert Table 4.15 about Here

The key result which emerges from Table 4.15 is that fundamentals drive behav-
ioral variables and that this relationship is much stronger during the Bear regime.
Indeed, looking at the upper panel, which makes use of all the data available, we
observe how Incomes predicts both fear and uncertainty while the vice versa does
not hold. After that, we notice how the results from this table confirm the ones
coming from the impulse response functions previously discussed.

Looking at the lower panel, the results coming from the threshold regressions are
insightful. In the Bull regime, the sign, magnitude, and statistical significance of
almost all the betas are close to the ones found for the case which make use of all
data. Differences emerge from the results of the Bear regime side of the threshold
regression. Here we observe how Income predicts all the three behavioral variables
considered and how Industrial Production and Labor forecast Fear while House
Granger cause Uncertainty. Even more importantly, not only the significance of
the relationships detected is higher, but the absolute value of betas are two orders
of magnitude bigger than in the bull regime case. These results confirm how the
interaction between fundamental and behavioral variable is more relevant in the
bear regime than in the bull ones confirming our previous results on the higher
predictive power of fundamental predictors during recessions. All the considered
macroeconomic variables are not Granger-caused by the behavioral ones in the
bear regime (except Industrial Production which is predicted by the Greed vari-
able).

In conclusion, we have empirically proved how predictability reacts to changes in
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macroeconomic and behavioral variables and the variables which are linked to pre-
dictability changes across market regimes. Finally, we showed how fundamentals
drive behavioral variables and how this relation is especially strong during the bear
regime.

4.8 Conclusions

After years of restless efforts, our understanding of financial markets predictabil-
ity (the magnificent enigma) is still in an early stage. With this work, we provide
some first empirical insight into the rationale and dynamics of predictability and
on their implications for our understanding of asset pricing. Our study is relevant
not only because of its economic implications for traders and portfolio managers
but even because it allows us to better understand the interaction between risks
and risks premia (or the link between the neoclassical and behavioral finance).

At first, the results which emerge from our empirical analyses confirm and aug-
ment the ones coming from Barone-Adesi et al. [2018], where the authors prove
how the dynamics of uncertainty (the heterogeneity of investors views) drive the
risk pricing (both greed and fear). High uncertainty and a high level of sentiment
imply that prices are driven by the most optimist investors while high uncertainty
and a high level of fear imply that the investors are likely overestimating the real
risks. In any case, when uncertainty is high volatility is likely to follow because
subsequent fundamental news has a bigger impact on a pool of investors with
heterogeneous beliefs. Importantly for our understanding of financial markets, un-
certainty rises before markets crashes and remains high during all the bear market
regime to steadily decrease while the new bullish regime starts to gain momentum.
As previously accounted by Barone-Adesi et al. [2018], these findings are against
the existence of an uncertainty risk premium. In the presence of high uncertainty
and high greed, the arrival of negative fundamentals news can trigger a strongly
negative reaction of equity markets. In these cases, the endogenous dynamics of
financial market play a role in amplifying negative returns. Indeed, stop losses and
Value at Risk constraints can trigger further sells even for investors with positive
fundamental views with the final effect of a fast reversal of excessively low-risk
premia into excessively high ones. These endogenous dynamics of financial mar-
kets make prices (on which stop losses and VaR levels are based) more informative
(and relevant for traders) during bear market regimes than during bull markets
ones. The same dynamics joint with the high level of uncertainty makes prices
even more responsive to fundamental news during bear markets than during bull
ones®®. During bull markets, the opposite hold and prices are both less informa-

36There is a whole blossoming literature on the informative nature of financial crises (Brancati
and Macchiavelli [2019] and Dang et al. [2019]) and on the different influence of fundamental
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tive and less responsive to fundamental news. Importantly, from our empirical
results, it is apparent how fundamental changes trigger changes in the risk premia,
which amplify the outcome. Consequently, our view of financial markets is one
in which both fundamentals and behavioral components have an important role.
The dynamics of risks and risk premia interact one with other: changes in fun-
damentals trigger changes in the pricing of risks. Consequently, both neoclassical
and behavioral components are reflected in equity prices and are important in our
understanding of out-of-sample predictability®”.

Our understanding of financial markets and predictability are intrinsically related.
We started our analysis showing how predictability is a common and rising fea-
ture of financial markets both in terms of R3¢ and A Utility. Consistently with
the existing literature®® we show how predictability is, on average, higher dur-
ing recessions and in forecasting negative returns. Importantly the most powerful
predictors considered (Asset Growth, Investment to Assets and Net Stock Issues
spread returns) are the ones which exhibit a higher capability to forecast cash
flows in the Campbell and Shiller [1988] frameworks: a first confirmation of the
dominant role of fundamentals in forecasting financial markets. After that, our
results combined with the ones of Barone-Adesi et al. [2018] and Neely et al. [2014]
confirm how technical predictors and the Sentiment index of Huang et al. [2015]
are effective in detecting abnormally low levels of risk aversion (and perform better
in period of economic expansion), while option-based fear indicators and funda-
mental predictors are effective in detecting abnormally high levels of risk aversion
(and perform better in periods of economic recessions). These results combined
suggest how different typologies of market predictors have a changing predictive
power accordingly to the prevailing market regime. Consequently, fundamentals
are the main drivers and are more precisely incorporated into prices, during bear
markets, while during bullish markets the dynamics of risk pricing are more rele-
vant, and non-fundamental (technical, trend following, behavioral) signals have a
higher impact.

Having understood predictors, we subsequently studied aggregate predictability
itself. At first, we included three behavioral motivated variables (Greed, Fear, and
Uncertainty) and the five Fama and French risk factors. Our results confirm that
aggregate predictability is linked with contemporaneous changes in both funda-
mental and behavioral variables. Even more, interestingly, even the interaction
between risk and behavioral factors is linked with predictability, but the interac-
tion between greed and risk factor is much weaker than the interaction between
fear and risk factors confirming our previous results on the changing relevance of

information disclosure in these times Loh and Stulz [2018]
3TThis view of financial market is consistent with the work of Shefrin [2008]
38See, e.i. Rapach et al. [2009] and Rapach and Zhou [2013]
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fundamentals through market regimes. These results do not change fundamentally
when instead of the five Fama and French factors we employ five macroeconomic
variables (Income, Labor, House, Industrial Production and Inflation) which are
extrapolated (taking the first principal components) from a rich pool of variables
characterizing each macroeconomic area. Another interesting result which emerges
from our analyses is that when both Greed and Uncertainty are included in the
same model, Uncertainty becomes the most significant variable subsuming Greed
(from Barone-Adesi et al. [2018] we know that Uncertainty and Greed, the Huang
et al. [2015], are cointegrated and that Uncertainty Granger causes Greed). Sub-
sequently, we studied how predictability reacts to shocks. We document how
predictability rises after positive shocks to Fear and Uncertainty while declines
after shocks to Greed. The impact of shocks to macroeconomic variables is less
straightforward, being overall positive only for the Inflation and Income variables.
The in sample analysis of the predictive power of the behavioral and macroeco-
nomic variables on the subsequent (t+1) aggregate predictability returns follow a
similar pattern confirming the results coming from the impulse response functions.
The results just stated suggests that the relationships among behavioral and fun-
damental variables and out-of-sample predictability are regime dependent. Our re-
sults on Markov Switching regressions confirm and augment our previous results.
At first, we observe how in the vast majority of the cases considered the betas
of the regression of the behavioral and fundamental variables on predictability re-
turns flip the sign when regimes change. After that, it is clear how uncertainty and
the interactions between uncertainty and the macroeconomic variables are statis-
tically significant only during bull markets while fear and the interactions between
fear and the macroeconomic variables are statistically significant only during bull
ones.

Another important set of results regards the link between fundamental and be-
havioral variables. At first, impulse response functions show how when sentiment
rises, it triggers a decline in Fear, and the vice versa holds. After that, coherently
with Barone-Adesi et al. [2018], we observe how a shock to uncertainty triggers a
positive reaction for both Greed and Fear. Subsequently, we found how shocks to
greed have a weak impact on subsequent macroeconomic variables, while shocks to
Fear trigger an unambiguously negative response to the Labor variable. Finally,
an uncertainty shock triggers an increase for all the macroeconomic variables but
the Inflation one. Finally, we study the causality dynamics among behavioral and
fundamentals variables, and we document how, on average, are changes in funda-
mentals (risks) which trigger changes in behavioral variables (risk premia). These
relations are stronger (in terms of magnitude, statistical power and the number
of statistically significant predictors) during the bear than during the bull regime.
This explains the dominant role played by fundamentals in forecasting market re-
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turns during recessions. Our results, reject the theory advanced by Julien and
Michael [2017] who explain the higher probability detected in recession markets
through the existence of an uncertainty risk premium. Indeed, all our analyses
confirm how the level of uncertainty has no explanatory power for predictability
dynamics. In bull markets, on the other hand, the impact of fundamentals is
weaker, and the dynamics of uncertainty have a larger impact in explaining pre-
dictability. Indeed, uncertainty is the dispersion of investors views (which leads
risk premia Barone-Adesi et al. [2018]), and consequently, individual signals are
more commonly employed by investors and non-fundamental predictors become
more valuable in forecasting markets returns out-of-sample.

The results just listed allow us to shed new light on the closely related field of asset
pricing (Campbell [1991]). Indeed, our improved understanding of predictability
allows us to identify better what the market ultimately reflects into prices or what
are the key elements of the pricing kernel. Indeed, it is well known since Shiller
[1981] that changes in dividends (or equivalently changes in fundamental risks) are
not enough to explain the high level of volatility detected into financial markets.
More recent studies link the volatility of macroeconomic variables with the market
volatility (Engle et al. [2009] and Engle et al. [2013]), confirming that only part of
the observed volatility can be linked to changes in fundamentals. Our results con-
firm that the interaction between risk and risk premia is critical in explaining out-
of-sample predictability, and consequently, both components are reflected in asset
prices. The predictability of equity markets suggests how mispricing is a structural
feature of equity markets: they cyclically become overpriced and suddenly crash
when fundamental news disappoint the optimist investors who were pushing prices
too high. Behavioral and endogenous dynamics foster market crashes, which are
the results of negative changes in fundamentals. This evidence suggests how Rare
disaster theories® which explain the excess of return volatility in terms of extreme
negative expectations of events which are unlikely to occur (and that ex-post do
not materialize) are partially consistent with our understanding of financial mar-
kets: in the bear regime underpricing materialize and the dynamics of risk diverge
from the dynamics of risk pricing (Andersen et al. [2015]). Another really popular
theoretical framework to understand asset pricing is Recursive Utility long term
risk one introduced by Bansal and Yaron [2005]. The long term risk model is en-
tirely based on changes in the long-run consumption growth while current changes
in consumption are irrelevant (as pointed out by Cochrane [2017]). Our results
strongly reject the long-term risk theories because we proved how changes in In-
come trigger a change in risk pricing (fear and uncertainty): this is especially true
during the bear market regime. Finally, the habit theory introduced by Campbell

39The most prominent studies comes from Barro [2006], Gabaix [2012] and Wachter [2013].
The authors explain predictability in terms of fear.
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and Cochrane [1999] which explains market time-varying risk premia through a
utility function which discount more risks in bad than in good times is largely
consistent with our empirical evidence: prices are driven by changes in current
fundamentals (risks) which trigger changes in behavioral variables (risks pricing)
. While our study provides a first pioneering analysis on the genesis of predictabil-
ity and the related link between neoclassical and behavioral finance, much is left to
subsequent research. At first, our study focuses on short-term (one month ahead)
predictability while the study of long-term predictability is completely unexplored.
Second, we largely focus on understanding the total (aggregate) predictability
changes while we do not study the predictability detected by individual’s pre-
dictive models: it would be interesting to analyze which aspects of the financial
market predictability each model capture to understand when and how to employ
each model. Finally, we detected an asymmetric behavior in the dynamic interac-
tions among risks and risks pricing in bull and bear market regimes, which is not
accounted for in the original habit model of Campbell and Cochrane [1999]. Our
results suggest how the original model of Campbell and Cochrane [1999], while
fundamentally correct, may be improuved by the inclusion of the complex markets
features emerging from our study.
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Figure 4.1: Sentiment, Fear, Uncertainty and the S&P500. The upper plot draws the 3 months macroeco-
nomic and financial uncertainty indexes of Jurado et al. [2015] with S&P500 cumulated returns. The lower plot
represents the Sentiment index of Huang et al. [2015] with the Downside variance risk premium of Andersen and
Bondarenko [2007] and the S&P500 index. The shaded areas highlight periods of economic recession. All series
are monthly and standardized, and span the period 01-1990/12-2016.
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Figure 4.2: Aggregate RZO g- Historical average benchmark forecast model cumulative square prediction error
minus: i) average individual predictive regression forecast model cumulative square prediction error (Predictors
in the Plot) ii) average models forecast cumulative square prediction error (Models in the Graph) iii) the average
of the previous two values (Total in the Graph).
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Figure 4.3: Impulse Response Function RQOS returns. This Figure shows the response of the Total R2os to
the following impulses: (a) R% 4, (b) Greed, (c) Fear, (d) Uncertainty, (e) Income, (f) Industrial Production, (g)
Labor, (h) House, (i) Inflation. All details are in Section 3 on data an in the Appendix
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Figure 4.4: Markov Switching Regression Filtered Probabilities. This figure plots the filtered probabilities
of a two regimes markov switching regression model which employs as independent variable the Total RQO g returns
and as dependent ones the returns of the three behavioural variables considered in this study (Greed, Fear and
Uncertainty). All details are in Section 3.
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volatility market periods while the opposite holds for the blue regime. Consequently, in this study, we address the
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Table 4.1: Welch and Goyal [2008] predictors: monthly equity premium out-of-sample forecasting
results for individual forecasts, and machine learning methods. We consider two monthly out-of-sample
windows: 1957:1-2017:12 and 2001:1-2017:12. The RQOS is the Campbell and Thompson [2008] out-of-sample
R? statistic. Statistical significance for the RZ ¢ statistic is based on the p-value for the Clark and West [2007]
out-of-sample MPSE-adjusted statistic; the utility gain (A Utility) is the portfolio management fee (in annualized
percentage return) that an investor with mean-variance preferences and risk aversion coefficient of three would
be willing to pay to have access to the forecasting model considered relative to the historical average benchmark
forecasting model; the weight on stocks in the investor’s portfolio is restricted to lie between 0 and 1.5 (inclusive).
For the R2O§ statistic * ** and *** indicate significance level at the 10%, 5% and 1%. Bold indicates an Utility
gain or a R¢) g above 1.00%.

1986-2017 2001-2017 1986-2017 2001-2017
Predictor R pval R pval Predictor A Utility A Utility
DP -1.34 0.52 0.13 0.20 DP -2.59 1.75
DY -1.99 0.48 0.17 0.17 DY -2.66 2.37
EP -1.41 0.32 -0.88 0.28 EP 1.83 4.93
DE -0.54 0.54 -1.34 0.69 DE -0.26 -0.20
SVAR 0.39 0.16 1.06* 0.10 SVAR -0.58 -0.40
BM -2.28 0.57 -0.10 0.24 BM -2.67 2.62
NTIS -1.77 0.65 -3.53 0.87 NTIS -0.66 -0.08
TBL -0.21 0.47 0.21 0.25 TBL 0.00 0.08
LTY -0.06 0.44 0.49%* 0.03 LTY 0.06 0.32
LTR -0.31 0.40 -0.01 0.34 LTR -0.18 0.22
TMS -0.83 0.64 -1.15 0.76 TMS -1.08 -1.21
DFY -0.20 0.92 -0.28 0.92 DFY -0.90 -1.33
DFR 0.18 0.29 -0.33 0.43 DFR 0.96 1.22
INF lag -0.35 0.84 -0.86 0.93 INF _lag -0.74 -1.47
1986-2017 2001-2017 1986-2017 2001-2017
Model Ry pval R% pval Model A Utility A Utility
OLS -5.83 0.36 -6.63 0.36 OLS -3.78 -5.35
Pooled Forecast: median 0.08 0.32 0.18 0.13 Pooled Forecast: median 0.07 -0.28
Pooled Forecast: MDSFE -0.01 0.42 0.42 0.18 Pooled Forecast: MDSFE -0.05 0.33
Sum-of-the-parts 0.24 0.21 0.89% 0.10 Sum-of-the-parts 0.60 1.78
MARS SVM 0.89%* 0.02 1.18%* 0.04 MARS SVM 0.30 -0.12
SIC SVM 0.49* 0.06 0.16 0.17 SIC SVM 1.20 1.63
LASSO SVM 0.37* 0.10 0.33 0.17 LASSO SVM 0.61 0.89
Diffusion Index 0.22 0.25 0.36 0.27 Diffusion Index -0.23 -0.29
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Table 4.2: Spread return predictors: monthly equity premium out-of-sample forecasting results for
individual forecasts, and machine learning methods. We consider two monthly out-of-sample windows:
1986:1-2016:12 and 2001:1-2016:12. The R(QDS is the Campbell and Thompson [2008] out-of-sample R? statistic.
Statistical significance for the R statistic is based on the p-value for the Clark and West [2007] out-of-sample
MPSE-adjusted statistic; the utility gain (A Utility) is the portfolio management fee (in annualized percentage
return) that an investor with mean-variance preferences and risk aversion coefficient of three would be willing to
pay to have access to the forecasting model considered relative to the historical average benchmark forecasting
model; the weight on stocks in the investor’s portfolio is restricted to lie between 0 and 1.5 (inclusive). For the
R% statistic *,** and *** indicate significance level at the 10%, 5% and 1%. Bold indicates an Utility gain or
a RZ g above 1.00%.

1986-2016 2001-2016 1986-2016 2001-2016

Predictor Ry pval Ry pval Predictor A Utility A Utility
SMB -0.45 0.29 -0.98 0.49 SMB -0.58 -1.44
HML -0.22 0.35 0.07 0.33 HML 0.11 1.23
RMW -0.40 0.43 -0.41 0.41 RMW 0.39 1.20
CMA 0.19% 0.07 0.55 0.17 CMA 0.99 1.51
LT -0.42 0.39 -0.87 0.54 LT 0.45 0.46
ST -0.76 0.82 -2.15 0.97 ST -0.68 -2.20
Mom -0.78 0.90 -1.12 0.89 Mom -0.61 -0.66
Asset Growth 13.20%**  0.00 3.55***  0.00 Asset Growth 11.47 6.96
Gross Prof -0.15 0.00 -11.67 0.83 Gross Prof 1.06 -6.68
Inv to Assets 11.13***  0.00 -1.17 0.01 Inv to Assets 10.30 6.29
Net Stock Issues 23.54***  0.00 28.67*** 0.00 Net Stock Issues 23.56 28.53
NOA -2.95 0.36 -4.18 0.80 NOA -2.31 -3.64
Accruals -1.72 0.01 -10.18 0.56 Accruals 2.39 -1.85
(0] 6.43%** 0.00 6.69** 0.01 O 4.53 5.43
ROA -3.64 0.04 -12.88 0.95 ROA 0.05 -5.50
Distress 0.71% 0.08 0.14 0.25 Distress 2.36 2.59
Comp Eq Issue -0.38 0.49 -0.19 0.32 Comp Eq Issue -0.10 0.77

1986-2016 2001-2016 1986-2016 2001-2016

Model R% pval Ry pval Model A Utility A Utility
OLS 15.71%**  0.00 17.69***  0.00 OLS 14.13 12.39
Pooled Forecast median 2.37% 0.00 3.50* 0.00 Pooled Forecast median 5.05 3.38
Pooled Forecast MDSFE ~ 10.89***  0.00 12.36***  0.00 Pooled Forecast MDSFE 12.76 10.56
MARS SVM 11.82%* 0.00 4.90* 0.00 MARS SVM 5.11 13.10
SIC SVM -20.13 0.34 -12.36 0.18 SIC SVM 0.24 0.16
LASSO SVM -12.46 0.24 -9.03 0.18 LASSO SVM 0.00 0.86
Diffusion Index 4.16%** 0.01  13.54*%**  0.00 Diffusion Index 10.97 7.11
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Table 4.3: Out-of-sample forecasts: Summary Statistics. We consider the out-of-sample window 1980:1-
2016:12 for the 14 Welch and Goyal [2008] predictors and the 17 Factors-Anomalies. DP is the log dividend-price
ratio, DY is the log dividend yield, EP is the log earnings-price ratio, DE is the log dividend-payout ratio, SVOL is
the volatility of excess stock returns, BM is the book-to-market value ratio for the Dow Jones Industrial Average,
NTIS is net equity expansion, TBL is the interest rate on a three-month Treasury bill, LTY is the long-term
government bond yield, LTR is the return on long-term government bonds, TMS is the long-term government
bond yield minus the Treasury bill rate, DFY is the difference between Moody’s BAA- and AAA-rated corporate
bond yields, DFR is the long-term corporate bond return minus the long-term government bond return, and
INFL is inflation calculated from the CPI for all urban consumers. SMB is the Small minus Big F&F factor,
HML is the High minus Low F&F factor, RMW is the Robust minus Weak F&F factor, CMA is the Conservative
minus Aggressive F&F factor, Mom is the momentum French factor, LT is the long term French factor, ST
is the short term French factor. Asset Growth, Gross Prof, Inv to Assets, and Net Stock Issues are the asset
growth, Gross Profitability, Investment to Assets and net stock issues anomalies (spread portfolios returns), built
following Stambaugh and Yuan [2017]. Finally, NOA, Accruals, O, ROA, Distress and Comp Eq Issue are the
Net Operating Assets, the Accruals, the Ohlson, the return on asset, the distress and the composite equity issue
anomalies (spread portfolios returns), are also built following Stambaugh and Yuan [2017].

Summary Stat. Mean Median 1st Percentile 99th Percentile Std. dev. Skewness

DP 0.21 0.25 -1.39 1.95 0.58 -0.08

DY 0.20 0.24 -1.37 1.59 0.56 -0.14

EP 0.33 0.40 -1.47 1.40 0.46 -1.67

DE 0.53 0.51 -1.88 1.93 0.55 -1.54
SVAR 0.45 0.54 -1.51 1.53 1.03 10.79
BM 0.37 0.43 -1.39 1.61 0.52 -1.29
NTIS 0.56 0.49 -0.91 2.88 0.72 1.05
TBL 0.70 0.72 -0.63 1.34 0.35 -1.20
LTY 0.61 0.64 -1.04 1.51 0.44 -0.11
LTR 0.45 0.48 -0.63 1.61 0.40 0.22
TMS 0.57 0.56 -0.32 1.21 0.31 -0.22
DFY 0.36 0.42 -0.43 2.23 0.38 2.08
DFR 0.42 0.46 -2.07 2.40 0.74 -0.49
INF lag 0.40 0.48 -1.34 0.96 0.41 -1.83
SMB 0.38 0.38 -0.85 1.71 0.49 0.48
HML 0.44 0.49 -0.74 1.55 0.45 0.10
RMW 0.41 0.42 -0.51 1.26 0.35 -0.82
CMA 0.46 0.49 -1.26 2.89 0.74 1.54

LT 0.43 0.43 -0.63 1.33 0.40 0.00

ST 0.42 0.46 -0.66 1.37 0.27 -1.08
Mom 0.42 0.45 -0.43 1.07 0.26 -0.60
Asset Growth 0.28 0.58 -6.80 6.43 2.43 -0.50
Gross Prof 0.35 0.32 -3.57 4.29 1.55 -0.03
Inv to Assets 0.44 0.53 -7.34 6.10 2.36 -0.48
Net Stock Issues 0.51 0.56 -4.38 6.03 1.93 0.25
NOA 0.34 0.42 -2.98 2.87 0.96 -0.69
Accruals 0.44 0.51 -3.53 4.94 1.52 -0.21
(0] 0.40 0.38 -3.44 3.13 1.17 -1.52
ROA 0.34 0.49 -5.26 4.10 1.61 -0.76
Distress 0.39 0.43 -2.25 1.95 0.66 -1.37
Comp Eq Issue 0.43 0.46 -0.42 1.19 0.32 -0.01
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Table 4.5: Predictive regression estimation results for market return components. We consider the
monthly out-of-sample windows 1977:1-2016:12.The table reports the ordinary least squares estimate of by for
the predictive regression model,

Y1 = ay + Byxs + €41 fort =1,...,T -1

where y; is the S&P 500 log return or one of three estimated components of the S&P 500 log return for month t
and z+ is one of the predictors considered. The three estimated components of the S&P 500 log return are the

expected return (Er;11), cash flow news (\Ilf_fl), and discount rate news (\I!tD_ﬁ) The beta for the S&P 500 log

return is Br,; while the betas for the three components are BEZ, BCF and BDFU respectively. The components
are estimated using the Campbell [1991] and Campbell and Ammer [1993] vector autoregression (VAR) approach.
The VAR includes the first three principal components extracted from the non x; predictors. The intercept term
is set to zero for the cash flow news and discount rate news predictive regressions. The t-statistics, reported in
brackets, are heteroskedasticity and autocorrelation robust. *** ** and * indicate significance at the 10%, 5%,
and 1% levels, respectively. Bold is used to highlight the main beta component for predictors which own a Total
beta t-stat value above 1.

Predictor Brot BEx Ber Bpr

DP 0.39%%  (1.97) 0.35%%* (355) 0.8  (L00) 0.4  (L18)
DY 041 (208) 0.37F%%  (3.69) 0.8  (L00) 013  (L.13)
EP 033 (1.30) 0.35%* (322) 022  (112) 0.24%*%  (2.00)
DE 003  (0.10)  -0.03  (-029) -0.07 (-0.31) -0.13  (-0.97)
SVAR 022 (L25)  -0.08 (-1.00) 0.4  (0.90) -0.17% (-1.65)
BM 025 (1.22) 0.36*** (3.76)  0.06  (0.33) 017  (152)
NTIS 002  (0.09) -0.18%% (-1.97) 0.6  (0.72)  -0.05  (-0.45)
TBL 012 (0.57) 006  (0.68) -0.05 (-029) -0.10 (-1.07)
LTY 014 (0.69) 004  (046) 0.0  (-0.08) -0.11  (-L11)
LTR 031 (153) 0.0  (1.33)  0.00  (0.02) -0.20%% (-1.98)

5 )
TMS 001  (-0.04)  -0.06  (-0.62) 004  (021) -0.02  (-0.18)

DFY 006  (0.19)  0.15%  (1.73)  -0.18  (-0.77) -0.08  (-0.62)
DFR 039  (1.22)  -0.05 (-0.53) 0.43* (1.80) -0.01  (-0.06)
INF_Lag 030  (1.23)  0.20%  (201) 011  (048) 001  (0.13)
SMB 0.19  (0.90) 005 (055 001  (0.06) -0.13  (-1.10)
HML 027  (-1.26) -0.35%F* (-3.25) 0.2 (0.65)  0.05  (0.34)

( (-3:25)
RMW 034 ((158) 007 (-0.54) -029  (-146) -0.02  (-0.17)
CMA 0.38%  (-179) -0.39%%* (-3.22) 0.0  (0.54)  0.08  (0.65)
LT 025 (-1.01) -0.45%%* (-4.65) 015  (0.76)  -0.06  (-0.48)
ST 0.02  (0.06)  -0.06  (-0.44) 008  (0.41) 000 (
Mom 005 (022) 012 (1.06)  -0.10 (
Asset Growth  -1.82%%% (.8.15) -0.25%% (.4.83) -1.78%%% (.8.28) -0.21%* (-1.99)
Gross Prof 0.79%%F  (3.28)  0.45%**  (5.13) -0.03  (-0.14) -0.37FF*  (-2.69)
(-5.07)  0.04
(-8.27)

0.49)  0.07

Inv to Assets  -1.59%%* (-6.02) -0.37*** (-6.56) -1.19%** (0.33)
Net Stock Issues -1.95%%% (-6.24) -0.37 *** (-2.53) -1.43%%* (.827) 0.14  (0.97)
NOA 013 (047)  -0.22%  (-2.02) 0.38** (201) 003  (0.23)
Accruals -0.42%%  (-1.72) -0.53 ***  (-5.24) 0.03 (0.14)  -0.09  (-0.72)

0 106 (-4.00)  -0.55%%  (-7.13)  -0.34*  (-1.66)  0.17  (1.40)

ROA 0497 (1.97) 0.56 *** (574)  0.32  (149) 0.38%* (3.34)
Distress 0.55%  (2.00)  0.13  (L.04)  -0.17  (-0.71) -0.60%%* (-4.43

(-4.43)
Comp Eq Issue  -0.23  (-1.15) -0.27%% (-259) 003  (0.14) -0.01  (-0.06)

~
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Table 4.6: Predictability across the Business Cycle and for positive-negative returns. We consider
the monthly out-of-sample windows 1986:1-2017:12 and 1986:1-2016:12 for univariate OLS forecasts based on the
Welch and Goyal [2008] predictors and on spread returns ones. The R?)S is the Campbell and Thompson [2008]
out-of-sample R? statistic. Statistical significance for the R?) g statistic is based on the p-value for the Clark and
West [2007] out-of-sample MPSE-adjusted statistic. Exp (Rec) considers the returns conditionally on being in an
Expansion (Recession) as identified by the NBER. Ret> 0 and Ret< 0 consider models performance when the
results are subsequently positive or negative only. Average is the column mean R2OS value. For the R2OS statistic
* % and *** indicate significance level at the 10%, 5% and 1%. Bold indicates an RZ ¢ above 1.00%.

1986-2017 1986-2017 1986-2016 1986-2016
Predictor Exp Rec Ret>0 Ret<0 Predictor Exp Rec Ret>0 Ret<0
SMB -0.90 1.06 -1.44 0.18
DP -2.40 2.5T** -21.39 12.24*** HML -0.06 -0.51 1.78%* -1.53
DY -3.55 3.79%* -27.93 15.57+** RMW -1.39 3.55%** -1.22 0.24
EP -1.94 0.58 -26.62 15.67*F* CMA -1.60 7.53%** 1.24%* -0.37
DE -0.16 -1.94 2.79%* -2.79 LT 0.05 -1.92 0.62 -1.05
SVAR 0.02 1.76 -0.61 1.06* ST -0.69 -0.98 -0.88 -0.65
BM -3.80 3.33* -28.04 15.16%** Mom -0.24 9 -2.75 -0.41 -1.01
NTIS 0.17 -8.96 11.10%** -10.48 Asset Growth TOTRRE 3B.72%FE 5 11RRE 19.63%%*
TBL 0.02 -1.07 0.01 -0.35 Gross Prof -1.20 4.10* -2.97 1.96**
LTY 0.01 -0.30 -1.97 1.23%%* Inv to Assets 4.68%%F  36.72%F*  4.95%%F  15.90%F*
LTR -0.61 0.80 1.96%** -1.85 Net Stock Issues  20.46%F*  35.24%%* 21 50%%F  24.98%**
TMS -0.69 -1.36 6.12%F* -5.54 NOA -4.06 2.61 -4.49 -1.38
DFY -0.13 -0.49 -1.19 0.46 Accruals -0.91 -3.96 -3.93 0.16
DFR 0.39 -0.58 -1.66 1.43 O 8.22%** -0.60 10.06*** 3.76%*
INF _lag 0.10 -2.00 0.10 -0.65 ROA -1.04 -12.10 -2.11 -4.22
Distress 0.12 2.27 1.10 0.19
Comp Eq Issue -0.61 0.43 0.03 -0.70
Average -0.90 -0.28 -6.24 2.94 Average 1.68 6.26 1.70 3.30
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Table 4.12: VAR of the R?)S and the Behavioural and Fundamental variables returns. t-statistics appear
in parentheses below the coefficient estimate. The VAR system includes 5 macroeconomic (Income, Industrial
Production, Labor, House and Inflation) first principal components extrapolated from a rich panel of time series
plus the indexes of Greed (Huang et al. [2015]), Fear (Andersen and Bondarenko [2007]) and Uncertainty (Jurado
et al. [2015]). All the details about the fundamental and behavioural variables considered are detailed in Section 3
and in the appendix. The estimates are based on monthly returns for the period 1996:01-2016:12. In brackets we
report the heteroskedasticity and autocorrelation robust p-values of the betas.*** ** and * indicate significance
at the 10%, 5%, and 1% levels, respectively. Bold indicates a p-value under 5%

Dependent Variable Const (1) (2) (3) (4) (5) (6) (7 (8) 9)
(t-stat)  (t-stat)  (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

R (1) 003  -042 205 072  4.06* 015 011 050 027  7.54

(0.93)  (0.64)  (-0.37) (-0.12) (3.10)  (048) (-0.31) (-0.62) (0.17)  (0.43)

Greed (2) 0.36 -0.36 -1.07  -11.77 -0.16 0.24 -1.90 -0.64 -2.09 2.03
(1.06)  (-0.05)  (-0.02) (-017) (-0.01) (0.07) (-0.46) (-0.07) (-0.11) (0.01)

Fear (3) 0.06* 0.85 -0.21 -3.33% -2.44 0.08 0.15 -0.17 0.05 -1.75
(1.92) (1.17)  (-0.04) (-0.51)  (-1.68)  (0.23)  (0.39) (-0.20)  (0.03)  (-0.09)

UNC (4) 0.00 -1.56*%**  0.16 1.69  7.35%*%* (.05 0.11 0.16 0.02 -3.94
(0.27) (-6.85)  (0.09) (0.82)  (16.06)  (0.43)  (0.92)  (0.58)  (0.03) (-0.64)

Income (5) -0.06 -0.12 0.55 0.48 1.44 -0.05 0.00 0.16 0.19 -3.14
(-1.00)  (-0.09)  (0.05) (0.04)  (0.52)  (-0.07) (0.00) (0.10)  (0.06) (-0.08)

Industrial Production (6) 0.12%%* -0.75 0.54 4.21 1.88 0.16 -0.64 -0.15 0.00 -8.29
(218)  (-0.63)  (0.05) (0.39)  (0.79)  (0.20) (-0.99) (-0.10) (0.00)  (-0.26)

Labor (7) 0.25 -0.27 -1.71 -11.57 -9.75 0.20 0.01 -0.67 0.09 -0.50
(1.08)  (-0.05)  (-0.04) (-0.24) (-0.92)  (0.08) (0.00) (-0.10) (0.01)  (0.00)
House (8) -0.05 4.26 -0.04 -10.68  -13.10* 0.06 -0.08 -0.10 -6.44 -18.37
(-0.28) (1.07) (0.00) (-0.29)  (-1.63)  (0.03) (-0.04) (-0.02) (-0.68) (-0.17)
Inflation (9) -0.10 0.37 1.71 4.98 -2.84 -0.04 0.67 0.10 -1.11 -13.23

(-090)  (0.15)  (0.08) (0.23)  (-0.58) (-0.04) (0.50) (0.04) (-0.19) (-0.20)
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Table 4.13: VAR of the R%S and the Behavioural and Fundamental variables levels. t-statistics appear
in parentheses below the coefficient estimate. The VAR system includes 5 macroeconomic (Income, Industrial
Production, Labor, House and Inflation) first principal components extrapolated from a rich panel of time series
plus the indexes of Greed (Huang et al. [2015]), Fear (Andersen and Bondarenko [2007]) and Uncertainty (Jurado
et al. [2015]). All the details about the fundamental and behavioural variables considered are detailed in Section 3
and in the appendix. The estimates are based on monthly returns for the period 1996:01-2016:12. In brackets we
report the heteroskedasticity and autocorrelation robust p-values of the betas.*** ** and * indicate significance
at the 10%, 5%, and 1% levels, respectively. Bold indicates a p-value under 5%

Dependent Variable Const (1) (2) (3) (4) (5) (6) (] (8) 9)

(t-stat)  (t-stat)  (t-stat)  (t-stat)  (t-stat) (t-stat)  (t-stat)  (t-stat) (t-stat)  (t-stat)
R?)S (1) -2.84 -3.17 1.82 48.1%* 2.57 0.22 -0.43%*** 0.16 0.17* -0.11
(111)  (-046)  (141)  (1.98)  (0.94)  (L16)  (-3.13)  (1.06)  (1.63)  (-0.73)
Greed (2) -6.8%* -5.01 99, T¥** -32.7 7.64%* 0.22 -0.29%%  Q.72%** 0.05 -0.22
(299)  (0.82)  (86.20)  (-1.51)  (3.14)  (1.27)  (-239)  (538)  (0.57)  (-1.54)

Fear (3) -1.28*%* 3.27* S1.14%F% 20, 7k¥*k 2 2THNX -0.03 -0.02 -0.07* -0.03 -0.29%**
(-198)  (L88)  (-345)  (3.35)  (3.27)  (-0.70)  (-0.48)  (-L74) (-L19)  (-7.38)
UNC (4) -0.24 -6.76* 0.28 -7.06 100*** 0.15 -0.2%* 0.2%* 0.05 -0.09
(0.18)  (-1.87)  (0.41)  (-0.55)  (69.78)  (1.46)  (-278)  (2.54)  (0.83)  (-1.05)

Income (5) 9.42 -2.48 6.72 68.5 -10.7 -1.2% -1.31%% -0.69 -1.9%%*% 1 .55%%
(1.00)  (-0.10)  (140)  (0.76)  (-1.06)  (-1.68)  (-257)  (-1.25)  (-481)  (2.68)
Industrial Production (6) 14.5 -53.7 -9.38 417*** -19.3 -1.08 -0.92 1.31% 0.45 -1.32%
(116)  (1.59)  (-147)  (349)  (-144)  (-114)  (1.36)  (178)  (0.85)  (-L.72)

Labor (7) 20.9%* -21.3 -10.7%* 43.9 -21.8%* -0.6 0.07 6.93%** 0.04 -1.33%%%*
(2.84)  (-1.08)  (-2.86)  (0.63)  (-277)  (-1.08)  (0.07)  (16.07)  (0.11)  (-2.96)

House (8) 0.31 11.3 -0.43 -49.1%* 0.17 -0.42%* -0.01 -0.11 9.73%¥*  _0.42%*
(0.11)  (151)  (-0.30)  (-1.85)  (0.06)  (-202)  (-0.08)  (-0.66) (83.38)  (-2.49)

Inflation (9) -10.1 94, 3%** 1.05 153 8.46 2.46%** -0.22 -0.35 0.13 4.54%%*

(-1.00)  (3.48) (0.21) (159)  (0.78)  (3.23)  (-040)  (-0.59)  (0.30) (7.34)
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4.10 Appendix

4.10.1 Predictive models
Basic linear models: OLS

The Kitchen Sink Regression is a simple OLS multivariate regression which in-
cludes all the predictors at once. The estimation is performed employing all ob-
servations up to time t (the last available information) to perform the parameter
estimation and then to use the estimated parameters to make inference for time
t+1 employing regressors values at time t. In formulas this can be summarize in
a two step procedure:

Riyi=a+BXi +¢

where R is a t*1 vector and X is a t*N and N is the number of predictors considered
in the analysis.

Fey1 = Q¢ + Byry
where 7,1 is the univariate forecast produced by the model &; and Bt are the

coefficient estimated in the previous step employing data up to time t and x; is
the value of predictors at time t.

Combination Forecasts: Pooled Forecast median and MDSFE

Combination forecasts are among the most common machine learning approach
employed in the literature (Rapach et al. [2009], and Detzel and Strauss [2017]).
This approach is based on a two-stage estimation.

1. At first for each date t, we run a separate univariate regression for each
regressor on the equity premium at time t+1 using all data available up to
that date

Ripy=a+ Bri+ &

2. After that each univariate OLS model previously estimated is employed to
make inference at time t+1

Tep1 = O + Bray

3. Finally, we combine the forecasts generated by univariate regressions via
combination forecasts methods.
N
Tt41,Comb = Z Wy 4T i41
i=1
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Finally, a the Pooled-DMSPE approach computes the weights in the third step
in the following way:

-1
Xy
Wi ¢

b= SK 1
Zk:l ij,tl

t—1

it = Z 9#175(7’5“ — Tis+1)

s=m

where

0 is a discount factor equal to 0.5 in this study, m—+1 is the start of the holdout pe-
riod and K is the number of past periods considered to compute the weights (K=13
in this paper). The DMSPE method thus assigns greater weight to individual
forecasts that had better forecasting performance in terms of lower mean-squared
prediction errors.

Sum-of-the-Parts Method

The Sum of the Parts Method has been proposed by Ferreira and Santa-Clara
2011]
P+ Dy

R =
141 P,

=CGy1 + DYy

where P, is the stock price, D; is the dividend, CGy1 = Pgl is the gross capital

ain, and DY,,; = 2t is the dividend yield. The gross capital gain can be
g + P,
expressed as

Py
oa,. . — B Ein My B
t+1 —

2R, M, E

= GM;11GEyy

where F; denotes earnings,M; = %is the price-earnings multiple, and GM,;; =

Mj\zl (GEy, = Egl) is the gross growth rate of the price- earnings multiple (earn-

ings). Now the dividend yield can be written as

D1 P
DYy = ==~ = DP, i GMy  GE iy
Py P
where %t is the dividend-price ratio. Based on these results the gross return
becomes

Rt+1 = GMt+1GEt+1(1 + DPt+1)>

which for the log return can be expressed as
log(Riy1) = gmigr + gesr + dpeya
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Since price-earnings multiples and dividend-price ratios are highly persistent and
nearly random walks, reasonable forecasts of gm;, 1 and dp;,, based on information
through t are zero and dp;, respectively. A 20-year moving average of log earnings
growth through t ge?Y | is employed as a forecast of ge;,;Their sum-of-the-parts
equity premium forecast is then given by

.SOP _ —20
Ty = gep + dpy — 7§41

where is the log risk-free rate, which is known at the end of t.

Multivariate Adaptive Regression Splines and Support Vector Machines
for Regression: MARS SVM

Given a set of predictors the MARS model (Friedman [1991]) selects and breaks
a predictor into two groups and models linear relationships between the predictor
and the outcome in each group. To determine the cut point each data point for each
predictor is evaluated as a candidate cut-point by creating a linear regression model
with the candidate features, and the corresponding model error is calculated. The
predictor/cut point combination that achieves the smallest error is then used for
the model. After the initial model is created with the first two features, the model
conducts another exhaustive search to find the next set of features that, given
the initial set, yield the best model fit. This process continues until a stopping
point is reached. Once the full set of features has been created, the algorithm
sequentially removes individual features that do not contribute significantly to the
model equation. This “pruning” procedure assesses each predictor variable and
estimates how much the error rate was decreased by including it in the model.

MARS builds models of the form:
flz) = ZciBi(a:) (4.41)

where ¢; is a fix coefficient and B; can be equal to 1 or to a hinge function (a hinge
function has the form max(0, x-const) or max(0, const-x)) or a product of hinge
functions.

Our implementation of the algorithm builds the model in two phases: forward
selection and backward deletion. In the forward phase, the algorithm starts with
a model consisting of just the intercept term and iteratively adds reflected pairs of
basis functions giving the largest reduction of training error (Mean Squared Error).
We set the maximum number of basis functions to min(200, max(20,2d))+1, where
d is the number of input variables. We do not allow for self-interaction. We impose
no penalty for adding a new variable to a model in the forward phase, and we
employ hinge functions only. The forward phase is executed until adding a new
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basis function changes R? by less than le-4.

At the end of the forward phase we have a large model which over-fits the data,
and so a backward deletion phase is engaged. In the backward phase, the model
is simplified by deleting one least important basis function (i.e., deletion of which
reduces training error the least) at a time until the model has only the intercept
term. At the end of the backward phase, from those “best” models of each size, the
one with the lowest Generalized Cross-Validation (GCV) is selected and outputted
as the final one. GCV, as an estimator for Prediction Mean Squared Error, for a
MARS model is calculated as follows:

MSEtrain
(=52

n

CVG = (4.42)

where M S Ey,qip is the Mean Squared Error of the model in the training data, n is
the number of observations in the training data, and enp is the effective number

of parameters:
enp=k+cx(k+1)/2 (4.43)

where k is the number of basis functions in the model (including the intercept
term), and ¢=3 is the Generalized Cross-Validation (GCV) penalty. We impose
no further constraints on the Maximum number of basis functions (including the
intercept term) in the final pruned model?.

Once the model is built we perform variable importance assessment. The criterion
counts the number of model subsets that include the variable. Where by ”subsets”
we mean the subsets of terms generated by the pruning pass. There is one subset
for each model size (from 1 to the size of the selected model) and the subset is the
best set of terms for that model size. Obviously, only subsets that are smaller than
or equal in size to the final model are used for estimating variable importance. We
select only variables with a score bigger than 12. After that, we use the selected
variables to estimate a machine vector regression model.

The intuition of SVM for regression is to modify the traditional simple linear
regression regularized error function

al A
S o — ta)? + 5wl (4.44)
n=1

N —

by introducing an € insensitive error function.

0 if ly(z) —tl<e
ly(x) — t|—e otherwise

Eu(y(x) — 1) = { (4.45)

40To boost computational performance, and following Friedman [1991], we employ piecewise-
cubic modelling for the final model only after both the forward and the backward phases.
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This implies that we minimize a regularized error function given by

€Y Edyln) — ta) + 5wl (1.46)

where C is a regularization parameter.

Now for each data point x,, we now need two slack variables &, > 0 and én > 0,
where &, > 0 corresponds to a point for which ¢,, > y(x,)+€ and én < 0 correspond
to a point for which ¢, < y(z,) + €. Consequently, a target point lies inside the e
tube whether y,, — e <t,, <y, + € where y,, = y(z,,). The introduction of the two
slack variables allows points to lie outside the tube provided the slack variables
are different from zero:

ty <ylx,)+e+& and t, >y(x,) —e— fn (4.47)

This implies that the error function for support vector regression can then be
written as

N
O (6 +E0) + gl (1.45)
n=1

which should be minimized subject to the constraints &, > 0 and fn > 0 plus the
conditions t, < y(z,)+e+¢&, and t,, > y(x,) —€— &,. Consequently, the problem
can be solved optimizing the Lagrangian with multipliers a,, > 0, a,, > 0, p, > 0
and fi, > 0

N N
L=CY 6+ &) + llulP= 3 (ate + i)
n=1 n=1

N N
- Z an(ﬁ + §n + Yn — tn) - Z &n(e + én —Yn + tn) (449)
n=1 n=1

Computing the partial derivatives and replacing gives

N N N N

~ 1

La,a) =~ SN (an—an) (=) k(T ) =€ > (anFin)+ Y (an—an)sty
n=1 m=1 n=1 n=1

(4.50)
where k(z,2') = ¢(x)T¢(x') is the kernel.
Replacing w = 3> (4, — ,)p(2,) in the general case y(z) = w”¢(x) + b where
¢(z) denotes a fixed feature-space transformation, ¢(z) * ¢(z) = k(z,z,), and b is
the bias parameter, we see that predictions can be made using

N

y(@) =Y (an — an)k(z, 2,) + b (4.51)

n=1
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We implement the regularized support vector machines regression presented above
in the following manner. The half width of the epsilon-insensitive band is set equal
to the ratio of the interquartile range of the independent variable distribution and
the scalar value 1.349. The regularization Lambda is set equal to one divided
the training sample size. The objective function minimization technique chosen is
SpaRSA (sparse reconstruction by separable approximation optimization, Wright
et al. [2009]). Initial estimates of regression coefficients are all set to zero except the
bias one which is initially fixed to the weighted median of the dependent variable
in the training set. The criteria for convergence during the optimization process
are?!:

e Relative tolerance on linear coefficients and bias term: le-4
e Absolute gradient tolerance: 1le-6

e Size of history buffer for Hessian approximation: 15

e Maximal number of optimization iterations: 1000

For each date t, the model is estimated with predictors data up to t-1. Then the
values of the regressors at time t are employed to make inference for date t+1.

SIC - LASSO Support Vector Machine

The joint employment of all the available predictors is likely to give rise to severe
multicollinearity and poor out-of-sample performance. Consequently, employing
variable selection is likely to boost the performance of the predictive model. Fol-
lowing this intuition, we consider two separate model selection approaches, and
subsequently, we make use of the selected variables into a Support Vector Machine
regression model. The first model selection approach considered is the Schwartz
Information Criterion (SIC)(Schwarz [1978]).

We employ the SIC, imposing a maximum of 2 predictors for the model selection.
For each date t, we use all data available up to that moment, we consider all
individual regressors and all possible combinations among two regressors, and we
compute the related SIC values

log(SIC) = log (SSTR> + k x lOgng) (4.52)

where T is the number of observations, k is the number of predictors and SSR
is the sum of squared residuals. After that, for each date t, we pick the model

“1Further details on the optimization procedure can be found looking at the details of the
Matlab function ”fitrlinear”
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with the lowest SIC. Subsequently, we use the predictors of the chosen model to
estimate a support vector machine regression model. Finally, we employ it to make
inference using the values of predictors at time t to forecast the S&P500 returns
at time t+1.

The alternative approach which we employ for model selection is Lasso. At each
time t, we run a 10-fold Cross-validated Lasso.

N

min 2SS + )\;W (4.53)
where N is the number of regressors, A is the Lagrange multiplier, RSS is the sum
of squared residuals. The value of lambda selected is the 95 higher from a default
geometric sequence of 100 values, with only the largest able to produce a model
which exclude all predictors.
After that, the predictors selected by Lasso are employed to estimate the Linear
Support Vector Machine. Finally, we employ it to make inference using the values
of predictors at time t to forecast the S&P500 returns at time t+1.

Diffusion Indices

The diffusion index approach assumes a latent factor model structure for the po-
tential predictors:

Tip = Nife + €y (4.54)
with (i=1,..., K) and f; is a g-vector of latent factors, \; is a q-vector of factor load-
ings, and e;; is a zero-mean disturbance term. Co-movements in the predictors are
primarily governed by movements in the small number of factors (the number of
factors is much smaller than the number of predictors). The latent factors can be
consistently estimated by principal components. To implement this approach we
started standardizing all the predictors (standard deviation of 1 and zero mean).
After that for each date t, we compute the first principal component employing
all data available up to t-1. The first principal component is then employed as
a regressor to estimate a support vector machine regression. Finally, the support
vector machine regression previously estimated with data up to t-1 and the value
fi of the first principal component are used to make inference for time t+1.

4.10.2 Data
4.10.3 Sentiment index data

The data on sentiment are used in this paper are employed for the estimation
of the Greed proxy (called Sentiment index in the original paper of Huang et al.
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[2015]). The monthly time series span the period from 07-1965 to 12-2017. The
indexes are built using the following monthly data?®?:

Close-end fund discount rate (cefd): value-weighted average difference be-
tween the net asset values of closed-end stock mutual fund shares and their
market prices.

Share turnover (turn): log of the raw turnover ratio detrended by the past
b-year average. Here the raw turnover ratio is the ratio of reported share
volume to average shares listed from the NYSE Fact Book.

Number of IPOs (nipo): number of monthly initial public offerings

First-day returns of IPOs (ripo): monthly average first-day returns of initial
public offerings.

Dividend premium (pdnd): log difference of the value-weighted average
market-to-book ratios of dividend payers and nonpayers.

Equity share in new issues (s): gross monthly equity issuance divided by
gross monthly equity plus debt issuance.

Macro Data

Table A1-A4 lists the short name of each series, its mnemonic (the series label
used in the source database), the transformation applied to the series, a brief data
description and their economic cluster. All series are from the Federal Reserve of
St. Louis Fed with the exception of stock industry indexes which come from the
French website. In the transformation column, In denotes logarithm, A In and A2
In denote the first and second difference of the logarithm, lv denotes the level of
the series, A lv denotes the first difference of the series, and % implies a division by
100. In Tables A5-A6 we test the out-of-sample predictive power of each variable
in terms of R%4. Finally, in Table A7 we test the out-of-sample predictive power
of each variable Utility gains.

42Professor Guofu Zhou website, http://apps.olin.wustl.edu/faculty /zhou/
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Table A5: Out-of-sample predictability using macro predictors: RQO
Thompson [2008] out-of-sample R? statistic. Statistical significance for the R% g statistic is based on the p-value
for the Clark and West [2007] out-of-sample MPSE-adjusted statistic; Base employs the predicted returns without
constraints while Restricted replace the negative forcasts with zero. The results refer to monthly forecasts for the
out-of-sample period 2000-2017. Results in Bold imply a positive RQOS matched by a p-value under 0.05.

The R% g is the Campbell and

Base R}y p-val Base R%¢ p-val Restricted Ry p-val Restricted R%¢ p-val
DSPIC96 0.80 0.01 GS10 -1.40  0.89 DSPIC96 0.42 0.02 GS10 -1.42° 0.90
PCEPILFE -2.22 0.55 T10Y3MM -1.71 0.89 PCEPILFE -1.02 0.29 T10Y3MM -1.66 091
PCE 0.63  0.14 TIYFFM -0.48  0.36 PCE 1.06 0.05 TIYFFM -1.26 0.64
CMRMTSPL -0.97 049 T6MFFM 017 0.28 CMRMTSPL -0.30  0.44 T6MFFM -0.54  0.53
RSXFS 1.98 0.05 T10Y2YM -3.31 0.80 RSXFS 1.70 0.04 T10Y2YM -3.02 087
TOTALSA -0.04  0.09 BAA1OYM -3.55  0.76 TOTALSA 0.65 0.14 BAA10OYM -3.34 0.79
MARTSMPCSM44000USS  0.04  0.01 IRLTLTO1USM156N -1.40  0.89 MARTSMPCSM44000USS  -3.43  0.00 IRLTLTO1USM156N -1.42  0.90
UMCSENT -2.67 0.67 AAA -1.38  0.82 UMCSENT -0.34  0.55 AAA -1.59  0.87
MICH 0.66 0.03 BAA -1.24  0.84 MICH -0.30  0.08 BAA -1.25  0.89
CSCICP03USM665S -2.86  0.34 AAATOYM -1.64 092 CSCICP03USM665S 1.17 0.07 AAATOYM -1.47 090
MVGFDO27MNFRBDAL  -0.25 0.13 AAAFFM -0.40  0.25 MVGFDO027MNFRBDAL  0.87 0.07 AAAFFM -0.42  0.40
INDPRO 3.67 0.09 T5YFFM -1.11 0.55 INDPRO -0.50  0.23 T5YFFM -1.15 067
IPMAN 3.99 0.05 T3MFFM 029  0.29 IPMAN 023 0.12 T3MFFM -0.83  0.52
IPDCONGD 1.45 0.08 EXBZUS 027  0.26 IPDCONGD -0.54  0.18 EXBZUS 0.81 0.08
IPMAT 290 0.12 EXMXUS -0.05  0.22 IPMAT -1.05  0.32 EXMXUS 0.16  0.18
IPBUSEQ 4.11  0.06 EXINUS -129 037 IPBUSEQ 0.35 0.07 EXINUS 022 018
IPFUELS -3.44 091 RBUSBIS -0.93  0.57 IPFUELS -3.26 0.90 RBUSBIS -0.76  0.62
1PB51222S -3.66  0.89 NBUSBIS -1.00  0.61 1PB51222S -2.96 0.86 NBUSBIS -0.59  0.60
IPFINAL 1.73  0.12 TWEXBMTH -0.98  0.61 IPFINAL -0.61  0.26 TWEXBMTH -0.54  0.58
TCU 279 011 EXSZUS -2.04 095 TCU 0.30 EXSZUS -1.94 094
IPG211111CS -8.65 0.65 EXJPUS -1.77 091 IPG211111CS 0.74 EXJPUS -1.70 091
DGORDER -1.14 061 EXUSUK -0.80  0.38 DGORDER . 0.81 EXUSUK -0.28  0.35
ACDGNO 021 0.05 EXCAUS -0.02  0.28 ACDGNO .66 0.13 EXCAUS 024 0.19
NEWORDER -4.50  0.78 MCOILWTICO -2.00 0.53 NEWORDER 4. 0.79 MCOILWTICO -129 046
INVCMRMTSPL 3.08 0.01 PCU2122221222 -0.20  0.40 INVCMRMTSPL 3.71 0.00 PCU2122221222 -0.06  0.26
BUSLOANS -3.39  0.52 WPUSI019011 -0.53  0.22 BUSLOANS -2.99 048 WPUSI019011 0.34 0.06
TOTALSL -2.48  0.46 PPIACO -7.69  0.77 TOTALSL -0.47  0.56 PPIACO -4.88  0.89
AHETPI -1.16  0.53 WPSFD49207 -6.15  0.67 AHETPI -0.31 035 WPSFD49207 -4.48  0.56
CES2000000008 -0.72 0.84 WPSFDA4111 -0.56  0.45 CES2000000008 -0.06  0.51 WPSFDA4111 -0.47  0.72
CES3000000008 -0.07  0.61 WPSID612 -0.96 023 CES3000000008 -0.07  0.61 WPSID612 0.71  0.09
CES0600000008 -0.21 0.60 1Q00200 -1.09  0.55 CES0600000008 -0.22 0.61 1Q00200 -1.34 0.65
CIVPART -1.39 051 WPU01830131 -8.96  0.21 CIVPART -0.51  0.39 WPU01830131 -8.84 018
UNRATE -0.08 0.31 WPUO0121 -2.00 0.77 UNRATE -0.26  0.35 WPUO0121 027  0.25
UEMPMEAN -0.61 047 Agric -1.65 0.51 UEMPMEAN 0.55  0.13 Agric -1.53  0.59
UEMPLT5 -1.19  0.52 Food -0.80  0.78 UEMPLT5 -1.89  0.73 Food -0.49  0.72
UEMP5TO14 -1.49  0.58 Soda -0.54  0.61 UEMP5TO14 -1.57  0.65 Soda -0.28  0.50
UEMP150V 036 0.20 Beer -0.62 083 UEMP150V 1.17 0.03 Beer -0.62 083
UEMP15T26 -0.76 0.8 Smoke -0.15 027 UEMP15T26 -0.49  0.80 Smoke 0.53  0.22
UEMP270V 095 0.11 Toys -0.70  0.64 UEMP270V 1.27 0.02 Toys -0.39  0.52
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PAYEMS
USGOOD
USMINE
USCONS
MANEMP
DMANEMP
NDMANEMP
USFIRE
CES9091000001
USTRADE
USTPU
HOUST
HOUSTNE
HOUSTS
HOUSTW
PERMIT
PERMITNE
PERMITMW
PERMITS
PERMITW
MNFCTRIRSA
MI1SL
M2SL

MABMM301USM189S

M2REAL
AMBSL
CPIAPPSL
CPITRNSL
CPIMEDSL
CUSRO000SAC
CUSRO000SAD
CPILFESL
CPIAUCSL
FEDFUNDS
TB3MS
TB6MS
GS1
GS2
GS3
GS5
GS7

-2.57
-4.81
-1.12
-2.23
-4.48
-3.84
-1.83
-2.53
-3.65
0.05
-1.28
-3.48
-1.68
-2.65
-3.33
-2.88
-2.04
-3.02
-2.41
-3.76
-0.44
-14.66
0.05
0.11
-5.83
-268.64
-1.01
-5.84
-1.56
-3.16
-1.09
1.29
-2.78
-3.58
-3.70
-3.51
-1.72
-0.41
-1.05
-1.17
-1.16

0.31
0.11
0.46
0.56
0.06
0.07
0.10
0.51
0.86
0.19
0.37
0.51
0.61
0.46
0.60
0.47
0.63
0.51
0.48
0.39
0.60
0.30
0.23
0.22
0.62
0.18
0.46
0.25
0.09
0.73
0.72
0.03
0.16
0.76
0.69
0.71
0.86
0.36
0.93
0.93
0.91

Fun
Books
Hshld
Clths

Hlth

MedEq
Drugs
Chems
Rubbr
Txtls
BldMt
Custr
Steel
FabPr
Mach
ElcEq
Autos
Aero
Ships
Guns
Gold
Mines

Coal

Oil

Util
Telem
PerSv
BusSv

Comps
Chips
LabEq
Paper
Boxes
Trans
Whisl
Rtail
Meals
Banks
Insur
RIEst
Fin

-2.50
-1.07
-1.19
-0.65
-0.95
-0.91
-0.28
-1.20
-1.59
-1.89
-1.33
-1.09
-2.93
-1.42
-1.13
-1.88
-1.83
-1.24
-1.83
-0.91
-0.69
-3.39
-2.25
-1.19
-1.57
-1.15
-0.79
-0.32
-1.76
-1.61
-0.88
-1.06
-1.17
-0.65
-1.08
-0.24
-1.21
-1.68
-0.58
-1.80
-1.76

0.70
0.46
0.84
0.69
0.64
0.66
0.38
0.58
0.76
0.90
0.71
0.79
0.83
0.79
0.64
0.82
0.45
0.79
0.78
0.92
0.83
0.59
0.61
0.82
0.82
0.72
0.87
0.50
0.84
0.76
0.57
0.73
0.87
0.57
0.87
0.40
0.88
0.71
0.41
0.90
0.75

PAYEMS
USGOOD
USMINE
USCONS
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DMANEMP
NDMANEMP

USFIRE
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USTRADE
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M2SL
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M2REAL
AMBSL
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CPITRNSL
CPIMEDSL
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CPILFESL
CPIAUCSL
FEDFUNDS

TB3MS
TB6MS
GS1
GS2
GS3
GS5
GS7

1.67
2.17
-0.17
-0.24
2.24
2.97
0.12
-0.78
-0.84
0.49
-0.04
0.52
-0.27
1.09
-0.34
0.97
-0.16
-0.62
0.71
1.49
-0.12

-16.31

-1.56
-1.51
-6.89
-3.48
-0.94
-0.29
0.03
-0.22
-0.98
1.44
-0.33
-1.64
-2.02
-1.66
-1.76
-0.13
-1.07
-1.21
-1.25

0.04
0.01
0.30
0.46
0.01
0.00
0.12
0.60
0.78
0.10
0.32
0.20
0.35
0.06
0.50
0.09
0.48
0.62
0.11
0.05
0.54
0.54
0.72
0.71
0.83
0.88
0.45
0.42
0.20
0.43
0.70
0.04
0.41
0.78
0.67
0.65
0.87
0.31
0.93
0.95
0.94

Fun
Books
Hshld
Clths

Hlth

MedEq
Drugs
Chems
Rubbr
Txtls
BldMt
Custr
Steel
FabPr
Mach
ElcEq
Autos
Aero
Ships
Guns
Gold
Mines
Coal
Oil

Util
Telem
PerSv
BusSv

Comps
Chips
LabEq
Paper
Boxes
Trans
Whisl
Rtail
Meals
Banks
Insur
RIEst
Fin

-1.74
-0.44
-0.91
-0.42
-0.96
-0.33
0.05
-0.23
-0.68
-1.45
-0.48
-0.61
-2.82
-1.24
-0.58
-1.48
-1.41
-1.11
-1.35
-0.88
-0.71
-2.01
-1.82
-0.52
-1.04
-1.09
-0.61
-0.24
-1.33
-0.82
-0.42
-0.90
-0.99
-0.10
-0.79
0.00
-0.99
-0.76
-0.38
-1.36
-1.39

0.64
0.35
0.76
0.60
0.66
0.62
0.29
0.39
0.63
0.84
0.52
0.74
0.88
0.77
0.56
0.83

0.76
0.71
0.91
0.83
0.56
0.65
0.71
0.83
0.74
0.81
0.49
0.79
0.63
0.49
0.69
0.85
0.38
0.86
0.33
0.84
0.53
0.43
0.85
0.72
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Table A6: Out-of-sample predictability using macro predictors: A Utility%. The utility gain (A Utility)
is the portfolio management fee (in annualized percentage return) that an investor with mean-variance preferences
and risk aversion coefficient of three would be willing to pay to have access to the forecasting model considered
relative to the historical average benchmark forecasting model; the weight on stocks in the investor’s portfolio
is restricted to lie between 0 and 1.5 (inclusive). Base employs the predicted returns without constraints while
Restricted replace the negative forcasts with zero. The results refer to monthly forecasts for the out-of-sample
period 2000-2017. Results in Bold imply an annual utility gain higher than 1%.

A Utility Base Restricted A Utility Base Restricted A Utility Base Restricted A Utility Base Restricted
DSPIC96 2.34 2.15 USGOOD 5.78 5.97 GS10 -1.54 -1.54 Books -0.80 -0.28
PCEPILFE 0.26 0.15 USMINE -0.31 0.36 T10Y3MM -1.23 -1.17 Hshld -0.83 -0.43
PCE 2.10 2.79 USCONS 1.38 1.42 T1YFFM -0.40 -0.82 Clths -0.52 -0.19
CMRMTSPL 1.27 1.46 MANEMP 5.19 4.76 TEMFFM -0.39 -0.74 Hith -1.94 -1.91
RSXFS 2.03 1.75 DMANEMP 6.22 5.95 T10Y2YM -0.70 -0.35 MedEq -0.29 0.12
TOTALSA 1.36 0.93 NDMANEMP 4.24 4.18 BAALOYM -0.84 -0.97 Drugs 0.79 0.65
MARTSMPCSM44000USS ~ 6.85 5.29 USFIRE 1.22 1.35 IRLTLT01USM156N  -1.54 -1.54 Chems -1.61 -1.06
UMCSENT -0.01 0.90 CES9091000001 -0.38 -0.27 AAA -0.74 -0.88 Rubbr -1.07 -0.73
MICH 2.96 2.35 USTRADE 2.99 2.98 BAA -1.19 -1.06 Txtls -2.40 -1.91
CSCICPO3USMG665S 1.30 2.59 USTPU 2.65 2.60 AAAI0YM -2.06 -1.78 BldMt -1.86 -1.53
MVGFDO027TMNFRBDAL ~ 1.68 1.61 HOUST 1.72 2.54 AAAFFM 2.12 2.07 Cnstr -1.64 -1.32
INDPRO 1.95 2.27 HOUSTNE -1.03 -0.53 T5YFFM -0.13 -0.21 Steel -1.62 -1.43
TPMAN 2.24 2.32 HOUSTS 1.68 2.28 T3MFFM 1.40 0.63 FabPr -1.16 -0.92
IPDCONGD 2.62 2.69 HOUSTW 1.27 2.02 EXBZUS 1.23 1.81 Mach -1.66 -1.32
IPMAT 2.19 2.59 PERMIT 1.58 2.38 EXMXUS 0.90 0.57 ElcEq -1.21 -0.95
IPBUSEQ 2.38 3.07 PERMITNE 0.27 0.95 EXINUS 1.34 1.85 Autos -1.37 -1.23
IPFUELS -1.78 -1.50 PERMITMW 1.29 1.77 RBUSBIS 0.12 0.33 Aero -2.31 -2.04
IPB51222S -2.20 -1.39 PERMITS 1.13 2.00 NBUSBIS -1.10 -0.63 Ships -1.90 -1.59
IPFINAL 1.79 2.38 PERMITW 1.97 2.60 TWEXBMTH -1.13 -0.65 Guns -1.08 -0.94
TCU 1.69 1.81 MNFCTRIRSA 0.32 0.30 EXSZUS -1.54 33 sold -2.02 -2.00
IPG211111CS -1.55 -1.55 MISL -1.86 -1.78 EXJPUS -1.67 -1.55 Mines -0.35
DGORDER -1.53 -1.40 M2SL 0.15 -0.18 EXUSUK -0.82 -0.27 Coal 0.39
ACDGNO 2.40 1.86 MABMM301USM189S  0.19 -0.14 EXCAUS 0.25 0.66 Oil -0.60
NEWORDER -1.65 -1.55 M2REAL -1.33 -1.42 MCOILWTICO -0.61 -0.11 Util -0.02
INVCMRMTSPL 0.73 1.70 AMBSL -2.13 -1.96 PCU2122221222 -0.15 0.00 Telem -0.81
BUSLOANS 0.83 1.38 CPIAPPSL -0.44 -0.28 WPUSIO19011 0.39 0.45 PerSv -1.07
TOTALSL -0.57 -0.52 CPITRNSL -0.31 -0.27 PPIACO -1.18 -0.99 BusSv 0.19
AHETPI 0.04 0.79 CPIMEDSL -0.44 -0.46 WPSFD49207 -1.08 -0.67 Comps -0.18
CES2000000008 -0.02 0.39 CUSRO000SAC -0.61 -0.34 WPSFD4111 -0.25 -0.26 Chips 0.48
CES3000000008 0.15 0.14 CUSRO0000SAD -1.62 -1.48 WPSID612 1.80 1.76 LabEq -0.01
CES0600000008 -0.56 -0.52 CPILFESL 0.36 0.19 1Q00200 1.53 1.21 Paper -1.51
CIVPART -0.59 0.09 CPIAUCSL -0.12 -0.62 WPU01830131 0.31 0.38 Boxes -2.18
UNRATE 1.18 1.18 FEDFUNDS 0.13 0.94 WPU0121 0.61 0.99 Trans -0.68
UEMPMEAN -0.33 0.78 TB3MS 0.24 0.87 Agric -0.32 -0.26 Whisl -1.62
UEMPLT5 -0.77 -0.97 TB6MS -0.04 0.73 Food 0.43 0.49 Retail -0.12
UEMP5TO14 -1.64 -1.58 GS1 -0.71 -0.85 Soda 0.06 0.27 Meals -1.08
UEMP150V 3.61 3.46 GS2 -0.18 -0.11 Beer -0.52 -0.45 Banks -1.00
UEMP15T26 -0.90 -0.73 GS3 -1.09 -1.22 Smoke 3 Insur 0.33
UEMP270V 3.99 3.75 GS5 -1.12 -1.13 Toys -0.55 RIEst -1.31
PAYEMS 3.39 3.45 GS7 -1.16 -1.17 Fun -1.56 Fin -0.52
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Table A7: Unit Root and Cointegration Tests.

when a maximum of 4 lags are considered.

The upper part of the table reports the p-value for the
Augmented Dickey Fuller and Phillips-Perron Test for the existence of a unit root in the time series employed
In the lower table we report the Results for the Engle-Granger
cointegration test and for the Johansen cointegration test. The pairwaise p-values are reported for the Engle-
Granger test. For the Johansen test we report the results coming from our test with the 10", 5t and 15¢ critical

values tabulated by Johansen for the identification of the presence of different unit roots.

Unit Root ADF test PP test Unit Root ADF test PP test
TOT 0.01 0.01
Sentiment 0.46 0.62 Sen ret 0.01 0.01
DVRP 0.01 0.01 DVRP ret 0.01 0.01
FU 0.14 0.48 FU ret 0.01 0.01
Income 0.01 0.01 Inc ret 0.01 0.01
Industrial Production 0.01 0.01 Ind Pr ret 0.01 0.01
Labor 0.34 0.03 Labor ret 0.01 0.01
House 0.88 0.90 House ret 0.01 0.01
Inflation 0.01 0.01 Inf ret 0.01 0.01
Engle-Granger Sent Unc Labor House
Sent 0.05 0.10 0.05
Unc 0.05 0.09 0.10
Labor 0.09 0.06 0.10
House 0.10 0.10 0.10
Johansen test 10pct 5pct 1pct
r<=3 1.33 6.5 8.18 11.65
r<= 2 7.92 15.66 17.95 23.52
r<=1 17.26 28.71 31.52 37.22
0 46.65 45.23 48.28 55.43
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Figure 4.5: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the SMB, HML, RMW, and CMA factors. In the lower plot we draw results
for the LT, ST and Momentum (Mom) factors.
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Figure 4.6: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the ROA, Distress, and Composite Eq Issue anomalies. In the lower plot we
draw results for the NOA, Accruals and O anomalies.
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Figure 4.7: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the Asset Growth, Gross Prof, Inv to Assets and, Net Stock Issues. In lower plot
we draw results for OLS, Pooled Forecast median, Pooled Forecast MDSFE, and Diffusion Index which employ
as inputs the 17 factors-anomalies spread-returns.
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Figure 4.8: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100).
In this plot we draw results for MARS SVM, SIC SVM, and, LASSO SVM which employ as inputs the 17
factors-anomalies spread-returns
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Figure 4.9: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the Asset Growth, Gross Prof, Inv to Assets and, Net Stock Issues. In the
lower plot we draw results for OLS, Pooled Forecast median, Pooled Forecast MDSFE, and Diffusion Index which
employ as inputs the 17 factors-anomalies spread-returns.
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Figure 4.10: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the Asset Growth, Gross Prof, Inv to Assets and, Net Stock Issues. In the
lower plot we draw results for OLS, Pooled Forecast median, Pooled Forecast MDSFE, and Diffusion Index which
employ as inputs the 17 factors-anomalies spread-returns.
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Figure 4.11: Historical average benchmark forecast model cumulative square prediction error minus
individual predictive regression forecast model cumulative square prediction error (times 100). In
the upper plot we draw results for the Asset Growth, Gross Prof, Inv to Assets and, Net Stock Issues. In the
lower plot we draw results for OLS, Pooled Forecast median, Pooled Forecast MDSFE, and Diffusion Index which
employ as inputs the 17 factors-anomalies spread-returns.
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Orthogonal Impulse Response from TOT Orthogonal Impulse Response from Sentiment Orthogonal Impulse Response from DVRP
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Figure 4.12: Impulse Response Function R%S levels. This Figure shows the response of the Total R%)S to
the following impulses: (a) R% 4, (b) Greed, (c) Fear, (d) Uncertainty, (e) Income, (f) Industrial Production, (g)
Labor, (h) House, (i) Inflation
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Figure 4.13: Impulse Response Function Greed returns. This Figure shows the response of the Gread return

to the following impulses: (a) R% 4, (b) Greed, (c) Fear, (d) Uncertainty, (e) Income, (f) Industrial Production,
(g) Labor, (h) House, (i) Inflation
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Orthogonal Impulse Response from TOT Orthogonal Impulse Response from Sentiment ret Orthogonal Impulse Response from DVRP.ret
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Figure 4.14: Impulse Response Function Fear returns. This Figure shows the response of the Fear return
to the following impulses: (a) R% g, (b) Greed, (c) Fear, (d) Uncertainty, (e) Income, (f) Industrial Production,
(g) Labor, (h) House, (i) Inflation
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Figure 4.15: Impulse Response Function Uncertainty returns. This Figure shows the response of the

Uncertainty return to the following impulses: (a) R4, (b) Greed, (c) Fear, (d) Uncertainty, (e) Income, (f)
Industrial Production, (g) Labor, (h) House, (i) Inflation
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