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Abstract

Solving large sparse linear systems is at the heart of many application problems
arising from scientific and engineering problems. These systems are often solved
by direct factorization solvers, especially when the system needs to be solved for
multiple right-hand sides or when a high numerical precision is required. Di-
rect solvers are based on matrix factorization, which is then followed by forward
and backward substitution to obtain a precise solution. The factorization is the
most computationally intensive step, but it has to be computed only once for a
given matrix. Then the system is solved with forward and backward substitution
for every right-hand side. Performance modeling of algorithms involved in solv-
ing these linear systems reveals the computational bottlenecks, which can guide
node-level performance optimizations and shows the best performance that can
be achieved on given architecture.

In this thesis we investigate and analyze the performance of the forward/back-
ward solution process of the PARDISO direct sparse solver and present a detailed
performance analysis for its sparse solver kernel. This analysis is based on the
Berkeley roofline model, a model that is widely used to predict the upper bound
of a code based on processor peak performance and memory bandwidth. We es-
tablish a modified roofline model that captures the serial and parallel execution
phases which allows us to predict the in-socket scaling over the processor cores.
The distinction of serial and parallel execution is important as the amount of the
serial fraction depends on the matrix used and can have a significant negative
impact on performance. We compared the roofline model with an alternative Er-
langen ECM model and provide discussion on usability and modeling capabilities
of both models. The model predictions are compared with various measurements
for a representative set of sparse matrices on different x86_64 processors. The
performance analysis and modeling performed in this work are limited to a single
node, however, the code considered here is also a building block for the MPI par-
allel version. Hence, also the distributed memory implementation of PARDISO
will profit from any enhancement achieved.
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Chapter 1

Overview of state-of-the-art sparse
direct solvers

This chapter presents an overview of combinatorial algorithms in sparse elimi-
nation methods. Beside well-established techniques that have been developed in
the last twenty years, a modern viewpoint of sparse LU and LDLT decomposition
is presented that illustrates how the evolution of techniques in the last decade
improved the performance of sparse direct solvers by three to four orders of mag-
nitude. Some parts of this chapter have been published as an invited overview
paper on parallel sparse direct methods in Bollhöfer et al. [2020].

Solving large sparse linear systems is at the heart of many application prob-
lems arising from computational science and engineering applications. Advances
in combinatorial methods in combination with modern computer architectures
have massively influenced the design of state-of-the-art direct solvers that are fea-
sible for solving larger systems efficiently in a computational environment with
rapidly increasing memory resources and cores. Among these advances are novel
combinatorial algorithms for improving diagonal dominance which pave the way
to a static pivoting approach, thus improving the efficiency of the factorization
phase dramatically. Besides, partitioning and reordering the system such that a
high level of concurrency is achieved, the objective is to simultaneously achieve
the reduction of fill-in and the parallel concurrency. While these achievements
already significantly improve the factorization phase, modern computer architec-
tures require one to compute as many operations as possible in the cache of the
CPU. This in turn can be achieved when dense subblocks that show up during the
factorization can be grouped together into dense submatrices which are handled
by multithreaded and cache-optimized dense matrix kernels using level-3 BLAS
and LAPACK (Anderson et al. [1999]).
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2 1.1 Maximum weight matching to enable static data structures

This chapter reviews some of the basic technologies together with the latest
developments for sparse direct solution methods that have led to state-of-the-
art LU decomposition methods. The chapter is organized as follows. In Section
1.1 maximum weighted matching is introduced which is one of the key tools in
combinatorial optimization to dramatically improve the diagonal dominance of
the underlying system. Next, Section 1.2 reviews multilevel nested dissection
as a combinatorial method to reorder a system symmetrically such that fill-in
and parallelization are improved simultaneously, once pivoting can be more or
less ignored. After that, established graph-theoretical approaches are reviewed
in Section 1.3, in particular, the elimination tree, from which most of the prop-
erties of the LU factorization can be concluded. Among these properties is the
prediction of dense submatrices in the factorization. In this way several subse-
quent columns of the factors L and U T are collected in a single dense block. This
is the basis for the use of dense matrix kernels, using optimized level-3 BLAS as
well, to exploit fast computation using the cache hierarchy which is discussed in
Section 1.4. We assume that the reader is familiar with some elementary knowl-
edge from graph theory; see, e.g., Davis [2006] and some simple computational
algorithms based on graphs in Aho et al. [1983]. Finally Section 1.5 shows how
the building blocks described in previous sections are used to implement the ef-
ficient sparse direct solver on modern hardware. Solving a sparse linear system
is a computational kernel of many applications in science and engineering, thus
an efficient solver is a key component of such applications.

1.1 Maximum weight matching to enable static data
structures

In modern sparse elimination methods the key to success is the ability to work
with efficient data structures and their underlying numerical templates. If we
can increase the size of the diagonal entries as much as possible in advance,
pivoting during Gaussian elimination can often be bypassed and we may work
with static data structures and the numerical method will be significantly accel-
erated. A popular method to achieve this goal is the maximum weight matching
method (Duff and Koster [1999]; Olschowka and Neumaier [1996]) which per-
mutes, e.g., the rows of a given nonsingular matrix A ∈ Rn,n by a permutation
matrix Π ∈ Rn,n such that ΠT A has a nonzero diagonal. Moreover, it maximizes
the product of the absolute diagonal values and yields diagonal scaling matri-
ces Dr , Dc ∈ Rn,n, such that Ã = ΠT DrADc satisfies |ãi j| ¶ 1 and |ãii| = 1 for all



3 1.1 Maximum weight matching to enable static data structures

i, j = 1, . . . , n. The original idea on which these nonsymmetric permutations and
scalings are based is to find a maximum weighted matching of a bipartite graph.
Finding a maximum weighted matching is a well known assignment problem in
operations research and combinatorial analysis.

Definition 1.1.1 A graph G = (V, E) with vertices V and edges E ⊂ V 2 is called
bipartite if V can be partitioned into two sets Vr and Vc, such that no edge e =
(v1, v2) ∈ E has both ends v1, v2 in Vr or both ends v1, v2 in Vc. In this case we
denote G by Gb = (Vr , Vc, E).

Definition 1.1.2 Given a matrix A, then we can associate with it a canonical bi-
partite graph Gb(A) = (Vr , Vc, E) by assigning the labels of Vr = {r1, . . . , rn} with
the row indices of A and Vc = {c1, . . . , cn} being labeled by the column indices. In
this case E is defined via E = {(ri, c j)| ai j 6= 0}.

For the bipartite graph Gb(A) we see immediately that If ai j 6= 0, then we have
that ri ∈ Vr from the row set is connected by an edge (ri, c j) ∈ E to the column
c j ∈ Vc, but neither row is connected to each other nor do the columns have
interconnections.

Definition 1.1.3 A matching M of a given graph G = (V, E) is a subset of edges
e ∈ E such that no two of which share the same vertex.

IfM is a matching of a bipartite graph Gb(A), then each edge e = (ri, c j) ∈ M
corresponds to a row i and a column j and there exists no other edge ê = (rk, cl) ∈
M that has the same vertices, neither rk = ri nor cl = c j.

Definition 1.1.4 A matchingM of G = (V, E) is called maximal, if no other edge
from E can be added toM .

If, for an n × n matrix A a matching M of Gb(A) with maximum cardinality n
is found, then by definition the edges must be (i1, 1), . . . , (in, n) with i1, . . . , in

being the numbers 1, . . . , n in a suitable order and therefore we obtain ai1,1 6=
0, . . . ain,n 6= 0. In this case we have established that the matrix A is at least
structurally nonsingular and we can use a row permutation matrixΠT associated
with row ordering i1, . . . , in to place a nonzero entry on each diagonal location
of ΠT A.

Definition 1.1.5 A perfect matching is a maximal matching with cardinality n.
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Figure 1.1. Perfect matching. Left side: original matrix A. Middle: bipartite
representation Gb(A) = (Vr , Vc, E) of the matrix A and perfect matching M .
Right side: permuted matrix ΠT A.

It can be shown that for a structurally nonsingular matrix A there always exists
a perfect matchingM .

Perfect matching

In Figure 1.1, the set of edgesM = {(1, 2), (2, 4), (3,5), (4, 1), (5,3), (6,6)} rep-
resents a perfect maximum matching of the bipartite graph Gb(A).

The most efficient combinatorial methods for finding maximum matchings in
bipartite graphs make use of an augmenting path. We will introduce some graph
terminology for the construction of perfect matchings.

Definition 1.1.6 If an edge e = (u, v) in a graph G = (V, E) joins vertices u, v ∈ V ,
then we denote it as uv. A path then consists of edges u1u2, u2u3, u3u4 . . . , uk−1uk,
where each (ui, ui+1) ∈ E, i = 1, . . . , k− 1.

If Gb = (Vr , Vc, E) is a bipartite graph, then by the definition of a path, any path
is alternating between the vertices of Vr and Vc, e.g., paths in Gb could be such
as r1c2, c2r3, r3c4, . . . .

Definition 1.1.7 Given a graph G = (V, E), a vertex is called free if it is not incident
to any other edge in a matchingM of G. An alternating path relative to a matching
M is a path P = u1u2, u2u3, . . . , us−1us where its edges are alternating between
E \M and M . An augmenting path relative to a matching M is an alternating
path of odd length and both of it vertex endpoints are free.
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Augmenting path

Consider Figure 1.1. To better distinguish between row and column vertices we
use 1 , 2 , . . . , 6 for the rows and©1 ,©2 ,. . . ,©6 for the columns. A non-

perfect but maximal matching is given by M = {( 4 ,©5 ), ( 1 ,©1 ), ( 6 ,©2 ),
( 2 ,©6 ), ( 5 ,©4 )}. We can easily see that an augmenting path alternating

between rows and columns is given by 3 ©5 ,©5 4 , 4 ©1 ,©1 1 , 1 ©2 ,

©2 6 , 6 ©6 ,©6 2 , 2 ©4 ,©4 5 , 5 ©3 . Both endpoints 3 and©3
of this augmenting path are free.

In a bipartite graph Gb = (Vr , Vc, E) one vertex endpoint of any augmenting
path must be in Vr whereas the other one must be in Vc. The symmetric differ-
ence, A⊕ B of two edge sets A, B is defined to be (A\ B)∪ (B \ A).

Using these definitions and notations, the following theorem (Berge [1957])
gives a constructive algorithm for finding perfect matchings in bipartite graphs.

Theorem 1.1.1 If M is a nonmaximum matching of a bipartite graph
Gb = (Vr , Vc, E), then there exists an augmenting path P relative to M such that
P = M̃ ⊕M and M̃ is a matching with cardinality |M|+ 1.

According to this theorem, a combinatorial method of finding a perfect matching
in a bipartite graph is to seek augmenting paths.

The perfect matching as discussed so far only takes the nonzero structure of
the matrix into account. For their use as static pivoting methods prior to the
LU decomposition one requires, in addition, to maximize the absolute value of
the product of the diagonal entries. This is referred to as maximum weighted
matching. In this case a permutation π has to be found, which maximizes

n
∏

i=1

|aπ(i)i|. (1.1)

The maximization of this product is transferred into a minimization of a sum as
follows. We define a matrix C = (ci j) via

ci j =

¨

log ai − log |ai j|, ai j 6= 0,

∞, otherwise,
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where ai =max j |ai j| is the maximum element in row i of matrix A. A permuta-
tion π which minimizes the sum

n
∑

i=1

cπ(i)i

also maximizes the product (1.1). The minimization problem is known as the
linear-sum assignment problem or bipartite weighted matching problem in com-
binatorial optimization. The problem is solved by a sparse variant of the Hun-
garian method. The complexity is O (nτ log n) for sparse matrices with τ entries.
For matrices, whose associated graphs fulfill special requirements, this bound
can be reduced further to O (nα(τ+ n log n)) with α < 1. All graphs arising from
finite-difference or finite element discretizations meet the conditions (Gupta and
Ying [1999]). As before, we finally get a perfect matching which in turn defines
a nonsymmetric permutation.

When solving the assignment problem, two dual vectors u= (ui) and v = (vi)
are computed which satisfy

ui + v j = ci j, (i, j) ∈M , (1.2)

ui + v j ≤ ci j, otherwise. (1.3)

Using the exponential function these vectors can be used to scale the initial ma-
trix. To do so define two diagonal matrices Dr and Dc through

Dr = diag(d r
1 , d r

2 , . . . , d r
n), d r

i = exp(ui), (1.4)

Dc = diag(d c
1, d c

2, . . . , d c
n), d c

j = exp(v j)/a j. (1.5)

Using (1.2) and (1.3) and the definition of C , it immediately follows that
Ã= ΠT DrADc satisfies

|ãii|= 1, (1.6)

|ãi j| ≤ 1. (1.7)

The permuted and scaled system Ã has been observed to have significantly bet-
ter numerical properties when being used for direct methods or for precondi-
tioned iterative methods; cf., e.g., Benzi et al. [2000]; Duff and Koster [1999].
Olschowka and Neumaier [1996] introduced these scalings and permutation for
reducing pivoting in Gaussian elimination of full matrices. The first implemen-
tation for sparse matrix problems was introduced by Duff and Koster [1999].
For symmetric matrices |A|, these nonsymmetric matchings can be converted to
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Figure 1.2. Maximum weight matching. Left side: original matrix A. Right
side: permuted and rescaled matrix Ã= ΠT DrADc.

a symmetric permutation P and a symmetric scaling Ds = (Dr Dc)1/2 such that
PT DsADsP consists mostly of diagonal blocks of size 1 × 1 and 2 × 2 satisfying
a similar condition as (1.6) and (1.7), where in practice it rarely happens that
1 × 1 blocks are identical to 0 (Duff and Pralet [2004]). Recently, successful
parallel approaches to compute maximum weighted matchings have been pro-
posed (Langguth et al. [2011, 2014]).

Maximum weight matching

To conclude this section we demonstrate the effectiveness of maximum weight
matchings using a simple sample matrix “west0479” from the SuiteSparse Ma-
trix Collection. The matrix can also directly be loaded into MATLAB using load

west0479. In Figure 1.2 we display the matrix before and after applying max-
imum weighted matchings. To illustrate the improved diagonal dominance we
further compute ri = |aii|/

∑n
j=1 |ai j| for each row of A and Ã = ΠT DrADs, i =

1, . . . , n. ri can be read as the relative diagonal dominance of row i and yields a
number between 0 and 1. Moreover, whenever ri >

1
2 , the row is strictly diago-

nal dominant, i.e., |aii| >
∑

j: j 6=i |ai j|. In Figure 1.3 we display for both matrices
ri by sorting its values in increasing order and taking 1

2 as the reference line.
We can see the dramatic impact of maximum weighted matchings in improving
the diagonal dominance of the given matrix and thus paving the way to a static
pivoting approach in incomplete or complete LU decomposition methods.
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Figure 1.3. Diagonal dominance. Left side: ri for A. Right side: ri for
Ã= ΠT DrADc.

1.2 Symbolic reordering techniques based on multilevel
nested dissection

When dealing with large sparse matrices a crucial factor that determines the com-
putation time is the amount of fill that is produced during the factorization of
the underlying matrix. To reduce the complexity there exist many mainly sym-
metric reordering techniques that attempt to reduce the fill-in heuristically. Here
we will demonstrate only one of these methods, the so-called nested dissection
method. The main reason for selecting this method is that it can be easily used
for parallel computations.

Recursive multilevel nested dissection methods for direct decomposition meth-
ods were first introduced in the context of multiprocessing. If parallel direct
methods are used to solve a sparse system of equations, then a graph partition-
ing algorithm can be used to compute a fill reducing ordering that leads to a high
degree of concurrency in the factorization phase.

Definition 1.2.1 For a matrix A ∈ Rn,n we define the associated (directed) graph
Gd(A) = (V, E), where V = {1, . . . , n} and the set of edges E =

�

(i, j)| ai j 6= 0
	

. The
(undirected) graph is given by Gd(|A|+ |A|T ) and is denoted simply by G(A).

In graph terminology for a sparse matrix A we simply have a directed edge (i, j)
for any nonzero entry ai j in Gd(A) whereas the orientation of the edge is ignored
in G(A).

The research on graph-partitioning methods in the mid nineties has resulted
in high-quality software packages, e.g., METIS (Karypis and Kumar [1998]). These
methods often compute orderings that, on the one hand, lead to small fill-in for
(incomplete) factorization methods while on the other hand they provide a high
level of concurrency. We will briefly review the main idea of multilevel nested
dissection in terms of graph partitioning.
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Definition 1.2.2 Let A∈ Rn,n and consider its graph G(A) = (V, E). A k-way graph
partitioning consists of partitioning V into k disjoint subsets V1, V2, . . . , Vk such that
Vi ∩ Vj = ; for i 6= j, ∪iVi = V . The subset Es = E ∩

⋃

i 6= j(Vi × Vj) is called the edge
separator.

Typically we want a k-way partitioning to be balanced, i.e., each Vi should satisfy
|Vi| ≈ n/k. The edge separator Es refers to the edges that have to be taken away
from the graph in order to have k separate subgraphs associated with V1, . . . , Vk

and the number of elements of Es is usually referred to as the edge-cut.

Definition 1.2.3 Given A ∈ Rn,n, a vertex separator Vs of G(A) = (V, E) is a set of
vertices such that there exists a k-way partitioning V1, V2, . . . , Vk of V \Vs having no
edge e ∈ Vi × Vj for i 6= j.

A useful vertex separator Vs should not only separate G(A) into k independent
subgraphs associated with V1, . . . , Vk, it is intended that the numbers of edges
∪k

i=1|{eis ∈ Vi, s ∈ Vs}| is also small.
Nested dissection recursively splits a graph G(A) = (V, E) into almost equal

parts by constructing a vertex separator Vs until the desired number k of parti-
tionings are obtained. If k is a power of 2, then a natural way of obtaining a
vertex separator is to first obtain a 2-way partitioning of the graph, a so-called
graph bisection with its associated edge separator Es. After that a vertex sepa-
rator Vs is computed from Es, which gives a 2-way partitioning V1, V2 of V \ Vs.
This process is then repeated separately for the subgraphs associated with V1, V2

until eventually a k = 2l-way partitioning is obtained. For the reordering of the
underlying matrix A, the vertices associated with V1 are taken first followed by
V2 and Vs. This reordering is repeated similarly during repeated bisection of each
Vi. In general, vertex separators of small size result in low fill-in.

Vertex separators

To illustrate vertex separators, we consider the reordered matrix ΠT A from Fig-
ure 1.1 after a matching is applied. In Figure 1.4 we display its graph G(ΠT A)
ignoring the orientation of the edges. A 2-way partitioning is obtained with V1 =
{3,5}, V2 = {2, 6}, and a vertex separator Vs = {1, 4}. The associated reordering
refers to taking the rows and the columns of ΠT A in the order 3, 5,2, 6,1, 4.

Since a naive approach to compute a recursive graph bisection is typically
computationally expensive, combinatorial multilevel graph bisection has been
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Figure 1.4. A 2-way partition with vertex separator Vs = {1,4} and the associ-
ated reordered matrix placing the two rows and columns associated with Vs to
the end.

used to accelerate the process. The basic structure is simple. The multilevel ap-
proach consists of three phases: at first there is a coarsening phase which com-
presses the given graph successively level by level by about half of its size. When
the coarsest graph with about a few hundred vertices is reached, the second
phase, namely, the so-called bisection is applied. This is a high quality partition-
ing algorithm. After that, during the uncoarsening phase, the given bisection is
successively refined as it is prolongated towards the original graph.

Coarsening phase

The initial graph G0 = (V0, E0) = G(A) of A ∈ Rn,n is transformed during the
coarsening phase into a sequence of graphs G1, G2, . . . , Gm of decreasing size such
that |V0| � |V1| � |V2| � · · · � |Vm|. Given the graph Gi = (Vi, Ei), the next
coarser graph Gi+1 is obtained from Gi by collapsing adjacent vertices. This can
be done, e.g., by using a maximal matchingMi of Gi (cf. Definitions 1.1.3 and
1.1.4). UsingMi, the next coarser graph Gi+1 is constructed from Gi collapsing
the vertices being matched into multinodes, i.e., the elements of Mi together
with the unmatched vertices of Gi become the new vertices Vi+1 of Gi+1. The new
edges Ei+1 are the remaining edges from Ei connected with the collapsed vertices.
There are various differences in the construction of maximal matchings (Karypis
and Kumar [1998]; Chevalier and Pellegrini [2008]). One of the most popular
and efficient methods is heavy edge matching (Karypis and Kumar [1998]).

Partitioning phase

At the coarsest level m, a 2-way partitioning Vm,1∪̇Vm,2 = Vm of Gm = (Vm, Em) is
computed, each of them containing about half of the vertices of Gm. This specific
partitioning of Gm can be obtained by using various algorithms such as spec-
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tral bisection (Fiedler [1975]) or combinatorial methods based on Kernighan–
Lin variants (Kernighan and Lin [1970]; Fiduccia and Mattheyses [1997]). It is
demonstrated in Karypis and Kumar [1998] that for the coarsest graph, combi-
natorial methods typically compute smaller edge-cut separators compared with
spectral bisection methods. However, since the size of the coarsest graph Gm

is small (typically |Vm| < 100), this step is negligible with respect to the total
amount of computation time.

Uncoarsening phase

Suppose that at the coarsest level m, an edge separator Em,s of Gm associated with
the 2-way partitioning has been computed that has led to a sufficient edge-cut
of Gm with Vm,1, Vm,2 of almost equal size. Then Em,s is prolongated to Gm−1 by
reversing the process of collapsing matched vertices. This leads to an initial edge
separator Em−1,s for Gm−1. But since Gm−1 is finer, Em−1,s is suboptimal and one
usually decreases the edge-cut of the partitioning by local refinement heuristics
such as the Kernighan–Lin partitioning algorithm (Kernighan and Lin [1970]) or
the Fiduccia–Mattheyses method (Fiduccia and Mattheyses [1997]). Repeating
this refinement procedure level-by-level we obtain a sequence of edge separa-
tors Em,s, Em−1,s, . . . , E0,s and, eventually, an edge separator Es = E0,s of the initial
graph G(A) is obtained. If one is seeking for a vertex separator Vs of G(A), then
one usually computes Vs from Es at the end.

There have been a number of methods that are used for graph partitioning,
e.g. METIS (Karypis and Kumar [1998]), a parallel MPI version PARMETIS (Karypis
et al. [1999]), or a recent multithreaded approach MT-METIS (LaSalle and Karypis
[2013]). Another example for a parallel partitioning algorithm is SCOTCH (Cheva-
lier and Pellegrini [2008]).

Multilevel nested dissection

We will continue Example 1.1 using the matrix Ã = ΠT DrADs that has been
rescaled and permuted using maximum weight matching. We illustrate in Figure
1.5 how multilevel nested dissection changes the pattern Â = PT ÃP, where P
refers to the permutation matrix associated with the partitioning of G(Ã).
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Figure 1.5. Application of multilevel nested dissection after the matrix is al-
ready rescaled and permuted using maximum weight matching.

1.3 Sparse LU factorization

In this section we will assume that the given matrix A ∈ Rn,n is nonsingular and
that it can be factorized as A = LU , where L is a lower triangular matrix with
unit diagonal and U is an upper triangular matrix. It is well known (George and
Liu [1981]), if A = LU , where L and U> are lower triangular matrices, then in
the generic case we will have Gd(L+U) ⊃ Gd(A), i.e., we will only get additional
edges unless some entries cancel by “accident” during the elimination. In the
following we will ignore cancellations. Throughout this section we will always
assume that the diagonal entries of A are nonzero as well. We also assume that
Gd(A) is connected.

In the preceding sections we have argued that maximum weight matching of-
ten leads to a rescaled and reordered matrix such that static pivoting is likely to
be enough, i.e., pivoting is restricted to some dense blocks inside the LU factor-
ization. Furthermore, reordering strategies such as multilevel nested dissection
have further symmetrically permuted the system such that the fill-in that occurs
during Gaussian elimination is acceptable and even parallel approaches could be
drawn from this reordering, thus assuming that A does not need further reorder-
ing and a factorization A= LU exists is a realistic scenario in what follows.
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Figure 1.6. Fill-in with respect to L + U is denoted by ×.

1.3.1 The elimination tree

The basis of determining the fill-in in the triangular factors L and U as a by-
product of the Gaussian elimination can be characterized as follows (see Gilbert
[1994] and the references therein).

Theorem 1.3.1 Given A = LU with the aforementioned assumptions, there exists
an edge (i, j) in Gd(L + U) if and only if there exists a path

ix1, x2 x3, . . . , xk j

in Gd(A) such that x1, . . . , xk <min(i, j).

In other words, during Gaussian elimination we obtain a fill edge (i, j) for every
path from i to j through vertices less than min(i, j).

Fill-in

We will use the matrix ΠT A from Example 1.2 and sketch the fill-in obtained
during Gaussian elimination in Figure 1.6.

The fastest known method for predicting the filled graph Gd(L + U) is Gaus-
sian elimination. The situation is simplified if the graph is undirected. In the
following we ignore the orientation of the edges and simply consider the undi-
rected graph G(A) and G(L + U), respectively.

Definition 1.3.1 The undirected graph G(L + U) that is derived from the undi-
rected graph G(A) by applying Theorem 1.3.1 is called the filled graph and it will
be denoted by G f (A).

Remark 1.3.1 It follows immediately from the construction of elimination tree
T (A) and Theorem 1.3.1 that additional edges of G f (A) which are not covered by
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Figure 1.7. Elimination tree of “west0479” after maximum weight matching
and nested dissection are applied.

the elimination tree can only show up between a vertex and some of its ancestors
(referred to as “back-edges”). In contrast to that, “cross-edges” between unrelated
vertices do not exist.

Remark 1.3.2 One immediate consequence of Remark 1.3.1 is that triangular fac-
tors can be computed independently starting from the leaves until the vertices meet
a common parent, i.e., column j of L and U T only depend on those columns s of L
and U T such that s is a descendant of j in the elimination tree T (A).

Elimination tree

We use the matrix west0479 from Example 1.2, after maximum weight match-
ing and multilevel nested dissection have been applied. We use the MATLAB

etreeplot to display its elimination tree (see Figure 1.7). The elimination tree
displays the high level of concurrency that is induced by nested dissection, since
by Remark 1.3.2 the computations can be executed independently at each leaf
node towards the root until a common parent vertex is reached.

Further conclusions can be easily derived from the elimination tree, in par-
ticular, Remark 1.3.2 in conjunction with Theorem 1.3.1.

Remark 1.3.3 Consider some k ∈ {1, . . . , n}. Then there exists a (fill) edge ( j, k)
with j < k if and only if there exists a common descendant i of k, j in T (A) such
that aik 6= 0. This follows from the fact that once aik 6= 0, by Theorem 1.3.1 this
induces (fill) edges ( j, k) in the filled graph G f (A) for all nodes j between i and k
in the elimination tree T (A), i.e., for all ancestors of i that are also descendants of
k. This way, i propagates fill-edges along the branch from i to k in T (A) and the
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information aik 6= 0 can be used as path compression to advance from i towards k
along the elimination tree.

1.3.2 The supernodal factorization approach

We have already seen that the elimination tree reveals information about con-
currency. It is further useful to determine the fill-in L and U T . This information
can be computed from the elimination tree T (A) together with G(A). The basis
for determining the fill-in in each column is again Remark 1.3.3. Suppose we
are interested in the nonzero entries of column j of L and U T . Then for all de-
scendants of j, i.e., the nodes of the subtree T ( j) rooted at vertex j, a nonzero
entry aik 6= 0 also implies lk j 6= 0. Thus, starting at any leaf i, we obtain its fill
by all aik 6= 0 such that k > i and when we move forward from i to its parent
j, vertex j will inherit the fill from node i for all k > j plus the nonzero entries
given by a jk 6= 0 such that k > j. When we reach a common parent node k with
multiple children, the same argument applies using the union of fill-in greater
than k from its children together with the nonzero entries akl 6= 0 such that l > k.
We summarize this result in a very simple algorithm

Computation of fill-in

Require: A∈ Rn,n such that A has the same pattern as |A|+ |A|T .
Ensure: sparse strict lower triangular pattern P ∈ Rn,n with same pattern as L,

U T .
1: compute parent array p of the elimination tree T (A)
2: for j = 1, . . . , n do
3: supplement nonzeros of column j of P with all i > j such that ai j 6= 0
4: k = p j

5: if k > 0 then
6: supplement nonzeros of column k of P with nonzeros of column j of P

greater than k
7: end if
8: end for

Algorithm 1.3.2 only deals with the fill pattern. One additional aspect that
allows one to raise efficiency and to speed up the numerical factorization signifi-
cantly is to detect dense submatrices in the factorization. Block structures allow
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one to collect parts of the matrix in dense blocks and to treat them commonly
using dense matrix kernels such as level-3 BLAS and LAPACK (Anderson et al.
[1999]).

Dense blocks can be read off from the elimination tree employing Algorithm
1.3.2.

Definition 1.3.2 Denote by P j the nonzero indices of column j of P as computed
by Algorithm 1.3.2. A sequence k, k+1, . . . , k+ s−1 is called a supernode of size s
if the columns of P j =P j+1 ∪ { j + 1} for all j = k, . . . , k+ s− 2.

In simple words, Definition 1.3.2 states that for a supernode s subsequent columns
can be grouped together in one dense block with a triangular diagonal block and
a dense subdiagonal block since they perfectly match the associated trapezoidal
shape. We can thus easily supplement Algorithm 1.3.2 with a supernode detec-
tion.

Computation of fill-in and supernodes

Require: A∈ Rn,n such that A has the same pattern as |A|+ |A|T .
Ensure: sparse strict lower triangular pattern P ∈ Rn,n with the same pattern as

L, U T as well as column size s ∈ Rm of each supernode.
1: compute parent array p of the elimination tree T (A)
2: m← 0
3: for j = 1, . . . , n do
4: supplement nonzeros of column j of P with all i > j such that ai j 6= 0
5: denote by r the number of entries in column j of P
6: if j > 1 and j = p j−1 and sm + r = l then
7: sm← sm + 1 . continue current supernode
8: else
9: m← m+ 1, sm← 1, l ← r . start new supernode

10: end if
11: k = p j

12: if k > 0 then
13: supplement nonzeros of column k of P with nonzeros of column j of P

greater than k
14: end if
15: end for
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(a) Undirected graph G(A)
represented as a matrix.
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(b) Supernodes in the triangu-
lar factor.

Figure 1.8. Matrix representation of an undirected graph G(A) and supernodes
in its triangular factor. Entries of G(A) are denoted by •, fill-in is denoted
by ×.

Supernode computation

To illustrate the use of supernodes, we consider the matrix pattern from Figure
1.8a and illustrate the underlying dense block structure in Figure 1.8b.
Supernodes are the columns 1, 2, 3 as scalar columns as well as columns 4–6
as one single supernode.

Supernodes form the basis of several improvements, e.g., a supernode can
be stored as one or two dense matrices. Beside the storage scheme as dense
matrices, the nonzero row indices for these blocks need only be stored once.
Next the use of dense submatrices allows the usage of dense matrix kernels using
level-3 BLAS (Anderson et al. [1999]).

Supernodes

We use the matrix west0479 from Example 1.2, after maximum weight matching
and multilevel nested dissection have been applied. We use its undirected graph
to compute the supernodal structure. Certainly, since the matrix is nonsymmet-
ric, the block structure is only suboptimal. We display the supernodal structure
for the associated Cholesky factor, i.e., for the Cholesky factor of a symmetric
positive definite matrix with same undirected graph as our matrix (see top part
of Figure 1.9). Furthermore, we display the supernodal structure for the factors
L and U computed from the nonsymmetric matrix without pivoting (see bottom
part of Figure 1.9).
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While the construction of supernodes is fairly easy in the symmetric case, its
generalization for the nonsymmetric case is significantly harder, since one has to
deal with pivoting in each step of Gaussian elimination. In this case one uses the
column elimination tree (George and Ng [1985]).

1.4 Supernodal data structures

High-performance sparse solver libraries have been a very important part of sci-
entific and engineering computing for years, and their importance continues to
grow as microprocessor architectures become more complex and software li-
braries become better designed to integrate easily within applications. Despite
the fact that there are various science and engineering applications, the underly-
ing algorithms typically have remarkable similarities, especially those algorithms
that are most challenging to implement well in parallel. It is not too strong a
statement to say that these software libraries are essential to the broad success
of scalable high-performance computing in computational sciences. In this sec-
tion we demonstrate the benefit of supernodal data structures within the sparse
solver package PARDISO (Schenk and Gärtner [2004]; Bollhöfer et al. [2020]).
We illustrate it by using the triangular solution process. The forward and back-
ward substitution is performed columnwise with respect to the columns of L,
starting with the first column, as depicted in Figure 1.10. The data dependen-
cies here allow one to store vectors y , z, b, and x in only one vector r. When
column j is reached, r j contains the solution for y j. All other elements of L in this
column, i.e., Li j with i = j + 1, . . . , N , are used to update the remaining entries
in r by

ri = ri − r j Li j. (1.8)

The backward substitution with LT will take place rowwise, since we use L and
perform the substitution columnwise with respect to L, as shown in the lower
part of Figure 1.10. In contrast to the forward substitution the iteration over
columns starts at the last column N and proceeds to the first one. If column j
is reached, then r j, which contains the j-component of the solution vector x j,
is computed by subtracting the dot product of the remaining elements in the
column Li j and the corresponding elements of ri with i = j + 1, . . . , N from it:

r j = r j − ri Li j. (1.9)

After all columns have been processed r contains the required solution x . It is im-
portant to note that line 5 represents in both substitutions an indexed DAXPY and
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Figure 1.9. Supernodal structure. Top: vertical lines display the blocking of the
supernodes with respect to the associated Cholesky factor. Bottom: vertical
and horizontal lines display the blocking of the supernodes applied to L and U .
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j
j+1

j-1

L r

iteration direction

1: procedure SPARSE FORWARD SUBSTITUTION

2: for j = 0; j < n; j++ do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]
5: r[row] -= r[j] * l[i] . indexed DAXPY
6: end for
7: end for
8: end procedure

j
j+1

j-1

L r

LT

iteration direction

1: procedure SPARSE BACKWARD SUBSTITUTION

2: for j = n; j > 0; j - - do
3: for i = xl[j]; i < xl[j+1]; i++ do
4: row = id[i]
5: r[j] -= r[row] * l[i] . indexed DDOT
6: end for
7: end for
8: end procedure

Figure 1.10. Sparse triangular substitution in CSC format based on indexed
DAXPY/DDOT kernel operations.

indexed DDOT kernel operations that have to be computed during the streaming
operations of the vector r and the column j of the numerical factor L. As we
are dealing with sparse matrices it makes no sense to store the lower triangular
matrix L as a dense matrix. Hence PARDISO uses its own data structure to store
L, as shown in Figure 1.11.

Adjacent columns exhibiting the same row sparsity structure form a panel,
also known as a supernode. A panel’s column count is called the panel size np.
The columns of a panel are stored consecutively in memory excluding the zero
entries. Note that columns of panels are padded in the front with zeros so they
get the same length as the first column inside their panel. The padding is of
utmost performance for the PARDISO solver to use Level-3 BLAS and LAPACK
functionalities (Schenk [2000]). Furthermore panels are stored consecutively in
the l array. Row and column information is now stored in accompanying arrays.
The xsuper array stores for each panel the index of its first column. Also note that
here column indices are the running count of nonzero columns. Column indices
are used as indices into the xl array to look up the start of the column in the l

array which contains the numerical values of the factor L. To determine the row
index of a column’s element an additional array id is used, which holds for each
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panels

parts separator

r tL

Figure 1.11. Sparse matrix data structures in PARDISO. Adjacent columns of
L exhibiting the same structure form panels also known as supernodes. Groups
of panels which touch independent elements of the right hand side r are parts.
The last part in the lower triangular matrix L is called the separator.

panel the row indices. The start of a panel inside id is found via xid array. The
first row index of panel p is id[xid[p]]. For serial execution this information
is enough. However, during parallel forward/backward substitution concurrent
updates to the same entry of r must be avoided. The parts structure contains
the start (and end) indices of the panels which can be updated independently as
they do not touch the same entries of r. Two parts, colored blue and green, are
shown in Figure 1.11. The last part in the bottom right corner of L is special and
is called the separator and is colored gray. Parts which would touch entries of r in
the range of the separator perform their updates into separate temporary arrays
t. Before the separator is then serially updated, the results of the temporary
arrays are gathered back into r. The backward substitution works the same, just
reversed and only updates to different temporary arrays are not required. The
complete forward substitution and backward substitution is listed in Algorithms 1
and 2.
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Algorithm 1 Forward substitution in PARDISO. Note that in case of serial execu-
tion separated updates to temporary arrays in line 10–13 are not necessary and
can be handled via the loop in lines 6–9.

1: procedure FORWARD

2: for part o in parts do . parallel execution
3: for panel p in part p do
4: for column j in panel do . unroll
5: i = xid[p] + offset
6: for k = xl[j] + offset; k < sep; ++k do
7: row = id[i++]
8: r[row] - = r[j] l[k] . indexed DAXPY
9: end for

10: for k = sep + 1; k < xl[j+1]; ++k do
11: row = id[i++]
12: t[row,p] -= r[j] l[k] . indexed DAXPY
13: end for
14: end for
15: end for
16: end for
17: r[i] = r[i] - sum(t[i,:]) . gather temporary arrays
18: for panel p in separator do . serial execution
19: for column j in panel do . unroll
20: i = xid[p] + offset
21: for k = xl[j] + offset; k < xl[j+1]; ++k do
22: row = id[i++]
23: r[row] -= r[j] l[k] . indexed DAXPY
24: end for
25: end for
26: end for
27: end procedure
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Algorithm 2 Backward substitution in PARDISO. Separator (sep.), parts, and
panels are iterated over in reversed (rev.) order.

1: procedure BACKWARD

2: for panel p in sep. rev. do . serial execution
3: for col. j in panel p rev. do . unroll
4: i = xid[p] + offset
5: for k = xl[j] + offset; k < xl[j+1]; ++k do
6: row = id[i++]
7: r[j] -= r[row] l[k] . indexed DDOT
8: end for
9: offset = offset - 1

10: end for
11: end for
12: for part in parts do . parallel execution
13: for panel p in part rev. do
14: for col. j in panel p rev. do . unroll
15: i = xid[p] + offset
16: for k = xl[j] + offset; k < xl[j+1]; ++k do
17: row = id[i++]
18: r[j] -= r[row] l[k] . indexed DDOT
19: end for
20: offset = offset - 1
21: end for
22: end for
23: end for
24: end procedure
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Figure 1.12. Evolution of machine balance of processors. From Abdelfattah
et al. [2021].

1.5 High-performance computing mathematical libraries
— sparse linear factorization solvers

High-performance computing mathematical libraries have been a very important
part of scientific and engineering computing for years, and their importance con-
tinues to grow as microprocessor architectures become more complex and soft-
ware libraries become better designed to integrate easily within applications. De-
spite the fact that there are various science and engineering applications, the un-
derlying algorithms typically have remarkable similarities, especially those algo-
rithms that are most challenging to implement well in parallel. It is not too strong
a statement to say that these software libraries are essential to the broad success
of scalable high-performance computing in computational sciences (Kothe and
Kendall [2007]; Reed et al. [2005]; Bader [2007]).

The recent trends in hardware development have added additional questions
to this scenario because today’s codes are not guaranteed to exploit the perfor-
mance of next-generation hardware to a satisfying degree. The so-called memory
wall, i.e., the increasing performance gap between memory access and processor
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speed, will force scientific computing software to deal with the efficient use of
complex multiple memory hierarchies. This is illustrated in Figure 1.12, which
shows how many floating point operations are needed per memory access on
various processors to fully utilize their power. We can clearly see the increas-
ing trend over the years. In addition, manycore architectures with hundreds
of cores using a decreased processor clock rate will add additional algorithmic
and software challenges to scientific computing. Autotuning tools, libraries, and
software tools based on dwarfs (Asanovic et al. [2009]) will be designed that
will help researchers and application developers to improve the performance of
a given application.

In this work we will focus on systems of linear equations that arise at the
heart of many scientific and engineering applications. Many of these linear sys-
tems are sparse, i.e., most of the elements in the coefficient matrix are zero.
Direct methods based on matrix factorizations are sometimes needed to ensure
accurate solutions. For example, an accurate solution of sparse linear systems
is needed in shift-invert Lanczos to compute interior eigenvalues (Ericsson and
Ruhe [1980]; Lin et al. [2021]). The performance and resource usage of sparse
matrix factorizations are critical to time-to-solution and maximum problem size
solvable on a given platform.

The innermost computational kernels of many large-scale scientific applica-
tions and industrial numerical simulations are often either a large sparse matrix
problem or a nonlinear optimization method which again can be reduced to a
large sparse matrix problem. Sparse direct linear solvers are a core part of many
problems in computational science and typically consume a significant portion of
the overall computational time required by the simulations. While on one hand
modern computer architectures provide larger memory resources and faster mul-
ticore processors, on the other hand the need for solving large scale application
problems often compensates for these developments. The request for fast and
memory efficient — and robust — solvers has been important for many years
and remains an open field for further developments.

As mentioned before, the use of graph-pivoting techniques as an alternative
approach to traditional pivoting methods emerged two decades ago (Schenk and
Gärtner [2004]). These graph-based methods typically build a bipartite graph
of a symmetric indefinite matrix A and, by traversing vertices and edges in the
graph, these approaches compute a maximum weighted matching that in turn
defines a permutation of the rows and/or columns in A. The important advan-
tage of all these methods is that they allow — in a parallel environment — the
precomputation of the underlying elimination process, thus making the Gaus-
sian elimination process much more scalable. Almost all modern parallel sparse
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direct solver tools (see Table 1.1) are now using these kinds of graph-pivoting
techniques, since they are the key for high sequential and parallel efficiency.

For sparse direct algorithms there exist a wide range of possible methods,
such as multifrontal, left- or right-looking supernodal methods, or a combination
of these methods (Davis [2006]). As a result, different high-level implementa-
tions are available, such as SuperLU (Li and Demmel [2003]), MUMPS (Amestoy
et al. [2000b]), PARDISO (Schenk and Gärtner [2004, 2006]; Bollhöfer et al.
[2020]) and WSMP (Gupta [2002]). The communication patterns of all these
different packages and methods are — more or less — very similar. All of them
are using supernodal blocking strategies and this data structure will be used for
performance modeling in the next chapters.

Table 1.1 lists a few available software packages for the direct solution of
sparse linear algebra problems. Comparison of the most popular direct solvers
can be found in a study by Gould et al. [2007]. The interest is in software for
high-performance computers for solving problems in numerical linear algebra,
especially sparse direct systems. We are, in particular, interested in the forward
and backward solution process of sparse direct solvers since they build the com-
putational kernel, e.g., in FETI-DP methods. FETI-DP are known to be highly
parallelizable, but all implementations are using sparse direct solvers as building
blocks on each compute node in order to efficiently solve the coarse grid (Riha
et al. [2019]; Meca et al. [2018]; Klawonn and Rheinbach [2010]). Another
application domain relying on efficient direct sparse solvers stem from apply-
ing interior point methods to problems in the power grid sector (Kardoš et al.
[2020]).

We will investigate and analyze the performance of the forward/backward
solution process of the PARDISO library (Schenk and Gärtner [2004, 2006]; Boll-
höfer et al. [2020]). Detailed performance analysis for a representative sparse
solver kernel based on a modified Berkeley roofline model will be presented in the
next chapters. In addition to PARDISO, the considerations in this thesis may also
be relevant to the sparse triangular solve phases of other solvers like SuperLU (Li
[2005]), UMFPACK (Davis and Duff [1997]), or MUMPS (Amestoy et al. [2000a,
2001, 2006]). The performance of sparse direct solvers has, of course, been con-
sidered earlier by many different authors, e. g., Heath and Raghavan [1999]; Li
[2008]; Marrakchi and Jemni [2017]; Park et al. [2014]; Liu et al. [2016], using
hardware relevant at the time of publication. Often, the performance is reported
for the proposed implementation on a certain processor or GPU together with
related metrics, e. g., data volume or cache misses. More advanced works such
as Vuduc et al. [2002] provide upper and lower bounds for the performance.
In this thesis, the goal is to apply analytical performance models which allow us
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not only to evaluate performance, but also to anticipate and prevent bottlenecks.
Traditionally, the Berkeley roofline model (Callahan et al. [1988]; Hockney and
Curington [1989]; Schönauer [2000]; Williams et al. [2009]) has been used for
this task to relate the performance of a code with the hardware’s capabilities.
The Berkeley roofline model is introduced in Chapter 2.4. Our modification of
the model, which allows us to model a combination of sequential and parallel ex-
ecutions, is described in Chapter 3.3. Finally in Chapter 4 the model is evaluated
on various matrices and CPU architectures.
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Table 1.1. List of sparse direct solvers collected by Dongarra and Sukkari
[2021].



Chapter 2

Performance modeling of sparse
factorization solvers

Performance engineering plays an important role in development of scientific
software. In order to achieve optimal performance, one needs to analyze the code
and computer architecture to identify bottlenecks and possibilities for optimiza-
tion (Köstler and Rüde [2013]; Minami [2019]). This helps us spend our effort
only where there is a potential for improvement. While simple code can often be
analyzed using intuition and guessing, this is not possible for nontrivial codes.
Performance models are helping us to analyze a code by guiding our attention
on important features and neglecting unnecessary details (Gropp et al. [1999];
Williams [2008]; Kreutzer et al. [2015]). This chapter reviews two performance
models we will later use for modeling forward and backward substitution code
used in sparse factorization solvers.

The chapter is organized as follows. In Section 2.2 computer architecture
is briefly introduced. Next, Section 2.3 reviews a collection of command line
tools called LIKWID. These tools are useful for various performance engineering
tasks, e.g., determining the hardware and its specification, microbenchmarking,
and profiling. After that, two established performance models are reviewed: the
Berkeley roofline model in Section 2.4 and Erlangen execution-cache-memory
model in Section 2.5. Finally in Section 2.6 the execution-cache-memory model
is used to analyze performance of two simple computational kernels. Models
of these two kernels will be used later as a base for modeling sparse triangular
solves.

29
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2.1 Exploiting the memory hierarchies, autotuning
research, and sparse factorization solvers

Modern microprocessors are highly sensitive to the spatial and temporal locality
of data. Regardless of the programming model, performance of future parallel
applications will crucially depend on the quality of the generated code which
is traditionally the responsibility of the compiler. The compiler selects which
optimization to perform in terms of, e.g., loop-unrolling, out-of-order instruction
capabilities, or register scheduling. Choosing parameters for these optimizations,
and selecting among alternative implementations, is the key to efficient use of the
underlying hardware. The resulting space of optimization alternatives is large
(Balaprakash et al. [2018]).

Autotuner projects such as, e.g. ATLAS 1 (Whaley and Petitet [2005]; Whaley
et al. [2001]), FLAME 2 (Bientinesi et al. [2005]), and OSKI 3 (Demmel et al.
[2005]; Vuduc [2003]; Lee et al. [2004]), gained popularity as a very effective
approach for producing high-quality portable scientific code. In these projects,
the set of library kernels is automatically optimized by generating many variants
of a given kernel and by running that kernel in a target platform. The search
process may take hours to complete on the platform. However, it needs to be
performed only once when the library is installed on the platform. The resulting
codes might be several times faster than naive implementations.

As an example, reordering the vertices and elements in a mesh can have a
significant impact on performance. Graph and hypergraph techniques have been
used in this area to automatically generate highly efficient, platform-adapted
implementations of sparse matrix kernels. These kernels are frequently compu-
tational bottlenecks in diverse applications in computational science and engi-
neering applications. However, the task of extracting near-peak performance on
modern cache-based superscalar machines has proven to be extremely difficult.
Many sparse matrices from applications have a natural block structure that can
be exploited by storing columns as a collection of blocks and thus accelerating the
performance of sparse matrix kernels significantly. It is shown in recent projects
such as Azad et al. [2016]; Vuduc [2003] that it is possible to build an auto-
matic tuning system to generate implementations whose performances exceed
that of the best hand-tuned code. The algorithmic methods behind these re-
search projects are based on reordering methods on the discrete graph structure

1Automatically tuned linear algebra software.
2Formal linear algebra methods environment.
3Optimized sparse kernel interface.
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in order to maximize the block structure and, thus, obtaining high performance
by maximizing spatial and temporal locality.

2.2 Computer architecture

Modern processors utilize numerous techniques that aim to improve performance
— the number of computations done per unit of time. In the past, the perfor-
mance used to be increased only by increasing the CPU clock frequency. However,
increasing the frequency results in higher power consumption and, consequently,
the CPU needs a larger heat sink in order to prevent it from overheating. As a
result, the clock frequency of recent CPUs is about 2.0–3.5 GHz and does not
increase anymore. Since the trend of doing computations faster due to increas-
ing frequency is over, the effort of CPU manufacturers focuses on performing
computations at the same time in parallel. This leads to adding more compu-
tational units to modern processors. These units, called cores, perform instruc-
tions independently, thus the overall performance is effectively increased. This
scheme works well when every core works on different data, but when an access
to shared data is required the cores need to be synchronized in order to prevent
data conflicts and inconsistent results. The synchronization, however, requires
serialization of computation and prevention parallel computations, thus reduc-
ing the overall performance.

Another possibility for parallel computations is implementing instructions
that perform more than one operation applied on vectors of data instead of
single elements. Such instructions are called SIMD (single instruction multiple
data), examples of which are SSE (streaming SIMD extensions) which operates
on 128 b registers containing two floating point numbers in double precision or
four numbers in single precision, or newer AVX (advanced vector extensions)
with registers twice as big, computing four operations in double precision in a
single instruction.

Another CPU optimization focuses on computational pattern, where there is
multiplication followed by addition. An example of such an operation can be
found in many compute kernels in various scientific applications. In order to
make these computations more efficient, many modern CPU architectures com-
pute operations similar to a = a+ b∗c in one instruction. This type of instruction
is called fused multiply-add (FMA). The new version of an AVX extension, called
AVX2, adds support for vectorized FMA operations, effectively performing 8 op-
erations in a single instruction using double precision (16 operations in single
precision).
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Figure 2.1. CPU core pipeline of Haswell microarchitecture. From Intel Corp.
[2016].

The parallelism can be exploited not only on the level of multiple cores, but
also on the instruction level within a single processor, an example of which is
instruction pipelining. Pipelining attempts to divide incoming instructions into
a series of sequential steps, allowing the processor to dispatch a new instruction
every cycle, instead of performing a whole instruction which takes several cycles.
Additionally, in order to maximize instruction throughput, the instructions are
executed out of order, if there are available processing units. A CPU core of Intel
Haswell microarchitecture is shown in Figure 2.1, consisting of eight dispatch
ports in total, four of which have units for computational operations and four
for memory operations. The scheduler can dispatch up to eight micro-ops every
cycle, one on each port.

Another level of complexity is introduced when considering data movements.
The CPU performs all operations on data stored in registers, the fast but small
memory inside the CPU. Before the computations start, data have to first be
loaded from memory to registers and when the computations are done, they
have to be restored back to memory. The memory is very slow compared to the
registers, which introduces a significant bottleneck hampering the performance
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of a computation. To make the memory access more efficient there are multiple
levels of memory between the CPU and main memory, each with a different size
and access speed, referred to as cache. Usually the cache has three levels, called
L1, L2, and L3. L1 is closest to the CPU and has the smallest size (few kB), while
L3 is closest to the memory and has the largest size (few MB). Any data trans-
ferred between the memory and registers have to go through all cache levels. In
some cases data are often reused in the computation, thus they can stay in the
cache, avoiding communication with the slow memory.

In order to improve performance and the ability of the system to be expanded,
e.g., in the case of servers often having more than one processor, every processor
has its own memory and memory controller. This memory layout is called NUMA
(non-uniform memory access). The benefit of such an architecture is that it in-
creases memory bandwidth, the rate at which data can be read and stored into
memory, which prevents a bottleneck introduced by all the cores accessing the
memory and saturating the available bandwidth, resulting in idle cores waiting
for data instead of doing useful computation. On the other hand, introducing
multiple memory domains creates problems when one processor needs to access
data in memory belonging to another processor. This situation is possible but not
very efficient, as it increases the load at a single memory controller and, addition-
ally, the data have to be transferred through a link between processors, which
can become a bottleneck. The programmer works with a virtual memory span-
ning all memory domains, so he does not see this underlying complexity, but he
should keep this in mind in order to write efficient code. For example, an oper-
ating system places memory pages to the physical memory of the processor that
writes to the page for the first time, so called first touch. If a single thread initial-
izes all the data that are then accessed in parallel, it might allocate the data in a
suboptimal way. If the initialization is performed in parallel, significantly better
memory utilization can be achieved.

Modern server processors contain a lot of cores (usually 14 or more) and
with so many cores accessing the memory it is very easy to saturate the mem-
ory bandwidth. Intel solves this problem by splitting the memory and L3 cache
between two NUMA domains and use second memory controllers. This reduces
the number of cores using the same memory controller and doubles the memory
bandwidth. Intel calls this architecture cluster-on-die (CoD).

Peak performance of a CPU is a theoretical maximum the processor can
achieve. It requires utilization of all cores running at the base frequency and
every core achieving the highest possible floating point throughput. Evaluation
of the peak performance of modern CPUs is a very intricate process, requiring one
to consider a multitude of factors. It depends on an instruction set and the num-
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name IVB HSW-D HSW-S BDW SKX KNL ZEN-D ZEN-S

processor
name

Intel Intel Intel Intel Intel Intel AMD AMD
Xeon Xeon Xeon Xeon Xeon Xeon Ryzen 7 EPYC

E5-2660 v2 E3-1240 v3 E5-2695 v3 E5-2630 v4 Gold 6148 Phi 7210 1700X 745

micro Ivy Bridge Haswell Haswell Broadwell Skylake Knigths Zen Zen
arch. Landing
freq [GHz] 2.2 3.4 2.3 2.2 2.4 ≈ 1.3 3.4 2.3
cores 10 4 2 × 7 10 20 64 8 24
ISA AVX AVX2 AVX2 AVX2 AVX-512 AVX-512 AVX2 AVX2
NUMA LDs 1 1 2 1 1 1 1 4
L1 [KiB] 32 32 32 32 32 32 32 32
L2 [KiB] 256 256 256 256 1024 1024 512 512
L3 [MiB] 25 8 2 × 17.5 25 28 - 2 × 8 8 × 8
scalar read bw.

1 core [GB/s] 9.5 16.6 12.1 11.5 14.5 8.5 19.3 19.3
NUMA LD [GB/s] 44.4 22.7 31.2 56.3 108.0 75.2 33.7 37.6

scalar ADD+MUL/FMA

1 core [F/cy] 2 4 4 4 4 4 4 4
NUMA LD [F/cy] 20 16 28 40 80 256 32 24

scalar machine balance Bm

1 core [B/F] 2.2 1.2 1.3 1.3 1.5 1.6 1.4 2.1
NUMA LD [B/F] 1.0 0.4 0.5 0.6 0.6 0.2 0.3 0.7

Table 2.1. Details of evaluated hardware systems. KNL’s bandwidth numbers
are for DDR memory.

ber and type of units in a core. A detailed analysis of different Intel architectures
can be found in Dolbeau [2018]. As an example we can analyze Intel Xeon E5-
2695 v3. This is a 14 core CPU with Haswell architecture and base frequency of
2.3 GHz (detailed description is in Table 2.1). The Haswell architecture supports
AVX2 instructions (8 FLOPs per instruction) and can execute two instructions
per cycle (ports 1 and 5), resulting in a total of 16 FLOPs per cycle per core.
Consequently, the peak performance is Ppeak = 2.3∗14∗8∗2= 515.2GFLOPs/s.

The theoretical memory bandwidth can be found in a datasheet, but the at-
tainable bandwidth of a specific application depends on the access patters, num-
ber of threads used, whether NUMA is used, and other factors. Using the the-
oretical bandwidth is thus not precise for purposes of performance analysis. A
more realistic bandwidth can be obtained using microbenchmarks, ideally with
similar memory access patterns as the application. In the following section we
will review a performance tool called LIKWID which supports software develop-
ers, benchmarkers, and application users to model and get the best performance
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on a given system. We will use this tool later for performance modeling for a
sparse factorization solver.

2.3 Performance modeling using the LIKWID tools

LIKWID ("like I knew what I’m doing") (Treibig et al. [2010]) is a set of com-
mand line tools to support optimization and performance engineering. It con-
sists of tools that display thread and cache topology, discover CPU and memory
performance using benchmarks, alter CPU frequency and other settings, and al-
low performance evaluation of user applications. Typical workflow using the
LIKWID tools could be (i) use likwid-topology to find information about the
hardware; (ii) gather various performance metrics using likwid-bench (mem-
ory bandwidth, performance using different instruction sets, etc.). Next, (iii) run
an application specifying thread affinity using likwid-pin; and (iv) evaluate per-
formance of a user application using likwid-perfctr by collecing performance
metrics either for the whole runtime or only for a specified code region. A short
description of the most useful tools follows.

likwid-topology

Performance engineering requires in-depth knowledge about node topology, like
NUMA domains, cache hierarchy and sizes, CPU architecture, frequency, cores,
and HW threads. This information can be gathered using various command line
tools, which might be time consuming, especially since some of them present
long output where it is difficult to find required information. likwid-topology
provides a holistic picture of node topology, collecting information from different
available sources in the operating system and presenting a comprehensive and
easy to understand overview of the node topology either in intuitive text form or
an ASCII art style.

likwid-pin

Thread affinity is crucial for performance of scientific applications. Knowing the
topology (obtained, for example, by likwid-topology), one can pin threads to
cores according to the application’s requirements. Pinning threads make perfor-
mance measurements more consistent between runs and usually also improve
performance bacause the threads are not assigned to cores randomly. This is
very important when multiple NUMA domains are used to minimize the data



36 2.3 Performance modeling using the LIKWID tools

traffic between NUMA domains. likwid-pin can be used with all applications
based on POSIX threads, which include most of OpenMP implementations. The
pinning is achieved by overloading the pthread_create call and pinning every
thread upon creation. Some OpenMP implementations create shepherd threads.
These threads do not execute any user code and therefore should not be pinned.
This is achieved by providing a mask or using one of the predefined masks for
known implementations.

likwid-perfctr

All modern CPUs provide hardware counters, registers that can be set to count
various hardware events. The main purpose of these counters is to help manufac-
turers with development of the CPU, but they are also available to the user. The
counters are accessed using model specific registers (MSRs) and can be config-
ured to count various events like fetching data, storing data, cache hits/misses,
or calculations. As the counters are implemented in hardware, they come with
no overhead. A downside of using the counters is that they measure events on a
given core and cannot distinguish between processes. However, on systems with
only one user this is usually not a problem.

likwid-perfctr is a command line tool that configures and reads the coun-
ters and is used as a wrapper for a user application. It can be used in two modes:
it can either measure the whole runtime of the application or only specific blocks
of code called regions. If the whole runtime is measured, no modification of the
application is needed. For measuring the regions, markers denoting the begin-
ning and end of a region have to be inserted into the application code and have
to be linked with the likwid library. The markers are library function calls that
read values of the counters. Every marker has a name (user defined string) iden-
tifying the region. The string does not have to be unique, but all regions with
the same name are summed up and are indistinguishable in the output. After the
user application finishes, the data from counters are processed and a summary is
presented. As reading the counters is a simple operation and all the processing
is done after the user app finishes, there is very little overhead.

The measured events are specified as command line arguments to the wrap-
per application, so the measurement can be repeated several times measuring
different events without recompiling the code. The raw counts usually do not
provide a lot of insight. However, likwid-perfctr can combine the raw counts
to derive useful performance metrics like FLOPs/s or memory bandwidth. Ad-
ditionally, likwid-perfctr also has the functionality of likwid-pin. This is
very important because without pinning the threads could move between cores,
making the measurements inaccurate.
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likwid-bench

Writing a benchmark is a very intricate process. The purpose of a benchmark is
to measure some specific computation; however, the naive user code might not
necessarily be the most efficient implementation. A compiler exploits a lot of
optimizations, e.g., if results of some computations are not used, these computa-
tions are often dropped altogether. Alternatively, a compiler can replace the user
code by a more efficient implementation. In both cases, the benchmark would
end up measuring something different from what was intended. To be sure the
benchmark measures the proper thing, the code most likely has to be written in
assembly or at least the user should check the assembly generated by a compiler.

likwid-bench is a benchmark suite for prototyping low-level assembly ker-
nels. It contains a set of various kernels, for example, dot product, daxpy, load,
store, copy, and many others. It allows the user to define his own kernels. The
kernels are defined as text files that are compiled during compilation of the suite.
And the suite takes care of everything else: running the kernel on a problem of
a given size, on a given number of threads, and presenting results to the user.

2.4 Berkeley roofline model - a performance model for
multicore architectures

Programmers often do not need an understanding of every detail of CPU design.
They should focus on general concepts rather than details of every available ar-
chitecture. A tool that can provide a simplified model of the CPU hiding most of
the architecture specific complexity is very valuable. Probably the most popular
tool was popularized by Williams et al. [2009]. This tool is called the roofline
model. It became very popular because it hides most of the CPU complexity and
presents an intuitive and easy to use model that can guide performance engineer-
ing. This model has proven to be useful not only on the most common architec-
ture, x86_64, where it was extended to address cache hierarchy (Marques et al.
[2020]), but it was successfully used also on other architectures, e. g., ARM, an
architecture developed for battery powered devices, where power efficiency is
the biggest concern, but since then it found its way to desktop computers and
even the most powerful supercomputers (Alappat et al. [2020]); GPU accelera-
tors (Ding and Williams [2019]; Yang et al. [2020]); Intel Xeon Phi (Druinsky
et al. [2016]) and even FPGA (Nguyen et al. [2020]). Moreover it was also used
for modeling energy consumption (Choi et al. [2013]).

The model analyzes bottlenecks during execution on a given hardware. A
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compute kernel reads data from memory, does some computations, and writes
the results back to memory. Let’s denote W as the size of data read or written to
memory in Bytes and F the number of operations the kernel computes. Usually
we are interested in floating point operations (FLOPs), additions and multiplica-
tions, but we could generalize this to any kind of operations. Let’s assume the
machine has peak performance Ppeak measured in [FLOPs/s] and peak memory
bandwidth bs measured in [B/s]. It is reasonable to expect the processor needs
F/Ppeak s to finish all computations and it needs W/bs s for the memory transfer
(reading and writing data). If we assume the computation and memory transfer
can perfectly overlap, the total runtime is equal to the one that take longer:

T =max(F/Ppeak, W/bs). (2.1)

Working with runtime is not very useful because it depends on the size of
the problem. Instead we usually compare performance P = F/T [FLOPs/s].
Let’s also define arithmetic intensity as the number of operations per one byte of
memory transfer, I = F/W . Then we can write the expected performance as

P = min(Ppeak, I · bs). (2.2)

Sometimes it is easier working with code balance instead of arithmetic in-
tensity. Let’s define code balance as the number of transferred bytes per one
operation, Bc =W/F = I−1. Then we can write (2.2) as

P = min(Ppeak, bs/Bc). (2.3)

We can see a graphical representation of (2.2) in Figure 2.2 in a blue color.
The shape of the graph looks like a roof, which gives the model its name. The per-
formance bound increases with increasing arithmetic intensity until it saturates
at the peak performance. This happens where the two lines corresponding to
the two bottlenecks intersect. The arithmetic intensity of this intersection equals
Ppeak/bs or machine balance Bm = bs/Ppeak. We call it machine balance and not
code balance because it characterizes the machine.

In Figure 2.2 we can also see three vertical lines. These lines represent three
generic kernels with arithmetic intensity 1, 4, and 16. We can expect the per-
formance of these kernels somewhere along the respective lines. Note that the
lines are below the roofline, since the roofline is the performance upper bound.
The red kernel (arithmetic intensity 1) is in the bandwidth limited region. The
performance is increasing with increasing arithmetic intensity. Looking at the
intersection of the red and blue line, we can expect a performance bound of ap-
proximately 44 GFLOPs/s. The brown kernel (arithmetic intensity 16) is in the
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Figure 2.2. Roofline model of Intel Xeon E5-2660 v2 (blue) and three generic
kernels (red, orange, and brown).

compute bound region. With increasing arithmetic intensity the memory traffic
decreases, but the performance does not increase. And the orange kernel (arith-
metic intensity 4 ≈ B−1

m ) is between these regions. Performance of this kernel
depends on machine ability to overlap computation and memory communica-
tion (loads and stores).

2.4.1 Roofline ceilings

For realistic applications the measured performance of a kernel is often far below
the roofline. The CPU and memory architecture utilize several paradigms that
improve the performance, as described in section 2.2. To get close to the maxi-
mum performance the kernel needs to exploit these. Failing to do so results in
a huge performance penalty. For both bounds the roofline model takes into ac-
count, in-core execution and memory bandwidth; we can show ceilings showing
impact on performance when certain optimizations are not implemented.

In-core roofline ceilings

As discussed in section 2.2 processors achieve peak performance when all cores
are utilized and all of them are using only the instructions that perform the most
operations. These are usually the vector instructions AVX on Haswell architecture
and newer AVX2 (FMA operation applied on a vector). If the compiler is unable
to use these instructions, it comes with a huge penalty in performance. If scalar
instructions are used, only 1/4 of peak performance can be achieved. If FMA is
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not used, performance drops to 1/2. And if neither AVX nor FMA is used, then
we can expect only 1/8 of peak performance.

For example, the following code snippet computes sum of elements in a vec-
tor:

1: for i = 0; i < n; i++ do
2: sum += a[i]
3: end for

It may seem this code cannot be vectorized because it would cause write conflicts
in the variable sum. But the compiler can transform this code introducing new
variables.

1: for i = 0; i < n; i+=4 do
2: sum0 += a[i ]
3: sum1 += a[i + 1]
4: sum2 += a[i + 2]
5: sum3 += a[i + 3]
6: end for

In this code there are no dependencies anymore, so it can be vectorized. This
means the four consecutive elements from the array fit into a 256 b AVX register
and the same for the sum variables. Then the AVX instruction computes all four
operations at the same time, achieving 4 FLOPs per instruction.

Another example is a prefix sum. In this case there are loop-carried depen-
dencies preventing vectorization:

1: for i = 1; i < n-1; i++ do
2: a[i] += a[i-1]
3: end for

So while in the first case the loop can be vectorized and achieve 4 FLOPs/in-
struction, in the second example vectorization is not possible, achieving only 1
FLOP/instruction with scalar instructions. Note that both algorithms use only
additions and no multiplications, so FMA is not used. As a result the best perfor-
mance one could expect is Ppeak/2 for the first code and Ppeak/8 for the second
one. Visualization of some in-core ceilings is given in Figure 2.3.

Bandwidth roofline ceilings

In Figure 3.5a we can see memory bandwidth achieved by two Haswell proces-
sors (desktop and server) using a different number of cores. The desktop pro-
cessor nearly saturates the bandwidth with one core, but the server processor
achieves only about 40 % of bandwidth with a single core and needs at least 3
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Figure 2.3. Berkeley roofline model of Intel Xeon E5-2660 v2 with various in-
core ceilings for 1 and 10 cores.

or 4 cores to fully saturate the bandwidth.

When data are transferred between memory and the L3 cache or different
cache levels, they are always transferred in chunks called cache line. On Intel
processors the size of the cache line is usually 64 B. Even if only 1 B is needed, the
whole cache line is transferred. Or when data are accessed with nonunit stride,
some data are transferred and not used. This can lead to saturating the memory
bandwidth while getting little useful data.

When NUMA is used, there is a memory controller at every NUMA domain.
If all data are allocated on the same controller (this can happen, for example, by
wrong first touch (initializing the data sequentially)), then the other controllers
are not used, lowering the bandwidth. Also when processes from one domain
access data from another domain, the communication goes through a NUMA link
between domains, which can become a bottleneck.

In Figure 2.4 we can see the effect of lower bandwidth when single core
is used on the roofline model. As the bandwidth is lower, the corresponding
line moves down. Note also the intersection of the horizontal and skewed line.
It moved from arithmetic intensity 4 F/B to about 16 F/B, so a kernel that is
compute bound on 10 cores could become memory bound on 1 core.

As it is not possible reading data from memory using one thread and using
all available threads for computations or vice versa, we can combine Figures 2.3
and 2.4. The roofline model with both in-core and bandwidth ceilings is shown
in Figure 2.5.
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Figure 2.4. Roofline model of Intel Xeon E5-2660 v2 with bandwidth ceilings
for 1 and 10 cores.

2.5 Erlangen Execution-cache-memory model

The Roofline model is a simple model for performance prediction in the saturated
case. Hereby it is assumed code is limited by floating point performance or by the
memory bandwidth. The Execution-cache-memory (ECM) performance model
(Treibig and Hager [2010]; Hager et al. [2016]) is a refinement of the roofline
model.4 In contrast it allows a performance prediction on the single core level
as well as a scaling prediction over the socket. The model takes into account
the duration of the code execution inside the core separated by arithmetic and
data movement. Furthermore data transfers in the memory/cache hierarchy are
considered as well as the achievable memory bandwidth. Finally both parts build
the single core model, which is used to determine the scaling behavior over the
cores until a bottleneck is reached. For memory bound codes this is typically the
achievable memory bandwidth, as all other infrastructures like Intel’s L3 cache
on Ivy Bridge, Haswell, and Broadwell scale perfectly.

The ECM model has some restrictions on the code to be analyzed. It is im-
portant that streaming accesses are performed. This means prefetching works
perfectly and can hide latency effects. The ECM model predicts the number of
CPU cycles (cy) required to execute a certain number of iterations of a given
loop on a single core. Since the smallest amount of data transferred between
cache levels is one cache line (CL), it is a reasonable unit of work for the predic-
tions. The size of the cache line on Intel processors is 64 B, which is for streaming

4For further details regarding the ECM model refer to Stengel et al. [2015].
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Figure 2.5. Roofline model of Intel Xeon E5-2660 v2 with both in-core and
bandwidth ceilings.

kernels 8 iterations with floating point numbers in double precision.
To construct the model, we consider two parts separately: the in-core execu-

tion, assuming all data were already fetched to the L1 cache and there are no
cache misses, and the time to fetch the data from its location to the L1 cache.

In-core execution

To determine the in-core execution time, a simple model for instruction through-
put on the given architecture is required. Figure 2.1 shows a port model for the
Intel Haswell architecture. The port scheduler schedules instructions to ports
independently out of program order, making sure all data dependencies are met.

Instructions inside ports are pipelined, but only one instruction per port can
be issued per cycle. Haswell can perform two loads (LD, ports 2D and 3D) and
one store (ST, port 4) of sizes up to 32 B at the same time (Intel Corp. [2016]),
each. Each load and store requires an address to be generated by an address
generation unit (AGU, ports 2, 3, and 7). However on port 7 only a simple AGU
is located, which is limited to simple addressing modes5 (Intel Corp. [2016];
Hofmann et al. [2016]). For floating point operations, the cores host two FMA
units (ports 0 and 1), two multiplication (MUL) units (ports 0 and 1), and one
add (ADD) unit (port 1).

For the ECM model the duration of the execution inside the core is split into

5AGUs on ports 2 and 3 support addressing "base plus index plus offset," AGU on port 7
supports only simple addressing mode "base plus offset."
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Figure 2.6. Roofline models of processors listed in Table 2.1.
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two categories. The first one comprises only data movement between registers
and the L1 cache, i.e., loads and stores occurring on ports 2D, 3D, and 4. The
second category consists of the rest, which can possibly overlap with the loads
and stores, like arithmetic and logic. The execution in-core time Tcore is set to
the time of the port with the longest execution time.

Data transfers through the memory hierarchy

Data that are not present in the L1 cache must be fetched from lower levels and
modified data evicted to make room for new cache lines. On Intel architectures,
transfer of one cache line between adjacent cache levels takes 2 cycles. Transfer
time of one 64 B cache line can be computed knowing the memory bandwidth bs

and clock frequency f as 64 ∗ f /bs cycles.
As bs, one could take the nominal memory bandwidth. However, this band-

width is practically never reached and depends strongly on the access pattern
used. This is caused by the organization of the memory subsystem, where e. g.,
banking conflicts and DRAM page misses impair performance. With detailed
knowledge about the internals of the memory controller (scheduling strategies,
thresholds for strategy switching, ...) and DRAM modules this could also be mod-
eled, which is far from being trivial (Jacob et al. [2007]). As this is beyond the
scope of the ECM model, typically, a microbenchmark resembling the used ac-
cess pattern by the code under investigation is used to measure the attainable
bandwidth and use it as input for the model.

2.6 ECM model application

2.6.1 DAXPY vector addition

In the following text we give a brief introduction to the ECM model by analyzing
a simple daxpy-like kernel on the HSW-S system, whose processor is based on
the Intel Haswell microarchitecture. The daxpy kernel to be analyzed is

f o r ( i n t i = 0; i < N; ++i )
r [ i ] += s ∗ l [ i ] ;

The vectors r and l are double-precision floating point vectors with N elements
each. Furthermore s is a scalar double-precision floating point variable. The code
is vectorized via AVX and FMA3 instructions by the compiler and additionally 4-
way unrolled to reach full performance. The unrolled code becomes
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Figure 2.7. Runtime contributions of different execution ports and cache/mem-
ory hierarchy levels for eight iterations of the daxpy kernel on HSW-S (Haswell
microarchitecture). It seems that the simple AGU on port 7 is not used and
all the addresses are generated on ports 2 and 3.

f o r ( i n t i = 0; i < N; i += 4)
{

r [ i ] += s ∗ l [ i ] ;
r [ i+1] += s ∗ l [ i +1];
r [ i+2] += s ∗ l [ i +2];
r [ i+3] += s ∗ l [ i +3];

}

For easier modeling, we take as many iterations into account as are needed to
process a whole cache line6. Hence, for the daxpy kernel with double-precision
floating point numbers the work package we model is eight iterations (or two
iterations of the unrolled loop). To process these eight iterations with AVX and
FMA3, four 32 B AVX loads (r[:] and l[:]), two 32 B AVX stores (r[:]), and two
FMAs are required. Hereby we define the “work” performed by eight iterations
is to transfer W = 192 B. In order to determine the duration of the execution of
the code inside the core we assume all operands reside in the L1 cache.

The duration of the in-core execution depends on the core’s architecture. For
HSW-S it’s the Haswell microarchitecture. The superscalar design has several
ports with different execution units for different types of instructions, shown as
part of Figure 2.1. Instructions scheduled to different ports run independently.
The instruction scheduler takes care that no data dependencies are violated.

Haswell can perform two loads (ports 2D and 3D) and one store (port 4)

6On Intel architectures, the length of the cache line is 64 B.
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Figure 2.8. Memory bandwidth (left) and duration in CPU cycles of 8 itera-
tions, i.e., two iterations of the compiler generated loop (right), for the daxpy
kernel on HSW-S: measurement (black) and ECM prediction (red). As the
vectors are getting larger and cannot fit in the higher cache levels, the number
of cycles for performing 8 iterations increases, which means the performance
decreases. Note that the total working set required for vectors r and l is twice
the AVX vector length.

of sizes up to 32 B at the same time (Fog [2016]). This constellation requires
the store address to be simple addressing as only in this case can the address
generation unit (AGU) on port 7 be used. For relevant floating point operations,
it hosts two FMA units (ports 0 and 1) two MUL units (ports 0 and 1), and one
ADD unit (port 1).

Under these considerations two iterations of the compiled loop would require
1 cy for the FMA (ports 0 and 1), 2 cy for the four AVX loads (ports 2 and 3), and
2 cy for the four AVX stores (port 4). 6 addresses need to be generated. This takes
2 cy, if the simple AGU on port 7 is used. Instructions regarding index counter
increments are for this case negligible, hence we ignore them. The distribution
of the instructions over the ports is found in Figure 2.7.

For the ECM model the duration of the execution inside the core is split into
two categories. The first one comprises only data movement between registers
and the L1 cache, i.e. loads, stores occurring, and address generation. The second
category consists of the rest, which can possibly overlap with the loads and stores,
like arithmetic, logic. The maximum duration tL1 of the first class (ports 2, 3, 4,
and 7) is

tL1 = 2cy. (2.4)
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The maximum duration of the latter class (ports 0, 1, 5, and 6), tol, is

tol = 1 cy (2.5)

(normalized to eight iterations) as the maximum duration on the ports overlap-
ping with data movements. The performance PL1, when all data are fetched from
L1, is then computed as

PL1 =
W

max(tol, tL1)
f , (2.6)

where W denotes the loop specific work performed and f clock frequency of the
core. For this loop with W = 192 B and f = 2.3 GHz we have PL1 = 220.8 GB/s.
Figure 2.8 shows ECM prediction and measured performance for the DAXPY ker-
nel of various vector lengths. The graph on the left shows performance and the
graph on the right the number of CPU cycles needed to perform 8 iterations of
the loop. We can see that larger vectors that do not fit into the L1 cache and need
to be stored in the L2 or L3 cache or even the main memory require more cycles,
which results in worse performance. The measurements for the L1 cache reveal
that only around 145 GB/s are reached. If the simple AGU on port 7 is not used,
the store addresses are generated by the two remaining AGUs. This causes tol to
be increased by 1 cy and become the new bottleneck. This results in a corrected

tol = 3 cy (2.7)

with PL1 = 147.2 GB/s, which is in line with the measurements as shown in
Figure 2.8.

Modeling the performance when data reside in different cache levels from L1
requires analyzing data transfers between these levels. For daxpy this is straight-
forward as vectors r and l are streamed from/to memory and no cache reuse
takes place. Throughout the cache/memory hierarchy we transfer between each
cache level three cache lines (cl) for each iteration: load 1 cl of l, load 1 cl of r,
and store 1 cl of r.

Transferring a cache line between L1/L2 and L2/L3 takes 2 cy each. Hence it
takes

tL2 = 6 cy and tL3 = 6 cy (2.8)

to transfer our three cache lines, respectively. For computing the performance
PL2 and PL3, when data reside in the L2 or L3 cache, respectively, we have to add
tL2 and tL3 to the duration of the data path, as on the considered Intel architec-
tures data transfers seem be be serialized when streaming accesses occur.7 The

7This need not be the actual implementation inside the architecture; it only resembles the
observation and can be different on other architectures.



49 2.6 ECM model application

performance is then

PL2 =
W

max(tol, tL1 + tL2)
f , (2.9)

PL3 =
W

max(tol, tL1 + tL2 + tL3)
f . (2.10)

In our case PL2 = 55.2 GB/s and PL3 = 31.5 GB/s.
To determine the memory bandwidth we use MCCALPIN’S STREAM copy bench-

mark (McCalpin [1995]) which achieves (without nontemporal stores and in-
cluding the write allocate) a bandwidth of ≈ 26.9 GB/s when all cores of a clus-
ter are utilized.8 With the core’s clock frequency of 2.3 GHz it takes 5.5 cy to
transfer one cache line between L3 cache and memory. Transferring our three
cache lines between these two levels takes then

tmem = 16.5 cy. (2.11)

The performance Pmem, when every vector is streamed from memory, is then

Pmem =
W

max(tol, tL1 + tL2 + tL3 + tmem)
f . (2.12)

This leads to Pmem = 14.5 GB/s.

2.6.2 Indirect DAXPY

Indirect DAXPY is similar to the code analyzed in section 2.6.1, with the differ-
ence of indirect access idx to the vector r:

f o r ( i n t i = 0; i < N; ++i )
r [ idx [ i ] ] += s ∗ l [ i ] ;

The vectors r and l are double-precision floating point vectors with N elements
each. The idx vector contains 4 B integers. Furthermore s is a scalar double
precision floating point variable. The code is 4-way unrolled and by the com-
piler, when optimizations are turned on and target ISA is AVX2 and FMA3. One
iteration over this newly formed loop now performs 4 scalar iterations. The code
snipped from above effectively becomes

8When cluster-on-die (CoD) is enabled, the cores are split into two NUMA domains. The
HSW-S processor has 14 cores, that are split into two NUMA domains, each with 7 cores.
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Figure 2.9. Runtime contributions of different execution ports and cache/mem-
ory hierarchy levels for eight iterations of the indirect daxpy kernel on HSW-S
(Haswell microarchitecture).

f o r ( i n t i = 0; i < N; i += 4)
{

r [ idx [ i ] ] += s ∗ l [ i ] ;
r [ idx [ i +1]] += s ∗ l [ i +1];
r [ idx [ i +2]] += s ∗ l [ i +2];
r [ idx [ i +3]] += s ∗ l [ i +3];

}

For the ECM model we determine the duration of the execution of the code inside
the core under the assumption all operands reside in the L1 cache.

Eight iterations of the loop (or two iterations of the unrolled loop) require
sixteen 8 B loads (r[:] and l[:]), eight 4 B loads (idx[:]), eight 8 B stores
(r[:]), and 32 address generations. Furthermore eight scalar fused-multiply-
adds are used. We define the work performed by eight iterations of the loop (or
two iterations of compiler unrolled loop) to be W = 224 B.

How long the execution takes depends on the underlying architecture. In
order to determine this, we take a look at the Intel Haswell microarchitecture
in Figure 2.1. The superscalar design has several ports with different execution
units for different types of instructions. Instructions scheduled to different ports
run independently. The instruction scheduler takes care that no data dependen-
cies are violated. Instructions inside ports are pipelined, but only one instruction
per port can be issued per cycle. Haswell can perform two loads (ports 2D and
3D) and one store (port 4) of sizes up to 32 B at the same time (Fog [2016]).
This constellation requires the store address to be simple addressing as only in
this case the address generation unit (AGU) on port 7 can be used. For relevant
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Figure 2.10. Memory bandwidth (left) and duration in CPU cycles of 8 itera-
tions, i.e., two iteration of the compiler generated loop (right), for the indirect
daxpy kernel on HSW-S: measurement (black) and ECM prediction (red). As
the vectors are getting larger and cannot fit in the higher cache levels, the
number of cycles for performing 8 iterations increases, which means the per-
formance decreases.

floating point operations, it hosts two FMA units (ports 0 and 1), two MUL units
(ports 0 and 1), and one ADD unit (port 1).

Under these considerations, two iterations of the compiled loop would re-
quire 4 cy for the FMA (ports 0 and 1), 12 cy for the twenty-four loads (ports
2 and 3), and 8 cy for the eight stores (port 4). 32 addresses need to be gen-
erated. We assume the simple AGU on port 7 is not used, as we observed for
DAXPY (section 2.6.1). Generating all 32 addresses on AGUs on ports 2 and 3
requires 16 cy. Instructions regarding index counter increments are for this case
negligible, hence we ignore them. We assume that the out-of-order engine can
fill bubbles in the pipelines of the different ports as the loop iterations are inde-
pendent of each other. We classify the ports into arithmetic/logic (ports 0, 1, 5,
and 6) and data movement (ports 2, 3, 4, and 7). The maximum duration tol of
the first class of ports is

tol =max(4cy, 4 cy, 6 cy, 6 cy) = 6cy (2.13)

and the maximum duration of the data movement ports tL1 which load/store
data from/to L1 is

tL1 =max(16cy, 16cy, 8 cy, 0 cy) = 16cy. (2.14)
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The performance PL1, when all data are fetched from L1, is then computed as

PL1 =
W

max(tol, tL1)
f , (2.15)

where W denotes the loop specific work performed and f the clock frequency
of the core. For this loop with W = 224 B and f = 2.3 GHz we have PL1 =
32.2 GB/s, which is in line with the measurements in Figure 2.10.

Modeling the performance when data reside in different cache levels than L1
requires analyzing the data transfers between these levels. In this case this is
straightforward as vectors r, l, and idx are streamed from/to memory and no
cache reuse takes place. Throughout the cache/memory hierarchy we transfer
between each cache level 224 B = 3.5 cl (cache lines) for each iteration: load
64 B of l, load 64 B of r, load 32 B of idx, and store 64 B of r.

Transferring a cache line between L1/L2 and L2/L3 takes 1 cy (Intel Corp.
[2016]). Hence it takes

tL2 = 3.5 cy and tL3 = 3.5 cy (2.16)

to transfer our 224 B. For computing the performance PL2 and PL3, when data
reside in the L2 or L3 cache, respectively, we have to add tL2 and tL3 to the
duration of the data path, as on the considered Intel architectures data transfers
seem be be serialized when streaming accesses occur9. The performance is then

PL2 =
W

max(tol, tL1 + tL2)
f , (2.17)

PL3 =
W

max(tol, tL1 + tL2 + tL3)
f . (2.18)

In our case PL2 = 26.4 GB/s and PL3 = 22.4 GB/s.
How many cache lines per cycle can be transferred between L3 and mem-

ory could theoretically be obtained by taking the nominal memory bandwidth
into account. However, this bandwidth is practically never reached and depends
strongly on the access pattern used. This is caused by the organization of the
memory subsystem, where, e.g., banking conflicts and DRAM page misses reduce
performance. With detailed knowledge about the internals of the memory con-
troller (scheduling strategies, thresholds for strategy switching, ...) and DRAM
modules this could also be modeled, which is far from being trivial (Jacob et al.

9This need not to be the actual implementation inside the architecture, it only resembles the
observation and can be different on other architectures.
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[2007]). As this is beyond the scope of the ECM model, typically a microbench-
mark resembling the used access pattern by the code under investigation is used
to measure the attainable bandwidth and use it as input for the model. For this
model we use MCCALPIN’S STREAM copy benchmark (McCalpin [1995]) which
achieves (without nontemporal stores and including the write allocate) a band-
width of ≈ 26.9 GB/s when all cores of a cluster are utilized. With the core’s
clock frequency of 2.3 GHz it takes 5.5 cy to transfer one cache line between L3
cache and memory. Transferring our 224 B between these to levels takes

tmem = 19.25cy. (2.19)

The performance Pmem, when every vector is streamed from memory, is then

Pmem =
W

max(tol, tL1 + tL2 + tL3 + tmem)
f . (2.20)

This leads to Pmem = 12.2 GB/s. Which is about 23 % less than the achieved
performance on HSW-S architecture. While the ECM prediction of the DAXPY
kernel is in line with measurements, in the case of an indirect DAXPY kernel
the ECM model underestimates the measured performance. The ECM model
was developed and studied mostly for vectorized codes. As the indirect DAXPY
kernel is not vectorized, it would require further investigation.
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Chapter 3

Node-level performance modeling of
sparse triangular solve

Even in scientific computing, simulation code development often lacks a basic
understanding of performance bottlenecks and relevant optimization opportuni-
ties. In this chapter we will use a structured model-based performance engineer-
ing approach on the compute node level for a fundamental kernel operation in
sparse factorization solvers. We aim at a deep understanding of how code per-
formance comes about and which hardware bottlenecks might apply. The pivotal
ingredient of this process is a performance model which links software require-
ments with hardware capabilities. Such models are often simplified such as the
well-known Berkeley roofline model or the Erlangen ECM model, but it leads to
deeper insights and strikingly more accurate runtime predictions.

The package PARDISO1 is a thread-safe, high-performance, and memory-effi-
cient, serial and parallel solver for the direct solution of unsymmetric and sym-
metric sparse linear systems on shared memory multiprocessors. The solver uses
a combination of left- and right-looking Level-3 BLAS supernode techniques (An-
derson et al. [1999]). In order to improve sequential and parallel sparse nu-
merical factorization performance, the algorithms are based on a Level-3 BLAS
update and pipelining parallelism is exploited with a combination of left- and
right-looking supernode techniques.

PARDISO calculates the solution of a set of sparse linear equations with mul-
tiple right-hand sides, using a parallel LU , LDLT , or LLT factorization. PARDISO
supports a wide range of sparse matrix types and computes the solution of real
or complex, symmetric, structurally symmetric or unsymmetric, positive definite,

1A discussion of the algorithms used in PARDISO, the user manual, and more information on
the solver can be found at http://www.pardiso-project.org
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Figure 3.1. Duration of forward/backward substitution for the dense, lapl1,
and lapl2 matrices for different sparse direct solvers on the IVB system.

indefinite or Hermitian sparse linear system of equations on shared-memory mul-
tiprocessing architectures.

The parallel pivoting methods for unsymmetric matrices allow complete su-
pernode pivoting in order to ensure numerical stability and scalability during the
factorization process. For sufficiently large problem sizes numerical experiments
demonstrate that the scalability of the parallel algorithm is nearly independent of
the shared-memory multiprocessing architecture and a speedup of up to seven
using eight processors has been observed. The package is implemented using
multithreading using OpenMP directives. PARDISO performs the analysis steps
depending on the structure of the input matrix A. See Bollhöfer et al. [2020] for
further details.

For comparison and to motivate the usage of the PARDISO solver, we run
initial benchmarks on various matrices. Here we used CHOLMOD (Chen et al.
[2008]; Davis [2006]), MUMPS (Amestoy et al. [2000a, 2001, 2006]), and PAR-
DISO (Schenk and Gärtner [2004]; Kuzmin et al. [2013]) solvers. For CHOLMOD
and MUMPS we set METIS reordering, so all solvers have about the same factors.
We measured duration of the forward/backward substitution for our benchmark
matrices. The results for the Ivy Bridge system are shown in Figure 3.1.

In this chapter, we will mainly analyze the data transfer between the different
cache levels and the FLOPs performed during the sparse triangular solve phase.
The results of this analysis are used as input for our performance model. There-
fore, we mostly inspect the different instantiations of the loops resulting from
Algorithms 1 and 2 on page 22 and 23. We only consider the innermost loops
because all the arithmetics are performed here. Our assumption is that the in-
structions regarding control variables of the loops are negligible, hence we do
not take them into account.
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3.1 Algorithm and data structures of sparse triangular
solve

Let A be an N × N matrix and x and b be vectors of size N . The linear system
Ax = b is solved via LDLT decomposition by factorizing A into a lower diagonal
matrix L and a diagonal matrix D such that A= LDLT . The system is then solved
in three steps. First, Ly = b is solved via forward substitution. This is followed by
a diagonal solve Dz = y and, afterwards, the resulting z vector is used to solve for
the solution vector LT x = z via backward substitution. In PARDISO, the forward
substitution is performed columnwise, starting with the first column. The data
dependencies here allow us to store vectors y , z, b, and x in only one vector r.

The sparse matrix is stored in a PARDISO specific format shown in Figure 1.11.
Adjacent columns exhibiting the same row sparsity structure form a panel, also
known as a supernode. A panel’s column count is called the panel size s. The
columns of a panel are stored consecutively in memory excluding the zero en-
tries. Note that columns of panels are padded in the front with zeros so they
get the same length as the first column inside their panel. The padding is of
utmost importance for the PARDISO solver to use Level-2/3 BLAS and LAPACK
functionalities. Please see Bollhöfer et al. [2020] for more details. Furthermore,
panels are stored consecutively in the array l. Row and column information is
now stored in accompanying arrays. Column indices are used as indices into the
array xl to look up the start of the column in the array l which contains the nu-
merical values of the factor L. To determine the row index of a column’s element
array id is used, which holds the row indices for each panel.

For parallel execution concurrent updates to the same entry of r must be
avoided. The parts structure contains the start (and end) indices of the panels
which can be updated independently as they do not touch the same entries of r.
Two parts, colored blue and green, are shown in Figure 1.11. The last part in
the bottom right corner of L is special and is called the separator and is colored
gray. Parts which would touch entries of r in the range of the separator perform
their updates into separate temporary arrays t. Before the separator is then
serially updated, the results of the temporary arrays are gathered back into r. The
backward substitution works the same, just reversed, and updates to different
temporary arrays are not required. Figure 3.2 shows a possible execution of
forward solve. The nested dissection reordering assigns to every partition about
the same number of columns. However, panels in different partitions can have
different size (number of columns). Then different threads execute differently
unrolled code, as can be seen on the left side of Figure 3.2. For easier modeling
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Figure 3.2. Possible real execution of forward solve. In the parallel phase cores
can execute differently unrolled loops at the same time. For easier modeling
the execution of the unrollings is sorted and evenly distributed over all cores.

we assume the execution of the unrollings is sorted and evenly distributed over
cores, as shows the right side of Figure 3.2.

The complete forward substitution is listed in Algorithm 1. If no parallel ex-
ecution is required then panels are updated successively in serial, and during
forward substitution, updates to temporary arrays are not necessary. Please note
that through the dense storage of panels, indirect accesses to r are required, re-
sulting in an “indexed DAXPY”-like operation, which prohibits a straightforward
vectorization. For performance reasons (discussed in Section 3.2.2) the loops
over the columns (blue text) in Algorithm 1 are 1-, 2-, and 8-way unrolled. The
algorithm for the backward substitution in Algorithm 2 looks nearly the same,
except that the serial part is executed first, which is then followed by the parallel
section.

Parallel handling of the separator during the forward and backward substi-
tution is in principle possible. Hereby the loops over the rows in line 21 of Algo-
rithm 1 and line 5 of Algorithm 2 would be parallelized. However, typically the
number of rows for sparse problems is too small to benefit from this optimization
and at worst it could introduce significant overhead.

3.2 Performance analysis of sparse triangular solve

All entries of the matrix L are stored as double-precision floating point numbers
in the vector l, consuming 8 B (byte) each. Elements of the vector xl (column
start indices in the vector l) and vector xid (start indices of row indices for each
panel) are stored as 8 B integers, whereas for the entries of the vector id (row
indices for each panel) 4 B integers are used.
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3.2.1 Data transfers and FLOPs without unrolling

In the most simple case no unrolling is applied and the innermost loop of forward
substitution from Algorithm 1 looks like

21: for k = xl[j] + offset; k < xl[j+1]; ++k do
22: row = id[i++]
23: r[row] -= r[j] l[k]
24: end for

As the loops from lines 6–9 and 10–13 are in principle identical to the loops in
lines 21–24, we only discuss the latter. During each iteration one nonzero is
processed, two FLOPs are performed, namely, a multiplication and an addition,
and the following elements get loaded and stored: loaded: id (4 B), r (8 B), l
(8 B); stored: r (8 B).

How much data are transferred inside the cache hierarchy depends on the
size of the caches, their replacement strategies, the size of r, the average panel
size, as well as the structure of the panels, i.e., which part of r is accessed. Here
we assume r is small enough to be kept at least in last level cache (LLC) and
temporal locality ensures it is not evicted. Row indices in id for a panel are
loaded from memory for the panel’s first column and then are reused during
each iteration over the panel’s remaining columns from the LLC in the worst
case. With panel size s = 1, for each element of l one row index is transferred
and no reuse is possible. In general reuse is only possible, starting with a panel’s
second column for panel sizes s ≥ 2. Coefficients of l are always streamed in
from memory, as they are used only once and the array l is typically too large
to be kept in LLC. Figure 3.3 visualizes the transfers assuming three cache levels
and r is cached in LLC. While iterating over panels and columns, the number
of column elements decreases as L is a lower triangular matrix. Thereby the
number of used elements from r also decreases, which we call the active part
of r. At some point the active part can be completely kept in the L2 or even
the L1 cache. This also holds true for id, except when a new panel starts, then
the panel’s row indices must first be loaded from memory. With Intel L2 cache
256 kB and L1 cache 32 kB, a maximum of about 13000 and 1600 elements of r,
id, and l could fit into the L2 and L1 caches, respectively. However, due to the
associativity and replacement strategy of the cache and the need to store other
data, it is reasonable to expect only half of the size can be used. We can expect
if the active part of r is less than about 6000 elements, it can be kept in the L2
cache, and if it is less than about 800 elements it fits into the L1 cache.
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Figure 3.3. Data transfers for one iteration of the forward substitution when
1-, 2-, or 8-way column unrolling is applied for a panel with panel size s.
Thereby 1, 2, or 8 nonzero elements of l are processed, respectively.

The innermost loop of the backward substitution from Algorithm 2 is

5: for k = xl[j] + offset; k < xl[j+1]; ++k do
6: row = id[i++]
7: r[j] = r[j] - r[row] l[k]
8: end for

As this loop from lines 5–8 is the same as the one from lines 16–19, all follow-
ing statements hold true for both. As with forward substitution one nonzero is
processed, two FLOPs are performed, but only loads occur: id (4 B), r (8 B),
and l (8 B). Note that j is unchanged in the innermost loop, hence r[ j] always
refers to the same element and is not considered for the data transfer analysis.
Figure 3.4 displays the data transfers occurring for one nonzero update if r is
cached in L3 cache.

3.2.2 Data transfers and FLOPs with unrolling

As noted in Section 3.1 it is beneficial to handle several columns at once. For this
purpose PARDISO has additionally 2- and 8-way manually unrolled loops over
columns. These are used when a panel contains more than one column. With an
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Figure 3.4. Data transfers for one iteration of the backward substitution when
1-, 2-, or 8-way column unrolling is applied for a panel with panel size s.
Thereby 1, 2, or 8 nonzero elements of l are processed, respectively.

unrolling factor of two the innermost loop for forward substitution becomes

1: nj = nonzero column length
2: for k = xl[j] + offset; k < xl[j+1]; k += 2 do
3: row = id[i++]
4: r[row] = r[row] - r[j] l[k] - r[j+1] l[k+nj]
5: end for

Instead of processing only one nonzero the 2-way unrolling handles two nonzeros
per iteration. Hence, four FLOPs are performed and two entries of l are loaded.
Hereby the corresponding element of r only needs to be loaded once instead of
twice, when processing two elements of l. All other transfers stay unchanged. In
general with a u-way unrolling during each iteration, 2× u FLOPs are executed
and u× 8 B+ 20B are transferred.

Unrolling of the backward substitution loop results in the following code for
a 2-way unrolling:

1: nj = nonzero column length
2: for k = xl[j] + offset; k < xl[j+1]; k += 2 do
3: row = id[i++]
4: r[j] = r[j] - l[k] r[row]
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5: r[j+1] = r[j+1] - l[k+nj] r[row]
6: end for

Also here four FLOPs per iteration are performed, two entries of l are loaded
and the corresponding element of r is loaded only once. For a u-way unrolling,
2× u FLOPs and u× 12 B+ 8 B are loaded.

As already noted, we assume r and a panel’s current row indices from id

are at least cached in LLC or higher cache levels. Unrolling, hereby, only saves
transfers inside the cache hierarchy. The bytes transferred between memory and
LLC are left unaffected and depend only on the panel size. With larger panel
sizes in total, fewer row indices id are needed for the whole matrix.

3.3 Application of modified Berkeley roofline model on
sparse triangular solve

For our performance predictions of the sparse triangular solve, we apply the
roofline model (Williams et al. [2009]). As mentioned before, the model takes
into account the attainable memory bandwidth as well as the peak floating point
performance of the processor and relates these hardware capabilities to the re-
quirements of the code. It can be written as

P =min(Pmax, B/Bc), (3.1)

where Pmax denotes the attainable floating point performance, B the attainable
memory bandwidth, and Bc the code balance.

Here, Pmax depends already on the floating point characteristics of the code
and the processor and does not represent the peak floating point performance
as it can be obtained from a processor’s data sheet. If a processor supports vec-
torized FMA instructions, but only vectorized add or multiply instructions are
used, then Pmax is halved. Using scalar instructions instead of the AVX vectorized
counterparts reduces Pmax further by a factor of four. And, finally, if the floating
point instruction mix does not equally utilize a processors floating point units,
Pmax is again reduced. For example, the Ivy Bridge (IVB) system (Section 3.5,
Table 2.1) hosts an add and multiply unit, but if only one type of floating point
instruction is used, only half of the theoretical floating point performance can
be attained. In our case the compiler uses scalar FMA instructions for the core
loops of the sparse triangular solve for architectures with AVX2 support and scalar
add/multiply instructions for architectures without FMA support like IVB.
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Substitution Forward Backward
u 1 2 8 1 2 8
Bc [B/F] 4− 6 4− 5 4− 4.25 4− 6 4− 5 4− 4.25

Table 3.1. Code balance Bc of forward/backward substitution for unrolling
factors u when the factor L must be fetched from memory. Values depend on
actual panel size s and possible cache reuse.

The attainable memory bandwidth B is measured with a microbenchmark,
ideally resembling the application’s memory access pattern. For the sparse trian-
gular solve, we use a read-only benchmark from the LIKWID tool suite (Treibig
et al. [2010]). As the sparse triangular solve in PARDISO only uses scalar load
instructions we also use them for the microbenchmark.

The code balance Bc is the ratio of bytes transferred to the number of FLOPs
performed in the code. In the best case, when the panel size s is large and the
indices are cached, during the forward (1.8) and backward substitutions (1.9),
each nonzero of L must be loaded once and the loading of indices can be ne-
glected, respectively. Furthermore, the computation involves two FLOPs per
nonzero. As nonzeros are stored in double precision consuming 8 B, this re-
sults in a best case code balance of Bc = 8/2B/F= 4B/F, where F denotes FLOP.
Table 3.1 lists the code balance for different unrolling factors when the factor L
must be fetched from memory and uses the data transfer and FLOP counts from
Section 3.2. In contrast, the machine balance Bm defines the ratio for the whole
system and uses the ratio of the attainable memory bandwidth B to the maximum
floating point performance Pmax. This bandwidth is found in Table 2.1 for all sys-
tems. If Bc > Bm then the roofline model indicates that the code’s performance
is limited by the memory bandwidth, i.e., that the code is memory bound. This
is the case for the sparse triangular solve phase of all unrolling factors, when the
factor L is too large to be kept in cache and completely located in memory.

To determine performance limits, we only consider the case when data reside
in memory. Therefore the data transfers between the L3 cache and memory
are relevant as shown in Figures 3.3 and 3.4. Only nonzero entries of L with
the corresponding panel indices are loaded. Their amount depends only on the
structure of L and is independent of the used loop unrollings. The roofline model
for the memory bound case as a function of the number of threads t can be
formulated as

PA(t) =
nnz(L)× 2FLOP

nz
DA(t)
B(t)

FLOP
s

, (3.2)
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where nnz(L) denotes the number of nonzeros of the factor L resulting from a
factorization of A for t threads, B(t) is the attainable memory bandwidth of the
system utilizing t threads, and DA(t) the data volume of nonzeros and indices
making up L. The only adjustment to the original model here is its dependency
on the number of threads. Choosing t equal to the number of total cores yields
the original roofline model.

To distinguish between the parallel phase, where the parts are handled, and
the serial part, where the separator is treated, we modify (3.2). We use the
following formula for the modified roofline model:

PA
mod(t) =

nnz(L)× 2FLOP
nz

Dp
A (t)

B(t) +
Ds

A(t)
B(1)

FLOP
s

, (3.3)

where Dp
A(t) represents the data volume of nonzeros and indices built up by the

parallel parts, and Ds
A(t) the data volume built up by the nonzeros and indices of

the separator. Please note that both data volumes Dp
A(t) and Ds

A(t) depend on A
and the number of threads t. The values for Dp

A(t) and Ds
A(t) are extracted from

the factorized matrices a priori to solve.
Please note that the accuracy of the roofline model predictions, especially for

single cores, as included in the modified model, can be inaccurate. If the in-core
execution time (excluding floating point operations) or the in-cache traffic dom-
inates the execution time, predictions become unreliable as this is not covered
by the roofline model. In Chapter 4, we use dedicated single core measurements
to validate that, in the case of the sparse triangular solve, this approach is valid.
However, this effect can be modeled in detail with the ECM model (Treibig and
Hager [2010]; Hager et al. [2016]; Stengel et al. [2015]) and was already stud-
ied for stencil kernels.

3.4 Application of Erlangen ECM model on sparse tri-
angular solve

As shown in Chapter 3.2, there are many factors influencing the performance:
for example, unrolling, active part of r, or presence of id in the cache. Detailed
performance evaluation would require a model for every combination of these
parameters and combining these models based on detailed analysis of a matrix A
and its factor L. For real world matrices, this is not possible. To make the mod-
eling feasible, we focus only on two extreme cases: first, we consider the code
without unrolling that reads id from the memory and second, 8-way unrolled
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code that already has id in cache. In both cases we are assuming the active part
of r is large and the data reside in the L3 cache. The first scenario achieves the
worst possible performance, while the second one can perform close to the the-
oretical maximum. These two cases give us a range of expected performance,
such that for any matrix the sparse triangular solve algorithm should be within
these bounds.

For the ECM model of the worst case we consider eight iterations of the inner
most loop (8 rows) in order to fill one cache line. Eight iterations of both forward
and backward substitution without unrolling require sixteen 8 B loads (r[:] and
l[:]) and eight 4 B loads (idx[:]). On top of that, the forward substitution
also requires eight 8 B stores (r[:]). These loads and stores need 32 addresses
(forward substitution) or 24 addresses (backward substitution) to be generated,
which takes 16 or 12 cycles, respectively. We assume that all the addresses are
generated on ports 2 and 3. The simple AGU on port 7 is not used as we showed
in Sections 2.6.1 and 2.6.2. The floating point arithmetics for eight iterations
consists of 8 multiplications and 8 additions. This can be done in 8 cycles using
the units on ports 0 and 1. Unlike in the DAXPY case, only 96 B (or 1.5 cl) are
read from memory. This leads to expected performance of 1.18 GF/s (forward
substitution) or 1.46 GF/s (backward substitution).

For the ECM model of the best case with 8-way unrolling we take 8 columns
and in every column 8 rows (8 iterations of the innermost loop). Eight iterations
of forward substitution with 8-way unrolling require 672 B (10.5 cl) to be loaded
from cache and 512 B (8 cl) read from memory. Backward substitution require
608 B (9.5 cl) to be loaded from cache and 512 B (8 cl) read from memory. These
loads and stores need 88 addresses (forward substitution) or 80 addresses (back-
ward substitution) to be generated, which takes 44 or 40 cycles, respectively. The
floating point arithmetics consist of 64 multiplications and 64 additions. This can
be done in 64 cycles. In the best case we assume id is kept in the cache, thus only
512 B (8 cl) are read from memory. This leads to expected performance 2.7 GF/s
(forward substitution) or 2.86 GF/s (backward substitution).

3.5 Experimental testbed for the performance evalua-
tion

The specifications of the systems used for the performance analysis are described
in Table 2.1. The machines with Intel processors are based on the Ivy Bridge
(IVB), Haswell (HSW-D and HSW-S), Broadwell (BDW), Skylake (SKX), and
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Knights Landing (KNL) microarchitectures. The first four microarchitectures are
successors to each other and can be seen as traditional superscalar, multicore,
SIMD capable processors. HSW-D and HSW-S are desktop and server systems,
respectively. The HSW-S systems has cluster-on-die (CoD) enabled. Here, the
processor’s local L3 cache is divided into two parts and the memory forms two
NUMA locality domains. SKX is the server variant of the Skylake microarchi-
tecture including support for AVX-512 and hosts an additional FMA unit. The
Knights Landing processor is a representative of Intels Xeon Phi line, a manycore
architecture with SIMD lanes wider than in the formerly named processors. It is
the successor of the Knights Corner manycore processor.

The exact AVX-512 ISA (instruction set architecture) for Knights Lading dif-
fers from the Skylake incarnation, but for our purpose is not relevant. Knights
Lading includes a 16 GB large high bandwidth memory (HBM) with bandwidths
up to 450 GB/s; see also the discussion in Chapter 4. We operate KNL in the flat
memory model, where the DDR memory and HBM represent a NUMA domain,
each. AMD-based systems include a desktop (ZEN-D) and server (ZEN-S) system
based on the Zen microarchitecture. ZEN-S’ processor with 24 cores consists of
four NUMA LDs.

The CPU frequencies on all machines were fixed to the base frequencies spec-
ified in Table 2.1. On the ZEN systems we set the frequency to the nominal base
frequency, but could not disable AMD’s turbo mode, which allows cores to run
above this frequency. For Knights Landing, altering frequencies are not supported
and are handled by the processor itself. Furthermore, each thread’s affinity was
explicitly set. For all arrays, large 2 MiB pages were used. First-touch policy was
in place, and we verified via the NUMA-API that the data always reside in the
cores associated NUMA domain. On all systems supporting simultaneous mul-
tithreading (SMT) only physical cores were used. As compiler, Intel C/Fortran
Compiler version 17.0.1 was used.

3.5.1 Read-only memory bandwidth and machine balance

For the performance model an effective memory bandwidth is required. For the
evaluation of the effective bandwidth we measure read-only bandwidth. The
measurements are reported in Table 2.1. As discussed in Section 3.3 only scalar
loads are used. If enough cores are used then both scalar and vectorized read-
only benchmarks saturate the memory bandwidth with the only difference be-
ing that the saturation of the latter is already achieved with fewer cores. This
is exemplified on HSW-D and HSW-S systems shown in Figure 3.5a. HSW-D
and HSW-S show the typical saturation behavior for (current Intel) desktop and
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Figure 3.5. (a) Bandwidth over the number of cores of the read only bench-
mark in a scalar and vectorized version exemplified on HSW-D and HSW-S.
(b) Single core bandwidth and saturated bandwidth with all available cores of
the processor/cluster.

server systems. Typically desktop systems nearly saturate the memory bandwidth
with one core. Figure 3.5b shows the difference between the scalar and vector-
ized read-only benchmark for the single core and the usage of all cores inside
a NUMA LD over all systems in the test bed. IVB, HSW-S, and the ZEN-based
systems reach, with one core and vector loads between 15 % and 25%, a higher
bandwidth than with scalar load instructions. However, utilizing the full NUMA
LD, nearly no difference is visible.

The machine balance Bm from Table 2.1 considers the scalar read-only mem-
ory bandwidths and the scalar double precision floating point capabilities of the
processors. This is either a scalar FMA or, if unavailable, a scalar addition and
multiplication for processing a nonzero.

3.5.2 Matrices for performance modeling

Table 3.2 lists matrix dimension (n), number of nonzeros in the matrix (nnz(A)),
and the factor (nnz(L)) of the matrices used for benchmarking in the following
sections. The reported numbers of nonzeros are reported for factorizations using
single threaded execution and a panel size s = 80. All matrices are sparse except
for the first matrix dense, where both the matrix and the factor L are dense. We
use this dense matrix as a best case example for our single core performance in-
vestigations. The matrices lapl1 and lapl2 are test matrices arising from a finite
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Matrix n nnz(A) nnz(L)
dense 20× 103 200× 106 200× 106

lapl1 256× 103 3× 106 219× 106

lapl2 343× 103 1× 106 166× 106

omen1 1751× 103 32× 106 1076× 106

omen2 760× 103 20× 106 690× 106

omen3 1271× 103 42× 106 1651× 106

bddc 750× 103 31× 106 1590× 106

Table 3.2. Dimension (n) and number of nonzeros (nnz) for A and L for all
benchmark matrices.

(a) lapl (b) omen (c) bddc

Figure 3.6. Structure of A for matrix classes lapl (a), omen (b), and bddc (c).

difference discretization of the Laplace operator in three dimensions with Dirich-
let boundary conditions. In addition, the matrix lapl2 contains a block structure
of size 4. The omen matrices correspond to a set of representative matrices from
an atomistic nanoelectronic device engineering simulation code (Luisier et al.
[2011]). The matrix bddc arises from a finite element discretization of a typical
solid mechanics problem. Here, as a material model, a J2-elasto-plasticity model
was chosen and three-dimensional and piecewise quadratic tetrahedral finite el-
ements were used for the discretization. The matrix bddc represents a typical
subdomain problem arising in the BDDC (balancing domain decomposition by
constraints) implicit finite element solver. Figure 3.6 shows the structure of A
for different matrix classes, whereas more interesting, is the nonzero distribu-
tion over the panel sizes of the factor L found in Figure 3.7. Please note that the
current factorization limits the number of parts to powers of two. To avoid load
imbalance during the solve step we report results only for thread counts which
are powers of two.
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Figure 3.7. Multiparameter histograms showing how many nonzeros of L are
in panels with a certain number of columns and rows. Panels with 3000 and
more rows are accumulated. This plot gives an impression of how the work,
i.e., nonzeros, in L is distributed over panel dimensions.
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Chapter 4

Performance evaluation and analysis

4.1 Single core performance modeling, evaluation, and
analysis

For the code generation of the sparse triangular solve discussed in Chapter 3, we
instruct the compiler via directives to unroll the innermost loops of Algorithms 1
and 2, i. e., to perform an unrolling over the rows. Typically an unrolling factor
of eight or sixteen showed the best performance for all architectures. We pro-
hibit vectorization of these loops, which causes the compiler to use scalar floating
point addition/multiplication or FMA instructions. We observe that with vector-
ization enabled for these loops the compiler performs manual gather and scatter,
which results in the same or even poorer performance compared to the scalar
unrolled versions. This is required as AVX2 only includes a vector gather instruc-
tion. Only for the 1-way column unrolling of the sparse triangular solve with
KNL is the compiler generated loop utilizing vector scatter/gather instructions
superior to the scalar version, which is why we use this version for the combi-
nation of KNL and 1-way column unrolling. However, SKX also supports vector
scatter/gather instructions, but did not show any performance improvement.

For the single core measurements we use the matrix dense. We create three
variants of it, where the maximum panel size s is limited to 1, 2, and 80 columns.
This enables isolated measurement of the 1-, 2-, and 8-way unrolled loops. Fur-
thermore, the matrix dense exhibits the most homogeneous access pattern as
memory is only accessed in long contiguous streams and relates best to our read-
only benchmark (Section 3.5.1) used as input for the modified roofline model
(Section 3.3, (3.3)). Figure 4.1 shows the measured performance for all systems
in our testbed for sparse triangular solve. The blue bars indicate the perfor-
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Figure 4.1. Performance of PARDISO’s sparse triangular solve for the matrix
dense. Blue and gray horizontal bars show predictions of the modified roofline
model with scalar and vectorized read bandwidth, respectively. Orange and
magenta horizontal bars show the worst and the best performance predictions
of the ECM model for the HSW-S architecture.
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mance limit from the modified roofline model. In general larger panels deliver
a higher performance. This is expected as the code balance decreases with in-
creasing panel sizes. For panel sizes s = 1 and s = 2 with matrix dense, the worst
case code balance of Bc = 6 B/F and Bc = 5 B/F is reached, respectively. With a
panel size s = 80 the code balance for the 8-way unrolled loop becomes nearly
Bc = 4 B/F. The orange and magenta bars indicate the worst and the best perfor-
mance limits from the ECM model. With a panel size s = 1 we expect the worst
performance (close to the orange bar) as the unrolling is not possible. With a
panel size s = 80 we expect the best performance (close to the magenta bar)
because the most efficient 8-way unrolled code is used and the array id is many
times reused in cache.

The modified roofline model predictions for the Intel based systems (except
for KNL) deviate up to 25 % from the measurements, but achieve a higher per-
formance with larger panels. For KNL the model error is in the range of 55 %
to 160 % over all panel sizes which suggests some error in the model assump-
tions. On KNL a STREAM-like (scalar) copy and read benchmark achieves an L2
bandwidth of around 7.8 GB/s and 8.5 GB/s with one core, respectively. From
Figures 3.3 and 3.4, we see that between the L1 and L2 caches (depending on the
matrix) we might have a higher code balance compared to the one we assume
between memory and L2. As the measured L2 bandwidth is nearly equal to the
memory read-only bandwidth the former data path becomes the new bottleneck.
However, determining a priori the code balance between the L1 and L2 caches
for a matrix is analytically nontrivial which is why we derive the metric from the
measured data traffic between the caches. The adjusted model based on these
new inputs is shown in Figure 4.1f as red bars and reduces the model error sig-
nificantly. The poor performance with panel size s = 2, however, is unclear and
deserves further investigation. The roofline model for the AMD-based ZEN sys-
tems underestimates the performance by up to 20 %. It seems that sparse solve
in the cases of ZEN-D and s = 2, 80 and ZEN-S and s = 80 achieves the band-
width obtained with the vectorized read benchmark as the bars in Figures 4.1g
and 4.1h match the gray lines, which represent the modified roofline model based
on the vectorized read-only bandwidth. Measuring the actual clock frequency
shows that ZEN-D and ZEN-S run with 3.8 GHz and 3.2 GHz during sparse solve,
respectively. However, they also achieve this frequency during read-only band-
width measurements.
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4.2 Multiple core performance modeling, evaluation, and
analysis

Performance and modeling results on multicore architectures for all matrices are
shown in Figures 4.2 and 4.3. For HSW-D (second column) the main memory
was not large enough for benchmarks with the bddc, omen2, and omen3 matrices,
which is indicated as “out of memory” in the figures. In this work we ensure
correct NUMA placement for one locality domain; this is why we limit the scope
of the analysis to one NUMA LD only. Hence, for HSW-S and ZEN-S fewer cores
than the processor houses are used. Please keep in mind that for HSW-S, seven
of 14 cores and for ZEN-S only six of 24 cores are used and with correct NUMA
placement and usage of more cores a higher performance could be achieved.

As already pointed out, the number of independent parallel parts produced
by the factorization is always a power of two. For nonpower of two thread counts
this results in load imbalance and decreases performance, which is why we omit
them in the graphs. Furthermore, the current implementation of the factoriza-
tion increases the size of the separator in the factor L with increasing number of
threads as already observed in scaling studies for sparse solve in Klawonn et al.
[2015]. Figure 4.4 shows the fraction of nonzeros in L which are part of the
separator, i.e., the part which must be executed serially. Except for omen1 this
prohibits the efficient usage of larger core counts and the test matrices reach
their highest performance already with four or eight cores. This is also the rea-
son why we cannot efficiently utilize KNL’s high bandwidth memory. Despite
that its bandwidth scales (nearly) linearly with the number of cores, its single
core bandwidth is not significantly different from the one delivered from main
memory. Only with higher core counts can the full HBM bandwidth be obtained.
However, with 16, 32, and 64 threads the serial fraction of the resulting factor
from the matrices is already too high and performance nearly drops to the single
core performance level. Hence, we excluded HBM measurements from the plots
as it gives no further insight. With SKX hosting 20 cores in one NUMA LD the im-
pact of the separator becomes visible (fifth column of Figures 4.2 and 4.3). The
separator of lapl1, lapl2, and bddc strongly increases over the number of cores
and limits the scaling of the performance early. The maximum performance here
is already reached with four cores. The increase of the serial fraction for omen2
and omen3 is not that pronounced. Here, the performance peak is reached with
eight cores. Only with omen1, where the separator stays small, does performance
increase up to 16 cores. All other architectures follow this pattern up to the num-
ber of cores used.
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Figure 4.2. Performance of sparse triangular solve with first half of benchmark
matrices of panel size s = 80 on one NUMA LD for each hardware system.
Green and blue bars show predictions of the original and modified roofline
model, respectively. HSW-S and ZEN-S have 14 and 24 cores in total and using
all cores could achieve, with correct NUMA placement, a higher performance,
respectively. Orange and magenta bars show the worst and the best sequential
performance predictions of the ECM model for the HSW-S architecture.
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Figure 4.3. Performance of sparse triangular solve with second half of bench-
mark matrices of panel size s = 80 on one NUMA LD for each hardware sys-
tem. Green and blue bars show predictions of the original and modified roofline
model, respectively. HSW-S and ZEN-S have 14 and 24 cores in total and using
all cores could achieve, with correct NUMA placement, a higher performance,
respectively. Orange and magenta bars show the worst and the best sequential
performance predictions of the ECM model for the HSW-S architecture.
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Figure 4.4. Fraction of nonzeros in the separator, which must be processed
serially, depending on the number of cores for test matrices.

Figures 4.2 and 4.3 also show the performance limits for the original (3.2)
and the modified roofline model (3.3) as green and blue bars, respectively. As
the traditional model misses the serial fraction of the execution it scales with
the achievable bandwidth of the number of cores used. This is increasingly pro-
nounced, the larger the serial fraction becomes. Systems saturating with one
core nearly the total memory bandwidth exhibit only a marginal gap, like HSW-
D (second column in Figures 4.2 and 4.3) or slightly more pronounced ZEN-D
(seventh column in Figures 4.2 and 4.3).

In general the modified roofline model captures the behavior of the measured
performance over all systems and matrices as Figures 4.2 and 4.3 show. IVB
and HSW-D, ZEN-D, and ZEN-S exhibit a model error of around 20% shown in
the bottom row of Figures 4.2 and 4.3. For HSW-S, BDW, and SKX the model
deviates up to 60 % from the measurements. As measured data traffic is in the
expected bounds a deeper analysis of the architectures and algorithm is required.
One option for future investigations is the ECM performance model (Hager et al.
[2016]), which not only accounts for all transfers inside the memory hierarchy
but also performs an in-depth analysis of the execution in the core. For KNL the
bottleneck with multiple cores becomes more complex than with a single core.
The L2 bandwidth scales linearly with each core, whereas the memory bandwidth
scales only with pairs of cores, i. e., per tile, and saturates at a certain point.
Depending on the matrix and the size of its separator, L2 or memory bandwidth
can now be the bottleneck. In order to keep the model simple, for KNL, we show
as red bars in Figures 4.2 and 4.3, in addition to the modified roofline model,
an adjusted version; cf. the single core measurements. Here, we consider lapl1
and omen2. Note that all measurements might suffer from the poor performance
of 2-way column unrolling. HSW-D and ZEN-D can nearly saturate the memory
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bandwidth with one core and gain nearly no benefit from using more than two
cores.

Figures 4.2 and 4.3 also show the worst and the best performance predictions
of the ECM model as orange and magenta bars, respectively. In Section 3.4 the
performance predictions for forward and backward substitution are computed.
The sparse triangular solve consists of the forward substitution followed by the
backward substitution. For this reason the avarage of the two is shown in the
figures. The ECM model is created only for one core of the HSW-S architecture.



Chapter 5

Conclusion

PARDISO and other state-of-the-art sparse direct solvers utilize various tech-
niques to improve performance. First, a reordering of the matrix is found. A graph
partitioning algorithm, called nested dissection, produces a reordering that min-
imizes fill-in and provides a high level of concurrency in factorization. Then,
the matrix is factorized using LU , LDLT , or LLT algorithm. Last, the solution is
obtained by forward and backward substitution. In this thesis we focus on the
last step, the forward and backward substitution. Certain applications require
solving many times the same linear system A with different right-hand sides, and
thus the forward and backward substitution is essential for performance of these
applications. Such applications are, for example, FETI domain decomposition
methods or certain optimization problems.

The Berkeley roofline model is widely used to visualize the performance of
executed code together with the upper performance bounds given by the memory
bandwidth and the processor peak performance. The model can hereby provide
an insightful visualization of bottlenecks. In this thesis a modification of the
roofline model that allows us to cover combination of serial and parallel exe-
cution is introduced. This modified form of the roofline model is then applied
to the triangular solve step of PARDISO. The performance of the forward and
backward substitution process has been analyzed and benchmarked for a repre-
sentative set of sparse matrices on various modern x86-type multicore architec-
tures and the Knights Landing manycore architecture. It has been shown how to
also accurately measure the necessary quantities, such as the achievable mem-
ory bandwidth, for threaded code. The measurement approach, its validation, as
well as limitations were discussed. Besides the Berkeley roofline model we also
used the Erlangen ECM model. This model additionally accounts for in-cache
traffic and the complete in-core execution. This advanced model delivers excel-
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lent predictions for vectorized code. However, modeling scalar code execution,
as it is used in sparse triangular solve, is still under development. For the scalar
code of sparse triangular solve we got a reasonable upper and lower bound of
performance, but we did not achieve such good predictions as for the vectorized
codes.

In the current factorization algorithm, the serial fraction of the factor L in-
creases with the number of cores. As a result, the highest performance for the
sparse triangular solve phase is, typically, reached with four or eight cores. PAR-
DISO’s high performance sparse triangular solve favors hardware with a high
memory bandwidth that can ideally be saturated with one or two cores.

The work presented in this thesis could be extended in several ways. One
possible direction is to focus on the ECM model to improve performance predic-
tions of sequential triangular solve and then apply it on the parallel code. One
could also focus on the performance modeling of other kernels in linear solvers.
The best candidate here is the sparse factorization algorithm, as this is the kernel
with the longest execution time. Another direction is to focus on the extended
roofline model presented in this thesis and use it for other applications that com-
bine sequential and parallel execution.
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