
Building Blocks for Leveraging
In-Network Computing

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Theo Jepsen

under the supervision of

Robert Soulé and Fernando Pedone

July 2020

Dissertation Committee

Antonio Carzaniga Università della Svizzera italiana

Noa Zilberman University of Oxford, UK
Edouard Bugnion EPFL, Switzerland

Dissertation accepted on 22 July 2020

Research Advisor Co-Advisor

Robert Soulé Fernando Pedone

PhD Program Director

Walter Binder

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Theo Jepsen
Lugano, 22 July 2020

ii

Abstract

With the end of Moore’s law and Dennard scaling, applications no longer en-
joy performance improvements by simply waiting for the next generation of
CPUs. This has led to the rise of domain-specific computing. As developers try to
squeeze more performance out of applications, they have offloaded application
functionality to specialized hardware, such as GPUs, FPGAs and ASICs. Program-
ming these devices presents a trade-off between generality and performance.

Recently there has been the emergence of new types of specialized hardware
for networking. Similarly to other domain-specific computing devices, they are
not straightforward to program and require adapting applications, but provide
significant performance improvements. Although these devices were intended
for network applications, they have been used for offloading other types of ap-
plications, in what is called in-network computing (INC).

INC presents many opportunities to applications because it provides high-
performance computing that is centrally located in the network. However, there
are many challenges for leveraging INC. Although INC devices are programmable,
there are some limitations that are not present in general purpose CPUs, includ-
ing computing expressiveness, resource availability (e.g., memory) and interfac-
ing to applications.

This thesis addresses the challenge of leveraging INC for application-network
co-design. Not all applications are suitable for INC; in some cases, only parts of
applications can benefit from INC. The hypothesis is that application performance
can be improved by moving some functionality into reusable INC building blocks.
At a high level, this thesis makes the following contributions: it characterizes the
types of applications that can benefit from INC; it describes the building blocks
that applications can use to leverage INC; it suggests the right abstractions and
level of granularity for INC; it describes INC data structures and implementation
techniques; and, finally, it evaluates INC by implementing five systems for ap-
plications from different domains. Overall, this thesis revisits the separation of
concerns between the application and the network, showing that co-design is not
only possible, but also beneficial.

iii

iv

Preface

The result of this research appears in the following publications:

[1] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert
Soulé. Life in the fast lane: A line-rate linear road. In ACM SIGCOMM Symposium
on SDN Research (SOSR), pages 10:1–10:7, March 2018

[2] Theo Jepsen, Leandro Pacheco de Sousa, Masoud Moshref, Fernando Pedone,
and Robert Soulé. Infinite resources for optimistic concurrency control. In Pro-
ceedings of the 2018 Morning Workshop on In-Network Computing, pages 26–32,
New York, NY, USA, August 2018

[3] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert
Soulé. Packet subscriptions for programmable asics. In Workshop on Hot Topics
in Networks, pages 176–183, New York, NY, USA, November 2018

[4] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun Lee,
Masoud Moshref, and Robert Soulé. Fast string searching on pisa. In ACM SIG-
COMM Symposium on SDN Research (SOSR), pages 21–28, New York, NY, USA,
April 2019

v

vi

Acknowledgements

First of all, for all his guidance, encouragement and optimism that anything can
be done—despite all my skepticism!—I am grateful to my adviser, Robert Soulé.
My co-adviser Professor Fernando Pedone and Professor Antonio Carzaniga al-
ways had their doors open and were very patient with me. Thank you for your
support.

I would like to thank my committee members, Edouard Bugnion and Noa
Zilberman, for their invaluable feedback and patience.

The work in this dissertation would not have been possible without the sup-
port of my collaborators: Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun
Lee, Alberto Lerner, and Masoud Moshref. Thank you for all the advice you gave
me. It was a pleasure working together, and I hope we continue to do so in the
future.

During my internship at Barefoot, everyone there became my family away
from USI. For the countless hours lost under cables in the server room, discussing
problems in the garage and biking across miles of CA roads—thank you.

I don’t think I would have gotten through the PhD without all the hacker tips,
emotional support and distractions from the people in the “lab” at USI: Pietro,
Tu, Long, Enrique, Mojtaba, Leandro, Paulo, Daniel, Daniele, Daniele and Ali. I
would also like to thank the people of the OpenSpace and the Decanato.

Last, but not least, I am indebted to my parents, grandfather and brother—
Lisa-Anne, Frits, Ed, and Benjy—for bearing with me.

vii

viii

Contents

Abstract iii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 This Dissertation . 2
1.2 Evaluation . 3
1.3 Research Contributions . 5

2 Background 7
2.1 Basic Networking . 7
2.2 Kernel Bypass . 8

2.2.1 DPDK . 8
2.2.2 RDMA . 8
2.2.3 NIC Protocol Offload . 9

2.3 Software Defined Networking . 9
2.4 Programmable Data Plane . 9

2.4.1 Programmable Hardware . 10
2.4.2 Language Support for Programmable Network Hardware . 10
2.4.3 Challenges of Data Plane Programming 11

3 Building Blocks for INC 13
3.1 INC Capabilities . 13
3.2 Building Blocks . 15

3.2.1 The Building Blocks in this Dissertation 18
3.3 INC Techniques . 19

ix

x Contents

3.3.1 Data Structures . 19
3.3.2 Implementation Techniques 20

3.4 Summary . 20

4 Publish/Subscribe 21
4.1 Background . 21
4.2 Example: ITCH Market Feed . 22
4.3 Packet Subscriptions . 24
4.4 Compiling Subscriptions . 26

4.4.1 Compiling the Static Pipeline 26
4.4.2 Compiling Dynamic Filters . 27

4.5 Evaluation . 31
4.6 Conclusion . 34

5 Stream Processing 35
5.1 Background . 35
5.2 The Linear Road Benchmark . 36
5.3 P4 Linear Road . 37

5.3.1 Implementation Techniques 38
5.3.2 Deviations from Specification 40

5.4 Towards a General Query Language 40
5.4.1 Input Data . 41
5.4.2 Query Operators . 42
5.4.3 Summary . 44

5.5 Evaluation . 44
5.6 Conclusion . 45

6 String Search 47
6.1 Background . 47

6.1.1 String Search Algorithms . 48
6.2 Design Overview . 49

6.2.1 Expected Deployment . 49
6.3 Pattern Compilation . 50

6.3.1 Optimizations . 52
6.3.2 Approximation . 53

6.4 Implementation . 53
6.5 Discussion . 54
6.6 Evaluation . 54

6.6.1 End-to-end Application Performance 55

xi Contents

6.6.2 Microbenchmarks . 56
6.6.3 Comparison to State-of-the-Art 57

6.7 Conclusion . 57

7 Optimistic Concurrency Control 59
7.1 Background . 59
7.2 Design . 62
7.3 Implementation . 66
7.4 Evaluation . 67
7.5 Conclusion . 70

8 Transaction Triaging 71
8.1 Background . 71
8.2 Transaction Triaging . 73
8.3 In-Network Algorithms . 74

8.3.1 Steering . 76
8.3.2 Batching . 78
8.3.3 Reordering . 79
8.3.4 Protocol Conversion . 81

8.4 Transaction Affinity . 82
8.5 Integration to Existing Systems . 83
8.6 Evaluation . 84

8.6.1 Networking Overhead . 85
8.6.2 Steering Experiments . 85
8.6.3 Batching Experiments . 87
8.6.4 Reordering Experiments . 87
8.6.5 Comparing UDP/IP and RDMA stacks 88
8.6.6 Comparing TPC-C and YCSB 90
8.6.7 Evaluation Summary . 91

8.7 Conclusion . 91

9 Related Work 93
9.1 Dataplane Programming . 93
9.2 INC Classifications . 94
9.3 Publish/Subscribe . 94
9.4 Stream Processing . 95
9.5 String Search . 95
9.6 Optimistic Concurrency Control . 96
9.7 Transaction Triaging . 96

xii Contents

10 Conclusion 99
10.1 Results . 100
10.2 Future Work . 102
10.3 Final Remarks . 103

Figures

4.1 CDF of DPDK ITCH filtering. 24

4.2 Packet subscription language abstract syntax. 25

4.3 Specification for ITCH message format. 27

4.4 BDD for three rules. Solid and dashed arrows represent true and
false branches, respectively. 28

4.5 Table representation of the BDD in Figure 4.4. 29

4.6 Compiler efficiency . 31

4.7 Overview of Camus. 32

4.8 ITCH experiments on hardware. 33

5.1 Tables and control flow of P4 Linear Road. Colors indicate a par-
ticular implementation technique. 37

6.1 Expected deployment. 50

6.2 DFAs with different strides for "dog". 52

6.3 Table for 2-stride (k=2) DFA . 52

6.4 PPS end-to-end experiments and micro-benchmarks. 55

7.1 Throughput for incrementing a single counter as contention in-
creases. 61

7.2 Overview of NOCC deployment. 63

7.3 NOCC has low aborts and latency at store. 67

7.4 NOCC improves throughput and latency as write ratio and con-
tention changes. 68

7.5 TPC-C Payment transaction . 69

8.1 In-network triaging fosters faster transaction execution. 72

xiii

xiv Figures

8.2 Conceptual view of the triaging techniques. Transactions with the
same shape target the same partition. Transactions with a similar
color have high affinity; executing them in sequence will likely
improve performance. 73

8.3 Example of side-effects of processing a packet on the switch. (1)
a packet is matched with the steering table using the clientID

field and changing the packet header as a result; (2) the lookup
of field partID results in associating a queue number with the
packet; and (3) the queues’ size table is incremented to account
for the imminent packet buffering. 75

8.4 Placement of TT-related match-action tables across the programmable
switch stages. 76

8.5 Using protocol conversion to RDMA for delivering transaction pay-
loads. (1) the transaction metadata is buffered on the switch; (2)
the transaction parameters are forwarded to the transaction buffer
area in the server; (3) when the batch completes, the server re-
ceived it as a single packet; and, (4) the server gets the parameters
of the transactions from the buffer area. 82

8.6 Overhead of network communication on in-memory database. . . 85
8.7 Steering throughput (a) and latency CDF for 6 (b) and 12 (c) cores. 86
8.8 Throughput and latency due to batching. 87
8.9 Transaction pairs with different affinities. 87
8.10 Batching and affinity pairing latency. NewOrder and InvCheck

overlap on both charts. 88
8.11 TPC-C throughput (a) and latency (b) at 80% of maximum through-

put. YSCB throughput (c) and latency (d) at 80% of maximum
throughput. 89

8.12 TPC-C CPU micro-architecture analysis. 90

Tables

3.1 Characteristics of various INC hardware devices. 14
3.2 Examples of systems that implement each building block. The sys-

tems described in this dissertation are in bold. 17
3.3 Importance of INC capabilities for building blocks. The scale is

explained in Section 3.1. 18

5.1 Categories of windowed operators. Checks indicate windowing
that is implementable in P4. 43

xv

xvi Tables

Chapter 1

Introduction

Historically, as CPUs got faster, applications experienced speed-ups “for free”;
they simply upgraded to a CPU with higher clock speed and bigger caches. How-
ever, with the end of Moore’s law and Dennard scaling, applications cannot rely
on performance improvements from the CPU. Increasingly, application designers
are turning to domain-specific computing, which uses specialized hardware to
accelerate critical parts of applications.

There is a wide variety of hardware used for domain-specific computing.
There is a trade-off between flexibility and performance. On one side of the
spectrum are general-purpose CPUs, which can run most applications, but not
efficiently. Graphics processing units (GPUs) and field-programmable gate ar-
rays (FPGAs) provide better performance, but have more constraints. On the
other side of the spectrum are application-specific integrated circuits (ASICs),
which are optimized to run a single application. Recently, programmable ASICs
have gained popularity, because they offer more flexibility, without compromis-
ing performance.

These programmable ASICs are now integrated in some network devices, in-
cluding switches and network interface cards (NICs). These devices are flexible
and fast, but more important is where they are located: in the network. Being po-
sitioned in the network brings a new opportunity of a global view for performing
high-performance computation on application data.

Just like other domain-specific computing, the computational model on pro-
grammable network devices is not like that of a general-purpose CPU. Although
these network devices can process packets at line rate, they do not offer all the
same expressive functionality of a general-purpose CPU. This presents both op-
portunities and challenges for implementing application logic in the network.
Application logic can run faster in the network and it also has a global view of

1

2 1.1 This Dissertation

processing, being between servers. However, it is not straight-forward to inte-
grate with the application. It requires sharing application data and state with the
network, as well the ability to express application logic in the network.

This raises the questions: What types of applications can be implemented in
the network? What functionality must the network provide to support these ap-
plications? Is this compatible and interoperable with existing solutions? In some
cases, only parts of the application can or should belong in the network. This
forces us to revisit the separation of concerns between the application and net-
work layer.

1.1 This Dissertation

This thesis addresses the problem of how applications can scale using the in-
network computing capabilities of new hardware devices. The hypothesis is that
by exposing application-level information to the network, we can leverage
in-network computing to dramatically improve application performance.

To support the hypothesis, this work characterizes the types of applications
that can benefit from in-network computing (INC); describes the building blocks
that the network can provide to applications; and evaluates the performance
impact of executing application logic in the network.

There are a variety of devices that support INC, including programmable
switches, networked FPGAs and smart NICs. This dissertation focuses on one
type of device: the programmable switch.

There are at least two ways programmable switches can be leveraged by ap-
plications. First, switches can be used as a dedicated appliance, roughly how
other hardware accelerators like FPGAs and GPUs are used: offloading compute-
intensive parts of the workload to the device to take advantage of parallelism
and fast memory. A second way we may use the programmable switch is to op-
erate on data as it flows through the network, not only exploiting the switch
performance characteristics, but also its central location in the network.

To understand how applications should use programmable switches, we must
first characterize the applications. Some applications are distributed by nature
(e.g., messaging systems, distributed key-value stores, caches), while other ap-
plications are more computational (e.g., batch jobs, databases). One can under-
stand how distributed applications—they rely heavily on network communication—
can benefit from INC. It is less obvious how applications that make light use of
communication can harness INC. It turns out that both communication-heavy
and computationally heavy (i.e. CPU and I/O bound) workloads can benefit

3 1.2 Evaluation

from INC.
INC provides different functionality for different types of applications. For

example, in communication-intensive applications like pub/sub messaging, for-
warding is an essential functionality. In analytics applications, matching data in
packets can be more useful. Some applications have overlapping functionality
requirements. For example, both key-value stores and caches can benefit from
storing data in the network.

Applications can leverage INC through basic building blocks. The function-
ality of these building blocks should have the right level of granularity: if the
functionality is too application-specific, it will not be reusable; if the functional-
ity is too generic, the building block may not provide benefits to the application.

To understand whether and how applications benefit from INC, there are two
main criteria. First, it has to be possible to express the application logic in pro-
grammable hardware. This depends on the primitive operations supported by the
hardware, as well as resource availability (e.g., memory). In some cases interop-
erability is a strong requirement: the in-network component must be compatible
with existing solutions (e.g., network or application protocols and formats).

Second, we must consider application performance to understand how it ben-
efits from INC. We measure performance using various metrics, including end-
to-end runtime (throughput), latency and overall system resource utilization.
Furthermore, we must also evaluate the cost of implementing this in the net-
work (e.g., How much device resources does it require? Does this come at the
loss of other network functionality?).

1.2 Evaluation

To evaluate the hypothesis, we answer the following questions:

1. What types of applications can benefit from INC?

2. What is the right level of granularity for INC building blocks?

3. What and how much application-level information should be exposed to
the network?

4. What are the potential performance benefits?

5. What must the application trade-off, in terms of features or expressiveness?

4 1.2 Evaluation

To be able to generalize the results, we choose applications from different do-
mains. Not all application domains are suitable for INC, however. As we explain
in Chapter 3, the most suitable applications are those that have a high ratio of
I/O to processing expressiveness and that can easily interface their logic to the
network.

We identified several applications from different domains: transactional databases,
messaging systems, stream processing, and analytics. Some of these domains,
like messaging systems, are naturally suited for INC, because they are inherently
distributed, and must use the network. For other domains, like databases, it is
not obvious how they can benefit from INC. In our evaluation, we show that even
applications that are not network-centric can benefit from INC.

To evaluate INC with these applications, we did not implement the entire
application in the network. Instead, we abstracted some application functionality
in INC building blocks. We implemented several systems with these INC building
blocks:

• A high throughput publish/subscribe messaging system with expressive
forwarding semantics.

• A stream processing system that includes a variety of streaming operators:
filter, aggregate, join and windowing.

• A string search system, which filters data using a state machine.

• An optimistic concurrency control system for a key-value store that sup-
ports speculative execution at the clients.

• An in-memory database that lets the network manage the delivery (includ-
ing ordering) of transactions.

For each system, the implementation in itself demonstrates that it is possi-
ble for the application to leverage INC. In some cases, it requires the network
implementation to be compatible with an existing application. For example, our
publish/subscribe system is compatible with the format used by the Nasdaq ITCH
protocol. There is also the question of expressiveness—does the in-network im-
plementation provide the same functionality as the software alternative?

The implementation is also used to evaluate performance, which includes:
application performance metrics (throughput and latency), system resource uti-
lization, and cost. For some of the implementations, like the database and key-
value systems, we measure throughput in transactions per second; for string

5 1.3 Research Contributions

search, the ingest rate; for stream processing, operations per second. Some appli-
cations are more latency sensitive, like those that use publish/subscribe, in which
case latency is a more important metric. We also evaluate the overall system uti-
lization, which has an impact on cost. This includes the resource utilization on
the network devices, as well as potential savings from offloading computation
from CPUs to the network.

1.3 Research Contributions

Overall, this dissertation makes the following contributions:

1. It characterizes the types of applications that can benefit from in-network
computing (INC). Conversely, it also characterizes applications (or func-
tionality) unsuitable for INC. It shows that even applications that are not
network-centric can use INC.

2. It describes the basic building blocks network can provide to applications
for a higher level of service. Since applications have overlapping require-
ments, it is possible to decompose them into the common functionality that
can be provided by the network.

3. It revisits the separation of concerns between the application and the net-
work, suggesting the right level of abstraction. The application layer is
typically opaque to the underlying network. We argue that by exposing
application information to the network, the network can provide more ser-
vices and optimizations to the application.

4. It describes the techniques for implementing applications using INC. Be-
cause the network devices use a different architecture than general pur-
pose CPU, we developed novel techniques for adapting application logic to
these devices.

5. It provides an evaluation of INC by implementing five different systems
for applications from various domains. Not only does this demonstrate the
viability of INC, but also the performance benefits. It offloads compute and
I/O from servers, reducing system utilization, and in turn overall costs.

The rest of this dissertation is organized as follows. We begin by providing
some background on advanced network technologies in Chapter 2. Then, Chap-
ter 3 discusses the INC building blocks that can be leveraged by applications.

6 1.3 Research Contributions

The rest of the chapters describe our experiences building systems that use each
building block: publish/subscribe messaging (Chapter 4); analytics for stream
processing (Chapter 5) and string search (Chapter 6); coordination (Chapter 7);
and load balancing (Chapter 8). Finally, Chapter 10 concludes by summarizing
our findings and providing an outlook for future work.

Chapter 2

Background

This chapter provides background on networking technologies and the recent
developments that have enabled in-network computing (INC). We begin with
an overview of how traditional networks forward packets (§ 2.1) and describe
some advanced techniques used at end hosts (§ 2.2). Then, we provide a brief
history of software defined networking (§ 2.3), and how it led to programmable
networks (§ 2.4), the foundation of INC.

2.1 Basic Networking

A traditional network is responsible for delivering packets to applications. The
lifetime of a packet begins when an application process sends a packet by making
a call to the OS. The OS schedules the packet to be sent by the network interface
card (NIC). The NIC transmits the packet to the network, where it will travel
through one or more switches, before reaching the destination host. The NIC on
the destination host receives the packet and buffers it in memory. The NIC sends
an interrupt, alerting the OS that a packet has been received. In turn, the OS
passes the packet to the receiving process.

Conceptually, networking can be divided into two main parts: the data plane
and the control plane. The data plane, also called the forwarding plane, is re-
sponsible for forwarding packets between devices. It makes local decisions, like
deciding the port out of which a packet should be sent. The control plane, on the
other hand, uses global policy to configure the data plane. It makes high level
decisions, like choosing routes between devices. The control plane generates
configuration (i.e. rules) upon which the data plane acts.

Advanced network technologies strive make the data plane faster and the
control plane more flexible. There are various approaches that target different

7

8 2.2 Kernel Bypass

parts of the path through the network, including hardware devices like switches
and NICs, as well as the software at the end host (e.g., the OS) that interacts
with them.

2.2 Kernel Bypass

There have been efforts to reduce the time spent at each step in the transmission
of packets on end hosts. In some cases, they remove steps all together. One such
approach is kernel-bypass, which enables the application to interact directly with
the NIC, without the OS.

2.2.1 DPDK

Some NICs support the Data Plane Development Kit (DPDK) [5] for kernel-bypass.
With DPDK, an application process running in user space can send and receive
packets directly, without interacting with the OS. This reduces the overhead of
interrupts and OS context switches, dramatically increasing performance. Fur-
thermore, DPDK provides raw access to the packet, which means that the appli-
cation is not limited to traditional protocols like TCP/IP. This allows for a greater
degree of flexibility, as the application can send packets with arbitrary formats,
and not waste time/memory for managing protocol state (e.g., managing a TCP
connection).

2.2.2 RDMA

Remote Direct Memory Access (RDMA) [6] takes bypass even further: it not
only bypasses the OS, but also the CPU core. The RDMA NIC writes packet data
directly into memory regions owned by the application process. This enables
packets to be sent and received without involving the CPU core.

There are two main RDMA communication patterns: single-sided and two-
sided. With single-sided, a process writes to a memory address on a remote host,
without notifying the remote process. The remote process has to poll the memory
region to detect that it was updated. With two-sided, the receiving process has
to explicitly request the data. Once the data is received, the receiving process
is notified. The advantage is that the receiver is notified, but it requires the
receiver’s CPU core.

9 2.3 Software Defined Networking

2.2.3 NIC Protocol Offload

The packet handoff between the network and an application is a sophisticated
process mediated by the network card and the operating system. Modern NICs
can perform several operations on hardware on behalf of the OS [7]. For in-
stance, they can verify the received packets’ CRCs, saving many CPU cycles. Of
particular interest to our work is a mechanism called Receive-Side Scaling (RSS)
that is present in most modern network cards [8]. When a multi-core server re-
ceives a packet, the NIC generates an interrupt against a given core. In a fast
network, this task can easily overwhelm one (or more) cores. RSS load balances
the interrupts across the cores. It instructs the NIC to decide which core to inter-
rupt based on a hash over some packet fields.

2.3 Software Defined Networking

Until fairly recently, it was difficult to configure the forwarding elements of the
network. Network administrators used ad hoc scripts to enact policy in the net-
work, such as routing and access control lists (ACLs). Furthermore, there was
no separation between the layer for managing the network (control plane) and
the layer responsible for forwarding packets (data plane). This was mainly due
to the lack of a common interface for managing the devices [9].

Software defined networking (SDN) addresses this problem by separating the
data plane from the control plane. The OpenFlow [10] project was instrumental
in creating a standard interface for configuring switches. This enabled network
administrators to manage the network just the way they would write software.

The OpenFlow standard introduced the match+action table abstraction. An
OpenFlow switch matches (looks up) certain packet header fields (e.g., IP ad-
dress, TCP port, etc.) in tables, and then executes the corresponding actions
(e.g., forward, drop, etc.). As the standard grew in popularity, it added support
for additional header fields and actions. However, it was still not flexible enough
because it did not support arbitrary packet formats or custom actions.

2.4 Programmable Data Plane

To further increase the flexibility and programmability of SDN networks, the RMT
(reconfigurable match tables) model was proposed [11]. Instead of matching on
a fixed set of packet header fields and executing pre-defined actions, it provides

10 2.4 Programmable Data Plane

a lower-level abstraction of primitives that support arbitrary packet formats and
actions. This has given rise to new hardware to support this abstraction.

2.4.1 Programmable Hardware

Modern networks are connected by links that transmit data at ever increasing
rates. The line rate has progressed from 10Gb/s to 100Gb/s, and soon 400Gb/s.
To process packets at line rate, network devices must be fast. That is why they
are mainly built using ASICs, which provide low latency, predictable processing.

Although the ASICs in network devices are performant, they are not flexible.
They have fixed functionality: the processing logic and supported protocols are
baked into hardware, and cannot be modified after manufacturing. To add a new
protocol or feature, the ASIC circuits must be updated and manufactured, a long
and costly process.

Recently, there has been an emergence of programmable network devices.
These include smart NICs, networked FPGAs, and programmable switches. Smart
NICs (e.g., Xilinx Alveo [12] and Netronome Agilio [13]) use a System-on-Chip
(SoC) with some accelerators, in contrast to the more flexible design of the NetF-
PGA SUME [14]. Programmable switches (e.g., Barefoot Tofino [15] and Broad-
com Trident 3 [16]) use special ASICs, which, unlike fixed-function devices, can
be programmed after manufacturing. They can be programmed much like one
writes software, but provide the same line rate processing of the fixed-function
devices.

2.4.2 Language Support for Programmable Network Hardware

Various frameworks and languages have been proposed to program these devices,
including high-level languages like C# [17], as well as domain-specific languages
(DSLs) like PX [18] and Programming Protocol-Independent Packet Processors
(P4) [19]. P4 has gained traction and is the most widely used language.

P4 describes the abstractions of a pipeline architecture based on PISA (Pro-
tocol Independent Switch Architecture). This architecture allows most network
functionality to be expressed in a pipeline of stages that is independent of the
underlying hardware. The architecture is abstract, and is agnostic of the un-
derlying target, which includes software switches [20], smart NICs, FPGAs and
programmable switch ASICs.

In PISA, when a packet arrives, it is first parsed, then flows through a pipeline
of stages. In each stage, the match+action abstraction is used to lookup packet

11 2.4 Programmable Data Plane

header fields in tables, and execute actions. These are the main constructs of the
P4 language:

• Parser. This defines how the bits that arrive on the wire should be parsed
into headers.

• Headers. The header defines the format of the packets, including the order
of fields and their sizes.

• Control. This provides the overall structure for the pipeline, specifying the
order in which tables are applied.

• Tables. The match+action abstraction is represented in the table. The table
looks-up fields from the packet and executes the corresponding action. The
table is populated by the control plane. Depending on the target, different
types of look-ups can be performed, including: exact match, longest-prefix
match (LPM), ternary and range match.

• Actions. These define the manipulations on the packet headers and meta-
data. They execute ALU operations or special operations (e.g., hash func-
tions) supported by the target. They can also receive arguments (data)
from the control plane.

Metadata flows through the pipeline together with the packet. It is repre-
sented as a header and is used to store per-packet state. Special metadata is
used to pass information between the pipeline and the device. For example,
metadata contains the port on which the packet arrived. Stateful processing is
used to store state across packets. State is generally stored in registers, counters
and meters.

2.4.3 Challenges of Data Plane Programming

Using these devices presents the opportunity to run custom logic in the network
at line rate speeds. However, programming them is not straight-forward and
presents many challenges. Broadly, there are two main types of challenges: con-
straints on expressiveness (e.g., types of ALU operations) and on resources (e.g.,
memory).

In the PISA architecture there is a fixed number of pipeline stages. The P4
program controls the logic in each stage, which, depending on the target, is lim-
ited to a certain number (and types) of operations. Some targets can only ex-
ecute simple ALU operations, like add and subtract, while others support more

12 2.4 Programmable Data Plane

complex operations like multiplication and division. Furthermore, some targets
can provide externs that expose other types of operations, like computing a hash
function on header fields.

Some targets have limitations on which stages can access memory. Packets
only flow one way through the pipeline, so operations in one stage cannot write
to memory in previous stages. This means that updates to data structures must
be atomic: in a single stage the P4 program must read and update the memory.
This limitation can be overcome by recirculating the packet through the pipeline,
so the same packet will reach each stage twice. Recirculation, however, halves
the throughput of the program.

P4 does not include some programming paradigms that are taken for granted
in high level languages like C. For example, since there is a fixed number of
pipeline stages, P4 does not support iteration. As we will explain, iteration can
be achieved with recirculation. Since all the operations in a stage are executed
in parallel, to execute a sequence of operations, they must be split across several
stages. This may be problematic if the operations must access memory from
different stages, as described in the previous paragraph.

Since these devices have a fixed amount of memory and parsing states, there
is also a limit to how much state a P4 program can store, and how many packet
header fields it can access. Furthermore, the devices have different types of mem-
ory. For example, the Tofino has at least two types of memory: SRAM for storing
tables and stateful memory, and TCAM for tables that perform LPM, ternary and
range matches. Some of these memory limitations can be sidestepped by using
memory efficiently and carefully engineering packet header formats.

Chapter 3

Building Blocks for INC

There are a variety of devices that support INC, including: programmable switches,
networked FPGAs and smart NICs [21]. This dissertation focuses on one type of
device: the programmable switch. The premise is that we want to move appli-
cation functionality into these programmable switches in the network.

Building blocks for INC bridge the gap between hardware capabilities and
application functionality. Finding the right level of granularity for these building
blocks will ensure that they are reusable across applications, while also providing
performance benefits to the applications.

This chapter begins with an overview of INC capabilities, in order to char-
acterize the application functionality that switches can support (Section 3.1).
Then, Section 3.2 identifies some building blocks that applications can use to
move their functionality into the network. Finally, this chapter describes the INC
techniques for implementing these building blocks (Section 3.3).

3.1 INC Capabilities

Broadly speaking, we can compare INC devices along four dimensions as shown
in Table 3.1: 1) network location and fanout; 2) throughput performance (I/O);
3) memory for storage (state); and 4) processing flexibility (expressiveness).
Programmable switches are centrally located in the network with a high degree of
fanout. This vantage point enables them to process traffic flowing between many
hosts in the network. On the other hand, FPGAs and smart NICs are installed on
end-hosts at the edge of the network, and usually only have a couple of ports,
which are connected to edge switches. Unlike the switches, NICs only see traffic
local to the end-host.

Smart NICs generally allow for a moderate degree of flexibility. Networked

13

14 3.1 INC Capabilities

Network
Location

I/O
Parsing
Depth

State Expressiveness

Programmable Switch Center Tb/s Fixed MB Moderate

Networked FPGA Edge
Gb/s

Flexible
MB +

host DRAM
High

Smart NIC Edge
Gb/s

Fixed
MB +

host DRAM
Moderate/High

Table 3.1. Characteristics of various INC hardware devices.

FPGAs (like the NetFGPA) are more fleixble, because they can be programmed
with arbitrary circuits. However, flexibility and storage is traded-off for through-
put performance. Programmable switches have a high fanout and process pack-
ets at rates an order of magnitude higher than those of smart NICs. This comes
at the cost of expressiveness. Although the memory on switches is fast, it is not
as abundant as that found on a typical server. The computation on switches is
flexible, but there is a limit to both the number and types of operations that can
be performed.

Based on the hardware capabilities described above, we observe that appli-
cations best suited for INC on switches are those that require: a global vantage
point in the network; high I/O throughput; and a moderate amount of state and
expressiveness. Moreover, the ratio of I/O to expressiveness is an important in-
dicator of application suitability for INC: the most suitable applications are those
which are I/O bound.

The capabilities are not equally important to all the applications; some capa-
bilities are more important to some applications than others. We rate the impor-
tance of a capability to an application using a subjective scale of low, medium or
high. Below we briefly describe each type of capability, and provide the defini-
tions for low, medium and high used for classifying the functionality provided by
building blocks in the next section.

Centrally Located. This captures the value the application logic has from being
in a position in the network that lets it see traffic between many hosts.

• Low: the switch need not be positioned between servers. It is only for
offloading compute, similarly to how an FPGA or GPU is used for acceler-
ation.

• Medium: it is important to be on the path between servers, but it does not
necessarily need to see all packets in the system.

• High: it is essential that all packets travel through the switch.

15 3.2 Building Blocks

Throughput. This characterizes the rate at which data travels through the de-
vice, measured in bits/second. Under certain conditions (e.g. with smaller
packet sizes), the throughput may change.

• Low: messages (packets) travel through the device at a relatively low rate.
• Medium: packets pass through at a higher rate (on the order of Gb/s).
• High: packets pass through at rates on the order of Tb/s.

Parsing Depth. This is the amount of bytes in the packet that can be accessed by
the device. Programmable switches and smart NICs can access a fixed maximum
amount of bytes, while networked FPGAs can read deeper into the packet at the
expense of other functionality.

• Low: only the beginning of the packet is inspected to make forwarding
decisions.

• Medium: some application payload data is accessed.
• High: most of the data in the packet is accessed.

State. This is the amount of memory the application uses on the switch. Imple-
menting some data structures may require more memory (see Section 3.3.1).

• Low: very little state is stored on the switch. A meter may be used to keep
track of how many packets the switch has seen.

• Medium: some high-level application state is stored, like counters or events.
• High: application payload data is stored on the switch.

Expressiveness. This captures the logic being executed on the switch: how many
operations are performed, the types of operations and some advanced techniques
(see Section 3.3.2).

• Low: only table lookups are performed, matching a few packet header
fields.

• Medium: more operations are executed, but mostly simple (e.g., add, sub-
tract). The data structures are primitives like counters of boolean flags.

• High: enables programming techniques expected from higher-level lan-
guages (e.g., iteration) and manipulation of more complex data structures.

3.2 Building Blocks

Based on the hardware capabilities outlined in the previous section, we have
identified building blocks for applications to leverage INC. These building blocks
are possible to implement with INC (Table 3.2 lists examples of systems that
implement each type of building block) and exploit the comparative advantage
of the hardware (Table 3.3 shows how important the hardware capabilities are
for each building block, using the scale described in the previous section). Other

16 3.2 Building Blocks

classifications of INC have been proposed, with different categories [22], as well
as lower-level primitives [23].

Below, for each building block, we explain: why it is suitable for INC; why
its level of granularity is appropriate; and the application-level information in
requires.

Messaging. Programmable switches were initially designed to be flexible for-
warding devices. This seems like an obvious match for messaging systems, which
require expressive forwarding. Also, they do not require too much state to be
stored on the switch, but some expressiveness to match the message to the in-
tended destination. To be application-agnostic the switch should not need to
parse deep into the data in messages. Instead, the switch forwards based on
message metadata that indicates the content of the message.

Performance Management. Since switches have a global perspective of data
flow, they are ideal for network measurements. In-band Network Telemetry
(INT) collects information about traffic, including congestion (queue occupancy),
latency and throughput. This information can help make decisions on managing
resources and detecting problems. Programmable switches are suitable because
they can collect information about every single packet. Since this can be done
transparently, it does not require modifications to application; the INT informa-
tion can be collected out-of-band by the application.

Load Balancing/Partitioning. Because switches have a high degree of fanout,
they are in a good position to direct traffic for load balancing. Partitioning the
workload generally involves inspecting packets for application-level information,
which can be performed by programmable switches. Like messaging systems,
the application-level information is exposed to switch through metadata in the
packet. This makes the building block reusable for different applications.

Analytics. These workloads typically have to process large amounts of data.
This is a good fit for programmable switches, which are I/O machines. The main
limitation for implementing an analytics query on the switch is expressiveness.
Because applications execute different queries, this building block needs to be
tailored to the application. It also has to be tightly integrated to the application
to know how to interpret the data in the packets.

Caching. Because switches are on the path to backend servers, they can reply
to data requests before they even reach the servers. This reduces the latency
experienced by clients, while reducing load on servers. Furthermore, looking-up
values is fairly straight-forward. The main limitation is the amount of memory
for storage available on the switch. Since caching just stores data and does not
need to perform complex operations, it does not need to be tightly integrated

17 3.2 Building Blocks

Building Block Example System

Messaging Packet Subscriptions(§ 4), R2P2 [24]

Perf. Management INT [25], Dapper [26], SwitchPointer [27]

Load Balancing SilkRoad [28], Transaction Triaging (§ 8)

Analytics Marple [29], Sonata [30], Linear Road (§ 5), PPS (§ 6)

Caching SwitchKV [31], NetCache [32]

Coordination NetPaxos [33], NetChain [34], Eris [35], NOCC (§ 7), HovercRaft [36]

Aggregation DAIET [37], NetAccel [38]

Table 3.2. Examples of systems that implement each building block. The
systems described in this dissertation are in bold.

with the application. In fact, in many cases caching can be done transparently.

Coordination. Components of distributed systems communicate with each other
to make decisions. Programmable switches are in the network where they are
able to see this communication and accelerate it. This is not typically a high
throughput workload, but requires low, predictable latency, which the switch
ASIC provides. Coordination can provide a service that is application-agnostic
(e.g., locks, sequencing), so it does not necessarily have to be tightly integrated
with the application.

Aggregation. Switches have a high degree of fan-in, which makes them ideal
for collecting and merging data from many sources. Aggregation involves merg-
ing and accumulating data. Depending on the type of merge operation and the
size of the accumulated state, the expressiveness of switch operators and mem-
ory available can be the most important requirements. Compared to some other
building blocks, aggregation requires tighter integration with the application, be-
cause it needs to execute aggregation operators on application-specific data.

The building blocks described above are suitable for INC because it is possible
to implement them with INC, and because there is a comparative advantage of
running them in the network hardware. There is, however, some application
functionality that is unsuitable for INC. This is either because of inadequate INC
capabilities (e.g., the application needs more storage than available on switches),
or because there is no comparative advantage (e.g., the application does not
fully leverage the switch I/O). To justify the selection of building blocks above,
we provide some counter examples of building blocks which are not suitable for
INC.

18 3.2 Building Blocks

Centrally
Located

Throughput
Parsing
Depth

State Expressiveness

Messaging high low low low low

Perf. Management high high low medium low

Load Balancing low low low low low

Analytics low high high medium high

Caching high medium medium high low

Coordination low low low medium high

Aggregation high medium medium high high

Table 3.3. Importance of INC capabilities for building blocks. The scale is
explained in Section 3.1.

Cryptography. A switch could be used to perform encryption/decryption for
applications running on servers. There are two challenges, however. First, the
device would have to implement to cryptographic functions. This would either
require specialized circuits in the hardware, or programming them, which would
be inefficient and consume all the switch resources. Second, there are security
concerns of configuring and managing encryption keys in the network. An al-
ternative which does not require specialized hardware is random linear network
coding [39].

Block Storage. Although INC can be used to accelerate caching and coordination
for storage systems, it would be unrealistic to store persistent data on switches.
Current switches do not have enough memory, and that memory is not persistent.

Serverless Lambdas. Microservices may seem like a good fit for INC because
they perform short-lived computation that requires little state. However, they
tend to be application-specific, with a frequently changing codebase that would
be too large to fit on a switch. Furthermore, it may be unjustifiable economically
if the lambdas underutilize the throughput capability of the switch.

3.2.1 The Building Blocks in this Dissertation

To support the research hypothesis of this dissertation, we chose to narrow our
focus to just some of the building blocks. We had two main criteria for choosing
them. Firstly, we chose building blocks types that push INC to its limits. One
of the most difficult requirements to satisfy is expressiveness. Second, we chose
ones that have not been fully explored by other researchers.

19 3.3 INC Techniques

Thus, we chose to focus on: messaging (Chapter 4), analytics (Chapters 5
and 6), coordination (Chapter 7) and load balancing (Chapter 8). The variety
of this selection is meant to demonstrate how different application requirements
can be satisfied by INC. Furthermore, it demonstrates how these systems can
be built using INC data structures and implementation techniques, which we
describe in the next section.

3.3 INC Techniques

The diverse INC building blocks can be implemented on the switch using a set of
common techniques. Below we outline the main data structures and implemen-
tation techniques, and how they map onto the underlying architecture.

3.3.1 Data Structures

Maps. Some applications need an associative data structure to store data (e.g.,
key-value mapping for a key-value store). The most straight-forward way of
implementing this is indexing into an array (e.g., see § 7.3). It can also be im-
plemented as a hashmap using the switch’s hashing functionality.

Counters. Counters build on the map data structure. Application-level informa-
tion is used to access a counter in a map, which can be read and/or incremented.
For example, our Linear Road implementation counts the number of vehicles in
a road segment (see § 5.3.1).

Sets. Applications that need to represent set membership use bit fields. This is
easy to implement using ALU bit arithmetic. However, they are limited by the
width of the bit field. Applications that tolerate approximation can use bloom
filters.

Automatas. Some applications have complex processing logic with many steps.
Automatas, such as finite-state machines (FSMs) can be used to represent this
logic. This is done by storing state transitions as tables. The advantage of this rep-
resentation is the state machine can be quickly updated from the control plane,
without re-compiling the program. Chapter 4 describes this in more detail.

Queues. There are two main places to store queues: in switch memory; or in
the packet. On the switch, queue elements can be laid-out along the pipeline,
starting with the tail in the first stage, and growing the tail in subsequent stages
(see § 8.3). On the switch we are using, the size is limited by the number of

20 3.4 Summary

stages. Queues can also be stored in the packet, using the P4 abstraction of
header stacks: headers can be pushed or popped from the packet (see § 7.3).

3.3.2 Implementation Techniques

Recirculation. The PISA pipelined architecture does not provide any natural
constructs for iteration. So, to simulate iteration, switch programs can recirculate
packets through the pipeline (see § 5.3.1). This comes at the cost of switch
bandwidth, which is explained in Section 6.5.

Loop unrolling. This is an alternative to recirculation for simulating iteration.
The iterations of a loop are laid-out along the stages of the pipeline. This has
better throughput than recirculation, but the number of iterations is limited by
the number of stages in the pipeline (see § 5.3.1).

Threading state. Programs need to keep per-packet state as the packet travels
through the pipeline. There main ways of doing this. State can be stored in
metadata which travels through the pipeline alongside the packet. This uses
additional resources because the packet data, as well as metadata, must move
through the pipeline. An alternative is to store state directly in the packet. For
example, assuming the switch only receives IPv4 packets, the Ethernet type field
will always have the same value, so it can be used temporarily to store state, and
then restored at the end of the pipeline.

3.4 Summary

There are various types of INC hardware devices. In this dissertation we narrow
our focus to only one type of device: programmable switches. In this chapter we
characterized the types of services that can benefit from INC, and outlined the
building blocks necessary for building these services on programmable switches.

In the next chapters we present the INC services we built. For each service,
we describe how it uses the building blocks described in this chapter, as well the
implementation techniques. We then explain how applications use each service.
Finally, we evaluate each service with a combination of microbenchmarks and
real-world workloads.

Chapter 4

Publish/Subscribe

In this chapter, we explore how programmable data planes can provide a higher-
level of service to user applications via a new abstraction called packet subscrip-
tions. Packet subscriptions generalize forwarding rules, and can be used to ex-
press both traditional routing and more esoteric, content-based approaches. We
describe a compiler, called Camus, for packet subscriptions that uses a novel al-
gorithm with binary decision diagrams (BDD) to efficiently translate predicates
into P4 tables that can support O(100K) expressions. Using our compiler, we
built a proof-of-concept pub/sub financial application for splitting market feeds
(e.g., Nasdaq’s ITCH protocol) with line-rate message processing.

This service demonstrates usage of automatas (the BDD), as well as the im-
portance of being centrally located in the network: it is able to filter messages
early, reducing the load on down-stream switches and end-hosts.

4.1 Background

While the Internet is based on a well-motivated design [40], classic protocols
such as TCP/IP provide a lower level of abstraction than modern distributed ap-
plications expect, especially in networks managed by a single entity, such as data
centers. As a case in point, today it is common to deploy services in lightweight
containers. Address-based routing for containerized services is difficult, because
containers deployed on the same host may share an address, and because con-
tainers may move, causing its address to change. To cope with these networking
challenges, operators are deploying identifier-based routing, such as Identifier
Locator Addressing (ILA) [41]. These schemes require that name resolution
be performed as an intermediate step. Another example is load balancing: to
improve application performance and reduce server load, data centers rely on

21

22 4.2 Example: ITCH Market Feed

complex software systems to map incoming IP packets to one of a set of pos-
sible service end-points. Today, this service layer is largely provided by dedi-
cated middleboxes. Examples include Google’s Maglev [42] and Facebook’s Ka-
tran [43]. A third example occurs in big data processing systems, which typically
rely on message-oriented middleware, such as TIBCO Rendezvous [44], Apache
Kafka [45], or IBM’s MQ [46]. This middleware allows for a greater decoupling
of distributed components, which in turn helps with fault tolerance and elastic
scaling of services [47].

Although the current approach provides the necessary functionality—the mid-
dleboxes and middleware abstracts away the address-based communication fab-
ric from the application—the impedance mismatch between the abstraction that
networks offer and the abstraction that applications need adds complexity to the
network infrastructure. Using middleboxes to implement this higher-level of net-
work service limits performance, in terms of throughput and latency, as servers
process traffic at gigabits per second, while ASICs can process traffic at terabits
per second. Moreover, middleboxes increase operational costs and are a frequent
source of network failures [48, 49].

4.2 Example: ITCH Market Feed

To motivate the design of packet subscriptions, we introduce a running exam-
ple from the financial domain. Nasdaq publishes market data feeds using the
ITCH format [50]. ITCH data is delivered to subscribers as a stream of IP mul-
ticast packets, each containing a UDP datagram. Inside each UDP datagram is a
MoldUDP header containing a sequence number, a session ID, and a count of the
number of ITCH messages inside the packet. There are several ITCH message
types. We focus on add-order messages, which indicate a new order accepted by
Nasdaq. It includes the stock symbol, number of shares, price, message length,
and a buy/sell indicator.

Financial companies subscribe to the Nasdaq feed and broadcast it to all of
their servers in order to execute trading strategies. Each server, in turn, may also
publish a new feed expressing its strategy, letting other servers react. Typically,
each server is only interested in a very small subset of stocks. For example, one
trading strategy might only depend on Google stock data, while another might
depend on Apple.

To be concrete, let’s imagine that one trading strategy is only interested in
ITCH messages that match a certain criteria:

I’d like only stock buy orders for Google with a bidding price larger

23 4.2 Example: ITCH Market Feed

than $2.00.

It almost goes without saying, but in this domain, time is money, as high-frequency
trading strategies depend on speed to gain an advantage in arbitraging price dis-
crepancies. How could we perform this filtering while ensuring low latency?

Conventional Approach 1: Multicast. One approach to implementing the mar-
ket data feed filter would be to use IP Multicast. A multicast group would be as-
sociated with a certain portion of the data space (e.g., Google stocks) and would
effectively represent a rendezvous point between publishers and subscribers. A
publisher would send a packet to all the groups that the packet’s content belongs
to. A subscriber would join all the groups that express the subscriber’s inter-
ests. However, this approach has fundamental limitations. Minimizing traffic
would require many groups, which are a precious resource, and would in any
case overwhelm switches. Also, this solution places a burden of evaluation logic
on publishers (which may not be in the same administrative domain) to choose
between many fine-grained groups, or on subscribers to filter out uninteresting
packets from a few coarse-grained groups, or on both. In any case, finding a good
allocation of groups (or “channelization”) is a well-known NP-hard problem [51].

Conventional Approach 2: Kernel Bypass or Smart NIC. A second approach is
to multicast messages to the end-hosts, which would have to evaluate subscrip-
tion conditions. This processing overhead can be reduced, typically by using
kernel-bypass technology or a smart NIC. With further careful engineering, this
solution allows for the processing of market data with extremely low latency. In
fact, it is more or less what is deployed by algorithmic traders [52]. Putting aside
the cost of the engineering effort (or of the smart NIC hardware), this technique
places a significant burden on subscribers, where a processing core must be ded-
icated to filtering. Also, at high throughput, there will be congestion both at the
queue in the NIC and within the network, where it is particularly wasteful since
most packets are later filtered anyway. This congestion increases latency and the
chances of packet drops.

To demonstrate, we conducted an experiment with filtering performed at an
end-host using DPDK. We measure the end-to-end message latency for identi-
fying messages with the stock symbol GOOGL. For accuracy, the producer and
consumer ran on the same server but isolated using separate CPUs and with re-
served hugepages and NICs. When the producer sent messages at 1Mpps, the
application experienced low latency. This is because the receive queue size at
the end-host remained small. Then, we increased the throughput to 8.25 Mpps,
which is 90% of the application’s maximum throughput. As the CDF in Figure 4.1
shows, the tail latency increases when sending at the higher rate because the end-

24 4.3 Packet Subscriptions

0 100 200 300
Latency (us)

0.0

0.5

1.0

C
D

F

1 Mpps
8.25 Mpps

Figure 4.1. CDF of DPDK ITCH filtering.

host receive queue grows. Again, one could address this problem by allocating
more cores to the task, at the expense of these additional hardware resources.

4.3 Packet Subscriptions

A packet subscription is a filter that determines whether a packet is of interest,
and therefore whether it should be forwarded to an application. So, when end-
points submit a packet subscription to the global controller, they are effectively
saying “send me the packets that match this filter”. The following is an example
of a filter:

ip.dst == 192.168.0.1

It indicates that packets with the IP destination address 192.168.0.1 should be
forwarded to the end-point that submitted this filter.

One can interpret this filter the traditional way: each host is assigned an IP
address, and the switches forward packets toward their destinations. However,
in this traditional interpretation, the network is responsible for assigning IP ad-
dresses to end-points. Instead, with packet subscriptions it is the application that
assigns IP addresses. In other words, packet subscriptions empower applications
with the ability to define the routing structure for the network.

Another interpretation is that the subscription is equivalent to joining a mul-
ticast group with a given IP address. However, with packet subscriptions, the IP
address has no particular global meaning, and instead it is just another attribute
of the packet. Applications can use other attributes for routing, and in particular
they can express their interests by combining multiple conditions on one or more
attributes.

25 4.3 Packet Subscriptions

h ∈ Packet headers
f ∈ Header fields

n ∈ Numbers
s ∈ Strings

v ∈ State variables (e.g., my_counter, see Figure 4.3)
g ∈ State aggregation functions (e.g., avg)
c ::= c1 ∧ c2 | c1 ∨ c2 | ! c | e Filter: logical expression
e ::= a > n | a < n | a == n | . . . Numeric constraint

| a prefix s | a == s | . . . String constraint
a ::= h.f | v | g(v0 . . . vn) Attributes

Figure 4.2. Packet subscription language abstract syntax.

For example, suppose that a trading application is interested in ITCH mes-
sages about Google stock. The following filter matches ITCH messages where
the stock field is the constant GOOGL and the price field is greater than 50:

stock == GOOGL ∧ price > 50

The filters we have seen so far are stateless: the condition does not depend
on previously processed data packets. However, packet subscriptions may also
be stateful. A stateful filter may read or write variables inside the switch data
plane:

stock == GOOGL ∧ avg(price) > 60

In addition to checking equality on the stock field, this filter requires that the
moving average of the price field exceeds the threshold value 60. The macro avg

stores the current average, which is updated when the rest of the filter matches.
In general, a packet subscription is a logical expression of constraints on in-

dividual attributes of a packet or on state variables (see Figure 4.2). Each con-
straint compares the value of an attribute or a state variable (or an aggregate
thereof) with a constant, using a specified relation. The Camus subscription lan-
guage supports basic relations over numbers (e.g., equality and ordering) and
over strings (e.g., equality and prefix).

Camus also supports stateful predicates, but to a limited extent. First, Ca-
mus can only evaluate predicates that reason about local state. It cannot filter
on global state (e.g., the sum of values at more than one device). Second, re-
evaluating stateful predicates on multiple devices can lead to unexpected results
(e.g., the average of the average of the average). Therefore, Camus only eval-
uates stateful functions at the last hop switch before a subscriber. And, third,
due to the underlying hardware constraints, the types of computations Camus
can perform is limited. For these reasons, the stateful functions that Camus
supports are restricted to basic aggregations over tumbling windows, including

26 4.4 Compiling Subscriptions

count, sum, and average. This is similar to systems such as our Linear Road
implementation (§ 5) and Sonata [30].

4.4 Compiling Subscriptions

Compilation is divided into two steps: static and dynamic. The static step is per-
formed once per application, and generates the packet processing pipeline (i.e.,
packet parsers and a sequence of match-action tables) deployed on the switch.
The dynamic compilation step is performed whenever the subscription rules are
updated, and generates the control-plane entries that populate the tables in the
pipeline.

Note that this compilation strategy assumes long-running, mostly stable queries.
Highly dynamic queries would require an incremental algorithm, both to re-
duce compilation time and to minimize the number of state updates in the net-
work. Prior work has demonstrated that such incremental algorithms are fea-
sible. BDDs—our primary internal data structure—can leverage memoization
[53], and state updates can benefit from table entry re-use [54].

4.4.1 Compiling the Static Pipeline

In general, a packet processing pipeline includes a packet parsing stage followed
by a sequence of match-action tables. The compiler installs a different pipeline
for each application, as different applications require different protocol headers,
packet parser, and tables to match on header fields.

To generate the static plane, users must provide a message format specifi-
cation. The specification is based on data packets structured as a set of named
attributes. Each attribute has a typed atomic value. For example, a particular
ITCH data packet representing a financial trade would have a string attribute
called stock, and two numeric attributes called shares and price.

Figure 4.3 shows the specification for the ITCH application. The message
format specification extends a P4 header specification with annotations that in-
dicate state variables and fields that will be used by the filters. In the figure, lines
12-13 contain annotations indicating that the fields shares, price, and stock

from the add_order header will be used in subscriptions. Thus, the compiler
should generate P4 code that matches on those fields. As an optimization, users
may specify the match type. The annotation on line 13 specifies that the match
should be exact by appending the suffix _exact. The annotation on line 14 de-
clares a counter state variable. The first argument is the name of the counter

27 4.4 Compiling Subscriptions

header i t ch_o rde r {
b i t<16> s t o c k _ l o c a t e ;
. . .
b i t<32> shares ;
b i t<64> s tock ;
b i t<32> p r i c e ;

}
@pragma q u e r y _ f i e l d (i t ch_o rde r . shares)
@pragma q u e r y _ f i e l d (i t ch_o rde r . p r i c e)
@pragma q u e r y_ f i e l d _e xa c t (i t ch_o rde r . s tock)
@pragma query_counter (my_counter , 100 , 1024)

Figure 4.3. Specification for ITCH message format.

(my_counter) and the second is its window size (100us).
To support state variables, the compiler statically pre-allocates a block of reg-

isters that are then assigned to specific variables dynamically. The compiler also
outputs the code to update state variables in response to subscription actions at
periodic intervals—e.g., to implement the tumbling window used on line 14 in
Figure 4.3. Notice that the use (read/write) of state variable is determined by
subscription rules, which are not known statically. Therefore, the static compiler
outputs generic code for various update functions, and the dynamic compiler
effectively links subscription actions to that code. In particular, the dynamic
compiler links an update action of the general form v← f (args) with a subscrip-
tion action by associating that action to what amounts to pointers to v, f , and
args. However, the dynamic compiler implemented in our current prototype only
supports actions without arguments.

4.4.2 Compiling Dynamic Filters

A naïve approach for representing subscription rules would use one big match-
action table containing all the rules—each rule would be encoded using a single
table entry. However, this approach would be incredibly inefficient because the
table would require a wide TCAM covering all headers but containing only a
few unique entries per header. Furthermore, programmable switch ASICs only
support matching a single entry in a table, but a packet might satisfy multiple
rules. Hence, we would require a table entry for every possible combination of
rules, resulting in an exponential number of entries in the worst case.

Instead, our compiler generates a pipeline with multiple tables to effectively
compress the large but sparse logical table used by the program. To do this,

28 4.4 Compiling Subscriptions

Figure 4.4. BDD for three rules. Solid and dashed arrows represent true and
false branches, respectively.

the compiler represents the subscription rules using a binary decision diagram
(BDD) [55, 56]. BDDs are often used to obtain compact representations of func-
tions on a wide input domain for which a single table would be too large. A BDD
is a rooted acyclic graph in which non-terminal nodes encode conditions on the
input (i.e., the packet headers), and terminal nodes encode the result (i.e., a set
of actions). See the example in Figure 4.4.

The evaluation of the overall function of the BDD that encodes all subscrip-
tion rules starts at the root node and recursively evaluates the conditions (if) at
each node, proceeding to the true (then) or false (else) branch as appropriate.
Evaluation terminates when it reaches a terminal node (actions).

We now briefly describe the algorithm for building a BDD out of subscriptions
rules. What is important for our purposes is to define the structure of the BDD,
so we can implement the BDD evaluation as a sequence of table lookups.

Representing Rules with a BDD. The subscription rules are first normalized into
disjunctive form, yielding a set of independent rules in which the condition in
each rule consists of a conjunction of atomic predicates. An atomic predicate is
defined by an equals, greater-than, or less-than relationship between a field and
a constant. For example, the rules in Figure 4.4 are in disjunctive normal form.
The compiler then builds the BDD incrementally by evaluating the condition at
each node using the Shannon expansion and adding nodes for the predicates in
the condition as needed.

The compiler reduces the BDD using a combination of standard and domain-
specific transformations. (i) If two nodes are isomorphic, one is deleted. The
incoming edges of the deleted node are updated to point to the remaining copy.
(ii) If both outgoing edges of a node point to the same successor, then that node

29 4.4 Compiling Subscriptions

Match
Action

shares

< 60 state ← 1

> 100 state ← 2

* state ← 6

Match
Action

state stock

1 AAPL state ← 3

1 * state ← 6

2 MSFT state ← 4

2 * state ← 5

Match
Action

state

3 fwd(3)

4 fwd(1,2)

5 fwd(1)

6 drop()

Stock Table Leaf TableShares Table

Figure 4.5. Table representation of the BDD in Figure 4.4.
is replaced with the successor. (iii) If any ancestor n′ of a new node n implies that
n is always true or always false, then n is not added; instead, it reduces to a direct
connection to its true or false branch, respectively. The overall effect is to share
common structure and remove redundant nodes and unsatisfiable paths [57].

As is standard in ordered BDDs, the conditions in the BDD are arranged in a
fixed order. For example, every path in the BDD of Figure 4.4 consists of a se-
quence of atomic predicates such that the conditions on field shares precede the
conditions on field stock. This is essential for the representation and evaluation
of the BDD as a sequence of table lookups, as we discuss next. The choice of an
order can significantly impact the size of a BDD. Determining an optimal field
order is NP-hard, but simple heuristics often work well in practice.

BDDs to Tables. The BDD can be seen as a state machine, where each state
corresponds to a predicate, and the transition function is the evaluation of the
predicate on the input packet. However, this naïve evaluation would require
an excessively long sequence of evaluation steps. We instead implement BDD
evaluation using a fixed-length pipeline.

Since every path in the BDD traverses predicates that consider fields in order,
and that order is the same for every path, we use that ordering to effectively slice
the BDD into a fixed number of field-specific components. Each component is a
subgraph of the BDD that contains all and only those nodes that predicate on
a particular field. By extension, we also consider the set of terminal nodes as a
component. For example, the BDD in Figure 4.4 has three components consisting
of the blue, yellow, and red nodes, corresponding to the shares and stock fields,
and to actions, respectively.

We can now consider the evaluation of the BDD as a state-machine at the
level of the field-specific components. Thus the transition function out of the
component of field f depends on the value of field f in the packet. However,
since the component of field f is a macro-state corresponding to potentially many

30 4.4 Compiling Subscriptions

Algorithm 1: Translating BDD to Tables
Input: The BDD graph, G
Output: A set of tables Tf : state× dom(f)→ state

1 foreach field f do
2 C f ← subgraph of G predicating on field f
3 In← {n ∈ C f with in-edges from outside C f }
4 Out← {n 6∈ C f with in-edges from C f }
5 foreach path p = (u ∈ In, . . . , v ∈ Out) in C f do
6 range←> . all allowable values for field f
7 foreach node n ∈ p do
8 range← range∩ predicate(n)

9 Tf ← Tf ∪ {(u, range) 7→ v}

states of the BDD, the transition function must also depend on the BDD state in
which we enter the component. This entry BDD state and the value of field f are
necessary and sufficient to determine the path through the component of field
f and therefore the transition function for that component. We represent this
transition function as a match-action table where we match on the entry state
and on the value of field f , and where the action points to the next component
and BDD state.

Figure 4.5 shows all the component-specific match-action tables correspond-
ing to the transition functions for the BDD of Figure 4.4. The three tables also
define the three-stage processing pipeline. The evaluation through the pipeline
stores the current BDD state in metadata. The initial state is set to 0 and can
be omitted from the first table. The actions set the entry state for the following
stage, except for the Leaf table where the action corresponds to the overall BDD
evaluation. For example, the rightmost path through the BDD in Figure 4.4 cor-
responds to the path through the 2nd, 4th, and 3rd rows of the Shares, Stock,
and Leaf tables in Figure 4.5, respectively.

It is possible for multiple rules to match the same packet. For example, in
Figure 4.4, the first two rules could match the same packet, so the actions fwd(1)
and fwd(2) are merged into one action: fwd(1,2). The compiler translates this
to forwarding to a multicast group with ports 1 and 2.

We compute the transition tables with Algorithm 1. In essence, for each field-
specific component C f in the BDD, Algorithm 1 identifies a set of In nodes within
C f that are the destinations of all the edges that enter C f from components of
preceding fields, and a set of Out nodes outside C f that are the destinations of all

31 4.5 Evaluation

10 15 20 25 30 35 40 45
of subscriptions

0
500

1000
1500
2000
2500
3000

T
ab

le
 e

nt
rie

s

(a) Subscriptions

2 3 4 5 6 7 8
of predicates

0
1000
2000
3000
4000
5000

T
ab

le
 e

nt
rie

s

(b) Predicates

0 50K 100K
of subscriptions

0
200
400
600
800

1000
1200

C
om

pi
le

 ti
m

e
(s

)

(c) Compile time
Figure 4.6. Compiler efficiency

the edges that exit from C f to components of succeeding fields. Then Algorithm 1
computes the transition table by iterating over all the paths that connect In and
Out nodes. In general, a BDD could have an exponential number of such paths.
However, the domain-specific optimizations we use guarantee that there is at
most one path between any pair of In and Out nodes, which in turn guarantees
that the number of paths is at most quadratic.

Resource Optimizations. One of the scarce resources in switching ASICs are
TCAM memories that allow matching on a subset of bits in headers but con-
sume large area of die and high power. The compiler uses three techniques that
are application-agnostic to reduce TCAM usage. First, by default the compiler
generates P4 code that implements range matches, which usually require an ex-
pensive TCAM lookup. However, the user can guide the compiler by specifying
a matching type for each field that may not require a TCAM lookup. Second,
matching on a range in TCAM is not scalable to hundreds of thousands of ranges
as each range-match requires multiple TCAM entries (O(#bi ts)). To cope with
this, the compiler uses exact matches instead of range when possible, allowing
it to leverage SRAM while saving TCAM. Third, some fields, like shares, will
probably have only a few unique range predicates. The compiler can map val-
ues for that field and the corresponding range predicates onto a lower-resolution
domain (e.g., 8-bits).

4.5 Evaluation

We have implemented a prototype compiler in OCaml. The compiler parses the
application specifications written in P414 using the P4V library [58], patched to
support our custom annotations. We use our own implementation of a multi-
terminal BDD library with reduction optimizations.

There are three parts to our evaluation: (i) we explore the space/time effi-
ciency of the compiler; (ii) we demonstrate the efficacy of packet subscriptions

32 4.5 Evaluation

Controller

Publisher

ITCH Packet
GOOGL
MSFT
ORCL

"GOOGL"
Subscriber

"MSFT"
Subscriber

"AMZN"
Subscriber

Camus compiler

P4 compiler

Filters (subscriptions)

Switch

Reconfigurable
pipeline

P4 header
spec

P4 parser
spec

ITCH Packet
MSFT

GOOGL
ITCH Packet

Control plane
rules

P4 control block

Figure 4.7. Overview of Camus.

by implementing an in-network publish/subscribe system; and (iii) we compare
the end-to-end system latency and throughput for in-network publish/subscribe
to a baseline software implementation.

Efficiency of the compiler. To measure the space efficiency of the compiler,
we generated workloads using the Siena Synthetic Benchmark Generator [59],
which has been used to evaluate prior work in pub/sub systems [60]. Figure 4.6
shows the number of table entries required on the switch as we vary key parame-
ters: (a) number of subscriptions; and (b) selectiveness of subscriptions (number
of predicates).

Given the low growth rate of table entries as workloads become more com-
plex (4.6a), the experiments show that Camus uses available space effectively.
Figure 4.6b shows that more selective subscription conditions (i.e. more predi-
cates in the conjunction) require fewer table entries, which is because they result
in fewer paths in the BDD.

To measure our compiler’s runtime, we used a synthetic workload generator
to create ITCH subscriptions of the form “stock == S ∧ price > P: fwd(H)”,
where S is one of a 100 stock symbols, P is in the range (0, 1000) and H is one
of 200 end-hosts. Figure 4.6c shows the results. Compiling 100K subscriptions
resulted in 21,401 table entries and 198 multicast groups, which can easily fit in
switch memory.

Case Study: In-Network Pub/Sub. As an example use-case for packet subscrip-
tions, we have implemented an in-network pub/sub system. Figure 4.7 illustrates
the design of our pub/sub system, which we call Camus. Camus takes the sub-
scription filters together with the message format specification, and generates

33 4.5 Evaluation

0 50 100 150 200 250 300
Latency (us)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

Baseline

Switch Filtering

(a) Nasdaq trace

0 100 200 300 400 500 600
Latency (us)

0.80

0.85

0.90

0.95

1.00

C
D

F

Baseline

Switch Filtering

(b) Synthetic trace
Figure 4.8. ITCH experiments on hardware.

two outputs: (i) a P4 control block that specifies the control-flow and match-
action tables in the pipeline, and (ii) a set of control-plane rules to populate the
tables. The P4 compiler then takes the P4 parser specification (i.e., the packet
format) and the control block generated by the Camus compiler to generate the
switch image for the packet processing pipeline. At runtime, publishers send
messages. The switches running the Camus pipeline process the messages and
forward them to interested subscribers.

We used our Camus pub/sub system to do in-network filtering of market data
feeds. Many financial companies subscribe to the Nasdaq feed and broadcast it
to all of their servers in order to execute trading strategies. Typically, each server
is only interested in a very small subset of stocks. For example, one trading strat-
egy might only depend on data related to Google stock, while another might
depend on data related to Apple. Therefore, broadcasting the feed wastes re-
sources. Moreover, broadcasting all packets to servers builds queues at switches
and servers, which increases delay and the chances of packet drops. Any increase
in latency can have a significant impact on the user, as trading strategies depend
on speed to gain an advantage in arbitraging price discrepancies.

Throughput and Latency. Our experimental setup resembles Figure 4.7, except
for that the publisher and subscriber are collocated for accurate timestamping.
We ran our packet subscription pipeline on a 32-port Barefoot Tofino switch,
which can process packets at 3.25Tbps (on the 64-port version of the switch, we
would support 6.5Tbps). The ITCH publisher and subscriber are implemented
with DPDK [5], running on a server with an 8-core Intel Xeon E5-2620 v4 @
2.10GHz CPUs, 256GB DDR4-2133 RAM and 25Gb/s NICs (Mellanox ConnectX-
4 Lx and Intel XXV710-DA2). We ran the same workloads under two configura-
tions. In the baseline configuration, the subscriber filters the feed for add-order
messages with stock symbol GOOGL. In the second configuration, the filtering is

34 4.6 Conclusion

done with Camus.
We used two workloads: a Nasdaq trace from August 30th 2017 and a syn-

thetic feed. The number of messages of interest (i.e. for GOOGL) is 0.5% of the
Nasdaq trace, and 5% of the synthetic feed. We measured the latency between
the publisher sending a message with GOOGL, and it being received by the sub-
scriber. Figure 4.8 shows the latency CDF for both workloads. For the Nasdaq
trace, all messages arrived within 50us with Camus, compared to 300us for the
baseline. For the synthetic workload, 99.5% of the messages arrived within 20us
with Camus, compared to 96.5% with the baseline. Overall, filtering messages
on the switch with Camus reduces the tail latency, allowing applications to meet
their latency requirements under high throughput.

Other applications. We have focused on one running example for pub/sub, fi-
nancial market data. We chose this application because it demonstrates many of
the requirements that motivate packet subscriptions: routing based on application-
specific content, stringent latency demands, and filtering based on expressive
predicates. Because packet subscriptions can be used to implement pub/sub
communication, they could be used as an alternative for frameworks like Kafka
or ActiveMQ [61]. However, packet subscriptions are not a one-for-one replace-
ment. They are limited, in that they do not provide features such as reliable
communication and persistence. Rather, packet subscriptions are best suited for
application domains with high-throughput workloads that can tolerate some loss,
such as streaming analytics. Packet subscriptions would also be a useful abstrac-
tion for applications that require routing based on content identifier, including
in-network caching (e.g., NetCache [32]), load-balancing, elastic scaling of ser-
vices, and security.

4.6 Conclusion

Today, networks provide a lower level of abstraction than what is expected by
modern distributed applications. The main argument of this chapter is that the
emergence of programmable data planes has created an opportunity to resolve
this incongruity, by allowing the network to offer a more expressive interface.
The core technical contribution of this work is a set of algorithms for compil-
ing complex filter expressions to reconfigurable network hardware using BDDs.
These techniques are widely applicable to a range of network services. As a
systems artifact, we have used these techniques to build an in-network publish-
subscribe system that demonstrates predictable, low-latency packet processing
using the full switch bandwidth.

Chapter 5

Stream Processing

This chapter explores the question: what abstractions are needed for INC to
support a more general form of stateful processing? To address this question, we
look for clues from the domain of stream processing. As a case study, we describe
an implementation of the Linear Road benchmark for stream processing systems
written in P4. The artifact of our implementation, which runs on a programmable
ASIC, provides a version of the benchmark that far exceeds the throughput of
any prior work. More importantly, the experience provides perspective on the
challenges for implementing stateful abstractions in P4.

5.1 Background

In stream processing, also known as dataflow programming, an application is
represented by a directed graph where the vertices are operators and the edges
are streams. Streams are a continuous sequence of individual data items that
contain attributes. When a vertex receives a data item, an operator is fired. An
operator can merge multiple input streams, and split its input to multiple output
streams. A stateful operator stores data between firings.

The stream processing abstraction has been used to build various systems,
including the STREAM data stream management system [62] from Stanford Uni-
versity; the Aurora system [63] from Brandeis University, Brown University and
MIT; and IBM’s Infosphere Streams [64]. More recent systems include Apache
Flink [65].

35

36 5.2 The Linear Road Benchmark

5.2 The Linear Road Benchmark

Linear Road is a simulation of a hypothetical application that computes tolls for
vehicles on a highway system that consists of L expressways traveling from east
to west. Each expressway is divided into 100 segments, each with five lanes,
including an entrance and an exit ramp. Vehicles pay a toll when they drive on
a congested highway (where the average speed of all vehicles is under 40 mph
in a 5 minute span).

The benchmark queries receive input from both a set of continuous streams
of data, and some pre-loaded, historical data referred to as relations. The four
input data streams are:

• Position Report: a message periodically emitted by each vehicle with its current
speed and location.

• Account Balance Request: a request for the sum of tolls assessed to a vehicle
since the start of the simulation.

• Daily Expenditure Request: a request for the sum of tolls on a specific day from
the historical data.

• Travel Time Request: a request for the estimated travel time between two seg-
ments.

The historical data includes the following two relations:

• TollHistory: for each day, for each vehicle, for each expressway, the total of
tolls assessed.

• SegmentHistory: for every minute, the average speed and sum of tolls assessed
in each segment of each expressway.

Each stream or relation has a schema that specifies the names of the attributes.
For example, a PositionReport stream has the following schema:

(Time, VID, Spd, XWay, Seg, Lane, Dir)

where Time is the number of seconds since the start of the simulation, VID is
the vehicle’s identifier, Spd is the vehicle’s current speed, and XWay, Seg, Lane,
and Dir indicate the vehicles location (expressway, segment, lane, and direction,
respectively). Arasu et al. provide a complete benchmark specification [66].

The benchmark defines five queries that compute the outputs from the input
streams and relations. In prose, these queries are as follows:

37 5.3 P4 Linear Road

Figure 5.1. Tables and control flow of P4 Linear Road. Colors indicate a
particular implementation technique.

• Toll Notification: Upon entering a segment of an expressway, a vehicle should
be notified of the toll for that segment, which is based on the segment’s level
of congestion.

• Accident Alert: A vehicle travelling up to 4 segments upstream from an accident
(detected as two or more vehicles stopped in the same lane) should be notified.

• Account Balance: Upon requesting an account balance, a vehicle should receive
a response with the sum of tolls for that vehicle since the beginning of the
simulation.

• Daily Expenditures: A request for the sum of tolls for a vehicle on a given day
on a given expressway. This should be computed from the TollHistory historical
data.

• Travel Time Estimation: Given a time of day and day of week, calculate the
estimated travel time between two segments (computed from SegmentHistory
historical data).

As a workload, we use sample input data available on the benchmark web-
site [67].

5.3 P4 Linear Road

Using the P4 language, we implemented two versions of the benchmark: one
that runs in the software Behavioral Model, and one that runs on the Tofino
ASIC. Below, we describe the key implementation techniques, as well as some
limitations in our implementation.

38 5.3 P4 Linear Road

Our forwarding-plane version of Linear Road depends on the abstractions
offered by the P4 language, which reflects the structure of the target hardware—
i.e., the RMT architecture [11]. A RMT architecture has a pipeline of logical
match-action units with local memory. Each match-action unit imposes a strict
ordering on operations; all data reads must occur before all writes. There are
also a number of physical constraints, e.g., a fixed number of match units in a
pipeline; a limited amount of available SRAM and TCAM; and each TCAM can
only return a single result from a match (i.e., the highest priority match).

Our implementation runs on a single switch which receives and emits streams
of UDP packets. A stream tuple is encoded as a P4 header with fixed-width fields,
including a field that specifies the tuple type (e.g. a PositionReport or Acciden-
tAlert). Figure 5.1 illustrates the tables and control flow of our P4 program. The
arrows indicate the direction packets flow through the pipeline. The colors indi-
cate locations in the pipeline where we use different implementation techniques.

5.3.1 Implementation Techniques

To cope with the above constraints, our implementation relies on several tech-
niques, which we describe below.

Incremental Operator Computations All queries must perform their computa-
tions incrementally. That is, for every input tuple (i.e., packet), the operator com-
putes the differences in state relative to the previous operator invocation. This
approach reduces memory usage, as the query only maintains a limited amount
of incremental state. This technique is used in the orange tables in Figure 5.1.

For example, the Toll Notification query checks the number of vehicles in a
segment, as well as their average velocity. This requires storing two state ag-
gregates per segment: a counter for the number of vehicles, and an average of
their speeds. If a Position Report indicates that a car crossed into a segment,
then the previous segment’s counter is decremented and the next segment’s is
incremented.

Explicit Loop Unrolling P4 excludes looping constructs, which are undesir-
able in hardware pipelines. Therefore, all loops in our queries must be explicitly
unrolled. For example, the Accident Alert and Toll Notification queries must ex-
plicitly check the next four segments for stopped cars, which is done in the blue
tables in Figure 5.1.

39 5.3 P4 Linear Road

Multiple Register Arrays Based on the report from Sharma et al. [68], we
assume that a single index of the same register can be accessed (first a read,
then a write) in a stage. Therefore, to implement queries that need to access
multiple indexes, we partitioned the data into multiple registers (highlighted red
in Figure 5.1). For example, when a car crosses from segment 5 to 6, the query
must decrement the volume of cars in the previous segment, and increment the
next. Rather than express this as segment[5]--; segment[6]++, we keep two
register arrays, one for even and one for odd segments: segmentOdd[5/2]--;
segmentEven[6/2]++.

Pre-computed Historical State The purple tables in Figure 5.1 store data for
answering historical requests. Using tables, rather than registers, simplifies look-
ups, since the match already implements the logic for reading by keys. The con-
troller inserts the tuples from TollHistory and SegmentHistory into two separate
tables. When the switch evaluates a historical query, the row matching the query
is selected.

The Travel Time Estimation query selects multiple rows (one for each segment
in a path). However, the match-action paradigm only returns one table entry
per lookup. To find all the entries, our implementation recirculates the packet
through the egress pipeline: on each recirculation the sum of estimated travel
time is incremented with the next entry in the table, and finally the sum is sent
in the output packet. This is indicated by the gray dashed arrow in Figure 5.1.

Another technique for selecting all the entries could be to create multiple
replicas of the packet, assigning each a different key, and multicasting them to
the egress pipeline. Each replica would match a different entry in the table, and
update a common register. The final replica would read and output the accu-
mulated value from that register. This technique would use the same amount of
bandwidth as the one we implemented, but have lower latency, since the repli-
cas could be processed in parallel. However, this would require an additional
stage and a register to accumulate the partial result from each replica. It is only
applicable if the accumulation operation is commutative (due to parallelization).

We assume memory is local to a pipe and not shared between pipes. To in-
crease the amount of memory available, values can be partitioned among multi-
ple pipes; if a query arrives in a certain pipe, but requires values stored in another
pipe, the query can be recirculated to that pipe, as done in NetCache [32]. Of
course, this requires re-circulation, and would therefore reduce throughput.

40 5.4 Towards a General Query Language

Over-allocation of Resources Our implementation stores vehicle state in reg-
isters. To lookup the state of a vehicle, the VID is used as an index into the
registers. If VIDs are sparse, then register space will be wasted.

Passing State Through Stages A register array is stored in a specific pipeline
stage, and thus can only be accessed in that stage. Since computation in a stage
may require state that is read in a previous stage, P4 metadata is used to pass
state between stages. After reading/writing state to a register, the state is also
written to a metadata field, so that it can be used in a subsequent stage (e.g. for
determining whether a query evaluation has been triggered).

5.3.2 Deviations from Specification

Our hardware implementation diverges from the original Linear Road specifica-
tion in some relatively minor aspects:

Lane detection The original specification requires that an accident should be
detected when two or more cars are stopped in the same lane; our implemen-
tation checks whether they are stopped in the same segment. This is due to the
restriction on the number of stages in a RMT machine.

Time-based Average The original specification requires that the queries calcu-
late the average speed in a 5 minute window. Doing so would require us to
maintain values for 5 minutes. Maintaining a sliding window on an ASIC is dif-
ficult. So, we use a hardware-supported low-pass filter (LPF) to calculate the
average using single exponential smoothing 1. Since a LPF is not window-based,
we cannot compare it to the specification’s window approach for accuracy.

5.4 Towards a General Query Language

In the previous section, we described an implementation of the Linear Road
benchmark in P4. We chose to focus on Linear Road for several reasons: (i) it
has small scale in input data stream and queries, making a switch-based deploy-
ment feasible; (ii) it has a clearly defined semantics [66], allowing us to verify
the correctness of our implementations; and (iii) it has been generally adapted

1 avgn = αavgn−1 + (1−α)xn, where weight 0< α < 1 for the nth observation xn.

41 5.4 Towards a General Query Language

to a number of streaming engines (e.g., [62, 63, 69, 64]), indicating that it is
representative of stream processing applications.

However, the more general question this work addresses is: how feasible
would it be to implement general abstractions from streaming languages targeting
the RMT architecture via P4? In this section, we expand our discussion to more
general abstractions from the domain of stream processing systems that could be
adapted for use in a programmable data plane.

There are, of course, many stream processing languages (e.g., [70, 71, 72,
69, 73, 74]). Although they are all different, we make two broad generalizations
that we believe are useful. First, many stream languages distinguish between two
types of inputs: data from time varying streams (which is updated continuously)
and data from relations (which is mostly static). Second, many of them are based
on streaming-specific extensions to SQL, which in term is based on relational
algebra [75]. Below, we organize our discussion along these lines.

5.4.1 Input Data

Because the handling and storage requirements for transient, continuous data
may differ significantly from historical data, it is useful to distinguish between
two types of inputs: time varying streams and static relations.

Time Varying Streams Time-varying streams are data that arrives continuously
in online fashion. Stream processing systems try to process this data with high
throughput and low latency (average and tail). Programmable data planes are
well-suited to processing this type of data, as it is similar to processing network
packets. This data is typically associated with a timestamp, which must be either
an explicit attribute (i.e., packet header field), or acquired from the hardware.
P4 does not provide a built-in function for accessing a hardware timestamp, but
this can be exposed by the architecture, such as Portable Switch Architecture
(PSA).

Static Relations Static Relations are used to store historical data. Depending
on the needs of the query, this data may or may not be pre-aggregated. There are
two methods for storing static data with different trade-offs: (i) as pre-loaded
data in action parameters stored in SRAM/TCAM match tables, or (ii) in registers,
index by a key coming from a match table or a hash.

Match tables can only be programmed from the control-plane which has lim-
ited throughput. Although they cannot be used for instantaneous data, they

42 5.4 Towards a General Query Language

perfectly suit the historical data where the pre-loading latency is not critical.
Registers are more general and can be programmed and queried from data-

plane and control-plane. However, the number of registers and the bitwidth that
can be read in each stage is an order of magnitude smaller than tables.

Beyond storing the data, there must be ways to quickly access the data with
one or more keys. For both methods, keys can be generated from a match table or
a hash function. Match tables do not need to save all possible combinations for
historical data. Since the control-plane can pre-process the data, it can program
only the keys used in the match tables, thus reducing memory consumption. On
the other hand, if we use the hash for key, we do not need the match table. But,
if key indexes are sparse, then memory might be over-allocated. Depending on
the hash function and key space, there may be hash collisions. Depending on the
needs of the application, such collisions may or may not be tolerable.

Note that the ASIC cannot guarantee that historical data is persistent. How-
ever, in most streaming systems, the application needs only to consult historical
data when answering a query (i.e., persistent storage is not a requirement). So,
data can be re-loaded into the device in the event of a memory failure or device
restart.

5.4.2 Query Operators

Many streaming languages are based on SQL, which is based on relational al-
gebra [75]. The standard relational operators include set operations, such as
union and difference; join operations to correlate data; filter operations, such as
selection and projection, and aggregations. Streaming languages extend these
operators with window operators, which convert an input stream into a relation.

Set Operators Some operators perform set operations, such as union, differ-
ence or Cartesian product. Implementing these set-based operators would re-
quire some form of iteration. For example, one naïve implementation strategy
would be to store data as “tables” in an array of registers. In this strategy, each
“row” could be implemented as a P4 metadata structure, and operators would it-
erate over these structures to perform their computations. However, this design
is impractical on a switch for two reasons. First, storing the individual tuples
of the input stream requires a prohibitive amount of memory (SRAM). Second,
iterating over the table rows would be difficult to express in P4 and could not be
done at line-rate, as it would likely require re-circulation through the pipeline.

43 5.4 Towards a General Query Language

Time-based Count-based Event-based

Sliding Ø

Tumbling Ø Ø Ø

Table 5.1. Categories of windowed operators. Checks indicate windowing that
is implementable in P4.

Join Operators Performing a join in hardware can be implemented if the sets
being joined have constant sizes. In our Linear Road implementation, the vehicle
state registers are joined on the VID. In this case, each register contains exactly
one entry for each VID, so this operation can be implemented with a fixed amount
of memory and without iterating.

Filtering Operators Selections and projections are straight-forward to imple-
ment as a single transformation. A selection simply matches on a field, for which
switch hardware is specialized. Projections can be implemented by modifying
fields, or adding or removing new fields (i.e. with the P4 add_header() prim-
itive). Depending on the computational resources of the hardware (e.g. arith-
metic operations supported by the ALU), some projections may not be possible.

Aggregation Operators Aggregates, such as average, count, sum and min/max,
are computed over a window. The aggregate operators that require a fixed-size
window can be implemented incrementally by updating the latest value, which
is stored in a register array. To index into the register array, the input tuple’s key
(or hash of the key) can be used as an index. If the queries can tolerate bounded
error, an approximate data structure (sketch) can be used. For example, to count
the number of unique items, a cardinality estimator such as linear counting [76]
or hyperloglog [77] can be implemented using hashing and registers in data
plane [78, 79].

Window Operators Many streaming queries require window operations, which
intuitively convert a stream into a relation. In general, there are many types of
windows. Table 5.1 provides a summary of the main categories. A window may
be sliding or tumbling. A sliding window is a series of fixed-sized, overlapping,
contiguous time slices. The window advances by a slide size, and events outside
of the slide are evicted, while new events are added. A tumbling window is a
series of fixed-sized, non-overlapping, contiguous time slices. At the end of each

44 5.5 Evaluation

interval, the window “tumbles” and all data items are evicted. Both sliding and
tumbling windows may be time-based, count-based, or event based.

In P4/Tofino, it is feasible to implement count-based and tumbling windows
as they both have a static size. Sliding time-based and event-based windows,
however, require a dynamic window size, because the window can grow to an
arbitrary size during the interval or before the event. They are thus impractical to
implement, because of the memory and iteration constraints already described.

Linear Road makes use of sliding time-based windows (e.g. for calculating
average speed in a 5 minute interval), and count-based tumbling windows (e.g.
counting vehicles in the same segment). To approximate the sliding time-based
window for average speed, in our implementation we use single exponential
smoothing.

5.4.3 Summary

P4 primitives and data structures can be used to express many operators, albeit
some more cumbersomely (e.g. with loop unrolling). We found that data planes
are well-suited for streaming operations that do not require looping and that
require a bounded amount of state. Overall, the stream processing model maps
surprisingly well onto the P4 programmable switch hardware abstraction. That
we were able to implement the whole Linear Road benchmark demonstrates the
expressive power of this new programmable substrate.

5.5 Evaluation

We implemented two versions of the benchmark using P414: one that runs in the
software Behavioral Model (BMv2) with 1,263 lines of code (LoC), and one that
runs on the Tofino ASIC with 1,335 LoC. The code could be easily converted to
P416. We created a Python library (560 LoC) that parses the sample workload
data available on the Linear Road website [67], and outputs packets to be sent
to the switch. The BMv2 version of the code is publicly available2.

We deployed our Linear Road implementation on a 64-port ToR switch, with
Barefoot Network’s Tofino ASIC [11]. As per standard practice in industry for
benchmarking switch performance, we used a snake test: each port is looped-
back to the next port, so a packet passes through every port before being sent out
the last port. This is equivalent to receiving 64 replicas of the same packet. To
generate and receive traffic, we used an Ixia XGS12-H hardware packet tester,

2https://github.com/usi-systems/p4linearroad

https://github.com/usi-systems/p4linearroad

45 5.6 Conclusion

connected to the switch with 100G QSFP+ direct-attached copper cables. We
verified that P4 Linear Road can process over 4 billion events/second. Further-
more, the P4 Linear Road packet processing pipeline has a fixed latency that is
orders of magnitude lower than that of software implementations.

For comparison, the most recent published implementation of Linear Road [64]
running on a single node (dual-core 3GHz Xeon CPU with 2GB RAM) could
handle around 2M events/second with 1.67 seconds of latency. A more recent
streaming engine, Drizzle [80], does not evaluate Linear Road, but reports 100M
events/second for the Yahoo streaming benchmark, using 128 r3.xlarge Ama-
zon EC2 instances. We report these numbers simply to give context for our perfor-
mance; this is not an apples-to-apples comparison because these other systems
have different capabilities (e.g. persistent memory, complex transformations,
and fault-tolerance).

5.6 Conclusion

This chapter argues for using stream processing as a model for the types of ab-
stractions we will need to support general stateful computations in programmable
network hardware. This exercise not only provides a line-rate implementation
of Linear Road, but also helps to identify constraints and challenges for stateful
processing. It demonstrates that INC is suitable for applications that must per-
form computation on large quantities of data while they are in-flight, although
it trades-off some functionality (e.g., sliding windows, dynamically data struc-
tures) and portability across applications (i.e. the switch runs queries that are
specific to the application). As developers and network operators continue to ex-
plore ways to leverage this new hardware to offload or accelerate services, this
work highlights the pressing need for new language abstractions.

46 5.6 Conclusion

Chapter 6

String Search

This chapter describes PISA Parallel Search (PPS), a system for locating occur-
rences of string keywords stored in the payload of packets. It motivates the use
of INC for computational streaming workloads. Moreover, it describes the tech-
niques for implementing algorithms on the switch. The PPS compiler first con-
verts keywords into Deterministic Finite Automata (DFA) representations, and
then maps the DFA into a sequence of forwarding tables in the switch pipeline.
Our design leverages several hardware primitives (e.g., TCAM, hashing, parallel
tables) to achieve high throughput. Our evaluation shows that PPS demonstrates
significantly higher throughput and lower latency than string searches running
on CPUs, GPUs, or FPGAs.

This system is similar to the one described in the previous chapter, in that
they are both provide an analytics service. However, this system is more compu-
tational and makes more extensive use of the switch I/O.

6.1 Background

String searching is one of the most common and important functions run on
computers. It is estimated that 80% of the world’s data is unstructured [81],
meaning that it cannot be easily queried using a fixed data model. Instead, users
must search through large amounts of log data, JSON files, email, web pages and
other documents to find the relevant patterns.

These searches can have a significant impact on application performance. For
example, Palkar et al. [82] recently showed that using string searches to pre-filter
data before feeding it into Spark can provide a 9× improvement in end-to-end
application completion time.

Unfortunately, data is increasingly stored on devices that cannot provide good

47

48 6.1 Background

search performance. In order to improve the utilization of resources, many data
centers have turned towards a disaggregated architecture [83], in which storage
devices have weak CPUs and little memory. In the storage community, these
devices are commonly referred to as JBODS—just a bunch of disks.

Besides the fact that these machines are “wimpy”, performing search also re-
quires paying the levitation cost to get data off the disk. When running search on
an x86 CPU, this will be through PCI-Express, which is a known bottleneck [84,
85]. The fourth generation of this interconnect achieves 128Gbps over sixteen
serial links [86].

6.1.1 String Search Algorithms

There is a long history of research on string searching algorithms, and we are
unlikely to improve the performance via a purely algorithmic solution. Instead,
we seek to adapt an existing algorithm to best utilize the characteristics of the
new domain-specific machine: the programmable networking ASIC. Below, we
discuss the most well-known solutions, focusing on the suitability for PISA.

More formally, the string search problem is defined as follows. Let Σ be an
arbitrary alphabet. Given a text string t = t1 . . . tn and the pattern string p =
p1 . . . pm, where each t i and pi are characters in Σ, then output the set of all
positions in t where an occurrence of p starts as a substring.

The naïve algorithm iterates over every index of t, and checks if the string
starting from that index matches p, running in Θ(nm) time. Searching for mul-
tiple patterns requires iterating over the string multiple times, once for each pat-
tern. This algorithm could be implemented on PISA, but it would be unnecessar-
ily slow.

The Boyer-Moore algorithm [87], used by Unix grepmatches on the tail of the
pattern, rather than the head, and uses information gathered in a pre-processing
step to jump ahead multiple characters, rather than advancing one index at a
time. This reduces the best case running time to Ω(n/m), but the worst case
time is still O (mn). It also requires Θ(k) space, where k = |Σ| is the size of the
alphabet. The implementation would be similar to the naïve algorithm.

The Rabin-Karp algorithm [88] speeds up the comparison of the pattern with
the substring of t by using a hash function. This reduces the running time to
Θ(m + n) time. However, Rabin-Karp is not a good match for a PISA for two
reasons. First, it requires computing the sliding hash of the text being searched.
This would require a large number of hash units, which does not scale on hard-
ware. Second, there may be hash collisions, in which case the algorithm reverts
to comparing the two strings index by index anyways.

49 6.2 Design Overview

Instead, PPS is based on the Aho-Corasick algorithm [89]. Aho-Corasick,
which was the basis of the original fgrep command, runs in O (n+m+ z) time,
where z is the number of matches. The algorithm constructs a finite-state ma-
chine that resembles a trie, with additional edges between nodes that share a
common prefix.

6.2 Design Overview

At a high-level, PPS implements a finite-state machine in the pipeline of a PISA
switch to search for patterns in the payload of packets. PPS extends this basic
design with optimizations to effectively utilize the switch hardware.

The PPS state machine works at byte level granularity. Thus, PPS works with
binary data or ASCII strings. It does not make any assumptions about the char-
acter encoding (e.g., UTF-8, UTF-16, etc.) or length of the pattern.

Our prototype implementation assumes that input packets have Ethernet, IP,
and UDP headers. It begins searching at the UDP payload. However, this is not
inherent to the design, and PPS could just as easily start the search from the
beginning of the packet. PPS searches for patterns throughout the entire packet,
using recirculation to examine deep into the payload. Furthermore, it assumes
the switch is not oversubscribed and thus no packet loss.

If PPS detects a matching packet, it emits a new packet that contains a custom
header, indicating which packet matched, as well as the offset of where the match
occurred.

6.2.1 Expected Deployment

PPS can be deployed in two ways: as a dedicated appliance, or as a network
switch that also does bump-in-the-wire processing. However, in order to search
deep into the packet payload, PPS relies on re-circulation and it must discard
the initial portion of the packet at each iteration. Therefore, a bump-in-the-wire
deployment would require access to some external memory architecture to buffer
packets [90]. When deployed as an appliance, the ASIC program is relieved of
the responsibility of forwarding packets, and more resources can be dedicated to
searching.

In either case, the switch is configured to run the PPS data plane pipeline.
Conceptually, the pipeline consists of a sequence of tables that contain state ma-
chine transitions. Note that the pipeline is completely static. It is compiled once
when PPS is deployed, and does not change when search patterns are updated.

50 6.3 Pattern Compilation

Server
Server
Server

PPS
Switch

Controller

DFA Compiler Agent

Figure 6.1. Expected deployment.

The PPS controller process compiles patterns and installs table entries on the
switch. These entries are dynamic, and are re-generated whenever there is a new
search pattern.

The controller process is divided into two parts: the server sends rules to the
switch and the agent receives the rules and installs them via the control plane
API. PPS uses a custom controller agent to reduce serialization overhead.

Applications that use PPS run on servers connected to the switch. In order
to use PPS, they must send the data to be searched to the switch. Our prototype
implementation includes a small library that reads a stream of data and sends it
to the switch, one chunk per packet.

Figure 6.1 shows an example deployment, which is the same deployment
used in the Spark experiments described in Section 6.6. There are three servers
connected to the PPS switch. A fourth server acts as the controller process. The
servers have multiple NIC interfaces—as is common in data center deployments—
and the second interface is used to provide external network connectivity.

6.3 Pattern Compilation

The PPS compiler has two main tasks. First, it converts a set of search patterns
into a k-stride DFA. Second, it maps the DFA into a pipeline of match action
tables.

Patterns to k-stride DFA. PPS takes a set of search patterns as input. Patterns
can be arbitrary regular expressions. However, all of our experiments use inputs
that are finite strings (i.e., only concatenation operator), which are converted to
DFAs. As we will discuss in Section 6.5, handling arbitrary DFAs is expensive.

PPS differs from the standard Aho-Corasick algorithm in that it uses a k-stride
DFA. The stride size of a DFA refers to how many characters are read for each
transition. For example, a stride size of 2 means that the implementation reads
2 character per transition.

Increasing the stride size increases the throughput. However, the throughput
improvement comes at the cost of memory, as the size of the state transition table

51 6.3 Pattern Compilation

increases with the stride. With a stride size of s and an alphabet Σ, there are |Σ|s

transitions per state.

The algorithm to convert a set of patterns to a k-stride DFA is as follows. The
compiler first converts the patterns to a nondeterministic finite automata (NFA)
using the Aho-Corasick algorithm [89]. It then transforms the NFA to a DFA
using subset construction [91]. Finally, to convert the DFA to a k-stride DFA, the
compiler computes the k-stride closure on each node in the 1-stride DFA—for
each state s, a new transition is added for each state s′ that is reachable in k
characters from s. In Figure 6.2, the DFA on the right is the 2-stride equivalent
of the DFA on the left. Both machines match the string “dog”.

Patterns can occur at any offset within the input string, and patterns may
not be multiples of the stride size, k. This means that some transitions need to
ignore some characters to match the start and end of the string. For example, the
2-stride DFA in Figure 6.2 with pattern “dog” has start transitions *d and do (“*”
matches any character). Likewise, some of the terminal transitions also include
“*” and can be implemented with ternary matching.

k-stride DFA to MAU Pipeline. The DFA is then translated to the match-action
abstraction. The switch has a pipeline of tables that is compiled once and can be
used to execute any DFA. The DFA is installed in the tables at runtime.

The first step is to represent the DFA as a state transition table. Figure 6.3
shows the table corresponding to the 2-stride DFA in Figure 6.2. A naïve ap-
proach would be to store one big transition table in the pipeline that performs a
single transition. However, this would limit the number of characters consumed
per pipeline pass. Instead, we replicate the transition table on all stages. This
way, multiple transitions are performed per pass, increasing throughput by the
number of stages. Given the current state and the current k input characters,
each stage transitions to the next state.

To store the DFA on the switch, we leverage different types of memory. DFA
transitions that consume exactly k characters require an exact match, which is
stored in SRAM. The start and end transitions that match less than k characters
require ternary matching; these transitions are stored in TCAM. In each stage,
first the exact match table is applied; if no entry matches, then the TCAM table is
applied. If none of the tables match, then the default action is executed, setting
the state to 0. This is an implicit transition to the start state.

52 6.3 Pattern Compilation

1 2 3
1 2

3 4
0 0k = 1 k = 2

gd o

do

⁎d

g⁎

og

Figure 6.2. DFAs with different strides for "dog".

Match
Action

state chars
0 do set_state(1)

3 og accept(4)

1 g⁎ accept(2)

0 ⁎d set_state(3)

Figure 6.3. Table for 2-stride (k=2) DFA

6.3.1 Optimizations

Multiple DFAs. Memory is a scarce resource on switches. To reduce memory
usage, we split the DFA into multiple smaller DFAs, which run in parallel on
the switch. We do this by partitioning the patterns into multiple subsets, and
constructing a DFA from each subset of patterns. The aggregate size of these
DFAs (# transitions) is smaller than that of one large DFA containing all the
patterns. This is because patterns with similarities can cause an explosion in the
number of transitions. An optimal partitioning of the patterns yields a set of DFAs
with the smallest aggregate size. Currently, we partition the patterns randomly
multiple times and pick the best one. We chose to use 3 parallel DFAs in our
pipeline because: it is the most number of splits before the returns diminish;
and, coincidentally, it is the most that we can fit in the our hardware switch due
to resource limitations.

Tunable pipeline. In the pipeline design outlined above, every stage in the
ingress and egress pipeline performs a DFA state transition. To support more pat-
terns, we can make two changes: (i) reduce the stride size of the DFA; and (ii)
use the resources of multiple stages to perform a single transition. By reducing
the stride size, the number of transitions in the DFA is reduced, producing a more
compact DFA. By performing fewer transitions, we can combine the resources of
multiple stages. For example, if the DFA representation does not fit within the
resources of a single stage, we can split it across two stages. These optimizations
come at the expense of throughput, which we explore in the evaluation.

53 6.4 Implementation

6.3.2 Approximation

We observe that for some applications accuracy is not a strict requirement, such
as with approximate streaming analytics [92]. We can trade-off accuracy for
reduced memory usage by storing a hash of characters. Matching each character
in the stride size, k, requires storing k bytes per transition. Instead, the switch can
compute a CRC16 hash of the k characters. Some hash collisions are detected
at compile time (i.e. two different transitions out of the same state have the
same hash). In this case, we use perfect hashing: the compiler finds a different
hash function (CRC with a different polynomial) that doesn’t produce collisions,
and updates the pipeline to use that hash function. Hash collisions that occur at
runtime will produce false positives and false negatives.

6.4 Implementation

We have implemented a PPS prototype running on a Barefoot Tofino switch. At
its core, the prototype includes a DFA compiler written in Python (365 LOC), as
well as the DFA data plane program written in P4 (4754 LOC).

Controller. The Barefoot Networks switch agent offers a Thrift [93]-based API,
which requires serializing and installing each table entry one-by-one. To reduce
overhead, we implemented a custom agent that uses a binary serialization format
and installs entries in bulk. This optimization reduces entry installation time
from tens of seconds to milliseconds.

Data Levitation. Our prototype includes a client library that sends data to the
switch. Because PPS searches one packet (chunk) at a time, it is most suitable
for data that can be partitioned into chunks (e.g. lines, records). If the data is a
continuous stream of bytes that cannot be partitioned, the client can format the
data as overlapping chunks.

The client library is implemented in C and runs in userspace. It would be
possible to use DPDK [5], which could support higher throughput and lower
CPU load. Recent work by Kim et al. demonstrates that a Tofino switch can
serve as an RDMA end-point [90]. One could imagine connecting the switch to
JBODS via RDMA. Accessing the data from the storage servers would completely
eliminate the use of the server CPU for searching, allowing it to focus on other
storage tasks, e.g., error correction, de-duplication, etc.

54 6.5 Discussion

6.5 Discussion

Our prototype provides significant performance benefits to applications as de-
scribed in our evaluation. However, there are some limitations on the formatting
of input data and the types of search patterns supported.

Input Alignment. Data chunks sent to PPS must be aligned to the packet. If
a chunk spans multiple packets, a potential match split across the packets will
not be detected. To address this, as described above, our client can generate
overlapping chunks, which uses more bandwidth. To ensure that matches are
detected, the overlap must be the size of the longest search pattern. Furthermore,
the chunk must be less than the network Maximum Transmission Unit (MTU).

Recirculation. In one pipeline pass, PPS can search a fixed number of bytes
in the packet: k times the number of pipeline stages. To search deeper, the
packet is recirculated through the pipeline. At the end of each pipeline pass,
the bytes that were just searched are truncated from the packet. For example,
with 4 recirculations, the first pass searches the entire packet; the second 3

4 of
the packet; the third 2

4 ; and the fourth 1
4 . Thus, one packet actually uses more

bandwidth: 1+ 3
4 +

2
4 +

1
4 =

10
4 . This is 6

4 times the bandwidth for a single pass.
The bandwidth overhead factor can be generalized to n−1

n+1 , where n is the number
of recirculations. Although this reduces the overall throughput, it is still orders
of magnitude higher than that of other solutions (discussed in Section 9.5).

Generalizing to Regular Expressions. The technique we described for search-
ing fixed patterns also generalizes to Regular Expression (RegEx) matching. Our
compiler supports the Kleene star operator, alternation, and concatenation. It
also supports character classes using alternation. However, we found that com-
plex expressions result in a DFA state space explosion, using more switch memory.
This is especially the case for character classes, which require exact transitions
for all the characters in the class, which cannot leverage the ternary matching of
TCAMs. To enable more efficient RegEx matching, it could be possible to trans-
late each input byte to a symbolic value, reducing the number of table entries.

6.6 Evaluation

Our evaluation focuses on three questions: (i) How does PPS help with end-
to-end application performance? (ii) How does PPS performance vary with the
number of patterns? and (iii) How does PPS performance compare to state-of-
the-art software and hardware solutions.

55 6.6 Evaluation

1 40 80 120
Number of patterns

0
20
40
60
80

R
un

tim
e

(s
) Spark

PPS

(a) Filtering e-mails.

1 40 80 120
Number of patterns

0
10
20
30

R
un

tim
e

(m
in

)

Spark
PPS

(b) Filtering tweets.

1 4 8 12 16
Number of patterns

0

20

40

R
un

tim
e

(s
) Grep

PPS

(c) Searching a 12GB log file.

200 400
Number of patterns

0

2000

4000

6000

G
bp

s

1 DFA
3 DFAs

(d) Calculated tput feasibility
Figure 6.4. PPS end-to-end experiments and micro-benchmarks.

Experimental setup. We ran PPS on a 32x100G port Barefoot Tofino switch
connected to a 4-node cluster with QSFP+ breakout cables. Each server has 12
cores (dual-socket 1.6GHz Intel Xeon E5-2603 CPUs), 16GB of 1600MHz DDR4
memory, and an Intel 82599ES 10Gb Ethernet controller. For our microbench-
marks, we randomly selected non-disjoint “content” patterns from the Snort [94]
community ruleset.

6.6.1 End-to-end Application Performance

We used PPS to accelerate two Spark filtering jobs: scanning e-mails and filtering
Twitter tweets. For the baseline, we use Spark SQL, which partitions the filtering
among the worker cores. We compare this to a Spark program that pipes the
data to PPS for filtering. In both cases, the Spark job executes a reduce stage
that aggregates the sum of matching lines or JSON records. As we increase the
number of patterns, the end-to-end runtime with PPS stays constant.

Scanning E-mails with Spark. We did a line-by-line search of the “Podesta E-
mails”: a collection of 50K e-mails (4.7GB) published by WikiLeaks in 2016 [95].
Figure 6.4a shows the results for searching an increasing number of patterns.
Spark’s execution time increases steadily and jumps above a minute after 96 (a
multiple of 12 cores) because of query planning. PPS consistently searches the
entire file in under 3 seconds.

56 6.6 Evaluation

Filtering Tweets with Spark. Inspired by the evaluation in Sparser [82], we
filtered 212GB of JSON tweets collected using the Twitter Streaming API [96].
In addition to using unstructured patterns, we also searched for structured JSON
key/values, e.g. "lang":"ro" and "filter_level":"medium". Figure 6.4b
shows the results. Spark SQL chooses a poor query plan with fewer than 12 pat-
terns (which explains the dip); at 12 patterns, it has similar performance to PPS,
but slowly reduces as the number of patterns increases. For 128 search strings,
Spark takes 35.4 minutes, compared to 5.43 min for PPS (6.5x speedup).

6.6.2 Microbenchmarks

PPS vs Grep. For a direct comparison to grep, we measure the end-to-end time
to search a 12GB log file. The file is stored in a RAM disk, because otherwise disk
I/O (not compute) is the dominant factor in the search time. For PPS, the end-
to-end time includes: (i) sending the patterns to the controller, (ii) compiling
rules from the DFA, (iii) installing the rules and sending an acknowledgement
to the client, and (iv) streaming the data to the switch. Figure 6.4c shows the
search time for an increasing number of patterns. For a single pattern, both have
similar performance. For multiple patterns, grep’s runtime increases, while PPS
remains constant. This demonstrates that there are clear performance benefits,
even including the overhead of sending data to the network.

Pattern Complexity vs. Throughput. Ideally, the switch would have an unlim-
ited amount of memory that could hold as many patterns as necessary. However,
in reality, to be able to process data at line rate, the switch has a fixed amount of
memory. As the number (or complexity) of patterns increases, the stride size of
the DFA has to be reduced to fit the DFA in the switch memory. To further reduce
memory usage, we can also split the DFA into multiple DFAs (§ 6.3.1).

We calculated the throughput achievable for workloads with an increasing
number of patterns. We randomly selected patterns from the Snort ruleset that
are up to 32 characters long, which is the case for over 80% of the rules. We
then compiled the patterns into a DFA with the largest stride size that would fit
on the switch. Figure 6.4d shows the throughput using a single DFA (red) and
multiple DFAs in parallel (green). Note that these are theoretical values that
we calculated. It is reasonable to calculate the throughput (instead of testing it
experimentally), because a compiled P4 program runs at the speed of the archi-
tecture with a fixed number of stages and bounded memory access time.

57 6.7 Conclusion

6.6.3 Comparison to State-of-the-Art

To provide context for PPS performance, we briefly report results from compara-
ble state-of-the-art solutions. To be clear, these results are not direct benchmark
comparisons and are not collected using the same workloads. Using a GPU, Hsieh
et al. [97] reached 150Gbps for 20 Snort patterns. Titan IC’s Helios ASIC [98] re-
ports 100Gbps for 1 million rules. DFC [99] achieves 45Gbps using x86 servers.
With a single recirculation and a stride size of 4, PPS can search 100 Snort pat-
terns at 3.8Tbps on a 64-port Tofino.

6.7 Conclusion

PPS is inspired by the observation that PISA is well-suited for particular comput-
ing tasks. Some of the common characteristics of those tasks are: (i) the I/O
to computing ratio is high, (ii) the space complexity of the computing algorithm
(i.e., amount of memory required during computing) is low and independent
of the size of the input workloads fed to PISA via I/O, and (iii) the computing
algorithm is branch heavy. String search has these characteristics.

Searching in strings is a fundamental problem in computer science, and im-
proving the performance of the algorithm can have significant impact on a wide
variety of applications. We have described a set of implementation techniques
that build on the classic Aho-Corasick algorithm, while efficiently utilizing hard-
ware primitives (e.g., TCAM, hashing, parallel tables) to achieve high throughput
string searching on a programmable network ASIC. Compared to state-of-the-art
alternatives on CPUs, GPUs, and ASICs, PPS offers orders of magnitude improve-
ments in throughput.

58 6.7 Conclusion

Chapter 7

Optimistic Concurrency Control

Optimistic concurrency control (OCC) is inefficient for high-contention work-
loads. When concurrent transactions conflict, an OCC system wastes CPU re-
sources verifying transactions, only to abort them. This chapter describes a new
system, called Network Optimistic Concurrency Control (NOCC), which reduces
load on storage servers by identifying transactions that will abort as early as pos-
sible, and aborting them before they reach the store. NOCC leverages in-network
computing to speculatively execute transaction verification logic. NOCC exam-
ines network traffic to observe and log transaction requests. If NOCC suspects
that a transaction is likely to be aborted at the store, it aborts the transaction
early by re-writing the packet header, and routing the packets back to the client.
For high-contention workloads, NOCC improves transaction throughput, and re-
duces server load.

This system demonstrates why a coordination service benefits from being cen-
trally located in the network. It also shows that INC provides enough stateful
memory for simple data structure (a value cache), as well as enough expressive-
ness to process variable sized packets with the recirculation technique.

7.1 Background

Optimistic concurrency control (OCC) [100] is a key technique used by storage
systems to ensure correctness in the presence of concurrent transactions. With
optimistic concurrency control, a storage system speculatively executes a trans-
action without acquiring locks. Before committing a transaction, t, the storage
system must verify that no other transaction has modified the data that has been
read by t.

This optimistic approach stands in contrast to two alternative mechanisms for

59

60 7.1 Background

concurrency control: blocking and immediate restart [101]. Blocking and imme-
diate restart are both pessimistic approaches based on locking objects before a
transaction executes. The mechanisms differ in how they handle denied lock re-
quests. In the first approach, the transaction blocks until locks are acquired. In
the latter approach, the transaction is immediately aborted and must be retried.

There have been numerous studies comparing the performance of OCC to
pessimistic concurrency control [102, 103, 104, 105, 102]. Many of these studies
have contradictory results. Carey and Stonebraker [102] argue that blocking
provides better performance than restarts. Tay [104] argues that restarts provide
better performance than blocking. And Franaszek and Robinson [105] argue that
optimistic methods are preferable to pessimistic approaches.

A landmark paper by Agrawal et al. [101] sheds some light on why these
reports disagree. The authors identify three important assumptions on which
the prior works differ: (i) the existence of infinite resources; (ii) whether or
not restarted transactions are replaced with new independent transactions; and
(iii) whether read operations use exclusive locks, or shared locks that may be up-
graded to exclusive locks. This chapter focuses on optimistic concurrency control
and the infinite resource assumption.

By “infinite resources”, Agrawal et al. mean an infinite number of CPUs.
Given an infinite number of CPUs, in the absence of contention, throughput
should be a function of the number of concurrent transactions (since each CPU
could process a separate transaction in parallel). Note that the likelihood of
conflicts increases with the number of concurrent transactions. Agrawal et al.
showed in simulation that, assuming the existence of infinite resources, OCC
throughput continues to increase with the amount of concurrency since it never
needs to acquire locks. In contrast, the throughput of blocking and immediate
restart would both plateau.

However, in practice, with a bounded number of CPUs, OCC is inefficient un-
der high contention. Its performance degrades, since OCC wastes CPU resources
to verify transactions, only to abort them. In other words, the throughput of OCC
is bounded by the number of non-conflicting parallel executions of transactions.

In this chapter, we argue that INC allows us to develop an OCC system that
behaves as if it had infinite resources. The key idea is a new technique called
speculative verification offload, which executes verification logic in the network.
We have implemented speculative verification offload in a system named Net-
work Optimistic Concurrency Control (NOCC). NOCC identifies transactions that
are likely to abort in a Top-of-Rack switch, and aborts them before they reach the
store. Thus, transactions that reach the store rarely abort, avoiding wasted server
CPU, resulting in an extremely efficient optimistic concurrency control.

61 7.1 Background

5 10 15 20 25 30 35 40
Number of Clients

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
(T

X
N

/s
)

OCC
NOCC

Figure 7.1. Throughput for incrementing a single counter as contention in-
creases.

Motivation To demonstrate the above behavior, and motivate NOCC, we per-
formed a simple experiment in which we increased contention, and measured
the throughput of successful transactions. To increase contention, we increased
the number of clients attempting to read and modify (increment) the same object
in a key-value store. All the transactions passed through a switch that operated
in one of two different modes of execution. In the first, the switch acted tradi-
tionally, and simply forwarded requests to the store. In the second configuration,
which will be explained in Section 7.2, the switch executed NOCC logic to offload
verification.

Figure 7.1 demonstrates that the performance of OCC degrades under high
contention. With the traditional OCC store, as the number of clients increases,
the store sends more aborts per transaction. In contrast, NOCC is much more ef-
ficient. Since the switch performs the validation of transactions, most conflicting
transactions are aborted in the network, resulting in higher throughput.

Contributions We have implemented a prototype of NOCC using the P4 lan-
guage [19], and evaluated it using Barefoot Network’s Tofino ASIC [11]. Our
experiments include both a set of micro-benchmarks that explore the parameter
space, and an implementation of TPC-C [106] to emulate a real-world workload.
Our evaluation shows that under high-contention workloads, NOCC significantly
increases transaction throughput and reduces server load. Under low-contention
workloads, NOCC adds no additional overhead.

62 7.2 Design

7.2 Design

Before presenting the design of NOCC, we briefly provide important definitions
and describe the system model (i.e., key aspects of the system and environment).

Definitions and System Model

We consider a distributed system composed of client processes and a store. Pro-
cesses communicate through message passing and do not have access to a shared
memory. The system is asynchronous; We do not assume any bound on messages
delays and on relative process speeds. Processes are subject to crash failures and
do not behave maliciously (e.g., no Byzantine failures).

The store contains a set D = {x1, x2, ...} of data items. Each data item x is a
tuple 〈k, v〉, where k is a key and v a value. We assume that the store exposes
an interface with two operations: read(k) returns the value of a given k, and
write(k,v) sets the value of key k to value v. We refer to those transactions that
contain only read operations as read transactions. Transactions that contain at
least one write operation are called write transactions.

We assume that clients execute transactions locally and then submit the trans-
action to the store to be committed. When executing a transaction, the client may
read values from its own local cache. Write operations are buffered until commit
time.

The isolation property that the system provides is one-copy serializability: ev-
ery concurrent execution of committed transactions is equivalent to a serial ex-
ecution involving the same transactions [107]. To ensure consistency, the store
implements optimistic concurrency control. All read transactions are served di-
rectly by the store. To commit a write transaction, the client submits its buffered
writes together with all values that it has read. The store only commits a trans-
action if all values in the submitted transaction are still current. As a mechanism
for implementing this check, the system uses a compare(k,v) operation, which as-
serts that the value of k is v (i.e., the value has not changed since the client’s last
read. In the event of an abort, the server returns corrections with the up-to-date
values that caused the compares to fail. This allows the client to immediately
re-execute the transaction.

System Overview

Figure 7.2 shows a basic overview of NOCC. Transaction requests pass through
a NOCC switch, which either forwards the request on to the store, or aborts the

63 7.2 Design

NOCC
Switch

Client1

Clientn

… dss
Store

1

2
3

4
5

commit or
abort

log response

6

7

8

dcs

abort

log and
forwardsubmit

transaction

submit
transaction

done or
retry

retry

Figure 7.2. Overview of NOCC deployment.

transaction and responds to the client directly.

The blue, dashed-line shows the forwarding case: (1) the client submits the
transaction; (2) the switch logs the transaction in its local cache, and forwards it
to the store; (3) the store decides to commit or abort the transaction and responds
with the decision; (4) the switch logs the result of the execution, and forwards
the response to the client. (5) the transaction either completes or the client must
re-try.

The red, dotted-line shows the abort case: (7) the switch examines the trans-
action message. If the switch sees that the transaction is likely to abort based on
some previously seen transaction, the switch preemptively aborts the request;
(8) Upon receiving the abort message, which contains corrections, the client can
re-submit the transaction.

For a transaction that would have aborted at the store, there are two advan-
tages of the speculative verification offload approach. First, the store does not
waste resources on verifying the transaction, reducing load on the store. Sec-
ond, the message avoids traveling the distance from the switch to the store, dss,
twice.

64 7.2 Design

Data Store A transaction request message contains three possibly empty lists
of operations: compares, reads, and writes. The store first checks the compares
for stale values. If any compare fails, the store aborts the transaction. As part of
the abort response, the store includes a list of correct values, with the updated
values for comparisons that caused the transaction to fail. Otherwise, the store
updates the values of its data items with the values from the writes. Then the
store responds to the client with all the values that were updated, along with the
values that the transaction may read.

Speculative Verification Offload The NOCC switch logs requests and responses
from several clients in order to determine if a subsequent transaction is likely to
abort. NOCC adopts an aggressive strategy for aborting transactions. It proac-
tively updates its cache with the latest value after the switch has seen a trans-
action request (step 2 in Figure 7.2). Note that this cache is only used to make
decisions about aborting, and does not serve read requests.

We refer to this as a speculative verification offload strategy. It is speculative
because the switch assumes that any transaction request that it has seen and
conforms to its cached values is likely to be committed. As a result, it can make
decisions about aborting subsequent transactions sooner. However, this approach
may abort transactions that would not have been aborted by the store, which we
discuss in Section 7.4.

The logic for speculative verification offload is as follows. The switch has logic
for processing both transaction requests and their responses. When the switch
receives a transaction from the client, it checks the compares. If any compare
operation references a key that is not in the cache, then the switch cannot reason
about the validity of the transaction, so it forwards the request to the store. If
the compare references a key that is in the cache, then the switch compares
the value in the packet with that in the cache. If the values differ, the value in
the cache is added to a per-transaction set of corrections. After processing the
compares, if there is at least one correction (i.e. there was a comparison that
failed), the switch immediately sends an abort response to the client with the set
of corrections. When the client receives the abort response, it uses the values in
the corrections to recompute and resubmit the transaction immediately, avoiding
an extra round trip of requesting the latest value from the store. There are two
benefits: the client can retry the aborted transaction right away (lower latency);
and the there is less chance that the value will have changed again since receiving
the abort (which would be more likely if the client had to re-request the value).

If no comparisons fail, then the switch checks if the request contains write

65 7.2 Design

operations. If there are write operations, the switch updates its cache with the
new values. Then, it forwards the transaction to the store for processing.

An abort message from the store contains a non-empty list of the corrections.
The corrections contain the updated values that caused the transaction to fail.
When the switch receives an abort message, it updates its cache with the correct
values. If the switch did not update its cache on aborts, it would incorrectly abort
subsequent transactions.

We note that although a NOCC switch needs to maintain states in its local
cache, the size of the cache does not need to be too large to be effective. It is
sufficient to reserve enough space for “hot” data items. The amount of space
available to the cache will depend on the target platform for deployment. If the
size is restricted, NOCC could use a cache eviction policy to make space available
for new items.

Detecting Stale Values In a typical transactional storage system, data items
would include a version number that the store would use to determine if a trans-
action should be aborted due to a stale value. However, with the speculative
verification offload strategy, the switch must update its local cache of data items
before the store could assign a version number. Therefore, NOCC cannot use
version numbers to check for stale values. Instead of comparing version num-
bers, NOCC compares the actual values of data items. Furthermore, by storing
the actual values on the switch, they can be included in switch-generated abort
messages, which enables clients to retry transactions immediately with the latest
values. This obviates the extra round trip of the client requesting the latest value
from the store, reducing transaction retry latency and load on the store.

Expected Deployment We expect that NOCC would be deployed in a Top-of-
Rack switch that inspects all traffic in a rack of storage servers. However, if
NOCC were deployed in a way that it did not interpose on all traffic to a store
(e.g., clients connected to different switches update data at the store), NOCC
does not violate correctness. Clients and switches will learn of new values after
an abort message from the store. For example, if client1 writes a value v1 for key
k1, then switch1 will record v1 in its cache. However, if clientn+1 had previously
written a value v′1 for key k1, the request from client1 will pass through switch1,
but will be aborted by the store. The client and switch1 will learn of the new
value v′1 in the abort response from the store. They will both then update their
local caches, and the client can re-submit the transaction with the latest value.

66 7.3 Implementation

Correctness The store ensures one-copy serializability. The serialization order
is defined by the arrival order of transactions at the store. A transaction only
commits if all the reads it performed during execution are still up to date at the
time the transaction is received by the store.

The correctness of the switch logic follows from the fact that (a) the switch
does not commit any transaction, although it may abort transactions, and (b) the
switch forwards non-aborted transactions to the store without changing their op-
erations. The switch may abort transactions that would not have been aborted by
the store; this does not compromise correctness, but has a performance penalty
which is outweighed by the benefits of correct aborts.

7.3 Implementation

We have implemented NOCC as a P4 program that runs on a Barefoot Tofino
ASIC [15]. We have also implemented a client program and OCC transactional
storage system in Python. NOCC uses a custom transaction header encapsulated
in a UDP packet, followed by a sequence of fixed-width operation headers.

The P4 program contains parsers and tables for standard L2 forwarding, as
well as processing logic for transaction packets, which is divided into two phases.
In the first phase, the program iterates over the operations, checking that the
compares are valid (i.e., the value in the packet matches the value in the cache).
In the second phase, the program iterates over the operations a second time,
either: updating the cache if the transaction is valid; or, updating the invalid
values in the packet and returning it to the client as an abort.

The cached values on the switch are stored in registers which allow up to 32
bits to be read or written in a single pipeline stage [11]. This presented us with
two challenges: caching large values and accessing them multiple times for the
same packet (e.g., for the iterations). To store larger values, we split the value
across multiple registers stored in different stages. To iterate over the operations
in the packet, we use recirculation; after each iteration, the packet is recirculated
through the pipeline, storing the state of the computation (including iteration
index) in packet metadata. Although we could recirculate an arbitrary number
of times, the number of operations per transaction we support is bounded by
how deep the packet can be parsed, which in turn, is bound by the size of the
packet header vector [11]. Although recirculation reduces the throughput of the
switch, it still provides better performance than a software implementation.

67 7.4 Evaluation

5 10 15 20 25 30 35 40
Number of Clients

0
1
2
3
4
5
6
7

A
bo

rt
s

pe
r

TX
N

(s
to

re
)

OCC
NOCC

(a) aborts per txn
vs. #clients

5 10 15 20 25 30 35 40
Number of Clients

0
10
20
30
40
50
60
70

TX
N

La
te

nc
y

(m
s) OCC

NOCC

(b) latency vs.
#clients

Figure 7.3. NOCC has low aborts and latency at store.
7.4 Evaluation

In this section, we describe two sets of experiments that evaluate NOCC. The
first set of experiments are microbenchmarks that explore how NOCC impacts
the performance for executing transactions on a key-value store under changing
operational conditions: number of clients, write ratio, and workload contention
(skew).

In the second set of experiments, we explore real-world inspired workloads,
by using the TPC-C [106] benchmark with the parameters adjusted to increase
contention. Overall, the results demonstrate that NOCC improves throughput
and reduces latency for workloads with high contention.

Experimental setup We used two machines, each with 12 cores (dual-socket
Intel Xeon E5-2603 CPUs @ 1.6GHz), 16GB of 1600MHz DDR4 memory, and
Intel 82599ES 10Gb Ethernet Controllers connected to a Barefoot Tofino switch.
All the clients were collocated on one machine, while the store server ran alone
on the other machine.

Microbenchmarks

NOCC has higher throughput as the write ratio increases Each client in the
benchmarks issues a mix of read and write transactions on the same key. The
write ratio dictates the percent of the total number of transactions that are writes.
Figures 7.4a and 7.4c show throughput and latency for 8 parallel clients, as the
write ratio changes. These figures clearly demonstrate the effect of write op-
erations, which limit the overall performance of the system. As the write ra-
tio grows, OCC’s throughput becomes limited due to the high cost of aborting
writes. NOCC’s throughput, on the other hand, degrades slowly, since requests
are aborted at the switch and clients can optimistically retry transactions sooner.
At 0.2 write ratio, NOCC’s throughput is already 1.3x that of OCC, reaching 2.2x

68 7.4 Evaluation

0.0 0.2 0.4 0.6 0.8 1.0
Workload Write Ratio

0

1000

2000

3000

4000

5000

Th
ro

ug
hp

ut
(T

X
N

/s
)

OCC
NOCC

(a) throughput vs.
write ratio

0 1 2 3 4 5 6
Contention (Zipf Exponent)

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
(T

X
N

/s
)

OCC
NOCC

(b) throughput vs.
contention

0.0 0.2 0.4 0.6 0.8 1.0
Workload Write Ratio

0
2
4
6
8

10
12
14

TX
N

La
te

nc
y

(m
s) OCC

NOCC

(c) latency vs. write
ratio

0 1 2 3 4 5 6
Contention (Zipf Exponent)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

TX
N

La
te

nc
y

(m
s)

OCC
NOCC

(d) latency vs. con-
tention

Figure 7.4. NOCC improves throughput and latency as write ratio and con-
tention changes.

that of OCC at 1.0 write ratio.

NOCC does not add overhead for reads When all transactions are reads, a
NOCC switch does not perform verification logic. We can see in Figures 7.4a and
7.4c that when the write ratio is 0, NOCC has no overhead compared to OCC.

NOCC scales with the number clients Figure 7.1 reports throughput when
the write ratio is fixed at 0.2. NOCC provides a higher transaction rate, past
the saturation point of OCC, reaching 4.6x the throughput at 40 clients. Using
NOCC, transactions can abort early and optimistically be retried with the latest
values, before the previous conflicting transaction commits. Offloading verification
to the switch reduces the number of aborts the store has to send (Figure 7.3a),
freeing the store’s resources to commit valid transactions. Because of this, the
transaction latency scales linearly with the load, as Figure 7.3b shows.

Skewed workloads benefit from NOCC This experiment characterizes the effect
of contention on the performance of NOCC. Clients submit transactions that can
access one of 10 keys, and the popularity of each key is dictated by a Zipf distri-
bution. Figure 7.4b shows how increasing the Zipf exponent affects throughput.

69 7.4 Evaluation

2 4 6 8 10 12 14 16
Number of Clients

0

50

100

150

200

Th
ro

ug
hp

ut
(T

X
N

/s
)

OCC
NOCC

(a) #clients vs.
throughput

2 4 6 8 10 12 14 16
Number of Clients

0

1

2

3

4

5

6

C
P

U
U

sa
ge

at
S

to
re

(%
)

OCC
NOCC

(b) #clients vs.
CPU usage

Figure 7.5. TPC-C Payment transaction

With the Zipf exponent at 0, all keys are accessed with the same probability, and
contention increases for larger exponents. As contention increases, the number
of aborts grows, limiting the performance of write transactions for OCC. NOCC,
on the other hand, by optimistically aborting and retrying transactions closer to
the client, is less affected by the increase in contention.

TPC-C

The TPC-C [106] benchmark models an online transaction processing (OLTP)
workload for a fictional wholesale supplier that maintains warehouses for differ-
ent sales districts.

We note that TPC-C is not a good benchmark for evaluating NOCC, since
the benchmark is intentionally designed to avoid queries that result in high-
contention. Nevertheless, TPC-C is a widely accepted standard for evaluating
transaction processing systems. We therefore focus on the TPC-C payment trans-
actions, which has contentious dependencies.

To further increase contention, we modified the parameters of the bench-
mark. The TPC-C specification states that the benchmark should be run with a
set of specific parameter values: 1 warehouse, 10 districts, 3000 customers and
100,000 items. For our evaluation, we used the following settings: 1 warehouse,
2 districts, 10 customers and 10 items.

As a TPC-C driver, we modified an open source Python implementation from
Pavlo et al. [108]. Since the store does not have indexes, we modified the trans-
action executor to only perform exact selects. To represent the TPC-C database
in our store, we map each record to a key-value pair. The client driver keeps
a copy of all records it has read or written, essentially mirroring the store with
a local cache. This eliminates the unnecessary latency of issuing read requests
for records that have not changed. Consistency is guaranteed by validating the
transaction before committing, ensuring the read values (possibly from the local

70 7.5 Conclusion

cache) are up-to-date.
Figure 7.5a shows the throughput for the Payment transaction, and figure

7.5b shows the CPU usage at the store, for increasing contention. In Figure 7.5b,
we can see that NOCC reduces the load on the store (by up to 22% compared to
OCC), while maintaining slightly higher throughput.

Discussion After seeing the microbenchmark results, we expected TPC-C to
maintain higher throughput with NOCC. However, the performance was limited
by incorrect speculative decisions. The switch aborts transactions that would
not have been aborted by the store. Nevertheless, NOCC performed better than
the OCC baseline, suggesting that NOCC can speed-up transaction processing for
high-contention OLTP workloads.

7.5 Conclusion

NOCC moves transaction processing logic into the network, using a custom packet
header and programmable switches to identify and abort doomed transactions as
early as possible. For write-intensive, high-contention workloads, NOCC reduces
load on the store and increases system throughput.

Overall, concurrency control is a key component of storage systems, and
NOCC demonstrates how tighter integration with the network can lead to sig-
nificant improvements in performance.

Chapter 8

Transaction Triaging

This chapter describes Transaction Triaging (TT), a set of techniques that ma-
nipulate streams of transaction requests and responses while they travel to and
from a database server. Compared to non-triaged transaction streams, the ma-
nipulated ones execute faster once they reach the database server. The triaging
algorithms do not interfere with the transaction execution nor require adherence
to any particular concurrency control method, making them portable across sys-
tems.

At the core of our TT switch implementation is a queue data structure. This
demonstrates how application data can be buffered on the switch efficiently. Fur-
thermore, some of the triaging techniques use recirculation on the switch to pro-
cess packets with an arbitrary number of transactions.

We validate the TT techniques using a high-performance in-memory database
and a programmable switch. The results show that TT can improve workloads
such as TPC-C [106] and YCSB [109], both on an IP-based stack and an RDMA-
enabled one. For IP-based protocol stacks, a triaged stream can offset up to 97%
of the network overhead. In other words, the server processes more transactions
per unit of time, which almost cancels the networking overhead. For RDMA-
enabled networks, which are already low-overhead, triaging can bring a peculiar
benefit. It becomes faster to execute a triaged transaction stream coming from
the network clients than if local clients generated a non-triaged workload.

8.1 Background

Improving transaction processing performance has long been a critical concern
for database systems [110]. There are many techniques for simultaneously han-
dling sets of concurrent transactions [107] and for executing them efficiently [111].

71

72 8.1 Background

Clients DB Server
partitions

…

Programmable
 Network

original streams

transaction triaging logic

database partitions txn types

triaged streams

transaction

…

Figure 8.1. In-network triaging fosters faster transaction execution.

These techniques apply to transactions that have already reached the database
server. However, a portion of a transaction’s lifetime is spent on networking:
transferring a client’s request into the database server and shipping the results
back. For in-memory databases, such networking time can represent a high cost.
Our experiments (described in detail in §8.6)show that for some small but typical
workloads, the transaction delivery and return alone can take up to 70% of the
user-perceived response time. Technologies such as RDMA [6, 112] can signif-
icantly reduce this overhead, but the techniques we present here enhance even
those networks, as we discuss shortly. Moreover, not all networks have RDMA-
capable hardware. Consider, for example, a transaction that starts on a mobile
device. It does not enjoy the benefit of RDMA for at least part of the path into
a database server. For another instance, suppose a transaction requires repli-
cation across datacenters, where the interconnect lacks RDMA support. Recent
advances notwithstanding, many still consider the networking overhead to be an
unavoidable “tax” that activities such as transaction processing pay for distribu-
tion.

The overhead exists because data transfers take time but do not advance any
computation. The switches performing the transfer, however, contain significant
computing power. They can parse and make routing decisions for a handful of
billions of packets per second. These high-end switches are invariably based on
specialized chips designed to execute a fixed set of networking protocols.

In this chapter, we use INC to address the network overhead that transac-
tion processing incurs. We propose several techniques that rearrange streams of
transaction requests and responses while they are in-flight, as Figure 8.1 depicts.
We call such techniques Transaction Triaging (TT). For example, TT can batch
(coalesce) many network packets into one, amortizing the per-packet handling

73 8.2 Transaction Triaging

steering
(same partition) batching

reordering
 (high-affinity)

Core

Core

Core

Core

database partitions txn types

Triaging Techniques

client streams triaged streams

protocol
conversion

individual txn

…
…

…
…

…
…

…

…

Figure 8.2. Conceptual view of the triaging techniques. Transactions with the
same shape target the same partition. Transactions with a similar color have
high affinity; executing them in sequence will likely improve performance.

overhead across many transactions. Of course, a single client could batch its
transactions, but only the network can perform batching across clients. More-
over, the server can also batch responses to distinct transactions, offloading onto
the network the task of breaking them down according to their destination.

Creating TT techniques is challenging in at least two ways. First, it requires
finding effective transaction manipulations that influence the server’s perfor-
mance. Batching is just one of the several TT techniques we present. The second
challenge is encoding these techniques as algorithms that INC can support. As
we mentioned above, INC does not turn the network into a general-purpose com-
puter. Instead, it requires adhering to a particular programming model that only
supports forward-logic.

8.2 Transaction Triaging

Triaging aims to produce streams of transactions carefully designed to improve
server efficiency. We identify four triaging techniques that have the following
properties: (a) they inter-operate, (b) potentially impact server performance,
and (c) can be carried by programmable networks. Figure 8.2 illustrates the
individual techniques we identified: batching, steering, re-ordering, and protocol
conversion.

The batching technique bundles several single-packet transaction requests
into a larger network packet. In OLTP, clients naturally produce single-packet
transactions as they need the results of a current transaction to determine what
to do next. Batching amortizes the packet-receiving overhead across multiple
transaction requests.

The steering technique influences how a multi-core database interacts with
the network. The network may elect a single core to receive an incoming packet
or use RSS to load balance the related overhead across the cores. In-memory
databases often choose to partition the data horizontally and map partitions to

74 8.3 In-Network Algorithms

cores (e.g., partitioning TPC-C by warehouseID) [113, 114, 115]. RSS is bound
to deliver transactions to a “wrong” partition if it does not take that mapping into
consideration. Our steering technique allows RSS to use partitioning information
to guide the NIC’s RSS algorithm.

Transaction reordering manipulates the sequence in which the transactions
arrive at the server. It attempts to place similar transactions close to one an-
other using an affinity metric. For example, transactions with similar access pat-
terns may reuse instructions or data caches [116, 117]. As another example,
re-ordering can influence the likelihood of an abort in a database with optimistic
concurrency control.

Lastly, protocol conversion translates packets to use a more efficient network
stack between the switch and the server. Quite often, a top-of-rack switch has a
fast connection with the servers in that rack. We assume this is the case and allow
the switch to use techniques such as RDMA in the last hop of the communication,
even if the client-to-switch portion of that stream cannot benefit from RDMA.
This technique leverages the fact that for a database server the bulk of the RDMA
benefits come from how the receiving NIC interacts with the system.

Combining the four techniques produces the following result: our pipeline
generates streams that carry multi-transaction packets, each containing transac-
tions for a given database partition/core, while all transactions within a batch
share some beneficial degree of affinity. The batch is delivered directly to the
core most involved with the execution, and the delivery utilizes low overhead
protocols.

8.3 In-Network Algorithms

The Transaction Triaging techniques described in the previous section can be
implemented on an x86 CPU using standard data structures and programming
languages. However, our goal is to execute such logic on high-speed switches.
We must create algorithms that respect the logical constraints of the computing
model and the physical limitations of the current generation of such equipment.

There are at least two design challenges that need to be addressed in that con-
text. First, we must separate our algorithms’ logic into a control plane component—
which runs offline before deployment—and a data plane component—which is
expected to process transaction requests at line-rate. In our case, some algo-
rithms use conversion tables (e.g., given a transaction type what batch should it
join) that are calculated offline. Some other portions of our algorithms manip-
ulate packets while they are in-transit in the data plane (e.g., actually place a

75 8.3 In-Network Algorithms

txn metadata

transaction packet

header

[qi]
[partID] qi

[clientID]

queue-sizes
table

batches
table

steering
table

ɠ
ɡ

ɢ

txn data

clientID
partID

qi

2 3

Figure 8.3. Example of side-effects of processing a packet on the switch. (1) a
packet is matched with the steering table using the clientID field and chang-
ing the packet header as a result; (2) the lookup of field partID results in
associating a queue number with the packet; and (3) the queues’ size table is
incremented to account for the imminent packet buffering.

transaction on a batch using the table).

The second design challenge is to express the data plane component in the
forward-logic style the switch imposes. This model enforces a strict ordering on
operations; all data reads must occur before all writes. Moreover, each stage can
perform a limited number of steps, and all logic must fit into the fixed number of
stages in the switch. By design, there are no loops—network devices are designed
to process packets in a single pass.1

We introduce a simple example of forward-logic next and describe our algo-
rithms in detail afterward. Our goal is to highlight some of the implementation
challenges for this particular set of algorithms while providing a broader perspec-
tive on how to implement other algorithms or data structures on a PISA device.

Switch Programs. Figure 8.3 illustrates how a sequence of match-action tables
(MATs) modify a packet carrying a transaction. In step (1), the program performs
a lookup on a steering table, which we describe shortly, using the clientID field
as a key, and updates the packet’s header with the contents of the match. The
altered packet moves to the next stage (2), where a lookup on table batches is
done using field partID. Note that the side-effect this time is to record the batch
(queue) to which the packet belongs in its metadata. Lastly, the packet moves
to the next stage (3), where a lookup on table queue-sizes is done using the qi

from the previous step. This step increments the value of an entry on that table,
the size of queue qi.

1 Iteration can be achieved by re-circulation a packet through the pipeline, at the cost of
reducing the throughput of the device.

76 8.3 In-Network Algorithms

…

client server

server client

steering
logic

restore
port logic

batch
lookup

queue
increment

enqueue
dequeue

enqueue
dequeue

…

q1

enqueue
dequeue

q
m

q0size0
size1

size m

… ………

q i
q j

qk
q i

q j
single txn
request

high-affinity
txn batch

batched
txn responses

single txn
response

… …

0 1 2 3 Nstages

ste
ering

(sta
tic)clie

ntPorts batch
es

(sta
tic)

queueSize
s

slo
t3

slo
t4

slo
tN

Match-Action
Tables …

clie
ntAddrs

(sta
tic)

splitting
logic

restore
addr logic

…

Figure 8.4. Placement of TT-related match-action tables across the pro-
grammable switch stages.

Algorithm Notation. We use pseudo-code that captures common forward logic
restrictions without using the syntax of any particular programming language.
Note that our prototype is implemented in P4 [19], but other languages such as
Broadcom’s NPL [118], Huawei’s POF [119], or Xilinx’s PX [18] could have been
used. The data plane logic is separated into a sequence of stages, indicated by
the Stage: keyword, where each stage corresponds to one match-action unit in
the pipeline. The logic at each stage is triggered when a request (to the server)
or response (from the server) is received, which is indicated by the upon . . . do
code block. We use the notation with var as lookup key in table id to indicate
that we perform a lookup operation on the table named id with a specified key.
The result of a lookup is bound to the variable name var, in the lexical scope
indicated by the indented text.

We present more detailed algorithms for each of our four TT techniques next.
Figure 8.4 depicts how the techniques are integrated in a single switch program.

8.3.1 Steering

When the server’s NIC receives a packet, the RSS algorithm computes a hash on
five specific packet header fields—the source/destination addresses and ports,
and the IP protocol—and uses the hash to select a CPU core to interrupt. RSS
simply load balances packets across cores (e.g., with 12 cores, RSS selects core
number hash%12).

To steer a packet to a specific database thread, we influence the NIC’s RSS
algorithm by changing the values of some of the five header fields. Note that
we cannot change the source and destination address, as that would interfere
with routing in the network. Nor can we change the destination port, because
the database server is already expecting packets on certain ports. This leaves a

77 8.3 In-Network Algorithms

single candidate to modify: the UDP source port.
Finding the UDP source port for steering a transaction can be done offline

using an exhaustive search. The exhaustive search algorithm finds a random
UDP port that, hashed with the other four RSS fields, would induce the NIC to
send the packet to the desired partition/core [120]. The search space is limited
because the number of UDP ports and the number of connected clients is limited.
We assume that the database client addresses are known upfront. This algorithm
produces the steering table, which maps a client address srcAddr and a partID
to a srcPort (for the RSS) and dstPort (where the partition/core is). This table
can either be used at the client or directly in a network switch.

Algorithm 2: Steering Transactions and Responses
Stage: 0
Table: steering . Stores ports that steer client requests
Table: clientPorts . Stores the original srcPort for clients

1 upon request pkt do
2 with row as lookup (pkt.clientID) in table clientPorts
3 row.port← pkt.srcPort

4 with row as lookup (pkt.srcAddr, pkt.partID) in table steering
5 pkt.srcPort← row.srcPort
6 pkt.dstPort← row.dstPort

7 upon response pkt do
8 with row as lookup (pkt.clientID) in table clientPorts
9 pkt.dstPort← row.port

Algorithm 2 shows how the switch uses the steering table to steer a trans-
action packet to a specific database thread. The logic can fit in a single stage of
the switch pipeline. Upon receiving a transaction request packet, the switch first
stores the packet’s original source port. It does so by looking up the client (iden-
tified by pkt.clientID) in the clientPorts table and updating the row with the
port (line 2). The switch loads the ports associated with the partition the transac-
tion wishes to access (lines 4–6). It looks-up the client’s address (pkt.srcAddr)
and the partition ID (pkt.partID). It then substitutes the source and destination
ports (srcPort, dstPort) in the packet, effectively causing the packet to go to
that destination instead.

Upon receiving a response (line 7), the switch must restore the pkt.srcPort

from the original request packet. Otherwise, the client will receive a packet for
an unknown port (the client is not aware of the translation). The switch loads

78 8.3 In-Network Algorithms

the previously-stored source port, pkt.srcPort, which is now the destination
port of the packet, pkt.dstPort (line 9).

8.3.2 Batching

Conceptually, the logic for creating batches is straightforward. The main idea
is to combine transactions from multiple request packets into a single batched
packet. However, to implement this in the network, we must address several
non-trivial issues. First, we must manage several queues (batches) in a pipeline
architecture. Second, we must determine which transactions to place within
the same batch. Third, we must keep track of where transaction requests came
from, in order to forward the corresponding individual response when splitting
the batched response packets.

Algorithm 3 gives an outline of our forward-logic implementation of batching.
At a high level, as requests arrive, the transactions are put in one among many
possible queues. When a queue is full, it is drained, and the transactions are
combined into a single request. There are three main steps in the algorithm: (i)
choosing the queue (batch) for a transaction; (ii) updating the state (size) of the
chosen queue; and (iii) either enqueueing a transaction or draining the queue
when it is full. When the queue is drained, the transactions in the queue are
appended to the current packet.

To guarantee that batches will not stay incomplete indefinitely, the control
plane can inject special, per-queue timeout requests, which we discuss in Sec-
tion 8.5. Such packets trigger a batch-send in case the batch has not increased
for a given time. For simplicity, we omit this mechanism in Algorithm 3.

In stage 1, the algorithm picks a queue for the transaction by performing
a lookup on table batches (line 2). The table contains a mapping from the
transaction’s partition (pkt.partID) to a queue ID (qid); this ensures that each
batch contains transactions for the same partition and is steered to the appro-
priate database thread. We discuss in Section 8.4 how the table batches can
be generated offline (potentially considering more information than simply the
transaction’s partition).

In stage 2, the algorithm loads the current queue size (m.qsize) for the cho-
sen queue (line 5). The queue size is then incremented and stored. If the queue
size has reached the batch size, then it wraps around to 0.

The packet passes through the rest of the stages, each of which holds one
index entry of all queues. The head of the queue is in stage 3, and the tail moves
down the pipeline as transactions are enqueued. Depending on whether the
queue is full or not, the stages perform different actions. If the queue is not full,

79 8.3 In-Network Algorithms

the transaction in the packet is stored when the packet reaches the stage corre-
sponding to the tail of the queue (line 14). If the queue is full, the transaction
stored in each stage is loaded into the packet (line 16); once the packet reaches
the end of the pipeline, it will contain all the transactions from the queue, and
the batch is sent.

After executing the transactions, the database responds with a batched re-
sponse packet. This packet contains the result for transactions submitted by dif-
ferent clients. The switch has to split this packet into multiple packets, each
addressed to the originating client.

Our algorithm relies on making copies of the packet as it iterate over the
transactions within it, as shown in Algorithm 4. Programmable switches usually
provide very efficient mechanisms to support such packet copy operations. In
stage 1, the algorithm checks whether the packet contains multiple transactions
(line 2). If there are indeed multiple transactions, the packet is split into two
packets: a copy which contains all but the first transaction; and the original
packet, with only the first transaction. The original packet continues to the next
stage, while the copy is sent back to the beginning of the pipeline.

Stage 2 receives the original packet from stage 1. In this stage, the packet
must be addressed to the client that originally sent the transaction. The client’s
address is looked-up in the clientAddrs table (line 8), which contains a mapping
of clientIDs to addresses. This mapping can be established during the initializa-
tion of each client’s connection. For simplicity, we omit such logic and assume
that, for the purpose of this explanation, the clientAddrs table is static.

8.3.3 Reordering

As described above, Algorithm 3 picks a queue for each transaction based solely
on the transaction’s target (or main) partition. This constitutes a coarse-grained
mechanism to reorder transactions. The ordering can be further manipulated in
several ways. For example, we can also classify transactions by their type (e.g.,
NewOrder or Payment in TPC-C), in addition to their target partition. The ta-
ble batches in Algorithm 3, line 2 would then map a packet’s txnType, partID

(instead of just partID) into a qid, effectively enforcing a separation policy. If
certain transaction types should be delivered together to the server, the batches

table would map them to the same qid. Conversely, transaction types that in-
terfere with one another could be assigned to different queues. The number of
queues is limited only by the memory available on the switch, but programmable
switches can have memory for even thousands of such queues (as the batch sizes
are usually small).

80 8.3 In-Network Algorithms

Algorithm 3: Batching Transactions
Stage: 1
Table: batches . Maps transactions to queue IDs

1 upon request pkt, metadata m do
2 with row as lookup (pkt.partID) in table batches
3 m.qid← row.qid

Stage: 2
Table: queueSizes . Stores the current size of each queue

4 upon request pkt, metadata m do
5 with row as lookup (m.qid) in table queueSizes
6 m.qsize← row.qsize + 1
7 if m.qsize = BATCH_SIZE then . Queue is full
8 row.qsize← 0

9 else
10 row.qsize← m.qsize

Stage: N: 3 . . . 3+BATCH_SIZE
Table: slotN . Stores txn at position N-3 in the queue

11 upon request pkt, metadata m do
12 with row as lookup (m.qid) in table slotN
13 if N−2 = m.qsize then . Tail of queue
14 row.txn← get txn from pkt

15 else if m.qsize = BATCH_SIZE then . Queue full
16 append row.txn to pkt

Having a finer control over the transaction ordering within the same batch is
also possible. With a slightly different logic in Stages N (lines 11 to 16), Algo-
rithm 3 could perform an insertion sort and place a transaction anywhere within
the batch. Lines 13 to 14 would instead swap a transaction in the first position
when the incoming transaction’s priority is higher than the existing one. If a
transaction gets displaced this way, it becomes the current transaction—and the
insertion process repeats, starting at the stage the displacement occurred. When
draining, the algorithm preserves the order in which the transactions appear on
a queue, therefore inducing the same order onto the server, upon the receipt of
a new batch.

In summary, the algorithms described here are flexible with respect to the
ordering criteria to use. The layout and contents of the table batches and the

81 8.3 In-Network Algorithms

Algorithm 4: Splitting Batched Transaction Responses
Stage: 1

1 upon response pkt do
2 if pkt contains multiple txns then
3 pkt′ ← copy pkt
4 remove first txn from pkt′

5 truncatate all but first txn from pkt
6 send pkt′ to stage 0

Stage: 2
Table: clientAddrs . Stores each client’s address

7 upon response pkt do
8 with row as lookup (pkt.clientID) in table clientAddrs
9 pkt.dstAddr← row.addr

matches performed by Algorithm 3 can be tailored to specific cases. We discuss
some suitable alternatives in more detail in Section 8.4.

8.3.4 Protocol Conversion

This technique has both a strategic and a practical purpose. The strategic one
is to take advantage of RDMA as a low-overhead protocol between the switch
and the database server. We can do so even if RDMA is not available for part
of the client-server interconnect. The practical purpose is related to the current
generation of programmable switches. They can buffer a handful of packet fields:
the transaction’s ID, type, and originating client. However, to buffer the entire
transaction payload would require full packet manipulation involving an area
of the switch that is not (yet) fully programmable: the traffic manager. There
have been attempts to address this issue [121, 122], but we took an alternative
approach instead. To overcome what we believe is a temporary limitation, we
buffer the transaction directly on the database server via one-side RDMA initiated
by the switch.

Figure 8.5 provides an overview of the two channels we use to send trans-
actions to the server. When the switch receives a transaction (1), it assigns the
transaction to a queue as described above, as well as a memory address in a ring
buffer on the server. It stores the transaction metadata, along with the memory
address in the queue in switch memory. It then transforms the transaction packet
into an RDMA WRITE request and forwards it to the server (2). The server’s NIC

82 8.4 Transaction Affinity

metadata payload

Switch DB Server

triage
metadata

payload

IP (or RoCE RDMA)
transaction packet batch completed

execution

ɠ

ɢ

txn buffer

txn queue

Client

RoCE RDMA

protocol conversionɡ

ɣ

Figure 8.5. Using protocol conversion to RDMA for delivering transaction
payloads. (1) the transaction metadata is buffered on the switch; (2) the
transaction parameters are forwarded to the transaction buffer area in the
server; (3) when the batch completes, the server received it as a single packet;
and, (4) the server gets the parameters of the transactions from the buffer area.

receives the WRITE and stores the transaction in the ring buffer at the address
specified by the switch. Note that this does not involve the server’s CPU.

When a batch is full, the switch pops all the transactions from the queue (3),
including the memory address in the server’s ring buffer. This batched packet
reaches the server through an RDMA SEND operation. The database process
receives the batched packet. The database reads all the transaction memory
addresses in the packet to load the previously stored transactions from the ring
buffer (4).

Our protocol conversion technique has another advantage. It minimizes the
changes to the networking subsystem of a database that wishes to integrate
Transaction Triaging. The transactions metadata (steered, batched, and reordered)
reach the switch via the normal client connection, as we discuss in Section 8.5.
The only necessary change is for the system to read the transactions payload from
the designated queues.

8.4 Transaction Affinity

The algorithms described in Section 8.3.3 can effectively program the switch to
carry out the following mapping:

t ransact ionT ype, par t i t ionI D→ queueI D, priori t y .

Based on the contents of the batches table and on a transaction’s target par-
tition, its type, and its priority, the logic on the switch decides which queue to
pick to direct an incoming transaction. Optionally, it also decides the relative po-
sition of the transaction in a queue. This scheme is powerful enough to express

83 8.5 Integration to Existing Systems

many different policies.
The simplest strategy is to separate transactions by their partition and type.

The necessary number of queues corresponds then to the product of the number
of different transaction types by the number of partitions in which the database
is divided. For workloads with a limited number of transaction types, this is a
very suitable scheme. For instance, running TPC-C (5 transaction types) on a
12-core machine would call for 60 queues on the switch. We show how TPC-C
can benefit from this technique in Section 8.6.

In real-world scenarios, however, we expect much more elaborate transac-
tion sets and clustering techniques. One way to triage transactions is through
micro-benchmarking them offline and identifying opportunities. For instance,
STREX [116] and ADDICT [117] are techniques based on static analysis of query
plans. They find transaction types that share instruction patterns and can thus
benefit from instruction cache reuse if executed together (on the same core,
within a short amount of time).

Another technique to obtain a mapping would be exhaustive evaluation. A
starting point is the combination of the number of transaction types per size of
batch. (The size of a batch is an implementation detail that depends on the
flavor of the queue used on the switch and structural properties of the switch.)
This number can be aggressively pruned by reducing the number of different
transaction types in a batch. We envision a calibration tool that performs such
tests automatically.

8.5 Integration to Existing Systems

Integrating TT into a database server requires a few peripheral changes. We list
them below.

Transaction buffer. The server continues to read transaction request packets
as before, although the latter will only contain the transactions’ metadata. To
receive the transactions’ contents, the server must create a transaction buffer, as
depicted above in Figure 8.5. The switch is responsible for delivering the portions
of the transactions it does not buffer into that area. The server informs the switch
of the location of this area at initialization time. When the server receives a
metadata batch to execute, it fetches the additional transaction information from
the buffer.

Reliability. The switch performs triaging over transactions carried by UDP/IP or
RDMA UD. These protocols are easier to manipulate in part because they lack

84 8.6 Evaluation

reliability. To compensate, we assume that a client would re-send a transaction
request if it does not receive a response within a certain time. Moreover, the
client would periodically inform the server of the most recent response it has
received.

The server maintains a transaction response cache. If it received a transac-
tion request whose response is in the cache, it re-sends those results rather than
re-executing the transaction. The cache is cleared using the clients’ acknowl-
edgement messages or after an established timeout. This scheme assumes that
both clients and transactions can be uniquely identified.

Packet Format. We assume that network packets have a standard transaction
metadata header that allows the switch to manipulate arbitrary transactions uni-
formly. The header carries information about the client and the transaction. Of
particular interest here is a transaction’s type, e.g., NewOrder or Payment in
TPC-C, and the primary partition which the transaction targets, e.g., a hash of
the warehouseID. The client and the server may negotiate some parameters at
connection time, such as the database partitioning criteria. We assume that a
transaction is an instance of a stored procedure initiated by an OLTP applica-
tion [123]. Moreover, the application can fill all the transaction’s input param-
eters at the same time, when issuing the transaction’s execution request. The
database client’s library is responsible for filling the transaction metadata fields.

8.6 Evaluation

To evaluate Transaction Triaging, we carried out four sets of experiments. The
first set establishes a baseline comparison by quantifying the overhead attributed
to the network (Section 8.6.1). The second set evaluates the impact of each
optimization in isolation under various system parameters (Sections 8.6.2-8.6.4).
The third set evaluates the optimizations using different network transport layers
(Section 8.6.5). Finally, we compare the performance under different workloads
(Section 8.6.6).

Experimental Setup and Environment. As a representative in-memory trans-
actional database, we used Silo [124]. Silo is open-source and capable of ex-
ecuting hundreds of thousands to millions of transactions per second. For this
reason, Silo is often used as a benchmark for new concurrency control algo-
rithms [125, 126, 127]. We extended Silo with a network component for each
of the protocol stacks we use, as the open-source version does not support net-
working. We refer to this extended version of Silo as NetSilo.

85 8.6 Evaluation

10 100 1000
Transaction size (rows accessed)
0

200K

400K

600K

Th
ro

ug
hp

ut
 (T

XN
/s

)

70%
overhead

21% 14%

Silo
Net Silo

Figure 8.6. Overhead of network communication on in-memory database.

We ran all experiments on a pair of servers, one acting as the database server,
the other as multiple clients. Each server had dual-socket Intel Xeon E5-2603v3
CPUs @ 1.6GHz with a total of 12 cores and 16GB of 1600MHz DDR4 mem-
ory. Each server had both an Intel 82599ES 10 Gb/s (DPDK compatible) and a
Mellanox ConnectX-5 100 Gb/s (RDMA) Ethernet controller. The servers were
connected to a 32-port 100 Gb/s programmable switch based on the Tofino
ASIC [15].

8.6.1 Networking Overhead

Transmitting and handling transaction requests accounts for a portion of the per-
ceived transaction response time. As we mentioned, this overhead can be sub-
stantial. To quantify this impact, we pre-generated an entire set of transactions
and placed them in memory on our Silo server (LocalSilo). We then com-
pared the time to execute this local workload versus sending the same workload
through remote clients. For this experiment, we used a UDP/IP stack.

Figure 8.6 shows the throughput of the locally- and remotely-generated work-
load executions. We used a workload of a single transaction that accesses either
10, 100, or 1000 rows from a database table. With networking, executing rel-
atively small transactions adds about 70% overhead compared to executing the
transaction locally. As the transaction size increases, the overhead decreases,
which suggests that the absolute per-transaction overhead is constant.

8.6.2 Steering Experiments

To evaluate how steering contributes to performance, we run NetSilo in three
modes: with RSS disabled, with standard RSS, and with our semantic RSS. In
each mode a different core (or set thereof) receives an interrupt from the NIC

86 8.6 Evaluation

2 4 6 8 10 12
Number of cores

0

100K

200K
T

hr
ou

gh
pu

t (
T

X
N

/s
)

No RSS
Normal RSS
Semantic RSS

(a)

0 10 20 30
Latency (ms)

0.80

0.85

0.90

0.95

1.00

CD
F

No RSS
Normal RSS
Semantic RSS

(b)

0 10 20 30
Latency (ms)

0.80

0.85

0.90

0.95

1.00

CD
F

No RSS
Normal RSS
Semantic RSS

(c)

Figure 8.7. Steering throughput (a) and latency CDF for 6 (b) and 12 (c)
cores.

to indicate that a new packet arrived. Without RSS, a single core is interrupted.
With RSS, the cores are selected via hashing some fields of the packet’s IP head-
ers. Lastly, semantic RSS delivers each packet to the primary database partition
the transaction refers to.

Figure 8.7a shows the effect of varying the number of cores on transaction
throughput. In this experiment, RSS brings an improvement when compared
to single-core interrupts. Semantic RSS delivers some further improvement for
higher numbers of cores. Moreover, semantic RSS also reduces tail latency. Fig-
ures 8.7b and 8.7c show that latency significantly improves using Semantic RSS
as we move from 6 to 12 cores.

87 8.6 Evaluation

1 4 8 13
Batch Size

0

100K

200K

300K
T

X
N

/s

(a)

1 4 8 13
Batch Size

10 1

100

101

102

La
te

nc
y

(m
s)

p99.9
p50

(b)
Figure 8.8. Throughput and latency due to batching.

200K
210K
220K
230K

TX
N/

s Batching
InvCheck+StockLevel
NewOrder+StockLevel
NewOrder+InvCheck

Figure 8.9. Transaction pairs with different affinities.

8.6.3 Batching Experiments

To test the idea that the batch size affects throughput, we configured the switch
to send increasingly larger batches. Due to switch resources, our implementa-
tion stores the metadata of up to 12 transactions and unloads them at the 13th
packet. Figure 8.8a shows the throughput for increasing batch sizes with the
TPC-C benchmark. The most significant speedup is between no batching (i.e.,
batch size 1) and a batch size of 4. There are diminishing benefits for larger
batch sizes. As the batch size increases, the overhead of packet processing be-
comes smaller, relative to transaction execution.

Creating batches on the switch requires queuing transactions as they arrive.
As expected, batching increases the average latency, as Figure 8.8b shows. We
assume in the experiments that batches do not time out. In practice, the switch
control plane would send regular packets into the switch to unload batches that
reach a given latency threshold.

8.6.4 Reordering Experiments

To evaluate how transaction reordering affects performance, we try separating
transactions according to their affinity. The affinity criterion we use is transac-

88 8.6 Evaluation

0 2 4 6
Latency (ms)

0.00

0.25

0.50

0.75

1.00
CD

F

NewOrder
InvCheck
StockLevel

(a)

0 2 4 6
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

NewOrder
InvCheck
StockLevel

(b)
Figure 8.10. Batching and affinity pairing latency. NewOrder and InvCheck
overlap on both charts.

tions that perform similar work. To apply such an effect in a controlled manner,
we created a new TPC-C transaction called InvCheck, which is similar to the read
portion of NewOrder. (It reads the inventory but does not change it.)

Figure 8.9 shows the result of running the NewOrder, InvCheck, and Stock-
Level transactions. The switch was programmed to batch the transactions ran-
domly or reorder them using various combinations. When NewOrder is paired
with InvCheck, the throughput is the highest. This suggests that other pairings
have lower affinity.

Figures 8.10a and 8.10b show the per-transaction latencies for the baseline
and high-affinity reordering, respectively. In the baseline, as the experiment does
not queue the transactions, all the transaction types have a similar latency. With
the high-affinity reordering, however, the two transactions that are grouped,
NewOrder and InvCheck, have the same average latency, which is lower than
that of StockLevel.

8.6.5 Comparing UDP/IP and RDMA stacks

Figure 8.11a compares the throughput obtained by applying our triaging tech-
niques on a TPC-C workload. We use LocalSilo as a baseline, i.e., the pre-
generated workload loaded into the server’s memory. LocalSilo runs at 386
Ktps. We then add one triaging technique at a time, starting from the original
UDP/IP stack, which runs at 182 Ktps. This represents a networking overhead of
53%. By the time we are running all the techniques, the throughput increases to
373 Ktps, a 2.05× improvement over NetSilo. This amounts to 97% of the origi-
nal local throughput. Hence, our triaging techniques almost entirely compensate

89 8.6 Evaluation

Local Silo
Net Silo

+Steering

+Batch
ing

+Reordering
RDMA

RDMA+Batch
ing

RDMA+Reordering0

200K

400K
TX

N/
s

(a)

0.0 2.5 5.0 7.5 10.0
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Net Silo
Steering
Batching
Reordering
RDMA
RDMA+BA
RDMA+RO

(b)

Local Silo
Net Silo

+Steering

+Batch
ing

+Reordering
RDMA

RDMA+Batch
ing

RDMA+Reordering0

2M

4M

TX
N/

s

(c)

0.0 0.1 0.2 0.3 0.4
Latency (ms)

0.00

0.25

0.50

0.75

1.00

CD
F

Net Silo
Steering
Batching
Reordering
RDMA
RDMA+BA
RDMA+RO

(d)
Figure 8.11. TPC-C throughput (a) and latency (b) at 80% of maximum
throughput. YSCB throughput (c) and latency (d) at 80% of maximum
throughput.

for the network overhead on a UDP/IP stack.

We implemented a different networking module for NetSilo that uses two-
sided RDMA SEND over Unreliable Datagrams (UD). This setting best approxi-
mates the implementation decisions we took for the UDP/IP stack. We test the
RDMA stack, which reaches 383 Ktps, as Figure 8.11a shows. The numbers re-
flect how efficient that stack already is; the networking overhead amounts to
less than 1%. Silo becomes the bottleneck for the performance as opposed to
the network. We add triaging techniques to the RDMA stack, one by one as be-
fore. The final throughput is 414 Ktps, a 1.08× improvement over the already
efficient RDMA stack. To put things in perspective, our techniques allow the ex-
ecution of additional 31 Ktps over this stack. As we will show shortly, batching
and reordering allow transactions to be more efficiently executed on the server.

Figure 8.11b shows the latency CDF curves for each of the scenarios above.

90 8.6 Evaluation

IPC L1d
misses

LLC
misses

0.5

1.0

1.5

No
rm

al
ize

d
to

 N
et

 S
ilo

Steering
Batching
Reordering
RDMA
RDMA+BA
RDMA+RO

Figure 8.12. TPC-C CPU micro-architecture analysis.

Steering improves on the NetSilo baseline because it reduces the overhead of
delivering the transactions. All the other techniques hurt latency to some extent.
This is expected, as we buffer transactions on the switch.

Figure 8.12 shows micro-architecture measurements for the scenarios above.
Each technique improves the instructions per clock (IPC) value of the previous
technique and lowers the rate of L1 cache misses. We see, however, an increase in
LLC misses. This is not uncommon; batching/reordering of transactions makes it
so that more data is touched per unit of time, hence yields more last layer cache
misses [128].

8.6.6 Comparing TPC-C and YCSB

Figure 8.11c compares the throughput obtained by combining the triaging tech-
niques on a YCSB workload. As YSCB transactions are very light, almost all the
response time is due to networking overhead. In our experiments, the through-
put of LocalSilo is 17.5 Mtps, whereas the UDP/IP NetSilo delivers 377 Ktps,
a 98% networking overhead. Although the combined techniques over UDP/IP do
not match the throughput of LocalSilo, batching and reordering have the most
substantial speedup: they deliver 3 Mtps, an increase in throughput of 7.95×
compared to NetSilo. The more networking overhead, the more opportunities
to recover it when applying TT techniques.

In contrast, the baseline RDMA delivers 3.48 Mtps and sees only marginal
improvement from our techniques, at 3.58 Mtps when batching on that network
stack. This is quite far from LocalSilo’s 17.5 Mtps. We attribute this discrep-
ancy to our testing environment. Generating very high transaction throughput
requires a notoriously high CPU cost [129, 130], something beyond the capacity
of the machine on which we run our clients.

91 8.7 Conclusion

Figure 8.11d shows the latency CDF for the various techniques. As before,
the impact on the UDP/IP stack is small. Here again, our techniques add more la-
tency with the RDMA stack. This reflects how very small transactions can be more
sensitive to latency. Note, however, that the x-axis in Figure 8.11d is measured
in tens of milliseconds. For a mere 0.1 ms of additional latency, our techniques
execute approximately 100 Ktps more transactions than before.

8.6.7 Evaluation Summary

Our experiments demonstrate that networking overhead has a significant impact
on transaction processing performance. However, applying Transaction Triaging
to in-flight transactions can compensate for the overhead by fostering better ex-
ecution times: steering avoids the latency penalties that occur when delivering
transactions to random cores; batching helps amortize the cost of receiving and
sending packets across a larger number of transactions; reordering improves data
and cache instructions reuse during transactions execution; and, lastly, protocol
conversion takes advantage of high-speed, low-overhead networking where it is
available. The effectiveness of these techniques improves with more cores, larger
batches, and higher affinity. The results hold across diverse workloads.

8.7 Conclusion

In this chapter, we introduced Transaction Triaging, a set of techniques that ex-
ecute in the center of the network, in order shape the stream of transactions
before its delivery to a database server. We showed that performing Transaction
Triaging can reverse the network overhead by providing server performance im-
provements. We also showed that our algorithms only use transaction metadata,
and thus interact with existing database systems with very few changes. With
more information about the transaction workload (i.e. transaction affinity), the
techniques are even more effective.

As programmable networks become an off-the-shelf technology, we see our
techniques as one more step towards revisiting the traditional separation of con-
cerns between networking and database systems, allowing a new generation of
systems to emerge.

92 8.7 Conclusion

Chapter 9

Related Work

In this chapter we provide an overview of related work. First, we discuss work
that leverages the programmable data plane in general (§ 9.1). Then, we com-
pare our INC classification to other recent classifications (§ 9.2). The rest of
the sections discuss related work that is specific to each of the INC services we
implemented.

9.1 Dataplane Programming

Several recent projects have made heavy use of state in the forwarding plane
to offload or accelerate systems services. Marple [29] uses stream processing
techniques to process telemetry data on switches. Jose et al. [131] describe a
congestion control mechanism that leverages switch statistics.

Several recent projects have explored moving application logic into programmable
network devices. Dang et al. [33] proposed the idea of moving consensus logic
in to network devices. Paxos Made Switch-y [132] describes an implementation
of Paxos in P4. István et al. [133] implement Zookeeper’s atomic broadcast on an
FPGA. Speculative Paxos [134] and NoPaxos [31] use programmable hardware
to increase the likelihood of in-order delivery, and leverage that assumption to
optimize consensus à la Fast Paxos [135]. NetCache [32] implements a key-value
store. NetChain [34] provides a network implementation of a coordination ser-
vice. HovercRaft [36] offloads the packet processing of the consensus leader to a
programmable switch. R2P2 [24] uses a switch to accelerate the routing of RPC
messages.

93

94 9.2 INC Classifications

9.2 INC Classifications

Recently, there have been various classifications of INC applications and hard-
ware. Benson [22] presents a taxonomy of functionality that can be deployed
with INC, which includes: caching, network function virtualization (NFV), con-
sensus, machine learning and stream processing. Ports and Nelson [23] include
the following primitives in their classification: sequencing, replicated storage,
caching, deep neural network (DNN) training, DNN inference, database reduc-
tions, database hash joins, virtual networking and telemetry. Furthermore, for
comparing the primitives, they use objective metrics: operations per packet, state
per packet, and packet gain. McCauley et al. [136] describe classes of applica-
tions suitable for INC (load balancing, telemetry, scheduling and congestion con-
trol) and unsuitable (aggregation and coordination). Yuta et al. [21] compare
the suitability of INC hardware (smart NICs, SoCs, FPGAs and switch ASICs) for
three applications: a key value store, a consensus protocol and a domain name
system (DNS) server.

Our hardware classification in Section 3.1 does not distinguish the type of INC
NIC (i.e. it groups SoCs together with smart NICs). The categories of building
blocks we present in Section 3.2 provide a higher level of abstraction to applica-
tions than the application categories in the related work mentioned above.

9.3 Publish/Subscribe

Packet subscriptions are related to pub/sub messaging, network languages, and
information-centric networking.

Publish/subscribe messaging system. Many application-level middleware mes-
saging services provide pub/sub communication, such as Kafka, ActiveMQ, and
Siena [60]. Eugster et al. provide a comprehensive survey [47].

Network programming languages. Several languages support the control-plane
configuration of switches, including Frenetic [137], Pyretic [138], Merlin [139],
and NetKAT[140]. In contrast to this work, packet subscriptions provide stateful
filtering rules that realize a form of in-network processing, and therefore amount
to data-plane programs. Marple [29] evaluates telemetry queries in-network.
BDDs have long been used as a compressed representation of relations. In net-
working, BDDs have been used to verify network properties [141], check net-
work configurations [142], and optimize compilation of OpenFlow rules [53].
Our compiler also uses BDD as an efficient internal representation, but differs
from this prior work in that it generates a switch pipeline configuration.

95 9.4 Stream Processing

Information-centric networking. With information-centric networking (ICN),
packets are routed using symbolic names rather than network addresses. Some
ICN architectures support the rich pub/sub semantics of packet subscriptions [143],
but the mainstream architectures (CCN and NDN) are based on a “pull” model
and on a stateless prefix matching that is significantly less expressive than the
content-based and stateful filtering of packet subscriptions. In any case, prior
work in ICN achieves a maximum throughput that is well below the line-rate
throughput of packet subscriptions [144, 145, 146, 147].

9.4 Stream Processing

P4 Benchmarks. Whippersnapper [148] is a P4 benchmark. NOCC (chapter 7)
describes an implementation of a benchmark as a case study for stateful data-
plane programming.

Implementations of Linear Road. Linear Road was first described in a language-
agnostic logical specification [66]. It has since been implemented for various
streaming systems. Notably, a version written in CQL [69] ran on the Stanford
STREAM data stream management system [62]. It was used to benchmark the
Aurora [63] and Borealis [149] streaming engines. Jain et al. describe an imple-
mentation written in SPL [150] running on IBM’s Infosphere Streams [64].

9.5 String Search

DFAs. Prior work has explored compacting DFAs [151]. Sherwood et al. [152]
proposed splitting a DFA into DFAs that match a subset of the input bits. The
NetKat [53] compiler matches packets using a Binary Decision Diagram, which
has a structure similar to a DFA.

Hardware solutions. There are several techniques for using TCAMs, including
compacting transition symbols and states [153], using LPM to share state [154]
and variable striding [155]. DFC [99] uses cache-friendly data structures for
pattern matching on general purpose CPUs. Others have implemented pattern
matching on GPUs [97, 156, 157]. HAWK [158] implements an FPGA pipeline
using a bitsplit technique proposed by Sherwood et al.. HARE [159] adds RegExp
support to HAWK by adding a character class translation stage to the pipeline,
as well as counters for RegExp quantifiers. Sapio et al. [37] also perform aggre-
gation tasks in programmable switches. To the best of our Knowledge, no prior
work on programmable switches performs string searches.

96 9.6 Optimistic Concurrency Control

9.6 Optimistic Concurrency Control

NOCC is superficially similar to Eris [35], in the sense that they both use pro-
grammable switches to accelerate transaction processing. However, they have
very different execution models. The Eris model is based on prior work on in-
dependent transactions [114, 160], in which transactions are ordered first, and
then executed. In contrast, with the NOCC model, clients pre-execute transac-
tions locally, and then submit the result for validation (i.e., ordering).

Proxies and caches. The idea of using a proxy to extend distributed services is a
well-established idea [161] that has been widely adopted [162, 163, 164, 165].
Proxies are often used to scale services by caching copies of data closer to clients,
such as with content distribution networks (CDNs) [166, 167, 168]. CDNs typi-
cally are used for static content, although there are examples of proxies used for
dynamic content [169]. Prior work has also explored the possibility of leveraging
the network to route requests dynamically to proxies to service requests [168].
Notably, SwitchKV [31] uses OpenFlow-enabled switches to dynamically route
read requests to proxy caches. NetCache [32] provides a P4-based implementa-
tion of a key-value store to cache hot-data items for highly skewed read work-
loads. NOCC differs from this work in that it is not a cache, per se. It keeps copies
of transaction requests, but it does not service client read requests. Rather, it
uses copies of previous requests to make informed decisions about when to abort
transactions early, with the goal of reducing latency for write-heavy workloads.

9.7 Transaction Triaging

We divide the related work into two broad categories. First, we consider work
that used similar underlying transaction management techniques to those we
presented, although without relying on networking support. Then, we compare
work that also provides low-overhead networking.

Transaction Management Techniques. Partitioning databases is a common way
to optimize transaction management and achieve scalability in multi-core sys-
tems [170, 171, 172, 114, 124]. These systems schedule transactions immedi-
ately upon arrival and can benefit from having the network deliver transactions
to a core respecting the database partitioning.

Steering techniques that go beyond RSS have been proposed in the context of
OS support for low-latency transactions [173, 174, 175, 176]. One of the works
even leverages a programmable NIC [177]. These techniques try to re-assigning
cores to applications in case some cores find themselves with more work than

97 9.7 Transaction Triaging

others. Our techniques, in contrast, do not require any changes to the OS.
Transaction batching is a widespread technique that databases use in different

execution stages: during transaction execution [113], logging of transactions
(group commit) [178, 179], and at replication time [180]. We perform batching
in-network, which eliminates the cost of doing so on the database server.

Transaction reordering is also a known technique. Many systems seek to min-
imize concurrency conflict in such a way [181, 113, 115]. The schedulers in those
systems try to select a next transactions to execute that would cause the mini-
mal interference to ongoing transactions. These techniques are complementary
to ours. Reordering has also appeared in the context of maximizing resource
sharing during execution [116, 117]. We have shown similar improvements,
although by resorting to in-network mechanisms.

RDMA and fast networking. Several database algorithms take advantage RDMA-
enabled networks [182, 183, 184, 185, 186, 187, 188, 189]. These works reflect
the more recent change in systems in which networking becomes more powerful
at the same time that CPU’s performance plateaus [190]. Our work broadly falls
into this category but it is unique in that it leverages both network programma-
bility and fast networking.

98 9.7 Transaction Triaging

Chapter 10

Conclusion

This thesis explores how INC can be leveraged to provide services that improve
application performance. By exposing some application-level information, INC
services can either perform computation or make optimizations that increase ap-
plication throughput and reduce latency. Overall, this thesis made the following
contributions:

Service Characterization. We used a principled approach to characterize ser-
vices that can be provided by INC. We began by identifying the properties of INC
devices that give them a comparative advantage to software implementations
(see § 3.1). The most important property is the ratio between I/O and process-
ing expressiveness; INC is particularly well suited for applications that are I/O
bound, but require some moderately expressive processing. Conversely, INC is
not suitable for applications that require very expressive processing, a lot of state,
and do not benefit from fast I/O.

Building Blocks. This thesis described application agnostic services that can be
provided by INC (see § 3.2). By making services reusable, they can be used by
a wide variety of applications. Furthermore, we showed that these services are
built on top of some common data structures: pub/sub and string search both
use an automata (DFA); stream processing uses maps, counters and sets; OCC
uses maps; and TT uses queues. We believe that these data structures can be
adapted to implement other types of services.

Separation of Concerns. While some of the services can be deployed transpar-
ently to applications, others require the active cooperation of applications. For
example, PPS can be deployed transparently as bump-in-the-wire (see § 6.2.1),
searching arbitrary packets that pass through the switch; on the other hand, Pub-
/sub, stream processing, OCC and TT require the application to include specific
information in the packet. We believe this integration with the application is

99

100 10.1 Results

justified by the performance improvements.

INC Techniques. Although some INC services have processing that seems sim-
ple, implementing it on an INC device is not so straight-forward (see § 2.4.3).
We presented some common data structures that can be used for diverse services
(§ 3.3.1). Furthermore, we described the techniques for implementing the ser-
vices on switches (§ 3.3.2). This includes simple techniques for handling state on
the switch, as well as more complicated techniques for implementing unbounded
computation like iteration.

Evaluation on Hardware. We built five different services that run on programmable
switches. The artifacts in themselves validate the feasibility of implementing
the data structures and techniques we described. For the evaluation, we used
real-world workloads and integrated with existing systems. The results show
promising results compared to software baselines, as well as compared to other
hardware devices. Our evaluation showed that INC services provide performance
improvements to applications while reducing CPU utilization on end hosts, with
potential savings in energy and cost.

10.1 Results

To evaluate the hypothesis of this thesis, we built several systems to answer the
research questions presented in Section 1.2. Below we provide a summary an-
swer to each question, referencing previous sections with more detail for specific
systems.

What types of applications can benefit from INC? There are three main crite-
ria for an application to benefit from INC. First, it must be possible to implement
an application in the network, given the expressiveness and computational con-
straints of the devices. Second, there must be a comparative advantage of exe-
cuting application logic in the network. The most important indicator of applica-
tion suitability is the I/O to processing expressiveness ratio: I/O bound applica-
tions with moderate complexity benefit the most from INC. The string search and
stream processing applications especially exhibit these characteristics (see § 6.7
and § 5.6). Finally, applications that perform less I/O can also benefit from INC,
because of its centrally located processing. This is the case for pub/sub, NOCC
and Transaction Triaging (see § 4.6, § 7.5 and § 8.7).

What is the right level of granularity for INC building blocks? This question
is about where to place the interface between the application and the building
block. Some building blocks, like messaging and string search, provide a fairly

101 10.1 Results

high-level interface that can be used by a wide variety of applications (see § 4.6
and § 6.2.1). Others, like stream processing and transaction triaging, are closer
to the application and thus execute more application logic (see § 5.6 and § 8.7).
There is a trade-off between granularity and performance: granular building
blocks can be used by more applications, but at the expense of performance.

What and how much application-level information should be exposed to the
network? Some applications can use INC transparently. For example, PPS can
be deployed as a bump-in-the-wire appliance (see § 6.2.1). Pub/sub is more flex-
ible because it lets the application decide what information should be used for
forwarding (see § 4.4). On the other hand, some applications must be tightly
integrated: in stream processing and Transaction Triaging, the switch must be
fully aware of application data structures (see § 5.4 and § 8.7). Ideally, the build-
ing block should use the minimum amount of application-level information re-
quired to provide a speed-up to the application. Stream processing, for example,
can provide a large speed-up to the application, but this comes at the expense
of reusability—this building block cannot be easily ported to other applications
(see § 5.6).

What are the potential performance benefits? To answer this question, we
compared INC to other software or hardware implementations for the same ap-
plications. We found that applications that have to process large quantities of
data have the largest speed-ups compared to software implementations. This is
the case for pub/sub (see § 4.5), stream processing (see § 5.5) and string search
(§ 6.6). For the latter, INC even provided performance (and cost benefits) com-
pared to other hardware solutions. Even applications that are not I/O bound, like
NOCC (§ 7.4) and transaction triaging (§ 8.6) benefited, benefited from INC; the
central location of the switch helped to manage the workload, reducing the load
on the server.

What must the application trade-off, in terms of features or expressiveness?
Although INC can speed-up applications, we found that it can come at the ex-
pense of application functionality. In some cases, it is not possible to fully im-
plement complex operations on the switch (e.g., some queries from the Linear
Road benchmark (see § 5.3.2). Some application workloads may require more
memory than is available on the switch. This limitation can be traded-off for
throughput or accuracy (e.g., PPS can store hashes instead of entire patterns,
§ 6.3.2). On the other hand, building blocks that do not look deep into the ap-
plication data (e.g., pub/sub and transaction triaging), do not compromise the
expressiveness of the application, but only provide performance improvements.

102 10.2 Future Work

10.2 Future Work

This thesis focuses on five INC systems that we built to explore the benefits that
INC can bring to applications. Each system provides different insight into INC
systems, including the implementation challenges and techniques that can be
used. Although we believe these systems are representative of a broad range of
INC capabilities, we could have made different design decisions or drilled deeper
into each application. For each system, below we describe alternative approaches
or what we would have done if we had more time.

Publish/Subscribe An important feature of messaging systems is reliability: when
a client sends a message, it would like guarantees of reliable delivery. Our Packet
Subscriptions system does not ensure reliable delivery. Adding presents two main
challenges. First, unlike one-to-one communication systems, pub/sub is one-to-
many (multicast), and the sender is not aware of the recipients. It is difficult
for receivers to detect packet loss in such settings. Second, reliable delivery can
reduce throughput and add latency. To tackle this, we would likely want to use
a NACK based scheme, which only adds latency in the unlikely event of packet
loss.

Stream Processing The Linear Road benchmark is intended to be representative
of stream processing workloads. The benchmark, however, does not exhaustively
test all aspects of a stream processing system. Ideally, we would have used differ-
ent types of analytics workloads (i.e. other than Linear Road) and more varied
queries. This could provide more insights into operators that INC does or does
not provide.

String Search There are many string search algorithms, and we chose the Aho-
Corasick because it was the best fit for PISA. Implementing other algorithms may
not yield positive results. However, there are some extensions to Aho-Corasick
that could increase the system throughput or reduce the memory footprint. For
example, before executing the DFA, the switch could translate the symbols in the
input stream into a more compact representation. We are not sure this would be
feasible in the current generation of switches we are using, but it may be possible
with future generations with more memory.

Currently, for multiple DFAs, we randomly partition the patterns multiple
times and pick the partitioning that yields DFAs with the fewest states. This is
an approximation of the optimal partitioning, which we believe would require
performing an exhaustive search. We leave finding the optimal partitioning for
future work.

Efficient data levitation (see Section 6.4) is critical for reducing the load on

103 10.3 Final Remarks

storage machines. More work would be needed with bypass techniques like
RDMA to efficiently move data from the servers to the switch.

We evaluated PPS functioning as a dedicated appliance. PPS can also be de-
ployed as bump-in-the-wire, to provide, for example, a network intrusion de-
tection system (NIDS). However, this scenario requires the original packet to
pass through unmodified. This would require more work on holding the original
packet while PPS scans a copy.

Optimistic Concurrency Control Our NOCC implementation is designed for an
environment where clients execute transactions speculatively, and send the result
to the server for validation. More work would be necessary to integrate with
other systems. We began an initial feasibility study for integration with Galera
Cluster [191], a distributed version of MySQL. We also envision combining NOCC
with complimentary techniques for read-heavy workloads, e.g., using a cache to
service read requests [32, 31].

Database Transaction Triaging This work presents a technique that reorders
transactions based on their affinity. We evaluated reordering with one affinity
metric: transaction type. However, there are more types of affinity. Some other
candidate affinity types could be transaction working set and transaction size.
Preliminary experiments showed that the reordering based on transaction size
reduces latency for small transactions. More work is needed to validate reorder-
ing using these alternative affinity metrics.

10.3 Final Remarks

The advent of programmable hardware is not just a revolution for network-
centric applications, but for applications in general. The most suitable appli-
cations for INC are those which can be expressed in the programmable hard-
ware, are I/O bound, and benefit from being centrally located in the network.
By exposing the right level of application-specific information to the network,
applications can offload computation to reusable INC building blocks. Overall,
this thesis revisits the separation of concerns between the application and the
network, showing that co-design is not only possible, but also beneficial.

104 10.3 Final Remarks

Bibliography

[1] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and
Robert Soulé. Life in the fast lane: A line-rate linear road. In ACM
SIGCOMM Symposium on SDN Research (SOSR), pages 10:1–10:7, March
2018.

[2] Theo Jepsen, Leandro Pacheco de Sousa, Masoud Moshref, Fernando Pe-
done, and Robert Soulé. Infinite resources for optimistic concurrency con-
trol. In Proceedings of the 2018 Morning Workshop on In-Network Comput-
ing, pages 26–32, New York, NY, USA, August 2018.

[3] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and
Robert Soulé. Packet subscriptions for programmable asics. In Workshop
on Hot Topics in Networks, pages 176–183, New York, NY, USA, November
2018.

[4] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun
Lee, Masoud Moshref, and Robert Soulé. Fast string searching on pisa. In
ACM SIGCOMM Symposium on SDN Research (SOSR), pages 21–28, New
York, NY, USA, April 2019.

[5] DPDK. http://dpdk.org/.

[6] Infiniband architecture specification. https://www.infinibandta.org/
ibta-specifications-download/.

[7] Jeffrey C. Mogul. Tcp offload is a dumb idea whose time has come. In 9th
Workshop on Hot Topics in Operating Systems, page 5, USA, 2003. USENIX
Association.

[8] Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald Newell, Li Zhao,
Ramesh Illikkal, and Jaideep Moses. Receive side coalescing for acceler-
ating tcp/ip processing. In Proceedings of the 13th International Conference

105

http://dpdk.org/
https://www.infinibandta.org/ibta-specifications-download/
https://www.infinibandta.org/ibta-specifications-download/

106 BIBLIOGRAPHY

on High Performance Computing, HiPC’06, pages 289–300, Berlin, Heidel-
berg, 2006. Springer-Verlag.

[9] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, and Scott Shenker. Ethane: taking control of the enterprise.
In Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), pages 1–12, August 2007.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Open-
Flow: Enabling Innovation in Campus Networks. SIGCOMM Computer
Communication Review (CCR), 38(2):69–74, March 2008.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Meta-
morphosis: Fast Programmable Match-Action Processing in Hardware for
SDN. In Conference on Applications, Technologies, Architectures, and Pro-
tocols for Computer Communication (SIGCOMM), pages 99–110, August
2013.

[12] Xilinx Alveo. https://www.xilinx.com/products/boards-and-kits/

alveo.html, 2020.

[13] Agilio CX SmartNICs - Netronome. https://www.netronome.com/

products/agilio-cx/, 2020.

[14] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W
Moore. Netfpga sume: Toward 100 gbps as research commodity. IEEE
micro, 34(5):32–41, 2014.

[15] Barefoot Tofino. https://www.barefootnetworks.com/products/

brief-tofino/, 2020.

[16] Broadcom Trident 3. https://www.broadcom.com/products/

ethernet-connectivity/switching/strataxgs/bcm56870-series,
2020.

[17] Nik Sultana, Salvator Galea, David Greaves, Marcin Wojcik, Jonny Ship-
ton, Richard Clegg, Luo Mai, Pietro Bressana, Robert Soulé, Richard
Mortier, Paolo Costa, Peter Pietzuch, Jon Crowcroft, Andrew W Moore,
and Noa Zilberman. Emu: Rapid prototyping of networking services. In
2017 USENIX Annual Technical Conference (USENIX ATC 17), pages 459–
471, Santa Clara, CA, 2017. USENIX Association.

https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.barefootnetworks.com/products/brief-tofino/
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56870-series

107 BIBLIOGRAPHY

[18] G. Brebner and Weirong Jiang. High-Speed Packet Processing using Re-
configurable Computing. IEEE/ACM International Symposium on Microar-
chitecture, 34:8–18, January 2014.

[19] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese,
and David Walker. P4: Programming Protocol-Independent Packet Pro-
cessors. SIGCOMM Computer Communication Review (CCR), 44(3):87–95,
July 2014.

[20] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feam-
ster, Nick McKeown, and Jennifer Rexford. Pisces: A programmable,
protocol-independent software switch. In Proceedings of the 2016 ACM
SIGCOMM Conference, pages 525–538, 2016.

[21] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé, and Noa
Zilberman. The case for in-network computing on demand. In EuroSys,
EuroSys ’19, New York, NY, USA, March 2019. Association for Computing
Machinery.

[22] Theophilus A. Benson. In-network compute: Considered armed and dan-
gerous. In 17th Workshop on Hot Topics in Operating Systems, HotOS ’19,
pages 216–224, New York, NY, USA, May 2019. Association for Computing
Machinery.

[23] Dan R. K. Ports and Jacob Nelson. When should the network be the com-
puter? In 17th Workshop on Hot Topics in Operating Systems, HotOS ’19,
pages 209–215, New York, NY, USA, May 2019. Association for Computing
Machinery.

[24] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2p2: Making rpcs first-class datacenter citizens. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 863–880,
Renton, WA, July 2019. USENIX Association.

[25] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Ad-
vait Dixit, and Lawrence J Wobker. In-band network telemetry
via programmable dataplanes. https://nkatta.github.io/papers/

int-demo.pdf, 2015.

[26] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data
plane performance diagnosis of tcp. In ACM SIGCOMM Symposium on

https://nkatta.github.io/papers/int-demo.pdf
https://nkatta.github.io/papers/int-demo.pdf

108 BIBLIOGRAPHY

SDN Research (SOSR), SOSR ’17, pages 61–74, New York, NY, USA, 2017.
Association for Computing Machinery.

[27] Praveen Tammana, Rachit Agarwal, and Myungjin Lee. Distributed net-
work monitoring and debugging with switchpointer. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages 453–
456, Renton, WA, April 2018. USENIX Association.

[28] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu.
Silkroad: Making stateful layer-4 load balancing fast and cheap using
switching asics. In Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM), SIGCOMM ’17,
pages 15–28, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[29] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and
Changhoon Kim. Language-directed hardware design for network per-
formance monitoring. In Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication (SIGCOMM), pages
85–98, August 2017.

[30] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rex-
ford, and Walter Willinger. Sonata: Query-driven streaming network
telemetry. In Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pages 357–371, Au-
gust 2018.

[31] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G. Andersen, and
Michael J. Freedman. Be fast, cheap and in control with switchkv. In
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 31–44, March 2016.

[32] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In ACM Symposium on Operating
Systems Principles (SOSP), October 2017.

[33] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and
Robert Soulé. NetPaxos: Consensus at Network Speed. In ACM SIGCOMM
Symposium on SDN Research (SOSR), pages 59–73, June 2015.

109 BIBLIOGRAPHY

[34] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. NetChain: Scale-Free Sub-RTT
Coordination. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2018.

[35] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: Coordination-free con-
sistent transactions using in-network concurrency control. In ACM Sym-
posium on Operating Systems Principles (SOSP), pages 104–120. ACM, Oc-
tober 2017.

[36] Marios Kogias and Edouard Bugnion. Hovercraft: Achieving scalability
and fault-tolerance for microsecond-scale datacenter services. In EuroSys,
EuroSys ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[37] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and
Panos Kalnis. In-network computation is a dumb idea whose time has
come. In Workshop on Hot Topics in Networks, pages 150–156, November
2017.

[38] A. Lerner, R. Hussein, and P. Cudré-Mauroux. The case for network ac-
celerated query processing. In Conference on Innovative Data Systems Re-
search, 2019.

[39] D. Goncalves, S. Signorello, F. M. V. Ramos, and M. MÃl’dard. Random
linear network coding on programmable switches. In 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems
(ANCS), pages 1–6, September 2019.

[40] David Clark. The design philosophy of the DARPA Internet Protocols. In
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM), pages 106–114, August 1988.

[41] Petr Lapukhov. Internet-scale virtual networking using identifier-
locator addressing. https://www.nanog.org/sites/default/files/

20161018_Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf,
2016.

[42] Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith, Roman
Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney, Wentao
Shang, and Jinnah Dylan Hosein. Maglev: A fast and reliable software

https://www.nanog.org/sites/default/files/20161018_Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf
https://www.nanog.org/sites/default/files/20161018_Lapukhov_Internet-Scale_Virtual_Networking_v1.pdf

110 BIBLIOGRAPHY

network load balancer. In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 523–535, March 2016.

[43] Open-sourcing Katran, a scalable network load
balancer. https://code.fb.com/open-source/

open-sourcing-katran-a-scalable-network-load-balancer/,
2018.

[44] Tibco rendezvous. https://www.tibco.com/products/

tibco-rendezvous, 2019.

[45] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A distributed messaging
system for log processing. In 6th International Workshop on Networking
Meets Databases (NetDB), June 2011.

[46] IBM MQ. https://www-03.ibm.com/software/products/en/ibm-mq,
2019.

[47] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing Surveys
(CSUR), 35(2):114–131, June 2003.

[48] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia
Ratnasamy, and Vyas Sekar. Making middleboxes someone else’s problem:
Network processing as a cloud service. In Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), pages 13–24, August 2012.

[49] Rahul Potharaju and Navendu Jain. Demystifying the dark side of the mid-
dle: A field study of middlebox failures in datacenters. In ACM SIGCOMM
Internet Measurement Conference (IMC), pages 9–22, October 2013.

[50] Nasdaq TotalView-ITCH 5.0 - Nasdaq Trader. https://www.

nasdaqtrader.com/content/technicalsupport/specifications/

dataproducts/NQTVITCHspecification.pdf, 2019.

[51] Micah Adler, Zihui Ge, James F. Kurose, Don Towsley, and Stephen Zabele.
Channelization problem in large scale data dissemination. In Proc. 9th Int.
Conf. on Network Protocols, pages 100–109, November 2001.

[52] How to Build an Exchange. https://blog.janestreet.com/

how-to-build-an-exchange/, 2017.

https://code.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://code.fb.com/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://www.tibco.com/products/tibco-rendezvous
https://www.tibco.com/products/tibco-rendezvous
https://www-03.ibm.com/software/products/en/ibm-mq
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://www.nasdaqtrader.com/content/technicalsupport/specifications/dataproducts/NQTVITCHspecification.pdf
https://blog.janestreet.com/how-to-build-an-exchange/
https://blog.janestreet.com/how-to-build-an-exchange/

111 BIBLIOGRAPHY

[53] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. A fast
compiler for netkat. In International Conference on Functional Program-
ming (ICFP), pages 328–341, September 2015.

[54] Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. Covisor: A
compositional hypervisor for software-defined networks. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), pages
87–101, Oakland, CA, May 2015.

[55] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers
(TC), 27(6):509–516, June 1978.

[56] Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers (TC), 35(8):677–691, August 1986.

[57] William Chan, Richard Anderson, Paul Beame, and David Notkin. Com-
bining constraint solving and symbolic model checking for a class of sys-
tems with non-linear constraints. In International Conference on Computer
Aided Verification (CAV), pages 316–327, June 1997.

[58] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee,
Robert Soulé, Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster.
P4v: Practical verification for programmable data planes. In Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), pages 490–503, August 2018.

[59] Siena Synthetic Benchmark Generator. http://www.inf.usi.ch/

carzaniga/cbn/forwarding/, 2019.

[60] Antonio Carzaniga and Alexander L. Wolf. Forwarding in a content-based
network. In Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), pages 163–174, Au-
gust 2003.

[61] Apache. Apache activemq. http://activemq.apache.org/, 2019.

[62] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jen-
nifer Widom. Models and issues in data stream systems. In Principles of
Database Systems (PODS), pages 1–16, June 2002.

[63] Daniel J. Abadi, Don Carney, Uğur Çetintemel, Mitch Cherniack, Chris-
tian Convey, Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stan

http://www.inf.usi.ch/carzaniga/cbn/forwarding/
http://www.inf.usi.ch/carzaniga/cbn/forwarding/

112 BIBLIOGRAPHY

Zdonik. Aurora: A new model and architecture for data stream manage-
ment. In The VLDB Journal, volume 12, pages 120–139, August 2003.

[64] Navendu Jain, Lisa Amini, Henrique Andrade, Richard King, Yoonho Park,
Philippe Selo, and Chitra Venkatramani. Design, implementation, and
evaluation of the linear road bnchmark on the stream processing core. In
ACM SIGMOD, pages 431–442, June 2006.

[65] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif
Haridi, and Kostas Tzoumas. Apache flink: Stream and batch processing in
a single engine. Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, 36(4), 2015.

[66] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. Lin-
ear road: a stream data management benchmark. In 30th International
Conference on Very Large Data Bases, pages 480–491. VLDB, August 2004.

[67] Linear Road. http://www.cs.brandeis.edu/~linearroad/.

[68] Naveen Kr Sharma, Antoine Kaufmann, Thomas E Anderson, Arvind Kr-
ishnamurthy, Jacob Nelson, and Simon Peter. Evaluating the power of flex-
ible packet processing for network resource allocation. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), pages
67–82, March 2017.

[69] Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous
query language: semantic foundations and query execution. In The VLDB
Journal, volume 15, pages 121–142, June 2006.

[70] Buğra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and
Myungcheol Doo. SPADE: The System S declarative stream processing
engine. In ACM SIGMOD, pages 1123–1134, June 2008.

[71] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig Latin: A not-so-foreign language for data process-
ing. In ACM SIGMOD, pages 1099–1110, June 2008.

[72] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language.
In USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 1–14, December 2008.

http://www.cs.brandeis.edu/~linearroad/

113 BIBLIOGRAPHY

[73] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt:
A language for streaming applications. In 11th International Conference
on Compiler Construction, pages 179–196, April 2002.

[74] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpret-
ing the data: Parallel analysis with Sawzall. Scientific Programming, pages
277–298, 2005.

[75] E. F. Codd. A relational model of data for large shared data banks. Com-
mun. ACM, 13(6):377–387, June 1970.

[76] Kyu-Young Whang, Brad T Vander-Zanden, and Howard M Taylor. A
linear-time probabilistic counting algorithm for database applications.
ACM Transactions on Database Systems, 15(2):208–229, 1990.

[77] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm.
In AofA: Analysis of Algorithms, pages 137–156, June 2007.

[78] Naveen Kr Sharma, Antoine Kaufmann, Thomas E Anderson, Arvind Kr-
ishnamurthy, Jacob Nelson, and Simon Peter. Evaluating the power of flex-
ible packet processing for network resource allocation. In USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI), pages
67–82, March 2017.

[79] In-Network DDoS Detection. https://barefootnetworks.com/

use-cases/in-nw-DDoS-detection, 2017.

[80] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Arm-
brust, Ali Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica.
Drizzle: Fast and adaptable stream processing at scale. In ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 374–389. ACM, Octo-
ber 2017.

[81] Darin Stewart. Big content: The unstructured side of big
data. https://blogs.gartner.com/darin-stewart/2013/05/01/

big-content-the-unstructured-side-of-big-data/, May 2013.

[82] Shoumik Palkar, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Filter
before you parse: Faster analytics on raw data with sparser. The VLDB
Journal, 11(11):1576–1589, July 2018.

https://barefootnetworks.com/use-cases/in-nw-DDoS-detection
https://barefootnetworks.com/use-cases/in-nw-DDoS-detection
https://blogs.gartner.com/darin-stewart/2013/05/01/big-content-the-unstructured-side-of-big-data/
https://blogs.gartner.com/darin-stewart/2013/05/01/big-content-the-unstructured-side-of-big-data/

114 BIBLIOGRAPHY

[83] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi,
and Scott Shenker. Network support for resource disaggregation in next-
generation datacenters. In Workshop on Hot Topics in Networks, pages
10:1–10:7, 2013.

[84] Noa Zilberman, Andrew W. Moore, and Jon A. Crowcroft. From photons
to big-data applications: terminating terabits. Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 374(2062), 2016.

[85] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich,
Sergio López-Buedo, and Andrew W. Moore. Understanding pcie per-
formance for end host networking. In Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), pages 327–341, August 2018.

[86] PCI Sig. Pci express base specifications revision 1.0 a. PCI SIG, 2003.

[87] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Communications of the ACM (CACM), 20(10):762–772, October 1977.

[88] Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. IBM J. Res. Dev., 31(2):249–260, March 1987.

[89] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid
to bibliographic search. Communications of the ACM (CACM), 18(6):333–
340, June 1975.

[90] Daehyeok Kim, Yibo Zhu Zhu, Changhoon Kim, Jeongkeun Lee, and Srini-
vasan Seshan Seshan. Generic external memory for switch data planes.
In Workshop on Hot Topics in Networks, November 2018.

[91] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling, volume 1. Prentice Hall, June 1972.

[92] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker Hilt,
and Thorsten Strufe. Streamapprox: Approximate computing for stream
analytics. In 17th ACM/IFIP/USENIX International Conference on Middle-
ware, December 2017.

[93] A. Agarwal, M. Slee, and M. Kwiatkowski. Thrift: Scalable cross-language
services implementation. https://thrift.apache.org/static/files/
thrift-20070401.pdf, April 2007.

https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf

115 BIBLIOGRAPHY

[94] Snort. http://snort.org/, 2018.

[95] The podesta emails. https://wikileaks.org/podesta-emails/, 2016.

[96] Introduction to tweet json. https://developer.twitter.com/en/docs/
tweets/data-dictionary/overview/intro-to-tweet-json.html,
2016.

[97] Cheng-Liang Hsieh, Lucas Vespa, and Ning Weng. A high-throughput dpi
engine on gpu via algorithm/implementation co-optimization. Journal of
Parallel and Distributed Computing, 88:46–56, 2016.

[98] Helios product brief. http://titan-ic.com/assets/img/news/

Final-RXPA-APR-18.pdf, 2018.

[99] Byungkwon Choi, Jongwook Chae, Muhammad Jamshed, KyoungSoo
Park, and Dongsu Han. DFC: Accelerating string pattern matching for
network applications. In USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI), pages 551–565, March 2016.

[100] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Transactions on Database Systems, 6(2):213–226, June
1981.

[101] Rakesh Agrawal, Michael J. Carey, and Miron Livny. Concurrency con-
trol performance modeling: Alternatives and implications. ACM Trans.
Database Syst., 12(4):609–654, November 1987.

[102] Michael J. Carey and Michael Stonebraker. The performance of concur-
rency control algorithms for database management systems. In 10th Inter-
national Conference on Very Large Data Bases, pages 107–118, San Fran-
cisco, CA, USA, 1984. Morgan Kaufmann Publishers Inc.

[103] Rakesh Agrawal and David J. Dewitt. Integrated concurrency control and
recovery mechanisms: Design and performance evaluation. ACM Trans.
Database Syst., 10(4):529–564, December 1985.

[104] Y. C. Tay, Nathan Goodman, and R. Suri. Locking performance in cen-
tralized databases. ACM Trans. Database Syst., 10(4):415–462, December
1985.

[105] Peter Franaszek and John T. Robinson. Limitations of concurrency in trans-
action processing. ACM Trans. Database Syst., 10(1):1–28, March 1985.

http://snort.org/
https://wikileaks.org/podesta-emails/
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html
https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json.html
http://titan-ic.com/assets/img/news/Final-RXPA-APR-18.pdf
http://titan-ic.com/assets/img/news/Final-RXPA-APR-18.pdf

116 BIBLIOGRAPHY

[106] Transaction Processing Performance Council. TPC-C Benchmark Revision
5.11.0. http://www.tpc.org/tpcc/, 2010.

[107] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., 1987.

[108] Andy Pavlo. Python TPC-C. https://github.com/apavlo/py-tpcc,
2020.

[109] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing, pages 143–154, New
York, NY, USA, June 2010. ACM.

[110] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 1992.

[111] Mohammad Sadoghi, Spyros Blanas, and H. V. Jagadish. Transaction Pro-
cessing on Modern Hardware. Morgan & Claypool Publishers, 2019.

[112] Infiniband architecture specification–annex a16: Roce. https://www.

infinibandta.org/ibta-specifications-download/.

[113] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ail-
amaki. Data-oriented transaction execution. Proc. VLDB Endow., 3(1-
2):928–939, September 2010.

[114] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The end of an architectural
era: (it’s time for a complete rewrite). In 33th International Conference on
Very Large Data Bases, pages 1150–1160, 2007.

[115] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast distributed transactions for
partitioned database systems. In Proceedings of the 2012 ACM SIGMOD In-
ternational Conference on Management of Data, SIGMOD ’12, pages 1–12,
New York, NY, USA, 2012. Association for Computing Machinery.

[116] Islam Atta, Pinar Tözün, Xin Tong, Anastasia Ailamaki, and Andreas
Moshovos. Strex: Boosting instruction cache reuse in oltp workloads

http://www.tpc.org/tpcc/
https://github.com/apavlo/py-tpcc
https://www.infinibandta.org/ibta-specifications-download/
https://www.infinibandta.org/ibta-specifications-download/

117 BIBLIOGRAPHY

through stratified transaction execution. In 40th International Symposium
on Computer Architecture, pages 273–284, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

[117] Pinar Tözün, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos. Ad-
dict: Advanced instruction chasing for transactions. Proc. VLDB Endow.,
7(14):1893–1904, October 2014.

[118] Network programming language. https://nplang.org/.

[119] Haoyu Song. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Workshop on Hot Topics in
Software Defined Networking, pages 127–132, August 2013.

[120] Hugo Krawczyk. Lfsr-based hashing and authentication. In Proceedings of
the 14th Annual International Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’94, pages 129–139, London, UK, UK, 1994. Springer-
Verlag.

[121] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan,
Changhoon Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. Pro-
grammable calendar queues for high-speed packet scheduling. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20), pages 685–699, Santa Clara, CA, February 2020. USENIX As-
sociation.

[122] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet transactions: High-level
programming for line-rate switches. In Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), August 2016.

[123] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,
Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,
Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-
store: A high-performance, distributed main memory transaction process-
ing system. Proc. VLDB Endow., 1(2):1496–1499, August 2008.

[124] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In ACM
Symposium on Operating Systems Principles (SOSP), pages 18–32, New
York, NY, USA, November 2013. ACM.

https://nplang.org/

118 BIBLIOGRAPHY

[125] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow., 8(11):1190–1201, July 2015.

[126] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. Phase recon-
ciliation for contended in-memory transactions. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 14), pages
511–524, Broomfield, CO, October 2014. USENIX Association.

[127] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. Tic-
toc: Time traveling optimistic concurrency control. In Proceedings of the
2016 International Conference on Management of Data, SIGMOD ’16, pages
1629–1642, New York, NY, USA, 2016. Association for Computing Ma-
chinery.

[128] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. Micro-
architectural analysis of in-memory oltp. In Proceedings of the 2016 Inter-
national Conference on Management of Data, SIGMOD ’16, pages 387–402,
New York, NY, USA, 2016. Association for Computing Machinery.

[129] Aniraj Kesavan, Robert Ricci, and Ryan Stutsman. To copy or not to copy:
Making in-memory databases fast on modern nics. In Data Management
on New Hardware, ADMS ’16, pages 79–94. Springer, 2016.

[130] Yanfang Le, Brent Stephens, Arjun Singhvi, Aditya Akella, and Michael M.
Swift. Rogue: Rdma over generic unconverged ethernet. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC ’18, pages 225–236, New
York, NY, USA, 2018. Association for Computing Machinery.

[131] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick
McKeown, and Sachin Katti. High speed networks need proactive con-
gestion control. In Workshop on Hot Topics in Networks, November 2015.

[132] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
Paxos Made Switch-y. SIGCOMM Computer Communication Review (CCR),
44:87–95, April 2016.

[133] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolić. Consensus
in a Box: Inexpensive Coordination in Hardware. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI), pages 103–115,
March 2016.

119 BIBLIOGRAPHY

[134] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind
Krishnamurthy. Designing Distributed Systems Using Approximate Syn-
chrony in Data Center Networks. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 43–57, March 2015.

[135] Leslie Lamport. Fast Paxos. Distributed Computing, 19:79–103, October
2006.

[136] James McCauley, Aurojit Panda, Arvind Krishnamurthy, and Scott
Shenker. Thoughts on load distribution and the role of programmable
switches. SIGCOMM Computer Communication Review (CCR), 49(1):18–
23, 2019.

[137] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A Network Pro-
gramming Language. In International Conference on Functional Program-
ming (ICFP), pages 279–291, September 2011.

[138] Christopher Monsanto et al. Composing Software-Defined Networks.
In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 1–13, April 2013.

[139] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando Pedone,
Robert Kleinberg, Emin Gün Sirer, and Nate Foster. Merlin: A Language
for Provisioning Network Resources. In ACM International Conference on
Emerging Networking Experiments and Technologies (CoNEXT), December
2014.

[140] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker. Netkat: Semantic
foundations for networks. In Symposium on Principles of Programming
Languages (POPL), pages 113–126, January 2014.

[141] Hongkun Yang and Simon S Lam. Real-time verification of network prop-
erties using atomic predicates. In IEEE International Conference on Network
Protocols (ICNP), pages 1–11, October 2013.

[142] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A general
approach to network configuration verification. In Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communica-
tion (SIGCOMM), pages 155–168, August 2017.

120 BIBLIOGRAPHY

[143] Michele Papalini, Antonio Carzaniga, Koorosh Khazaei, and Alexander L.
Wolf. Scalable routing for tag-based information-centric networking. In
Proceedings of the 1st International Conference on Information-centric Net-
working (HotICN), pages 17–26, September 2014.

[144] Diego Perino, Matteo Varvello, Leonardo Linguaglossa, Rafael Laufer, and
Roger Boislaigue. Caesar: A content router for high-speed forwarding on
content names. In ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS), pages 137–148, October 2014.

[145] Yi Wang, Boyang Xu, Dongzhe Tai, Jianyuan Lu, Ting Zhang, Huichen Dai,
Beichuan Zhang, and Bin Liu. Fast name lookup for named data network-
ing. In IEEE International Symposium of Quality of Service (IWQoS), pages
198–207, May 2014.

[146] Haowei Yuan and Patrick Crowley. Reliably scalable name prefix lookup.
In ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS), pages 111–121, May 2015.

[147] Michele Papalini, Koorosh Khazaei, Antonio Carzaniga, and Daniele Ro-
gora. High throughput forwarding for ICN with descriptors and locators.
In ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS), pages 43–54, 2016.

[148] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon
Kim, Jennifer Rexford, Robert Soulé, and Hakim Weatherspoon. Whipper-
snapper: A p4 language benchmark suite. In ACM SIGCOMM Symposium
on SDN Research (SOSR), pages 95–101, April 2017.

[149] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Uğur Çetintemel,
Mitch Cherniack, Jeong Hyon Hwang, Wolfgang Lindner, Anurag S.
Maskey, Alexander Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing, and
Stan Zdonik. The design of the borealis stream processing engine. In
Conference on Innovative Data Systems Research, pages 277–289, January
2005.

[150] Martin Hirzel, Henrique Andrade, Buğra Gedik, Gabriela Jacques-Silva,
Rohit Khandekar, Vibhore Kumar, Mark Mendell, Howard Nasgaard, Scott
Schneider, Robert Soulé, and Kun-Lung Wu. IBM streams processing lan-
guage: Analyzing big data in motion. IBM Journal of Research and Devel-
opment (IBMRD), 57(3/4):7:1–7:11, May/July 2013.

121 BIBLIOGRAPHY

[151] J. Patel, A. X. Liu, and E. Torng. Bypassing space explosion in high-
speed regular expression matching. IEEE/ACM Transactions on Network-
ing, 22(6):1701–1714, December 2014.

[152] Lin Tan and T. Sherwood. A high throughput string matching architecture
for intrusion detection and prevention. In 32th International Symposium
on Computer Architecture, pages 112–122, June 2005.

[153] Kun Huang, Linxuan Ding, Gaogang Xie, Dafang Zhang, Alex X. Liu, and
Kavé Salamatian. Scalable tcam-based regular expression matching with
compressed finite automata. Architectures for Networking and Communi-
cations Systems, pages 83–93, 2013.

[154] Anat Bremler-Barr, David Hay, and Yaron Koral. Compactdfa: Generic
state machine compression for scalable pattern matching. In 29th IEEE
Conference on Computer Communications, page 659–667, March 2010.

[155] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu.
Fast regular expression matching using small tcams for network intrusion
detection and prevention systems. In USENIX Security Symposium, August
2010.

[156] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P.
Markatos, and Sotiris Ioannidis. Regular expression matching on graph-
ics hardware for intrusion detection. In Proceedings of the 12th Interna-
tional Symposium on Recent Advances in Intrusion Detection, pages 265–
283, 2009.

[157] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, De-
okjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: a highly-
scalable software-based intrusion detection system. In 19th CCS, pages
317–328, October 2012.

[158] P. Tandon, F. M. Sleiman, M. J. Cafarella, and T. F. Wenisch. Hawk: Hard-
ware support for unstructured log processing. In 2016 IEEE 32nd Interna-
tional Conference on Data Engineering (ICDE), pages 469–480, May 2016.

[159] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and
Thomas F. Wenisch. Hare: Hardware accelerator for regular expressions.
In 49th IEEE/ACM International Symposium on Microarchitecture, pages
44:1–44:12, 2016.

122 BIBLIOGRAPHY

[160] James Cowling and Barbara Liskov. Granola: Low-overhead distributed
transaction coordination. In USENIX Annual Technical Conference, 2012.

[161] Marc Shapiro. Structure and Encapsulation in Distributed Systems: the
Proxy Principle. In 6th IEEE International Conference on Distributed Com-
puting Systems, pages 198–204, May 1986.

[162] Eric A. Brewer, Randy H. Katz, Elan Amir, Hari Balakrishnan, Yatin
Chawathe, Armando Fox, Steven D. Gribble, Todd Hodes, Giao Nguyen,
Venkata N. Padmanabhan, Mark Stemm, Srinivasan Seshan, and Tom
Henderson. A Network Architecture for Heterogeneous Mobile Comput-
ing. Technical report, University of California at Berkeley, 1998.

[163] Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Pat-
terson, Drew S. Roselli, and Randolph Y. Wang. Serverless Network File
Systems. ACM Transactions on Computer Systems (TOCS), 14(1):41–79,
February 1996.

[164] Anthony D. Joseph, Alan F. deLespinasse, Joshua A. Tauber, David K. Gif-
ford, and M. Frans Kaashoek. Rover: A Toolkit for Mobile Information
Access. In ACM Symposium on Operating Systems Principles (SOSP), pages
156–171, December 1995.

[165] Björn Knutsson, Honghui Lu, Jeffrey Mogul, and Bryan Hopkins. Architec-
ture and Performance of Server-Directed Transcoding. ACM Transactions
on Internet Technology, 3(4):392–424, November 2003.

[166] Mark Nottingham and Xiang Liu. Edge Architecture Specification, 2001.
http://www.esi.org/architecture_spec_1-0.html.

[167] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratiz-
ing content publication with coral. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 18–18, March 2004.

[168] Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness of Request
Redirection on CDN Robustness. In USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI), pages 345–360, December 2002.

[169] Robert Grimm, Guy Lichtman, Nikolaos Michalakis, Amos Elliston, Adam
Kravetz, Jonathan Miller, and Sajid Raza. Na Kika: Secure Service Ex-
ecution and Composition in an Open Edge-Side Computing Network.
In USENIX Symposium on Networked Systems Design and Implementation
(NSDI), pages 169–182, San Jose, California, May 2006.

http://www.esi.org/architecture_spec_1-0.html

123 BIBLIOGRAPHY

[170] A. Kemper and T. Neumann. Hyper: A hybrid oltp olap main memory
database system based on virtual memory snapshots. In 2011 IEEE 27th
International Conference on Data Engineering, pages 195–206, April 2011.

[171] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis.
Ermia: Fast memory-optimized database system for heterogeneous work-
loads. In Proceedings of the 2016 International Conference on Management
of Data, pages 1675–1687, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[172] Yi Lu, Xiangyao Yu, and Samuel Madden. Star: Scaling transactions
through asymmetric replication. Proc. VLDB Endow., 12(11):1316–1329,
July 2019.

[173] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David
Mazières, and Christos Kozyrakis. Shinjuku: Preemptive scheduling for
µsecond-scale tail latency. In 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19), pages 345–360, Boston, MA,
February 2019. USENIX Association.

[174] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari
Balakrishnan. Shenango: Achieving high CPU efficiency for latency-
sensitive datacenter workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), pages 361–378, Boston,
MA, February 2019. USENIX Association.

[175] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. In ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 325–341, New York,
NY, USA, 2017. Association for Computing Machinery.

[176] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout.
Arachne: Core-aware thread management. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 145–160,
Carlsbad, CA, October 2018. USENIX Association.

[177] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle Oluko-
tun. Elastic rss: Co-scheduling packets and cores using programmable
nics. In Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019,
APNet ’19, pages 71–77, New York, NY, USA, 2019. Association for Com-
puting Machinery.

124 BIBLIOGRAPHY

[178] Dieter Gawlick and David Kinkade. Varieties of concurrency control in
ims/vs fast path. IEEE Database Eng. Bull., 8(2):3–10, 1985.

[179] Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil Garrett, and An-
dreas Reuter. Group commit timers and high volume transaction systems.
In Dieter Gawlick, Mark Haynie, and Andreas Reuter, editors, High Per-
formance Transaction Systems, pages 301–329, Berlin, Heidelberg, 1989.
Springer Berlin Heidelberg.

[180] Frank M. Pittelli and Hector Garcia-Molina. Reliable scheduling in a tmr
database system. ACM Trans. Comput. Syst., 7(1):25–60, January 1989.

[181] Bailu Ding, Lucja Kot, and Johannes Gehrke. Improving optimistic con-
currency control through transaction batching and operation reordering.
Proc. VLDB Endow., 12(2):169–182, October 2018.

[182] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan
Zamanian. The end of slow networks: It’s time for a redesign. Proc. VLDB
Endow., 9(7):528–539, March 2016.

[183] Feilong Liu, Lingyan Yin, and Spyros Blanas. Design and evaluation of an
rdma-aware data shuffling operator for parallel database systems. ACM
Trans. Database Syst., 44(4), December 2019.

[184] Wolf Rödiger, Tobias Mühlbauer, Alfons Kemper, and Thomas Neumann.
High-speed query processing over high-speed networks. Proc. VLDB En-
dow., 9(4):228–239, December 2015.

[185] Abdallah Salama, Carsten Binnig, Tim Kraska, Ansgar Scherp, and Tobias
Ziegler. Rethinking distributed query execution on high-speed networks.
IEEE Data Engineering Bulletin, 40(1):27–37, 2017.

[186] Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. Query fresh: Log
shipping on steroids. Proc. VLDB Endow., 11(4):406–419, December 2017.

[187] Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. Dis-
tributed lock management with rdma: Decentralization without starva-
tion. In ACM SIGMOD, pages 1571–1586, New York, NY, USA, 2018. As-
sociation for Computing Machinery.

[188] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. The end of a
myth: Distributed transactions can scale. Proc. VLDB Endow., 10(6):685–
696, February 2017.

125 BIBLIOGRAPHY

[189] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. Re-
thinking database high availability with rdma networks. Proc. VLDB En-
dow., 12(11):1637–1650, July 2019.

[190] John L. Hennessy and David A. Patterson. A new golden age for computer
architecture. Commun. ACM, 62(2):48–60, January 2019.

[191] Galera cluster. https://galeracluster.com/, 2020.

https://galeracluster.com/

126 BIBLIOGRAPHY

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	This Dissertation
	Evaluation
	Research Contributions

	Background
	Basic Networking
	Kernel Bypass
	DPDK
	RDMA
	NIC Protocol Offload

	Software Defined Networking
	Programmable Data Plane
	Programmable Hardware
	Language Support for Programmable Network Hardware
	Challenges of Data Plane Programming

	Building Blocks for INC
	INC Capabilities
	Building Blocks
	The Building Blocks in this Dissertation

	INC Techniques
	Data Structures
	Implementation Techniques

	Summary

	Publish/Subscribe
	Background
	Example: ITCH Market Feed
	Packet Subscriptions
	Compiling Subscriptions
	Compiling the Static Pipeline
	Compiling Dynamic Filters

	Evaluation
	Conclusion

	Stream Processing
	Background
	The Linear Road Benchmark
	P4 Linear Road
	Implementation Techniques
	Deviations from Specification

	Towards a General Query Language
	Input Data
	Query Operators
	Summary

	Evaluation
	Conclusion

	String Search
	Background
	String Search Algorithms

	Design Overview
	Expected Deployment

	Pattern Compilation
	Optimizations
	Approximation

	Implementation
	Discussion
	Evaluation
	End-to-end Application Performance
	Microbenchmarks
	Comparison to State-of-the-Art

	Conclusion

	Optimistic Concurrency Control
	Background
	Design
	Implementation
	Evaluation
	Conclusion

	Transaction Triaging
	Background
	Transaction Triaging
	In-Network Algorithms
	Steering
	Batching
	Reordering
	Protocol Conversion

	Transaction Affinity
	Integration to Existing Systems
	Evaluation
	Networking Overhead
	Steering Experiments
	Batching Experiments
	Reordering Experiments
	Comparing UDP/IP and RDMA stacks
	Comparing TPC-C and YCSB
	Evaluation Summary

	Conclusion

	Related Work
	Dataplane Programming
	INC Classifications
	Publish/Subscribe
	Stream Processing
	String Search
	Optimistic Concurrency Control
	Transaction Triaging

	Conclusion
	Results
	Future Work
	Final Remarks

