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Non m’importa di mostrare di aver
avuto ragione, ma di stabilire se
I'’ho avuta. E vi dico: lasciate ogni
speranza, o voi che vi accingete a
osservare. [...] Se qualche
scoperta secondera le nostre
previsioni, la considereremo con
speciale diffidenza.

Meine Absicht ist nicht, zu
beweisen, dald ich bisher recht
gehabt habe, sondern:
herauszufinden, ob. Ich sage: laf3t
alle Hoffnung fahren, ihr, die ihr in
die Beobachtung eintretet. [...]
Und was wir zu finden wiinschen,
das werden wir, gefunden, mit
besonderem MifStrauen ansehen.

My intention is not to prove that
hitherto I have been right; but to
discover whether I am right. I say:
abandon all hope, you who enter
the realm of observation. [...] And
what we wish to find, if we do find
it, we shall regard with especial
distrust.

Bertolt Brecht, “Vita di Galileo”
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Abstract

The goal of this thesis is to design and study an efficient strategy to solve possi-
bly non-linear parabolic partial differential equations on massively parallel ma-
chines.

Traditionally, when solving time-dependent problems, time stepping meth-
ods are used to advance the solution in time. These techniques are inherently
sequential and therefore they introduce a bottleneck in the overall computational
scalability. To overcome this limitation, we focus on the design of time parallel
solvers.

To achieve parallel efficiency in both space and time, we employ a multilevel
space-time finite element discretization, coupled with parallel block precondi-
tioners. We use continuous finite elements to discretize in space and, for stability
reasons, we adopt discontinuous finite elements in the time dimension. In space,
in particular, we consider the generic finite element framework of isogeometric
analysis.

We consider a space-time multilevel method, based on a hierarchy of non-
nested meshes, created using a semi-geometric approach. With this technique,
we can automatically generate space-time coarse spaces, starting from a single
fine spatial mesh, in any dimension and in the presence of complex geometries.

Through a detailed spectral analysis, we can design convenient precondition-
ers for space-time operators and give estimates of their conditioning, with respect
to problem, discretization and multigrid parameters.

We numerically investigate how different iterative solution strategies, coars-
ening strategies and spectral based preconditioners, can affect the overall con-
vergence and robustness of our multilevel approach. Finally, we run strong and
weak scalability experiments, mostly focusing on time parallelism. In this analy-
sis, we consider two model problems: the heat equation, possibly anisotropic or
with jumping coefficients, and the monodomain equation, a non-linear reaction-
diffusion model arising from the study of the electrical activation of the human
heart.
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Chapter 1

Introduction

In the near future exascale machines, i.e. machines capable of 10'® floating
point operations per second, will probably enter in serviceﬂ In Figure an
extrapolation of the current trend in supercomputing performance is illustratedﬂ
and in Figure the growing relevance of multi-core architectures in recent
years is shownﬁ
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Figure 1.1. Historical data of performance from the “top500” machine list.
Exascale systems are expected to appear in the next years (yellow line).

!According to the Chinese national plan for high performance computing, see for example:
https://www.top500.0rg/news/china-reveals-third-exascale-prototype

“Source: https://www.top500.0rg/statistics/perfdevel/

3Source: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data
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Figure 1.2. The increment in computing performance in the last two decades is
due to the use of additional cores, as clock frequency is stagnating. To exploit
these resources, highly parallel algorithms have to be designed.

Exploiting the capabilities of such massively parallel systems is important but it
is not straightforward; algorithms with optimal complexity and excellent scal-
ability must be designed to minimize the "time-to-solution" of computationally
intensive problems, such as the solution of time dependent partial differential
equations (PDEs). When dealing with parallel solvers for PDEs, the solution
process is usually parallelized in space using domain decomposition techniques,
until saturation. Considering the technology trend, the development of new par-
allel methods has become essential. For time dependent PDEs, promising candi-
dates to improve algorithmic scalability are the parallel-in-time methods. In this
class of algorithms, we exploit concurrency in the time direction in addition to
the spatial one. In fact, time stepping is traditionally a sequential process and
a remarkable bottleneck for computational scalability. So, when parallelization
in space saturates due to communication costs, additional speedup can still be
achieved with parallel-in-time methods.

In particular, parallelization in time becomes relevant if a very fine temporal
grid is needed. For example in multi-scale processes, the resolution in space,
and consequently in time, must be very high to resolve microscopic structures.
Another example where high accuracy in temporal integration is needed is the
case of highly oscillatory PDEs. For these reasons parallel-in-time techniques got
more and more attention from the academic community in the past decade, cf.
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Figure 1.3. Number of publications per year in the field of parallel-in-time
methods; February 2020.

However, parallelization in time can be a challenging task, as, for many physi-
cal processes, the time direction is governed by a causality principle and back-
propagation is an ill-posed problem. Numerical information flows in just one
direction through the temporal domain: from past to future and not the other
way round. In particular, irreversible processes, like diffusion, are ill conditioned
to back propagation. For this reason, time integration is traditionally a sequen-
tial process. Generally, we refer to this class of problems as IVP (Initial Value
Problems), in contrast to BVP (Boundary Value Problems), where the solution is
constrained on the whole boundary.

1.1 DBrief history and state of the art of parallel-in-time
methods

The seminal paper of this field was written more then 50 years ago byJ. Nivergelt
[1964]): a shooting type parallel solver for ODEs. Since this visionary contribu-
tion, a large number of different strategies have been studied to solve ODEs with
some degree of concurrency.

In Nievergelt’s paper a rough and cheap predictor was used to get initial val-
ues in different time intervals. Then multiple fine integrators were used along

4Source: https://www.parallelintime.org/references/index.html
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the temporal domain: some redundancy in the computations was introduced,
but the fine integrator could run in parallel. The fine results were combined
trough an interpolation technique to get the desired solution.

The multilevel setting, i.e. the idea of using a coarse sequential predictor
and subsequently applying fine integrators in parallel, even introducing some
redundancy in the computations, is the fil rouge of the majority of the following
methods.

For example Lions et al.|[[2001[] invented the popular two-level Parareal al-
gorithm; a shooting type algorithm again, where the continuity of the solution is
enforced trough an iterative process.

A more recent development of Parareal is PFASST (Parallel FAS in Space-
Time) by Emmett and Minion [[2012]] that uses the SDC (Spectral Deferred Cor-
rection) algorithm [Dutt et al., 2000] as the time integrator coupled with a mul-
tilevel strategy in time. In particular, SDC is an iterative method based on the
integral form of an IVP (Picard form) where spectral integration is used. PFASST
got a certain attention form the community and more recent developments, such
as a fault tolerant version [|Speck and Ruprecht, 2016], have been studied.

The equivalence between these parallel-in-time algorithms and other multi-
level strategies (multigrid) has been investigated, for example by |Gander et al.
[2018a]] and [Bolten et al.|[2017]].

Space-time multigrid was used for solving parabolic problems by Hackbusch
[1984] and later on by Horton and Vandewalle [[1995]. Other more recent re-
sults on this topic are: MGRIT by Falgout et al.[[2014], a multigrid reduction
in time method, and the work by Gander and Neumiiller [2016] developed for
parabolic PDEs. In the latter paper the authors use a space-time finite element
discretization with discontinuous Galerkin (DG) in time. Then they solve the
arising linear system with a parallel smoother (Block Jacobi) inside a multigrid
cycle. Space-time multilevel discretizations are of particular interest for us, be-
cause our approach, that will be presented in the following sections, belongs to
this class.

On the other hand, some direct solvers for time parallel integration have been
designed, such as the ParaExp algorithm by|Gander and Giittel [2013]], especially
suited for hyperbolic problems. This method is only suitable for linear problems
and it is based on an overlapping domain decomposition.

Another class of parallel-in-time algorithms that has to be mentioned is the
“parallelization across the method” one. See for example the work by Burrage
[1997]] where the author takes advantage of the fact that some time stepping
methods consist of independent computations when evolving two successive time
steps. These algorithms are usually easier to implement but do not provide a
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significant speedup. Some examples are the extrapolation methods by Horton
and Knirsch|[[1992]] and the Parallel Runge-Kutta methods by|Sommeijer|[[1993]].
An extensive review of parallel-in-time methods can be found in|Gander|[2015]].

1.2 Space-time discretization

Space-time methods are becoming more and more relevant for the scientific com-
munity, as the computational capabilities are increasing. In particular space-time
discretizations, compared to standard time-stepping techniques enable, some-
how automatically, full space-time parallelism for massively parallel architec-
tures. The main idea of space-time formulations is to treat the temporal dimen-
sion as an additional spatial one and to assemble a large space-time system to be
solved in parallel.

Space-time discretizations possess other advantages aside of the concurrency
capabilities: they can enable local time-stepping (see Krause and Krause [2016])
as well as space-time adaptivity as in |Adelaide et al. [2002]; Steinbach| [[2015]];
Langer, Matculevich and Repin|[[2016] and they can efficiently deal with moving
domains (see Langer, Moore and Neumiiller| [2016]]) or time-periodic problems
as in Benedusi et al.| [2016].

On the other hand, space-time methods have some drawbacks. Large linear
systems need to be stored, and memory limitations can occur. For this reason
this approach is reasonable if memory is distributed among many processors.
Additionally, for 3D problems, 4D meshes and data structures might be necessary.
The usage of 4D meshes can be avoided if a tensor product structure between
space and time is used, as the assembly becomes purely algebraic.

Space-time methods have been used with finite difference discretizations, for
example by Benedusi et al.[[[2016], but mostly in the variational context. The
first contribution on space-time finite elements, applied to a parabolic problem,
was by |Ladyzhenskaia et al.| [|[1968]]. Space-time variational formulations have
been considered for a variety of applications: in fluid dynamics by Shakib and
Hughes [[1991]], in mechanics by Betsch and Steinmann| [[2001]] or in fluid struc-
ture interaction by [Tezduyar et al. [2006] and finite elements formulations as
isogeometric analysis (IgA) in Langer, Matculevich and Repin [2016]]; Benedusi
et al.|[2018b]] or DG methods by |Abedi et al. [2006]]; Miller and Haber| [[2008]].

Moreover, many doctoral thesis in recent years have been focusing on space-
time discretization [[Krause, 2013]] and correspondent multilevel solvers [Neumiiller,
2013} McDonald, [2016; |Andreev, 2012; Sudirham), 2005|].

When dealing with space-time finite elements the time direction needs spe-
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cial care: to ensure that the information flows in the positive time direction, a
particular choice of basis in time is often used. Discontinuous Galerkin with an
“upwind” flow is a common choice; see, for example, [Klaij et al.,|2006}; Sudirham
et al., 2006]].

1.3 Discontinuous Galerkin in time

Variational time-stepping methods are receiving increasing interest by the scien-
tific community especially in the context of space-time adaptivity, see for exam-
ple the work by|Eriksson and Johnson|[[1991]; Schmich and Vexler [2008]]. In fact
they provide arbitrary order of convergence, good stability, and, crucially, they
may allow local time stepping [|[Gander and Halpern, |2013]] in different areas of
the spatial domain and p-adaptivity in time.

Discontinuous Galerkin methods in particular have been widely used to dis-
cretize the time direction in the space-time setting. They have been employed
for a variety of problems, as convection/advection/diffusion equations or Navier-
Stokes equations. For example see the work of Jamet|[|1978]]; Klaij et al. [2006];
Li and Wiberg|[[1998]]; Sudirham et al.| [[2006[]; |Feistauer et al. [[2011]]; Besier and
Rannacher [2012]]; Gander and Neumdiller [2016[]. The use of DG discretization
in time has been first introduced by|Lasaint and Raviart|[[1974] for the discretiza-
tion of a neutron transport equation. In this paper the authors showed that, for
finite elements of order g, the method is strongly A-stable, has convergence order
2q + 1 on the nodes and is equivalent to an implicit Runge-Kutta time stepper
with g intermediate steps. The first analysis on DG methods as time stepping
techniques was provided by Delfour et al. [[1981]] and [Eriksson et al. [[1985]] fol-
lowed by the work of |Schieweck! [[2010]; Zhao and Wei [2014]]; Thomée [[1984]].
Since then, specialized solvers have been introduced, for example by Smears
[2016]; Richter et al. [2013]; Hussain et al.| [[2011]]. A priori and posteriori error
analysis have been also provided; e.g. see Thomeée|[[1984]; Eriksson and Johnson
[1991,1995]; |Schotzau and Wihler|[2010]. See Shu|[2014] for a recent survey
on the topic.

On the other hand standard continuous Galerkin (CG) methods have also
been employed for time integration, since they were initially studied by |[Hulme
[1972bla]]. See, for example, Betsch and Steinmann [[2000, 2001]] for a more
recent application in mechanics. Other examples of the use of space-time CG can
be found in [Hulbert and Hughes|[[1990]; [Langer, Moore and Neumdtiller| [2016];
Steinbach| [2015]]. Using CG results in a (q + 1)-order method. |Aziz and Monk:
[1989]] showed that for ¢ = 1, CG is equivalent to a Crank-Nicolson scheme
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with time averaged data. In the work by Langer, Moore and Neumiiller [2016]
isogeometric analysis (IgA) is used with the particular choice of a time-upwind
test functions, that results in a term analogous to the addition of an artificial
diffusion in time. For a comprehensive error analysis and comparative study
between CG and DG we refer to [Sabawi| [[2018]].

1.4 Models and applications

In this thesis, we focus on diffusion and reaction-diffusion problems, testing non
trivial setting such as complex geometries, anisotropic or jumping coefficients
and non-linearity.

Diffusive processes, modeled by the heat equation, are a standard benchmark
problem for parallel-in-time solvers. An additional reactive term can be used to
model signal propagation through excitable media. In particular, we consider
the monodomain equation, a standard tool used in cardiac modeling.

A realistic simulation of the human heart is a challenging topic of research in
computational medicine. This organ can be particularly difficult to simulate ef-
fectively since many different physical processes take place at different scales: it
is a multi-physics and a multi-scale problem. In particular, the cardiac function-
ality is regulated by the contributions of different mechanisms from electrophysi-
ology, solid mechanics and fluid dynamics. In this work, we are mostly interested
in the electrophysiological model describing how the electrical activation spreads
in the cardiac tissue.

On the other hand, the fluid-dynamics and the mechanical models deal with
the muscle contractions and deformations responsible for pumping the blood into
the cardio-vascular system. These processes are not considered here.

The space-time framework is well suited for this problem (see for example
Krause and Krause|[2016]] or the work by Sachetto Oliveira et al.|[2018]) for the
following reasons:

* The dynamics take place in a small region of the space-time domain: this
suggests to use suitable space-time adaptive strategies.

* Employing space-time parallelism can reduce the time-to-solution, that can
easily become intractable for realistic 3D simulations.

We consider a second application in computational medicine: the permeation
of chemicals trough the human skin, that can be modeled as a diffusion process
with jumping or discontinuous coefficients.
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1.5 Outline and contributions

Chapter [2|is dedicated to the description of the mathematical model, its varia-
tional formulation and discretization, motivated by a comparative study along
side with error analysis.

In Chapter[3|we introduce the symbol theory and present new results concern-
ing the asymptotical spectral distribution of space-time operators. Such a distri-
bution is validated trough multiple numerical experiments and is used to design
suitable space-time preconditioners and estimate the conditioning of space-time
operators. Such conditioning exhibits very peculiar features and its analysis can
be profitable in practice.

In Chapter (4 the applications are described and the corresponding models
are introduced. We show, with numerical examples, how the choice of model
parameters affects the underlying solution and the well-posedness of the discrete
problems.

In Chapter [5|linear and non-linear solution strategies for the space-time dis-
crete problem are introduced. In particular, we consider a semi-geometric space-
time multigrid method that uses PGMRES as smoother and semi-coarsening strate-
gies, discussed in the light of the spectral tools derived in Chapter |3l We design
an efficient preconditioner for the GMRES solver, combining algebraic manipu-
lations, and a special multigrid as preconditioner.

Finally, Chapter [f] contains multiple numerical experiments to characterize
the convergence, robustness and scaling of the proposed methods. We con-
sider fairly complex geometries, anisotropy and realistic parameters. We also
report, for the first time, a preliminary comparison between a space-time multi-
grid method and PFASST, for both the linear and the non-linear problems. This
chapter also contains a description of our implementation with its main function-
alities in a parallel framework.

For convenience, a summary of the used notation is provided before the bib-
liography.



Chapter 2

Model and Discretization

Let Q C R? be the spatial domain and T € R* the final time. We consider the
following reaction diffusion equation:

ou(t,x)—V-Kx)Vu(t,x) + r(u(t,x)) = f(t,x), (t,x)€(0,T) x Q,

u(t,x)=0, (t,x)€(0,T) x Iy,
n, - (K(x)Vu) =0, (t,x) €(0,T) x I,
u(0,x) = uy(x), X €,

(2.1)

where K(x) € R4*? is the diffusion coefficient matrix, symmetric positive definite
(s.p.d.) forallx, r : R — R is a possibly non-linear reaction term and u,(x) is the
initial condition. We impose homogeneous Dirichlet (Neumann) boundary con-
ditions in T}, (T ) with I, UTy = £, both for simplicity and because, in the linear
case, the inhomogeneous case reduces to the homogeneous one by considering a
lifting of the boundary data. Setting r = 0, equation becomes a pure diffu-
sive problem that is often used as a numerical benchmark in the parallel-in-time
literature and for space-time solvers. Moreover this choice becomes essential for
the analytical results contained in Chapter [3| On the other hand, the action of
a reactive term is relevant in many applications. We provide a significant exam-
ple in Chapter |4/ In the next section we provide a short description of the time
discretization, somehow unusual, that we are going to use in Section
where the space-time weak form, discretization and assembly are presented. In
Section some relevant error estimates from the literature are collected.
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2.1 Time discretization preliminaries

In this section we introduce and compare multiple finite element formulations
for the time integration of the generic initial value problem (IVP):

{u(t):f(u,t) with t€[0,T], (2.2)

u(0) = u,.

Instead of traditional time stepping techniques we consider a Galerkin approach
to discretize (2.2). For a more comprehensive discussion we refer to |[Eriksson
et al.|[[1996].

2.1.1 Continuous Galerkin weak form

Let us first consider a standard continuous Galerkin (CG) weak formulation: as-
suming the solution u(t) to be sufficiently regular over [0, T ], we multiply
by a sufficiently smooth test function v(t) € #; € C°([0, T]), s.t. v(0) =0, and
we integrate over [0, T ]:

T T
J u'(t)v(t)dt = f f(u, t)v(t)dt, YveH#. (2.3)
0 0

2.1.2 Discontinuous Galerkin weak form

In the discontinuous case (DG) the solution u(t) can have jumps in (0,T). To
illustrate this technique let us consider u(t) in the form

u(t):{ul(t)’ for t€[0,t,], 2.4)

u2(t)7 for te [tls T:l;

with t; € (0,T) and considering Remark [2.1] The weak derivative of ([2:4) is
defined as the function u'(t) satisfying

T T
f u’(t)v(t)dt:—f u(t)v'(t)de, (2.5)
0 0
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for every test function v(t) € C;°([0, T]). Equation (2.5)) can be written, using
integration by parts, as

T

f u’(t)v(t)dtz—J u(t)v'(t)de
0

0

ty T
:—f ul(t)v/(t)dt—J up(£)v'(t)de
0 t

:f ) ()v(0)de —uy (Ov(e)],) + J w,()v(t)de —uy()v(e)],
0

ty
T

:J 1u’1(t)v(t)dt—u1(t1)v(t1)+J u,(E)v(6)de +uy(t;)v(t)
0

ty

ty T
=f u/l(t)v(t)dt+f w, (O)v(e)de +v(t)(uy(ty) —uy(ty)).
0 ty

Therefore
uy(t), for t€[0,t),
w'(t) =4 (wa(t)—uy ()5, (t), for t=ty, (2.6)
u,(t), for te(t;,T],

where 6, is the Dirac delta function. We can generalize this argument to a
generic partition of the time axis 0 = t; < - < t, <t < - <ty =T.
Defining u(t) and u(t) for the left/right values of u(t,), we get the DG weak
formulation in I, = [t,, t,.,;] for the problem (2.2):

tht1

J h u()v(t)de + () —u(t )v(t,) = f(u, t)v(t)de 2.7)

n tn

for every sufficiently smooth test function v(t). Equivalently, integrating by parts
in (2.7), we obtain the standard DG formulation:

tn+1

—J h u(t)v'(t)de +u(t Iv(t,,)—u(t Iv(t,) = f(u, t)v(t)dt (2.8)

ty

highlighting an upwind flux given by the u(t )v(t,) term that couples I, with
I,,. We impose u(t,) = u, to enforce the initial condition.



12 2.1 Time discretization preliminaries

2.1.3 Discretization
We consider the following approximation spaces

WDG(q) = {V . vl[tmtn+1] S Pq foralln= O, e, N — 1} , (29)
Weag) = {v e C°([0,T]): VI, e, EPg foralln=0,...,N — 1} , (2.10)

where PP is the space of polynomials of degree less than or equal to q.

Remark 2.1. Note that the generic element v € Wy, is not a function from [0, T]
to R in the true sense of this word, because it takes two values at the nodes. How-
ever, for simplicity we will refer to each v € W, as a function without further
specifications.

On each interval I, we construct the approximation u,, in the nodal form,

q

() =D Uy ulon(t) for e[, ty], (2.11)

m=0

where {Kn’m(t)} is the basis of Lagrange polynomials of degree q for the g+1 grid
points {tn,m}m:o g over the interval I,,. In practice we use right Gauss-Radau
nodes where just the right endpoint is included:

tn < tn’o < tn,l < e < tn’q = tn+1.
This choice is motivated in Remarks and but is not essential.

Remark 2.2. As in the original work of Lasaint and Raviart| [1974], the numer-
ical approximation for u(t,,,) is given by u,.; = w,(t,,;) = u,, This choice
produces the most accurate result w.r.t. other possible choices as u, = u(t')
or u, = (uy(t7) +u,(t;))/2. Moreover it is coherent with the initial condition

up(0) = u(ty) = u,. See Figure2.1|for a notation summary.

For simplicity let us consider the discretization of the Dahlquist test IVP i.e.
with f(t,u,(t)) = Au,(t) and A € R. Transforming I, into the reference in-
terval T € [—1,1], we consider the corresponding Lagrangian basis functions
{€o(7),....,£,(7)} in the q + 1 right Gauss-Radau nodes —1 < 75 < 7; < -+ <
7, = 1. We can write the discretization of as

At
K[q]un+1 —ATHM[q]un_,_l :J[q]un, (212)

T
where .1 = [umo,un’l, .. .,un’q = un+1] , Atn =t —t, and M[q],K[q],J[q] S
R@FD*@*D) are given by
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u(th)
uh(t:;_l) In uh(t;+1) =Upt
0 . Z ‘ . r .,
to et t, [} e ty t
tn,o- . tn,m e tn)q

Figure 2.1. The discretization of the time axis and the corresponding notation
is shown. The Gauss-Radau points t, ,, are depicted for the interval I,.

- .

M, = J Ei(r)Kj(T)dr} , (2.13)
L/ -1 i,j=0
_ ) ;

K= —f Kg(r)fj(r)dr+£i(1)€j(1)] , (2.14)
L J-1 i,j=0

Jig = [fz(—l)fj(l)]f,jzo, (2.15)

and u, = [0,0,...,u,]". Coupling all the equations from (2.12)) in a monolithic
form, we finally get the linear problem in R¥*(*+D:

A[CI] ul J[q]uo
g Al u, 0
. ) = . ) (2.16)
0
—Jig1 Alg v

with Appy = K — A%M[q] . Let us collect some properties of DG methods.
Lemma 2.3. (Stability.) The DG method (2.7) for IVP (2.2)) is A-stable.
Proof. See Theorem 2 in Lasaint and Raviart| [[1974]. O

Lemma 2.4. (Superconvergence.) Denote by u;, the DG approximation of degree q
for the IVP (2.2)) (f (t) € C**) in the interval I, = [t,, t,.,]), and {tn,m}m:o...q the
q + 1 Gauss-Radau points in I,,. Then we have the local truncation error:

u(tn,m)_uh(tn,m) =0 (Atq+2), 0<m< q— 1,

with At = max{At,} and at the end point u,(t, ) = w(t, ),
n

U(tner) —up(t,, ) = 0 (AL*2),

n+1/



14 2.1 Time discretization preliminaries

Proof. See Theorem 5 in |Adjerid et al. [[2002]. O

As a time stepping method, the DG method has two attractive features:
Lemma [2.3] provides excellent stability (A-stability) and Lemma [2.4] high-order
accuracy (the global error is of order 2q + 1 in the nodes).

Remark 2.5. The Gauss-Radau quadrature requires q+1 nodes to reproduce exactly
all polynomials of degree 2q, see Abramowitz and Stegun| [[1992]]. Therefore, due to
the superconvergence property given by Lemma the right Gauss-Radau points
are the proper choice for the integration of the right hand side f. In fact, if the more
popular Gauss-Lobatto points are used, one order of accuracy may be lost.

See Figure[2.2|for an experimental comparison between CG and DG convergence.

Remark 2.6. The DG discretization, in comparison with the CG one, requires ad-
ditional N — 2 degrees of freedom to be stored because the internal nodes are dupli-
cated. On the other hand, its higher accuracy compensates this drawback.

100 g=1 ‘ q=2 ‘ ‘ q=3

1072} o(ar)
1074

1070}

o(A#)

1078+

|1L(T) — Uan (T)‘

10 10 |

107124

—e— CG
1071+ 1
—o— DG

10-16 | | | | ‘ ‘
1072 107! 10° 100 1072 107! 10° 100 1072 107! 10° 10!
At At At

Figure 2.2. Convergence plots of solutions of with f(u,t) = —u(t) and
uy, =1 in case of DG and CG discretizations for ¢ = {1,2,3}. The convergence
rates are the expected ones: 2g+1 in the DG case and g+ 1 for CG. The error
w.r.t. the analytical solution u,, is computed at the final time T = 3.

It can be noticed that the DG discretization for ¢ = 0 is equivalent to the one
obtained by the implicit Euler method. Moreover solving using a block
Gauss-Seidel method would be equivalent to standard sequential time stepping.
But we are interested in the parallel solutions strategies for the system (2.16));
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for this reason we perform some preliminary numerical experiments for parallel
block solution methods; results are collected in Figures

34 order: ¢ = 1 for DG, ¢ = 2 for CG

1071

Iterations

50 100 150

10710 ¢

107
0

10°

10° &

1077+

5% order: g = 2 for DG, ¢ = 4 for CG

—e— CG, block Jacobi
—a— DG, block Jacobi
CG, PGMRES
-~a-- DG, PGMRES
---- DG Discretization Error |

50 100 150
Iterations

Figure 2.3. Convergence of multiple iterative solvers applied to and to
its continuous counterpart for a 3™ order method (left) and a 5% order one
(right). We used N = 64 time steps, T = 10 and A = —1. For the block
Jacobi solver, used also to precondition GMRES, one block per time step is
used. Interestingly, we can observe a rapid decrease of the error after a single
PGMRES iteration when DG is used. This behavior can be understood in
terms of clustering of the eigenvalues of the corresponding discrete operators,

shown in Figure

g =1 for DG and ¢ = 2 for CG

o CG eignevalues A;

Im(\;)
o

20 v DG eignevalues ;| 1

0.4 0.6 0.8

Re()\,;)

0 0.2

10

ot

0 0.2

g = 2 for DG and g = 4 for CG

o CG eignevalues \;
v DG eignevalues \;

0.4 0.6 0.8 1

Re()\,;)

Figure 2.4. Eigenvalues of discrete operators for the CG the DG case, using

the same parameters as in Figure .
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Given the high convergence order of the DG discretization, its stability and its su-
perior robustness when combined with a parallel iterative solver (see Figure|2.3),
we will use this discretization in the space-time discretization of (2.1)).

2.2 Space-time weak formulation

We now introduce the full space-time weak formulation of problem (2.1]). For
simplicity we initially consider r(u) = 0; the treatment of a non-linear reaction
term will be included in Chapter 4, Let us consider a uniform partition in time
0=ty <t;<--<ty=Twith At = T/N. We define the m-th space-time slab
E™ = [ty tme1]l X Q for m = 0,...,N — 1. Assuming the solution u(t,x) to be
sufficiently regular over [0, T] x Q, we multiply the PDE in by a sufficiently
regular test function v(t,x) satisfying the same boundary conditions as u(t,x)
and we integrate over &™:

f [atu(t,x)—v-KVu(t,x)]v(t,x)dtdx=f ft,x)v(t,x)dtdx

&m &m

= f f - 6‘tu(t,x)v(t,x)dtdx—f mﬂf V - KVu(t,x)v(t,x)dxdt
aJt, tm Q

= f f (e, x)v(t,x)dtdx
om

tmi1
= f [u(t,x)v(t,x) Z’"” —f u(t,x)atv(t,x)dt]dx
0 fm

_J m+1[f V(t’X)Kvu(tfx)'n(X)dO(X)_J[Kvu(tsx)]'vv(t,x)dx]dt
t a0 o

m ~

-~

=0

= J f(t,x)v(t,x)dtdx.

This means that, for every m = 0,...,N — 1 and every sufficiently regular test
function v satisfying v(t,x) = 0 for (t,x) € (0, T) x £, the solution u satisfies

a,(u,v) =F,(v), (2.17)
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where
a,(u,v)= —J u(t,x)d,v(t,x)dtdx + f [KVu(t,x)]- Vv(t,x)dtdx
&m &m
+ f [u(tn_qﬂ, X)V(t 1, X) —u(t ,X)v(t,, x)]dx, (2.18)
Q
F,.(v) =f ft,x)v(t,x)dtdx, (2.19)
gm

using the DG upwind flux and the notation from Section

2.3 Space-time discretization

Let us consider an admissible partition &, = {Ty,..., T,,} of Q into n elements
and define h as the maximum length of sides in &,. We define the g-degree DG
approximation space (as in (2.9)) and the p-degree C* FE approximation space
as follows, for allq,p,n€Nand 0 <k <p—1:

Wniq = {w : W, . ]EP, forallm=0,...,N — 1},
Wolpk) = {w eCk(Q):w|; € P, forall T € 7, with w(x) =0if x € FD},

with dimensions

n= dim(Wn’[p,k]).

Remark 2.7. The dimension of #;,, i is not known in advance but depends on the
particular choice of basis. For example, in Section [3.3|we will consider B-splines on
a uniform grid with Q being a cuboid and an expression of n will be provided.

Let {¢1,..., ¢x} be a basis for #) ), let {p,..., p5} be a basis for #, [, 1. Fi-
nally we set a space-time approximation space with a tensor structure:

W =Wynig® Yy =span(y; =¢; ® ¢, : j=1,...,N), N =(N,n),
referring to [Benedusi et al., 2018b|] for the multi-index notation.

Remark 2.8. In the literature the notation cG(p)dG(q) is often used when referring
to this discretization technique with k = 0.
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We look for an approximation uy(t,x) of the solution u(t,x) by solving the fol-
lowing discrete problem: find u;, € # such that, forallm=0,...,N —1 and all
veW,

a,(uy,v) =F,(v), (2.20)

where a,,(u,v) and F, (v) are given by (2.18) and (2.19), respectively. Consid-
ering that {+); : j = 1,...,N} is a basis for #, we have u;, = Z;V:l u;v; for
a unique vector u = [u; ];.V:l and, by linearity, the computation of u; reduces to
finding u such that, forallm=0,...,N—1,

Au=_f,, (2.21)

where
f,=[F,()IL,, (2.22)
e G CRTR) (2.23)

2.4 Space-time matrix assembly

In time we use the Lagrangian nodal basis functions {{,, ..., £,} described in Sec-
tion[2.1.3|for the reference element [—1,1]. In space for {¢,, ..., pz} we consider
B-splines of degree p and smoothness C¥. In Chapter [3| we will provide a spe-
cific description of such a basis for a uniform rectangular grid over Q2. For every
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i,j=1,...,N, the (i,j) entry of the matrix A,, appearing in (2.23)) is given by

(Am)ij = am(¢j:¢i)
=— Y ;(t,x)0;(t, x)dtdx + J [KV;(t,x)]- Vap,;(t,x)dtdx

&m

+ f [ij(t;+1:x)¢i(t;+1:x) _wj(t;,x)wi(t;,)()]dx
Q

=— ¢j1(t)¢;(t)dtf 5, (X)py, (x)dx
Q

tm

tm+1

| 6,00, (0dt f [KV;,(0)] Vo, (x)dx

t Q

m

+[ ¢, (6,04 (6 ) — &5, ()95, () ] f @;,X)¢;, (x)dx

Q

1
:_f Kjl(f)egl(f)dff @, (X)p;, (x)dx
-1 Q
INE
+= J eh(r)eil(r)drj [KV 0, ()] Vo, (x)dx

+ [6]1(1)‘611(1) _eh(l)ell(_l)]J QDJZ(X)(,DIZ(X)CIX (224)

Q

forallm =0,...,N—1. We define the standard spatial mass and stiffness matrices
Mn,[p,k]’Kn,[p,k] e R as

n

M,y = [ f tpj(X)soi(X)dX] , (2.25)
Q

i,j=1
7

K pi = U [KVy;(x)]- chi(X)dx] : (2.26)
Q

i,j=1

Finally, as in (2.12)), we can rewrite (2.24) using definitions (2.13)-(2.15) and
(2.25)-(2.26), for m =0,...,N —1, as

At
(Kiq) ® My 1 + — Miq) ® K fp ) Umin = Uiy ® My )t + £, (2.27)
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with u,,f, € RO*V" and u = [uy,u,,...,uy] in (2.2I). Similarly to the time
problem (2.16)), we can write (2.27) in the following monolithic form

Alap.k]

n u]_ fl - fO
Blapkl  pla.pk]
n n u2 f2 [q p k]
= ) — Cy, u=f,
Br[lq,p,k] AElq,p,k] uy fy
(2.28)
where AlePK] Blapkl ¢ RU+HDT@HIT gre given by
APkl — g @ M LAy ek (2.29)
n - [QJ n,[P,k] 2 [Q] n:[P’k]’ ‘
[q.p.k] —
Bnq P == J[q] ® Mn,[p,k]’ (230)
and C]E,q”f k1 ¢ gN<NT
A[nq,p,k]
: ] ng,p,k] A&q,p,k]
q.p,k] _
Can = N N : (2.31)

Bla:p-kl - pld.pk]

n n

The initial condition is imposed through the term f, = (—J;;® I5) - [0, ..., 0,u,]"
where

i=1

u, = [J uo(x)cpi(x)dx] eR". (2.32)
Q

2.5 A priori and a posteriori discretization error analysis

We provide the most relevant error estimates for the space-time solution that
we use to validate the numerical implementation. We consider problem (2.1J
with K = I; and r = 0. Additionally we require Q2 to be a convex domain as the
estimates we report are based on this assumption. We use the following notation:

iI'l Im = [tm’ tm+1]

lull, = sup llu(ll,  llull,, = sup [lu(®)ll
tel, tel,
where || - || is the norm in L2(Q), || - ||, the one in H*(Q) and u(t) = u(t,-). Let

us consider a priori error bounds, i.e. containing quantities depending on the
regularity of the analytical solution u.
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Theorem 2.9. We have, for the solution of (2.20), using linear finite elements
in space, i.e. p = 1 and k = 0, for ¢ = {0,1} the estimates at the time nodes
M=1,.,N

lty(ta) = u(ts)ll < CLyy max (Rl + Atllll,) — forg=0,

llup(ta) —ulty)ll < CLy lgggw(hzllﬂlz,fm + Atslluttnz,lm) forq=1,

with L, = (log(M))*? + 1 and C a positive constant.
Proof. See Theorem 12.6-12.7 in Thomée [[1984] ]

Similarly Eriksson and Johnson| [[1995]] proved an estimate for the error u —uy
in L*°([0, T]; L2(92)) which is of order g + 1 globally in time and 2q + 1 at the
nodes, as we might expect from the discussion in Section See Figure 2.5
for a numerical test to validate our implementation.

Later on, Makridakis and Babuskal[[1997]] proved an estimate in more general
form

. +1 +1,,(g+1)
et = ull o 1106 < € max (1Tl )+ max (AT @], ),

The result holds provided that the weak mesh condition h?> < BAt, for f > 0
small enough, holds. A similar estimate can be provided if the reaction term r(u)
is not neglected. We refer to Theorem 3.1 from Estep and Larsson|[|1993]] for such
an estimate where a dependency on the regularity of r(u) and f is introduced.

A priori estimates provide bounds depending on the regularity of the exact
solution u that, in general, is unknown. So they can be used to predict the accu-
racy of a numerical scheme. On the other hand a posteriori bounds depend only
on the right hand side f and the computed solution. For this reason they can be
used for the design of adaptive schemes. Introducing the interior edges {y} of
the partition Z, and for u, € #; 1) let [0u,/dn], be the jump in the normal
derivative across y; we define the norm

lyll2, = [8u,/dn], %
Y
Theorem 2.10. We have, for the solution of (2.20)), using linear finite elements in
space, i.e. p =1 and k =0, for ¢ = 1, the estimates at the time node M = 1,...,N
llup(tr) —ulty)ll < CLy rﬂglg;;((hz +AD)f I, +

+ 12l ()l + 1t () — (1)1
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Proof. See Theorem 12.9 in Thomée| [[1984] O

See Theorem 2.4 by [Eriksson and Johnson| [1991]] for an analogous result for
q = 0 and the thesis by Sabawi| [2018]] for a comprehensive study about error
estimates for non-linear parabolic problems.

103 9=0 107 9=1

—o— [lun(T) = w(T)|

10704

—— Huh, - uHIN 1

1074}

Error

1079}

1072 1072 10t

1072 1072 1071
At

At

Figure 2.5. Convergence behavior of the numerical solution of problem (2.31))
using p = 1,k = 0,q = {0,1},T = 1,2 = [0,1] and n = 1500 grid points
in space. We used the initial solution u, = sin(ntx) and the correspondent
analytical solution u = sin(nx)e_“Qt. Convergence orders support Theorem
as the reference slopes show. In particular we considered the L2(Q2) error and
the final time T at in the final temporal interval I_,.



Chapter 3

Spectral Tools

Suppose that a linear PDE is discretized by a numerical method and the compu-
tation of its numerical solution reduces to the solution of a linear system X,, of
size n. What is often observed in practice is that X,, enjoys an asymptotic spec-
tral distribution as n — ©0, i.e., there exists a matrix-valued function f which
describes the asymptotic distribution of the eigenvalues of X,. We refer to f as
the spectral symbol of the sequence {X,},,.

The spectral information carried by the symbol, is not only interesting from
a theoretical viewpoint, but can also be used for practical purposes. For exam-
ple, it is known that the convergence properties of mainstream iterative solvers,
such as multigrid and preconditioned Krylov methods, strongly depend on the
spectral features of the matrices to which they are applied. The symbol f can
then be exploited to design efficient solvers of this kind for the matrix X,,, and
to analyze/predict their performance. In this regard, we recall that noteworthy
estimates on the superlinear convergence of the conjugate gradient method ob-
tained by Beckermann and Kuijlaars [[2001] are closely related to the asymptotic
spectral distribution of the considered matrices. Furthermore, in the context
of Galerkin and collocation isogeometric analysis (IgA) discretizations of ellip-
tic PDEs, the symbol computed in a sequence of recent papers [Donatelli et al.,
2016; Garoni, 2018; Garoni et al., 2014; ?] was exploited in [Donatelli et al.,
2015bya, 2017] to devise and analyze optimal and robust multigrid solvers for
IgA linear systems.

In Section[3.1]we present a few algebraic preliminary notions. In Section[3.2}
a short description and properties of the spectral symbol are given; we refer to
[Garoni and Serra-Capizzano, 2017, 2018]] for a complete study. In Section
we derive the analytic form of the symbol associated with system (2.31]), under
the mild assumption that the time grid is not too fine w.r.t. the spatial one. In

23
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Section numerical experiments will be presented to validate the previous
theoretical study. In Section a study on the condition number of is
presented.

Sections are covered and depth in [Benedusi et al., 2018b]], where a
rigorous and more general analysis is presented. We remark that in this chapter
we considered the spatial domain Q as d-dimensional cuboid discretized on a
regular grid; this condition is necessary to apply the symbol theory, largely based
on (block) Toeplitz matrices. Nevertheless, as discussed at the end of the chapter,
the estimates we obtain can be useful also when Q2 is not a cuboid.

3.1 Prelimaries

3.1.1 Matrix norms

For all X € C™™ the eigenvalues and singular values of X are denoted by A,(X),
j=1,...,m, and 0;(X), j = 1,...,m, respectively. The co-norm and the 2-
norm (spectral norm) of both vectors and matrices are denoted by || - ||, and
|| - ||, respectively. We recall, e.g. from [Garoni and Serra-Capizzano), 2017, Sec-

tion 2.4.1], that
X[ < VX oo X Tlloo, VX €C™™. (3.1)

For X € C™™, let ||X||; be the trace-norm (or Schatten 1-norm) of X, i.e., the
sum of all the singular values of X. Since rank(X) is the number of nonzero
singular values of X and ||X|| is the maximal singular value of X, we have

IX|l; < rankQOIX[| < mllX]], VX eC™™ (3.2)

3.1.2  Tensor products

Tensor (Kronecker) products possess a lot of nice algebraic properties. One of
them is the associativity, which allows one to omit parentheses in expressions like
X,®9X,®---®X,. Another property is the bilinearity: for each matrix X € C™*™2,
the application Y — X ®Y is linear on C“**% for all £, £, € N; and for each matrix
Y € C“*%, the application X — X ® Y is linear on C™*™ for all m,,m, € N. If
X,,X, can be multiplied and Y;, Y, can be multiplied, then

X180 1)X,®Y,) = (X1X5) ® (V1 12). (3.3)

For all matrices X,Y, we have X ® V) =X*®@Y*and X ®Y) =XT®Y'. In
particular, if X, Y are Hermitian (resp., symmetric) then X ® Y is also Hermitian
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(resp., symmetric). If X € C™™ and Y € C", the eigenvalues and singular
values of X ® Y are, respectively, {A;(X)A;(Y) : i = 1,...,m, j = 1,...,{}
and {0;(X)o;(Y): i =1,...,m, j = 1,...,{}; see, e.g., [Garoni and Serra-
Capizzano, [2017, Exercise 2.5]. In particular, for all X € C™*™ and Y € C**¢, we
have

X @Yl = lIXI[ Y]] (3.4

IfX,eC™*™ for{=1,...,d, then
(Xl X, ®:-- ®Xd)ij = (X1)1111(X2)i2]’2 ’ "(Xd)idjd: i,j=1,...,m, (3.5)

where m = (m;,m,,...,my). For every m = (m;, m,) € N? there exists a permu-
tation matrix II,, of size m;m, such that

X, 08X, =1,(X, @ X)L (3.6)

for all matrices X; € C™*™ and X, € C™*™; see, e.g., [Garoni et al., |2015a,
Lemma 1].

3.2 The spectral symbol

We say that a matrix-valued function f : D — C**°, defined on a measurable set
D C RY, is measurable (resp., is continuous, belongs to LP(D)) if its components
fij : D = C, i,j = 1,...,s, are measurable (resp., are continuous, belong to
LP(D)). Moreover, we say that f is Hermitian (resp., symmetric) if f(y) is Hermi-
tian (resp., symmetric) for all y € D. We denote by u, the Lebesgue measure in
R* and by C.(R) (resp., C.(C)) the set of continuous complex-valued functions
with compact support defined over R (resp., C).

Definition 1. Let {X,}, be a sequence of matrices, with X, of size d, tending to
infinity, and let f : D — C**° be a measurable matrix-valued function defined on a
set D C RY with 0 < u,(D) < oo. We say that {X,}, has an asymptotic spectral
distribution described by f, and we write {X .}, ~, f, if

1 f 2 F (L)
d
u,(D) ), s

d
1
lim d—n;F(Aj(xn))= y,  VFeC(O)

In this case, f is referred to as the spectral symbol of the sequence {X,},.

Whenever we write a spectral distribution relation such as {X,}, ~, f, it is un-
derstood that {X,}, and f are as in Definition [I}
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Remark 3.1. The informal meaning behind Definition|[1]is the following: assuming
that f possesses s Riemann-integrable eigenvalue functions A;(f(y)), i =1,...,s, the
eigenvalues of X, except possibly for o(d,,) outliers, can be subdivided into s different
subsets of approximately the same cardinality; and the eigenvalues belonging to the
ith subset are approximately equal to the samples of the ith eigenvalue function
A;(f(y)) over a uniform grid in the domain D. For instance, if { = 1, d,, = ns,
and D = [a, b], then, assuming we have no outliers, the eigenvalues of X, are
approximately equal to

A(f(a+i2=0)) i=tn =1

for n large enough; similarly, if { = 2, d, = ns, and D = [a,, b;] X [a,, b,], then,
assuming we have no outliers, the eigenvalues of X,, are approximately equal to

Ai(f(a1+jl%,a2+j2b2naz)), foa=1,..m, i=1,....s,

for n large enough; and so on for { > 3.

Remark 3.2. Let D = [a;,b;] x --- x [a,,b,] C R and let f: D — C* be a mea-
surable function possessing s real-valued Riemann-integrable eigenvalue functions
A(f(y)), i =1,...,s. Compute for each r € N the uniform samples

b,—a b,—a
MA@+ == et =) geede=Lenn i=1s,
r r
sort them in non-decreasing order and put them in a vector (¢;,Gy,...,Cs¢). Let
K, : [0,1] — R be the piecewise linear non-decreasing function that interpolates
the samples (¢o = 61,61, G2, - - - » G5yt ) OVer the nodes (0, ﬁ, S%, ... 1), te,
i ) ¢
K‘r(—e) =c¢;, 1=0,...,s1,
sr
i i+1

K, linear on | —,
srt’ srt

]foriZO,...,sré—l.

Then K, converges a.e. over [0, 1] to some function k as r — o0, and

1 J Do FOL(E)))
d
u(D) ), s

1
f F(x(y))dy = y, VYFecC(C). (3.7
0

This result can be proved by adapting the arguments used in [Garoni and Serra-
Capizzano, 2017, solution of Exercise 3.1] and [Barbarino, 2017]. The function
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K is referred to as the canonical rearranged version of f. What is interesting about
Kk is that, by B.7), if {X,}, ~, f then {X,}, ~, k, ie., if f is a spectral symbol
of {X,}, then «k is a spectral symbol of {X,,}, as well. Moreover, k is a univariate
scalar function and hence it is much easier to handle than f. For a visual comparison

between f and « see Figures[3.2]and

Two very useful tools for determining spectral distributions are the following;
see [|Garoni et al., 2015b, Theorem 3.3] for the first one and [Mazza et al., 2019,
Theorem 4.3] for the second one.

Theorem 3.3. Let {X,},,{Y,}, be sequences of matrices, with X,,,Y, € C%*% and
d, tending to infinity as n — o0, and assume the following.

1. Every X, is Hermitian and {X,}, ~; f.
2. IX,I,IIY,|l < C for all n, with C a constant independent of n.
3. |Y,ll; = o(d,) as n — oo.

Then {X,+Y,}, ~, £

Theorem 3.4. Let {X,}, be a sequence of Hermitian matrices, with X, € C%&*%
and d,, tending to infinity as n — 09, and let {P,}, be a sequence of matrices, with
P, € C%*% such that P*P, =I5 and §, < d, such that ,/d, — 1 as n — oo.
Then,

{Xn}n ~A f — {p:XnPn}n ~A f.

Another result of interest herein is stated in the next lemma [Benedusi et al.,
2018al, Lemma 2.6]. Throughout this section, for any s € N and any functions
f:D, —» C" i=1,...,d, the tensor-product function f; ® --- ®f; : D; x --- x
Dy — CPE*PB) s defined as

(£, ®f)(l1,...,8a) =£({1)®--- ®£,(L,), (C15++-,8q) €Dy x --- X Dy.

Lemma 3.5. Let {X,},,{Y,}, be sequences of Hermitian matrices, with X,, € C%*d,

Y, € C°*% and both d, and &, tending to infinity as n — 00. Assume || X, ||, ||Y,]| <
C for all n and for some constant C independent of n. Let f : D C R — C™"

and g : E C R — C* be measurable Hermitian matrix-valued functions, with

0 < uy(D) < o0 and 0 < uy(E) < oo. Then,

{Xn}n ~a f’ {Yn}n ~1 8 S {Xn®Yn}n ~a f®g
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3.3 The space-time symbol

Let us consider equation (2.1 on the spatial domain Q = (0, 1)¢ where Q could
be replaced by any rectangular domain without affecting the essence of this sec-
tion. We partition the spatial domain using n elements per dimension and we
define h = 1/n. Let By [, k3, - - +>Bup—k)+k+1,[pk) D€ the B-splines of degree p and
smoothness C* defined on the knot sequence

1 1 2 2 n—1 n—1
0,...,0, = .o, —, =i, —5 ety yeees , 1,0, 1.
~——— 1N n n n ———
p+1 Wk—/ H/k—/ ~  p+l
p— p— p—

=~

We define the spatial basis {¢1,..., 95} = {¢1,.- ., Qnp—k)rk—1} for #, [, s from
Section [2.2] as tensor product of the B-splines in each dimension:

Ps = Bs+1,[p,k]
= le+1,[p,k] ®--- ®Bsd+1,[p,k]’ S = ]., ey n(p — k) +k— ].,

where bold indices represent d-multi-indices, for example for d = 3 we have n =
(n,n,n) and similarly for p and k. For the formal definition of the B-splines, as
well as their properties, we refer the reader to [Schumaker,2007]]. See Figure[3.1]
for an example of B-splines graphs.

1

0.8
0.6 i
041 \ i
0.2/ 1
0 ‘ ‘ ‘ ‘
0 01 02 03 04 05 06 07 08 09 1

Figure 3.1. B-splines By [, ¢}, - - » Bu(p—k)+k+1,[p k] Of degree p =3 and smoothness
k =1 for n=10.

In this setting the mass and stiffness matrices from (2.25)—-(2.26) are given by:

_ n(p—k)+k—1

M, px = f Bj+1,[p,k](X)Biﬂ,[p,k](x)dx} , (3.8)
| J[0,1) i,j=1
B n(p—k)+k—1

Kn,[p,k] = f ) [K(X)VBj+1,[p,k](X):| . VBi+1)[p,k](X)dX:| . (39)
| J[0,1] i,j=1
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and the total number of degrees of freedom in space is
n=dim(#,, ) = (n(p —k) + k— 1)4.

We report a useful estimate regarding the spatial matrices (3.8)-(3.9) that is
going to be used later on.

Lemma 3.6. For 0<k<p—1, K=1;and d =1 we have

”nMn,[p,k]HOO) ||n_1Kn,[p,k]”oo < Cp
for some constant C,, depending only on p.
Proof. See Lemma 4.3 from [Benedusi et al., 2018b]. O

We now report the main result from Benedusi et al. [2018b]], i.e., the theorem
defining the symbol correspondent to space-time matrices.

Theorem 3.7. Let q,p,k > 0 be integers with 0 < k < p—1. Let C]E,q”f’k] be the
space-time matrix defined in (2.31) with spatial matrices from (3.8)) and (3.9)).
Suppose that the diffusion coefficient K : (0,1) — R4 is a symmetric matrix-
valued function in L*°((0,1)%) and that the following condition is met:

N = N(n) is such that N — 0o and N/n? — 0 as n — oo.

_ Dok
d ZCIE/q,f

Then, for the sequence of normalized space-time matrices {2Nn ]}n we have

the spectral distribution relation
d—2 ~la.p.k]
{ZNTI CN,n }n ~ f[q,p,k]:
where:

* the spectral symbol f,,;; : [0,1] x [—m, n]* — ClarDe—Rx@ DR
defined as

frgp (%, 0) =17, (%, 0) ® TM,3; (3.10)

* f1,6: 10, 118 x [—m, )¢ — CP-Rxe—h" i defined as

d
fip0(%,0) = Z Ki;(x)(Hpp £1):;(0); (3.11)

i,j=1

* Hp, ) is ad x d block matrix whose (i, j) entry is a (p — k)4 x (p —k)? block
defined as in [Benedusi et al.,2018b| Eq. (5.12)];
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* T is the final time in (2.1)) and M, is given in (2.13).

Proof. From [Benedusi et al., 2018b] see Theorem 5.1 for a proof where K = I
and Theorem 5.2 for the general result. O

Let us give an informal description of the proof of Theorem ford = 1. For
d > 1 the proof is relying on the decomposition of and in tensor
products of one dimensional operators, and, apart from this extra technicality,
it is the same as in the case of d = 1. The proof is based on the following
decomposition of C,E,‘f’f ok

-1clapk] _ 5 [a.pk] lg.p.k]
2Nn  Cy =Xy, Y,
with X 1[\;15 I block diagonal and YI\[]?,’IP I block bi-diagonal:

. At -
Xyn=2Nn I @M @Ky =T Iy @ Mg @Ky, (3.12)

»p;k -
Y]\Ef’]np ] =2Nn 1(IN ® K[q] ® Mn,[p,k] — LN ® J[q] ® Mn,[p,k]) (313)
=2Nn"'(Iy ® Ky ® M, [p4) + Ly ® BLoPH)), (3.14)

with L, being a lower shift matrix of size N. By Lemma property (3.4) and
the equation ||Ly|| = 1, we have

0,k D,k
X ¥ < e, yiErt) < enyn?,

where C denotes a generic positive constant independent of n and N. Since
N /n? — 0 by assumption, we have ||Y1\[,q,’1p’k]|| — 0 as n — 00. Hence, by (3.2),

.k Dkl = ——
ISP < |y 2P H|RN = o (RN,
Since X I[qul’ k1 is symmetric, by Theorem the thesis is proved if we show that
Dk
{Xz[vq,f ]}n ~A f[q,p,k]' (3.15)

By (3.6), there exists a permutation matrix Il; 5, depending only on n and N,
such that
XEPH = Ty © Mgy ® Ky
=T 5(n K piy ® Iy ® TMg )T .

Proving (3.15) is then equivalent to proving that

{Tl_lKn)[p’k] ® IN ® TM[q]}n ~a f[q,p,k] == f[p,k] ® TM[q] (316)



31 3.4 Numerical experiments

By Lemma [3.5| the spectral distribution (3.16) is established as soon as we have
proved that the symbol of the IgA stiffness matrices is given by

(" Ko pigtn ~a S (3.17)

See, for example, [[Barbarino et al., [2020b,a]] for a comprehensive study on this
topic and in particular [[Barbarino et al.|[[2020a[], Theorem 6.8 and Remark 6.9]).
The proof of Theorem as well as the previous discussion, leads naturally
to the following result, that will be essential for the design of a suitable block
preconditioner for CIE,qf k],

Corollary 3.8. Suppose the hypotheses of Theorem are valid, and X ][\;Z,f K s
defined as in (3.12). Then,

{2Nn'2(Iy @ ATPHY, ~ £y,
[q.p,k]
{XI\;I,rI: ba ~a f[q,pJ<]'
Corollary [3.8]ensures that, when assumptions of Theorem [3.7)are met, the block
diagonal matrix I ®A[nq’P’k] is spectrally equivalent to the original operator. The

same is true for X ][Vq’r‘l’ ’k], the symmetric matrix containing just the spatial problem
from Iy ® Al#PH],

3.4 Numerical experiments

In this section we validate Theorem through numerical examples that il-
lustrate the effectiveness of the spectral symbol f;, , ;; in describing the asymp-
totic spectral distribution of the space—time discretization matrix C ]E,q’;f *1 In Sec-
tion we focus on 1D examples. In Section [3.4.2] we present a 2D example.
In Section we give a hint on how to use the symbol in order to design an
efficient solver for C]E,q”,f . In all the examples of this section we consider the
purely diffusive problem with T = 1 and homogeneous Dirichlet boundary con-
dition in space. The diffusion coefficient K(x) and the parameters N,n,q,p, k
are specified in each example.

3.4.1 1D experiments
Since d = 1 and T = 1, the symbol of the sequence {2N n_lclE,q,f ’k]}n under the
assumptions of Theorem [3.7]is given by

f[q,p,k] (0,11 % [—m, ] — ClatDe—Rx(g+D)p—k)

f[q,p,k](x: 0)= K(X)f[p,k](e) ® Miq) (3.18)
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where f, ,1(0) is defined in (3.11)) and M, is defined in (2.13).

Remark 3.9. Let A,(f;, 1(0)) <... <A, (f;, x;(0)) be the eigenvalues of f[, ,1(0)
sorted in non-decreasing order. Since f, ;1(—0) = (f[p’k](e))T has the same eigen-
values as f, 1(0), each eigenvalue function A,(f;, x1(0)) is symmetric in 6, i.e., it is
an even function. Therefore, also the eigenvalue functions of the symbol f;, , ;1(x,0)
in (3.18), namely K(x)A;(f;, ;1(ONA; (M), i=1,...,p—k, j=1,...,q+1, are
symmetric in 6. Thus, the restriction

f[q’p’k] :[0,1] x [0, 7] — C(q+1)(p—k)X(q+1)(p—k)’
fig.p.k1(x, 0) = K(x)f, 11(6) ® My, (3.19)

is again a spectral symbol for {2Nn* CIE,q’f kY according to Definition (1} Further-
more, if K(x) = 1 then fj, ,1(x,0) does not depend on the variable x and the
restriction

—k)x —k
f[q,p,k] :[0, ] — Ca+D—k)x(g+1)(p )’

f[qsp,k](e) = f[p,k](e) ® M[q]) (320)

is again a spectral symbol for {2N n_lCJE,‘ff ’k]}n according to Definition (1} In all
the examples of this section, when referring to the spectral symbol of the sequence
{2Nn_1CIE,q’;f’k]}n, we mean either (3.19) or (3.20), depending on whether K(x) is
non-constant or K(x) = 1.

Example 3.10. Let K(x) = 1 and take g = 1, p = 1, k = 0. In this basic case, a
direct computation shows that the symbol ([3.20) simplifies to

3/2 0]

Its eigenvalue functions are given by
A1(f11,1,01(0)) =1—cos 0, Ay(f1,1,01(6)) =3 —3cos 6.

Figure [3.2) shows the graphs of the eigenvalue functions over [0, ] and the eigen-
values Aq, ..., Ayy(n—1) Of 2Nn_1C,E,1,;11’0] for N =5 and n = 20. The eigenvalues,
which in this case are all real, are sorted so as to match the graphs of the eigenvalue
functions and are represented by the dots placed at the points
(OJ,A]), j:].,...,N(n_]_),
(Gjylj+N(n—1))a ] = 1,...,N(Tl—1),
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6 T T

= 15t eigenvalue function /\1(f[17 10) 0

ooooo

=
=

ot

2nd eigenvalue function )\Q(f[L 10 @yl I

» eigenvalues of 2V n’lc%fi'u] .....

0 tenssetdddd . .‘ | ‘

0 /4 /2 3r/4 T

Figure 3.2. Example |3.10; Comparison between the spectrum of 2N n_IC]E,l”n1 0]
and the symbol f; ; 5;(6) for N =5 and n = 20.

where ‘
0 — (—Dx
i Nl AN 40
N(n—1)—1

We clearly see from Figure that, although N and n are not so large, the eigen-
values of 2N n‘lclE,l’;ql’O] can be subdivided into 2 subsets of the same cardinality
N(n—1); and the eigenvalues belonging to the 1st (resp., 2nd) subset are approx-
imately equal to the samples of the 1st (resp., 2nd) eigenvalue function over the
uniform grid 0, j = 1,...,N(n—1). This agrees with the informal meaning of the
spectral distribution {2Nn™* CIE,l,’nl’O]}n ~ f1,1,07 given in Remark In particular;
we observe no outliers in this case.

=1,...,N(n—1).

Example 3.11. Let K(x) = 1 and take ¢ = 1, p = 2, k = 1. In this case, the symbol
(3.20) becomes

fr1017(0) = (1 — % cos 6 — %cos(ZQ)) [3(/)2 1(/)2] .

Let k be the canonical rearranged version of ff; , 17(6) obtained as the limit of the
piecewise linear functions k,, according to the construction of Remark Then,
by Remark K is again a spectral symbol for the sequence {2N n—lc}vff 1 },. Fig-
ure [3.3| shows the graph of k and the real parts O, ..., @y, Of the eigenvalues of
2Nn! CZE,l”nz’l] for N =35 and n = 70. The graph of k has been obtained by plotting

the graph of k, corresponding to a large value of r. The real parts of the eigenvalues
have been sorted in non-decreasing order and placed at the points

(J’]:QJ), y]:_, j:1,...,2NTl.
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9l graph of K o |
----- real parts of the eigenvalues of 2V n/’lCA[\{ji’l] '
i
1.5+ J 1
7
1- J 1
050 o _
‘s‘
i"’-

0 -.---""\’-- | | ! I | 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

. . — 1,2,1

Figure 3.3. Comparison between the spectrum of 2Nn*C"*! and the canon-
N,n

ical rearranged version x of the symbol ff; ,1;(0) for N = 35 and n = 70.

The imaginary parts of the eigenvalues are not shown in the figure because they
are negligible (their maximum modulus is about 0.008). We clearly see from the
figure an excellent agreement between k and the eigenvalues of 2N n_ICIE,{f A Asil-
lustrated in Figure and Table the agreement becomes perfect in the limit
of mesh refinement 2N = n — oo. Both Figure and Table show that
Ik(y) —@lloc = 0 and |[t]|coc = 0 as 2N = n — oo, where k(y) —@ = (x(y1) —
01, -->K(Vonn) — Qonn) 1S the vector of the errors and t = (Lq,. .., lyy,) is the vector
of the imaginary parts of the eigenvalues of 2Nn™! CIE},’HZ’H.

Table 3.1. Computation of the error ||k(y) — @||oo and the maximum modulus
|t||oo of the imaginary parts of the eigenvalues of 2N n_lCIE,l”nz 1]
values of 2N =n.

for increasing

2N =n | 20 30 40 50 60 70
llx(y)— o ||OO 0.2910 0.2010 0.1533 0.1239 0.1039 0.0895
Ilt]l oo 0.0208 0.0166 0.0133 0.0109 0.0093 0.0081

Example 3.12. Let K(x) = 3 —cos(10x) and q = 2, p = 3, k = 2. The symbol
(3.19) becomes

fr2301(x,0) = K(x)(% — %cos 06— % cos(260) — % cos(BQ))x

16 + /6 0 0
16—+/6 0
0 0 4

1
X — 0
18
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10° ¢
[ | —e—error
[ | —e— maximum modulus of the imaginary parts

) | | \\6\ |
o m\e\e\e\e\‘ i

©

107 10 ‘10'l
Figure 3.4. Graphs of the error ||k(y)—@lls and the maximum modulus ||t||s
of the imaginary parts of the eigenvalues of 2Nn™! CIE,l,’nz’l] versus the matrix size

2Nn for increasing values of 2N = n.

Figure shows the graph of the canonical rearranged version k of fr, 3 51(x, 0) and
the real parts @,..., Q3nm+1) Of the eigenvalues of 2Nn_1CIE,2”:’2] for N =n = 30.
The real parts of the eigenvalues have been sorted in non-decreasing order and placed
at the points

J

- i=1,...3N@m+1).
aN(n+1) 7 (n+1)

The imaginary parts of the eigenvalues are not shown in the figure because they
are negligible (their maximum modulus is about 0.069). We clearly see from the
figure a good matching between k and the eigenvalues of 2N n_lclE,z,f’z]. In this
case, however, we also note the appearance of a few outliers at the right end of
the spectrum. Nevertheless, the total number of outliers is 59, which is negligible
with respect to the matrix size 3N(n + 1) = 2790. Moreover, when passing from
N =n =30 to N = n = 40, the matrix size passes from 2790 to 4920 but the
number of outliers only passes from 59 to 79. Further numerical experiments reveal
that the number of outliers should be equal to 2n — 1 for all N, n such that N = n,
and this is in agreement with Remark[3.1} according to which the number of outliers
divided by the matrix size goes to O as the matrix size goes to to ©Q.

3.4.2 2D experiments

The next example provides a validation of Theorem |3.7|in the case d = 2.
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Figure 3.5. Comparison between the spectrum of 2N n_lclE,z’f’Z](K) and the
canonical rearranged version x of the symbol ff, 5 ,1(x,0) for N =n = 30 and
K(x)=3—cos(10x).

Example 3.13. We consider anisotropic diffusion:

cos(x;) + x, 0 ]

K(xy,xp) = [ 0 x; +sin(x,) (3.21)

Letq =2, p=1andk = 0. The spectral symbol of the sequence {2NCIE,2’;11’O]}H under
the assumptions of Theorem [3.7|is given by

fi3107: 00,1 x [0, n]* —» C**°
fia 101061, 03, 02) = [(cos() + x)(2 = 205(0,)( 5 + 5 cos(61)
+ (x; + sin(xz))(g + % cos(@l))(Z -2 cos(92))] X

16 + /6 0 0
0 16—+v6 0], (3.22)
0 0 4

1
X_
18

where the restriction of the domain to [0,1]? x [0, ]* has the same motivation
that we have seen in Remark (the matrices fj5 1 o7(x1, X, £0;,%6,) have the
same eigenvalues as fr, 01(x1, x5, 01, 0,) for all (6,,6,) € [0,7m]%). Figure
shows the graph of the canonical rearranged version k of and the real parts
©1,--->Q3nm—1) Of the eigenvalues of 2NCIE,2,;11’0] for N =5 and n = 30. The real
parts of the eigenvalues have been sorted in non-decreasing order and placed at the
points

j—1

= , i=1,...,3N(n—1)%
aN(n—132-1 (n=1)
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Figure 3.6. Comparison between the spectrum of 2N CIE,Z;LO] and the canonical
rearranged version x of the symbol ff, 1 o;(x7, x5, 61, 0,) for N =5, n =30, and

K(xq,x,) as in (3.21)).

The imaginary parts of the eigenvalues are not shown in the figure because they are
negligible (their maximum modulus is about 0.011). We clearly see from the figure
an excellent agreement between k and the eigenvalues of 2N C]Elznl 0,

3.4.3 Preconditioning

In our final example, we show how to use the symbol in order to design an

efficient block preconditioner for the space-time matrix CIE,qf K1 The content of

this section will be further developed in Section|5.2] where a detailed description
of the preconditioned solver will be presented.

Example 3.14. From Corollary(3.8|and the theory of (block) GLT sequences|Garoni
and Serra-Capizzano| [2017, 2018|]; Barbarino et al.| [2020a|] we expect that the
sequence of preconditioned matrices
(Iy ®A[q,p,k])—1c[q,p,k]
N,n N,n )

as well as the sequence of preconditioned matrices

»pok]\— — .,k

XD N O,

has an asymptotic spectral distribution described by the preconditioned symbol

—1 _
(g pi)) frgpi) =1
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Therefore, in view of the convergence properties of the GMRES method Saad|[2003]
and the meaning of spectral symbol (see Remark [3.1), we may predict that the
preconditioned GMRES (PGMRES) with preconditioner

[4.p.K] , [apk] _ At
IN ®AN,n or Wlth PN,n = 7 IN ® M[q] ® Kn,[p,k]

for solving a linear system with coefficient matrix C]E,q’f K has an optimal conver-
gence rate, i.e., the number of iterations for reaching a preassigned accuracy € is
independent of (or only weakly dependent on) the matrix size.

To illustrate this claim, consider the heat equation in two space dimensions d =
2, with forcing term f(t,x) = 1, K = I and final time T = 1. We focus on the
linear system CIE,qf Mu=f arising from the space-time FE-DG discretization of this
equation in the case where ¢ =0, p = 2, k =1 and N = n. We solve this system, up
to a precision € = 107°, by means of the GMRES, the PGMRES with preconditioner
Iy ®AE§:§’H, and the PGMRES with preconditioner PIEE;? * " The resulting number
of iterations are collected in Table and graphically represented in Figure
We see that, while GMRES rapidly deteriorates with N, the convergence rates of the
PGMRES methods show a much better dependence on N as the growth of the number
of iterations is sublinear with respect to N and hence very mild with respect to the
system size Nn2. Moreover, in this case, the number of iterations are essentially the

same for both the preconditioners P> and Iy, ® AP, Considering that PR is

a pure tensor product whereas Iy ®AE§’§’k] is not (because Agg’ﬁ’k] is not), we suggest

using P},‘f;f K Indeed, the solution of a linear system with coefficient matrix PJE,‘f;f k]
reduces to the solution of three linear systems with coefficient matrices Iy, Mg,
and K, [, x}, respectively. Clearly, the only difficult task is the solution of a linear
system with coefficient matrix K, , 1. The details of such a solver will be presented
in Section

Table 3.2. Number of iterations for solving, up to a precision of 107°, the linear
system CIE?,f *ly = f arising from the space-time FE-DG discretization of the
heat equation in the case where d =2, f(x,t)=1,T=1,q=0,p=2, k=1
and N = n.

N=n 10 20 30 40 50 60
system size Nn? 100 20° 30° 40° 50° 60°
GMRES 22 52 87 126 170 218

PGMRES with preconditioner Iy ® A% | 10 19 25 32 38 45
PGMRES with preconditioner PX*P* | 11 19 25 32 38 45
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Figure 3.7. Number of iterations for solving, up to a precision of 107°, the
same linear system as in Table versus the system size Nn? for the same
values of N = n as in Table The considered preconditioner for PGMRES
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3.5 On the condition number of space-time matrices

Let us define the discretization parameter (or CFL parameter) u € R

KAt

— (3.23)

‘LL:

where, for simplicity, the diffusion coefficient K will be considered as a positive
constant in this context. The parameter y arises naturally from the discretization
of the heat equation (cf. Remark and is pivotal for the stability analysis.
For example explicit Euler time stepping is stable for u < 1/2; see [[Quarteroni
et al., 2010] for a generic discussion on stability of 6-methods depending on u.
On the other hand in [[Gander and Neumiiller, |2016; [Horton and Vandewalle,
1995; Franco et al., |2018]] multilevel space-time solvers stability is evaluated
w.r.t. u. For this reason it makes sense to investigate the dependency of the
condition number of the space-time matrix K(CIE,q”: ’k]) on u. Figures show
the condition number of both the space-time system and the time slab block
K(A[nq’p’k]), and the convergence behavior of various iterative solvers w.r.t. u.
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Figure 3.8. We consider the heat equation with d =1, K =1, N = n = 30,
p=1,k=0,qg=0and At = {3713,3712 .. 3%}, Left: condition number of
CIE,q”f k1 and the block A[nq’p’k]. Right: Convergence factor of various iterative
solvers with relative tol = 10™. We used sixty blocks for block Jacobi, used
also for preconditioning GMRES. All the graphs in the two plots have minima
close to u =0.1.
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Figure 3.9. Same as Figure with homogeneous Neumann boundary condi-
tions instead of homogeneous Dirichlet.

Remark 3.15. Figures suggest that the condition number K(A&q’p’k]) isa

good indicator for the behavior of K(C]E,q’,f ’k]). They seem to share the same arg min,
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that we identify with p,i.e.:

. ) Dk
Hope = argmin k(AP () ~ arg min x(CLEP ) ().
u 1
In particular, from Figure we can notice how the agreement between K(A[nq’P’k])
and K(CIE,q’f ’k]) is especially good for u — o0 as we expect from the assumptions of
Theorem EL_7] (being N/n? —» 0 &< u — 00) and Corollary from a practical
point of view, the case of y — 00 is the most relevant because of the definition of u.

Remark 3.16. Many approaches to solve C]E,q”f k] rely on the application of block
solvers to the diagonal blocks A[nq’p’k]; see, e.g., [McDonald and Wathen, 2016 ] and
Section For this reason the study of K(A&q’P’k]) is a relevant topic in itself.

Remark 3.17. In view of Lemma|3.6] if we define the following normalized matrices

~

> -1
Moppig =nMoppr, Knppiy =1 Ko,
considering that u = KAt - n?, we can rewrite (2.29) as

1 ~ u ~
N
AP = —(Kiq) ® My + 5 M1y ® Ko 1) (3.24)
For example, for ¢ = 0 (i.e. implicit Euler) we get K;o; = 1 and My = 2 and

therefore
1 ~ ~
AP = = (M 10+ UK ) (3.25)

Then the conditioning ofAEIO’p’k] is going to depend on the interplay of the eigenvalues
of the spatial mass and stiffness matrices trough the scaling factor u. See Figure|3.10
for a comparison of the two spectra. Such idea can be applied also for a generic q,
as it will be discussed at the end of the current section.

In some particular setting we can provide a more precise characterization of .
. . . . . [0)1’0]

In the following theorem we give an analytical description of x(A:>"%)(u). We

refer to [Ekstrom et al., [2018] for the analytical representation of eigenvalues

and eigenvectors of IgA operators that are going to be used in the proofs.

Theorem 3.18. The condition number k(Al>**))(u) attains its minimum for i, =
¢ and k(ALY (u,,) = 1.

Proof. We can describe precisely the eigenvalues of K, [; o) and M, [; ¢1:

2+ cos(6;)

3n (3.26)

Aj(Knr10p) = 2n(1—cos(6;)),  A;(M,,1107) =
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Figure 3.10. Eigenvalues of ]\N/In’[p’k] and I?n’[p’k] ford =1, n =50, p ={1,2}
and k =p—1. For p < 3 the two matrices have the same eigenvectors and thus
it makes sense to compare their eigenvalues.

for 6, , with j = 1,...,n— 1. Because K, ; o) and M,,; o] share the same
elgenvectors we can sum up the expressions in ([3.26)) according to (3.25)) to get
the eigenvalues of AL101:

1 [2 + cos(9;)

A AR () = ~| —— +2u(1—cos(ej))].

Being Al%1-% symmetric, we can compute an analytical expression of its condition
n b
number as

_max. A JAPLD (W) max 2+COS(9) +2u(1 —cos(6;))
K(AOlO)(‘u)_ =1,..., _J=L.., n—1
- mm A (A[0 L O])(u) _ {nin 12+C°S(9) +2u(1 — cos(6; ))
,,,,, j=1,...,n—
(3.27)
Rearranging the min and max arguments, for any j we have
2+ cos(6)) 2 1
— 3 + 2u(1 —cos(6;)) = 5 + 2u + cos(6;) (§ — 2,u) ,

showing that for i, = % the dependency on 6, is removed in both the numerator
and the denominator of (3.27). Therefore

2

S+2u

k(A () = =3 —F=1 (3.28)
__1‘1’111‘1_ 3+ 2:u’opt 3 + 2nu“opt
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Since K(AEIO’LO])(M) > 1 for all u, U,y is @ minimum of (3.27).
]

Remark 3.19. Note that AL>1°)(u) becomes a multiple of the identity for y = 1/6:

[ 4+2u  1/6—u
1/6—u  4+2u 1/6—u
A[O’l’o](,u) — 1 . .. ..
- " . :

1/6—u  44+2u 1/6—u

i 1/6—u  4+2u

We can apply the same argument in the case of larger p. For example for p =2
we get the following relation (again, we refer to [Ekstrom et al., [2018]] for the
formula of the eigenvalues of K, , 17 and M, [517)

2,09 = = [ a((1= 2 cos(0)) — 5 cos(26)) ) + 5 + 32 cos(6) + o5 cos(26)) |
n

_1 [,u+ % + cos(0; )(%—%u) + cos(26; )(5—%)],

for 6, = % with j = 1,...,n. For u = 13/20 the cos(6;) term vanishes and we
obtam

2, (A0 1])(20) = %(6—cos(29j))

KAOZl)(lg) 7, (3.29)

and

20 5

Estimate (3.29)) is not as sharp as the one from Theorem but, in practice, it
gives a reasonable result; we refer to Figure for an experimental compari-
son.

Remark 3.20. Both the estimates 8) and (3.29) are independent from the prob-
lem size n.

Generic q

If we consider g > 0, with an algebraic manipulation of AE?’P”‘], we can generalize
the previous results. We consider the eigendecomposition M, , ,; = QA,Q" and
K, 1px) = QAxQ". We assume that M,, [, ; and K, [, ,; have the same eigenvector
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Figure 3.11. Condition numbers computed for d =1, n =50, ¢ = 0 and various
p and k. Left: IgA case, i.e. k = p—1; u,,, from (3.28) and (3.29) are reported.
Right: standard FE, i.e. k=0.

matrix Q; this is true just for p < 3. Thus, we can write, from (2.29)), using
property (3.3),

AP = K @ QA Q" + uM;y; ® QAQ"
= (Q ® Iq+1)(AM ® K[q])(Q ® Iq+1)* + .U'(Q ® Iq+1)(AK ® M[q])(Q ® Iq+1)*
=(Q®I41) (Ay ® Ky + Ay ® M1) (Q® L),

then, for i = 1,..,n, we can compute singular values of the non symmetric ma-
trices 3, € R@tx(@+D)

2 = Ai(Mo kDK + (K k) Mgy
Finally, for p < 3 we get the general expression

max max aj(Zi)
j=1,..q+1 i=1,..7

(3.30)

Kk (AlGPK]Y = .
(A min min o ;(%;)
J=l.,q+1  i=1,..7n

Equation (3.30)) relies on the direct computation of the singular values of n small
matrices (with size ¢ = 1). See Figure for an experimental confirm of the
validity of equation ([3.30).
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Figure 3.12. Condition number computed for d =1, n = 20, g = {0, ...,5} and
p =1 and k =0. Lines are obtained from equation (3.30) and markers with a

direct computation of x(A%0)).

Remark 3.21. The content of the current chapter relies on the assumption that
Q is a rectangular domain discretized by a regular grid. This choice gives rise to
sufficiently regular matrix sequences (GLT sequences) for which it is possible to carry
out the mathematical analyses, using the GLT theory. One could argue that such
analyses are no longer useful in practice, where complex geometries are usually
present. Even if sharp estimates given trough this chapter are not valid for arbitrary
geometries, they can still give a hint on the general properties of operators arising
from less trivial settings. In Figure [3.13|we show how Theorem [3.18] in practice,
can still give an insight if a more complex geometry is used.
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Chapter 4

Applications

In the previous chapters, we focused on a purely diffusive problem, which is often
used to test and benchmark numerical methods and specifically parallel-in-time
solution strategies in a simple setting. The results presented in Chapter[3]also rely
on this setting where the reaction term in is neglected. In this chapter, we
describe two problems with applications in bio-medicine that will be part of the
numerical experiments of Chapter [6] In particular, in Section [4.1], we consider a
non-linear reaction-diffusion problem, often employed to model excitable media.
In Section we consider a diffusive problem with discontinuous coefficients,
that appears when modeling the permeability through biological tissues.

4.1 Computational electrophysiology: the monodomain
model

Computational electrophysiology is the branch of computational medicine that
studies the modeling and simulation of the electrical properties of biological cells
and tissues. One of the more relevant topics in this field of research is the sim-
ulation of the electrical activity in the human heart, heart failure being a major
health problem worldwide. Obtaining fine measurements in vivo can be challeng-
ing; for this reason, numerical simulations may play a more and more important
role in the understanding of heart diseases. The most complete model for de-
scribing the electrical activation of the cardiac tissue is the bidomain model that
considers both extra and intra-cellular potentials (see for example Colli Franzone
et al. [2006] for a detailed description). It consists of two non-linear reaction-
diffusion equations coupled with a system of ordinary differential equations, con-
taining up to 50 equations, describing the ionic currents in the cellular mem-

47
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branes. Because of its structure, the bidomain model is computationally expen-
sive.

Moreover, when discretizing the spatial domain, a fine discretization is re-
quired to capture the activation front effectively (h ~ 10~*m). With respect to
time, the fast kinetics involved requires At &~ 10~*s. Because the cardiac muscle
has size &~ 10™! m and a heart beat lasts for approximately 1 second, realistic 3D
simulations of the heart can have more then 10'° degrees of freedom.

For this reason a simplified model is often used: the monodomain model,
where there is no distinction between intra and extra-cellular potentials. This
model approximates well the solution of the bidomain model and it is often used
for the simulation of large parts of the heart. We refer the reader to Potse et al.
[2006] for a comparison between the two models. The monodomain model is a
particular instance of the PDE coupled with an ODE and can be formulated
as follows:

xC0u—V - (KVu)+ yI,,,(u,w)=f in (0,T)xQ,

d,w=R(u,w) in (0,T)xQ, 4.1)
n-(KVu)=0 in (0,T)x 2%, )
u=uy(x),w=w, for t=0,

where u = u(x,t) € R is the electric potential, w = w(x,t) € R an auxiliary
coupling variable, K = K(x) the conductivity tensor, f = f(x, t) a possible ex-
ternal current, y the surface-to-volume ratio and C,, the membrane capacitance
constant. The first equation in (4.1) is coupled with the ODE in the second line
through the non-linear ionic current term I;,,. The last two equations provide
boundary conditions in space and an initial condition in time. For I;,, we con-
sidered the Fitz-Hugh Nagumo (FHN) cubic model (cf. [[Pezzuto et al., 2016])

Iion(u: W) = a(u - urest)(u - uthres)(u - umax) + wa(u - urest)9

R(u’ W) = b(c(u - urest) - W); (4.2)

with parameters a,b,c € R™ and the equilibrium states U, < Upres < Umaxs
where u,. and u,,,, are stable equilibrium states and u, . is an unstable one. The
informal meaning of the action of I;,,(u, w) is the following: if u(x, t) > ., the
tissue will be activated up to u,,,, in x, while if u(x, t) < uy,., the potential u will
decrease to u,.,. The second ODE in (4.1]) is responsible for the depolarization
of the activated tissue through the variable w; the speed of the depolarization
can be controlled with R(u, w) and C,,. For simplicity we consider C,, = 0, i.e. no
depolarization occurs. In this setting I;,,(u) depends just on u, as in (2.I)). See
Figure for a 2D simulation of the solution of (4.1)). It must be noticed that,
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along with the FHN model, a large number of more rigorous ionic models are
described in the literature, using up to 40 auxiliary variables (e.g. the Bernus
ionic model or the Luo-Rudy models). We refer to [Keener and Sneyd, |1998]] for
an extensive overview on mathematical physiology.

In the monodomain model the interplay between the reaction term (controlled
by the parameters a, Uy e, Urest> Umax ) @nd the diffusive one has to be tuned to
produce a wave-like propagation of the electric front. See Figure for a quali-
tative comparison of different parameter settings.

From Figures 4.1 it can be noticed how the gradient of the solution is dif-
ferent from zero in a small portion of the space-time domain. For this reason
the discretization parameters At and h need to be small just during the upstroke
of the action potential, i.e. in a small region of the space-time domain. Thus
it makes sense to consider an adaptive approach in both space and time, as in
[Cherry et al., 2000; Colli Franzone et al.,|2006(], and space-time discretizion, as
in [[Krause and Krause, 2016} Deuflhard et al., 2009]]. Moreover, the large size
of the discrete 3D problem requires to employ effective parallelization strategies
to get reasonable time to solution, as in [|Colli Franzone and Pavarino, 2004].

4.1.1 Discretization of the monodomain model

The discretization of (4.1) is essentially an extension of the one described in
Section[2.3|for the heat equation. We can rearrange the terms in the first equation
in (4.1) and obtain

du—V-(KVW)=f —C g, with K =(yC,) 'K, (4.3)

as in (2.1). The problem (2.28) is then modified to contain the discretization of
the non-linear reaction term I, ,:

C]E,q’f’k]u =f—r(u), (4.4)

where r(u) € R™ can be constructed implicitly or explicitly; respectively:

IMPLICIT

r(u) = (IN ® %M[q] ® Mn’[p’k]) I, () 4.5)
EXPLICIT

r.(u) = (LN ® %M[q] ® Mn’[p’k]) L, (u) (4.6)
with

Iion(u) = C,;1 : [Iion(ul)slion(UZ): s Iion(uﬁﬁ)]T € RHN’
and I, , is given by (4.2) and the dependency on w is ignored because C,, = 0.
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Figure 4.1. Qualitative evolution of the monodomain equation in a 2D domain
for three subsequent time steps for the reference values u,., = —85 mV, ty,,0s =

rest —
—57 mV and u,,, = 30 mV. The subsequent depolarization is not considered,
ie. C,=0.

max
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K=a K<a K=0

Figure 4.2. Qualitative example of the evolution of the monodomain equation
in a circular 2D domain. Top: the initial solution uy, = rand{[t, e, Upax}-
Second line: the simulated solution after 20 ms for three different settings:
from a diffusion dominated problem on the left to purely reactive on the right.

(Mesh from Figure (3.13))

4.1.2 On the stability of the reaction term

Traditionally a semi-implicit approach is used for the time discretization of (4.1)),
i.e. the diffusion is treated implicitly and the reaction term explicitly; see, e.g.,
[[Colli Franzone and Pavarinol,[2004]]. This technique can allow a certain freedom
to choose At, even adaptively according to the heartbeat phase and the corre-
spondent magnitude of the reaction term. For example, as the reaction term
vanishes, larger At can be used.

Remark 4.1. The presented formulation shows a certain limitation; the all at once
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solution of the space-time non-linear system (4.4) requires a non linear solution
method to be employed both for the implicit and explicit case.

We are interested in the numerical stability of the discretization of the additional
reactive term. For simplicity let us consider the simple cubic, purely reactive,

ODE:
{u’(t) =a(u(t)—u’(t)), t€(0,T],

u(0) = u,.

corresponding to the ODE in (4.2) with u,. = —1, Uy = 0, U0 = 1 and C,, = 0.
If (4.7) is solved explicitly we obtain the following time stepping scheme

4.7)

Upyy =Up + At -a(u, —ud) :=g(u,) for m=0,.,N—1. (4.8)

By the Banach fixed-point theorem the previous iterative process converges to an
equilibrium point u* € {u,.s, Unay) if g is a contraction, i.e. if

lg’'(w)|<1 o [1—-2aAt|<1 <aAt<l1. 4.9
On the other hand the implicit iteration
U, —At-a(u, —u})=u,, for m=0,..,N—1, (4.10)

in general is ill posed for aAt > 1 because multiple roots are present and a good
initial guess is necessary for the convergence of a non-linear solution method
such as the Newton’s method, cf. Figure [4.3]and Table

——aAt =0.5 /
——-alAt =1 i
alAt =2 7
alAt =4 /i

Figure 4.3. Graph of the non linear function (4.10) with multiples zeros for
aAt > 1.



53 4.2 Modeling diffusion through human skin

In Table[4.1]we present the results of a convergence study for the iterative schemes

(4.8) and (4.10).

aAt 1/16 | 1/8 | 1/4]1/2] 1 | 2

Explicit Euler c c c c d|d
Implicit Euler, u;, =0 5 6 7 8 |27]d
Implicit Euler, u;, = 0.5 5 5 6 7 | 819

Table 4.1. Convergence of schemes (4.8)-(4.10) with a=1, T =10 and u, =
0.2 for increasing At. We use the symbol ‘¢’ (‘d’) to denote the convergence
(divergence) of the iterative scheme to the steady state u,,. = 1 at the final
time T. For the implicit case we report the number of Newton iterations to
converge for two initial guesses u;,,. As expected from the explicit iteration
converges just for aAt < 1.

In Chapter [6l we perform similar numerical tests for the full space-time system,
coming to a similar conclusion: for large aAt both the implicit and explicit
schemes are unreliable and, for the non-linear implicit iteration, a good initial
guess must be provided.

4.2  Modeling diffusion through human skin

The second problem we consider is the dermal absorption of chemical substances
through human skin. This process consists in the diffusion of a chemical from the
outer layer of the skin (Stratum Corneum) to the internal ones. The study of skin
transport is relevant in many applications, as drug development or to prevent
the absorption of toxic chemicals (e.g. pesticides). Because in vitro experiments
are limited by ethical and practical concerns, in silico studies can be an attractive
alternative; for example see the reviews [Jepps et al., 2013}; Naegel et al., 2013}
Querleux, [2016]].

Nevertheless, a three dimensional complete model of skin transport can be
challenging in terms of computational resources and highly parallel strategies
need to be employed. For a concurrency study using Parareal see the work by
Kreienbuehl et al.|[2015a].

The permeability of the skin depends largely on the structure of the Stratum
Corneum where three mechanisms of diffusion have been proposed ([[Hansen
et al., 2008]]):

* Through the corneocytes, i.e. the cells composing the SC.
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* Through the lipids matrix between the corneocytes, faster w.r.t. the previ-
ous mechanism.

* Through the appendages (hair follicles, glands): usually insignificant due
to the small area covered by the appendages.

We model this scenario considering a spatial domain Q C R¢ composed of two
disjoint subsets ,, 2, C Q2 and a diffusion PDE with jumping coefficients for
te[0,T]:

du=V-K,(x)Vu, xe,

u = c,, x€ N, CoN, 4.11)

n,-Vu=0, xe€dN/oQy.

In this context u = u(x, t) represents drug concentration and

K for xe

cor cor’

K,(x) = {

Ky, for xe€Qy,

with typically K, < Kj;,. We refer to Figure for an example of a brick and
mortar configuration for Q.

D QCOI‘
D Qlip

Figure 4.4. Example of a brick and mortar configuration of Q. The concentra-
tion is fixed to ¢, at the red Dirichlet boundary.



Chapter 5

Solution Strategies

Some of parallel-in-time solvers are based on the coupling between coarse and
fine time propagators. Ideally, a coarse, fast and sequential time stepper can
provide initial conditions for a parallel fine time stepper along the whole time
domain.

For this reason, most of the parallel-in-time algorithms are, or can be framed,
in a multilevel-in-time setting; for example MGRIT, Parareal in [Gander et al.,
2018b] or PFASST in [Bolten et al., 2017]]. Moreover, when dealing with a space-
time discretization, where time is somehow considered as an additional spatial
dimension, it is natural to extend the same paradigm for the solving process and
consider space-time multigrid type algorithms.

Specialized parallel solvers have been recently developed for the large linear
systems arising from space-time discretizations. We mention in particular the
space-time parallel multigrid proposed by Gander and Neumdiiller [2016]], the
parallel preconditioners for space-time isogeometric analysis proposed by |Hofer
et al. [[2019] as well as the block preconditioned GMRES by [McDonald and Wa-
then [2016].

In Section [5.1] we present a semi-geometric space-time multigrid that is well
suited to deal with complex geometries. In Section [5.2]we focus on the design of
a robust PGMRES that can be used as smoother. In Section [5.3] we describe the
non-linear solver used in the monodomain context.

5.1 Space-time multigrid
Multigrid solvers are expected to exhibit an optimal convergence when applied
to elliptic problems but they have proven to be efficient, with some precautions,

also for space-time discretizations of parabolic problems. In particular, the dis-
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cretization of the heat equation presents an anisotropy in the time direction and
therefore introduces unsymmetric off-diagonal entries in the system CIE,qf K,

When dealing with anisotropic problemf] standard multigrid convergence
rate deteriorates (see Briggs et al./[[2000]). Traditionally there are various ways
to address this problem, incorporating the asymmetry in the particular choice of
smoothers and/or coarsening strategies. Some viable options are:

* Semi-coarsening and standard relaxation
* Full coarsening and line relaxation
* Semi-coarsening and line relaxation.

We refer to [[Falgout et al.,|2017] for a scaling analysis using these different strate-
gies. In [Horton and Vandewalle, [1995] it was studied how space-time multigrid
convergence is not independent of the discretization parameter y unless semi-
coarsening is adopted; the experiments were combined with a local Fourier anal-
ysis (LFA) to predict multigrid convergence factors. We present a new perspective
on the coarsening strategy based on the results of Section

5.1.1 Coarsening strategy

Let us consider a hierarchy of L levels with corresponding discretization param-
eters h;, At; and p; = KAt;/h? for | = 1,...,L with h; = h, At; = At and L
corresponding to the coarsest level. When constructing the [ + 1 coarse space
from the one of level [, we consider the following new discretization parame-
ters:

C

hi ., = Cchy, Aty =CAL = Uy = C_;
X

Y,

where C,,C, > 1 are the coarsening factors in time and space respectively. In
the naive setting, i.e. full coarsening, C, = C, = 2 and u is varying through the
level hierarchy: u;,; = u;/2. Figures illustrate how different coarsening
strategies (i.e. choices of C, and C,) determine how y,; varies in the (h, At)
plane.

1A standard example is the anisotropic Laplacian in 2D in the form u,, + euy, = f(x,y) for
e eR.
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ol —> Space-time coarsening, C; = C, 1 9| —= Time coarsening, C;, = 1 . =6 |
<l
1.5¢ p>1 E 1.5F i
-
4 3
1t 1 1 1
=4
0.5F . | 0.5k 1
/ =4
=1 1=1
0 | | | | 0 I | | |
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5
h h
2.5
9L =5 |
1.5} i
-
g 1=4
1L |
=1
0.5 ! B
=1 —-=>Scaled space-time c., C; = C?
0 1 1 1 1
0 0.5 1 1.5 2 2.5
h

Figure 5.1. Variation of w; with [ ={1,2,3,...} starting from h; = 1/4, At; =
1/16 and K =1 i.e. u; =1 using various coarsening strategies. For example,
for full coarsening (i.e. space-time coarsening, top left), u; > py, > ... > u;. On
the other hand, if C, = C? then y; = u, for any level L.
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1071 L
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10721
— H = Harit
1=1 —> Space-time coarsening, C; = C,
—> Time coarsening, C, = 1
1073
107! 10°

Figure 5.2. Adaptive coarsening strategy as in [Horton and Vandewalle, 1995]
based on a priori choice of . if Y < Uy Semi-coarsening in time is used
for the I +1 level. Otherwise full coarsening is employed. In this case a loglog
scale is used to represent a portion of the (h, At) plane.
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In Chapter 3| (Figure we showed how the condition number of the space-time
system CIE,q,’,f *lincreases and the convergence of standard smoothers degrades as
u deviates from a certain u,,. If auxiliary coarse problems have an increasingly
worse conditioning we can expect the multigrid convergence to be not satisfac-
tory. For this reason for large u (resp. small u) time coarsening (resp. space
coarsening) should be avoided. We show this principle in Figure [5.3| where con-
vergence factors of a two level multigrid along with coarse level conditioning are
compared for different coarsening strategies.

10° T T 1 T

—w-- Coarse K(CK{:IY:H) S ana 9 —x--Space-time c., C; = C, = 2 A ——4-—
=6- Coarse k(C v » 0.9 =4 Time Coal'seniflg, C,=1,C,=2 /f ]
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=102} g 05
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* re¥ o 02F \ /
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\ A
000 0—¢ 0oy
10! I - | . 0t ! - "“«;—8;‘ | ]
1074 1072 10° 10? 104 1074 1072 10" 10% 10*

I 1

Figure 5.3. Right: convergence factor to solve C]E,?’nl Tin Q=[0,1] with K =1
and a random initial right hand side f, using two level multigrid with one
Gauss-Seidel iteration as smoother. We used n = N = 30 and h = 1/30 and
varying At € {37%6,3715,...,31,32}. Left: the corresponding coarse problem
conditioning is shown with the same type of line. Standard interpolation for
1D uniform grids is used in space and/or in time, as in and (5.2)).

We remark that the convergence factors in Figure have the same behavior of
previous analysis present in the literature [Franco et al., 2018]] and suggest the
coarsening strategy in Algorithm

Algorithm 1: Adaptive coarsening strategy

Input: Uy, ), 6 € RY
if |u — Uyl < 6 then
‘ C,,C,>1// space-time coarsening
else if u > u,, + 6 then
| C,>1,C,=1// semi-coarsening in space
else
| C,=1,C,>1// semi-coarsening in time
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5.1.2 Space-time transfer operators

Constructing space-time transfer operators, in the tensor product setting, is straight-
forward. Let us initially consider the time transfer operator T/*! € RN+ where
N, =N/ Cg‘l is the number of time steps in level [. We employ the standard 1D
interpolation to construct Tll“; for example, for C, = 2, we would get

1
1/2 1/2
1
Tll+1: 1/2 1/2 . (51)
1/2 1/2
1

Similarly we consider the spatial transfer operator S/*! € R™+*™_ The construc-
tion of S!*! requires a more detailed description, that will be presented in Sec-
tion Noticeably if C, =1 (C, = 1) then T/*! = I (S;*! = I}). Finally we
construct the space-time transfer operator I'*! € RN (@+Dxmi(a+1) g

M=1"eI,,®s"". (5.2)

We can notice that, because of I, in (5.2), the order in time q is constant along
the multilevel hierarchy. We mention that it is possible to obtain a p-multigrid
type algorithm replacing I, by a suitable transfer.

5.1.3 A semi-geometric approach for space coarsening

When dealing with complex geometries and unstructured meshes in multiple di-
mensions, it can be challenging to generate coarse spaces. Moreover, geometric
multigrid, in contrast to its algebraic counterpart, cannot be used as a black-box
solver and interpolation operators must be provided by the users. We propose
a semi-geometric approach to overcome these limitations. To build Sl“rl in (5.2)
we consider the bounding cuboid of the fine input mesh (in 2D or 3D). Then,
a sequence of coarse meshes can be automatically constructed by refining uni-
formly the cuboid, we refer to Figure for a visual example of this technique
and Algorithm |2| for the description of the mesh creation.
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Figure 5.4. Tlustration of the coarsening procedure in space for a three level
multigrid. We consider the 3D mesh of a sphere, its bounding cube and two
coarse meshes. This approach is rather flexible; an external user would just
need to provide the spatial fine mesh and the type of coarsening to use, i.e. C,.

Algorithm 2: Semi-geometric multigrid: coarse meshes generation
Input: Fine mesh Z; with size n, #levels L, coarsening factor C,
Output: Coarse meshes {Z,, 7, ...,7,}

// Compute X;,X, € RY defining the bounding box of 7
[x,X,] = boundingBox(%;)

// Compute scaling factors a

d = (x;—%;)

a=d-d/sum(d)

// Compute element per side n., (always even)
n.=2-14a/2]

// Construct coarse meshes
fori=2;i=L;i=i+1do

ne = ne/Cx
J; = buildCuboid (x4, x,, [n, - @])
end

// Where the function buildCuboid(x,y,n), with x,y,n €R?, builds a mesh
from the d—dimensional cuboid defined by the vertices x and y with n
grid points per side.

We refer to Dickopf and Krause [2013] for a numerical study about multilevel
methods on non-nested meshes.

Remark 5.1. From an algorithmic point of view, coarsening a mesh is not a trivial
task. For this reason, when creating a mesh hierarchy, it is convenient to start from
a coarse mesh and proceed by refinement. This standard approach has two main
limitations: firstly a coarse input mesh could be not available, if just the fine one
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is provided. Secondly, some accuracy in representing the fine geometry is lost when
refining a coarse mesh. The semi-geometric approach, on the other hand, overcomes
these issues and allows the user to choose C, at run-time with no limitations.

This strategy requires a stable and efficient technique to transfer discrete fields
between different spatial meshes, possibly not nested. We consider both clas-
sical interpolation and variational transfer operators: the L?-projection. The
L*-projections are proven to be optimal and stable and in general superior to
interpolation [Hesch and Betsch, 2006]]. In particular, we employ a local approx-
imation of the L?-projection, which is constructed by exploiting the properties of
the dual basis [Wohlmuth, 2000; Popp et al., [2012]. This local approximation
allows us to construct the transfer operator explicitly in such a way that it can be
applied by means of a simple sparse matrix-vector multiplication. In a parallel
computing environment where meshes are arbitrarily distributed the assembly
of the mass matrices related to L?-projection is not trivial. The construction of
the discrete L2-projection requires us to detect and compute intersections be-
tween the elements of the coarse mesh and the elements of the finer mesh which
might be stored in different memory address spaces (e.g., on a super-computing
cluster). For this purpose we use the parallel tree-search algorithms and parallel
assembly routines described in [Krause and Zulian, [2016]].

Remark 5.2. When the coarse mesh of the bounding box is created it might happen
to get elements that are completely external to the initial unstructured finest mesh.
This results in zero rows and columns in the transfer operator Sf and subsequently
in the coarse operator, assembled via Galerkin assembly. For this reason we set to
one the diagonal entry of all the zero rows in the coarse operators.

5.1.4 Domain decomposition and smoothing methods

We use block preconditioned GMRES, as a parallel smoother. We notice how
other types of block smoothers, such as block Jacobi or Gauss-Seidel, are less re-
liable, in particular when dealing with the non-linear problem (2.1)) and realistic
parameters (cf. Section[6.4).

Remark 5.3. In Section we considered a specific ordering of the basis func-
tions: time first. This corresponds to the order of tensor products in and
along the thesis. This choice is arbitrary, and somehow conventional, and corre-
sponds to a particular ordering of the vector of unknowns u. On the other hand,
especially for high q, flipping the order will change the sparsity pattern of Al9P:K]

k - la.p.k], ;
and Br[lq’P’ ! and therefore the block preconditioner for CNqu ; see Figures m
for a numerical example.
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Figure 5.5. Left: sparsity pattern of the diagonal block A0 for Q = [0,1]
and n =100. Right: the tensor product order is reverted in A>1%1 i.e.
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Block jacobi convergence
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Figure 5.6. Block Jacobi iterations to solve system (2.28) with right hand side
f=1[1,0,..,0]", ¢ ={0,1,2}, Q=[0,1], n = 100, N = 20, T = 1 and both
orderings. We used q+ 1 blocks for time step, i.e. N total blocks. Let us recall
that ALOPK] = ALOPK],

n n

Section [5.2) will be devoted to the description of a specialized preconditioner for
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space-time discretizations in a tensor form.

5.2 Robust symbol based PGMRES

We present a preconditioned GMRES, based on the content of Chapter 3] that is
efficient and robust w.r.t. the spatial parameters n,p and k. Let us consider the
symmetric preconditioner

At
.0,k
Pyt = Iy © My © Koy, (5.3)

presented and discussed in Example Let us remind the reader that, under
Theorem assumptions, we know that PIE,?;? ki spectrally equivalent to the

original operator CIE,qf k] (cf. Corollary . Therefore, in view of the conver-
gence properties of the GMRES method [|Saad, 2003|], we may expect that the
resulting PGMRES for solving a linear system with coefficient matrix CIE,({f *1 has
an optimal convergence rate, i.e., the number of iterations for reaching a preas-
signed accuracy ¢ is independent of (or only weakly dependent on) the matrix
size. As in Table but more exhaustively, we show how this expectation is
realized for various examples of problem (2.28)). The resulting number of iter-
ations are collected in Tables We see from the tables that the GMRES
solver rapidly deteriorates with increasing n, and it is not robust with respect
to p, k. On the other hand, the convergence rate of the proposed PGMRES is
robust with respect to all the spatial parameters n, p, k. However, as it is known,
each PGMRES iteration requires solving a linear system with coefficient matrix
given by the preconditioner PIE,‘ff k1 and this is not required in a GMRES iter-
ation. Thus, in order to prove that the proposed PGMRES is fast, we have to
show that we are able to solve efficiently a linear system associated with P]E,(f;f k],
This is the subject of Sections|5.2.1{and |5.2.2} It should be noted, however, that,
while the discussion in Section[5.2.1]is general, in Section[5.2.2)we need the IgA
assumption k =p — 1.

... .k
5.2.1 Fast tensor solver for the preconditioner PZE,q,ip ]
The main observation of this section is that, thanks to the tensor structure of
PIE,q;f k1 (see (5.3)), the solution of a linear system with coefficient matrix P]E]q;f’ okl
reduces to the solution of three linear systems with coefficient matrices Iy, Mg,

K, [px)- Indeed, using the canonical algorithm for tensor-product matrices to
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Table 5.1. Number of iterations G[p, k] and PG[p, k] needed by, respectively,
GMRES and PGMRES with preconditioner PIE,‘{;f K for solving the linear sys-
tem (2.28), up to a precision € = 107°, in the case where

K(xy,x,) = [cos(xl)+x2 0 ]’

0 X, + sin(x,)

f(t,x) =1, T=1,q=1, N =20 and Q =[0,1]¢. The number of DoFs is
given by Nii = 40(n(p —k) + k—1)2.

n | G[1,0] PG[1,0] | G[2,0] PG[2,0] | G[2,1] PG[2,1] | G[3,1] PG[3,1]
20 | 147 38 231 38 94 38 165 38
40 | 302 38 469 38 188 38 337 38
60 | 459 38 707 38 285 38 509 38
80 | 617 38 945 38 381 38 682 38
100 | 775 38 1184 38 478 38 856 38
120 | 933 38 1424 38 575 38 1030 38

n | G[4,1]1 PG[4,1] | G[4,2] PG[4,2] | G[5,2] PG[5,2] | G[5,3] PG[5,3]
20 | 224 38 238 38 190 38 171 38
40 | 457 38 325 38 382 38 283 38
60 | 691 38 463 38 576 38 427 38
80 | 926 38 623 38 770 38 572 38
100 | 1161 38 782 38 964 38 718 38
120 | 1372 38 942 38 1158 38 864 38




65 5.2 Robust symbol based PGMRES

Table 5.2. Number of iterations G[p, k] and PG[p, k] needed by, respectively,
GMRES and PGMRES with preconditioner PIE,?;f ’k], for solving the linear sys-
tem (2.28)), up to a precision € = 107°, in the case where

(24 cosxy)(1+x,) cos(x; + x5) sin(x; + x5,)
cos(x; + x5) sin(x; + x,) (2+sinxy))(1+x;) |’

K(Xl’xz) = |:

f(t,x)=1, T=1,q=2, N=20 and Q =[0,1]2. The number of DoFs is
given by Nit = 60(n(p —k) + k—1)%.

n | G[2,0] PG[2,0] | G[2,1] PG[2,1] | G[3,0] PG[3,0] | G[3,2] PG[3,2]
20 | 158 24 63 24 220 24 61 24
40 | 319 24 127 24 442 24 124 24
60 | 480 24 192 24 665 24 187 24
80 | 641 24 258 24 889 24 252 24
100 | 802 24 324 24 1112 24 317 24
120 | 963 24 390 24 1335 24 382 24

n | G[4,0] PG[4,0] | G[4,3] PG[4,3] | G[5,0] PG[5,0] | G[5,4] PG[5,4]
20 | 350 24 64 24 358 24 71 24
40 | 573 24 131 24 714 24 140 24
60 | 859 24 199 24 1070 24 213 24
80 | 1146 24 268 24 1426 24 287 24
100 | 1433 24 338 24 1782 24 361 24
120 | 1720 24 408 24 2138 24 437 24
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k :
solve the system PL*"*)x =y, we obtain

,0-k]\—
x = (PP ly

—(11 oMl @K )
A VO M @R )Y
Y —1

- (MN,[q] ® Kn,[p,k])y

R -1
= (MN,[q] ® Iﬁ)(IN(qH) ® Kn,[p,k])y

-1
Kn,[p,k]
= K o)
=My ®1I5) P . y (5.4)
—1
Kn,[p,k]
= Vec(Kr:Ep’k]YMN,[q]), (5.5)

where:

. MN,[q] = %I N ®Mp, % can be pre-computed with a negligible cost, because
M, is asmall (q+1) x (q+1) matrix (if Gauss-Radau nodes are used, M,
is also diagonal and hence MN,[q] is diagonal as well);

* vec(X) is the column-wise form of X, that is the vector obtained by stacking
the columns of X;

* Y is the 7i x N matrix such that vec(Y) =y.

It is then clear that the computation of the solution x reduces to solving the
N linear systems KX =y 1 =1,. ..,N, where y, is the ith column of Y,
and multiply the resulting matrix K, ,, (K )7lY by MN’[q]. Note that the various
x; can be computed in parallel as the computation of x; is independent of the
computation of x; whenever i # j. Depending on the implementation and the
parallel setting, it can be advantageous to express x using vec(-) as in or
tensor products as in (5.4). The next section is devoted to show how to solve
efficiently a linear system associated with K, ,, ;; in the maximal smoothness case
k = p — 1, that is, the case corresponding to IgA. For notational simplicity, the

matrix K, [, ,_;) will be denoted by K, [}, and similarly for M, [,; and C IE,q”,f I

5.2.2  Fast multigrid for the IgA Poisson problem

The convergence of standard multigrid methods for elliptic problems is not sat-
isfactory for high order finite element discretizations, as shown, for example, in
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[Gahalaut et al., [2013]]. In case of IgA, the convergence rates become close to
1 as the order p increases. This issue can be understood in terms of the symbol
of the discretized Laplacian K, [,; that we denote, for d =1, as f,,. In particular,
as proved in [Donatelli et al., 2017], f,(7) converges exponentially to zero as
p — 09, cf. Figure|5.7, This results in spurious small eigenvalues associated
with high frequency eigenvectors that are not properly attacked by fine level
smoothers. As in [[Donatelli et al., 2015b[], a possible solution to this compli-
cation is to precondition K, ,; with the corresponding mass matrix M, [,;. This
technique recovers the monotonicity w.r.t. 6 of the resulting operator Mn_,[lp]Kn
cf. Figure|5.8

lp]

0.9F 0.9r

0.8+
0.7
0.6 0.6 -

0.5

0 /2 ™
0

Figure 5.7. Symbols corresponding to K, ), i.e. f,(8) (left), and to M, ,;, i.e.
h,(0) (right); f,(0) is normalized to attain his maximum in one. We refer to
|Garoni et al., 2019] for the analytical expressions to compute f, and h,,. Notice
how, for p > 1, the monotonicity of f, is lost. Moreover f,(7) and h,(7) both
converge to zero with the same order, as p — 00.

14

—p=1
12+ —_—p=2

10

Figure 5.8. Symbol e,(6) associated to Mn_,[lp]Kn’[p]. For p — 00, e,(6) — 6.
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For a comparative preliminary study we consider the following solver for Kn_[lp]:
* At the finest level, we perform v post-smoothing steps by means of the PCG
method. The proposed preconditioner used on the finest level is either

M, [,1 Or an incomplete LU (ILU) preconditioner.

* At all coarse levels, we use one post-smoothing iteration by the Gauss-
Seidel method.

* At all levels, we use standard bisection for the interpolation and restric-
tion operators, and we assemble coarse-grid operators through Galerkin
assembly.

We remark that the proposed solver is a nested multigrid as the pre-smoothing is
absent at each level. This choice, w.r.t. to other multigrid strategies, is motivated
by timing performance.

In Tables and we compare the multigrid convergence using different
smoothers at the finest level and varying p. We note how the multigrid perfor-
mance with respect to p differs using the listed approaches. In particular, as ex-
pected, for standard Gauss-Seidel smoothing, the multigrid convergence quickly
deteriorates when increasing p. We also remark how the number of smoothing
steps v has to be increased for high p to obtain reasonable convergence.

Table 5.3. Number of iterations needed by a 5-level cascade multigrid for
solving the linear system K, ,jy = 1 up to a precision ¢ = 1078, in the case
where d = 2, K(x) = I,. We perform v smoothing steps at the finest level and a
single Gauss-Seidel iteration at coarse levels. The smoother at the finest level
is explicitly indicated in the table. We use n = 259 — p, corresponding to a
number of DoFs equal to n = 2572

p[v] | 23] | 3141 | 4[4] | 5[5] | 616] | 7[7] | 818]

Gauss-Seidel smoother 5 5 5 22 114 | 384 | 2154

ILU(K,, [p1) PCG smoother 5 5 5 7 20 68 282
M, 1p1 PCG smoother 6 6 7 7 7 8 9

Remark 5.4. Clearly, it is worth preconditioning K, [,; with M,, 1 only if the latter
matrix can be solved efficiently. This is the case, for example, if M, ,) possesses a
pure tensor structure, due to the rectangular nature of the physical domain Q. In
practice, using as preconditioner the incomplete LU factorization of K,, [}, like in the
second line of Tables and can be competitive in terms of run-time and can
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Table 5.4. Number of iterations needed by a 5-level cascade multigrid for
solving the linear system K, ,jy = 1 up to a precision & = 1078, in the case
where d = 2,

(34 x;)e™ 0.1 }

Ko, ) = [—O.l(x1 +x,) cosx; +2

We perform v smoothing steps at the finest level and a single Gauss-Seidel
iteration at coarse levels. The smoother at the finest level is explicitly indicated
in the table. We use n =259 —p, corresponding to a number of DoFs equal to
n = 2572, Experiments are run in parallel with 20 processors.

pLv] | 231 | 3141 | 4[4] | 5[5] | 616] | 7[7] | 818]

Gauss-Seidel smoother 8 6 15 31 120 | 395 | 2260
ILU(K,, [p7) PCG smoother 7 6 6 10 25 71 348
M, 11 PCG smoother 8 9 13 13 15 17 19

be adopted when dealing with unstructured spatial grids, where the tensor structure
of M,, [, is no longer available.

5.2.3 PGMRES for the space-time problem: less is more

The solver suggested in the current section for a linear system with coefficient
matrix CIE]q)’f I is PGMRES with preconditioner PIEE;f I.= PIEE;f =1 the solution of
a linear system associated with P]E;f;f’ ], which is required at each PGMRES itera-
tion, is performed via the tensor solver described in Section coupled with
a suitable multigrid method for the space stiffness matrix K, ;.

Actually, as it becomes clear experimentally (cf. Section[6.2.2), the PGMRES
method converges faster if the linear system with coefficient matrix PI\[,?;f’ ]occurring
at each PGMRES iteration is not solved exactly. More precisely, when applying to
K, [p) the multigrid method described in Section it is enough to perform
only a few multigrid iterations in order to achieve an excellent PGMRES run-time
and, in fact, only one multigrid iteration is sufficient. Unexpectedly, it was dis-
covered experimentally that the PGMRES run-time is further improved if we do
not perform any smoothing step at the finest level in the few multigrid iterations
applied to K, 7 (that is, smoothing steps occur only at coarse levels) while main-
taining the p-robustness (cf. Section[6.2). For this reason the argumentation of
Section[5.2.2] about the most appropriate fine level smoother, becomes no longer
relevant in this context.

In view of these experimental observations, we propose to solve a linear sys-
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tem with coefficient matrix C IE]qf l'in the following way:

* apply to the given system the PGMRES algorithm with preconditioner P]E,‘f;f’ ] ;

* apply to the linear system with coefficient matrix P]E,q;f’ ] occurring at each
PGMRES iteration the tensor solver described in Section [5.2.1}

« the tensor solver would require solving N linear systems with coefficient

matrix K, ) as for equations (5.4) or (5.5); instead of solving exactly these

systems, apply to each of them 1 multigrid iterations involving no smooth-
ing steps at the finest level, a single Gauss-Seidel post-smoothing step at
coarse levels, and standard bisection for the interpolation and restriction
operators at all levels (following the Galerkin approach).

Note that this solver can be referred to as an inexact PGMRES method because, at
each iteration, the linear system associated with the preconditioner is not solved
exactly. As we shall see in the numerical tests of Section the choice n =1
yields the best performance of the solver.

5.3 Non-linear solver for the space-time monodomain
equation

The discretized monodomain equation in (4.4) is non-linear. We linearize it by
means of the Newton method; in particular, we solve F(u) = 0, with

F(u) = C9Pu + r(u) — f, (5.6)
using the linear solvers discussed in the current chapter to invert the Jacobian

JF(u) = CloPK 4 gr(u).
From (4.5) and we have

At

Jri(uw) = { Iy ® —Miq) ® My p 1 | ion(W),
At

Jro(u) = Ly ® —~Mig) ® My 1 7 | Tion (W),

for the implicit and explicit case respectively with

Ii/on(u1)

I (u,)
(1) = fon72

Ii/on (uﬁﬁ)
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Remark 5.5. When dealing with nonlinear problems, Newton-MG is not the only
option in terms of multilevel strategies. Using a non-linear multigrid, such as FAS, is
also possible 2002]. The latter strategy relies on a good representation of
the non-linear operator on coarse spaces. When solving the monodomain equation,
choosing a fine discretization in space and time is essential to capture the correct
physical behavior; cf. Figure[5.9]. For this reason we can assume the Newton-MG
approach to be preferable for this specific problem, as the Jacobian JF can also be
evaluated with relative ease.

-1.4e+00

-1

I—-o.s
| -1.0e+00

Figure 5.9. Solutions at the final time T = 3 to using p =1,k =0,q =
0,K = 0.01,N = 40, the initial forcing factor f(x,t) = 4 x[o,,, - ¢ ¥/ and
various n: h =~ 0.15 (left) and h >~ 0.05 (right). The spatial discretization step
h has to be small enough to capture the expected front propagation (right)
that is totally absent in the coarse model (left).



72

5.3 Non-linear solver for the space-time monodomain equation




Chapter 6

Numerical Experiments

In Section[6.1]we describe our implementation focusing on its main parallel func-
tionalities.

Section is dedicated to results concerning the symbol precondiotioned
GMRES, compared to a standard ILU-PGMRES. Particular emphasis is placed on
p-robustness and parallel scaling.

In Section we present results concerning the semi-geometric space-time
multigrid. We discuss how the convergence of the semi-geometric approach may
differ from the standard geometric one, with various numerical tests with com-
plex geometries. Moreover, we explore how coarsening strategies, anisotropies
and jumping coefficients can affect the space-time multigrid convergence and
scaling.

While Sections are dedicated to the solution of the heat equation,
Section tackles the solution of the monodomain problem, focusing on the
stability of the described non-linear space-time approach.

In Section [6.5| we compare the scaling of the proposed space-time multigrid
method with the one of PFASST, a state-of-the-art competitor.

Parallel numerical experiments have been performed on the multicore parti-
tion of the supercomputer Piz Daint of the Swiss national supercomputing centre
(CSCS)H We remark that the used Piz Daint partition is composed of computer
nodes with 36 cores each. This might result in a certain loss of parallel efficiency
when going from 16 cores (likely assigned to a single node) to 64 cores, as node
to node communication is introduced.

Thttps://www.cscs.ch/computers/piz-daint/
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6.1 Implementation and parallelization

6.1.1 External libraries

For the numerics of this section, as well as throughout this thesis, we used the
C++ frameworks PETSc [Balay et al., 2019a,b]] and the embedded domain spe-
cific language Utopiaﬂ [Zulian et al., 2016] for the parallel linear algebra and
the linear and non-linear solvers. We stress that, when multiple processors are
used, a block Jacobi preconditioning is employed by default by PETSc. For the
assembly of high order IgA finite elements, we used the PetIGAE| package [Dalcin
et al., 2016]. On the other hand, to deal with non trivial geometries for the ap-
plications of Chapter Utopia wraps functions from LibMes [Kirk et al., 2006]
for the finite element assembly.

6.1.2 Design and functionalities

The software for assembling and solving the space-time problem has been de-
signed to be highly modular and flexible, such that any functionality is not de-
pending on the other ones. Figure gives a graphical representation of the
code structure. Let us give a short description of its main functionalities:

* Space_assembler : as the name suggests, this is an interface responsible
for the assembly of the spatial operators. Sub-classes can encode a specific
spatial problem. Even if in this thesis we focus on the Laplacian assembler,
an assembly routine from an elasticity problem were also tested. Spatial
matrices are assembled using libMesh or PetIGA, depending on the context
once a mesh file is provided.

* Time_assembler: encodes time operators. We focused on the DG(q) ap-
proximation but other time advancing schemes have been implemented
(e.g. Crank-Nicolson).

* Space-time_assembler: core class where space-time operators are assem-
bled through tensor products (with the method kron()) and distributed in
memory (with the method distribute()).

* Space-time_multigrid: where the coarse spaces hierarchy is generated
and space-time transfer operators are created.

2https://bitbucket.org/zulianp/utopia
3https://bitbucket.org/dalcinl/petiga
4http://libmesh.github.io/index.html


https://bitbucket.org/zulianp/utopia
https://bitbucket.org/dalcinl/petiga
http://libmesh.github.io/index.html 
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Figure 6.1. Class diagram of the software. Dashed arrows represent dependen-
cies between classes and solid ones imply inheritance. Some of the operators
are shown inside the box of the class where they are stored as attributes. Some
methods or functionalities of classes are listed with bullets.

The method kron() implements the tensor product between two matrices in a
distributed fashion. The tensor product is not a local operation, and portions of
both input operators may need to be moved between processors; cf. Figure|6.2

The function distribute() controls how the space-time matrices are dis-
tributed among multiple processors. If P is the number of processors used, the
distribution of the space-time matrix CIE,qf *l is trivial only when P = N and ev-
ery processor gets exactly one time-slab block from the PETSc default distributed
matrix assembly. If we include spatial parallelism, i.e. P > N, the subdivision of
CIE,qf I can not be left to chance. In particular we subdivide firstly C]E,q,’,f in N
blocks that are progressively partitioned. Figure illustrates how this proce-
dure generates suitable block preconditioners.
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Figure 6.2. Row-wise distribution layout of the diagonal matrices A, B and
their tensor product using two processors P; and P,. In A® B red text labels
quantities that need to be moved between processors.

PETSc default partition distribute() partition
(5 ] [ (5 ) |
%@ : % (EI
—Hal A
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Figure 6.3. Partitions of the space-time matrix using five processors
and four time steps, i.e. P =5 and N =4. The PETSc default partition does
not account for the structure of the space-time problem and produces block
diagonal preconditioners that are not symmetric; diagonal blocks are delimited
by dashed lines. Using distribute()the matrix C,E,q’f k1 s initially subdivided
into N blocks that are progressively partitioned as P increases.

The PETSc library uses, as default, parallel preconditioning (such as block Jacobi)
when multiple processors are used to solve a linear system. We refer to the PETSc
websiteE] for the list of the current implementations of linear solvers.

Shttps://www.mcs.anl.gov/petsc/documentation/linearsolvertable.html
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6.2 Robust PGMRES for isogeometric analysis

In this section we present the results regarding the solver introduced in Sec-
tion[5.2.3

6.2.1 Experimental settings

In the numerics of this section, we solve the linear system C]E,q’;lp ! from
arising from the choices d = 2, f(t,x) =1, T = 1. The values of K(x), N, n, q,
p are specified in each example. As in Chapter 3] we consider a uniform grid on
Q =[0,1]¢. For each solver considered herein, we use £ = 10~® as a tolerance
and the PETSc default stopping criteriorﬂ We use the zero vector as initial guess
for the linear solver. Whenever we report the run-time of a solver, the time spent
in I/O operations and matrix assembly (also for transfer operators) is ignored;
run-times are always expressed in seconds. In all the tables below, the number
of iterations needed by a given solver to converge within the tolerance ¢ = 1078
is reported in square brackets next to the corresponding run-time. Throughout
this section, we use the following abbreviations for the solvers.

« | ILU(C?) PGMRES

Preconditioned GMRES with preconditioner given by an incomplete LU
(ILU) factorization of the system matrix C IE]‘f’f ],

* | MG; , PGMRES

The proposed solver, as described in Section with n multigrid iter-
ations applied to K, [,;. Each multigrid iteration involves v Gauss-Seidel
smoothing steps at the finest level (typically v = 0) and 1 Gauss-Seidel
smoothing step at the coarse levels. The superscript L denotes the number
of multigrid levels.

* | TMG; , PGMRES

®PETSc, by default, uses the relative preconditioned residual in the stopping criterion: when
solving the system Au = f with preconditioner P, we stop iterating at the first vector u satisfying

P (E—AWIl/IPTH]l <e.
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The same as “MGL , PGMRES”, with the only difference that the multigrid
iterations are performed with the telescopic option, thus giving rise to the
telescopic multigrid (TMG) [Douglas, [1996; May et al., |2016]]. This tech-
nique consists in halving the number of processors used across the grid
hierarchy: if N; processors are used on the fine grid (I = 1), then we use
N;/ 271 processors on level I. This strategy turned out to be essential for
the parallel multigrid performance, as shown in Section In a naive
setting the number of degrees of freedom per core decreases rapidly on
coarse levels, resulting in a degradation of convergence on those levels.

6.2.2 Convergence study and timing

Tables illustrate the performance of the proposed solver in terms of num-
ber of iterations and run-times. It is clear from the table that the solver is superior
to the classical PGMRES with preconditioner given by the ILU factorization of the
system matrix CIE]q,’,f ], Moreover, the best performance of the solver is obtained
when applying to K,,[,; a single multigrid iteration (1 = 1) with no smoothing
steps at the finest level (v = 0). It should also be noted that the solver is con-
siderably robust with respect to the spline degree p as both number of iterations

and run-time do not grow significantly with p.

50 ‘
—e—ILU
40 | _ - MG;Z
B MG
© 30 F }2
S ..... VY MGE)’)O
e 5'
= 201 | =-%-=- MGy,
m -
10 | PN PO :::‘/"""
c'—/-w - —;— -~ g RENIRRELY
(@ o T e B -
1 2 3 4 5

Figure 6.4. Graphical representation of the run-times reported in Table .

In particular, Tables show how p-robustness and performance of the pro-
posed solver are superior, w.r.t. the ILU-PGMRES, when a non trivial K(x) is
considered.
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Table 6.1. PGMRES run-times and iterations (using 64 cores) to solve the
linear system (2.31I) up to a precision of 1078, according to the experimental
setting described in Section[6.2.1] We used K(x) = I,, ¢ =0, N = 32 time steps
and n = 259 —p. The total size of the space-time system (number of DoFs)
is given by 322572 A graphical representation of the run-times is given in

Figure [6.4]
p | ILUCCY?) PGM. | MG5, PGM. | MGS, PGM. | MGS , PGM. | MG ) PGM.
1 6.0 [545] 1.5 [33] 0.9 [33] 1.1[33] 0.7 [33]
2 7.5[332] 3.0 [33] 1.7 [33] 2.0 [33] 1.2 [33]
3 7.7 [249] 5.2 [33] 2.8 [33] 2.5 [33] 1.4[33]
4|  80[211] 7.7[33] 4.2 [34] 3.5 [33] 2.0 [33]
5| 85[182] 11.0[34] | 6.4[37] 4.5 [33] 2.6 [33]
6| 10.1[164] 16.3[36] | 9.7[41] 6.1[33] 3.4 [33]
7| 11.0[147] 21.1[38] | 13.6[44] | 7.6[33] 4.2 [33]
8| 15.7[166] 30.5[43] | 19.5[52] | 9.5[33] 5.4 [33]
9| 20.3[174] 42.4[50] | 27.6[61] | 11.4[33] | 6.5[33]

Table 6.2. PGMRES run-times and iterations (using 64 cores) to solve the
linear system (2.3I) up to a precision of 1078, according to the experimental

setting described in Section |6.2.1. We used

K(Xl:xz) = |:

q =1, N = 20 time steps and n = 131 —p. The total size of the space-time

cos(x;) + x5

0

0 x;+ sin(xz)] ’

system (number of DoFs) is given by 40 - 1292.

p 1 2 3 4 5
ILUCCY")) PGMRES | 1.3 [442] | 2.0 [282] | 2.7 [210] | 3.0[178] | 3.5[153]
MG, PGMRES | 0.4[46] | 0.7[46] | 0.9[46] | 1.2[45] | 1.6[45]
p 6 7 8 9
ILUCCY"!) PGMRES | 4.0 [137] | 5.0 [132] | 6.9 [143] | 10.4 [176]
MGS, PGMRES | 2.1[46] | 2.7[47] | 3.3[47] | 4.2[49]
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Table 6.3. PGMRES run-times and iterations (using 64 cores) to solve the
linear system (2.3I) up to a precision of 1078, according to the experimental

setting described in Section |6.2.1. We used

(24 cosx)(1+x,) cos(x; + x,) sin(x; + x5)
cos(x; + x5) sin(x; + x,) (2+sinx,)(1 + x;) ’

K(xls XZ) = |:

q = 0, N = 20 time steps and n = 259 —p. The total size of the space-time
system (number of DoFs) is given by 20 - 2572.

p 1 2 3 4 5

ILUCCY")) PGMRES | 2.2 [441] | 2.7 [256] | 3.4 [189] | 3.7[161] | 4.2[141]
MGS, PGMRES | 0.2[12] | 0.4[11] | 0.4[11] | 0.6[11] | 0.7[12]

p 6 7 8 9

ILUCCY"!) PGMRES | 4.9 [127] | 5.7 [115] | 9.5 [151] | 41.2[477]
MGS, PGMRES | 0.9[12] | 1.2[13] | 2.4[13] | 1.9[14]

6.2.3 Strong and weak scaling

In the scaling experiments, besides the multigrid already considered above, we
also use a TMG for performance reasons (cf. Section for details and refer-
ences about the TMG). From Table and Figure we see that the proposed
solver, especially when using the TMG option, shows a nearly optimal strong
scaling with respect to the number of cores. Table [6.5 and Figure illustrate
the weak scaling properties of the proposed solver, which possesses a remark-
ably superior parallel efficiency with respect to the standard ILU preconditioning
in terms of iteration count and run-time. In fact, the efficiency of the proposed
solver can be estimated to be about three times the one of the standard ILU-
PGMRES.
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Table 6.4. Strong scaling: PGMRES run-times and iterations to solve the
linear system (2.31I) up to a precision of 1078, according to the experimental
setting described in Section [6.2.1 We used K(x) =1I,, ¢ =0, p =3, N = 64
time steps and n = 384. The total size of the space-time system (number of
DoFs) is given by 64 -385%. Additionally we report, up to parallel saturation,

run-times for a time-sequential forward solve, i.e. using the parallel TMGZO
PGMRES for the spatial problem with traditional time stepping with implicit

Euler.
Cores ILU(CJ[V‘{’;’]) PGMRES | MG] , PGMRES | TMG] , PGMRES | Forward solve

1 2591 [394] 304.2 [63] 304.2 [63] 25.0

2 1220 [403] 139.4 [63] 142.5 [63] 19.1

4 603 [394] 70.0 [63] 69.5 [63] 15.0

8 340.9 [396] 39.7 [63] 41.5 [63] 11.7

16 232.6 [396] 20.4 [63] 25.9 [63] 10.0

32 112.0 [397] 26.1 [63] 21.3 [63] 11.6

64 99.3 [399] 12.0 [63] 10.7 [63] 11.6
128 55.0 [479] 6.2 [64] 5.7 [63] -
256 28.7 [497] 3.4 [64] 2.8 [62] -
512 18.1[531] 2.6 [64] 1.7 [62] -
1024 11.5 [603] 4.7 [65] 1.0 [62] -
2048 60.0 [2397] 16.9 [65] 0.85 [62] -
4096 35.3 [2571] 65.0 [65] 0.83 [62] -
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Figure 6.5. Graphical representation of the run-times reported in Table
and the corresponding efficiency, “FWS” standing for forward solve.

Remark 6.1. Figure similarly to the results in [Falgout et al., 2014 ], well
illustrates how a sequential time stepping approach is advantageous when just a
limited amount of parallel resources area available. In this particular experiment
the space-time approach pays off when #Cores 2 100 and an additional factor of
10 in speedup can be achieved.

Table 6.5. Space-time weak scaling: PGMRES iterations and run-time to solve
the linear system (2.31)) up to a precision of 1078, according to the experi-
mental setting described in Section We used K(x) =1,,q =0, p =2,
and (N,n) = (8,65), (16,129), (32,256), (64,512). The ratio DoFs/Cores is
constant in the table.

[Cores,n,N, L] | [1,65,8,4] | [8,129,16,5] | [64,257,32,6] | [512,513,64,7]

0.18[47] | 0.74[113] 10.9 [332] 103.8 [1354]
0.08 [10] 0.21 [17] 0.90 [33] 1.97 [62]

[q.p]
ILU(Cy"?") PGM.
TMG] , PGMRES
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Figure 6.6. Graphical representation of the run-times reported in Table .

6.3 Semi-geometric space-time multigrid

In this section we perform several numerical experiments on the space-time
multigrid described in Section In all the examples we discretize Q with
linear finite elements, i.e. p = 1 and k = 0, and we consider homogeneous
Neumann boundary conditions in space. Moreover, we use the following multi-
grid common settings: V-cycling with v = 3 pre/post smoothing steps of the ILU
preconditioned GMRES and a tolerance of 107°. We remark that when multiple
processors are used a block Jacobi preconditioner is used on top of the ILU one,
using the decomposition described in Figure The type of transfer used (L>
projection or interpolation) to assemble coarse operators will be specified case by
case: if nothing is specified L? projection will be used. We will use these settings

also in Section and

6.3.1 On the semi-geometric approach for the spatial problem

As described in Section [5.1.3| we use a semi-geometric approach to generate
coarse meshes of the spatial domain. Because of the novelty of this technique, we
perform a specific numerical study on its convergence properties. In particular,
can we observe the same convergence rates of geometric multigrid? We try to
answer this question with 2D and 3D experiments.
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Experimental settings

Let us consider the Poisson problem with a Gaussian forcing term:
Au(x)=4- e—||x||2/2’ xe . (6.1)

The domain © will be specified in each example, where we compare the geo-
metric approach with the semi-geometric one. For the latter a coarsening factor
C, = 2 is used. Run times (in seconds) and iterations in square brackets are col-
lected in Tables For practical reasons, for geometric multigrid, we con-
sider hierarchies with maximum 3 levels, as we can not generate coarse meshes
at run-time.

Table 6.6. Run-times and iterations to solve problem (6.1) using a geometric
and a semi-geometric approach on the geometry reported in Figure The
type of transfer used is indicated in parentheses.

| L=2 | L=3 | L=4
MG (L? proj.) 0.032[5] | 0.014 [5] -
Semi-geometric MG (interp.) | 0.026 [4] | 0.014 [5] | 0.009 [5]
Semi-geometric MG (L2 proj.) | 0.035[4] | 0.012 [4] | 0.009 [4]

Figure 6.7. Fine mesh (I = 1) and corresponding coarse meshes (I = 2,3)
used for the geometric multigrid with #elements n (respectively): 2317, 560
and 160. For the semi-geometric multigrid case, nested uniform grids on the

bounding square are used as coarse meshes, with #elements n: 576, 144 and
36.



85 6.3 Semi-geometric space-time multigrid

Remark 6.2. We observe an h-independent convergence rate for the proposed semi-
geometric multigrid, using the geometry reported in Figure[6.7]. In particular; the
multigrid converges in 4 iterations using 4,3 and 2 levels for the three meshes re-
spectively, such that the coarsest problem has 36 elements in all three cases.

Table 6.7. Run-times and iterations to solve problem using a geomet-
ric and a semi-geometric approach on the geometry of Figure Standard
interpolation has been used.

| L=2| L=3 | L=4

MG 0.1[4] | 0.04[4] -
Semi-geometric MG | 0.05 [5] | 0.04 [12] | 0.03 [12]

Figure 6.8. Fine mesh and corresponding coarse meshes with n (respectively)=
8498, 2192 and 581 used for the geometric multigrid. For the semi-geometric
multigrid nested uniform grids on the bounding square are used as coarse
meshes, with #elements: 961, 121 and 8.

Table 6.8. Run-times and iterations to solve the Poisson problem using
a geometric and a semi-geometric approach on the geometry of Figure . L?

projection has been used to assemble transfer operators. As reference value,
the ILU-PGMRES converges in 3.9 seconds with 621 iterations.

‘L
MG 7.
7.

Semi-geometric MG

41
[

2‘ L=3‘ L=4
51| 1.4[5] -
5] | 1.9[10] | 1.5[10]
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Table 6.9. Run-times and iterations to solve the Poisson problem using
a geometric and a semi-geometric approach on the geometry of Figure on
four cores. L? projection has been used to assemble transfer operators. As
reference value, the ILU-PGMRES converges in 4.0 seconds and 555 iterations.

=2 | L=3 | L=4
51| 1.1[5] -
41| 4.8[53] | 4.7 [53]

L
MG 5.7
4.1

Semi-geometric MG

Figure 6.9. Fine mesh and corresponding coarse meshes with n (respectively):
138-10%, 18163 and 2494 used for the geometric multigrid. For the semi-
geometric multigrid uniform grids on the bounding cube are used as coarse
meshes, with n: 17576, 2197 and 343

As a qualitative example, In Figure[6.11], we report the solution of problem
on a non convex disconnected domain 2 distributed between four processors (cf.

Figure [6.12).

Remark 6.3. The experiments in the current section suggest how the described semi-
geometric approach is especially well suited when the problem geometry is well ap-
proximated by its bounding box. This is true, in particular, for L > 2, where we
observe poor smoothers convergence on the coarse levels. Replacing the bounding
box with a bounding polygon might address this issue, at the cost of a higher com-
putational effort to build coarse spaces.
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Figure 6.10. Fine mesh and corresponding coarse meshes with n (respectively):
162-10%, 22-10% and 3154 used for the geometric multigrid. For the semi-
geometric multigrid uniform grids on the bounding cube are used as coarse
meshes, with n: 19-10%, 2744 and 343.
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Figure 6.11. Left: solution of the problem using a two level semi-
geometric multigrid converged in 19 iterations. Right: the automatically gen-
erated coarse mesh.
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Figure 6.12. Non trivial geometry distributed among four processors.

6.3.2 Space-time multigrid convergence for the heat equation

We consider the diffusion problem (2.1)) (r = 0) discretized in (2.28) and solved
on four cores. We impose the initial condition through the forcing term

F(£,%) = g0 () - 472, (6.2)

and set uy(x) = 0, i.e. f=[f},0,..,0]" in (2.28). Additional problem/solver
parameters will be specified in each example. We use the following notation:

s |MG![C,,C,]

Semi-geometric multigrid with L levels and C,, C, coarsening factors.

As expected from the discussion of Section|5.1.1|we can observe how the conver-
gence rate of the proposed space-time multigrid is determined by the coarsening
strategy, i.e. C, and C, (cf. Tables and Figure[6.13). In all the follow-
ing tables, as sanity check, multigrid convergence is compared with the one of
the ILU-PGMRES solver (ILU-PGM.).
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Table 6.10. Run-times and iterations to solve using the geometry of the
finest mesh in Figure[6.8] K =1I,, ¢ =0 and N = 129 time steps with a 4 levels
semi-geometric multigrid. We vary the type of coarsening strategy and the
final time T (i.e. At and u); given the particular geometry (h ~ 0.05) we have
u=3.75-T. The L? projection has been used to assemble transfer operators.

MG*2,2] | MG*[2,1] | MG*[4,1] | MG*[v2,2] | MG*[2,4] | ILU-PGM.
T=10"2| 0.78[2] 1.0 [2] 0.4 [2] 6.4 [2] 0.5[2] 0.2[19]
T=10"2| 0.97[3] 1.3 [3] 0.5 [3] 6.4 [3] 0.7 [3] 0.2[16]
T=10"| 1.2[4] 1.5 [4] 0.9 [5] 6.1[4] 0.9 [4] 0.6 [49]
T=1 1.6 [6] 1.8 [5] 0.9 [5] 7.0 [6] 2.3[13] 7.3 [578]
T=10 3.2[18] 4.3[15] 1.8 [11] 9.9[13] 6.7 [36] 19.0 [1454]
T=10% | 17.2[79] | 13.6[51] | 3.5[36] | 32.0[63] | 31.5[184] | 55[4135]
—u=1/6
10° - l= —— [C,, Cf] = [47 1] E
pa =375 [C., Ci] = [2,2]
i s [C,, G = [4,2]
10" = =4 =
E i =385
4 i
100 =1 . l=4 E
i = 375 pa=0.13
107! 0> % E
n<g

1072

h

10

Figure 6.13. Representation of the space-time hierarchy on the (h, At) plane
for the setting of Table |6.10, and T = 100, corresponding to the last row of
the table. Black dots represents u values along the multigrid hierarchy (from
[l =1 tol =4) using different coarsening strategies. We can notice how, in
this particular case, an aggressive spatial coarsening (red arrow) is expected
to produce a better conditioned sequence of operators, in agreement with the
number of iterations reported in Table .
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Table 6.11. Run-times and iterations to solve using the 3D geometry
of the intermediate mesh in Figure [6.9) K =1,, ¢ =0 and T = 1 with a 2
levels semi-geometric multigrid. We vary the type of coarsening strategy and
the number of time steps N (i.e. At and w); given the particular geometry
(h ~0.086) we have u ~ 135/N. The L? projection has been used to assemble

transfer operators.

MG?[2,2] | MG?[2,1] | MG?[4,1] | MG?[4,2] | MG?[2,4] | ILU-PGM.
N=5u=~32 | 3.2[14] 1.0 [5] 0.2 [6] 0.6[14] | 3.7[26] | 0.5[129]
N=9,u~16 4.1[9] 1.5 [4] 0.5[6] 0.7 [9] 6.0 [23] | 1.5[168]
N=17,u~8 | 10.4[13] | 3.0[4] 0.9 [6] 1.9[13] | 11.3[21] | 3.5[205]
N=33,u~4 | 15.8[9] 7.4 [4] 1.9 [5] 3.0[9] | 30.2[26] | 12[358]
N=65u=~2 | 225[5] | 21.3[4] 4.6 [5] 4.6[6] | 45.7[15] | 22.8 [328]
N=129,u=~1 | 80([4] 73 [7] 13.7[5] | 10.6 [5] 72[6] | 43.9[328]

Remark 6.4. Table illustrates how time coarsening (i.e. C, > 1) is not effec-
tive, in terms of both iterations and run time, as u increases. Moreover, especially
for 3D problems, n > N and space coarsening is more relevant to reduce coarse
problem size.

6.3.3 Anisotropic or jumping diffusion coefficient

Both applications presented in Chapter[4} in realistic settings, present non-smooth
or anisotropic diffusion coefficients. In the electrophysiology application, for ex-
ample, the fiber orientation plays an important role in the electrical activation of
the cardiac tissue, see Figure for a visual exampleﬂ

On the other hand, the convergence of multigrid methods is known to deteri-
orate when diffusion coefficients exhibit anisotropy or large jumps [[Hackbusch,
2013}; Chan and Wan, |2000]. In the next examples we test the presented semi-
geometric multigrid in such a scenario.

Example 6.5. Let us consider the case of an anisotropic K,,(x) on a cube, such
that the diffusion is strong along one of the main diagonals. A precise description
of Ku,(x) is reported in Appendix [A] We solve (2.28) withq =1, T =1, N = 65
on uniform mesh with n = 213. Again, we use the forcing term (6.2)) using semi-
geometric multigrid with L = 3 and C, = C, = 2 (i.e. space-time coarsening) on
four cores. We represent the solution in Figure compared to the one where
a constant diffusion is used. We observe convergence to the desired tolerance in 6

’Source: https://commons.wikimedia.org/wiki/File:2006_Heart_Musculature.jpg
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Atrial
musculature

Ventricular
musculature

Figure 6.14. The potential front travels mainly along the direction of the
cardiac fibers.

iterations, while, in the constant diffusion case, the solver converges in 5. We can
conclude that, in this setting, there is no significant degradation in the multigrid
performance.

02 04 04,

0 [

-3.7e+00

|73.6

-3.5
&
-3.4

|3.3
-3.2e+00

Figure 6.15. Comparison between the contours of the solution of Example
at t = T/2 for a constant diffusion K(x) = 1 (left) and the anisotropic one

(right).

Example 6.6. Let us consider the case of a complex geometry coupled with a less
regular anisotropy; in particular we used an anisotropic K,,(x) which includes some
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spatially correlated noise (cf Figure and n = 27 -10% h,, = 1. A precise
description of K,,(x) is reported in Appendix [A] We solve with the Gaussian
forcing term and ¢ = 0, T = 10° and N = 65. In Figure [6.17] we report
the solution for t = T, compared to the one where a constant diffusion K, (X) =
2-1072 is used. In the next table we compare iterations and run-times needed to
converge by a two-level semi-geometric multigrid and by an ILU-PGMRES, both run
on four processors.

| MG?[2,2] | MG?[4,1] | MG?[4,2] |ILU-PGMRES
Keonst(®) | 25.0 [26] 8.6 [37] 7.4 [39] 4.2[169]
Ku(x) | 523 [2017] | 700+ [3000+] | 600+ [3000+] | 62.2[2516]

In this case we can observe a severe degradation of performances for all the ap-
proaches.

-7.0e-03
-0.0068
-0.0066
-0.0064
-0.0062
-0.006 &

| 0.0058 =
-0.0056
-0.0054
0.0052

-4.8e-03

Figure 6.16. Left: heart geometry meshed with n ~ 5-10°; different colors
represent the mesh distribution among 32 processors. Right: visualization of
the anisotropic tensor diffusion K, (x) from Appendix [A| (not physiological).

Example 6.7. Let us consider, similarly to [Kreienbuehl et al., 2015b], the case of
a jumping diffusion coefficient (cf. Section defined by

1, if |sin(8x;)sin(8x,)| < 0.05,

6.3
1073, else. (6.3)

Kjymp(x) = {

We solve ([2.28)) with the Gaussian forcing term andq=0, T =1and N =65
on the disk geometry of Figure discretized with n = 9406. In Figure |6.18 we
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-7.0e+00
|

[ I N

--1.3e-02

Figure 6.17. Solutions from Example at final time T for a constant diffusion
(left) versus an anisotropic one (right).

report the solution for t = T. In the next table we compare iterations and run-times
needed to converge by four level semi-geometric multigrid and by an ILU-PGMRES,
both run on four processors.

| MG*[2,2] | MG*[4,1] | MG*[4,2] | ILU-PGMRES

Kx)=1 3.6 [13] 1.3[7] | 2.3[13] | 21.9[820]
K(x)=10"2| 1.9[6] 1.0 [5] 1.1[6] 1.6 [17]
Kjmp(%) 5.9[22] | 4.6[26] | 4.9[28] 9.8 [340]

Example 6.8. As in Example [6.7]we use the discontinuous Ky, from (6.3). We
solve (2.28) with the forcing term

F(£,%) = g(0)(£) - 10 L2 D/0L,

and q =0, T = {1,10} and N = 65 on Q = [—1,17]? discretized with a uniform
grid with n = 1622 elements (h = 0.0125). In Figure we report the solution
for t = 5. In the next table we compare iterations and run-times needed to converge
by three level semi-geometric multigrid and by an ILU-PGMRES, both run on four
processors. We can define

u(x) = K(x)At/h* ~K(x)-10*-T.
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MG3[2,2] | MG3[4,1] | MG3[4,2] | ILU-PGMRES
K(x)=1,T=1 |242[15] | 3.2[5] | 6.8[14] | 83.4[1038]
KiumpX), T =1 | 39.1[17] | 12.5[23] | 13.0[27] | 29.9[367]
K(x)=1,T=10 | 60.0[67] | 3.2[5] | 30.8[62] | 261[3072]
Kiump(X), T =10 | 49.6 [52] | 13.4[24] | 35.6[72] | 73.2[997]

-3.9e+00

|—3.8

-3.6

-1.4e+00
I-l.Z
-1

34 0.8

u(@)

3.2 e

0.4
-3

-0.2
-2.8

-2.6e+00

-2.2e-02

Figure 6.18. Solution u(x, T) from Ex- Figure 6.19. Solution u(x,5) from Ex-

ample @ ample @

6.3.4 Strong scaling and weak scaling in time

We present, in Examples [6.9H6.11] strong and weak scaling experiments. For
technical reasons, in this section, the telescopic option for multigrid was not
used, resulting in a certain loss in parallel efﬁciencyﬂ

Example 6.9. Let us consider the solution of problem on Q =[—0.5,0.5]°
uniformly discretized with n = 40° elements with the right hand side Moreover
let q =0,T = 1,K(x) = 0.1 and N = 65 time steps. We compare run-times
and iterations using a space-time multigrid with L =4, C, = 3, C, = 2 with an ILU-
PGMRES and a forward solve (FWS). In the forward solve we use a spatial multigrid
(L = 4,C, = 2) to solve the single time block, AE«lq’p’k]uH1 = Br[lq’P’k]ut, equivalent
to a block Gauss-Seidel approach on C]E,‘ff k1 Results are collected in Table|6.12|and

illustrated in Figure

8In these examples, we used the multigrid implementation of Utopia; the telescopic option
can be used only if the built-in PETSc multigrid is used.
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Runtimes (s)

Cores | MG*[3,2] | ILU-PGMRES | Forward solve (MG*[2])

1] 54.4[4] | 181.2[234] 27.2[3]

2| 31.2[5] 76.0 [195] 19.5 [3]

4| 17.0[5] | 49.1[244] 11.0 [3]

8| 9.7[6] | 29.7[267] 6.8 [3]

16| 5.4[6] | 18.2[270] 4.7 [3]

32 3.4[6] 20.1 [362] 3.3[3]

64| 25[6] | 11.6[438] 3.0 [3]

128 | 1.9[6] | 7.1[426] 4.3[3]

256 | 1.6[6] 3.2 [448] 4.6 [3]

512 0.9[6] 1.6 [406] 9.1[3]
1024 | 1.1[6] | 1.0[450] i
2048 | 1.2[6] | 0.4[456] i

Table 6.12. Run-times and iterations from Example .
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Figure 6.20. Results from Table and corresponding efficiency.

In the next examples we test weak scaling in time, i.e. we increase N as the
number of cores grows. We consider two scenarios: keeping T fixed or At fixed.

Example 6.10. Let us consider the same problem setting described in Example
but using N = #Cores. We compare, in Table run-times and iterations needed
to converge by a ILU-PGMRES and a space-time multigrid with L =5,C, = 2 and
C, ={1,2,4}. Run-times are illustrated in Figure
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Cores =N | MG®[2,1] | MG®[2,2] | MG®[2,4] | ILU-PGMRES
17| 1.5[3] 3.1[7] | 4.8[21] 1.5 [94]
33 2.3 [4] 3.8 [6] 6.6 [19] 7.1 [263]
65| 29[6] | 40[6] | 6.5[18] | 11.6[429]
129 | 3.0[6] 42[6] | 7.2[20] | 18.2[669]
257 | 4.2[9] 49[7] | 7.0[18] 27 [987]
513 | 8.2[16] 5.6 [9] 7.3 [16] 48 [1653]
1025 | 14.1[34] | 8.5[14] 7.7 [19] 77 [2849]
2049 | 35.0[62] | 16.8[29] | 9.8[19] | 153 [5083]

Table 6.13. Run-times and iterations of Example T is fixed to 1.

Example 6.11. Let us consider the same problem setting described in Example
but using N = #Cores and At = 0.015 such that T = N - At. We compare,
in Table run-times and iterations needed to converge by a ILU-PGMRES and
a space-time multigrid with L = 5,C, = 2 and C, = {1,2,4}. Run-times are
illustrated in Figure

Cores =N | MG>[2,1] | MG°[2,2] | MG°[2,4] | ILU-PGMRES

17 | 1.6[3] 2.9 [6] 3.8 [13] 0.6 [35]

33| 2.0[3] 4.0 [7] 5.5 [14] 5.9 [218]

65 | 2.4[4] 4.0 [6] 6.5 [18] 10.7 [393]

129 | 3.0[6] 4.11[6] 8.5 [25] 18.3 [677]
257 | 3.1[6] 43[6] | 11.9[36] | 27.5[1019]

513 | 5.1[8] 4.8[7] | 15.4[48] | 49[1657]

1025 | 6.4[10] 7.8[9] | 19.3[97] | 87[2933]
2049 | 17.4[11] | 11.9[14] | 33.8[101] | 158 [5226]

Table 6.14. Run-times and iterations of Example T is increasing with N
but At (and u) are fixed.
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10° ‘ ‘ 10°

- ® - PGMRES —&— PGMRES
—e—MG,C, =1 ——MG.C, =1
MG,Cy =2 MG,C; =2
—— I\"IG.,CI = 4 . ——MG.C, =4
N Sequential . 2 102 Sequential
102 L | — — —Ideal — — -Ideal
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Runtimes
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10! 102 107 10! 107 10°
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Figure 6.21. Table run-times. Figure 6.22. Table run-times.

Remark 6.12. Examples show how time-coarsening, when possible, can
be necessary to obtain near optimal weak scaling in time. Especially for large N time
coarsening is essential to keep the computational cost of solving coarse problems
limited.

6.4 Monodomain equation

Let us consider the monodomain equation in (4.1)), its discretization in (4.4)
and its linearization discussed in Section[5.3]l We made a distinction between an
implicit or explicit treatment of the reaction term, r; or r.. All the experiments
in the current section concern only the implicit approach, the explicit one being
disadvantageous, in all the cases considered, in terms of run-time and stability.
If not specified, we set the monodomain parameters C,, = y = 1 in (4.1).

For performance reasons, we apply an adaptive strategy to set the linear
solver tolerance in each Newton iteration. Given the non-linear residual F(u*)
from (5.6), at the kth Newton iteration, we solve the Jacobian JF(u*) with tol-

erance
tol,, = [[F(u*)| - min { v/|[F(u9)]|, 0.5},

resulting in an inexact Newton method [Eisenstat and Walker, 1996]. It is well
known how the choice of the initial guess can strongly influence the convergence
behavior of the Newton strategy (cf., for example, Table[4.1)). We use the initial
guess u’ = u,.; this choice is motivated, along with the description of more
sophisticated strategies in Appendix
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In Examples 6.14| we explore how the non-linear solver convergence de-
pends on the problem and discretization parameters. In Examples we
solve the monodomain equation in a realistic setting.

Example 6.13. We solve (4.4) with N = 65,q = {0,1}, T = 2,K(x) = 1072 on
Q = [—1,1]? discretized with a uniform grid with n = 162% elements using the
uniformly distributed random forcing term

f(t,x) = yo(t) - 4rand;_; 11(x), (6.4)

and the following FHN parameters in (4.2): a = {0.1,1,10, 100}, U,y = —1, Uppyes =
0,u,,,, = 1 and C,, = 0.We report the number of Newton iterations to reach a 10~°
tolerance using 4 cores.

a=01|a=1|a=10 | a=100

qg=0 3 7 22 diverge
g=1 3 7 22 diverge

In Figure solutions for different choices of a are shown, in Figure the
corresponding Newton convergence is presented.

Figure 6.23. Solutions of the problem described in Example for various t
and a.

Example 6.14. We solve for various time parameters N,q, T and K(x) =
1072 on Q = [—1,1]? discretized with a uniform grid with n = 1622 elements
using the uniformly distributed random forcing term in (6.4) and the following
FHN parameters in (4.2): a = 1,Up = —1,Uppes = 0,Upee = 1 and C,, = 0. We
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report the number of Newton iterations to reach a 10~° tolerance using 4 cores in

Tables[6.15) [6.16|and [6.17}

N 100 (80 |60 |40 (20 (10| 5 2
qg=0| 9 9 |10| 10|10 | 11 | 12 | wrong sol.
qg=1| - | -9 10 13
g=21| - | -1 - 9 12
Table 6.15. Newton iteration for Example using T = 4.
T 01]05(1]|2| 4| 8 |16 32
=0| 4 51710 | 14 | 20 | diverge
q= 4 4 [5]7 14 | 20 39
q=2]| 4 5(7 14 20| 32

Table 6.16. Newton iterations for Example using N = 20 time steps.

T |1]2] 4] 8 |16]32
=06 10] 14 [ 20 [ 29
q= 9 [14]20] -

Table 6.17. Newton iterations for Example varying T and N = T /5 such
that At =0.2 is fixed in all the entries.
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Figure 6.24. Newton convergence for

Example and ¢ =0.

Figure 6.25. Newton convergence for

Example with N =20, ¢ =0.
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In the next examples we consider a more realistic setting and geometry. As dis-
cussed in [Pezzuto et al.,|2016] and illustrated in Figure to capture correctly
the activation wave speed, we need to choose carefully the spatial discretization
step, for example imposing h < 1mm. On the other hand, because the heart
volume is approximately 100 mm?®, we would need a mesh with n ~ 10°/h® ele-
ments; for this reason it would be convenient to choose h as large as possible.

Example 6.15. Let us solve the problem (4.1)) using realistic parameters from [Pez-
zuto et al., 2016|]:

1

K(x)=0.3ms-mm}, !

C,=10"%uF -mm, !

x =140mm™,

u.,,=—85mV,

rest —

Upres = —07 MV, U, =30mV,

a=1.4-10"ms- mm *mV >

on a small portion of heart tissue Q = [—10mm,10mm]? discretized with n = 34>
elements (i.e. h =0.6mm), At =0.05ms, g = 0 and the right hand side

F%,6) = 4ty 210 (0) ™72~y

We report the number of Newton iterations and run-time to reach a 10~° tolerance
using multiple cores and the ILU-PGMRES solver.

#Cores | N=20 | N=40 | N=80 | N=160 | N =200
4 12.6[10] | 33.0[13] | 86.7[17] | 289 [28]
16 | 4.6[10] | 11.9[13] ] 29.0[17] | 93.3[28] | 141.7 [32]
64 | 2.9[10] | 12.3[13] | 29.5[17] | 82.4[28] | 120[32]

As N (and then T) increases more Newton iterations are required to converge, re-
sulting in poor scaling and overall performance w.r.t. a time-sequential approach.

Remark 6.16. Let us consider that, using the parameters of Example from
(4.3]) and (3.23), we have

u=KXAt/h?>=Kx)(C,x) 'At/h* ~3-1072.

Recalling the discussion in Section as well as as the literature on space-time
multigrid, for u < 1 we can expect time semi-coarsening to be the only effective
choice. However, time-coarsening, especially for a 3D problem, does not reduce the
complexity of the coarse problems enough to make the multilevel approach conve-
nient.
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Example shows that, for practical purposes, the described approach is most
likely unfeasible: the simulation of few heart beats would require T ~ 10°ms
and thus N ~ 2 - 10* time steps. For this reason we employ a hybrid approach,
considering M time blocks, i.e. space-time problems on time intervals of length
T, that we solve sequentially. When the ith time block is solved, with solution
u; = [uyy, ... Uy ]’ its final time solution ug; y is used as initial condition for
the space-time problem on the next block:

u[i+1],0 = u[i],N: for i= 1, vy M — 1.

Moreover we can use ug;) v as initial guess for the Newton iteration on the time
blocki+1,i.e.:

0 —
Wiy = In® Uy,
as illustrated in Figure

Uy

~ Upa) Upa) U
0 T T 2T 2T 3T (M—1)T MT

Figure 6.26. Representation of M time blocks with N = 4 time steps each.
Red arrows show how an end-time solution is propagated forward in time, as
Newton initial guess, on the following time blocks.

Example 6.17. Let us consider the same monodomain parameters of Example[6.15]
and the realistic geometry of the two ventricles from Figure discretized with
n = 4.8 -10° elements with h = 1mm. We solve (@.1)) using various T,N and
time blocks M, keeping constant the final time M - T = 200ms and At = T/N =
1/32ms, corresponding to a complete activation of the ventricles from the initial
point-wise activation

lIxli2
f(X, t) = 10uma_x : X[O,tl)(t)e II%/20 — Upests

of Figure[6.27] As N decreases the resulting strategy becomes more time-sequential:
N =1 corresponds to traditional time stepping. We report run-times (in minutes)
using multiple cores in Table using the ILU-PGMRES solver:
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#Cores | N=32 | N=1

4 171 42.6
8| 99.7 25.6

I—3‘2e+01
16| 673 | 16.5 20
32| 973 | 102 0o o
64| 326 | 6.8 2 £
128 | 156 | 5.0 e §
256 | 7.3 5.1 =

--60

512 3.3 4.1
1024 1.6 4.6
2048 1.3 7.6
4096 1.0 14.6

--80
--8.9¢+01

Figure 6.27. Solution of Example at t =

Table 6.18. PGMRES run- 100 ms.

times; M = 6400/N.

6.5 Comparison with PFASST

In the parallel-in-time literature (cf. Section|1.1) we can identify two main per-
spectives for multilevel approaches: Parareal and space-time multigrid (equiva-
lent under certain restrictions [Gander et al., 2018b[]). The PFASST algorithm
[Emmett and Minion, 2012[], was designed to overcome some limitations of
Parareal. PFASST is based on the usage of high order SDC as iterative solver
in time and can be seen as a p-multigrid algorithm; we refer to [Bolten et al.,
for a precise description of PFASST in the multigrid framework.

In Examples |6.18H6.23| we compare time-scaling of the space-time multigrid
versus PFASST, using the Fortran library LibPFASSTﬂ that was extended to use
PETSc data structures to make the comparison as fair as possible. For both ap-
proaches Gauss-Radau nodes are used to discretize time intervals (cf. Figure[2.1)).
We always compare schemes of the same order (2q + 1), for which the two algo-
rithms provide the same solution, up to machine precision. For example, using
PFASST on 3 levels, we use on each level, respectively, g + 1,q and g — 1 Gauss-
Radau nodes.

The tests are restricted to temporal parallelism, i.e. no spatial one is em-
ployed and we try to choose optimal solvers parameters in terms of run-time for
both approaches. In PFASST, the spatial problem is solved with the ILU-PGMRES
solver with default PETSc options and standard bisection is used to construct
coarse problems in space (C, = 2).

“https://pfasst.lbl.gov/codes
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Example 6.18. Strong scaling: let us consider the heat equation (2.1) on Q =
[—100, 100] discretized with n = 8192 elements and N = {256,1024},T =1,q =
2,K(x) =1 and the right hand side

flx,t)=3 Xy ()e2.

We compare the run-times to solve (2.28]) via space-time multigrid (with parameters
L =6,C, = C, = 2), with the one using 3-level PFASST (PFA®). Run-times (in
seconds) are collected in Table |6.19|and illustrated in Figure|6.28

10?

PFA% N = 1024

N =256 N =1024 ——MGS, N = 1024
-@ PFA? N =256
#Cores | MG® | PFA® | MG® | PFA3 —g MG, N = 256
1]535]307 ] 78 | 351 ol i
4164 | 11.3 | 31.5 | 15.8 £
16| 59 | 3.7 [ 176 | 66 E
64| 31 | 1.5 | 86 | 29
128 | 2.0 | 1.3 | 48 | 2.1 1001
256 | 1.3 | 1.7 | 3.3 | 1.9
512 | - - 2.5 | 1.7 | |
1024 ) ) 9.3 20 10° 10! Comsm? 10
Table 6.19. Run-times. Figure 6.28. Run-times from Ta-

ble .

Example 6.19. Strong scaling: let us consider the heat equation (2.1) on Q =[0, 1]
with T = 0.1, discretized with N = n = 1025, g = {0, ..., 4} and the initial forcing
factor from

FOe,t) =2 gy (£) e 708,

We show, in Tables|6.20 run-times and iterations of three multilevel strategies.
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Table 6.20. Five levels space-time multigrid performance. We use the label

MG>[2,2]
Cores q= | q=2 | q=3 | q=4 |q=5
1 2.89 [6] 20.3[18] | 42.7[19] | 304[88] | n.c.
4 0.86[6] | 5.5[18] | 11.2[19]| 79.5[88] | n.c.
16 0.36 [8] | 2.40[21] | 7.28[35] | 22.7[68] | n.c.
64 0.17[11] | 1.14[23] | 3.33[34] | 8.70[55] | n.c.
256 0.31 [37] n.c. n.c. n.c. n.c.
512 0.31 [25] n.c. n.c n.c. n.c.
1024 | 0.72[42] | 11.7 [489] n.c n.c. n.c.

“n.c.” for “not converged”.

Table 6.21. Performance of a seven levels space-time multigrid, with no tem-

MG’[2,1]

Cores g=1 | q=2 | qg=3 | q=4 | q=>5

1 1.46 [3] | 4.39[4] | 8.22[4] | 14.8[5] | 51.9 [15]
4 0.38[3] | 1.14[4] | 2.50[5] | 3.93[5] | 13.4[17]
16 0.18[4] | 0.52[5] | 0.98[5] | 1.77[6] | 2.30[5]
64 0.07[4] | 0.26[5] | 0.48[5] | 0.89[6] | 1.39[6]
256 0.06 [5] | 0.12[5] | 0.21 [5] | 0.33[5] | 0.58[5]
512 0.07 [5] | 0.13[5] | 0.21[5] | 0.35[6] | 0.54 [5]
1024 | 0.11[5] | 0.16[5] | 0.23[5] | 0.32[5] | 0.54 [5]

poral coarsening.

PFASST?

Cores g=1 | q=2 | qg=3 | q=4 | qg=>5

1 1.50[1] | 2.44[1] | 3.87[2] | 5.69[3] | 7.71[3]
4 0.98[3] | 1.80[5] | 2.14[5] | 2.69[6] | 3.33[6]
16 0.47[4] | 1.25[12] | 1.58[13] | 1.99 [14] | 2.25 [14]
64 0.22[6] | 0.58 [19] | 0.70 [21] | 0.89 [24] | 0.99 [24]
256 | 0.18[7] | 0.30[26] | 0.33[28] | 0.40[33] | 0.43 [32]
512 | 0.18[8] | 0.27[29] | 0.27[32] | 0.32 [37] | 0.33 [37]
1024 | 0.21[18] | 0.28 [30] | 0.28 [35] | 0.30 [41] | 0.31 [41]

Table 6.22. Three levels PFASST performance.
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Remark 6.20. In Example we have u > 1 and, as we expect from the previ-
ous discussion, time coarsening is not beneficial for the convergence of space-time
multigrid.

Example 6.21. Weak scaling in time: let us consider the same problem parameters
as in Example[6.18|but with N = #Cores and the same solver settings. Run-times (in
seconds) are collected in Table|6.23]and illustrated in Figure[6.29] In this experiment
the run-times of PFASST increment significantly for #Cores > 512. Run-times, on
that range, must be taken with a grain of salt as they are not connected with an
increase in PFASST iterations but are probably caused by a technical problem in
time measures.

103 ‘
—o—MGS
#Cores= N ‘ MG®[2,2] ‘ PFA® ~4 PEA}
10?
17 0.9 0.6 = Ideal
33 1.2 0.7 :LE) Sequential
) ) S 101
65| 16 1 s 1
129 1.4 0.7
257 1.5 0.9 10° e Sl
513 1.9 1.7
107! : :
1025 2.5 9 o T o
2049 3.2 - DoF's
Table 6.23. Run-times from Figure 6.29. Run-times from Ta-
Example 0.21] . ble |6.23. The number of degrees of

freedom (DoFs) is given by DoFs =
Cores-n(q+1)~N/4-10°.

Example 6.22. Weak time scaling in time: let us consider the same problem as in
Example but using N = 4 - Cores. We show, in Tables ?? run-times and
iterations of PFASST and space-time multigrid.
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MG’[2,1]
Cores | g=1 | qg=2 | q=3 | q=4 | q=>5
4 0.02[6] | 0.05[9] | 0.08[9] | 0.15[9] | 0.28 [12]
16 0.02[5] | 0.05[6]| 0.11[7] | 0.19[8] | 0.48 [13]
64 0.04 [5] | 0.09[6] | 0.18 [7] | 0.36 [8] n.c.
256 | 0.08[5] | 0.16[6] | 0.28 [6] | 0.45 [6] n.c.
512 | 0.12[5]| 0.27[6] | 0.54[7] | 0.84[7] n.c.
1024 | 0.29[5] | 0.56[7] | 0.96[7] | 1.43 [7] n.c.
2048 | 0.61[6] | 1.18[7] | 1.85[7] | 2.73[7] n.c.

Table 6.24. Performance of a seven levels space-time multigrid, with no tem-

poral coarsening; ‘n.c” standing for not converged.

PFASST?

Cores g=1 | q=2 | qg=3 | q=4 | q=>5
4 0.03[4] | 0.06[9] | 0.07[10] | 0.09[10] | 0.10 [11]
16 0.04 [5] | 0.10[16] | 0.15[19] | 0.17[21] | 0.20 [21]
64 0.07 [6] | 0.16 [20] | 0.20 [23] | 0.25[26] | 0.28 [25]
256 0.17[7] | 0.27[25] | 0.33[28] | 0.39 [33] | 0.42 [32]
512 0.29 [8] | 0.43[32] | 0.50 [37] | 0.60 [44] | 0.65 [44]
1024 | 0.52[11] | 0.80[57] | 0.93[68] | 1.25[97] | 1.33 [94]
2048 | 1.02[16] n.c. n.c. n.c n.c.

Table 6.25. Three levels PFASST performance;
verged.

“n.c” standing for not con-

Example 6.23. Monodomain equation: let us consider problem (4.1) with the
following settings: Q = [—100,100],n = 8192,K(x) = 1,9 = 1,T = 5,N =
256,a =5,u =0, U, = —1 and the right hand side

max — 1: Uthres

flx,t)=y

corresponding to a narrow stimulus that is propagated on the entire domain at
t=T,ie u(x,T)=>~u,,. PFASST similarly to standard time stepping techniques,
gives the advantage to treat explicitly non-linear terms and thus avoiding the usage
of a non-linear solver. In this example, for PFASST, we use an IM-EX strategy where
we treat, as usual, the diffusion operator implicitly and the reaction one explicitly.

- e—x2 /25,
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Run-times are collected in Table |6.26|and illustrated in Figure The two algo-
rithms show the same scaling behavior but, because the space-time solver requires
35 Newton iterations to converge, it is approximately 35 times slower then PFASST.

#Cores ‘ MG®[2,2] ‘ PFA2

1

4
16
64
128
256

Table 6.26. Run-times from

Example .

97
46
25
18
22

5.7
2.5
1.4
0.6
0.4
0.5

1 \/'

101+

Runtime

100}

—&— PFA?
—e— MG

107! = )
10° 10! 102 10°
Cores

Figure 6.30. Run-times from Ta-

ble .

The results of Examples [6.18 suggest that we can achieve similar strong
and weak scaling with both approaches. Depending on the discretization set-
tings it can be convenient to use one of the two approaches to minimize time-to-
solution. For example, when a high order discretization in time is used, PFASST
can be preferable. In fact, for low order methods, time coarsening within PFASST
is limited. On the other hand, PFASST is more flexible when dealing with non-
linear problems, as it allows explicit integration (or mixed IM-EX strategies) and
might be preferable if an implicit treatment of the non-linear term is not neces-

sary.
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Chapter 7

Conclusions

In Chapter |2/ we presented the space-time discretization of a parabolic problem
using a tensor product finite element space between DG(q) basis in time and
IgA(p, k) basis in space. Such approach can be considered generic has the DG
discretization in time is equivalent to implicit time stepping (implicit Euler for
q = 0) and IgA boils down to standard finite element for k = 0. In Section [2.1.3]
we compared the properties of the two methods (cf. Figure showing that
the DG discretization is more suitable if block solvers are applied, w.r.t. a CG one
(cf. Figure[2.3).

We then described the assembly and the parallel layout, of a large, not sym-
metric, sparse, space-time system (CIE,‘ff ’k]), that can be distributed among mul-
tiple processors and solved in parallel, beyond the saturation of the parallelism
in the space dimension (cf. Figure[6.5 and Examples[6.9]and [6.17).

This approach, in contrast to other parallel-in-time strategies, is mostly al-
gebraic, in fact, it just requires to solve efficiently and in parallel a block linear
system. For this purpose we analyzed and compared various strategies, combin-
ing multilevel techniques with PGMRES solvers.

In Chapterwe studied the spectral distribution of CIE,q”f ’k], using the symbol

theory, to construct a preconditioner that is spectrally equivalent to CIE,‘ff kK under
some mild assumptions. Such preconditioner is symmetric and can be solved
efficiently using a combination of a tensor solver and few multigrid iterations.
In particular, simply skipping fine level smoothing can make the resulting MG-
PGMRES robust in terms of the FE order p, considering that, for high p, standard
multigrid fails (cf. Tables and |[6.3).

The study of the spectral distribution of the space-time system CIE,q,’,f * can also
explain how its conditioning depends on the underlying discretization, described
by the parameter u.

109
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As pointed out in the specialized literature, the convergence of space-time
multilevel methods is highly sensitive to u. This dependency is usually explained
using the Local Fourier Analysis (LFA) to describe the action of iteration matri-
ces. We showed how this sensitivity is not restricted to space-time multigrid, but
appears for all the iterative solvers that we tested (cf. Figures [3.8H3.9).

In particular, we always observe a sharp minimum in convergence rates w.r.t.
w that we motivated through the analysis of the interplay between the spectrum
of spatial mass and stiffness matrices in CIE,q,f . For moderate p we were able to
localize exactly such a minimum (cf. Theorem ).

In Chapter[5|we introduced a gray-box space-time multigrid, that uses a semi-
geometric approach to construct coarse spaces. The convergence and the parallel
performance of such a solver is studied experimentally, through many numerical
tests with not trivial settings, and theoretically, using the knowledge from the
previous spectral analysis.

Regarding the space-time multigrid, we can conclude that:

* We observe how the semi-geometric multigrid convergence can degrade
if the fine geometry is not well represented by a cuboid (cf. Table [6.9),
and we comment how a bounding polygon might be more effective (cf.

Remark .

* As previous literature suggests, a clever choice of space and time coars-
ening, depending on u, is the key to obtain fast multigrid convergence.
In practice, especially for 3D problems, solely space coarsening is still the
most effective strategy in most of the cases; time coarsening can become
essential for u < 1 (i.e. KAt < h?) and large N. We must consider that
u is not always the key parameter when it comes to coarsening. For ex-
ample, if n > N, space coarsening is still fundamental for computational
efficiency, whatever the value of u is (cf. Remarks[6.4]and [6.16)).

* Time coarsening becomes essential to ensure a nearly optimal weak scaling
in time. In fact, without time coarsening, coarse problems become more
and more expensive as the number of time steps N grows (cf. Example

and Remark [6.12)).

* The space-time setting is convenient in terms of scalability, w.r.t. a tradi-
tional forward solve, if enough cores are invested. In the tests we presented
time-parallelism is advantageous if #Cores > 64 (cf. Figures and
Remark [6.1)).
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Regarding the DG order q, using the space-time approach might be preferable
for moderate g, since the size of the space-time matrix CJE,q,’f K is proportional to

q + 1; for large g the size of CIE,q’;lp k] may become prohibitive. Moreover, in the
presented linear solvers, robustness w.r.t. g was not fully investigated and we
can assume that it would be poor.

Finally we consider a non-linear diffusion-reaction problem from electrophys-
iology, for which an additional non-linear iterative process (an inexact Newton’s
method) has to be employed. Such problem shows some limitations of the pre-
sented space-time approach, especially w.r.t. to time discretization parameters
(cf. Table[6.15|and[6.16). In particular it highlights that our space-time approach
is, by construction, fully implicit so the flexibility to treat explicitly the reaction
term, and avoid the Newton solver, is lost. We showed how such difficulties can
be partially overcame using an hybrid strategy and renouncing to some time par-
allelism (cf. Example [6.17). However, if more elaborate models are used, with
dozens of auxiliary variables, the space-time approach might be unfeasible, due
too its high memory footprint. In this regard, a matrix free approach would be
interesting to investigate.

We mention that, in some applications, such as uncertainty quantification,
an initial guess for the Newton solver that is very close to the solution may be
available, resulting in the immediate convergence of the Newton iteration [Bader
et al.,[2019]].

Finally, for the first time in the literature, in Section we compare experi-
mentally PFASST and space-time multigrid and we observe the same time scaling
(cf. Figures|[6.28|and [6.29). Let us keep in mind that PFASST is ideal for high
order discretization in time while the space-time approach is preferable for low
order ones. For the monodomain problem, though, PFASST allows to treat the
reaction term explicitly, resulting in a faster run-time (cf. Figure [6.30). On the
other hand, in practice, a highly accurate solution of the monodomain is usually
not necessary and low order methods are commonly preferred.
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Appendix A

Anisotropic diffusion description

In Examples and the anisotropic diffusion K,,(x) was mentioned without
any further specifications. Let us described how these matrices are constructed.

As in [Harbrecht and Schmidlin, 2020]], given a R? valued vector field V(x)
and a € R we have

VEVE)'

Iveall?
With this form, K,,(x) is designed to diffuse in the direction of V (x) with intensity
IV (x)|| and in the perpendicular direction with intensity a. In both the examples
we used a = 0.1 and a random (spatially correlated) V(x). In particular, V(x) =
1+ y(x) where v is determined trough a truncated Karhunen-Loéve expansion
with correlation kernel C(x,,X,) given by

Kan(x) = aly + (V)| —a) (A1)

‘l‘e—rz/Z 0 %e—rz/lo
_.2
C(xy,%,) = 0 ze 2 0 , (A.2)

Le=*2 0 (1+4/3r)e V¥
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Appendix B

Multi-fidelity approach: the Eikonal
model

As pointed out in Section the convergence behavior of the Newton solver
is strongly influenced by its initial guess, that must be chosen as close as possible
to the solution. We can use a simpler (and computationally cheaper) model to
get an rough estimate of the solution of to be used as initial guess for the
non-linear iteration.

For this reason we introduce the eikonal model: a time independent, non-
linear model describing the activation times T,.(x) on a domain (2, given a prop-
agation velocity v € R and aregion I' C Q2 where an impulse is generated initially:

{v\/ (VT,.)' K(X)VT,+eAT,, =1 in Q, B

T,. =0 in T,
where ¢ > 0 a small stabilization parameter. The eikonal equation is computa-
tionally cheaper to solve w.r.t. the monodomain equation but the fine details of

the wave front are lost. Once the eikonal solution T,.(x) is computed we can
define its space-time counterpart u°(x, t) as follows:

{uo(x, t)=u,,, if t>T,.(x),

. (B.2)
u(x,t) = Upese If t < To(%),

to be used as initial guess. This methodology has been employed effectively, as
illustrated in Figure as the number of Newton iterations to convergence is
reduced w.r.t. constant initial guesses. On the other hand, once the monodomain
setting is fixed, v and I are not precisely known a priori and reverse engineering
might be necessary to find them. In fact, the relation between monodomain and
eikonal parameters is not trivial; once the former change the latter need to be
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Figure B.1. Newton iterations to solve problem with the same setting as
in Example with various initial guesses. The parameter v and T in
have been chosen to reduce as much as possible the correspondent number of
iterations. While the zero initial guess is significantly worse for convergence,
using u,. is acceptable.

recomputed accordingly. Because this process is hard to automatize we used, in
the numerical experiments, the initial guess

u(X, t) = Upeg,

that still produces reasonable convergence.



Notation summary

We summarize the meaning of the most significant symbols used trough this
thesis:

T € R : final time

I, = [t,,tn.]: time interval (or identity matrix, depending on the con-
text)

Q € R? : spatial domain

n € N : number of space elements

n € N : total number of degrees of freedom in space

N € N : number of time steps

N =N(q+1) € N: total number of degrees of freedom in time
p € N : polynomial order of the space basis

k € N : polynomial regularity of the space basis (C*)

q € N : polynomial order of the time basis

E™ = [t,, tmir] X Q, mth space-time slab

K(x) € R4 or R: diffusion coefficients

I, € R™": identity matrix of size n

L, € R™": lower shift identity matrix of size n

u € R : CFL discretization parameter, cf. equation ([3.23)

Ko 1px1s Mupi) € R™™: stiffness and mass matrices in space

n,[p,k

117



118

Kiq1s Mig1,Jiq1 € R@+D*(@HD); stiffness, mass and coupling matrices in time
Alarkl plarkl ¢ grar)aa+l); gingle time slab operators.
ClPH e RNNT: ghace-time system

Dk NaxN . ..
PIE,qnp I e RN, space-time preconditioner

f1,.p.k] - SPace-time symbol in (3.10), with x its rearranged version

X>Crs Chs @, b, €y Upeges Ugpres> Umax € R : monodomain equation (4.1) param-
eters

C,,C, > 1: space and time coarsening factors
L,7n, v € N: multigrid levels, iterations and smoothing steps respectively
F(-) : RN" — RM": non-linear residual

M € N : number of time blocks
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