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Abstract

Chemokine signaling is essential for coordinated cell migration in health and
disease to specifically govern cell positioning in space and time. Typically,
chemokines signal through heptahelical, G protein-coupled receptors to
orchestrate cell migration. Notably, chemokine receptors are highly dynamic
structures and signaling efficiency largely depends on the discrete contact with
the ligand. Promiscuity of both chemokines and chemokine receptors,
combined with biased signaling and allosteric modulation of receptor activation,
guarantees a tightly controlled recruitment and positioning of individual cells
within the local environment at a given time. Here, we discuss recent insights in
understanding chemokine gradient formation by atypical chemokine receptors
and how typical chemokine receptors can transmit distinct signals to translate
guidance cues into coordinated cell locomotion in space and time.
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Chemokine-induced signaling

Soon after chemokines were discovered in the late ’80s'~,
it was shown that their cognate receptors on cell surfaces were
members of the rhodopsin-like family of G protein—coupled
receptors (GPCRs). The sensitivity of intracellular signaling to
pertussis toxin indicated that the putative receptor for the orphan
ligand CXCLS8 (formerly interleukin-8[IL-8]) expressed on human
neutrophils couples to the G, class of heterotrimeric proteins’.
A few years later, the receptors CXCR1 and CXCR2 were iden-
tified, cloned, and expressed on mammalian cells for studying
signaling properties™®. Despite their high sequence identity
(almost 80%), ligand selectivity is different for the receptors.
CXCL8, CXCLS5, and CXCL6 bind to both CXCRI and
CXCR2, but the latter also binds the chemokines CXCLI1-3 and
CXCL7’ with high affinity. Hence, chemokines can bind multiple
receptors, and on the other side receptors are not always
selective for one specific chemokine. Moreover, CXCR1 and
CXCR?2 differ in their capacity to induce cellular responses upon
stimulation with CXCLS8. Both receptors stimulate intracellular
calcium fluxes, chemotaxis, and degranulation; however, only
CXCR1 stimulation leads to activation of phospholipase D
and the respiratory burst in human neutrophils’®. These early
observations not only indicated a promiscuity within the chem-
okine system but also revealed that the GPCRs have the ability to
couple differently to downstream signaling pathways. Moreover,
a given chemokine can stimulate different responses depending
on the receptor to which it binds as well as on the cells where
the receptors are expressed.

Typically, chemokine receptor stimulation leads to the GDP/
GTP exchange of coupled heterotrimeric G, proteins and the
subsequent dissociation of the Py subunits, which then activate
phosphoinositide-specific phospholipase Cf (PLC) and phosph-
oinositide 3-kinase (PI3K). PLC produces inositol-trisphosphate
(IP,) and diacylglycerol (DAG). IP, triggers calcium mobilization
whereas DAG activates protein kinase C (PKC). PI3K generates
3-phosphoinositides, which serve as anchors in the recruitment
of proteins with pleckstrin homology domains to the plasma
membrane, such as AKT/PKB’. Although these signaling
events are common to all chemokine receptors, it is well known
that the activation of further downstream pathways is quite
different. This may depend on the efficacy with which a
chemokine triggers its receptor, giving rise to different spatial and
temporal signal fluxes. Such biased signaling at the chemokine
receptor was recently revealed by using biosensors to demonstrate
differences in G-protein subclass coupling of CCR2, CCRS, and
CCR?7". Other important considerations are the surface expression
and density of a receptor and the specific cellular context. As
an example, the second ligand of CCR7 CCL19, in contrast
to CCL21, does not attract T cells in a microfluidic migration
assay under flow conditions'' but does efficiently stimulate migra-
tion of cells transfected with the receptor'*", dendritic cells'*", or
T cells in static migration assays'°. Moreover, monocyte-derived
dendritic cells express CCR7 on the cell surface but migrate
toward CCL19 and CCL21 only when matured in the pres-
ence of prostaglandin E,""'". A recent observation indicates that
GPCRs move within restricted areas of the cell surface. These
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membrane subdomains are maintained by “fences” created by
the cytoskeleton and “pickets” made of transmembrane proteins.
At special hot spots, GPCRs and G proteins are retained and
preferentially couple'*”. These findings imply that signaling
by GPCRs can be confined on the cell surface and may depend
on the local availability of downstream interaction partners.

Signal bias

Several observations indicate that chemokine receptors may not
exclusively couple and signal through G proteins but interact
with additional signaling mediators, such as [-arrestins.
Upon activation, GPCRs become desensitized through phospho-
rylation of their intracellular C-termini by second messenger—
dependent kinases and GPCR kinases (GRKs). The phosphorylation
pattern, also known as  barcode, induces arrestin
recruitment to the receptor’””. However, depending on the ligand-
mediated stimulation, the recruited PB-arrestins cause receptor
inactivation and internalization or the receptor-bound arrestin
acts as a scaffold which leads to the recruitment and activation
of protein kinases™’. An early definition suggested that agonists
which induce receptor internalization are considered G protein—
biased but that those which trigger arrestin-dependent signaling
are called B-arrestin-biased””. A more complete view of biased
signaling takes into account that signal bias can depend on the
ligand (ligand bias), the receptor (receptor bias), and the con-
text (tissue bias)’**. For CXCR4, it was shown that monomeric
and dimeric forms of CXCL12, which both may exist under
physiological conditions®, induce selective signal transduction
pathways and differ in B-arrestin recruitment™”’. Whereas dimeric
CXCLI12 does not induce -arrestin recruitment and chemo-
taxis, both monomeric and dimeric forms of CXCL12 equally
trigger the activation of ERK”. For CCR7, CCLI19 binding
results in robust serine/threonine phosphorylation of the recep-
tor and B-arrestin recruitment catalyzed by GRK3 and GRKG6,
whereas CCL21 binding activates GRK6 alone’. Consequently,
CCL19 induces rapid CCR7 internalization whereas CCL21
hardly does*” and hence can be seen as ligand bias'". Notably, GRK6
contributes to haptotactic sensing of CCL21 gradients at least
by dendritic cells™.

Ogilvie et al. showed that CCR2 can activate distinct
cellular responses depending on the chemokine which binds
to the receptor™. Also, this observation can be seen as ligand
bias; however, it does not depend on receptor phosphorylation.
Whereas CCL2 induces all typical responses when used to
stimulate CCR2, such as calcium fluxes, actin polymerization,
and chemotaxis, CCL11 instead was shown in binding assays
to act as an antagonist and to suppress CCL2-induced signaling™.
More detailed analysis revealed that CCL11 triggered pertussis
toxin-sensitive ERK phosphorylation downstream of CCR2 with-
out inducing GDP/GTP exchange of the G protein or leading to
receptor phosphorylation. Activation of ERK was required to
antagonize CCL2-mediated signaling by CCR2. Both chemokines
stimulated PI3K; however, CCL2 stimulated the Py-dependent
PI3Ky isoform whereas CCL11 activated a p85/p110
isoform™. In general, ligand binding to GPCRs induces the rear-
rangement of the transmembrane helices. The above observations
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are consistent with a view where CCL2 and CCLI11 induce
different conformations of CCR2, which translate to diverse
intracellular coupling.

Binding of CXCL10 to CXCR3 drives T helper 1 (Thl)
polarization via STAT1, 4, and 5 phosphorylation, whereas
CXCLI11 induces a Th2 and regulatory T (Treg) (IL-10") fate
involving p70 kinase/mTOR and STAT 3 and 6. The marked
differences in T-cell polarization could be explained by the
chemokine-specific signaling. In an early study, which did not
investigate T-cell fate, it was shown that the three ligands of
CXCR3 (namely CXCL9, CXCLI10, and CXCLI11) induce
typical responses such as calcium mobilization and chemotaxis.
By contrast, upon stimulation, CXCR3 internalization was most
prominent with CXCL11 whereas CXCL9 and CXCL10 showed
only moderate effects. The differences were explained with the
use of distinct entities of the intracellular domains of CXCR3
to transmit the responses when stimulated with CXCL9 and
CXCLI10 versus CXCL11*. More recently, it was shown that
CXCLI11 and, to a lesser extent, CXCL10, but not CXCL9,
induce B-arrestin2 recruitment®. Interestingly, more pronounced
differences were reported for PB-arrestin recruitment and the
binding modality to the two splice variants CXCR3A and
CXCR3B, which differ by a 51—-amino acid extension at the extra-
cellular N-terminus of CXCR3B*+*. However, expression of the
putative CXCR3B in mouse tissue is not clear and this is
due to an in-frame stop codon in the coding exon®. These
observations confirm that intracellular coupling efficiency of
the receptor can be modulated by extracellular ligand binding.

Modulation of chemokine receptor signaling
Chemokine activity on cognate receptors can be modulated in
multiple ways. The nuclear protein HMGBI, which is released
by necrotic or severely stressed cells, binds TLR4 and RAGE
but not chemokine receptors. However, HMGB1 forms het-
erocomplexes with CXCLI12, which stimulate CXCR4 with
higher potency than the chemokine alone*. Moreover, chem-
okines can act synergistically, increasing their potency and
efficacy of receptor activation”*. In addition, chemokine
receptors, when triggered with two chemokines, can display
allosteric regulation. For example, CXCL14 binds CXCR4
with high affinity but does not stimulate any typical receptor-
mediated response. Nevertheless, CXCL14 markedly enhances
the potency and efficacy of CXCL12 on CXCR4*.

Direct interaction of chemokine receptors with G proteins,
GRKs, and B-arrestin is amply reported. In addition, second-
messenger kinases, such as PKC and PKA, phosphorylate serine
and threonine residues at the C-termini of chemokine receptors.
However, some chemokine receptors were shown to directly bind
and activate additional proteins, giving rise to receptor-specific
activation of signal transduction. CXCR4 interacts with the
eukaryotic translation initiation factor eIF2B, suggesting that the
receptor may stimulate local protein synthesis*. Indeed, mesen-
chymal cells were shown to de novo synthesize actin in the cell
periphery*<**. CCR7, when oligomerized, is able to bind and
activate an Src kinase signaling pathway which leads to tyro-
sine phosphorylation within its DRY motif, which then serves as
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a docking site for SH2 domain—containing molecules such
as phosphatase SHP2*. Similarly, the kinase JAK2 was shown
to phosphorylate CCR2B upon stimulation with CCL2".
Another direct interaction is the binding of VASP to CXCR2
necessary to mediate CXCLS8-stimulated cell migration’'.
The interaction of FROUNT with CCR2 and CCRS5 enhances
migration of monocytes and macrophages by increasing

5

consolidated pseudopodium formation™>*.

Chemokine presentation

The chemokine system is well known to orchestrate leuko-
cyte migration through the formation of chemotactic gradients.
It should be noted that such chemotactic gradients are locally
confined, not exceeding 100—150 um™. Local confinement implies
that chemokines are retained on cell surfaces and the extracel-
lular matrix™. Glycosaminoglycan (GAG) binding sites can be
found in all chemokines and were shown to be essential to mediate
the binding to proteoglycans. Binding of chemokines to GAGs
can modify their activities, enhancing or reducing their potency
on cognate receptors”°. On the other side, GAG binding can
increase local chemokine concentrations (for example, in recep-
tor vicinity) and efficiently present the ligands for haptotacic
chemokine receptor-mediated migration of cells. Secondary
B-cell follicles are characterized by germinal centers (GCs)
where B-cell antibody affinity maturation occurs. The GCs are
split into the CXCL12-rich dark zone, where B-cell centroblasts
proliferate, and the CXCL13-rich light zone, where centrocytes
are selected for antigen affinity’’. Specific stroma cells, the
CXCL12-expressing reticulate cells (CRCs), produce CXCL12
in the dark zone’®, whereas follicular dendritic cells release
CXCLI13 in the light zone’. During affinity maturation, B cells
move between the two compartments of the GC, being attracted
reciprocally by the two chemokines’’. In transgenic ani-
mals which express CXCLI12 lacking GAG binding sites, the
dark zone is enlarged and poorly defined, consistent with the
notion that CXCL12 needs to be locally retained to maintain the
structure of the GC, which is not surrounded by physical
borders®. Similarly, CXCL13 can bind to GAGs without
losing its capability to bind to CXCRS, being able to promote
adhesion-dependent cell migration®’. However, additional
mechanisms, which attenuate B-cell migration at the periphery
of GCs, were shown to be essential for efficient B maturation
and GC integrity®.

Atypical chemokine receptors

An important consideration for the generation and
maintenance of biological gradients was made by Francis Crick,
who proposed that, in apposition to a source of a morphogen, a
sink must exist in order to prevent the gradient from blurring®.
Cells migrating on chemokine gradients scavenge the ligands
from the surrounding medium and in this way presumably con-
tribute to gradient maintenance®. In addition, the group of
atypical chemokine receptors (ACKRs), which share the seven-
transmembrane domain topology of conventional chemokine
receptors but do not couple to G proteins and fail to induce
typical intracellular signaling, act as scavengers targeting
chemokines for lysosomal degradation®. ACKR4 (formerly
CCRL1), a scavenger of the chemokines CCL19, CCL21, and
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CCL25, is expressed on the lymphatic endothelium (LECs) of
subcapsular sinuses (SCSs) of lymph nodes. In the SCSs, the
expression of ACKR4 is asymmetric, being present on LECs
forming the ceiling of the SCSs but not on those on the floor
facing the interfollicular areas. The asymmetric distribution
generates CCL21 gradients pointing from the SCS across the
floor LECs into the interfollicular areas®’. This CCL21 gradient
is assumed to be critical for dendritic cell and T-cell emigration
from SCSs into the parenchyma of lymph nodes. For ACKR3, a
scavenger for the chemokines CXCL11 and CXCLI12%, it
was shown, in zebrafish lateral line primordium as a model,
that the migrating cell collectives can self-generate CXCL12
gradients across their length®’’. In humans, ACKR3 is upregu-
lated on B cells at the plasmablast stage, when cells downregu-
late CXCRS5 and exit the GCs’'. Because ACKR3 has about a
10-fold higher affinity for CXCL12 than CXCR4, it was
concluded that expression of the scavenger renders the cells less
sensitive to CXCl2-mediated retention via CXCR4 in the
GCs allowing egress. Indeed, migration of plasmablast toward
CXCL12 is markedly reduced but can be rescued upon attenuation
of ACKR3"'.

Signaling through the chemokine system not only plays a role
in hematopoietic cells but also is present in mesenchymal
cells. Chemokine signaling is required during development in
the central nervous system’”’!. ACKR3 was shown to be
critical for the migration of interneurons in mouse brain develop-
ment. The role of the scavenger appears to lie in the control of the
level of CXCL12. In the absence of the scavenger, excess of
CXCL12 leads to the downregulation of CXCR4 which causes
the attenuation of interneuron migration’>’®. The chemokine
system also plays a pivotal role in angiogenesis, where
chemokines induce cell growth and stimulate the recruitment
of endothelial cells®. The properties of the chemokine system
have been adopted by many neoplasms. Several lines of evi-
dence indicate that metastatic infiltration of distant organs such as
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the bone marrow, lung, and liver is mediated by chemokines and
their cognate receptors’~”. In a recent study®, the infiltrating
properties of human diffuse large B-cell lymphomas (DLBCLs)
into distant organs in a disseminated mouse xenograft model
were tested. While organ infiltration is assumed to depend on
CXCR4-mediated migration, expression of ACKR3 appeared
to play a critical role. In the absence of the scavenger, the DLB-
CLs fail to infiltrate the organs. In vitro studies suggest that
ACKR3 is required to generate local CXCL12 gradients during

extravasation®.

Conclusions

Although all typical chemokine receptors expressed on
leukocyte are able to induce cell migration, the signaling mecha-
nisms downstream of the receptors are not unified. Rather,
a complex signaling network composed of biased signaling, pro-
miscuous signaling, and signal specificity paired with chemokine
presentation and scavenging contributes to chemokine-stimulated
cell migration. Such fine tuning is important to allow specific
and efficient migration (for example, during immune responses)
to guarantee precise spatiotemporal localization of individual
effector cells.
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