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Abstract

Recent years have seen the rapid growth in interest towards fractional calcu-
lus. Fractional calculus plays an important role in modelling anomalous diffu-
sion phenomena, however closed-form analytical solutions of such equations are
rarely available, hence numerical estimates are needed.

In this thesis we consider various fractional diffusion equations (FDEs), where
different fractional derivative definitions and related discretizations are involved
and we focus on multigrid-based approaches for solving the associated linear sys-
tems. Precisely, we will leverage the spectral properties of the coefficient matrix,
retrieved by exploiting its structure, to design ad-hoc (tailored) multigrid solvers
or preconditioners for Krylov methods.

We develop a new approach to compute the Jacobi weight, which is versatile
enough to work with various FDEs and allows to build a parameter free multi-
grid method. Moreover, in the case of uniform meshes, we exploit the knowl-
edge about anisotropic integer-order partial diffusion equations to deal with
anisotropic FDEs, by building a robust multigrid-based solver. Furthermore, we
study the behavior of multigrid methods as parallel-in-time solvers and, then,
we provide a new second-order accurate finite volume approximation and re-
lated ad-hoc multigrid solver. Finally, we extend our multigrid strategies to
deal with a singular one-dimensional space-FDE discretized over non-uniform
meshes.
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Introduction

The history of the fractional calculus goes back to seventeenth century, when in
1695 the derivative of order α= 1

2 was described by Leibniz in his letter to L’Hôpital
Leibniz [1849, 1962a,b] 1. Since then the interest in the theory is grown and
applications have been found in biophysics, quantum mechanics, wave theory,
polymers, continuum mechanics, Lie theory, field theory, spectroscopy and in
group theory (see Tenreiro Machado [2011]; Oldham and Spanier [n.d.]; Pod-
lubny [1998] and references therein).

In this thesis we deal with multigrid methods for different type of fractional dif-
fusion equations (FDEs), which are shown to be useful in modelling anomalous
diffusion processes in complex media, e.g., the dispersion of pollutant in under-
ground water Zhang et al. [2021] or the propagation of the electrical potential
in heterogeneous cardiac tissue Liu et al. [2015]; Bueno-Orovio et al. [2014]. By
anomalous diffusion we mean the mesoscopic process of transport of particles,
which differs from the standard diffusion process (Brownian motion).
The fractional diffusion can occur in time and/or space. In time, it generates
a non-markovian process with an anomalous diffusion law Michelitsch et al.
[2020]; Mainardi et al. [2001], whereas in space it generates a non-local dif-
fusion process with “fat tails” Mainardi et al. [2001]. In this thesis we consider
the case in which the fractional diffusion only occurs in space. To visualize the
problem let us consider, e.g., the generalization to non-integer derivative order
of the two-dimensional standard diffusion equation

∂ u(x , y, t)
∂ t

= d(x , y, t)
�
∂ αu(x , y, t)
∂+xα

+
∂ αu(x , y, t)
∂−xα

�
+

+e(x , y, t)

�
∂ βu(x , y, t)
∂+ yβ

+
∂ βu(x , y, t)
∂− yβ

�
+ v(x , y, t),

(1)

where ∂ α

∂±xα , ∂ β

∂± yβ are the left (+) and right (−) fractional derivative operators of

1Taken from Katugampola [2014]
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order α,β ∈ (1,2) in x- and y-variable, respectively, d(x , y, t), e(x , y, t) are the
diffusion coefficients and v(x , y, t) is the forcing term. Concerning the boundary
conditions, we mention that, due to the non-locality of the fractional operators,
in order to have a well-posed Cauchy problem, the behavior of u must be speci-
fied not just at the boundary but also at all points exterior to the domain Defterli
et al. [2015].
Of course, when α = β = 1 equation (1) is an advection equation, while for
α=β=2 equation (1) is a diffusion equation. Therefore, it is clear that varying
α,β ∈ (1,2) equation (1) models different phenomena ranging from advection
to diffusion.
The improved physical description of the considered phenomenon, however, trans-
lates in a harder numerical treatment of the corresponding discretized problem.
Indeed, even when standard local discretization methods like finite differences or
finite elements are adopted, the non-locality of the fractional operators ∂ α

∂±xα , ∂ β

∂± yβ

causes absence of sparsity in the discretization matrices Ghorbani and Baleanu
[2020]; Breiten et al. [2014]. The good news is that, in presence of uniform grids,
and some other special non-uniform meshes, the discretization matrices show a
Toeplitz-like structure Donatelli et al. [2016, 2018]; Breiten et al. [2014], in the
sense that they are expressed as a sum of products between diagonal and (dense)
Toeplitz matrices, and this paves the way for the design of iterative solvers spe-
cialized for Toeplitz-like linear systems.
Toeplitz matrices Grenander and Szegö [1958] are structured matrices which
allow fast matrix-vector products through the Fast Fourier Transfrom (FFT) algo-
rithm Brigham [1973]with a computational cost of O(N log N) operations, where
N is the matrix-size. Moreover, in the case of a Toeplitz matrix, the singular value
distribution of the matrix can be approximated through a uniform sampling of
the function associated to the matrix, called symbol. This spectral result can be
extended to the Toeplitz-like matrices through the so-called Generalized Locally
Toeplitz (GLT) theory, which is briefly introduced in Section 1.3.2 and widely
used throughout the thesis. In case of Hermitian matrices, these results can be
extended to the eigenvalues.

Throughout the history of fractional calculus, several definitions for the non-
integer order derivative operators ∂ α

∂±xα have been proposed. Three popular defi-
nitions were given by Grünwald-Letnikov (GL), Riemann-Liouville (RL) and Ca-
puto Podlubny [1998]; Samko et al. [1993]. The GL fractional derivative, dif-
ferently from the RL and Caputo operators, is expressed as a weighted sum of
uniformly sampled function. It is usually employed to discretize the RL operator
whenever uniform meshes are adopted, under proper smoothness assumptions.
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The RL and Caputo fractional derivative operators are each represented as the
convolution between a singular kernel and a function. In some cases, the singular
kernel causes the solution to exhibit weak singularities near the boundaries and
this translates in a harder numerical treatment of the corresponding discretized
problems Stynes [2019]; Gracia et al. [2018]; Stynes [2016].
Attempting to avoid this problem, some authors have proposed modifications to
the RL and Caputo fractional derivatives, where the singular kernel is replaced
by a non-singular one. Even if this new operators are widely used in literature,
unfortunately, these operators with non-singular kernels have serious shortcomings
that strongly discourage their use Diethelm et al. [2020]. Therefore, in this work
we will only consider the three aforementioned classical fractional derivative op-
erators.

Traditionally, FDEs were solved through the Gaussian elimination with the pro-
hibitive computational cost of O(N 3) operations Agrawal [2006]; Ashyralyev
et al. [2009]. In case of a time-dependent FDE the computational cost further
increases, since the Gaussian elimination has to be run at each time step. Then,
with the growing interest in FDEs, specialized solvers were developed.
In this thesis we will design ad-hoc (tailored) multigrid methods (MGMs) Ruge
and Stüben [1987]. MGMs consist in the combination of two iterative methods
known as smoother and Coarse Grid Correction (CGC). The smoother is usually
a stationary iterative method like weighted Jacobi or Gauss-Seidel, while the
CGC has the purpose to speed up the convergence in the subspace where the
smoother is not efficient, by projecting the error equation over a coarser grid,
then projecting back the solution over the fine grid and finally applying the cor-
rection to the solution approximated by the smoother. Projectors and smoother
are set according to the spectral properties of the coefficient matrix, which, in
case of structured matrices, are retrieved through a symbol-based analysis. The
resulting algorithm is called Two-Grid Method (TGM). An extension which re-
cursively calls TGM, instead of directly solving the error equation on the coarse
level, is called V-ccycle.
In order to increase their robustness, MGMs are often used as preconditioners
Trottenberg et al. [2000] for Krylov methods, e.g., the well-known Generalized
Minimum RESidual (GMRES) Liesen and Strakos [2013]. The idea behind pre-
conditioning is to construct a matrix P, whose inverse is cheap to compute and
such that the preconditioned linear system P−1Ax = P−1 b becomes easier to
solve, i.e., P−1 A ≈ I , with I the identity matrix.

Among specialized sequential solvers for time-dependent FDEs similar to the one
in equation (1), for the one-dimensional case we mention the circulant precon-
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ditioning in Lei and Sun [2013], the MGM in Pang and Sun [2012], and the
structure preserving tridiagonal preconditioners in Donatelli et al. [2016]. The
latter preconditioners were motivated by the spectral study of the coefficient ma-
trices through the notion of symbol and by the GLT theory.
In the two-dimensional setting, classical preconditioners based on multilevel
circulant matrices are not well-suited, while MGMs, possibly used as precon-
ditioners, can be effective and robust solvers. Moreover, a two-dimensional
space involves two fractional derivative operators, one for each dimension, with
two potentially different fractional derivative orders α,β . In the case where
α≈ β , some multigrid proposals for FDEs discretized with finite differences can
be found in Lin et al. [2017b,a]; Moghaderi et al. [2017]. In the first refer-
ence, a Toeplitz splitting preconditioner is combined with a MGM having block
Jacobi as smoother. In Lin et al. [2017a], a multigrid approach suitable for non-
rectangular domains has been designed employing two banded splitting itera-
tion schemes as pre-smoother and post-smoother. In Moghaderi et al. [2017],
the spectral approach presented in Donatelli et al. [2016] has been extended to
two-dimensional FDEs and has been used to define a multigrid preconditioner
built using either rediscretization or a two-dimensional scaled-Laplacian matrix,
which is particularly effective when the fractional orders are both close to 2, i.e.,
when equation (1) is close to a standard integer-order diffusion equation. When
finite element or finite volume discretizations are adopted, MGMs are investi-
gated in Jiang and Xu [2015] and Donatelli et al. [2018], respectively.
All the aforementioned multigrid strategies do not take into account the case
where α and β are far from each other, i.e., when the FDE problems suffer from
some sort of anisotropy. By anisotropy we mean a stronger diffusion along one
coordinate axis with respect to the other. In Chapter 2, as a possible source of
anisotropy for two-dimensional FDE problems, as in (1), we consider a large dif-
ference in the fractional derivative orders. Precisely, when α ≈ 1 and β ≈ 2,
or vice versa, the problem shows an intrinsic anisotropy in the coordinate cor-
responding to the minimum fractional order. Another source of anisotropy is
related to the diffusion coefficients that multiply the fractional operators. The
latter kind of anisotropy will not be treated in this thesis. The anisotropy can be
emphasized or reduced by the choice of the space grid widths. An ad-hoc grid
could potentially avoid the anisotropy, but, as a drawback, in case of a strong
anisotropy the ad-hoc grid could be much finer than the actually needed one,
leading to an increase in the computational effort required for solving the equa-
tion.

Efficient multigrid strategies for anisotropic integer order partial differential equa-
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tions (PDEs) have been investigated in Fischer and Huckle [2006, 2008]; Oost-
erlee [1995]; Van Lent and Vandewalle [2002]; Washio and Oosterlee [1998]. In
Fischer and Huckle [2006], the authors propose a V-cycle with ad-hoc projectors
combined with the weighted Jacobi smoother, and they prove the optimality of
the corresponding TGM version. In Fischer and Huckle [2008], the same authors
focus on the use of more sophisticated smoothing techniques such as block Ja-
cobi method. An alternative strategy that combines a standard V-cycle and that
uses a V-cycle with semi-coarsening as smoother has been proposed in Oosterlee
[1995]; Van Lent and Vandewalle [2002]; Washio and Oosterlee [1998]. The
resulting algorithm is the non-standard MGM known as “multigrid as smoother"
(MG-S).
In Chapter 2, inspired by the ideas in Fischer and Huckle [2006, 2008]; Oost-
erlee [1995]; Van Lent and Vandewalle [2002]; Washio and Oosterlee [1998]
on MGMs for anisotropic PDEs and by the results in Moghaderi et al. [2017] on
MGMs for isotropic FDEs, we consider an adaptation to our case of the original
MG-S algorithm as GMRES preconditioner, which turned out to be robust with
respect to the anisotropy of the problem. Concerning the Jacobi method inside
the V-cycle smoother, we extend the spectral analysis in Moghaderi et al. [2017]
to the anisotropic case and then we use the retrieved information for estimating
the smoothing parameter of weighted Jacobi. We stress that this approach, in-
troduced in Section 2.4, will be used to estimate the Jacobi weight of most of the
ad-hoc MGMs we develop in this work, allowing to build a versatile parameter
free MGM.

Due to the sequentiality of time integration, with none of the aforementioned
approaches we can aspire towards complete independence of time of the over-
all computational cost. By contrary, an all-at-once rephrasing of the discretized
problem over a uniform space-time grid, obtained by considering the time as an
additional dimension, yields large (multilevel) Toeplitz linear systems and opens
to parallelization.
In this regard, we mention the banded Toeplitz preconditioner proposed in Zhao
et al. [2020] for solving non-linear space-FDEs, and the block structured precon-
ditioner given in Bertaccini and Durastante [2019] for dealing with arbitrary di-
mensional space problems. In Gu et al. [2015]; Ran and Zhang [2020] a Strang-
type circulant preconditioner for solving FDEs by boundary value methods has
been proposed. In the case of equal left and right diffusion coefficients, we also
mention the multigrid reduction in time (MGRIT) discussed in Yue et al. [2019].
Therein, the authors consider finite elements in space and Crank-Nicolson in
time, since the MGRIT is specifically tailored for one step methods.
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Chapter 3 fits within this framework. Precisely, we build a fast and efficient
parallel-in-time structure-based multigrid solver. We fix our attention on the
one-dimensional version of the FDE treated in Chapter 2. We stress that this
one-dimensional problem turns out to be already a tough one, due to the block
structure of the coefficient matrix and to its possibly anisotropic character be-
cause of the grid choice and the diffusion coefficients.
For the time discretization, we opt either for Crank-Nicolson (CN) or second-
order Backward-Difference Formula (BDF2) schemes. The unconditional stabil-
ity of CN combined with a Weighted and Shifted Grünwald Difference (WSGD)
space discretization has already been proven in Tian et al. [2015]. Concerning
BDF2, in Section 3.2 we extend the result of unconditional stability, obtained in
Liao et al. [2018] for central finite difference space discretization scheme, to the
case of a WSGD space discretization scheme.
In order to build a parallel-in-time multigrid, we consider block Jacobi as smoother,
since it is parallelizable and, unlike standard weighted Jacobi, does not ask for
a parameter estimation. Moreover, exploiting the Toeplitz structure of the coef-
ficient matrices and related symbols, we define the projectors according to what
has been done in the integer-order literature for both isotropic Arico et al. [2004]
and anisotropic Toeplitz linear systems Fischer and Huckle [2006].
The performances of the proposed MGMs reveal sensitive to the choice of the time
discretization scheme. Indeed, many numerical tests show that Crank-Nicolson
prevents the multigrid to yield good convergence results, while BDF2 scheme
allows good convergence under certain conditions on the grid and the diffusion
coefficients.

Aiming at extending our multigrid approaches to different FDEs and discretiza-
tion approaches, in Chapter 4 we focus on a two-dimensional conservative steady-
state Riesz FDE. As is typical for problems in conservative form Eymard et al.
[2000], we adopt a Finite Volume (FV) discretization approach. Precisely, we
use both classical FVs and the so-called Finite Volume Elements (FVEs), which
consists in a mixed approach between FV and finite elements. While FVEs have
already been applied in the context of FDEs Wang and Du [2013]; Liu et al.
[2014], classical FVs have only been previously applied in first order discretiza-
tions Hejazi et al. [2013, 2014].
The one-dimensional version of such FDE was first treated by FVE in Wang and
Du [2013], and a FVE method for a two-sided time-dependent space-FDE was
introduced in Liu et al. [2014]. In Feng et al. [2015], the latter scheme was
proven to be unconditionally stable and convergent with second-order accuracy.
A FV approach to solve an advectiondispersion equation with constant dispersion
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coefficient was given in Zhang et al. [2005]. In Hejazi et al. [2014] Hejazi et al.
proved its stability and first-order accuracy, while a second-order FV discretiza-
tion was missing in the literature.
Less work has been done in the treatment by finite volume-based methods of
the two-dimensional FDE. In Jia and Wang [2016] Jia and Wang presented a
fast FVE method for conservative space-FDEs with variable coefficients on con-
vex domains, while in Yang et al. [2014] Yang et al. extended the FV method to
the two-dimensional fractional Laplacian.
Therefore, in Chapter 4 we introduce a new second-order FV discretization over
uniform meshes, based on a modification of the WSGD scheme used in Chapter
2. This again leads to Toeplitz-like linear systems, whose structure is exploited
to build an ad-hoc multigrid solver, which is then compared to other solvers in
literature.
The absence of time dependency of the considered FDE allows to focus on the
space discretization scheme avoiding to concern about the stability of the time
stepping algorithm. An eventual adaptation of the multigrid-based solver to the
sequential time stepping algorithm is almost straightforward and would essen-
tially follow the work done in Chapter 2.

Throughout our studies, we came across models whose solution presents singu-
larities near the boundaries. Since MGMs turned out to be robust solvers and
preconditioners when uniform meshes were employed, in Chapter 5 we aim at
extending the strategies learned in the previous works to the non-uniform case
for solving a conservative Caputo FDE, whose solution is known to exhibit sin-
gularities near the boundaries Kopteva and Meng [2020]; Stynes [2016]. We
introduce a grid mapped by a smooth function which yields a graded mesh near
the singularity and a uniform mesh where the solution is smooth. This gives rise
to a partially Toeplitz discretization matrix and allows to speed up the matrix-
vector products. Then, through the spectral study of the coefficient matrix by
means of the GLT theory, we build an ad-hoc multigrid-based preconditioner. In
the numerical results section, we test the behavior of our multigrid proposal over
different grids and make comparisons with the composite mesh used in Jia and
Wang [2015] and their respective proposal, which consists in a circulant based
preconditioner. Our numerical results suggest that MGMs are also suitable pre-
conditioners for FDEs when non-uniform meshes are employed.

We stress that our symbol-based weight estimate for Jacobi, which is used in all
our multigrid proposals, except for Chapter 3, has a low computational impact,
is versatile and makes multigrid a parameter free solver, avoiding a long and
not trivial spectral analysis. Finally, throughout our studies we noticed similar
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spectral properties of the discretization matrices, i.e., similar ill-conditioning,
which suggests that MGMs could be applied in a wider variety of FDEs then the
ones considered by us.

The thesis is organized as follows.

• In Chapter 1 we fix the notation and recall definitions and the basic tools
needed to understand the reminder of this work. We give the definition
of Toeplitz and multilevel Toeplitz matrices and briefly introduce the GLT
theory, which is needed to retrieve the spectral properties of the discretiza-
tion matrices through the notion of symbol. Then we introduce MGMs, by
giving the algorithm and recalling some convergence results, and precon-
ditioning, by giving the idea behind it and by briefly introducing Krylov
methods. Finally, we recall the construction of the GL, RL and Caputo frac-
tional derivatives.

• In Chapter 2 we deal with an anisotropic time-dependent two-dimensional
space FDE. Therein we focus on the efficient solution of the two-level
Toeplitz-like linear systems which arise from the discretization of the FDE
over an equispaced mesh through the largely used CN-WSGD scheme, con-
sisting in a sequential-in-time second-order accurate finite difference scheme.
We provide a spectral study for the anisotropic case and we use the re-
trieved information for estimating the smoothing parameter of weighted
Jacobi. Then we define the non-standard MGM, called MG-S, as precondi-
tioner for GMRES which is applied to a band approximation of the coeffi-
cient matrix. In the numerical results section, many tests show MG-S to be
robust with respect to the anisotropy of the problem, even in the case of a
severe anisotropy.

• In Chapter 3, we consider the one-dimensional case of the FDE treated in
Chapter 2 and we develop a parallel-in-time multigrid solver. The parallel-
in-time interpretation comes from a reinterpretation of the
sequential-in-time discrete equation in which the time dimension is con-
sidered as an additional dimension and gives rise to a larger discretization
matrix. Such matrix has a block lower triangular structure, due to the se-
quentiality of time, where the number of blocks is equal to the amount of
time steps and each block represents the discretization along the space di-
mension of the FDE. We consider two different time schemes, such as CN
and the second-order accurate BDF2, and we provide the spectral study for
both. The retrieved information is used to build a parallel-in-time multi-
grid solver. The addition of the time dimension in the coefficient matrix
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introduces a further degree of difficulty, since anisotropy can occur be-
tween space and time. In the numerical results section we provide many
tests which show that BDF2 is more suitable for parallel-in-time integration
through MGMs than CN.

• In Chapter 4, we deal with other discretization approaches, specifically FVs
and FVEs, for solving a two-dimensional conservative FDE discretized over
an equispaced mesh. Therein we develop a new second-order accurate
FV scheme, we provide a spectral study of the discretization matrix and
we build an ad-hoc multigrid solver for both discretization approaches. In
the numerical results section we compare the two approaches in terms of
approximation error and behavior of MGM.

• In Chapter 5, we deal with a conservative Caputo FDE, where the fractional
derivative operator is a convex combination between the left and right Ca-
puto fractional derivatives. This kind of equation is known to yield singu-
lar solution even in the case of smooth diffusion coefficients and forcing
term. Therefore, we adopt non-uniform meshes and we provide the full
discretization over an unstructured arbitrary mesh through the FVE ap-
proach and, then, we exploit the GLT theory to retrieve the symbol of the
coefficient matrix in the case of a mesh mapped by a non-linear function.
The spectral information are used to develop a parameter free multigrid
preconditioner for GMRES, which in the numerical results section is proven
to yield good convergence results even in the case of a strong singularity.

All our main findings are summarized in the conclusion chapter.

Note that Chapters 2 to 5 are an adaptation of papers Donatelli et al. [2020];
Donatelli, Krause, Mazza and Trotti [2021a]; Donatelli, Krause, Mazza, Semplice
and Trotti [2021]; Donatelli, Krause, Mazza and Trotti [2021b], respectively, in
which abstract and introduction have been removed and part of the preliminaries
have been moved to Chapter 1. Moreover, in Chapter 3, differently from paper
Donatelli, Krause, Mazza and Trotti [2021a] we added Propositions 3.4.1 and
3.4.2 to provide more details regarding the convergence of the used method.
Finally, we mention paper Bogoja et al. [2021]where we used the GLT approach,
but that we did not discuss in this work as out-of-scope with respect to our main
purpose of providing fast solvers for FDEs.



10 List of Tables



Chapter 1

Preliminaries

The purpose of this chapter is to fix the notation, to introduce special matrix
structures, multigrid methods and different definitions of fractional derivatives,
which will be used throughout the thesis. In particular, in Sections 1.1 and 1.2
we respectively provide a list of notations and acronyms. In Section 1.3 we il-
lustrate some known tools necessary to retrieve spectral information of Toeplitz
matrices. This tools are then extended to the more general case of Toeplitz-like
matrices through the generalized locally Toeplitz theory. In Section 1.4 we in-
troduce multigrid methods and provide convergence results. Then we briefly
introduce Krylov methods and we give the idea behind preconditioning. Finally,
in Section 1.6 we introduce three famous definitions of fractional derivatives and
provide links between them.

1.1 Notation

• RN×M ,CN×M , are the linear spaces of the real or complex N ×M matrices,
respectively;

• IN ∈ RN×N is the identity matrix;
• Let d1, ..., dM ∈ R, then diagi=1,...,M(di), defines the M ×M diagonal matrix

whose diagonal elements are d1, ..., dM ;
• Let D1, ..., DM ∈ RN×N , then diagi=1,...,M(Di), defines the N M × N M block

diagonal matrix whose diagonal block are matrices D1, ..., DM ;
• Let A∈ CN×N , we denote by

– λi(A), i = 1, ..., N , the eigenvalues of A;
– ρ(A) = max

i=1,...,N
|λi(A)| the spectral radius of A;

11
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– AH the transpose conjugate of A;
– ‖A‖tr the trace norm of A (the sum of its singular values);
– ‖A‖1 ,‖A‖2 ,‖A‖∞ the induced 1-norm, 2-norm and infinity norm of

A, respectively.
• We shorten the notation {AN}N∈N of a matrix-sequence to {AN}N ;
• i is the imaginary unit;
• ⊗ denotes the Kronecker product;
• R+,R− are the sets of positive and negative real numbers, respectively;
• [a, b]d is the d-dimensional square [a, b]× · · · × [a, b] ⊂ Rd;
• bxc, dxe are the floor and ceiling of x , respectively.

1.2 Acronyms

• BDF2 second-order Backward-Difference Formula;
• BJ Block-Jacobi;
• BTTB Block-Toeplitz with Toeplitz-block;
• CGC Coarse Grid Correction;
• CN Crank-Nicolson;
• FDE Fractional Diffusion Equation;
• FFT Fast Fourier Transform;
• FV Finite Volume;
• FVE Finite Volume Element;
• GL Grünwald-Letnikov;
• GLT Generalized Locally Toeplitz;
• GMRES Generalized Minimal RESidual;
• MGM MultiGrid Method;
• MGRIT MultiGrit Reduction-In-Time;
• MG-S MultiGrid as Smoother;
• PDE Partial Differential Equation;
• PFASST Parallel Full Approximation Scheme in Space and Time;
• PFCGS Preconditioned Fast Conjugate Gradient Squared;
• RL Riemann-Liouville;
• SGD Shifted Grüwald Difference;
• TGM Two-Grid Method;
• WSGD Weighted and Shifted Grünwald Difference.
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1.3 Structured matrices

It is often the case that the discretization of a continuous linear operator yields
structured matrices. The knowledge on the structure is of crucial importance
when dealing with the solution of the resulting linear systems. In this section we
will focus on Toeplitz and Toeplitz-like structures.
Toeplitz matrices are key structured matrices which arise from the discretization
of shift invariant one-dimensional operators over uniform meshes, for instance
standard integer-order derivatives Serra-Capizzano [2002], integral operators
Böttcher et al. [2012] and also fractional differential operators Tian et al. [2015];
Donatelli et al. [2016, 2018]. In the case of a multi-dimensional operator, the re-
sulting discretization matrix shows a multilevel Toeplitz structure. Such a struc-
ture is not only interesting from a computational point of view, allowing fast
matrix-vector products, but it also provides tools to retrieve spectral informa-
tion.
In some cases, the discretization yields Toeplitz-like matrices, which consists in
apparently unstructured matrices with an hidden structure. Under proper hy-
pothesis, the spectral tools for Toeplitz matrices can be generalized to deal with
Toeplitz-like matrices, by means of the Generalized Locally Toeplitz (GLT) theory.
Finally, we briefly introduce circulant matrices, which are a subset of Toeplitz
matrices, and which will be often used as the main ingredient (preconditioner)
of a comparison solver for our multigrid proposals.

1.3.1 Toeplitz matrices

In order to explore the properties of such matrices to our aims, we first recall
some basic definitions, see, e.g., Bini et al. [1988].

Definition 1.3.1. Let f ∈ L1([−π,π]) and let { fk}k∈Z be the sequence of its Fourier
coefficients defined as

fk =
1

2π

∫ π

−π
f (θ )e−ikθdθ ,

then the Toeplitz matrix associated with f has the form

TN =


f0 f−1 · · · f−N+2 f−N+1

f1 f0 f−1 f−N+2
... f1

. . . . . . ...

fN−2
. . . . . . f−1

fN−1 fN−2 · · · f1 f0

 .
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The function f (θ ) =
∑

k∈Z fkeikθ , is called the generating function of TN , therefore
we denote such a matrix by TN ( f ).

Remark 1.3.1. If Tn is generated by f , then Tn
H is generated by f . Hence, Tn is

Hermitian whenever f is a real function. Furthermore, in the case where coefficients
fk are real, it holds that f (θ ) = f (−θ ) , hence if f is real then it is also even.

Toeplitz matrices, defined in Definition 1.3.1, are a particular case of the multi-
level Toeplitz matrices obtained below.

Definition 1.3.2. Let f ∈ L1([−π,π]d) and let { fk}k∈Zd be the sequence of its
Fourier coefficients defined as

fk :=
1

(2π)d

∫
[0,2π]d

f (θ )e−i〈k,θ 〉dθ ,

where 〈k,θ 〉 =∑d
t=1 ktθt . Then the d-level Toeplitz matrix of partial orders n =

(n1, ..., nd) associated with f is

T (d)N :=
�

fi− j

�n

i, j=1
=
h
· · ·�� fi1− j1,...,id− jd

�nd

id , jd=1

�nd−1

id−1, jd−1

· · ·
in1

i1, j1=1
,

where N =
∏d

i=1 ni is the order of the matrix.

To clarify the notation, a 2-level Toeplitz matrix of order N generated by f is
given by

T (2)N ( f ) =
��

f[i1− j1,i2− j2]

�n2

i2, j2=1

�n1

i1, j1=1
,

or equivalently
T (2)N ( f ) =

∑
| j1|≤n1

∑
| j2|≤n2

f[ j1, j2]J
[ j1]
n1
⊗ J [ j2]n2

,

where J [ ji]ni
∈ Rni×ni are matrices whose entry (s, t)-th equals 1 if s − t = ji and

0 elsewhere. In other words, a 2-level Toeplitz matrix is a block Toeplitz whose
blocks are Toeplitz, briefly BTTB. When d = 1, we simplify the notation us-
ing

TN ( f ) := T (1)N ( f ).

A key property of Toeplitz matrices is that approximations or bounds for their
spectra can be obtained exploiting the generating function. The following theo-
rem gives an estimated range for the real part of eigenvalues of a Toeplitz matrix
through the real part of its generating function. As a corollary, an upper bound
for the spectral radius follows.
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Theorem 1.3.1 (Bini et al. [1988]). Let f ∈ L1([0,2π]) be a complex-valued

function, A= TN ( f ), and f̃ = f + f
2 =: Re( f ). Then, for each λ eigenvalue of A, we

have
min

θ∈[0,2π]
f̃ (θ )< Re(λ)< max

θ∈[0,2π]
f̃ (θ ).

Theorem 1.3.1 extends to the multilevel case as discussed in Arico et al. [2004].

Corollary 1.3.1. Let f ∈ L1([0, 2π]d) be a real-valued function and A= T (d)N ( f ).
Then,

ρ (A)≤ max
θ∈[0,2π]d

| f (θ )|=: ‖ f ‖∞ .

Remark 1.3.2. We shall notice that if fmin > 0 or fmax < 0 then TN is positive or
negative definite, respectively.

1.3.2 GLT theory

The GLT class is a matrix-sequence algebra obtained as a closure under some al-
gebraic operations between Toeplitz and diagonal matrix-sequences generated by
functions. The GLT class includes matrix-sequences coming from the discretiza-
tion of differential operators with various techniques, such as finite differences,
finite volumes, finite elements, Isogeometric Analysis, etc. The formal definition
is difficult and involves a heavy notation, therefore we just give a basic definition
and report few properties, in the one-dimensional case, that we will need for our
studies (for a more detailed discussion see Garoni and Serra-Capizzano [2017]
for the unilevel case and Garoni and Serra-Capizzano [2018] for the extension
to the multilevel case).

Definition 1.3.3. A matrix-sequence whose N-th element is a diagonal matrix DN =
[di, j]Ni, j=1 ∈ RN×N such that di,i = d

�
i
N

�
, i = 1, ..., N with d : [0,1] → C a

Riemann-integrable function is called diagonal sampling sequence.

The functions f in definition 1.3.1 and d in definition 1.3.3 allow to estimate
the spectrum of the matrix-sequences {TN ( f )}N and {DN}, respectively, in the
following sense.

Definition 1.3.4. Let f : G→ C be a measurable function, defined on a measurable
set G ⊂ Rk with k ≥ 1, 0 < mk(G) <∞, where mk(G) is the Lebesgue measure of
the set G. Let C0(K) be the set of continuous functions with compact support over
K ∈ {R+0 ,C} and let {AN}N , be a sequence of matrices of size N with eigenvalues
λ j(AN ), j = 1, ..., N and singular values σ j(AN ), j = 1, ..., N.
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• {AN}N is distributed as the pair ( f , G) in the sense of the eigenvalues, in for-
mulae {AN}N∼λ ( f , G), if the following limit relation holds for all F ∈C0(C)

lim
N→∞

1
N

N∑
j=1

F(λ j(AN )) =
1

mk(G)

∫
G

F( f (t))dt. (1.1)

In this case, we refer to the function f as (spectral) symbol.

• {AN}N is distributed as the pair ( f , G) in the sense of the singular values, in
formulae {AN}N ∼σ ( f , G), if the following limit relation holds for all F ∈
C0(R+0 )

lim
N→∞

1
N

N∑
j=1

F(σ j(AN )) =
1

mk(G)

∫
G

F(| f (t)|)dt. (1.2)

In this case, we refer to the function f as singular values symbol.

Remark 1.3.3. An informal interpretation of the limit relation (1.1) (resp. (1.2))
is that when N is sufficiently large, the eigenvalues (resp. singular values) of AN

can be approximated by a sampling of f (resp. | f |) on a uniform mesh over the set
G, up to a relatively small number of potential outliers and where “relatively small"
means o(N).

For completeness we mention a classic result of distribution in the case of multi-
level Toeplitz matrices.

Theorem 1.3.2 (Grenander and Szegö [1958]; Tilli [1998]). Let f ∈ L1([0,2π]d)
be a complex function, then

{T (d)N ( f )}N∈N ∼σ
�

f , [0,2π]d
�

.

Furthermore, if f is a real valued function, it holds

{T (d)N ( f )}N∈N ∼λ
�

f , [0,2π]d
�

.

Throughout, we use the following notation

{AN}N ∼GLT ψ(x ,θ ), (x ,θ ) ∈ [0,1]× [0,2π],

to say that the sequence {AN}N is a GLT sequence with symbol ψ(x ,θ ).

Here we report five main features of the GLT class.

GLT1 Let {AN}N∈N ∼GLT ψ(x ,θ ) with ψ : Ω → C, Ω = [0,1] × [0,2π], then
{AN}N∈N ∼σ (ψ,Ω). If the matrices AN are Hermitian, then {AN}N∈N ∼λ
(ψ,Ω).
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GLT2 The set of GLT sequences form a ∗-algebra, i.e., it is closed under linear
combinations, products, inversion (whenever the symbol vanishes, at most,
in a set of zero Lebesgue measure), transposed conjugation: hence, the
sequence obtained via algebraic operations on a finite set of input GLT
sequences is still a GLT sequence and its symbol is obtained by following the
same algebraic manipulations on the corresponding symbols of the input
GLT sequences.

GLT3 Every Toeplitz sequence {TN ( f )}N∈N generated by a L1([0,2π]) function
f (θ ) is such that {TN ( f )}N∈N ∼GLT f (θ ), with the specifications reported in
item GLT1. Every diagonal sampling sequence {DN (a)}N∈N, where a(x) is a
Riemann integrable function, is such that
{DN (a)}N∈N ∼GLT a(x).

GLT4 Every sequence which is distributed as the constant zero in the singular
value sense is a GLT sequence with symbol zero, and viceversa. In formu-
lae, {AN}N∈N ∼σ (0,Ω), Ω = [0,1]× [0, 2π], if and only if {AN}N∈N ∼GLT 0.

GLT5 Let {AN}N ∼GLT ψ(x ,θ ), Ω = [0,1]× [0,2π]. If we assume that

limN→∞



AN − AH
N




tr

N
= 0,

then ψ(x ,θ ) is necessarily a real-valued function and {AN}N ∼λ ψ(x ,θ ).

An important GLT result that will be needed in Chapter 5 is reported in Proposi-
tion 1.3.1 and concerns the symbol of a diagonal-times-Toeplitz matrix-sequence.

Proposition 1.3.1. Let {DN}N be a sequence of diagonal sampling matrices with
symbol d : [0,1]→ R>0 , and {TN ( f )}N be a sequence of Hermitian Toeplitz ma-
trices with symbol f : [0,2π]→ R, then

{DN TN ( f )}N ∼λ
�
d(x) f (θ ), [0,1]× [0,2π]

�
.

Notice that proposition 1.3.1 is a consequence of the similitude transformation

D−
1
2

N DN TN ( f )D
1
2
N = D

1
2
N TN ( f )D

1
2
N and of the hermitianity of D

1
2
N TN ( f )D

1
2
N which, for

GLT1-3, ensure

{D 1
2
N TN ( f )D

1
2
N}N ∼λ

�Æ
d(x) f (θ )

Æ
d(x) = d(x) f (θ ), [0,1]× [0,2π]

�
.

In case the diagonal-times-Toeplitz structure is hidden, one can resort to the no-
tion of approximating class of sequences and to the GLT result reported in the-
orem 1.3.3 which allows to find the symbol of a ‘difficult’ matrix-sequence by
means of ‘simpler’ matrix-sequences.
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Definition 1.3.5. Let {AN}N be a matrix-sequence and let {{BN ,M}N}M be a se-
quence of matrix-sequences. We say that {{BN ,M}N}M is an approximating class of
sequences (a.c.s.) for {AN}N if the following condition is met: ∀M ∃ NM such that
for N ≥ NM ,

AN = BN ,M + RN ,M + NN ,M , rank(RN ,M)≤ c(M)N ,


NN ,M




2 ≤ω(M),

where NM , c(M),ω(M) depend only on M with

lim
M→∞ c(M) = lim

M→∞ω(M) = 0.

Theorem 1.3.3 (Garoni and Serra-Capizzano [2018]). Let {AN}N be a matrix-
sequence. If there exists an a.c.s. {{BN ,M}N}M for {AN}N such that {{BN ,M}N}M ∼σ
( fN ,M , G), with fN ,M that converges in measure to f , then

{AN}N ∼σ ( f , G).

1.3.3 Circulant matrices

A special case of the Toeplitz matrices are the circulant matrices, whose structure
allows a fast matrix-vector product.

Definition 1.3.6. A circulant matrix CN ∈ CN×N has the form

CN =


c0 cN−1 . . . c2 c1

c1 c0 cN−1 c2
... c1 c0

. . . ...

cN−2
. . . . . . cN−1

cN−1 cN−2 . . . c1 c0

.

Let CN ∈ CN×N and x ∈ CN , then the matrix-vector product y = CN x can be per-
formed through the “Fast Fourier Transform” (FFT) algorithm, see, e.g., Brigham
[1973], with a computational cost of O(N log(N)), in the following way:

y = I F F T
�
F F T (C (1)N ) ◦ F F T (x)

�
, (1.3)

where C (1)N is the first column of CN , I F F T (·) is the Inverse FFT algorithm and
◦ is the Hadamard product (point-wise product). Note that the IFFT algorithm
is essentially the same algorithm as the FFT, up to a proper permutation and
scaling. This means that the computational cost is still O(N log(N)).
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Remark 1.3.4. It is important to observe that any Toeplitz matrix can be embedded
into a circulant matrix, which will be at least twice as big. More precisely, if we
choose a proper dimension N of the Toeplitz matrix, the product Toeplitz-vector is
performed in 3

22N log2(2N) operations.

1.4 Multigrid Methods

In this section we introduce multigrid methods (MGMs), which are efficient al-
gorithms for solving large linear systems deriving, for instance, from the dis-
cretization of PDEs. In literature there are many different MGMs (see, e.g., the
V-cycle, W-Cycle and FMG in Briggs et al. [2000]) and, in general, a MGM is an
iterative methods defined by extending recursively the two-grid algorithm, to be
described below.

1.4.1 Two-Grid method

Two-grid methods (TGM) combine two iterative methods known as smoother
and Coarse Grid Correction (CGC). Given the linear system AN x = b,
AN ∈ RN×N , the former is typically a stationary iterative method of the form

x ( j+1) =
�
IN −W−1

N AN

�
x ( j) +W−1

N b =: SN (x
( j), WN , AN , b), (1.4)

where WN ∈ CN×N is the preconditioner and the iteration matrix is SN = IN −
W−1

N AN . Given a full-rank matrix PN ∈ CN×k, with k < N , a step of TGM is
defined by Algorithm 1.

Algorithm 1 Two-grid method

x ( j+1) = TGM
�SN , PN , WN , AN , x ( j), b

�
1) rN = b− AN x ( j)

2) rk = PT
N rN

3) Ak = PT
N AN PN (Galerkin approach)

4) Solve Ak y = rk

5) x̂ ( j) = x ( j) + PN y
6) x ( j+1) = S ν

N

�
x̂ ( j), WN , AN , b

�
Steps 1) to 5) define the CGC, which depends on the projection operator PN and
step 6) consists in applying ν times the “post-smoothing iteration” and hence has
iteration matrix SνN . To strengthen the algorithm, a second smoother, which is
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called pre-smoother, could be added before the CGC. Step 4) is often computa-
tionally expensive, therefore the direct solution can be approximated by calling
recursively the TGM. This process can be iterated until a small dimension linear
system is reached in order to compute the direct solution with a low computa-
tional cost. The resulting algorithm is known as V-cycle.

In the case of a V-cycle, the Galerkin approach in step 3), i.e., the computation of
Ak through products with projectors PN , PT

N and AN , could modify the structure
of the matrix AN at lower levels and therefore step 3) could be replaced by a
geometric approach, which consists in the rediscretization of the equation over a
coarser grid. This leads to a less robust algorithm but allows to maintain the same
structure at each level. Moreover, if the matrix AN shows a Toeplitz-like structure,
by choosing the geometric approach the matrix-vector products can be performed
by means of the FFT algorithm with a computational cost of O (N log N) (see
Remark 1.3.4).

1.4.2 TGM convergence results

The iteration matrix of the TGM in Algorithm 1 is given by

ZN = SνN
�
I − PN

�
PT

N AN PN

�−1
PT

N AN

�
.

The basis for the TGM convergence analysis is Theorem 1.4.1 below, given in
Ruge and Stüben [1987]. For the sake of simplicity, in the following we assume
that the smoothing part is only one post-smoother iteration.

Theorem 1.4.1 (Ruge-Stüben Ruge and Stüben [1987]). Let AN be a positive
definite matrix of size N and let SN be the post smoothing iteration matrix. Suppose
that ∃δ > 0 independent of N such that

‖SN x‖2AN
≤ ‖x‖2AN

−δ ‖x‖2AN D−1
N AN

, ∀x ∈ CN , (1.5)

where DN is the diagonal matrix having the same diagonal of AN . Assume that
∃ε > 0 independent of N such that

min
y∈Ck
‖x − PN y‖2DN

≤ ε‖x‖2AN
, ∀x ∈ CN . (1.6)

Then ε≥ δ and

‖ZN‖AN
≤
√√

1− δ
ε

.
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Equations (1.5) and (1.6) are known as smoothing property and approximation
property, respectively. The smoothing property can usually be satisfied by clas-
sical iterative methods like Gauss–Seidel and weighted Jacobi, with a proper
choice of the weight, while the approximation property typically requires a non-
trivial analysis.

Smoothing analysis. In the following we only consider weighted Jacobi or
block Jacobi methods as smoother. Two main advantages of such methods are
that they can be parallelized and that the Toeplitz-like structure of the coefficient
matrix can be exploited to prove related convergence results.

Consider the linear system AN x = b, we recall that the weighted Jacobi and
block Jacobi methods are obtained from equation (1.4) choosing WN =

1
ωDN

or WN =
1
ω D̃N , where DN , D̃N are the main diagonal and block diagonal of AN ,

respectively, and ω> 0 is the weight or relaxation parameter.

Remark 1.4.1. If WN =
1
ωR

IN , then equation (1.4) defines the weighted Richardson
iteration which is well-known to satisfy the smoothing property (1.5), for positive
definite matrices AN , whenever it is convergent Donatelli et al. [2015].

Moreover, we recall the convergence theorem of weighted Jacobi.

Theorem 1.4.2. Let AN be a positive definite matrix, then weighted Jacobi con-
verges if it holds 0<ω< 2

ρ(D−1
N AN) .

In practical application the convergence rate of multigrid strongly depends on
the choice of the weight of Jacobi, hence numerical estimates are needed.

Approximation property. The approximation property (1.6) relies on the study
of the grid transfer operators. In order to show how such operators are defined
let M = (N − (N mod2))/2, and define the one-dimensional down-sampling ma-
trix K M

N ∈ RN×M as

[K M
N ]i, j :=

�
1 if i = 2 j − (N + 1)mod2,
0 otherwise,

j = 1, . . . , M .

The 1-dimensional projector PN ∈ RN×M is then defined as

PN := TN (p)K
M
N , (1.7)

where p is usually a low order trigonometric polynomial, which yields a sparse
projector and allows to keep a low computational cost.
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The approximation property (1.6) has been proven for matrix trigonometric al-
gebras under the following condition on the polynomial p and on the symbol f
of the coefficient matrix AN (see Serra-Capizzano [2002])

limsup
θ→θ0

p(θ̂ )2

f (θ )
= c< +∞, ∀θ̂ ∈M (θ ), (1.8)

with f ≥ 0 that vanishes only at θ0, and M (θ ) = {π− θ} the set of the “mirror
points" of θ in the 1-dimensional case.

Concerning the 2-dimensional case, the projector PN ∈ RN×M , with N = n1n2,
M = m1m2, is then defined as

PN := T (2)N (p)U
M
N , (1.9)

where U k
N = Km1

n1
⊗ Km2

n2
is the 2-dimensional down-sampling operator.

Let f be the symbol of the coefficient matrix AN , then the 2-dimensional version
of condition (1.8) is the following (see Serra-Capizzano [2002])

limsup
θ→θ 0

p(θ̂ )2

f (θ )
= c< +∞, ∀θ̂ ∈M (θ ), (1.10)

with f ≥ 0 that vanishes only at θ 0, and

M (θ ) = {(θ1,π− θ2), (π− θ1,θ2), (π− θ1,π− θ2)}
the set of the “mirror points" of θ in the 2-dimensional case.

Remark 1.4.2. For

p(θ1,θ2) = (1+ cosθ1)(1+ cosθ2), (1.11)

i.e., fixed PN as the standard linear interpolation, relation (1.10) holds true when-
ever f has a zero of order smaller or equal to 4 at θ 0 = 0.

In the case where f vanishes on a whole line, i.e., when the equation suffers from
anisotropy, the theory does not apply anymore. We refer the reader to Chapter
2 Section 2.3 for a detailed discussion about how to deal with such problems in
the FDE context.
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1.4.3 V-cycle convergence results

The convergence analysis of the V-cycle is much more involved and a linear con-
vergence rate has been proven, under a condition stricter than (1.10), only when
the Galerkin approach is considered and for matrices in some trigonometric alge-
bras, see Arico et al. [2004]. In details, the symbol p of the grid transfer operator
has to satisfy

limsup
θ→θ 0

p(θ̂ )
f (θ )

= c< +∞, ∀θ̂ ∈M (θ ), (1.12)

which has to hold at each level of the V-cycle hierarchy.

Note that, compared to (1.10), relation (1.12) does not have the power two
in the numerator and hence p has to vanish at the mirror points with double
order.

1.5 Krylov methods and preconditioning

Krylov methods Liesen and Strakos [2013] are a family of algorithms for solving
AN x = b that search for an approximate solution on a Krylov subspace. The r-th
Krylov subspace, denoted byKr(AN , b) is the vector space spanned by the vectors
b, AN b, ..., AN

r−1 b, i.e.,

Kr(AN , b) = Span
�
b, AN b, ..., AN

r−1 b
�
.

In particular, the Generalized Minimum RESidual method (GMRES) is a Krylov
method that computes at the r-th step the best least-squares solution x (r) from the
Krylov subspace Kr(AN , b). Specifically, the GMRES method successively solves
the following least squares problems:

min
x (r)∈Kr (AN ,b)



b− AN x (r)




2 , r ≥ 1.

Krylov methods are non-stationary iterative methods due to the iteration matrix
being dependent on the iteration r. They are known to converge faster than most
basic iterative methods, e.g., the class of methods defined in equation (1.4), but
when the matrix is ill-conditioned the iterations to convergence still increase with
N . In such cases a preconditioning strategy is required.

The philosophy behind the preconditioning is to reduce the condition number
of the coefficient matrix, by clustering as much as possible the spectrum of the
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coefficient matrix in order to speed up the convergence of the method. Indeed,
it is well-known that the more the spectrum is clustered, the higher is the con-
vergence rate of a Krylov method.
In detail, consider the preconditioned linear system P−1AN x = P−1 b, where P is
the preconditioner. P should be such that P−1 is cheap to compute and P−1AN is
as close as possible to an identity matrix.
When considering multigrid as preconditioner, the inversion of P is performed
through few iterations of multigrid. In the case where P = AN , the more it-
erations of multigrid are performed the more P−1 is close to AN

−1. Usually, in
order to keep the computational cost as low as possible, only one iteration is
performed.
When matrix AN shows a dense Toeplitz or block Toeplitz structure, to further
reduce the computational cost of the preconditioning iteration, a band or block
band approximation of matrix AN is usually considered (see, e.g., the precondi-
tioner defined in Section 2.3).

1.6 Fractional Operators

The aim of this section is to define both fractional integration and differentiation
operators with a single formula. This formula will then define integro-differential
operators of arbitrary order Samko et al. [1993].
Throughout the history of fractional calculus, several non-equivalent definitions
for the non-integer order derivative operators have been proposed. Here we will
briefly introduce the three most popular definitions given by GL, RL and Caputo
Podlubny [1998]; Samko et al. [1993]. The RL and Caputo fractional derivative
operators are obtained from the generalization of the iterated integral, while
GL derivative is obtained from the generalization of the integer-order derivative.
However, under proper conditions the three definitions coincide (more details in
the subsequent sections).

1.6.1 Gamma Function

The Gamma function plays an important role in the theory of fractional deriva-
tives, therefore we collect here two equivalent definitions and some proper-
ties.

Definition 1.6.1. The Gamma function is defined through the Euler limit as

Γ (x) = lim
N→∞

�
N !N x

x(x + 1)(x + 2)...(x + N)

�
, x > 0. (1.13)
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Definition 1.6.2. The Gamma function can also be defined through an integral
transform as

Γ (x) =

∫ ∞
0

y x−1e−ydy , x > 0. (1.14)

Property 1.6.1. Γ (1) = 1.

Proof. Using integration by parts, it holds that

Γ (1) =

∫ ∞
0

ye−ydy = −ye−y
��∞
0 +

∫ ∞
0

e−ydy = −e−y
��∞
0 = 1.

Property 1.6.2. Γ (x + 1) = xΓ (x).

Proof. As before, using integration by parts, it holds that

Γ (x + 1) =

∫ ∞
0

y xe−ydy = −y xe−y
��∞
0 + x

∫ ∞
0

y x−1e−ydy = xΓ (x).

As a corollary of Property 1.6.2, the Gamma function can be seen as a general-
ization of the factorial function.

Property 1.6.3. ∀n ∈ N : Γ (n+ 1) = n!

Proof. Applying n+ 1 times Property 1.6.2, holds that

Γ (n+ 1) = nΓ (n) = n(n− 1)Γ (n− 1) = ...= n(n− 1)...2 · 1 · Γ (1) = n!.

Replacing x with x−1 in Property 1.6.2 we obtain the recurrence formula Γ (x−
1) = Γ (x)

x−1 which can be used to extend Definition 1.6.2 to negative arguments. It
is easy to see that Γ (0) and Γ (−n) are not defined for any n ∈ N.

In the next chapter we will encounter expressions of the form�
j − n− 1

j

�
(−1) j

�
n
j

�
j, n ∈ N (1.15)

which turns out to be equivalent. A proof of the following property can be found
in Ortigueira [2011].

Property 1.6.4. For any j, n ∈ N holds
� j−n−1

j

�
= (−1) j

�n
j

�
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1.6.2 Notation

Since differentiation and integration are inverse operations, when applied to a
function which is regular enough and under appropriate hypotheses, we can ex-
tend the usual notation for the nth derivative of a function f (x) with respect to
x

dn f
dxn

, n ∈ N,

to multiple integration. Assuming zero as lower bound, we have that

d−1 f
dx−1

=

∫ x

0

f (y)dy. (1.16)

Applying recursively the equation (1.16), we obtain

d−2 f
dx−2

=

∫ x

0

∫ x1

0

f (x0)dx0dx1,

...

d−n f
dx−n

=

∫ x

0

...

∫ x2

0

∫ x1

0

f (x0)dx0dx1...dxn−1.

To generalize the previous extended definition of integral to lower bounds dif-
ferent from zero, we define

d−1 f
d(x − a)−1

=

∫ x

a

f (y)dy,

...

d−n f
d(x − a)−n

=

∫ x

a

...

∫ x2

a

∫ x1

a

f (x0)dx0dx1...dxn−1.

This definition follows naturally from the identity∫ x

a

f (y)dy =

∫ x−a

0

f (y + a)dy (1.17)

and we note that
d−n f

d(x − a)−n
6= d−n f

dx−n
. (1.18)
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1.6.3 Riemann-Liouville and Caputo de�nitions of fractional deriva-

tives

In order to construct Riemann-Liouville and Caputo formulas, we need to express
an iterated integral d−n

d(x−a)−n as a weighted single integral Loverro [2004].

Let us recall Leibniz’s theorem for differentiating an integral which will be useful
to prove the next proposition.

Theorem 1.6.1 (Leibniz). Let h ∈ C1(R2) and a, b ∈ C1(R) then it holds

d
dx

�∫ b(x)

a(x)

h(x , t)dt

�
= h(x , b(x))

d
dx

b(x)−h(x , a(x))
d

dx
a(x)+

∫ b(x)

a(x)

∂

∂ x
h(x , t)dt.

Proposition 1.6.1. Let f be a locally integrable function, then for n= 0,1,2, ... it
holds ∫ x

a

f (ξ)dξ=
1
n!

dn

dxn

∫ x

a

(x − ξ)n f (ξ)dξ. (1.19)

Proof.

1
n!

dn

dxn

∫ x

a

(x − ξ)n f (ξ)dξ=
1
n!

dn−1

dxn−1

d
dx

∫ x

a

(x − ξ)n f (ξ)dξ

=
1
n!

dn−1

dxn−1

�
(x − x)n f (x)− (x − a)n f (a) · 0+

+ n

∫ x

a

(x − ξ)n−1 f (ξ)dξ

�
=

1
(n− 1)!

dn−1

dxn−1

∫ x

a

(x − ξ)n−1 f (ξ)dξ.

(1.20)

Applying recursively equation (1.20) we obtain

1
n!

dn

dxn

∫ x

a

(x − ξ)n f (ξ)dξ= · · · =
∫ x

a

f (ξ)dξ.

The Riemann-Liouville fractional integral follows from integrating the equation
(1.19) n times.

d−2 f
d(x − a)−2

=

∫ x

a

∫ x1

a

f (x0)dx0dx1 =
1
1!

∫ x

a

(x − ξ) f (ξ)dξ if n= 1
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d−3 f
d(x − a)−3

=
1
2!

∫ x

a

(x − ξ)2 f (ξ)dξ if n= 2

...

d−n f
d(x − a)−n

=
1

(n− 1)!

∫ x

a

(x − ξ)n−1 f (ξ)dξ. (1.21)

Recalling the Property 1.6.3 of Gamma function, formula (1.21) can be general-
ized as

aJαx f (x) :=
1
Γ (α)

∫ x

a

(x − ξ)α−1 f (ξ)dξ, α > 0,

x Jαb f (x) :=
1
Γ (α)

∫ b

x

(ξ− x)α−1 f (ξ)dξ, α > 0.

(1.22)

which are called the left and right Riemann-Liouville (RL) fractional integrals,
respectively, and are used to retrieve the left and right RL and Caputo fractional
derivatives.

To extend definitions in equation (1.22) to α ∈ R we proceed through an exam-
ple. Consider as differentiation of order, e.g., α= 2.3 and select m ∈ N such that
m−1< α < m, i.e., m= 3 At this point we have two possible ways to define the
fractional derivative.

Riemann-Liouville fractional derivative
Having found the integer m= dαe, the first step of the process is to integrate our
function f (x) by order |α−m|= m−α= 0.7 (arrow (a) in Figure 1.1). Second,
we differentiate the resulting function by order m= 3 (arrow (b) in Figure 1.1),
thereby achieving a resultant differentiation of order α.
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Figure 1.1. Graphical representation of the Riemann-Liouville de�nition

method.

Summing up, let m = dαe and define the left and right RL fractional derivatives
as

dα f (x)
dR(x − a)α

:=
dm

dxm aJm−α
x f (x) =

1
Γ (m−α)

dm

dxm

∫ x

a

f (ξ)(x − ξ)m−α−1dξ,

dα f (x)
dR(b− x)α

:=
dm

dxm x Jm−α
b f (x) =

(−1)m

Γ (m−α)
dm

dxm

∫ b

x

f (ξ)(ξ− x)m−α−1dξ,

(1.23)

which is the most frequently encountered definition of fractional derivative.

Remark 1.6.1. If f (x) ∈ L1(R) equation (1.23) can be extended to −∞,+∞ as
lower and upper limit and we write

dα f (x)
dR
+xα

:=
1

Γ (m−α)
dm

dxm

∫ x

−∞
f (ξ)(x − ξ)m−α−1dξ,

dα f (x)
dR−xα

:=
(−1)m

Γ (m−α)
dm

dxm

∫ +∞

x

f (ξ)(ξ− x)m−α−1dξ,

(1.24)

Caputo fractional derivative
The Caputo fractional derivative is defined essentially in the same way as the
RL fractional derivative, but with the inverse order of the operations. We first
differentiate our function f (x) by order m (arrow (a) in Figure 1.2) and then we
integrate the resulting function by order |α−m|= 0.7 (arrow (b) in Figure 1.2).
This still lead to a resultant differentiation of order α.
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Figure 1.2. Graphical representation of the Caputo de�nition method.

Summing up, we define the left and right Caputo fractional derivatives as follows

dα f (x)
dC(x − a)α

:= aJm−α
x

dm f (x)
dxm

=
1

Γ (m−α)
∫ x

a

dm f (ξ)
dξm

(x − ξ)m−α−1dξ,

dα f (x)
dC(b− x)α

:= x Jm−α
b

dm f (x)
dxm

=
(−1)m

Γ (m−α)
∫ b

x

dm f (ξ)
dξm

(ξ− x)m−α−1dξ,

(1.25)

where m= dαe.
In fractional models the Caputo derivative often replaces the standard time deriva-
tive, and due to the sequentiality of time the most frequently encountered Caputo
fractional derivative is the left one.

From a modellistic point of view, applied problems require fractional derivatives
which allow physically interpretable initial conditions. Indeed, the Caputo frac-
tional derivative allows the formulation of initial conditions for initial-value prob-
lems for FDEs involving only the boundary values of integer-order derivatives,
while the RL fractional derivative, unfortunately, leads to initial conditions in
terms of RL fractional derivatives of lower orders Podlubny [1998]. However,
under opportune hypothesis, the two approaches coincide.

Remark 1.6.2. From Equations (2.4.8)-(2.4.9) on page 91 of Kilbas et al. [2006],
the following relations hold

dα f (x)
dR(x − a)α

=
dα f (x)

dC(x − a)α
+
bαc∑
k=0

(x − a)k−α
Γ (k−α+ 1)

dk f (a)
dx k

dα f (x)
dR(b− x)α

=
dα f (x)

dC(b− x)α
+
bαc∑
k=0

(−1)k
(b− x)k−α
Γ (k−α+ 1)

dk f (b)
dx k
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Then, in the case where dk f (a)
dxk = dk f (b)

dxk = 0 ∀k = 1, ..., bαc, the Caputo and RL
fractional derivatives coincide.

1.6.4 Grünwald de�nition of fractional derivatives

Because the RL approach to the fractional derivative began with an expression
for the repeated integration of a function, one’s first instinct may be to imitate a
similar approach for the derivative.

Applying the definition of derivative in terms of a backward difference one or
more times to a regular enough function f , we obtain

d1 f
dx1

=
d

dx
f (x) = lim

h→0

f (x)− f (x − h)
h

d2 f
dx2

=
d2

dx2
f (x) = lim

h→0

�
limh→0

f (x)− f (x−h)
h − limh→0

f (x−h)− f (x−2h)
h

�
h

= lim
h→0

f (x)− 2 f (x − h) + f (x − 2h)
h2

(1.26)

d3 f
dx3

=
d3

dx3
f (x) = lim

h→0

f (x)− 3 f (x − h) + 3 f (x − 2h)− f (x − 3h)
h3

...

Let us note that the coefficients that multiply the function in the nth derivative
refer to the (n+ 1)th row in Pascal’s triangle. Recalling that Pascal’s triangle is
a triangular array of the binomial coefficients, this suggests the following for-
mula

dn f
dxn

= lim
h→0

n∑
j=0
(−1) j

�n
j

�
f (x − jh)

hn
, n ∈ N.

We now replace h with a sequence {hN} such that lim
N→∞hN = 0. Given a ∈ R such

that a < x we consider the sequence {hN} where hN =
x−a
N . Then, since

�n
j

�
= 0

if j > n, the nth derivative may be defined as

dn f
dxn

= lim
N→∞

N−1∑
j=0
(−1) j

�n
j

�
f
�
x − j x−a

N

�
�

x−a
N

�n . (1.27)

Let us now consider the integrals. Applying the definition of integral as Riemann
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sum we obtain that

d−1 f
d(x − a)−1

=

∫ x

a

f (ξ)dξ

= lim
hN→0

hN[ f (x) + f (x − hN ) + ...+ f (x − (N − 1)hN )] (1.28)

= lim
hN→0

hN

N−1∑
j=0

f (x − jhN ).

Using two times the equation (1.28) it holds

d−2 f
d(x − a)−2

=

∫ x

a

∫ x1

a

f (x0)dx0dx1

= lim
hN→0

hN
2[ f (x) + 2 f (x − hN ) + ...+ N f (x − (N − 1)hN )]

= lim
hN→0

hN
2

N−1∑
j=0

( j + 1) f (x − jhN ).

Two times is not enough to find a general rule, hence applying again equation
(1.28) we have

d−3 f
d(x − a)−3

=

∫ x

a

∫ x2

a

∫ x1

a

f (x0)dx0dx1dx2

= lim
hN→0

hN
3

N−1∑
j=0

( j + 1)( j + 2)
2

f (x − jhN ),

where hN =
x−a
N . This time we notice that all the signs are positive and the

sequence {1, j+1, ( j+1)( j+2)
2 , ...} can be described by

� j+n−1
j

�
where n is the order

of the integral. This yields

d−n f

d(x − a)−n = lim
N→∞

� x − a
N

�n N−1∑
j=0

�
j + n− 1

j

�
f
�

x − j
x − a

N

�
. (1.29)

Comparing equations (1.27) and (1.29) and recalling the Property 1.6.4

(−1) j
�

n
j

�
=
�

j − n− 1
j

�
=

Γ ( j − n)
Γ (−n)Γ ( j + 1)

,

we see that equations (1.27) and (1.29) are identical and, by extending the in-
teger order n to the fractional order α ∈ R, we finally obtain the left-sided GL
derivative formula for fractional derivatives

dα f (x)
dG(x − a)α

:= lim
N→∞

� x − a
N

�−α N−1∑
j=0

(−1) j
�
α

j

�
f
�

x − j
x − a

N

�
. (1.30)
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Let us notice that using the definition of derivative in terms of a forward differ-
ence in (1.26), defining integrals with switched limits d−1 f

d(b−x)−1 =
∫ b

x
f (ξ)dξ and

adjusting the respective discretization, we would have built up the right-sided
GL which depends on “what happens after x instead of before”. Explicitly, given
b > x , the right-sided GL is

dα f (x)
dG(b− x)α

:= lim
N→∞

�
b− x

N

�−α N−1∑
j=0

(−1) j
�
α

j

�
f
�

x + j
b− x

N

�
. (1.31)

Remark 1.6.3. If f ∈ L1(R), equations (1.30) and (1.31) can be extended to
−∞,+∞ as lower and upper limit, respectively. For the sake of readability we
write dα f (x)

dG
+ xα

, dα f (x)
dG− xα

instead of dα f (x)
dG(x−(−∞))α , dα f (x)

dG((+∞)−x)α , respectively, therefore

dα f (x)
dG
+xα

= lim
h→0

1
hα

∞∑
j=0

(−1) j
�
α

j

�
f (x − jh) ;

dα f (x)
dG−xα

= lim
h→0

1
hα

∞∑
j=0

(−1) j
�
α

j

�
f (x + jh) .

(1.32)

When uniform meshes are employed, the RL fractional derivative is usually dis-
cretized through the GL formula. Aiming at introducing a second-order approxi-
mation of the RL fractional derivative, which will be widely used in the reminder
of this work, we first define a shift of the GL operator.

Definition 1.6.3. For any small fixed h > 0, let us define the Shifted Grünwald
Difference (SGD) by shifting the k index in (1.32) as follows

LGαh,p f (x) :=
1
hα

∞∑
k=0

g(α)k f (x − (k− p)h) ,

RGαh,q f (x) :=
1
hα

∞∑
k=0

g(α)k f (x + (k− q)h) ,

(1.33)

where p, q ∈ Z and g(α)k = (−1)k
�
α

k

�
, with

�
α

0

�
:= 1.

As shown in Theorem 1.6.2, left and right SGD operator, which coincide with the
GL operator when the shifting parameters p = q = 0, are first order approxima-
tions of the left and right RL operators, respectively.

Theorem 1.6.2 (Hejazi et al. [2014]). Let α, p > 0, n = dαe and suppose that
f ∈ C2n(R) and all derivatives of f up to order 2n belong to L1(R). Then there
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exist constants cl independent of h, f , x such that

LGαh,p f (x) =
dα f (x)
dR
+xα

+
n−1∑
l=1

cl
dα+l f (x)
dR
+xα+l

hl +O(hn) =
dα f (x)
dR
+xα

+O(h),

RGαh,p f (x) =
dα f (x)
dR−xα

+
n−1∑
l=1

cl
dα+l f (x)
dR−xα+l

hl +O(hn) =
dα f (x)
dR−xα

+O(h),

uniformly in x ∈ R.

Remark 1.6.4. Let f (x) with dk f (a)
dxk =

dk f (b)
dxk = 0 ∀k = 1, ..., bαc, and that satisfies

the hypothesis in Theorem 1.6.2. Then, according to Remark 1.6.2 and Theorem
1.6.2, the Caputo, RL and GL fractional derivatives coincide.

An appropriate weighting of the SGD operators in (1.33) results in a second-
order accurate approximation of the fractional derivatives, denoted by WSGD,
as specified by the following theorem.

Theorem 1.6.3 (Tian et al. [2015]). Assume that f , dα+2 f
dG± xα+2 , and its Fourier trans-

form belong to L1(R), and define the left and right Weighted SGD operators as

LDαh,p f (x) :=
α− 2p2

2(p1 − p2)
LGαh,p1

f (x) +
2p1 −α

2(p1 − p2)
LGαh,p2

f (x),

RDαh,q f (x) :=
α− 2p2

2(p1 − p2)
RGαh,p1

f (x) +
2p1 −α

2(p1 − p2)
RGαh,p2

f (x).
(1.34)

Then,

LDαh,p f (x) =
dα f (x)
dR
+xα

+O(h2),

RDαh,q f (x) =
dα f (x)
dR−xα

+O(h2),

uniformly for x ∈ R, where p,q ∈ Z2, with p = (p1, p2),q = (q1, q2) such that
p1, q1 6= p2, q2, respectively.

Remark 1.6.5. In Chapter 4 a non-integer shift will be needed, therefore here we
note that the validity of equation (1.34) extends also to the case where p1, p2, q1, q2 ∈
R with p1 6= p2 and q1 6= q2. The reader can easily verify this assuming that
p1, p2, q1, q2 are real and following the same argument of the proof of Theorem 1
in Tian et al. [2015].
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Remark 1.6.6. In case of absorbing boundary conditions (see Chapter 2), i.e., the
solution is null outside the definition domain, say [a, b], it holds

dαu(x)
dS(x − a)α

≡ dαu(x)
dS xα+

,

dαu(x)
dS(b− x)α

≡ dαu(x)
dS xα−

,

for S ∈ {GL,RL,C}.
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Chapter 2

Time stepping scheme

In this chapter we focus on a two-dimensional time-dependent space-FDE. The
use of Crank-Nicolson (CN) in time and WSGD in space (see equation (1.34))
leads to the so-called CN-WSGD scheme Tian et al. [2015], which consists in
a sequential-in-time second-order accurate finite difference scheme. In Section
2.1, we briefly introduce the CN-WSGD scheme, providing the coefficient matrix
at each time step, which shows a 2-level Toeplitz structure. In Section 2.2, by
exploiting the structure, we discuss certain spectral features of the coefficient
matrices. Section 2.3 is devoted to the presentation of our anisotropic multigrid
preconditioning strategy.
Multigrid strategies that exploit such structure are particularly effective when the
fractional orders are both close to 2. We seek to investigate how structure-based
multigrid approaches can be efficiently extended to the case where only one of
the two fractional orders is close to 2, i.e., when the fractional equation shows
an intrinsic anisotropy. Precisely, we design a multigrid (block-bandedbanded-
block) preconditioner whose grid transfer operator is obtained with a semi-coarsening
technique and that has weighted Jacobi as smoother.
The Jacobi relaxation parameter is estimated in Section 2.4 through an auto-
matic symbol-based procedure. A further improvement in the robustness of the
proposed MGM is attained using the V-cycle with semi-coarsening as smoother
inside an outer full-coarsening.
Finally, in Section 2.5, several numerical results confirm that the resulting multi-
grid preconditioner1 is computationally effective and outperforms current state
of the art techniques. Finally, in Section 2.6 we draw conclusions.

37
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2.1 Problem setting and discretization

In this section we introduce our problem, then we provide its discretization over
uniform meshes through the second-order accurate CN-WSGD scheme Tian et al.
[2015].

2.1.1 Two-dimensional time-dependent space-FDE

We focus on the following two-dimensional initial-boundary value space-FDE
problem

∂ u(x , y, t)
∂ t

= d+(x , y, t)
∂ αu(x , y, t)
∂ R
+ xα

+ d−(x , y, t)
∂ αu(x , y, t)
∂ R− xα

+

+ e+(x , y, t)
∂ βu(x , y, t)
∂ R
+ yβ

+ e−(x , y, t)
∂ βu(x , y, t)
∂ R− yβ

+ v(x , y, t),

(x , y, t) ∈ Ω× [0, T],

u(x , y, t) =0, (x , y, t) ∈ �R2 \Ω�× [0, T],

u(x , y, 0) =u0(x , y), (x , y) ∈ Ω,

(2.1)

where α,β ∈ (1,2) are the fractional derivative orders in x- and y-variable,
respectively, Ω = (a1, b1) × (a2, b2) is the space domain, d±(x , y, t), e±(x , y, t)
are the diffusion coefficients and are nonnegative bounded functions, v(x , y, t)
is the forcing term.

Remark 2.1.1. Due to the non-locality of the fractional derivative operators, the
behavior of u must be specified not just at the boundary but also at all points exterior
to the domain, see Defterli et al. [2015]. In (2.1) we impose the so-called absorbing
boundary conditions, that is we assume that the solution is zero on R2 \Ω at each
time.

Here, we are interested in the case where the fractional orders α,β with α 6= β
are in some sense far from each other, that is when the problem shows an intrinsic
anisotropy. The left-sided and the right-sided fractional derivatives in (2.1) are
given in the RL form, according to definition (1.24), and discretized through the
GL formulas.

2.1.2 CN-WSGD scheme for 2D space-FDEs

For the discretization of problem (2.1) we combine the WSGD approximation
(1.34) of the fractional operators in space with the CN method in time. The
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resulting scheme is second-order accurate and is known as CN-WSGD (see Tian
et al. [2015]). In this section we review the construction of the CN-WSGD scheme
and we recall some related results.

Let us fix Nx , Ny , Mt ∈ N and discretize the domain Ω× [0, T] with

x i = a1 + ihx , hx =
b1−a1
Nx+1 , i = 0, ..., Nx + 1,

y j = a2 + jhy , hy =
b2−a2
Ny+1 , j = 0, ..., Ny + 1,

tm = m∆t, ∆t = T
Mt

, m= 0, ..., Mt ,

By choosing p = q = (1,0), from (1.34) we obtain the following discretized
second-order accurate WSGD operators

LDαhx ,pu(x i, y j, tm) =
1
hαx

i∑
k=0

ω
(α)
k u

�
x i−k+1, y j, tm

�
,

RDαhx ,qu(x i, y j, tm) =
1
hαx

Nx−i∑
k=0

ω
(α)
k u

�
x i+k−1, y j, tm

�
,

LDβhy ,pu(x i, y j, tm) =
1

hβy

j∑
k=0

ω
(β)
k u

�
x i, y j−k+1, tm

�
,

RDβhy ,qu(x i, y j, tm) =
1

hβy

Ny− j∑
k=0

ω
(β)
k u

�
x i, y j+k−1, tm

�
,

(2.2)

where

ω
(γ)
0 =

γ

2
g(γ)0 , ω

(γ)
k =

γ

2
g(γ)k +

2− γ
2

g(γ)k−1, k ≥ 1. (2.3)

with g(α)k = (−1)k
�
α

k

�
and γ = α,β . Notice that the sums in (2.2) are finite sums

because of the absorbing boundary conditions imposed in (2.1).

For the coefficients in (2.3) the following lemma holds.

Lemma 2.1.1 (Tian et al. [2015]). Coefficients ω(γ)k in equation (2.3) satisfy the
following properties for γ ∈ (1,2],

ω
(γ)
0 =

γ

2 , ω(γ)1 =
2−γ−γ2

2 < 0, ω(γ)2 =
γ(γ2+γ−4)

4 ,

1≥ω(γ)0 ≥ω(γ)3 ≥ω(γ)4 ≥ · · · ≥ 0,
∞∑
k=0
ω
(γ)
k = 0,

m∑
k=0
ω
(γ)
k < 0, m≥ 2,

ω
(γ)
k = O

�
1

kγ+1

�
.
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Let us now represent the discretized solution at time tm by the N -dimensional
vector

um = [um
1,1, ..., um

Nx ,1, um
1,2, ..., um

Nx ,2, ..., um
1,Ny

, ..., um
Nx ,Ny
]T,

where N = Nx ·Ny and um
i, j ≈ u(x i, y j, tm). Accordingly, we define the N -dimensional

vectors

dm
± = [d

±,m
1,1 , ..., d±,m

Nx ,1, d±,m
1,2 , ..., d±,m

Nx ,2, ..., d±,m
1,Ny

, ..., d±,m
Nx ,Ny
]T,

em
± = [e

±,m
1,1 , ..., e±,m

Nx ,1, e±,m
1,2 , ..., e±,m

Nx ,2, ..., e±,m
1,Ny

, ..., e±,m
Nx ,Ny
]T,

vm− 1
2 = [vm− 1

2
1,1 , ..., vm− 1

2
Nx ,1 , vm− 1

2
1,2 , ..., vm− 1

2
Nx ,2 , ..., vm− 1

2
1,Ny

, ..., vm− 1
2

Nx ,Ny
]T,

with d±,m
i, j = d±(x i, y j, tm), e±,m

i, j = e±(x i, y j, tm), vm− 1
2

i, j = v(x i, y j, tm− 1
2 ) and the

N × N matrices
Dm
± = diag

�
dm
±
�

, Em
± = diag

�
em
±
�

, (2.4)

where tm− 1
2 = tm+tm−1

2 , m= 1, ..., Mt .
Thanks to (2.2), the discretization of the fractional derivatives in both spatial
dimensions at time tm can be written in matrix-form as

∂ αu(x , y, tm)
∂ R
+ xα

≈ 1
hαx

�
INy
⊗ AαNx

�
um,

∂ αu(x , y, tm)
∂ R− xα

≈ 1
hαx

�
INy
⊗ �AαNx

�T�
um,

∂ βu(x , y, tm)
∂ R
+ yβ

≈ 1

hβy

�
AβNy
⊗ INx

�
um,

∂ βu(x , y, tm)
∂ R− yβ

≈ 1

hβy

��
AβNy

�T ⊗ INx

�
um,

where AγN is the following Toeplitz matrix,

AγN=


ω
(γ)
1 ω

(γ)
0

ω
(γ)
2 ω

(γ)
1 ω

(γ)
0

...
. . . . . . . . .

ω
(γ)
N−1

. . . . . . ω
(γ)
0

ω
(γ)
N ω

(γ)
N−1 · · · ω

(γ)
2 ω

(γ)
1


N×N

. (2.5)

Remark 2.1.2. If γ = 2, then ω(2)0 = 1, ω(2)1 = −2, ω(2)2 = 1 and ω(2)k = 0 for
k > 2 and therefore A2

N is the Hermitian negative definite matrix representing the
discretized one-dimensional Laplacian operator discretized by second-order central
finite differences.
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Omitting the scaling factors and collecting all the terms together, the discretiza-
tion of (2.1) in both spatial dimensions yields the matrices

Am
x ,N = Dm

+

�
INy
⊗ AαNx

�
+ Dm
−
�

INy
⊗ �AαNx

�T�
,

Am
y,N = Em

+

�
AβNy
⊗ INx

�
+ Em
−
��

AβNy

�T ⊗ INx

�
.

(2.6)

On the other hand, the discretization in time of (2.1) follows by the application
of the CN scheme, that is

um = um−1 +
∆t
2

�
F m + F m−1

�
,

where

F m =

�
1
hαx

Am
x ,N +

1

hβy
Am

y,N

�
um + vm.

Then,

um = um−1 +
∆t
2

��
1
hαx

Am
x ,N +

1

hβy
Am

y,N

�
um + vm+�

1
hαx

Am−1
x ,N +

1

hβy
Am−1

y,N

�
um−1 + vm−1

�
,

which by replacing vm + vm−1 with vm− 1
2 , gives the CN-WSGD scheme�

IN − rAm
x ,N − sAm

y,N

�
um =

�
IN + rAm−1

x ,N + sAm−1
y,N

�
um−1 +∆t vm− 1

2 , (2.7)

where r= ∆t
2hαx

, s= ∆t
2hβy

. By multiplying both sides by 1
r or 1

s we obtain these two

alternative forms of (2.7)�
1
r

IN − Am
x ,N − s

r
Am

y,N

�
um =

�
1
r

IN + Am−1
x ,N +

s
r
Am−1

y,N

�
um−1 + 2hαx vm− 1

2 ,�
1
s

IN − r
s
Am

x ,N − Am
y,N

�
um =

�
1
s

IN +
r
s
Am−1

x ,N + Am−1
y,N

�
um−1 + 2hβy vm− 1

2 .

Summarizing, at each time step tm the CN-WSGD scheme requires the solution
of the following linear system

A m
(α,β),N um = bm−1, (2.8)



42 2.2 Spectral properties of the coe�cient matrices

where

A m
(α,β),N =

1
r

IN − Am
x ,N − s

r
Am

y,N ,

bm−1 =
�

1
r

IN + Am−1
x ,N +

s
r
Am−1

y,N

�
um−1 + 2hαx vm− 1

2 ,
(2.9)

or, equivalently,

A m
(α,β),N =

1
s

IN − r
s
Am

x ,N − Am
y,N ,

bm−1 =
�

1
s

IN +
r
s
Am−1

x ,N + Am−1
y,N

�
um−1 + 2hβy vm− 1

2 .
(2.10)

2.2 Spectral properties of the coe�cient matrices

It has already been observed in Lei and Sun [2013] that when d±(x , y, t) = d and
e±(x , y, t) = e, with d, e ∈ R+ the coefficient matrixA m

(α,β),N in equation (2.8) is
a BTTB or 2-level Toeplitz matrix. In this section we will exploit this information
on the structure to show the unconditional stability of the CN-WSGD scheme in
equation (2.7).

The tools introduced in Section 1.3.1 have already been used in Moghaderi et al.
[2017] to study the spectral properties of the coefficient matrix A m

(α,β),N . Here
we review some of these properties with an extra eye to the anisotropic case, and
use the tools in Section 1.3.1 to study certain spectral features of the matrices
Am

x ,N and Am
y,N defined in equation (2.6) that will in turn be used to prove the

stability of the CN-WSGD scheme in equation (2.7).

To get to the point, we first discuss the spectral properties of AγN . As shown in

Tian et al. [2015], the symbol of the Hermitian part of AγN , defined as
AγN+(AγN)

H

2 ,
is the 2π-periodic real-valued even function

fγ(θ ) =
1
2

� ∞∑
k=0

ω
(γ)
k ei(k−1)θ +

∞∑
k=0

ω
(γ)
k e−i(k−1)θ

�
,

whose simplified form defined over [0,π] is

fγ(θ ) =
�

2sin
�
θ

2

��γ�γ
2

cos
�γ

2
(θ −π)− θ

�
+

2− γ
2

cos
�γ

2
(θ −π)

��
. (2.11)

The following theorem deals with the properties of function fγ.
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Theorem 2.2.1 (Tian et al. [2015]). Let fγ(θ ) be the function defined in equation
(2.11), then it holds that

1. fγ(θ ) is a monotonically decreasing non-positive function;

2. it has a zero of order γ at θ = 0 and ∀γ ∈ (1,2].

Remark 2.2.1. Notice that from item 1. in Theorem 2.2.1 yields

−4≤ 2γ (1− γ)≤ fγ(θ )≤ 0.

Corollary 2.2.1 is a direct consequence of Theorem 1.3.1 and Theorem 2.2.1.

Corollary 2.2.1 (Tian et al. [2015]). Let λ be an eigenvalue of AγN in equation
(2.5), then Re(λ)< 0 ∀γ ∈ (1,2] and Re(λ) = 0 if γ= 1.

The following proposition states that the real part of the eigenvalues of both Am
x ,N

and Am
y,N is negative.

Proposition 2.2.1. Assume that the diffusion coefficients are constant, i.e.,
d±(x , y, t) = d±, e±(x , y, t) = e± and let λ be an eigenvalue of Am

x ,N or Am
y,N in

equation (2.6), then Re(λ)< 0.

Proof. The thesis follows from the 2-level extension of Theorem 1.3.1 by noticing
that Am

x ,N is a 2-level Toeplitz matrix, whose symbol of the Hermitian part is

d+ fα(θ ) + d− fα(θ ),

which by Theorem 2.2.1 is a non-positive function. A similar reasoning shows
that the real part of the eigenvalues of Am

y,N is negative.

The one-dimensional CN-WSGD scheme was already shown to be uncondition-
ally stable when α ∈ (1,2] and the diffusion coefficients are constant in Tian
et al. [2015]. Following the same line of proof used in there and using Proposi-
tion 2.2.1, here we extend the unconditional stability of the CN-WSGD scheme
also to the two-dimensional case.

Proposition 2.2.2. Let α,β ∈ (1,2] and consider constant diffusion coefficients,
then CN-WSGD scheme (2.7) is unconditionally stable.

Proof. Let us define BN = rAm
x ,N + sAm

y,N and rewrite the scheme (2.7) as (IN −
BN )um = (IN + BN )um−1 +∆t vm− 1

2 . The corresponding iteration matrix is MN =
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(IN −BN )−1(IN +BN ), which does not depend on time since we are assuming that
the diffusion coefficients are constant.

Showing the thesis is equivalent to prove that ρ(MN )< 1. Let λ be an eigenvalue
of BN , then 1+λ

1−λ is an eigenvalue of MN . By linearity of the 2-level Toeplitz oper-
ator and by Proposition 2.2.1, it holds that Re(λ) < 0 and therefore

��1+λ
1−λ
�� < 1,

which completes the proof.

We end this section with a consequence of Theorem 2.2.1 that gives a precise
account of what is the behavior of the symbol of {A m

(α,β),N}N when assuming
constant coefficients and depending on the parameters r, s. For more details on
the derivation of item (i), we refer the reader to Moghaderi et al. [2017].

Proposition 2.2.3. Let r, s → ∞ and consider d±(x , y, t) = d, e±(x , y, t) = e
with e, d ∈ R+. Fixed formulation (2.9)

(i) if s
r → c > 0, then {A m

(α,β),N}N has symbol Fα,β(θ1,θ2) = −2d fα(θ1) −
2ce fβ(θ2) which has a zero of order min{α,β} ≤ 2 at (θ1,θ2) = (0,0);

(ii) if s
r → 0, then {A m

(α,β),N}N has symbol Fα(θ1,θ2) = −2d fα(θ1) which has a
zero of order α at θ1 = 0,∀θ2.

On the other hand, fixed formulation (2.10)

(iii) if s
r →∞, then {A m

(α,β),N}N has symbol Fα,β(θ1,θ2) = −2e fβ(θ2) which has
a zero of order β at θ2 = 0,∀θ1.

Notice that item (i) can give rise to anisotropic situations when assuming that
α 6= β and that they are in some sense far from each other. An example that
confirms this scenario is reported in Figure 2.1 where we plot the contour lines
of Fα,β(θ1,θ2) when d± = e± = 1, s

r → 1, β = 1.1 and α = 1.5,1.9. For both
α = 1.9 and α = 1.5, the contour lines show an elliptic shape and have foci
along the y-axis. This happens because Fα,β(θ1,θ2) has a ‘stronger dependence’
on θ1 rather than on θ2 and means that the problem is anisotropic along the y-
coordinate. The choice s

r → 1 highlights here a kind of anisotropy purely caused
by the fractional derivative orders.

On the other hand, the ratio s
r depends on the space-time grid widths whose

choice can emphasize or reduce the anisotropy of the problem. If, for instance,
we consider a cubic mesh such that ∆t = hx = hy , then for α > β we get s

r → 0,
that is item (ii) in Proposition 2.2.3. This strengthens the dependence on θ1

of Fα,β(θ1,θ2) and hence increases the anisotropy along the y-axis. Of course a
similar reasoning applies when α < β , that in the case of item (iii) in Proposition
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Figure 2.1. Plot of Fα,β(θ1,θ2) over [0,2π]× [0,2π]

2.2.3. In other words, all cases (i)–(iii) can indicate that the problem suffers from
anisotropy along the coordinates and they will be all subject of study in the next
sections.

2.3 Multigrid methods for anisotropic FDEs

MGMs have already shown to be valid stand alone solvers as well as efficient pre-
conditioners for Krylov methods for FDE problems Lin et al. [2017a]; Moghaderi
et al. [2017]; Pang and Sun [2012]. In this section, we propose a preconditioning
multigrid strategy for the FDE problem in (2.1) tailored for all the cases where
the problem suffer from anisotropy, in the sense of the discussion at the end of
previous section.

Thanks to the structure and the spectral properties of the coefficient matrixA m
(α,β),N ,

in Moghaderi et al. [2017] the authors proposed a geometric MGM based on
the classical linear interpolation as grid transfer operator and weighted Jacobi
as smoother, and they proved the linear convergence rate of the corresponding
TGM for the isotropic case. In the remaining of this section we review the con-
vergence of the TGM method focusing especially on how to adapt both TGM and
V-cycle to the anisotropic case.
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2.3.1 TGM convergence results

In this section we will discuss the convergence of the two-grid algorithm, which,
from Section 1.4.1, we recall that relies on the so-called smoothing property and
approximation property.

Smoothing analysis. First, we focus on the smoothing property (1.5) for the
weighted Jacobi method. Two main advantages of such method are that it can
be parallelized and that the Toeplitz-like structure of the coefficient matrix can
be exploited to prove related convergence results.

In the case of constant diffusion coefficients, the matrixA m
(α,β),N in equation (2.8)

is a positive definite BTTB matrix and its diagonal is DN = ĉ IN with ĉ > 0. As
a consequence, the Jacobi iteration applied to A m

(α,β),N can be considered as a
weighted Richardson iteration with weight ωR =

ω
ĉ , and thanks to Remark 1.4.1

the smoothing property (1.5) is satisfied whenever it is convergent.

Theorem 2.3.1 provides a sufficient condition for the convergence of the weighted
Jacobi method when applied to A m

(α,β),N with D± = dIN and E± = eIN . An alter-
native proof of this theorem in the case where s

r → c can be found in Moghaderi
et al. [2017]. Therein, the thesis has been obtained starting directly from the
inequality in the smoothing property (1.5). We stress that our proof extends to
the cases where s

r → 0 or r
s → 0.

Theorem 2.3.1. Let d±(x , y, t) = d, e±(x , y, t) = e, then the weighted Jacobi
method applied to (2.8) is convergent for any ω ∈ (0,1).

Proof. Assuming that r, s →∞, in the following we distinguish between these
three cases: 1) s

r → c, 2) s
r → 0, 3) r

s → 0.

Let us first consider case 1). From Proposition 2.2.3, we know that the symbol
of the BTTB matrix-sequence {A m

(α,β),N}N is

Fα,β(θ1,θ2) = −2d
�

fα(θ1) +
ce
d

fβ(θ2)
�
≥ 0 θ1,θ2 ∈ [0,π],

while its diagonal is generated by Dα,β = −2d
�
ω
(α)
1 +

ce
d ω

(β)
1

� ≥ 0. Thanks to
Remark 2.2.1, and by denoting c̃ = ce

d , it holds

Fα,β(θ1,θ2)≤ Fα,β(π,π) = 2d
�
2α(α− 1) + c̃2β(β − 1)

�
, (2.12)
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and by equation (2.3) it follows

Dα,β = d
�
α2 +α− 2+ c̃(β2 + β − 2)

�
= d

�
(α− 1)(α+ 2) + c̃(β − 1)(β + 2)

�
.

(2.13)
The ratio between (2.12) and (2.13) gives the symbol of {D−1

N A m
(α,β),N}N ,

Fα,β(θ1,θ2)

Dα,β
≤ 2α+1(α− 1) + c̃2β+1(β − 1)
(α− 1)(α+ 2) + c̃(β − 1)(β + 2)

=: H(α,β)

Since the study of the gradient of H(α,β) does not reveal any stationary point
inside the domain (1,2)×(1,2), we can restrict our analysis to the edges. We no-
tice that H(α,β) is not defined for α= β = 1, but switching to polar coordinates
α= 1+ρ cosθ , β = 1+ρ sinθ with θ ∈ [0, π2 ] yields

lim
(α,β)→(1,1)

H(α,β) = lim
ρ→0

22+ρ cosθρ cosθ + c̃22+ρ sinθρ sinθ

(3ρ cosθ +ρ2 cos2 θ ) + c̃(3ρ sinθ +ρ2 sin2 θ )

= lim
ρ→0

22+ρ cosθ cosθ + c̃22+ρ sinθ sinθ

(3cosθ +ρ cos2 θ ) + c̃(3sinθ +ρ sin2 θ )

= lim
ρ→0

22+ρ cosθ cosθ + c̃22+ρ sinθ sinθ

3 (cosθ + c̃ sinθ ) +ρ
�
cos2 θ + c̃ sin2 θ

�
=

4cosθ + 4c̃ sinθ
3cosθ + 3c̃ sinθ

=
4
3
< 2.

Let us fix α = 1 and α = 2. If α = 1, then H(1,β) = 2β+1

β+2 is a monotonically
increasing function and therefore H(1,β) ≤ H(1,2) = 2. On the other hand, if
α= 2, the maximum of H(2,β) = 8+c̃2β+1(β−1)

4+c̃(β−1)(β+2) is still 2 and is obtained for β = 1
and β = 2. The cases where we fix β = 1 or β = 2 provide analogous results.

Let us now move to case 2). The symbol of {A m
(α,β),N}N , with A m

(α,β),N as in
equation (2.9) and the symbol of {DN}N , with DN diagonal of A m

(α,β),N are

Fα,β(θ1,θ2) = −2d fα(θ1) and Dα,β = −2dω(α)1 , respectively. Therefore the sym-
bol of {D−1

N A m
(α,β),N}N is

Fα,β(θ1,θ2)

Dα,β
≤ 2α+1

α+ 2
= H(α, 1),

and the study of the first derivative leads to 2α+1

α+2 ≤ 2.

The same reasoning that proves the thesis in case 2) applies to case 3) when
formulation (2.9) ofA m

(α,β),N is replaced by formulation (2.10).
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In conclusion, from Corollary 1.3.1 we have that

ρ(D−1
N A m

(α,β),N )≤ ‖H(α,β)‖∞ ≤ 2

independently of α and β and the thesis follows from Theorem 1.4.2.

Remark 2.3.1. Theorem 2.3.1 gives a sufficient condition onω such that the Jacobi
iteration matrix, say BωN , satisfies ρ

�
BωN
�
< 1,∀α,β ∈ (1,2] . For some combina-

tions of α,β , more suitable values of ω could be greater than 1.

Approximation property. As shown in Section 1.4.2, the approximation prop-
erty (1.6) relies on the study of the grid transfer operators. In [Moghaderi et al.,
2017, Lemma 4.4] the authors proved that when Fα,β(θ1,θ2) is the symbol of
{A m

(α,β),N}N with D± = dI , E± = eI and s
r → c > 0, then relation (1.10) is

satisfied by p as in equation (1.11) with c = 0. This is in line with the fact
that, thanks to Proposition 2.2.3, Fα,β(θ1,θ2) has a unique zero at (0,0) of order
min{α,β} ≤ 2.

In the anisotropic cases s
r → 0 or r

s → 0, from Proposition 2.2.3 it holds that
Fα,β(θ1,θ2) vanishes on a whole line and hence the theory does not apply any-
more. On the other hand, Fα,β(θ1,θ2) describes only asymptotically the spectrum
ofA m

(α,β),N , then in practice the standard TGM still works but converges so slowly
that it becomes totally impractical.

More efficient alternatives for integer order partial differential equations have
been proposed in Fischer and Huckle [2006, 2008]. Therein, the authors inves-
tigate the convergence of a TGM method tailored for anisotropic 2-level Toeplitz
linear systems. More precisely, they propose a TGM with semi-coarsening along
the perpendicular direction to the anisotropy combined with weighted Jacobi as
smoother. The results in Fischer and Huckle [2006] apply also to the fractional
case when the diffusion coefficients are constant as we show in the following.
Assume, for instance, that the anisotropy occurs along the y-axis, i.e., s

r → 0
and hence Fα,β(θ1,θ2) = −2d fα(θ1) according to Proposition 2.2.3 item (ii).
The coarsening is then performed only in x-direction defining the projector PN

as

PN = INy
⊗ PNx

,

where

PNx
= TNx

(1+ cosθ1)K
k2
Nx

. (2.14)



49 2.3 Multigrid methods for anisotropic FDEs

The symbol of PN is then p(θ1,θ2) = 1+ cosθ1 and it verifies

limsup
θ1→0

1+ cos(θ1 +π)
Fα,β(θ1,θ2)

= c< +∞, ∀θ2 ∈ [0,2π), (2.15)

with c= 0, which is equivalent to condition (32) in Fischer and Huckle [2006].

We refer the reader to Sections 1.4.3 and 2.3.2 for a discussion on both full- and
semi-coarsening V-cycle methods, respectively.

Convergence of geometric TGM. A multigrid with geometric approach, i.e.,
obtained rediscretizing the same FDE on a coarser grid, is usually less robust
than a multigrid with Galerkin approach. For instance, in order to guarantee the
convergence in the geometric case, a careful scaling of the grid transfer operators
is required.

Proposition 2.2.3 shows that, in term of frequencies, FDEs and PDEs have a sim-
ilar spectral behavior. This is because the symbol analysis can be considered as a
generalization of the standard local Fourier analysis (LFA). Precisely, a LFA of the
smoother or of the grid transfer operator can be performed scaling the symbol
according to the mesh-size and using the order of its zero (see Donatelli [2010]
for more details). As a consequence, we expect that classical smoothers defined
for PDEs will work for FDEs as well.

In order to discuss the choice of the grid transfer operator in the geometric case,
we first recall that isotropic FDEs have order min{α,β} ≤ 2. This is due to
the order of the zero at (0,0) of their symbol Fα,β(θ1,θ2) (see again Proposition
2.2.3). Moreover, based on the results in Donatelli [2010], condition (1.10) is
equivalent to require that

2HF(p)≥min{α,β}, (2.16)

where HF(p) is the high frequency order of p introduced in Hemker [1990], and
is equal to 2 for p defined as in (1.11). By performing the same LFA discussed
in Hemker [1990] for PDEs, it can be shown that condition (2.16) is sufficient
to have the convergence of the geometric TGM also when applied to isotropic
FDEs.

A similar reasoning applies to anisotropic variants of p as well. For instance,
in case of semi-coarsening in the x-direction, condition (2.14) implies that the
unidimensional version of (2.16), i.e., 2HF(p)≥ α, holds true.
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2.3.2 V-cycle considerations

According to Section 1.4.3, for p defined as in equation (1.11) and f (θ1,θ2) =
Fα,β(θ1,θ2) with s

r → c > 0 the condition (1.12) holds true with c = 0. This
suggests that the bilinear interpolation is powerful enough to work also under
some perturbations. In particular, one could use the geometric multigrid instead
of the Galerkin approach as done in Moghaderi et al. [2017]. We emphasize
that the resulting solver could still be not enough efficient when α 6= β and the
problem shows anisotropy along one of the two coordinates.

Concerning the anisotropic cases s
r → 0 or r

s → 0, as for TGM, also for the V-cycle
the theory does not apply anymore. On the other hand, contrary to what happens
for TGM, a proof of the V-cycle optimality for a MGM with semi-coarsening is still
missing.

An alternative strategy that combines both full- and semi-coarsening approaches
and that revealed extremely effective for anisotropic integer order differential
problems has been proposed in Oosterlee [1995]; Van Lent and Vandewalle [2002];
Washio and Oosterlee [1998]. Precisely, based on the fact that the multigrid
itself is a stationary method, in Oosterlee [1995]; Van Lent and Vandewalle
[2002]; Washio and Oosterlee [1998] the authors design a full-coarsening V-
cycle that uses another V-cycle with semi-coarsening along one direction as pre-
smoother, and a V-cycle with semi-coarsening along the other direction as post-
smoother. The resulting method is known as “multigrid as smoother" (MG-S)
and in Van Lent and Vandewalle [2002]was introduced as a tool for dealing with
anisotropic problems in the case of two-dimensional rotated diffusion equations.
The use of both pre- and post-smoothing with alternate semi-coarsening simu-
lates an alternating line smoother, which is useful for anisotropies between the
axes, but computationally expensive.

When applying the MG-S method to anisotropic FDE problems of form (2.1), the
computational cost can be reduced removing one of the two semi-coarsening V-
cycles. The reason is that the kind of anisotropy we are considering here is only
along the coordinates. In the next section we discuss a combination of this ‘light’
version of the MG-S with a banded approximation of the coefficient matrix.

2.3.3 Preconditioning

Aiming at increasing their robustness, MGMs are often applied as preconditioners
for Krylov methods. One possibility is to use as preconditioner the approxima-
tion provided by few iterations of the chosen multigrid applied directly to the
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coefficient matrix. Another possibility, that typically results in a lower compu-
tational cost, is to replace the coefficient matrix with an approximation whose
related linear systems are easier to be solved.

In the context of FDE problems, we mention the proposal in Moghaderi et al.
[2017]where the coefficient matrix was approximated by a band preconditioning
defined as the scaled Laplacian and combined with a MGM based on the Galerkin
approach. The resulting method was shown to be efficient when both α and β
were close to 2.

Here we propose a band approximation P m
N ofA m

(α,β),N in equation (2.8) that is
tailored for the case where only one of the two fractional derivative orders, say α,
is close to 2. Precisely,P m

N is obtained from the coefficient matrix replacing

• AαNx
with the Laplacian matrix A2

Nx
= TNx

(2− 2cosθ ). This choice is in line
with the results in Moghaderi et al. [2017];

• AβNy
with its penta-diagonal band truncation. This choice is justified by the

decay of coefficients ω(β)k with respect to index k given in Lemma 2.1.1.

The computational cost for solving a linear system associated to P m
N is linear

in N . Based on this fact and on the discussions in Sections 2.3.1 and 2.3.2, we
define a MG-S method having

- only one semi-coarsening V-cycle with weighted Jacobi as smoother;

- a hierarchy of matrices at the coarser levels obtained by the geometric
approach (see Remark 2.3.2);

and we expect that applying few iterations of it to P m
N gives rise to an effective

preconditioner for anisotropic FDEs. Numerical confirmations of this are given
in Section 2.5.

Remark 2.3.2. Although the Galerkin approach would ensure a more robust method,
estimating suitable weights for Jacobi in this case could result in a much harder task.
In Section 2.4, we present a spectral-based algorithmic procedure for estimating the
weights that naturally applies to the geometric strategy.

We end this section, providing the complete algorithm of our numerical proposal.
Without loss of generality, we assume that the anisotropy occurs along the y-axis.
As a consequence, we opt for a MG-S preconditioning with no pre-smoother and
one iteration of V-cycle with semi-coarsening in x as post-smoother. The latter
V-cycle is denoted by Vjx and has no pre-smoother and one iteration of Jacobi as
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post-smoother. The overall algorithm is denoted by MG-Sx. In the following, we
describe the steps of both Vjx and MG-Sx.

For the sake of simplicity, we assume that Nx = Ny = 2n, n ∈ N and let A m
N ={A m

N (i,k)
}ni,k=0, N (i,k) = N (i)x N (k)y with i ≥ k and N (i)x =2n−i, N (k)y =2n−k, with N (0)x =

Nx , N (0)y = Ny be the geometric hierarchy of matrices needed at each level of
the full-coarsening V-cycle that defines MG-Sx. Moreover, let ω={ω(i,k)}n−1

i,k=0 be
a sequence of proper Jacobi weights corresponding to A m

N (see Section 2.4 for
more details on how to define ω), and let P x y

N = {P x y
N (i)
}n−1

i=0 and P x
N = {P x

N (i,k)
}n−1

i,k=0
be the following sequences of projectors

P x y
N (i)
= PN (i)y

⊗ PN (i)x
, P x

N (i,k) = IN (k)y
⊗ PN (i)x

, i, k = 0, ..., n− 1, i ≥ k,

with PN (i)x
, PN (i)y

defined as in (2.14). A step of MG-Sx is described by Algorithm 2
with k = 0, while one iteration of Vjx is given in Algorithm 3.

Algorithm 2 MG-Sx method

x ( j+1) =MGSx
�A m

N , P x y
N , P x

N ,ω, x ( j), b, k
�

1) r = b−A m
N (k,k) x

( j)

2) r̃ = (P x y
N (k)
)Tr

3) if k<n then y =MGSx
�A m

N , P x y
N , P x

N ,ω,0, r̃, k+1
�
◃ 0 is the null vector

else y = (A m
N (n,n))

−1 r̃
4) x̂ = x ( j) + P x y

N (k)
y

5) x ( j+1) = Vjx
�A m

N , P x
N ,ω, x̂ , b, k, k

�
◃ 1 iteration of Vjx given in Algorithm 3

Algorithm 3 Vjx method

x ( j+1) = Vjx
�A m

N , P x
N ,ω, x ( j), b, i, k

�
1) r = b−A m

N (i,k)
x ( j)

2) r̃ = (P x
N (i,k)
)Tr

3) if i<n then y = Vjx
�A m

N , P x
N ,ω,0, r̃, i+1, k

�
◃ 0 is the null vector

else y = (A m
N (n,k))

−1 r̃
4) x̂ = x + P x

N (i,k)
y

5) x ( j+1) = J
�A m

N (i,k)
, x̂ , b,ω(i,k)

�
◃ J = 1 iteration of ω(i,k)-weighted Jacobi

The graph in Figure 2.2 summarizes how our MG-Sx looks like in the case where
n = 2. The node (i, k) represents the level of the MG-Sx hierarchy where the
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coefficient matrix isA m
N (i,k)

. The arrows stand for the projection to the next level,
where full line is full-coarsening and dotted line is semi-coarsening in x . The
red nodes are the levels in MG-Sx hierarchy that require a smoothing iteration.
Since the smoother is a V-cycle, to each red node corresponds a V-structure as
highlighted in the blue boxes.

(0,0)

(1,1)

(2,2)

(1,1)

(2,1)

(1,1)

(0,0)

(1,0)

(2,0)

(1,0)

(0,0)

Figure 2.2. Sketch of the MG-Sx algorithm in the case where n= 2

2.4 Weight estimate for Jacobi

In the previous section we proved that when ω ∈ (0,1), the weighted Jacobi
converges. This section is devoted on how to computationally estimate ω. We
start showing two results on the spectrum of the weighted Jacobi iteration ma-
trix that will be used later on. Precisely, Proposition 2.4.1 shows that the real
part of the eigenvalues of the weighted Jacobi iteration matrix is smaller than
1, while Theorem 2.4.1 proves that its spectral radius is bounded by a constant
independent of the chosen discretization grid.

Proposition 2.4.1. Let d± = d, e± = e and let BωN = IN −ωD−1
N A m

(α,β),N be the
iteration matrix of weighted Jacobi, then

Re
�
λ
�
BωN
��
< 1, ∀ω> 0.

Proof. From Proposition 2.2.1 it follows that Re(λ(A m
(α,β),N ))> 1. Due to Lemma

2.1.1 and the fact that the diffusion coefficients are constant, the diagonal of
A m
(α,β),N is DN = ĉ IN with ĉ > 0. Then, Re(λ(D−1

N A m
(α,β),N ))> 0 and

Re(λ(BωN )) = 1−ωRe(λ(D−1
N A m

(α,β),N ))< 1, ∀ω> 0,

which concludes the proof.

Theorem 2.4.1. Let ω> 0 be fixed and let d̂, d, ê, e∈R+ s.t. d̂ > d±(x , y, t)> d,
ê > e±(x , y, t) > e, then ∃cα,β > 0 s.t. ρ(BωN ) < cα,β independently of the chosen
grid.
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Proof. We recall that BωN = I −ωD−1
N A m

(α,β),N , where, from equations (2.9) and
(2.4),

A m
(α,β),N =

1
r

IN − Am
x ,N − s

r
Am

y,N ,

DN =
1
r

IN −
�
Dm
+ + Dm

−
�
ω
(α)
1 − s

r

�
Em
+ + Em

−
�
ω
(β)
1 .

(2.17)

If λ is an eigenvalue of D−1
N A m

(α,β),N , then g (λ) = 1−ωλ is an eigenvalue of BωN .
Therefore, if ρ(D−1

N A m
(α,β),N ) ≤ c̃α,β for any c̃α,β independent of the grid, then

there exists cα,β such that ‖g‖∞ ≤ cα,β , since g is a continuous function defined
over the compact set

�−c̃α,β , c̃α,β

�
.

By Gershgorin’s theorem ∃k such that��λ− ak,k

��≤ N∑
j=1
j 6=k

ak, j,

where ai, j is the (i, j)-element of the matrix D−1
N A m

(α,β),N . Assume first that k 6=
1+ jNx and k 6=( j+1)Nx−1 for j=0, ..., Ny−1, then from equation (2.17),

N∑
j=1
j 6=k

ak, j =
P1 + P2

P3
,

where, from Lemma 2.1.1,

P1 = |d+kω(α)2 + d−kω
(α)
0 |+ |d−kω(α)2 + d+kω

(α)
0 |+ d+k

K1∑
i=3

|ω(α)i |+ d−k
K2∑

i=3

|ω(α)i |

≤ d+k
�|ω(α)2 |+ |ω(α)0 |+

∞∑
i=3

|ω(α)i |
�
+ d−k

�|ω(α)2 |+ |ω(α)0 |+
∞∑
i=3

|ω(α)i |
�

≤ 2d̂
�|ω(α)2 |+ |ω(α)0 |+

∞∑
i=3

|ω(α)i |
�≤ 2d̂

�|ω(α)1 |+ 2|ω(α)0 |+ 2|ω(α)2 |
�
,

P2 =
s
r

�|e+kω(β)2 + e−kω
(β)
0 |+ |e−kω(β)2 + e+kω

(β)
0 |+ e+k

K3∑
i=3

|ω(β)i |+ e−k
K4∑

i=3

|ω(β)i |
�

≤ 2
s
r
ê
�|ω(β)1 |+ 2|ω(β)0 |+ 2|ω(β)2 |

�
,

P3 =
1
r
− d+kω

(α)
1 − d−kω

(α)
1 − s

r
e+kω

(β)
1 − s

r
e−kω

(β)
1 ≥ −2dω(α)1 − 2

s
r
eω(β)1

= 2d|ω(α)1 |+ 2
s
r
e|ω(β)1 |,
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where d±k , e±k are the k-th diagonal elements of Dm
± , Em

± , respectively, and Ki, i =
1, . . . , 4 are four appropriate indexes. Moreover,

P1 + P2

P3
≤ 2d̂

�|ω(α)1 |+2|ω(α)0 |+2|ω(α)2 |
�
+2 s

r ê
�|ω(β)1 |+2|ω(β)0 |+2|ω(β)2 |

�
2d|ω(α)1 |+2 s

r e|ω(β)1 |
≤ d̂

d

|ω(α)1 |+ 2|ω(α)0 |+ 2|ω(α)2 |
|ω(α)1 |

+
ê
e

|ω(β)1 |+ 2|ω(β)0 |+ 2|ω(β)2 |
|ω(β)1 |

=: ĉα,β ,

where ĉα,β is a positive constant independent of r, s and of the row k. Applying
small changes to the above calculations an analogous bound holds also in the
cases where k = 1+ jNx or k = ( j + 1)Nx − 1 for j = 0, ..., Ny − 1.
Since DN is the diagonal matrix containing the diagonal elements of A m

(α,β),N it
holds ak,k = 1, ∀k and therefore

|λ− 1| ≤ ĉα,β ⇐⇒ |λ| ≤ 1+ ĉα,β =: c̃α,β

for any eigenvalue λ of D−1
N A m

(α,β),N , which concludes the proof.

Remark 2.4.1. Theorem 2.4.1 still holds if we consider r, s to be fixed and untied
from the grid points.

We are now ready to explain our idea about how to estimate ω. Let Nx , Ny , Mt ∈
N and consider the matrixA m

(α,β),N in equation (2.7) at time tm. The crucial point
of our reasoning consists in providing an estimate of the weight when Jacobi is
applied to a smaller matrix whose eigenvalues approximate sufficiently well the
ones ofA m

(α,β),N . More precisely, let

Ã m
(α,β),Ñ = IÑ − rAm

x ,Ñ
− sAm

y,Ñ

with Ñ < N and s, r the scaling factors of A m
(α,β),N . From Remark 2.4.1 and

Theorem 2.4.1, we expect that the spectral radius of both

BωN = IN −ωD−1
N A m

(α,β),N , B̃ω
Ñ
= IÑ −ωD−1

Ñ
Ãm
(α,β),Ñ

are bounded by a constant independent of the chosen grid. Furthermore, several
numerical tests indicate that

ρ(B̃ω
Ñ
)≈ ρ(BωN ), (2.18)

even for variable diffusion coefficients problems. As a confirmation, we refer the
reader to Figure 2.3 where, starting from Example 2 in Section 2.5, we compare
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the spectral distributions of both B̃1
Ñ

and B1
N for two different levels in the MG-S

hierarchy. As we can see, on both levels the eigenvalues of B̃1
Ñ

(Figures 2.3a,
2.3c) seem to properly mimic the ones of B1

N (Figures 2.3b, 2.3d). Moreover,
the accuracy of the approximation is higher at the finer level where |ρ(B1

N ) −
ρ(B̃1

Ñ
)| ≈ 0.023, with N = 214, Ñ = 28 rather than at the coarser one where

|ρ(B1
N )− ρ(B̃1

Ñ
)| ≈ 0.14, with N = 210, Ñ = 28. Accordingly, we expect that the

quality of the resulting estimated weights ω will be higher on the first levels of
the hierarchy in MG-S, which are the most relevant ones.

In the light of Proposition 2.4.1, Theorem 2.4.1 and relation (2.18), here we de-
scribe the main steps of the proposed spectral-based procedure for estimating the
Jacobi weight (see Algorithm 4). For a fixedω> 0, let λ̃ωi be the i-th eigenvalue
of B̃ω

Ñ
and let ω j be few equispaced weights in (0,1.5]. Notice that the range

(0,1.5] is motivated by Remark 2.3.1. In order to estimate a proper relaxation
parameter for Jacobi applied to Ã m

(α,β),Ñ
, we build a subset Õ of the complex unit

ball. Precisely, we consider

Õ = {(x , y) | x ∈ I ⊂ R,−õ(x)< y < õ(x)},
where õ(x) is defined as õ : I ⊂ R→ R+, then we choose ω∗ as the biggest ω j

such that λ̃
ω j

i ∈ Õ, ∀i.

In order to define I = [a, b], we first observe that, when assuming constant
coefficients, Proposition 2.4.1 implies Re(λ̃ωi ) < 1, ∀i, ∀ω > 0. Although a
formal proof that Re(λ̃ωi ) < 1 holds even in the non-constant case is missing, all
the numerical tests that we have carried out indicate so (refer again to Figure
2.3). On the other hand, when ω → 0, then Re(λ̃ωi ) → 1, which means that
the only possible choice for b is 1. Concerning the choice of the left extreme,
we require that a is far from −1 which prevents ρ(Bω

∗
N ) ≥ 1. Our numerical

tests show that choosing õ(x) as sum between the semi-unit-circle and the line
y = 0.4x − 0.4, i.e., õ(x) =

p
1− x2 + 0.4x − 0.4, with I = (−21

29 , 1) ≈ (−0.7,1)
is good enough for our purpose.

It is well-known that the eigenvectors of Toeplitz matrices are distributed like fre-
quencies. Therefore, assuming constant diffusion coefficients, we have
Re(λ(BωN ))≈1, independently on ω, for λ(BωN ) associated to low frequencies; on
the other hand, ω can be properly chosen in order to reduce |λ(BωN )| in the high
frequencies. Again considering Example 2, in Figure 2.4 we show the number of
oscillations of both real and imaginary parts of the eigenvectors vi corresponding
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Algorithm 4 Weight estimate

ω =WeightEstimate(Ã m
(α,β),Ñ

)

D̃Ñ = diag
�Ã m

(α,β),Ñ

�
◃ store the diagonal elements of Ã(α,β),Ñ

Λ = eig
�
D̃−1

Ñ
Ãm
(α,β),Ñ

�
◃ compute the spectrum of D̃−1

Ñ
Ã(α,β),Ñ

õ(x) =
p

1− x2 − 0.4x + 0.4
for w= 1.5 : −0.1 : 0.1 do
Λw = 1−wΛ ◃ compute the spectrum of B̃w

Ñ
if õ (Re (λ))> |Im (λ)| ∀λ ∈ Λw then
ω = w
break

end if
end for
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of the eigenvectors of B1
N .
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to the eigenvalues λi. We observe that, as for the constant diffusion coefficients
case, also for this variable coefficients example the oscillations of both real and
imaginary parts of vi decrease while increasing Re (λi) and the subdivision in low
and high frequencies seems to hold.

2.5 Numerical results

In this section we test the effectiveness of the banded preconditioner P m
N solved

by the MG-Sx method described in Algorithm 2, and we compare its perfor-
mances with several state of the art techniques (to be described below). The
Jacobi weights required by MG-Sx are estimated by means of Algorithm 4 whose
input matrix is the opportunely scaled preconditioner P m

N .

Remark 2.5.1. Since the diffusion coefficients in the considered examples do not
change too much in time, in order to reduce the CPU-time of the setup phase, Algo-
rithm 4 performs only two estimates ofω at times t = 0 and t = T. The weightωm,
which will be used for solving the linear system at time tm, is computed by linear
interpolation as

ωm =ω0 +m
ωMt
−ω0

Mt
.

As a comparison we consider the following multigrid/circulant precondition-
ers:

1) V(Gal), which is a V-cycle with Galerkin approach with one iteration of pre-
and post- Jacobi smoother whose weights are fixed to ω = 1, applied to
the two-dimensional scaled Laplacian, namelyA m

(2,2),N (refer to Moghaderi
et al. [2017]);

2) V(Geo), which is the geometric version of the algorithm in point 1) di-
rectly applied to the original matrixA m

(α,β),N (refer again to Moghaderi et al.
[2017]);

3) Vx(Gal) and Vx(Geo), which are the same algorithms as in points 1) and
2), respectively, but with semi-coarsening in x;

4) Vjx, described in Algorithm 3 and applied to preconditioner P m
N with ge-

ometric approach and with Jacobi weights estimated by means of Algo-
rithm 4;

5) SP, which is the circulant version of the splitting preconditioner introduced
in Lin et al. [2017b]. Such preconditioner was designed for the case where
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d+(x , y, t) = d−(x , y, t) and e+(x , y, t) = e−(x , y, t), but we extend it to
the general case by averaging the left and right diffusion coefficients. SP
is then defined as WNC (TN ), where

WN = IN + Dm
N + Em

N ,

Dm
N =

Dm
+ + Dm

−
2

, Em
N =

Em
+ + Em

−
2

,

TN = θ N IN + r dN INy
⊗ �AαNx

+ AαNx

T
�
+ s eN

�
AβNy
+ AβNy

T�⊗ INx
,

θ N =mean
�
W−1

N

�
, dN =mean

�
Dm

N W−1
N

�
, eN =mean

�
Em

N W−1
N

�
,

and C (TN ) is the the T. Chan optimal circulant approximation of TN .

The reason why we went for this circulant version of the preconditioner in
Lin et al. [2017b] is twofold:

– it allows the use of the FFTs instead of the multigrid with block-Jacobi
employed in Lin et al. [2017b] for solving the Toeplitz splitting pre-
conditioner;

– in all our experiments, the number of iteration provided by the circu-
lant splitting grows slowly.

As a consequence, we obtain an overall algorithm which is simpler and
more robust than if we would have used the Toeplitz splitting.

Remark 2.5.2. The direct solution in any of the V-cycles at points 1)-2) occurs at
the first level where the mesh size is smaller or equal to 24. In the V-cycles with
semi-coarsening in x at points 3)-4) instead, the direct solution is computed at the
lowest possible level of the hierarchy, i.e., when the size in the x-direction is equal
to 1. For the full- and semi-coarsenings occurring inside MG-Sx we combine both
choices. All methods use the Matlab function backslash as solver at the coarsest
level.

In the following, we choose as main solver for solving the linear system (2.8)
the GMRES method, and we perform it computationally by the built-in gmres

Matlab function. The initial guess at time tm is taken as the solution at time tm−1

and for each multigrid preconditioner listed above we perform only 1 iteration.
Notice that, the GMRES stopping criterion is based on the preconditioned resid-
ual which is usually lower than the residual, therefore to get a tolerance on the
residual of 10−7, we set a smaller input tolerance of 10−8.
All the numerical tests have been performed using Matlab 9.3 software on Win-
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dows 10 machine with AMD FX-8350 8-core (4.00 GHz) processor and 16 GB
(1333 MHz) ram.

In the following tables, for all tested methods, we report the CPU-times in seconds
and, in brackets, the average number of iterations

It=

∑Mt

k=1 Itk

M
,

where Itk are the iterations required for solving (2.8) at time tk. The CPU-time
of the setup-phase is not reported in the tables since if properly implemented, all
methods show a comparable behavior.

When the execution times exceed 1 hour, we display the average iterations till the
maximum available time step. Moreover, a dash is displayed if either the input
tolerance cannot be reached or the maximum number of iterations per time step,
which is set to 100, is exceeded.

For both Example 1 and Example 2, we fix β = 1.1 and Nx = Ny = Mt − 1= n.

Example 1. Let us consider the CN-WSGD discretization of the FDE problem in
(2.1) with Ω = [0,1]× [0,1], T = 1 and

• d+(x , y, t) = 4(1+ t)xα(1+ y), d−(x , y, t) = 4(1+ t)(1− x)α(1+ y),

• e+(x , y, t) = 4(1+ t)(1+ x)yβ , e−(x , y, t) = 4(1+ t)(1+ x)(1− y)β ,

• u0(x , y, 0) = x3 y3(1− x)3(1− y)3,

• u(x , y, t) = 0 for (x , y) ∈ R2 \Ω, t ∈ [0, T],

• v(x , y, t) is such that the solution to the FDE is given by

u(x , y, t) = e−t x3 y3(1− x)3(1− y)3.

For this example both time and space intervals have the same length, then ∆t =
hx = hy . Table 2.1 shows that, independently of α and n, the number of itera-
tions provided by MG-Sx is always smaller than the one provided by the other
methods. Moreover, for large-sized problems (n + 1 ≥ 28) the MG-Sx method
outperforms the other solvers also in terms of CPU-times. This is particularly
evident for α = 1.9, and still occurs for α = 1.5, although in the latter case the
MG-Sx gets worse and the performances of SP improve.
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α n+1
MG-Sx Vjx SP V(Gal) Vx(Gal) V(Geo) Vx(Geo)

T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It)

1.9

24 1.1 (8.6) 0.5 (9.3) 0.23 (27) 0.52 (26) 0.38 (17) 0.97 (22) 0.77 (12)
25 2.9 (8) 1.4 (11) 1.1 (36) 2 (39) 0.99 (18) 4.3 (33) 2.4 (13)
26 8.82 (7.6) 4.79 (13) 6.66 (44) 10.9 (48) 4.81 (21) 20.6 (41) 16 (27)
27 29 (6.9) 26 (14) 59 (47) 82 (49) 32 (20) 122 (42) 261 (66)
28 173 (7) 208 (14) 536 (46) 891 (60) 249 (16) 1484 (49) -
29 1509 (7.2) 1986 (14) >1h (41) >1h (65) 2907 (19) >1h (48) -

1.5

24 1.6 (15) 0.76 (16) 0.18 (23) 0.63 (31) 0.43 (20) 0.78 (17) 0.7 (11)
25 4.4 (14) 2.1 (17) 0.77 (28) 1.7 (34) 1.2 (22) 3.1 (23) 3 (16)
26 13.1 (13) 6.42 (18) 4.33 (31) 9.02 (41) 5.01 (22) 13.7 (28) 22.7 (38)
27 42 (11) 34 (19) 35 (32) 69 (43) 32 (20) 80 (29) -
28 224 (10) 263 (19) 316 (29) 599 (43) 258 (17) 684 (23) -
29 2047 (11) 2495 (19) 2622 (26) >1h (47) 3272 (22) >1h (23) -

Table 2.1. Example 1 - β = 1.1, α= 1.5,1.9

Notice that, switching from α = 1.9 to α = 1.5, the anisotropy decreases, while
the average iterations of both MG-Sx and Vjx increase. The reason is that the
quality of the approximation provided by the band preconditioner P m

N slows
down as the distance between α and 2 increases.

We recall that, due to the structure of P m
N , the computational cost of MG-Sx is

linear in the matrix-size, and this combined with the low number of iterations
justifies its robustness as the grid becomes finer. As the number of iterations stays
almost constant with respect to the problem size, we expect a similar trend also
for n+ 1> 29.

A comparison of the considered multigrid strategies shows that the use of the
semi-coarsening is very effective when combined with the Galerkin approach
(refer to V(Gal) and Vx(Gal) in Table 2.1), while it requires a fair estimation of
the Jacobi weight when the Galerkin approach is replaced by the geometric one
(compare Vx(Geo) with Vjx). For this example Vjx is indeed already very robust
even without being combined with MG-Sx.

We note that even if the diffusion coefficients do not satisfy the hypothesis in
Theorem 2.4.1, the estimated weights are still good enough to guarantee a faster
convergence of MG-Sx with respect to the other solvers.
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T n+1
MG-Sx Vjx SP V(Gal) Vx(Gal) V(Geo) Vx(Geo)

T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It)

1

24 1.4 (8) 0.59 (9) 0.17 (17) 0.61 (23) 0.39 (14) 1.1 (20) 0.8 (11)
25 3.2 (7.4) 1.4 (9) 0.66 (22) 1.9 (33) 0.77 (12) 4.2 (29) 2.4 (11)
26 8.91 (7) 3.51 (8) 3.83 (28) 8.56 (37) 3.26 (13) 18.5 (35) 7.58 (11)
27 28 (6) 18 (9) 34 (30) 61 (38) 22 (13) 103 (35) 50 (12)
28 151 (6) 155 (10) 346 (31) 527 (37) 181 (11) 1153 (38) 962 (25)
29 1232 (5.8) 1322 (9) 2943 (30) >1h (32) 2203 (13) >1h (30) >1h (47)

2

24 1.1 (9) 0.58 (10) 0.18 (18) 0.58 (26) 0.43 (16) 1.1 (22) 0.8 (11)
25 3.2 (8) 1.4 (9.4) 0.76 (27) 2.1 (37) 0.87 (14) 4.9 (34) 2.5 (12)
26 8.83 (7) 4.15 (10) 6.28 (36) 12.4 (47) 3.74 (15) 22.9 (43) 8.33 (12)
27 31 (7) 21 (11) 54 (43) 96 (54) 28 (17) 149 (49) 98 (26)
28 159 (6) 194 (13) 560 (48) 1013 (65) 251 (16) > 1

2 h (59) > 1
2 h (62)

29 1323 (6.4) 2010 (15) >1h (49) - 3224 (20) >1h (61) -

4

24 1.3 (9.9) 0.6 (10) 0.19 (20) 0.66 (29) 0.47 (20) 1.2 (25) 0.89 (12)
25 3.4 (9) 1.5 (10) 0.94 (30) 2.3 (42) 0.94 (16) 5.4 (38) 2.7 (13)
26 9.75 (8) 4.41 (11) 6.41 (43) 13.1 (54) 4.19 (17) 26.6 (50) 8.95 (13)
27 34 (8) 26 (14) 77 (56) 143 (72) 33 (20) 202 (63) 164 (43)
28 196 (8) 248 (17) 852 (66) - 389 (25) > 1

2 h (81) -
29 1557 (8) 2761 (21) >1h (71) - >1h (28) - -

Table 2.2. Example 2 - α= 1.9, β = 1.1, and T ∈ {1,2,4}

Example 2. For this example we consider the CN-WSGD discretization of the
FDE problem in (2.1) with Ω = [0, 2]× [0,2], T = 2 and

• d+(x , y, t) = Γ (3−α)(1+ x)α(1+ y)2, d−(x , y, t) = Γ (3−α)(3− x)α(3− y)2,

• e+(x , y, t) = Γ (3−β)(1+ x)2(1+ y)β , e−(x , y, t) = Γ (3−β)(3− x)2(3− y)β ,

• u0(x , y, 0) = 16x2(2− x)2 y2(2− y)2,

• u(x , y, t) = 0 for (x , y) ∈ R2 \Ω, t ∈ [0, T],

• v(x , y, t) is such that the solution to the FDE is given by

u(x , t) = 16e−t x2(2− x)2 y2(2− y)2.

Tables 2.2 and 2.3 refer to α = 1.9 and α = 1.5, respectively, and show the
performances of all the considered methods for T ∈ {1,2,4} and then ∆t ∈
{hx

2 , hx , 2hx}. As a consequence of this choice, the ratio r
s does not change,

while the scaling parameters r, s increase. All the methods, except MG-Sx, suf-
fer from the subsequent worsening of the ill-conditioning of the coefficient ma-
trix A m

(α,β),N . By contrary, MG-Sx still shows linear convergence for all T , and
outperforms the other solvers both in terms of CPU-times and iterations as the
matrix-size increases.
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T n+ 1
MG-Sx Vjx SP V(Gal) Vx(Gal) V(Geo) Vx(Geo)

T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It) T(s) (It)

1

24 1.6 (14) 0.8 (15) 0.16 (18) 0.62 (27) 0.43 (18) 0.85 (17) 0.75 (10)
25 4.6 (13) 2 (15) 0.63 (21) 1.7 (30) 1 (17) 3.1 (21) 2.3 (11)
26 12.7 (11) 5.63 (15) 3.2 (23) 8.28 (36) 3.96 (16) 12.8 (24) 8.91 (13)
27 42 (10) 27 (15) 25 (24) 61 (38) 25 (15) 70 (24) 212 (54)
28 220 (9.3) 221 (15) 248 (23) 514 (37) 243 (15) 622 (20) -
29 1815 (9.8) 2004 (15) 2053 (21) >1h (42) 3147 (20) >1h (22) -

2

24 1.7 (15) 0.85 (16) 0.18 (20) 0.77 (34) 0.5 (22) 0.93 (19) 0.82 (12)
25 5.1 (15) 2.2 (17) 0.73 (25) 2.1 (37) 1.2 (21) 3.8 (26) 2.7 (13)
26 14.4 (13) 6.77 (18) 4.31 (31) 11 (46) 4.83 (20) 16.4 (31) 12 (18)
27 51 (13) 37 (20) 38 (33) 91 (52) 34 (20) 93 (32) 365 (86)
28 265 (12) 332 (23) 380 (34) 884 (58) 351 (22) 859 (28) -
29 2160 (12) 3154 (24) 3176 (32) >1h (67) >1h (39) >1h (31) -

4

24 1.9 (17) 0.93 (18) 0.19 (22) 0.83 (37) 0.61 (27) 1 (20) 0.92 (13)
25 5.7 (17) 2.5 (19) 0.83 (28) 2.4 (43) 1.4 (25) 4.2 (29) 3.2 (16)
26 16.4 (16) 7.87 (21) 5.36 (37) 13.9 (56) 5.83 (24) 19.1 (36) 16.8 (27)
27 59 (15) 48 (26) 53 (43) 126 (66) 43 (25) 119 (40) -
28 324 (15) 466 (32) 520 (45) 1317 (80) 489 (31) 1126 (37) -
29 2480 (14) >1h (37) >1h (44) - >1h (59) >1h (39) -

Table 2.3. Example 2 - α= 1.5, β = 1.1, and T ∈ {1,2,4}

2.6 Conclusions

In this chapter, we have investigated multigrid preconditioners for
two-dimensional anisotropic FDEs where the anisotropy is generated by frac-
tional derivative orders that are largely different in the two directions x and y .
For severe anisotropic cases, the classical semi-coarsening strategy is not enough
for obtaining a robust preconditioner and hence we propose two additional im-
provements. The first is an automatic estimation of the Jacobi weight driven by
the symbol analysis previously introduced in Moghaderi et al. [2017] and here
extended also to the anisotropic case. The second is the use of the multigrid as
smoother according to a simplified version of the proposal in Oosterlee [1995].
The resulting method is applied as preconditioner and the computational cost
is further reduced by approximating the fractional operators with matrices that
have only few nonzero diagonals. Finally, we stress that the proposed MG-S pre-
conditioner is highly parallelizable thanks to the two-level band structure of the
coefficients matrices, the V-cycle and the Jacobi smoother.



Chapter 3

Parallel in time scheme

Despite the encouraging results obtained for the time stepping scheme in Chapter
2, with the sequential approach we cannot aspire towards a complete indepen-
dency of time of its computational cost. This is because of the sequentiality of
the time integration. By contrary, an all-at-once rephrasing of the discretized
problem over a uniform space-time grid, obtained by considering the time as an
additional dimension, yields large (multilevel) Toeplitz linear systems and opens
to parallelization.

In Section 3.1 we fix our attention on the WGSD discretization, as in Chapter 2,
of a one-dimensional time-dependent space-FDE with constant diffusion coeffi-
cients, by giving the formal expression and the structure of the resulting matrices.
We stress that this one-dimensional problem turns out to be already a tough one,
due to the block structure of the coefficient matrix and to its possibly anisotropic
character because of the grid choice and the diffusion coefficients.
As for the time discretization, we opt either for CN or BDF2 schemes. The un-
conditional stability of CN-WSGD has already been proven in Tian et al. [2015].
Concerning BDF2, in Liao et al. [2018] it was combined with a central finite dif-
ference scheme for solving space-FDEs with diffusion coefficients equal to 1. In
that same paper, a proof of unconditional stability of the resulting method was
given. In Section 3.2 we extend this result to the case where the space scheme
is WSGD and the diffusion coefficients are not necessarily equal to each other.
In Section 3.3, we perform an all-at-once rephrasing of the original matrices and
give some results on their spectra, which are leveraged in Section 3.4 for the
design of proper multigrid strategies. Finally, several numerical experiments,
also in the case of variable diffusion coefficients, are reported in Section 3.5 for
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testing the performances of our proposals. Finally, in Section 3.6 we draw con-
clusions.

3.1 Problem setting and discretization

In this section we introduce the FDE problem we are interested in, which coin-
cides with the one-dimensional version of problem (2.1), and we briefly review
the combination of the chosen finite difference space-discretization with two dif-
ferent time discretization schemes (Section 3.1.2).

3.1.1 One-dimensional space-FDE

We focus on the following one-dimensional initial-boundary value space-FDE
problem

∂ u(x , t)
∂ t

= d+
∂ αu(x , t)
∂ R
+ xα

+ d−
∂ αu(x , t)
∂ R− xα

+ v(x , t),

(x , t) ∈ Ω× [0, T],

u(x , t) =0, (x , t) ∈ (R \Ω)× [0, T],

u(x , 0) =u0(x), x ∈ Ω,

(3.1)

where Ω=(a, b) is the space domain, d±>0 are the diffusion coefficients, v(x , t)
is the forcing term.

3.1.2 Space-time discretizations: CN-WSGD and BDF2-WSGD

In the following, we briefly review the finite difference space-discretization of
problem (3.1) obtained using the WSGD scheme, already introduced in Section
1.6.4, combined with either CN or BDF2 schemes in time.

Let N , M ∈ N and consider the following uniform space-time grid

x i = a+ i∆x , ∆x =
b− a
N + 1

, tm = t0 +m∆t, ∆t =
T
M

.

As reported in Chapter 2, the discretization of operator ∂ α

∂ R
+ xα yields the lower

Hessenberg Toeplitz matrix AαN = TN ( fα) in equation (2.5), where

fα(x) =
∞∑
k=0

ω
(α)
k ei(k−1)x ,
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with coefficients ω(α)k defined in equation (2.3). Similarly, the discretization of
∂ α

∂ R− xα yields an upper Hessenberg Toeplitz matrix, which coincides with AT
N .

The discretization of the forcing term returns vector vm = [v(x i, tm)]Ni=1 and
the application of CN and BDF2 schemes in time gives the following linear sys-
tems �

IN − rAx ,N

�
um =

�
IN + rAx ,N

�
um−1 +

∆t
2
(vm + vm−1), (3.2)�

IN − 4
3

rAx ,N

�
um =

4
3

um−1 − 1
3

um−2 +
2
3
∆t vm, (3.3)

respectively, where r= ∆t
2∆xα and

Ax ,N = d+AαN + d−AαN
T.

Remark 3.1.1. In the case of BDF2, the solution u1 at time t1 is computed with
CN. Note that any other one step method could be used to compute u1. For example,
although Implicit Euler is only first order accurate, if we only use it once it will not
compromise the global second-order accuracy. Such a statement can be found in
Thomée [1984].

The following proposition, which plays an important role in the definition of the
projectors for our multigrid strategy (see Section 3.4), defines the symbol of the
spatial discretization.

Proposition 3.1.1. Let d±=d, then Ax ,N = d ·TN (gα), where gα(x)= fα(x)+f α(x)
is non-positive and has a zero of order α at x=0.

3.2 Stability of the BDF2-WSGD scheme

In Tian et al. [2015] the authors proved the unconditional stability of the CN-
WSGD scheme (3.2), in the constant diffusion coefficients case, as a consequence
of the following theorem.

Theorem 3.2.1 (Tian et al. [2015]). Let λ be an eigenvalue of Ax ,N , then Re(λ)<
0, ∀α ∈ (1,2).

Indeed, in case of a one step scheme like CN, the stability relies on the spectral
radius of the iterations matrix of the time stepping algorithm, which is required
to be lower than 1. We now aim to prove the stability of the BDF2-WSGD scheme.
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After the discretization in space we obtain an equation of the form

d
dt

u(t) = Ax ,Nu(t) + v(t), (3.4)

where u(t),v(t) are, respectively, the semi-discrete in space unknown and forc-
ing term.
The region of absolute stability of a linear multistep method is defined as fol-
lows.

Definition 3.2.1 (Absolute stability region). The region of absolute stability for
the linear multistep method

s∑
j=0

α ju
n+ j = λ∆t

s∑
j=0

β ju
n+ j,

is the set of points z ∈ C for which the roots {ζ j}sj=1 of the polynomial

π(ζ, z) =
s∑

j=0

�
α j − zβ j

�
ζ j, z = λ∆t, (3.5)

satisfies the following root conditions:

a)
��ζ j

��≤ 1, for j = 1, ..., s,

b) if ζ j is a repeated root, then
��ζ j

��< 1.

Therefore, again as a consequence of Theorem 3.2.1, the following theorem
holds.

Theorem 3.2.2. Let α ∈ (1,2) and consider Ax ,N to be diagonalizable, then BDF2-
WSGD scheme (3.3) is unconditionally stable.

Proof. Since Ax ,N is diagonalizable there exists an invertible matrix V such that
Ax ,N = V−1ΛV , whereΛ is the diagonal matrix containing the eigenvalues of Ax ,N .
Therefore, by introducing ũ= Vu, equation (3.3) can be written as N uncoupled
equations with respect to ũ:

(IN − 4
3

rΛ)ũm =
4
3

ũm−1 − 1
3

ũm−2 +
2
3
∆tV vm.

Let us fix a row index i, then, by definition of r,

(1− 2
3
∆t
∆xα

λi)ũ
m
i − 4

3
ũm−1

i +
1
3

ũm−2
i =

2
3
∆t(V vm)i,
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which, in the polynomial form of equation (3.5), becomes

π(ζ, z) = (1− 2z
3∆xα

)ζ2 − 4
3
ζ+

1
3

.

By defining z̃ := 1− 2z
3∆xα , which is a complex number and can be written as

z̃ = a+ ib, it follows that the roots are

��ζ1,2

��=����� 4
3 ±

q
16
9 − 4

3 z̃

2z̃

�����≤
���2+ 2

q
1− 3

4 z̃
���

3 |z̃| =

���2+ 2
q

1− 3
4(a+ ib)

���
3
p

a2 + b2
=: g(a, b).

From Theorem 3.2.1, we have that Re(z)= a>1 for α∈ (1,2), and the study of
the maximum of function g(a, b) shows that sup

a>1
g(a, b)<1.

The following corollary exploits the density of diagonalizable matrices into the
space of square matrices to remove the diagonalizability hypothesis in Theorem
3.2.2.

Corollary 3.2.1. Let α ∈ (1,2), then BDF2-WSGD scheme (3.3) is unconditionally
stable.

Proof. Let us suppose that Ax ,N is not diagonalizable, otherwise the thesis follows
from Theorem 3.2.2. Let us consider the Schur decomposition QTQH of Ax ,N ,
where Q and T are unitary and upper triangular matrices, respectively. Note
that due to the structure of T , its diagonal elements are the eigenvalues of T and
that, by similarity, they coincide with the eigenvalues of Ax ,N .
Since we are assuming that Ax ,N is not diagonalizable, T has at least two diagonal
elements that are equal. Let us then consider matrix BN = QT̃QH, where T̃ is
obtained from T by properly shifting its diagonal entries such that T̃ becomes
diagonalizable. More precisely, for ε > 0 and for i = 1, ..., N the i-th diagonal
element of T̃ is t̃ ii = t ii − δi with 0 ≤ δi < ε such that t̃ ii 6= t̃ j j, ∀i, j = 1, ..., N
and i 6= j.
Since BN is diagonalizable and its eigenvalues have negative real part, Theorem
3.2.2 applies to BN , and since

BN − Ax ,N




2 =



T̃ − T




2 = max
i=1,...,N

δi < ε,

by letting ε→ 0 the thesis is proven.

Remark 3.2.1. The unconditional stability of BDF2 combined with a central finite
difference scheme for discretizing the fractional derivative operator, was given in
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Liao et al. [2018]. Therein, the diffusion coefficients were both equal to 1. Under
the diagonalizability hypothesis, Theorem 3.2.2 extends the unconditional stability
of BDF2 to the case where the space scheme is WSGD and the diffusion coefficients
are not necessarily equal to each other. Corollary 3.2.1 generalizes Theorem 3.2.2
to the case of a non diagonalizable matrix Ax ,N .

3.3 All-at-once rephrasing of our problem and related

spectral study

An all-at-once approach consists in considering the time like an additional di-
mension. Starting from equations (3.2) and (3.3), and chaining the unknown
um at each time step into a unique vector as

uCN = [u
1, ..., uM]T ∈ RN M , uBDF2 = [u

2, ..., uM]T ∈ RN(M−1)

in the case of CN and BDF2, respectively, we can rephrase the original discretized
problem as the following large block linear systems

ASuS = bS, S ∈ {CN,BDF2}, (3.6)

where

ACN=


I−rAx ,N 0 0 0
−I−rAx ,N I−rAx ,N 0 0

0
... . . . 0

0 0 −I−rAx ,N I−rAx ,N

 , (3.7)

ABDF2=


I− 4

3rAx ,N 0 0 0 0
−4

3 I I− 4
3rAx ,N 0 0 0

1
3 I −4

3 I I− 4
3rAx ,N 0 0

0
... . . . . . . 0

0 0 1
3 I −4

3 I I− 4
3rAx ,N

 , (3.8)

and

bCN=


(I+rAx ,N )u0+∆t v1−1

2

∆t v2−1
2

...
∆t vM−1

2

 , bBDF2=


4
3u1 − 1

3u0 + 2
3∆t v2

−1
3u1 + 2

3∆t v3

2
3∆t v4

...
2
3∆t vM

 .
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Note that both coefficient matrices ACN, ABDF2 are two-level Toeplitz according to
Definition 1.3.2, and hence we can compute their symbol.

From Proposition 3.1.1 we recall that Ax ,N = d · TN (gα), where gα(x) has a zero
of order α at x=0. Then, by assuming d±=d and N , M→∞, we have

AS = T(2)NM(hS), S ∈ {CN,BDF2},
with hS defined as follows:

(i) if r is constant, then

• hCN(x , t)= 1− eit − d · rgα(x)
�
1+eit

�
,

• hBDF2(x , t)=1−4
3

eit +
1
3

e2it−4
3

d · rgα(x),
(3.9)

and both functions have a unique zero at (x , t) = (0,0) of order 1 and α
in t and x , respectively;

(ii) if r→0, then from (3.9) we have

• hCN(x , t)= 1−eit ,

• hBDF2(x , t)=1−4
3

eit +
1
3

e2it ,

and both functions have a zero of order 1 at t=0, ∀x;

(iii) if r→∞, by grouping up r in (3.9), we have

• hCN(x , t)= −d(1+eit)gα(x),

• hBDF2(x , t)=−4
3

d · gα(x),
where hCN has a zero of order 1 at t = π, ∀x and a zero of order α at
x=0, ∀t, while hBDF2 vanishes only at x=0, ∀t with order α.

The presence of at least a line of zeros in the symbol is called anisotropy. The lat-
ter becomes stronger as the number of such lines increases. We expect then case
(iii) for CN to be much harder to be numerically treated than all other cases.

Remark 3.3.1. If we suppose r to be constant and let d→∞ or d→ 0 then the
same results as in case (ii) and (iii), with r in place of d, hold. In practice, since r, d
are fixed coefficients, the anisotropy arises when d · r is very large or very small.

Remark 3.3.2. The study of the symbol hS can easily be extended to the case where
d+ 6=d− using the results in Donatelli et al. [2016].
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3.4 Multigrid methods for all-at-once systems

This section is devoted to the design of multigrid strategies based on the spectral
study performed in Section 3.3 for the linear systems in (3.6).

The convergence of the V-cycle relies in the hypothesis in equation (1.12), when
the symbol of the coefficient matrix has a unique zero. In the case where f has
a whole line of zeros along the axes, relation (1.12) does not hold anymore. In
such a case, an efficient alternative to standard V -cycle is given by the semi-
coarsening.

As done in Section 2.3.1, we define the projector according to condition (1.12)
and the properties of the symbol hS defined in Section 3.3. Let us first introduce
the polynomials

p1(x)=2+2cos(x), p+2 (t)=1+eit , p−2 (t)=1−eit .

Note that:

• p1(x) has a zero of order 2 at x=π;

• p+2 (t) has a zero of order 1 at t=π;

• p−2 (t) has a zero of order 1 at t=0.

In the case of CN, according to the analysis in Section 3.3, we distinguish the
following three cases:

1) If r is constant, then hCN has a unique zero of minimum order 1 at (x , t)=
(0,0). The mirror points of (x , t) = (0,0) are (0,π), (π, 0), (π,π). Since
p1(x) and p+2 (t) vanish at x=π and t=π, respectively, p(x , t)=p1(x)p+2 (t)
vanishes at the mirror points with a minimum order of 1 and hence satisfies
relation (1.12).

2) In the anisotropic case where r→0, hCN is zero on the whole x-axis, then
we opt for semi-coarsening in time. Precisely, according to the discussion
related to the approximation property in Section 2.3.1, by considering vari-
able x as a parameter, hCN has a unique zero of order 1 at t=0. Then, we
generate Pt,M through p+2 (t) that has a zero of order 1 at the mirror point
t=π. The projector Px ,N is given by the identity matrix IN .

3) In the anisotropic case, where r→∞, hCN is zero on both axes. The theory
does not apply to this scenario. Nevertheless, as a first attempt to dominate
(at least partially) this other kind of anisotropy, we use again standard
semi-coarsening in both time and space. Precisely,
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– When x is considered as a parameter, hCN has a zero of order 1 at
t=π. Therefore, we perform semi-coarsening in time replacing Px ,N

with IN and generating Pt,M through p−2 (t), whose first order zero at
t = 0 satisfies relation (1.12) for x fixed, i.e., considering only the
one-dimensional problem in the variable t.

– When t is considered as a parameter, hCN has a zero of orderα at x=0.
Therefore, the semi-coarsening in space is defined by replacing Pt,M

with the identity matrix IM and generating Px ,N through p1(x), which
has a zero of order 2 at the mirror point x = π, again according to
condition (1.12) for t fixed.

In the case of BDF2, items 1) and 2) are identical. Regarding item 3), i.e., when
r→∞, symbol hBDF2 vanishes only over the line x=0, ∀t with order α. Hence
we have a standard anisotropy, like in item 2), but this time along the t-axis.
Therefore, we consider a semi-coarsening in space by setting Pt,M = IM and by
generating Px ,N through p1(x), whose position and order of the zero satisfies
relation (1.12) for t fixed.

Concerning the smoother, we considerω-weighted block Jacobi method (ω-BJ),
where the diagonal blocks are of the form I−ξrAx ,N , with ξ= 1 for CN and ξ= 4

3
for BDF2. The reason for such a choice is that it is parallelizable and it allows
to exploit the structure of the coefficient matrix. Moreover, ω-BJ converges for
anyω ∈ (0,1] whenever the blocks are of size N ×N (see Propositions 3.4.1 and
3.4.2), hence the study of its relaxation parameter is only related to the smooth-
ing property along the time axis (see Section 3.5.1 for numerical discussion about
this issue).
We stress that, choosing standard Jacobi would decrease the computational cost
and would also exploit the structure of the coefficient matrix, but its use would
ask for a tougher study of the relaxation parameter in order to ensure the con-
vergence.

Proposition 3.4.1. Let AS ∈ RN M×N M be the BTTB in equation (3.6), where M is the
number of diagonal blocks and N is the size of the blocks. Then, 1-BJ converges in
M iterations for S ∈ {CN, BDF2} and for any choice of the initial guess x (0) ∈ RN M .

Proof. We recall that 1-BJ is the iterative method in equation (1.4) with precon-
ditioner WN = D̃, where D̃ = diagi=1,...,M(D̃i) is the block diagonal of AS, and we
rewrite it as a sequence of linear systems:

D̃x (k+1) =
�
D̃− AS

�
x (k) + b.
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We now prove by induction the unconditional convergence of 1-BJ when applied
to the CN-WSGD scheme. The same reasoning of course applies also to the BDF2-
WSGD scheme.

Let us fix an initial guess x (0) ∈ RN M , then split x (0) into M blocks

x (0) =

x (0)1
...

x (0)M

 , x (0)i ∈ RN , i = 1, ..., M

and proceed by induction.

As a base case, we prove that the first iteration of block Jacobi solves the first
linear system in the CN-WSGD scheme. The first iteration yields x (1) as solution
of the block linear system

D̃x (1) =
�
D̃− ACN

�
x (0) + b. (3.10)

Due to the block structure of matrix D̃, the linear system (3.10) can be split into
M independent linear systems. From the definition of matrix ACN, in equation
(3.7), and its diagonal D̃, it holds�

IN − rAx ,N

�
x (1)1 =

�
IN + rAx ,N

�
u0 +∆t ṽ1− 1

2 , (3.11)

which coincides with the first step of the CN-WSGD scheme in equation (3.2)
and gives the solution x (1)1 at time t1.

Let us now suppose that at the k-th iteration, vector x (k) is such that x (k)1 , ..., x (k)k
are the solutions at the times t1, ..., tk respectively. Then the (k+1)-th block of
equation (3.10) is�

IN − rAx ,N

�
x (k+1)

k+1 =
�
IN + rAx ,N

�
x (k)k +∆t ṽk− 1

2 , (3.12)

which coincides with the (k+1)-step of the CN-WSGD scheme in equation (3.2)
and gives the solution x (k+1)

1 at time tk+1 if x (k)k is the numerical solution at the
previous step, which is true by induction hypothesis and therefore x (k+1)

k+1 is the
numerical solution at time tk+1.
It is easy to note that at the (k+1)-th iteration, it holds

x (k+1)
1 = x (k)1 , ... , x (k+1)

k = x (k)k ,

up to a rounding error due to the machine precision, and therefore x (k+1) is such
that x (k+1)

1 , ..., x (k+1)
k+1 are the solution at times t1, ..., tk+1 and the thesis follows by

induction.
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More in general, when ω ∈ (0,1) the following proposition holds.

Proposition 3.4.2. Let AS ∈ RN M×N M be the BTTB in equation (3.6), where M is
the number of diagonal blocks and N is the size of the blocks. Then,ω-BJ converges
∀ω ∈ (0,1] for S ∈ {CN,BDF2} and for any choice of the initial guess x (0) ∈ RN M .

Proof. Let WN =
1
ω D̃ be the preconditioner in equation (1.4) which defines the

ω-BJ method, where D̃ = diagi=1,...,M(D̃i) is the block diagonal of AS in equa-
tion (3.6). Then, denoting by ∗ the subdiagonal blocks, the iteration matrix of
ω-BJ is

JN M = IN M −ωD̃−1AS =


(1−ω)IN 0 · · · 0

∗ . . . . . .
...

∗ . . . . . . 0
0 ∗ ∗ (1−ω)IN

 .

Due to the block lower triangular structure of matrix JN M , it holds that ρ(JN M) =
1−ω< 1,∀ω ∈ (0,1] and therefore ω-BJ converges for any ω ∈ (0,1].

Remark 3.4.1. Note that in case of BDF2, when d →∞ or r→∞, the coefficient
matrix in equation (3.6) tends to a block diagonal Toeplitz matrix. This means
that, when d · r becomes large, using the multigrid is pointless since its smoother is
already computing the solution accurately enough.

3.5 Numerical results

In this section we investigate the performances ofω-BJ, Two-grid method (TGM)
and V-cycle (V), mainly used as standalone solvers for solving the linear system
in (3.6). Few numerical results concerning the use of both TGM and V as pre-
conditioners (only one iteration) for GMRES are also given.

Both TGM and V-cycle will have one iteration of ω-BJ as post-smoother and no
pre-smoothing iteration (the reason is given in Section 3.5.1). In our tests, the
inversion of the blocks in block-Jacobi is performed through the Matlab function
backslash. In V-cycle we halt the coarsening at the 5-th level, when the coeffi-
cient matrix has a minimum size of N5×M5 with N5 ≥ N

25 and M5 ≥ N
25 , depending

on the coarsening technique, and the solution on the coarsest level is performed
through the backslash Matlab function, which is a direct solver.
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As already clarified in Remark 3.1.1, the solution u1 at the first time step is com-
puted outside the coefficient matrix. One could of course include the computa-
tion of u1 in the coefficient matrix as done in Gu et al. [2020]. In our case, due to
the computationally expensive smoother we use, the difference between the two
approaches is negligible. A comparison between the two approaches in terms of
iterations can be found in Section 3.5.6.

The section is organized as follows. In the first part we aim at explaining how
we fix the fractional derivative order α, and the relaxation parameter ω in our
numerical examples. Precisely, in Section 3.5.1 we test the performances of ω-
BJ for two different values of ω and we show that it generates jumps along the
time axis, independently of ω. In Section 3.5.2, we check how much TGM is
sensitive to α, and numerical results show that its behavior is only slightly α-
dependent.

Aside from α and ω, we also need to clarify how we choose between the two
projector generators p+2 and p−2 discussed in Section 3.4 when performing semi-
coarsening in time for CN. This is the subject of Section 3.5.3. In Sections 3.5.4–
3.5.5 we perform few tests with large N , M to numerically check the robustness
of TGM and V as N , M increase in both constant and variable diffusion coeffi-
cients cases. Finally, in Section 3.5.6 we provide a two-dimensional example.

All our tests have been run on a server with Intel(R) Xeon(R) Silver 4114 at
2.20GHz with Matlab 2019b. For all methods we fix the tolerance to 10−7 and
the initial guess as the null vector. We use the built-in gmres function, whose pre-
conditioner is left-sided. For this reason we force GMRES to reach the required
tolerance on the actual residual through a ‘by hand’ restart. A right precondi-
tioned GMRES could be of course employed and it would basically give the same
amount of iterations.

Notation. In the following, we denote with TGMp (resp. Vp), p∈{x,t, xt} the
TGM (resp. V) that uses ω-BJ as post-smoother and performs semi-coarsening
in space (p=x), time (p=t), or both space and time (p=xt). Precisely:

• ‘x’ denotes the space semi-coarsening, whose projector is generated by
p1(x);

• ‘t±’ denotes the time semi-coarsening, whose projector is generated by
p2(t)±;

• ‘xt±’ denotes the full-coarsening, whose projector is generated by p1(x)p2(t)±.
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(a) CN scheme (b) BDF2 scheme

Figure 3.1. Example 1 - Error E(x , t) after one iteration of 1-BJ

The addition of ‘(G)’ after the solver name stands for ‘Galerkin approach’. In
case nothing is specified, geometric approach is adopted. Finally, the presence of
‘(P )’ in the name of the solver means that the considered MGM is set as GMRES
preconditioner.

We point out that due to space limitations, in the key of each figure we omit the
name of the method and specify only the projector. For instance, we write simply
xt+ in place of TGMxt+. The name of the method will be clear from the caption
of the figure.

All the results contained in the Sections 3.5.1–3.5.4 refer to the following exam-
ple.

Example 1. In this example we assume the diffusion coefficients to be constant and
equal, that is d± = d. The space and time domains in problem (3.1) are fixed as
Ω = (0,2), and [0,1] respectively, while the true solution and the solution at t = 0
are given by

uex(x , t) = 4e−t x2(2− x)2, u0(x) = 4x2(2− x)2.

The numerical approximation of v is computed starting from the discretized exact
solution.

3.5.1 Behavior of ω-BJ smoother

Here we test the “smoothing properties” of ω-BJ. Let us consider α=1.5, d=1,
N=63 and, to better point out the behavior of ω-BJ along the time axis, we fix
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(a) 1-BJ
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(b) 0.5-BJ

Figure 3.2. Example 1 - Vertical displacement dist(E), in equation (3.13), after
1 iteration of ω-BJ when using both CN (blue) and BDF2 (red)

M=7�N .

Fig. 3.1 shows the error, reshaped as a space-time surface, after one iteration of
ω-BJ for both linear systems in equation (3.6). We note that, in case of CN, one
iteration of 1-BJ generates a jump along the time axis from t1 to t2. In Figure
3.1b, where the 2-step method BDF2 is considered, such a jump involves also t3

due to the longer stencil of BDF2 with respect to CN. On the other hand, both
surfaces in Figure 3.1 do not show any jump along the x-axis.

We now analyze the jump in time varying the magnitude of µ := d ·r, where r is
the grid dependent scale parameter. We introduce the function

dist(E)= |E(1, t2)−E(1, t1)|+|E(1, t3)−E(1, t2)|, (3.13)

which measures the vertical displacement of the discrete error E(x , t) in the first
three time steps at the midpoint x=1. We note that dist(E)=0 if and only if E
is constant in the first three time steps. In other words, as far as dist(E) ≈ 0, E
is smooth, and this indicates that ω-BJ is a good smoother.

Figures 3.2a and 3.2b show how dist(E) behaves for both CN and BDF2, fixed
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Figure 3.3. Example 1 - Iterations to tolerance varying α and µ, �xed ω=0.5,
and using CN scheme

N=M=63, ω=1,0.5, α = 1.1,1.8, and varying µ∈[10−5, 105]. As we can see,
both discretizations are characterized by a region where the jump is negligible.
In detail, the jump generated in CN is negligible only when µ≈ 10. In BDF2,
instead, the jump becomes negligible as µ increases. Moreover, for both CN and
BDF2, the jump slightly moves while varying α, and it halves its magnitude when
switching from ω=1 to ω=0.5.

In summary, in all the considered casesω-BJ generates jumps along the time axis
which means that the projection along such axis could be inaccurate. In order
to face this drawback, in the following we only consider ω-BJ as post-smoother
avoiding pre-smoothing iteration at the first iteration. This choice is supported
by the idea that applying the CGC before the smoother could reduce the jump,
preventing then the projection of a non-smooth error.

3.5.2 Behavior of TGM varying α

In Section 3.5.1, we observed that dist(E), in equation (3.13), slightly varies with
α. This could lead to a difference in the behavior of the multigrid depending on
α, when solving the two linear systems in (3.6). Here we perform few tests
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Figure 3.4. Example 1 - Iterations to tolerance varying α and µ, �xed ω=0.5,
and using BDF2 scheme

which show that the behavior of the proposed TGM is almost independent of α
and hence that justify the choice of a fixed value for α in the reminder of the
numerical tests.

In Fig. 3.3 and Fig. 3.4, we check the number of iterations of TGMx, TGMt, and
TGMxt, with fixed N =M = 26−1, and varying µ∈ [10−5, 105], and α ∈ (1,2].
Concerning the choice ofω in theω-BJ smoother, several tests (not reported here
because of space limitations) show that, in the case of CN, the choice of ω= 1
causes bad convergence results for both TGMxt and TGMt. On the other hand,
ω= 0.5 provides a good convergence, according also to the analysis in Section
3.5.1, for both CN and BDF2. Therefore, in the rest of this section we fixω=0.5.
We stress that such discussion on the relaxation parameter is not intended as a
substitute of a rigorous study, and that a theoretical approach to the subject will
be investigated in a future work.

Fig. 3.3, where we use CN scheme, shows that by increasing α the optimal region
of convergence (blue) shifts to the left for any of the considered algorithms.
Regarding BDF2, instead, Fig. 3.4 shows that the blue region shifts to the left as
α increases only in the case of TGMx. In the other two cases, their number of
iterations stays almost independent of α.

Summarizing, the width of the blue regions does not seem to significantly change
while varying α. Therefore, in the following we restrict our analysis to the case
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(a) TGM semi-coarsening in time (b) TGM full-coarsening

Figure 3.5. Example 1 - Time projectors performances for the CN scheme

where α=1.5.

3.5.3 Time projection performances for the CN scheme

In Section 3.3 we have shown that the symbol hCN has a zero in t that moves
from 0 to π depending on how r or d behave asymptotically, and then on the
magnitude of µ= d · r. As discussed in Section 3.4, this means that the projector
in time must change as well from t+ to t− according to µ. Here, we show that
the latter does not work satisfactorily in practical applications when µ is large.
Let us fix α=1.5 and N=M=27−1. Fig. 3.5a shows the iterations to tolerance of

TGMt±, TGMt±(G), TGMt−(P ) while varying the magnitude of µ ∈ [10−5, 105].
We note, in line with the discussion in Section 3.4, that the Galerkin approach
allows TGMt+(G) to converge in a low amount of iterations when µ ∈ [10−5, 1],
that is for small values of µ. When considering the less robust geometric ap-
proach, TGMt+ still yields good convergence results in the same range of µ, even
if the iteration number slightly increases.
In the case where µ�1, the only working method is TMGt−(G). Unfortunately,
the Galerkin approach is not of practical use since it is too computationally expen-
sive. Regarding the geometric approach, TGMt− results unpractical also when
used as GMRES preconditioner (refer to TGMt−(P ) in Fig. 3.5a).
The reason why geometric and Galerkin methods behave differently is due to
the large difference between the matrices at the coarser level obtained with the
two approaches. Indeed, the convergence condition given in (1.12) requires the
Galerkin approach, which leads to a coarser matrix having a symbol that van-
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(a) N=M=27−1 (b) N=M=28−1

Figure 3.6. Example 1 - TGM performances either using CN scheme (blue) or

BDF2 scheme (red), and �xed α= 1.5

ishes at the origin (see Arico et al. [2004] for details). Differently, the geometric
approach, which consists in discretizing the same problem over a coarser grid,
builds a coarser matrix that vanishes again at t=π and that shows then opposite
spectral behavior with respect to Galerkin.

In Figure 3.5b, TGM with full-coarsening is shown not to work in the anisotropic
cases µ<10−1 and µ>10, independently of the time projectors and the approach
for computing the matrix at the coarser level.

In conclusion, in the following we only consider the time projector given by t+
and we denote it simply with ‘t’, since it is the only projector that allows TGM
with both semi-coarsening in time and full-coarsening to yield good convergence
results for the geometric approach.

3.5.4 Comparison between CN and BDF2: TGM and V-cycle per-

formances

Now we discuss how the performances of TGM and V-cycle with both semi- and
full-coarsening vary depending on the adopted discretization scheme, i.e., CN or
BDF2.

Let us discuss first the behavior of TGM. In Fig. 3.6, we compare the iterations to
tolerance of TGMxt, TGMx, TGMt for both CN and BDF2 varying the magnitude
of µ ∈ [10−5, 105] and fixed N = M ∈ {27 − 1,28 − 1}. In case of BDF2, the
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(a) N=M=27−1 (b) N=M=28−1

Figure 3.7. Example 1 - V-cycle performances either using CN scheme (blue)

or BDF2 scheme (red), and �xed α= 1.5

iteration number of 1-BJ used as a standalone solver are displayed as well.

We note that, in the case of CN, the iterations to tolerance of TGMt look stable
for µ< 1 as N , M increase. The same holds for TGMxt and TGMx when µ≈ 1.
Nothing seems to work when µ>10 again independently of N , M , which is what
we are expecting due to the strong anisotropy of this specific case discussed in
Section 3.4.

In the case of BDF2, again according to our theoretical analysis, TGMx and TGMt
yield good convergence results when µ>1 and µ<1, respectively, and both are
stable as N , M increase. In line with what we observed in Section 3.5.1, the high
number of iterations of TGMt, even if constant, could be due to the bad smooth-
ing effects along the time axis of 0.5-BJ. Concerning TGMxt, it yields the same
iterations to tolerance as TGMt when µ>10−1. Note that for this example both
TGMxt and TGMt work where they are not supposed to, i.e., in the anisotropic
case µ� 1. This is due to the smoother that, according to Remark 3.4.1, is al-
ready a robust enough solver.

Due to the high computational cost of TGM, in Fig. 3.7 we switch from TGM to
V-cycle and we check its behavior depending on the chosen time discretization
scheme.

In the case of CN, conversely to the results obtained for TGM, the only projector
which seems to allow V-cycle to converge in a reasonable amount of iterations,
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is the semi-coarsening in space. However, it works in a really small region, i.e.,
when µ≈ 1, which is close to the region where one iteration of 0.5-BJ yields a
smooth solution (go back to Fig. 3.2).

Regarding BDF2, Vx converges in almost the same amount of iterations as TGMx
when µ > 1. In particular, for µ ∈ �1,103

�
the block diagonal part of ABDF2 is

not dominant and hence 0.5-BJ has a slow convergence, but when it is used as
smoother in Vx we obtain a robust and fast convergent method. Moreover, we
note that the region where 0.5-BJ used as standalone solver is already enough
robust becomes smaller as the mesh-size increases. This is not the case for Vx,
which is then faster than 0.5-BJ in a wider range of µ as N , M become large.
Concerning Vt and Vxt, their plots are basically superposed independently of
µ, and they perform well only for large values of µ again because of the ω-BJ
smoother.

In the case of a semi-coarsening in space only, since time interpolation is not
involved, larger values of ω could be used. Tests which are not reported here
show a reduction in the iteration number of the multigrid withω-BJ, withω≈1,
when applied to both CN and BDF2 for almost the same values of µ where it
performs well with ω=0.5.

We note that, for both CN and BDF2, the iterations to tolerance of all the tested
V-cycles stay almost stable as N , M increase. Moreover our results are in line with
the results reported in Figure 2, Section 4.4 of Horton and Vandewalle [1995],
where multigrid with colored pointwise Gauss-Seidel as smoother is used to solve
a space-time linear system obtained from the discretization of a standard time-
dependent diffusion equation.

3.5.5 A variable di�usion coe�cients example

We now consider the example taken from Lei and Sun [2013] in which the dif-
fusion coefficients are not constant.

Example 2. We assume the space and time domains in problem (3.1) as Ω = (0,2),
and [0,1] respectively, and define the diffusion coefficients, the true solution and the
solution at t = 0 as follows

d−(x , t) = d · Γ (3−α)xα, d+(x , t) = d · Γ (3−α)(2− x)α,

uex(x , t) = 4e−t x2(2− x)2, u0(x) = 4x2(2− x)2,
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(a) N=M=27−1 (b) N=M=28−1

Figure 3.8. Example 2 - V-cycle performances either using CN scheme (blue)

or BDF2 scheme (red), and �xed α= 1.5

where d > 0. When d=1, the forcing term is given by

v(x , t) = −32e−t(x2+
1
8
((2− x)2)(8+ x2)− 3(x3 + (2− x)3)

3−α +
3(x4 + (2− x)4))
(4−α)(3−α) ,

while in the remaining cases, the numerical approximation of v is computed starting
from the discretized exact solution.

In Figure 3.8, like in Section 3.5.4, we test the behavior of Vx, Vt, Vxt for two
fine grids with N=M=27−1 and N=M=28−1.

We note that, as in the case of constant and equal diffusion coefficients, the
results are not significantly sensitive to N , M . Moreover, like in Example 1, Vx is
the only V-cycle, between the three tested, that yields good convergence results
for both CN and BDF2. Finally, also in this variable coefficients example, the
optimal convergence region, given by the magnitude of µ= d ·r, is much bigger
in the case of BDF2 than of CN.

We note that, independently of the constant or variable diffusion coefficients
character, none of the tested methods is robust enough to deal with the case
where µ< 1. Further tests, not reported here, show that this holds unchanged
even when using the V-cycle as preconditioner for the GMRES. On the other
hand, we stress that, since d is fixed, the choice of an opportune grid could lead
to µ > 1, choosing ∆t and ∆x such that d∆t > 2∆xα and making V-cycle a
suitable solver again.
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3.5.6 Two-dimensional case

We end the numerical section by providing numerical results in the two-dimensional
case. We consider the following extension of the one-dimensional FDE in equa-
tion (3.1):

∂ u(x , y, t)
∂ t

= d+
∂ αu(x , y, t)
∂+xα

+ d−
∂ αu(x , y, t)
∂−xα

e+
∂ βu(x , y, t)
∂+ yβ

+ e−
∂ βu(x , y, t)
∂− yβ

+ v(x , y, t),

(x , y, t) ∈ Ω× [0, T],

u(x , y, t) =0, (x , y, t) ∈ �R2 \Ω�× [0, T],

u(x , y, 0) =u0(x , y), (x , y) ∈ Ω,
(3.14)

where Ω=(a1, b1)× (a2, b2) is the space domain and d±, e±>0 are the diffusion
coefficients.
The discretization follows from the one-dimensional case and yields the same co-
efficient matrices as in equation (3.6), but with the extension through Kronecker
product in two dimensions of each block. In the case where d+ = d− = e+ = e− =
d, α = β and both spatial steps ∆x ,∆y are equal, it holds that the grid depen-
dent scale factor which multiplies the matrix representing the discretization in
space is the same as in the one-dimensional case, i.e., µ= d ∆t

2∆xα .

Example 3. For our test we extend Example 1 to the two-dimensional case by as-
suming d± = e± = d, Ω = (0,2)× (0,2), and taking as final time step T = 1. The
true solution and the solution at the initial time t = 0 are, respectively, given by

uex(x , y, t) = 4e−t x2(2− x)2 y2(2− y)2, u0(x , y) = 4x2(2− x)2 y2(2− y)2.

As done in Example 1, the numerical approximation of v is computed starting from
the discretized exact solution.

Since the time-coarsening does not seems to be effective in the one-dimensional
case, here we only consider the coarsening in both spatial dimensions and we use
0.95-BJ as post-smoother (higher weights seemed more suitable for this case).
Due to hardware limitations we cannot choose too dense grids, therefore we fix
Nx = Ny = M = 26−1, where Nx and Ny are the amount of points over the grids
in the first and second spatial dimensions and M are the points over the time
grid. Moreover, when considering the BDF2 scheme, as in the one-dimensional
case we use CN to compute the solution at the first time step. As done in Gu
et al. [2020], we consider the case where the computation of the solution u1 at
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Figure 3.9. Example 3 - Performances of 1-BJ using BDF2 with outer CN

(starred line) and of V-cycle using CN scheme (blue), BDF2 scheme with outer

CN (red), BDF2 scheme with inner CN (green) and �xed α=1.5.

the first the step is included in the coefficient matrix (inner CN) and we compare
it with the previously considered case (outer CN), where u1 is computed outside
the coefficient matrix.

In Figure 3.9 we show the iterations to tolerance of the multigrid used as stan-
dalone solver (denoted by ‘xy’), for solving equation (3.14) discretized with CN,
BDF2 with inner CN and BDF2 with outer CN. In the case of BDF2 with outer
CN, we compare the results with 1-BJ.
We note that, even in the two-dimensional case, multigrid applied to CN is effi-
cient when µ ≈ 1 and applied to BDF2 when µ ≥ 1. Moreover, we observe that
the plots of BDF2 with inner and outer CN overlap almost everywhere, therefore
the addition of CN inside the coefficient matrix does not seem to compromise the
convergence of multigrid.
When µ ≥ 102, as in the one-dimensional case, 1-BJ is an efficient solver, since
the coefficient matrix becomes block diagonally dominant.

3.6 Conclusions

In this chapter we focused on an all-at-once rephrasing of a time-dependent
one-dimensional space-FDE with constant diffusion coefficients discretized with
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WSGD in space and CN or BDF2 in time. The unconditional stability of the BDF2-
WSGD scheme has been proven, and the two-level Toeplitz structure of the re-
sulting linear systems has been leveraged to design multigrid strategies that use
block Jacobi as smoother and whose projectors definition is driven by the sym-
bol.

We have shown that that V-cycle with semi-coarsening in x-variable is the only
multigrid, among all the tested ones, that yields good convergence results for
both BDF2 and CN schemes. Moreover, it performs satisfactorily under less re-
strictive assumptions on the magnitude of µ = d · r in the case of BDF2 than in
the case of CN, and this let us to conclude that BDF2 is a much better alternative
to CN for parallel-in-time integration with multigrid, when µ is large.



Chapter 4

Comparison between FV and FVE

In this chapter, we focus on a two-dimensional conservative steady-state Riesz
FDE. As is typical for problems in conservative form, we adopt a FV discretization
approach. Precisely, we use both classical FVs and FVEs. While FVEs have already
been applied in the context of FDEs, classical FVs had only been applied in first
order discretizations. We will see that FVs are more suitable than FVEs when the
fractional derivative orders are close to 2, since they allow a lower approximation
error and, at the same time, a fast convergence rate of our solver.

This chapter is organized as follows. In Section 4.1, we report the problem and
provide a finite difference discretization of the fractional derivative and some pre-
liminary results. In Section 4.2, we introduce the second-order FVE discretiza-
tion, while in Section 4.3 we build a second-order FV discretization providing
numerical evidences on the choice of some parameters. Moreover, by exploit-
ing the Toeplitz-like structure of the resulting coefficient matrices, we perform a
qualitative study of their spectrum and conditioning through their symbol. Using
the obtained information, in Section 4.4 we design efficient ad-hoc banded pre-
conditioners and MGMs. Finally, in Section 4.5 we compare both FVs and FVEs
discretizations in terms of approximation error and iterations to tolerance of the
multigrid solver. Our conclusions are drawn in Section 4.6.

4.1 Preliminaries

In this section we define our problem, then we discuss the discretization of the
fractional derivative operator through the WSGD formula with a fractional shift
over uniform meshes. Finally, we provide the generating function of the resulting

89
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Toeplitz matrices and give some preliminary theoretical results needed to discuss
the convergence of MGMs.

4.1.1 Two-dimensional space-FDE

We focus on the following two-dimensional boundary-value steady-state conser-
vative Riesz FDE of order 2 − α, 2 − β , with 0 < α,β < 1 and with absorbing
boundary conditions:
− ∂
∂ x

�
Kx(x , y)

∂ 1−αu(x , y)

∂ |x |1−α
�
− ∂

∂ y

�
Ky(x , y)

∂ 1−βu(x , y)

∂ |y|1−β
�
= v(x , y),

(x , y) ∈ Ω,

u(x , y) = 0, (x , y) ∈ �R2 \Ω� ,
(4.1)

where ∂ 1−αu(x ,y)
∂ |x |1−α , ∂

1−βu(x ,y)
∂ |y |1−β are the Riesz fractional derivative operators with re-

spect to x- and y-variables, respectively, Ω = (a1, b1) × (a2, b2) is the spatial
domain, Kx(x , y), Ky(x , y) are the nonnegative bounded diffusion coefficients,
v(x , y) is the forcing term.

The Riesz fractional operator in the x-variable is defined as

∂ 1−αu(x , y)

∂ |x |1−α = η(α)

�
∂ 1−αu(x , y)
∂ R
+ x1−α +

∂ 1−αu(x , y)
∂ R− x1−α

�
, η(α) = − 1

2cos
� (1−α)π

2

� ,

where the left and right derivatives are given in the RL form (see (1.24)). Simi-
larly one can define the Riesz fractional operator in the y-variable.

4.1.2 Fractional derivative discretization and preliminary spectral

results

As shown in Section 1.6.4, under proper hypothesis an alternative definition of
the left and right fractional derivatives is based on the GL formulas (1.32), whose
shifted form SGD is defined in equation (1.33). Similar definitions can be given
for the fractional derivatives in the y-variable.

Consider u : R2→ R with supp(u) ∈ [0,1]2 and the equispaced grid

x i =ihx , i=1, ..., Nx , hx =
1

Nx + 1
,

y j = jhy , j=1, ..., Ny , hy =
1

Ny + 1
,
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with Nx , Ny ∈ N. Then the left fractional derivative operator in equation (1.32),
which coincides with (1.33) with p = 0, can be written as

∂ 1−αu(x i, y j)

∂ G
+ x1−α = LG1−α

hx ,0u(x i, y j) =
1

h1−α
x

�
G+,0u( j)

�
i
,

where

G+,0 =


t(1−α)0 0 · · · 0

t(1−α)1 t(1−α)0
. . .

...
...

. . . . . . 0
t(1−α)Nx−1 · · · t(1−α)1 t(1−α)0

 ∈ RNx×Nx , u( j) =


u(x1, y j)
u(x2, y j)

...
u(xNx

, y j)

 ∈ RNx .

(4.2)
Matrix G+,0 is a Toeplitz matrix and represents the left fractional derivative opera-
tor. The choice of p 6= 0 yields the same structured matrix, but with the diagonals
shifted to the right of p positions, if p > 0, and the diagonals shifted to the left
of |p| positions, if p < 0. We denote such an operator by G+,p.

Note that in the case of p > 0 we have to compute p new coefficients t(1−α)Nx
, ..., t(1−α)Nx+p−1

to fill the bottom left diagonals. Furthermore, when q = 0, the right fractional
derivative operator in equation (1.33) is G−,0 = −GT

+,0. If q 6= 0 then we denote
such an operator by G−,q and it holds G−,q = −GT

+,q.

Remark 4.1.1. Let N ∈ N and consider an arbitrary equispaced grid {x i}Ni=1, where
h is the step length. Due to the FV discretization, we are required to evaluate the
fractional derivative operators between two grid points, e.g., in (x i − h

2 , y), which
leads to

LG1−α
h,p u(x i − h

2 , y) =
1

h1−α
∞∑
k=0

t(1−α)k u
�
x i − (k− p+ 1

2)h, y
�

,

RG1−α
h,q u(x i − h

2 , y) = − 1
h1−α

∞∑
k=0

t(1−α)k u
�
x i + (k− q− 1

2)h, y
�

.

(4.3)

This motivates the need of a non-integer shift.

In Hejazi et al. [2013, 2014] a non-integer shift was used to define a first order
FV approximation. A second-order FV scheme is still missing in literature.

In order to fill this gap we recall that, as shown in Theorem 1.6.3, an opportune
average of two SGD with two different integer shifting parameters leads to a
second-order approximation of the RL formulas in equation (1.24). Moreover,
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since Remark 4.1.1 highlights the need of a non-integer shift, from Remark 1.6.5
we recall that Theorem 1.6.3 extends also to the case where p1, p2, q1, q2 ∈ R
with p1 6= p2 and q1 6= q2.

As a consequence, for a generic step length h > 0 and for p1 6= p2 ∈ Z + 1
2 ,

q1 6= q2 ∈ Z+ 1
2 , we can write

∂ 1−αu(x i − h
2 , y j)

∂ R
+ x1−α =

1
h1−α

�
wαp

∞∑
k=0

t(1−α)k u
�
x i − (k− p1 +

1
2)h, y j

�
+

+ (1−wαp)
∞∑
k=0

t(1−α)k u
�
x i − (k− p2 +

1
2)h, y j

��
+O(h2);

∂ 1−αu(x i − h
2 , y j)

∂ R− x1−α =
1

h1−α
�

wαq

∞∑
k=0

t(1−α)k u
�
x i + (k− q1 − 1

2)h, y j

�
+

+ (1−wαq)
∞∑
k=0

t(1−α)k u
�
x i + (k− q2 − 1

2)h, y j

��
+O(h2),

(4.4)

where wαp =
1−α−2p2
2(p1−p2)

and wαq =
1−α−2q2
2(q1−q2)

with p = (p1, p2) and q = (q1, q2). We
refer the reader to Theorem 4.1.1 for the matrix form of equation (4.4).

We end this section writing explicitly the symbol of the (properly scaled) Toeplitz
matrices representing the discretized operators in equation (4.3) of Remark 4.1.1.
Such symbol will be useful in the computation of the symbol for the FV discretiza-
tion of (4.1) performed in Section 4.3. Having this in mind, we start with a couple
of intermediate results.

Proposition 4.1.1. Let N ∈ N, then it holds that G+,0, G−,0 defined in equation
(4.2) are such that

G+,0 = TN (g
α(x)), G−,0 = TN (−gα(x)),

with gα(x) = (1− eix)1−α.

Proof. According to the definition of symbol and by means of the generalized
Newton binomial, it holds

gα(x) =
∑
k∈Z

t(1−α)k eikx =
∑
k∈Z
(−1)k

�
1−α

k

�
eikx = (1− eix)1−α,

which completes the proof.
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The following result is needed for later analysis.

Lemma 4.1.1. For all x ∈ [0,π] it holds that

gα(x) + gα(x) = 22−α sin1−α � x
2

�
sin
� x+α(π−x)

2

�
(4.5)

and

gα(x)eix+gα(x)e−ix = 22−α sin1−α( x
2 )
�
sin (x) cos

� x+α(π−x)
2

�
+ cos (x) sin

� x+α(π−x)
2

��
.

(4.6)

Proof. By means of the Euler formulas

eix − eiy =2i
ei x−y

2 − e−i x−y
2

2i
ei x+y

2 = 2i sin
� x − y

2

�
ei x+y

2 ,

eix + eiy =2
ei x−y

2 + e−i x−y
2

2
ei x+y

2 = 2cos
� x − y

2

�
ei x+y

2 ,

(4.7)

we have

(1− eix)1−α + (1− e−ix)1−α = (2i sin(− x
2 )e

i x
2 )1−α + (2i sin( x

2 )e
−i x

2 )1−α

= (2 sin( x
2 ))

1−α �(−iei x
2 )1−α + (ie−i x

2 )1−α
�

= (2sin( x
2 ))

1−α �ei( x
2− π2 )(1−α) + e−i( x

2− π2 )(1−α)�
= 22−α sin1−α( x

2 ) cos
�
π
2 − απ+(1−α)x

2

�
= 22−α sin1−α( x

2 ) sin
�
απ+(1−α)x

2

�
.

and the proof of equation (4.5) follows by rearranging the argument of the sine.
Now, again by means of the Euler formulas (4.7), we have

gα(x)eix + gα(x)e−ix =
�
e−i x

2 − ei x
2
�1−α �

ei( x
2 (1−α)+x) + (−1)1−αe−i( x

2 (1−α)+x)
�

=
�
2sin( x

2 )
�1−α �

ei((1−α)( x
2− π2 )+x) + e−i((1−α)( x

2− π2 )+x)
�

=
�
2sin( x

2 )
�1−α

2 cos
�
(1−α)( x

2 − π
2 ) + x

�
= 22−α sin1−α( x

2 ) cos
�
π
2 − 3x+α(π−x)

2

�
= 22−α sin1−α( x

2 ) sin
�
x + x+α(π−x)

2

�
= 22−α sin1−α( x

2 )
�

sin (x) cos
� x+α(π−x)

2

�
+

+ cos (x) sin
� x+α(π−x)

2

� �
,

which proves equation (4.6) and concludes the proof.
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As a Corollary to Proposition 4.1.1, we obtain the symbol of the Toeplitz ma-
trices representing the second-order discretization of the fractional derivative
operators given in equation (1.34).

Corollary 4.1.1. Let N ∈ N, h = 1
N+1 and p,q ∈ Z2, then equation (1.34) can be

written as follows

∂ 1−αu(x i, y j)

∂ R
+ x1−α =

1
h1−α

�
TN

�
gα+,p(x)

�
u( j)
�

i
+O(h2),

∂ 1−αu(x i, y j)

∂ R− x1−α =
1

h1−α
�
TN

�
gα−,q(x)

�
u( j)
�

i
+O(h2),

where u( j) is defined in equation (4.2) and

gα+,p(x) = gα(x)
�
wαpe−ip1 x + (1−wαp)e

−ip2 x
�

,

gα−,q(x) = −gα(x)
�
wαqeiq1 x + (1−wαq)e

iq2 x
�

.

Proof. According to the definition of symbol, shifting the diagonals by p positions
to the right or left consists in multiplying the symbol by e−ipx or eipx , respectively.
Therefore, the proof follows by the discussion at the begin of Section 4.1.2.

We are now ready to provide the symbol of the Toeplitz matrices corresponding
to the fractional left and right operators evaluated at the midpoint x i− 1

2
given in

equation (4.3).

Theorem 4.1.1. Let N ∈ N, h = 1
N+1 and p,q ∈ Z2 + 1

2 , then equation (4.4) can
be written as follows

∂ 1−αu(x i − h
2 , y j)

∂ R
+ x1−α =

1
h1−α

�
H+,pu( j)

�
i
+O(h2),

∂ 1−αu(x i − h
2 , y j)

∂ R− x1−α =
1

h1−α
�
H−,qu( j)

�
i
+O(h2),

(4.8)

where u( j) is defined in equation (4.2) and

H+,p = TN

�
gα+,p(x)e

i x
2

�
, H−,q = TN

�
gα−,q(x)e

i x
2

�
.

Proof. We only provide the proof in the case of the left fractional derivative since
for the other case the proof follows the same steps. From equation (4.4), which
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represents the i-th row of the matrix-vector product in equation (4.8), we have
that the resulting matrix is a Toeplitz generated by

wαp

∞∑
k=0

t(1−α)k ei(k−p1+
1
2 )x+(1−wαp)

∞∑
k=0

t(1−α)k ei(k−p2+
1
2 )x =

= wαp gα(x)ei(−p1+
1
2 )x + (1−wαp)g

α(x)ei(−p2+
1
2 )x

= gα(x)
�
wαpe−ip1 x + (1−wαp)e

−ip2 x
�

ei x
2

= gα+,p(x)e
i x

2 ,

which completes the proof.

4.2 Finite volume-type discretizations

Here we review the idea of a finite volume discretization applied to problem
(4.1). In particular, in Section 4.2.1 we recall the FVE approach. The classical
FV approach will be treated in Section 4.3.

In the most general case, applying a finite volume approach to (4.1) consists in
covering Ω with a mesh ∪n

i=1Q i, where µ(Q i ∩Q j)=0, i 6= j, with µ the Lebesgue
measure, and integrating over Q i. In our specific case, given Nx , Ny ∈ N and
defined the following uniform mesh of Ω = [a1, b1]× [a2, b2]

hx =
b1−a1
Nx+1 , x i = a1 + ihx , i = 1, ..., Nx ,

hy =
b2−a2
Ny+1 , y j = a2 + jhx , j = 1, ..., Ny .

We decompose the domainΩwith the rectangles Q i j = [x i− 1
2
, x i+ 1

2
]×[y j− 1

2
, y j+ 1

2
],

and we integrate equation (4.1) over Q i j. As a consequence, we end up with
S1 + S2 = S3, where

S1 = −
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

∂

∂ x

�
Kx(x , y)

∂ 1−αu(x , y)

∂ |x |1−α
�

dxdy,

S2 = −
∫ y

j+ 1
2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

∂

∂ y

�
Ky(x , y)

∂ 1−βu(x , y)

∂ |y|1−β
�

dxdy,

S3 =

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

v(x , y)dxdy.

We approximate S3 by means of the tensor product of Simpson rules, which is
an order 3 scheme, so that the approximation of the right hand side will not
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influence the solution and the comparison of the FV and FVE discretization ap-
proaches. Therefore,

S3 =
hxhy

36

�
v(x i− 1

2
, y j− 1

2
) + 4v(x i− 1

2
, y j) + v(x i− 1

2
, y j+ 1

2
) + 4v(x i , y j− 1

2
) + 16v(x i , y j)+

+ 4v(x i , y j+ 1
2
) + v(x i+ 1

2
, y j− 1

2
) + 4v(x i+ 1

2
, y j) + v(x i+ 1

2
, y j+ 1

2
)
�
+O(h3

x + h3
y).

(4.9)

Moreover, the discretization of S1 can be simplified as follows

S1 = Kx(x i− 1
2
, y j)

∫ y
j+ 1

2

y
j− 1

2

∂ 1−αu(x i− 1
2
, y)

∂ |x |1−α dy−Kx(x i+ 1
2
, y j)

∫ y
j+ 1

2

y
j− 1

2

∂ 1−αu(x i+ 1
2
, y)

∂ |x |1−α dy+O(h2
y).

(4.10)
A similar reasoning of course applies to S2. At this point, we can proceed in two
different ways: either approximating again S1 as

S1 = hy Kx(x i− 1
2
, y j)

∂ 1−αu(x i− 1
2
, y j)

∂ |x |1−α − hy Kx(x i+ 1
2
, y j)

∂ 1−αu(x i+ 1
2
, y j)

∂ |x |1−α +O(h2
x+h2

y)

(4.11)

which brings to the FV approach or restricting the admissible solutions to a cer-
tain finite element space, which gives rise to the FVE approach.

4.2.1 FVE discretization matrices and its spectral study

FVE have already been applied to FDE problems in Liu et al. [2014]; Feng et al.
[2015]; Jia and Wang [2016]. Here we briefly recall the FVE discretization ma-
trices obtained in case of piecewise linear elements. Let us consider the basis
functions {ϕ x

k (x)⊗ϕ y
l (y)}Nx ,Ny

k,l=1 , where

ϕ x
k (x) =


x−xk−1

hx
, x ∈ (xk−1, xk),

xk+1−x
hx

, x∈(xk, xk+1),

0, elsewhere,

for k = 1, ..., Nx , and define similarly ϕ y
l (y) with yl in place of xk and hy in

place of hx . Then, we replace u(x , y) in equation (4.10) with its piecewise linear
approximation ũ(x , y)=

∑Nx ,Ny

k,l=1 uklϕ
x
k (x)ϕ

y
l (y) leading to

S1 =
Nx ,Ny∑
k,l=1

ukl

�
∂ 1−αϕ x

k (x i− 1
2
)

∂ |x |1−α Kx(x i− 1
2
, y j)

∫ y
j+ 1

2

y
j− 1

2

ϕ
y
l (y)dy+
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− ∂
1−αϕ x

k (x i+ 1
2
)

∂ |x |1−α Kx(x i+ 1
2
, y j)

∫ y
j+ 1

2

y
j− 1

2

ϕ
y
l (y)dy

�
.

Since the support of ϕ y
l (y) is compact, then∫ y

k+ 1
2

y
k− 1

2

ϕ
y
l (y)dy 6= 0, only if l = k− 1, k, k+ 1,

which evaluates to
hy

8 ,
6hy

8 ,
hy

8 , respectively, and leads to the tridiagonal mass ma-
trix

BNy
= tridiag

�
1
8

,
6
8

,
1
8

�
∈ RNy×Ny .

Let ul = [u1l , u2l , ..., uNx l]T, then, by performing the same computations done in
Wang and Du [2013], it follows that

Nx∑
k=1

∂ 1−αũ(x i− 1
2
, y)

∂ |x |1−α = ϕ y
l (y)

Nx∑
k=1

ukl

∂ 1−αϕ x
k (x i− 1

2
)

∂ |x |1−α = ϕ y
l (y)

η(α)
Γ (α+ 1)h1−α

x

(Gα,Nx
ul)i,

where Gα,Nx
= TNx

( ĝα(x)), with ĝα(x) =
∑

k∈Z t̂(α)k eikx and

t̂(α)k =


�

3
2

�α − 3
�

1
2

�α
, k = 1,�

k+ 1
2

�α
+
�
k− 3

2

�α − 2
�
k− 1

2

�α
k ≥ 2,

− t̂(α)−k+1, k ≤ 0.

Therefore, the FVE discretization of the FDE problem in (4.1) yields the linear
system

AFVEu= b (4.12)

where the right-hand side b follows from equation (4.9), the solution is u =
{ukl}Nx ,Ny

k,l=1 and the coefficient matrix is the following N × N , with N = Nx Ny ,
matrix

AFVE =r
�
Kx ,L(BNy

⊗ Gα,Nx
) + Kx ,R(BNy

⊗ GT
α,Nx
)
�
+

+ s
�
Ky,L(Gβ ,Ny

⊗ BNx
) + Ky,R(G

T
β ,Ny
⊗ BNx

)
�

,
(4.13)

with

Kx ,L = diag
�{Kx(x i− 1

2
, y j)}Nx ,Ny

i, j=1

�
, Kx ,R = diag

�{Kx(x i+ 1
2
, y j)}Nx ,Ny

i, j=1

�
,

Ky,L = diag
�{Ky(x i, y j− 1

2
)}Nx ,Ny

i, j=1

�
, Ky,R = diag

�{Ky(x i, y j+ 1
2
)}Nx ,Ny

i, j=1

�
.
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The grid dependent scale factors are r =
η(α)hy

Γ (α+1)h1−α
x

, s = η(β)hx

Γ (β+1)h1−β
y

.

As already observed in Donatelli et al. [2018], in the one-dimensional case with
constant diffusion coefficients, the symbol of the coefficient matrix is�

ĝα(x) + ĝα(x)
�
, which is a nonnegative function with a unique zero of order

lower than 2 at x=0. In the case of a two-dimensional equation with constant
diffusion coefficients the symbol of AFVE is

ĝα2D(x , y) = rKx m(y)
�

ĝα(x) + ĝα(x)
�
+ sKy m(x)

�
ĝα(y) + ĝα(y)

�
,

where m(z) = 6+2cos(z)
8 is the symbol of the mass matrix BNz

, with z = x , y .

Remark 4.2.1. Note that ĝα2D(x , y) has a unique zero of order lower than 2 at
(x , y)= (0,0). This is because the symbol of the mass matrix is a strictly positive
function.

4.3 FV discretization matrices and related spectral study

First order accurate FV discretizations for FDE problems appeared in Hejazi et al.
[2013, 2014]; Zhang et al. [2005]. Here we build a second-order scheme by
imposing some reasonable constraints on the shift parameters involved in the
approximation of the fractional derivatives. In addition, on the same line of
what has been done in Donatelli et al. [2018], we provide a spectral study of
the resulting coefficient matrices which allows to build ad-hoc solvers for the
associated linear systems in Section 4.4.

Let us go back to (4.10). The choice of approximating S1 as in (4.11) yields a
N×N linear system, whose structure of the coefficient matrix AFV, except for the
mass matrices that are replaced by identities, is the same as AFVE in equation
(4.13). In detail we have to solve

AFVu= b, (4.14)

where b follows from equation (4.9), u = {ui j}Nx ,Ny

i, j=1 , with ui j ≈ u(x i, y j), and
AFV := Ax + Ay with

Ax =r
�
Kx ,L(INy

⊗Mα,L)− Kx ,R(INy
⊗Mα,R)

�
,

Ay =s
�
Ky,L(Mβ ,L ⊗ INx

)− Ky,R(Mβ ,R ⊗ INx
)
�

,
(4.15)

where the new scaling factors are r=
η(α)hy

h1−α
x

, s= η(β)hx

h1−β
y

and the Toeplitz matrices

Mα,L, Mα,R, Mβ ,L, Mβ ,R represent the discretized fractional operators by means of
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the shifted weighted GL formulas in equation (4.8). Specifically, the matrices
Mα,L, Mα,R, are such that

∂ 1−αu(x i− 1
2
, y j)

∂ |x |1−α = r
��

INy
⊗Mα,L

�
u
�

i+Nx ( j−1) +O(h2
x),

∂ 1−αu(x i+ 1
2
, y j)

∂ |x |1−α = r
��

INy
⊗Mα,R

�
u
�

i+Nx ( j−1) +O(h2
x),

i.e., Mα,L coincides with TNx

�
f (p,q)
α
(x)
�
, where

f (p,q)
α
(x) = gα+,p(x)e

i x
2 + gα−,q(x)e

i x
2 ,

while Mα,R is obtained by Mα,L shifting its diagonals one position forward, that is,
Mα,R = TNx

�
f (p,q)
α
(x)e−ix

�
. The matrices Mβ ,L, Mβ ,R are similarly defined.

4.3.1 Properties of the symbol of AFV

In the following we study the properties of AFV and we explain what is a good
choice for the shifting parameters p = (p1, p2), q = (q1, q2). In this view, we
note that in case of constant diffusion coefficients Kx(x , y) = Kx > 0, from equa-
tion (4.15) we have Ax = rKx INy

⊗ (Mα,L −Mα,R), where

Mα,L −Mα,R = TNx

�
F (p,q)
α
(x)
�

, (4.16)

with F (p,q)
α
(x) = f (p,q)

α
(x)− f (p,q)

α
(x)e−ix .

Having in mind the design of an ad-hoc MGM for the linear systems associated
to AFV, we ask that F (p,q)

α
(x) is a nonnegative function with a unique zero (see

Section 4.4.1 for more details). Let us first require that F (p,q)
α
(x) is a real-valued

function. Since there are many free parameters we fix q = p. Under this con-
straint function F (p,p)

α
(x) reads as

F (p,p)
α
(x) = gα+,pei x

2−gα+,pei x
2−�gα+,pei x

2 − gα+,pei x
2

�
e−ix =

�
gα+,p − gα+,p

� �
1− e−ix

�
ei x

2 .

and

F (p,p)
α
(x)− F (p,p)

α (x) =
�

gα+,p − gα+,p

� �
ei x

2 − e−i x
2
�− �gα+,p − gα+,p

� �
e−i x

2 − ei x
2
�

,

which is zero ∀x ∈ (−π,π] and ∀p1, p2, and this implies that F (p,p)
α
(x) is a real-

valued function independently of p.
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Figure 4.1. Relative error varying (α,β) and p2, with �xed p1 =
1
2 .

In order to make a reasonable choice of p, we numerically check how the relative
2-norm approximation error varies with p while solving (4.14) in the case where
Kx = Ky = 1 and solution u(x , y) with related forcing term f (x , y) are the ones
reported in Section 4.5. Many tests show that choosing p1, p2 too far from 0
leads to an increase in the error. Hence, we fix p1 =

1
2 ,−1

2 . Figure 4.1 shows the
relative 2-norm error for p1 =

1
2 , p2 ∈ [−7

2 , 7
2] and varying α,β . We note that

the optimal p seems to be p = (1
2 ,−1

2), since it gives the lowest error for a wider
range of fractional derivative orders if compared to other combinations.

We do not show the results for p1 = −1
2 since every tested combination with

p2 ∈ [−7
2 , 7

2] leads to high ill-conditioned linear systems with a large increase in
approximation error except for p = (−1

2 , 1
2), which yields the same results as the

shift p = (1
2 ,−1

2) due to the symmetry of formulas in equation (4.8) with respect
to the shifting parameters p1, p2 and q1, q2, respectively. Therefore, from now
onwards, we will fix p = (1

2 ,−1
2).

The numerical results in Section 4.5 show that such a choice of p and q leads
to a second-order accurate numerical scheme for equation (4.1) (see Figure
4.2).

Remark 4.3.1. Interestingly enough, when α,β ≈ 0, p = (1
2 , 3

2) has almost one
third of the approximation error than p = (1

2 ,−1
2). Moreover, some preliminary



101 4.3 FV discretization matrices and related spectral study

numerical checks, which are not reported here, seem to indicate that the resulting
coefficient matrix is positive definite and therefore it could be another interesting
combination to investigate.

We now check whether for p = (1
2 ,−1

2), the symbol F (p,p)
α
(x) is nonnegative with

a unique zero. For the sake of readability, we omit the superscript (p, p) in the
symbol and rewrite it as

Fα(x) = ei x
2 (1− e−ix)

�
gα(x)(wαpe−i x

2 + (1−wαp)e
i x

2 )− gα(x)(wαpei x
2 + (1−wαp)e

−i x
2 )
�

= gα(x)
�
wαp(1− e−ix) + (1−wαp)(e

ix − 1)
�− gα(x)

�
wαp(e

ix − 1) + (1−wαp)(1− e−ix)
�

= (2wαp − 1)(gα(x) + gα(x)) + eix
�

gα(x)(1− wαp)− gα(x)wαp
�
+

+ e−ix
�

gα(x)(1− wαp)− gα(x)wαp
�

= (2wαp − 1)(gα(x) + gα(x))− wαp(e
ix + e−ix)(gα(x) + gα(x)) + eix gα(x) + e−ix gα(x)

= (gα(x) + gα(x))(2wαp − 1− wαp(e
ix + e−ix)) + eix gα(x) + e−ix gα(x).

Then, from equation (1.34), we have wαp =
2−α

2 and from Lemma 4.1.1 and the
Euler formulas, we have

Fα(x) =22−α sin1−α( x
2 )
�

sin
�

x+α(π−x)
2

�
(1−α− (2−α) cos(x)) + sin (x) cos

�
x+α(π−x)

2

�
+

+ cos (x) sin
�

x+α(π−x)
2

��
=22−α sin1−α( x

2 )
�

sin
�

x+α(π−x)
2

�
(1−α)(1− cos(x)) + sin (x) cos

�
x+α(π−x)

2

��
.

The following theorem answers positively to our request of having a symbol
Mα,L −Mα,R which is nonnegative with a single zero. The proof follows from the
study of the two multiplicative factors of the symbol.

Theorem 4.3.1. Function Fα(x) has a unique zero at x = 0 of order 2 − α for
0< α < 1 and x ∈ [0,π].

Proof. Let us first show that Fα(x) is nonnegative, rewriting Fα(x) = t1(x)t2(x),
with

t1(x) = 22−α sin1−α( x
2 ),

t2(x) = sin
� x+α(π−x)

2

�
(1−α)(1− cos(x)) + sin (x) cos

� x+α(π−x)
2

�
.

For (x ,α) ∈ Q = [0,π] × (0,1), we have that x+α(π−x)
2 ∈ [0, π2 ] and therefore

Fα(x)≥ 0, being sums and products of nonnegative functions. In order to prove
that Fα(x) has a unique zero at 0, let us consider F ′

α
(x) = t ′1(x)t2(x)+ t1(x)t ′2(x),

where

t ′1(x) = 21−α(1−α) sin−α( x
2 ) cos( x

2 ),
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t ′2(x) = cos
� x+α(π−x)

2

�
1−α

2 (1−α)(1− cos(x))+

+ sin
� x+α(π−x)

2

�
1−α

2 sin(x) + cos (x) cos
� x+α(π−x)

2

�
= cos

� x+α(π−x)
2

� �− (1−α)22 (cos(x)− 1) + cos(x)− 1+ 1
�
+

+ sin
� x+α(π−x)

2

�
1−α

2 sin(x)

= cos
� x+α(π−x)

2

� �
1− (1− cos(x))

�
1− (1−α)22

��
+

+ sin
� x+α(π−x)

2

�
1−α

2 sin(x).

It is easy to see that t ′1(x)t2(x) ≥ 0 and that t ′1(x)t2(x) = 0 only if x = 0 or
x = π. Moreover, since

0≤ (1− cos(x))
�
1− (1−α)22

�
< 1,

we have that t ′2(x) ≥ 0 and t ′2(x) = 0 only for x = π. Hence, t1(x)t ′2(x) = 0 for
x = 0 or x = π. As a consequence, F ′

α
(x) ≥ 0 in Q and F ′

α
(x) = 0 for x = 0 or

x = π, which means that F ′
α
(x) is monotonically increasing for x ∈ (0,π) and

α ∈ (0,1). On the other hand, Fα(0) = 0, therefore Fα(x) has a unique zero at 0.
Moreover, for x → 0, it holds

Fα(x)∼ 22−αx1−α� sin(απ2 )(1−α)1
2 x2 + x cos(απ2 )

�
= O(x2−α),

which proves that the order of the zero at 0 is 2−α.

Remark 4.3.2. It is well-known that in case of a one-dimensional second-order
diffusion equation, the symbol of the coefficient matrix has a zero of order 2 at x = 0,
which is in accordance with the limit case α= 0 where we have F0(x) = 2(2−cos x),
i.e., a multiple of the Laplacian symbol.

It is easy to see that the properties of Fα(x) transfer to the symbol of AFV . First
recall that Fα(x) is the symbol of Mα,L − Mα,R in equation (4.16). Therefore,
multiplying by the scaling parameters and diffusion coefficients we have

Ax = rKx TN (Fα(x)).

Similarly, along the second spatial dimension,

Ay = sKy TN (Fβ(y)).

Therefore,

AFV = TN (Fα,β(x , y)), where Fα,β(x , y) = r Kx Fα(x) + sKy Fβ(y).

If we suppose r
s → c, with c ∈ R+, when Nx , Ny →∞, then from Theorem 4.3.1

the following corollary immediately follows.
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Corollary 4.3.1. Let α,β ∈ (0,1), r
s → c as Nx , Ny → ∞ and take constant

diffusion coefficients, then the symbol Fα,β(x) is a nonnegative function that has a
unique zero at (x , y) = (0,0) of order min{2−α, 2− β}.

4.4 Symbol-based fast solvers

Based on the analysis performed in Section 4.3, in this section we propose two
iterative strategies for solving (4.12) and (4.14). Precisely, we present a MGM
with damped Jacobi as smoother and a band preconditioner whose inverse is
approximated through one iteration of the aforementioned multigrid.

4.4.1 Multigrid methods

From Section 1.4 we recall that the convergence of the V-cycle relies on the
smoothing property and approximation property. In order to discuss the conver-
gence analysis of V-cycle applied either to (4.12) or (4.14), we consider constant
diffusion coefficients and weighted Jacobi as smoother.
Under these assumptions and because of the Toeplitz structure of the consid-
ered matrices, from Remark 1.4.1, the weighted Jacobi is well-known to satisfy
the smoothing property for positive definite matrices, whenever it is convergent.
Moreover, thanks to Remarks 4.2.1, 4.3.2 and Theorem 4.3.1, the approxima-
tion property holds with the same projectors as in the case of the Laplacian (see
Moghaderi et al. [2017]) for both FV and FVE approaches.

We stress that it is hard to preserve the block Toeplitz-like structure of AFV and
AFV E at the coarser levels using a Galerkin approach, while implementing the
geometric approach allows to perform the matrix-vector products by fast Fourier
transforms at each coarser grid. Therefore, our multigrid hierarchy is built through
the geometric approach and the amount of levels is given by lvl= blog2(Nx)c, i.e.,
the coarsest level has size 1× 1. Note that in order to make the V-cycle properly
working, the linear systems must be scaled such that the right-hand side does not
contain any grid dependent scaling factor. Therefore, we scale both AFV x = b
and AFV E x = b by hxhy .

At each iteration of V-cycle one iteration of weighted Jacobi as pre- and post-
smoother is performed. The weight ω is estimated through Algorithm 4, in-
troduced in Chapter 2 when dealing with a different FDE. Numerical results in
Section 4.5 show that Algorithm 4 fits also here.

Remark 4.4.1. Since matrices AFV and AFV E are both sums and product between



104 4.5 Numerical Results

diagonal matrices and Toeplitz matrices, thanks to Remark 1.3.4 the matrix-vector
product can be performed in O(N log N) operations, without assembling the coef-
ficient matrix, and the storage only requires O(N) floating points. Therefore, one
iteration of V-cycle has a computational cost of O(N log N) operations.

4.4.2 Banded preconditioner

In Meerschaert and Tadjeran [2004] and Donatelli et al. [2018] it was respec-
tively proven that coefficients t(1−α)k , t̂(α)k → 0 as k → ∞. This motivates the
choice, of a band truncation of the discretized fractional operators. Here we
consider a band truncation of matrices Gγ,Nx

, Gγ,Ny
and Mγ,L, Mγ,R, γ∈{α,β} for

FVE and FV, respectively. The resulting block-banded banded-block matrix Ã is
used as GMRES preconditioner. Instead of inverting Ã, we apply one iteration
of V-cycle before each iteration of GMRES. The resulting GMRES preconditioner
is denoted by PVB, where B is an odd integer number which denotes the block
bandwidth and the bandwidth of each block.
The hierarchy ofPVB is built through the geometric approach. Due to the sparsity
of Ã, a more robust approach could be obtained building the hierarchy of PVB by
means of the Galerkin approach, but it would be harder to estimate the relaxation
parameter of Jacobi and a different smoother should be adopted. Note that, due
to the band structure, the preconditioning iteration has a linear cost.

4.5 Numerical Results

In this section we check the second-order convergence of the FV scheme proposed
in Section 4.3 and we test the performances of the methods presented in Section
4.4 when applied to both (4.12) and (4.14). Precisely, we compare the V-cycle
algorithm given in Section 4.4.1 as both main solver (denoted by V) and GMRES
preconditioner (denoted by PV), with the banded preconditioner PVB given in
Section 4.4.2.

Our numerical test have been run on a server with Intel(R) Xeon(R) Silver 4114
at 2.20GHz, 64 GB of RAM and Matlab 2019b. In all considered examples Nx=
Ny∈{24−1, ..., 211−1}, and the initial guess x (0) is the null vector. The stopping

criterion for the V-cycle is ‖Ax (k)−b‖2‖b‖2 < tol, where the tolerance is tol= 10−7 and
x (k) is the unknown at the k-th iteration, while for the built-in GMRES Matlab

function it is ‖P−1Ax (k)−P−1 b‖2‖P−1 b‖2 < tol, where P is the preconditioner.



105 4.5 Numerical Results

(a) (b)

Figure 4.2. (a) Behaviour of the relative 2-norm errors EFV (continuous lines)

and EFV E (dashed lines) as Nx increases and (α,β) vary, (b) Behaviour of the
ratio

EFV
EFV E

as Nx increases and (α,β) vary.

Let us consider function ũ(x) = x2(1 − x)2, x ∈ Ω = [0,1]. From Pan et al.
[2017], the exact Riesz fractional derivatives of order 1− α and 2− α of ũ, are

d1−αũ(x)
d |x |1−α = η(α)

3∑
k=1

ak
(xα+k − (1− x)α+k)
Γ (α+ k+ 1)

d2−αũ(x)
d |x |2−α = η(α)

3∑
k=1

ak
(xα+k−1 + (1− x)α+k−1)

Γ (α+ k)
.

(4.17)

where (a1, a2, a3) = (2,−12,24). In the following examples we consider u(x , y) =
ũ(x)ũ(y) and build the exact forcing term v(x , y) through the formulas in equa-
tion (4.17), for these two choices of the diffusion coefficients:

• Choice 1: Kx(x , y)=Ky(x , y)=1;

• Choice 2 Pan et al. [2017]: Kx(x , y)=Ky(x , y)=e4x+4y .

Example 1 First we test the accuracy provided by both FVE and FV approaches
while considering Choice 1. Figure 4.2b reports the relative 2-norm error in FV
(EFV ) and in FVE (EFV E), while Figure 4.2a reports the ratio between the two as
Nx increases and α,β vary.
In Figure 4.2a, a comparison with the black line representing the square of
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the step length hx(= hy) confirms the convergence of order 2 for both FV and
FVE.

When the ratio between the errors in Figure 4.2b is smaller than 1, then the FV
approach allows better approximation of the solution than the FVE approach.
We note that FV has a lower approximation error than FVE in the cases where
α,β ≥ 0.5. Especially, when α,β ≈ 1 the error in FVE is decreasing faster than in
FV, therefore we expect FVE to yield better results than FV when Nx > 211−1. On
the contrary, when α,β ≈ 0 the error in FV decreases faster and reaches almost
half the error of FVE for Nx = 211 − 1. Therefore, it is reasonable to expect
further improvements in approximation error for FV with respect to FVE when
Nx > 211−1. Further tests, which are not reported here, show that similar results
are achieved also for Choice 2.

Example 2 We now test the behavior of our proposals for solving the two linear
systems obtained from FVE and FV when considering Choice 2. Table 4.1 and 4.2
respectively show iterations to tolerance (IT) and CPU times of algorithms V, PV

and PV5 described in Section 4.4 compared with:

• PVL(geo), which is the 2D Laplacian preconditioner introduced in Donatelli
et al. [2018] inverted through one iteration of V-cycle with the geometric
approach and Jacobi weight ω = 0.75 (as in Donatelli et al. [2018]);

• PVL(gal), which is the same as preconditioner PVL(geo), but implemented
through the Galerkin approach;

• V(ω̃) and PV(ω̃), which are the same as V and PV but with Jacobi weight

fixed as ω̃ = 0.75+
p

min(α,β)
4 (see Donatelli et al. [2018]).

We do not consider any circulant preconditioner for two different reasons: first,
in Donatelli et al. [2018] it has been shown that circulant matrices are slower
than MGMs; second, it is well-known that if used as preconditioners for multi-
level Toeplitz matrices, multilevel circulant matrices cannot ensure a superlinear
convergence character (see Serra-Capizzano and Tyrtyshnikov [n.d.]).

In Table 4.1 and 4.2, the numbers in bold highlight, in each row, the combination
with the fastest computational time. We note that, as expected, when α= β , the
convergence of V and PV is almost independent of the grid size and the amount
of iterations is low. When α,β ≈ 0, the block-banded-banded-block precondi-
tionerPV5 yields almost the same iterations as the full matrixPV, but with lower
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V-cycle Preconditioned GMRES�
α

β

�
Nx + 1

V V(ω̃) PV5 PVL(geo) PVL(gal) PV PV(ω̃)

FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV

�
0.1
0.1

� 26 10 16 11 15 7 10 9 12 9 12 7 10 7 8
27 10 15 11 16 8 10 11 12 11 12 7 10 8 9
28 10 15 12 16 9 10 12 14 11 14 7 9 8 9
29 11 15 12 17 10 10 14 13 12 16 8 9 8 9
210 11 16 13 17 10 10 13 17 14 17 8 10 8 12
211 11 16 13 18 10 13 16 18 15 18 8 10 8 11

�
0.3
0.2

� 26 24 22 18 25 11 11 20 22 17 22 11 11 10 12
27 20 24 20 27 12 13 22 23 22 24 10 11 12 12
28 23 26 22 29 12 13 26 29 23 29 13 13 12 14
29 25 28 24 32 14 14 33 36 28 34 15 13 12 14
210 25 31 26 34 14 15 36 37 34 37 14 15 13 16
211 27 33 28 37 15 16 37 40 35 44 15 16 14 16

�
0.5
0.5

� 26 8 11 9 11 9 9 19 21 20 23 6 8 6 7
27 9 11 10 12 11 12 26 29 26 29 6 7 6 8
28 9 11 10 13 14 12 30 31 30 34 6 8 7 8
29 10 12 11 13 14 15 40 39 40 42 7 8 7 8
210 10 12 11 14 18 16 43 46 44 56 7 9 7 8
211 11 13 12 14 20 18 54 57 54 63 7 9 8 9

�
0.6
0.7

� 26 13 16 13 18 12 12 31 34 31 35 8 9 9 10
27 14 18 14 19 14 14 36 45 36 49 9 9 8 10
28 16 19 16 21 16 16 50 52 51 54 10 11 9 10
29 17 21 17 22 19 18 60 74 61 67 10 11 9 11
210 18 22 18 24 23 21 92 88 94 90 12 11 10 12
211 19 24 20 26 30 24 93 103 106 115 12 12 11 14

�
0.9
0.9

� 26 7 9 7 9 12 12 32 33 33 36 5 6 5 6
27 7 9 7 9 16 15 40 50 41 55 5 6 5 6
28 7 10 8 10 21 18 69 59 63 77 5 6 5 6
29 8 10 8 10 27 23 84 87 86 92 5 7 5 7
210 8 10 8 10 36 30 103 109 102 110 5 7 6 7
211 8 11 9 11 48 38 147 154 145 156 6 7 6 7

Table 4.1. Iterations to tolerance of the V-cycles V, V(ω̃), and the precondi-

tioned GMRES with preconditioners PV5, PVL(geo), PVL(gal), PV, PV(ω̃).

CPU times due to the lower computational cost per iteration. Moreover, precon-
ditioners PVL(geo) and PVL(gal) are less robust than PV5 and comparing V(ω̃) with
V we note that the adaptive choice of the Jacobi weight explained in Section 4.4
allows slightly faster convergence with respect to the fixed weight ω̃.

When α,β ≈ 1, instead, the block-banded-banded-block preconditioner seems
not to be suitable anymore. This is due to the decay of the coefficient of the
matrix. As shown in Meerschaert and Tadjeran [2004], the coefficients of the GL
formulas tend to zero as the index increases with an order that depends on the
fractional derivative order 2− α, i.e., the larger is α, the slower the coefficients
tends to zero. Therefore, a good band approximation of the coefficient matrix
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Nx
+
1

V-cycle Preconditioned GMRES�
α

β

�
V V(ω̃) PV5 PVL(geo) PVL(gal) PV PV(ω̃)

FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV FVE FV

�
0.1
0.1

� 26 5.9e-2 9.3e-2 6.6e-2 8.7e-2 2.5e-2 3.7e-2 3.0e-2 4.0e-2 3.0e-2 4.1e-2 9.2e-2 1.1e-1 7.0e-2 7.6e-2
27 1.3e-1 1.8e-1 1.7e-1 2.4e-1 1.3e-1 1.2e-1 1.4e-1 1.3e-1 1.3e-1 1.3e-1 2.2e-1 3.1e-1 2.5e-1 2.6e-1
28 4.3e-1 6.2e-1 5.1e-1 6.6e-1 6.2e-1 3.9e-1 4.3e-1 4.7e-1 4.2e-1 4.9e-1 6.9e-1 7.7e-1 8.5e-1 8.7e-1
29 1.6e+0 2.0e+0 1.7e+0 2.3e+0 2.4e+0 1.4e+0 1.9e+0 1.4e+0 1.6e+0 2.0e+0 3.0e+0 2.6e+0 2.8e+0 2.9e+0
210 6.4e+0 8.9e+0 7.4e+0 9.3e+0 9.9e+0 5.4e+0 6.4e+0 8.0e+0 8.4e+0 8.3e+0 1.3e+1 1.4e+1 1.2e+1 1.7e+1
211 3.6e+1 4.9e+1 4.3e+1 5.5e+1 4.6e+1 4.0e+1 4.6e+1 4.2e+1 4.4e+1 4.6e+1 7.0e+1 7.4e+1 6.4e+1 9.0e+1

�
0.3
0.2

� 26 1.4e-1 1.2e-1 1.1e-1 1.2e-1 3.2e-2 3.4e-2 5.8e-2 6.1e-2 4.6e-2 6.1e-2 1.2e-1 1.2e-1 1.2e-1 1.3e-1
27 2.6e-1 3.2e-1 2.9e-1 4.1e-1 1.7e-1 1.5e-1 2.2e-1 2.0e-1 2.1e-1 2.1e-1 2.8e-1 2.8e-1 4.2e-1 3.5e-1
28 9.8e-1 1.1e+0 9.4e-1 1.2e+0 6.3e-1 4.7e-1 8.6e-1 8.2e-1 7.3e-1 8.5e-1 1.4e+0 1.2e+0 1.1e+0 1.2e+0
29 3.5e+0 3.8e+0 3.3e+0 4.3e+0 2.9e+0 1.7e+0 3.7e+0 3.4e+0 3.0e+0 3.3e+0 5.5e+0 3.8e+0 3.8e+0 4.0e+0
210 1.4e+1 1.7e+1 1.5e+1 1.9e+1 1.2e+1 7.8e+0 1.5e+1 1.4e+1 1.5e+1 1.4e+1 1.9e+1 2.0e+1 1.7e+1 2.1e+1
211 8.6e+1 9.9e+1 8.8e+1 1.1e+2 5.8e+1 4.2e+1 7.8e+1 7.3e+1 7.6e+1 8.4e+1 1.1e+2 1.1e+2 1.1e+2 1.1e+2

�
0.5
0.5

� 26 4.8e-2 6.4e-2 5.4e-2 6.4e-2 3.3e-2 2.9e-2 5.6e-2 5.7e-2 5.9e-2 6.3e-2 6.2e-2 9.7e-2 6.2e-2 6.9e-2
27 1.4e-1 1.4e-1 1.6e-1 1.8e-1 1.4e-1 1.4e-1 2.6e-1 2.6e-1 2.6e-1 2.7e-1 1.6e-1 2.1e-1 1.7e-1 2.7e-1
28 3.9e-1 4.4e-1 4.2e-1 5.4e-1 7.1e-1 3.7e-1 9.5e-1 9.0e-1 9.5e-1 9.4e-1 4.7e-1 8.7e-1 6.9e-1 7.2e-1
29 1.4e+0 1.6e+0 1.6e+0 1.7e+0 2.3e+0 1.7e+0 4.2e+0 3.5e+0 4.3e+0 3.9e+0 2.3e+0 2.9e+0 2.3e+0 2.4e+0
210 5.7e+0 6.7e+0 6.3e+0 7.7e+0 1.3e+1 7.4e+0 1.8e+1 1.6e+1 1.8e+1 2.0e+1 9.4e+0 1.3e+1 9.4e+0 1.1e+1
211 3.4e+1 4.0e+1 3.7e+1 4.4e+1 6.4e+1 4.0e+1 1.1e+2 1.0e+2 1.1e+2 1.1e+2 5.1e+1 6.9e+1 5.6e+1 7.1e+1

�
0.6
0.7

� 26 7.7e-2 9.2e-2 7.7e-2 1.0e-1 4.0e-2 3.5e-2 8.3e-2 8.4e-2 8.2e-2 8.8e-2 9.9e-2 1.0e-1 1.1e-1 1.1e-1
27 2.2e-1 2.3e-1 1.9e-1 2.9e-1 1.6e-1 1.4e-1 3.3e-1 3.8e-1 3.2e-1 4.1e-1 3.6e-1 2.5e-1 2.7e-1 3.0e-1
28 6.8e-1 7.8e-1 6.8e-1 8.7e-1 7.0e-1 4.7e-1 1.5e+0 1.4e+0 1.5e+0 1.5e+0 1.0e+0 1.1e+0 8.0e-1 8.3e-1
29 2.4e+0 2.8e+0 2.4e+0 2.9e+0 2.9e+0 1.8e+0 5.9e+0 6.2e+0 6.0e+0 5.8e+0 3.4e+0 3.5e+0 2.7e+0 3.4e+0
210 1.0e+1 1.2e+1 1.0e+1 1.3e+1 1.4e+1 8.2e+0 3.5e+1 2.8e+1 3.5e+1 3.0e+1 1.8e+1 1.4e+1 1.4e+1 1.5e+1
211 6.0e+1 7.3e+1 6.6e+1 7.9e+1 8.7e+1 4.6e+1 1.8e+2 1.7e+2 2.0e+2 1.9e+2 1.1e+2 8.4e+1 8.5e+1 1.0e+2

�
0.9
0.9

� 26 4.2e-2 5.2e-2 4.2e-2 5.3e-2 3.3e-2 3.0e-2 8.5e-2 8.2e-2 8.7e-2 8.9e-2 5.4e-2 6.1e-2 5.5e-2 6.1e-2
27 9.4e-2 1.3e-1 1.1e-1 1.4e-1 1.5e-1 1.2e-1 3.4e-1 4.1e-1 3.5e-1 4.6e-1 1.4e-1 1.6e-1 1.5e-1 1.7e-1
28 3.1e-1 4.1e-1 3.4e-1 4.2e-1 7.9e-1 4.9e-1 2.1e+0 1.6e+0 1.8e+0 2.0e+0 4.0e-1 4.4e-1 4.1e-1 4.6e-1
29 1.1e+0 1.4e+0 1.1e+0 1.4e+0 3.7e+0 2.1e+0 8.0e+0 7.2e+0 8.4e+0 7.8e+0 1.4e+0 2.2e+0 1.4e+0 2.2e+0
210 4.6e+0 5.6e+0 4.6e+0 5.6e+0 2.0e+1 1.1e+1 3.8e+1 3.4e+1 3.7e+1 3.6e+1 5.5e+0 9.3e+0 8.7e+0 9.2e+0
211 2.5e+1 3.4e+1 2.8e+1 3.4e+1 1.2e+2 7.1e+1 2.7e+2 2.5e+2 2.7e+2 2.6e+2 4.6e+1 5.1e+1 4.8e+1 4.9e+1

Table 4.2. CPU times of the V-cycles V, V(ω̃), and the preconditioned GMRES

with preconditioners PV5, PVL(geo), PVL(gal), PV, PV(ω̃).

requires a wider band than in the case of α,β ≈ 0. This of course affects the CPU
times and tests not reported in Tables 4.1–4.2 show PV11 to be a robust solver,
but still slower than V.

When α 6= β , the number of iterations of all methods tends to increase as Nx

increases. This is due to the anisotropy of the diffusion along the two coordinate
axes. Since hypothesis r

s → c in Corollary 4.3.1 is not satisfied, neither is the
approximation property, therefore the projectors in V-cycle should be built dif-
ferently and a strategy like that proposed in Chapter 2 should be explored. Nev-
ertheless, using the GMRES with PV, not only halves the iteration with respect
to V, but also seems to be much more robust in the anisotropic cases. Conse-
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quently, using the lighter preconditioner PV5 instead of PV allows to reach the
lowest CPU times without losing in robustness.

Now, let us fix Nx = 211−1 and consider the solvers with the lowest CPU time in
Table 4.2 for FV and FVE and for each combination of (α,β). More precisely we
consider solver PV5 for FV except for α = β = 0.5 and α = β = 0.9, where we
use V, and solver V for FVE except for (α,β) = (0.3,0.2), where we use PV5.
Figure 4.3 shows the 2-norm error versus the CPU time of such solvers for FV
(solid line) and FVE (dashed line). We note that when α,β ≈ 0, the FV method
is more efficient since it allows to compute solutions with smaller error than
FVE in the same amount of time, despite the fact that for a given grid FVE is
sometimes faster (see Table 4.2). FV seems to be more efficient than FVE in
the anisotropic cases too, even for large α,β where FVE has a higher accuracy.
Instead, in the isotropic cases with α,β ≈ 1 both approaches allow similar CPU
times and, therefore, FVE becomes more suitable than FV.

We stress that due to the presence of the tridiagonal mass matrices, each matrix-
vector product is more expensive in FVE than in FV. This goes in favor of FV since
allows V-cycle to yield faster results than in the case of FVE, even when a larger
number of iterations is required.

Remark 4.5.1. Note that it is not possible to compare the iterations of PVL(geo)

and V(ω̃) in Table 4.1 with preconditioners P2N
and MGM2D(J) in Donatelli et al.

[2018] because therein the 2D discretization is different from the one given equation
(4.13). Indeed, in Donatelli et al. [2018]; Pan et al. [2017] the authors replaced
the tridiagonal mass matrix with an identity matrix resulting in a mixed FV and
FVE approach.

4.6 Conclusions

We have introduced a second-order FV discretization for problem (4.1) and nu-
merical results confirm that it is a good alternative to the FVE approach when
α,β ≈ 0. Moreover, we have proposed a block-banded-banded-block precondi-
tioner for GMRES that allows a fast solution of the resulting linear systems in
an amount of iterations to tolerance that is stable as the matrix-size increases.
When α,β ≈ 1, the FVE approach revealed more accurate than FV. In this case, a
MGM used as standalone solver for the discretized problem should be preferred.
Same as in Donatelli et al. [2018], we used damped Jacobi as smoother, but here
we selected its weight adaptively, as in Chapter 2, which yields better results if
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(a) (b)

Figure 4.3. Trend of the 2-norm error versus the CPU time of the fastest solver

for various combinations of (α,β).

compared to the fixed weight proposed in Donatelli et al. [2018].



Chapter 5

Non-uniform meshes

In this chapter we focus on a conservative steady-state Caputo FDE. It is known
that the solution of such equations can exhibit singularities near the boundaries
Kopteva and Meng [2020]; Gracia et al. [2018]; Jia and Wang [2015]. As con-
sequence of this and due to the conservative nature of the problem, we adopt a
FVE discretization approach over a generic non-uniform mesh.
In Section 5.1 we explicitly provide all the coefficients of the resulting linear sys-
tem. Moreover, we introduce composite meshes and meshes mapped functions,
which are both partially uniform and partially graded near the singularity, in or-
der to yield a partial Toeplitz structure of the coefficient matrix, but that differ
in terms of regularity.
By restricting our studies to meshes mapped by continuous bijective functions, in
Section 5.2 we perform a spectral analysis of the coefficient matrix, by retrieving
its symbol. Such information will be used in Section 5.3 to design an ad-hoc
multigrid preconditioner, which is parameter free since the relaxing parameter
of Jacobi smoother is estimated through the approach introduced in Section 2.4.
Finally, in Section 5.4, numerical results show the stability of the iterations to
tolerance of our multigrid used as preconditioner when increasing the size of the
coefficient matrix and while varying some parameters of the equation and the
discretization grid. Our conclusions are drawn in Section 5.5.

5.1 Problem setting and discretization

In this section we introduce the FDE problem we are interested in, then we pro-
vide the full discretization over arbitrary uniform meshes, and finally we give the
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112 5.1 Problem setting and discretization

formal definition of the composite mesh and the mesh mapped by a non-linear
function, which will be numerically tested in Section 5.4.

5.1.1 Two-dimensional space-FDE

We focus on the following conservative steady-state Caputo FDE of order 2− β ,
0 < β < 1, with inhomogeneous Dirichlet boundary-value conditions Wang and
Yang [2017]; Gracia et al. [2020], i.e.,

−
d

dx

�
K(x)

�
γ

d1−βu(x)

dC(x − 0)1−β
+ (1− γ) d1−βu(x)

dC(1− x)1−β
��
= f (x), x ∈ [0,1],

u(0) = ul , u(1) = ur ,
(5.1)

where K(x) is a positive diffusion coefficient, f (x) is the source term, ul , ur are
the Dirichlet boundary values and 0 ≤ γ ≤ 1 indicates the anisotropy in the
diffusion, i.e., γ ≈ 0 and γ ≈ 1 imply a strong forward and backward diffusiv-
ity, respectively. The operators d

dx
d1−β

dC (1−x)1−β and d
dx

d1−β
dC (x−0)1−β are known as Rie-

mannLiouvilleCaputo fractional derivatives Jia et al. [2019] or as PatieSimon
fractional derivatives Baeumer et al. [2018]; Kelly et al. [2019]; Patie and Simon
[2012].

5.1.2 FVE scheme

From Chapter 4 we recall that FVE approach consists in restricting the admissi-
ble solutions u(x) of the FDE (5.1) to a certain finite element space, covering the
definition interval [0,1] with a mesh ∪n

i=1Ii, where µ(Ii∩ I j)=0, i 6= j, with µ the
Lebesgue measure, and finally integrating the FDE (5.1) over Ii. In our specific
case we consider the unknown u(x) to belong to the space of the piecewise lin-
ear polynomial functions. In the following we provide a full discretization over
a generic non-structured mesh (Section 5.1.3), then we consider the special case
of a uniform mesh (Section 5.1.4) and make a comparison with the discretization
in Donatelli et al. [2018]. Finally, in Section 5.1.5 we focus on two non-uniform
structured meshes, obtained as a combination of a non-uniform part and a uni-
form one.
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5.1.3 Generic non-uniform mesh

Let N ∈ N and denote by {x i}N+1
i=0 a generic mesh on [0,1], such that x i >

x i−1, ∀i = 1, ..., N + 1 with x0 = 0, xN+1 = 1, then a

ũ(x) =
N∑

i=1

uiϕi(x) + ulϕ0(x) + urϕN+1(x),

where {ϕi}N+1
i=0 is the set of hat (linear) functions with

ϕ0(x) =

¨
x1−x

h1
, x ∈ (x0, x1)

0, otherwise

ϕi(x) =


x−x i−1

hi
, x ∈ (x i−1, x i)

x i+1−x
hi+1

, x ∈ (x i, x i+1)

0, otherwise

for i = 1, ..., N ,

ϕN+1(x) =

¨
x−xN
hN+1

, x ∈ (xN , xN+1)

0, otherwise

with hi = x i − x i−1, i = 1, ..., N + 1 being the step length. Replacing u(x)
with ũ(x)in equation (5.1) and integrating over Ωi = [x i− 1

2
, x i+ 1

2
], where x i− 1

2
=

x i+x i−1
2 , equation (5.1) can be written as the linear system

AN u= b, (5.2)

where b ∈ RN and AN ∈ RN×N , with

ai, j = −K(x)

�
γ

d1−β
dC−x1−β + (1− γ)

d1−β
dC
+x1−β

�
ϕ j(x)

���x=x
i+ 1

2

x=x
i− 1

2

bi =

∫ x
i+ 1

2

x
i− 1

2

f (x)dx + K(x)

�
γ

d1−β
dC−x1−β + (1− γ)

d1−β
dC
+x1−β

�
(ulϕ0(x) + urϕN+1(x))

���x=x
i+ 1

2

x=x
i− 1

2

.

for i, j = 1, ..., N . Explicitly, the entries of b are

b1 = f1
h1 + h2

2
+

K 3
2

Γ (β + 1)

�
uLγ

1
h1

�
(x 3

2
− x1)

β − xβ3
2

�
+ uR(1− γ) 1

hN+1

�
(1− x 3

2
)β − (xN − x 3

2
)β
��
+

−
K 1

2

Γ (β + 1)

�− uLγ
1
h1

xβ1
2
+ (1− γ)

�
−uL

1
h1
(x1 − x 1

2
)β + uR

1
hN+1

�
(1− x 1

2
)β − (xN − x 1

2
)β
���

,

bi = fi
hi + hi+1

2
+

Ki+ 1
2

Γ (β + 1)

�
uLγ

1
h1

�
(x i+ 1

2
− x1)

β − xβ
i+ 1

2

�
+ uR(1− γ) 1

hN+1

�
(1− x i+ 1

2
)β − (xN − x i+ 1

2
)β
��
+

−
Ki− 1

2

Γ (β + 1)

�
uLγ

1
h1

�
(x i− 1

2
− x1)

β − xβ
i− 1

2

�
+ uR(1− γ) 1

hN+1

�
(1− x i− 1

2
)β − (xN − x i− 1

2
)β
��

,
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for i = 2, ..., N − 1, and

bN = fN
hN + hN+1

2
+

KN+ 1
2

Γ (β + 1)

�
γ

�
uL

h1

�
(xN+ 1

2
− x1)

β − xβ
N+ 1

2

�
+

uR

hN+1
(xN+ 1

2
− xN )

β

�
+ (1− γ) uR

hN+1
(1− xN+ 1

2
)β
�
+

−
KN− 1

2

Γ (β + 1)

�
γ

uL

h1

�
(xN− 1

2
− x1)

β − xβ
N− 1

2

�
+ (1− γ) uR

hN+1

�
(1− xN− 1

2
)β − (xN − xN− 1

2
)β
��

;

while, for i = 1, ..., N , the entries of AN are

ai,i−k =
Ki− 1

2

Γ (β + 1)
γ

 ( hi
2 +

∑k
j=1 hi− j)β − ( hi

2 +
∑k−1

j=1 hi− j)β

hi−k
+
( hi

2 +
∑k−2

j=1 hi− j)β − ( hi
2 +

∑k−1
j=1 hi− j)β

hi−k+1

+
−

Ki+ 1
2

Γ (β + 1)
γ

 ( hi+1
2 +

∑k
j=0 hi− j)β − ( hi+1

2 +
∑k−1

j=0 hi− j)β

hi−k
+
( hi+1

2 +
∑k−2

j=0 hi− j)β − ( hi+1
2 +

∑k−1
j=0 hi− j)β

hi−k+1

 ,

for 2≤ k ≤ i − 1, and

ai,i−1 =
Ki− 1

2

Γ (β + 1)

�
γ
(hi−1 +

hi
2 )
β − ( hi

2 )
β

hi−1
− (

hi
2 )
β

hi

�
+

−
Ki+ 1

2

Γ (β + 1)
γ

�
(hi−1 + hi +

hi+1
2 )

β − (hi +
hi+1

2 )
β

hi−1
+
( hi+1

2 )
β − (hi +

hi+1
2 )

β

hi

�
,

ai,i =
Ki− 1

2

Γ (β + 1)

�
( hi

2 )
β

hi
+ (1− γ) (

hi
2 )
β − (hi+1 +

hi
2 )
β

hi+1

�
−

Ki+ 1
2

Γ (β + 1)

�
γ
(hi +

hi+1
2 )

β − ( hi+1
2 )

β

hi
− (

hi+1
2 )

β

hi+1

�
,

ai,i+1 =
Ki− 1

2

Γ (β + 1)
(1− γ)

�
(hi+1 +

hi
2 )
β − ( hi

2 )
β

hi+1
+
(hi+1 +

hi
2 )
β − (hi+2 + hi+1 +

hi
2 )
β

hi+2

�
+

−
Ki+ 1

2

Γ (β + 1)

�
( hi+1

2 )
β

hi+1
+ (1− γ) (

hi+1
2 )

β − (hi+2 +
hi+1

2 )
β

hi+2

�
,

and finally,

ai,i+k =
Ki− 1

2

Γ (β + 1)
(1− γ)

 ( hi
2 +

∑k
j=1 hi+ j)β − ( hi

2 +
∑k−1

j=1 hi+ j)β

hi+k
+
( hi

2 +
∑k

j=1 hi+ j)β − ( hi
2 +

∑k+1
j=1 hi+ j)β

hi+k+1

+
−

Ki+ 1
2

Γ (β + 1)
(1− γ)

 ( hi+1
2 +

∑k
j=2 hi+ j)β − ( hi+1

2 +
∑k−1

j=2 hi+ j)β

hi+k
+
( hi+1

2 +
∑k

j=2 hi+ j)β − ( hi+1
2 +

∑k+1
j=2 hi+ j)β

hi+k+1

 ,

for 2≤ k ≤ N − i.

Remark 5.1.1. When β = 0, we have ai,i−k = ai,i+k = 0,∀k ≥ 2 and the dense
structure of AN collapses into the tridiagonal matrix representing the 1D discrete
Laplacian operator, which does not depend on γ anymore. On the contrary, when
β = 1 we still have ai,i−k = ai,i+k = 0,∀k ≥ 2 independently of γ, but if K(x) is
constant, then AN becomes a skew-symmetric matrix.

5.1.4 Uniform mesh

Under the conditions

K(x) = K , γ=
1
2

, hi = h ∀i, (5.3)
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with c = Khβ−1

2β Γ (β+1) , it holds

ai,i−k =
c
2

�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
2≤ k ≤ i − 1,

ai,i−1 =
c
2

�
3β+1 − 4− 5β

�
,

ai,i =
c
2

�
6− 2 · 3β� ,

ai,i+1 =
c
2

�
3β+1 − 4− 5β

�
,

ai,i+k =
c
2

�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
2≤ k ≤ N − i.

(5.4)

Therefore, under the assumptions in equation (5.3), matrix AN in (5.2) is a sym-
metric Toeplitz matrix and coincides with the coefficient matrix considered in
paper Donatelli et al. [2018], where the authors took a FVE discretization of
equation (5.1) with RL fractional derivative operators in place of Caputo’s. This
is indeed not surprising since, from Remark 1.6.2 and byϕi(0) = ϕi(1) = 0, ∀i =
1, ..., N , we have

d1−βϕi(x)
dR−x1−β =

d1−βϕi(x)
dC−x1−β ,

d1−βϕi(x)
dR
+x1−β =

d1−βϕi(x)
dC
+x1−β ,

which means that the only difference between the FVE discretization of equation
(5.1) on uniform meshes and the discretized equation in Donatelli et al. [2018]
lies in the right-hand side.

5.1.5 Graded and composite meshes

The discretization of equation (5.1) over uniform meshes yields matrices with a
Toeplitz structure, which allows fast matrix-vector product in O(N log N), while
in case of a generic non-uniform mesh discretization the Toeplitz structure is
lost. On the other hand, the solution of the FDE (5.1) may exhibit singularities
near the boundaries, therefore uniform grids should be avoided and non-uniform
meshes should be preferred.

In order not to completely lose the structure of the coefficient matrices, in the
following we consider two mixed approaches of graded mesh near the singular-
ity and uniform mesh where the solution is smooth. This yields matrices with
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a partial Toeplitz structure that can be exploited to allow a fast matrix-vector
product. In the following, we only consider singularities at x = 0, however, the
approach can be straightforwardly extended to the case of singularities at x = 1
or at both boundaries.

Graded meshes We consider the non-uniform grid generated by projection of
the uniform mesh through the endomorphism

gq,ε(x) =


xq, 0≤ x ≤ ε1,

ax2 + bx + c, ε1 ≤ x ≤ ε1 + ε2,

mx + p, ε1 + ε2 ≤ x ≤ 1,

(5.5)

with ε = (ε1,ε2), 0 < ε1 + ε2 ≤ 1, ε2 > 0 and a, b, c, m, p such that gq,ε ∈
C1([0,1]). Proposition 5.1.1 shows that gq,ε(x) is well-defined.

Proposition 5.1.1. Let gq,ε(x) be as in (5.5), with ε = (ε1,ε2). Then, for 0 <
ε1 + ε2 ≤ 1 with ε2 > 0, function gq,ε(x) is well-defined.

Proof. The explicit form of coefficients a, b, c, m, q is obtained by solving the fol-
lowing equation 

gq,ε(ε−1 ) = gq,ε(ε+1 )

gq,ε((ε1 + ε2)−) = gq,ε((ε1 + ε2)+)

g ′q,ε(ε
−
1 ) = g ′q,ε(ε

+
1 )

g ′q,ε((ε1 + ε2)−) = g ′q,ε((ε1 + ε2)+)

gq,ε(1) = 1

(5.6)

where gq,ε(ξ±) = limx→ξ± gq,ε(x). Equation (5.6) can be seen as a linear system
with coefficient matrix

G =


ε2

1 ε1 1 0 0
(ε1 + ε2)2 ε1 + ε2 1 −(ε1 + ε2) −1

2ε1 1 0 0 0
2(ε1 + ε2) 1 0 −1 0

0 0 0 1 1

 ,

whose determinant is det(G) = 2ε1ε2−2ε2+ ε2
2. Finally, since det(G) = 0 if and

only if ε1 =
2−ε2

2 , and 0 < ε1 + ε2 ≤ 1 with ε2 > 0, we conclude that det(G) 6= 0
and therefore gq,ε(x) is well-defined.
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In the case where ε2 = 0 then we define

gq,ε(x) =

¨
xq, 0≤ x ≤ ε1,

mx + p, ε1 ≤ x ≤ 1,

with m, p such that gq,ε ∈ C([0,1]).

In the interval [0,ε1] we have the singular part of the function which accumu-
lates grid points near the origin, in [ε1 + ε2, 1] we have a line, which represents
the uniform part of the mesh and gives the partial Toeplitz structure to the coeffi-
cient matrix, and in between we have a quadratic function that acts as a smooth
connection of length ε2 between the singular part and the uniform mesh, whose
only purpose is to increase the smoothness of gq,ε. Therefore it is clear that
ε1+ε2 represents the length of the non-uniform part of the grid over the interval
[0,1].

In equation (5.5), where ε1 and ε2 are fixed, the only free parameter is q which
we choose to be

q = qβ =
1+ β
1− β , (5.7)

as done in Kopteva and Meng [2020], where a Caputo time-fractional derivative
is involved and a L1 approximation is considered. When N is large, gq,ε(x) could
yield a grid that has too short intervals, i.e hi � 10−16 for some i. The shortest
interval is the first one, and it is obtained by the projection through xq. Therefore,
in case qβ is too large we replace it with q such that h1 = 10−16.

Composite mesh For our numerical comparisons, we will consider also the com-
posite mesh used in Jia and Wang [2015], which proved to be effective in the
case where β ≈ 1. Let N1, N2 ∈ N, and consider an uniform mesh with step
h = 1

N2+1 . Then we divide interval [0, h] into N1 + 1 subintervals, whose length
from left to right is hi, i = 1, ..., N1 with¨

hi = 2−N1h, if i = 1,2;

hi = 2i−2−N1h, if i = 3, ..., N1.

Therefore the grid points are x0 = 0, x i = x i−1+hi for i = 1, ..., N1, x i = x i−1+h
for i = N1 + 1, ..., N1 + N2 and xN1+N2+1 = 1.
We choose

N1 = gG(N), and N2 = N − N1, (5.8)

such that the total amount of grid points is N , where gG(N) : N → N, e.g.,
gG(N) = bpNc or gG(N) = blog2 Nc, with b·c being the floor function. This choice
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Figure 5.1. Example of a graded mesh generated by a function and a composite

mesh.

slightly differs from the one taken in Jia and Wang [2015], where the authors
first fix N2 and then choose N1 ≈pN2.

For the sake of clarity, in Figure 5.1 we see two example of meshes. In Figure 5.1a
we have the plot of the mapping function gq,ε(x) with q = 2 and ε = (0.4,0),
which maps the uniform mesh (on the x axis) into the graded mesh (on the y
axis), while in Figure 5.1b we have the plot of the composite mesh with N1 =
4, N2 = 3.

5.2 Spectral properties of the coe�cient matrices

In this section we first recall the spectral symbol of the coefficient matrices AN in
presence of uniform meshes already given in Donatelli et al. [2018]. Then, fol-
lowing the idea in Garoni and Serra-Capizzano [2018] (p. 212, Section 10.5.4),
we compute the symbol of the coefficient matrices when considering non-uniform
grids mapped by functions. In both cases we fix γ= 1

2 .

In case of uniform meshes, from equation (5.4), we have that AN = cT (pβN (θ ))
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where c = Khβ−1

2β Γ (β+1) and

pβN (θ ) =
1
c

a1,1 +
2
c

N−1∑
k=1

a1,k+1 cos(kθ ), (5.9)

with a1,k in equation (5.4). Moreover, according to Donatelli et al. [2018], the
following proposition holds.

Proposition 5.2.1. For N →∞, pβN (θ ) in (5.9) converges to a positive real-valued
even function, say pβ(θ ), that has a unique zero at θ = 0 of order lower than 2,
for every β ∈ (0,1) and such that¦� 1

N + 1

�1−β
AN

©
N
∼λ

�
K

2βΓ (β + 1)
pβ(θ ), [−π,π]

�
.

In order to compute the symbol of the coefficient matrix for non-uniform grids
mapped by functions, let N ∈ N and consider

• a generic grid {x i}N+1
i=0 ⊂ [0,1] with 0= x0 < x1 < · · · < xN+1 = 1;

• the uniform grid { x̂ i}N+1
i=0 with x̂ i = ih, i = 0, ..., N + 1, and h= 1

N+1 ;

• an increasing function g(x) such that x i = g( x̂ i), i = 0, ..., N + 1.

The following theorem, proven by borrowing ideas from Garoni and Serra-Capizzano
[2018] (p. 212, Section 10.5.4), holds.

Theorem 5.2.1. Let K(x) = K and suppose g : [0,1] → [0,1] is an increasing
bijective map in C3([0,1]). Then, if g ′( x̂) has a finite amount of zeros of limited
order, it holds §�

1
N + 1

�1−β
AN

ª
N
∼σ

�
fβ(x ,θ ), [0,1]× [−π,π]

�
, (5.10)

with
fβ(x ,θ ) =

K
2βΓ (β + 1)(g ′(x))1−β pβ(θ ). (5.11)

Proof. Let us fix N ∈ N and let { x̂ i}N+1
i=0 be the uniform grid with x̂ i = ih, i =

0, ..., N + 1, and h = 1
N+1 . Then letting x i = g( x̂ i), i = 0, ..., N + 1, from the

Taylor expansion of g( x̂ i−1), ∀i, it holds

g( x̂ i−1) = g( x̂ i)− g ′( x̂ i)h+ g ′′( x̂ i)
h2

2
+O(h3), ∀i = 1, ..., N ,
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and since hi = g( x̂ i)− g( x̂ i−1), we have

hi = g ′( x̂ i)h− g ′′( x̂ i)
h2

2
+O(h3). (5.12)

In the case where k ∈ Z, from (5.12) we have

hi+k = g ′( x̂ i+k)h− g ′′( x̂ i+k)
h2

2
+O(h3), (5.13)

and through the Taylor expansions of g ′( x̂ i+k) and g ′′( x̂ i+k) we finally obtain

hi+k = g ′( x̂ i)h+ g ′′( x̂ i)h
2 2k− 1

2
+O(k2h3).

Then, with γ= 1
2 , K(x) = K and K̃ = K

Γ (β+1) , from equation (5.2) we have

ai,i = K̃

�
(hi

2 )
β

hi
+

1
2

(hi
2 )
β − (hi+1 +

hi
2 )
β

hi+1
− 1

2

(hi +
hi+1

2 )
β − (hi+1

2 )
β

hi
+
(hi+1

2 )
β

hi+1

�
= K̃

�
S1 +

1
2

S2 − 1
2

S3 + S4

�
,

where

S1 =
(hi

2 )
β

hi
=

1
2β

hβ−1
i =

1
2β
�
g ′ih+O(h2)

�β−1
=

1
2β(g ′ih)1−β

(1+O(h)) ;

S2 =
(hi

2 )
β − (hi+1 +

hi
2 )
β

hi+1
=
(g ′ih)

β
��

1
2 +O(h)

�β − �3
2 +O(h)

�β�
g ′ih(1+O(h))

=
1

2β(g ′ih)1−β

�
1+O(h)

�β − 3β
�
1+O(h)

�β
1+O(h)

=
1

2β(g ′ih)1−β
�
1− 3β +O(h)

� �
1+O(h)

�
=

1
2β(g ′ih)1−β

�
1− 3β +O(h)

�
;

S3 =
(hi +

hi+1
2 )

β − (hi+1
2 )

β

hi
=
(g ′ih)

β
��

3
2 +O(h)

�β − �1
2 +O(h)

�β�
g ′ih(1+O(h))

=
1

2β(g ′ih)1−β
3β
�
1+O(h)

�β − �1+O(h)
�β

1+O(h)

=
1

2β(g ′ih)1−β
�
3β − 1+O(h)

� �
1+O(h)

�
=

1
2β(g ′ih)1−β

�
3β − 1+O(h)

�
;

S4 =
(hi+1

2 )
β

hi+1
=

1
2β

hβ−1
i+1 =

1
2β
�
g ′ih+O(h2)

�β−1
=

1
2β(g ′ih)1−β

(1+O(h)) ;
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with g ′i = g ′( x̂ i) and g ′′i = g ′′( x̂ i).
Assembling ai,i we obtain

h1−βai,i =
K̃

2β g ′i
1−β

�
3− 3β

�
+O(h). (5.14)

With the same approach we obtain

h1−βai,i±1 =
K̃

2β g ′i
1−β

�
3β+1 − 4− 5β

�
+O(h); (5.15)

h1−βai,i±k =
K̃

2β g ′i
1−β

�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
+O(kh),

(5.16)

with 1< k ≤ N q, 0< q < 1, such that kh→ 0 as k→∞.

In the case where N q < k ≤ N the approximation yields a large error, therefore
we prove that ai,i+k = o(h). Let r =

∑k
j=1 hi+ j, then 0< r < 1 ∀k and

• if k = O(N q) = O(h−q), we have

r =
O(Nq)∑

j=1

hi+ j =
O(Nq)∑

j=1

�
g ′ih+O( jh2)

�
= g ′iO(N

q)h+O(N 2qh2) = g ′iO(h
1−q),

(5.17)

• while if k = O(N) = O(h−1), r is a constant independent of N .

By collecting r, in ai,i+k we have terms of the form (1 + h̃)β , with h̃ = hi
2r , hi

2r −
hi+k

r , . . . . In order to use the Taylor expansion of (1+ h̃)β we first need to prove
that h̃→ 0 as N →∞. We divide the analysis in two cases:

1) if g ′( x̂) 6= 0 in [0,1], then from equations (5.12) and (5.17) we have

hi+k

r
=

g ′i+kh+O(h2)

g ′iO(h1−q)
= O(hq),

which tends to zero as N →∞ for any 0< q < 1.

2) if g ′( x̂) vanishes in [0,1], the worst possible scenario happens when hi �
hi+k. Without restrictions to the general case we assume that g ′( x̂) has
a zero of order t at x̂0 = 0, hence g( x̂) ≈ x̂ t+1 when x̂ → 0. Then by
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considering k = −N q and i = N q + 1, such that hNq+1 = hi � hi+k = h1, we
have

hNq+1∑Nq

j=1 hNq+1− j

=
xNq+1 − xNq

h1 + h2 + ...+ hNq

=
g( x̂Nq+1)− g( x̂Nq)

g( x̂Nq)− g( x̂0)
=

�
Nq+1

N

�t+1 − �Nq

N

�t+1�
Nq

N

�t+1

=
�

1+
1

N q

�t+1

− 1= O(hqt),

which tends to zero as N →∞ for any 0< q < 1.

Now, let N q < k ≤ N and approximate the coefficient ai,i+k as follows:

ai,i+k =
K̃
2

�
rβ (1+ hi

2r )
β − rβ (1+ hi

2r − hi+k
r )

β

hi+k
+

rβ (1+ hi
2r )

β − rβ (1+ hi
2r +

hi+k+1
r )

β

hi+k+1
+

− rβ (1− hi+1
2r )

β − rβ (1− hi+1
2r − hi+k

r )
β

hi+k
− rβ (1− hi+1

2r )
β − rβ (1− hi+1

2r +
hi+k

r )
β

hi+k+1

�
=

K̃ rβ

2hi+khi+k+1

�
hi+k+1

�
(1+

hi

2r
)β − (1+ hi

2r
− hi+k

r
)β − (1− hi+1

2r
)β + (1− hi+1

2r
− hi+k

r
)β
�
+

+ hi+k

�
(1+

hi

2r
)β − (1+ hi

2r
+

hi+k+1

r
)β − (1− hi+1

2r
)β + (1− hi+1

2r
+

hi+k

r
)β
��

.

By replacing each (1+ h̃)β with its Taylor expansion

(1+ h̃)β = 1+ β h̃+
β(β − 1)

2
h̃2 +O(h̃3),

we observe an exact cancellation of the terms of degree 0 and 1 inside the square
brackets in ai,i+k. The exact cancellation happens even for the term of degree 2
but it is harder to see, therefore we report the computations below.

ai,i+k =
K̃ rββ(β − 1)
4hi+khi+k+1

�
hi+k+1

� h2
i

4r2
+O(h3

i )− ( hi

2r
− hi+k

r
)2 +O((hi − hi+k)

3)− h2
i+1

4r2
+O(h3

i+1)+

+ (
hi+1

2r
+

hi+k

r
)2 +O((hi+1 + hi+k)

3))
�
+

+ hi+k

� h2
i

4r2
+O(h3

i )− ( hi

2r
+

hi+k+1

r
)2 +O((hi + hi+k+1)

3)− h2
i+1

4r2
+O(h3

i+1)+

+ (−hi+1

2r
+

hi+k+1

r
)2 +O((−hi+1 + hi+k+1)

3))
��

=
K̃ rβ−2β(β − 1)

4hi+khi+k+1

�
hi+k+1(hihi+k + hi+1hi+k)− hi+k(hihi+k+1 + hi+1hi+k+1) +O(h4)

�
=

rβ−2

g ′i+k
2 O(h2).

In the case where
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• k = O(N q), from equation (5.17) we have

h1−βai,i+k = O(h1−β+2+(1−q)(β−2)) = O(h1−β+2+β−2+2q−βq) = o(h1+q), (5.18)

• k = O(N), since r has a constant value, we have

h1−βai,i+k = O(h1−β+2) = o(h2). (5.19)

Let BN ,M be a diagonal-times-Toeplitz banded matrix of the form

BN ,M = DN (d(x))TN (p
β
M(θ )),

with d(x) = K̃
2β (g ′(x))1−β and pβM(θ ) being the symbol in equation (5.9). From

Proposition 1.3.1 we have

{{BN ,M}N}M ∼σ
�
d(x)pβM(θ ), [0,1]× [−π,π]

�
. (5.20)

We now prove that {{BN ,M}N}M is an a.c.s for {AN}N .

Suppose that g ′( x̃) 6= 0 in [0,1], then, by choosing M = N q, from equations
(5.14), (5.15), (5.16) and (5.18) we have that matrix h1−βAN − BN ,Nq is a “sym-
metric Toeplitz” matrix, whose first row is

O(h) O(h) O(2h) O(3h) · · · O(N qh) o(h1+q) · · · o(h1+q)︸ ︷︷ ︸
N q coefficients

︸ ︷︷ ︸
N − N q − 1 coefficients

.

(5.21)

Note that the “symmetric Toeplitz” structure holds only while keeping O(·) and
o(·). When we replace O(·) and o(·) with the exact values the structure could be
lost.
Thanks to the structure we have

h1−βAN − BN ,Nq




1 ≤ 2

�
O(h) +

Nq∑
k=1

O(kh) + o(h1+q)(N − N q − 1)

�
= O(h) +O(N 2qh) + o((N − N q − 1)h1+q)

= O(h) +O(h1−2q) + o(hq − h− h1+q),

h1−βAN − BN ,Nq



∞ ≤ O(h) +O(h1−2q) + o(hq − h− h1+q),

and through the Hölder inequality,

h1−βAN − BN ,Nq




2 ≤

Ç

h1−βAN − BN ,Nq




1



h1−βAN − BN ,Nq



∞
≤ O(h) +O(h1−2q) + o(hq − h− h1+q),

(5.22)
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which tends to zero as N →∞ if 0 < q < 1
2 . From Definition 1.3.5 it follows

that {{BN ,M}N}M is an a.c.s for {h1−βAN}N , and from equation (5.20) and Theo-
rem 1.3.3 we have the thesis, since from Proposition 5.2.1 it holds that pβM(θ )
converges to pβ(θ ).

Suppose now that there exist x̃ (1), ..., x̃ (s) ∈ [0,1] such that g ′( x̃ (k)) = 0, ∀k and
consider the intervals B( x̃ (k), 1

M ) = { x̃ ∈ [0,1] :
�� x̃ − x̃ (k)

�� < 1
M }. The function

g ′(x) is continuous and strictly positive on [0,1] \ IM ∀M , where

IM =
s⋃

k=1

B
�

x̃ (k),
1
M

�
,

therefore we write h1−βAN−BN ,M = NN ,M+RN ,M , where matrices NN ,M , RN ,M have
small-norm and low-rank, respectively.
If we define ãi, j =

�
h1−βAN − BN ,M

�
i, j

, the matrix RN ,M is sparse and its entries
are

ri, j =

¨
ãi, j, if x̂ i ∈ IM or x̂ j ∈ IM

0, otherwise.

Hence, given the equispaced grid x̂ i = ih, i = 1, ..., N , then

rank
�
RN ,M

�≤ 2|IM | ≤ 2s
�2/M

h
+ 1

�
= 2s

�
2
M
+

2
N M

+
1
N

�
N .

Moreover, as RN ,M contains every coefficient ãi, j which has a g ′i , with i ∈ IM in
the denominator, the matrix NN ,M can be approximated as in (5.22). In con-
clusion, for each M there exists NM such that for N > NM , rank(RN ,M) ≤ 3sN

M
and



NN ,M



∞ ≤ 1
M , which, from Definition 1.3.5, means that {{BN ,M}N}M is an

a.c.s of {AN}N and the thesis again follows from equation (5.20) and Theorem
1.3.3.

By combining Theorem 5.2.1 with GLT1 and GLT5, the following theorem holds.

Theorem 5.2.2. Let K(x) = K and suppose g : [0,1] → [0,1] is an increasing
bijective map in C3([0,1]). Then, if g ′( x̂)> 0, it holds§�

1
N + 1

�1−β
AN

ª
N
∼λ

�
fβ(x ,θ ), [0,1]× [−π,π]

�
, (5.23)

with fβ(x ,θ ) defined as in equation (5.11).
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Proof. The thesis is proven by combining Theorem 5.2.1 with GLT1 and GLT5.
Therefore, we only need to show that GLT5 holds for the matrix sequence in
equation (5.10). We recall that GLT5 consists in proving that

limN→∞



h1−βAN − h1−βAH
N




tr

N
= 0,

with h= 1
N+1 .

Let us now denote ãi, j = h1−β �AN − AH
N

�
i j

. Then, since equations (5.18) and
(5.19) hold also for negative values of k, we have

ãi,i+k = h1−β(ai,i+k − ai+k,i) = h1−β(ai,i+k − a j, j−k) = O(h1+q),

with j = i + k, for N q < |k| ≤ N . From equation (5.16) we have,

ãi,i+k =h1−β (ai,i+k − a j, j−k)

=
K̃

2β g ′i
1−β

�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
+O(kh)+

−
 

K̃

2β g ′j
1−β

�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
+O(kh)

!

=

�
1

g ′i
1−β −

1

g ′1−βi+k

�
K̃
2β
�
3(2k+ 1)β − 3(2k− 1)β + (2k− 3)β − (2k+ 3)β

�
+O(kh)

= O(kh),

for 0 ≤ |k| ≤ N q. Therefore, a similar reasoning to the one made for h1−βAN −
BN ,Nq in equation (5.21) can be done also for h1−β �AN − AH

N

�
. Finally, from Hölder

inequality it follows

h1−β 

AN − AH
N




tr

N
≤ Nh1−β 

AN − AH

N




2

N
≤ O(h) +O(h1−2q) + o(hq − h− h1+q),

which tends to 0 as N →∞ and this concludes the proof.

Remark 5.2.1. Combining Theorem 5.2.2 and Proposition 5.2.1, we have that the
symbol fβ(x ,θ ) of AN has a unique zero at θ = 0 of order lower than 2.

The constraint g ′(x)> 0 is taken to facilitate the proof as, under this hypothesis,
we could show that GLT5 holds, but numerical results seem to indicate that the
symbol fβ(x ,θ ) still approximates the eigenvalue distribution of h1−βAN even
without such constraint.

In view of Remark 1.3.3, in Figure 5.2 we give a graphical interpretation of The-
orem 5.2.2. From Proposition 5.2.1 it follows that fβ(x ,θ ) is even with respect
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(a) g(x) = x2. (b) g(x) = x4.

Figure 5.2. Plot of the eigenvalues of h1−βAN with β = 0.5, N = 26 and the

non-uniform mesh mapped by g(x).

to θ , hence we consider J = [0,1]× [0,π] to obtain a more accurate plot. Fixed
N = 26 and β = 0.5, Figures 5.2a and 5.2b compare the sorted eigenvalues of
h1−βAN with the sorted uniform sampling of the symbol fβ(x ,θ ) over the meshes
mapped by g(x) = xq, q = 2,4 over both

(i) { x̂ i,θ j}
p

N
i, j=1 with x̂ i = i 1p

N
, θ j = j πp

N+1
,

(ii) { x̂ i,θ j}N2

i, j=1 with x̂ i = i 1
N2 , θ j = j π

N2+1 .

In both Figures 5.2a and 5.2b we observe a similar shape between the eigenvalues
of h1−βAN and the sampling of the symbol over the grid with N points, with a lack
of overlapping at initial and final grid points. This discrepancy is immediately
overcome by making a comparison between the eigenvalues of h1−βAN and the
sampling of the symbol fβ(x ,θ ) over the much finer mesh (N 4 points).

5.3 Multigrid methods

In order to discuss the convergence analysis of V-cycle applied to (5.2), we con-
sider the mesh to be uniform, the diffusion coefficient K to be constant, γ = 1

2 ,
such that the resulting coefficient matrix is positive definite, and we use weighted
Jacobi as smoother. Under these assumptions, and because of the Toeplitz struc-
ture of the considered matrices, the weighted Jacobi is well-known to satisfy
the smoothing property for positive definite matrices, whenever it is convergent
(see Remark 1.4.1). Moreover, according to Proposition 5.2.1, in case of uniform
meshes the symbol fβ(x ,θ ) of AN vanishes with order lower than 2 at θ = 0 and
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the approximation property holds true with the same standard projectors as in
the case of the Laplacian (see Moghaderi et al. [2017]).

In the case of the considered non-uniform meshes, we propose a V-cycle that still
keeps the standard projectors and whose hierarchy is built through the geometric
approach with amount of levels given by lvl= log2(N +1)−1 (smallest possible
size 3× 3). Note that, in order to make the V-cycle properly working, the linear
systems must be scaled such that the right-hand side does not contain any grid
dependent scaling factor. Therefore, we multiply both members of AN x = b by
the diagonal matrix HN = diagi=1,...,N (

1
hi
).

Concerning the construction of the hierarchy, in the case of a grid mapped by
function g(x) : [0,1]→ [0,1], the grid on the ℓ-th level is, as usual, the projec-
tion of an uniform mesh with step length ĥℓ =

N−Nmod(2)
2ℓ−1 through function g(x).

When composite meshes are employed, on the contrary, the choice of the grid on
the coarser level is non-trivial. We consider a down-sampling of the grid points
on the finest level. Let N ∈ N, then the grid points on the finest (ℓ= 0) level are
x i, i = 0, ..., N + 1 and on the ℓ-th level, with ℓ > 0, the grid points are

x (ℓ)j = 0, j = 0;

x (ℓ)j = xa+( j−1)2ℓ , 1< j < N (ℓ);

x (ℓ)j = 1, j = N (ℓ) + 1;

(5.24)

with N (ℓ) = b N
2ℓ c and a = b2pℓc. Note that the inner points of the grid at each level

are N (ℓ) and, therefore, the coefficient matrix at the ℓ-th level has size N (ℓ)×N (ℓ).
The choice of x (ℓ)1 = xa, which slowly moves to the right when increasing ℓ, is
taken through trial and error aiming to minimize the iterations to tolerance of
our solver when β ≈ 1. This choice seems to yield better results than the natural
one, which consists in taking a grid point every two with respect to the grid on
the finer level, i.e., with a = 2l . On the other hand, as shown in Section 5.4,
when β � 1, the composite mesh does not seem to allow low approximation
error, therefore we are not interested in reducing the iterations of our solver in
this case.

Regarding the smoother, at each iteration of V-cycle one iteration of weighted Ja-
cobi as pre- and post-smoother is performed. The weightω is estimated through
the approach introduced in Chapter 2 and numerical results in Section 5.4 show
the suitability of the choice õ(x) =

p
1− x2+0.475x−0.475 and I =

�−1239
1961 , 1

�≈
[−0.63,1] such that õ(x)≥ 0. Note that our choice slightly differs from the one
proposed in Chapter 2, where we dealt with a different model.
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Remark 5.3.1. From Remark 5.1.1, in the case where β = 0, AN becomes the
positive definite one-dimensional discrete Laplacian, therefore we expect multigrid
to perform well for β ≈ 0 even in the anisotropic cases where γ≈ 0 or γ≈ 1. When
β = 1, AN becomes skew-symmetric, hence we do not expect multigrid to perform
well in the cases where β ≈ 1 and γ≈ 0 or γ≈ 1.

5.4 Numerical results

In this section we first compare few (graded and composite) grids by reporting
the reconstruction error and the convergence order (Test 1), then we check the
performances of our multigrid applied to equation (5.1) (Tests 2–4) varying the
grid, γ and β . Precisely, aiming at increasing its robustness, we use the MGM de-
scribed in Section 5.3 as preconditioner for GMRES by performing one iteration
of V-cycle applied directly to the coefficient matrix. Throughout, we denote our
solver by P -GMRES.

Our numerical tests have been run on a server with AMD 3600 6-core (4.20 GHz)
processor and 64 GB (3600 MHz) RAM and Matlab 2020b. In all our tests we
consider equation (5.1) with f (x) = (1−γ)(1−β)

Γ (β)x(1−x)1−β , K(x) = 1 with γ ∈ [0,1] and
β ∈ (0,1), whose exact solution, according to Jia and Wang [2015], is u(x) =
x1−β .

For all involved iterative methods the initial guess x (0) is the null vector, the
maximum amount of iterations is 100 and the stopping criterion is

Ax (k) − b




2

‖b‖2 < tol,

where the tolerance is tol= 10−7 and x (k) is the unknown at the k-th iteration.

Test 1 We first test the quality of qβ , defined in (5.7), the grading parameter of
function gq,ε(x)which generates the graded mesh discussed in Section 5.1.5. We
set N = 210 and compare qβ , in terms of reconstruction error, with the numer-
ically computed optimal value qopt, which is the one that minimizes the infinity
norm of the error and is found through trial and error.

Table 5.1 shows the optimal value qopt and the infinity norm errors eopt and eβ

yield when discretizing equation (5.1) over the grid gq,ε(x)with q = qopt and q =
qβ , respectively, for various values of ε= (ε1,ε2). Note that qβ is not shown in the
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γ β
ε(1) = (0.1, 0.05) ε(2) = (0.2,0.05) ε(3) = (0.25,0) ε(4) = (0.45,0.05) ε(5) = (0.5,0) ε(6) = (1,0)

qopt eopt eβ qopt eopt eβ qopt eopt eβ qopt eopt eβ qopt eopt eβ qopt eopt eβ

0.3
0.2 1.9 1.2e-5 3.3e-5 1.8 1.3e-5 3.3e-5 1.8 1.3e-5 3.3e-5 1.7 1.5e-5 3.3e-5 1.7 1.5e-5 3.3e-5 1.7 1.8e-5 3.3e-5
0.5 2.7 5.2e-5 5.7e-5 3 2.6e-5 2.6e-5 2.9 3.1e-5 3.2e-5 3.1 2.1e-5 2.2e-5 3 2.2e-5 2.2e-5 2.8 3.5e-5 3.7e-5
0.8 4.4 1.9e-3 6.3e-3 5.3 7.1e-4 7.1e-4 4.6 1.6e-3 5.7e-3 5.3 7.1e-4 7.1e-4 5.3 7.1e-4 7.1e-4 5.3 7.1e-4 7.1e-4

0.5
0.2 1.7 9.0e-6 2.1e-5 1.7 9.6e-6 2.1e-5 1.7 9.7e-6 2.1e-5 1.7 1.1e-5 2.1e-5 1.7 1.1e-5 2.1e-5 1.6 1.3e-5 2.1e-5
0.5 2.9 1.3e-5 1.4e-5 3 1.1e-5 1.1e-5 3 1.2e-5 1.2e-5 2.9 1.5e-5 1.5e-5 2.9 1.5e-5 1.5e-5 2.7 2.4e-5 2.6e-5
0.8 4.3 1.0e-3 4.2e-3 5.3 3.5e-4 3.7e-4 4.6 8.0e-4 2.9e-3 5.3 3.4e-4 3.4e-4 5.3 3.4e-4 3.4e-4 5.3 3.4e-4 3.4e-4

0.7
0.2 1.7 5.6e-6 1.3e-5 1.7 6.0e-6 1.3e-5 1.7 6.1e-6 1.3e-5 1.7 6.9e-6 1.3e-5 1.7 7.0e-6 1.3e-5 1.6 8.1e-6 1.3e-5
0.5 2.6 1.4e-5 1.8e-5 2.7 8.2e-6 1.0e-5 2.7 9.8e-6 1.5e-5 2.7 8.5e-6 8.7e-6 2.7 8.7e-6 9.0e-6 2.6 1.3e-5 1.5e-5
0.8 3.8 2.1e-4 1.9e-3 4.1 4.4e-5 4.6e-4 3.7 2.5e-4 5.3e-3 4.2 3.7e-5 5.1e-4 4.2 3.7e-5 5.5e-4 4.2 3.7e-5 5.2e-4

Table 5.1. Comparison between the numerically computed optimal value qopt
and qβ , in terms of in�nity norm reconstruction error varying γ,β and ε.

table since it only depends on β , i.e., q0.2 = 1.5, q0.5 = 3. Since q0.8 =
1+0.8
1−0.8 = 9

yields a step length much below machine precision for N = 210 (h1 ≈ 10−28),
we set q0.8 = 5.3 such that h1 = 10−16, according to the discussion in Section
5.1.5.

When β = 0.2, in Table 5.1 we observe an increase in the error when choosing
qβ with respect to qopt, i.e., eβ ≈ 2eopt independently of the choice of γ and of
ε. Moreover, the interval lengths ε1,ε2 does not seem to affect the error in the
case of qβ . This also means that the use of a smooth function to generate the grid
does not decrease the error in comparison with a non-smooth function, therefore
smaller values of ε1 and ε2 can be chosen, in order to speed up the matrix-vector
product. When β = 0.5, the difference between eβ and eopt is almost negligible
and both do not vary that much with γ and ε and again the choice of ε1,ε2 is not
so crucial. When β = 0.8, unlike the previous two cases, if the non-linear part
of function gq,ε(x) is too short, e.g., when considering ε(1), the error increases
greatly. This happens because more grid points are needed near x = 0 to deal
with the singularity of the solution, and by increasing ε1, gq,ε(x) projects more
grid points near x = 0.

Moreover, by comparing ε(2) with ε(3) we note that when gq,ε(x) is smooth, i.e.,
when considering ε = ε(2), the error is lower than in the case of a non-smooth
function, especially when β ≥ 0.5, even if the length of the interval where gq,ε(x)
is non-linear does not change. Therefore, a smooth function gq,ε(x) is recom-
mended when β ≈ 1.

Note that, in any of the tested case, a full non-uniform mesh does not seem to be
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necessary, since the lowest error is always reached for mixed meshes.

Test 2 We now fix γ = 0.5 and provide the numerical results to show the ro-
bustness of P -GMRES by reporting the iterations to tolerance (It), needed for
solving equation (5.1) discretized over the grids reported in Section 5.1.5, and
the infinity norm numerical error e∞. The dash (−) means that the solver ex-
ceeded the maximum amount of iterations (It=100).
We recall that, as defined in (5.8), gG(N) is the function which defines how many
points are near x = 0 in the composite mesh.

Table 5.2 shows It, e∞ and the convergence order computed as the ratio between
the infinity-norm error over two grids, with N and 2N points, in log2 scale.

When considering ε(6), we note that the convergence order seems to be 1 + β ,
which is the theoretical convergence rate obtained in Kopteva and Meng [2020].
Moreover, as expected we note that in almost any of the considered cases, the
grid mapped by gq,ε(x) allows to reach the lowest error with the same N .
According to Table 5.2, when β = 0.2, we note that ε(1) yields the same error as
ε(6). When β = 0.5, gq,ε(x) with ε = ε(1) seems to have a too short non-linear
part, since for N < 210 ε(1) yields a larger error in comparison with other choices
of ε. When β = 0.8 and N is small, if the non-linear part of gq,ε(x) is too short,
e.g., ε(1) or ε(2), the grid projected by gq,ε(x) is not enough smooth due to q being
large and this compromises the functioning of the multigrid. When increasing
N , instead, the larger amount of points allows a smoother projected grid and the
performance of multigrid improves. This seems to indicate that it would be more
effective to use a ε= (ε1,ε2) that depends on N and β . In particular, ε1,ε2 have
to be large when N is small and/or β ≈ 1 and ε1,ε2 can be small when N is large
and/or β ≈ 0.

Furthermore, considering a composite mesh, the parameter a in equation (5.24),
which is needed to build the multigrid hierachy, could be chosen differently im-
proving the convergence of our solver when β ≤ 0.5. Nevertheless, we do not
further investigate into this, since the composite mesh is not suited for that cases
yielding larger errors than the mesh mapped by gq,ε(x).

Test 3 We now fix γ = 0.5, β = 0.9 and compare P -GMRES with the Precon-
ditioned Fast Conjugate Gradient Squared (PFCGS) introduced in Jia and Wang
[2015], which consists in a T.Chan’s block circulant preconditioner.

Table 5.3 shows e∞ and It of PFCGS and It ofP -GMRES in case of the composite
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β N+1
gG(N) = bpNc gG(N) = blog2 Nc ε(1) = (0.1,0.05) ε(2) = (0.2,0.05) ε(4) = (0.45,0.05) ε(6) = (1,0)

It e∞ ord It e∞ ord It e∞ ord It e∞ ord It e∞ ord It e∞ ord

0.2

24 9 2.9e-3 9 2.9e-3 8 3.3e-3 8 3.0e-3 10 3.0e-3 10 3.0e-3
25 11 1.0e-3 1.5 9 1.2e-3 1.2 8 1.4e-3 1.3 8 1.3e-3 1.2 8 1.3e-3 1.1 8 1.3e-3 1.1
26 14 4.7e-4 1.1 11 5.8e-4 1.1 8 5.9e-4 1.2 8 5.9e-4 1.2 8 5.9e-4 1.2 8 5.9e-4 1.2
27 18 2.5e-4 0.9 13 2.9e-4 1 8 2.6e-4 1.2 8 2.6e-4 1.2 8 2.6e-4 1.2 8 2.6e-4 1.2
28 23 1.4e-4 0.8 16 1.5e-4 0.9 8 1.1e-4 1.2 8 1.1e-4 1.2 8 1.1e-4 1.2 8 1.1e-4 1.2
29 29 8.1e-5 0.8 17 8.4e-5 0.9 8 4.9e-5 1.2 8 4.9e-5 1.2 8 4.9e-5 1.2 8 4.9e-5 1.2
210 35 4.6e-5 0.8 24 4.7e-5 0.8 8 2.1e-5 1.2 8 2.1e-5 1.2 8 2.1e-5 1.2 8 2.1e-5 1.2

0.5

24 8 2.3e-2 8 2.3e-2 9 2.0e-2 10 1.2e-2 9 5.1e-3 11 5.0e-3
25 8 8.3e-3 1.5 8 1.1e-2 1 11 9.4e-3 1.1 9 4.1e-3 1.5 10 1.8e-3 1.5 8 1.8e-3 1.5
26 10 2.9e-3 1.5 10 5.7e-3 1 9 3.2e-3 1.6 9 1.2e-3 1.8 10 6.4e-4 1.5 9 6.4e-4 1.5
27 13 1.3e-3 1.1 9 2.8e-3 1 9 9.0e-4 1.8 10 3.1e-4 1.9 10 2.3e-4 1.5 12 2.3e-4 1.5
28 14 9.1e-4 0.6 13 1.4e-3 1 9 2.3e-4 2 9 8.0e-5 1.9 12 8.0e-5 1.5 11 1.0e-4 1.1
29 15 6.4e-4 0.5 14 7.8e-4 0.9 11 5.6e-5 2 11 2.8e-5 1.5 12 3.0e-5 1.4 11 5.2e-5 1
210 19 4.5e-4 0.5 15 5.1e-4 0.6 9 1.4e-5 2 11 1.1e-5 1.3 12 1.5e-5 1 13 2.6e-5 1

0.8

24 7 1.1e-1 7 1.1e-1 12 1.2e-1 - - 15 9.0e-2 9 2.2e-2
25 9 7.6e-2 0.6 7 8.7e-2 0.4 - - – - - 13 5.0e-2 0.8 10 6.5e-3 1.8
26 8 5.0e-2 0.6 8 6.6e-2 0.4 - - - - 18 2.4e-2 1 13 1.9e-3 1.8
27 9 2.5e-2 1 8 5.0e-2 0.4 - - - - 10 4.0e-3 2.6 12 9.2e-4 1.1
28 9 1.3e-2 1 8 3.8e-2 0.4 - - 24 1.3e-2 - 15 5.8e-4 2.8 12 5.8e-4 0.7
29 9 5.5e-3 1.2 9 2.9e-2 0.4 32 1.7e-2 - 18 2.7e-3 2.3 11 4.5e-4 0.4 11 4.3e-4 0.4
210 12 4.8e-3 0.2 10 2.2e-2 0.4 23 4.2e-3 2 15 3.7e-4 2.8 12 3.4e-4 0.4 10 3.4e-4 0.3

Table 5.2. Iterations to tolerance and convergence order for γ= 0.5.

mesh given in Jia and Wang [2015] and described in Section 5.1.5. We recall
that N1 is the number of points of the graded part of the mesh, while N2 is the
number of points that compose the uniform part of the mesh and therefore the
composite mesh has N = N1 + N2 points. We note that P -GMRES has stable It
when increasing N with respect to PFCGS. Furthermore, unlike the PFCGS Jia
and Wang [2015], P -GMRES is more versatile since it also works in the case
where γ 6= 0.5. Hence, we only consider P -GMRES and further test it over both
composite and graded meshes.

Table 5.4 shows the It, e∞ and the 2-norm relative numerical error erel of P -
GMRES varying N and the grid. We note that ε(6) yields the lowest e∞ for 24 ≤
N ≤ 26, then e∞ stops decreasing probably due to the lower cap imposed on
the smallest step size, i.e., min

i
{hi} = 10−16. Our choice for the lower cap can

surely be refined, but a lower cap is necessary since its absence would lead to a
numerically singular coefficient matrix when N is large.

Moreover, when considering ε(6) we observe that with N = 26 − 1 we obtain an
e∞ smaller than the e∞ obtained when using the composite mesh with gG(N) =bpNc with N = 210 − 1. Therefore, by improving the lower cap on the step size,
the mesh mapped by gq,ε(x) could potentially allows to reach lower errors with
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much smaller sizes compared to the composite mesh.

As already observed in Test 2, we stress once again that since β ≈ 1 the non-
linear part of gq,ε(x) should be large when N is small, otherwise multigrid does
not converge. Finally, we note that It are stable or stabilize as N increases for
any of the tested grids, which makes P -GMRES a suitable solver.

N1 N2 e∞ It PFCGS It P -GMRES
23 28 7.9306e-2 13 8
24 29 4.2326e-2 16 9
25 210 1.3025e-2 25 9

Table 5.3. Iterations to tolerance of PFCGS and P -GMRES with γ= 0.5 and

β = 0.9

Test 4 We have shown that P -GMRES works in the case where γ = 0.5. Here
we show that, under some constraints, P -GMRES is a suitable solver even in the
extreme anisotropic cases where γ= 0 or γ= 1.

Table 5.5 shows It, the infinity norm error e∞ and the relative 2-norm error erel

varying β ∈ {0.1,0.3,0.7} with γ ∈ {0, 1}. When β = 0.1 and β = 0.3, despite
the strong spatial anisotropy, the coefficient matrix is close to Hermitian (see
Remark 5.3.1), and therefore P -GMRES is expected to be a suitable precondi-
tioner. In fact, we note that when considering ε(1),ε(4),ε(6), It does not increase
with N for both choices of γ and both errors seem to decrease with order 1+ β
as observed in Test 2 with γ= 0.5.

When β = 0.7, due to the matrix being close to skew-symmetric, multigrid does
not seem to be effective anymore. In fact, when γ = 0 we observe stable iter-
ations only for the composite meshes, but the error does not seem to decrease

N+1
gG(N) = bpNc gG(N) = blog2 Nc ε1 = (0.1,0.05) ε2 = (0.2,0.05) ε4 = (0.45,0.05) ε6 = (1,0)

It e∞ erel It e∞ erel It e∞ erel It e∞ erel It e∞ erel It e∞ erel

24 7 1.9e-1 8.7e-2 7 1.9e-1 8.7e-2 - - - - - - 17 1.8e-1 1.2e-1 8 6.4e-2 1.0e-1
25 7 1.5e-1 5.3e-2 7 1.6e-1 5.6e-2 - - - - - - 15 1.2e-1 6.4e-2 9 3.2e-2 3.3e-2
26 7 1.3e-1 3.1e-2 7 1.4e-1 3.5e-2 - - - 20 1.6e-1 4.3e-2 9 4.4e-2 2.4e-2 9 2.9e-2 1.6e-2
27 8 8.9e-2 1.6e-2 7 1.2e-1 2.2e-2 - - - 21 9.7e-2 2.3e-2 9 2.9e-2 1.2e-2 9 4.1e-2 1.2e-2
28 8 6.3e-2 8.5e-3 7 1.1e-1 1.3e-2 29 9.8e-2 1.7e-2 16 3.7e-2 1.2e-2 8 4.1e-2 1.0e-2 8 2.7e-2 6.3e-3
29 9 3.6e-2 4.1e-3 9 9.4e-2 8.3e-3 21 5.2e-2 1.2e-2 14 3.3e-2 9.7e-3 8 4.6e-2 1.1e-2 8 4.6e-2 7.9e-3
210 9 1.8e-2 2.2e-3 8 8.2e-2 5.1e-3 18 4.9e-2 1.1e-2 11 4.5e-2 1.1e-2 7 4.5e-2 9.6e-3 8 4.6e-2 7.7e-3

Table 5.4. Iterations of P -GMRES with γ= 0.5 and β = 0.9
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as expected (see Test 2). When considering the grid mapped by gq,ε(x) with
ε = ε(6), the iterations are not stable while increasing N , but the predicted con-
vergence order seems to be restored. When γ = 1, P -GMRES does not seem to
converge for any of the tested grids mapped by gq,ε(x). When using a composite
mesh, instead, P -GMRES converges but It are large, they increase with N and
the error decreases too slowly.

5.5 Conclusions

In this chapter we have investigated multigrid preconditioners for conservative
steady-state Caputo FDEs. We provided a full FVE discretization over a generic
mesh of the FDE, then we computed the symbol of the coefficient matrix in case
of non-uniform meshes mapped by a function, and we retrieved the related spec-
tral information needed to build an ad-hoc multigrid preconditioner. In the nu-
merical results section we have shown that not only such a multigrid is a valid
alternative to the circulant preconditioner developed in Jia and Wang [2015],
but it also works without the restriction γ = 0.5, imposed to build the circulant
preconditioner. Furthermore, the automatic estimation of the relaxation weight
for Jacobi, defined according to the strategy introduced in Chapter 2, makes it a
parameter free multigrid preconditioner.

Regarding the grid, we have provided numerical comparisons between the com-
posite meshes used in Jia and Wang [2015] and certain graded meshes mapped
by non-linear functions. Numerical results show that the optimal grading pa-
rameter qβ , taken from Kopteva and Meng [2020], is a suitable parameter to
generate the grid and allows to get a low error, close to the numerically optimal
one. When β ≈ 1, meshes mapped by not necessarily fully non-linear smooth
functions still yield much lower infinity norm errors than composite meshes with
the same amount of grid points, allowing fast matrix-vector products due to the
Toeplitz structure of the involved coefficient matrix.
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γ β N+1
gG(N) = bpNc gG(N) = blog2 Nc ε(1) = (0.1,0.05) ε(4) = (0.45,0.05) ε(6) = (1,0)

It e∞ erel It e∞ erel It e∞ erel It e∞ erel It e∞ erel

0

0.1

25 10 9.2e-4 1.3e-3 11 1.0e-3 1.4e-3 7 1.5e-3 2.0e-3 7 1.5e-3 2.0e-3 7 1.5e-3 2.1e-3
26 12 4.7e-4 6.2e-4 11 5.1e-4 6.7e-4 7 7.4e-4 9.5e-4 7 7.3e-4 9.9e-4 7 7.4e-4 1.0e-3
27 21 2.6e-4 3.3e-4 11 2.7e-4 3.4e-4 7 3.6e-4 4.6e-4 7 3.6e-4 4.8e-4 7 3.6e-4 4.9e-4
28 23 1.4e-4 1.8e-4 18 1.5e-4 1.8e-4 7 1.8e-4 2.2e-4 7 1.8e-4 2.3e-4 7 1.8e-4 2.4e-4
29 27 7.9e-5 9.5e-5 18 7.9e-5 9.5e-5 7 8.5e-5 1.1e-4 7 8.5e-5 1.1e-4 7 8.5e-5 1.1e-4
210 - - - 25 4.3e-5 5.1e-5 7 4.1e-5 5.1e-5 7 4.1e-5 5.4e-5 7 4.1e-5 5.5e-5

0.3

25 14 6.1e-3 7.4e-3 14 7.4e-3 8.8e-3 17 6.5e-3 7.8e-3 17 4.5e-3 6.8e-3 17 4.6e-3 7.2e-3
26 12 3.1e-3 3.6e-3 14 3.9e-3 4.5e-3 13 2.7e-3 3.2e-3 13 2.0e-3 3.0e-3 13 2.0e-3 3.2e-3
27 12 1.8e-3 2.0e-3 11 2.2e-3 2.4e-3 9 1.1e-3 1.3e-3 10 9.0e-4 1.3e-3 10 9.0e-4 1.4e-3
28 20 1.1e-3 1.2e-3 12 1.3e-3 1.4e-3 10 4.5e-4 5.4e-4 11 3.9e-4 5.7e-4 11 3.9e-4 6.1e-4
29 16 6.9e-4 7.4e-4 15 7.5e-4 8.0e-4 11 1.9e-4 2.3e-4 10 1.7e-4 2.5e-4 10 1.7e-4 2.6e-4
210 30 4.3e-4 4.5e-4 20 4.5e-4 4.8e-4 10 7.9e-5 9.6e-5 10 7.2e-5 1.1e-4 10 7.2e-5 1.1e-4

0.7

25 17 1.1e-1 1.2e-1 17 1.3e-1 1.4e-1 - - - 33 3.2e-2 3.7e-2 20 1.8e-2 3.2e-2
26 18 6.3e-2 6.9e-2 18 8.8e-2 9.4e-2 39 9.1e-2 9.5e-2 33 1.1e-2 1.3e-2 22 6.7e-3 1.2e-2
27 18 3.0e-2 3.1e-2 18 6.1e-2 6.3e-2 - - - 42 3.6e-3 4.3e-3 19 2.3e-3 4.3e-3
28 19 1.6e-2 1.7e-2 18 4.2e-2 4.3e-2 - - - 51 1.1e-3 1.4e-3 23 8.0e-4 1.5e-3
29 20 9.5e-3 9.6e-3 18 2.9e-2 3.0e-2 - - - 56 3.5e-4 4.6e-4 26 2.7e-4 5.1e-4
210 27 6.9e-3 7.0e-3 19 2.1e-2 2.1e-2 - - - 51 1.3e-4 1.9e-4 32 1.2e-4 2.3e-4

1

0.1

25 11 8.0e-5 6.1e-5 11 1.4e-4 8.6e-5 8 4.2e-4 3.3e-4 8 4.2e-4 3.6e-4 8 4.2e-4 3.7e-4
26 13 4.5e-5 5.4e-5 11 4.0e-5 3.8e-5 8 2.0e-4 1.3e-4 8 2.0e-4 1.4e-4 8 2.0e-4 1.4e-4
27 21 3.4e-5 3.9e-5 12 2.8e-5 3.2e-5 8 9.3e-5 4.8e-5 8 9.3e-5 5.3e-5 8 9.3e-5 5.4e-5
28 32 2.1e-5 2.4e-5 15 1.9e-5 2.2e-5 8 4.3e-5 1.7e-5 8 4.3e-5 1.9e-5 8 4.3e-5 1.9e-5
29 - - - 18 1.2e-5 1.4e-5 8 2.0e-5 5.9e-6 8 2.0e-5 6.3e-6 8 2.0e-5 6.3e-6
210 - - - 25 7.4e-6 8.0e-6 8 9.5e-6 2.2e-6 8 9.5e-6 2.1e-6 8 9.5e-6 2.1e-6

0.3

25 16 1.3e-3 9.4e-4 19 1.1e-3 8.0e-4 21 1.3e-3 1.0e-3 19 4.6e-4 6.4e-4 21 4.5e-4 6.3e-4
26 15 8.9e-4 5.7e-4 15 8.0e-4 5.1e-4 13 5.6e-4 4.5e-4 15 2.2e-4 3.1e-4 15 2.2e-4 3.1e-4
27 20 5.7e-4 3.2e-4 13 5.2e-4 3.0e-4 12 2.3e-4 2.0e-4 10 1.0e-4 1.4e-4 12 1.0e-4 1.4e-4
28 26 3.5e-4 1.7e-4 15 3.3e-4 1.6e-4 11 9.6e-5 8.3e-5 11 4.7e-5 6.1e-5 11 4.7e-5 6.2e-5
29 - - - 16 2.1e-4 8.8e-5 11 3.9e-5 3.5e-5 11 2.1e-5 2.6e-5 11 2.1e-5 2.7e-5
210 - - - 21 1.3e-4 4.7e-5 11 1.6e-5 1.4e-5 11 8.8e-6 1.1e-5 11 8.8e-6 1.1e-5

0.7

25 17 5.2e-2 1.4e-2 17 6.3e-2 1.6e-2 - - - - - - - - -
26 21 2.8e-2 5.2e-3 18 4.1e-2 7.5e-3 - - - - - - - - -
27 29 9.7e-3 1.5e-3 19 2.7e-2 3.5e-3 - - - - - - - - -
28 36 3.4e-3 6.0e-4 23 1.8e-2 1.6e-3 - - - - - - - - -
29 - - - 27 1.2e-2 7.7e-4 - - - - - - - - -
210 - - - 28 7.7e-3 3.7e-4 - - - - - - - - -

Table 5.5. Iterations of P -GMRES and error when solving the extreme

anisotropic equation with γ ∈ {0,1}



Chapter 6

Conclusions

In this thesis we dealt with different kind of FDEs, from a theoretical and prac-
tical point of view. For each equation we exploited the Toeplitz or GLT structure
of the discretization matrix to retrieve related spectral information, which was
then used to study the stability and to build ad-hoc multigrid solvers or precon-
ditioners. Several numerical benchmarks are provided to test the robustness of
our proposals.

We developed a symbol-based automatic procedure for the estimate of the Jacobi
weight, which has been used in almost all of the proposed multigrid solvers. We
stress that this approach has a low computational impact, allows to avoid a long
and non trivial spectral analysis and makes multigrid a parameter free solver. The
only flaw is that this method is intended to work when the multigrid hierarchy is
computed through rediscretization, therefore, we aim at extending this algorithm
also to the case where the Galerkin approach is adopted.

When dealing with parallel-in-time integration, we discovered that multigrid is
sensitive to the time discretization scheme. We have shown that, when con-
sidering the BDF2 scheme, multigrid converges much faster than in the case of
CN for a wider combination of parameters, such as grid and diffusion coeffi-
cients. In this regard, we plan to extend our study to different or higher order
time discretization schemes. Furthermore, we aim at making comparisons with
other state-of-the-art solvers like MGRIT Yue et al. [2019], parareal Wu and Zhou
[2017] and PFASST Emmett and Minion [2012].

Finally, we introduced a new second-order FV discretization, based on a modifi-
cation of the space discretization scheme WSGD used in Chapters 2 and 3. Such
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a scheme is shown to be a good alternative to the standard FVE approach. We
plan to further improve the FV scheme through the use of different shifts for the
WSGD scheme (see Remark 4.3.1), such that it becomes a more accurate scheme
in case where the fractional derivative orders are close to 1.

Throughout our studies, we experienced similar spectral properties of the dis-
cretization matrices, even when considering different fractional derivative defi-
nitions, meshes and discretization methods. This suggests that MGMs could be
applied to a much wider set of FDEs. At this point, a natural extension of our
work would be to apply MGMs to other FDEs and to provide the symbol of the re-
sulting discretization matrices. Specifically, in the anisotropic case, dealing with
more than two-dimensions will ask for a careful treatment of the extra sources of
anisotropy and relative extension of the strategies developed in Chapter 2. More-
over, such strategies could also be adapted to the parallel-in-time environment
to deal with time-dependent high dimensional space-FDEs. With respect to the
FDE treated in Chapter 3, a higher dimensional space would require an ad-hoc
solver which is able to deal with anisotropies not only between space and time,
but also between different spatial dimensions.

When non-uniform meshes are adopted to discretize two-dimensional FDEs, the
extension of the work done in Chapter 5 would be almost straightforward in
the case where the function g(x , y), which generates the mesh, can be written
as g(x , y) = g1(x)g2(y). Unfortunately, this is a very restrictive requirement
which, when imposed, could lead to an unnecessary increase of the coefficient
matrix-size. However, it is less restrictive to assume, or impose, that g(x , y) is
partially linear (linear over a subset of the domain) such that the discretization
matrix would have a partial Toeplitz structure.
A widely used MGM to deal with unstructured meshes is the algebraic multigrid
(AMG) Ruge and Stüben [1987], which differs from the geometric MGMs treated
in this thesis by the computation of the projectors. In the case of a dense coef-
ficient matrix, like discretized FDEs, the computation of the projectors for the
AMG is expensive, while the projectors in a geometric MGM are easy to compute
but impractical whenever unstructured meshes are adopted. In the case of a par-
tial Toeplitz structure, it would be interesting to study how the two multigrid
approaches can be combined together to exploit the advantages of both tech-
niques.

Finally, the employment of neural networks, trained to return ad-hoc projectors
when non-uniform meshes are used, could further speed up our multigrid pro-
posals Luz et al. [2020].
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