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Abstract

Privacy and control over data have become a public concern. Simultaneously, the
increasing likelihood of the construction of a general purpose quantum computer
has led companies and governments to demand for quantum safe alternatives to
the protocols used today. New schemes have been elaborated, whose conjectured
security against a quantum computer relies on the hardness to solve different
mathematical problems, such as problems defined over lattices. However, while
quantum-safe alternatives are known, they tend to output tokens whose size is
too large to be considered practical. The goal of this dissertation is to address
these concerns by building privacy-preserving signatures whose security is based
on the hardness of solving some problems over ideal lattices, and whose token
sizes are an improvement over the state of the art.

Our first result is a toolbox of primitives (signatures, commitment and NIZK
proofs) that are composable and allow building privacy-preserving protocols,
such as Anonymous Attribute Tokens. The core building block are non-interactive
zero-knowledge proofs with relaxed extractability that we obtained extending
the construction in Lyubashevsky [2012]. In a second work, we combine them
with a verifiable encryption scheme to construct a group signature whose keys
and signatures require less that 2MB of storage.

Finally, we give efficient statistical zero-knowledge proofs (SNARKs) for Mod-
ule/Ring LWE and Module/Ring SIS relations, providing the remaining ingredi-
ent for building efficient cryptographic protocols from lattice-based hardness as-
sumptions. We apply our approach to the example use case of partially dynamic
group signatures and obtain a lattice-based group signature that protects users
against corrupted issuers, and that produces signatures smaller than the state of
the art.

The results contained in this dissertation were published at international con-
ferences.
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Chapter 1

Introduction

The recent years have seen a rise in privacy awareness. Both governments (cf.
Council of European Union [2016]) and users have started to question compa-
nies’ and products’ data management. Unfortunately, so far it seems that the
policies and security infrastructure in place are not enough. Both the spreading
of private and public surveillance systems and the poor design of security infras-
tructure have resulted in a constant leakage of users’ data. As Snowden [2019]
already highlighted, it is necessary that security expert design protocols with the
users’ privacy in mind.

In the meantime, the progress in building quantum computers have high-
lighted the need for cryptographic schemes that will withstand an attacker with
a full scale quantum computer at their disposal. This has boosted research in
post-quantum cryptographic schemes, i.e., schemes that run on a classical com-
puter and are secure even if the adversary can exploit the computational power
of a quantum computer. The security of such schemes is based on the hard-
ness of solving problems on particular algebraic structures called lattices, which
were introduced as a cryptographic tool by Ajtai [1996] 1. However, while there
are already ongoing standardization processes for the basic primitives (e.g., key
encapsulation mechanisms and signatures [National Institute of Standards and
Technology, 2016]), more complex protocols such as group signature [Chaum
and van Heyst, 1991] do not have practical, quantum-safe instantiations.

An established and successful way to construct efficient privacy-enhancing
cryptographic protocols is to suitably combine various primitives such as sig-
natures, commitments, and encryption schemes with efficient zero-knowledge
proofs. Examples of such constructions include blind signatures [Abe and Ohkubo,

1before this work, lattices were only known as a cryptanalytic tool [Coppersmith and Shamir,
1997].
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2009; Fischlin, 2006], group signatures [Bellare et al., 2003; Kiayias and Yung,
2005], electronic cash [Chaum et al., 1990], direct anonymous attestation [Brick-
ell et al., 2004], voting schemes [Hirt and Sako, 2000], adaptive oblivious trans-
fer [Camenisch et al., 2007, 2011], and anonymous credentials [Belenkiy et al.,
2008; Camenisch and Lysyanskaya, 2001]. One of the crucial building blocks
is a signature scheme with efficient zero-knowledge proofs of knowledge of a
signature on a hidden message. Typically, they involve one party to prove to
another the knowledge of a valid signature by a trusted third party, while hid-
ing the signature as well as parts of the signed message. Commitment schemes
are also common ingredients, either as “glue” to bridge zero-knowledge proofs
over different cryptographic primitives [Camenisch et al., 2016], or to facilitate
zero-knowledge proofs by hiding the message or certain components of the sig-
nature [Ateniese et al., 2000; Camenisch and Lysyanskaya, 2003; Boneh et al.,
2004].

In this thesis we investigate practical, post-quantum (in fact, lattice-based),
privacy-preserving protocols that can be built by combining digital signatures
[Diffie and Hellman, 1976] with non-interactive zero-knowledge proofs (NIZKs)
[Blum et al., 1988]. With practical schemes, we mean schemes that have keys
and that produce cryptographic artifacts which sizes are close to their classical
counterparts. We gave ourselves as target sizes around 1 MB for both keys and
tokens/signatures. While this is not quite as small as for classical signatures (cf.
for example the group signature by Boneh and Boyen [2004], where the size of a
signature is under 200 bytes), this is considerably lower than anything that was
published before our works (cf. the overview in [Libert, Ling, Nguyen and Wang,
2016]).

The first step towards constructing privacy-preserving schemes is to construct
a toolbox of lattice-based primitives that are efficiently composable. The funda-
mental component in this toolbox are non-interactive zero-knowledge proofs for
lattice-based relations. Such primitives allow a user P to prove to a verifier V
knowledge of a secret without revealing it, and are fundamental to protect the
users’ privacy in some scenarios, e.g., in authentication. Assume that P wants
to prove to the verifier that it has a secret witness w for a public instance x ,
such that (x , w) satisfies some relation R . The prover starts by sending a com-
mitment value α to the verifier. Then, V sends back a challenge β , to which
P replies with some response γ. The verifier accepts if (α,β ,γ) satisfy some
constraints. The proof is sound if the prover cannot run an accepting protocol
without knowing a valid w; the probability that a prover outputs a proof π and
a x such that π is accepted by V while P does not know w such that (x , w) ∈ R
is called soundness error. Hence, a zero-knowledge proof has a soundness error
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of at least 1/|chal lenges|, as if the prover could correctly guess the challenge,
it could generate a commitment and response so that the verifier would accept.
Non-interactive proofs can be obtained from this interactive protocol through the
Fiat-Shamir heuristic [Fiat and Shamir, 1987].

Most lattice-based zero-knowledge proofs are either derived from the identi-
fication scheme by Lyubashevsky [2012], which is a 3-round interactive protocol
with binary challenges, or from Stern-type proofs [Stern, 1994], which allow for
challenges in {0,1, 2}. Because of the large soundness errors these proofs incur,
they have to be repeated many times in parallel, which comes at a considerable
cost in efficiency. Lyubashevsky’s “Fiat-Shamir with Aborts” technique [Lyuba-
shevsky, 2012] yields much more efficient proofs with large challenges, but these
proofs have the disadvantage that they are “relaxed”, in the sense that extracted
witnesses are only guaranteed to lie in a considerably larger domain than the
witnesses used to construct the proof.

We focus on group signatures (and anonymous attribute tokens, that can be
used as building blocks to construct group signatures, cf. Section 5.2) as they are
particularly useful in scenarios where remote devices need to be authenticated,
but privacy imposes that individual devices can only be identified by a designated
authority. Examples include government-issued electronic identity (eID) cards,
where each issued smart card creates identity claims as signed statements about
its attributes, without needing to fully identify its owner [Bichsel et al., 2009],
or remote anonymous attestation of computing platforms, where devices prove
which software they execute [Brickell et al., 2004].

1.1 Our Results

In our first approach, we consider a generalization of the NIZK proof obtainable
from [Lyubashevsky, 2012] that we call relaxed NIZK proofs. We show that, de-
spite the protocol only allows to prove knowledge of a pair (x , w) that satisfies
an approximation of the target relation R , this relaxation in the definition still
allows to obtain privacy-preserving signatures that are comparable with the state
of the art.

To understand where the problem lies, assume that a prover P wants to prove
it has a valid signature σ w.r.t. a public verification key svk. LetR be the relation
that defines a “valid” signature: given svk, a signature σ is valid if (svk,σ) ∈ R .
However, relaxed NIZK proofs only allows to prove knowledge of σ such that
(svk,σ) is in a larger relation R̄ ⊇ R . The challenge is in how to modify the
signature scheme so that a signature such that (svk,σ) ∈ R̄ can be still accepted
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as valid, and that the expansion in the relation does not make it easier to forge
signatures.

In Chapter 3, we provide a signature (Section 3.6) and a commitment scheme
(Section 3.5) with efficient zero-knowledge proofs (Section 3.3) using Lyuba-
shevsky’s Fiat-Shamir with aborts technique. To be compatible with the “relaxed”
extraction of such zero-knowledge proofs, we define “relaxed” signature and
commitment schemes, in the sense that the verification algorithms accept mes-
sages, signatures, and openings that are never output by the honest signing or
committing algorithms. By allowing exactly the relaxation induced by the extrac-
tion of zero-knowledge proofs, and by proving that our schemes remain secure
under a suitably adapted notion in spite of that relaxation, we obtain efficient
and securely composable zero-knowledge proofs for lattice-based primitives. We
remark that such approach was already explored by Benhamouda et al. [2015].
In their work, they introduce a commitment scheme with relaxed requirement
on valid openings, to allow a more efficient composition with the ZK proof, even
if this is not explicit in the formal definition of the scheme.

In Chapter 4 we demonstrate the utility of our signature and commitment
schemes in the construction of privacy-enhancing technologies by building two
anonymous attribute token (AAT) schemes [Camenisch et al., 2012]. An AAT
scheme enables users to obtain credentials with multiple attributes, so that they
can selectively disclose these attributes to (one or more) verifiers in an unlinkable
fashion. Some AAT also allow opening, i.e., the existence of an authority that can
reveal which user produced a given token. We construct two schemes, one with
and one without opening.

We suggest concrete parameter choices for our schemes that yield a secure yet
efficient instantiation. We follow the approach of Alkim et al. [2016] and present
different sets of parameters, ranging from conservative, quantum-safe choices to
more liberal estimates that only guarantee classical security. Even in our most
conservative analysis, assuming the hardness of RSIS and RLWE through a com-
plexity leveraging argument, we obtain presentation token sizes less than 15 MB,
which is well below the signature sizes of related lattice-based primitives [Lib-
ert, Ling, Nguyen and Wang, 2016]. In our least conservative analysis, assuming
the hardness of two new interactive assumptions, we even obtain presentation
tokens as small as 1.6 MB, which can be considered for practical use.

Finally, we explore the flexibility of our primitives by combining them with
the relaxed verifiable encryption scheme by Lyubashevsky and Neven [2017] to
construct AATs with opening (see Section 4.2); this type of AAT are important,
as they can be easily modified to get a group signature. The resulting scheme
cannot be considered efficient though. We only include it as a proof of concept.
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This construction is improved in Section 5.3, where we give a construction for
a dynamic signature that produces signatures of size < 1.8 MB. There are two
main differences with the construction in Section 5.2. First, the way verifiable
encryption is defined by Lyubashevsky and Neven results in the user having to
encrypt more secret values than what is really necessary, resulting in an unneces-
sarily large ciphertext. To alleviate this, in Section 3.8.4 we revisit their definition
and generalize it to a verifiable encryption scheme that encrypts only a function
of the witness, as opposed to the full witness. This definition is of independent
interest and may be applicable to many other scenarios.

The second difference has to do with the behavior of lattice-based proof pro-
tocols with non-binary challenges. Similarly to discrete logarithm-based proofs
in groups of unknown order, lattice-based proof protocols introduce some slack:
the witness that can be extracted from a proof is larger than the one that an
honest prover uses and the difference in size, i.e., the slack, depends on the size
of the challenges. Thus, on the one hand, one would want to choose a large
challenge set in order to have a small soundness error and thus does not have to
repeat the proof too many times. On the other hand, if the slack gets larger, one
has to account for that by increasing parameters of the lattice. Unlike discrete
logarithms-based proofs, however, the slack also increases if multiple statements
are proved in the same proof. To deal with this, we investigate all NIZK proofs
and tailor them by splitting statements and by selecting different sizes of chal-
lenges for different proofs. We believe that the insights into the proof mecha-
nisms that we have gained can also be used to increase the efficiency for other
schemes composed from lattice-based primitives.

We prove security of our AATs and of our group signature schemes in the Ran-
dom Oracle Model. Analogously to the non-lattice-based world, where schemes
under weak assumptions do exist [Bellare et al., 2003, 2005] but truly practi-
cal schemes typically require stronger assumptions [Ateniese et al., 2000; Boneh
et al., 2005], we also prove our scheme secure under relatively strong assump-
tions. Namely, we use two interactive assumptions that can be interpreted in
two different ways. Either one believes the interactive assumptions as stated, in
which case we obtain a tight security reduction and the most efficient parameters
for our scheme, or one sees our assumptions as being implied by the standard
RSIS and RLWE assumptions through a complexity leveraging argument. In this
case, the parameters need to be increased to compensate for the loose reduction.

The final step of our work was to adapt a pre-existing non-interactive zero-
knowledge proof, Aurora [Ben-Sasson et al., 2019], to understand how efficient
our approach was (Section 5.4.2). We obtained non-interactive zero knowledge
(NIZK) proofs for Module/Ring LWE and Module/Ring SIS relations, that are
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Partially Dynamic Anonymous Traceable Non-Frameable Users δHRF Signature(MB)

del Pino et al. [2018] Ø Ø Ø 280 1.002 0.581
G Ø Ø Ø 226 1.0007 0.3
Gfull Ø Ø Ø Ø 226 1.0007 1.3

Table 1.1. Comparison for around 90 bits of security.

72kB in size for 128 bits of security. From Aurora, our proofs inherit statisti-
cal zero-knowledge and soundness, post-quantum security, exact extractability
(that is, the extraction guarantee is for the same relation as the protocol com-
pleteness), and transparent setup (no need for a trusted authority to generate
the system parameters). Such proofs support algebraic circuits, and therefore
can be combined with lattice based building blocks. We show that it is possi-
ble to combine this protocol with the ring version of Boyen’s signature [Boyen,
2010] (cf. Section 5.4.1), to prove knowledge of a signature on a publicly known
message, or knowledge of a valid pair message-signature, and an RLWE-based
encryption scheme [Lyubashevsky et al., 2010], to prove knowledge of a valid
decryption of a given ciphertext. To showcase their efficiency we construct a
(partially) dynamic group signature (cf. Section 5.5), and we compare it with
the most efficient NIZK-based group signature to date [del Pino et al., 2018] in
Table 1.1. Differently from ours, the scheme by del Pino et al. does not protect
honest users from framing attempts by corrupted issuers (the non-frameability
property). Therefore, we compare it with two variants of our scheme: G , that
does not guarantee non-frameability, and Gfull, that also has non-frameability. To
compare the security levels of the schemes we consider the Hermite Root Factors
(denoted by δHRF); a smaller delta implies higher security guarantees. The G
scheme outputs signatures of size less than 250 KB. For around the same num-
ber of bits of post quantum security, the group signature by del Pino et al. [2018]
outputs signatures of size 581 KB. In Section 5.5 we will present Gfull. The Gfull

variant of our scheme outputs signatures of size less than 1.3 MB. Parameters will
be discussed more in depth in Section 5.5.6. In both cases, the NIZK proof is of
size less than 250 KB, improving upon the state of the art. The group signature is
proven secure in the ROM under RSIS and RLWE. Security in the QROM follows
also from Chiesa et al. [2019]; to achieve 128 bits of QROM security requires a
three-fold increase in proof size.

Regarding implementation, our adaptation of Aurora produces a RLWE proof
in around 40 seconds on a consumer laptop (cf. Section 5.4.3). In compari-
son, the scheme of del Pino et al. [2018] produces proofs in under a second.
Nonetheless, we consider our NIZK and group signature a benchmark for evalu-
ating efficiency claims for (existing and future) NIZK proofs for lattice relations.
In particular, it shows what can be achieved using ‘generic’ tools.
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1.2 Related and Concurrent Work

The only known lattice-based anonymous attribute token scheme [Camenisch
et al., 2012] has presentation token sizes that are linear in the number of group
members, and is therefore mainly a proof of concept. Our AAT scheme is the first
that could be considered suitable for practical applications in a post-quantum
world2.

The early lattice-based group signature schemes [Gordon et al., 2010; Ca-
menisch et al., 2012] have signature sizes that are linear in the number of group
members and are therefore mainly proofs of concept, unsuitable for any prac-
tical application. Later schemes [Laguillaumie et al., 2013; Ling et al., 2015;
Nguyen et al., 2015] are asymptotically more efficient with signature sizes being
logarithmic in the number of users.

Making use of the advances in lattice-based signature schemes, a number of
group signature schemes were proposed following the general construction ap-
proach we have outlined earlier [Laguillaumie et al., 2013; Libert, Ling, Nguyen
and Wang, 2016; Libert, Mouhartem and Nguyen, 2016; Ling et al., 2015, 2017a;
Xagawa and Tanaka, 2009]. These schemes use as proof of knowledge proto-
cols either an adaptation of Stern’s protocol [Stern, 1994] or the “single-bit-
challenge” version of the lattice-based Fiat-Shamir protocol by Lyubashevsky
[2012]. As these proofs have soundness error 2/3 and 1/2, respectively, they
need to be repeated in parallel to be secure, resulting in group signature schemes
that can hardly be considered practical. None of these scheme give concrete pa-
rameters, providing asymptotic efficiency analyses instead. The only exception
by Libert, Ling, Nguyen and Wang [2016] is the most efficient scheme prior to
ours, with signatures over 60 MB and public keys of 4.9 MB for a group size of
only 210 users for 80 bits of security.

In recent years, significant effort has been put towards the design of effi-
cient lattice-based group signatures. In particular, fully dynamic group signatures
[Bootle et al., 2016] relying on Stern-type proofs have been proposed [Ling et al.,
2018, 2017b], and there has been a line of work on group signatures based on
improved Schnorr proofs [del Pino et al., 2018]. Finally, a new, very interesting
construction was published by Katsumata and Yamada [2019], that builds group
signatures without using NIZK proofs in the standard model. Their construction
is of a different form, and, in particular, sidesteps the problem of building NIZKs
for lattices, hence we can only compare the signature lengths. Differently from
ours, their signature sizes still depend linearly on the number of users (while

2We do not claim ours to be the first practical AAT. In fact, an AAT scheme based on discrete
log is at the core of Microsoft’s U-Prove [Paquin and Zaverucha, n.d.].
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ours depend polylogarithmically on the number of users) when security is based
on standard LWE/SIS. They are able to remove this dependency assuming subex-
ponential hardness for SIS.

Regarding NIZK proofs for lattices, both Libert et al. [2018] and Baum et al.
[2018] introduce ZK proof to prove knowledge of solutions of lattice problems
that are linear in the length of the secret and in logβ respectively (where β is
the bound of the norm of the secret vector). Our scheme improves these in that
the proof length depends polylogarithmically on the length of the secret vector
and logβ . Moreover, we give concrete estimates for parameters that guarantee
128 bits of security. The lattice-based SNARK of [Gennaro et al., 2018] relies on
the qDH assumption (among others), hence unlike our scheme this is not post-
quantum secure, and needs a trusted setup, which prevents to use it to build
group signatures with the non-frameability property.

1.3 Outline of this Dissertation

In this dissertation we merged the results presented in three publications, [Bos-
chini et al., 2018b,a, 2020]. We start in Chapter 2 by introducing a bit of pre-
liminaries about cryptography (Section 2.2) and lattices (Section 2.3). Then, in
Chapter 3 we introduce our suite of relaxed primitives. In Chapter 4 we investi-
gate how to construct Anonymous Attribute Tokens using the building blocks pre-
sented in the previous chapter. Finally, in Chapter 5 we present our three group
signatures: one obtained (quite straightforwardly) from our AAT with opening
(Section 5.2), one (Section 5.3) obtained combining our relaxed building blocks
with a modified version of the verifiable encryption scheme by Lyubashevsky and
Neven [2017], and the last one (Section 5.5) based on the adaptation of Aurora
to lattice relations. We present our conclusions in Chapter 6.



Chapter 2

Preliminaries � Cryptography and

Lattices

Cryptography was born as the branch of (first Mathematics, then) Computer Sci-
ence focused on “the construction of schemes that will be robust against mali-
cious attempts to make these schemes deviate from their prescribed functional-
ity” [Goldreich, 2001, Section 1.4.1]. Originally, security mostly relied on obscu-
rity: a cryptosystem was deemed to be secure as long as both the algorithm and
the secret source of randomness (the secret key) were unknown to the adver-
sary. This notion of security turned out to be too restrictive, and cryptographic
research started aiming at minimizing the amount of information that needed to
be private for the system to be secure. Hence, a new notion of security was intro-
duced, called provable security, where attacking a scheme was proved to imply a
solution to some computationally infeasible mathematical problem (the so-called
hardness assumptions). This proved to be a powerful approach, allowing to split
the theoretical definition and construction of protocols from the actual protocols
instantiations (that depends on the choice of the hardness assumption underlying
security).

This section aims to introduce the security model (Section 2.2) and hardness
assumptions (Section 2.3) used in the main results in this thesis.

2.1 Notation

Let R denote the real numbers, Z= {0,−1,+1,−2,+2, . . .} the integer numbers,
and N = {0,1, 2,3, . . .} the natural numbers. Let N+ = {n ∈ N : n > 0},
and define R+ analogously. Let Zq = Z/qZ for a prime q. Elements in Zq are
equivalence classes, and are denoted (with an abuse of notation) simply as a ∈

9
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Zq. The representative a of the equivalence class is chosen to be such that a ∈
�

− q−1
2 , q−1

2

�

⊂ Z. Equalities modulo q are denoted by either a = b mod q or by
the more compact a ≡q b.

Vectors and matrices are denoted by upper-case letters. Column vectors are
denoted as V =

�

v1 ; . . . ; vn

�

and row vectors as V =
�

v1 . . . vn

�

. Analogously,
the horizontal concatenation of two matrices A, B is denoted by [A B], and the
vertical concatenation by [A ; B]. The Euclidean (l2) norm of a vector V =
[v1 . . . vn] is denoted by ‖V‖2 =

Æ
∑

i v2
i . Its infinity norm is ‖V‖∞ =maxi |vi|.

Given a matrix M = [M1 . . . Mk], the euclidean and infinity norms of the matrix
are defined as ‖M‖2 = maxi ‖Mi‖2 and ‖M‖∞ = maxi ‖Mi‖∞ respectively. The
generic norm will be defined analogously using the symbol ‖·‖with omitted sub-
script. Given two vectors V1, V2, their Euclidean distance is denoted by d(V1, V2).
The identity matrix of dimension m is Im. When S is a set, the number of its
elements is denoted by |S|. Given a (bit) string x , |x | denotes also the length of
the string. The meaning of the notation will be usually clear from the context,
but will be clarified when necessary.

Elements of a polynomial ring are denoted by bold letters. Consequently, vec-
tors and matrices having components in a polynomial ring are denoted by bold,
upper-case letters. With an abuse of notation, the identity matrix of dimension
m with components in a polynomial ring is still denoted as Im.

Given two events A and B we denote by Pr[A ∧ B] the probability that both
A and B happen, and by Pr[A : B] the probability that A happens given that
B happened. To highlight the event A we sometimes write PrB[A] instead of
Pr[A : B]. Sampling and element x from a distribution D will be denoted as
x $←−D. If x is sampled from a uniform over a set A, we will abuse the notation
and write x $←−A. With x ← a we will denote that x is assigned the value a.
When necessary, the uniform distribution over a set S is denoted byU (S). Given
two probability distribution A and B we denote by A ≈s B (resp., A ≈c B)
the fact that they are statistically (resp., computationally) indistinguishable. We
denote by log the logarithm with base 2.

Finally, when necessary we will use the Bachmann–Landau notation (or Big
O notation) to estimate parameters. Moreover, to assess that a quantity is small
and can be neglected, we will prove that it is smaller than a “negligible function”
ν(·), defined as follows.

Definition 2.1 (Negligible Function). A function ν : N→ [0, 1] is negligible if for
all constants c ∈ N there exists n0 ∈ N such that for all n> n0 ν(n)≤

1
nc .
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2.2 Cryptography

Establishing whether a protocol is secure entails two main steps: first, defin-
ing what “security” means, and then give a proof that such security property
is actually achieved. Throughout this work a cryptographic protocol is defined
to be secure if an adversary A is only able to break it in an unfeasible amount
of time, and with negligible success probability, as it is customary in cryptogra-
phy (cf. [Katz and Lindell, 2014, Section 3.1] for a more extensive dissertation).
Hence, given a protocol P and some security property of P, a secure protocol is
defined as follows.

Definition 2.2. A cryptographic scheme P is said to be (t,ε)-secure if every ad-
versary that takes time at most t = t(λ) to break the security property succeeds
with probability at most ε= ε(λ), where λ ∈ N is the security parameter.

The parameter λ can be set during the initialization of the protocol and it
allows to fine-tune the security level of P depending on the scenario in which
the protocol has to be used.

Definition 2.2 is still quite vague, in that it is not clear what an “adversary”
actually is. A generic way to model an adversary (and the other parties involved
in the protocol) is as a probabilistic algorithm1. In this framework, an efficient
adversary against P is a probabilistic algorithm that runs in polynomial time
(shortened in the following as PPT), i.e. such that t(λ) is a polynomial in the
variable λ. A negligible success probability ν is intended as being smaller than
any inverse polynomial in λ: for every constant c, ν(λ) ≤ λ−c for some large
enough λ.

Definition 2.3. An probabilistic algorithm A is an algorithm whose execution
uses some randomness that is given as input. If A is a probabilistic algorithm,
then by A(x;ρ) we denote the output distribution of A on input x and run with
random coins ρ (we write A(x) when the random coins are uniformly random).
Computing y through A on input x amounts to choose y from the distribution
A(x), and it is denoted by y $←−A(x).

A probabilistic algorithm A runs in polynomial time if there exists a polyno-
mial p(·) such that for all inputs x ∈ {0, 1}∗, the computation of A(x) terminates
in at most p(|x |) steps (where | · | denotes the length of the input string x).

The main reason behind modeling the adversary as a PPT algorithm is related
to security proofs. Indeed, this model allows to make statements about the secu-

1In this way we also avoid the awkwardness of assigning a gender to the entities involved in
the protocols: as they are all algorithms, they will be always addressed using the it pronoun.
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rity of a protocol independently of the computational model used. Security of a
protocol P can be proved in two different ways.

• One approach consists in defining an ideal functionality, i.e., an ideal ver-
sion of the protocol that satisfies the required security properties; a success-
ful adversary against P is able to distinguish the ideal functionality from
the real-world protocol P.

• The other approach is to define security through a security experiment: a
successful adversary against the scheme is an adversary able to win the
experiment (for example, an adversary able to distinguish between two
ciphertexts generated by a public key encryption scheme).

The scheme is secure if, given a successful adversary A (either in distinguish-
ing P from the ideal functionality, or in winning the security experiment), it is
possible to construct a PPT algorithm B that solves a mathematical problem as-
sumed to be hard (the hardness assumption) typically exploitingA as a black-box.
The algorithm B interacts with A by simulating the honest parties in the proto-
col (corrupted parties are assumed to be in complete control of A). Hence, the
view of A when interacting with P should be indistinguishable from the view of
A when interacting with B. The fact that A has black-box access to an algorithm
or function F is indicated by the notation AF.

As PPT algorithms are closed under composition, the algorithm B that runs
A as a sub-routine runs in polynomial-time too. Moreover, let 1/p(λ) be the
probability thatB solves the problem ifA is successful (p is a polynomial). If ε(λ)
is the success probability of A, then the success probability of B is ε(λ)/p(λ),
and it is non-negligible if ε is. Therefore, B solves the mathematical problem
in polynomial-time with non-negligible provability, thus breaking the hardness
assumption. This implies that ε has to be negligible in the security parameter.

The security guarantee obtained in this way is called computational security,
as it relies on assumptions about the computational intractability of mathemat-
ical problems. The algorithm B is usually called the simulator (as it simulates a
honest execution of the protocol when interacting with A), and the entire process
of solving the problem exploiting A is called a (security) reduction.

2.2.1 The Random Oracle Model and Cryptographic Hash Func-

tions

In addition to the model laid out previously, the security proofs contained in this
dissertation live in a framework called Random Oracle Model (ROM). The ROM
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(introduced by Bellare and Rogaway [1993]) assumes the existence of a public,
randomly-chosen function H : {0,1}∗→ {0,1}`. To evaluate the function on a bit
string x (called query) it is necessary to give x as input to an oracle (i.e., to query
the oracle on x) that then returns H(x). The oracle is assumed to be coherent,
meaning that the oracle outputs the same bit string if queried twice on the same
input.

Through this methodology it is possible to show that a protocol has no inher-
ent flaws. Thus, the choice of the RO becomes fundamental, as (possible) weak-
nesses can only be introduced through the implementation of the RO (cf. [Canetti
et al., 1998]). Given that ROs are not available in the real-world, they are usu-
ally instantiated with cryptographic hash functions, where the “unpredictability”
property of the RO is captured by the requirement that the hahs function has
to be “hard to invert”. Such functions are compression functions widely used in
cryptography, usually defined as a family of hashes indexed by a key s (that does
not have to be kept secret).

Definition 2.4 (Hash function). A family of hash function is a pair of PPT algo-
rithms (HGen, H) such that:

• HGen(1λ) takes as input the security parameter λ and outputs a key s (s is
assumed to contain λ too).

• H(µ; s) takes as input a key s and a message µ ∈ {0, 1}∗ and outputs a
string of fixed length `(s) for some polynomial `(·).

A hash function is a cryptographic hash function if it is collision-resistant, i.e., if
for all PPT algorithms A and integers λ ∈ N the following probability is negligible

Pr[H(µ; s) = H(µ′; s) : s← HGen(1λ), (µ,µ′)← A(s)] .

Remark that a hash function has collisions by design, as by definition the size
of the domain is larger than the size of the codomain. Hence, it is particularly
important to choose the dimension ` of the codomain so that finding collision is
infeasible. A good rule of thumb is to choose ` = O(2λ/2) to prevent birthday
attacks (cf. [Katz and Lindell, 2014] for a more detailed explanation).

Finally, we recall the following lemma by Lyubashevsky [2016]. It states that
if the input set of a deterministic function is larger than the set of its output,
there exists a collision with non-negligible probability.

Lemma 2.5 (Lemma 2.11 in [Lyubashevsky, 2016]). Let h : X → Y be a deter-
ministic function where X and Y are finite sets and |X | ≥ 2λ|Y |. If x is chosen
uniformly at random from X , with probability at least 1− 2−λ there exists another
x ′ ∈ X such that h(x) = h(x ′).
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2.2.2 Remarks on the Security Model: ROM vs. QROM

The ROM is slightly less rigorous than the standard model. In fact, it is possible
to build schemes that are provably secure in the ROM but for which any imple-
mentation of the random oracle results in insecure schemes (cf. [Canetti et al.,
1998]). Hence, a security proof in this model it is considered more as a good
indicator that the protocol will be secure if implemented carefully. The bright
side of proving security in the ROM is that this additional assumption on the ex-
istence of a RO makes it very powerful2. In fact, for many schemes, including
the Fiat-Shamir heuristic ([Fiat and Shamir, 1987]) that is widely used in the
construction of privacy-preserving signatures, only security proofs that assume
the existence of a random oracle are known (cf. [Bellare and Rogaway, 1993;
Pointcheval and Stern, 1996; Faust et al., 2012]).

The validity of the model is again disputed in the post-quantum scenario,
i.e., the adversarial scenario where the A has access to a quantum computer.
The problem lies in how to model the adversary’s access to the oracle. A simple
model is to assume that the adversary has a quantum computer, but only classical
access to the random oracle. This case is included in the ROM. Indeed, the only
difference with the classical ROM is in the computational power of A. Hence, as
long as the underlying hardness assumptions are hard to solve with a quantum
computer, a security proof for a protocol P in the classical ROM implies that P is
also secure in the new model.

A scenario that is considered more general is the Quantum Random Oracle
Model (QROM, cf. [Boneh et al., 2011]), where the adversary is given quantum
access to the oracle, meaning that there is a quantum communication channel be-
tween A and the RO. The rationale behind it is that random oracles are usually
implemented with hash functions, that are publicly known. Hence, a quantum
adversary can run the code of the hash function locally on a quantum superpo-
sition of inputs. It is reasonable to think that schemes that are proven secure in
the ROM might not be secure in the QROM. In fact, there are some results that
identify the requirement for a security proof in the ROM to be valid also in the
QROM. For example, Boneh et al. [2011] showed that, a security reduction in the
ROM also holds in the QROM if it is history-free. Unfortunately, many security
reductions in the ROM require to reprogram a random oracle; these reductions
are not history-free and it is not clear whether they translate to the QROM sce-

2Bellare and Rogway argued that "This paradigm yields protocols much more efficient than stan-
dard ones while retaining many of the advantages of provable security [...] for problems including
encryption, signatures, and zero-knowledge proofs. " (cf. the abstract of [Bellare and Rogaway,
1993]).
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nario. When confronted with the choice of the security model, we decided to use
the Random Oracle Model. This is both for the sake of simplicity, and because at
the time the papers were written it was not clear whether some of the schemes
and transformations used in our work, in particular the Fiat-Shamir heuristic
and the reprogramming technique used in the security proofs, were secure in
the QROM (for more recent results about the security of the FS heuristic in the
QROM cf. [Unruh, 2017; Don et al., 2019]).

2.2.3 Rewinding

Sometimes, in the reduction the simulator algorithm B has to rewind the adver-
sary A to extract information comparing different executions. This extraction
needs the behavior of the adversary in the two (or more) executions to be the
same up until a fixed step (or steps), where the behavior path of the different
execution of A fork. The probability that this event happens depends on both
the random oracle(s) A has access to and on its internal randomness, and it is
analyzed in a series of lemmas called Forking Lemmas, the first of which was
introduced by Pointcheval and Stern [1996]. A more general version was pre-
sented by Bagherzandi et al. [2008], and can be found in the following.

Let IG be an input generator for A, let f = (ρ, h1, . . . , hqH
) be A’s random

coins and random oracle responses, and let f j = (ρ, h1, . . . , h j). An execution
of A is successful if it returns a non-empty set of indices J ⊆ {1, . . . , qH} and
corresponding outputs {sig j} j∈J . Let Ω be the set of all f and let Ωin be the set of
f for which A is successful on input in; its success probability is ε = Pr[ f ∈ Ωin :
in $←− IG, f $←−Ω]. Consider the following generalized forking algorithm:

Algorithm GFA(in):
f $←−Ω
(J , {sig j} j∈J)← A(in; f )
If J = ; then halt
Let J = { j1, . . . , jn} such that j1 ≤ . . .≤ jn, X ← {(h j, sig j)} j∈J , X ′← ;
For i = 1, . . . , n do

j = ji, succi ← 0, ki ← 0, kmax← 8nqH/ε · ln(8n/ε)
Repeat until succi = 1 or ki > kmax

ki ← ki + 1
f ′ = (ρ′, h′1, . . . , h′qH

) $←−{ f ′ ∈ Ω : f ′j = f j}
(J ′, {sig′j} j∈J ′)← A(in; f ′)
If J ′ 6= ; ∧ ji ∈ J ′ ∧ h′ji 6= h ji then X ′← X ′ ∪ {(h′ji , sig′ji)}, succi ← 1

If succ1 = . . .= succn = 1 then return (X , X ′) else return ⊥
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Experiment Expsufcma
A

(λ)
(otssk, otsvk)←OTSGen(1λ)
msg∗← A1(λ, otsvk)
ots∗←OOTS(msg∗)
(msg′, ots′)← A2(otsvk, (msg∗, ots∗))
If 1←OTSVf (otsvk, msg′, ots′)

and (msg′, ots′) 6= (msg∗, ots∗),
then return 1 else return 0.

Oracle OOTS(msg)
ots←OTSSign(otssk, msg)
Return ots .

Figure 2.1. Strong unforgeability experiment for OTS.

Lemma 2.6 (Generalized forking lemma [Bagherzandi et al., 2008] ). If algo-
rithmA runs in time t and has success probability ε, then the forking algorithmGFA
runs in time t · 8n2qH/ε · ln(8n/ε) and returns (X , X ′) with probability ε̂ ≥ ε/8.

2.2.4 One-Time Signature Scheme

A One-Time Signature (OTS) scheme for message set M is composed by a key
generation algorithm (otssk, otsvk) ← OTSGen(1λ), a signing algorithm ots ←
OTSSign(otssk, msg) and a verification algorithm b ← OTSVf(otsvk, msg, ots),
b ∈ {0,1}.

Correctness requires that for all security parameters λ ∈ N it holds that:

Pr

�

1←OTSVf (otsvk, msg, ots) :
(otssk, otsvk)←OTSGen(1λ),

ots←OTSSign(otssk, msg)

�

= 1 .

A OTS scheme is said to be strongly unforgeable under chosen-message at-
tacks if a PPT adversary A = (A1,A2) has negligible probability in winning the
experiment Expsufcma

A
(λ) in Figure 2.1.

In particular, a OTS that is still secure even against a quantum computer and
that is used in our protocols is the Lamport signature [Lamport, 1979] instanti-
ated with a post-quantum, collision-resistant hash function.

2.3 Lattices

After the publication of Shor’s algorithm [Shor, 1994], lattice-based hardness
assumptions emerged as a viable alternative to classical hardness assumptions
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such as DLOG, in particular thanks to the works of Ajtai [1996]. Indeed, Ajtai
showed a worst-case to average-case reduction for lattice problems, i.e., that if cer-
tain lattice problems are hard to solve in the worst-case, then they are also hard
on average. He also gave a family of one-way functions from lattice-based hard-
ness assumptions, thus proving that it is possible to build provably secure crypto-
graphic schemes from these hardness assumptions. This seminal result combined
with the (supposed) quantum-hardness of lattice problems gave a strong reason
to design cryptography relying on lattice-based hardness assumptions. Lattices
were first introduced as Z-modules over R, but in fact lattices can actually be
built on general rings, and in particular from polynomial rings (ideal lattices, in-
troduced by Micciancio [2002] as a more efficient way to build cryptographic
schemes over lattices). In this section we recall definitions and results about lat-
tices, the hard problems that can be defined over them and the cryptographic
primitives necessary to construct the protocols in the following chapters.

2.3.1 Euclidean Lattices

Let Rn, n ∈ N+ be the vector space over the reals w.r.t. standard component-
wise sum + : Rn ×Rn → Rn and product by a scalar c[v1 . . . vn] = [v1 . . . vn]c =
[cv1 . . . cvn], where c, v1, . . . , vn ∈ R. A lattice in geometry and group theory is a
particular subgroup of Rn that is closed under multiplication by an integer.

Definition 2.7. A (Euclidean) lattice L in Rn is a Z-module of Rn with commu-
tative scalar multiplication, i.e.

• (L ,+) is an Abelian group.

• L is closed under scalar multiplication, when the scalars are integer num-
bers,

∀c ∈ Z, ∀V ∈ L , cV ∈ L .

• the scalar multiplication satisfies the commutative and distributive prop-
erty,

∀c, d ∈ Z, ∀V, W ∈ L ,
cV = V c
c(V +W ) = (V +W )c = cV + cW
cd(V ) = c(dV )

.

The number n is called dimension of the lattice. If L ⊆ Zn, the lattice is said to
be an integer lattice.
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There exists also an equivalent (cf. [Micciancio and Goldwasser, 2002]) con-
structive definition of lattice.

Definition 2.8. Let B = [B1 . . . Bk] ∈ Zn×m be a matrix whose columns Bi are
linearly independent vectors in Rn. The latticeL (B) generated by B is the set of
all the integer linear combinations of the vectors Bi:

L (B) = {X ∈ Rn : X = BA where A∈ Zm} .

B is called basis of the lattice, and the number m of linearly independent vectors
in B is the rank of the lattice. If m = n and the Bi ’s are linearly independent the
lattice is a full-rank lattice.

The Gram-Schmidt (GS) orthogonalization of a full-rank basis B is B̃ = [B̃1 . . .
B̃n] where

B̃i = Bi −
i−1
∑

j=1

〈Bi, B̃ j〉

‖B̃ j‖2

B̃ j

for the usual definition of Euclidean norm and scalar product. Remark that the
GS basis B̃ of the basis B of the latticeL (B) is not automatically a basis ofL (B).
In general, a lattice can have multiple bases. In fact, a new basis of a latticeL (B)
can be obtained multiplying B by a unimodular matrix U ∈ Zm×m, i.e., such that
det(U) = ±1.

Theorem 2.9. LetL =L (B) be a lattice generated by a basis B ∈ Rn×m. A matrix
B′ ∈ Rn×m is a basis for L if there exists a unimodular matrix U ∈ Zm×m such that
B = B′U.

The minimum norm of (the GS orthogonalization of) a basis of a lattice L is
defined as λ̃(L ) =minB s.t. L (B)=L ‖B̃‖2.

Given a vector V ∈ Zn, a coset L + V of a lattice L is the set {A+ V}A∈L .
Let A∈ Zn×m, for n≤ m≤ q where q is usually (but not necessarily) a prime.

There are two particular lattices that are important in cryptography. For a (al-
most) uniformly random matrix A∈ Zn×m

q ,L ⊥q (A) andLq(A) are the hard random
lattices:

L ⊥q (A) = {X ∈ Zm |AX = 0n mod q} ⊆ Zm

Lq(A) = {X ∈ Zn |X = AT S mod q for some S ∈ Zm
q } ⊆ Z

n ,

where 0n denotes the column vector with all components equal to zero The im-
portance of these lattices is directly linked to the hardness assumptions SIS and
LWE (cf. Section 2.3.4).
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2.3.2 Ideal Lattices

Let Z[x] be the ring of polynomials with integer coefficients and f ∈ Z[x] be
a monic, irreducible polynomial of degree n. Consider the quotient ring R :=
Z[x]/ 〈f〉. Elements in this ring can be represented with the standard set of repre-
sentatives {g mod f : g ∈ Z[x]}3. For an element a=

∑n−1
i=0 aix

i in R, the standard
norms are computed as ‖a‖1 =

∑

i |ai|, ‖a‖2 =
Æ
∑

i a2
i and ‖a‖∞ =max |ai|. For

a vector S = (s1, . . . , sm) ∈ Rm, the norm ‖S‖p is defined as the norm of the con-
catenation of the vectors of the coefficients of its components:

‖S‖p = ‖[s1,0 . . . s1,n−1 s2,0 . . . s2,n−1 . . . sm,0 . . . sm,n−1]‖p ,

where p ∈ {1,2,∞} and si =
n−1
∑

j=0

si, jx
j .

A small element of the ring refers to a polynomial with small coefficient w.r.t.
one of these norms depending on the context.

The vector of length m whose components are equal to 1 is denoted by 1m,
while 0n×m denotes the n×m matrix with all components equal to the zero poly-
nomial. The subset of polynomials with coefficients in {0, 1} ⊆ Rq is denoted by
S1.

Polynomials can be put in correspondence with vectors in Zn with the stan-
dard group homomorphism h : R → Zn that sends the polynomial a =

∑n−1
i=0 ai x

i

to the vector of the coefficients, h(a) = [a0 . . . an−1]. Remark that h is a group
homomorphism w.r.t. componentwise addition, but it is not a ring homomor-
phism because it does not send the product to componentwise product, i.e.,
h(fg) 6= h(f)h(g). Combining the standard set of representatives with the group
homomorphism we obtain that R is isomorphic as an additive group to the integer
lattice Zn. Not all integer lattices can be represented in this way.

Definition 2.10. An ideal lattice is an integer latticeL (B) ⊂ Zn such thatL (B) =
{h(g)mod f : g ∈ I} for some monic polynomial f of degree n and some ideal
I ⊆ Z[x]/ 〈f〉.

With an abuse of notation, both the integer latticeL (B) and polynomial ideal
from which it is generated will be identified by L (B), and elements of the ideal
I will be called “lattice elements”.

3This is because f is monic: by the polynomial division algorithm, if the leading coefficient of
f is invertible in the ring of coefficients, then there exists and are uniquely determined q and r
such that for all g ∈ R, g= fq+ r, deg(r)< deg(f), cf. Thm 1.1 on page 173 in [Lang, 2002].
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For example, an element of an ideal lattice generated by f1, f2 is a polynomial
g ∈ R such that g = f1 · a1 + f2 · a2 for some a1,a2 ∈ R. If f is also irreducible,
every ideal of R is isomorphic to a full-rank lattice of Zn, i.e. a lattice generated
by n linearly independent vectors in Zn (cf Lemma 3.2 in [Lyubashevsky and
Micciancio, 2006]).

Remark 1. Another possible way to represent polynomials is through the NTT
transformation [Cooley and Tukey, 1965; Lyubashevsky et al., 2010, 2013], that
sends each polynomial to the vector of its evaluation over the n-th roots of unity.
This transformation is a ring homomorphism w.r.t. componentwise addition and
multiplication. We do not use this representation in our schemes, as we opted
for the more intuitive polynomial-to-vector transform. However, this transform
makes a difference when considering security reductions of lattice-based hard-
ness assumptions (cf. Remark 5 in Section 2.3.4).

Consider the polynomial ring Rq = Zq[x]/〈f〉 for a prime q and irreducible f
of degree n. Elements in the ring are polynomials of degree at most n− 1 with
coefficients in [0, q−1] and operations between ring elements are done modulo
q. Such ring contains exactly qn elements, and it trivially holds that

max
a∈Rq

‖a‖∞ =
q− 1

2
and max

a∈Rq

‖a‖2 =
q− 1

2

p
n

Let deg(a) be the degree of the polynomial a.
Let f = xn + 1. The group homomorphism h defined over R can be defined

analogously over Rq, and it has a particular property when applied to a product
of elements a · b. Indeed, the product ab of the two polynomials a =

∑n−1
i=0 aix

i,
b=

∑n−1
i=0 bix

i corresponds in this representation to a matrix-polynomial product
A · B, where B ∈ Zn

q is a column vector[b0; b1; . . . ; bn−1] and A∈ Zn×n
q is a matrix

whose columns are the column vectors corresponding to the polynomials a, xa,
. . . xn−1a:

A · B =









a0 −an−1 . . . −a1

a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

















b0

b1
...

bn−1









mod q .

Lattices over Rq can be defined similarly to lattices over R. In particular,
given A ∈ R1×m

q we can construct the hard cryptographic lattice L ⊥q (A) = {V ∈
(Z[x]/〈f〉)m |AV = 0 mod q} ⊆ Rm. Consider the previously mentioned embed-
ding h that maps a polynomial to the vector of its coefficients. Then L ⊥q (A) can
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also be seen as a nm-dimensional integer lattice over Z. The lattice Lq(A) can
be defined in the ring setting analogously.

With R3 we denote the ring of polynomials with coefficients in Z3 = {0,±1}.
These element can put in correspondence with elements of the subset of Rq of
polynomials with coefficients in {±1, 0} using the standard mapping h. We de-
note by Inv(Rq) the set of all the invertible polynomials in Rq.

The rest of this section is dedicated to the analysis of the cyclotomic ring
Rq = Zq[x]/〈xn + 1〉 where n = 2d , q ≡ 5 mod 8. The choice of this ring is
motivate by both the result in Lemma 2.11, that guarantees that there are enough
invertible elements in the ring, and by the hardness result by Lyubashevsky and
Micciancio [2006].

The ring Rq has some very useful properties. First, for any K |n, it is possible
to construct a particular subring of Rq as the subset of elements a ∈ Rq such that
a = a0 + a1xn/K + a2x2n/K + . . . + aK−1x(K−1)n/K and ai ∈ [0, p − 1]. Such set is
denoted by R(K)q . Observe that R(K)q is isomorphic to Zq[x]/〈xK + 1〉.

The choice of q strongly influences the number of invertible elements that can
be found in the ring. For example, if q is such that q ≡ 5 mod 8, all the elements
with small enough coefficient are guaranteed to be invertible. Depending on the
choice of q, the ring Rq can be constricted so that it has a large set of invertible
elements.

Lemma 2.11 ([Lyubashevsky and Neven, 2017, Lemma 2.2]). Let Rq = Zq[x]/
〈xn + 1〉 where n > 1 is a power of 2 and q is a prime congruent to 5 mod 8. This
ring has exactly 2qn/2 − 1 elements without an inverse. Moreover, every non-zero
polynomial a in Rq with ‖a‖∞ <

p

q/2 has an inverse.

There exist some straightforward bounds on the norm of the product of poly-
nomials in this ring. They are summarized in the following lemma.

Lemma 2.12. For a,b ∈ Rq it holds:

‖ab‖∞ ≤min {‖a‖∞‖b‖1, ‖a‖1‖b‖∞, (q− 1)/2} .

Moreover, let a, b ∈ Rq be such that n‖a‖∞ · ‖b‖∞ ≤ (q−1)/2. Then we have that
‖ab‖2 ≤ ‖a‖2‖b‖2

p
n and ‖ab‖∞ ≤ ‖a‖∞‖b‖∞n≤ q−1

2 .

Proof. Let a =
∑n−1

i=0 aix
i and b =

∑n−1
i=0 bix

i. The product ab can be represented
as the matrix-polynomial product:

A · B =









a0 −an−1 . . . −a1

a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

















b0

b1
...

bn−1









mod q .
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Let A j be the j-th row of A. The coefficient of x j in the product ab is the scalar
product 〈A j, B〉. Moreover, observe that ‖a‖2 = ‖A1‖2 = ‖A j‖2 for j = 2, . . . , n,
as the Euclidean norm is sign-invariant (the same holds for the infinity norm).
From these observations and from the Cauchy-Schwarz inequality it follows that:

‖ab‖2 =

√

√

√

n
∑

j=1

〈A j, B〉2 ≤

√

√

√

n
∑

j=1

‖A j‖2
2‖B‖

2
2 = ‖a‖2‖b‖2

p
n ,

where the Cauchy-Schwarz inequality holds as the hypothesis on the infinity
norms of a and b guarantees that there is no rounding mod q in the computation
of the coefficients of ab. The other two bounds follow from the observation that
‖AB‖∞ =max j〈A j, B〉 ≤ ‖a‖∞‖b‖∞n, and

‖ab‖∞ ≤max
j
〈A j, B〉 ≤max

j
‖a‖∞

n−1
∑

i=0

bi ≤min {‖a‖∞‖b‖1, (q− 1)/2}

as in the second to last equation the argument of the max function does not
depend on j anymore (the bound ‖a‖1‖b‖∞ can be obtained analogously).

2.3.3 Probability Distributions over Lattices

Defining probability distributions over lattices requires some care, as lattices are
discrete sets. When building cryptography relying on lattice problems, the prob-
ability distributions needed are mostly the discrete Gaussian and uniform distri-
bution.

The uniform distribution can be trivially defined over a discrete set.

Definition 2.13. Let S be a discrete set. The uniform probability distribution
U (S) over S is characterized by the density function f : S → [0,1] such that
f (x) = 1

|S| for all x ∈ S.

When considering ideal lattices, sampling an element uniformly at random
in S ⊆ Rq is equivalent to sampling an element in h(S), i.e., in the subset h(S)
of Zn

q whose elements are obtained from elements of S through the mapping h.
Hence, sampling a uniform random element a ∈ L ⊆ Rq is equivalent to sample
n uniformly random elements ai ∈ Zq, i = 0, . . . , n− 1.

The definition of a discrete Gaussian is slightly more complicated. Indeed,
the continuous Gaussian distribution with mean µ and standard deviation σ is
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characterized by the density function4 ρ(x) = 1
σ e−π(x−µ)

2/σ2
. Starting from ρ,

the discrete Gaussian distribution over a lattice is defined as follows.

Definition 2.14. Let L ⊆ Rn be an Euclidean lattice. The discrete Gaussian
distribution centered in C ∈ Rn with standard deviation σ ∈ R on a full-rank
lattice L is characterized by the density function

DL ,C ,σ(V ) =
e−

π‖V−C‖22
σ2

∑

U∈L e−
π‖U−C‖22
σ2

for all V ∈ L and 0 on all the other points in the space.

The Gaussian distribution over the lattice Zn with center C and standard de-
viation σ is denoted by Dn

Z,C ,σ or DZn,C ,σ. We omit the center from the notation
if the Gaussian is centered around the origin. The Gaussian distribution on a
lattice L with standard deviation σ is denoted by DL ,σ.

Theorem 4.1 in [Gentry et al., 2008] guarantees that if we have a basis B of
L we can sample from DL ,C ,σ if σ > ‖B̃‖2

p

log(n), n being the dimension ofL .
Moreover, in the same paper the authors introduce a trapdoor to sample from the
discrete Gaussian distribution. Indeed, assume we are given a matrix A ∈ Zn×m,
a target vector U ∈ Zn and a basis B forL ⊥q (A). First, we find an arbitrary vector
R such that AR = U mod q. Then we sample a vector V ∼ DL⊥q (A),−R,σ and set

S = R + V , thus AS = U mod q (as AV = 0 mod q). It is easy to verify also
that S ∼ DZm,0m,σ conditioned on AS = U mod q. Let D⊥A,U ,σ be the distribution
of the vectors S such that S ∼ DZm,0m,σ conditioned on AS = U mod q. If σ >

‖B̃‖2

p

log(n) it is possible to sample from this distribution using a basis B of
L ⊥(A) (cf. [Gentry et al., 2008; Brakerski et al., 2013]).

The output of the Gaussian distribution over the integers is hard to predict as
long as the standard variation is large enough.

Lemma 2.15 ([Lyubashevsky, 2012, Lemma 4.4]). Let a > 0, a ∈ N. For all
Z ∈ Za, σ ≥ 3 it holds that5:

Da
Z,σ(Z)≤ 2−a .

4This is not what is usually considered the standard probability density of a Gaussian distribu-
tion. However, the standard density function of a Gaussian with mean µ′ and standard deviation
σ′ can be obtained from ρ by setting µ′ = µ and σ′ = σp

2π
.

5The bound on the standard deviation is different due to our choice of using the scaled rep-
resentation of the Gaussian distribution (cf. footnote 4).



24 2.3 Lattices

The following lemma gives a bound on the norm of a vector sampled from
a discrete Gaussian. Particular values for the variables k and m in the original
lemmas have been chosen to ensure that the probabilities would be small enough.
The second norm bound is obtained from the original lemma applying the union
bound. For the sake of completeness we include also a bound on the generic `p

norm of a Gaussian sample. Remark that it is necessary to adapt the original
bound by Lyubashevsky due to our choice of using a scaled Gaussian instead of
the standard Gaussian distribution (cf. footnote 4.)

Lemma 2.16 ([Banaszczyk, 1993, Lemma 1.5], [Lyubashevsky, 2012, Lemma
4.4], [Banaszczyk, 1995, Lemma 2.9], [Peikert, 2008, Lemma 3.1]). Let a >
0, a ∈ N. The following bounds hold:

1. Pr
S

$←−Da
σ

[‖S‖2 > 1.05σ
p

a]< (0.6326)a

2. Pr
S

$←−Da
σ

[‖S‖∞ > 8σ]< a2−275

3. Pr
S

$←−Da
σ

�

‖S‖p > a2 · (2Γ (p/2+1))1/pp
π

�

< a−p. 6

For our applications it is enough that the bounds hold with non-negligible
probability, as if the norm of a sample is too large, it is possible to discard it and
sample a fresh one.

The following Theorem by Micciancio and Peikert [2012] shows how a (pseu-
do-)random vector U, for which no trapdoor is known, can be extended into
a pseudo-random vector [U V] for which we will be able to sample from the
Gaussian distribution D⊥[U V+mG],u,σ for any invertible m and for some standard
deviation σ.

Theorem 2.17 (adapted from [Micciancio and Peikert, 2012]). Let A be a vector
in R1×`

q and X be a matrix in R`×m
q . Also let the gadget matrix be

G=
�

1
�

q1/m
�

. . .
�

q(m−1)/m
��

.

Then for any invertible m ∈ Rq, there is an algorithm that can sample from the
distribution D⊥[A AX+mG],u,σ for any σ = sω(

p

log n), s = O(
p

n log q) for any u ∈
Rq.

6The inequality 3) is obtained from [Peikert, 2008, Lemma 3.1] setting r = a(p+1)/p ·
(2Γ (p/2+1))1/pp

π
and using the bound a(p+1)/p ≤ a2 ∀p ∈ N, a ∈ N.
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RISIS

A

S

= u mod q

RLWE

a1
...

ak

s +

e1
...
ek

=
b1
...

bk

mod q

Figure 2.2. RISIS and RLWE relations. In red are highlighted the secrets and

errors (which are not included in the instances of the problems).

Lemma 2.18 is a combination of the double-trapdoor idea by Agrawal et al.
[2010], with the sampling procedure by Brakerski et al. [2013].

Lemma 2.18. Suppose U ∈ R1×k
q and V ∈ R1×m

q are polynomial vectors, and BU ,
B(U ,V ) are bases of L ⊥(U) and L ⊥([U V]) respectively such that

‖B̃U‖, ‖B̃(U ,V )‖< σ
Æ

π/ ln(2n+ 4).

Then, there exists an algorithm SampleD(U,V,B,u,σ), where B is either BU or
B(U ,V ), that can efficiently sample from the distribution D⊥[U V],u,σ for any u ∈ Rq.

2.3.4 Lattice-based Hardness Assumptions

The security of lattice-based cryptographic schemes is mainly based on two hard-
ness assumptions: the Short Integer Solution (SIS) Problem and the Learning
With Errors (LWE) Problem (cf. Figure 2.2).

SIS can be seen as a variant of the subset-sum problem over a particular
group, and it allows building one-way and collision-resistant hash functions (cf.
[Ajtai, 1996] and [Goldreich et al., 1996] respectively) and signatures ([Gentry
et al., 2008; Cash et al., 2010; Boyen, 2010; Lyubashevsky, 2012; Micciancio and
Peikert, 2012]). When Micciancio proposed to work with ideal lattices [Miccian-
cio, 2002], he also presented a ring-based variant of SIS, the generalized compact
knapsack problem, now known as the Ring-SIS (RSIS) problem.

Remark 2. We use a particular version of the RSIS assumption where the matrix
A has the last component equal to 1, which is called the Hermite Normal Form.
This variant was originally defined for integer lattices, and proved equivalent to
the normal SIS instance [Buchmann and Lindner, 2009]. The HNF of RSIS can
be proved equivalent to RSIS in an analogous way.
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Definition 2.19. The RSIS problem asks given a vector A ∈ R1×m
q to find a vector

S ∈ Rm
q such that AS = 0 mod q and ‖S‖∞ ≤ β . The average-case RSIS distri-

bution RSISm,q,β where m = m(λ), q = q(λ), β = β(λ) is the ensemble over the
instances (q(λ),A,β(λ)) where A $←−R1×m(λ)

q .
The inhomogeneous RSIS problem (RISIS) asks to find S ∈ Rm

q such that
AS = u, and ‖S‖∞ ≤ β given A and u ∈ Rq. The average-case RISIS distri-
bution RISISm,q,β where m= m(λ), q = q(λ), β = β(λ) is the ensemble over the
instances (q(λ),A,u,β(λ)) for uniformly random and independent A $←−R1×m(λ)

q

and u $←−Rq.

Interpreting this problem in terms of lattices, the (R)SIS problem is actually
equivalent to finding a (sufficiently) short vector in Λ⊥q (A), i.e., to solving the
Shortest Vector Problem over the hard random lattice Λ⊥q .

LWE requires to distinguish “noisy linear equations” from truly random ones
(cf. [Regev, 2005]), and is even more versatile, allowing in particular the con-
struction of public-key encryption schemes [Regev, 2005; Micciancio and Peikert,
2012]. Over ideal lattices, the learning with error problem requires essentially
to determine whether a pair (a,b) ∈ Rq×Rq is such that b≈ as for some secret s,
or if it is composed by two uniformly random ring elements [Lyubashevsky et al.,
2010].

Definition 2.20. The RLWE distribution As,χ outputs pairs (a,b) ∈ Rq × Rq such
that b= as+ e mod q for a uniformly random a in Rq and e $←−χ.

The (average-case) RLWEk,χ decisional problem (in the normal form) on ring
Rq with distribution χ and k samples is to distinguish whether k pairs (a1,b1), . . . ,
(ak,bk)were sampled from As,χ for a random choice of s $←−χ or from the uniform
distribution over R2

q.
The RLWEk,χ search problem on ring Rq with distribution χ is: given access to

arbitrarily many samples from As,χ for some arbitrary s ∈ Rq, find s.

Remark 3. The version of RLWE in Definition 2.20 is the “normal form” of the
problem, where the secret and the error are chosen from the same distribution
(in the generic form, the secret is chosen uniformly at random in the ring). This
version is as hard as the standard one (cf. Lemma 2.24 in the full version of
[Lyubashevsky et al., 2013]).

The Learning with Error problem can be interpreted using hard random lat-
tices as well: solving the search (R)LWE problem is equivalent to solving the
Closest Vector Problem on Λq(A), where A= [a1, . . . , ak].
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Remark 4. The definition of the error distribution χ is fundamental to the prob-
lem hardness, and has to be handled with extra care when working over rings.
In the original definition of LWE such distribution was the the discrete Gaus-
sian (over Zq, cf. [Gentry et al., 2008] for how to define it). When translating
such problem to the polynomial rings setting, such distribution is not enough.
In fact, the original security reductions for RLWE requires the error distribu-
tion to be sampled each time from a set of (non-spherical) Gaussian distribu-
tions (cf. [Lyubashevsky et al., 2010]). However, the result was expanded to
include reductions for other error distributions, in particular the uniform dis-
tribution with constant number of samples and the Gaussian distribution with
limited number of samples. The result is reported in Theorem 2.23.

The hardness of both assumptions can be put in relation with the hardness of
finding a short element (i.e., a polynomial with small norm) in an ideal lattice in
the ring R(cf. [Lyubashevsky and Micciancio, 2006]).

Definition 2.21. The approximate Shortest Vector Problem over rings RSVP∞
γ

(resp. RSVP2
γ
) asks, given an ideal lattice L ⊆ R, to find an element s ∈ L

such that s 6= 0 and ‖s‖∞ ≤ γλ∞1 (L ) (resp. ‖s‖2 ≤ γλ2
1(L )), where λ∞1 (L ) =

minx∈L ‖x‖∞ (resp. λ2
1(L ) =minx∈L ‖x‖2).

Remark 5. As observed already in [Lyubashevsky, 2016], the choice of the poly-
nomial representation has an impact on norm values. In fact,there are polyno-
mial rings where the fact that a polynomial has small norm when represented
as the vector of its coefficients does not imply that its norm is small when rep-
resented through the NTT transform (cf. [Erdös, 1946]). Thus, reductions be-
tween hardness assumptions (such as the results in the rest of the section) might
be less strong (or even meaningless) when switching from one representation
to the other. However, it was shown that for polynomial rings Zq[x]/〈f〉 where
f = xn +

∑

i fi x
i for small fi, the expansion factor of the norm when switching

from coefficient to NTT representation is small enough to guarantee that the re-
ductions are still meaningful (cf. [Lyubashevsky and Micciancio, 2006]). There-
fore, we can still point to those reductions to motivate our choice of hardness
assumptions.

Lyubashevsky and Micciancio [2006] and Peikert and Rosen [2006] indepen-
dently showed that solving an average-case instance of RSIS is at least as hard
as solving SPP in the worst-case7. Lyubashevsky, Peikert and Regev then showed

7Remark that the hardness of RSIS implies the hardness of its inhomogeneous version. This
can be seen for example from the original version of Theorem 2.22, where the RSIS problem is
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a polynomial-time quantum reduction from RLWE with Gaussian error distribu-
tion to the shortest vector problem over ideal lattices (cf. [Lyubashevsky et al.,
2010]). The results (adapted to the particular ring Rq used in this work) are
included in the following.

Theorem 2.22 ([Lyubashevsky and Micciancio, 2006, Theorem 5.1]). Consider
the polynomial ring Rq = Zq[x]/〈xn + 1〉, where n = 2d ∈ N, q is a prime. There
is a polynomial-time reduction from RSVP∞

γ
to solving an instance of RSIS drawn

from RSISm,q,β where

m>
log q
logβ

, q > 6βmn1.5 log n , γ= 36βmn log2 n .

Theorem 2.23 (Theorem 2.22, full-version of [Lyubashevsky et al., 2013]). Con-
sider the polynomial ring Rq = Zq[x]/〈xn+1〉, where n= 2d ∈ N, q is a prime. Let
α = α(n), and q = q(n) ≥ 2, q ≡ 1 mod 2n be a poly(n)-bounded prime such that
αq ≥ ω(

p

log n). There exists a polynomial-time quantum reduction from RSVP2
γ

for γ= Õ(
p

n/α) to RLWE`−1,χ , where ` > 1 and χ = D
σ
, σ = α(n`/ log(n`))1/4.

The degradation in the number of samples comes from the choice of the nor-
mal form of RLWE (cf. Lemma 2.24 in the full version of [Lyubashevsky et al.,
2013]).

Lyubashevsky et al. also observe that, in practice, if ` is a small constant, then
it seems that one can safely take the distribution χ to be uniformly random inS1.
This is insecure for polynomially large ` [Arora and Ge, 2011]. To estimate the
hardness of the lattice problems for given parameters in the security reductions
we use the root Hermite factor δ introduced by Gama and Nguyen [Gama and
Nguyen, 2008]. An example of how to compute such parameter and how to
interpret its value can be found in Section 4.1.3.

Finally, Langlois and Stehlé [2015] defined the multidimensional versions of
RSIS and RLWE, called Module-SIS and Module-LWE respectively.

Definition 2.24 (Module-SIS). Given a matrix of ring elements A $←−Rm1×m2
q , the

average-case Module-SIS problem MSISq(λ),β(λ) asks to find a vector S ∈ Rm2
q such

that AS= 0 and ‖S‖ ≤ β .

The inhomogeneous version can be defined analogously.

presented as the collision-resistance property of a familyH of hash functions. The first preimage-
resistance property of such family corresponds exactly to RISIS being hard. As collision-resistance
implies first-preimage resistance, this implies that the hardness of RSIS implies the hardness of
RISIS.
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Definition 2.25 (Module-LWE). The MLWE distribution AS,χ outputs pairs (A,AS
+ e mod q) ∈ Rm

q × Rq, where the secret S is in Rm
q and the error e is drawn from

a distribution χ.
The (average-case) MLWEk,χ decisional problem (in the normal form) on ring

Rq with distribution χ and k samples is to distinguish whether k pairs (A1,b1), . . . ,
(Ak,bk) were sampled from AS,χ for a random choice of S $←−Rm

q or from the uni-
form distribution over Rm

q × Rq.
The MLWEk,χ search problem on ring Rq with distribution χ is: given access

to arbitrarily many samples from AS,χ for some arbitrary S ∈ Rm
q , find S.

Solving any of these problems on the average can be reduced to the hard-
ness of solving a generalization of a well-known lattice-problem (the Shortest
Independent Vectors Problem) in the worst-case [Langlois and Stehlé, 2015].
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Chapter 3

Relaxed Cryptographic Primitives

Privacy preserving protocols, and in particular privacy-preserving signatures, rely
on a common core building block: zero-knowledge proofs. Such primitives allow
a user to prove knowledge of a bit string (e.g., a lattice point, an attribute, etc.)
without revealing it. The first step towards building efficient privacy-preserving
signatures from lattice-based hardness assumptions is to obtain efficient zero-
knowledge proofs for lattices.

In this chapter we present an approach to the problem that we called Relaxed
Cryptography (introduced by Boschini et al. [2018b]) that led to the first lattice-
based group signature with signatures of size less than 1.8 MB (built by Bos-
chini et al. [2018a]). In fact, to be composed with other preexisting building
blocks (such as digital signatures), the zero-knowledge proof obtained requires
to change definitions and instantiations of such primitives. This chapter contains
all the relaxed primitives needed for the construction of the privacy-preserving
protocols in Chapters 4 and 5.

3.1 Zero-Knowledge Proofs

Let L ⊆ {0,1}∗ be a NP language identified by a relation R ⊆ {0,1}∗, i.e., an
instance x is in L if there exists a witness w such that (x , w) ∈ R . The witness w
is a valid witness for the instance x; valid witnesses are restricted to have length
at most p(|x |) for some polynomial p(.). When building cryptographic protocols
relations are usually required to be hard, i.e., it should be hard to find a witness
for a given instance x , even when it is known that x ∈ L.

Definition 3.1 (Hard relation1). A relation R is said to be hard if

1Definitions in this section are taken from [Damgård, 2002].

31
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• There exists a PPT algorithm RGen that on input 1k outputs a pair (x , w) ∈
R s.t. |x |= k.

• For all PPT algorithms A the following probability is negligible:

Prk

�

(x , wA) ∈ R : (x , w)← RGen(1k), wA← A(x)
�

.

Let P be an algorithm that wants to prove to a verifier V that it knows a valid
witness w for a (public) instance x; assume they are both PPT algorithms.

Definition 3.2 (Proof System). Let L be a language defined by relationR . Let P
and V be PPT algorithms, and let 〈P,V〉 denote their interaction, whose output
is the bit output by the verifier. A protocol Π = (P,V) is a proof system if the
following holds:

Completeness. ∀x ∈ L,

Pr[1← 〈P,V〉(x)]≥ 1− νc(|x |) .

Soundness. ∀x /∈ L, and for all (even unbounded) PPT algorithms A,

Pr[1← 〈A,V〉(x)]≤ νs(|x |) .

The quantity νs is called soundness error.

IfA runtime is polynomially bounded, soundness is computational (as it relies
on assuming some computation would take time longer than polynomial in the
length of x).

A Σ-protocol [Cramer et al., 1994] is a particular 3-round proof system (cf.
Figure 3.1). Both the prover and the verifier take as input random coins ρ. At
the end of each computation, they output the result of the computation and a
state (stp for the prover, and stv for the verifier), that contains the output of the
computation and some additional information (such as the instance and witness
in the case of the prover).

Definition 3.3 (Σ-protocol). Let P = (P0,P1) be a prover protocol and V =
(V0,V1) be a verifier protocol for relation R and language L. A protocol Σ =
((P0,P1), (V0,V1)) is a Σ-protocol if it is a 3-move protocol as shown in Figure
3.1, and it satisfies the following properties:
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P (x , w;ρ) V (x;ρ′)

(α, stp)
$←−P0(x , w;ρ)

α
−−−−→

(β , stv)
$←−V0(x ,α;ρ′)

β
←−−−−

γ← P1(β , stp;ρ)
γ

−−−−→
b← V1(γ, stv;ρ

′)
Output b.

Figure 3.1. Structure of a Σ-protocol.

Correctness. For all (x , w) ∈ R , if P(x , w;ρ) and V(x;ρ′) follow the protocol,
the verifier accepts but with negligible probability:

Pr

�

b = 1 :
(α, stp)← P0(x , w;ρ) ; (β , stv)

$←−V0(x ,α;ρ) ;
γ← P1(β , stp;ρ) ; b← V1(γ, stv)

�

= 1− ν(|x |) ,

where the probability is over the coins ρ of P0 and the coins of V0.

Honest-verifier zero knowledge (HVZK). There exists a polynomial-time algo-
rithm Σ, called zero-knowledge simulator, such that for any distinguisher D
and for any (x , w) ∈ R ,

Pr



b′ = b :
b $←−{0, 1} ; (α, stp)← P0(x , w;ρ) ;

(β , stv)
$←−V0(x ,α;ρ) ; γ← P1(β , stp;ρ) ;

π0← (α,β ,γ) ; π1← Σ(x) ; b′ $←−D(x , w,πb)



−
1
2

is negligible.

Special Soundness. There exists a PPT extractor E that on input an instance
x and a pair of accepting transcripts (α,β ,γ), (α,β ′,γ′) where β 6= β ′

computes a witness w′ such that (x , w′) ∈ R .

AΣ-protocol is trivially a proof system (special soundness implies soundness).

Remark 6. AΣ-protocol is in fact a proof of knowledge (cf. [Damgård, 2002]). In
particular, if the soundness holds against a computationally unbounded prover,
the protocol is called a proof of knowledge. If soundness only holds for a poly-
nomially bounded prover, the protocol is called an argument of knowledge.
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Sometimes it is not possible for the prover and the verifier to interact, as,
for example, they might not be online at the same time. Hence, it becomes
necessary fro the prover to be able to produce a convincing, still zero-knowledge
proof without the help of V. This type of protocol is called a non-interactive zero-
knowledge proof. Besides zero-knowledge, it requires that an adversary that sees
multiple valid proofs cannot generate a proof of a false statement. This property
is called simulation soundness, as it is specific to a simulator Σ for the prover to
which the adversary has access. Such simulator is a stateful algorithm that can
operate in two modes: (hi, st) $←−Σ(1, st, q) answers random oracle queries Hc(q),
while (π, st) $←−Σ(2, st, x) simulates a NIZK proof π for x . Below, the oracleΣ1(q)
returns the first outputs of Σ(1, st, q), the oracle Σ2(x , w) returns the first output
of Σ(2, st, x) if (x , w) ∈ R and returns ⊥ otherwise, and oracle Σ′2(x) returns the
first output of Σ(2, st, x) regardless whether x ∈ L or not.

Definition 3.4 (NIZK proof system). A NIZK proof system (PHc ,VHc) in the Ran-
dom Oracle Model for relation R and language L is couple of PPT algorithms
with the following properties:

Correctness. For all (x , w) ∈ R it holds that

Pr
�

b = 1 : π← PHc(x , w;ρ) , b← VHc(x ,π)
�

= 1− ν(|x |) .

(Non-Interactive) Zero-Knowledge. There exists a PPT simulator Σ such that
for all PPT distinguishers D the following quantity is negligible:

�

�

�Pr
�

DHc(·),PHc (·,·)(1λ) = 1
�

− Pr
�

DΣ1(·),Σ2(·,·)(1λ) = 1
�

�

�

� . (3.1)

Simulation Soundness. There exists a PPT simulator Σ such that for all PPT
adversaries A,

Pr
�

VΣ1(x∗,π∗) = 1∧ x∗ 6∈ L∧ (x∗,π∗) 6∈ Q : (x∗,π∗) $←−AΣ1,Σ′2(1λ)
�

is negligible, where Q is the set of tuples (x ,π) where A made a query
Σ2(x) and obtained response π.

Finally, analogously to identification schemes, a Σ-protocol can be made non-
interactive using the Fiat-Shamir (FS) transformation [Fiat and Shamir, 1987].

Definition 3.5 (Fiat-Shamir transform). The FS transformation of an interactive
protocol (P,V) is a non-interactive proof system (PHc ,VHc) where:

• Hc is a random oracle with range equal to the space of the verifier’s coins.
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• The proving algorithm PHc(x , w;ρ) computes a proof π = (α,β ,γ) by
choosing random coins ρ and computing (α, stp)← P0(x , w;ρ), β ← Hc(x ,
α), and γ← P1(β , stp;ρ).

• The verification algorithm VHc(x ,π) checks that Hc(x ,α) = β and V1(x ,α,
β ,γ) = 1.

Faust et al. [Faust et al., 2012, Theorem 2] proved that in the ROM the FS
transform applied to a (public-coin) Σ-protocol with quasi-unique responses re-
sults in a NIZK proof system.

3.2 Previous Works: Schnorr-type Proofs for Lattice

Problems

Fixed n, m ∈ N, a prime q, and N ∈ R, a typical hard relation over ideal lattices
is of the following form:

R =Rn,m1,m2,q,N = {(A,U;S) ∈ Rm1×m2
q ×Rm1

q ×Rm2 | AS= U mod q ∧ ‖S‖ ≤ N} .
(3.2)

Indeed, with appropriately defined instance generator it is possible to prove that
the relation R is in fact a hard relation under (Module-)RSIS. Remark that we
intentionally have not specified the type of norm. This will be specified when
instantiating each Σ-protocol.

Theorem 3.6 (Hard Relations over Ideal Lattice). Consider the polynomial ring
Rq = Zq[x]/〈xn + 1〉, where n = 2d ∈ N, q is a prime. The relation R is a (com-
putationally) hard relation under the RSISm,q,β assumption when R = RRSIS =
Rn,1,m,q,β , and under the MSISq,β assumption in the general case (whenRn,m1,m2,q,β).
If the parameters m, q, and β of RRSIS satisfy the requirements of Theorem 2.22,
the relation is hard under RSVPγ (where γ is set as in Theorem 2.22).

Proof. The proof has two steps. First, it has to be proved that RSIS fits the de-
scription of a hard lattice relation (cf. Equation (3.2)). Second, it is necessary
to show that there exists a polynomial-time algorithm that outputs instances for
which is hard to find a witness (in polynomial-time). The proof of the final state-
ment trivially follows from Theorem 2.22.

The relation R describing R(I)SIS is:

RRSIS =Rn,1,m,q,β = {(A,u;S) ∈ R1×m
q × Rq × Rm | AS= u mod q ∧ ‖S‖ ≤ β} . (3.3)
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Generating an instance of RRSIS in polynomial-time is possible using for ex-
ample the following algorithm:

RGenRSIS(1λ):
A $←−Rm

q

S $←−{S ∈ Rm | ‖S‖ ≤ β}
u= AS mod q.
Return (A,u;S).

Given an instance (A,u) ← RGenRSIS(1λ), if there exists a PPT algorithm A

that finds a witness S such that (A,u;S) ∈ Rn,m,q,β , then it is possible to exploit
it to solve an average-case RSIS instance A by giving the RRSIS instance (A,0) as
input to A. As there is no requirement on the probability distribution of RRISIS

instances, A cannot distinguish between (A,u) $←−RGenRISIS(1λ) and a random
instance (A,0) of RSIS.

The proof that the generic Rn,m1,m2,q,β relation is hard under MSIS is trivial.

A zero-knowledge and sound proof for relation R in Equation (3.2) can be
extracted from the lattice-based digital signature by Lyubashevsky [2012] (al-
though in the original work it is not explicitly presented as such). The protocol
was based on an identification scheme designed by Schnorr [1990] for the DLOG
problem, and it is shown in Figure 3.2. The original version of the protocol is
defined for integer lattices, but it can be easily adapted to ideal lattices exploiting
the group homomorphism h (cf. Section 2.3.2).

Although the original scheme had a larger challenge set, we present it with
a simple binary challenge set for the sake of clarity. The prover P= (P0,P1) and
verifier V = (V0,V1) algorithms work as follows:

(T, stp)
$←−P0(x , w;ρ) : the algorithm samples Y $←−Dm2

R,σ (the value of σ will be
set later), and sets T = AY mod q, then sets stp = (A,U,S,Y) and sends T
to V0.

(c, stv)
$←−V0(A,U,T;ρ′): upon receiving T, the algorithm samples a random bi-

nary challenge c $←−{0, 1}, sets stv = (A,U,T, c, B) and sends c to P1.

Z← P1(c, stp;ρ): on input c and stp = (A,U,S,Y) computes Z = Y + cS, and

sends Z to the verifier with probability min
§

Dm2
R ,σ(Z)

MDm2
R ,σ,cS(Z)

, 1
ª

for some constant

M > 0 and standard variation σ = ω(T
p

log nm2), T being a bound on
the norm of cS.
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P (A,U,S;ρ) V (A,U;ρ′)
Y $←−Dm2

R,σ

T= AY mod q
T

−−−−→
c $←−{0, 1}

c
←−−−−

Z= Y+ cS mod q
Rejection Sampling step:

Send Z with probability min
§

Dm2
R ,σ(Z)

MDm2
R ,σ,cS(Z)

, 1
ª

Otherwise, abort.
Z

−−−−→
Output 1 if:
AZ= T+ cU mod q
‖Z‖ ≤ B .

Figure 3.2. Σ-protocol for lattice-based relations.

b← V1(Z; stv): on input Z and stv = (A,U,T, c, B) it outputs 1 if AZ = T + cU
and ‖Z‖ ≤ B, where B = B2 = 1.05σ

p
nm2 if ‖.‖ = ‖.‖2 and B = B∞ = 8σ

if ‖.‖= ‖.‖∞.

The rejection sampling step is the core of this scheme, as it allows to hide the
dependency of the response on the witness. It is based on the following result.

Lemma 3.7 ([Lyubashevsky, 2012, Lemma 4.7, Theorem 4.6 and Lemma 4.5]).
Let V be an arbitrary set, and h : V → R, f : Zm→ R be probability distributions.
Let gV : Zm→ R be a family of probability distributions indexed by all V ∈ V such
that

∃M ∈ R such that ∀V ∈ V ,Pr
z

$←− f
[M gV (z)≥ f (z)]≥ 1− ν .

In particular, when ∀V ∈ V , ‖V‖< T for a constant T > 0, gV = Dm
V,σ and f = Dm

σ

for some standard variation σ =ω(T
p

log m), it yields ν= 2−ω(log m).
Then the distribution of the output of the following algorithm A

1. V $←−h

2. Z $←− gV

3. outputs (V, Z) with probability min
�

f (Z)
M gV (Z)

, 1
�

is within statistical distance ν/M from the distribution of the following algorithm
B:
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1. V $←−h

2. Z $←− f

3. output (V, Z) with probability 1/M.

Moreover, the probability that A outputs something is at least (1− ν)/M.
More concretely, if V = {X ∈ Zm : ‖X‖ ≤ B} for a constant B > 0, σ =

αB for α > 0, gV = Dm
Z,σ,V and f = Dm

Z,σ, then M = exp(12/α + 1/(2α2)), the

statistical distance between A and B is at most 2−100

M , and the probability that A
outputs something is at least 1−2−100

M .

To apply the results of this lemma, it is necessary that the standard deviation
σ is a multiple of the bound β on the norm of the witness S. In particular, we
will set α= 12 and σ = 12β (so that the output probability is large enough).

Remark that we have intentionally stated the norm check w.r.t. a generic norm
‖.‖. This will be useful later, as it allows to plug in the infinity norm or the
Euclidean norm, depending on the necessity. The bound B on the norm of Z
depends on the choice of the norm according to Lemma 2.16.

The following theorem summarizes the results by Lyubashevsky (adapted to
the case of ideal lattices). We add a sketch of the proof to recall some techniques
we need when working with the generalized version.

Theorem 3.8 (Summary of the results in [Lyubashevsky, 2012] applied to rings).
The protocol (P,V) defined as before is a proof system with soundness error at least
1/2 for the (hard) relationR in the ROM. The proof system has abort probability 1−
min

n

Dm
R ,σ(Z)

MDm
R ,σ,cS(Z)

, 1
o

. Combined with the Fiat-Shamir transform, such proof system

satisfies the (non-interactive) zero-knowledge property in Definition 3.4.

Sketch. Correctness follows from Lemma 2.16. It is possible to obtain perfect
correctness by allowing P to discard Y whenever ‖Y + S‖ > B. However, this
would degrade the runtime of the prover.

To prove the rest of the properties, we start defining a simulator Σ. Such
simulator operates in two modes, one to simulate the random oracle and the
other one to simulate the protocol. It keeps a state st that contains the parameters
of the proof and a list Q of all the queries to the random oracle.

Σ(1, st, q): on input a query q to the random oracle H, it looks up q in the listQ
of already queried values. If Q contains an entry (q, h), it outputs (h, st).
Otherwise, it sets h $←−{0,1}, updates the list of queries Q ← Q ∪ {(q, h),
and outputs (h, st}).
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Σ(2, st, x): on input (A,U), it samples Z $←−Dm2
R,σ (rejecting the samples that do

not satisfy the norm bound; the probability that rejection is necessary is low
though, thanks to Lemma 2.16), c $←−{0,1}, and sets T = AZ− cU mod q.
If there exists already an entry (A,U,T, h) in Q and h 6= c, the simulator
discards Z, c,T and starts over. Otherwise, it updates the list of queries
setting Q ← Q ∪ {((A,U,T), c)} (if necessary), sets π = (T, c,Z), and it
outputs (π, st).

Simulators Σ1 and Σ′2 simply run Σ(1, ·, ·) and Σ(2, ·, ·) respectively. The simu-
lator Σ2 first checks that the instance (A,U,S) it has been queried on is in the
language, then runs Σ(2,A,U).

The soundness error is 1/2 as a dishonest prover could guess the output c of
H, sample Z from a Gaussian (rejecting the samples that do not satisfy the bound
on the norm, like Σ2 does), and set T = AZ− cU mod q. If the dishonest prover
guessed the challenge correctly (i.e., c = H(A,U,T)), the transcript (T, c,Z) is
indistinguishable from a honestly generated one.

To prove the zero-knowledge property, we analyze the advantage of a PPT
algorithm D in distinguishing the simulator from a honest prover. Thanks to
rejection sampling (Lemma 3.7) the statistical distance between the distribution
of the output π of Σ′2 and a honestly generated proof is s2−ω(log nm2)/M , where s is
the number of queries made by the distinguisher to the proving oracle. The only
way an adversary would be able to distinguish a simulated proof from an original
one would be ifΣ2 aborts. This happens if the oracle answer to the query (A,U,T)
was already set different from h. The probability that the query was already
made is computed in Lemma 5.3 in [Lyubashevsky, 2012], and is s(s+o)2−nm1+1,
where again s is the number of queries made by the distinguisher to the proving
oracle, and o is the number of queries made by the distinguisher to the random
oracle. Hence, the advantage of a distinguisher in distinguishing the output of
the simulator from honestly generated proofs is s2−ω(log nm2)/M + s(s+ o)2−nm1+1.

This protocol has two main limitations: a high soundness error, and no spe-
cial soundness (nor simulation soundness). In fact, a soundness error of 1/2 is
usually too high, as a malicious prover can generate a proof for a false state-
ment 50% of the times. However, to make it negligible it is enough to repeat the
proof λ times to achieve a security of 2λ. This creates big efficiency issues when
this proof system is used in complex protocols, such as group signatures (cf. the
discussion in Section 5.3.1).

The problem with special soundness is more complicated: indeed, given two
transcripts having same commitments and different challenges, an extractor can
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only get a witness S that satisfies the polynomial equation but has a larger norm
than what is required by the original relation. To see this, consider two transcripts
(T, c,Z) and (T, c′,Z′) corresponding to the (public) instance (A,U) ofRn,m1,m2,q,β .
The transcripts are such that:

T= AZ− cu mod q

= AZ′ − c′u mod q ,

hence,
A(Z− Z′) = (c′ − c)U mod q .

Given that c, c′ ∈ {0, 1} and c 6= c′, the challenge difference is |c′−c|= 1. Assume
w.l.o.g. that it is 1. Hence Z̄= Z−Z′ is a valid solution of the polynomial equation
AS = U mod q (where S is the unknown). However, the only guarantee the
extractor gets about the norm of Z̄ is that ‖Z̄‖ ≤ ‖Z‖−‖Z′‖ ≤ 2B, where the bound
B is set depending on the choice of the norm to B2 = 1.05σ

p
mn or B∞ = 8σ

(both greater than β , as σ = 12β). Therefore, Z̄ is not a valid witness for (A,U)
w.r.t. Rn,m1,m2,q,β , but w.r.t the larger relation Rn,m1,m2,q,2B.

Both these shortcomings are addressed the next sections. Section 3.3 contains
a new definition of a relaxed version of Σ-protocol, where special soundness is
relaxed so that Lyubashevsky’s protocol satisfies it. Then, in Section 3.4 a more
generic version of the proof system is introduced, with a larger challenge set to
improve the soundness error.

3.3 Relaxed Non-Interactive Zero-Knowledge Proofs

We define Relaxed Σ-protocol and Relaxed Non-Interactive Zero-Knowledge Proofs
Systems where the relaxed soundness definition guarantees the extraction of a
witness from a wider language than the one used by an honest prover. Proofs
with relaxed extracted notions have been used implicitly in previous work, e.g.,
for schemes based on discrete logarithms in group of unknown order [Camenisch
et al., 2009; Camenisch and Lysyanskaya, 2003; Camenisch and Shoup, 2003;
Xue et al., 2008] and some lattice-based schemes [Lyubashevsky, 2012; Ben-
hamouda et al., 2015; Lyubashevsky and Neven, 2017].

Let L ⊆ {0,1}∗ be a NP language with witness relation R , meaning x ∈
L ⇔ ∃ w : (x , w) ∈ R . Let L̄ ⊇ L be a relaxed language with witness rela-
tion R̄ ⊇ R . We define relaxed Σ-protocols inspired by the original definitions
by Cramer [1996] and Faust et al. [2012], but with a relaxed soundness condi-
tion that guarantees the extraction of a witness from R̄ rather than R (similar
to Camenisch et al. [2009]).
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Definition 3.9 (Relaxed Σ-protocol). A relaxed Σ-protocol Σ = (P,V) for rela-
tions (R , R̄) is a three-round public-coin interactive proof system where P =
(P0,P1) and V = (V0,V1) are couples of PPT algorithms that, on top of the stan-
dard correctness and honest-verifier zero-knowledge (HVZK) properties recalled
in Definition 3.3, satisfy the following property:

Relaxed Special Soundness. There exists an efficient algorithm E, called spe-
cial extractor, that given two accepting conversations (α,β ,γ) and (α,β ′,
γ′) for language member x̄ ∈ L̄ where β 6= β ′, computes w̄← E( x̄ ,α,β ,γ,
β ′,γ′) such that ( x̄ , w̄) ∈ R̄ .

Remark that relaxed Σ-protocols are relaxed proofs of knowledge, as the
knowledge extractor extracts from P a pair (x , w) in R̄ (the proof is a straight-
forward adaptation to relaxed protocols of the proof of Theorem 1 in [Damgård,
2002]).

Similarly to standard Σ-protocols, a relaxed Σ-protocol (P,V) can be turned
into a relaxed non-interactive zero-knowledge (NIZK) proof system (PHc ,VHc) us-
ing the Fiat-Shamir transform [Fiat and Shamir, 1987] that computes the second
round β ← Hc(x ,α), where α is the first round of the proof and Hc is a random
oracle.

Definition 3.10 (Relaxed NIZK). A relaxed NIZK proof system (PHc ,VHc) in the
Random Oracle Model for relations (R ,R ′) is couple of PPT algorithms that
satisfy the standard correctness and non-interactive zero-knowledge properties
recalled in Definition 3.4, as well as the following soundness property:

Relaxed Simulation Soundness. There exists a PPT simulatorΣ= (Σ1,Σ2) that
simulates random oracle responses (Σ1) as well as NIZK proofs (Σ2), in-
cluding for members x 6∈ L, such that for all PPT adversaries A,

Pr
�

VΣ1(x∗,π∗) = 1∧ x∗ 6∈ L̄∧ (x∗,π∗) 6∈ Q : (x∗,π∗) $←−AΣ(1λ)
�

is negligible, where Q is the set of tuples (x ,π) such that A queried x to
Σ2 and obtained π as response.

Faust et al. [2012] proved that the Fiat-Shamir transform of an HVZK Σ-
protocol with quasi-unique responses yields an unbounded non interactive zero-
knowledge protocol in the Random Oracle Model. Since the Σ-protocols we con-
sider do not always have quasi-unique responses, we suggest an alternative con-
struction from one-time signature (OTS) schemes (the definition of OTS can be
found in Section 2.2.4).
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Let (P,V) be an interactive protocol and (OTSGen,OTSSign,OTSVf) a OTS
scheme. We construct a non-interactive zero-knowledge (NIZK) proof system
(PHc ,VHc) through the Fiat-Shamir transform using a random oracle Hc with
range equal to the space of the verifier’s coins. The proving algorithm PHc(x , w)
computes a proof π by choosing random coins ρ, generating a OTS key pair
(otssk, otsvk) ← OTSGen(1λ), and computing α ← P0(x , w;ρ). It determines
the challenge as β ← Hc(x ,α, otsvk) and finally computes γ← P1(x , w,α,β;ρ)
and signs the whole transcript as σ← OTSSign(otssk, (x ,α,β ,γ)). The proof is
π = ((α, otsvk),β , (γ,σ)). Verification VHc(x ,π) checks that β = Hc(x ,α, otsvk),
that V1(x ,α,β ,γ) = 1, and that OTSVf(otsvk,σ, (x ,α,β ,γ)) = 1. We first
rephrase the non-triviality definition for identification schemes due to Abdalla
et al. [2002] in terms of Σ-protocols.

Definition 3.11 (Non-trivial min-entropy of commitment). Let λ be the security
parameter, let Coins(λ) the set of coins used by the prover, and let A(x , w) =
{P0(x , w;ρ) : ρ ← Coins(λ)} for any (x , w) ∈ R . The min-entropy of (P,V)
is defined as ε(λ) = min(x ,w)∈R log(1/µ(x , w)), where µ(x , w) is the maximum
probability that the first round of the protocol takes on a particular value, i.e.
µ(x , w) = maxα∈A(x ,w)Pr[P0(x , w;ρ) = α : ρ ← Coins(λ)]. We say that (P,V)
is non-trivial if ε(n) =ω(log(λ)).

Adding non-triviality and a OTS to a relaxed Σ-protocol modified according
to the Fiat-Shamir heuristic yields a NIZK proof. The proof follows closely the
proofs of Theorem 1 and 2 in [Faust et al., 2012].

Theorem 3.12. Let (P,V) be a non-trivial relaxed Σ-protocol for a NP language
L. Let Hc be a hash function with range equal to the space of the verifier’s coins,
modeled as a random oracle and let (OTSGen,OTSSign,OTSVf) be a strongly
unforgeable one-time signature scheme. Then the proof system (PHc ,VHc), derived
from (P,V) as described previously, is a relaxed NIZK in the Random Oracle Model.

Proof. Correctness is straightforward. The proof of NIZK property is a modifica-
tion of the proof of Theorem 1 in [Faust et al., 2012], and holds also for classical
Σ-protocols. The simulator works as follows:

• To answer a query q toΣ1,Σ(1, st, q) samples a lookup tableTH kept in state
st and returns TH(q). If TH(q) is not defined, it sets it to a fresh random
value (of the appropriate length).

• To answer a query x to Σ′2, Σ(2, st, x) calls the HVZK simulator of (P,V)
to obtain the transcript (α,β ,γ). Then, it generates the keys of the OTS
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(otssk, otsvk)← OTSGen(1λ). Finally, it signs the transcript running σ←
OTSSign(ssk, (α,β ,γ)) and it updates TH so that β = TH(x ,α, otsvk). If
TH was already defined on this input it returns ⊥ and aborts.

By construction, the only case in which a distinguisher D can distinguish with
non-negligible probability the simulation from the real-world protocol is when
the simulatorΣ′2 aborts. This can happen only if (x ,α, otsvk)was already queried
to Σ1. Given that the protocol is non-trivial, the probability of an abort is upper-
bounded by 2−ε(λ), that is negligible in λ. Hence:

Pr
�

DΣ1(·),Σ′2(·,·)(1λ) = 1
�

=

= Pr
�

DΣ1(·),Σ′2(·,·)(1λ) = 1 : Σ′2 aborts
�

Pr
�

Σ′2 aborts
�

+

+Pr
�

DΣ1(·),Σ′2(·,·)(1λ) = 1 : Σ′2 does not abort
�

Pr
�

Σ′2 does not abort
�

= 0+ Pr
�

DHc(·),PHc (·,·)(1λ) = 1
�

Pr(Σ′2 does not abort)

≤Pr
�

DHc(·),PHc (·,·)(1λ) = 1
�

(1− 2−ε(n)) .

Therefore the difference in (3.1) is bounded by 2−ε(λ) that is negligible in λ.
Finally, we prove relaxed simulation soundness. Let A be an adversary that

breaks the relaxed simulation soundness property with probability ε. LetΣ be the
simulator previously described. At the end of the querying phase, the adversary
outputs a valid forgery (x∗,π∗) that was not in the set Q of pairs queried to the
simulator. Let the forged proof be π∗ = ((α∗, otsvk∗),β∗, (γ∗,σ∗)). Without loss
of generality, we can assume that A queried (x∗,α∗, otsvk) to Σ1.

Now, we can have two cases: either A learned α∗ and otsvk∗ by querying
x∗ to the simulator Σ′2, or it did not. We indicate by query the case in which A

queried for x∗ and query the other case. Given that these two events are mutually
exclusive, the probability that A wins the forgery game can be split in:

Pr [A wins] = Pr [A wins ∧ query] + Pr [A wins ∧ query] .

We treat each case separately. In particular, we build two reductions Bs−unf and
Bsound that exploit A to break either the strong-unforgeability of the OTS or the
relaxed soundness of the relaxed Σ-protocol.

Assume that A wins and query happens. The reduction Bs−unf has access to
an oracle OOTS that on input a message outputs a pair of keys and a signature on
the message. To break strong-unforgeability of the OTS scheme, Bs−unf should
output a different signature valid with respect to the same public key. To do that,
it first guesses the query j′ toΣ′2 for which Awill forge. Then, it works as follows:

Queries to Σ1. It answers to queries to Σ1 and fills the table TH as the real sim-
ulator would have done.
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Queries to Σ′2. Upon receiving the j-th query:

• If j 6= j′, Bs−unf answers and stores the pair query-answer in the list
Q as the real simulator Σ would do.

• If j = j′, Bs−unf generates the transcript (α′,β ′,γ′) as the real HVZK
simulator of the relaxed Σ-protocol (P,V) would do. It triggers OOTS

to receive the key pair (otssk′, otsvk′). Then, it queries OOTS with
(x∗,α′,β ′,γ′) to obtain a signature σ′. Bs−unf sets TH(x∗,α′, otsvk′) =
β ′ and updates Q accordingly. If the value was already assigned,
Bs−unf aborts and outputs⊥. Otherwise, it stores (x∗, (α′, otsvk′,β ′,γ′,
σ′)) in Queries and outputs π′ = ((α′, otsvk′),β ′, (γ′,σ′)).

At the end of the querying phase, A outputs a valid forgery (x∗,π∗). Remark that,
for it to be a valid forgery, it should hold π′ 6= π∗.

The reduction Bs−unf parses the response as (γ∗,σ∗), where σ∗ is a signa-
ture on the message msg∗ = (x∗,α∗,β∗,γ∗). Then it recovers from Q the query
(x∗, (α′, otsvk′,β ′,γ′,σ′)). Let msg′ = (x∗,α′,β ′,γ′). Given that query happened,
it holds that α′ = α∗ and otsvk8 = otsvk′, and subsequently β ′ = β∗. Hence, we
can have two cases:

• If γ′ = γ∗ (i.e., if msg′ = msg∗), then for π∗ to be a valid forgery it should
be σ∗ 6= σ′. Hence (msg∗,σ) is a valid forgery.

• If γ′ 6= γ∗ then σ∗ is a signature on a different message with respect to the
key otsvk. Hence (msg∗,σ∗) is again a valid forgery.

Finally, observe that as before the probability that Bs−unf aborts when simulating
Σ′2 is negligible as the scheme is non-trivial. Hence, Bs−unf outputs (msg∗,σ∗)
(and breaks strong-unforgeability) with probability Pr [A wins ∧ query] · (1 −
2−ε(λ)) 1

nq
, where nq is the number of queries that A can ask to the simulator.

Therefore it holds Pr [A wins ∧ query]∼ ν(λ).
Now, consider the case in which A wins and it did compute α∗ or otsvk∗ by

itself. We build Bsound as follows. It first chooses an index j′ ∈ {1, . . . , nq} uni-
formly at random and then it implements the simulator as follows:

Queries to Σ1. Upon receiving query (x j,α j, otsvk j):

• If j 6= j′, Bsound answers the query and fills the table TH as the real
simulator would have done.

• If j = j′, Bsound runs the relaxed Σ-protocol with the honest verifier
V for statement x j′ with commitment α j′ , otsvk j′ . Upon receiving the
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challenge β from V, it programs TH(x j,α j, otsvk j′) = β . Then it out-
puts β as an answer to the query.

Bsound answers as the real simulator would to the queries of type (x ,a).

Queries to Σ′2. To answer these queries, the reduction honestly executes the
NIZK simulator. Upon receiving query x , Bsound runsOTSGen(1λ) to obtain
a key pair (otssk, otsvk). Then, it runs OTSSign(otssk, (x ,α,β ,γ)) to obtain
a signature σ. Bsound sets TH(x ,α, otsvk) = β and updates Q accordingly.
If the value was already assigned, Bsound aborts and outputs ⊥. Otherwise,
it stores (x , (α, otsvk,β ,γ,σ)) in Q and outputs π= ((α, otsvk),β , (γ,σ)).

When A outputs the forgery (x∗, (α∗, otsvk∗,β∗,γ∗,σ∗)) the simulator parses it
and sends γ∗ to the V. The success probability is bounded by:

Pr[Bsound wins] = Pr [A wins ∧ query]
1
nq

.

Thus,
Pr [A wins ∧ query] = Pr[Bsound wins]nq ≤ ν(λ)

and hence we have that:

ε= Pr [A wins] = Pr [A wins ∧ query] + Pr [A wins ∧ query]≤ ν(λ) .

3.4 Relaxed Non-Interactive Zero-Knowledge Proofs for

RRSIS

With the new relaxed definitions, the protocol By Lyubashevsky can now be
proved to be a (relaxed) NIZK proof. We present a generalized version of Lyuba-
shevsky’s “Fiat-Shamir with aborts” technique [Lyubashevsky, 2009, 2012]. This
yields a relaxed Σ-protocol for the languages (L, L̄) associated to the following
relations:

R =
�

([A −U],0m+1; [S;1]) ∈ R`×(m+1)
q × R1×(m+1)

q × Rm × {1} :
AS= U mod q,
‖[S;1]‖ ≤ B

�

⊆Rn,`+1,m+1,q,B

R̄ =
�

([A −U],0m+1; [S̄; c̄]) ∈ R`×(m+1)
q × R1×(m+1)

q × Rm × C̄ :
AS̄= Uc̄ mod q,
‖[S̄; c̄]‖ ≤ B̄

�

⊆Rn,`+1,m+1,q,B̄

for some positive constants B, B̄ such that B ≤ B̄ (that will be indicated as B2, B̄2

if the relation is defined w.r.t. the Euclidean norm, and B∞, B̄∞ if the relation
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is defined w.r.t. the infinity norm), and for a subset C̄ ⊆ Rq containing small
elements c̄ (a more precise definition is be given later). The set C̄ is in fact the
relaxed version of the challenge set used in the (relaxed) Σ-protocol. All of these
parameters are denoted by ppar, and we always implicitly assume that they are
given as input to both the prover and the verifier.

The generic Σ-protocol rΣ = (P,V) (cf. Figure 3.3) is essentially Lyuba-
shevsky’s protocol (cf. Figure 3.2) where challenges are sampled from a larger
challenge set C ⊆ {c ∈ Rq : ‖c‖∞ ≤ 1} containing polynomials with coefficients
in {0,±1}. The algorithms P = (P0,P1) and V = (V0,V1) are described in the
following. Let w = [S;1] be a witness for the instance x = ([A − U],0m+1) of
relation R .

• The prover P0 samples a masking vector Y $←−Dm
R,σ (the value of the stan-

dard deviation σ is again derived from Lemma 3.7 and is addressed later),
and sends T= AY mod q to V.

• Next, V0 samples a challenge c ∈ C and sends it to P.

• The prover algorithm P1 constructs Z = Y+ cS mod q and, depending on
rejection sampling (cf. Lemma 3.7), either aborts or sends it to V.

• The verifier accepts if AZ− cU = T mod q and ‖Z‖2 ≤ 1.05σ
p

nm =: B2,
‖Z‖∞ ≤ 8σ =: B∞.

The zero-knowledge property is guaranteed by rejection sampling, and the choice
of parameters should reflect that. To apply Lemma 3.7 the standard deviation
to be σ = 12T , where T is a bound on the norm of cS obtained (for example)
through Lemma 2.12 and a > 0. This guarantees that the prover outputs some-
thing with probability greater than (1− 2−100)/e289/288 ≥ 0.36 (cf. Theorem 4.6
in [Lyubashevsky, 2012]). The bounds on the norm of the witnesses for the re-
laxed relation R̄ are B̄2 = 2B2 = 2.1σ

p
nm and B̄∞ = 2B∞ = 16σ. Finally, to

guarantee that the extractor obtains elements in L̄, the set C̄ should be such that
{c1 − c2}c1,c2∈C ⊆ C̄ .

The choice of the challenge set C has to be handled with care, as it heavily
influences the length of the proof transcript (i.e., the efficiency of the protocol),
as the standard deviation σ depends on it. As we present protocols built from
relaxed proofs with different challenge sets, we address how to choose the chal-
lenges in a separate section (cf. Section 3.4.1).

In the following theorem we prove that our protocol is in fact a non-trivial
relaxed Σ-protocol.
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P (A,U,S;ρ) V (A,U;ρ′)
Y $←−Dm

R,σ

T= AY mod q
T

−−−−→
c $←−C

c
←−−−−

Z= Y+ cS mod q

Send Z with probability min
n

Dm
R ,σ(Z)

MDm
R ,σ,cS(Z)

, 1
o

Otherwise, abort.
Z

−−−−→
Output 1 if:
AZ= T+ cU mod q
‖Z‖ ≤ B .

Figure 3.3. Generic Σ-protocol for lattice-based relations.

Theorem 3.13. The protocol described above is a non-trivial relaxed Σ-protocol for
relations (R , R̄) with soundness error at least 1

|C | .

Proof. Thanks to rejection sampling, Z is distributed as Dm
R,σ. Hence, by Lemma

2.16, with high probability ‖Z‖2 ≤ 1.05σ
p

nm, ‖Z‖∞ ≤ 8σ, and correctness
follows.

A simulator Σ for this proof can be constructed as it follows:
Σ(A,U,σ, 1λ):

Sample Z $←−Dm
R,σ and c $←−C .

Set T := AZ− cU mod q.
Output (T,c,Z).

The distribution of the output is exactly the same of a honestly generated tran-
script, because rejection sampling guarantees that the distribution of honestly
generated Z is at statistical distance 2−100e−289/288 from Dm

R,σ. From this simu-
lator is also easy to see that a cheating prover is successful (i.e., can output a
valid proof without knowing a witness S) if it can correctly guess the challenge.
Hence, the soundness error of this proof is at least 1

|C | .
To prove relaxed special soundness, we construct an extractor E. The ex-

tractor E receives as input a pair of valid transcripts (T,c1,Z1) and (T,c2,Z2),
i.e., where T= AZ1−c1U= AZ2−c2U and the norms of Z1,Z2 satisfy the bounds
stated by the verification algorithm. The extractor sets S̄= Z1−Z2 and c̄= c1−c2

It yields that AZ̄− c̄U = 01×`. Then it outputs the pair (S̄, c̄). The norm of S̄ is
bounded by ‖S̄‖2 ≤ ‖Z1‖2 + ‖Z2‖2 ≤ 2B2 = B̄2 and ‖S̄‖∞ ≤ ‖Z1‖∞ + ‖Z2‖∞ ≤
2B∞ = B̄∞, while c̄ ∈ C̄ by definition of C̄ . Therefore, (S̄, c̄) ∈ R̄ .
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Finally, we address non triviality. To prove it, it is enough to prove that

max
T∈Rm

q

Pr[AY= T mod q : Y $←−Dm
R,σ]≤

1
2n−1

, (3.4)

as n= O(λ). To do that, we exploit the min entropy of the Gaussian distribution.
Indeed, consider the following probability, for fixed A and T:

Pr
�

AY= T mod q : Y $←−Dm
R,σ

�

≤max
i

Pr

�

m
∑

j=1

ai, jy j = ti mod q : Y $←−Dm
R,σ

�

,

where by ai, j and ti we denote the components of A and T respectively. The
inequality follows from the fact that, given two events E1 and E2, it holds

Pr[E1 ∧ E2]≤max
i=1,2

Pr[Ei] .

We analyze the probability that a linear combination of polynomials y j sampled
from a Gaussian distribution (as defined in Section 2.3.3) with fixed polynomials
a j results in a given value t:

Pr

�

m
∑

j=1

a jy j = t mod q : Y $←−Dm
R,σ

�

= Pr

�

a1y1 = t−
m
∑

j=2

a jy j mod q : Y $←−Dm
R,σ

�

≤max
v∈Rq

Pr
�

ay= v mod q : y $←−Dm
R,σ

�

=max
V∈Zn

q

Pr

















a0 −an−1 . . . −a1

a1 a0 . . . −a2
...

...
. . .

...
an−1 an−2 . . . a0

















y0

y1
...

yn−1









=









v0

v1
...

vn−1









mod q : Y $←−Dn
Z,σ









≤max
V∈Zn

q

Pr
h

Y : Y $←−Dn
L⊥q (A),V,σ

i

≤
1

2n−1
,

where the last inequality follows from [Peikert and Rosen, 2006, Lemma 2.10]
(the hypothesis on the standard variation σ holds always in our applications, as
it is needed to use the trapdoor in Lemma 2.17). From the last inequality, the
inequality in Equation 3.4 follows trivially.

Therefore, it follows from Theorem 3.12 that adding a OTS and using Fiat-
Shamir heuristic we can obtain a NIZK proof. As OTS we choose the Lamport
signature (see Section 2.2.4).
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A simulator ΣN I ZK for this NIZK proof can be constructed exactly as in the
case of the original protocol (cf. proof of Theorem 3.8). Let st be the internal
state of the simulator containing the parameters of the proof and Q be a list of
all the queries to the random oracle.

ΣN I ZK(1, st, q): on input a query q to the random oracle H, it looks up q in the list
Q of already queried values. IfQ contains an entry (q,c), it outputs (c, st′).
Otherwise, it sets c $←−C , updates the list of queries Q ←Q∪{(q,c)}, and
outputs (c, st′), where st′ is the updated internal state of the simulator.

ΣN I ZK(2, st, x): on input (A,U), it samples Z $←−Dm
R,σ (rejecting the samples that

do not satisfy the norm bound; the probability that rejection is necessary is
small though, thanks to Lemma 2.16), c $←−C , and sets T= AZ−cU mod q.
Then it generates keys for the OTS signature, (otssk, otsvk)←OTSGen(1λ).
If there exists already an entry ((A,U,T, otsvk),c′) in Q and c′ 6= c, the
simulator discards Z,c,T and starts over. Otherwise, it updates the list of
queries settingQ ←Q∪{((A,U,T, otsvk),c)} (if necessary), it sets the tran-
script to be π= (T,c,Z), and it produces a one-time signature on the tran-
script ots← OTSSign(otssk,π). Finally, the simulator outputs (π, ots, st′),
where st′ is the updated internal state of the simulator.

Simulators ΣN I ZK ,1 and Σ′N I ZK ,2 simply run ΣN I ZK(1, ·, ·) and ΣN I ZK(2, ·, ·) respec-
tively. The simulator ΣN I ZK ,2 first checks that the instance (A,U,S) it has been
queried on is in the language, then runs ΣN I ZK(2,A,U).

Remark that non-triviality holds for a standard deviation σ ≥ω(
p

log(nm))
as a direct consequence of a result by Peikert and Rosen [2006]. Indeed, they
proved that with this assumption on the standard deviation it holds thatDZnm,σ ≤
1+ε
1−ε2

−nm, hence the min-entropy function is greater than n (cf. [Peikert and
Rosen, 2006], Lemma 2.11) and Theorem 3.12 applies. Our proof is better
though, as it does not require a large standard deviation.

Remark 7. In this section we have described a relaxed NIZK proof for a very
generic relation R over lattices where there are no assumptions on A and U.
However, when using this protocol in combination with other primitives, we have
to impose the additional condition that A and U have a particular structure (e.g.,
they model the verification equation of a signature, or the encryption procedure
of some encryption scheme). Obviously, this does not affect the protocol itself,
as such relations are subsets of the more generic relation we have considered so
far.
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3.4.1 The Choice of the Challenge Set

The choice of the challenge set is very important, as it directly influences the
length of a proof. Indeed, as we already mentioned, to make the soundness
error negligible, a proof has to be repeated multiple times. Hence, the length
of the proof does not only depend on the length of a single transcript, but on
the number of repetitions needed as well. In the original paper by Lyubashevsky
[2012], the challenges were chosen to be binary polynomials of small degree.
This guarantees two things: first, that the product cS of a challenge and the
witness has small norm, hence the standard deviation σ bounding the norm
of the prover’s response is small, and second that the soundness error is small
enough not to require repetitions.

In our constructions, we wanted to maintain these advantages, while making
the proof efficient enough to result in relatively short proofs when combined
with other lattice-based building blocks. On top of this, we wanted to add to the
challenge set a specific structure, that allows to prove that the witness satisfies
some algebraic properties (cf. Section 3.4.2) Hence, we choose the challenge set
to be a subset of a particular subset of a subring of Rq: C ⊆ R(2

Kc )
3 for some Kc > 0

(that will be set when building the protocols), i.e., challenges are polynomials
with coefficients in {0,±1} as in the original protocol, but that only have 2Kc

nonzero coefficients in specific positions (cf. Section 2.3.2 for the definition of
the subring R(K)). Then, the set of relaxed challenges is C̄ ⊆ R(2

Kc )
5 .

3.4.2 Proving Knowledge of Bounded-Degree Secrets in a Subring

In our construction of an anonymous attribute token scheme, we will use the
previous protocol to let a prover prove knowledge of a [m; s] where m is a small
element in a subring R(2

Km )
q of Rq and with degree deg(m)< d for some constant

d < n. The fact that m is in the subring can be proved by exploiting the subring
structure. Indeed, the challenge space C = R(2

Kc )
3 is a subset of R(2

Km )
q when

Km ≥ Kc. To have the largest possible set of challenges, we set Kc = Km. By also
sampling the first component ym of the “masking” vector Y = [ym;ys] from the
subring R(2

Km ), the output vector [zm;zs] = [ym;ys] + c[m; s] will be such that
zm ∈ R(2

Km )
q . Sampling a discrete Gaussian distribution from the subring R(2

Km )
q

can be done by sampling from D
Z2Km ,σ

and mapping the 2Km coordinates into the
non-zero coefficients of the polynomials. The zero-knowledge property remains
guaranteed by rejection sampling.

Proving that m is of degree strictly less than d < n can be done by carefully
choosing the challenge set and the domain of the masking vector. In particular,
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if deg(m) ≤ dm and challenges are chosen to be polynomials of degree dc such
that dc + dm < d, then deg(mc) < d. Letting the prover sample the masking
vector ym from the polynomials of degree less than d and applying rejection
sampling as usual preserves the zero-knowledge property when computing zm =
mc+ym. By letting the verifier additionally check that deg(zm)< d, the extractor
is guaranteed to be able to extract a witness m̄= zm,1−zm,2 of degree strictly less
than d.

Note that sampling a discrete Gaussian distributions of polynomials of degree
at most d − 1 from the subring R(2

Km ) can be done by sampling from DZm,σ for
m = b(d − 1)n/2Kmc and mapping coordinates to coefficients. To have a clearer
notation, we define Yd to be the set of elements in the subring R(2

Km ) with degree
at most d−1, so that the distribution of the full masking vector Y can be written
as DY ×R,σ.

A possible drawback of this technique, however, is that it shrinks the size of
the challenge space, so that the proof may have to be repeated several times to
obtain soundness.

3.5 Relaxed Commitment

Relaxed Σ-protocols can be used to prove knowledge of a message and a valid
opening of a given commitment. For this composition to be meaningful, the com-
mitment should allow for “relaxed opening”, i.e., the opening algorithm should
accept messages and opening information that would not be accepted as input,
respectively produced as output, by the honest commitment algorithm. This en-
sures that the output of a successful extractor is meaningful in the context of the
commitment.

We define a correspondingly relaxed binding property that divides messages
into classes and only considers binding attacks for messages belonging to differ-
ent classes. We also present an instantiation of such commitment scheme over
lattices. The peculiar structure of our relaxed commitment scheme allows us to
build privacy-preserving signatures combining only such commitment with the
relaxed Σ-protocol previously defined and with the relaxed signature defined in
Section 3.6.

3.5.1 Commitments

A commitment scheme C is a triple of PT algorithms (ParGenc,Commit,OpenVf)
such that
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Parameters Generation. On input the security parameter λ and the message
space U , ParGenc(U , 1λ) outputs the parameters cpar of the scheme.

Commitment Generation. On input cpar and a message µ ∈ U , Commit(cpar,
µ) outputs a commitment c to µ with the corresponding opening informa-
tion o.

Opening. On input a commitment c, opening information o and a message µ,
OpenVf(cpar, c,µ, o) outputs 1 if o is a valid opening information for c w.r.t.
µ, and 0 otherwise.

A commitment scheme must satisfy three standard properties: correctness, the
hiding property, and the binding property.

Definition 3.14 (Correctness). A commitment scheme C is correct if for all µ ∈
U and for all λ:

Pr

�

OpenVf(cpar, c,µ, o) = 1 :
cpar← ParGenc(U , 1λ),
(c, o)← Commit(cpar,µ)

�

≥ 1− ν(λ) .

The hiding property ensures that a commitment value does not reveal infor-
mation about the committed message.

Definition 3.15 (Hiding). A commitment scheme C is hiding if for all PPT algo-
rithms A= (A1,A2)

�

�

�

�

Pr

�

b′ = b :
cpar← ParGenc(U , 1λ), (µ0,µ1, st)← A1(cpar),

b $←−{0, 1}, (c, o)← Commit(cpar,µb), b′← A2(st, c)

�

−
1
2

�

�

�

�

is negligible.

Finally, the commitment should be binding, meaning that an adversary can-
not open a commitment to different values.

Definition 3.16 (Binding). A commitment scheme C is binding if for all PPT
algorithms A, for all security parameters λ,

Pr

�

OpenVf(cpar, c,µ0, o0) = 1
∧OpenVf(cpar, c,µ1, o1) = 1

:
cpar← ParGenc(U , 1λ),
(c,µ0, o0,µ1, o1)← A(cpar)

�

≤ ν(λ) .
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3.5.2 Relaxed Commitments

A relaxed commitment scheme rC for message space U and relaxed message
space Ū ⊇ U consists of a triple of algorithms (ParGenc,Commit,OpenVf) such
that:

Parameters Generation. On input the security parameter λ and the message
space U , ParGenc(U , 1λ) outputs the parameters cpar of the scheme.

Commitment Generation. On input cpar and a message µ ∈ U , Commit(cpar,
µ) outputs a commitment c to µ with the corresponding opening informa-
tion o.

Opening. On input a commitment c, opening information ō and a message µ̄,
OpenVf(cpar, c, µ̄, ō) outputs 1 if ō is a valid opening information for c w.r.t.
µ̄ ∈ M̄ , and 0 otherwise.

A commitment scheme must satisfy the standard correctness and hiding prop-
erties that are recalled in Section 3.5.1. The binding property though needs to
be adapted to preserve a meaning in presence of relaxed opening. Therefore,
we define a partition of the relaxed message space Ū and deem an attack suc-
cessful if the adversary can open a commitment to two messages coming from
different components of the partition. The partition is defined by the message
relaxation function f :U → 2Ū that maps a message µ ∈ U to a partition com-
ponent f (µ) ⊆ Ū . We say that the commitment scheme is f -relaxed binding if no
adversary can open a commitment to two messages from different components.

Definition 3.17 (Relaxed Binding). A relaxed commitment scheme rC is f -bind-
ing for a function f :U 7→ 2Ū if for all polynomial-time A

Pr





OpenVf(cpar, c, µ̄0, ō0) = 1
∧OpenVf(cpar, c, µ̄1, ō1) = 1
∧>µ ∈ U : {µ̄0, µ̄1} ⊆ f (µ)

:
cpar← ParGenc(U , 1λ),
(c, µ̄0, ō0, µ̄1, ō1)← A(cpar)



≤ ν(λ) .

3.5.3 The Relation between Message and Challenge Spaces

As we already mentioned, we aim to design a commitment scheme where the
relaxed Σ-protocol from Section 3.4 can be used to prove knowledge of a com-
mitted message, where the message and opening information are part of the
witness. The problem with relaxed Σ-protocols is that they cannot guarantee the
extraction of a valid witness for the original relationR (in this case, the opening
verification relation), but only for the relaxed relation R̄ . The witnesses in the
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latter have larger norms and explicitly admit “small multiples”: if (S,1) is a valid
witness in R so that AS = U mod q, then (S̄ = c̄S, c̄) is a valid witness in R̄ so
that AS̄ = c̄U mod q, where c̄ ∈ C̄ = {c − c′ : c,c′ ∈ C} and where C is the
challenge space. Therefore, relaxing the opening verification of the commitment
scheme to accept extracted messages and opening information entails allowing
a commitment to be opened to a small multiple c̄m of the originally committed
message m ∈ U . In order to preserve a meaningful notion of relaxed binding, we
must choose the message and challenge spaces so that the sets of small multiples
of different messages are disjoint, i.e., that there do not exist distinct m,m′ ∈ U
and c,c′ ∈ C̄ such that mc=m′c′ mod q.

For efficiency reasons, we choose messages and challenges from the subring
R(2

Km )
3 so that they have at most 2Km nonzero coefficients. By choosing the mes-

sage and challenge spaces as

U = {1} ∪ {m ∈ R(2
Km )

3 : deg(m) = n/2 ∧ m is irreducible in Zq[x]}

C = {c ∈ R(2
Km )

3 : deg(c)< n/4}

Ū = {m̄ ∈ R(2
Km )

2r+1 : deg(m̄)< 3n/4} , r ≥ 1

C̄ = {c− c′ : c,c′ ∈ C} ,
(3.5)

we have that each m̄ ∈ Ū can have at most one irreducible factor of degree n/2
in Zq[x]. By defining the message relaxation function f as

f (m) = {m̄ ∈ Ū : m|m̄ in Zq[x]} for m 6= 1

f (1) = {m̄ ∈ Ū : 6 ∃m ∈ U \ {1} : m|m̄ in Zq[x]} ,
(3.6)

the unique factorization of polynomials in Zq[x] (cf. Section 3.2.4 in [Cohen,
2013]) guarantees that the partition components f (m) and f (m′) are disjoint
for any distinct m,m′ ∈ U .

To generate elements of U , we suggest to generate random monic polyno-
mials of degree n/2 in R(2

Km )
3 and test them for irreducibility, which can be done

efficiently (e.g., using Proposition 3.4.4 in [Cohen, 2013]). By Gauss’ formula
(cf. [Gauss, 2006]), the number of monic polynomials of degree n/2 that are
irreducible in Zq[x] is approximately qn/2/(n/2). Assuming that the irreducible
polynomials are “spread evenly” across Zq[x], one expects to sample an average
of n/2 polynomials until finding an irreducible one.
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3.5.4 Relaxed Commitment Scheme from Lattices

Our relaxed commitment uses message space U and relaxed message space Ū
defined in Equation (3.5). The algorithms of our relaxed commitment scheme
rC are as follows.

Parameters generation. ParGenc selects a uniformly random commitment key
C $←−R1×m

q and sets the parameters (cf. Section 3.5.3)

• Km and r, that define the message set U ,

• N̄c and N̄c,∞, that define the set of valid pairs message-opening infor-
mation OV .

These parameters should be such that:

logq(2nN̄ 2
c,∞) + logq(2)< logq(

q− 1

4rnN̄ 2
c,∞

) , 2nN̄c,∞(r + N̄c,∞)<
q− 1

2
.

It outputs cpar= (C, Km, r, N̄c, N̄c,∞).

Commitment generation. On input (cpar,m), the algorithm Commit checks
that m ∈ R(2

Km )
3 , that deg(m) = n/2, and that m is irreducible. It then

selects uniformly random E $←−R1×m
3 and b $←−R3, and constructs the com-

mitment as F := (C+mG+ E)b−1 mod q. It outputs (F, (1,E,b)).

Opening verification. On input a message m̄, a commitment F, and opening
values (c̄, Ē, b̄), OpenVf outputs 1 if F = (c̄C+ m̄G+ Ē)b̄−1 mod q, m̄ ∈ Ū
and (c̄, Ē, b̄) ∈ OV , where OV is the set of the valid openings:

OV =
¦

(c̄, Ē, b̄) ∈ C̄ × R1×m
q × Rq : ‖[Ē, b̄]‖2 ≤ N̄c ∧ ‖[Ē, b̄]‖∞ ≤ N̄c,∞

©

,

and C̄ was defined in Section 3.5.3.

It is easy to see that our construction satisfies correctness. We prove the hiding
property under a new assumption, defined as Assumption 1 below. To gain trust
in this assumption, we also give a selective variant in Assumption 2 that we show
to be equivalent to RLWE and that, through a complexity leveraging argument,
implies Assumption 1.

Assumption 1. Consider the following game between an adversary A and a chal-
lenger for fixed m ∈ N and distribution D:

1. The challenger outputs a uniformly random C $←−R1×m
q to A.
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2. A sends back m ∈ U .

3. The challenger samples a uniformly random bit b $←−{0, 1}. If b = 1, it
samples an error vector E $←−Dm and a uniform secret s $←−D, and sends
F := (C+mG−E)s−1 mod q to A. Otherwise, it sends a uniform F $←−R1×m

q
to A.

4. A sends a bit b′ to the challenger.

The advantage of A in winning the game is
�

�Pr(b = b′)− 1
2

�

�. The assumption
states that no PPT A can win the previous game with non-negligible advantage.

Assumption 2 (Selective variant of Assumption 1.). Consider the game
of Assumption 1, but with steps 1 and 2 switched, meaning, A outputs m ∈ U
before being given C:

1. A sends back m ∈ U .

2. The challenger samples a uniformly random C $←−R1×m
q and a uniformly ran-

dom bit b $←−{0,1}. If b = 1, it samples an error vector E $←−Dm and a
uniform secret s $←−D, and sends C and F := (C+mG− E)s−1 mod q to A.
Otherwise, it sends a uniform F $←−R1×m

q to A.

3. A sends a bit b′ to the challenger.

The assumption states that no PPT adversary can win this game with non-negligi-
ble advantage.

Assumption 2 is at least as hard as RLWE with m samples and distribution
D. It is then possible to reduce Assumption 2 to 1 with a complexity leveraging
argument by guessing the value of m ∈ U .

Theorem 3.18. Assumption 2 holds for m ∈ N and distribution D if the RLWEm,D
assumption holds.

Proof. Let A be an attacker breaking Assumption 2. Then it is possible to design
a PPT algorithm B that breaks RLWEm,D exploiting A in essentially the same time
and with the same advantage as A. On input an instance (a1,b1), . . . , (am,bm),
algorithm B runs A to obtain m. It then sets A = [a1; . . . ;am], B = [b1; . . . ;bm],
C := B −mG mod q and F := A, and feeds (B,F) back to A. When A outputs
b′ = 1, then B decides that its input came from RLWEm,D , otherwise that it was
uniform.
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Note that if (a1,b1), . . . , (am,bm) come from the uniform distribution over
R2

q, then also C and F are uniformly distributed in R1×m
q . If they come from the

RLWE distribution, however, then there exist an s and E sampled from D and
Dm, respectively, such that As+ E≡q B. Therefore, A≡q

B−E
s ≡q

C+mG−E
s .

The runtime of B is linear in the runtime of A, and its success probability is
εA + 1/2, where εA is the advantage of A in breaking Assumption 2.

The proof of the following theorem follows from a straightforward complexity
leveraging argument by guessing the value of m ∈ U .

Theorem 3.19. Let A be a PPT algorithm that has advantage ε in breaking As-
sumption 1 in time t. Then there exists a PPT algorithm B with running time t and
advantage ε

|U | in breaking Assumption 2.

Proof. Algorithm B simulates the interaction in Assumption 2 as it follows. First,
it guesses a polynomial m̄ ∈ U and sends it to the challenger. Upon receiving
C,F from the challenger, B forwards C to A and receives back m. If m 6= m̄, B
aborts. Otherwise, it sends F to A. Finally, when A outputs a bit b, B forwards it
to the challenger. The success probability of B is the success probability εA of A
times the probability of correctly guessing m, i.e., εA

|U | . The runtime of B is linear
in the runtime of A.

We are now ready to prove the hiding property of the commitment scheme
under Assumption 1.

Theorem 3.20 (Hiding). The relaxed commitment scheme above is computation-
ally hiding when Assumption 1 holds for m and the uniform distribution over R3.

Proof. Given A breaking the hiding property of the commitment scheme, con-
sider the following adversary B in the game of Assumption 1. Upon receiving
C ∈ R1×m

q from the challenger, B sends it to A as part of the public parame-
ters cpar. When A sends challenge messages m0, m1, B samples a random bit
b $←−{0, 1} and sends mb to the challenger. Upon receiving F, B sends it to A as
the commitment. When A outputs a bit b′ = b, B outputs b′′ = 1 to the chal-
lenger, otherwise b′′ = 0. It is clear that when B’s input F is uniform, then A’s
view is independent of b, so that A has zero advantage guessing b, while if B’s
input is based on mb, it is distributed exactly as a commitment of mb. The ad-
vantage of B in breaking Assumption 1 is therefore half the advantage of A in
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breaking the hiding property:

Pr[B succeeds] =

= Pr
�

b′ = b : RLWEm,U (R3)

�

Pr
�

RLWEm,U (R3)

�

+Pr[b′ = b : U (R3)]Pr[U (R3)]

=
�

ε+
1
2

�

·
1
2
+

1
2
·

1
2

=
ε

2
+

1
2

where the first equality follows from the definition of advantage. The runtime of
B is linear in the runtime of A, hence B runs in polynomial time.

Remark that relying on the hardness of RLWE with the uniform distribution
is enough. Indeed, that particular instantiation of RLWE is hard as long as it only
outputs a constant number of samples, and this is enough for the reduction, as
to generate a commitment only m samples from As,U (R3) are necessary.

Finally, the relaxed binding property holds under the RSIS assumption.

Theorem 3.21 (Relaxed Binding). The relaxed commitment scheme above is f -
relaxed binding for the function f in Equation (3.6) if the RSISm+1,q,βc

assumption
holds for βc = 2nN̄c,∞(r + N̄c,∞).

Proof. Assume that there exists a PPT algorithmA that breaks the f -relaxed bind-
ing property. We construct an algorithm B that solves the RSISm+1,q,βc

problem
as follows.

On input [A 1] ∈ R1×(m+1)
q , algorithm B runs A on input parameters cpar that

include C= A. When A outputs a commitment F, two distinct messages m̄0, m̄1 ∈
Ū , and two openings (c̄0, Ē0, b̄0) and (c̄1, Ē1, b̄1) such thatOpenVf(cpar,F, m̄i, (c̄i,
Ēi, b̄i)) = 1 for i = 0,1. We have that

F ≡q (c̄0C+ m̄0G+ Ē0)b̄
−1
0 ≡q (c̄1C+ m̄1G+ Ē1)b̄

−1
1

that rearranging the terms yields

(b̄1c̄0 − b̄0c̄1)A+ (b̄1m̄0 − b̄0m̄1)G+ b̄1Ē0 − b̄0Ē1 = 0 mod q . (3.7)

Recalling that G= [1 dq1/me . . . dq(m−1)/me], the first component of the above vec-
tor is

(b̄1c̄0 − b̄0c̄1)a1 + b̄1m̄0 − b̄0m̄1 + b̄1ē0,1 − b̄0ē1,1 = 0 mod q .

where a1, ē0,1, and ē1,1 are the first components of A, Ē0, and Ē1, respectively.
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Setting S := [b̄1c̄0−b̄0c̄1 ; 0 ; . . . ; 0 ; b̄1m̄0−b̄0m̄1+b̄1ē0,1−b̄0ē1,1], we have
that [A 1]S= 0 mod q, as required, so B outputs S as its RSISm+1,q,βc

solution.
To complete the proof we have to show that S 6= 0m (we use the equality here,

as S has infinity norm bounded by βc < q) and that ‖S‖ ≤ βc.
First, assume that S= 0m. This would mean in particular that b̄1c̄0−b̄0c̄1 = 0.

Therefore, from Equation (3.7) it follows that

(b̄1m̄0 − b̄0m̄1)G+ b̄1Ē0 − b̄0Ē1 = 01×m mod q . (3.8)

The proof that Equation (3.8) does not hold proceeds in 2 steps:

1. we show that b̄1m̄0 − b̄0m̄1 6= 0.

2. we prove that (b̄1m̄0 − b̄0m̄1)G 6= −b̄1Ē0 + b̄0Ē1 mod q.

Indeed, if b̄1m̄0−b̄0m̄1 = 0, then multiplying both sides with c̄0 and substitut-
ing b̄1c̄0 = b̄0c̄1 (that follows from b̄1c̄0 − b̄0c̄1 = 0) yields b̄0(c̄1m̄0 − c̄0m̄1) = 0,
implying that either b̄0 = 0 or c̄1m̄0 = c̄0m̄1.

The former is not possible because b̄−1
0 must exist in order to pass the opening

verification algorithm. The latter is impossible as well, because c̄0, c̄1 are poly-
nomials of degree less than n/4 (cf. the definition of C̄ in Section 3.5.3), while
m̄0, m̄1 ∈ Ū are of degree less than 3n/4, so that their products c̄1m̄0, c̄0m̄1 are
of degree less than n. Therefore, if c̄1m̄0 = c̄0m̄1 in Rq = Zq[x]/〈xn + 1〉, then
also c̄1m̄0 = c̄0m̄1 in Zq[x].

However, to be a valid f -binding attack, there cannot exist an m ∈ U so that
{m̄0, m̄1} ∈ f (m). This implies that at least one message m̄b ∈ {m̄0, m̄1} has an
irreducible divisor m of degree n/2 that doesn’t divide m̄1−b. Since c̄1m̄0 and
c̄0m̄1 are polynomials of degree less than n and Zq[x] is a unique factorization
domain, it must hold that c̄1m̄0 6= c̄0m̄1, and thereby that b̄1m̄0 − b̄0m̄1 6= 0 in
Equation (3.8).

Finally, we prove that (b̄1m̄0− b̄0m̄1)G 6= −b̄1Ē0+ b̄0Ē1 mod q by proving that
the there exists a component of the vector on the left-hand side that has larger
coefficients than the corresponding component of the vector on the right-hand
side.

Let gi = dq(i−1)/me, i = 1, . . . , m. We can rearrange Equation (3.8) so that the
components of the vectors G and E satisfy:

(b̄1m̄0 − b̄0m̄1)g j = b̄0ē1, j − b̄1ē0, j mod q ∀ j = 1, . . . , m. (3.9)

Applying Lemma 2.12 for all i = 1, . . . , m it holds ‖b̄0ē1,i − b̄1ē0,i‖∞ ≤ 2N̄ 2
c,∞n,

as we know from the definition of OV that the infinity norm of E and b should
be less than N̄c,∞, and that N̄ 2

c,∞n< q−1
2 .
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Since b̄1m̄0 − b̄0m̄1 6= 0, this polynomial must contain at least one non-zero
monomial aix

i. Let k be such that qk/m ≤ ai ≤ q(k+1)/m, k = 0, . . . , m − 1. As
Equation 3.9 holds for all j, it holds in particular for j such that

1≤ j ≤min{m− 1+ k, m(1− logq(2rnN̄c,∞))− 1} .

Such j exists as k ∈ {1, . . . , m} and m(1− logq(2rnN̄c,∞))− 1≥ 2.
Then the coefficient of xi in the left-hand side of Equation (3.9) is aig j such

that

1. 2nN̄ 2
c,∞ < ‖aig j‖∞,

2. ‖aig j‖∞ ≤
q−1

2 ,

3. j ∈ {1, . . . , m} ⊂ N and g j = dq( j−1)/me.

We show in the following that such j exists.
Observe that ‖aig j‖∞ ≥ qk/mq( j−1)/m. Hence, Condition 1 implies that

q(k+ j−1)/m > 2nN̄ 2
c,∞ . (3.10)

From ‖aig j‖∞ ≤ ‖ai‖∞q j/m ≤ 2rnN̄ 2
c,∞q j/m and Condition 2 it follows that

q j/m2rnN̄ 2
c,∞ ≤

q− 1
2

. (3.11)

Putting the inequalities (3.10) and (3.11) together yields

2nN̄ 2
c,∞

q(k−1)/m
< q

j
m ≤

q− 1

4rnN̄ 2
c,∞

.

Given that k = 1, . . . , m− 1 and j ∈ N the previous inequality becomes:

dm logq(2nN̄ 2
c,∞)e< j ≤ m logq(

q− 1

4rnN̄ 2
c,∞

) ,

i.e., (remember that m= log2 q)

logq(2nN̄ 2
c,∞) + logq(2)< logq(

q− 1

4rnN̄ 2
c,∞

) .

The latter inequality is satisfied by the parameters by construction.
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Finally, we have to bound the norm of S. Applying Lemma 2.12 and the
triangular inequality, and recalling that to be a valid opening value ‖[E b]‖∞ ≤
N̄c,∞ we obtain that:

‖S‖∞ ≤max{‖b̄1c̄0 − b̄0c̄1‖∞, ‖b̄1m̄0 − b̄0m̄1 + b̄1ē0,1 − b̄0ē1,1‖∞}
≤max{2(N̄c,∞2n), 2(N̄c,∞rn+ N̄ 2

c,∞n)}

= 2nN̄c,∞ ·max{2, (r + N̄c,∞)}
= 2nN̄c,∞(r + N̄c,∞) =: βc ,

where the last equality holds because r + N̄c,∞ > 2.

Finally, the following property is needed when using this commitment scheme
to build relaxed ZK proofs.

Lemma 3.22. Let cpar be defined as in Section 3.5.4. Assume that there exists a
PPT algorithm A that chooses m ∈ U and is then able to distinguish between the
following two distributions:

• distribution 1: C and F uniformly sampled vectors in R1×m
q .

• distribution 2: C $←−R1×m
q , F= b−1(C+mG+E) mod q, where G is the gadget

matrix and E $←−R1×m
3 .

Then there exists a distinguisher D that is able to solve the RLWEm,U (Rq) decisional
problem exploiting A with the same success probability.

Proof. The distinguisher D gets as input from the RLWE game a pair (A,B) ∈
R1×m

q × R1×m
q and has to distinguish whether it was sampled according to the

uniform or RLWE distribution. To do that, it feeds A as input the pair (C,F),
where C := B−mG mod q and F := A mod q. Then, B returns distribution 1 if
A returns uniform, and distribution 2 if A returns RLWE. Its success probability is
the same as A. Indeed, if (A,B) are uniformly distributed, then C (and obviously
F) are uniformly distributed as well. In the other case, there exists an s ∈ R3 such
that C= B−mG mod q = As+E−mG mod q, i.e., F= A= (C+mG−E)s−1 mod q.
Hence (C,F) is distributed exactly as in distribution 2.

3.6 Relaxed Signature

We now introduce a signature scheme for which the protocol rΣ from Section 3.4
can be used to prove knowledge of a signature on a committed message. Simi-
larly to the relaxed commitments of the previous section, we also define relaxed
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signature schemes to accommodate for the relaxed extraction of the rΣ protocol.
More specifically, the verification algorithm is relaxed to accept messages and
signatures that could never be signed, respectively produced, by the honest sign-
ing algorithm. At the same time, we also relax the unforgeability notion so that
the adversary’s forgery cannot be on a message that is within the span, through
a function f , of its previous signing queries.

3.6.1 Signatures

A signature scheme S for a message setM is a 4-ple of PPT algorithms (SParGen,
SKeyGen,Sign,SVerify) such that

Parameters Generation. On input the security parameter λ, SParGen outputs
the parameters of the scheme spar.

Key Generation. On input spar, SKeyGen outputs a signing key ssk and a veri-
fication key svk.

Signing. On input a message µ ∈M and the signing key ssk, it outputs a signa-
ture σ.

Verification. On input a signature σ, a message µ, and a verification key svk,
SVerify outputs 1 if σ is a valid signature on µ w.r.t. svk, 0 otherwise.

A signature scheme is correct if the verifier always accepts (i.e., outputs 1)
honestly generated signatures.

Definition 3.23 (Correctness). A signature scheme S is correct if for all security
parameters λ ∈ N and for all messages µ ∈M it holds that:

Pr



1← SVerify (svk,µ,σ) |
spar← SParGen(1λ),

(ssk, svk)← SKeyGen(spar),
σ← Sign(ssk,µ)



= 1 .

Security requires it to be impossible to forge a valid signature w.r.t. svk with-
out knowing the corresponding ssk (this notion was introduced by Goldwasser
et al. [1988]).

Definition 3.24 (Unforgeability). A signature scheme S is said to be existentially
unforgeable against (adaptive) chosen-message attacks (euf-acma) if a PPT ad-
versary A has negligible probability in winning the following game:
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Experiment Expeuf−acma
A

(1λ)
spar← SParGen(1λ)
(ssk, svk)← SKeyGen(spar)
(µ∗,σ∗)← AOS(spar, svk)
If 1← SVerify (svk,µ∗,σ∗)

and >σ such that (µ∗,σ) ∈QS,
then return 1 else return 0.

Oracle OS(µ)
σ← Sign(ssk,µ)
QS ←QS ∪ {(µ,σ)}
Return σ .

A stronger notion of unforgeability considers a valid forgery even the case
in which the adversary outputs a fresh signature on an already signed message.
This notion is called strong unforgeability under chosen-message attacks and was
introduced by An et al. [2002]. However, this seems impossible to guarantee
in presence of relaxed protocols from lattice-based hardness assumptions, hence
we only consider (and “relax”) the weaker notion.

3.6.2 Relaxed Signatures

A relaxed signature scheme associated with message spaceM and relaxed mes-
sages space M̄ ⊇ M consists of four PPT algorithms (SParGen,SKeyGen,Sign,
SVerify):

Parameters Generation. The parameter generation algorithm SParGen takes as
input the security parameter 1λ, and outputs the system parameters spar.

Key Generation. The key generation algorithm SKeyGen takes as input spar,
and outputs a signing key ssk and a verification key svk.

Signing. The signing algorithm Sign takes as input ssk and a message µ ∈ M ,
and outputs a signature σ.

Verification. The verification algorithm SVerify takes as input svk, a message
µ̄ ∈ M̄ and a signature σ̄, and returns 1 if the signature is valid or 0 if it
is invalid.

As in the case of standard signatures, correctness requires that SVerify(svk, M ,
σ) = 1 for all messages µ ∈ M , for all security parameters λ ∈ N, for all
(ssk, svk) generated by SKeyGen(spar), and for all σ generated honestly running
Sign(ssk, M).

Relaxed unforgeability is parameterized by a message relaxation function g :
M → 2M̄ .The adversary in the g-relaxed unforgeability game below wins the
game if it can output a valid signature on a message µ̄ ∈ M̄ that is not in the
span through g of its signature queries.
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Definition 3.25 (Relaxed Unforgeability). A relaxed signature scheme
(SParGen,SKeyGen,Sign,SVerify) is g-relaxed existentially unforgeable against
(adaptive) chosen-message attacks (g-euf-acma) if all PPT A have negligible
probability in winning the following game:

Experiment Expg−euf−acma
A

(1λ)
spar← SParGen(1λ)
QS ← ;
(ssk, svk)← SKeyGen(spar)
(µ̄, σ̄)← AOS(spar, svk)
If 1← SVerify (svk, µ̄, σ̄)

and such that µ̄ /∈ g(QS),
then return 1 else return 0.

Oracle OS(µ)
σ← Sign(ssk,µ)
QS ←QS ∪ {µ}
Return σ .

The concept of relaxed signatures is somewhat reminiscent of a technique
used for proofs of knowledge of a strong-RSA-based signature in groups of un-
known order [Camenisch and Lysyanskaya, 2003]. Here, one has to prove that
the message lies in a certain space, but the correctness of such a proof is only
guaranteed when the actual message lies in a smaller interval. The approach
was used in several privacy-preserving protocols, but was never formalized and
did not require an adapted unforgeability notion.

3.6.3 Relaxed Signature Scheme from Lattices

We describe a relaxed signature scheme with message space M = {(m,α) ∈
U × {0, 1}∗}, where U ⊆ R3 is a (small) set of binary polynomials (e.g., U can
be set as in Equation (3.5)). In a typical use case, m is a user identity and α
an attribute value assigned to that user. Our scheme combines a weakly secure
version of Boyen signatures [Boyen, 2010] to sign user identities and Gentry-
Peikert-Vaikuntanathan signatures [Gentry et al., 2008] to sign attribute values.

To use the rΣ protocol from Section 3.4 to prove knowledge of a signature
for a committed user identity m, we relax the verification algorithm so that the
(relaxed) witness that can be extracted from a valid rΣ protocol is still considered
a valid signature for a message from the relaxed message space M̄ = Ū ×{0, 1}∗,
where Ū is as defined in Equation (3.5).

Our relaxed signature scheme rS is described as follows:

System Parameters. Parameters spar = (n, q, m,σt ,σ, r, Ns, N̄s, N̄s,∞, C̄ ,C) in-
clude a uniformly random matrix C ∈ R1×m

q , a gadget vector G of length
m as defined in Theorem 2.17, and a hash function H : {0,1}∗ → Rq. It
also contains the parameters listed below.
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• σt is the standard deviation of the (Gaussian) distribution of the trap-
door,

• σ =
p

n log q(log n)3/2 is the standard deviation of the (Gaussian)
distribution of the signature,

• r is a bound on the norm of user identities m̄ (as in Equation (3.5)),

• Ns = 1.05σ
p

n(2m+ 2) is a bound on the norm of honestly created
signatures,

• N̄s, N̄s,∞, and C̄ are bounds on the norm of components of signatures
accepted by the relaxed verification algorithm, N̄s ≥ Ns, N̄s,∞ > 8σ ,
C̄ ≥ 1

• C , and C̄ are challenge spaces defined in Equation (3.5).

When discussing the correctness of the signature, we give precise formulas
for all the previous parameters but N̄s, N̄s,∞, and C̄ . These last three will be
discussed in Section 3.7. For correctness to hold, we only need to impose
that N̄s > Ns and C̄ ≥ 1. From the unforgeability of the signature, we get
the following bound

2(2Km − 1)< (q− 1)/2 , 8n2mC̄σt N̄s,∞ ≤
q− 1

2
.

Key Generation. The signer chooses a uniform polynomial a ∈ Rq and sets A :=
[a 1] ∈ R1×2

q . The secret signing key is sampled as X $←−D2×m
Rq ,σt

. Then the
public verification key is the vector

V :=
�

A B C 1
�

=
�

A AX+G C 1
�

∈ R1×(3+2m)
q .

Signing. If µ = (m,α) /∈ M then abort. Otherwise, the signer calculates S ←
SampleD

��

A B C+mG
�

, H(α),σ
�

(where SampleD is defined in Lem-
ma 2.18) and outputs a signature σ = (1, [S;0],1). The entry (m,α,σ)
is stored so that the same signature σ is returned next time that (m,α) is
queried.

Verification. Verification of a signature σ̄ = (c̄1, S̄, c̄2) on message µ̄ = (m̄,α)
returns 1 if

•
�

A B C+ m̄G 1
�

S̄= c̄2H(α) mod q,

• µ̄ ∈ M̄ ,
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• σ̄ ∈ {(c̄1, S̄, c̄2) ∈ C̄ ×R3+2m
q ×Rq : ‖S̄‖2 ≤ N̄s ∧ ‖S̄‖∞ ≤ N̄s,∞ ∧ ‖c̄2‖∞

≤ C̄} 2.

Otherwise, it returns 0.

Remark 8. The peculiar structure of U is needed to compensate for the loose
security definitions, in particular for the relaxed binding property of the com-
mitment scheme (cf. the construction of Anonymous Attribute Tokens in Chapter
4).

In the case of group signatures (cf. Sections 5.3 and 5.5) this is not neces-
sary anymore. Indeed, the commitment scheme is only used to hide part of the
message (see Section 3.7), while a verifiable encryption scheme compensates for
the relaxed special soundness of the Σ-protocol, allowing to recover a signed
message in the original message space. Hence, U can be the whole subring,
U = R(16)

3 . Moreover, in the context of group signatures, an element m ∈ U
encodes a user’s identity, but there is no need for the bit string. Therefore, we
substitute the output of the hash of the bit-string with a constant polynomial
u chosen uniformly at random in Rq during the key generation and sign only
messages in M = U . The modified scheme is trivially still unforgeable under
the same assumption in the Random Oracle Model, as it is simply the original
signature scheme where messages are restricted to be in U ×{0}.

3.6.4 Correctness

To prove the correctness of rS, we analyze the choices of the parameters.

Theorem 3.26. The relaxed signature scheme rS is correct.

Proof. The proof has two steps:

1. verify that it is possible to produce a signature, and

2. verify that a honestly generated signature satisfies the requirement of the
verification algorithm.

The standard deviationσ =
p

n log q(log n)3/2 satisfies the hypothesis of The-
orem 2.17, hence we are able to sample from D⊥[A AR+G],H(α),σ.

By Lemma 2.18 we are also able to sample S from D⊥[A AR+G U+mG],H(α),σ.

2We define the set with respect to both norms because in different constructions we have
switched between the two norms.
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Regarding the norm of a signature, Lemma 2.16 guarantees that the norms of
a honestly generated signature can be bounded as ‖S‖2 ≤ 1.05σ

p

n(2m+ 2) =
Ns < N̄s and ‖S‖∞ ≤ 8σ < N̄s,∞ with high probability. Finally, any message in
MKm

is also in M̄Km
by construction. Observe that C̄ ≥ 1, hence the verification

algorithm accepts any signature generated by Sign.

3.6.5 Unforgeability

We prove the g-unforgeability of our rS scheme under Assumption 3 described
below. Assumption 3 is very similar to the g-unforgeability experiment itself, but,
similarly to what we did for the hiding property of the rC scheme, we gain trust
in the assumption by introducing a selective variant in Assumption 4 that we
show to be implied by the RLWE and RSIS assumptions. A complexity leveraging
argument can be used to show that Assumption 3 holds when Assumption 4
holds.

Essentially, Assumption 3 states that it should be hard to find a short vector
in some coset L ⊥(M)+ c2H(α) where M :=

�

A B c1C+mG 1
�

(for some c1,
c2 and m chosen by the solver) without knowing a trapdoor for M.

Assumption 3. Consider the following game between an adversary A and a chal-
lenger for fixed m ∈ N and distribution D:

1. The challenger chooses a $←−Rq, C $←−R1×m
q , and X $←−D2×m

Rq ,σt
. It sets A :=

�

a 1
�

and B := AX+G, where G= [1 dq1/me . . . dq(m−1)/me].

2. The challenger runs A on input
�

A B C 1
�

, giving it access to a random
oracle H : {0,1}∗→ Rq and an oracle OS that on input m ∈ U and a string
α ∈ {0,1}∗ outputs a small vector

�S
1

�

in L ⊥
��

A B C+mG 1
��

+H(α)
such that ‖S‖2 ≤ NS.

3. Algorithm A outputs m̄ ∈ Ū , c̄1, c̄2 ∈ C̄ , and a vector S̄. Algorithm A wins
the game if (c̄1, S̄, c̄2) ∈ Σ̄, m̄ ∈ Ū , such that S̄ is a short vector of the coset
L ⊥

��

A B C̄ 1
��

+ c2H(α)) where C̄ = c̄1C + m̄G, and m̄c̄−1
1 was not

queried to the OS oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.

Assumption 4 (Selective variant of Assumption 3.). Consider the following game
between an adversary A and a challenger for fixed m ∈ N and distribution D:
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1. On input only the security parameter λ, A outputs a message m̄ ∈ Ū .

2. The challenger aborts if m̄ /∈ Ū . Otherwise, it chooses a $←−Rq, C $←−R1×m
q ,

and X $←−D2×m
Rq ,σt

. It sets A :=
�

a 1
�

and B := AX+G, where G = [1 dq1/me
. . . dq(m−1)/me].

3. The challenger runs A on input
�

A B C 1
�

, giving it access to a random
oracle H : {0, 1}∗→ Rq and an oracle OS that on input m ∈ U and a string
α ∈ {0,1}∗ outputs a small vector

�S
1

�

in the cosetL ⊥
��

A B C+mG 1
��

+H(α) such that ‖S‖2 ≤ NS.

4. Algorithm A outputs c̄1, c̄2 ∈ C̄ , and a vector S̄. Algorithm A wins the
game if (c1,S,c2) ∈ Σ̄, such that S̄ is a short vector in L ⊥

��

A B C̄ 1
��

+c2H(α))where C̄= c̄1C+m̄G, and m̄c̄−1
1 was not queried to the OS oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.

In the following theorem, we show that Assumption 4 is implied by the RSIS
and RLWE assumptions.

Theorem 3.27 (Hardness of Assumption 4). Let A be a probabilistic algorithm
that breaks Assumption 4 in time t with probability εA. Then there exists a prob-
abilistic algorithm B that either breaks RLWEm,Dσ

in time t with probability εA or
RSIS3+m,q,βs

where βs = N̄s,∞(2+ C̄n) + 8n2mσt N̄s,∞(2+ C̄) in time t with proba-
bility εB ≥ (εA−εRLWE)/(2·|C̄ |), where εRLWE is the probability of breaking RLWE1,χ

where either χ = D
σt

or χ = D
σ

problem over Rq in time t, in the Random Oracle
Model.

Proof. We construct the algorithm B as follows. Let m̄ ∈ Ū be the message
output by A at the beginning of the game. Algorithm B is given a vector A′ =
[a1,a2, . . . ,am+1] ∈ R1×(2+m)

q as RSIS challenge. To solve RSIS it should find a

short vector Y ∈ R3+m
q such that

�

A′ 1
�

Y = 0 mod q. First, B constructs A :=
�

am+1 1
�

∈ R1×2
q and B := [a1,a2, . . . ,am] ∈ R1×m

q , and samples R from D2×m
R3,σt

.

It guesses c̄1
$←−C̄ as part of the solution of Assumption 4 that A will output in

step 3. Then algorithm B constructs the public parameter as
�

A B C 1
�

:=
�

A B AR− m̄c̄−1
1 G 1

�

. Finally, it sends
�

A B C 1
�

to A and simulates the
random oracle OH and the signing oracle OS as follows.
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Random Oracle queries. When A makes a query H(α), B returns its previous
response if α was already queried, otherwise it programs H(α) as fol-
lows. It samples S = [S1;S2;S3] from D2+2m

q,σ , and programs H(α) :=
�

A B AR
�

S mod q. It stores (α,S1,S2,S3) and returns H(α) to A.

Signing Oracle queries. When A makes a query to OS with input µ= (m,α), B
first checks that µ ∈M . It then proceeds as follows:

• If m = c̄−1
1 m̄ mod q, B simulates a hash query OH(α) as described

above and reads the corresponding S1, S2, S3 from the list. Then it
returns σ := (1, [S1;S2;S3;0],1). Remark that (m,α) ∈ M implies
m= c̄−1

1 m̄ mod q ∈ U .

• If m 6= c̄−1
1 m̄ mod q, B queries H(α) to OH . It samples S2

$←−Dm
σ

and
sets v= BS2 mod q. Finally, it samples [S1; S3] from
D⊥
[A AR+(m−c̄−1

1 m̄)G],H(α)−v,σ
using R as trapdoor, and it returns σ := (1,

[S1;S2;S3;0],1). Given that σ satisfies the hypothesis of Theorem
2.17, this sampling procedure is possible if m− c̄−1

1 m̄≡q c̄−1
1 (c̄1m−m̄)

is invertible. This is true by Lemma 2.11 as the numerator has infinity
norm bound by

‖c̄1m− m̄‖∞ ≤ ‖c̄1m‖∞ + ‖m̄‖∞
≤ ‖c̄1‖∞‖m‖1 + ‖m̄‖∞
≤ 2 · 1 · (2Km − 1) + r

<
Æ

q/2

where the second inequality holds by Lemma 2.12 as 2 ·1 ·(2Km−1)<
(q−1)/2. As a side note, this is compatible with the bounds imposed
by the commitment scheme (cf. Section 3.5.4). The oracle returns
σ := (1, [S1; S2; S3; 0],1).

B is computationally indistinguishable from the challenger in Assumption 4 un-
der RLWE. This result is summarized in Theorem 3.28.

Upon receiving a valid pair
�

(m̄,α′), (c′1,S′,c′2)
�

from A, B aborts if c′1 is not
the value that it guessed before. Otherwise, substituting C= AR−c′1

−1m̄G mod q
in
�

A B c′1C+ m̄G 1
�

S′ = c′2H(α′) mod q yields:
�

A B c′1AR 1
�

S′ = c′2H(α′) mod q (3.12)

as c′1C+ m̄G= c′1AR− c′1m̄c′1
−1G+ m̄G= c′1AR.

Now, algorithm B simulates a query OH(α′) and recovers (α,S1,S2,S3) from the
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list. For T = [T1;T2] = [S1 + RS3;S2] we have that
�

A B
�

T = H(α′) mod q.
Combining this with Equation (3.12) and decomposing S′ as S′ = [S′1;S′2;S′3; s′4]
yields:

�

B A
�





S′1 + c′1RS′3 − c′2T1 +

�

0
s′4

�

S′2 − c′2T2



= 0 mod q . (3.13)

Denote the column vector on the left-hand side as V= [V1;V2].
If V 6= 0(m+3)×1 mod q, then we have that

�

B A
�

V=
�

A′ 1
�

V= 0 mod q, so
that B obtained a solution for RSIS with norm bounded by βs. By the triangular
inequality, Lemma 2.12 the following bound holds:

‖V‖∞ ≤ max

�

‖S′1 + c̄1RS′3 − c̄2T1 +

�

0
s′4

�

‖∞,‖S′2 − c̄2T2‖∞

�

≤ ‖S′1 + c′1RS′3 − c′2T1 +

�

0
s′4

�

‖∞

≤ ‖S′1‖∞ + ‖c
′
1RS̄3‖∞ + ‖c′2S1‖∞ + ‖c′2RS3‖∞ + ‖s′4‖∞

≤ N̄s,∞ + n2m · 2 · (8σt) · N̄s,∞ + C̄ N̄s,∞n+ n2m · C̄ · (8σt) · N̄s,∞ + N̄s,∞

= N̄s,∞(2+ C̄n) + 8n2mσt N̄s,∞(2+ C̄)

=: βs

where we can use Lemma 2.12 as 8n2mC̄σt N̄s,∞ ≤
q−1

2 . Hence, ‖V‖∞ ≤ β .
Finally, we need to check that the vector V is nonzero. If V= 0(m+3)×1 mod q,

then we have in particular that V1 = 02×1 mod q and V2 = 0m×1 mod q, from
which it follows that S′1 + c′1RS′3 +

� 0
s′4

�

= c′2T1 mod q and S′2 = c′2T2 mod q. Mul-

tiplying both sides of both equations with c′2
−1 yields T1 = c′2

−1(S′1 + c′1RS′3 +
� 0

s′4

�

) mod q and T2 = c′2
−1S′2 mod q. Recall that ‖c′2‖2 < q/2 and q is a prime,

q ≡ 5 mod 8, therefore c′ is invertible by Lemma 2.11. Now, consider the de-
terministic function h : R2+m

q → Rq where h(Y) :=
�

A B
�

Y mod q. By Lemma
2.5, for a randomly chosen Y there exists with probability at least 1 − 2−λ an-
other vector Y′ 6= Y such that h(Y) = h(Y′). The parameter λ should be such that
|Rm+2

q | ≥ 2λ|Rq|, thus λ≤ log q·n(m+1). Moreover, A’s view is (computationally)

independent of B’s choice for T, because only its image h(T) =
�

A B
�

T= H(α′)
was output by the hash function and because T was never used to simulate a
query to OS. Indeed, the only query that would involve T in the simulation is
OS((m̄c′1

−1,α′)):

• if m̄c′1
−1 ∈ U , A never queried for (m̄c′1

−1,α′) (otherwise the output of A
would not be a valid solution);
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• if m̄c′1
−1
/∈ U this query never happened, as (m̄c′1

−1,α′) would not be ac-
cepted as input by OS.

Hence, the probability that A outputs a T′ = [c′2
−1(S′1+c′1RS′3) ; c′2

−1S′2] such that
T′ = T is at most 1

2 .
Therefore, B outputs a nonzero solution of RSIS with probability εB ≥

εA−εRLWE

2·|C̄ |
in time t, where εRLWE is the probability of breaking the RLWE problem over Rq

in time t.

In the following we prove that an algorithm A against Assumption 4 cannot
distinguish B from a challenger behaving as specified by Assumption 4. The
result is stated in the following theorem.

Theorem 3.28. Assume there exists an adversary A is able to distinguish the sim-
ulator B in the proof of Theorem 3.27 from a honest signer. Then there exists a
distinguisher D that can solve RLWE1,χ where either χ = D

σt
or χ = D

σ
exploiting

A with advantage εD ≥ m/4εA

Indistinguishability relies on RLWE, that is a computational assumption. It
would be also possible to have statistical indistinguishability by adapting the
results from [Gentry et al., 2008] to rings, but this would require A to have a
larger dimension (namely, A should be in R1×`

q where `≥ 2 log(q) with the given
parameters settings).

To make the proof easier to understand, we split it in two different lemmas,
Lemma 3.30 and Lemma 3.31. We start by proving a warm-up lemma, that
shows thatA cannot distinguish the public parameters generated by the simulator
B from honestly generated ones. The lemma itself is not used in the proof of
Theorem 3.28, but the techniques used to prove it are recycled when proving the
theorem.

Lemma 3.29. Let n be a power of 2, q a prime such that q ≡ 5 mod 8, r is defined
as in Section 3.6.3, and σt > 0. If there exists a PPT algorithm A that can win the
experiment in Figure 3.4 with advantage εA, then there exists a PPT algorithm B

that can solve RLWE1,χ where χ = D
σt

exploiting A with advantage εB ≥
m
2 εA.

Proof. We prove the result with a sequence of indistinguishable game hops. LetA
be a distinguisher with advantage εA = |Pr[1← Exp1

A
(1λ)]−Pr[1← Exp0

A
(1λ)]|,.

Denote by viewi the probability distribution of the view of the adversary in
Game i, i.e., of the triple (A,B,C), and by Gamei the event that A returns 1
at the end of Game i.
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Experiment Expb
A
(1λ)

spar← SParGen(1λ)
ctb← 0
b′← ADb(spar)
Return b′.

Oracle D0(m̄):
If ct0 ≥ 1 ∨ m̄ /∈ R(2

Km )
2r+1 abort.

ct0← ct0 + 1
a $←−U (Rq)
A←

�

a 1
�

R $←−D2×m
Rq ,σt

C $←−U (R1×m
q )

B← AR+G mod q
Return (A,B,C) .

Oracle D1(m̄)
If ct1 ≥ 1 ∨ m̄ /∈ R(2

Km )
2r+1 abort.

ct1← ct1 + 1
a $←−U (Rq)
A←

�

a 1
�

B $←−U (R1×m
q )

R $←−D2×m
Rq ,σt

c $←−U (C̄ )
C← AR− m̄c−1G mod q
Return (A,B,C) .

Figure 3.4. Indistinguishability experiment from Lemma 3.29.

Game 0. Game 0 is exactly Exp0
A
(1λ). Then Pr[1← Exp0

A
(1λ)] = Pr[Game0].

Game 1. Game 1 is equal to Game 0 except for the generation of C, that it is
now set to C = U + G mod q, where U $←−R1×m

q . The vector C is still uniformly
distributed, hence view1 ≈s view0, i.e., Pr[Game0] = Pr[Game1] .

Game 2. Game 2 is equal to Game 1 except for the generation of C, that is
now set to be C := AR − m̄c−1G where R $←−D2×m

Rq ,σt
, m̄ is the element in R(2

Km )
2r+1

chosen by A, and c $←−C̄ . Let A be an algorithm able to distinguish Game 2 from
Game 1. We construct a PPT algorithm B2 that can solve RLWE1,χ where χ = D

σt

exploiting A.
Consider the following hybrid distributions:

Step 0: a $←−Rq,
R←D2×m

σt
,

A=
�

a 1
�

,
B= AR mod q,
C= U− m̄c−1G mod q, U $←−R1×m

q (as in Game 1).

Step 1: a $←−Rq,
R←D2×m

σt
,

A=
�

a 1
�

,
B= AR mod q,
s1,e1←Dσt

,
c1 = as1 + e1 mod q,
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ci
$←−Rq for i = 2, . . . , m,

C=
�

c1 . . . cm

�

− m̄c−1G mod q.

Step k: a $←−Rq,
R←D2×m

σt
,

A=
�

a 1
�

,
B= AR mod q,
si,ei ←Dσt

for i = 1, . . . , k,
ci = asi + ei mod q for i = 1, . . . , k,
ci

$←−Rq for i = k+ 1, . . . , m,
C=

�

c1 . . . cm

�

− m̄c−1G mod q.

For k = m C is generated exactly as in Game 2. Distinguishing Step k from Step
k+1 amounts to solve RLWE. Indeed, let (a,b) be the instance B2 gets from the
RLWE oracle. B2 runs A generating C as follows:

R←D2×m
σt

,
A=

�

a 1
�

,
B= AR mod q,
si,ei ←Dσt

for i = 1, . . . , k̄,
ci = asi + ei mod q for i = 1, . . . , k̄,
ck̄+1 = b,
ci

$←−Rq for i = k̄+ 2, . . . , m,
C=

�

c1 . . . cm

�

− m̄c−1G mod q .

It is clear that if (a,b) is sampled from the RLWE distribution then this is Step
k+1, otherwise this is Step k. B2 outputs what A outputs. The advantage of B2

is

ε2 =
�

�Pr[1← BRLW E, A
2 ]−Pr[1← BU , A

2 ]
�

�

= |Pr[Game1 : Step k+1]−Pr[Game1 : Step k]| .

Hence, the advantage of A in distinguishing Game 2 from Game 1 is:

|Pr[Game2]−Pr[Game1]| ≤
m+1
∑

k=0

|Pr[Game1 : Step k]−Pr[Game1 : Step k+1]|

= 1
mε2 .
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Game 3. In Game 3 everything is generated as in Game 2 except for B, that it
is now generated as B = U+G mod q, where U is chosen uniformly at random
in R1×m

q . Distinguishing Game 3 from Game 2 is exactly equivalent to distinguish
the distributions (A,U) and (A,AR) where R is a matrix sampled from D2×m

Rq ,σt
,

hence through the same hybrid argument used before we get that:

|Pr[Game3]−Pr[Game2]| ≤
1
m
ε3 ,

where ε3 is the advantage of a distinguisher B3 in solving RLWE exploiting A.

Game 4. In Game 4 everything is generated as in Game 3 except for B, that
it is now generated as B = U mod q, where U is chosen uniformly at random
in R1×m

q . The vector B is still uniformly distributed, hence view4 ≈s view3, i.e.,

Pr[Game3] = Pr[Game4] = Pr[1← Exp1
A
(1λ)] .

Putting it all together yields that the advantage of A is such that

εA =
�

�Pr[1← Exp1
A
(1λ)]−Pr[1← Exp0

A
(1λ)]

�

�

=
�

�Pr[Game4]−Pr[Game0]
�

�

≤
3
∑

k=0

|Pr[Gamek+1]−Pr[Gamek]|

≤
2
m
εRLW E ,

where εRLW E is the advantage in solving RLWE1,χ .

Theorem 3.28 is more general than Lemma 3.29: it says that even after the
querying phase, A cannot distinguishD from the challenger. We split the result in
two lemmas, depending on whether A queried (m,α) where m = c̄1

−1m̄ mod q.
We prove the lemmas separately. The full proof of Theorem 3.28 can be found
afterwards.

Lemma 3.30 (m = c̄1
−1m̄ mod q). Let n be a power of 2, q a prime such that

q ≡ 5 mod 8, r and σ as in Section 3.6.3, and σt > 0. Let G be the gadget vector,
H : {0, 1}∗ 7−→ Rq be a random element of the family of hash functions defined
on {0, 1} with values in Rq. If there exists a PPT algorithm A that can win the
experiment in Figure 3.5 with advantage εA, then there exists a PPT algorithm B

that can solve RLWE1,χ where eitherχ = D
σt

orχ = D
σ

exploitingAwith advantage
εB ≥ m/5εA.
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Experiment Expb
A
(1λ)

spar← SParGen(1λ)
ctb← 0
b′← ADb , OH,b , OS,b(spar)
Return b′.

Oracle D0(m̄):
If ct0 ≥ 1 ∨ m̄ /∈ R(2

Km )
2r+1 abort.

ct0← ct0 + 1
a $←−U (Rq)
A←

�

a 1
�

c̄ $←−C̄
R $←−D2×m

Rq ,σt

C $←−U (R1×m
q )

B← AR+G mod q
Return (A,B,C) .

Oracle OH,0(α):
If ct0 = 0 abort.
Return H(α) .

Oracle OS,0(m,α):
If ct0 6= 1 ∨ m 6= c̄−1m̄ mod q abort.
ct0← ct0 + 1
S $←−D⊥[A B C+mG],OH,0(α),σ

Return σ := (1, [S;0],1) .

Oracle D1(m̄)
If ct1 ≥ 1 ∨ m̄ /∈ R(2

Km )
2r+1 abort.

ct1← ct1 + 1
a $←−U (Rq)
A←

�

a 1
�

c̄ $←−C̄
B $←−U (R1×m

q )
R $←−D2×m

Rq ,σt

C← AR− m̄c̄−1G mod q
Return (A,B,C) .

Oracle OH,1(α):
If ct1 = 0 abort.
S $←−D⊥R2+2m

q ,02+2m,σ

L← L ∪ {(α,S)}
Return

�

A B AR
�

S mod q .

Oracle OS,1(m,α):
If ct1 6= 1 ∨ m 6= c̄−1m̄ mod q abort.
ct1← ct1 + 1
If >S : (α,S) ∈ L query OH,1(α).
S : (α,S) ∈ L
Return σ := (1, [S;0],1)

Figure 3.5. Indistinguishability experiment from Lemma 3.30.

Proof. We again prove the claim with a sequence of indistinguishable games
hops. Let A be a distinguisher for the experiment in Figure 3.5 with advantage
εA = |Pr[1← Exp1

A
(1λ)]−Pr[1← Exp0

A
(1λ)]|,. Denote by viewi the probability

distribution of the view of the adversary in Game i, i.e., of the triple (A,B,C) and
of the answers of the random oracles OH,b and OS,b, and by Gamei the event that
A returns 1 at the end of Game i. The first games hops are similar to the game
hops in the proof of Lemma 3.29.

Game 0. In Game 0 everything is constructed as in Exp0
A
(1λ). Then Pr[1 ←

Exp0
A
(1λ)] = Pr[Game0].

Game 1. Game 1 is equal to Game 0 except for the generation of C, that it is
now set to C= U+c̄−1m̄G mod q, where U $←−R1×m

q . The vector C is still uniformly
distributed, hence view1 ≈s view0, i.e., Pr[Game0] = Pr[Game1] .

Game 2. In Game 2, everything is constructed as in Game 1 except for C, which
is set as C← AR′+ c̄−1m̄G mod q for some R′ $←−D2×m

Rq ,σt
. The algorithm B can still
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samples from D⊥[A B AR′],H(α),σ using R, which is possible thanks to Theorem 2.17
and Lemma 2.18. Game 2 is computationally indistinguishable from Game 1
if the distribution of (A,AR) is computationally indistinguishable from (A,U).
Hence, using a hybrid argument as in the proof of Lemma 3.29, it holds that
there exists an algorithm B2 that can solve RLWE1,χ exploiting A with advantage
ε2 such that

|Pr[Game2]−Pr[Game1]| ≤
1
m
ε2 .

Game 3. Game 3 is equal to Game 2 except for the generation of B, that is
set to be B ← U + G mod q U $←−R1×m

q . The sampling procedure of a signature

is now different: B first samples S2
$←−Dm

σ
, then uses R′ to sample [S1;S3] from

D[A AR′+G],u,σ, where u= H(α)−BS2 mod q, and sets S= [S1;S2;S3]. The distri-
bution of the S sampled in Game 2 is the same as in Game 3: in both cases S is
distributed as a Gaussian with standard deviation σ, conditioned on the fact that
�

A B AR′ +G
�

S = H(α) mod q. Hence, Game 3 is computationally indistin-
guishable from Game 2 as long as (A,AR) is indistinguishable from (A,U). The
same hybrid argument as before yields that there exists an algorithm B3 that can
solve RLWE1,χ exploiting A with advantage ε3 such that

|Pr[Game3]−Pr[Game2]| ≤
1
m
ε3 .

Game 4. In Game 4, everything is constructed as in Game 3 except for B, which
is now simply a randomly chosen vector, i.e., B $←−R1×m

q . The sampling procedure
of a signature can be still done as in Game 3. Game 4 is statistically indistin-
guishable from Game 3, as B and B+G are both distributed as a uniform if B is,
hence view4 ≈s view3, i.e., Pr[Game4] = Pr[Game3] .

Game 5. In Game 5, everything is constructed as in Game 4 except for the
hash. On input α, a vector S $←−D2+2m

q,σ is sampled and the output of OH(α) is
�

A B AR′
�

S mod q. Signing is still done using the trapdoor hidden in the pub-
lic key. Again, if an adversary could distinguish this from a uniformly sampled
vector, then a simulator can exploit it to distinguish (A,AR) from (A,U), where
in this case R comes from a Gaussian with standard deviation σ. Thus, through
a similar hybrid argument as before we get that there exists an algorithm B5 that
can solve RLWE1,Dσ

exploiting A with advantage ε5 such that

�

�Pr[Game5]−Pr[Game4]
�

� ≤
2
m
ε5 .
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Game 6. In Game 6, C is constructed as C = AR mod q and the oracle OS is
programmed so that for each input α outputs the S $←−D2+2m

q,σ sampled to calcu-

late H(α) =
�

A B AR
�

S mod q. The vector
�

A B AR
�

in Game 6 is indistin-
guishable from the vector in Game 5 if (A,AR) is indistinguishable from (A,U).
The distribution of the outputs of OS is indistinguishable from the distribution
of S sampled from D⊥[A B AR′+G],H(α),σ. Indeed Lemma 5.2 in [Gentry et al., 2008]
adapted to rings guarantees that in both cases the distribution of the output S is
DR2+2m

q ,02+2m,σ. Hence the hybrid argument used in Game 2 yields that there exists
an algorithm B6 that can solve RLWE1,χ exploiting A with advantage ε6 such that
it yields,

|Pr[Game6]−Pr[Game5]| ≤
1
m
ε6 .

Moreover,

Pr[Game6] = Pr[1← Exp1
A
(1λ)] .

Putting it all together yields that the advantage of A is such that

εA =
�

�Pr[1← Exp1
A
(1λ)]−Pr[1← Exp0

A
(1λ)]

�

�

= |Pr[Game6]−Pr[Game0]|

≤
5
∑

k=0

|Pr[Gamek+1]−Pr[Gamek]|

≤
5
m
εRLW E ,

where εRLW E is the advantage in solving RLWE1,χ .

Lemma 3.31 (m 6= c̄1
−1m̄ mod q). Let n be a power of 2, q a prime such that

q ≡ 5 mod 8, r and σ as in Section 3.6.3, and σt > 0. Let G be the gadget vector,
H : {0, 1}∗ 7−→ Rq be a random element of the family of hash functions defined on
{0,1} with values in Rq.

If there exists a PPT algorithm A that can win the experiment in Figure 3.6 with
advantage εA, then there exists a PPT algorithm B that can solve RLWE1,χ where
either χ = D

σt
or χ = D

σ
exploiting A with advantage εB ≥ m/4εA.

Proof. We again prove the claim with a sequence of indistinguishable games
hops. Let A be a distinguisher for the experiment in Figure 3.6 with advantage
εA = |Pr[1← Exp1

A
(1λ)]−Pr[1← Exp0

A
(1λ)]|,. Denote by viewi the probability

distribution of the view of the adversary in Game i, i.e., of the triple (A,B,C) and
of the answers of the random oracles OH,b and OS,b, and by Gamei the event that
A returns 1 at the end of Game i. The first games hops are similar to the game
hops in the proof of Lemma 3.29.
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Experiment Expb
A
(1λ)

spar← SParGen(1λ)
ctb← 0

m̄ $←−R(2
Km )

2r+1

c̄1
$←−C̄

b′← ADb , OH,b , OS,b(spar)
Return b′.

Oracle D0,m̄,c̄1
:

If ct0 ≥ 1 abort.
ct0← ct0 + 1
a $←−U (Rq)
A←

�

a 1
�

R $←−D2×m
Rq ,σt

C $←−U (R1×m
q )

B← AR+G mod q
Return (A,B,C) .

Oracle OH,0(α):
If ct0 = 0 abort.
Return H(α) .

Oracle OS,0(m,α):
If ct0 6= 1 ∨ m= c̄−1

1 m̄ mod q abort.
S $←−D⊥[A B C+mG],OH,0(α),σ

Return σ := (1, [S;0],1) .

Oracle D1,,m̄,c̄1

If ct1 ≥ 1 abort.
ct1← ct1 + 1
a $←−U (Rq)
A←

�

a 1
�

B $←−U (R1×m
q )

R $←−D2×m
Rq ,σt

C← AR− m̄c̄−1G mod q
Return (A,B,C) .

Oracle OH,1(α):
If ct1 = 0 abort.
S $←−D⊥R2+2m

q ,02+2m,σ

L← L ∪ {(α,S)}
Return

�

A B AR
�

S mod q .

Oracle OS,1(m,α):
If ct1 6= 1 ∨ m= c̄−1

1 m̄ mod q abort.
ct1← ct1 + 1
If >S : (α,S) ∈ L query OH,1(α).
S2

$←−Dm
σ

v← BS2 mod q
[S1; S3]

$←−D⊥
[A AR+(m−c̄−1

1 m̄)G],H(α)−v,σ

Return σ := (1, [S1;S2;S3;0],1) .

Figure 3.6. Indistinguishability experiment from Lemma 3.31.

Game 0. In Game 0 everything is constructed as in Exp0
A
(1λ). Then Pr[1 ←

Exp0
A
(1λ)] = Pr[Game0].

Game 1. In Game 1 B generates C as U −m∗c∗−1G mod q, where U $←−R1×m
q .

Since U is uniformly random, so is U −m∗c∗−1G, hence view1 ≈s view0, i.e.,
Pr[Game0] = Pr[Game1] .

Game 2. In Game 2 B generates C as C ← AR′ −m∗c∗−1G mod q), where R′

has the same distribution as R. If there is a polynomial-time algorithm that can
distinguish Game 2 from Game 1, then, the hybrid argument used in Lemma 3.30
yields that an algorithm B2 that can solve RLWE1,χ exploiting A has advantage
ε2 such that

|Pr[Game2]−Pr[Game1]| ≤
1
m
ε2 .

Game 3. Game 3 is exactly like Game 2 except OS is now implemented by us-
ing R′ as the “trapdoor”. Since m 6= m∗c∗−1 B can again use Theorem 2.17 to
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generate an element from the distribution D⊥[A AR+G AR′−(m−m∗c∗−1)G],Hα,σ using R′

as a trapdoor as long as m−m∗c∗−1 is invertible. By Lemma 2.18 we know that
using R or R′ as a trapdoor produces the same distribution. Thus the distribu-
tions of the outputs of Games 2 and 3 are the same, i.e., view3 ≈s view2 and
Pr[Game3] = Pr[Game2] .

Game 4. In Game 4 B generates B as B $←−R1×m
q . If there is algorithm that can

distinguish between Game 3 and 4, then the hybrid argument yields that an
algorithm B4 that can solve RLWE1,χ exploiting A has advantage ε4 such that

�

�Pr[Game4]−Pr[Game3]
�

� ≤
1
m
ε4 .

Game 5. Finally, in Game 5 B implements everything as in Game 4 except for
the hash oracle. On input α, a vector S $←−D2+2m

q,σ is sampled and the output of

OH(α) is
�

A B AR′
�

S mod q. Again, if an adversary could distinguish this from
a uniformly sampled vector, then a simulator can exploit it to distinguish (A,AR)
from (A,U) where now R comes from a Gaussian with standard deviation σ.
Thus, through a similar hybrid argument as before we get that there exists an
algorithm B5 that can solve RLWE1,Dσ

exploiting A with advantage ε5 such that

�

�Pr[Game5]−Pr[Game4]
�

� ≤
2
m
ε5 .

Observe that Game 5 is exactly Exp1
A
(1λ), hence

Pr[Game6] = Pr[1← Exp1
A
(1λ)] .

Putting it all together yields that the advantage of A is such that

εA =
�

�Pr[1← Exp1
A
(1λ)]−Pr[1← Exp0

A
(1λ)]

�

�

= |Pr[Game6]−Pr[Game0]|

≤
5
∑

k=0

|Pr[Gamek+1]−Pr[Gamek]|

≤
4
m
εRLW E ,

where εRLW E is the advantage in solving RLWE1,χ .

Finally, Theorem 3.32 states that breaking Assumption 4 implies breaking
Assumption 3. It follows from a straightforward complexity leveraging argument
by guessing the polynomial m̄ ∈ Ū .
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Theorem 3.32. LetA be a probabilistic algorithm that breaks Assumption 3 in time
t with probability εA. Then, there exists a probabilistic algorithm B that breaks
Assumption 4 in time t with probability εB ≤ εA/|Ū | in the Random Oracle Model.

We define the g-euf-acma security of the relaxed signature scheme with re-
spect to the message relaxation function

g(m,α) = {(m̄,α) : m̄ ∈ f (m)} ,

where the function f is as defined in Equation (3.6). A valid forgery is a signature
(c̄1, S̄, c̄2) on some message (m̄,α′) such that the adversary never saw a signature
on (m,α′) for any m such that m̄ ∈ f (m). The unforgeability of the signature
scheme follows directly from Assumption 3.

Theorem 3.33. An algorithm A that breaks the g-euf-acma unforgeability of the
relaxed signature scheme in time t and probability εA can break the Assumption 3
in time t with probability εA in the Random Oracle Model.

A valid forgery can be used to break Assumption 3 because unforgeability is
defined w.r.t. a function g. This guarantees that m̄ and c̄1 output by A are such
that m̄c̄−1

1 was not queried to OS as specified by the assumption.

3.7 Putting it all together: Relaxed Proofs of Signatures

on Committed Messages

The previous three relaxed primitives can be composed together to build a re-
laxed NIZK (Ppt,Vpt) to prove knowledge of a signature S on a message (m,α),
where m is kept secret while α is public. To hide both S and m, the protocol
exploits the relaxed commitment scheme defined in Section 3.5.4. The commit-
ment is needed both for technical and practical reasons, as it allows to prove
knowledge of the signature and the secret part of the message in two separate
equations. On one hand, this gives a better bound on the extracted message, as
rejection sampling can be performed separately on the two equations. On the
other hand, this allows to prove knowledge of a set of signatures {Si}i=1,...,` on
messages (m,αi) for i = 1 . . . ,`, i.e. on message pairs composed by the same
secret m and by different public bit-strings αi.

We start presenting the proof for a single pair message-signature. An intuition
of how to generalize the scheme to the multiple-signatures case can be found at
the end of this section.
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Messages

Essentially, the idea is to define a relaxed NIZK proof for a relationR ′ derived
from the combination of the signature and commitment, and then prove that this
is in fact a relaxed NIZK proof for the relation R obtained from the verification
equation of the signature scheme.

Let A, B, and C be the public vectors in the verification key V of the signa-
ture scheme, H be its hash function. Given α and the public parameters of the
signature, the goal is to prove knowledge of some “small” (m, (c1,S,c2)) such
that [A B c1C+mG 1]S= c2H(α) mod q. To construct a relaxed NIZK proof (cf.
Section 3.4), we rewrite the characterizing equation as it follows. Let (1,S,1) be
a honestly-generated signature on (m,α), i.e.

�

A B 1C+mG 1
�

S= 1H(α) mod q . (3.14)

Let F be a commitment to m, F= b−1(C+mG+E) mod q. Substituting C+mG=
Fb− E mod q in Equation (3.14) and rearranging the terms yields that knowing
the vectors ((1,S,1),m,E,b) implies knowing a solution to the following equa-
tions:

(I)
�

−GT FT −Im
�

︸ ︷︷ ︸

=Ac





m̄
b̄
ĒT





︸ ︷︷ ︸

=S̄c

= c̄1CT mod q , (3.15)

(II)
�

A B F 1
�

︸ ︷︷ ︸

=As









S̄1

S̄2

S̄3

s̄4









︸ ︷︷ ︸

=S̄s

= c̄2H(α) mod q ,

where in this case

m̄=m
b̄= b
Ē= E

S̄1 = S1

S̄2 = S2

S̄3 = bS3

s̄4 = s4 − ES3

c̄1 = c̄2 = 1

.

Observe that the vectors S̄c and S̄s still have small norm. As the matrices Ac and
As, and the elements on the right side of the equations are now independent of
the secrets, it is possible to build a relaxed Σ-protocol to prove knowledge of a
solution to these equations using a generalized version of the protocol from Sec-
tion 3.4. The relaxed Σ-protocol (Ppt,Vpt) is shown in Figure 3.7. Essentially, the
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Messages

Ppt ((V,α), (m, (1,S,1));ρ) Vpt (V,α;ρ′)
(F, (1,E,b))← Commit(cpar,m)
Set Sc, Ss, Ac, As as described in Equation (3.15)
Y1

$←−DY3n/4×R1+m,σ1

Y2
$←−D2m+3

R,σ2

T1 = AcY1 mod q
T2 = AsY2 mod q

cpar, F, T1, T2−−−−−−−−−−−→
c $←−C

c
←−−−−

Z1 = Y1 + cSc mod q
Z2 = Y2 + cSs mod q

Send Z1 with probability min

�

D
Y3n/4×R1+m ,σ1

(Z)

MD
Y3n/4×R1+m ,σ1,cSc

(Z) , 1

�

.

Send Z2 with probability min
§

D2m+3
R ,σ2

(Z)

MD2m+3
R ,σ2,cSs

(Z) , 1
ª

.

Otherwise, abort.
Z1, Z2−−−−−−→

Output 1 if:
AcZ1 = T1 + cCT mod q
AsZ2 = T2 + cH(α) mod q
‖Z1‖∞ ≤ B1

‖Z2‖∞ ≤ B2

Figure 3.7. Relaxed Σ-protocol to prove knowledge of a signature on a partially

hidden message.

only difference from the relaxed Σ-protocol described in Section 3.4 is that re-
jection sampling is done w.r.t. different probability distributions. This is for both
efficiency reasons, and to be able to prove that the hidden part of the message
m is in a particular subring of Rq, as it is shown in the proof of Theorem 3.34.

Finally, remark that to combine the commitment and the signature scheme it
is necessary that their parameters are compatible. Hence, we assume that such
parameters are public parameters of the scheme and that they are implicitly given
as input to Ppt and Vpt.

We now prove that this protocol is in fact a valid relaxed Σ-protocol of a
signature on a partially hidden message.

Theorem 3.34. Given the following parameters

• Ns,∞ as in Section 3.6.4,

• N̄s = 256n(m+ 1)σ1σ2

p

n(2m+ 3),
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• N̄s,∞ = 256n(m+ 1)σ1σ2,

• C̄ = 32nσ1,

• r = 16σ1,

• C = R(2
Kc )

3 for some Kc > 0,

• C̄ = R(2
Kc )

5 ,

• σ1 := 12 · 2Kc ,

• σ2 := 12 · 2Kc(nm+ 1)Ns,∞,

• Bi := 8σi for i = 1,2.

satisfying the following bounds:

(mn+ 1)Ns,∞ ≤
q− 1

2
∧ 64nσ1σ2 ≤

q− 1
2

the protocol (Ppt,Vpt) is a non-trivial relaxed Σ-protocol for the following relations:

Rs = { ((V,α), (m, (1,S,1))) : m ∈ U ,
�

A B 1C+mG 1
�

S= 1H(α) and ‖S‖∞ ≤ Ns,∞}
R̄s = { ((V,α), (m̄, (c̄1, S̄, c̄2))) : m̄ ∈ Ū , c̄1 ∈ C̄ , ‖c̄2‖∞ ≤ C̄

�

A B c̄1C+ m̄G 1
�

S̄= c̄2H(α) and ‖S̄‖2 ≤ N̄s, ‖S̄‖∞ ≤ N̄s,∞}

under decisional RLWEm,U (Rq).

Proof. Correctness is trivial. Indeed, if Z1 and Z2 are honestly generated, it holds
that:

AcZ1 = AcY1 + c(−GT m+ FT b− E) mod q = T1 + cC mod q

AsZ2 = AsY2 + c(AS1 +BS2 + FbS3 + s4 − ES3) mod q

= T2 + c(AS1 +BS2 + (C+mG+ E)b−1bS3 + s4 − ES3) mod q

= T2 + c(AS1 +BS2 + [C+mG]S3 + s4) mod q = T2 + cH(α) mod q .

The verifier can construct As and Ac, as the prover sends F at the beginning of the
interaction. Moreover, thanks to rejection sampling (cf. Lemma 3.7), the vectors
Z1 and Z2 are distributed like Gaussians with standard deviations σ1 and σ2

respectively. Hence, Lemma 2.16 ensures that ‖Z1‖∞ ≤ 8σ1 = B1 and ‖Z2‖∞ ≤
8σ2 = B2. Remark that rejection sampling requires the standard deviations σi to
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Σ(V,α, 1λ):
c $←−C .
F $←−R1×m

q

Z1←DY3n/4×R1+m,σ1

Z2←D2m+3
R,σ2

T1 := AcZ1 − cCT mod q
T2 := AsZ2 − cH(α) mod q
Output (F,T1,T2,c,Z1,Z2) .

Figure 3.8. Simulator for a relaxed Σ-protocol of a signature on a partially

hidden message. Recall that the set Yd is de�ned in Section 3.4.2.

be large enough to hide the vectors cSc and cSs. In particular, σi = 12Ti, where
T1 and T2 are bounds on the infinity norm of cSc and cSs respectively. The values
of the Ti ’s can be obtained as follows:

‖cSc‖∞ ≤ ‖c‖1‖Sc‖∞ ≤ 2Kc · 1= 2Kc = T1

‖cSs‖∞ ≤ ‖c(s4 − ES3)‖
≤ ‖c‖1‖s4 − ES3‖∞
≤ ‖c‖1(‖s4‖∞ + ‖ES3‖∞)
≤ ‖c‖1(‖s4‖∞ + ‖E‖1‖S3‖∞)
≤ 2Kc(Ns,∞ +mnNs,∞) = 2Kc(mn+ 1)Ns,∞ = T2 ,

where we have used the norm triangular inequality and Lemma 2.12 (as (mn+
1)Ns,∞ ≤

q−1
2 ). Hence the probability that the verifier accepts is

1−Pr[Ppt aborts]Pr[honest Zi do not satisfy the inequalities] =

1−
�

1−
1− 2−100

M

�2

· (2+m)2−275 · (2m+ 3)2−275

=1−
�

exp(289/288)− 1+ 2−100

exp(289/288)

�2

· (2+m) · (2m+ 3)2−550

≥1− 2−550(2+m)(2m+ 3) ,

where the probabilities are computed using Lemma 2.16 and Lemma 3.7 (where
we recall that M = exp(12/α+ 1/(2α2)) and α= 12, as we set σi = 12Ti).

The HVZK of this protocol can be proved by constructing the simulator Σ
shown in Figure 3.8. The distribution of Z1, Z2 is statistically indistinguishable
from honestly generated Z1, Z2, because rejection sampling (i.e., Lemma 3.7)
guarantees that the distribution of honestly generated Z1 is at statistical distance
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2−100e−289/288 fromDY3n/4×R1+m,σ1
(an analogous argument can be made for Z2). As

the distribution of C and c are the same both in the honestly-generated and in the
simulated proof, the distributions of T1 and T2 are statistically indistinguishable
as well. The distribution of C,F is indistinguishable under decisional RLWEm,U (Rq)

as shown in Lemma 3.22.
From this simulator is also easy to see that a cheating prover is successful

(i.e., can output a valid proof without knowing a witness S) if it can correctly
guess the challenge. Hence, the soundness error of this proof is at least 1

|C | .
Finally, we prove special soundness. A knowledge extractor (Es

1,Es
2) rewinds

Π to obtain the vectors [b̄; m̄; Ē], [S̄1; S̄2; S̄3; s̄4] and the polynomial c̄ that satisfy
equations (I) and (II) in (3.15). Multiplying equation (II) times b̄ and plugging
in b̄F= c̄C+ m̄G+ Ē yields:

A(b̄S̄1) +B(b̄S̄2) + [c̄C− m̄G](S̄3) + (b̄s̄4 − ĒS̄3) = c̄b̄H(α) (3.16)

The vector S̄= [b̄S̄1; b̄S̄2; S̄3; b̄s̄4− ĒS̄3] has norm bounded by the norm of b̄s̄4−
ĒS̄3:

‖S̄‖∞ ≤ ‖b̄s̄4 − ĒS̄3‖∞
≤ ‖b̄s̄4‖∞ + ‖ĒS̄3‖∞

≤ n‖b̄‖∞‖s̄4‖∞ +
m
∑

i=1

‖ēi s̄3,i‖∞

≤ n‖b̄‖∞‖s̄4‖∞ +mn‖Ē‖∞‖S̄3‖∞
≤ n(16σ1 · 16σ2 +m · 16σ1 · 16σ2)

= 256n(m+ 1)σ1σ2 = N̄s,∞ ,

where ēi and s̄3,i are the components of Ē and S̄3 respectively, and where the
inequalities follow from Lemma 2.16 and from Lemma 2.12 twice. The use of
the latter yields the following constraints on the norms of the extracted vectors:

n‖b̄‖∞‖s̄4‖∞ ≤
q− 1

2

n‖Ē‖∞‖S̄3‖∞ ≤
q− 1

2

⇒ 256nσ1σ2 ≤
q− 1

2
.

It is possible to bound the Euclidean norm of S̄ using the bound on the infinity
norm as it follows:

‖S̄‖2 ≤ ‖S̄‖∞
Æ

n(2m+ 3)≤ 256n(m+ 1)σ1σ2

Æ

n(2m+ 3) = N̄s .
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P
Hc
pt ((V,α), (m, (1,S,1));ρ):
(otssk, otsvk)←OTSGen(1λ)
(F, (1,E,b))← Commit(cpar,m)
Set Sc, Ss, Ac, As as described in Equation (3.15)
Y1

$←−DY3n/4×R1+m,σ1

Y2
$←−D2m+3

R,σ2

T1 = AcY1 mod q
T2 = AsY2 mod q
c= Hc(cpar,F,T1,T2,A,α, otsvk)
Z1 = Y1 + cSc mod q
Z2 = Y2 + cSs mod q

Send Z1 with probability min

�

D
Y3n/4×R1+m

q ,σ1
(Z)

MD
Y3n/4×R1+m

q ,σ1,cSc
(Z) , 1

�

.

Send Z2 with probability min
§

D2m+3
Rq ,σ2

(Z)

MD2m+3
Rq ,σ2,cSs

(Z) , 1
ª

.

Otherwise, abort.
ots←OTSSign(otssk, ((A,α), cpar,F,T1,T2,c,Z1,Z2))
Return π= (F,c,Z1,Z2, otsvk, ots).

V
Hc
pt (V,α,π):

T′1 := AcZ1 − cCT mod q
T′2 := AsZ2 − cH(α) mod q
msg := (A,α, cpar,F,T′1,T′2,c,Z1,Z2)
Set b = 1 if the following conditions hold:

c= Hc(cpar,F,T′1,T′2,A,α, otsvk)
‖Z1‖∞ ≤ B1

‖Z2‖∞ ≤ B2

1←OTSVf(otsvk, msg, ots)
Return b .

Figure 3.9. Relaxed NIZK proof of a signature on a partially hidden message.

Observe that N̄s,∞ > 8σ2 > 8σ, hence the correctness of the signature scheme
is guaranteed (see Section 3.6.4). Moreover, c̄ ∈ C̄ , and, applying again Lemma
2.12, ‖c̄b̄‖∞ ≤ ‖c̄‖∞‖b̄‖∞n≤ 2 ·16σ1n= 32nσ1 =: C̄ . Hence (c̄, S̄, c̄b̄) ∈ Σ̄, i.e.
the extractor outputs a valid signature. From point 2 in Lemma 2.16 the infinity
norm of the extracted user’s secret key m̄ is less than 16σ1 =: r.

Non-triviality can be proved with a bound similar to the one computed in the
proof of Theorem 3.13.

Let Hc be a hash function as in Section 3.4. It is possible to construct a non
interactive protocol (PHc

pt ,VHc
pt ) via the construction presented in Theorem 3.12

with the Lamport signature as OTS (Section 2.2.4) and shown in Figure 3.9.
In the following we make some observations about possible generalizations,

adaptations, and efficiency improvements of the protocol.

Remark 9 (Aggregatable Proofs.). A proof of knowledge of ` signatures Si gen-
erated by signer i on ` messages (m,αi) is constructed by combining ` of the
previous proofs in parallel. Assume that the parameters of the rC and rS schemes
are shared among all signers. This means that the verification key of signer j is
[A j B j C] for the same C. Hence, the prover can generate a commitment F to m
using C as public matrix, and generate a proof Πi that it knows a secret S̄c that
satisfies relation (I) in (3.15) and S̄s,i, c̄ that satisfy [Ai Bi F 1]S̄s,i = c̄H(αi) for
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i = 1, . . . ,`. The relaxed binding property of the commitment guarantees that
the hidden part of the message m is the same in all proofs.

Remark 10. The parameters of the commitment scheme can also be included in
the parameters of the scheme, and assumed to be given as input to both Ppt and
Vpt (cf. Section 3.7). This does not affect the properties of the protocol, as these
are always generated honestly (even by the simulator).

Remark 11. It is possible to further separate the rejection sampling procedure
by isolating m, and having three rejection sampling steps (one for m, one for Ss

and one for the rest of Sc). This allows to tailor the Gaussian distribution of the
element masking m so that the blow up in the norm of the message (i.e., the
parameter r) is smaller. However, this would make the proof more complex and
add one more rejection sampling step, increasing the time required to generate
a proof. Therefore, we have decided to use the simpler protocol described in this
section. More details on this construction can be found in [Boschini et al., 2017].

3.8 Relaxed Veri�able Encryption Scheme

We conclude this chapter by presenting two flavors of relaxed verifiable encryp-
tion scheme based on RLWE. The original scheme is due to Lyubashevsky and
Neven [2017]. Their scheme is a relaxed verifiable encryption,i.e., a scheme to
encrypt a witness w of x ∈ L such that decryption of a valid ciphertext is guaran-
teed to yield a witness w̄ in the relaxed language such that (x , w̄) ∈ R̄ .

The straightforward combination with the relaxed signature and commitment
scheme in Section 3.6.3 and 3.5.4 does not yield a particularly efficient group sig-
nature scheme, however, because the Lyubashevsky-Neven verifiable encryption
scheme encrypts and recovers the full witness. A group signature typically con-
sists of a verifiable encryption of the user’s identity together with a proof that the
user knows a valid signature on the encrypted identity by the group manager.
The verifiable encryption as defined by Lyubashevsky and Neven would there-
fore encrypt both the user’s identity and the signature on it, which unnecessarily
blows up the size of the verifiable ciphertext. Even when using a commitment to
the user’s identity to separate the proof of knowledge of the signature from the
verifiable encryption, the ciphertext will encrypt the user’s identity as well as the
opening information to the commitment.

We therefore introduce a variant of the Lyubashevsky-Neven relaxed verifi-
able encryption scheme called relaxed partial verifiable encryption that, rather
than decrypting the full witness w̄, recovers only a function of that witness g(w̄)
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while proving knowledge of the full witness w̄ [Boschini et al., 2018a]. When
constructing a group signature case, we will use a function g that outputs just the
user’s identity. Our scheme can be found in Section 3.8.4. We start by giving the
generic definitions of relaxed partially and fully verifiable encryption schemes
(cf. Section 3.8.1). Then we briefly describe the original verifiable encryption
scheme by Lyubashevsky and Neven (cf. Section 3.8.3), as in Section 5.3.1 we
motivate the introduction of our partial verifiable encryption by showing that the
constructions built from the verifiable encryption by Lyubashevsky and Neven are
too inefficient. Finally, in Section 3.8.4 we show how to modify this scheme to
obtain a partially verifiable encryption scheme.

3.8.1 De�nition of Relaxed Partial Veri�able Encryption

The definitions in this chapter are a combination of the definition of relaxed
verifiable encryption by Lyubashevsky and Neven [2017] and of the definition of
partially verifiable encryption by Boschini et al. [2018a].

Let L be a language with witness relation R and let L̄ ⊇ L be a relaxed lan-
guage with relaxed relation R̄ ⊇ R . Let R̄ ⊆ L̄ × W̄ and let g : W̄ → D be a
function.

Given relationsR , R̄ and function g, a relaxed verifiable encryption scheme is
composed by four algorithms (EKeyGen,Enc,EVerify,Dec):

Key Generation. The key generation algorithm EKeyGen(1λ) outputs a pair of
keys (epk, esk).

Encryption The encryption algorithm Enc(epk, x , w,`) takes as input a pair (x ,
w) ∈ R and an encryption label ` ∈ {0,1}∗. It returns a ciphertext t and a
proof π= (α,β ,γ).

Verification Verification EVerify(epk, x , t,π,`) returns 1 if π shows that t is a
valid ciphertext w.r.t. x and epk with label `, and returns 0 otherwise.

Decryption. Finally, the decryption algorithm Dec(esk, x , t,π,`) returns a value
µ or a failure symbol ⊥.

According to the original definition of verifiable encryption [Camenisch and
Shoup, 2003], this scheme has to satisfy the following security properties. The
first two impose essentially that both the encryption functionality and the ZK
proof work correctly.
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Definition 3.35 (Correctness). The scheme is correct if for all (x , w) ∈ R , and
all ` ∈ {0,1}∗,

Pr
�

Dec(esk, x ,Enc(epk, x , w,`)) = g(w) : (epk, esk)← EKeyGen(1λ)
�

= 1 .

Definition 3.36 (Completeness). The scheme satisfies completeness if for all
(x , w) ∈ R , and all ` ∈ {0,1}∗,

Pr[EVerify(epk,Enc(epk, x , w,`),`) = 1 : (epk, esk)← EKeyGen(1λ)] = 1 .

Special soundness implies that a valid proof π is a proof of knowledge of a
valid witness w̄ for the relation R̄ and that decryption of the ciphertext t returns
g(w̄).

Definition 3.37 (Special soundness). For all PPT adversaries A there exists a PPT
extractor E such that:

Pr













b = b′ = 1 ∧ β 6= β ′ ∧
�

Dec(esk, x , t,`) 6= g(w̄)
∨ (x , w̄) 6∈ R̄

�

:

(epk, esk)← EKeyGen(1λ),
(x , t, (α,β ,γ,β ′,γ′),`)← A(epk, esk),

b← EVerify(epk, x , t, (α,β ,γ),`),
b′← EVerify(epk, x , t, (α,β ′,γ′),`)),
w̄← E(epk, esk, x , t, (α,β ,γ,β ′,γ′),`)













≤ ν(λ) .

Definition 3.38 (Chosen-ciphertext simulatability). There exists a simulator Σ
that outputs ciphertexts indistinguishable from honestly generated ones, i.e.,
the adversary has negligible advantage in the experiment Expccas−b

A
(1λ) in Fig-

ure 3.10:
�

�

�

�

Pr
�

b′ = b : b $←−{0, 1}, b′← Expccas−b
A

(1λ)
�

−
1
2

�

�

�

�

≤ ν(λ) .

The function g was introduced in the definition to model the fact that a partial
verifiable encryption might only encrypts a part of the original witness. Hence,
the difference between a relaxed verifiable encryption and a relaxed partially
verifiable encryption is that in the former case g is the identity, i.e., g(w) = w.

Remark 12. The addition of the label ` is for technical reasons, and was not in-
cluded in the work of Lyubashevsky and Neven. It is possible to obtain the origi-
nal definitions by simply setting ` to be a fixed string. In fact, we will present both
the relaxed verifiable encryption and the relaxed partially verifiable encryption
without labels for the sake of clarity.
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Experiment Expccas−b
A

(1λ)
(epk, esk)← EKeyGen(1λ)
(st, x∗, w∗,`∗)← ADec(esk,·,·,·,·)(epk)
(t0,π0)← Enc(epk, x∗, w∗,`∗)
(t1,π1)← Σ(epk, x∗,`∗).
b′← ADec′(esk,·,·,·,·)(st, tb,πb)
Return b′.

Figure 3.10. Chosen-ciphertext simulatability experiment. The decryption

oracle Dec′ behaves exactly as Dec but it rejects queries on (x∗, tb,πb,`∗).

3.8.2 RLWE Encryption scheme

We briefly introduce the RLWE encryption scheme by Lyubashevsky et al. [2013].
The security experiment for IND-CPA security can be found in Figure 3.12.

Parameters Generation. Let p, q be prime numbers, p � q. Let M ⊆ Rp be
the message space, and χ be a probability distribution over Rq (bounds
on parameters to ensure correctness can be found in Theorem 3.39). The
algorithm EParGenRLW E outputs all of them as a bundle epar.

Key Generation. The key generator EKeyGenRLW E generates a RLWE key pair
by sampling a $←−Rq, s $←−χ and d ← χ, and sets b = as + d mod q. The
encryption key is epk= (a,b), the decryption key is esk= s.

Encryption. On input m ∈M , the encryption algorithm EncRLW E generates the
ciphertext (v,w) as:

v= p(ar+ e) mod q (3.17)

w= p(br+ f) +m mod q ,

where e, f, r $←−χ. The algorithm outputs (v,w).

Decryption. The decryption algorithm DecRLW E(v,w, s) computes m′ = (w −
vs) mod q mod p; it returns m′.

Theorem 3.39 (Lemma 8.3 and 8.4 in [Lyubashevsky et al., 2013]). The above
scheme is IND-CPA secure under RLWE2,χ .

Moreover, if χ outputs elements with norm bounded by N with probability
1 − ν(n), p · χ is δ-subgaussian with parameter s for some δ = O(1), and q ≥
s
p

2(N)2 + n ·ω(
p

log n), then the decryption is correct with probability 1−ν(n).
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Observe that we adapted the parameters bounds to work with the particular
polynomial ring we have chosen.

3.8.3 Relaxed Veri�able Encryption

The relaxed verifiable encryption scheme in [Lyubashevsky and Neven, 2017] is
essentially a combination of RLWE encryption [Lyubashevsky et al., 2010] and
a relaxed Σ-protocol for linear relations over short vectors, i.e. relations of the
form

R =
�

((B,u), (M,1)) ∈ (R`×k
p × R`p)× (R

k
p × Rp) :

BM= u mod p
∧ ‖M‖∞ ≤ γ

�

(3.18)

and relaxed language L̄ with relation

R̄ =







((B,u), (M̄, c̄)) ∈ (R`×k
p × R`p)× (R

k
p × Rp) :

BM̄= c̄u mod p
∧ ‖M̄‖∞ < 6σ
∧ c̄ ∈ C̄







, (3.19)

where C̄ = {c− c′ : c,c′ ∈ C} for C = {c ∈ R : ‖c‖∞ = 1,‖c‖1 ≤ 36}.
For the sake of clarity, we present the CPA version of the verifiable encryption

scheme, i.e., a scheme that satisfies the chosen-plaintext simulatability property,
in whose security experiment the adversary has no decryption oracle. The scheme
(EKeyGenLN ,EncLN ,EVerifyLN ,DecLN) encrypts messages M ∈ S1 as follows.

Parameters. Let n be a power of 2, p > 2, and q be two primes such that q� p,
σe a standard variation. Let Si = {a ∈ R : ‖a‖∞ ≤ i} and the message
space be S1. Let the challenge spaces of the rNIZK beC = {c ∈ R : ‖c‖∞ =
1,‖c‖1 ≤ 36} and C̄ = {c− c′ : c,c′ ∈ C}.

Key Generation. The key generator EKeyGenLN generates a RLWE key pair by
sampling a $←−Rq, s $←−S1 and d ← S1, and sets b = as + d mod q. The
encryption key is epk= (a,b), the decryption key is esk= s.

Encryption. On input ((B,u), (M,1), epk), the encryption algorithm EncLN gen-
erates the ciphertext (V,W) by encrypting the witness with standard RLWE
encryption:

V= p(aR+ E) mod q (3.20)

W= p(bR+ F) +M mod q ,
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where E,F,R $←−S k
1 . Then it generates a relaxed proof Π as described in

Section 3.4 for an instance (B,u,V,W) and witness (M,1,R,E,F) that sat-
isfies both Equation (3.20) and that contains a witness w.r.t. relation R .
The algorithm outputs (V,W,Π).

Verification. The verification algorithm EVerifyLN is the standard verification
algorithm of relaxed NIZKs (cf. Section 3.4).

Decryption. The decryption algorithmDecLN(s, (B,u), (V,W),Π) first checks the
validity of the proofs using the verification algorithm above, returning ⊥
if it is not valid. It then decrypts the ciphertext by, for i = 1, . . . , l, going
over all challenges c′ ∈ C̄ to try to decrypt (c̄V, c̄W) as a RLWE ciphertext,
where c̄= c(i)−c′. It does so by computing m̄′ = (W−Vs)c̄ mod q, checking
that ‖m̄′‖∞ < q/2C ′1 where C ′1 = maxc∈C̄ ‖c‖1, and if so, compute m̄ =
m̄′ mod p and return m̄/c̄ mod q; otherwise, it returns ⊥.

Decryption is successful as long as

(36r + 12)σe < q/2C ′1 (3.21)

(cf. Lemma 3.1 [Lyubashevsky and Neven, 2017]).
The relaxed verifiable encryption scheme is sound and chosen-plaintext sim-

ulatable under the RLWE assumption, and can be made chosen-ciphertext sim-
ulatable through the Naor-Yung approach [Naor and Yung, 1990]. We do not
write the full CCA2 construction of the Lyubashevsky-Neven verifiable encryption
scheme, as this can be built in the same way as the partially verifiable encryption
in its chosen-ciphertext simulatable form, which is presented in the next section.

Theorem 3.40 (Lemma 3.2 and Theorem 5.2 in [Lyubashevsky and Neven, 2017]).
If the RLWE encryption scheme is IND-CPA secure and the rNIZK proof system is
non-interactive zero-knowledge and simulation-sound, then the CCA version of the
above construction is chosen-ciphertext simulatable.

The runtime T of the decryption of a ciphertext generated by an adversary using
qH random oracle queries is such that

PrĤ,D̂[T ≥ αqH]≤
1
α
+ 2 ·

√

√ qH

α · |C |
+

qH

|C |
,

where Ĥ and D̂ are the random coins of the ransom oracle and of the decryption
respectively.
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Remark 13. This encryption scheme (and its partially verifiable version) en-
crypts plaintexts that are polynomials of degree n with binary coefficients. In
case it would be necessary to encrypt a bit string ~b = (b1, . . . , bk), we assume
the encryption algorithm first converts it to an element of S1 (or more than
one, if k > n) by setting bi = 0 for k < i ≤ n and constructing the polynomial
b=

∑n
i=1 bi x

i−1 (the case k > n is analogous).

3.8.4 Relaxed Partial Veri�able Encryption from Lattices

Let L and L̄ be a language and its relaxed version defined w.r.t. the following
relations

Rve =
§

((A,U), (m,S,1)) ∈
(R`1×(`2+1)

q × R`1
q )× (R

(16)
3 × R`2

3 × {1})
: A

�

m
S

�

= U mod q ∧ ‖S‖ ≤ N

ª

R̄ve =
§

((A,U), (m̄, S̄, c̄)) ∈
(R`1×(`2+1)

q × R`1
q )× (Ū × R`2

q × C̄ )
: A

�

m̄
S̄

�

= c̄U mod q ∧ ‖S̄‖ ≤ N̄

ª (3.22)

for some sets Ū , C̄ ⊆ Rq and some integers `1,`2, N , N̄ > 0 (defined in the pa-
rameter generation algorithm). This is a pair of (relaxed) hard lattice relations
as defined in Section 3.4 under RSIS.

We construct a relaxed partial verifiable encryption scheme for relations Rve

and R̄ve and function g((m̄, S̄, c̄)) = m̄/c̄ mod q. The scheme is a modified ver-
sion of the “multi-shot” chosen-ciphertext secure verifiable encryption scheme of
Lyubashevsky-Neven. The multi-shot scheme involves multiple parallel repeti-
tions of the proof with sub-exponential challenge set sizes, but therefore decryp-
tion is strict polynomial time (as opposed to expected polynomial time for the
one-shot scheme).

Rather than producing one big proof of knowledge of the terms in relation
Rve, we split it into two proofs, one for each term. The first proof only contains
the ciphertext equations and is repeated multiple times with a sub-exponential
challenge set to enable efficient decryption. The second includes the relation
equation as well as the ciphertext, proving that the encrypted plaintext is derived
from a valid witness. The latter proof uses an exponential-size challenge set, so
that it doesn’t need to be repeated.

Parameters. Let p and q be two public primes with p > 2, and σi, Ci, C̄i be the
standard deviation, challenge set, and relaxed challenge set of two relaxed
NIZK proof schemes (PHc

i ,VHc
i ). We set C1 = {c ∈ R3 | ‖c‖1 ≤ 32} and C2 =

R(16)
3 . Remark that the bound N on the norm of the witness depends on the

choice of the norm: if we are considering the infinity norm, such bound
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is N = 1, if we are considering the euclidean norm, N =
p

`2. The other
parameters of the rNIZK can be computed from it as shown in Section 3.4.
This results in the relaxed challenge sets being C̄i = {c−c′ ∈ Rq | c,c′ ∈ Ci},
C̄2 ⊆ R(16)

5 . We assume that

q >max
�

(32σi)
2, 16σi p+ 26σi, 32C(2np+ p+ 1)

	

, (3.23)

p >max { 32Cσ2, 16σi } , (3.24)

where C is defined in Lemma 3.41.

Key Generation. The algorithm generates two key pairs for RLWE encryption
[Lyubashevsky et al., 2010], but discards the secret key of the second pair.
It samples s1,d1, s2,d2

$←−R3 and a $←−Rq, and computes t1 = as1+d1 mod q
and t2 = as2 + d2 mod q. The public key is epk = (p, q,a, t1, t2), the secret
key is esk= s1.

Encryption. Given a witness (m,S,1) for language member (A,U) in the rela-
tionRve, the algorithm Enc uses the Naor-Yung technique [Naor and Yung,
1990] by encrypting m twice using standard RLWE encryption under pub-
lic keys t1 and t2. More precisely, it samples r,e1,e2, f1, f2

$←−R3 and sets
v1 = p(ar+e1) mod q, w1 = p(t1r+ f1)+m mod q, v2 = p(ar+e2) mod q,
and w2 = p(t2r+ f2) +m mod q.

Then, letting A1 be the first column of the matrix A=
�

A1 A2

�

in relation
Rve, it constructs a NIZK proof Π1 running P

Hc
1 (cf. Section 3.4) for the

relation













0 pa p 0 0 0 01×`2

1 pt1 0 p 0 0 01×`2

0 pa 0 0 p 0 01×`2

1 pt2 0 0 0 p 01×`2

A1 0`1×1 0`1×1 0`1×1 0`1×1 0`1×1 A2

































m
r
e1

f1

e2

f2

S





















=













v1

w1

v2

w2

U













mod q , (3.25)

whereby it uses the challenge set C1 = {c ∈ R3 | ‖c‖1 ≤ 32}.

To enable Lyubashevsky-Neven’s multi-shot decryption technique without
having to repeat the above proof multiple times, the encryptor runs PHc

2 to
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construct a separate proof Π2 for the relation









0 pa p 0 0 0
1 pt1 0 p 0 0
0 pa 1 0 p 0
1 pt2 0 0 0 p

























m
r
e1

f1

e2

f2

















=









v1

w1

v2

w2









mod q , (3.26)

whereby it includes epk, (A,U), (v1,w1,v2,w2),Π1 (and the label ` in case it
is present) in the Fiat-Shamir hash. To obtain efficient decryption but keep
the soundness error negligible, this proof is repeated l = 11 times with
challenge set C2 = R(16)

3 . The algorithm outputs ciphertext (v1,w1,v2,w2)
and proof (Π1,Π2).

Verification. The verification algorithm EVerify((p, q,a, t1, t2), (A,U), (v1,w1,v2,
w2,Π1,Π2)) checks that Π1 and Π2 are valid relaxed NIZK proofs for the
relations of Equations (3.25) and (3.26) runningVHc

1 andVHc
2 , including the

correct arguments epk, (A,U), (v1,w1,v2,w2),Π1 (and the label ` in case it
is present) in the Fiat-Shamir hash of Π2.

Decryption. The decryption algorithm Dec(s1, (A,U), (v1,w1,v2,w2), (Π1, Π2), )
first checks that the proofs are valid using the verification algorithm above,
returning ⊥ if it is not valid. It then decrypts the ciphertext by applying
the Lyubashevsky-Neven multi-shot decryption on proof Π2 = (Y(1),c(1),
Z(1), . . . ,Y(l),c(l),Z(l)) by, for i = 1, . . . , l, going over all challenges c′ ∈ C2 to
try to decrypt (c̄v, c̄w1) as a Ring-LWE ciphertext, where c̄= c(i)−c′. It does
so by computing m̄′ = (w1 − v1s1)c̄ mod q, checking that ‖m̄′‖∞ < q/2C
where C is as defined in Lemma 3.41, and if so, compute m̄ = m̄′ mod p
and return m̄/c̄ mod q; otherwise, it returns ⊥.

Decryption Runtime. Decryption terminates in time at most 226. Indeed, if the
ciphertext is honestly generated the algorithm needs to guess the challenge only
once. On the other hand, for a dishonestly generated ciphertext the probability
that decryption fails is negligible. Indeed, if the adversary could answer only one
challenge c, when making the random oracle queries the probability of hitting
always c would be 1/(` · |C2|). Hence, a second challenge exists and decryption
requires to guess a challenge c′ at most |C2|= 226 times.

Observe that in our case the relation A

�

m
S

�

= U holds modulo q, while in the

original scheme it has to hold modulo p. We show the correctness of the scheme



96 3.8 Relaxed Veri�able Encryption Scheme

using Lemma 3.41, which is a variant of a result by Lyubashevsky and Neven
[Lyubashevsky and Neven, 2017, Lemma 3.1].

Lemma 3.41. Let a $←−Rq, and t= as+ d where s,d $←−R3. If there exist r̄, ē, f̄, m̄,
c̄ such that

p(ar̄+ ē) = c̄v mod q and p(tr̄+ f̄) + m̄= c̄w mod q (3.27)

and ‖p(r̄d+ f̄− ēs) + m̄‖∞ < q/2C and ‖m̄‖∞ < p/2C, where C =maxc̄∈C̄2
‖c̄‖1

=maxc̄,c̄′∈C2
‖c̄− c̄′‖1, then

1. ‖(w− vs)c′ mod q‖∞ < q/2C and ‖(w− vs)c′ mod q mod p‖∞ < p/2C

2. for any c̄′ ∈ C̄ such that ‖(w − vs)c′ mod q‖∞ < q/2C and ‖(w − vs)c′

mod q mod p‖∞ < p/2C we have (w− vs)c̄′ mod q mod p/c̄′ = m̄/c̄ .

Proof. The proof is a simple verification of the claims and it is very similar to the
proof of Lemma 3.1 in [Lyubashevsky and Neven, 2017].

The first part follows easily from the hypotheses.
To prove the first part, we note that

(w− vs)c̄ mod q = p(r̄d+ f̄− ēs) + m̄ ,

which has `∞ length less than q
2C by the hypothesis of the lemma, and therefore

(w− vs)c̄ mod q mod p = m̄

which has `∞ length less than p/2C , also by hypothesis.
To prove the second part, first note that

(w− vs)c̄ c̄′ mod q mod p = (p(r̄d+ f̄− ēs) + m̄)c̄′ mod q mod p

= m̄c̄′ mod p = m̄c̄′. (3.28)

We can then write

(w− vs)c̄′ mod q mod p/c̄′ = (w− vs)c̄′ mod q mod p c̄/(c̄c̄′)

= (w− vs)c̄′ mod q c̄ mod p/(c̄c̄′)

= (w− vs)c̄c̄′ mod q mod p/(c̄c̄′)

= m̄c̄′/(c̄c̄′) = m̄/c̄

The first equality is an identity. The second equality holds because ‖(w − vs)c̄
mod q mod p‖∞ < p/2C and so multiplication by c̄ does not cause a reduction

modulo p. The third equality is true because ‖(w− vs)c̄ mod q‖∞ <
q

2C and so
multiplication by c̄ does not cause a reduction modulo q. The last equality is due
to (3.28).
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Hence, for decryption to be correct, we must choose parameters that guaran-
tee that the values decrypted from Π2 using si for i = 1, 2 satisfy ‖p(r̄idi + f̄i −
ēisi) + m̄‖∞ < q/2C and ‖m̄i‖∞ < p/2C , i.e., p, q and n should be such that
16σ2(2np+ p+1)< q/2C and 16σ2 < p/2C , where C ≤ 64 as challenges come
from R(16)

3 . We enforce this condition on both ciphertexts to guarantee decryption
to work using either s1 or s2. This allows to prove CCA simulatability following
the Naor-Yung paradigm [Naor and Yung, 1990].

In the next lemma, we prove that with high probability the m̄/c̄ returned by
decryption is equal to the polynomial m̄′/c̄′ returned from an extractor for Π2.

Lemma 3.42. Let m̄ and c̄ be the values output by decryption and m̄′, c̄′ be the
values extracted from Π1. Then with probability 1 − ν(λ), over the choice of the
opening key t, m̄/c̄= m̄′/c̄′.

Proof. First, observe that because the a part of the public key is chosen uniformly
at random, the t part is also distributed uniformly random in Rq (when seen
apart from a). The decryption algorithm gives that p(tr̄+ f̄) + m̄ = c̄w and the
correctness of extractor E gives also that p(tr̄′ + f̄′) + m̄′ = c̄′w. Combining the
above two equations we get

p(tr̃+ f̃) + m̃= 0 (3.29)

where r̃= r̄/c̄− r̄′/c̄′, f̃= f̄/c̄− f̄′/c̄′, m̃= m̄/c̄−m̄′/c̄′ . We now want to compute
the probability over the random choice of t that for a fixed r̃, f̃, and m̃, that (3.29)
holds. We first show that if r̃ = 0, then (3.29) cannot hold unless m̃ = 0 (and
thus m̄/c̄= m̄′/c̄′). This is because pf̃+ m̃= 0 implies that

p(̄fc̄′ − f̄′c̄) + (m̄c̄′ − m̄′c̄) = 0 mod q, (3.30)

and since ‖p(̄fc̄′ − f̄′c̄) + (m̄c̄′ − m̄′c̄)‖∞ < 32np(σ2 +σ1) + 32(16σ2 +σ1n) <
q/2 (we used the triangle inequality and Lemma 2.12 to obtain the bound), no
reduction modulo q takes place. And because ‖m̄c̄′−m̄′c̄‖∞ < 32(16σ2+σ1n)<
p, (again using Lemma 2.12) the only way that (3.30) can be satisfied is if m̄c̄′−
m̄′c̄= 0.

So now suppose that r̃ 6= 0. Then

Pr
t

$←− Rq

[(3.29)] = Pr
t

$←− Rq

[t= −(m̃+ f̃)/(pr̃)] = 1/|Rq|= q−n.

We will now compute the total number of possibilities for r̃, f̃, and m̃ and apply
the union bound. Since these three values are completely determined by r̄, r̄′, f̄,
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f̄′, m̄, m̄′, c̄, c̄′, it is enough to bound the domain size of these elements. From the
bounds on the infinity norm of Gaussian samples (Lemma 2.16) and rejection
sampling, we know that there are n1 = (2 · 8σ2 + 1)2n choices for r̄, f̄, n2 =
(2 · 8σ1 + 1)3n choices for r̄′, f̄′, m̄′ and n3 = (2 · 8σ1 + 1)16 choices for m̄ (since
m̄ ∈ R(16)). The domains of c̄ and c̄′ are much less than 2512 each. Thus the
number of possibilities for r̃, f̃, m̃ is less than n1 · n2 · n3 ·2512 ·2512.Therefore, the
probability over the choices of t that there exists some r̃, ẽ, m̃ that satisfies (3.29)
is less than (2 · 8σ2 + 1)2n · (2 · 8σ1 + 1)3n · (2 · 8σ1 + 1)16 · 2512 · 2512 · q−n, that is
negligible as long as q� σi.

Remark that we have chosen a small set of ciphertexts in this case, as we
intend to use this scheme in our privacy-preserving signatures only to encrypt
users’ identities.

Finally, for the CCA simulatability the proofs that we use in the scheme need
to be unbounded non-interactive zero-knowledge and unbounded simulation
sound. As Lyubashevsky and Neven observe, the result by Faust et al. [2012]
(adapted to relaxed protocols) implies that the quasi unique response and HVZK
properties of a Σ-protocol are enough to guarantee that the NI proof obtained
through the FS heuristic has unbounded non-interactive zero-knowledge and un-
bounded simulation soundness in the ROM. Hence, following their reasoning,
we prove that Π2 has quasi-unique responses (HVZK follows from using the Σ-
protocol from Section 3.4). Indeed, breaking quasi-uniqueness means finding
z 6= z′ with `∞ norm less than 8σ2 such that Mz=Mz′ mod q, where with M we
mean the matrix in 3.26. Thus, either there is a non-zero tuple (y1,y2) ∈ Rq with
`∞ norm less than 16σ2 such that p(ay1+y2) = 0 mod q or py1+y2 = 0 mod q.
Imposing p > 16σ2 and 16σ2p+16σ2 < q implies that the second equality is not
possible. Also, setting (32σ2)2 < q, we can use a standard probabilistic argument
to show that for all y1, y2 of `∞ norm less than 16σ2,

Pra∈Rq
[ay1 + py2 = 0 mod q] = 2−Ω(n) .

Therefore for almost all a, there will not be a short solution (y1,y2) that satisfies
ay1 + py2 = 0. Observe that the same argument works for Π1. Hence imposing
the same inequalities on σ1 yields simulation soundness also for Π1, thus for the
protocol (Π1,Π2).

Theorem 3.43. If RLWEU (Rq) is hard and the relaxed NIZK proof system is un-
bounded non-interactive zero-knowledge and unbounded simulation soundness, the
scheme (EKeyGen,Enc,EVerify,Dec) is a relaxed partial verifiable encryption sche-
me w.r.t. the function g in the Random Oracle Model (where the adversary can make
a polynomial number of queries to the oracle).
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Proof. Correctness is fast to check: if a ciphertext (v,w1,w2) is a honest encryp-
tion of some m, then for every c′ ∈ C1, setting c̄= c− c′, we have

‖(w1 − vs1)c̄‖∞ = ‖p(dr̄+ f̄− ēs1) + m̄‖∞
≤ p(16σ1 · 1 · n+ 16σ1 + 16σ1 · 1 · n) + 16σ1 < q/2C ,

where in the first inequality we used the triangular inequality and Lemma 2.12,
while the second is guaranteed by the condition 16σ1(2np + p + 1) < q/2C .
Finally, the condition 16σ1 < p/2C guarantees that ‖m̄‖∞ < p/2C , hence all the
hypotheses of Lemma 3.41 are satisfied and decryption yields m̄/c̄ mod q =m.

Completeness is implied by the completeness of the relaxed NIZK proof in
Section 3.4.

Soundness follows from Lemma 3.42 and from the soundness of the NIZK
proof. Indeed, assume there exists an adversary A that can output a ciphertext
(v,w,Π1,Π2) such that decrypting (v,w,Π1) and extracting Π2 it is possible to
obtain m̄, c̄ and m̄′, c̄′, S̄′ such that either m̄/c̄ 6= m̄′/c̄′ or (m̄, S̄, c̄) /∈ R̄ve. Lemma
3.42 guarantees that the first case happens with negligible probability, while the
second case implies breaking the relaxed special soundness of the relaxed NIZK
proof.

Finally, the proof of CCA simulatability is done with game hops. The proof
follows closely the structure of the original proof by Lyubashevsky and Neven
(cf. proof of Theorem 5.2 in the full version of [Lyubashevsky and Neven, 2017]).

The idea is to prove that, if there exists a PPT adversary A that breaks the
chosen-ciphertext simulatability of our scheme with advantage ε, then it is pos-
sible to construct PPT algorithms B ZK that breaks the zero-knowledge property
of the underlying NIZK proof with advantage εZK , B S that breaks the simula-
tion soundness of the underlying NIZK proof with advantage εS, and B RLW E that
breaks the IND-CPA security of the RLWE encryption scheme with advantage
εRLW E, such that

ε≤ εZK + 2εRLW E + 16εS .

The proof is articulated in 2 steps:

1. Define a simulator Σpve,

2. prove with a sequence of game hops that if the adversary can distinguish
the simulated ciphertext from an honestly generates one, it is possible to
build BZK , BS and BRLW E.
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Simulator Σpve(a, t1, t2,A,U)
r,e1,e2, f1, f2

$←−R3

v1 := p(ar+ e1) mod q
v2 := p(ar+ e2) mod q
w1 := p(t1r+ f1) + 1 mod q
w2 := p(t2r+ f2) + 1 mod q
(Π1,Π2)← ΣN I ZK(A,U,v1,w1,v2,w2,a, t1, t2)
Return (v1,w1,v2,w2,Π1,Π2).

Figure 3.11. Simulator for the chosen-message simulatability experiment.

The simulator Σpve is shown in Figure 3.11. On input a language member (A,U),
it simulates the outputs of a legit round of Enc by generating two RLWE en-
cryptions of 1 and getting the NIZK proofs from the simulators ΣN I ZK

3 of the
relaxed NIZK proofs(cf. Section 3.4). The queries of the adversary to the ran-
dom oracle are handled through the simulator ΣN I ZK ,1. Through a sequence
of game hops, we prove that if an adversary can distinguish simulated cipher-
texts from honestly generated ones, then there exists an algorithm B that either
breaks Ring-LWEU (Rq), or the unbounded non-interactive zero-knowledge or the
unbounded simulation-soundness of the NIZK proof. Given the security exper-
iment Expccas−b

A
(1λ) from Definition 3.38, the advantage of a PPT adversary in

breaking CCA-simulatability is:

ε =
�

�Pr
�

b′ = b : b′← Expccas−b
A

(1λ)
�

− 1
2

�

�

= 1
2

�

�Pr
�

b′ = 0 : b′← Expccas−0
A

(1λ)
�

+Pr
�

b′ = 1 : b′← Expccas−1
A

(1λ)
�

− 1
�

�

= 1
2

�

�Pr
�

b′ = 0 : b′← Expccas−0
A

(1λ)
�

−Pr
�

b′ = 0 : b′← Expccas−1
A

(1λ)
��

� .

Let Gamei be the probability that the adversary outputs 0 when executed in the
environment of Game i.

Game 0. This is the experiment Expccas−0
A

(1λ) where the bit is set to b = 0.
Then, the probability that A outputs 0 in this game is:

Pr[Game0] = Pr[b′ = 0 : b′← Expccas−0
A

(1λ)] .

3We denote by ΣN I ZK the combination of the simulators of the two NIZK proofs. The two
provers sharing the same random oracle does not generate problems due to collision, because
the queries coming from the two provers have always different structures as the relations are
different.
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Experiment Expindcpa−b
B2

(1λ)
(a,b)← EKeyGenRLW E(1

λ)
(m∗, st)← B2(a,b)
(v0,w0)← EncRLW E(m∗,a,b)
(v1,w1)← EncRLW E(1,a,b)
b′← B2(vb,wb, st)
Return b′.

Figure 3.12. IND-CPA security game for RLWE encryption scheme.

Game 1. In this game the NIZK proofs in the challenge ciphertext (v∗1,v∗2,w∗1,
w∗2,Π∗1,Π∗2) are generated using the simulator ΣN I ZK . If the adversary can distin-
guish Game 1 from Game 0 with non-negligible probability, then it is possible to
build an algorithm B1 that break the zero knowledge property of the NIZK proof
as follows. The algorithm B1 has access to an oracle O , and to win the ZK exper-
iment it has to output 1 if O = (Hc,P

Hc), or 0 if O = (Σ1,Σ2) (cf. Definition 3.4).
It runs the protocol as in Game 0, except for the generation of the proofs Π∗1 and
Π∗2. These are obtained from the prover oracle O that is either PHc

i , or ΣN I ZK ,2.
The queries by A to the random oracle Hc are handled by B1 through O as well.
The oracle either honestly evaluates Hc, or uses ΣN I ZK ,1. At the end of the game,
B1 outputs the bit 1− b′, where b′ is the bit output by A. The probability that B1

breaks the ZK property is

ε1 =
�

�

�Pr
�

0← B
Hc(·),PHc (·,·)
1 (1λ)

�

− Pr
�

0← B
Σ1(·),Σ2(·,·)
1 (1λ)

�

�

�

�

=
1
2
|Pr [Game0]−Pr [Game1]| .

Game 2. This game is equal to Game 1, except for the redundant RLWE ci-
phertext (v∗2,w∗2), which is generated as the encryption of 1 instead of being the
encryption of the challenge message m∗. This does not affect the NIZK proofs Π∗1
and Π∗2, as they are simulated anyway. If a PPT algorithm A has non-negligible
advantage in distinguishing Game 2 from Game 1, then we can build a PPT al-
gorithm B2 that exploits A to win the IND-CPA experiment Expindcpa−b

B2
(1λ) (cf.

Figure 3.12) of the RLWE encryption.

Upon receiving the public RLWE encryption key (a, t), B2 samples s1,d1
$←−R3

and sets t1 := as1 + d1 mod q, t2 := t and epk = (a, t1, t2). Whenever it re-
ceived a decryption query, B2 can decrypt the ciphertext using s1. When A
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returns the challenge (A∗,U∗,m∗,S∗,1∗), B2 uses m∗ as the challenge message
in the IND-CPA game. Upon receiving the challenge RLWE ciphertext (v∗,w∗),
B2 generates the challenge ciphertext in the CCA-simulatability experiment as
(v∗1,w∗1)← EncRLW E(a, t1,m∗), (v∗2,w∗2) := (v∗,w∗) and it simulates the proofs Π∗1
and Π∗2. B2 returns to the challenger in the IND-CPA experiment the bit b′ output
by A.
It is clear that if (v∗,w∗) is an encryption of 1, the view of A is exactly the same
as if it was playing Game 2, while if (v∗,w∗) is the encryption of m∗ it is exactly
game 1. Therefore, the advantage of B2 in breaking the IND-CPA security of the
RLWE encryption is

ε2 =
�

�

�Pr
�

b′ = b : b $←−{0,1}, b′← Exp
indcpa−b
B2

(1λ)
�

− 1
2

�

�

�

= 1
2

�

�

�Pr
�

b′ = 0 : b′← Exp
indcpa−0
B2

(1λ)
�

+Pr
�

b′ = 1 : b′← Exp
indcpa−1
B2

(1λ)
�

− 1
�

�

�

= 1
2

�

�

�Pr
�

b′ = 0∧ b′← Exp
indcpa−0
B2

(1λ)
�

−Pr
�

b′ = 0∧ b′← Exp
indcpa−1
B2

(1λ)
�

�

�

�

= 1
2 |Pr [Game1]−Pr [Game2]| .

Game 3. In this game the decryption is performed using the secret key s2

instead of s1. As the decryption procedure does not change when switching
from using s1 to s2, the output m1/c1 mod q of the decryption of a ciphertext
(v1,w1,V2,W2,Π1,Π2) w.r.t. s1 has the same distribution as the output m2/c2

mod q of the decryption of the same ciphertext w.r.t. s1. Hence, the only way
A can distinguish Game 2 from Game 3 is by encrypting different messages in
(v1,w1) and (v2,w2). In this case though it is possible to construct an algorithm
B3 that breaks the simulation soundness of the NIZK proof exploiting A. Such
algorithm handles the decryption queries of A by decrypting w.r.t. both s1 and
s2, and checking that the plaintexts obtained are the same. Then, B3 rewinds
A on the random oracle query for which the plaintexts resulted different to ex-
tract fromΠ1 a complete witness w.r.t. the relationRve for the relaxed simulation
soundness game (cf. Definition 3.10). Lemma 3.42 guarantees that the plaintexts
extracted from Π1 are equal to the ones obtained from decryption with all but
negligible probability. According to the Generalized Forking Lemma (cf. Lemma
2.6), this degrades the success probability of B3 by εA/8, where εA is the advan-
tage of A. The success probability of B3 is then the advantage of A in distinguish-
ing Game 3 from Game 2

ε3 ≥
1

16
|Pr [Game2]−Pr [Game3]| .
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Game 4. In this game, the challenge ciphertext (v∗1,w∗1) is generated as an en-
cryption of 1 as well. Analogously to Game 2, if there exists a PPT adversary A

that distinguishes Game 4 from Game 3 with non-negligible advantage, then we
can construct a PPT algorithm B4 that breaks the IND-CPA security of the RLWE
encryption with advantage

ε4 =
1
2

�

�Pr [Game3]−Pr
�

Game4

��

� .

Game 5. In Game 5 everything is the same as in Game 4, except that now
decryption queries are answered using the secret key s1 instead of s2. Similarly
to Game 3, if there exists a PPT adversaryA that distinguishes Game 5 from Game
4 with non-negligible advantage, then we can construct a PPT algorithm B5 that
breaks the simulation-soundness property of the NIZK proof with advantage

ε5 ≥
1
16

�

�Pr
�

Game4

�

−Pr [Game5]
�

� .

Remark that in Game 5 A is now interacting with a challenger that behaves
as in Expccas−1

A
(1λ), where the simulator is the one in Figure 3.11. Hence,

Pr[Game5] = Pr[b′ = 0 : b′← Expccas−1
A

(1λ)] .

To conclude the proof, we need to construct BZK , BS and BRLW E. The al-
gorithm BS (resp., BRLW E) runs either B3 or B5 (resp., either B2 or B4 ) with
probability 1

2 . Hence, its advantage in winning the CCA-simulatability exper-
iment (resp., the IND-CPA experiment) is εS = 1/2(ε3 + ε5) (resp., εRLW E =
1/2(ε2 + ε4)). Putting it all together we get that the advantage of a PPT adver-
sary in breaking CCA-simulatability is:

ε =
1
2

�

�Pr
�

b′ = 0 : b′← Expccas−0
A

(1λ)
�

−Pr
�

b′ = 0 : b′← Expccas−1
A

(1λ)
��

�

=
1
2
|Pr [Game0]−Pr [Game5]|

=
1
2

�

�

�

�

�

4
∑

i=0

Pr [Gamei]−Pr [Gamei+1]

�

�

�

�

�

≤
4
∑

i=0

1
2
|Pr [Gamei]−Pr [Gamei+1]|

= ε1 + ε2 + 8ε3 + ε4 + 8ε5 = εZK + 2εRLW E + 16εS .
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Chapter 4

Anonymous Attribute Tokens from

Relaxed Building Protocols

The primitives defined in the previous chapter are now put to use to build Anony-
mous Attribute Tokens (AAT). This protocol was introduced by Camenisch et al.
[2012] and can be seen as simplified anonymous credentials, allowing users to
obtain from an issuer a credential that contains a list of attributes. Users can
selectively disclose subsets of these attributes to verifiers in such a way that not
even the verifier and the issuer together can link different presentations by the
same user. Depending on the anonymity guarantees there can be two “flavors”
of AATs. If it is not possible to extract the user identity from the token, not even
by the credentials’ issuer, then the AAT is said to be without opening (AAT-O). If
the AAT allows for an opener to revoke the anonymity of a user (e.g., in case
of suspected misbehavior), the AAT scheme is said to be an AAT with opening
(AAT+O). In this chapter we build both types of AAT from the relaxed building
blocks of Chapter 3. The content is based on the work published in [Boschini
et al., 2018b] (full version: [Boschini et al., 2017]).

4.1 Anonymous Attribute Tokens without Opening

Anonymous attribute tokens allow users to obtain from an issuer a credential
containing a list of attributes. They can then selectively disclose subsets of these
attributes to verifiers in such a way that not even the verifier and the issuer
together can link different presentations by the same user.

In this section, we focus on AAT schemes without anonymity revocation (AAT-
O), i.e., without a trusted opener who can de-anonymize presentation tokens.
AAT+R are defined in Section 4.2.1.

105
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4.1.1 De�nition of AAT-O Schemes

Consider for simplicity the scenario in which each user identity corresponds to
exactly one credential. That credential contains all the attributes that the issuer
will ever issue to that user identity. This still models the general case, as one can
see the user identity as a credential identity that binds together the attributes
of that credential, and assume that issuers can hand multiple such identity cre-
dentials to the same user. Remark that for the sake of simplicity we model the
protocol as interactions between multiple users and a single issuer. Considering
multiple issuers would make the model and the proofs unnecessarily convoluted.

An AAT-O is composed by the following algorithms:

System Parameters Generation. The public parameters of the scheme are gen-
erated from the security parameter as apar← SPGen(1λ). They are com-
mon to all the parties.

Issuer Key Generation. An issuer generates a public key ipk and corresponding
secret key isk by running IKGen(apar).

Credential issuance. To issue a credential for attributes (αi)`i=1 to a user, the
issuer samples a user identity id from the set U of allowed user identities,
checks that id is not in the list S of issued user identities (otherwise, it
aborts) and runs Issue(isk, id, (αi)`i=1). It hands the resulting user identity
id and credential cred to the user.

Presentation. A user creates a presentation token pt revealing a subset of at-
tributes (αi)i∈R, R ⊆ {1, . . . ,`}, from a credential while authenticating a
message µ by running Present(ipk, cred, R,µ).

Verification. The verifier checks the validity of a presentation token by running
Verify(ipk, R, (αi)i∈R,µ, pt) which returns accept or reject.

Correctness requires that if the above algorithms are executed honestly, then
Verify returns 1 with probability one.

Definition 4.1 (Correctness). An AAT-O scheme (SPGen, IKGen, Issue,Present,
Verify) satisfies correctness if for all user identities id, all ` ∈ N, all α1, . . . ,α` ∈
{0,1}∗, and all sets R ⊆ {1, . . . ,`} the following holds

Pr









1← Verify(ipk, R, (αi)i∈R,µ, pt) |

apar← SPGen(1λ),
(ipk, isk)← IKGen(apar),

(id, cred)← Issue(isk, id, (αi)`i=1),
pt← Present(ipk, cred, R,µ)









≥ 1− ν(λ) .
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In the unforgeability experiment, the adversary is given access to the issuance
oracles OIC and OIH (that issue credentials to corrupt and honest users respec-
tively) and to an oracle Opres that generates presentation tokens by honest users.
An AAT-O is said to be unforgeable if the adversary cannot create a presentation
token revealing a set of attributes that was never issued in one credential by the
issuance oracles, nor presented in that combination and for the given message
by the presentation oracle.

The experiment requires the instantiation of four lists: S that contains all the
issued id, Lc to keep track of the attributes issued to dishonest users, Lh where
the credentials and identities issued to honest users are stored, and Lp that keeps
track of the presentation tokens produced by honest users. The adversary uses
unique credential identifiers cid to refer to particular pairs of user identity and
credential issued to honest users; the credential identifier can be obtained for
example as the hash of its corresponding pair (id, cred), i.e., cid ← H(id, cred),
where H : {0, 1}∗→ {0,1}λ is a collision-resistant hash.

Definition 4.2 (Unforgeability). An AAT-O scheme (SPGen, IKGen, Issue,Present,
Verify) satisfies unforgeability if for all PPT adversaries A the advantage of A in
winning the unforgeability experiment in Figure 4.1 is negligible:

Pr
�

1← Expunf
A
(1λ)

�

≤ ν(λ) .

Finally, anonymity requires that no PPT adversary can distinguish between
two presentation tokens for the same attributes and message, but derived from
different credentials provided by the adversary.

Definition 4.3 (Anonymity). An AAT-O scheme (SPGen, IKGen, Issue,Present,
Verify) satisfies anonymity if for all PPT adversaries A the advantage of A in
winning the anonymity experiment in Figure 4.2 is negligible:

�

�

�

�

Pr
�

b′ = b : b $←−{0,1}, b′← Expanon−b
A

(1λ)
�

−
1
2

�

�

�

�

≤ ν(λ) .

4.1.2 Compact AAT-O from Lattices

From the relaxed primitives that we introduced in Chapter 3, it is possible to
construct an AAT-O scheme with compact presentation tokens. In such scheme,
a user identity is a small polynomial m in the set U defined in Equation (3.5).
A credential for ` attributes {αi}i is composed by ` relaxed signatures (cf. Sec-
tion 3.6.3) on the pairs user identity-attribute (m,αi). A user can then prove
in zero-knowledge using the relaxed NIZK (PHc

pt ,VHc
pt ) in Section 3.4. Efficiency

follows from the aggregation property shown at the end of Section 3.7.
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Experiment Expunf
A
(1λ)

apar← SPGen(1λ)
S ← ;, Lc ← ;, Lh← ;, Lp← ;
(ipk∗, isk∗)← IKGen(apar)
(pt∗, R∗, (α∗i )i∈R∗ ,µ

∗)← AOIC ,OIH ,Opres(apar, ipk∗)
If 1← Verify(ipk∗, R∗, (α∗i )i∈R∗ ,µ

∗, pt∗)
and > cid such that (cid, (α∗i )i∈R∗) ∈ Lc

and > cid such that (cid, R∗,µ∗) ∈ Lp

then return 1 else return 0.

Oracle OIC((αi)`i=1)
id←U\S
cred← Issue(isk∗, id, (αi)`i=1)
S ←S ∪ {id}
cid← H(id, cred)
Lc ← Lc ∪ {(cid, (α∗i )i∈R∗)}
Return (id, cred) .

Oracle OIH((αi)`i=1)
id←U\S
cred← Issue(isk∗, id, (αi)`i=1)
cid← H(id, cred)
Lh← Lh ∪ {(cid, id, cred)}
S ← S ∪ {id}
Return cid .

Oracle Opres(cid, R,µ)
Get cred such that (cid, id, cred) ∈ Lh

(abort if it does not exist).
pt← Present(ipk∗, cred, R,µ)
Lp← Lp ∪ {(cid, R,µ)}
Return pt .

Figure 4.1. Unforgeability experiment for AAT-O.

Remark 14. To combine the commitment and the signature scheme in a way
that preserve security it is necessary that their parameters are compatible (e.g.,
that the matrix C of both scheme is the same). Hence, we define an additional al-
gorithm DerivePars that derives the parameters for the signature scheme (which
in the AAT-O are generated by the issuer) from the parameters of the commit-
ment (which in the AAT-O case are general parameters of the protocol and are
generated at the beginning by a trusted third party).

Signature Parameters Derivation. On input the parameters cpar, DerivePars
sets the public vector C to be the same vector contained in cpar and com-
putes the rest of the signature parameters as in Section 3.6.3.

User identities are sampled from the set U defined in Section 3.5.3. In prac-
tice, this allows to issue around 3(2

Km−1−1)/(n/2) identities. To keep track of the
issued id, the issuer stores them in a list S . We now describe our lattice-based
AAT-O.

System Parameter Generation. The algorithm SPGen first generates the com-
mitment parameters cpar ← ParGenc(1λ). Then it derives the parame-
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Experiment Expanon−b
A

(1λ)
apar← SPGen(1λ)
(ipk∗, isk∗)← IKGen(apar)
count ← 0
b′← AO

b
C (apar, ipk∗, isk∗)

Return b′.

Oracle O b
C (cred∗0, cred∗1, R∗, (α∗i )i∈R∗ ,µ

∗)
count ← count + 1
If count ≥ 2 abort.
For i = 0, 1:

pt∗i
$←−Present(ipk∗, cred∗i , R∗,µ∗)

If Verify(ipk∗, R∗, (α∗i )i∈R∗ ,µ
∗, pt∗0) = 1

and Verify(ipk∗, R∗, (α∗i )i∈R∗ ,µ
∗, pt∗1) = 1

return pt∗b, else abort.

Figure 4.2. Anonymity experiment for AAT-O.

ters of the relaxed signature spar← DerivePars(cpar) and outputs apar =
(cpar, spar).

Issuer Key Generation. The issuer runs the signing key generation
SKeyGen to obtain isk= X and the public matrix ipk=

�

A B C 1
�

.

Issuance. To issue a credential to a user for attributes (αi)`i=1, the issuer chooses
an id =m ∈ U , checks that m /∈ S and computes signatures on (m, i‖αi)
using the Sign algorithm. The credential consists of m, (αi)`i=1 together
with the resulting signatures (1, [Si;1],1). The issuer adds m to S .

Presentation. To create a presentation token for attributes (αi)i∈R and message
µ, the user runs PHc

pt to generate NIZK proofs Πi that it knows signatures
on (the hidden) m and i‖αi for i ∈ R, whereby it includes the message µ in
the Fiat-Shamir hash. The presentation token pt consists of the transcripts
(Π)i∈R.

Verification. The verifier checks the validity of (Π)i∈R w.r.t. the message µ run-
ning V

Hc
pt . If the tests pass, it outputs accept, otherwise reject.

The correctness of the scheme follows trivially from the correctness of the
building blocks.

Unforgeability relies on the relaxed unforgeability of the rS scheme, on the
relaxed binding property of the rC scheme and on the relaxed simulation sound-
ness and zero-knowledge of the rΣ scheme. The proof strategy is to run the
adversary and extract from the forged presentation token using the Generalized
Forking Lemma (Lemma 2.6 in Section 2.2.3).

Theorem 4.4 (Unforgeability). Let εBIN be the probability of breaking the binding
property of the commitment scheme rC underlying rΣ, εSS be the probability of
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breaking the relaxed simulation soundness of rΣ, and εZK be the probability of
breaking the breaks zero-knowledge of rΣ.

Assume A is an adversary that runs in time tA, makes qC random oracle queries
for credentials issued to corrupt users (ifA queries for a credential on (id, (αi)i=1,...,`),
we count it as ` queries) and qH queries for credentials issued to honest users and
qP presentation tokens of honest users and breaks the unforgeability of the AAT-O
scheme with probability εA.

There exists an algorithm B that breaks the unforgeability of the signature in
time tB = 8`2 tA(qC + qH + qP)/εA · ln(8`/εA) + qC · tS + qP · tΣ + tE + poly(λ)
(where tΣ and tE are the runtime of the simulator and of the extractor of the rNIZK
respectively, tS is the runtime of the signing oracle, and ` is the number of attributes
contained in the forged pt) with probability εB = (1 − εZK) · εA/8 − (εBIN + εSS)
after asking qC queries to the signing oracle in the Random Oracle Model.

Proof. To prove the unforgeability of the tokens, we define a simulator B that
simulates the unforgeability experiment in Figure 4.1 and the oracles to exploit
A to forge a signature. The simulator is described in details in Figure 4.3.

In the following we give a high level description of it. The simulator B has
access to an oracle Os that, when prompted the first time, outputs the parameters
of the signature scheme spar and the verification key svk. Then, whenever it
receives in input (m,α), it outputs a signature on it.

B derives the parameters of the commitment from the parameters of the sig-
nature using an algorithm DeriveParc. This algorithm derives C from the verifica-
tion key V of the signature, and computes the rest of the parameters using the m,
n, and q in spar. To win the signature unforgeability game, B runs A simulating
the oracle as it follows:

Issuance to corrupt user: on input attributes (αi)i, it chooses m ∈ U\S and
queries Os with (m, i‖αi). It returns m and the outputs of the signing oracle
and stores the issued identity m and the issued attributes with a credential
identifier. Queries to this oracle are counted in qC .

Issuance to honest users: on input attributes (αi)i, it selects a random cid and
stores ((αi)i, cid). Queries to this oracle are counted in qH .

Presentation by honest users: on input attributes (αi)i, it outputs a simulated
NIZK using the simulator Σ described in Figure 3.8 generalized to the ag-
gregatable case (cf. Remark 9). Queries to this oracle are counted in qP .

The simulated oracles are indistinguishable from honestly implemented ones, as
the first two have exactly the same distribution and the third is indistinguishable
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Simulator BA,Os(1λ)
qC = qH = qD = 0
S ← ;, Lc ← ;, Lh← ;, Lp← ;
(spar, ipk∗)←Os(1λ)
cpar← DeriveParc(spar)
apar← (cpar, spar)
(pt∗, pt′, R∗, (α∗i )i∈R∗ ,µ

∗),µ∗)← GF
OIC ,OIH ,Opres

A
(apar, ipk∗)

If ∃cid such that (cid, R∗,µ∗) ∈ Lp abort.
(m̄i, σ̄i)i∈R∗ ← E((pt∗, R∗, (α∗i )i∈R∗), (pt′, R∗, (α∗i )i∈R∗))
If ∃ j such that > (αi)i∈R, cid, m such that α∗j ∈ {αi}i∈R ∧ (cid,m, (αi)i∈R) ∈ Lc return ((m̄ j, j‖α∗j), σ̄ j).
ElseIf ∃i, j, (αi)i∈R, (αi)i∈R′ , cidi, cid j, mi, m j such that

α∗i ∈ {αi}i∈R ∧ α∗j ∈ {αi}i∈R′ ∧ {(cidi,mi, (αi)i∈R), (cid j,m j, (αi)i∈R′)} ⊆ Lc

If ∀k f (mi)∩ f (m̄k) = ; return ((mi, i‖α∗i ), σ̄
∗
i ).

If ∀k f (m j)∩ f (m̄k) = ; return ((m j, j‖α∗j ), σ̄
∗
j ).

Else abort.

Oracle OIC((αi)`i=1)
id←U\S
cred← (Os(id, 1‖α1), . . . ,Os(id,`‖α`))
S ←S ∪ {id}
cid← H(id, cred)
Lc ← Lc ∪ {(cid, id, (α∗i )i∈R∗)}
qC ← qC + 1
Return (id, cred) .

Oracle OIH((αi)`i=1)
cid $←−{0, 1}λ

Lh← Lh ∪ {(cid, (αi)`i=1)}
qH ← qH + 1
Return cid .

Oracle Opres(cid, R,µ)
Get (αi)`i=1 such that (cid, (αi)`i=1) ∈ Lh

(abort if it does not exist).
pt← Σ(ipk, (αi)i∈R,µ, 1λ)
Lp← Lp ∪ {(cid, R,µ)}
qP ← qP + 1
Return pt .

Figure 4.3. Simulator of the unforgeability experiment for AAT-O. The token

pt′ results from rewinding A, hence it di�er from pt∗ only in the values of

challenges and responses.

thanks to the zero-knowledge property of the rNIZK. Let (pt∗, R∗, (α∗i )i∈R∗ , M ∗) be
the forgery output by A. The simulator rewinds A using the Generalized Forking
Lemma (this corresponds to applying the algorithm GF to A, cf. Lemma 2.6)
and extracts an identities m̄i and signatures σ̄i on (m̄i, i‖α∗i ) ∈ M̄ using the
extractor E of the rNIZK. By the relaxed binding property of the commitment
scheme, the identities m̄i are such that there exists m ∈ U such that {m̄i}i ⊆
f (m). Moreover, for it to be a valid forgery, there should exist at least one α∗j
that either was not part of any issued credential, or a pair of attributes α∗i , α

∗
j

that were issued within different credentials. In the first case, (m̄ j, j‖α∗j ) with
signature σ̄ j is a valid forgery. In the second case, this means that the signing
algorithm signed messages (mi, i‖α∗i ), (m j, j‖α∗j) inM for some distinct mi, m j
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such that f (mi)∩ f (m j) = ; (by construction of U ). Then either (m̄i, i‖α∗i ), σ̄i

or (m̄ j, j‖α∗j ), σ̄ j is a valid forgery.
We now compute the success probability εB and the runtime tB of B. Let εBIN

be the probability of breaking the binding property of rC, εSS be the probability
of breaking the relaxed simulation soundness, and εZK be the probability that A
breaks zero-knowledge. Then, from the Generalized Forking Lemma it follows
that the success probability of B is εB = (1− εZK) · εA/8− (εBIN + εSS). By the
Generalized Forking Lemma, the running time ofB is tB = 8`2 tA(qC+qH+qP)/εA·
ln(8`/εA)+qC · tS+qP · tΣ+ tE+poly(λ), where tΣ and tE are the runtime of the
simulator and of the extractor of the rNIZK respectively, tS is the runtime of the
signing oracle, and `= |R∗|.

Anonymity is guaranteed by the zero-knowledge property of rΣ (hence, im-
plicitly, on the hiding property of the rC scheme).

Theorem 4.5 (Anonymity). If an adversary A running in time t breaks the anony-
mity of the AAT-O with probability at most εA, then there exists a PPT adversary
that breaks the zero-knowledge property of rΣ with advantage at most εB ≥ εA/2
in the Random Oracle Model.

Proof. Let Expanon−b
A

(1λ) be the experiment in Figure 4.2. The success probability
of A is:

εA =

�

�

�

�

Pr
�

b = b′ : b $←−{0, 1}, b′← Expanon−b
A

(1λ)
�

−
1
2

�

�

�

�

=
1
2

�

�Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

+Pr
�

b′ = 1 : b′← Expanon−1
A

(1λ)
�

− 1
�

�

=
1
2

�

�Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

+Pr
�

b′ = 0 : b′← Expanon−1
A

(1λ)
��

� .

We prove that such probability is negligible if the rNIZK is zero-knowledge
through a standard sequence of game hops. Let Gamei the probability that A
outputs 0 at the end of the i-th game.

Game 0. Game 0 executes Expanon−0
A

(1λ). Hence,

Pr[Game0] = Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

.

Game 1. In the first game, everything is the same as in Game 0 but the challenge
oracle O 0

C , which now simulates the proofs (but still outputs pt∗0). If the adversary
can distinguish Game 0 from Game 1, then it is possible to build a distinguisher
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B1 that breaks the zero-knowledge proof of rΣ with advantage

ε1 =
1
2
|Pr [Game0]−Pr [Game1]| .

The construction of B1 is analogous to the construction of B1 in Game 1 in the
proof of Theorem 3.43, hence we omit it.

Game 2. In the second game, everything is the same as in Game 0 but the
challenge oracle O 0

C , which now outputs pt∗1. As both pt∗0 and pt∗1 are generated
by the simulator, which does not take as input cred∗b, the two games are perfectly
indistinguishable:

Pr [Game2] = Pr [Game1] .

Game 3. In the last game the challenge oracle is switched back to generate the
proofs honestly. This is exactly Expanon−1

A
(1λ), hence it holds

Pr[Game3] = Pr
�

b′ = 0 : b′← Expanon−1
A

(1λ)
�

.

Moreover, ifA is able to distinguish Game 3 from Game 2 it is possible to construct
a distinguisher B3 that exploits A to break the zero knowledge property of rΣ
analogously to what we did in Game 1 with advantage

ε3 =
1
2
|Pr [Game2]−Pr [Game3]| .

Therefore, the success probability of A is

εA =
1
2

�

�Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

+Pr
�

b′ = 0 : b′← Expanon−1
A

(1λ)
��

�

=
1
2
|Pr [Game0]−Pr [Game3]|

=
1
2

�

�

�

�

�

2
∑

i=0

Pr [Gamei]−Pr [Gamei+1]

�

�

�

�

�

≤
1
2
(2ε1 + 0+ 2ε3)

= 2εZK .

4.1.3 Parameters and Storage Requirements

We present six different sets of parameters, depending on the level of security that
is required. To compute them, we follow the general methodology from [Alkim
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et al., 2016]. This will give us a wide choice of parameters, from an optimistic
choice that only guarantees classical security to a very pessimistic choice for
quantum security. RSIS and RLWE are analyzed in their corresponding forms of
SIS and LWE1. The best algorithm to find short vectors in a lattice is the BKZ al-
gorithm, whose latest version was published by Chen and Nguyen [2011]. This
algorithm reduces the lattice basis into blocks of size b and then calls an SVP
(Shortest Vector Problem) oracle on such blocks. When computing the runtime
of BKZ, we will ignore the number of calls to the oracle, as it is known to be poly-
nomial Hanrot et al. [2011] and it is rather complex to compute. This makes all
parameters choices significantly more conservative than needed in reality. Now,
considering the SVP oracle, Alkim et al. estimated the heuristic complexity as
it follows: for classical algorithms (e.g., lattice sieve algorithms) it is around
≈ 20.292b, for quantum algorithms (e.g., sieving plus Grover’s algorithm) around
≈ 20.265b and overall they would not go below a heuristic complexity of≈ 20.2075b

excluding major theory breakthroughs. To estimate the optimal block size b, we
use the Hermite root factor δ: we first compute δ for the SVP instance, then
we obtain b from the (optimistic estimate) Hermite root factor of the solution
output by BKZ δ = ((πb)1/b · b/2πe)1/2(b−1). We do not take into account other
types of attack (e.g., [Arora and Ge, 2011; Kirchner and Fouque, 2015]), as for
our choice of parameters they would be not effective.

For each of the 3 possible scenarios, we give two sets of parameters, distin-
guishing whether security is based on complexity leveraging. Recall that such a
technique is used in the reductions in Theorem 3.32 and in Theorem 3.19. Bas-
ing the security of the scheme on these reductions means that parameters have to
compensate for the loss in tightness. Not relying on complexity leveraging means
to assume that the hardness of Assumption 4 (resp. Assumption 2) implies the
hardness of Assumption 3 (resp. Assumption 1) without any tightness loss.

Parameters that guarantee 128 bits of security are shown in Table 4.1. The
third column contains the maximum value of the Hermite root factor that guaran-
tees 128 bits of security in the different cases. As message space, we have chosen
Km = 6, hence U ⊆ R(64)

3 , and the same for the challenge space, C ⊆ R(64)
3 (thus

the proofs have to be repeated 6 times). In case complexity leveraging is used,
the values of δ are computed taking into account the necessary compensation
for the loss in tightness in the proofs. As observed in Section 4.1.2, the scheme
supports an estimated number of users around 3(2

Km−1−1)/(n/2). In practice, for
Km = 6 the number of supported users is 240 for n= 210 and 239 for n= 211. The

1This analysis was accurate at the time the work was published, and might not be up to date
anymore.
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Parameters Sizes
Compl. Lev. Security δ n q m σt ipk(KB) usk(KB) token(MB)

NO classical 1.003735 210 ∼288 13 4 304.128 98.24 1.5
NO quantum 1.003488 210 ∼288 14 4 323.656 103.36 1.58
NO worst-case 1.002926 210 ∼288 17 4 394.24 113.984 1.86
YES classical 1.0005036 211 ∼292 52 4 2472.96 462.272 11.15
YES quantum 1.0004646 211 ∼292 57 4 2708.48 503.232 12.19
YES worst-case 1.0003788 211 ∼292 70 4 3320.832 609.728 14.7

Table 4.1. Table of parameters for the AAT scheme without opening. All the

values are rounded up.

set Ū results to have cardinality 21805 (resp. 21829) for n = 211 (resp. n = 212).
Hence to compensate for complexity leveraging we consider SVP instances that
offer ∼ 21850 bits of security (as in the proof of Theorem 3.27 both m̄ and c̄ have
to be guessed).

In the following, we give an example of how we computed the storage re-
quirements in Table 4.1. Consider the parameters in the first line of Table 4.1
(classical security, no complexity leveraging). With those values, a polynomial
a ∈ Rq can be stored in at most n log2 q/8 = 11.264 KB. The issuer public key
contains by a ∈ Rq and B,C ∈ R1×m

q . Hence it is composed by 27 polynomials in
Rq, and it requires 304.128 KB of storage. The issuer secret key is composed by
the trapdoor X ∈ R2×m

q sampled from a Gaussian with standard deviation σt = 4,
thus its components have infinity norm less than 8 ·4= 32 with high probability.
Therefore, storing it requires at most 2mn · log2 32/8= 16.64 KB. The user secret
key is composed by the identity m and the signature S, thus it can be stored in
98.24 KB. A signature is composed by a commitment, i.e. a vector in R1×m

q , and by
the transcript of the NIZK proof (a challenge in C and two responses, i.e. vectors
in Rq of length m+2 and 2m+3 respectively). The length of the commitment is
mn log2 q bits that is 146.432 KB. The length of each proof is at most 0.225 MB
plus the one-time signature. Hence the length of the presentation token is less
than 1.5 MB plus the one-time signature used in the relaxed Σ-protocol.

4.1.4 Simple Optimization: Multiple Rejection Sampling Steps

We sketch an optimization of the scheme where rejection sampling is done sep-
arately for the user identity and the rest of the vector Sc. This optimization was
included in the original work (cf. [Boschini et al., 2017]), where it had quite the
impact on the parameters of the scheme. However, in this work we have im-
proved the bounds in Section 3.7 using the infinity norm, and this optimization
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does not improve the parameters of scheme that much anymore. Therefore, we
have decided to mention it (for completeness), but not to work out the details,
as the resulting protocol would not be of interest.

When using complexity leverage, parameters get considerably larger because
the set Ū can contain up to 21538 elements. Its dimension is determined by the
norm of the vector Z1 in Section 3.7. This length in turn is a function of the
length of m, E and b, where the norms of b and E are considerably larger than
the norm of m, as m ∈ R(2

Km )
3 . Hence, it can happen that the norm of an extracted

message m̄ is heavily dependent on the norm of b and E. To avoid this, we can
modify the relaxed protocol in Section 3.7 to do rejection sampling separately
on m. Indeed, the prover can sample the error polynomial ym from a Gaussian
with standard variation σm proportional to the norm of m, and another masking
vector Y1 from a Gaussian with standard deviation σ proportional to the norm
of [b;E]. Then, one would do everything as in the original algorithm except
for the rejection sampling part. This part would have to be done separately for
zm = ym+cm mod q and Z1 = Y1+c[b;E] mod q. The advantage is that now we
have a tighter bound on the norm of zm. The disadvantage is that we have to do
three rejection sampling steps (one on [S1;S2;S3;−ES3], one on [b;E] and one
on m) instead of one, thus reducing the acceptance probability. To prevent that,
we have to increase the standard deviations.

4.2 Anonymous Attribute Tokens with Opening

There are scenarios where it can be necessary to revoke the anonymity of a mis-
behaving user to establish which user has created a particular token. This cannot
be done with an AAT-O, but requires an opener, i.e., an entity that can extract id
from the presentation token thanks to a secret key. This type of AATs with open-
ing are denoted by AAT+O. An AAT+O scheme immediately gives rise to a group
signature scheme with chosen-ciphertext anonymity (i.e., where the adversary
has access to an opening oracle) by handing each user a credential of a fixed
attribute as a signing key. To sign a message µ, the user creates a presentation
token for µ. We will deal with this in Section 5.2.

4.2.1 De�nition of AAT+O Schemes

We adapt the syntax and security notions of AAT+O schemes [Camenisch et al.,
2012] to a setting where the issuer and opener are separate entities, rather than
having a central group manager that performs both roles. The syntax of an



117 4.2 Anonymous Attribute Tokens with Opening

AAT+O scheme largely follows that of an AAT-O scheme. The system parame-
ters generation, issuer key generation, and credential issuance are as defined for
AAT-O schemes in Section 4.1.1. In addition to those algorithms, there are two al-
gorithms that are run by the opener and a different presentation and verification
algorithms (as it takes as input the opener public key as well):

Opener Key Generation. The opener key generation algorithm OKGen(apar)
generates the opener’s key pair (opk, osk).

Presentation. A user creates a presentation token pt revealing a subset of at-
tributes (αi)i∈R, R ⊆ {1, . . . ,`}, from a credential while authenticating a
message µ by running Present(ipk, opk, cred, R,µ).

Verification. The verifier checks the validity of a presentation token by running
Verify(ipk, opk, R, (αi)i∈R,µ, pt) which returns accept or reject.

Opening. The opening algorithm id ← Open(ipk, osk, R, (αi)i∈R,µ, pt) recovers
the user’s identity.

Correctness requires that verification and opening of a honestly generated
token are coherent.

Definition 4.6 (Correctness). An AAT+O scheme (SPGen, IKGen,OKGen, Issue,
Present,Verify,Open) satisfies correctness if for all user identities id, all ` ∈ N,
all α1, . . . ,α` ∈ {0, 1}∗, and all sets R ⊆ {1, . . . ,`} the following holds

Pr









1← Verify(ipk, opk, R, (αi)i∈R,µ, pt)
∧ id′ = id

:

apar← SPGen(1λ), (ipk, isk)← IKGen(apar),
(id, cred)← Issue(isk, id, (αi)`i=1),

pt← Present(ipk, cred, R,µ),
id′←Open(ipk, osk, R, (αi)i∈R,µ, pt)









≤ ν(λ) .

In terms of security, an AAT+O scheme must satisfy traceability (which cor-
responds to the unforgeability notion of the AAT-O) and anonymity.

Definition 4.7 (Traceability). An AAT+O scheme (SPGen, IKGen,OKGen, Issue,
Present,Verify,Open) satisfies traceability if for all PPT adversaries A the advan-
tage of A in winning the unforgeability experiment in Figure 4.4 is negligible:

Pr
�

1← Exptrac
A
(1λ)

�

≤ ν(λ) .

We describe a strong notion of full anonymity, often referred to as CCA2
anonymity, where the adversary is given access to an opening oracle. This or-
acle keeps track of the tokens it has opened through the list Lo.
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Experiment Exptrac
A
(1λ)

apar← SPGen(1λ)
(ipk∗, isk∗)← IKGen(apar)
(opk∗, osk∗) $←−OKGen(apar)
(ssk, svk)← SKeyGen(spar)
(pt∗, R∗, (α∗i )i∈R∗ ,µ

∗)← AOIC ,OIH ,Opres ,OO(apar, ipk∗, opk∗)
id∗←Open(ipk∗, osk∗, R, (αi)i∈R,µ, pt)
If 1← Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,µ

∗, pt∗)
and > cid such that (cid, (α∗i )i∈R∗) ∈ Lc

and (id∗, (α∗i )i∈R∗ ,µ
∗) /∈ Lp

then return 1 else return 0.

Oracle Opres(opk, cid, R,µ)
Get cred such that (cid, id, cred) ∈ Lh

(abort if it does not exist).
pt← Present(ipk∗, opk, cred, R,µ)
Lp← Lp ∪ {(id, R,µ)}
Return pt .

Oracle OO(pt, ipk∗, R, (αi)i∈R,µ)
id←Open(ipk∗, osk∗, R, (αi)i∈R,µ, pt)
Return pt .

Figure 4.4. Traceability experiment for AAT+O. The oracles OIC and OIH can

be found in Figure 4.1.

Experiment Expanon−b
A

(1λ)
apar← SPGen(1λ)
(opk∗, osk∗) $←−OKGen(apar)
(ipk∗, isk∗)← IKGen(apar)
count ← 0
b′← AO

b
C ,OO(apar, opk∗, ipk∗, isk∗)

Return b′.

Oracle O b
C (cred∗0, cred∗1, R∗, (α∗i )i∈R∗ ,µ

∗)
count ← count + 1
If count ≥ 2 abort.
For i = 0,1:

pt∗i
$←−Present(ipk∗, opk∗, cred∗i , R∗,µ∗)

If Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,µ
∗, pt∗0) = 1

and Verify(ipk∗, opk∗, R∗, (α∗i )i∈R∗ ,µ
∗, pt∗1) = 1

then return pt∗b, else abort.

Oracle OO(R, (αi)i∈R,µ, pt)
If count = 1 ∧ pt= pt∗ abort.
id←Open(osk∗, R, (αi)i∈R,µ, pt)
Return id.

Figure 4.5. Anonymity experiment for AAT+O.

Definition 4.8 (Anonymity). An AAT+O scheme (SPGen, IKGen,OKGen, Issue,
Present,Verify,Open) satisfies anonymity if for all PPT adversaries A the advan-
tage of A in winning the anonymity experiment in Figure 4.5 is negligible:

�

�

�

�

Pr
�

b′ = b ∧ pt∗ /∈ Lo : b $←−{0,1}, b′← Expanon−b
A

(1λ)
�

−
1
2

�

�

�

�

≤ ν(λ) .

4.2.2 AAT+O from Lattices

We present a construction of an AAT+O scheme obtained by combining our re-
laxed signature and commitment scheme with the relaxed verifiable encryption



119 4.2 Anonymous Attribute Tokens with Opening

scheme by Lyubashevsky and Neven [2017]. We see our AAT+O scheme mainly
as a proof of concept that demonstrates that our framework of relaxed crypto-
graphic primitives, glued together with relaxed Σ-protocols, can be composed
generically to build efficient privacy-enhancing protocols. At the same time, we
expect that a direct construction that builds on the same principles, but that is
optimized for the specific use case, can easily outperform our generic construc-
tion. We therefore refrain from suggesting concrete parameter sizes and giving
efficiency estimates, but rather leave such numbers to future work.

As described in Section 3.7, the opening verification equation of the commit-
ment scheme can be rewritten as

�

−GT FT −Im
�

︸ ︷︷ ︸

=Ac





m
b
ET





︸ ︷︷ ︸

=Sc

= CT mod q . (4.1)

One can observe that this is a linear relation that can be used for the verifiable
encryption scheme (EKeyGenLN ,EncLN ,EVerifyLN ,DecLN) of [Lyubashevsky and
Neven, 2017] described in Section 3.8.3. We can therefore add opening to our
AAT-O scheme from Section 4.1.2 by including in the presentation token a veri-
fiable encryption of the user identity m that is committed to in F, so that m can
be recovered by decrypting the ciphertext. Remark that in that case we need to
encrypt modulo a q′ larger than q2.

We now present our AAT+O scheme (SPGen, IKGen,OKGen, Issue,Present,
Verify,Open) that we obtained combining the relaxed signature rS with the re-
laxed Σ-protocol rΣ and the Lyubashevsky-Neven relaxed verifiable encryption.
To allow for composability we redefine the prover algorithm from Remark 9 as
an algorithm P

Hc
pt that outputs both the transcript of the proof and the random-

ness (E,b) used to generate the commitment F to the user identity. The verifier
remains unchanged. We also introduce an algorithm DeriveParve that on input
the parameters of the signature chooses the two primes needed by the encryption
to be q and q′� q that satisfy the bound in Equation (3.21).

Issuer key generation, and issuance are performed exactly as in the AAT-O
scheme from Section 4.1.2. The other algorithms are described as follows.

System Parameter Generation. The algorithm SPGen first generates the com-
mitment parameters cpar← ParGenc(1λ). Then it derives the parameters

2The notation is misleading here, as in Section 3.8.3 we described the protocol as follows: the
relation was defined modulo p, while encryption would be done modulo q, where q� p. In the
case of our AAT+O scheme, the relation holds modulo q and the encryption is done modulo a q′

greater than q.



120 4.2 Anonymous Attribute Tokens with Opening

of the relaxed signature spar← DerivePars(cpar) and the verifiable encryp-
tion parameters epar← DeriveParve(cpar) and outputs apar = (cpar, spar,
epar).

Opening Key Generation. The opener generates the keys for the verifiable en-
cryption scheme running (epk, esk)← EKeyGenLN (1

λ) and sets opk = epk
and osk= esk.

Presentation. To create a presentation token for a opener key opk, attributes
(αi)i∈R and a message µ, the user first proceeds as in the AAT-O scheme,
i.e., it runs the non-interactive (aggregated) prover PHc

pt ((V, (αi)i∈R), (m, (1,
(Si)i∈R,1))),µ) from Section 3.7, whereby it includes the message µ in the
Fiat-Shamir hash. Remark that all the proofs have the same F, as the pro-
tocol aggregates the signature as shown in Remark 9. Then, it generates
a one-time signature key pair (otsvk, otssk)← OTSGen(1λ), constructs Sc

(cf. Equation (3.15)), and generates a verifiable ciphertext c $←−EncLN (opk,
Ac,Sc, otsvk) as per Equation (4.1), where otsvk is only used as input of the
Fiat-Shamir hash of the verifiable encryption. Finally, it computes a one-
time signature ots ← OTSSign(otssk, ((Πi)i∈R, c)) and outputs the token
pt= ((Πi)i∈R, c, otsvk, ots).

Verification. The verifier checks the validity of (Πi)i∈R w.r.t. F and the message µ
running V

Hc
pt (V,αi,Πi,µ), checks that EVerifyLN(opk,Ac, otsvk, c) = 1 with

otsvk in the Fiat-Shamir hash, and that OTSVf(otsvk, ((Πi)i∈R, c)) = 1. If
all tests pass, it outputs accept, otherwise reject.

Opening. To open a presentation token pt, the opener first runs the verification
algorithm Verify, returning ⊥ if it rejects. The opener decrypts (S̄c, c̄) ←
DecLN(osk, c) and recovers m̄ as the first coordinate from S̄c. It then recov-
ers an irreducible factor m of degree n/2 of m̄ (through dividing by c̄) and
returns m, or returns ⊥ if such a factor does not exist.

Again, correctness is trivial, as it follows from the correctness of the building
blocks. The runtime of the opening algorithm is exactly the runtime of the de-
cryption, and can be bound using Theorem 3.40. As the rNIZK proof guarantees
that deg(m̄) = 3/4n, a honestly generated m̄ can contain only one irreducible
factor of degree exactly n/2, that is the original identity m used to produce the
token.

The traceability of the AAT+O scheme can be proved essentially in the same
way as the unforgeability of the AAT-O scheme in Section 4.1.2.
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Theorem 4.9 (Traceability). Let εBIN be the probability of breaking the binding
property of the commitment scheme rC underlying rΣ, εSS be the probability of
breaking the relaxed simulation soundness of rΣ, and εS be the probability of break-
ing the soundness of the Lyubashevsky-Neven relaxed verifiable encryption scheme.

Assume A is an adversary that runs in time tA, makes qC queries for credentials
issued to corrupt users (if A queries for a credential on (id, (αi)i=1,...,`), we count it
as ` queries) and qH queries for credentials issued to honest users, asks for qP pre-
sentation tokens of honest users, and breaks the traceability of the AAT+O scheme
with probability εA.

There exists an algorithm B that breaks the unforgeability of the signature in
time tB = 8`2 tA(qC +qH +qP)/εA · ln(8`/εA)+ (qC +qH) · tS + tE+poly(λ) (where
tE is the runtime of the extractor of the rNIZK, tS is the runtime of the signing
oracle, and ` is the number of attributes contained in the forged pt) with probability
εB = εA/8− (εBIN + εSS + εS) after asking qC + qH queries to the signing oracle in
the Random Oracle Model.

Proof sketch. We give here a sketch of the proof, as it is very similar to the proof
of unforgeability of our AAT-O (Theorem 4.4).

To prove the theorem statement we show that a successful adversaryA against
traceability implies a successful adversary B against the unforgeability of the sig-
nature which can simulate the traceability experiment without being detected
thanks to the zero-knowledge property of rΣ and to the soundness and chosen-
ciphertext simulatability of the relaxed verified encryption scheme. The algo-
rithm B is described in Figure 4.6. It has access to a signing oracle Os that, when
prompted the first time, outputs the parameters of the signature scheme spar and
the verification key svk. Then, on input a message (m,α), the oracle outputs a
valid signature on it w.r.t. svk. The parameters of the commitment are derived
from spar through an algorithm DeriveParc.

The simulator B simulates the oracles as follows

Issuance to corrupt user: on input attributes (αi)i, it chooses m ∈ U\S and
queries Os with (m, i‖αi). It returns m and the outputs of the signing oracle
and stores the issued identity m and the issued attributes with a credential
identifier. Queries to this oracle are counted in qC . This algorithm is the
same as in the proof of Theorem 4.4.

Issuance to honest users: on input attributes (αi)i, it chooses m ∈ U\S and
queries Os with (m, i‖αi). Then it computes the credential identifier cid
and returns it as output. Queries to this oracle are counted in qH . The
credential is stored in the list Lh to be used to produce presentation tokens
for honest users.
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Presentation by honest users: on input attributes (αi)i, it recover the entry
(cid, cred, (αi)`i=1) from Lh (it aborts if it does not exist). Then it gener-
ates the presentation token honestly. Queries to this oracle are counted in
qP .

To break the traceability of the AAT+O, A has to output a presentation token
that has been produced without knowing the usk corresponding to the id hidden
in it. Hence, B uses the rewinding algorithm GF from the Generalized Forking
Lemma (Lemma 2.6) and extracts valid relaxed signatures of (m̄, i‖αi) for all
revealed attributes, as well as a relaxed opening (S̄c,i, c̄i) for the commitment
F (in Figure 4.6 we have denoted by E the extractor obtained combining the
extractor of the rNIZK and the extractor of the verifiable encryption scheme).
By the soundness of the relaxed verifiable encryption scheme, the decryption
of c also recovers a possibly different relaxed opening (S̄′c, c̄′) for F. Let m̄i be
the message contained in S̄c,i and let m̄′ be the message contained in S̄′c. By the
relaxed binding property of rC, for all i ∈ R the message m̄i shares an n/2-degree
irreducible factor with m̄′. This is the user identity under which the credential
was created. Hence, A can be used to obtain a forgery against the signature
scheme using a similar reduction as in the unforgeability proof.

The runtime of B is tB = 8`2 tA(qC+qH+qP)/εA·ln(8`/εA)+(qC+qH)· tS+ tE+
poly(λ) (where tE is the runtime of the extractor of the rNIZK, tS is the runtime
of the signing oracle, ` is the number of attributes contained in the forged pt).

Let εBIN be the probability of breaking the binding property of rC, εSS be the
probability of breaking the relaxed simulation soundness, and εS be the proba-
bility that A breaks the soundness of the relaxed verifiable encryption scheme.
Then B succeeds with probability εB = εA/8−(εBIN+εSS+εS) after asking qC+qH

queries to the signing oracle in the Random Oracle Model.

Theorem 4.10 (Anonymity). If the relaxed Σ-protocol rΣ is zero-knowledge, the
one-time signature scheme is strongly unforgeable, and the Lyubashevsky-Neven ver-
ifiable encryption scheme is chosen-ciphertext simulatable, then the AAT+O scheme
is anonymous in the Random Oracle Model.

Proof sketch. We give an outline of the proof, as it is very similar to the proof of
Theorem 4.5.

Let Expanon−b
A

(1λ) be the experiment in Figure 4.5. The success probability of
A is:
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We prove that such probability is negligible if the rNIZK is zero-knowledge
through a standard sequence of game hops. Let Gamei the probability that A
outputs 0 at the end of the i-th game.

Game 0. Game 0 executes Expanon−0
A

(1λ). Hence,

Pr[Game0] = Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

.

Game 1. In Game 1, B rejects all opening queries for presentation tokens pt=
((Πi)i∈R, c, otsvk, ots) where c = c∗0 included in pt∗0. Because otsvk∗ is included in
the Fiat-Shamir hash of c∗0, the fact that c = c∗0 and that c is valid according to
EVerify means that otsvk = otsvk∗. The only way for the adversary to submit a
presentation token pt 6= pt∗0 that is rejected in this game but not in the previous
game is therefore by using ((Πi)i∈R, ots) 6= ((Π∗i )i∈R, ots∗), but any adversary doing
so can be used to break the strong one-time unforgeability of the OTS scheme.
Therefore,

ε1 = |Pr[Game1]−Pr[Game0]| .

Game 2. In Game 2, B generates the ciphertext c∗i in the target presentation
tokens pt∗i running the simulator of the relaxed verifiable encryption. Note that in
the reduction, we never have to answer opening queries for presentation tokens
containing c∗i , as these were already rejected in Game 2. If an adversary A1 can
distinguish Game 1 from Game 0 then it is possible to build a distinguisherB1 that
breaks the chosen-ciphertext simulatability property of the verifiable encryption
with probability

ε2 =

�

�

�

�

Pr
�

b = b′ : b $←−{0,1}, b′← Expccas−b
A

(1λ)
�

−
1
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�

�

=
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2
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(1λ)
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+Pr
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b′ = 1 : b′← Expccas−1
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− 1
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=
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b′ = 0 : b′← Expccas−0
A

(1λ)
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+Pr
�

b′ = 0 : b′← Expccas−1
A

(1λ)
��

�

=
1
2
|Pr[Game2]−Pr[Game1]| .
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Game 3. In Game 3, B simulates the rest of the proofs in the target presentation
tokens using the simulator of the rNIZK. Distinguishing Game 3 from Game 2 im-
plies the existence of a distinguisher B3 that breaks the zero-knowledge property
of the rNIZK with advantage,

ε3 =
1
2
|Pr[Game3]−Pr[Game2]| .

Game 4. In Game 4, B sends pt∗1 instead of pt∗0. As they are both generated in
the same way using the simulators (i.e., independently of b), Game 4 is perfectly
indistinguishable from Game 3:

Pr[Game3] = Pr[Game4] .

Game 5. In Game 5, B generates the rNIZKs in pt∗i honestly. Again, the proba-
bility of distinguishing this game from the previous one is equal to the advantage
of an algorithm B5 that breaks the zero-knowledge property of rΣ exploiting the
game distinguisher:

ε5 =
1
2

�

�Pr[Game5]−Pr[Game4]
�

� .

Game 6. In Game 6, B generates the ciphertexts c∗i in pt∗i honestly. The proba-
bility of distinguishing this game from the previous one is equal to the advantage
of an algorithm B6 that breaks the CCS property of the relaxed verifiable encryp-
tion scheme exploiting the game distinguisher:

ε6 =
1
2
|Pr[Game6]−Pr[Game5]| .

Game 7. Finally, in Game 7 B reverse back to accepting all opening queries for
presentation tokens pt = ((Πi)i∈R, c, otsvk, ots) where c = c∗1 included in pt∗1. As
for Game 1, an adversary able to distinguish this game from the last one can be
exploited to break the strong unforgeability of the OTS with advantage

ε7 =
�

�Pr[Game7]−Pr[Game6]
�

� .

Remark that Game 7 is in fact Expanon−1
A

(1λ),i.e.,

Pr[Game7] = Pr
�

b′ = 0 : b′← Expanon−1
A

(1λ)
�

.
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Therefore,

εA =
1
2

�

�Pr
�

b′ = 0 : b′← Expanon−0
A

(1λ)
�

+Pr
�

b′ = 0 : b′← Expanon−1
A

(1λ)
��

�

=
1
2

�

�Pr[Game0]−Pr[Game7]
�

�

=
1
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�

�

�

�

�

6
∑

i=0

Pr [Gamei]−Pr [Gamei+1]

�

�

�

�

�

≤
1
2
(2ε1 + 2ε2 + 2ε3 + 0+ 2ε5 + 2ε6 + 2ε7)

= εOTS + 2εCCS + 2εZK
where εOTS, εCCS, and εZK are the advantage in breaking the strong unforge-

ability of the OTS, the chosen-ciphertext simulatability of the verifiable encryp-
tion scheme and the zero-knowledge property of the rNIZK proof system.
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Simulator BA,Os
(1λ)

qC = qH = qD = 0
S ← ;, Lc ← ;, Lh← ;, Lp← ;
(spar, ipk∗)←Os(1λ)
cpar← DeriveParc(spar)
epar← DeriveParve(cpar)
apar← (cpar, spar, epar)
(pt∗, pt′, R∗, (α∗i )i∈R∗ ,µ

∗)← GF
OIC ,OIH ,Opres ,OO

A
(apar, ipk∗)

((S̄c,i, c̄i, m̄i, σ̄i)i∈R∗ , (S̄′c, c̄′))← E((pt∗, R∗, (α∗i )i∈R∗), (pt′, R∗, (α∗i )i∈R∗))
If ∃ j such that > (αi)i∈R, cid, m | α∗j ∈ {αi}i∈R ∧ (cid,m, (αi)i∈R) ∈ Lc return ((m̄ j, j‖α∗j ), σ̄ j).
ElseIf ∃i, j, (αi)i∈R, (αi)i∈R′ , cidi, cid j, mi, m j such that

α∗i ∈ {αi}i∈R ∧ α∗j ∈ {αi}i∈R′ ∧ {(cidi,mi, (αi)i∈R), (cid j,m j, (αi)i∈R′)} ⊆ Lc

If ∀k f (mi)∩ f (m̄k) = ; return ((mi, i‖α∗i ), σ̄
∗
i ).

If ∀k f (m j)∩ f (m̄k) = ; return ((m j, j‖α∗j), σ̄
∗
j ).

Else abort.

Oracle OIH((αi)`i=1)
id←U\S
cred← (Os(id, 1‖α1), . . . ,Os(id,`‖α`))
S ←S ∪ {id}
cid← H(id, cred)
Lh← Lh ∪ {(cid, cred, (αi)`i=1)}
qH ← qH + 1
Return cid .

Oracle OO(R, (αi)i∈R,µ, pt)
If 0← Verify(ipk, opk, R, (αi)i∈R,µ, pt) abort.
Return id←Open(ipk, osk, R, (αi)i∈R,µ, pt).

Oracle Opres(cid, R,µ)
Recover the entry (cid, cred, (αi)`i=1) from Lh

(abort if it does not exist).
(otsvk, otssk) $←−OTSGen(1λ)
(E,b, (Πi)i∈R)← P

Hc
pt (ipk, (αi)i∈R,µ, 1λ)

Sc ← [m; b; ET ]
c← EncLN((Ac,C

T ), (Sc,1), opk)
ots $←−OTSSign(otssk, ((Πi)i∈R, c))
pt← ((Πi)i∈R, c, otsvk, ots)
Lp← Lp ∪ {(R,µ)}
qP ← qP + 1
Return pt .

Figure 4.6. Simulator of the traceability experiment for AAT+O. The oracle

OIC is the same as in Figure 4.3. The token pt′ results from rewinding A, hence

it di�er from pt∗ only in the values of challenges and responses.



Chapter 5

Group Signatures from Relaxed

Protocols

In this final chapter we present the group signatures that are the final result
of our journey into lattice-based privacy-preserving signatures. We include three
schemes ([Boschini et al., 2018b], [Boschini et al., 2018a], [Boschini et al., 2020]),
presented from the oldest (and less efficient) one, to the most recent and more
powerful scheme. Our group signatures follow the common design pattern [Ate-
niese et al., 2000; Chase and Lysyanskaya, 2006; Benhamouda et al., 2014]
whereby a user’s signing key is a signature of its identity by the group manager,
and where a group signature consists of a ciphertext encrypting the user’s iden-
tity, together with a signature of knowledge of a signature by the group manager
on the encrypted identity.

Formal definitions of group signatures are given in the following.

5.1 Formal De�nitions of Group Signatures

Group signatures [Chaum, 1991] allow a user to output signatures on behalf of
a group without revealing information about its identity (besides its group mem-
bership). Differently from ring signatures [Rivest et al., 2001], group signatures
are centralized, meaning that the secret signing keys of the users are generated
through an interaction with a group manager. Moreover, the anonymity of the
signer can be lifted by an opener if there is a suspected misconduct. In the fol-
lowing we present two flavors of group signatures: standard group signatures,
where the issuer is assumed to be always honest, and fully anonymous group
signatures, where the issuer can be corrupted. The models are adaptations of
the original models by [Bellare et al., 2003, 2005].

127
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5.1.1 Group Signatures with Trusted Issuer

A group signature is a set of algorithms (GPg,GKg,UKg,OKg,GSign,GVerify,
GOpen) that regulate the interactions between by a group manager, an opener
and users.

Parameters Generation. The group signature parameters par are generated via
GPg(1λ) (where λ is the security parameter).

Group Manager Key Generation. The group manager generates its keys run-
ning (gpk, gsk)← GKg(par).

Opener Key Generation. The opener generates its keys running (opk, osk) ←
OKg(gpk).

Joining. If a user wants to join, it sends its identity to the group manager and
obtains back its user secret key usk← UKg(gsk, id).

Signing. The user can sign a message µ on behalf of the group using its secret
key with the algorithm GSign(usk, gpk, opk,µ).

Verification. A signature sig on a message µ can be verified with the algorithm
{1,0} ← GVerify(µ, sig, gpk, opk).

Opening. The opener can recover the identity of the group member that signed
a message µ running id← GOpen(µ, sig, osk).

We require the scheme to be correct (honestly generated signatures satisfies
verification and can be opened to the identity of the signer), traceable (the group
manager should be able to link every signature to the user who produced it) and
anonymous (signatures produced by different users should be indistinguishable).

Definition 5.1 (Correctness). A group signature (GPg,GKg,OKg,UKg,GSign,
GVerify,GOpen) satisfy correctness if for all user’s identities id and messages µ it
holds:

Pr













1← GVerify(µ, sig, gpk, opk),
id← GOpen(µ,σ, osk)

:

par← GPg(1λ),
(gpk, gsk)← GKg(par),
(opk, osk)←OKg(gpk),

usk← UKg(gsk, id),
sig← GSign(usk, gpk, opk,µ)













≥ 1− ν(λ) .

Traceability requires that a corrupted user should not output a signature that
cannot be opened, or that can be opened to the identity of a honest user.
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Experiment Exptrac
A
(1λ)

QUKg← ;, QGSign← ;
par← GPg(1λ)
(gpk, gsk)← GKg(par)
(opk, osk)←OKg(gpk)
(µ∗, sig∗)← AOUKg,OGSign(gpk, opk, osk)
id← GOpen(µ∗, sig∗, osk)
If 1← GVerify(µ∗, sig∗, gpk, opk)

and id /∈QUKg ∧ > usk : (id, usk,µ∗) ∈QGSign

then return 1 else return 0.

Oracle OUKg(id)
usk← UKg(gsk, id)
QUKg←QUKg ∪ {id}
Return usk .

Oracle OGSign(id,µ)
If id ∈QUKg abort.
If > usk,µ′ : (id, usk,µ′) ∈QGSign

then usk← UKg(gsk, id)
QGSign←QGSign ∪ {(id, usk,µ)}

Else recover the entry (id, usk,µ′).
sig← GSign(usk, gpk, opk,µ)
Return sig .

Figure 5.1. Traceability experiment for group signatures with trusted issuance.

Definition 5.2 (Traceability). A group signature satisfies the traceability prop-
erty if for all PPT adversaries A it holds:

Pr
�

1← Exptrac
A
(1λ)

�

≤ ν(λ) .

where the experiment is shown in Figure 5.1.

Finally, anonymity guarantees that no adversary should be able to tell whether
two signatures were generated by the same user.

Definition 5.3 (Anonymity). A group signature satisfies anonymity if for all PPT
adversaries A the following probability is negligible,

�

�

�

�

Pr
�

b = b′ : b $←−{0,1}, b‘← Expanon−b
A

(1λ)
�

−
1
2

�

�

�

�

,

where the experiment is shown in Figure 5.2.

5.1.2 Group Signatures with Blind Issuance

We present and discuss the Bellare-Shi-Zhang (BSZ) model for dynamic group
signature [Bellare et al., 2005]. All the results and observations presented in the
section are taken from their work, (unless otherwise stated). The main difference
with the previous model is that the issuance is now blind, meaning that, at the
end of the interaction, the issuer does not get the signing key of the user.
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Experiment Expanon−b
A

(1λ)
count ← 0
par← GPg(1λ)
(gpk, gsk)← GKg(par)
(opk, osk)←OKg(gpk)
b′← AOGOpen,O b

C (gpk, gsk, opk)
Return b′.

Oracle O b
C (gpk, opk,µ∗, id0, id1)

count ← count + 1
If count ≥ 2 abort.
For i = 0,1:

sig∗b← GSign(UKg(gsk, idb), gpk, opk,µ∗)
If 1← GVerify(µ∗, sig∗b, gpk, opk) for i = 0, 1
then return sig∗b, else abort.

Oracle OGOpen(µ, sig, osk)
If count ≥ 2 ∧ (µ, sig) = (µ∗, sig∗b) abort.
id← GOpen(µ, sig, osk)
Return id.

Figure 5.2. Anonymity experiment for group signature with trusted issuer.

A (dynamic) group signature is a 8-uple of algorithms (GKg,UKg,Join, Iss,
GSign,GVerify,GOpen,GJudge) between a group manager, an opener and users.
It is called dynamic because users can join at any time during the lifespan of the
group (while in static group signatures where joining can only happen during
the setup phase at the beginning).

To exclude man-in-the-middle attacks, the model implicitly assumes the ex-
istence of a PKI that allows to obtain certified copies of the public key of the
entities, represented by a public list upk whose i-th entry contains the public key
of user i. The position i in the list corresponds to the user identity. Finally, the
group manager keeps another list called reg, whose i-th entry contains the public
key of the i-th user and the registration information (the first message from the
user to the issuer).

Key Generation. A trusted third party generates the keys of the group manager
and opener running (gpk, gsk, opk, osk)← GKg(1`) (where ` is the security
parameter). For the sake of clarity, we distinguish the group public key gpk
from the opener’s public key opk. A user generates its user secret key as
(usk, upk)← UKg(gpk).

Joining Phase. The joining phase is an interactive protocol between a user i
(running algorithm Join) and the group manager (running Iss). Each takes
as input an incoming message (ε if it is the first step of the interaction) and
the current state, and outputs an outgoing message, an updated state, and
a decision (accept, re jec t, continue). At the end of the interaction, the
user obtains a signing key gski that includes its keys usk, upk and its identity
i as group member. If at the end of the interaction the user accepts, the



131 5.1 Formal De�nitions of Group Signatures

group manager creates a new entry reg[i] in the list reg containing the
identity of user i and the registration information (the first message from
the user). Remark that this does not contain the full gski, as the issuer
does not knowuski. The list is needed to allow the opener to prove that the
identity it has extract from the signature corresponds to an existing group
member.

Signing. A user can sign a message µ on behalf of the group using its signing
key with the algorithm GSign(gski, gpk, opk,µ).

Verification. A signature σ on a message µ can be verified with the algorithm
{1,0} ← GVerify(µ,σ, gpk, opk).

Opening. The opener can recover the identity i′ of the group member that signed
a message µ running (i′,τ) ← GOpen(µ,σ, gpk, osk, reg). The algorithm
outputs the identity of the signer with a proof that the opening procedure
was performed honestly (contained in τ). The list is needed to prove that
the identity i′ that the opener outputs corresponds to an existing group
member. If opening fails, it outputs (i′,τ) = (ε, 0)

Judge. A third party can check whether the opener honestly opened a signature
by running the algorithm 0,1← GJudge(gpk, opk, upki′ ,µ,σ, i′,τ)1.

The security requirements of the group signature are correctness, anonymity,
traceability, and non frameability.

The formal definitions require the definition of some lists. In the following,
we clarify what are the lists for the BSZ model and how are they used.

HU To keep track of honest users, a list HU is created. Such list contains as
i-th entry the public and secret key of the user with identity i. Hence, by
“adding i to the list HU” we mean HU[i]← (upki, uski). Empty entries are
set to ⊥.

HK The signing keys of the users in HU are stored in another list HK (this list was
implicit in the original model). The list HK is updated setting HK[i]← gski

only if i ∈ HU.

1In an earlier construction we considered giving the Judge algorithm the list reg as input.
This seemed to strengthen the role of the judge, but it would not allow for it to be invoked by
the users, as they have no access to the list reg.
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CU The list CU contains all the users that were corrupted before joining the
group (i.e., corrupted by A through CrptU). The adversary is allowed to
corrupt users after they become group members (through USK), but such
users are not into this list. In fact, such list contains the users that might
have colluded with the group manager (in case M is corrupted) to tamper
with the list reg (impacting honest opening and consequently J). To detect
when the adversary forges a signature by simply querying a user’s signing
key, the non-frameability experiment checks A’s queries to USK before ac-
cepting a forgery.

CH In CH are stored the challenge message-signature pairs generated during
the anonymity game.

GSig Finally, we need a list GSig of the signatures output by the signing oracle.

The adversary has also access to the following oracles (cf. Figure 2 in [Bellare
et al., 2005], we only give an informal description here):

OIss: this oracle (denoted SndToI in [Bellare et al., 2005]) performs honestly the
issuer’s side of the joining phase. During the interaction, the adversary
impersonates a user i willing to join the group. The oracle first checks that
the user i is a corrupted user; if i /∈ CU the algorithm aborts. At the end of
the interaction it updates the list of users l with the new user credential.

OGOpen: on input a pair (µ,σ), if (µ,σ) /∈ CH this oracle (denoted Open in [Bel-
lare et al., 2005]) outputs the honest opening of the signature, otherwise
it outputs ⊥.

OGSign: on input i and a message µ, it aborts if i /∈ HU. Otherwise, it recovers
the corresponding signing key gski from HK (it aborts if such key does not
exist), then it outputs a signature σ ← GSign(gski, gpk, opk,µ). It stores
(i,µ) in a list GSig.

Challb: on input a message µ and two identities i0, i1, it recovers gskib
from HK

and outputs a signatureσ on µ using the signing key of user ib if i0, i1 ∈ HU
(otherwise it aborts). The algorithm adds the entry (µ,σ) to CH.

RReg: on input i, outputs the i-th entry of the list reg[i] to the adversary2.

WReg: on input i and a string B (that is a valid list entry), sets reg[i] to B.

2Remark that there is no need to add i to the list of corrupted users CU, as reg does not
contain the full gski but only the registration information.
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Group Manager User Opener Judge
Correctness Ø(the adversary can add users)
Anonymity Ø Ø(all usk can be leaked)
Traceability Ø(all usk can be leaked) Ø (partially)

Non frameability Ø Ø(there should exist at least one honest user) Ø

Table 5.1. Corrupted entities depending on the security property.

SndToU: this algorithm allows the adversary to choose a user i and to run with i
the joining protocol impersonating the issuer. The result of this interaction
is that there is a new honest group member, hence the algorithm adds i to
HU and the resulting gski to HK.

CrptU: the adversary uses this algorithm whenever it wants to corrupt a user
before it has joined the group. On input i, upk′, it first checks whether i
is in HU or CU. If i ∈ CU ∪ HU, it returns ε. Then it looks up the user
with keys (upki, uski), and sets its key to be (upk′, uski). Finally, if i is in
HU, it removes it and adds (upk′, uski) to CU it is in CU, it updates it to be
(upk′, uski).

USK: on input the user’s public key upki, outputs the corresponding secret key
uski from HU and secret signing key gski from HK.

AddU: on input a user identity i, it creates a new honest user with identity i.
If i ∈ CU ∪HU it aborts. Otherwise, it generates uski, upki, adds i to HU,
and executes honestly the group joining protocol by running Join and Iss

on behalf of user i and of the issuer respectively, where both algorithms
are initialized with the necessary keys. If the protocol ends successfully, it
returns upki and stores gski in HK.

We slightly modified the BSZ model to clarify the definitions. Mainly, we in-
troduced a list GSig, to make it easy to verify whether a message was signed with
a particular usk by the honest signing algorithm OGSign, and we do not assume
that access to WReg implies that A is able to read the list too. The result is that,
whenever the adversary can corrupt the issuer, it is given access to both RReg

and WReg, otherwise, if A can corrupt the O it is only given access to RReg.
To understand why we need these oracles, we analyze the different degrees

of corruption of the entities depending on the security property we want to guar-
antee. We briefly explain this in the following; our observations are summarized
in Table 5.1. Note that the Judge is always honest by construction.

The algorithms OIss, OGOpen and OGSign model the honest behavior of the is-
suer, the opener and a user respectively. The other algorithms model the various
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hostile scenarios. There are different degrees of corruption, but the distinction
Bellare et al. are concerned with is between partial and full corruption. In both
cases the secret key is leaked to the adversary. However, a partially corrupt entity
still performs its task honestly, while a fully corrupt one will give the adversary
full control, allowing deviations from the protocols.

Note that this distinction is not relevant in the case of the issuer. In fact,
knowing the issuer secret key is not useful for the adversary if it cannot interact
with users. Hence in the definitions a corrupted issuer is always assumed to be
fully corrupted (i.e., when the adversary gets gsk it is also given access to the
oracle SndToU).

The case of the opener is different. In fact, in this case knowing the secret
opening key is useful to the adversary, as it is enough to de-anonymize signatures
produced by group members.

Finally, regarding users, the adversary has multiple options. It can either
create users (querying OIss or exploiting knowledge of gsk), ask users to sign
messages of its choice (interacting with OGSign), or corrupt a user to either change
its public key (CrptU), or reveal its secret key (USK).

The algorithm Challb is used in the anonymity experiment to model the gen-
eration of the challenge signature. In this way, it is not necessary to distinguish
in the experiment the adversary’s capabilities before and after receiving the chal-
lenge.

Correctness requires that honestly generated signatures satisfy the verifica-
tion checks, can be opened to the correct identity of the signer, and that the proof
generated by a honest opener is always accepted by the GJudge algorithm.

Definition 5.4 (Correctness). A group signature (GKg, UKg, Join, Iss, GSign,
GVerify,GOpen,GJudge) satisfies correctness if every adversary A has no advan-
tage in winning the experiment Expcor r

A
(1λ) in Figure 5.3, i.e.,

Advcor r
A
(λ) := Pr[1← Expcor r

A
(1λ)] = ν(λ) .

Anonymity informally requires the adversary not to be able to distinguish
which user has signed a message of its choice. For the property to be meaningful,
the adversary should not be allowed to corrupt the opener. On the other hand,
the adversary is allowed to fully corrupt (i.e., to know the secret key of) both the
users and the issuer. In particular, the adversary should not be able to recognize
the signatures generated by a user even if it recovers the secret key of the user.

Definition 5.5 (Anonymity). A group signature (GKg, UKg, Join, Iss, GSign,
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Experiment Expcor r
A
(1λ)

CU← ;, HU← ;
(gpk, gsk, opk, osk)← GKg(1λ)
(i,µ)← AAddU, RReg(gpk, opk)
If (HU[i] =⊥ ∨ HK[i] =⊥) return 0.
σ← GSign(gski, gpk, opk,µ)
If 0← GVerify(µ,σ, gpk, opk) return 1.
(i′,τ)← GOpen(µ,σ, gpk, osk)
If (i′ 6= i ∨ 0← GJudge(gpk, opk, upki′ ,µ,σ, i′,τ)) return 1, else return 0.

Figure 5.3. Correctness experiment for group signatures with blind issuance.

Experiment Expan
A,b(1

λ)
(gpk, gsk, opk, osk)← GKg(1λ)
CU← ;, HU← ;, CH← ;
b′← AOGOpen, CrptU, USK, RReg, WReg, SndToU, Challb(gpk, gsk, opk)
Return b′.

Figure 5.4. Anonymity experiment for group signature with blind issuance.

GVerify,GOpen,GJudge) satisfies anonymity if

Advanon
A
(λ) :=

�

�

�

�

Pr
�

b = b′ : b $←−{0, 1}, b‘← Expan
A,b(1

λ)
�

−
1
2

�

�

�

�

,

is negligible in the security parameter for all PPT adversaries A, where the ex-
periment is shown in Figure 5.4.

Coherently with Bellare et al., in Expan
A,b the adversary is not given access to

a signing oracle, as it would be redundant.
The notion of traceability for group signature essentially means that the ope-

ner can always link a signature back to the signer (cf. [Bellare et al., 2003]).
When the group signature has blinded joining protocol, such notion is split in
two. This is because when the joining protocol is blinded both the issuer and
the opener can be corrupted. When the joining protocol is not blinded (i.e., the
issuer gets to see the user secret key), no security can be guaranteed in such
scenario.

This is modeled with two different security notions. First, an adversary A

should not be able to produce a signature that cannot be opened by an honest
opener, or such that a honest opener is unable to prove that the opening was
correctly executed, even ifA corrupts the opener (traceability). IfA could corrupt
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Experiment Expt r
A
(1λ)

(gpk, gsk, opk, osk)← GKg(1λ)
CU← ;, HU← ;, GSig← ;
(µ∗,σ∗)← AOIss, AddU, USK, CrptU, RReg(gpk, opk, osk)
If 0← GVerify(µ∗,σ∗, gpk, opk), return 0
Else (i∗,τ∗)← GOpen(µ∗,σ∗, gpk, osk).
If (i∗ = ε) ∨ 0← GJudge(gpk, opk, upki∗ ,µ

∗,σ∗, i∗,τ∗) return 0.
Else return 1.

Figure 5.5. Traceability experiment for group signature with blind issuance.

the issuer this would be trivial to achieve, as the issuer could issue a signing
key gski to a user i, without adding the user keys to the list reg. In this way,
A can produce valid signatures using gski, but the opener cannot recover the
user’s public key, as reg[i] does not exist. Analogously, if A could fully corrupt
the opener the definition would be meaningless, as the adversary would win it
always by simply forcing the opener to declare itself unable to open the forged
signature A outputs.

Definition 5.6 (Traceability). A group signature satisfies traceability if all PPT
adversaries A have negligible advantage in the experiment Expt r

A
in Figure 5.5,

i.e.,
Advt rac

A
(λ) := Pr[1← Expt r

A
] = ν(λ) .

Remark that again there is no need to give to the adversary explicit access to
an oracle that produces signatures of honest users, as the adversary could just
query the user’s secret keys through USK.

On the other hand, it should be impossible for A to generated a signature that
links back to a honest user who did not produce it, even if it corrupted both the
issuer and the opener (non-frameability).

Definition 5.7 (Non-frameability). A group signature satisfies non-framea- bility
if all PPT adversaries A have negligible advantage in the experiment Expnf

A
in

Figure 5.6, i.e., Advnon− f r
A

(λ) := Pr[1← Exp
nf
A
] = ν(λ).

5.2 Warm-up: Group Signatures from AAT+O

From the AAT+O presented in Section 4.2.2 it is possible to construct a group
signature with trusted issuer in a quite simple way. In fact, the scheme is exactly
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Experiment Expnf
A
(1λ)

(gpk, gsk, opk, osk)← GKg(1λ)
CU← ;, HU← ;, GSig← ;
(µ∗,σ∗)← AOGSign, AddU, USK, CrptU, RReg, WReg, SndToU(gpk, gsk, opk, osk)
If 0← GVerify(µ∗,σ∗, gpk, opk), return 0
Else (i∗,τ∗)← GOpen(µ∗,σ∗, gpk, osk).
If HU[i∗] 6=⊥ ∧ 1← GJudge(gpk, opk, upki∗ ,µ

∗,σ∗, i∗,τ∗) ∧ (i∗,µ∗) /∈ GSig
return 1.

Else return 0.

Figure 5.6. Non-frameability experiment for group signature with blind is-

suance.

the AAT+O scheme without the attributes. The part of the verification key that
was generated from the attributes can be set to be a uniformly random element
u $←−Rq. Remark that this does not affect the unforgeability of the relaxed signa-
ture, as this change is equivalent to simply restrict the message set of the scheme
to U ×{ᾱ} for a fixed, randomly chosen attribute ᾱ.

As we already noted when presenting the AAT+O, the straightforward com-
bination of the verifiable encryption with the AAT-O from Section 4.1.2 does not
result in an efficient scheme. That been said, we decided to include this scheme
in the dissertation as well, to have a starting point from which we would build
the other two schemes, and to have a basis for comparison. To clarify how the
scheme works, instead of presenting it as a combination of the algorithms of rΣ,
rC, rS, and of the Lyubashevsky-Neven verifiable encryption, we show the actual
computations that group manager, opener and users have to do when running the
different group signature algorithms. We assume as usual that the parameters of
the scheme are generated by a trusted third party.

Let the challenge space be C = R(2
K )

5 , and the user identities be U × {ᾱ} ⊆
R(2

K )
3 × {ᾱ} (for a random ᾱ chosen in the parameter generation step and U as

in Section 3.5.3), i.e., Kc = Km = K . To have negligible soundness error, it is
enough to repeat the NIZK proof 2 times.

Parameters Generation. The parameter generation GPg(1λ) outputs a collec-
tion of parameters par that includes the signature parameters spar from
Section 3.6.3, the parameters for the prover in Section 3.7, and the pa-
rameters p and σe of the LN verifiable encryption in Section 3.8.3, plus a
random attribute ᾱ ∈ {0, 1}∗.

Group Manager Key Generation. The group manager runs the key generation
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algorithm SKeyGen of the signature to obtain gsk= X and the public matrix
�

A B C 1
�

.

Opener Key Generation. The opener chooses s1, s2 ← U (R3), and computes
the public key of the encryption scheme d← Rq and t= ds1 + s2 mod q.

Joining. The group manager chooses3 a random element m ∈M and computes
a signature on (m, ᾱ) using the Sign algorithm. The signing key of the
user id is m together with the resulting signature (1, [S;1],1). The group
manager stores reg[id]←m for later reference.

Signing. Generating a signature by the user id = m on a message µ is exactly
equal to producing a presentation token for the credential (m, ᾱ) in the
AAT+O. The user runs the non-interactive (aggregated) prover P′(V,S, (m,
ᾱ),µ) from Section 3.7, whereby it includes the message µ in the Fiat-
Shamir hash. Then, it generates a one-time signature key pair (otsvk, otssk)
← OTSGen(1λ), constructs Sc (cf. Equation (3.15)), and generates a veri-
fiable ciphertext c $←−EncLN(opk,Ac,Sc, otsvk) as per Equation (4.1), where
otsvk is only used as input of the Fiat-Shamir hash of the verifiable encryp-
tion. Finally, it computes a one-time signature ots←OTSSign(otssk, (Π, c))
and outputs the token pt= (Π, c, otsvk, ots).

Verification. The verifier checks the validity of Π w.r.t. F and the message µ run-
ning V(V, ᾱ,Π,µ), checks that EVerifyLN (opk,Ac, otsvk, c) = 1 with otsvk in
the Fiat-Shamir hash, and that OTSVf(otsvk, (Π, c)) = 1. If all tests pass,
it outputs accept, otherwise reject.

Opening. The opener first verifies the signature, returning ⊥ if it rejects. Then,
it decrypts (S̄c, c̄) ← DecLN(osk, c) and recovers m̄ as the first coordinate
from S̄c. He then recovers an irreducible factor m of degree n/2 of m̄ and
returns m, or returns ⊥ if such a factor does not exist.

3This seem to contradict the formal definition of group signature with trusted issuance (cf. Sec-
tion 5.1.1), as in that case the user identity is given as input to UKg. However, this can be solved
by adding two assumptions. First, we assume that each user has obtained a certified public key
from a trusted PKI (that could be put in place by the same trusted third party that generated the
parameters of the scheme). Second, to get the user secret key, each user has first to authenticate
with the issuer using the certified public key. Then, user identities are in a bijective correspon-
dence with the certified public keys (and the pairs can be stored by the issuer in the list reg
shared with the opener). Therefore, when the opener recovers id, it can recover the public key
of the user as well.
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Observe that the opening time is at most linear in the number of possible chal-
lenges.

It is trivial to see that proving the correctness and security of this group signa-
ture is exactly the same as proving correctness and security of the AAT+O in Sec-
tion 4.2.2, as the only difference is that the set of possible attributes is restricted
to {ᾱ}. Indeed, the definition of anonymity of AAT+O (Definition 4.8) is exactly
equivalent to the definition of anonymity for group signatures with trusted issuer
(Definition 5.3). The same holds for the correctness of the schemes. The only
difference is in the traceability: the traceability definition for group signatures
with trusted issuer assumes that the opener can be partially corrupt, meaning
that the opener secret key is leaked to the adversary, but the opener still answers
honestly to opening queries. Conversely, in the definition of traceability of the
AAT+O, the opener is honest, i.e., the adversary does not get to see the opener
secret key. Therefore, this scheme achieves a weaker security notion than the
other two group signatures presented in this chapter.

We include the theorem statements for completeness.

Theorem 5.8 (Traceability). Let εBIN be the probability of breaking the binding
property of the commitment scheme rC underlying rΣ, εSS be the probability of
breaking the relaxed simulation soundness of rΣ, and εS be the probability of break-
ing the soundness of the Lyubashevsky-Neven relaxed verifiable encryption scheme.

Assume A is an adversary that runs in time tA, makes qC queries to the issuer
to add corrupt users and qH queries to the issuer to add honest users, asks for qP

signatures by honest users, and breaks the traceability of the group signature scheme
with probability εA without corrupting the opener.

There exists an algorithm B that breaks the unforgeability of the signature in
time tB = 8`2 tA(qC +qH +qP)/εA · ln(8`/εA)+ (qC +qH) · tS + tE+poly(λ) (where
tE is the runtime of the extractor of the rNIZK, tS is the runtime of the signing
oracle, and ` is the number of attributes contained in the forged pt) with probability
εB = εA/8− (εBIN + εSS + εS) after asking qC + qH queries to the signing oracle in
the Random Oracle Model.

Theorem 5.9 (Anonymity). If the relaxed Σ-protocol rΣ is zero-knowledge, the
one-time signature scheme is strongly unforgeable, and the Lyubashevsky-Neven ver-
ifiable encryption scheme is chosen-ciphertext simulatable, then the group signature
scheme is anonymous in the Random Oracle Model.
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5.3 Group Signature with Trusted Issuance from Lat-

tices

The combination of Boschini et al.’s relaxed signature scheme [Boschini et al.,
2018b] with our relaxed partial verifiable encryption scheme (cf. Section 3.8.4)
yields an efficient group signature with practical parameters (see Section 5.3.4).
It also allows not to rely anymore on the relaxed binding property of the com-
mitment scheme, thus allowing us to drop the requirement on the space of user
identitiesU : in our constructionU is the entire subspace R(2

K )
3 (not the subset of

its irreducible elements). This construction was presented at ACNS 2018 [Bos-
chini et al., 2018a].

5.3.1 Improvements over the Trivial Construction

The differences with the construction in Section 5.2 all lie in the choice of veri-
fiable encryption scheme. In fact, with the construction we also introduced the
variant of the Lyubashevsky-Neven scheme presented in Section 3.8.4.

This partially verifiable encryption scheme allows us to split the proof of
knowledge of a witness for the relations (R , R̄) in Equation (3.18) and (3.19)
in two separate rNIZKs, one which is also used to decrypt and that only proves
that the ciphertext was correctly generated, and the other that only guarantees
that the plaintext was part of a valid witness for the public instance of the re-
lation. In this way, we can do rejection sampling separately on the identity and
on the commitment opening values, and we do not need to stick to a small chal-
lenge set in both profs. Splitting the rejection sampling step is a technicality
that has quite the impact on the size of the transcript. Indeed, recall that the
dimension of the transcript depends on the standard deviation of the Gaussian
distribution used to hide the distribution of the witness. Such standard devia-
tion has to be larger than the norm of the witness to actually hide it. Hence,
the larger the norm of the witness, the larger the standard deviation (and, con-
sequently, the longer the transcript) has to be. This would not be a problem if
we were to use the infinity norm, but in the original construction we used the
Euclidean norm, which obviously increases when the witness vector gets longer.
In practice this trick allowed us to save a factor of O(

p
m) in the length of the

signature. The fact that we do not use both proofs for decryption allows to gen-
erate them using two different challenge sets: a small one (C2 = R(16)

3 ) for the
proof of knowledge of the plaintext, that requires to repeat the proof to have
negligible soundness error but allows the guessing step in the decryption, and a
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larger one (C1 = {c ∈ R3 | ‖c‖1 ≤ 32}) in the other rNIZK, so that there is no
need to repeat it to have a negligible soundness error. These two changes have
a big impact on how a signature is generated: it is no more necessary to run the
prover from Section 3.7, but we define a simpler rNIZK (P,V) that only prove
knowledge of Relation (II) in Equation (3.15). The different choice of message
and challenge space impacted also the upper bound βs on the norm of the RSIS
solution in the proof of the hardness of Assumption 4 in Section 3.6.5. The new
statement of the theorem follows.

Theorem 5.10 (Hardness of Assumption 4). Let A be a probabilistic algorithm
that breaks Assumption 4 in time t with probability εA. Then there exists a prob-
abilistic algorithm B that either breaks RLWEm,Dσ

in time t with probability εA or
RSIS3+m,q,βs

in time t with probability εB ≥ (εA−εLWE)/(2 · |C̄ |), where βs = N ′2+
σ2

t
π n2(

p
2+
p

m+ log n)2(2
p

2Kc)2N ′2+ σ2

π n(1+
p

2+ log n)2(C ′2+(1.05σt
p

n)2),
εLWE is the probability of breaking the Ring-LWE problem over Rq in time t, in the
Random Oracle Model.

Moreover, our partially verifiable encryption allows for a parameters setup
that allows to decrypt exactly (cf. Lemma 3.42). Therefore there is no need for
the binding property of the relaxed commitment scheme, hence for the restriction
of the message space to irreducible polynomials. Indeed, instead of extracting
the identity of the signer we can now simply get it decrypting the forged signature
and Lemma 3.42 guarantees that the result of the decryption corresponds with
high probability to (part of) the output of the extractor.

Finally, as in the partial verifiable encryption the relation is defined modulo q
there is no need to encrypt modulo a larger prime (which blows up the dimension
of the ciphertext, as q could be as big as 292, which was our most conservative
choice fr the AAT-O) as in the original scheme.

5.3.2 The Group Signature Scheme

In the following we present the group signature. The protocol makes use of a
relaxed Σ-protocol (P,V) as defined in Section 3.4, a relaxed signature scheme
(SParGen,SKeyGen,Sign,SVerify) as defined in Section 3.6.3 and of a partially
verifiable encryption scheme (EKeyGen,Enc,EVerify,Dec) as defined in Section
3.8.4. To compose these schemes, we define an algorithm DeriveParpve that de-
rives the parameters of the partially verifiable encryption scheme from the pa-
rameters of the signature scheme.

Parameter Derivation for pvenc. The algorithm DeriveParpve chooses a p that
satisfies the bounds in Equation (3.23) with the q and n already set by
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SParGen. Then it sets the rest of the parameters (the challenge sets C1

and C2, the standard deviations, the norm bounds, . . .) according to the
specifications in Section 3.8.4.

Remember that now we have restricted the message set of the relaxed signa-
ture to beM =U ×{ᾱ} for a randomly selected binary string ᾱ.

Parameters Generation. On input the security parameter λ, the algorithm GPg

runs the parameter generator of the signature scheme spar← SParGen(1λ)
and derives the parameters epar of the partially verifiable encryption using
DeriveParpve. Finally, it sets the parameters ppar = (σ0, N0, N̄0,C0) of the
relaxed Σ-protocol according to the specifications in Section 3.4. In par-
ticular, the challenge space is set to C0 = {c ∈ R3 : ‖c‖1 ≤ 32} so that
the proof only needs to be repeated once, as indeed |C0| > 2256. More
details about the choice of the parameters can be found in the proof of
Theorem 5.11. It outputs par := (ppar, spar, epar).

Group Manager Key Generation. The group manager generates the keys gsk=
X and gpk =

��

A B C 1
�

, ᾱ
�

by running SKeyGen and choosing a ran-
dom string ᾱ $←−{0,1}λ.

Opener Key Generation. The opener runs the key generation algorithm of the
partially verifiable encryption scheme EKeyGen(1λ) and returns the result-
ing key pair (opk= epk, osk= esk).

User Key Generation. The group manager generates a signing key user identity
id = m ∈ U = R(16)

3 by running Sign(gsk,m) to yield (1,
�

S ; 0
�

,1) as
described in Section 3.6.3. Recall that S is a short vector that satisfies
�

A B C+mG
�

S = u mod q, where we denote by u the output of H(ᾱ)
for the sake of succintness. It then returns usk := S.

Signing Algorithm. This is an informal description of the algorithm. The formal
construction can be found in Figure 5.7.

The user first generates a key one-time signature key pair (otssk, otsvk)←
OTSGen(1λ). The user then blinds its identity m using the technique from
Section 3.6.3 by choosing random E $←−R1×m

3 and b $←−R3, and computing
F = b−1(C+mG+ E) mod q. If S =

�

S1 ; S2 ; S3

�

with S1 ∈ R2×1
q and

S2, S3 ∈ Rm×1
q , then it holds

�

A B F 1
� �

S1 ; S2 ; bS3 ; −ES3

�

=
u mod q . Denoting by S0 :=

�

S1 ; S2 ; bS3 ; −ES3

�

, the user can
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GSign(usk, gpk, opk,µ)
(otssk, otsvk)←OTSGen(1λ)
E $←−R1×m

3

b $←−R3

F← b−1(C+mG+ E) mod q
(T0; Y0)← P0(ppar,

�

A B F 1
�

,u,
�

S1 ; S2 ; bS3 ; −ES3

�

)
c0← H0(F,T0,A, ᾱ, otsvk)
Z0← P1(ppar,

�

S1 ; S2 ; bS3 ; −ES3

�

,c0,Y0)
Π0← (T0,c0,Z0)
(t,π)← Enc(opk, (

�

GT FT Im
�

,−CT), (m,
�

−b ; ET
�

,1), otsvk)
ots←OTSSign(otssk, (A,B,F,u,Π0, t,π,µ))
Return sig= (F,Π0, t,π, otsvk, ots) .

Figure 5.7. Signing algorithm

therefore create a relaxed NIZK proof Π0 for the relation

R0 =
§

((
�

A B F 1
�

,u), (S0,1)) :

�

A B F 1
�

S0 = u mod q
∧ ‖S0‖ ≤ N0

ª

R̄0 =
§

((
�

A B F 1
�

,u), (S̄0, c̄)) :

�

A B F 1
�

S̄0 = c̄u mod q
∧ c̄ ∈ C̄0 ∧ ‖S̄0‖ ≤ N̄0

ª (5.1)

running the prover (P0,P1) from Section 3.4, where it feeds P1 a chal-
lenge c0 sampled using the hash function H0 : {0,1}∗→C0 including otsvk
among the inputs of the Fiat-Shamir hash H0.

Next, recall that
�

GT FT Im
� �

m ; −b ; ET
�

= −CT mod q. Setting
Tve :=

�

−b ; ET
�

the prover can therefore use the verifiable encryption
scheme to encrypt a witness of the languages with relations

Rve =

(

((
�

GT FT Im
�

,−CT), (m,Tve,1)) ∈ (Rm×(m+2)
q × Rm

q )× (U × Rm+1
q × {1})

:
�

GT FT Im
�

�

m
Tve

�

= −CT mod q ∧ ‖Tve‖ ≤ Nve

)

R̄ve =

(

((
�

GT FT Im
�

,−CT), (m̄, T̄ve, c̄)) ∈ (Rm×(m+2)
q × Rm

q )× (Ū × Rm+1
q × C̄ve)

:
�

GT FT Im
�

�

m̄
T̄ve

�

= −c̄CT mod q ∧ ‖T̄ve‖ ≤ N̄ve

)

The user runs the encryption algorithm Enc(opk, x , w, otsvk) with language
member x = (

�

GT FT Im
�

,−CT), witness w = (m,
�

−b ; ET
�

,1), and
the verification key otsvk as the encryption label, to generate a cipher-
text t = (v1,w1,v2,w2) and proof π = (Π1,Π2). The user then computes
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the one-time signature ots ← OTSSign(otssk, (A,B,F,u,Π0, t,π,µ)) and
returns the group signature sig= (F,Π0, t,π, otsvk, ots).

Verification Algorithm. The verifier checks the one-time signature by running
OTSVf(otsvk, (A,B,F,u,Π0, t,π,µ), ots), checks the NIZK proofΠ0 running
the verifier V1 in the group signature sig = (F,Π0, t,π), making sure that
otsvk is included in the Fiat-Shamir hash, and checks the encryption proof
by running EVerify(opk, x , t,π, otsvk) with x = (

�

GT FT Im
�

,−CT) and
with otsvk as the encryption label. If all tests succeed then it outputs 1, else
it outputs 0.

Opening Algorithm. The opener first verifies the group signature by running the
GVerify algorithm above. If it is invalid, then the opener returns ⊥, else it
decrypts m← Dec(esk, x , t,π, otsvk) with x as above and returns id=m.

We now proceed to prove that the scheme is correct.

Theorem 5.11 (Correctness). If the parameters are generated as in the parameters
generation, the group signature described above is correct.

Sketch of the proof of Theorem 5.11. The proof consists of 4 steps

• proving that it is possible for the group manager to produce a signature on
a user identity

• proving that a user can produce a signature through the relaxedΣ-protocol
and the partially verifiable encryption

• proving that verification accepts honestly generated signatures

• proving that the decryption of the ciphertext contained in a honestly gen-
erated signature outputs the identity of the signer.

The first point follows from the fact that the group manager always signs a
message contained in a subset of R(2

16)
3 ×{0,1}∗. The parameters of the signature

are correct and satisfy the bounds in Section 3.6.3 because they are generated
through the parameter generation algorithm SParGen of the relaxed signature.

Producing a signature is always possible. The less straightforward step is
to make sure that such signature verifies. To guarantee that the verification of
Π0 succeeds, it should hold N0 ≥ N̄0 (the linear relation trivially holds). To set
the parameter N0 we have to bound the norm of the witness. A honest S0 is
generated as S0 =

�

S1 S2 bS3 −ES3

�

, where the vector S =
�

S1 S2 S3

�

∈
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R1×(2+2m)
q is sampled from a Gaussian with standard deviation σ. Hence it each

of its components has norm bounded by 1.05σ
p

n. Moreover, using the bounds
in Lemma 2.12, it holds ‖bS3‖ ≤ 8σn

p
m and ‖ − ES3‖ ≤

q

∑m
i=1 ‖EiS3,i‖2

2 ≤
8σn
p

m. Hence we can set the bound N0 to be:

N0 =
Æ

(2+m)(1.05σ
p

n)2 +m(8σn)2 +m(8σn)2.

Then, from rejection sampling we know that the noise vector is sampled from
a Gaussian with standard deviation σ0 = 12T0, where T0 ≥ N0 as it is obtained
from N0 as a bound on the norm of cS0 for c ∈ C0, and N̄0 = 2.1σ0

p

n(3+ 2m).
Therefore, N̄0 ≥ N0, and the verification of Π0 outputs 1.

Finally, verification and decryption of the ciphertext succeed with high prob-
ability as the parameters are set according to the specifications in Section 3.8.4.
We only compute the bound Nve, as this is not set in Section 3.8.4 because it
depends on the choice of the norm. The value Nve in Rve bounds the norm of a
vector of polynomials with coefficients in {0,1} one of which is in R(16)

3 , hence
Nve :=

p

256+ n(m2 + 1).

5.3.3 Security of the Group Signature

We now prove anonymity and traceability of the scheme according to the defini-
tions in Section 5.1.1.

Theorem 5.12 (Traceability). Let εZK be the probability of breaking the zero-
knowledge property of rΣ and εOTS be the probability of breaking the strong un-
forgeability of the OTS.

Assume A is an adversary that runs in time tA, makes qH queries to the random
oracle and queries the oracle OUKg at most qU times, and breaks the traceability of
the group signature scheme with probability εA.

There exists an algorithm B that breaks the unforgeability of the relaxed sig-
nature in time tB = tA · 72qH/εA · ln(24/εA) + pol y(λ) with probability εB ≥
(1−εZK −2−ω(log(λ)))εA/8−εOTS/8 after asking qU queries to the signing oracle in
the Random Oracle Model.

Proof. Given a traceability adversaryA, we construct a simulatorB that simulates
the traceability experiment in Figure 5.1 and the oracles to exploit A to forge a
signature. The simulator is described in details in Figure 5.8.

In the following we give a high level description of it. The simulator B has
access to an oracle Os that, when prompted the first time, outputs the parameters
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of the signature scheme spar and the verification key svk. Then, whenever it
receives in input (m,α), it outputs a signature on it.

On input
�

A B C 1
�

, B samples a random ᾱ and honestly generates an
opening key pair (opk, osk) according to the OKg algorithm. Remark that the
distribution of the public keys generated by B is exactly the same of the honestly
generated keys. It then runs A, simulating its oracle queries as follows:

• OUKg(id): B queries its oracle Os(id, ᾱ) to obtain a small vector
�

S
�

such
that

�

A B C+mG
�

= u mod q (where m = id and u = H(ᾱ)). It then
register the query in a list QUKg and returns usk= S to A.

• OGSign(id,µ): B generates a OTS key pair (otssk, otsvk) ← OTSGen(1λ),
chooses random E $←−R1×m

3 and b $←−R3, and computes F= b−1(C+mG+E)
for m = id. It then simulates the zero-knowledge proof of Π0 by program-
ming the random oracle, including otsvk in the Fiat-Shamir hash. It then
honestly computes the verifiable encryption and the one-time signature
and returns the resulting group signature to A.

• Random oracle queries are responded through lazy sampling (responding
coherently to the same query).

The simulated oracles can be distinguished from the honestly executed ones with
probability εZK +2−ω(log(λ)), that is, either if A can distinguish the simulator from
the honest prover (i.e., A break the zero-knowledge property) or if OGSign aborts
(which happens with probability 2−ω(log(λ)) thanks to non-triviality).

Eventually, A outputs its forgery (µ∗, sig∗). Let id∗← GOpen(µ∗, sig∗, osk) and
let otsvk∗ be the OTS verification key in sig∗. If the forgery is valid and otsvk∗

was returned as part of a OGSign response by B before, then A must have forged
the one-time signature scheme, because sig∗ or µ∗ must be different from that
specific oracle query and response.

If otsvk∗ is different, then the hash queries involved in Π∗0 and Π∗1 in sig∗ can-
not have been involved in previous OGSign responses, because both hash queries
contain otsvk∗. By the Generalized Forking Lemma (Lemma 2.6), B can then
rewind A on the hash queries involved in Π∗0 and Π∗1 in sig∗, respectively, to
obtain valid responses to two different challenges. From these, by the special
soundness of the relaxed Σ-protocol and the special soundness of the verifiable
encryption scheme, B can extract4 from these witnesses (T̄ = (T̄1, T̄2, T̄3, t̄4), c̄0)

4The extraction of the signature is represented in Figure 5.8 by the extractor E, which is
obtained combining the extractor of the relaxed Σ-protocol and the extractor of the partially
verifiable encryption.
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and (m̄,
�

b̄ ; Ē
�

, c̄1) such that

�

A B F 1
�





T̄1

T̄2

T̄3



= c̄0u mod q and
�

GT FT Im
�





m̄
b̄
Ē



= −c̄1CT mod q .

and such that id∗ = m̄/c̄1 mod q. From these, one can verify that

�

A B c̄1C− m̄G 1
�









b̄T̄1

b̄T̄2

T̄3

t̄4 − ĒT̄3









= b̄c̄0u mod q .

Also, we know that B never queried id∗ = m̄/c̄1 to its Os oracle, because it would
only have done so if A would have submitted id∗ to its OUKg oracle, which would
invalidate the forgery. Let S̄ :=

�

b̄T̄1 ; b̄T̄2 ; T̄3 ; t̄4 − ĒT̄3

�

and c̄2 := b̄c̄0.
The vector S̄ has norm in the order of the norm of ĒT T̄3 and applying Lemma 2.12
we have ‖ĒT T̄3‖ ≤ 2.1σh

p
n · 2.1σs

p
n ·
p

nm, (where the inequality holds as by
Lemma 2.16 we can bound the product of the infinity norms as ‖ĒT‖∞‖T̄3‖∞n<
16σh · 16σsn that is less than q/2 for our choice of parameters), and, applying
again Lemma 2.12, ‖c̄2‖ = ‖b̄c̄0‖ ≤ ‖b̄‖‖c̄0‖

p
n ≤ 12 · 2.1σhn =: C ′. Hence, we

have that by outputting m̄, c̄1, c̄2, S̄, algorithm A breaks the unforgeability of the
relaxed signature scheme with N ′ = 2dlog2[2(2.1σd

p
n·2.1σh

p
n·
p

nm)]e, C ′ and C =C1.
Finally, we compute the runtime and success probability of B.
The runtime tB of B is essentially the runtime of the algorithm GF and can

be obtained using Lemma 2.6: tB = tA · 72qH/εA · ln(24/εA) + pol y(λ), where
tA and εA are the runtime and success probability of A.

The success probability εB of B is

εB = Pr[GF succeeds ∧ A has not forged the OTS]

= Pr[GF succeeds ∧ A does not abort]−Pr[GF succeeds ∧ A has forged the OTS]

≥ εA/8(1−Pr(A aborts))− εOTS/8

= (1− εZK − 2−ω(log(λ)))εA/8− εOTS/8 ,

where εZK is the probability that A breaks the zero-knowledge property of
the relaxed Σ-protocol and εOTS is the probability that A breaks the strong un-
forgeability of the OTS.

Theorem 5.13 (Anonymity). Our group signature scheme is anonymous in the
Random Oracle Model if the NIZK proof is zero-knowledge and if the relaxed par-
tially verifiable encryption scheme of Section 3.8.4 is chosen-ciphertext simulatable.
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Proof. We prove the theorem through a sequence of games. Let εA be the ad-
vantage of A in winning the anonymity experiment (cf. Figure 5.2). Let B an
algorithm that plays as the challenger in the experiment. Let Gamei the prob-
ability that A wins the (possibly simulated) experiment at the end of the i-th
game.

Game 0. In Game 0 B runs the real anonymity experiment. Then it holds,

Pr[Game0] = Pr
�

b = b′ : b $←−{0,1}, b‘← Expanon−b
A

(1λ)
�

.

Game 1. In Game 1 B simulates the oracle O b
C as follows. It does everything

honestly but the generation of the ciphertext, which is done using the simula-
tor Σpve (cf. Figure 3.11) of the chosen-ciphertext simulatability property of the
partial verifiable encryption scheme instead of a real encryption as part of the
challenge group signature sig∗. Note that thereby the ciphertext is independent
of the encrypted witness. Any adversary distinguishing this game from the pre-
vious one can be used to win the chosen-ciphertext simulatability experiment
(Figure 3.10). To see why the reduction works, observe that all group signatures
that A submits to its opening oracle must use a different OTS verification key
than otsvk∗ in sig∗, lest A broke the OTS unforgeability. Therefore, a simulator
B1 can always use the decryption oracle to answer A’s opening queries. Then,
B1 returns 0 if A wins the experiment and 1 otherwise. Then a simulator B can
break either the chosen-ciphertext simulatability of the partial verifiable encryp-
tion or the strong unforgeability of the OTS with advantage:

ε1 = εCCS + εOTS

=

�

�

�

�

Pr
�

b′ = b : b $←−{0, 1}, b′← Expccas−b
B1

(1λ)
�

−
1
2

�

�

�

�

=
1
2

�

�

�Pr
�

b′ = 0 : b′← Expccas−0
B1

(1λ)
�

+Pr
�

b′ = 1 : b′← Expccas−1
B1

(1λ)
�

− 1
�

�

�

=
1
2

�

�

�Pr
�

b′ = 0 : b′← Expccas−0
B1

(1λ)
�

−Pr
�

b′ = 0 : b′← Expccas−1
B1

(1λ)
�

�

�

�

=
1
2
|Pr[Game0]−Pr[Game1]| .

Game 2. In Game 2 the relaxed NIZK is simulated too. As the simulator now
simply samples a uniform F $←−R1×m

q in sig∗, instead of one that hides the identity
m= idb, the game is independent of the bit b′ and A can win it with probability
exactly 1

2 , i.e., Pr[Game2] =
1
2 . Moreover, distinguishing this game from the

previous one implies to break the zero-knowledge property of the relaxed NIZK.
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Indeed, if an adversary A was able to distinguish Game 2 from Game 1, then
a simulator B2 could exploit it to distinguish whether a proof was generated
by a simulator or honestly. Remark that B2 can now generate the encryption
keys and implement the opening oracle honestly, as the only ciphertext that is
simulated is the one contained in sig∗, and the unforgeability of the OTS prevents
that to be queried to the opening oracle. Whenever it is necessary to generate
a proof using (H0,P), B2 gets it from the proof oracle (which implements either
the honest prover or the simulator (Σ1(·),Σ2(·, ·))). Then, B2 returns 0 if A wins
the experiment and 1 otherwise. Again, the advantage of B2 in distinguishing or
breaking the strong unforgeability of the OTS can be computed as before to be

ε2 = εZK + εOTS

=
1
2

�

�

�Pr
�

0← B
H0(·),PH0 (·,·)
1 (1λ)

�

− Pr
�

0← B
Σ1(·),Σ2(·,·)
1 (1λ)

�

�

�

�

=
1
2
|Pr[Game1]−Pr[Game2]| .

From the previous considerations it yields that the advantage of A is

εA =

�

�

�

�

Pr
�

b = b′ : b $←−{0, 1}, b‘← Expanon−b
A

(1λ)
�

−
1
2

�

�

�

�

= |Pr[Game0]−Pr[Game2]|
= |Pr[Game0]−Pr[Game1] +Pr[Game1]−Pr[Game2]|
= 2εCCS + 2εZK + 4εOTS .

5.3.4 Parameters and Storage Requirements

We show how to compute parameters for a security level of 128 bits where se-
curity is based on complexity leveraging and standard RSIS/RLWE assumptions.
Let the polynomial ring be Rq := Zq[x]/〈xn+1〉. We choose n= 2048, a prime q
such that log q ≤ 2116, m = 22, and users’ identities in R(16)

3 , so that Assumption
3 is based on a hard instance of RSIS. To guarantee this, we compute the Her-
mite root factor δs of an instance of RSIS(3+m),q,βs

in Theorem 5.10. The value
of δs has to be smaller than 1.0014, that is the value of the Hermite root factor
guaranteeing 430 bits of security (this number includes the compensation for the
tightness loss in Theorem 5.10). The computation of this bound is done follow-
ing the approach by Alkim et al. [2016]. Finally, we set p to be a prime such
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that log p ≤ 250 to satisfy all the inequalities that guarantee correctness of the
decryption and simulation soundness of the verifiable encryption scheme.

The secret key of the group manager is generated sampling a matrix X in R2×m
q

where m = 22 from a discrete Gaussian with standard deviation σt = 4, hence
it has infinity norm bounded by 8σt = 25. Therefore, the secret key of the group
manager can be stored in less than 2 ·m · n · log(8σt) = 2 ·22 ·211 ·5≤ 56.32 kB.

The public key of the group manager is composed by vectors A ∈ R1×2
q , B,C ∈

R1×m
q and u ∈ Rq, i.e. it can be stored in (2+2m+1)n log(q) = 47·211·116≤ 1.396

MB.
The user secret key is an element of R(16)

3 , i.e. a polynomial with 16 nonzero
coefficients in {±1}, and by a signature on it. Such signature is a vector with
2+2m= 46 components distributed as a Gaussian with standard deviation σ =
q1/m σtp

π

p
n·(
p

2+
p

m+log(n)) = 2116/22 4p
3.1415

p
2048(

p
2+
p

22+11) = 6.75335·
104. Hence the signature has infinity norm bounded by 8σ and both signature
and the user id can be stored in 16·2+46·n·log(8σ) = 32+46·211 ·(3+ logσ)≤
224.26 kB.

The opener keys are the encryption and decryption keys of the verifiable en-
cryption: the public key is composed by three random polynomials in Rq, while
the secret key is a polynomial in R3 (cf. Section 3.8.4). Hence, the opener’s public
key can be stored in 3 · n · log q ≤ 3 · 2048 · 116 = 89.088 kB, and the secret key
in n · 2= 512 B.

A signature produced by a group member is composed by a vector F ∈ R1×m
q ,

an encryption of the identity v1,w1,v2,w2 ∈ Rq and by the transcripts of the three
relaxed NIZKs Π0,Π1,Π2. Each transcript is composed by a challenge ci and a
response vector Zi, i = 0,1, 2. The length of each challenge depends on the chal-
lenge set it is sampled from (i.e., either C0 = C1 = {c ∈ R3 : ‖c‖1 ≤ 32} or
C2 = R(16)

3 ). The length of the responses are determined by the standard devi-
ations σi used in rejection sampling. Indeed, the infinity norm of the response
Zi is bounded by 8σi (cf. Section 3.4). Denoting by Vi the secret vector that
the prover is proving knowledge of, the standard deviations can be derived by
a bound Ti on the norm of Vici, i.e. σi = 12Ti. Hence, using Lemma 2.12 we
obtain the following bounds:

‖c0V0‖ ≤max‖c0‖1

q

n(‖S1‖2
∞ +m‖S2‖2

∞ +m‖bS3,i‖2
∞ + ‖ − ES3‖2

∞)

≤ 32 · 8σ
Æ

n(1+m+ 2n2m2) =: T0

‖c1V1‖ ≤ 32
Æ

n(7+m) =: T1

‖c2V2‖ ≤ 16
p

6n=: T2 .
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Hence, it follows that ‖Z0‖∞ ≤ 8σ0 = 8 · 12 · 32 · 8σ
p

n(1+m+ 2n2m2) =: N0,
‖Z1‖∞ ≤ 8σ1 = 8 ·12 ·32

p

n(7+m) =: N1 and ‖Z2‖∞ ≤ 8σ2 = 8 ·12 ·16
p

6n=:
N2. Therefore, the transcript of Π0 can be stored in 32 · dlog3e+n(3+2m) log N0,
the transcript of Π1 in 32 · dlog 3e + n(m + 7) log N1 and the transcript of Π2 in
11 · (16 · dlog 3e+ 6n log N2), as the last one has to be repeated 11 times to have
negligible soundness error. Hence a signature takes at most 32 · dlog 3e+ n(3+
2m) log N0 + 32 · dlog 3e+ n(m+ 7) log N1 + 11 · (16 · dlog3e+ 6n log N2) + (m+
4)n log q ≤ 1.7181 MB.

5.4 New Building Blocks for better Group Signature

The final construction is the most recent, and will appear at PQCrypto 2020.
From the previous constructions we concluded that the large part of the

blowup in the signature dimension is due to the relaxed NIZK proof. There-
fore, we worked on improving that building block, in particular to get rid of the
relaxed special soundness. Eventually, we decided to adapt an already existing
SNARK called Aurora [Ben-Sasson et al., 2019] to prove relations over lattices.
Such proof allows to easily and efficiently encode the linear-algebraic statements
that arise in lattice schemes and to side-step the issue of “relaxed extractors”,
meaning extractors that only recover a witness for a larger relation than the one
for which completeness is guaranteed. Applying our approach to the example
use case of dynamic group signatures yields the first efficient lattice-based group
signature that protects users against corrupted issuers, and that is far more ef-
ficient than the state of the art, with signature sizes of less than 300 KB for the
comparably secure version of the scheme. To obtain our argument size estimates
for proof of knowledge of RLWE secret, we implemented the NIZK using libiop.

Regarding the choice of the signature, we also decided to combine it with
the ideal lattice version of the original signature by Boyen, which had not been
proved secure until now.

In this section we then first introduce the two new building blocks, then we
present the group signature.

Remark 15. Differently from all the previous constructions, in this section we
represent Zq as the ring of elements {0, . . . , q− 1}.

5.4.1 Boyen's signature on ideal lattices

In this section we describe the variant of Boyen’s signature [Boyen, 2010] by Mic-
ciancio and Peikert [2012], adapted to have security based on hardness assump-
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tions on ideal lattices. Such variant has been claimed to be secure since long
time, but, to the best of our knowledge, this is the first time in which a secu-
rity proof is given explicitly. In particular, we prove the signature secure when
defined over the (2n)-th cyclotomic ring.

We restate the trapdoors theorems, as in this work we chose a different pa-
rameter setup.

Theorem 5.14 (Trapdoor generation, from [Micciancio and Peikert, 2012]). Let
Rq be a power of 2 cyclotomic ring and set parameters m= 2, k = dlog qe, m̄= m+k.
There exists an algorithm GenTrap that outputs a vector Ā ∈ R1×m̄

q and a trapdoor
R ∈ Rm×k

q with tag h ∈ Rq such that:

• Ā=
�

A AR+ hG
�

, where G is the gadget matrix, G=
�

1 2 4 . . . 2k−1
�

and A=
�

a 1
�

∈ R1×2
q , a $←−Rq.

• R is distributed as a Gaussian D2×k
R,s for some s = αq, where α > 0 is a RLWE

error term, αq >ω(
p

log n) (cf. [Lyubashevsky et al., 2013, Theorem 2.22]).

• h is an invertible element in Rq.

• Ā is computationally pseudrandom (ignoring the component set to 1) under
(decisional) RLWED where D = DR,s.

Genise and Micciancio [2018] give an optimal sampling algorithm for the
previous trapdoor construction.

Theorem 5.15 (Gaussian sampler, adapted from [Micciancio and Peikert, 2012]
and [Genise and Micciancio, 2018]). Let Rq, m, k, m̄ be as in Theorem 5.14, G be
the gadget matrix G=

�

1 2 4 . . . 2k−1
�

, A ∈ R1×m
q and R ∈ R2×k

q be the output
of GenTrap, and B a vector in R1×d

q for some d ≥ 0. Then, there is an algorithm that

can sample from the distributionD⊥[A AR+G B],u,s for any s = O(
p

n log q)·ω(
p

log n)
for any u ∈ Rq in time Õ(n log q) for the offline phase and Õ(n2) for the online phase.

The original signature was proved existentially unforgeable against adap-
tive chosen-message attacks eu-acma under SIS. Micciancio and Peikert proved
their variant to be strongly unforgeable against static chosen-message attack (su-
scma) under SIS with a tighter reduction, and then made it strongly unforgeable
against adaptive chosen-message attacks su-acma using chameleon hash func-
tions [Shamir and Tauman, 2001]. For our purposes adaptive existential un-
forgeability is enough, so our aim is to prove the scheme eu-acma under RSIS
combining the techniques used in the proofs of these two papers.
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Parameters. spar← SParGen(1λ)
Let f be the (2n)-th cyclotomic polynomial, f= xn+1. Construct the polyno-
mial rings R = Z[X ]/〈f〉 and Rq = Zq[X ]/〈f〉. Let k = dlog2 qe, m = 2, and
m̄ = m+ k = 2+ dlog qe be the length of the public matrices, and ` be the
length of the message. Let sssk =

p

log(n2)+1 and sσ =
p

n log n ·
p

log n2

be the standard deviations of the distributions of the signing key and of
the signature respectively (their values are determined following Theorem
5.14 and 5.15 respectively).

Key Generation. (svk, ssk)← SKeyGen(spar)
Run the algorithm GenTrap from Theorem 5.14 to get a vector

�

A B
�

=
�

A AR+G
�

and a trapdoor R. The public key is composed by `+ 1 ran-
dom matrices A0, . . . ,A`

$←−R1×k
q , a random vector u $←−Rq and the vector

�

A B
�

∈ R1×m̄
q . i.e., svk= (A,B,A0, . . . ,A`,u), and the (secret) signing key

is ssk= R. Remark that the probability distribution of R is D2×k
R,sssk

.

Signing. σ← Sign(µ, ssk)
To sign a message µ = (µ1, . . . ,µ`) ∈ {0, 1}`, the signer constructs a mes-
sage dependent public vector Aµ =

�

A B A0 +
∑`

i=1(−1)µi Ai

�

and then it
samples a short vector S ∈ Rm̄+k

q running the algorithm SampleD from The-
orem 5.15 on input (Aµ,u,R). The algorithm outputs the signature σ = S.
Remark that the probability distribution of the signature S is D⊥Aµ,u,sσ

.

Verification. {0,1} ← SVerify(σ,µ, svk)
The verifier checks that the vector S has small norm, i.e., ‖S‖∞ ≤ 8sσ.
Then, it constructs Aµ =

�

A B A0 +
∑`

i=1(−1)µi Ai

�

and checks that S sat-
isfies the verification equation, i.e., AµS= u mod q.

Correctness follows from Theorem 5.14 and 5.15 and from Lemma 2.16. We
prove the eu-acma security of the scheme under RSIS by proving that if there
exists a PPT adversary A that can break the signature scheme we can construct an
algorithm B that can solve RSIS exploiting A. The proof is obtained combining
the message guessing technique in the proof of Theorem 25 in [Boyen, 2010]
with the proof of Theorem 6.1 in [Micciancio and Peikert, 2012].

Theorem 5.16. (eu-acma security) If there exists a PPT adversary A that can break
the eu-acma security of the signature scheme (SParGen,SKeyGen,Sign,SVerify) in
time tA with probability εA asking qA queries to the signing oracle, then there exists
a PPT algorithm B that can solve RSISm̄+1,q,β for a large enough β = 8sσ + (` +
1)kn8sσ exploiting A in time tB ∼ tA with probability εB = εA × (1 − εRLW E) ×
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1
q

�

1− qA
q

�

or a PPT algorithm that solves RLWE(`+1)k,U (S1) with probability εA in
time tA.

Proof. The algorithm B has access to a RSIS oracle that outputs a RSIS instance
ARSIS when prompted. To exploit A to solve RSIS, B has to plug in the RSIS
instance in the verification key of the signature, and to exploit the forgery that A
produces to build a solution for RSIS. The verification key generated by B should
be indistinguishable from a honestly generated key. Moreover, B should also
implement a signing oracle that, on input a message from A, outputs a signature
on that message.

Upon receiving the instance ARSIS from the RSIS oracle,B generates the public
parameters for the signature scheme as it follows. First, it parses5 ARSIS as ARSIS =
�

A B u
�

=
�

a 1 B u
�

. Rearranging its components, this corresponds to the
normal form of RSIS (cf. beginning of Section 4 in [Lyubashevsky et al., 2013]).

In the eu-acma scenario, the adversary chooses the message µ∗ it will forge
a signature for after receiving the public key of the scheme and having possibly
queried the signing oracle. Hence, the game is as follows. The simulator B

generates the verification key (A,B,A0, . . . ,A`,u) from the RSIS instance ARSIS as
follows. First, it samples random Ri

$←−S 2×k
1 for i = 0, . . . ,`, the random integers

hi
$←−U (Zq) for i = 1, . . . ,`, and sets h0 := 1. Then, it sets:

�

A B u
�

:= ARSIS , (5.2)

Ai := ARi + hiG for i = 1, . . . ,` . (5.3)

Then, B sends svk = (A,B,A0, . . . ,A`,u) to A. The key svk generated by the sim-
ulator is indistinguishable from a honestly generated one under RLWE(`+1)k,U (S1)

(cf. Lemma 5.17).

The adversary is allowed to query signatures on at most qA messages µ of its

5This can be done with high probability, if the ring Rq contains enough invertible elements (cf.
for example [Lyubashevsky and Neven, 2017, Lemma 2.2]). Indeed, assume that Rq contains N
invertible elements. Then with probability (m+2)N/qn at least one of the components of ARSIS =
[a1 . . . am+2] is invertible. Assume w.l.o.g. such component to be b := am+2. Then b−1ai are iid
(uniform) random variables over Rq, and solving the RSIS instance [b−1a1 . . . b−1am+1 1] implies
finding a solution for the ARSIS instance of RSIS. In case no component of ARSIS is invertible, B
aborts. This happens with probability 1 − (m + 2)N/qn, that is negligible if the number N of
invertible elements in Rq is large enough.
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choice. Upon receiving the message µ, B constructs

hµ := h0 +
∑̀

i=1

(−1)µi hi

Rµ := R0 +
∑̀

i=1

(−1)µi Ri

Aµ =
�

A B A0Rµ + hµG
�

=
�

A B (AR0 +
∑`

i=1(−1)µi Ri) + (h0 +
∑`

i=1(−1)µi hi)G
�

=
�

A B A0 +
∑`

i=1(−1)µi Ai

�

.

If hµ = 0, B aborts. The product hµG can be written as HµG, where Hµ = hµIk is
an invertible matrix, as hµ ∈ Zq and q is a prime. Hence G is a Hµ-trapdoor for
A, and B can use it to sample a short element S in the lattice Λ⊥u (Aµ) thanks to
Theorem 5.15. In fact, B samples an element of Λ⊥u (Aµ) distributed as a Gaussian
with standard deviation α, hence the norm of the coefficients of the elements of
S is bounded by B = 8α. Hence, the vector S is a valid signature on µ, and B can
send it back to A.

Upon receiving a forgery (µ∗,σ∗), B aborts if 0 ← SVerify(σ∗,µ∗, svk) or if
hµ∗ 6≡ 0 mod q. Otherwise, B can extract a solution to RSIS from σ, as it can be
seen from the verification equation:

Aµ∗S
∗ = u mod q

⇒
�

A B A0 +
∑`

i=1(−1)µ
∗
i Ai

�





S∗1
S∗2
S∗3



= u mod q

⇒
�

A B A0Rµ∗
�





S∗1
S∗2
S∗3



= u mod q

⇒
�

A B u
�





S∗1 +Rµ∗S
∗
3

S∗2
−1





︸ ︷︷ ︸

SRSIS

= 0 mod q

where Rµ∗ := R0 +
∑`

i=1(−1)µ
∗
i Ri. The norm of the vector SRSIS is dominated by

‖S∗1 +Rµ∗S
∗
3‖∞ ≤ 8sσ + (`+ 1)max

i
‖RiS

∗
3‖∞ ≤ 8sσ + (`+ 1)kn8sσ ,
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as the norm maxi ‖RiS
∗
3‖∞ ≤ k maxi, j,h ‖ri

h, js
∗
j‖∞ ≤ kn8sσ, where ri

h, j and s∗j
are the components of Ri and S∗3 respectively, and the last inequality follows
by standard bounds on the infinity norm of the product of polynomials (cf. for
example [Boschini et al., 2018b, Lemma 1]). The success probability of B is
εA × (1− εRLW E)×Pr[B does not abort], where εRLW E is the probability that the
adversary can distinguish the verification key generated by B from a honestly
generated one.The abort probability of algorithm B can be bounded from below
as

Pr[B does not abort]≥
1
q

�

1−
qA
q

�

following the same augment in the proof of [Boyen, 2010, Lemma 27]. Hence
the success probability of B is

εB = εA × (1− εRLW E)×
1
q

�

1−
qA
q

�

and it is negligible assuming that q � 2qA (where recall that qA is the number
of queries that A is allow to ask the signing oracle).

Lemma 5.17. Assume there exist a PPT algorithm A playing the eu-acma experi-
ment that can distinguish the verification key as generated in Equation (5.2) from
a honestly generated one with probability εA in time tA. Then there exists an algo-
rithmB that can solve RLWE(`+1)k,U (S1) with probability εB = in time tB = pol y(tA)
exploiting A.

Proof. The proof is essentially equal to the proof of Lemma 3.29, hence we omit
it.

Remark 16. Observe that to have a non-negligible success probability it should
hold that q � 2qA, where qA is the number of signing queries the adversary is
allowed to do. When using this signature as a building block for a group signa-
ture, this is actually not limiting. Recall that in the group signature this signa-
ture scheme is used to authenticate an encryption of a user’s identity. Hence,
a limit in the number of users, e.g., assuming 232 users (i.e., more than the
Earth population), implies that the adversary can make at most 232 queries to
the signing oracle. Therefore, choosing q � 233 would be enough to ensure a
non-negligible success probability. The value of q could be improved using the
technique shown in Section 3.5 of [Boyen, 2010], which allows to relax the re-
quirement to qt � 2qA, for some divisor t of n. We decided against the use of
this technique as the improvement would not be significant (the parameter q has
to be quite large anyway to ensure the hardness of the RSIS instance underlying
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the security proof). Finally, remark that for q � 2`, the security proof can also
be done using complexity leveraging, along the lines of the proofs of Theorems
7, 8, 9 in [Boschini et al., 2017], and results in better parameters.

5.4.2 E�cient NIZK Proofs for Lattice-Based Relations

Our NIZK proofs for lattices are based on Aurora, that is an Interactive Oracle
Proof (IOP) for Rank 1 Constraints Satisfaction (R1CS).

An Interactive Oracle Proof (IOP, a generalization of Interactive Proofs (IP)
and Probabilistically Checkable Proofs (PCP), cf. [Ben-Sasson et al., 2016a]) is
k-round protocols between a prover and a verifier, where the verifier is given
oracle access to the prover’s messages f1, . . . , fk, i.e., the verifier does not read in
full the prover’s responses, but only access (random) parts of them. IOPs being
proof systems means that they guarantee completeness (if the instance x is in the
language, the verifier outputs 1 at the end of the interaction with probability 1),
and soundness ε(x) (i.e., the probability that the verifier outputs 1 at the end of
the protocol when x is not in the language is ε(x)). IOP can have Honest-Verifier
Zero-Knowledge (i.e., it is possible to build a simulator S that simulates the view
of a honest verifier), and they can be proofs of knowledge (i.e., it is possible to
build an extractor E that extract a valid witness for a given x by interacting with
the prover). Finally, an IOP is public-coin if the queries of the verifier in round i
only depend on the messages m1, . . . , mi−1 it sent previously to the prover, and if
such messages are random in {0, 1}∗.

Alongside the definition of IOP, Ben-Sasson et al. [2016a] introduced also
a polynomial-time transformation T to transform a public-coin IOP (P,V) into
non-interactive random oracle proofs systems (P′,V′) that relies on Merkle trees.
The intuition is very similar to the Fiat–Shamir heuristic: essentially P′ executes
the interaction between P and V internally, generating the verifier’s messages mi

through the random oracle (possible, as the protocol is public coin). Then, it uses
the Merkle tree to guarantee that the verifier was run honestly: it “authenticates”
each query through computing the root for each of the prover’s answers fi and
computing a path for each of the verifier’s queries to the oracles f y j

, where y j is
the oracle queried in the j-th query. The choice of using the Merkle tree as an
authentication system allows the transformation to only rely on the assumption
that random oracles exist. As IOPs are multi round, the prover gets the oppor-
tunity to reset the verifier multiple times before the end of the interaction, and
could potentially exploit this when generating a non-interactive proof. Hence the
authors define a stronger version of soundness called state restoration soundness,
that is defined as the probability that a malicious prover succeeds in making a
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honest verifier accept without knowing a valid witness in an interactive protocol
where the prover may rewind the verifier to a previous round. The concept is
similar to special soundness for Σ-protocols.

Aurora is a new IOP for R1CS by Ben-Sasson et al. [2019]. The choice of the
R1CS comes from the fact that such language generalizes circuits by allowing
“native” field arithmetic while still being easy to work with, and it is used in
practical applications [ZCash Company, 2014].

Definition 5.18 (R1CS relation). The relation RR1CS consists of the set of all
pairs ((F, k, m, n, A, B, C , v), w) where F is a finite field, k is the number of inputs,
n is the number of variables, m is the number of constraints, A, B, C are matrices
in Fm×(n+1), v ∈ Fk, and w ∈ Fn−k such that Az◦Bz = Cz where z = (1, v, w) ∈ Fn+1

and ◦ denotes entry-wise (Hadamard) product.

The matrices A, B and C define a system of constraints; each row corresponds
to a constraint, and the columns correspond to the variables. The vector z then
represents an assignment to the variables.

The following theorem summarizes the properties of Aurora when compiled
to a SNARK via the transform by Ben-Sasson et al. (cf. Theorem 7.1 in [Ben-
Sasson et al., 2016b]). In the statement below, N :=max(m, n); generally n and
m will be of roughly the same magnitude.

Theorem 5.19 (informal, cf. Theorem 1.2 in [Ben-Sasson et al., 2018]). There
exists a non-interactive zero-knowledge argument for R1CS that is unconditionally
secure in the Random Oracle Model with proof length O(λ2 log2 N) and soundness
error 2−λ against adversaries making at most 2λ queries to the oracle. The prover
runs in time Oλ(N log N) and the verifier in time Oλ(N).

Remark 17 (Simulation soundness). To use the above construction in the Naor–
Yung paradigm, as we later do, requires one-time simulation soundness (OTSS).
This is shown as follows; we assume some familiarity with [Ben-Sasson et al.,
2016a]. Let π be a proof output by the simulator for a statement x supplied by
the adversary. First recall that to achieve adaptive soundness and zero knowl-
edge, the oracle queries of the verifier and honest prover are prefixed with the
statement x and a fresh random string r ∈ {0,1}λ. Since with high probability
no efficient adversary can find x ′ 6= x , q, q′ such that ρ(x‖r‖q) = ρ(x ′‖r‖q′),
if the adversary in the OTSS game chooses an instance different from that of
the simulated proof, the success probability of the extractor is affected only by a
negligible amount.

Now suppose that an adversary generates a different proof π′ 6= π of the
same statement x . In the Aurora IOP, the query locations for the first oracle are
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a uniformly random subset of [`] (where ` is the oracle length, ` = Ω(N)) of
size Ω(λ). This is determined by the verifier’s final randomness, which in the
compiled NIZK depends on all of the Merkle tree roots; these are all included in
π. Moreover, these collectively depend on every symbol of π; hence no efficient
adversary can find a valid π′ 6= π whose query set is the same as that of π. In
particular, the Merkle tree root corresponding to the first round has some query
in π′ which is not in π; since it is infeasible to find an accepting authentication
path for this query relative to the root provided by the simulator, the value of
this root must differ between π and π′. It follows that, with high probability, the
extractor only ‘programs’ queries which were not already programmed by the
simulator, and so one-time simulation soundness holds.

We build the NIZKs required for our group signature scheme from simple,
reusable building blocks for NIZKs on lattice primitives. When composing these
building blocks, it will often be necessary to make explicit inputs private. Gen-
erally this involves no additional complication; if changes are needed to ensure
soundness, we will point them out. When we construct R1CS instances (cf. Def-
inition 5.18), we typically write down a list of variables and constraints, rather
than explicitly constructing the matrices.

Basic Operations

Let Rq be a polynomial ring whose coefficients are in Zq. For the entirety of
this section, we will take Rq = Zq[X ]/〈X n + 1〉; recall that the elements of Rq

are polynomials of degree less than n. We describe how to express some basic
lattice operations in Rq as arithmetic operations over Fq

∼= Zq for prime q. With
BitD(a) we denote an algorithm that on input elements ai ∈ Rq, outputs vectors
~ai containing the binary expansion of the coefficients of ai.

Representation of Ring Elements We will generally represent ring elements
as vectors in Fn

q with respect to some basis of Rq. Note that regardless of the
choice of basis, addition in Rq corresponds exactly to component-wise addition
of vectors.

Bases We will use two bases: the coefficient basis and the evaluation or num-
ber-theoretic transform (NTT) basis. The NTT basis, which is the discrete Fourier
basis over Fq, allows polynomial multiplication to be expressed as pointwise mul-
tiplication of vectors. Transforming from the coefficient basis to the NTT basis
is a linear transformation T ∈ Fn×n

q . The choice of basis depends on the type of



160 5.4 New Building Blocks for better Group Signature

constraint we wish to check; generally we will represent inputs in the coefficient
basis.

An issue with the NTT basis is that to multiply ring elements a,b ∈ Rq naively
requires us to compute the degree-2n polynomial ab ∈ Fq[X ] and then reduce
modulo X n+1. This would make multiplying ring elements quite expensive. For
our choice of Rq, however, so long as q has 2n-th roots of unity we can employ
the negative wrapped convolution [Lyubashevsky et al., 2008], which is a linear
transform T such that if ~a,~b,~c represent the coefficients of a,b,c ∈ Rq respec-
tively, T ~a ◦ T~b = T~c if and only if c = ab in Rq. From here on, T is the negative
wrapped convolution.

Multiplication Following the above discussion, in the NTT basis multiplication
is componentwise over Fq. Hence to check that a · b = c in Rq when a,b,c are
represented in the coefficient basis as ~a,~b,~c, we use the constraint system:

T ~a ◦ T~b = T~c .

Bit Decomposition A simple but very important component of many primi-
tives is computing the bit decomposition of a Zq-element. The following simple
constraint system enforces that b0, . . . , b`−1, where ` = dlog qe, is the bit decom-
position of a ∈ Fq.

bi(1− bi) = 0 ∀i ∈ {0, . . . ,`− 1}
`−1
∑

i=0

bi2
i − a = 0

We will use the notation ~b = BitDec(a) to represent this constraint system. For
a vector ~a ∈ Fn

q and matrix B ∈ Fn×`
q we write B = BitDec(~a) for the constraint

system “B j = BitDec(a j) ∀ j ∈ [k]”, for B j the j-th row of B.

Proof of Shortness Showing that a ∈ Zq is bounded by β = 2k < (p−1)/2, i.e.
−β < a < β , can be achieved using its bit decomposition. We have that |a|< β if
and only if there exist b0, . . . , bk−1 ∈ {0,1}, c ∈ {−1,1} such that c

∑k−1
i=0 bi2

i = a.
The prover will supply b0, . . . , bk−1 as part of the witness. This introduces the
following constraints:

bi(1− bi) = 0 ∀i

(
k−1
∑

i=0

bi2
i − a)(

k−1
∑

i=0

bi2
i + a) = 0
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The number of new variables is k; the number of constraints is k+ 1. When we
describe R1CS instances we will write the above constraint system as “|a| < B”.
For ~a ∈ Zn

q , we will write “‖~a‖ < β” for the constraint system “|ai| < β ∀i ∈
[n]”, i.e. n independent copies of the above constraint system, one for each entry
of ~a.

Proof of Knowledge of RLWE Secret Key

We give a proof of knowledge for the following relation.

R = {(c,d; t,e) ∈ R4
q : d= ct+ e mod q ∧ ‖e‖∞ < β = 2k}

Let ~c, ~d,~t,~e ∈ Fn
q encode c,d, t,e in the coefficient basis. The condition is

encoded by the following constraint system:

T~c ◦ T~t = T ~f
~f + ~e = ~d

‖~e‖∞ ≤ β

where ~f ∈ Fn
q should be the coefficient representation of ct. In practice, because

we choose the RLWE error distribution to be a Gaussian with standard deviation
σRLW E, we set β = 8σRLW E. The number of variables is n(logβ + 6); the number
of constraints is n(logβ + 4). We write RLWEβ(~c, ~d,~t,~e) as shorthand for the
above system of constraints. Note that we did not use the fact that the verifier
knows ~c, ~d; this will allow us to later use the same constraint system when ~c, ~d
are also secret.

Hence, applying the results by Ben-Sasson et al. [2018] yields the following
result.

Lemma 5.20. There is a NIZK proof (SNARK) for the relation R , secure and ex-
tractable in the Random Oracle Model, with proof length O(log2

�

n logβ
�

log q).

With our parameters as given in Section 5.5.6, the size of a NIZK for a single
proof of knowledge of an RLWE secret key is 72 kB (obtained from our imple-
mentation 5.4.3 using libiop). Constraint systems for RSIS, Module-RSIS and
Module-RLWE can be derived similarly.

Remark 18. The constraint systems for RSIS, Module-RSIS and Module-RLWE
can be derived from the previous system by defining the same constraints for
vectors instead of ring elements (cf. the definition of these problems in Section
2.3.4), and imposing the norm check on the whole witness vector (at least in the
case of Module-RSIS and RSIS).
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Proof of Knowledge of Plaintext

We give a proof of knowledge for the following relation.

R = {(a,b,v,w;e, f, r,µ) ∈ R7
q ×S1

: v= p(ar+ e)∧w= p(br+ f) +µ∧ ‖e‖∞,‖f‖∞ < β}

Recall that S1 ⊆ Rq is the set of all polynomials of degree less than n whose
coefficients are in {0, 1}, which is in natural bijection with the set {0,1}n. Again,
as before we set β = 8σRLW E.

Let ~a,~b, ~v, ~w,~e, ~f ,~r, ~µ ∈ Fn
q be the coefficient representations of the corre-

sponding ring elements. The condition is encoded by the following constraint
system:

RLWEβ(~g, ~a,~r,~e)

RLWEβ(~h,~b,~r, ~f )

~w= p · ~g

~v = p · ~h+ ~µ
µi(µi − 1) = 0 ∀i

The number of variables is n(2 logβ+10); the number of constraints is n(2 logβ+
15). This constraint system (repeated twice) is also used to build the NIZK re-
quired for the Dolev-Dwork-Naor construction. We write “~v, ~w= Encp(~a,~b,~r, ~µ)”
to denote the above system of constraints; ~e and ~f will be fresh variables for each
instance of the system. Once again, we do not use the fact that the verifier knows
~a,~b, ~v, ~w, which will be useful later.

To encrypt tn bits, we simply encrypt t n-bit blocks separately. The constraint
system is then given by t copies of the above system. We will use the notation
V, W = Encp(~a,~b,~r, ~µ) to represent this, where V, W are n × k matrices whose
rows are the encryptions of each n-bit block.

Proof of valid signature

An important component of the group signature scheme is proving knowledge of
a message µ ∈ {0, 1}` together with a Boyen signature on µ (see Section 5.4.1).
We first consider a simpler relation, where we prove knowledge of a signature
on a publicly-known message. In the Boyen signature scheme, this corresponds
to checking an inner product of ring elements, along with a proof of shortness
for the signature. This corresponds to checking the following relation.
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R = {(Aµ,u;S) ∈ (R1×k
q × Rq)× Rk

q : AµS= u mod q ∧ ‖S‖∞ < β}

Let A, S ∈ Fk×n
q be the matrices whose rows are the coefficients of the entries

of Aµ,S, and let ~u ∈ Fn
q be the coefficient representation of u. We obtain the

following constraint system:

TAi ◦ TSi = T Fi ∀i ∈ [k]
k
∑

i=1

Fi = ~u

‖Si‖∞ < β ∀i ∈ [k]

where F ∈ Fk×n
q , and Ai, Si, Fi are the i-th rows of the corresponding matrices.

Now we turn to the more complex task of proving knowledge of a (secret)
message and a signature on that message. Here the verifier can no longer com-
pute Aµ by itself, and so the work must be done in the proof. In particular, we
check the following relation.

R =
�

(
�

A B
�

,A ,u;µ,S) ∈ R1×m
q ×

×(R1×k
q )`+1 × Rq × {0,1}` × Rm+k

q
: AµS= umodq ∧ ‖S‖∞ < B

�

,

where A = (A0, . . . ,A`) and Aµ =
�

A B A0 +
∑`

i=1µiAi

�

. Let M ∈ Fm×n

be the matrix whose rows are the coefficients of the entries of
�

A B
�

, and let
A0, . . . , A` ∈ Fk×n be matrices whose rows are the coefficients of the entries of
A0, . . . ,A` respectively. Let A′i ∈ F

n×(`+1) be such that the j-th column of A′i is the
i-th row of A j (i.e., the coefficients of the i-th entry of A j). Observe that A′i ·(1,µ)
is the coefficient representation of the i-th entry of A0 +

∑`

j=1µ jA j. Given this,
the following constraint system captures the relation we need.

T Mi ◦ TSi = T Fi ∀i ∈ [m]
(TA′i)(1,µ) ◦ TSm+i = T Fm+i ∀i ∈ [k]

k+m
∑

i=1

Fi = ~u

µi · (1−µi) = 0 ∀i ∈ [`]
‖Si‖∞ < β ∀i ∈ [m+ k]
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with F ∈ F(m+k)×n
q . We will denote the above constraint system by SVerifyβ(M ,

A , ~u, S,µ), with A = (A0, . . . , A`). The number of variables and constraints
are bounded by (4+ logβ)(m+ k)n+ k(max(n,`+ 1)). Recall that β = 8sσ =
8
p

n log n ·
p

log n2 (cf. Section 5.4.1).

Signature generation

Here we specify the relation whose proof constitutes a signature for our group
signature scheme; see 5.5 for details. We repeat its formal description below.

RS =

� �

A,B,A ,u, (a0,b0,a1,b1),
(V0,W0), (V1,W1); t, i,c,d,e,S

�

s.t.

1← SVerify(S, (c,d, i),A,B,A0, . . . ,A`,u)
∧ d= ct+ e ∧ ‖e‖ ≤ β ′

∧ (V0,W0)← EncRLW E(i,c,d, (a0,b0))
∧ (V1,W1)← EncRLW E(i,c,d, (a1,b1))















We now describe the constraint system which represents this relation. The
variables ~c, ~d,~e, i, A, B,A , ~u, S, ~a0, ~a1,~b0,~b1, V0, W0, V1, W1 are the coefficient rep-
resentations of the corresponding variables in the relation. Using the notation
defined in the previous subsections, the constraint system is as follows.

C = BitDec(~c)

D = BitDec(~d)
~i = BitDec(i)

SVerifyβ([A|B],A , ~u, S, (C , D,~i))

RLWEβ ′(~c, ~d,~e)

V0, W0 = Encp(~a0,~b0,~r, (C , D,~i))

V1, W1 = Encp(~a1,~b1,~r, (C , D,~i))

The number of variables and constraints are bounded by (4+logβ)(m+k)n+
2kn log q+5n logβ +30n+6. With our parameters this yields approximately 10
million variables and constraints.

By applying the proof system of [Ben-Sasson et al., 2018], we obtain the
following lemma.
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Lemma 5.21. There is a NIZK proof (SNARK) for the relation RS, secure and ex-
tractable in the Random Oracle Model, with proof length O(log2

�

(m+ k)n logβ +
n2 log q

�

log q).

Proof of valid decryption

The following relation captures the statement that the prover knows the RLWE
secret key corresponding to a given public key, and that a given ciphertext de-
crypts to a given message under this key.

R =
¦

(v,w,µ,a,b; s,e)

: (w− sv) mod p = µ ∧ b= as+ e∧ ‖s‖∞,‖e‖∞ ≤ β
©

,

The constraint system is as follows.

RLWEβ(~a,~b,~s,~e)

T ~w− T~s ◦ T ~v = T (~µ+ p~h)

‖~h‖∞ < (q− 1)/2p

The final constraint is to ensure that ~µ + p~h does not ‘wrap around’ modulo q.
Since ~v, ~w are public, the verifier can incorporate these into the constraint system.
The number of variables and constraints is bounded by n(logβ + log(q/p) + 5).

Parameter choices

In this section we discuss how the parameter choices in 5.5.6 relate to the rela-
tions described in the above sections, and the resulting constraint system sizes
given by our implementation (5.4.3). Throughout we let q be a prime with
log2 q ≈ 65, and Rq = Fq/〈X n + 1〉 with n= 1024. We have logβ = 10.

Proof of knowledge of RLWE secret key Our implementation yields a con-
straint system with 16,383 variables and 15,361 constraints for the parameters
specified. The resulting proof is 72kB in size, and is produced in roughly 40
seconds on a consumer laptop (MacBook Pro).

Proof of knowledge of plaintext Our implementation yields a constraint system
with 32,769 variables and 29,696 constraints for the parameters specified. The
resulting proof is 87kB in size, and is produced in roughly three minutes.
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Proof of valid signature Here k = m̄= 67, m= 2m̄= 134. Proving knowledge
of a message µ ∈ {0,1}` and signature on µ yields at most 3 × 106 + 67` con-
straints, for ` > n. Our message size is `= 2nk+log N , where N is the number of
users in the system; we obtain roughly 12×106+67 log N constraints. Since the
number of users will always be bounded by (say) 240, the number of constraints
is bounded by 12 million.

Our implementation yields a constraint system of 2,663,451 variables and
2,530,330 constraints. This is too large to produce a proof for on our Google
Cloud instance, but extrapolating from known proof sizes we expect this to be at
most 150kB.

Signature generation Our implementation yields a constraint system with
10,196,994 variables and 10,460,226 constraints. This is too large to produce a
proof for, but extrapolating from known proof sizes we expect at most 250kB.

5.4.3 Optimization and Implementation of the Proof System

Faster NIZKs for NTT

In this section we describe an optimization which could improve verification time
for the number-theoretic transform.

Recall that we wish to prove that for a, b ∈ Fn
p, a = T b, where T is the NTT

matrix; Ti j = ωi j for some n-th primitive root of unity ω ∈ Fp. The lincheck
protocol of [Ben-Sasson et al., 2018] achieves this, but with verification time
complexity Ω(n2). There is an optimization, however, arising from the relation
of T to the multiplicative subgroup H ⊆ F∗ of size n, leading to an exponential
speedup.

Recall that we choose some embedding γ: H → [n] so that we can consider
a, b ∈ FH

p and T ∈ FH×H
p , with Tab = ωγ(a)γ(b). In particular, we will choose the

embedding γ(ωi) = i. This has the property that ωγ(ω
i) = ωi. The lincheck

polynomial p̂(2)
α

for T is defined as the polynomial of minimal degree such that
p̂(2)
α
(b) =

∑

a∈H Tabα
γ(a) =

∑

a∈Hω
γ(a)γ(b)αγ(a) for all b ∈ H. Since ωγ(b) = b, we

have that p̂(2)
α
(b) =

∑

a∈H(αb)γ(a) =
∑n−1

i=0 (αb)γ(a) = 1−(αb)n

1−αb . Hence p̂(2)
α
(b)(X ) =

1−(αX )n

1−αX .
This polynomial can be evaluated in O(log n) field operations by repeated

squaring, everywhere except for the point α−1. To evaluate at the point α−1 we
can use techniques for dividing arithmetic circuits in time polylog(n) (or ignore
this event since it happens with very low probability).
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Implementation

The implementation was written in C++, primarily using the following libraries:

• libff (https://github.com/scipr-lab/libfff)

• libiop (https://github.com/scipr-lab/libiop)

libff is a C++ implementation of finite fields, and libiop includes a C++ im-
plementation of the Aurora IOP and SNARK. The implementation took advantage
of the libiop-provided APIs to construct the R1CS encodings of the various re-
lations detailed in 5.4.2. Once these R1CS constraint systems were constructed,
libiop was used to construct the Aurora IOPs, which where then compiled to
zkSNARKs. Finally, the proof size of these SNARKs was measured directly.

libiop does not currently provide primitives to organize very large constraint
systems as in this paper. To prevent the constraint systems from getting unwieldy,
an additional class ring_poly was created to represent ring elements as vectors
of R1CS variables. This class also contains an implementation of the negative
wrapped convolution (along with its inverse), which was tested by comparing
with multiplication of polynomials in the ‘long-form’ method. In addition, now
polynomial multiplication using the negative wrapped convolution could be rep-
resented as a basic constraint and be composed as part of a larger constraint
system. Similarly, bit decompositions and proofs of shortness were also repre-
sented as basic constraints.

Mirroring the definition of the relations themselves, the implementations for
5.20, 5.21 were composed by referencing the relevant smaller relations.

Several small utilites were also created in order to compute the parameters
libff requires for the specific prime fields used in this paper, and to generate
other prime fields to test how proof sizes varied with number of bits of the un-
derlying prime field.

The constraint systems were compiled and run on a consumer-grade 2016
Macbook Pro, when running the prover and verifier could fit in memory. For
the larger constraint systems such as for 5.21, a Google Cloud large-memory
compute instance was used to finish constructing the proofs.

5.5 Group Signature with Blind Issuance from Lattices

This group signature is build from a lattice-based hash-and-sign type of signature
(SParGen,SKeyGen,Sign,SVerify) (cf. Section 5.4.1), SNARKs (P,V), a post-

https://github.com/scipr-lab/libfff
https://github.com/scipr-lab/libiop
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quantum one-time signature scheme (OTSGen,OTSSign,OTSVf) (e.g., Lam-
port’s signature scheme with key length 2λ bits) and a CCA2-secure encryp-
tion scheme (EParGenRLW E,EKeyGenRLW E,EncRLW E,DecRLW E) (in particular, we
choose the RLWE encryption scheme [Lyubashevsky et al., 2013] made CCA2-
secure via the Dolev-Dwork-Naor paradigm [Dolev et al., 1991], cf. Section 3.8.2).

There are two main differences between the construction by Bellare et al.
and ours. First, the user secret is not a signing key but a RLWE secret. In the
construction by Bellare et al. the i-th user has an authenticated (by a PKI) key
pair (sski, svki) and a second key pair (ssk′i, svk′i). During the joining phase, the
user sends a signature σ← Sign(svk′i, sski) on svk′i and svki to the issuer, to prove
that it has a valid key pair. Indeed, the issuer can verify the signature and check
that the i-th entry of the public list upk of authenticated users contains the public
key svki. The signature σ and the verification keys svki, svk′i are stored in a list
reg that is used by the opener and the judge to verify the identities of the signers.
This construction protects the user from framing attempts in which a corrupted
issuer tries to substitute svk′i with another verification key. Indeed, to do that
the adversary would have to forge a signature on svk′i that is valid w.r.t. svki,
thus breaking the unforgeability of the signature scheme. Our scheme is quite
similar, but instead of two signature key pairs the i-th user has a OTS key pair
(otsski, otsvki) and a RLWE pair (ai,bi) with the corresponding secret ti. To join,
it sends a signature otsi ← OTSSign(otsski, (ai,bi)) to the issuer, along with the
verification key otsvki and a proof that it knows ti. The OTS verification key is
authenticated (e.g., by a PKI) and published as the i-th entry in upk to prevent
framing, while the RLWE is part of the user’s group signing key.

The second difference is that in our case we require the NIZK proofs to be
arguments of knowledge, so that in the security proofs we can exploit their ex-
tractability property. This makes the security proof slightly less tight, but avoids
us the need to encrypt the whole credential.

In the following we present the scheme. Recall that BitD outputs the bit
decomposition of the input.

5.5.1 Key Generation and Joining Protocol

Let N be the maximum number of users supported by the scheme. We assume
there exists a publicly available list upk containing the personal (OTS) verifica-
tion keys of the users, i.e., upk[i] = otsvki.

GKg: A trusted third party generates the parameters of the signature scheme
spar← SParGen(1λ) and of the encryption scheme running epar← EParGenRLW E
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(1λ). We choose the error distribution of the RLWE encryption scheme to be a
Gaussian distribution with standard deviation σRLW E = 2

p

log q. Then it sets
` = 2ndlog qe + dlog Ne, and checks that q ≥ 4p

p

log q log n
p

64 log q+ n. If
that’s not the case, it aborts and restarts the parameter generation. It gener-
ates the group manager’s secret signing key TA with corresponding public key
(A,B,A0, . . . ,A`,u) running the key generation algorithm SKeyGen of the sig-
nature scheme. Finally, it generates the opener’s keys by first generating two
pairs of encryption and decryption keys of the encryption scheme, ((ai,bi), si)←
EKeyGenRLW E(epar) for i = 0,1, and then setting opk= (a0,b0,a1,b1) and osk=
s0; s1 is discarded. Recall that the RLWE error distribution χ is set to be a dis-
crete Gaussian with standard deviation sRLW E. Hence an element e $←−χ has norm
bounded by BI = 8sRLW E by Lemma 2.16.

UKg: The i-th user generates an OTS keys running (otsski, otsvki)← OTSGen

(1λ). The verification key otsvki is added as the i-th entry to the public list upk.
The keys of the user are (uski, upki) = (otsski, otsvki).

Join and Iss: The joining protocol is composed by a pair of algorithms (Join, Iss)
that are run by the user and the group manager respectively.

To join a group, a user Ui interacts with the group manager M to obtain a
certify on its public key uski. The user runs the algorithm Join, while the manager
runs Iss. The resulting credential and the user’s public key are stored by M in a
list reg. Such list is necessary to guarantee that the opener actually recovered a
valid identity. The complete protocol is showed in Figure 5.9 and explained in
the following:

• The user starts by running Join on input its key pair ((ci,di), ti). The algo-
rithm ends outputting (ci,di, otsi, otsvki) to M along with a proof Πi that
the user knows ti,ei, i.e., a proof that (ci,di) is a RLWE pair. The signature
is generated running OTSSign((ci,di), otsski), while the proof is generated
running PI(ci,di; ti,ei) that is the prover algorithm of a SNARK (PI ,VI) for
the following relation:

RI = {(ci,di; ti,ei) ∈ R4
q : di = citi + ei mod q ∧ ‖ei‖∞ ≤ BI}

where BI = 8σRLW E is an upper bound on the absolute value of the coeffi-
cients of ei computed in the parameters generation phase.

• M runs VI(ci,di,Πi) and OTSVf(otsi, (ci,di), otsvki). If any of them out-
puts 0, the group manager aborts. Otherwise, it signs (ci,di, i) using the
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signature scheme, i.e., it generates Si with small norm such that
�

A B A0 +
∑`

j=1µ jA j

�

Si = u mod q

where µ= (µ1, . . . ,µ`) is the binary expansion of (ci,di, i). Then, M sends
Si to Ui.

• the user verifies that Si is a valid signature on (ci,di, i). If this is the case,
it sends accept to the issuer, and sets its signing key to be (ti,ci,di, i,Si).
Otherwise, it aborts.

• on input accept, the issuer stores the registration information reg[i] =
(ci,di, otsi, ) and concludes the protocol.

5.5.2 Signing Algorithm

The signature algorithm is shown in Figure 5.10. In the following, we explain
the rationale behind it.

To produce a valid signature, a user has to prove that it has a valid credential.
This means it has to prove that it has a signature by M on its user public key and
group identity (ci,di, i). Abusing the notation (because the signing algorithm
signs in fact the binary expansion BitD(ci,di, i)), we can say that the i-th user
has to prove the following relation:

R =
�

(A,B,A0, . . . ,A`,u;
ti, i,ci,di,ei,Si)

:
1← SVerify(Si, (ci,di, i),A,B,A0, . . . ,A`,u)

∧ di = citi + ei ∧ ‖ei‖∞ ≤ B

�

(5.4)

where B = BI = 8σRLW E. Moreover, to allow the opener to output a proof of
honest opening, it is necessary that it can extract ci and di from the signature.
Hence, the user attaches to the NIZK proof also two encryptions (V0,W0), (V1,
W1) of the user’s identity i and of the RLWE sample (ci,di) w.r.t the two RLWE
encryption keys in the opener public key. Remark that this does not compromise
the user, as the opener never gets the user’s secret key nor the user’s signing
key. To guarantee that the user is not cheating by encrypting a fake credential or
by encrypting different plaintexts in the two ciphertexts, the relation in Equation
(5.4) is not enough. In fact, the user has to prove that the two ciphertexts encrypt
the same (i,ci,di) on which it proved it has a credential. The relation becomes:

RS =















(A,B,A0, . . . ,A`,u,
opk, (V0,W0),
(V1,W1);
ti, i,ci,di,ei,Si)

:

1← SVerify(Si,BitD(i,ci,di),A,B,A0, . . . ,A`,u)
∧ di = citi + ei ∧ ‖ei‖∞ ≤ BI

∧ (V0,W0)← EncRLW E(BitD(i,ci,di), (a0,b0))
∧ (V1,W1)← EncRLW E(BitD(i,ci,di), (a1,b1))















(5.5)
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and (PS,VS) is a non-interactive SNARK for RS (cf. Section 5.4.2). The user
outputs the signature σ = (ΠS,V0,W0,V1,W1).

Remark 19. In Bellare et al. [2005] the user has to add to the signature the
encryption of the credential too. This becomes crucial in the security proof of
traceability and non-frameability, as it allows the simulator to recover a forgery
for the signature scheme from a valid forgery for the group signature scheme
output by the adversary. Instead, in the security proofs of our scheme the cre-
dential is extracted through extraction. This is not possible in the construction
by Bellare et al., as their NIZK proof is not required to be a proof of knowledge
(while ours is an AoK).

5.5.3 Signature Veri�cation and Opening

To verify a signature σ on a message µ, the algorithm GVerify checks the Proof
ΠS by running VS(ΠS,µ,A,B,A0, . . . ,A`,u, opk, (V0,W0,V1,W1)). It outputs 1 if
the verifier outputs 1.

The opener first runsGVerify on the signature. IfGVerify returns 0 the opener
outputs (0,ε). Otherwise it decrypts the ciphertext (V0,W0) using its secret key
s0 to recover the identity i and public key (c′i,d

′
i) of the signer using its secret

key s. Then, to prove that the user’s identity it extracted is valid, it recovers the
i-th entry of the list reg[i] = (ci,di, otsi) and checks that (c′i,d

′
i) = (ci,di). If that

is true, it includes in the output reg[i] along the (c′i,d
′
i) it recovered from the

signature. Finally, the opener produces a proof that the opening procedure was
performed honestly using the decryption key osk corresponding to the opener’s
public key opk, i.e., it outputs a proof ΠO for the following relation:

R =
�

(V0,W0, i,c′i,
d′i,a0,b0, ; osk)

:
(i,c′i,d

′
i)← DecRLW E((V0,W0), osk)
∧ osk is valid

�

. (5.6)

When instantiating the encryption scheme with the RLWE encryption scheme
relation (5.6) becomes:

RO =























(V0,W0, i,c′i,d
′
i,

a0,b0; s0,e0)
:
(W0 − s0V0) mod p =





î
ĉ′i
d̂′i





∧ b0 = a0s0 + e0 mod q
∧ ‖s0‖∞,‖e0‖∞ ≤ BO























, (5.7)

where î, ĉ′i, d̂
′
i are the binary polynomials obtained from the binary expansions

of i,c′i,d
′
i and BO = 8σRLW E. If every check and the decryption go through, the
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output of the opener is (i,τ) = (i, (c′i,d
′
i,ci,di, otsi,ΠO)). Otherwise, the opener

outputs (i,τ) = (0,ε).

5.5.4 The Judge Algorithm

The Judge algorithm verifies the opener claims of having opened correctly a
signature. Hence, it has to verify ΠO and that the decrypted public key, the
entry in the list and the certified public key of the user coincides. It takes as
input (gpk, opk,upk[i],µ,σ,τ, i), i.e., the group public key, the signature σ =
(ΠS, (V0,W0,V1,W1)) and the respective message µ, and the output of the opener
(i,τ) = (i, (c′i,d

′
i,ci,di, otsi,ΠO)). It recovers the public key upki of user i from

the public list, and outputs 1 if all of the following conditions hold:

• (i,τ) 6= (0,ε)

• 1← GVerify(σ,µ, gpk)

• (c,d) = (c′,d′)

• 1← VO(ΠO,V0,W0, i,c′i,d
′
i,a0,b0)

• 1←OTSVf(otsi, (ci,di), otsvki) .

Otherwise, the algorithm outputs 0.

5.5.5 Correctness and Security

Correctness follows from the correctness of the building blocks, as shown in the
proof of Theorem 5.22.

Theorem 5.22 (Correctness). If the signature, OTS, RLWE encryption and NIZK
proof system are correct, the group signature described above is correct.

Sketch of the proof of Theorem 5.22. The proof consists of 5 steps

• proving that the joining protocol results in the group manager producing
a signature on the user’s RLWE pair,

• proving that a user can produce a signature through the NIZK and the RLWE
encryption,

• proving that verification accepts honestly generated signatures,
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• proving that the decryption of the ciphertext contained in a honestly gen-
erated signature outputs the identity of the signer and a NIZK,

• proving that the judge always accepts the output of a honest opener.

We start from the joining procedure. A user can prove it has a RLWE pair
(ci,di) running PI as ei is sampled from a Gaussian (as specified in the Parameter
Generation), hence it has infinity norm less than 8σRLW E thanks to Lemma 2.16.
The signing algorithm succeeds as all the parameters are generated according
to specifications. On the user’s side, the correctness of the signature guarantees
that the verification algorithm outputs 1 w.h.p. .

During the signing procedure we only need to make sure that the prover PS

can in fact output a NIZK for relation RS. This follows from the correctness of
the signature, encryption and NIZK proof system. The bounds in relationRS are
set in Section 5.4.2 and follow from Lemma 2.16.

As the NIZK is generated honestly, the verification is guaranteed to output
1 with overwhelming probability by the correctness of the NIZK proof system.
The correctness of the decryption of the RLWE ciphertext holds as long as q ≥
pσRLW E

Æ

2 · 16σ2
RLW E + n · 2

p

logn by Theorem 3.39. As σRLW E = 2
p

log q, q as
chosen in Section 5.5.1 satisfies the inequality. Finally, the opener can generate a
NIZK proof to guarantee the opening was performed correctly, as the secret open-
ing key sO and sO are again sampled from a Gaussian with standard deviation
σRLW E, hence they have infinity norm bound by 8σRLW E w.h.p. by Lemma 2.16.

The judge outputs 1 when receiving as input a honestly generated opening
thanks to the correctness of the OTS and of the NIZK proof system.

Our group signature guarantees anonymity, traceability and non-frameability,
meaning that it protects also against a corrupted group manager trying to frame
a honest user. More precisely, the scheme is proven secure in the Random Or-
acle Model under quantum-safe assumptions. This essentially means that the
scheme is provably secure against a classical adversary (i.e., an adversary that
can only ask classical queries to the random oracle) that has access to a quantum
computer.

Anonymity relies on simulation soundness and zero-knowledge of the proof
system, and on the IND-CPA property of the encryption. The construction does
not require the IND-CCA2 security of the encryption, as in the proof we ex-
ploit a step similar to the Sahai extension [Sahai, 1999] of the Naor-Yung ap-
proach [Naor and Yung, 1990].
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Theorem 5.23 (Anonymity). The group signature scheme GS is anonymous in the
Random Oracle Model under the zero-knowledge and simulation soundness property
of the NIZK proof system and under the IND-CPA security of the encryption scheme.

Proof. Assume A is an adversary against anonymity interacting with a simulator
B. We prove through game hops that the experiment Expan

A,0(1
λ) is indistinguish-

able from the experiment Expan
A,1(1

λ) (cf. Figure 5.4). The success probability of
A is:

εA =

�

�

�

�

Pr
�

b = b′ : b $←−{0,1}, b′← Expan
A,b(1

λ)
�

−
1
2

�

�

�

�

=
1
2

�

�

�Pr
�

b′ = 0 : b′← Expan
A,0(1

λ)
�

+Pr
�

b′ = 1 : b′← Expan
A,1(1

λ)
�

− 1
�

�

�

=
1
2

�

�

�Pr
�

b′ = 0 : b′← Expan
A,0(1

λ)
�

+Pr
�

b′ = 0 : b′← Expan
A,1(1

λ)
�

�

�

� .

We proof that this probability is negligible if the rNIZK is zero-knowledge through
a standard sequence of game hops. Let Gamei the probability that A outputs 0
at the end of the i-th game.

Game 0. Game 0 executes Expan
A,0(1

λ). Hence,

Pr[Game0] = Pr
�

b′ = 0 : b′← Expan
A,0(1

λ)
�

.

Game 1. In game 1 B simulates the NIZK proof in the oracle Chall using the
simulator ΣS of the proof system (PS,VS). An adversary that can distinguish
this game from the previous one can be used to break the ZK property of the
NIZK proof system. Indeed, an algorithm B1 with access to an oracle ON I ZK that
outputs either simulated or honestly generated proofs can exploitA to distinguish
the outputs of such oracle as follows. B1 runs the anonymity experiment honestly
but Chall. When it has to generate the challenge signature on µ0, B1 queries it to
the oracle instead. It is clear that if the oracle outputs a simulated proof, this is
exactly Game 1 and if the proof is honestly generated, A is playing exactly Game
0. At the end of the interaction, B1 outputs exactly the same bit b′ output by A.
Hence, the success probability ε1 of B1 is

ε1 =
�

�

�Pr
�

b′ = b : b $←−{0, 1}, b′← ExpZK−b
B1
(1λ)

�

− 1
2

�

�

�

= 1
2

�

�

�Pr
�

b′ = 0 : b′← ExpZK−0
B1
(1λ)

�

+Pr
�

b′ = 1 : b′← ExpZK−1
B1
(1λ)

�

− 1
�

�

�

= 1
2

�

�

�Pr
�

b′ = 0∧ b′← ExpZK−0
B1
(1λ)

�

−Pr
�

b′ = 0∧ b′← ExpZK−1
B1
(1λ)

�

�

�

�

= 1
2 |Pr [Game0]−Pr [Game1]| ,
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where we denoted by ExpZK−b
B1

the experiment in which B1 has access to an oracle
ON I ZK that implements either the honest prover when b = 0, or the simulator
when b = 1.

Game 2. In Game 2 B does everything as in Game 1, except that now it gen-
erates (V1,W1) as an encryption of 1¯̀ (where ¯̀ is the length of the plaintext)
while (V0,W0) is still an encryption of id∗0 = (i

∗
0,c∗0,d∗0). The IND-CPA property

of the encryption guarantees the indistinguishability of the games. Namely, let
A be an adversary such that Pr[Game1] − Pr[Game2] is non-negligible. Then
B2 can win the IND-CPA experiment in Figure 3.12 exploiting A as follows.
Upon receiving (a1,b1) from the oracle, B2 generates (a0,b0) honestly and sends
opk = (a0,b0,a1,b1) to A. When A sends back the identities (id∗0, id∗1), B2 gen-
erates (V0,W0) as an encryption of id∗0 = (i

∗
0,c∗0,d∗0), sends id∗1 to the encryption

oracle and generates the proof ΠS using the simulator. B2 outputs the same bit
b′ output by A. Remark that if the encryption outputs an encryption of id∗1, then
B2 is implementing Game 1, otherwise this is exactly Game 2. Hence, the success
probability ε2 of B2 is

ε2 =
1
2
|Pr[Game1]−Pr[Game2]| .

Game 3. In Game 3 B does everything as in Game 2, except that now it gen-
erates (V1,W1) as an encryption of id∗1 = (i

∗
1,c∗1,d∗1) ((V0,W0) is still an encryp-

tion of id∗0 = (i
∗
0,c∗0,d∗0)). Again, the IND-CPA property of the encryption guar-

antees the indistinguishability of the games. Indeed, an adversary A such that
Pr[Game2]−Pr[Game3] is non-negligible can be exploited by B3 to win the IND-
CPA experiment in Figure 3.12 exactly as before. Hence, the success probability
ε3 of B3 is

ε3 =
1
2
|Pr[Game2]−Pr[Game3]| .

Game 4. In Game 4 the simulator does everything as in Game 3 except the
generation of the opening keys and of the opening oracle OGOpen. Indeed, when
generating the opening keys, B preserves s1 instead of s0, and then it performs
the decryption in OGOpen w.r.t. s1. The only way that an adversary can distinguish
the games is if it can submit a valid signature σ whose two RLWE ciphertexts en-
crypt different messages. This would break the simulation soundness of the NIZK
proof system. Indeed, an algorithm B4 would break the soundness exploiting A

as follows. When generating the opening keys, it would keep s0 as well. When-
ever it receives a decryption query, it would decrypt both (V0,W0) and (V1,W1),
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checking that the resulting plaintexts are equal. If that is not the case, then B4

can return ((µ, otsvk, gpk, opk, (V0,W0), (V1,W1), ti, i,ci,di,ei,Si),ΠS) as a proof
of false statement. Since making this query s the only way A can distinguish the
two games, the algorithm B3 has success probability

ε4 =
�

�Pr[Game3]−Pr[Game4]
�

� .

Game 5. In Game 5 B does everything as in Game 4, except that now it gener-
ates (V0,W0) as an encryption of 1¯̀ (where ¯̀ is the length of the plaintext) while
(V1,W1) is an encryption of id∗1 = (i

∗
1,c∗1,d∗1). As before, the IND-CPA property

of the encryption guarantees the indistinguishability of the games. Remark that
a simulator B5 trying to win the IND-CPA experiment exploiting A never has to
decrypt (V0,W0), thanks to the key switching in the previous game. The success
probability ε5 of B5 is

ε5 =
1
2

�

�Pr[Game4]−Pr[Game5]
�

� .

Game 6. In Game 6 B does everything as in Game 5, except that now it gen-
erates (V0,W0) as an encryption of id∗1 = (i

∗
1,c∗1,d∗1). As before, a simulator B5

trying to win the IND-CPA experiment exploiting A has success probability

ε6 =
1
2
|Pr[Game5]−Pr[Game6]| .

Game 7. In Game 7, B reverts back to decrypt using s0 in the opening oracle.
As in Game 4, an algorithm B7 breaks the soundness exploiting an adversary
such that Pr[Game6]−Pr[Game7 is non negligible has success probability

ε7 =
�

�Pr[Game6]−Pr[Game7]
�

� .

Game 8. In Game 8 B reverts back to generating the proof Π∗S in the challenge
signature honestly. This is equivalent to B running Chall1, hence Game 8 is ex-
actly Expan

A,1(1
λ), and Pr[Game8] = Pr

�

b′ = 0 : b′← Expan
A,1(1

λ)
�

. Moreover,
analogously to Game 1, an adversary distinguishing Game 8 from Game 7 allows
to construct a distinguisher B8 that has advantage

ε8 =
1
2

�

�Pr
�

Game7

�

−Pr [Game8]
�

� ,

in breaking the zero-knowledge property of the proof system.
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This yields that the advantage of A in breaking anonymity is bounded by

ε =
1
2

�

�

�Pr
�

b′ = 0 : b′← Expan
A,0(1

λ)
�

+Pr
�

b′ = 0 : b′← Expan
A,1(1

λ)
�

�

�

�

=
1
2
|Pr [Game0]−Pr [Game8]|

=
1
2

�

�

�

�

�

7
∑

i=0

Pr [Gamei]−Pr [Gamei+1]

�

�

�

�

�

≤
7
∑

i=0

1
2
|Pr [Gamei]−Pr [Gamei+1]|

= ε1 + ε2 + ε3 +
1
2
ε4 + ε5 + ε6 +

1
2
ε7 + ε8

= 2εZK + εSS + 4εC PA ,

where εZK , εSS, and εC PA are the advantage in breaking the zero-knowledge prop-
erty of the NIZK proof system, the simulation soundness property of the NIZK
proof system and the IND-CPA security of the encryption scheme.

Theorem 5.24 (Traceability). The group signature scheme GS satisfies traceability
in the Random Oracle Model if the signature scheme is eu-acma secure and the proof
system is a sound argument of knowledge.

Proof. Assume A is a PPT algorithm that breaks the traceability of the GS with
non-negligible advantage AdvAt rac(λ). We define an adversary B (shown in Fig-
ure 5.11) that breaks the eu-acma security of the signature with non negligible
probability, assuming the NIZK proof is a sound argument of knowledge.

The simulator B runs the eu-acma experiment in Figure 5.5. At the beginning
of the experiment, B receives the signature verification key svk, and access to a
signing oracle OSign.

B instantiates the group signature GS as follows. It generates honestly the
opener’s keys (opk, osk) running EKeyGen, and sets the issuer’s public key to be
gpk = svk. Then it implements the oracles according to their definition (cf. Sec-
tion 5.1.2), except for OIss and AddU. When answering these oracles, B produces
the signature S by querying the signature oracle OSign as shown in Figure 5.11.

At the end of the experiment, the adversary A outputs a valid pair message-
signature (µ∗,σ∗). Consider the following events:

E1: the signature is valid but the opener cannot recover a valid signer’s identity:
1← GVerify(µ∗,σ∗, gpk, opk) ∧ (i∗ = 0);
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E2: the signature is valid, the opener can recover a valid identity but it cannot
prove that the opening was performed correctly: 1← GVerify(µ∗,σ∗, gpk,
opk) ∧ (i∗ 6= 0) ∧ 0← GJudge(gpk, opk, upki∗ ,µ

∗,σ∗, i∗,τ∗);

E: E1 ∨ E2;

S: the signature is valid and the opening is correct: (gpk, opk, c0, c1, gski,e) ∈ RS;

where (i∗,τ∗) ← GOpen(µ∗,σ∗, gpk, osk). Notice that E1 and E2 are disjoint.
Then we can write the advantage of A in breaking the traceability of GS as:

AdvAt rac(λ) = Pr[E] = Pr[E ∧ S̄] +Pr[E1 ∧ S] +Pr[E2 ∧ S] .

We now compute the three probabilities.
The event E∧S̄ (remark that S̄ means that the signature is valid, as we assume

A outputs a signature that passes verification, and the opening is not correct)
corresponds to A breaking the soundness of the SNARK. Indeed, if the opening
is not correct either there is no entry reg[i] or reg[i] is not equal to the out-
put of the decryption (i is the decrypted identity). In both cases B can parse
σ∗ = (Π∗S,V∗0,W∗

0,V∗1,W∗
1) and send (Π∗S,µ∗, gpk, opk, (V∗0,W∗

0,V∗1,W∗
1)) as a proof

of false statement. From the previous analysis it holds:

Pr[E ∧ S̄] = Pr[1← GVerify(µ∗,σ∗, gpk, opk) ∧ (gpk, opk, c0, c1, gski,e) /∈ RS]

≤ 2−λ

In the event E1 ∧ S the opener decrypts the ciphertext contained in the sig-
nature to obtain a user’s identity and public key (i,c′i,d

′
i). Then, it recovers

the i-th entry of the list reg[i]. There can be two cases: either reg[i] = ⊥ or
reg[i] = (ci,di, otsi) and (ci,di) 6= (c′i,d

′
i). Both cases implies that A did not

query the signing oracle on (c′i,d
′
i). Hence, B can break the unforgeability of the

signature scheme using the extractor of the SNARK to obtain a valid signature S̄
on (c′i,d

′
i). Therefore,

Pr[E1 ∧ S]≤ 8(1− ν(λ))Adveu−acma
B

(λ) ,

where 1−ν(λ) comes from the success probability of the extractor and the factor
8 from the Generalized Forking Lemma (Lemma 2.6), that is needed to get the
input for the extractor. The runtime of B is tA ·8n2qH/εA · ln(8n/εA), where tA is
the runtime of A, εA = Pr[E1 ∧ S], and qH = pol y(λ) as an algorithm that runs
in polynomial time can query the random oracle at most a polynomial number
of times. Remark that B makes N queries to the signing oracle as N is the bound
on the number of users supported by the scheme.
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Finally, it holds that Pr[E2∧S] = 0. To verify this claim, let us analyze the al-
gorithm GJudge. Upon receiving (gpk, opk, upki,µ,σ, i,τ), the algorithm parses
τ = (V0,W0, i,c′i,d

′
i,a0,b0,ΠO), and recovers reg[i]. Given that the opener out-

puts (i,τ) 6= (0,ε), the user’s public key obtained by the opener from the decryp-
tion (c′i,d

′
i) should be equal to the entry reg[i] = (c,d) output by the Opener,

i.e., (c′i,d
′
i) = (ci,di). All the verification algorithms go through, as the opener

executed honestly the verification of the one-time signature ots, and the event
S implies that (gpk, opk, c0, c1, gski,e) ∈ RS, hence the verification of the proof
ΠO produced by the opener outputs 1. Therefore, if the opener is honest the
algorithm GJudge outputs 1 and the claim follows.

In conclusion, the advantage of A against GS is

Advt rac
A
(λ)≤ 2−λ + 8(1− ν(λ))Adveu−acma

B
(λ) + ν(λ) ,

that is negligible if the signature is eu-acma secure and the proof system is sound
and a proof of knowledge.

Theorem 5.25 (Non-Frameability). The group signature scheme GS satisfies non-
frameability in the Random Oracle Model if the proof system is a zero-knowledge
argument of knowledge, the OTS is a OTS, and RLWE1,U (S1) is hard.

Proof. Let A be a PPT algorithm which wins the non-frameability experiment
in Figure 5.6 with advantage εA = Adv

non− f r
A

(λ). We start analyzing the event
E =“A succeeds”. Consider the following events:

F : 1 ← GVerify(µ∗,σ∗, gpk, opk), HU[i∗] 6= ⊥, A did not query USK(i), 1 ←
GJudge(gpk, opk, upki∗ ,µ

∗,σ∗, i∗,τ∗), (i∗,µ∗) /∈ GSig, where
(i∗,τ∗)← GOpen(µ∗,σ∗, gpk, osk);

S1: (µ∗,σ∗, gpk, opk) ∈ RS;

S2: (gpk, opk,µ∗,σ∗,τ∗, i∗) ∈ RO;

P: (c′i,d
′
i) = (ci,di), where (ci,di) is obtained from reg[i] and (c′i,d

′
i) from the

opening.

Then the advantage of the adversary in winning the non-frameability experiment
is

Adv
nf
A
(λ) = Pr[F]≤ Pr[F∧S̄1]+Pr[F∧S̄2]+Pr[F∧P∧S1∧S2]+Pr[F∧ P̄∧S1∧S2]
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because the events S1 and S2 are not disjoint6. In the following we compute the
probabilities of these events.

The soundness of the proof systems yields that Pr[F ∧ S̄1] ≤ 2−λ and Pr[F ∧
S̄1]≤ 2−λ.

If the event F ∧ P ∧ S1 ∧ S2 happens, we can construct an algorithm B1 that
solves the Search version of RLWE, i.e., that given (c̄, d̄) finds t̄ such that d̄= c̄s̄+ē
for some small error ē.

Lemma 5.26. Pr[F ∧ P ∧ S1 ∧ S2]≤ AdvRLW E
B

(λ) · 8N(λ)(1− ν(λ)) .

Proof. The algorithm B1 (cf. Figure 5.12) is given access to an oracle ORLW E that
outputs RLWE pairs (c,b) when prompted, and simulates all oracles according to
their definitions but USK, OIss, SndToU and OGSign. Indeed, B samples a random
u and simulates all honest users honestly but the u-th, whose RLWE pair is set
to be the pair (c̄, d̄) output by ORLW E. Then, B simulates USK honestly unless A
queries for the user u; in such case, B aborts. If the adversary runs OIss with user
identity u (where u has not been assigned yet), B1 samples another u and then
runs the algorithm Iss honestly. Whenever A queries the oracle SndToU for the
user u, B sends (c̄, d̄) as user’s keys, and simulates the SNARK of t̄. In a similar
way, whenever the user queries OGSign for a signature by the user u, B simulates
the proof ΠS. If the adversary successfully outputs a forgery, this means that A
was able to generate a SNARK of, among other things, small t̄ and ē such that
d̄ = c̄s̄ + ē. Hence, B can recover t̄ rewinding A and exploiting the extractor
of the proof system (PS,VS). Given that solving the search version of RLWE is
equivalent to solving the decisional version (cf. [Lyubashevsky et al., 2010]), the
advantage of B in solving RLWE is Pr[F ∧ P ∧S1∧S2]≤ AdvRLW E

B
(λ) ·8N(λ)(1−

ν(λ)) where the factor 8 comes from the Generalized Forking Lemma 2.6, N(λ)
is the number of users and (1− ν(λ)) comes from the success probability of the
extractor of the SNARK.

Finally, consider the event F ∧ P̄ ∧S1∧S2. We construct an algorithm B2 that
breaks the unforgeability of the OTS exploiting A.

Lemma 5.27. AdvOTS
B
(λ)≥ Pr[F ∧ P̄ ∧ S1 ∧ S2] · 1/N(λ) where N(λ) .

6Indeed, if S1 and S2 are not disjoint events it holds that, for all sets P in the set space Ω:

S̄1 ∪ S̄2 ∪
�

(P ∩ S1 ∩ S2)∪ (P̄ ∩ S1 ∩ S2)
�

= S̄1 ∪ S̄2 ∪ (S1 ∩ S2) = Ω ,

hence {S̄1, S̄2, (P ∩ S1 ∩ S2), (P̄ ∩ S1 ∩ S2)} covers the space Ω.
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Proof. B2 (cf. Figure 5.13) has access to an oracle OOTS that, when prompted,
outputs a verification key otsvk, and that allows querying (only) one signature
w.r.t. such key pair on a message of B2’s choice. Again, B2 samples a random
user identity u, and simulates all the oracle honestly but USK, OIss, SndToU, and
AddU. If A queries USK for the user u, B2 aborts. Otherwise, B2 simulates all
other users honestly (according to the definitions in Section 5.1.2). If it runs OIss
with user identity u (where u has not been assigned yet), B2 samples another u
and then runs the algorithm Iss honestly. IfA prompts SndToU for user u, B2 gen-
erates the RLWE pair (cu,du), and prompts OOTS to get the key pair (otsvk, otssk)
and a signature on (cu,du). Then it generates the proof ΠI and sends everything
toA. Otherwise,B2 executes SndToU according to the definition in Section 5.1.2.
Finally, if A asks to add a honest user i to AddU, B2 behaves honestly but in case
i = u, when it gets the one-time signature from OOTS.

When A outputs the forged signature σ∗, B runs the opening algorithm on
it to find the targeted identity and aborts if the target user is not u. Otherwise,
according to the definition of the event F ∧ P̄∧S1∧S2, the pair (c′u,d′u) output by
the opening is not equal to the pair (cu,du) contained in reg[u]. Therefore, the
one-time signature ots′u output by the opener (which is valid w.r.t. , as GJudge
outputs 1) is a valid signature w.r.t. the user public key upku = otsvk on a message
(c′u,d′u) that was not queried to the signing oracle (as OOTS was only queried
for a signature on (cu,du)). Hence, B can output ((c′u,d′u), ots′u) to win the eu-
acma experiment, and it holds AdvOTS

B
(λ) ≥ Pr[F ∧ P̄ ∧ S1 ∧ S2] · 1/N(λ) where

N(λ).

Hence, the advantage of A is

Adv
nf
A
(λ)≤ 2−λ+1 + 8N(k)(AdvRLW E

B
(λ)(1− ν(λ)) + N(λ)AdvOTS

B′
(λ)) .

5.5.6 Parameters and Storage Requirements

We compute parameters for λ= 128 bits of security in the “paranoid” framework
of Alkim et al. [2016], that in particular requires δ ≤ 1.00255. We intend “se-
curity” here as the claim that the underlying hardness assumptions are hard to
solve for a quantum computer. We choose as ring the polynomial ring Rq defined
by n = 210 and a prime 264 < q < 265. Such choice of degree guarantees that
the set S1 contains more than 2256 elements, hence finding the user’s secret ti

through a brute-force attack is not possible. The number N of supported users is
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226. For technical reasons, Aurora requires that Fq has a large power-of-2 mul-
tiplicative subgroup, and so we choose q accordingly (most choices of q satisfy
this requirement).

This implies that the unforgeability of the signature scheme is based on a
RSISd,β instance where d = 68 and β ≤ 246, and on a RLWEl,χ instance with l <
225. To estimate their hardness, we use the root Hermite factor δ (cf. [Micciancio
and Regev, 2009]), and we obtained a δRSIS ≤ 1.00062 and δRLW E ≤ 1.00001.

The delta is chosen taking into account the tightness loss in the unforgeability
proof of the signature due to the use of complexity leveraging.

We now compute the length of the keys and of a signature output by the
group signature. An element in Rq can be stored in nk ≤ 8.32 KB. The opener’s
secret key is composed by one ring element, hence it can be stored in 8.32 KB,
while the opener’s public key in 33.28 KB (as it is composed by 4 ring elements).

The group manager’s public key requires a bit of care. Indeed, the key (A,B,
A0, . . . ,A`,u) includes A =

�

a 1
�

and B ∈ R1×m̄
q that are generated with the

trapdoor (cf. Section 5.4.1), ` random vectors with m̄ = 67 components in Rq,
where ` = 2nk + dlog Ne, and a random element u ∈ Rq. Storing these would
require nk · (1+ m̄+ m̄ · `+1) = 210 ·65 · (1+67+67 ·218+1) = 146 GB, and it
is clearly infeasible. Instead, the issuer can send a condensed (pseudorandom)
representation of the random elements A0, . . . ,A`,u, having considerably smaller
size. The size of the public key then becomes the size of such a representation
plus (m̄+ 1)nk ≤ 0.57 MB.

The group manager’s secret key is the trapdoor TA, that has components with
coefficients smaller than 8sssk = 8

p

log(n2) + 1 (cf Lemma 2.16 and Theorem
5.14). Hence the size of TA is 2kn log(8sssk)≤ 91 KB.

At the end of the joining phase the user obtains the credential (ci,di, ti, i,Si),
where the vector Si is composed by 2m̄+2 ring elements with coefficients smaller
than 8sσ = 8

p

n log n log n2 (cf. Section 5.4.1). Hence it has size 3nk+ dlog Ne+
(2m̄ + 2)n log(8

p

n log n · log n2) ≤ 231 KB. The secret signing key of the OTS
can be discarded after the joining phase.

Finally, a signature is composed by the NIZK proof ΠS, and 4 vectors of ele-
ments in the ring. The proof length is around 200 KB (estimate from [Ben-Sasson
et al., 2018]). The vectors V0,W0,V1,W1 are the encryptions of two ring elements
(ci,di) and a number i < N . As the encryption algorithm converts them into poly-
nomials inS1 whose coefficients are the bits of their binary expansions, each vec-
tor is composed by d(2nk+ dlog Ne)/ne= 2k+ ddlog Ne/ne elements in Rq, hence
(V0,W0,V1,W1) has size (2k+ ddlog Ne/ne) · nk ≤ (2 ·65+ d26 ·2−10e) ·210 ·65=
131 · 1024 · 65= 1.09 MB. Hence a signature is roughly 1.29 MB long.

To compare our scheme with previous ones (such as [del Pino et al., 2018]
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or [Boschini et al., 2018a]), we compute the length of the signature for the case
in which the group manager is assumed to be honest (by default our scheme
guarantees a stronger notion of security). Modifying our signature to have a
honest group manager essentially means that it is enough that during issuance
the user gets a signature by the group manager on the user identity i. Hence,
opening only requires the signature to contain an encryption of the user’s iden-
tity i, whose bit decomposition can be encoded as one element of S1. Therefore,
the vectors V0,W0,V1,W1 actually are just ring elements, hence the size of the
signature is at most 200+ 4 · 210 · 65 ≤ 250 KB (obviously, the size of the proof
should shrink too, as the number of variables is smaller, but we mean this num-
ber as a rough upper bound), plus the dimension of the OTS signature and its
verification key.
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Simulator BA,Os(1λ)
QUKg← ;, QGSign← ;
(spar, svk)←Os(1λ)
epar← DeriveParpve(spar)
Compute the parameters ppar of the relaxed Σ-protocol.
par← (spar, epar, ppar)
ᾱ

$←−{0,1}λ

gpk← (svk, ᾱ)
(opk, osk)← EKeyGen(epar)
(µ∗, sig∗, sig′)← GF

OUKg,OGSign
A

(gpk, opk, osk)
(c̄1, S̄, c̄2)← E(sig∗, sig′)
id← GOpen(µ∗, sig∗, osk)
If 1← GVerify(µ∗, sig∗, gpk, opk)

and id /∈QUKg ∧ > usk : (id, usk,µ∗) ∈QGSign

Then If ∃ (id,µ, sig) : sig= (F,Π0, t,π, otsvk∗, ots) abort.
Else return ((µ∗, ᾱ), (c̄1, S̄, c̄2)).

Else abort.

Oracle OUKg(id)
S←Os(id, ᾱ)
QUKg←QUKg ∪ {id}
Return usk .

Oracle OGSign(id,µ)
If id ∈QUKg abort.
If ∃ (id,µ, sig) ∈QGSign return sig.
(otssk, otsvk)←OTSGen(1λ)
E $←−R1×m

3

b $←−R3

F← b−1(C+mG+ E) mod q
Π0 = (T0,c0,Z0)← Σ0(ppar,

�

A B F 1
�

, H(ᾱ))
Program H0(F,T0,A, ᾱ, otsvk)← c0 (aborts if it was already set).
(t,π)← Enc(opk, (

�

GT FT Im
�

,−CT), (m,
�

−b ; ET
�

,1), otsvk)
ots←OTSSign(otssk, (A,B,F,u,Π0, t,π,µ))
sig= (F,Π0, t,π, otsvk, ots)
QGSign←QGSign ∪ {(id,µ, sig)}
Return sig .

Figure 5.8. Simulator of the traceability experiment.
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Ui (uski = ti) M (TA)

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti,ei)
σi ←OTSSign(BitD(ci,di), otsski)

ci ,di ,Πi ,otsi ,otsvki−−−−−−−−−−−−−→
If 1← VI(ci,di,Πi)
and 1←OTSVf(otsi, (ci,di), otsvki) :
µ← BitD(ci,di, i)
Si ← Sign(TA,µ)

Si←−−−−
If 1← SVerify(Si,µ,A) :

accept
−−−−−−→

reg[i]← (ci,di, otsi)
Output gski = (ci,di, ti, i,Si).

Figure 5.9. Joining protocol.

GSign(gski, gpk, opk,µ)
Parse gski = (ci,di, ti, i,Si) and opk= (a0,b0,a1,b1)
For b = 0,1
(Vi,Wi)← EncRLW E(BitD(ci,di, i), (ab,bb))

ΠS ← PS(µ; gpk, opk, (V0,W0), (V1,W1), ti, i,ci,di,ei,Si)
Return σ = (ΠS,V0,W0,V1,W1) .

Figure 5.10. Signing algorithm
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BOSign, A(gpk)
(opk, osk)← EKeyGenRLW E(1

λ)
CU← ;, HU← ;, GSig← ;
(µ∗, sig∗, sig′)← GF

OIss, AddU, USK, CrptU, RReg
A

(gpk, opk, osk)
If 0← GVerify(µ∗,σ∗, gpk, opk), abort.
Else (i∗,τ∗)← GOpen(µ∗,σ∗, gpk, osk).
If (i∗ = ε) ∨ 0← GJudge(gpk, opk, upki∗ ,µ

∗,σ∗, i∗,τ∗) abort.
Else ((c̄i, d̄i, ī), S̄)← E(sig∗, sig′).
Return ((c̄i, d̄i, ī), S̄).

OIss(ci,di,Πi, otsi, otsvki)
b← VI(ci,di,Πi)
b′←OTSVf(otsi, (ci,di), otsvki)
If (b = 0 ∨ b′ = 0) abort.
µ← BitD(ci,di, i)
Si ←OSign(µ)
reg[i]← (ci,di, otsi, otsvki)
l[i]← (ci,di, otsi, otsvki)
Return i,Si

AddU(i)
If i ∈ CU∪HU abort.
(otssk, otsvk)←OTSGen(1λ)
HU[i]← (otsvk, otssk)
ci

$←−Rq, ti
$←−Rq, e $←−χ

di = citi + ei mod q
Πi ← PI(ci,di; ti,ei)
otsi ←OTSSign(BitD(ci,di), otsski)
µ← BitD(ci,di, i)
Si ←OSign(µ)
reg[i]← (ci,di, otsi)
l[i]← (ci,di, otsi, otsvki)
gski = (ci,di, ti, i,Si).
HK[i]← gski

Return upki = otsvk.

Figure 5.11. Simulator for the proof of traceability.
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B
ORLW E , A
1 (1λ)
(gpk, gsk, opk, osk)← GKg(1λ)
CU← ;, HU← ;, GSig← ;
u $←−{1, . . . , N}
(µ∗,σ∗1,σ∗2)← GF

OGSign, AddU, USK, CrptU, RReg, WReg, SndToU
A

(gpk, gsk, opk, osk)
(i,τ)← GOpen(σ∗1, osk)
If i 6= u abort.
For j = 1,2, parse σ∗j = (Π

∗
S, j,V

∗
0, j,W

∗
0, j,V

∗
1, j,W

∗
1, j)

(̄tu, ū, c̄u, d̄u, ēu, S̄u)← ES(Π∗S,1,Π∗S,2)
Return (̄tu, ēu).

OSndToU(i, aux)
If HU[i] =⊥ abort.
Parse HU[i] = (upki, uski).
If aux =⊥

If i = u
(c̄, d̄)←ORLW E

Πu← ΣI(c̄, d̄)
ots←OTSSign(BitD(c̄, d̄), usku)
Return c̄, d̄,Πu, otsu, otsvku.

Else
ci

$←−Rq, ti
$←−Rq, e $←−χ

di = citi + ei mod q
Πi ← PI(ci,di; ti,ei)
otsi ←OTSSign(BitD(ci,di), uski)
Return ci,di,Πi, otsi, otsvki.

Else
Parse aux = Si

BitD(ci,di, i)
If 0← SVerify(Si,µ,A) abort.
reg[i]← (ci,di, otsi)
gski = (ci,di, ti, i,Si)
HU[i]← (upki, uski), HK[i]← gski

Return accept

USK(i)
If i = u abort.
If HU[i] =⊥ ∨ HK[i] =⊥ abort.
Return uski, gski.

OGSign(i,µ)
If HU[i] =⊥ abort.
Parse HK[i] = gski.
If i = u

For b = 0, 1
(Vi,Wi)← EncRLW E(BitD(ci,di, i), (ab,bb))

ΠS ← ΣS(µ; gpk, opk, (V0,W0), (V1,W1))
Else

For b = 0, 1
(Vi,Wi)← EncRLW E(BitD(ci,di, i), (ab,bb))

ΠS ← PS(µ; gpk, opk, (V0,W0), (V1,W1), ti, i,ci,di,ei,Si)
GSig← GSig∪ {(i,µ)}
Return σ = (ΠS,V0,W0,V1,W1).

Figure 5.12. Simulator that solves RLWE exploiting an adversary against non-

frameability.
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B
OOTS
2 (1λ)
(gpk, gsk, opk, osk)← GKg(1λ)
CU← ;, HU← ;, GSig← ;
u $←−{1, . . . , N}
(µ∗,σ∗)← AOGSign, AddU, USK, CrptU, RReg, WReg, SndToU(gpk, gsk, opk, osk)
(i,τ)← GOpen(σ∗1, osk)
Parse τ= (c̄u, d̄u,c′u,d′u, ots′u, otsvku,ΠO))
Parse reg[u] = (cu,du, otsu).
If i 6= u ∨ (cu,du) = (c′u,d′u) ∨ 0← GJudge(gpk, opk, upki,µ

∗,σ∗, i,τ) abort.
Return (c′u,d′u, ots′u).

OSndToU(i, aux)
If HU[i] =⊥ abort.
Parse HU[i] = (upki, uski).
If aux =⊥

ci
$←−Rq, ti

$←−Rq, e $←−χ
di = citi + ei mod q
Πi ← PI(ci,di; ti,ei)
If i = u

otsu←OOTS(BitD(cu,du))
Else

otsi ←OTSSign(BitD(ci,di), uski)
Return ci,di,Πi, otsi, otsvki.

Else
Parse aux = Si

BitD(ci,di, i)
If 0← SVerify(Si,µ,A) abort.
reg[i]← (ci,di, otsi)
gski = (ci,di, ti, i,Si)
HU[i]← (upki, uski), HK[i]← gski

Return accept

USK(i)
If i = u abort.
If HU[i] =⊥ ∨ HK[i] =⊥ abort.
Return uski, gski.

AddU(i)
If i ∈ HU∪CU abort.
If i = u

usku←⊥
upki ←OOTS

Else
(otsski, otsvki)←OTSGen(1λ)

gski ← 〈Iss(gsk),SndToU(i, aux)〉
HU[i]← (upki, uski)
HK[i]← gski

Return upki.

Figure 5.13. Simulator that breaks the unforgeability of the OTS exploiting an

adversary against non-frameability.



Chapter 6

Conclusions

In this work, we have investigated how to build lattice-based privacy-preserving
signature with the goal to get shorter signatures.

The basic building block we have used was the relaxed NIZK prof obtainable
from the digital signature scheme presented in [Lyubashevsky, 2012]. As al-
ready observed in literature [Benhamouda et al., 2015; Lyubashevsky and Neven,
2017], modifying such scheme required new, generic, relaxed definitions, in par-
ticular of special soundness, as the scheme did not allow to extract a witness for
the original relation. Hence, in this work we have given formal definitions for
lattice based primitive that take into account this relaxation, and gave a suite of
relaxed lattice based primitives to be combined with such NIZK proof. In par-
ticular, we defined a relaxed signature and commitment scheme, where the first
is obtained as a mix of the signature scheme by Boyen [Boyen, 2010] and the
signature by Gentry et al. [2008]. With these three building blocks we were able
to construct a lattice-based Anonymous Attribute Tokens, which improved the
original construction by Camenisch et al. [2012] in terms of size of the token.
Adding a modified version of the verifiable encryption scheme by Lyubashevsky
and Neven [2017] and improving the underlying relaxed NIZK proof, we were
able to construct a dynamic group signature that allowed to produce signatures
of less than 2 MB, thus improving the state of the art.

Finally, we constructed a more efficient SNARK for lattice relations by adapt-
ing Aurora [Ben-Sasson et al., 2019]. This resulted in a group signature that
produce the shortest signatures (estimated to be less than 0.3 MB) among the
group signatures with comparable security guarantee that have been proposed
so far (to the best of our knowledge).

Besides the obvious conclusions (lattice-based protocols produce cryptogra-
phic artifacts that have in general bigger size than their classical counterpart),
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comparing the schemes we have built yielded quite an interesting insight on how
to build privacy-preserving signatures from lattice-based building blocks.

For example, comparing the group signature we have obtained in Section 5.2
with the one in Section 5.3, we found that more efficient direct construction can
be built by breaking open the different building blocks. This is analogous to the
non-lattice-based world where generic, modular constructions [Camenisch et al.,
2016] are often considerably less efficient than direct schemes [Ateniese et al.,
2000; Camenisch and Lysyanskaya, 2003].

Moreover, we found that exact extractability is not a requirement to build
privacy-preserving signature from lattice hardness assumptions, but that in fact
it is possible to compensate the tightness loss with a careful choice of the param-
eters. However, due to the lack of clarity on how to exactly set the value of these
parameters (as it can be observed following the NIST standardization process),
this approach might be not the way to go (even more so considering the need for
either complexity leveraging or new hardness assumptions).

We believe that some contributions are of independent interest, in particular
the formal definitions for lattice based primitive that allow to exploit the inherent
relaxed extractability of the NIZK proof obtained from [Lyubashevsky, 2012], as
the lack of appropriate definitions for primitives that allow for relaxations in
correctness or soundness had been overlooked so far.

Finally, we believe that our SNARK for lattice problems might be a good tool
to build other types of privacy-preserving protocols, as it guarantees quite short
transcripts when compared to lattice-based NIZK proofs.
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