
Exposing Concurrency Failures
A comprehensive survey of the state of the art and

a novel approach to reproduce field failures

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Francesco Adalberto Bianchi

under the supervision of

Mauro Pezzè

October 2018

Dissertation Committee

Matthias Hauswirth Università della Svizzera italiana, Switzerland
Michele Lanza Università della Svizzera italiana, Switzerland
Antonia Bertolino Consiglio Nazionale delle Ricerche, Italy
Michael Pradel Technische Universität Darmstadt, Germany

Dissertation accepted on 26 October 2018

Research Advisor PhD Program Director

Mauro Pezzè Prof. Walter Binder, Prof. Olaf Schenk

i

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Francesco Adalberto Bianchi
Lugano, 26 October 2018

ii

To my advisor, for he gave me endless inspiration and guidance,
To my family, for their unconditional love and support,

To my colleagues and train-mates, for they made my PhD an unforgettable journey,
To my beloved, for you make me want to be a better man.

iii

iv

Abstract

With the rapid advance of multi-core and distributed architectures, concur-
rent systems are becoming more and more popular. Concurrent systems are ex-
tremely hard to develop and validate, as their overall behavior depends on the
non-deterministic interleaving of the execution flows that comprise the system.
Wrong and unexpected interleavings may lead to concurrency faults that are ex-
tremely hard to avoid, detect, and fix due to their non-deterministic nature.

This thesis addresses the problem of exposing concurrency failures. Expos-
ing concurrency failures is a crucial activity to locate and fix the related fault and
amounts to determine both a test case and an interleaving that trigger the fail-
ure. Given the high cost of manually identifying a failure-inducing test case and
interleaving among the infinite number of inputs and interleavings of the system,
the problem of automatically exposing concurrency failures has been studied by
researchers since the late seventies and is still a hot research topic.

This thesis advances the research in exposing concurrency failures by propos-
ing two main contributions. The first contribution is a comprehensive survey and
taxonomy of the state-of-the-art techniques for exposing concurrency failures.
The taxonomy and survey provide a framework that captures the key features of
the existing techniques, identify a set of classification criteria to review and com-
pare them, and highlight their strengths and weaknesses, leading to a thorough
assessment of the field and paving the road for future progresses.

The second contribution of this thesis is a technique to automatically expose
and reproduce concurrency field failure. One of the main findings of our survey is
that automatically reproducing concurrency field failures is still an open problem,
as the few techniques that have been proposed rely on information that may be
hard to collect, and identify failure-inducing interleavings but do not synthesize
failure-inducing test cases. We propose a technique that advances over state-
of-the-art approaches by relying on information that is easily obtainable and by
automatically identifying both a failure-inducing test case and interleaving. We
empirically demonstrate the effectiveness of our approach on a benchmark of
real concurrency failures taken from different popular code bases.

v

vi

Contents

Contents v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Contributions . 4
1.2 Structure of the Dissertation . 4

2 Concurrency 7
2.1 Concurrent Systems . 7
2.2 Interleaving of Execution Flows . 9
2.3 Concurrency Faults . 11

2.3.1 Data Races . 11
2.3.2 Atomicity violations . 12
2.3.3 Deadlocks . 13
2.3.4 Order violation . 14

3 A Classification Schema for Techniques for Exposing Concurrency Fail-
ures 17
3.1 Exposing Concurrency Failures . 17
3.2 Towards a Classification Schema . 20

3.2.1 Input . 22
3.2.2 Selection of Interleavings . 22
3.2.3 Property of Interleavings . 24
3.2.4 Output and Oracle . 24
3.2.5 Guarantees . 25
3.2.6 Target System . 26
3.2.7 Technique . 26

vii

viii Contents

3.3 Classification Schema . 27

4 A Taxonomy of Techniques for Exposing Concurrency Failures 29
4.1 Property Based Techniques . 30

4.1.1 Data Race . 30
4.1.2 Atomicity Violation . 36
4.1.3 Deadlock . 38
4.1.4 Combined . 40
4.1.5 Order Violation . 40

4.2 Space Exploration Techniques . 41
4.2.1 Stress Testing . 41
4.2.2 Exhaustive exploration . 41
4.2.3 Coverage criteria . 42
4.2.4 Heuristics . 43

4.3 Reproduction Techniques . 43
4.3.1 Record-and-replay . 43
4.3.2 Post-processing . 44

5 Reproducing Concurrency Failures From Crash Stack Traces 45
5.1 Overview . 46
5.2 The CONCRASH Approach . 51
5.3 Test Case Generator . 53

5.3.1 Modeling the Test Cases Search Space 55
5.3.2 Test Case Minimization . 56
5.3.3 Exploring the Test Cases Search Space 57
5.3.4 Pruning Strategies . 59

5.4 Interleaving Explorer . 62
5.4.1 Symbolic Trace Collection . 63
5.4.2 Computing Failing Interleavings with Constraint Solving . 64

6 Evaluation 67
6.1 Research Questions . 68
6.2 Experimental Setting . 69
6.3 Experimental Results . 73

6.3.1 RQ1 - Effectiveness . 73
6.3.2 RQ2 - Pruning Strategies . 75
6.3.3 RQ3 - Comparison with Testing Approaches 79

6.4 Limitations . 80
6.5 Threats to Validity . 81

ix Contents

7 Conclusion 83
7.1 Contributions . 84
7.2 Open Research Directions . 85

Bibliography 87

x Contents

Figures

1.1 Exposing concurrency failures: how and when. 2

3.1 A general framework for exposing concurrency failures 18
3.2 Classification criteria for the techniques to expose concurrency

failures . 21
3.3 Classification schema . 28

5.1 Faulty class java.util.logging.Logger of JDK 1.4.1 48
5.2 Crash stack of class Logger (Bug ID 4779253) 49
5.3 A concurrent test case that reproduces the crash stack in Figure 5.2 50
5.4 Conceptual Architecture of CONCRASH 52
5.5 The CONCRASH algorithm . 54
5.6 A Tree model of class Logger . 56
5.7 Definition of Sequential coverage . 58
5.8 Method RemoveHandler of class Logger 60
5.9 Example of lockset history (LH) . 62

6.1 Aggregate comparison of the CONCRASH pruning strategies for the
ten subjects . 78

xi

xii Figures

Tables

4.1 Data race detection techniques . 31
4.2 Atomicity violation detection techniques 36
4.3 Deadlock detection techniques . 39
4.4 Techniques for detecting combined properties violations 39
4.5 Techniques for detecting order violations 40
4.6 Techniques for exploring the space of interleavings 42
4.7 Techniques for reproducing concurrency failures 43

6.1 CONCRASH Evaluation Subjects . 72
6.2 CONCRASH Evaluation Failures . 72
6.3 RQ1: CONCRASH Effectiveness Results 74
6.4 RQ2: CONCRASH Pruning Strategies Effectiveness Results 76
6.5 Comparison with test case generators 79

xiii

xiv Tables

Chapter 1

Introduction

Concurrent systems are ubiquitous as multi-core and distributed architec-
tures are the norm: interactive applications exploit the multi-threaded paradigm
to decouple the input-output processing from the back-end computation; mo-
bile applications often interact with remote services; Web applications adopt the
client-server communication; peer-to-peer applications coordinate a multitude of
computing nodes; scientific applications often exploit multiple threads to enable
parallel computations on multi-core architectures.

Concurrent systems introduce new challenges in the validation and verifica-
tion process (V&V). The overall behavior of concurrent systems depends not only
on the behavior of the single threads, but also on how they interleave during the
execution. As a result, the same input can produce different results depending on
the interleaving of threads in the execution. Wrong and unexpected interleavings
may lead to concurrency faults that are extremely hard to avoid and detect due to
their non-deterministic nature. Fixing concurrency faults has become a key issue
since their manifestation as system failure can have severe consequences in daily
life. In recent history, concurrency faults have caused several disasters such as
the Therac-25 accident [76], the blackout in northeastern America in 2003 [117]
and losses for investors for 500 million dollars during Facebook IPO in 2012 [31].
The JaConTeBe benchmark deeply analyses a large set of concurrency faults that
led to failures in recent and widely used software systems 1.

This thesis addresses the problem of exposing concurrency functional failures,
that is, failures that manifest as unexpected system behavior and lead to incor-
rect results. Exposing a failure is essential to locate and fix the related fault, and
amounts to determine the program conditions that cause the system to fail. In
the case of sequential programs, such conditions correspond to a test case, that

1http://stap.sjtu.edu.cn/index.php?title=JaConTeBe

1

2

Test Case
Generation

Interleavings
Selection

Testing Reproduction

Determine inputs that
manifest a failure

Determine inputs that
reproduce a given failure

Determine interleavings
that manifest a failure

Determine interleavings that
reproduce a given failure

Figure 1.1. Exposing concurrency failures: how and when.

is, an input sequence and an expected output (oracle), that triggers the failure.
To expose concurrency failures, determining a failure-inducing test case is not
sufficient as the behavior of a concurrent system does not depend only on the
system input, but also on the threads’ interleaving. As a result, a test case can
manifest different system behaviors, and only some - usually few - of them can
expose a failure. This means that exposing a concurrency failure involves two
activities: generating test case and selecting interleavings for determining a failure-
inducing test case and a failure-inducing interleaving, respectively. Test cases and
interleavings are generated and selected both before and after delivery, at devel-
opment and operative time. Test cases and and interleaving are generated before
the software system has been released during in-house testing to check whether
the system under test manifests concurrency failures, i.e., contains concurrency
faults, and after the software system has been released during failure reproduc-
tion, to help developers diagnose failures that escape in-house testing and sneak
in production. Figure 1.1 summarizes the activities needed to expose a concur-
rency failure and the different time at which they can be performed.

Generating test cases and selecting interleavings are time consuming and ex-
pensive activities since developers need to identify the failure-inducing test case
and interleaving among the infinite number of possible inputs and interleavings
of the system [79]. Automation is a promising research direction to alleviate the
developers’ burden of manually performing such activities. Indeed, the problem
of automatically exposing concurrency failures has drawn the attention of the
research community since the late seventies, and has considerably grown in the
last decade. The many testing techniques for exposing concurrency failures has
mainly focused on the problem of interleavings selection. They either adopt a
systematic approach to explore the entire interleavings space [74, 120], or select

3

and execute those interleavings that manifest specific suspicious patterns, such
as data races, atomicity violations, and deadlocks, that increase the probability
of revealing concurrency failures [21, 39, 41, 43, 87, 94]. The main techniques
for reproducing concurrency failures exploit information collected when a fail-
ure occurs in the field. Current reproduction techniques rely on either execution
traces [2, 57, 61] or memory core dumps [142, 154].

Despite the large body of research that addresses the problem of exposing
concurrency failures, to the best of our knowledge a precise survey and classifica-
tion of the progresses and the results in the field is still missing. The current lack
of a comprehensive classification, analysis and comparison of these techniques
limits the understanding of the strengths and weaknesses of each approach and
hampers the future advancements in the field. In this thesis, we conduct the
first comprehensive survey of the state-of-the-art techniques for exposing con-
currency failures. We study the recent literature by systematically browsing the
main publishers and scientific search engines, and we trace back the results to
the seminal work of the last forty years. We present a general framework that
captures the different aspects of the problem of exposing concurrency failures
and that we use to identify a set of classification criteria that drive the survey
of the different approaches. The survey classifies and compares the state-of-the-
art techniques, discusses their advantages and limitations, and indicates open
problems and possible research directions in the area of exposing concurrency
failures.

One of the main findings of our study is that the problem of exposing con-
currency failures has been widely investigated in the context of in-house testing,
but little effort has been devoted to the problem of reproducing field concurrency
failures.

The few techniques for reproducing concurrency failures that have been pro-
posed so far rely on either execution traces or memory core dumps, which may
be expensive and hard to obtain in many practical situations: recording execu-
tion traces might introduce a high overhead which may be acceptable in testing
but not in production environment [144], memory core dumps are not available
on all platforms [17], and they both often contain sensitive information, which
introduces privacy concerns [145].

Moreover, current techniques for reproducing concurrency failures focus on
identifying failure-inducing interleavings only, leaving largely open the problem
of synthesizing the test case that manifests such interleavings. As a result, how
to effectively reproduce concurrency failures is still an open problem.

In this thesis, we present CONCRASH, a novel approach that overcomes the
above- mentioned limitations. CONCRASH automatically generates test cases that

4 1.1 Contributions

reproduce concurrency failures from the limited information available in the
crash stacks. Differently from execution traces and memory core dumps that
are expensive to produce and hard to obtain, crash stack traces are easily ob-
tainable and do not suffer from performance and privacy issues. However, crash
stack traces contain only partial and limited information about the failure, thus
challenging the problem of automatically reproducing concurrency failures. We
demonstrate through an exhaustive empirical validation that CONCRASH is both
effective and efficient in reproducing concurrency failures. In particular, we show
that the technique correctly identifies the failure-inducing test case and interleav-
ing by exploiting the limited information contained in crash stack traces only.

1.1 Contributions

This thesis makes two major contributions:

A survey and a taxonomy of techniques for exposing concurrency failures:
The first contribution of this thesis is a comprehensive survey on the state-
of-the-art techniques for exposing concurrency failures. The survey pro-
vides a framework to capture the key features of the existing techniques,
identifies a set of classification criteria to review and compare them, dis-
cusses in details their strengths and weaknesses, and indicates open prob-
lems and possible research directions in the area of exposing concurrency
failures.

A technique to reproduce concurrency failures from crash stack traces: The
second contribution of this thesis is a technique to automatically reproduce
concurrency failures. In particular, we define an approach which is able to
synthesize both a failure-inducing test case and related interleaving from
the limited information contained in the crash stack trace of the failure. We
propose a general approach, and a concrete implementation for Java ap-
plications. We then evaluate the effectiveness of the technique on a set of
case studies and show that the technique is indeed effective in reproducing
concurrency failures.

1.2 Structure of the Dissertation

The remainder of this dissertation is structured as follows:

5 1.2 Structure of the Dissertation

• Chapter 2 introduces the basic concepts, definitions and background of
concurrent systems.

• Chapter 3 proposes a classification schema and taxonomy for techniques
to expose concurrency failures.

• Chapter 4 surveys, classifies, and compares the state-of-the-art techniques
for exposing concurrency failures.

• Chapter 5 defines a technique to automatically reproduce concurrency fail-
ures from crash stack traces.

• Chapter 6 presents the results of the empirical evaluation that we per-
formed to show the effectiveness and efficiency of CONCRASH.

• Chapter 7 summarizes the contributions of this dissertation, and discusses
future directions.

6 1.2 Structure of the Dissertation

Chapter 2

Concurrency

Many modern software systems are composed of multiple execution flows
that run simultaneously, spanning from applications designed to exploit the power
of modern multi-core architectures to distributed systems consisting of multiple
components deployed on different physical nodes. We collectively refer to such
systems as concurrent systems.

This chapter introduces the fundamental concepts, definitions and background
of concurrent systems. Section 2.1 introduces concurrent systems and their main
communication models. Section 2.2 presents the fundamental concept of in-
terleaving of execution flows and the concurrent synchronization mechanisms.
Section 2.3 describes the main classes of concurrency faults, namely data races,
atomicity violations, deadlocks, and order violations.

2.1 Concurrent Systems

In this thesis, we follow the definition of concurrent system proposed by An-
drews and Schneider in their popular survey and book [3, 4] that represent classic
references and accommodate the wide range of heterogeneous techniques and
tools presented in the literature.

A system is concurrent if it includes a number of execution flows1 that can
progress simultaneously, and that interact with each other. This definition en-
compasses both flows that execute in overlapping time frames, like concurrent
programs executed on multi-core, multi-processor parallel and multi-node dis-
tributed architectures, and flows that execute only in non-overlapping frames,

1Although we adopt the terminology of Andrews and Schneider, we prefer the term execution
flow over process to avoid biases towards a specific technology.

7

8 2.1 Concurrent Systems

like concurrent programs executed on single-core architectures. Depending on
the specific architecture and programming paradigm, execution flows can be
concretely implemented as processes in distributed architectures, or threads in
single-core and multi-core architectures, as common in modern programming
languages such as C++, Java, C# and Erlang.

We distinguish two classes of concurrent systems based on the mechanism
they adopt to enable the interaction between execution flows, shared memory
and message passing systems. In shared memory systems, execution flows inter-
act by accessing a common memory. In message passing systems, execution flows
interact by exchanging messages. Message passing can be used either by execu-
tion flows hosted on the same physical node or on different physical nodes (dis-
tributed systems). Conversely, shared memory mechanisms are usually adopted
by execution flows located on the same node (as in multi-threaded systems).

We model a shared memory as a repository of one or more data items. A data
item has an associated value and type. The type of a data item determines the set
of values it is allowed to assume. We model the interaction of an execution flow
f with the repository using two primitive operations: write operations wx(v),
meaning that f updates the value of the data item x to v, and read operations
rx(v), meaning that f reads the value v of x . Operations are composed of one or
more instructions. Instructions are atomic, meaning that their execution cannot
be interleaved with other instructions, while operations are in general not atomic.
This model captures both operations on simple data, like primitive variables in
C, and operations on complex data structures like Java objects, where types are
classes, data items are objects and operations are methods that can operate only
on some of the fields of the objects.

We model message passing systems using two primitive operations: send op-
erations s f (m) that send a message m to the execution flow f , and receive op-
erations r f (m) that receive a message m from the execution flow f . Message
passing can be either synchronous or asynchronous. An execution flow f that
sends a synchronous message s f ′(m) to an execution flow f ′ must wait for f ′ to
receive the message m before continuing, while an execution flow f that sends an
asynchronous message s f ′(m) to an execution flow f ′ can progress immediately
without waiting for m to be received by f ′.

The message passing paradigm can be mapped to the shared memory paradigm
by modeling a send primitive as a write operation on a shared queue and a re-
ceive primitive as a read operation on the same shared queue. Thus, without loss
of generality, we refer to shared memory systems in most of the definitions and
examples presented in this thesis.

9 2.2 Interleaving of Execution Flows

2.2 Interleaving of Execution Flows

The behavior of a concurrent system depends both on the input parameters
and the sequences of instructions of the individual flows, and on the interleaving
of instructions from the execution flows that comprise the system.

We introduce the main concepts of concurrency under the assumption of a
sequentially consistent model [73]. This model guarantees that all the execution
flows in a concurrent system observe the same order of instructions, and that
this order preserves the order of instructions defined in the individual execution
flows. We discuss the implications of relaxing this assumption at the end of this
section.

Under the assumption of sequential consistency, we can model the interleav-
ing of instructions of multiple execution flows in a concrete program execution
with a history, which is an ordered sequence of instructions of the different exe-
cution flows. In a shared memory system, histories include sequences of invoca-
tions of read and write operations on data items. Since in general the operations
on shared data items are not atomic, we model the invocation and the termination
of an operation op as two distinct instructions. The execution of an operation
o′ overlaps the execution of another operation o if the invocation of o′ occurs
between the invocation and the termination of o. In a message passing system,
histories include sequence of atomic send and receive operations.

Given a concrete execution ex of a concurrent system S, a history Hex is a
sequence of instructions that (i) contains the union of all and only the instructions
of the individual execution flows that comprise ex , and (ii) preserves the order of
the individual execution flows: for all instructions oi and o j that occur in ex and
belong to the same execution flow f , if oi occurs before o j in f , then oi occurs
before o j in Hex .

We use the term interleaving of an execution ex to indicate the order of in-
structions defined in the history Hex .

Listing 2.1. A non-deterministic concurrent system

1 begin f_1

2 if (x==1) {

3 print OK

4 }

5 end f_1

1 begin f_2

2 x=1

3 end f_2

We refer to listing 2.1 to exemplify the impact of the interleaving of instruc-

10 2.2 Interleaving of Execution Flows

tions from multiple execution flows on the result of an execution. In Listing 2.1
both execution flows f1 and f2 access a shared data item x with initial value 0,
f2 writes 1 to x , while f1 prints OK if it reads 1 for x . Multiple interleavings are
possible. If the write operation x = 1 of f2 occurs before the read operation
x == 1 of f1 in the history, then f1 reads 1 and prints OK, otherwise f1 reads 0
and does not print anything2.

Systems that do not assume sequential consistency refer to relaxed memory
models. Examples of systems that refer to relaxed models are shared memory
systems where different execution flows may observe different orders of oper-
ations due to a lazy synchronization between the caches of multiple cores in
a multi-core architecture. Several popular programming languages refer to re-
laxed models by allowing the compiler to re-order the operations within a single
execution flow to improve the performance. For example, this is allowed in the
memory models of both Java [86, 108] and C++ [15].

Concurrent programming languages offer various synchronization mechanisms
that constrain the order of instructions to prevent erroneous behaviors, thus lim-
iting the space of possible interleavings. The synchronization mechanisms de-
pend on the concurrency paradigm, the granularity of the synchronization struc-
tures and the constraints imposed on the system architecture.

The Java programming language offers synchronized blocks and atomic in-
structions to ensure that program blocks are executed without the interleaving
of instructions of other execution flows [55]. Other programming languages like
C and C++ offer locks, mutexes and semaphores to constrain the concurrent ex-
ecution of code regions. Yet other concurrent programming environments, like
Posix threads and OpenMP, offer barrier synchronization to constrain the access
to code regions executed concurrently by multiple execution flows: barriers and
phasers introduce program points that all the execution flows in a group must
reach before any of them is allowed to proceed [125].

In the context of message passing, programming languages and libraries that
implement the actor-based paradigm ensure that individual messages are pro-
cessed atomically and in isolation [5]. Synchronous message passing ensures
that the sender of a message can progress only after the message has been suc-
cessfully delivered to the recipient [146].

2In this example, we assume that read and write of x are atomic. Relaxing the atomicity
assumption would produce even more interleavings.

11 2.3 Concurrency Faults

2.3 Concurrency Faults

In this thesis we focus on the problem of exposing concurrency failures, which
are failures caused by unexpected interleavings of instructions of otherwise cor-
rect execution flows. Concurrency failures can be extremely hard to reveal and
reproduce, since they manifest only in the presence of specific interleavings that
may be rarely executed. In this section we introduce the main types of con-
currency faults, namely data races, atomicity violations, deadlocks, and order
violations.

2.3.1 Data Races

A data race occurs when two operations from different execution flows access
the same data item d concurrently, at least one is a write operation, and no
synchronization mechanism is used to control the (order of) accesses to d. A
system is data race free if no data races can occur during its execution.

Listing 2.2. An example of data race

1 begin f_1

2 x++

3 end f_1

1 begin f_2

2 x++

3 end f_2

We refer to listing 2.2 to exemplify data races. Both execution flows f_1 and
f_2 increment the value of the integer variable x by one. If the intepreter splits
the increment of x into two low-level operations that read the value of x and
update the value of x, respectively, when f_1 and f_2 are executed concurrently,
the two operations can increment x of 1 only, and not 2, as expected depending
on the order of the elementary atomic operations.

Data races are violations of atomicity assumptions on the execution of indi-
vidual operations. Such violations break the serializability of the system behavior.
The concept of serializability was originally defined in the context of database
systems as a guarantee for the correctness of transactions [96]. In our context
a history is serializable if it is equivalent to a serial history, which is a history in
which all the atomicity assumptions are satisfied. Two histories are equivalent if
they produce the same values for all the data items.3

A data race implies an uncontrolled access to a data item, which may or may

3In literature such property is referred to as view serializability [51]

12 2.3 Concurrency Faults

not be an error. In the example of Listing 2.2 the value x=’AAAABBBB’ may be
valid or not depending on the application logic.

Data races can be classified as low level and high level data races [139]. Low
level data races involve accesses to individual memory locations. High level data
races involve concurrent operations on shared complex data structures, like pub-
lic methods of an object or a library in an object oriented program.

Data races can occur also in programs that implement the message passing
paradigm, when the code fragments that process two messages access a common
data item, and at least one fragment modifies that data item.

2.3.2 Atomicity violations

Atomicity violations extend the concept of atomicity to sequences of opera-
tions. An atomicity violation occurs when a sequence of operations of an execu-
tion flow that is assumed to be executed atomically is interleaved with conflicting
operations from other flows [6].

Listing 2.3. An example of atomicity violation

1 begin f_1

2 if (x>0)

3 x = x-1

4 end f_1

1 begin f_2

2 x = 0

3 end f_2

We refer to Listing 2.3 as an example of atomicity violation. In the example,
we assume that x initially holds a non-negative value, and we expect its value to
always remain non-negative. The property is satisfied under the assumption that
f_1 executes atomically, that is, the sequence of operations in f_1 is executed
atomically without interleaved operations of f_2. However, if the atomicity of
f_1 is not properly enforced through synchronization mechanisms, the operation
x=0 in f_2 can occur between the two operations of f_1, causing the value of x
to become negative (-1).

We distinguish two main classes of atomicity violations, namely code centric
and data centric atomicity violations. Code centric atomicity violations involve
code blocks that should be executed atomically according to some specification of
the system. Data centric atomicity violations were first studied in 2006 by Vaziri
et al. who introduced the concept of atomic-set serializability as a programming
abstraction to ensure data consistency [136]. Atomic-set serializability builds on
the concepts of atomic sets that represent sets of data items that are correlated by

13 2.3 Concurrency Faults

some consistency constraints, and units of work that are the blocks of code used
to update variables in an atomic set. In the atomic-set programming model,
developers only need to specify atomic sets and units of work, and the compiler
infers synchronization mechanisms to avoid potentially dangerous interleavings.

Atomicity violations can occur also in programs that implement the message
passing paradigm, when the code fragments that process two or more messages
that shall be executed atomically are interleaved by the processing of some other
messages.

Atomicity violations can include one or more data races. Listing 2.3 is an ex-
ample of atomicity violation that includes two data races, since all the operations
performed by both f_1 and f_2 do no use any synchronization mechanisms. List-
ing 2.4 shows an example of atomicity violation that does not include any data
race since each operation is protected by a lock, but the two operations performed
by f_1 are not executed atomically thus leading to an atomicity violation.

Listing 2.4. An example of atomicity violation without data races

1 begin f_1

2 acquire(L1)

3 temp = x

4 release(L1)

5 if (temp > 0)

6 acquire(L1)

7 x = x-1

8 release(L1)

9 end f_1

1 begin f_2

2 acquire(L1)

3 x = 0

4 acquire(L1)

5 end f_2

2.3.3 Deadlocks

Deadlocks occur when the synchronization mechanisms indefinitely prevent
some execution flows from continuing their execution. This happens in the pres-
ence of circular waits, where each execution flow of a given set of flows is waiting
for another execution flow from the same set to progress, and thus cannot con-
tinue its own execution.

14 2.3 Concurrency Faults

Listing 2.5. An example of deadlock

1 begin f_1

2 acquire(L1)

3 acquire(L2)

4 ...

5 release(L2)

6 release(L1)

7 end f_1

1 begin f_2

2 acquire(L2)

3 acquire(L1)

4 ...

5 release(L1)

6 release(L2)

7 end f_2

We refer to Listing 2.5 as a simple example of deadlock due to an incorrect
use of locks. Locks provide two atomic primitives, acquire(L) and release(L).
When an execution flow f acquires a lock L (acquire(L)), no other execution
flow f ′ can acquire L until f releases the lock (release(L)). Locks are used to
implement mutual exclusion: for instance, to guarantee the atomicity of a set
O of operations, each execution flow shall acquire a lock L before accessing an
operation in O, and release the lock L upon terminating the access to the resource
to prevent other flows to execute an operation in O concurrently.

In the example of Listing 2.5, the execution flow f_1 acquires first lock L1 and
then lock L2 before releasing L1, while the execution flow f_2 acquires lock L2

before releasing L1. If f_1 acquires L1 and f_2 acquires L2 before a progress of
f_1, then f_1 is blocked waiting for f_2 to release L2 and f_2 is blocked waiting
for f_1 to release L1, thus resulting in a deadlock.

Deadlocks can be classified in resource deadlocks and communication dead-
locks [126]. Resource deadlocks occur when a set of execution flows try to access
some common resources and each execution flow in the set requests a resource
held by another execution flow in the set. The code in Listing 2.5 is an example
of resource deadlock. Communication deadlocks occur in message passing sys-
tems when a set of execution flows exchange messages and each of them waits
for a message from another execution flow in the same set.

Deadlocks do not relate to any other concurrency fault (data races, atomicity
violations, order violations) as they do not involve memory access events.

2.3.4 Order violation

Data races, atomicity violations and deadlocks are classic and well studied
classes of concurrency fault. Another common but less studied type of concur-
rency faults is known as order violation. An order violation occurs when the

15 2.3 Concurrency Faults

desired order between two (groups of) memory accesses is flipped [81].

Listing 2.6. An example of order violation

1 begin f_1

2 acquire(L1)

3 pool.push(obj)

4 release(L1)

5 end f_1

1 begin f_2

2 acquire(L1)

3 pool = null

4 release(L1)

5 end f_2

We refer to Listing 2.6 as a simple example of order violation. Execution
flow f_1 accesses item pool by assuming that it has been previously initialized,
while execution flow f_2 sets the value of the item to null. The execution of the
two execution flows may result in a failure depending on the order of execution
of f_1 and f_2. In particular, the interleaving in which f_2 is executed before
f_1 results in a system failure with a NULL-pointer dereference. The readers
should notice that the failure occurs even if the two execution flows properly
uses synchronization mechanisms to access the shared data item.

Order violations can occur also in programs that implement the message pass-
ing paradigm, when the desired order of delivery of two messages is flipped.

Order violations represent the most general class of concurrency faults. Or-
der violations include both data races and atomicity violations, as data races
and atomicity violations lead to unexpected and wrong behaviors due to an un-
desired order between two (groups of) memory accesses. Nevertheless, many
order violations are neither data races nor atomicity violations, like the example
in Listing 2.6.

16 2.3 Concurrency Faults

Chapter 3

A Classification Schema for Techniques
for Exposing Concurrency Failures

The research on exposing concurrency failures has emerged overbearing in
the last fifteen years fostered by the rapid spread of multi-core technologies, dis-
tributed, Web and mobile architectures and novel concurrent paradigms. Despite
the remarkable and increasing interest of the research community, to the best of
our knowledge a precise classification and analysis of the many techniques to
expose concurrency failures is still missing. In this chapter, we introduce a clas-
sification schema for techniques to expose concurrency failures that we use to
survey the main techniques developed so far. Our classification schema is in-
spired by a systematic review of the literature that we conducted by browsing
the main publishers and scientific search engines.

The remainder of this chapter is organized as follows: Section 3.1 presents a
general framework that captures the key features of the available techniques to
expose concurrency failures. Section 3.2 introduces a set of classification criteria
we identified. Section 3.3 describes the classification schema that we use in
Chapter 4 to survey the state-of-the-art techniques for exposing concurrency.

3.1 Exposing Concurrency Failures

In this thesis we focus on the problem of exposing concurrency failures. Con-
currency failures can be extremely hard to reveal and reproduce, since they man-
ifest only in the presence of specific interleavings that may be rarely executed.
Exposing concurrency failures amounts to sample not only a potentially infinite
input space, but also the space of possible interleavings, which can grow expo-
nentially with the number of execution flows and the number of instructions that

17

18 3.1 Exposing Concurrency Failures

Technique

Input

Selecting
Interleavings

Comparing with
Oracles

OracleProperty of
Interleavings

System
Model

Test CasesGenerating
Test Cases

Output

Target System

Failure
Information

Figure 3.1. A general framework for exposing concurrency failures

comprise the flows.
The many approaches for exposing concurrency failures that have been pro-

posed so far address different aspects of the problem. Our detailed analysis of
the literature led to a simple conceptual framework that captures the different
aspects of the problem and relates the many approaches for exposing concur-
rency failures. Figure 3.1 presents the conceptual framework that we define to
provide a comprehensive view of the problem and to organize our survey.

Approaches for exposing concurrency failures deal with specific types of target
systems and address one or more of the three main aspects of the problem visual-
ized with rectangles in Figure 3.1: generating test cases, selecting interleavings and
comparing the results with oracles. Generating test cases amounts to sample the
program input space and produce a finite set of test cases to exercise the target
system. Selecting interleavings amounts to augment the test cases with different
interleavings of the execution flows to exercise the operations that process the
same input data in different order. Comparing the results with oracles amounts
to check the behavior of the target system with respect to some oracles. The ap-
proaches that we found in the literature focus on either generating test cases or
selecting interleavings, sometimes dealing with comparing with oracles as well.

Figure 3.1 presents a conceptual framework for the techniques, without pre-
scribing a specific process. Some approaches may first generate a set of test cases
and a set of relevant interleavings and then compare the execution results with
oracles, while other approaches may alternate the selection of interleavings and
the comparison with oracle by executing each interleaving as soon as identified.

19 3.1 Exposing Concurrency Failures

Approaches for generating test cases sample the input space to produce a finite
set of test cases by considering the target system. They optionally also consider
a target property of interleaving, a system model that provides additional infor-
mation about the target system, or failure information that has been collected
when a failure occurred in the field, for instance execution traces or memory
core dumps.

Approaches for selecting interleavings identify a subset of relevant interleav-
ings to be executed, and target (i) the interleaving space as a whole, (ii) some
specific properties of interleaving, or (iii) some specific failure to reproduce.

Techniques that target the interleaving space as a whole, hereafter space ex-
ploration techniques, explore the space of interleavings randomly, exhaustively
or driven by some coverage criteria or heuristics. Two relevant classes of space
exploration techniques are stress testing and bounded search techniques.

As we discuss in detail in Section 3.2, properties of interleaving typically iden-
tify patterns of interactions across execution flows that are likely to expose con-
currency failures. Approaches that target some interleaving properties, hereafter
property based techniques, aim to identify the interleavings that are most likely
to expose such patterns. Some property based techniques use the property of
interleavings not only to select a relevant subset of interleavings, but also to
generate a set of test cases that can execute the identified interleavings. Such
techniques steer the generation towards test cases that can manifest interleav-
ings that expose the property of interest. Most property based techniques rely on
some dynamic or hybrid analysis to build an abstract model of the system and
capture the order relations between the program instructions, and then exploit
the model to identify a set of interleavings that expose the property of interest.
Some property based techniques, hereafter detection techniques, use the model
to simply detect the presence of the pattern of interest in the analyzed trace.
Other property based techniques, hereafter prediction techniques, also look for
alternative interleavings that may expose the property of interest, usually relying
on model checking or SAT/SMT solvers.

Techniques that target some specific failure to reproduce, hereafter repro-
duction techniques, identify the interleavings that reproduce a given concur-
rency failure. The two relevant classes of reproduction techniques are record-
and-replay techniques, which identify the failure-inducing interleaving relying
on information continuously collected at runtime (e.g. execution traces), and
post-processing techniques, which rely on information collected only at the time
of the failure (e.g. memory core dumps).

Approaches that address also the problem of comparing the results with or-
acles execute the system in a controlled environment that forces the selected

20 3.2 Towards a Classification Schema

interleavings and compare the results of the execution with the given oracle.

3.2 Towards a Classification Schema

Our analysis of the literature led to the definition of the framework of Fig-
ure 3.1, that we use to identify seven distinct classification criteria as reported
in Figure 3.2. The seven classification criteria distinguish techniques based on
input, selection of interleavings, property of interleavings, output and oracle,
guarantees and target systems.

Input. Most approaches assume the availability of a set of input test cases,
few approaches work on some models of the system under test, reproduction
approaches require failure information. Other approaches require both test cases
and models.

Selection of interleavings. Many approaches refer to some properties of the
interleavings to select a relevant subset (property based), other approaches either
exhaustively explore the interleaving space or exploit some coverage criteria or
heuristics (space exploration), yet other approaches identify the interleavings that
reproduce a given concurrency failure (reproduction).

Property of interleavings. Many approaches select interleavings referring to
some specific concurrency properties: data race, atomicity violation, deadlock,
combined or order violation properties.

Output and oracle. Some techniques simply report whether the explored inter-
leavings satisfy the property of interest (property satisfying interleavings), while
others identify failing executions according to some oracles, in the form of system
crashes, deadlocks or violated assertions.

Guarantees. Different techniques offer various levels of assurance in terms of
precision and correctness of their results.

Target systems. Most techniques target some specific kinds of systems that
depend on the communication model (shared memory, message passing or gen-
eral, that is, independent from the communication paradigm), the programming
paradigm (either general or specific, such as object oriented, actor based or event
based paradigms) and the consistency model (either sequential or relaxed).

Technique. The techniques differ in terms of the type of analysis, which can
be dynamic or hybrid, the granularity (unit, integration or system), and the ar-
chitecture used to implement the technique, which can be either centralized or

21 3.2 Towards a Classification Schema

Input

Test case

System model

Output / Oracle

Guarantees

Soundness

Completeness

Feasibility

Property of
Interleavings

Data race

Order violation

Space exploration

Deadlock

Atomicity violation

High level
Low level

Data centric
Code centric

Heuristics
Coverage criteria
Exhaustive explor.
Stress testing

Resource
Communication

Target System

Programming
paradigm

Consistency
model

Communication
model

Technique

Analysis Architecture

Granularity

Hybrid
Dynamic

Distributed indep.
Distributed sync.
Centralized

System
Integration
Unit

Selection of
Interleavings

Property based

Detection
Prediction

Shared memory

General
Message passing

Specific
General

Sequential
Relaxed

Property satisfying
interleavings

Failing execution

Violated assertion
Deadlock
System crash

Property
Soundness
Property
Completeness

Combined

Reproduction

Record-and-replay
Post-processing

Failure information

Figure 3.2. Classification criteria for the techniques to expose concurrency
failures

22 3.2 Towards a Classification Schema

distributed.

In the remainder of this section, we discuss the classification criteria in detail.

3.2.1 Input

All techniques take in input the system under test, which we keep implicit in
our classification. Many techniques require also a set of test cases, while others
generate test cases automatically, thus implementing the generating test cases
feature of Figure 3.1.

Some techniques require also a system model that specifies either some rele-
vant properties or the expected behavior of the system. For instance, some tech-
niques rely on code annotations to identify either code blocks that are intended
to be atomic or sets of data items that are assumed to be updated atomically [41].
For some technique, the presence of a system model is optional: they work inde-
pendently from an initial system model, but can benefit from an optional model
to improve the accuracy of the approach.

Reproduction techniques take in input failure information. Some techniques
rely on information continuously collected during the execution of the system
(execution traces), yet other techniques exploit information collected only at the
time of the failure (memory core dumps).

3.2.2 Selection of Interleavings

Selecting interleavings is the primary objective of many approaches. Some
techniques exploit properties of interest to select interleavings: we refer to them
as property based. Other techniques explore the space of interleavings exhaus-
tively or randomly, possibly exploiting heuristics or coverage criteria: we refer
to them as space exploration techniques. Other techniques select the interleav-
ings that reproduce a given failure observed in the field: we refer to them as
reproduction techniques.

Property based techniques

Property based techniques select interleavings according to one or more prop-
erties of interest. They typically apply some form of analysis to an execution
trace to identify relevant synchronization constraints between instructions. For
instance, lockset analysis focuses on lock based synchronization and looks for

23 3.2 Towards a Classification Schema

accesses to shared data items that are not protected with locks [116]. Happens-
before analysis extends this approach by capturing general order constraints. Dif-
ferent types of happens-before analysis apply to different synchronization mech-
anisms [101], and present various cost-accuracy trade offs [59, 128].

Property based techniques exploit the order information identified with the
analysis to either only understand whether the analyzed trace exposes the prop-
erty of interest (detection techniques) or also identify alternative interleavings
that can expose the property of interest (prediction techniques).

Space exploration techniques

Space exploration techniques explore the space of interleavings without re-
ferring to a specific property, and include stress testing, exhaustive exploration,
coverage criteria and heuristics.

Stress testing. Stress testing approaches execute the test suite several times,
aiming to observe different interleavings. They do not offer any guarantee of
observing a given portion of the interleaving space, and do not introduce any
mechanism to improve the probability of executing new interleavings.

Exhaustive exploration. Exhaustive exploration approaches aim to execute all
possible interleavings. Since in general the space of interleavings can be huge,
these techniques either limit both the number of instructions and the execution
flows of the input test cases, or introduce bounds to the exploration space [88].
They also often adopt reduction techniques such as dynamic partial order reduc-
tion [49] to avoid executing equivalent interleavings.

Coverage criteria. Coverage criteria identify the interleavings to exercise in
terms of depth of the explored space. For example, in shared memory systems, a
coverage criterion might require that for each pair of instructions i1 and i2 that
belong to different execution flows and operate on the same data item d there
should exist at least a test case that exercises the interleaving in which i1 occurs
before i2 and one that exercises the interleaving in which i2 occurs before i1.

Heuristics. Heuristics guide the exploration of the interleaving space. For
instance, some techniques prioritize interleavings by their diversity with respect
to the executed ones. Similarly, some other techniques prioritize interleavings
that can be obtained by introducing a bounded number of scheduling constraints.

24 3.2 Towards a Classification Schema

Reproduction techniques

Reproduction techniques select interleavings that reproduce a specific concur-
rency failure that has been observed in the field, and include record-and-replay
and post-processing approaches.

Record-and-replay. Record-and-replay approaches rely on information con-
tinuously collected at runtime. Since recording the whole execution would in-
troduce a performance overhead which is not acceptable in production environ-
ment, these techniques aim to reduce the amount of information that needs to be
recorded to enable failure reproduction. They either collect a sample of the exe-
cuted instructions [2], the accesses to shared variables [57], or the local control-
flow choices of each thread [61].

Post-processing. Post-processing approaches rely on information that is col-
lected only at the time of the failure, avoiding the performance overhead that
record-and-replay approaches introduce. The post-processing approaches pre-
sented so far rely on memory core dumps and usually combine static analysis
and symbolic execution to identify the interleaving that reproduces the given
failure [142, 154].

3.2.3 Property of Interleavings

Property based techniques target specific properties of interleavings, which
are patterns of interactions between execution flows that are likely to violate the
developers’ assumptions on the order of execution of instructions. Some prop-
erty based techniques target the classical properties of interleavings: data races,
atomicity violations, deadlocks, and order violations (see Chapter 2). Other tech-
niques combine multiple classical properties.

3.2.4 Output and Oracle

Techniques for exposing concurrency failures produce two types of outputs,
some simply produce property satisfying interleavings, that is, interleavings that
expose a property of interest, while others compare the results produced by ex-
ecuting an interleaving with an oracle, and return the failing executions, thus
implementing the comparing with oracle feature of Figure 3.1.

In general, not all the interleavings that exhibit a property of interest lead
to a failure. Thus, techniques that output property satisfying interleavings may
result in false positives. For instance, some techniques that detect data races may

25 3.2 Towards a Classification Schema

signal many benign data races.
Oracles define criteria to discriminate between acceptable and failing exe-

cutions, and can be system crash, deadlock or violated assertion oracles. System
crash and deadlock oracles, also known as implicit oracles, identify executions
that lead to system crashes and deadlocks, respectively. Violated assertion ora-
cles exploit assertions about the correct behavior of the system, based either on
explicit specifications or implicit assumptions about the programming paradigm.

3.2.5 Guarantees

Different techniques for selecting interleavings guarantee various levels of
validity of the results.

A technique guarantees the feasibility of the results if it produces only inter-
leavings that can be observed in some concrete executions. Not all techniques
guarantee the feasibility of interleavings, for instance, some prediction tech-
niques that analyze traces and produce alternative interleavings of the observed
operations may miss some program constraints, and thus return interleavings
that do not correspond to any feasible execution.

A technique guarantees soundness of the results if it produces only interleav-
ings that lead to an oracle violation. A technique guarantees the completeness
of the results if it produces all the interleavings that can be observed in some
concrete executions and that lead to an oracle violation. A technique guarantees
property soundness if it identifies only feasible interleavings, which exhibit the
property of interest for the considered test cases. A technique guarantees prop-
erty completeness if it identifies all feasible interleavings that exhibit the property
of interest for the considered test cases.

The concepts of property soundness and property completeness only apply to
property based techniques. Several authors of property based techniques present
their approach as sound and/or complete with respect to the property of inter-
leavings they consider. However, their claims often rely on the assumption that
only some specific synchronization mechanisms are used. In the general case, the
type of order relations and analysis adopted in most property based techniques,
such as happens-before analysis [101] or causally-precedes relations [128], can
introduce approximations that hamper both soundness and completeness [59].

Soundness and completeness describe the accuracy of a technique in exposing
concurrency failures. Property soundness and property completeness describe
the accuracy of a technique in detecting interleavings that expose a given prop-
erty.

26 3.2 Towards a Classification Schema

3.2.6 Target System

We identify three elements that characterize the type of target concurrent sys-
tems, the communication model, the programming paradigm and the consistency
model.

The communication model specifies how the execution flows interact with
each other, and includes shared memory and message passing models. General
techniques target both types of systems.

Many techniques target a specific programming paradigm, sometimes identi-
fied by the target synchronization mechanisms. For instance, some techniques
exploit specific properties of the object oriented paradigm, such as encapsula-
tion of state or subtype substitutability. Similarly, other techniques build on the
assumptions provided in actor based systems. Some techniques only consider
faults that arise from the use of specific synchronization mechanisms, such as
deadlocks that derive from the incorrect use of lock based synchronization. Yet
other techniques do not make any assumption on the programming paradigm
adopted and work with general systems.

Finally, some techniques assume a sequential consistency model, while other
techniques can be applied to relaxed consistency models.

3.2.7 Technique

We characterize the many testing techniques proposed so far along three axes,
the type of analysis they implement, the granularity of the technique, and the type
of architecture they adopt.

Analysis

Techniques for exposing concurrency failures implement either dynamic or
hybrid analysis. Dynamic analysis techniques use only information derived from
executions of the system under test. Hybrid analysis techniques use both static
and dynamic information. Techniques that rely on static information fall outside
the scope of this survey.

Granularity

Different techniques work at various granularity levels that span from unit to
integration and system. Unit techniques target individual units in isolation. For
instance, in object oriented programs, unit techniques consider classes in iso-
lation, without taking into account their interactions with other components of

27 3.3 Classification Schema

the system. Integration techniques focus on the interactions between units, and
check that the communication interface between the units works as expected.
System techniques target the system as a whole, and verify that it meets its re-
quirements.

Architecture

Techniques for exposing concurrency failures refer to different architectures
that characterize the concrete infrastructure used to exercise the system under
test. Such infrastructures are composed of one or more drivers, which produce
input data to one or more execution flows of the system under test, and that
observe the outputs produced by the system under test. For instance, to stimulate
a client-server distributed system, a driver can initialize a client, submit some
requests to the server, wait for replies from the server, and evaluate the received
replies with respect to an oracle.

Architectures can be either centralized, when a single driver interacts with
the system, or distributed, when more than one driver interacts with (different)
execution flows of the system. The above scenario of a client-server distributed
system exemplifies a centralized architecture. A framework for stimulating a
peer-to-peer system in a distributed environment with a driver for each peer is a
simple example of a distributed architecture.

We distinguish between synchronized and independent distributed architec-
ture. In synchronized architectures, the drivers coordinate each other by exchang-
ing messages, while in independent architectures the drivers execute indepen-
dently and do not exchange messages to coordinate their actions. In distributed
architectures, the driver synchronization is used to overcome controllability and
observability problems. These problems occur if a driver cannot determine when
to produce a particular input, or whether a particular output is generated in re-
sponse to a specific input or not, respectively [24].

3.3 Classification Schema

Figure 3.3 shows the classification schema that we define and use to classify
the main approaches for exposing concurrency failures according to the criteria
discussed in Section 3.2. We use the selection of interleavings as the main classifi-
cation criterion since (i) the vast majority of the techniques we survey addresses
the problem of selecting interleavings; (ii) among the main aspects of the prob-
lem reported in Figure 3.1, the selection of interleavings is an activity specific for

28 3.3 Classification Schema

����������

����������������������

�������������������

��������������������

�������������������������

������������������

������������������

�����������������������������

�������������������

������������

������������

����������

���������

������

��������������

��������

��������������������

���������������������������

��������������������������������

������������������������

�������������������������

���������������������������

Figure 3.3. Classification schema

concurrent systems and more characterizes the problem, as generating test cases
and comparing results with oracle are activities required and performed also in
the case of sequential programs.

We distinguish between property based, space exploration, and reproduction
techniques, that we discuss in Sections 4.1, 4.2, and 4.3, respectively. We clas-
sify property based approaches according to the target property of interleaving
as data race (Section 4.1.1), atomicity violation (Section 4.1.2), deadlock (Sec-
tion 4.1.3), combined (Section 4.1.4), and order violation (Section 4.1.5). We
classify space exploration techniques as stress testing (Section 4.2.1), exhaus-
tive exploration (Section 4.2.2), coverage criteria (Section 4.2.3), and heuristics
(Section 4.2.4). We classify reproduction techniques as record-and-replay (Sec-
tion 4.3.1), and post-processing (Section 4.3.2).

This organization groups together approaches that implement related classes
of methodologies and algorithms to expose failures. This is the case of property
based techniques that exploit the same property of interleavings, which typically
target the same type of concurrency faults, as well as space exploration and re-
production approaches, which typically target generic types of faults.

Chapter 4

A Taxonomy of Techniques for
Exposing Concurrency Failures

In this chapter, we propose a taxonomy of the state-of-the-art techniques for
exposing concurrency failures. The taxonomy classifies the approaches according
to the classification schema presented in Chapter 3, which distinguishes between
property based (Section 4.1), space exploration (Section 4.2), and reproduction
(Section 4.3) techniques. To provide a comprehensive survey of the emerging
trends in exposing concurrency failures, we systematically reviewed the litera-
ture from 2000 to 2017: we (i) searched the online repositories of the main
scientific publishers, including IEEE Explore, ACM Digital Library, Springer On-
line Library and Elsevier Online Library, and more generally the Web through the
popular online search engines such as Google Scholar and Microsoft Academic
Search; we collected papers that are published from year 2000 and that present
one of the following set of keywords in their title or abstract: “testing + con-
current”, “testing + multi-thread”, “testing + parallel”, “testing + distributed”,
“reproducing + concurrent”, “reproducing + multi-thread”, “reproducing + par-
allel”, “reproducing + distributed”, (ii) considered all publications that are cited
or citing the papers in our repository, and that match the same criteria, (iii) man-
ually analyzed the proceedings of the conferences and the journals where the
papers in our repository appear, (iv) filtered out the papers outside the scope of
our analysis, for example papers on hardware testing and papers on theoretical
aspects, and (v) filtered out workshop papers and preliminary work that has been
later subsumed by conference or journal publications.

We summarize the classification of the techniques in seven tables according
to the criteria. Table 4.1, Table 4.2, Table 4.3, Table 4.4 and Table 4.5 overview
property based techniques. Table 4.6 overviews space exploration techniques.

29

30 4.1 Property Based Techniques

Table 4.7 overviews reproduction techniques. The tables share the same struc-
ture. The rows indicate the techniques with their name, when available, or with
the name of the authors of the paper that proposed the technique. Rows are
grouped by subcategory when applicable, and report the approaches sorted by
main contribution within the same subcategory. The contribution of most ap-
proaches is multi-faced: we list the approaches according to what we identify as
their core novelty, mentioning other elements when particularly relevant. The
columns correspond to the criteria identified in Figure 3.2.

In the tables we do not report explicitly the testing architecture, since all the
techniques we analyze implement a centralized architecture. In the tables we
also do not report failure information, since either it does not apply (property-
based and space exploration techniques) or it is a fix requirement in input (re-
production techniques). In Tables 4.6 and 4.7, we also omit columns prediction,
property completeness and property soundness, since they apply only to property
based techniques.

4.1 Property Based Techniques

4.1.1 Data Race

We classify the large number of techniques designed to detect data races in
shared memory programs according to both their granularity and the type of
analysis they perform. We consider techniques that target low level and high level
data races, and we further classify low level techniques as lockset, happens-before
and hybrid analysis techniques.

Low level data race detection techniques. Low level data race detection tech-
niques target data races that occur at the level of individual memory locations.
They rely on some form of analysis to track the order relations between memory
instructions in a given execution trace, and either detect the occurrence of a data
race or predict if a data race is possible in alternative interleavings.

These techniques rely either on lockset analysis, which simply identifies con-
current memory accesses not protected by locks, or on happens-before analysis,
which detects some order relations among concurrent memory accesses. Test-
ing techniques that rely on happens-before analysis often claim to be property
complete, meaning that they can detect all the data races that can be generated
with alternative schedules of an input execution trace. However, happens-before
analysis is in general conservative: for instance, when it observes the release
of a lock followed by an acquisition of the same lock in an execution trace, it

31 4.1 Property Based Techniques

Table 4.1. Data race detection techniques

Input
Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

Pr
op

.
C

om
pl

et
.

Pr
op

.
So

u
n

d.

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Low level — Lockset

Shacham et al. [122] Ø Ø Ø Ø Ø SM General Seq S D Ø Ø Ø Ø
Racez [123] Ø Ø SM General Seq S D - - Ø
Praun and Gross [139] Ø Ø SM OO Seq S H - - Ø
ACCORD [67] Ø Ø Ø Ø SM Fork-join Seq S D - -

Low level — Happens-before

FastTrack [42] Ø Ø SM General Seq S D - - Ø
LiteRace [87] Ø Ø SM General Seq U D - - Ø
Pacer [16] Ø Ø SM General Seq S D - - Ø
SOS [77] Ø Ø SM General Seq S D - - Ø
Carisma [155] Ø Ø SM General Seq S D - - Ø
ReEnact [107] Ø Ø Ø SM General Seq S D - - Ø
Narayanasamy et al. [90] Ø Ø Ø SM General Seq S D Ø - - Ø
Frost [137] Ø Ø Ø Ø Ø SM General Seq S D Ø
Portend [68] Ø Ø Ø SM General Seq S D Ø - - Ø
Tian et al. [134] Ø Ø SM General Seq S D - - Ø
RDIT [109] Ø Ø Ø SM General Seq S D - -
Smaragdakis et al. [128] Ø Ø Ø SM General Seq S D - -
DrFinder [20] Ø Ø Ø SM General Seq S D - - Ø
RVPredict [59] Ø Ø Ø SM General Seq S D - -
WebRacer [102] Ø Ø SM Web platforms Seq S D - - Ø
EventRacer [110] Ø Ø SM Event-based Seq S D - - Ø
DroidRacer [85] Ø Ø SM Android apps Seq S D - - Ø
Java RaceFinder [70] Ø Ø Ø SM General Rel S D Ø - - Ø
Relaxer [19] Ø Ø Ø SM General Rel S D - - Ø

Low level — Hybrid

Choi et al. [28] Ø Ø SM General Seq S H - - Ø
Wester et al [143] Ø Ø SM General Seq S D - - Ø
RaceMob [69] Ø Ø SM General Seq S H Ø - - Ø
RaceFuzzer [119] Ø Ø Ø SM General Seq S D Ø Ø
RaceTrack [152] Ø Ø SM General Seq S D - - Ø
Goldilocks [37] Ø Ø SM General Seq S H - - Ø
MultiRace [103] Ø Ø SM General Rel S D - - Ø
SimRT [150] Ø Ø Ø SM General Seq S D Ø Ø
Racageddon [38] Ø Ø SM General Seq S D - - Ø
Narada [114] Ø Ø Ø SM General Seq S D Ø Ø

High level

Colt [121] Ø Ø Ø Ø SM OO Seq U D - - Ø
Dimitrov et al. [34] Ø Ø Ø SM OO Seq U D - - Ø
Simian [12] Ø SM Web Platforms Seq U D - - Ø

Legend (common to all tables):
SM shared memory Seq sequential consistency S system testing H hybrid analysis
MP message passing Rel relaxed consistency U unit testing D dynamic analysis

32 4.1 Property Based Techniques

interprets the two operations as totally ordered, while they could appear in a
different order in other interleavings of the same trace. Because of this, tradi-
tional happens-before analysis may miss some possible interleavings, and may
thus miss some faults [128].

The property completeness problem has been addressed by either implement-
ing variants of the happens-before relation that capture the order of events more
accurately, and thus reduce the possibility of missing some faults [59, 128], or by
exploiting model checking to explore re-orderings of instructions that are not al-
lowed according to the over-restrictive happens-before analysis, but still possible
in practice. Some hybrid solutions combine the advantages of the less accurate
but inexpensive lockset analysis with the more accurate but expensive happens-
before analysis [94].

High level data race detection detection techniques. High level data race detec-
tion techniques target complex data structures, such as objects in object oriented
programs, and look for interleavings that lead to results not compatible with any
serial execution. The naïve approach to detect high level data races consists in
comparing the results of an interleaving with all possible serial executions. The
intuitive scalability issues of the exhaustive analysis of all possible serial execu-
tions is tackled by many testing techniques that exploit some form of specification
provided by the developer, which indicates relevant order characteristics among
operations, such as commutativity.

Low level — Lockset

Lockset analysis has been proposed for data race detection by Savage et al.
in the late nineties based on the theory of reduction that Lipton introduced in
the seventies [78]. Savage et al.’s Eraser approach [116] addresses both the con-
servative limitations of static data race analysis and the performance problems
of happens-before analysis, the two popular classes of approaches for detecting
data races that were investigated at that time. Indeed in the nineties, happens-
before analysis was considered too expensive, since it requires information for
each execution flow about the concurrent accesses to each shared data item.
Lockset analysis reveals possible data races by dynamically computing the set of
common locks held when accessing shared data items, and identifying execution
flows that access the same shared data items without sharing any lock. By tak-
ing into account only lock based synchronization, lockset analysis improves the
efficiency with respect to happens-before analysis since it only needs to store in-
formation about the set of locks held by the execution flows, but looses accuracy,
since it ignores additional order relations determined by other synchronization

33 4.1 Property Based Techniques

mechanisms. Thus, the techniques based on lockset analysis are not property
sound.

In the last fifteen years, research on data race detection focused mostly on
reducing the amount of false positives, moving the attention back to happens-
before analysis and forward to hybrid approaches. The few recent techniques
based exclusively on lockset analysis aim to either improve precision and effi-
ciency or to extend to new programming paradigms. Shacham et al. [122] im-
prove the precision by combining dynamic lockset analysis with model checking.
Racez [123] improves the efficiency with a sampling approach that captures only
a subset of the synchronization operations and the memory accesses performed
by the target system. ACCORD [67] extends lockset analysis to object oriented
and array based concurrent programs.

Low level — Happens-before

Happens-before analysis was introduced by Leslie Lamport in the late seven-
ties [72] and has been adopted in several early techniques to detect data races
in concurrent programs [36, 91].

Happens-before analysis is more precise than lockset analysis, since it can
deal with any kind of synchronization mechanism beyond lock based synchro-
nization, and thus can avoid many false positives that are inevitable in lockset
analysis at the price of additional computational costs. Happens-before analy-
sis has been widely studied in the last fifteen years in the context of exposing
data races with focus on (i) improving performance, (ii) reducing false positives,
(iii) improving completeness, (iv) tailoring the analysis to specific programming
paradigms or languages, and (v) extending the analysis to relaxed (non sequen-
tial) memory models.

Different approaches improve the performance of happens-before analysis.
FastTrack [42] proposes a lightweight representation of the happens-before anal-
ysis with constant time and space complexity that records only the information
about the last write operation on each data item. LiteRace [87], Pacer [16],
SOS [77] and Carisma [155] reduce the cost of the expensive monitoring activ-
ities through sampling: LiteRace instruments only code elements that are less
frequently accessed, based on the assumption that frequently accessed code ele-
ments have fewer probabilities to be involved in data races; Pacer estimates the
probability of finding data races within code regions based on the sampling rate;
SOS excludes from the analysis stationary objects, which are objects that are
only read after being written during the initialization period; Carisma exploits
the similarity between multiple accesses to the same data structures to estimate

34 4.1 Property Based Techniques

and balance the sample budget. ReEnact [107] improves the performance of
happens-before analysis by proposing an hardware implementation.

Some approaches focus on reducing the amount of false positives that happens-
before analysis can produce. Narayanasamy et al. [90], Frost [137] and Por-
tend [68] reduce the false positive rate by automatically classifying the detected
races as either benign or harmful: for a given data race, the approaches replay
the execution for the different orders among the memory operations involved
in the data race, and classify the race as harmful only if the executions result
in different program states. Tian et al. [134] improve the accuracy of happens-
before analysis by inferring program specific synchronization mechanisms, such
as flags, test-and-set locks and barriers. RDIT [109] reduces the amount of false
positives of happens-before analysis by considering synchronization events gen-
erated from external libraries.

Some approaches improve the completeness of happens-before analysis re-
ducing the number of false negatives it produces. Smaragdakis et al. [128] pro-
pose the causally-precedes relation, which relaxes the happens-before relation
with respect to lock releases and acquisitions by inferring an order between two
lock-protected blocks if and only if they contain conflicting statements. Cat et
al. propose DrFinder [20] to deal with hidden data races that consists of pairs
of accesses to the same shared memory locations that are in a happens-before
relation only for some subsets of all possible interleavings. RVPredict [59] im-
proves completeness by integrating happens-before analysis with control flow
information.

Some techniques improve the precision of the analysis by reducing its scope
to specific types of applications, and exploiting the domain semantics to infer
order constraints more precisely: WebRacer [102] and EventRacer [110] adapt
the analysis to Web and event-based applications, respectively; DroidRacer [85]
applies the analysis to Android applications.

RaceFinder [70] and Relaxer [19] do not assume a sequentially consistent
memory model and detect data races in a relaxed memory model. RaceFinder
augments the analysis with model checking to capture order relations in the re-
laxed Java memory model. Relaxer examines a sequentially-consistent execution
and dynamically detects potential data races, which are used to predict possi-
ble violations of sequential consistency under alternate executions on a relaxed
memory model.

35 4.1 Property Based Techniques

Low level — Hybrid

Hybrid techniques combine lockset and happens-before analyses to benefit
from the accuracy of happens-before analysis with the efficiency of lockset anal-
ysis. Following the seminal work of Choi et al. [28], hybrid techniques limit the
scope of expensive happens-before analysis to code fragments that either static
or dynamic lockset analysis efficiently isolates as possibly affected by data races.

The approaches differ from their focus that can be on (i) improving perfor-
mance by means of specific execution frameworks, (ii) reducing the amount of
false positives, (iii) targeting specific synchronization mechanisms, (iv) covering
relaxed memory models, and (v) completing the identified interleavings with test
cases.

Wester et al. [143] improve performance by pipelining the analysis on a a par-
allel infrastructure that exploits multiple cores to speed up lockset and happens-
before analyses. RaceMob [69] optimizes performance of the analyses by crowd-
sourcing distribute data race detection across several executions.

RaceFuzzer [119] reduces the amount of false positives by randomly gener-
ating executions that expose data races and observing their effects. RaceFuzzer
executes the different interleavings determined by a data race and uses either
program crashes or assertions to discriminate between faulty and benign races.

RaceTrack [152] and Goldilocks [37] extend the analysis to specific synchro-
nization mechanisms: RaceTrack targets both lock-based and fork-join synchro-
nization primitives, while Goldilocks targets the synchronization mechanisms of
software transactions.

MultiRace [103] extends the analysis to the relaxed C++memory model and
aims to detect data races in production mode by introducing analysis optimiza-
tions that reduce the number of checks to memory accesses thus reducing the
overhead.

SimRT [150], Racageddon [38], and Narada [114] complement interleav-
ings with test case prioritization and generation: SimRT selects and prioritizes
regression test cases according to the probability of exposing newly introduced
data races after program changes by identifying the variables that are impacted
by a program change; Racageddon generates a test input together with an in-
terleaving that lead to executing a target data race by combining a hybrid data
race detection technique with symbolic execution; Narada analyzes sequential
test cases to synthesize concurrent test cases that can expose data races.

36 4.1 Property Based Techniques

Table 4.2. Atomicity violation detection techniques

Input
Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

Pr
op

.
C

om
pl

et
.

Pr
op

.
So

u
n

d.

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Code centric

Atomizer [41] Ø Ø Ø SM General Seq S D - - Ø
SVD [147] Ø Ø SM General Seq S D - - Ø
AVIO [82] Ø Ø SM General Seq S D - - Ø
Velodrome [43] Ø Ø SM General Seq S D - - Ø
AtomFuzzer [97] Ø Ø Ø Ø SM General Seq S D Ø Ø
HAVE [27] Ø Ø Ø SM General Seq S H - -
Penelope [129] Ø Ø Ø Ø SM General Seq U D Ø Ø
Wang and Stoller [141] Ø Ø Ø SM OO Seq S D Ø - -
CTrigger [98] Ø Ø Ø Ø Ø SM General Seq S D Ø Ø
Falcon [99] Ø Ø SM General Seq U D - - Ø
Best [47] Ø Ø Ø SM General Seq S H - - Ø
DoubleChecker [14] Ø Ø Ø SM General Seq U D - - Ø
Intruder [113] Ø n.a.n.a.n.a.n.a. SM General Seq U D n.a.n.a.n.a.n.a.n.a.
AutoConTest [132] Ø Ø SM General Seq U D Ø Ø Ø

Data centric

Muvi [80] Ø n.a.n.a.n.a.n.a. n.a. SM General Seq S D n.a.n.a.n.a.n.a.n.a.
Hammer et al. [51] Ø Ø Ø SM General Seq S H - - Ø
AssetFuzzer [71] Ø Ø Ø Ø SM General Seq S D - - Ø
ReConTest [133] Ø Ø Ø Ø Ø SM General Seq S D Ø Ø Ø Ø

High level

Few approaches move from the analysis of direct shared memory accesses
to the analysis of complex data structures. Colt [121] detects non-linearizable
sequences of operations on Java objects by analyzing the trace of a single ex-
ecution flow and randomly generating an adversary concurrent execution flow.
Dimitrov et al. [34] present a technique to detect commutativity races, which
are pairs of operations on the same object that are not ordered according to the
happens-before relation and that do not commute. Simian [13] targets multi-
client web applications, where multiple clients concurrently work on a shared
resource, such as a text document, a spreadsheet, or source code.

4.1.2 Atomicity Violation

We classify atomicity violation techniques based on the considered atomicity
constraints as code centric, if they target code regions, and data centric, if they

37 4.1 Property Based Techniques

target data items. Similarly to techniques to detect data races, techniques to
detect atomicity violations dynamically analyze the target system to investigate
the order relations imposed by the synchronization mechanisms, by exploiting
some form of lockset or happens-before analysis, and suffer from the limitations
of the ground analyses.

Code centric

Detecting code centric atomicity violations involves (i) identifying code re-
gions that are intended to be atomic, and (ii) detecting interleavings that violate
the atomicity of the identified code regions.

Different techniques identify code regions that are intended to be atomic by
relying on (i) system specifications or models, (ii) assumptions or heuristics on
atomic blocks, or (iii) static or dynamic analyses that infer atomic blocks.

In general, detecting if an interleaving violates atomicity corresponds to check-
ing if the interleaving is serializable, that is, the results of its execution are equiv-
alent to the results of any serial execution. Checking serializability is impractical
due to the large number of serial executions that are present even in small pro-
grams. Code centric approaches reduce the problem of verifying the atomicity
of interleavings by searching for memory-access patterns that encode sufficient
but not necessary conditions for non-serializability, thus trading completeness
for performance. Current approaches exploit some form of dynamic analysis,
usually happens-before analysis.

The two-phase code centric approach to detect atomicity violations originates
from Atomizer, the seminal work of Flanagan and Freund [41]. Atomizer ex-
ploits lockset analysis to identify non serializable interleavings, relying on code
annotations that specify atomic code blocks. The recent code centric approaches
improve the original Atomizer approach with techniques to: (i) infer atomic re-
gions, (ii) reduce the amount of false positives, (iii) improve performance, and
(iv) augment the selection of interleavings with test case generation.

SVD [147] and AVIO [82] automatically infer atomic code regions: SVD infers
atomic regions by exploiting data and control dependencies; AVIO models atomic
regions in terms of interleaving invariants that it iteratively infers from system
executions.

Some approaches reduce the amount of false positives generated by the analy-
sis. Velodrome [43] uses serializability to distinguish between benign and harm-
ful atomicity violations. AtomFuzzer [97] and Penelope [129] actively control
the thread scheduler to trigger atomicity violations and report only those atom-
icity violations that lead to system crashes. HAVE [27] implements a hybrid

38 4.1 Property Based Techniques

analysis that speculatively approximates the results that could have occurred in
branches that have not been observed in the executed traces yet.

The approach by Wang and Stoller [141], CTrigger [98], Falcon [99], Best [47]
and DoubleChecker [14] improve performance, in many ways. Wang and Stoller
exploit object oriented properties to optimize the Atomizer approach; CTrigger
reduces the time to reveal atomicity violations by prioritizing the interleavings
according to the probability they will occur; Falcon limits the amount of infor-
mation stored during the analysis, thus trading accuracy for performance; Best
aggregates interleavings into equivalence classes and examines only one repre-
sentative interleaving per class; DoubleChecker combines an imprecise but effi-
cient analysis with a precise but more expensive analysis on demand.

Intruder [113] completes the interleaving by generating test cases that ex-
pose atomicity violations. It combines sequential test cases available in a given
test suite to generate concurrent test cases that have a high probability to expose
atomicity violations. AutoConTest [132] complements the interleavings explo-
ration with test case generation driven by a coverage metric computed during
sequential test case generation.

Data centric

Detecting data centric atomicity violations involves finding violations of atomic-
set serializability, a property of interleavings that Vaziri et al. introduced in 2006
to capture data consistency properties that bind multiple data items in concur-
rent programs [136]. The recent data centric approaches focus on (i) analyzing
the correlation between data items (Muvi [80]), (ii) revealing data access pat-
terns that characterize some form of atomicity violation (Hammer et al. and
AssetFuzzer [51, 71]) or (iii) producing regression tests that take advantage of
the differences among system versions (ReConTest [133]).

4.1.3 Deadlock

Most testing approaches for detecting deadlocks build on the seminal work
of Goodlock [52] and DeadlockFuzzer [64]. Goodlock dynamically records the
locking pattern of each program execution as a lock tree, and compares the trees
of the threads pairwise to detect circular dependencies that can lead to possible
resource deadlocks. DeadlockFuzzer elaborates the potential deadlocks identified
with Goodlock to find feasible executions that deadlock.

The main recent techniques build on top of Goodlock and DeadlockFuzzer
to: (i) optimize performance, (ii) complement selection of interleavings with test

39 4.1 Property Based Techniques

Table 4.3. Deadlock detection techniques

Input
Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

Pr
op

.
C

om
pl

et
.

Pr
op

.
So

u
n

d.

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Goodlock [52] Ø Ø Ø SM Lock sync Seq S D - -
DeadlockFuzzer [64] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
MagicFuzzer [21] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
Wolf [112] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
ConLock [22] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
Sherlock [39] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
OMEN [111] Ø Ø Ø SM Lock sync Seq S D Ø Ø Ø
Armus [30] Ø Ø SM Barrier sync Seq S D Ø Ø Ø

Table 4.4. Techniques for detecting combined properties violations

Input
Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

Pr
op

.
C

om
pl

et
.

Pr
op

.
So

u
n

d.

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Agarwal et al. [1] Ø Ø SM General Seq S H - - Ø
Chen and MacDonal [25] Ø Ø Ø Ø Ø SM General Seq S H Ø Ø Ø
Kahlon and Wang [66] Ø Ø Ø SM General Seq S D - -
PECAN[60] Ø Ø Ø Ø SM General Seq S D - - Ø

case generation, (iii) consider synchronization mechanisms other than locks.

MagicFuzzer [21], Wolf [112], and ConLock [22] improve the performance
of the Goodlock analysis. MagicFuzzer and Wolf prune the lock tree by removing
nodes that cannot lead to deadlocks and candidate deadlocks that are infeasible
due to order relations among events, respectively. ConLock improves the ran-
domized scheduler of DeadlockFuzzer to avoid artificially-generated deadlocks.

Sherlock [39] and OMEN [111] augments interleavings selection with test
case generation. Sherlock exploits symbolic execution to identify relevant inputs
that can lead to deadlock. OMEN analyzes sequential test cases to synthesize
concurrent test cases that can expose deadlocks.

Armus [30] targets deadlocks caused by barrier synchronization primitives.

40 4.1 Property Based Techniques

Table 4.5. Techniques for detecting order violations

Input
Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

Pr
op

.
C

om
pl

et
.

Pr
op

.
So

u
n

d.

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

PRETEX [65] Ø Ø Ø SM OO Seq U H - -
2ndStrike [48] Ø Ø Ø Ø SM OO Seq U D Ø Ø Ø
ConMem [157] Ø Ø Ø SM General Seq S D Ø Ø Ø
ConSeq [156] Ø Ø Ø Ø SM General Seq S H Ø Ø Ø
ExceptioNULL [40] Ø Ø Ø SM General Seq S D Ø Ø Ø
Maple [148] Ø Ø Ø Ø Ø SM General Seq S D Ø Ø Ø
jPredictor [23] Ø Ø Ø Ø SM General Seq S H Ø Ø Ø
Sinha and Wang [127] Ø Ø Ø SM General Seq S D - -
DefUse [124] Ø Ø SM General Seq S D - - Ø
GPredict [58] Ø Ø Ø Ø SM General Seq S D - -
SimRacer [149] Ø Ø Ø Ø SM Process level Seq S D Ø Ø Ø
Cafa [56] Ø Ø Ø MP Event driven Seq S D - -
Mutlu et al. [89] Ø Ø Ø MP Javascript app Seq S D - -

4.1.4 Combined

Few techniques target both atomicity violations and data races, and rely on
happens-before analysis. Agarwal et al. [1] focus on performance by comple-
menting happens-before analysis with static type checking. Chen and MacDon-
ald [25] focus on accuracy, by considering control flow information. Kahlon and
Wang [66] and PECAN [60] focus on generality, by providing developers with
languages to express undesired patterns of memory accesses.

4.1.5 Order Violation

Several approaches address order violations that cannot be reduced to any
of the classic properties of interleavings discussed in the previous sections (data
races, atomicity violations and deadlocks). These approaches look for violations
of properties that derive from (i) specific types of faults, (ii) program specifica-
tions or (iii) semantics of the programming models.

PRETEX [65] and 2ndStrike [48] address typestate faults, that is, faults that
involve violations of the high level semantics of the data structures. ConMem [157],
ConSeq [156] and ExceptioNULL [40] target violations of faults that impact on
the program behavior: ConMem selects interleavings that can lead to null pointer
dereference, read of an uninitialized data item and access to invalid memory loca-
tions; ConSeq extends ConMem by considering also assertion violations, infinite

41 4.2 Space Exploration Techniques

loops, and calls to error message procedures; ExceptioNULL targets null pointer
exceptions. Maple [148] focuses on patterns of shared variable accesses. Dif-
ferently from the other approaches that target fault types, Maple targets critical
patterns that may or may not lead to concurrency faults.

jPredictor [23], Sinha and Wang [127] and GPredict [58] look for concurrent
behaviors that violate user-defined program specifications. DefUse [124] targets
both sequential and concurrent faults that violate automatically generated data-
flow invariants.

SimRacer [149] targets process level violations, Cafa targets Android pro-
grams [56], Mutlu et al. target JavaScript programs [89].

4.2 Space Exploration Techniques

Some testing techniques explore the space of interleavings not driven by spe-
cific properties: stress testing, exhaustive exploration, coverage criteria and heuris-
tic exploration of the interleaving space.

4.2.1 Stress Testing

Classic stress testing approaches execute test suites that exercise the target
system under increasingly heavy and up to extreme load conditions. In the con-
text of testing concurrent systems, stress testing approaches execute the same test
suite many times without explicitly controlling the scheduling. Pike [44] checks
the linearizability of a concurrent execution by comparing the output and the in-
ternal state of that execution with the output and the internal state of the many
possible linearizations. SpeedGun [106] targets performance regression testing
by executing a test case several times on different versions of the target system
and reporting relevant performance differences between the two versions. Cov-
Con [29] generates test cases guided by a coverage criterion that focuses the test
generation on infrequently or not at all covered pairs of methods.

4.2.2 Exhaustive exploration

Exhaustive exploration approaches analyze all possible interleavings for a
given test input. Ballerina [92] and its extensions [104, 105] limit the explo-
ration to test cases composed of only two execution flows. Sen and Agha [120]
analyze all possible interleavings of MPI programs by exploiting symbolic exe-
cution. Basset [74] studies exhaustive exploration in the context of actor based

42 4.2 Space Exploration Techniques

Table 4.6. Techniques for exploring the space of interleavings

Input Output / Oracle
Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Stress testing

Pike [44] Ø Ø Ø SM General Seq S D Ø Ø
SpeedGun [106] Ø SM General Seq n.a. n.a. Ø
CovCon [29] Ø Ø SM General Seq S D Ø Ø

Exhaustive exploration

Ballerina [92] Ø SM OO Seq U D Ø Ø
Sen and Agha [120] Ø Ø MP General Seq S D Ø Ø
Basset [74] Ø Ø Ø Ø MP Actors Seq S D Ø Ø Ø
CheckMate [63] Ø Ø SM General Seq S D
CPPMem [9] Ø Ø SM General Rel S D
ViP [35] Ø Ø SM General Seq S D Ø
CDSChecker [93] Ø Ø SM General Rel S D

Coverage criteria

Wang et al. [140] Ø Ø SM General Seq U D Ø Ø
Hong et al. [54] Ø Ø Ø SM General Seq S D Ø Ø
Bita [131] Ø Ø Ø MP Actors Seq S D Ø Ø

Heuristics

Rapos [118] Ø Ø Ø Ø SM General Seq S D Ø Ø
PCT [18] Ø Ø Ø SM General Seq S D Ø Ø
Gambit [32] Ø Ø Ø Ø SM General Seq S D Ø Ø

programs. CheckMate [63] and Vip [35] exploit model checking to identify dead-
locks and violations of user-defined properties expressed in past-time Linear Tem-
poral Logic, respectively. CPPMem [9] and CDSChecker extend the analysis to
the C and C++ relaxed memory models, respectively.

4.2.3 Coverage criteria

Coverage criteria identify relevant subsets of the program space to be ex-
plored. Wang et al. [140] introduce HaPSet, a coverage criterion based on data
flow relations with a reasonable cost and the capability of detecting subtle bugs
manifested only by rare interleavings. Hong et al. [54] define the Synchronization-
Pair coverage criterion, which requires to execute all atomic block pairs in dif-
ferent orders. Bita [131] targets actor based programs and introduces three cov-
erage criteria which require covering different sequences of receive events.

43 4.3 Reproduction Techniques

Table 4.7. Techniques for reproducing concurrency failures

Input Output / Oracle
Target
System

Testing
Tech.

Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

C
om

m
u

n
.

Pa
ra

di
gm

C
on

si
st

.

G
ra

n
u

la
ri

ty

A
n

al
ys

is

C
om

pl
et

.

So
u

n
dn

es
s

Fe
as

ib
il

it
y

Record-and-replay

ODR [2] Ø SM General Seq S D
Pres [100] Ø SM General Seq S D Ø Ø
LEAP [57] Ø SM General Seq S H Ø Ø
Stride [61] Ø SM General Seq S D
Chimera [75] Ø SM General Seq S H Ø Ø
CLAP [61] Ø SM General Seq S D
ReCBuLC [153] Ø SM General Seq S D Ø Ø
DESCRY [151] Ø SM General Seq S D Ø Ø

Post-processing

ESD [154] Ø SM General Seq S H Ø Ø
Weratunge et al [142] Ø SM General Seq S H Ø Ø

4.2.4 Heuristics

Heuristic approaches bound the space of interleavings to be explored, and
prioritize their execution: Rapos [118] exploits partial-order reduction to iden-
tify equivalent interleavings; PCT [18] bounds the number of scheduling con-
straints; Gambit [32] prioritizes interleavings by their diversity with respect to
the executed ones.

4.3 Reproduction Techniques

Reproduction techniques explore the space of interleavings to reproduce a
specific concurrency failure that has been observed in the field. We classify repro-
duction techniques according to the type of information they collect to reproduce
the failure: Record-and-replay approaches, approaches that rely on information
continuously collected at runtime, and Post-processing approaches, approaches
that rely on information collected at the time of the failure only.

4.3.1 Record-and-replay

Record-and-replay approaches collect information at runtime and analyze the
recorded information to reproduce the observed concurrency failure. The ap-
proaches differ from the type and amount of information they collect.

44 4.3 Reproduction Techniques

ODR [2] records the synchronization operations and a sample of the exe-
cuted instructions to reproduce an interleaving that lead to the same result of
the observed interleaving. PRES [100] collects only synchronization operations.
LEAP [57] identifies shared variables through static analysis and records ac-
cesses to such variables only. Stride [158] introduces bounded-linkages, which
record the relevant relations among synchronization actions without recording
the global order of executed instructions. Chimera [75] statically detects data
races, protects racy accesses with weak locks and collects all the synchroniza-
tion operations. CLAP [61] reproduces concurrency failures by collecting the
local control-flow choices of each thread. ReCBuLC [153] records hardware per-
core local clocks. DESCRY [151] reproduces system-level concurrency failures by
leveraging default logs and combining static and dynamic analysis with symbolic
execution.

4.3.2 Post-processing

Post-processing approaches collect information only at the time of the failure
and do not require runtime tracing or monitoring, thus incurring no runtime
overhead.

The two approaches presented so far rely on memory core dumps. ESD [154]
combines symbolic execution with inter- and intra-procedural static analysis to
reproduce the failure. Weeratunge et al. [142] propose an approach that repro-
duces a failure by comparing the memory core dumps of a failing execution with
the memory core dumps of passing execution.

Chapter 5

Reproducing Concurrency Failures
From Crash Stack Traces

In the previous chapters we presented an extensive and comprehensive clas-
sification, analysis and comparison of the state-of-the-art techniques for exposing
concurrency failures.

The study indicates the availability of only few preliminary approaches for re-
producing concurrency failures. The main characteristics and limitations of the
techniques proposed so far are that they (i) rely on either traces that are expen-
sive to produce or memory core dumps that are hard to obtain, and (ii) focus on
failure-inducing interleavings, ignoring failure-inducing concurrent test cases.

In this chapter we propose CONCRASH, a technique that synthesizes both
failure-inducing concurrent test cases and related interleavings and relies on
crash stacks, which are easily obtainable and do not suffer from performance and
privacy issues. CONCRASH (i) efficiently explores the huge space of possible test
cases to identify a failure-inducing test case, by using a suitable combination of
search pruning strategies, and (ii) integrates and adapts existing techniques for
exploring interleavings, to automatically reproduce a concurrency failure, thus
identifying both a failure-inducing test case and corresponding interleaving.

In the remainder of this chapter we present the algorithmic aspects of CON-
CRASH, and discuss in detail the strategies it adopts to automatically reproduce
concurrency failures from crash stack traces. The experimental evaluation that
we present in the next chapter shows the effectiveness of CONCRASH.

45

46 5.1 Overview

5.1 Overview

CONCRASH synthesizes concurrent test cases that reproduce concurrency fail-
ures of classes that violate thread-safety. A class is thread-safe if it encapsu-
lates synchronization mechanisms that prevent incorrect accesses to the class
from multiple threads [50]. In essence, thread-safe classes guarantee that each
thread access an instance of the class as if no other threads are using the same
instance concurrently, without requiring introducing any synchronization mech-
anism. Thread-safe classes encapsulate concurrency related-challenges, and are
commonly used in concurrent software design. Incorrect implementations of
synchronization mechanisms that violate thread-safeness lead to wrong concur-
rent accesses to the class and consequence concurrency failures. Thread-safety
violations represent a significant fraction of real-world concurrency failures, due
to the wide use of thread-safe classes.

CONCRASH automatically synthesizes concurrent test cases that reproduce
concurrency failures of classes that violate thread-safety by requiring only the
source code of the class-under-test and the standard crash stack of the failure.
CONCRASH addresses concurrency failures that manifest as runtime exceptions
and generate a crash stack. Recent studies on concurrency failures show that 56-
70% of the examined failures manifest as system crashes or hangs [81], and pro-
duce a crash stack. Crash stacks contain only partial information about the state
of the system, thus challenging the reproduction of concurrency failures [145].
In particular, crash stacks provide little information about the state of the objects
and the values of the input parameters of the methods involved in the failure,
and, more importantly, provide only information about the failing thread, with
no information about the other threads that comprise the system and that con-
tribute trigger to failure. This is a key difference with respect to reproducing
sequential failures from crash stack traces, which has been previously studied in
recent years [8, 26].

CONCRASH identifies a failing execution that reproduces a crash stack by
efficiently exploring the huge space of interleavings, by alternately generating
test cases and exploring thread interleavings. CONCRASH iteratively generates
concurrent test cases by implementing pruning strategies that exclude both re-
dundant and irrelevant test cases to optimize the exploration of the interleav-
ing space. Test cases are redundant if they induce the same interleaving space
of previously investigated test cases and thus would not reproduce the failure.
Test cases are irrelevant if CONCRASH can infer the impossibility of reproduc-
ing the failure from the crash stack trace and the single-threaded execution of
the call sequences that comprise the test case. CONCRASH pruning strategies

47 5.1 Overview

are cost-effective as they analyze single-threaded executions of the method call
sequences rather than exploring the full interleaving space of concurrent execu-
tions. CONCRASH privileges short test cases to improve the efficiency of exploring
interleavings, localizing, and fixing the fault.

Motivating Example

Figure 5.1 shows the code snippet of a concurrency fault in the (supposedly)
thread-safe class java.util.logging.Logger of the JDK library. The fault has
been introduced in Version 1.4.1 of the library, and has been fixed only in Version
1.7, and has affected the correct usage of the class for many years. The fault
witness the difficulty to detect and reproduce treat-safety violations.

Method log (line 28) accesses field filter at lines 33 and 34 within a syn-
chronized block that locks the object instance. The method checks whether the
field is initialized (line 33) before dereferencing it (line 34). As the two accesses
are enclosed within a synchronized block, the method expects to execute the two
statements with an exclusive access to the object instance, thus expecting that
no other thread can access the object instance and modify it. However, method
setFilter (line 54) can potentially interleave as it accesses and modifies the
same field filter (line 58) without locking the object instance. As a result, in
a concurrent execution of methods log and setFilter, one thread can execute
line 58 between the executions of lines 33 and 34 performed by the other thread,
thus setting the reference to null and violating the intended atomicity of method
log. If both threads access the same object instance, this thread interleaving trig-
gers a system crash caused by a NullPointerException at line 34 (Figure 5.2).
Figure 5.3 shows a concurrent test case that induces such interleaving and re-
produces the failure.

Crash Stack Trace

CONCRASH generates concurrent test cases that reproduce concurrency fail-
ures from crash stack traces. A crash stack trace (or simply crash stack) reports
the sequence of functions that were on the call stack at the time of the fail-
ure [62]. Figure 5.2 shows an example of crash stack trace produced by the class
java.util.logging.Logger when executing the test case in Figure 5.3 and the
specific failure-inducing interleaving described above.

A crash stack trace reports the ordered sequence of functions from the bottom
to the top and terminates the sequence with the exception that results from the
failure (NullPointerException at line 1 in Figure 5.2). Each entry (frame) in the

48 5.1 Overview

1 public class Logger {

2
3 public void info(String msg) {

4 if (Level.INFO.intValue() < levelValue) {

5 return;

6 }

7 log(Level.INFO, msg);

8 }

9
10 public void log(Level level, String msg) {

11 if (level.intValue() < levelValue levelValue == offValue) {

12 return;

13 }

14 LogRecord lr = new LogRecord(level, msg);

15 doLog(lr);

16 }

17
18 private void doLog(LogRecord lr) {

19 lr.setLoggerName(name);

20 String ebname = getEffectiveResourceBundleName();

21 if (ebname != null) {

22 lr.setResourceBundleName(ebname);

23 lr.setResourceBundle(findResourceBundle(ebname));

24 }

25 log(lr);

26 }

27
28 public void log(LogRecord record) {

29 if (record.getLevel().intValue() < levelValue levelValue == offValue) {

30 return;

31 }

32 synchronized (this) {

33 if (filter != null) {

34 if (!filter.isLoggable(record)) {

35 return;

36 }

37 }

38 }

39 Logger logger = this;

40 while (logger != null) {

41 Handler targets[] = logger.getHandlers();

42 if (targets != null) {

43 for (int i = 0; i < targets.length; i++) {

44 targets[i].publish(record);

45 }

46 }

47 if (!logger.getUseParentHandlers()) {

48 break;

49 }

50 logger = logger.getParent();

51 }

52 }

53
54 public void setFilter(Filter newFilter) throws SecurityException {

55 if (!anonymous) {

56 manager.checkAccess();

57 }

58 filter = newFilter;

59 }

60 }

Figure 5.1. Faulty class java.util.logging.Logger of JDK 1.4.1

49 5.1 Overview

1 java.lang.NullPointerException

2 at Logger.log(Logger.java:34)

3 at Logger.doLog(Logger.java:25)

4 at Logger.log(Logger.java:15)

5 at Logger.info(Logger.java:7)

6 at LoggerTest$1.runTest(LoggerTest.java:11)

7 at java.lang.Thread.run(Thread.java:662)

Figure 5.2. Crash stack of class Logger (Bug ID 4779253)

crash stack trace indicates a function and a code location. The code location of
each entry identifies either the location of the call to the next function or the
location of the Point Of Failure (POF) in the top entry, which is the static line of
code that triggered the failure (line 2 in Figure 5.2).

CONCRASH prunes the calls performed by the client code from the crash stack
in input. The client code corresponds to those function in the call stack that
do not involve the thread-safe class. For example, in Figure 5.2, lines 6 and 7
correspond to calls performed by the client code to start a thread, and do not in-
volve the thread-safe class Logger. Since CONCRASH targets concurrency failures
of thread-safe classes, the calls performed by the client code are not relevant for
reproducing the failure. The crash stacks commonly available in bug reports con-
tain only frames related to the class that leads to the failure with no information
about the client code.

We denote the first non-client method in a crash stack as crashing method
and the class of such method as Class Under Test (CUT). The crashing method
corresponds to the method of the thread-safe classes invoked by the client code,
and which leads to the failure reported in the crash stack trace. In our running
example the CUT is the class Logger and the crashing method is method info as
inferred from the crash stack in Figure 5.2.

Concurrent Test Case

CONCRASH synthesizes failure-inducing concurrent test cases of thread-safe
classes. Concurrency failures of (assumed) thread-safe classes can be reproduced
with multi-threaded executions of concurrent test cases. A concurrent test case is
a set of method call sequences that exercise the public interface of the CUT from
multiple threads without additional synchronization mechanisms other than the
one implemented in the CUT [92, 104, 130, 132]. A call sequence is an ordered
sequence of method calls δ =〈m1, . . . , mn〉 that are executed in a thread. The
methods in the sequence have a possible empty set of input parameters, which
can be either of primitive type or references to objects created in previous method

50 5.1 Overview

1 public class LoggerTest {

2
3 public static void main(String[] args) throws Throwable {

4 java141.util.logging.Logger logger0;

5 logger0 = Logger.getAnonymousLogger();

6
7 MyFilter myFilter0 = new MyFilter();

8 logger0.setFilter((Filter)myFilter0);

9
10 Thread t1 = new Thread(new Runnable() {

11 public void run() {

12 logger0.info("");

13 }

14 });

15
16 Thread t2 = new Thread(new Runnable() {

17 public void run() {

18 logger0.setFilter(null);

19 }

20 });

21
22 t1.start();

23 t2.start();

24 t1.join();

25 t2.join();

26 }

Figure 5.3. A concurrent test case that reproduces the crash stack in Figure 5.2

calls. We treat the object receiver of an instance method as the first parameter
of the method [95, 132].

A test case is composed of a sequential prefix and a set of concurrent suffixes.
The sequential prefix is a call sequence that invokes (i) a constructor to create
an instance of the CUT that we call Shared Object Under Test (SOUT) and (ii) a
sequence of method calls that modifies the SOUT state to enable the execution of
the concurrent suffixes to trigger the concurrency failure. A concurrent suffix is
a call sequence that is executed concurrently with other concurrent suffixes after
the sequential prefix. The concurrent suffixes invoke methods that access the
SOUT. We consider test cases with exactly two concurrent suffixes, following the
results that show that 96% of concurrency faults manifest by enforcing a certain
partial order between two threads only [81], and in line with work on concurrent
test case generation [92, 104, 130, 132].

Intuitively, for reproducing the concurrency failure one suffix shall invoke the
crashing method reported in the crash stack trace, while the other suffix shall
invoke a method whose execution can lead to an unexpected interleaving that
interferes with the crashing method. We call such method interfering method. The
method setFilter is an example of interfering method of the Logger running
example.

51 5.2 The ConCrash Approach

Problem Definition and Challenges

The problem that we address with CONCRASH can be formulated as follows:
Given a crash stack trace, the corresponding Class Under Test (CUT), a set of auxil-
iary classes, which CUT depends on, and a time-budget, generate a concurrent test
case and a failure-inducing interleaving that produce the crash stack trace in input.

When addressing this problem, we face two main challenges: (i) the limited
information available in the crash stack and (ii) the high cost of exploring the
large interleaving space of a test case. The crash stack does not provide enough
information to infer the methods and the input parameter values that comprise
the test case, and we need to define an efficient way to explore the huge space of
different combinations of sequential prefixes, interfering methods and input pa-
rameter values to identify a specific combination of method calls and parameters
that comprise a failure-inducing test case.

For instance, to reproduce the concurrency failure of the Logger example in
Figure 5.3, CONCRASH needs to identify the sequential prefix 〈Logger sout =

Logger.getAnonymousLogger(); MyFilter myFilter0=new MyFilter(); sout.set-

Filter(myFilter0)〉, the interfering method sout.setFilter(null) and the crash-
ing method sout.info(""). With different sequential prefixes, for example 〈Logger
sout=Logger.getAnonymousLogger(); sout.setFilter(null)〉, the test case does
not reproduce the failure for any interleavings, since the if condition at line 33
would evaluate false. The cost of exploring the interleaving space of a test case
is inflated by the large amount of possible interleavings for a concurrent test
case. A simple random exploration of test cases is not effective, since we may
need to randomly generate thousands test cases for triggering a concurrency
failure [92, 104]. CONCRASH introduces an effective strategy for generating few
concurrent test cases likely to reproduce the failure.

5.2 The ConCrash Approach

Figure 5.4 illustrates the overall architecture schema of CONCRASH. Given as
input (i) the CUT source code, (ii) a crash stack trace, and (iii) the source code
of the auxiliary classes the CUT depends on, CONCRASH synthesizes a failure-
inducing test case and interleaving that reproduce the failure that produces the
input crash stack trace. As illustrated in Figure 5.4, CONCRASH is articulated into
two main steps that are executed iteratively until generating a test case and in-
terleaving that reproduce the failure: the Test Case Generator and the Interleaving
Explorer steps. At each iteration, the Test Case Generator synthesizes a new test

52 5.2 The ConCrash Approach

CUT

Crash Stack Trace

Auxiliary Classes

Input

Failing
Test Case

Failing
Interleaving

Output

ẟp,ẟs1,ẟs2
ẟp

ẟs2ẟs1

New Test Case

pruned
failure not found

Call Sequence
Generator

(AutoConTest [132])

Pruning
Strategies

Interleaving
Explorer

(Cortex [84])

Test Case Generator

ConCrash

Legend:

δp == sequential prefix, δs1, δs2 == concurrent suffixes

Figure 5.4. Conceptual Architecture of ConCrash

case, and the Interleaving Explorer looks for a thread interleaving of the newly
generated test case that reproduces the concurrency failure.

The Test Case generator is composed of two main components: the call se-
quence generator and the pruning strategies. The call sequence generator gen-
erates candidate test cases to be explored, and is based on AutoConTest, a state-
of-the-art concurrent test case generator recently proposed by Terragni and Che-
ung [132]. CONCRASH tunes the original implementation in order to only gen-
erate test cases with the crashing method as first parallel suffix and to adopt a
Breadth-First Search exploration strategy (as described in Section 5.3).

The Test Case Generator exploits a set of pruning strategies to steer the test
case generation towards test cases that are likely to reproduce the failure. By prun-
ing the test case space before exploring the interleaving space, CONCRASH limits
the expensive exploration of the interleaving space to the interleavings that corre-
spond to test cases that most likely expose the concurrency failures. The pruning
strategies trim both test cases that are redundant with respect to previously gen-
erated test cases and test cases that are irrelevant with respect to the concurrency
failure in input. Intuitively, a test case is redundant if it manifests the same in-
terleavings of previously explored test cases, and thus would not reproduce the
failure. A test case is irrelevant if it cannot manifest a failure-inducing interleav-
ing. For this reason, exploring the interleaving spaces of redundant or irrelevant
test cases is fruitless.

The pruning strategies rely on runtime information collected by executing se-
quentially and in isolation the method call sequences that comprise the candidate
concurrent test case. The sequential execution of a call sequence δ can effectively
approximate the behavior of δ when executed concurrently with other method

53 5.3 Test Case Generator

call sequences [113, 114, 115, 130, 132]. Analyzing sequential executions is less
expensive than exploring all the possible interleavings of concurrent executions.
While state-of-the-art techniques leverage sequential executions for concurrency
testing purposes [113, 114, 115, 130, 132], the key intuition of CONCRASH is to
use this information together with crash stacks to effectively synthesize test cases
that reproduce a concurrency failure.

The Interleaving Explorer checks if the interleaving space of a test case that
the Test Case Generator synthesizes contains at least one interleaving that repro-
duces the failure. The Interleaving Explorer is based on the approach recently
proposed by Machado et al. to determine the existence of an interleaving of a
given test case that violates a program assertion that encodes the concurrency
failure [84]. CONCRASH iteratively executes the Test Case Generator and the In-
terleaving Explorer until producing a test case and an interleaving that reproduce
the failure or until the time budget expires. The next sections describe in detail
the Test Case Generator and Interleaving Explorer components.

5.3 Test Case Generator

Figure 5.5 shows the test case generation algorithm. As discussed in Sec-
tion 5.1, a test case is composed of a sequential prefix, denoted as δp, and two
concurrent suffixes δs1 and δs2 that are executed concurrently after δp. The prefix
δp creates a shared object under test (SOUT) of type CUT, and invokes methods
that bring the SOUT in a failure-inducing state. The suffixes δs1 and δs2 access
the SOUT concurrently trying to manifest a failure-inducing interleaving.

The algorithm explores a search space that is modeled with a tree, which is
explored to minimize the generated test cases, and is composed of an initializa-
tion step (lines 2-12) and two main steps: the exploration of a new combination
of method call sequences (lines 13-24) and the elaboration of the new combi-
nation, function PRUNING (lines 25-45), which includes the collection of runtime
information (lines 26-28) and the pruning strategies (lines 29-45).

Below we describe in details the Tree model of the search space (Section 5.3.1),
the minimization of the test cases (Section 5.3.2), and the exploration of the
search space (Section 5.3.3), which is composed of the initialization, the ex-
ploration of new combinations, the collection of runtime information and the
pruning strategies.

54 5.3 Test Case Generator

1 function CONCRASH

/* Initialization */
2 S←∅ // state repository
3 C←∅ // coverage repository
4 pendingSeqs[...] ←∅ // sequences to be extended
5 level← 0 // current level of sequence exploration
6 pool← CREATE-PARAMETER-VALUES(classes)
7 cm← EXTRACT-CRASHING-METHOD(CST)
8 for each construcor m(τ1, ...τn) of CU T do
9 for each value (v1...vn) of type (τ1...τn) in pool do

10 δsout ← m(v1, ...vn)
11 if δsout does not throw an exception then
12 add δsout to end of pendingSeqs[0]

/* Exploration of new combinations δp,δs1,δs2 */

13 while timeBudget is not expired do
14 while pendingSeqs[level] 6=∅ do
15 δp ← get and delete the first δ in pendingSeqs[level]
16 for each value (v1...vn) of type cm(τ1...τn) in pool do
17 δs1← cm(v1...vn)
18 for each public method m(τ1, ...τn) of CU T do
19 for each value (v1...vn) of type m(τ1...τn) in pool do
20 δs2← m(v1...vn)
21 result← PRUNING(δp, δs1, δs2)
22 if result 6= null then
23 return result

24 level++

25 function PRUNING(δp, δs1, δs2)
26 δp,s1← append δs1 to δp

27 δp,s2← append δs2 to δp

28 execute δp,s1 and δp,s2 // Collection of runtime information

29 if δp,s1 and δp,s2 do not throw exceptions (PS-Exception)

30 ∧ ∃ e ∈M(δcm) : stack(e)= CST (PS-Stack)
31 ∧ 〈M(δp,s1),M(δp,s2)〉 6∈ C (PS-Redundant)

32 ∧M(δp,s2) interferes with M(δp,s1) (PS-Interfere)

33 ∧M(δp,s1) ||M(δp,s2) (PS-Interleave)
then

34 add 〈M(δp,s1), M(δp,s2)〉 to C
35 t ← ASSEMBLE-TEST-CODE(δp, δs1,δs2)
36 isFailure← INTERLEAVING-EXPLORER(t)
37 if isFailure = true then
38 return t // failure-inducing test code

39 if S(δs2) 6∈ S and δp,s2 does not throw exception then
40 add S(δs2) to S
41 if M(δp,s1) interferes with M(δp,s2) then
42 add δp,s2 begin of pendingSeqs[level+1]
43 else
44 add δp,s2 end of pendingSeqs[level+1]

45 return null

Figure 5.5. The ConCrash algorithm

55 5.3 Test Case Generator

5.3.1 Modeling the Test Cases Search Space

CONCRASH finds a combination of δp, δs1 and δs2 that alltogheter constitute
a failure-inducing test case, by exploring the space of possible call sequences.
Following Terragni and Cheung’s approach [132], CONCRASH models the test
cases search space as a tree whose root node is a call sequence that instantiates
the object under test SOUT of type CUT.

Figure 5.6 shows an excerpt of a tree model of the class Logger of our running
example. The edges of the tree represent method call sequences. The root repre-
sents the initialization sequence (Logger sout = Logger.getAnanymousLogger();),
and the nodes represent concatenations of call sequences (edges) that corre-
spond to the ordered sequence of the method calls along the path from the root
to the node. For instance in Figure 5.6, Node δO represents the sequence 〈 Logger
sout=Logger.getAnanymousLogger(); Filter f=new Filter(); sout.setFilter(f);

sout.info(""); 〉 that is obtained by traversing the tree from the root to the node
through edges δ5 and δ1.

CONCRASH incrementally builds the Tree model starting from the root. The
basic operator for building the Tree model is the node traversal operator, which
creates a new child node [132]. Given a method m and a node representing a
sequence δ, the node traversal operator produces a child node that represents
a new sequence obtained from δ by appending a sequence of method calls (an
edge), with m being the last method call. The node traversal operator may add
other method calls before m to create the non-primitive parameters of m, if any.
For instance in Figure 5.6, Edge δ1 corresponds to a single method call, while
Edge δ3 corresponds to two method calls, where the first call creates the input
parameter h of the method removeHandler.

CONCRASH always extends nodes with methods of the CUT that have at least
an input parameter (including the method receiver) of type CUT, and binds ex-
actly one of them to the object SOUT. Therefore by construction, each edge in
the tree accesses the same object SOUT. Referring always to SOUT is crucial be-
cause the suffixes trigger concurrency failures by accessing the same shared ob-
ject [92]. The values of the input parameters that are not bounded to SOUT, if
any, are chosen from a pool of representative values. The sequence extension
operator selects a parameter value depending on the type of τi. If τi is of type
CUT and is the receiver method, CONCRASH binds it to the object reference of
SOUT, otherwise (τi is either a primitive type or a non-primitive type), CON-
CRASH chooses a value from a pool of representative values, where the pools of
primitive and non-primitive parameter values are built pseudo-deterministically
using the same random seed at each iteration. In particular, CONCRASH adopts

56 5.3 Test Case Generator

ẟCẟB ẟD ẟE ẟF

ẟA

ẟ1
ẟ2 ẟ3 ẟ4

ẟ5

ẟA: Logger sout = Logger.getAnonymousLogger();
ẟ1: sout.info(“”);
ẟ2: sout.removeHandler(null);
ẟ3: Handler h = new Handler();

 sout.removeHandler(h);
ẟ4: sout.setFilter(null);
ẟ5: Filter f = new Filter();

sout.setFilter(f);

 ẟp ẟs1 ẟs2 Is the test generated ?

<ẟA, ẟ1, ẟ2> No, ẟC throws exception
<ẟA, ẟ1, ẟ3> No, pruned by PS-Interfere
<ẟA, ẟ1, ẟ4> Yes, but not failure inducing
<ẟA, ẟ1, ẟ5> No, pruned by PS-Redundant
<ẟF, ẟ1, ẟ4> Yes, failure-inducing

ẟG ẟH

ẟ1 ẟ5

ẟI ẟL

ẟ1 ẟ5

ẟM ẟN

ẟ1 ẟ5

ẟO ẟQ

ẟ1 ẟ5
throws

exception

Figure 5.6. A Tree model of class Logger

the input generation random strategy adopted by Randoop [95], a popular test
case generator for sequential programs.

5.3.2 Test Case Minimization

The same concurrency failure can be triggered with many test cases composed
of different method calls, some of which may be irrelevant with respect to the
failure. Short test cases are preferable, because long concurrent suffixes increase
the cost of exploring the interleavings, as the number of interleavings grows
factorially with respect the number of statements of each thread [79]. Long
sequential prefixes increase the computational costs and are more difficult to
understand and investigate than short ones [46]. Therefore, the CONCRASH Test
Case Generator aims to generate short test cases.

The concurrent suffixes of the test cases correspond to single edges in the tree.
Each edge corresponds to a method call that accesses the SOUT object. Limiting
concurrent suffixes to single edges does not impact on the failure reproduction

57 5.3 Test Case Generator

capabilities, since multiple calls within the same concurrent suffix do not expose
any thread-safety violation that cannot be exposed with a single method call [50,
53, 132]. In fact, the general form of thread-safety [50] does not guarantee the
atomic execution of multiple calls to a shared object of a thread-safe class in the
same thread. CONCRASH reduces the length of sequential prefixes by adopting a
Breadth-First Search exploration strategy: it explores all sequences with n edges
before exploring sequences with n+ 1 edges.

5.3.3 Exploring the Test Cases Search Space

Initialization (lines 2-12).
CONCRASH starts by initializing to empty the state repository S, the coverage
repository C, and the list of pending sequences to be extended pendingSeqs

(lines 2, 3 and 4, respectively). CONCRASH then initializes the current level of ex-
ploration of the tree to zero (line 5). The algorithm randomly generates the pool
of primitive and non-primitive parameters values [95] (line 6). Subsequently, it
determines the crashing method (line 7) by parsing the crash stack in input (see
Section 5.1). It then creates the root nodes of the Trees, one for each constructor
in the class, by instantiating sequences that invoke the methods with an object of
type CUT as return type (line 9). CONCRASH creates a new root δsout for each of
such methods and for each combination of parameter values (lines 8, 9, 10). The
algorithm checks whether the execution of δsout throws an exception (line 11)
and, if this is not the case, adds δsout to the list pendingSeqs[0] (line 12). The
algorithm does not further elaborate the sequences δsout that throw an exception
since they do not successfully create the object.

Exploration of new combinations 〈δp,δs1,δs2〉〈δp,δs1,δs2〉〈δp,δs1,δs2〉 (lines 13-24).
CONCRASH explores new combinations iteratively until either it reproduces the
failure or the time budget expires (line 13). At each iteration, CONCRASH re-
moves a sequence δp from pendingSeqs[level] (line 15), and generates the chil-
dren of the leaf of the Tree that corresponds to δp, starting from the children
related to the crashing method (cm) exploring different values for the input
parameters. We denote each of the edges resulting from the extensions as δs1

(line 17). CONCRASH explores all the children of δp, obtained by extending δp

with all public methods in CUT (line 18) with each combination of the input pa-
rameters in the pool (line 19). We denote the edges resulting from the extensions
as δs2 (line 20). Every combination of δp, δs1 and δs2 corresponds to a candidate
concurrent test case. Function PRUNING analyzes each combination of δp, δs1 and
δs2 to determine if it should be pruned or not (line 21). CONCRASH considers

58 5.3 Test Case Generator

Let the trace E = 〈e1, e2 . . . ek〉 of a call sequence δ be the ordered sequence of events exhibited
by a sequential (single-threaded) execution of δ. An event can be one of the following:

• write W (f) and read R(f) accesses to an object field f .

• lock acquire ACQ(l) and lock release REL(l) events;

• method enter EN T ER(m) and exit EX I T (m) events.

Given a call sequence δ=〈m1, . . . , mn〉, the trace of a method call mi ∈ δ is the non-empty
segment Ei of E such that Ei contains only the events triggered directly or indirectly by the
invocation of mi [132]. Given a call sequence δ, its sequential coverage M(δ) is defined as the
partition {E1, E2, . . . , En} of E, that is the unordered set composed of the n method call traces of
E [132].

Figure 5.7. Definition of Sequential coverage

all public methods in the CUT to obtain δs2 (line 18) because the crash stack
does not contain information about the interfering method, and thus CONCRASH

needs to explore all the possible candidates to identify the right one.

PRUNING (lines 25-45).
Function PRUNING prunes the search space (lines 29-45) relying on the runtime
information obtained by executing the input call sequences (lines 26-28).

Collecting runtime information (lines 26-28). Let δp,s1 and δp,s2 be the se-
quences that extend δp with edges δs1 and δs2, respectively (lines 26 and 27),
CONCRASH executesδp,s1 andδp,s2 in isolation (single-threaded execution) (line 28),
and collects the following runtime information for each sequenceδ ∈ {δp,s1,δp,s2}:
whether (i) δ throws an uncaught exception, (ii) the sequential coverage of the
last method call in δ [132], and (iii) the state of the object SOUT after executing
δ, which is obtained by serializing SOUT in a deep copy semantic.

Sequential coverage is a metric recently presented by Terragni and Cheung,
that is defined on the sequential execution of call sequences [132], and is used
to infer the possibility of a concurrent test case to induce new interleavings with
respect to the previously generated test cases. CONCRASH exploits sequential cov-
erage to identify and avoid both redundant and irrelevant test cases. Figure 5.7
reports the definition of sequential coverage [132]. Since all the CONCRASH con-
current test cases are composed of concurrent suffixes with only the last method
accessing SOUT, we are only interested in the sequential coverage of such meth-
ods. We denote the last method call trace En in M(δ) as M(δ).

Pruning strategies (lines 29-45). CONCRASH prunes the combination 〈δp,
δs1, δs2〉 according to different strategies. If the test case is neither redundant
(line 31) nor irrelevant (lines 29, 30, 32, 33) CONCRASH updates the coverage
repository C (line 34), assembles a new concurrent test case t (line 35) and in-

59 5.3 Test Case Generator

vokes the Interleaving Explorer component to determine if the interleaving space
of t contains at least one interleaving that can reproduce the failure (line 36).
If this is the case (line 37), CONCRASH produces the output t and its failure-
inducing interleaving and terminates (line 38).

If CONCRASH does not terminate, it checks if δp,s2 should be added to the
pendingSeqs list for further extensions (line 39), that is, CONCRASH checks whether
the state S(δs2) produced by executing δp,s2 either throws an exception or has
been already explored. If not, CONCRASH adds S(δs2) to S and inserts δp,s2 in the
pendingSeqs of the next level (line 40). Following previous work [95, 104, 132],
CONCRASH does not extend sequences that throw exceptions when executed
sequentially, as all of their extensions throw the same exception at the same
point [95]1. CONCRASH adds the current δp,s2 either at the beginning or at the
end of pendingSeqs[level+1] depending on the priority of the sequence (lines 42
and 44, respectively). Sequences at the beginning of the list have higher priority,
as they will be consumed earlier by CONCRASH (line 15).

5.3.4 Pruning Strategies

We now describe in details both the pruning strategies and the decision pro-
cedure that determines whether δp,s2 should be added at the beginning or at the
end of pendingSeqs[level + 1].

PS-Exception

CONCRASH prunes a combination 〈δp, δs1, δs2〉 if either δp,s1 or δp,s2 throw an
exception when executed sequentially, even if the exception matches the crash stack
trace in input.

CONCRASH prunes method call sequences that throw an exception when exe-
cuted sequentially since CONCRASH targets failures that can only be reproduced
during concurrent executions. The occurrence of an exception likely indicates
that CONCRASH has generated an illegal method call sequence, which are more
likely to be generated than legal ones [7]. It is a standard practice for concurrent
test case generation to prune method call sequences that generate an exception
when executed sequentially [92, 104, 130, 132]. For example in Figure 5.6,
CONCRASH prunes the combinations with δs2 = δC by applying PS-Exception:

1Similarly with previous work we are assuming that 1) sequential executions are deterministic
given the same inputs [104, 132]. 2) the CUT does not spawn new threads [130, 132], which is
generally the case for concurrent libraries [104]

60 5.3 Test Case Generator

1 public synchronized void removeHandler(Handler handler) {

2 if (!anonymous) {

3 manager.checkAccess();

4 }

5 if (handler == null) {

6 throw new NullPointerException();

7 }

8 if (handlers == null) {

9 return;

10 }

11 handlers.remove(handler);

12 }

Figure 5.8. Method RemoveHandler of class Logger

the method removeHandler is invoked by passing null as parameter, which
leads to a NullPointerException in the sequential execution of the method
call sequence (line 6 in Figure 5.8, which reports the implementation of the
removeHandler method).

PS-Stack

CONCRASH prunes a combination 〈δp, δs1, δs2〉 if 6 ∃ e ∈ M(δp,s1) : stack(e) =
CST (Crash Stack Trace), where stack(e) is the call stack trace of e, obtained by
analyzing the method entry and exit points in M(δp,s1).

A necessary condition of a test case to reproduce a failure is to reach the point
of failure (POF) with the same calling context of the considered crash stack [62].
CONCRASH prunes the call sequences δs1 that when executed sequentially do not
reach the POF with the same call stack of CST. For example in Figure 5.6, CON-
CRASH prunes the combinations with δs1 = δB since the sequential execution of
δB does not reach the POF (line 34 in Figure 5.1). Indeed, when executing δB

the filter field is not initialized, thus the condition at line 33 in Figure 5.1 eval-
uates false and the POF is not executed. On the contrary, the combinations with
δs1 = δO will not be pruned: by invoking method setFilter with a reference to
an instance of Filter class, the condition at line 33 in Figure 5.1 evaluates true
and the sequential execution of δp,s1 will always reach the POF with the same
call stack of CST.

PS-Redundant

CONCRASH prunes a combination 〈δp, δs1, δs2〉 if 〈M(δp,s1),M(δp,s2)〉 ∈ C.

61 5.3 Test Case Generator

CONCRASH prunes the combinations whose concurrent suffixes induce an al-
ready observed pair of sequential coverages M(δp,s1) and M(δp,s2), as inferred
from the coverage repositoryC. CONCRASH prunes redundant pairs of sequential
coverage since the resulting concurrent test case would lead to an interleaving
space already explored with a previously generated test case [132]. For example
in Figure 5.6, CONCRASH prunes the combination with δs1 = δB and δs2 = δF

because the combination leads to same sequential coverage of the previously ex-
plored combination with δs1 = δB and δs2 = δE: invoking method setFilter

by passing null (δE) or by passing a reference to an instance of class Filter

(δF) leads to the same sequential execution of the method, and thus to the same
sequential coverage.

PS-Interfere

CONCRASH prunes a combination 〈δp, δs1, δs2〉 if 6 ∃ e1, e2 ∈M(δp,s1)×M(δp,s2):e1 =
R(f), e2 =W (f)

CONCRASH prunes the combinations in which the two concurrent suffixes do
not access the same variables or the interfering method δp,s2 does not write any
variable read by the crashing method δp,s1. The intuition behind this pruning
strategy is that for triggering a concurrency failure the interfering method must
interact with the crashing method by writing a shared variable that is accessed
by the crashing method itself. For example, in Figure 5.6, CONCRASH prunes the
combination with δs1 = δB and δs2 = δD because the sequential execution of δD

does not write any variable read by δB. On the contrary, PS-Interfere does not
prune the combination with δs1 = δB and δs2 = δF as the crashing method info

reads variable filter, and the candidate interfering method setFilter writes
the same field. CONCRASH considers the object fields not only of the CUT but
also of the auxiliary classes, since the object fields of the non-primitive fields of
SOUT are also shared across threads.

PS-Interleave

CONCRASH prunes a combination 〈δp, δs1, δs2〉 if 6 ∃ e1, e2 ∈M(δp,s1)×M(δp,s2) :
e1 = RW, e2 = RW, LH(e1)∩ LH(e2) = ∅, where LH denotes the lock history of an
event ex ∈M(δ), defined as the set of locks that are acquired but never released in
M(δ) before triggering the event ex , and RW denotes either a read or write memory
access. More formally, LH(ex)= {l | ∃e j = ACQ(l) ∈ M(δ), 6 ∃ek = REL(l) ∈
M(δ), w< k < x}, where w is the index of the first event in M(δ).

62 5.4 Interleaving Explorer

e1: ACQ(l)
e2: W(f)
e3: REL(l)
e4: ACQ(l)
e5: W(f)
e6: REL(l)

e7: ACQ(l)
e8: W(f)
e9: REL(l)

 LS LH
e2 {l} {l}

e5 {l} ∅

e8 {l} {l}

M("2)M("1)

Figure 5.9. Example of lockset history (LH)

CONCRASH prunes a combination if the two concurrent suffixes cannot inter-
leave when assembled in a concurrent test case, and thus their concurrent execu-
tion cannot lead to a concurrency failure [50]. Differently from traditional lock-
set analysis (LS) [116], LH takes into account the history of the release events.
In fact, the traditional lockset can determine if a pair of events of two threads
are protected by the same lock, but cannot infer if two executions can interleave.

For instance in the sequential coverage of the threads reported in Figure 5.9,
the two executions can clearly interleave when executed concurrently, and in
particular, the events e7, e8 and e9 can interleave between the events e3 and e4.
However, the lockset LS cannot infer such property, since the events e2, e5 and
e8 have the same lockset, and lockset cannot determine if the lock held by e2 and
e4 has been released between the two events. On the contrary, LH can determine
that the two executions can interleave, since the LH(e5)∩ LH(e8) =∅.

CONCRASH relies on PS-Interfere to decide how to prioritize δp,s2 in the
list (lines 42 and 44). If M(δp,s2) interferes with M(δp,s1) (see Condition PS-
Interfere), CONCRASH adds δp,s2 at the beginning of the list, otherwise at the end,
since if M(δp,s2)writes the same variables accessed by the crashing method, δp,s2

is more likely to lead to a program state that could make the crashing method
behave differently if executed in this new state. In such situation, δp,m is added
at the beginning of the list, otherwise at the end. This is only a prioritization,
not a pruning strategy.

5.4 Interleaving Explorer

CONCRASH explores the interleaving space of the generated test case to in-
fer if the test case is failure-inducing, i.e., it can manifest an interleaving that
reproduces the concurrency failure in input.

We investigated current techniques to identify an approach that can be ef-
fectively exploited in the CONCRASH Interleaving Explorer. Current techniques
to explore the interleaving space of a given test case examine the space either

63 5.4 Interleaving Explorer

exhaustively or selectively. Techniques that exhaustively explore all possible
interleavings [35] can be very expensive due to enormous size of interleaving
spaces [140]. Techniques that explore interleaving spaces selectively, based on
particular classes of concurrency faults, like data races [87, 94], atomicity vio-
lations [41, 43, 97, 148], and deadlocks [21, 22, 39] can be efficient, but may
miss failure-inducing interleavings that do not belong to the considered class of
the concurrency faults.

We selected CORTEX, a technique for reproducing concurrency failures [84],
which is more efficient than exhaustive exploration of interleavings spaces, and
does not make any assumptions on the type of concurrency fault. In a nutshell,
the CONCRASH Interleaving Explorer executes the given test case, collects an exe-
cution trace in which the shared variables are treated as symbols, and builds and
solves an SMT formula [33] the solutions of which, if any, identify the interleav-
ings that violate an assertion that encodes the concurrency failure. A program
failure can be easily encoded in form of an assertion from a crash stack trace,
since the stack trace indicates both the point of failure (POF) and the type of
runtime exception. Below we describe in more details how the CONCRASH In-
terleaving Explorer works, by discussing how the Interleaving Explorer collects
the symbolic trace 5.4.1 and explores the interleavings through constraint solv-
ing 5.4.2. For a detailed description of CORTEX, the interested readers can refer
to the seminal work [61] and its extensions [83, 84].

5.4.1 Symbolic Trace Collection

CONCRASH symbolically collects traces in three main steps: static program
analysis, concrete trace collection, and symbolic trace generation.

Static Program Analysis.
The Interleaving Explorer statically analyzes the class-under-test CUT and

the test case in input. The static analysis instruments the program to identify
interleaving-dependent variables. It instruments the program by inserting probe
code at the beginning of each basic block of the program to trace the thread
path profiles. The path profile is the sequence of basic blocks executed by each
thread during concrete executions, and encodes the control-flow outcomes of
each thread during the execution.

CONCRASH identifies the interleaving-dependent variables by determining all
the program variables whose value can change according to the specific executed
interleaving. These variables correspond to both non-private variables of the
program and local variables that are data-dependent to non-private variables.

64 5.4 Interleaving Explorer

The variables identified by the analysis will be considered as symbolic variables
in the subsequent symbolic trace generation step.

Concrete Trace Collection. The Interleaving Explorer executes the input test
case on the instrumented version of the program produced with the static anal-
ysis. CONCRASH executes the test case with the default scheduler, thus with
random interleaving. The execution of the instrumented program produces a
concrete trace with the path-profile of each thread.

Symbolic Trace Generation. The Interleaving Explorer symbolically executes
the program to generate a symbolic trace. It executes the program symboli-
cally driven by both the concrete trace generated in the previous step and the
interleaving-dependent variables identified with static analysis. When symboli-
cally executing the program, the Interleaving Explorer (i) manipulates symbolic
expressions rather than concrete values when accessing the variables identified
as interleaving-dependent, (ii) drives the symbolic execution of each thread with
the recorded path-profiles thus symbolically executing only the corresponding
control-flow paths, and (iii) records each synchronization operation (lock, join,
fork) and access to symbolic variables into a symbolic trace.

5.4.2 Computing Failing Interleavings with Constraint Solving

The Interleaving Explorer formulates the problem of checking if the interleav-
ing space of a given test case contains an interleaving leading to the violation of
an assertion as an SMT (Satisfiability Modulo Theories) problem [33]. Starting
from the symbolic trace, the Interleaving Explorer builds an SMT formula whose
solutions (if any) identify interleavings that violate the assertion and reproduce
the crash stack trace in input.

The SMT formula contains both order and value variables. Order variables
encode the relative order among the operations in the symbolic trace, while Value
variables encode the values that each read operation can return depending on the
interleaving. The SMT formula models the possible interleavings of the symbolic
trace, by constraining the value of the order variables, the possible values that
each read operation can read depending on the executed interleaving, and the
bug condition, which is the condition to trigger the failure to reproduce.

The SMT formula generated by the Interleaving Explorer is a conjunction of
five sub-formulas:

Φ= φpath ∧φmo ∧φpo ∧φlock ∧φrw ∧φ f aul t

65 5.4 Interleaving Explorer

Path Constraints (φpath) model the path conditions collected during the sym-
bolic execution. Path constraints predicate on value variables, and constrain the
value returned by read operations according to the condition of the branch taken
by the thread during symbolic execution.

Memory Order Constraints (φmo) involve order variables, and model the total
order among operations within a thread according to the considered memory
model. CONCRASH assumes a sequential consistent memory model [73] which
ensures that operations within a thread follow a sequential order.

Partial Order Constraints (φpo) encode the order among operations enforced
by the fork and join synchronization mechanisms. In particular, a fork opera-
tion always happens before the start operation of the forked thread, and a join
operation always happens after the exit operation of the joined thread.

Locking Constraints (φlock) model the mutual exclusion among critical sec-
tions protected by the same lock. For a given critical section and the correspond-
ing lock and unlock operations, they model that between the two operations
there cannot be other lock and unlock operations on the same object.

Read-Write Constraints (φrw) encode the possible values that each read oper-
ation can return depending on the executed interleaving. Each read operation
returns the value written by the last write operation on the variable, but the
order of the write operations can change from one execution to another. The
read-write constraints map to each value variable the values it can return, and
for each value the order among the write operations that must hold.

Fault Constraint (φ f aul t) encodes the condition that, if satisfied, leads to the
reproduction of the fault and corresponds to the negation of the assertion to
violate. For instance, in the case of a NullPointerException, the fault constraint
forces the value variable corresponding to the read operation at the Point of
Failure (POF) to return the null value.

CONCRASH determines the satisfiability of the SMT formulas with an SMT
solver, to determine if the test cases leads to a failure, and to infer a sequence of
interleaving that led to the failure. If there exists an assignment of variables that
makes the formula satisfiable, the failure can be reproduced and any solution
of the formula represents an interleaving which reproduces the failure. If the
formula is satisfiable, CONCRASH returns the test case and the interleaving as
final result. Otherwise, CONCRASH iterates the Test Case Generator for producing
a new test case to be explored. The process terminates when either the failure is
successfully reproduced or the time budget expires.

66 5.4 Interleaving Explorer

Chapter 6

Evaluation

In this chapter we report the results of a set of experiments that we conducted
to assess the effectiveness of CONCRASH in reproducing concurrency failures from
the limited information contained in crash stack traces.

Our experiments consist in running a prototype implementation of CONCRASH

on a set of ten subject programs with known thread safety violations, and calcu-
lating the effectiveness of our approach in terms of success rate, time to repro-
duce the failure, number of test cases generated before reproducing the failure,
and the size of the generated failure-inducing test cases.

To evaluate the individual contribution of the pruning strategies of CON-
CRASH, we repeat the experiments by using a version of our approach with a
single pruning strategy enabled, for each pruning strategy. We then compare
these measurements with the results obtained by running the original imple-
mentation of CONCRASH with all pruning strategies enabled.

Finally, we compare the effectiveness of CONCRASH with state-of-the-art ap-
proaches that generate concurrent test cases for testing concurrent programs to
assess the ability of CONCRASH to drive the generation of test cases towards a
specific failure by exploiting the information contained in crash stack traces.

In this chapter we (i) present the research questions addressed by our ex-
perimental evaluation, describe the experimental setting, and in particular the
prototype implementation of our approach, the subject programs used for the
evaluation and the setup of the experiments, (ii) discuss the results of our exper-
iments with reference to each research question, and (iii) identify the threats to
the validity of our results and indicate the countermeasures that we adopted to
mitigate their impact.

67

68 6.1 Research Questions

6.1 Research Questions

Our experimental evaluation addresses the following research question:

RQ1 How effective is CONCRASH in reproducing concurrency failures?

RQ2 What is the contribution of each pruning strategy in reducing the search
space?

RQ3 Is CONCRASH more effective than competing state-of-the-art testing approaches?

RQ1 investigates the effectiveness of CONCRASH in reproducing concurrency
failures from crash stack traces. To answer this research question, we collect
different metrics: success rate, failure reproduction time and size of the failure-
inducing test cases. We measure the success rate of our approach as the ability
of CONCRASH to successfully reproduce a given failure within a given time bud-
get. We measure the time required by the technique to reproduce the failure.
Since the time required by CONCRASH to reproduce a failure depends on the
specific machine used for the experiments and on the time required by the in-
terleaving explorer to explore the interleaving space of the generated test cases,
we also measure how many test cases CONCRASH generates before reproducing
the failure. We measure the size of the failure-inducing test cases generated by
CONCRASH: since smaller a test case is, the easier localizing and understanding
the failure is, we expect CONCRASH to generate small test cases.

RQ2 questions the contribution of each pruning strategy in reducing the search
space of possible test cases that CONCRASH needs to explore. We answer this re-
search question by measuring the effectiveness of CONCRASH with a single prun-
ing strategy enabled, for each pruning strategy. We then compare these mea-
surements with a version of CONCRASH with no pruning strategy enabled and
the original implementation of CONCRASH, with all pruning strategies enabled.
Our experiments aim to confirm that, on one hand, each pruning strategy in isola-
tion effectively reduce the search space, on the other hand, that the effectiveness
of CONCRASH is given by the synergetic combination of all pruning strategies.

RQ3 investigates the effectiveness of CONCRASH with respect to state-of-the-
art test case generation approaches for concurrent systems. Testing techniques
are failure-oblivious, that is, they aim to find concurrency failures rather than
reproducing a given one. As CONCRASH is driven by failure information, we
expect a large saving in the time required to identify the failure-inducing test
case that reproduces the given failure. To answer this research question, we
compare the effectiveness of CONCRASH with the effectiveness of two state-of-
the-art testing techniques for concurrent programs.

69 6.2 Experimental Setting

6.2 Experimental Setting

Prototype

We experimented with a prototype Java implementation of CONCRASH that
implements the algorithm presented in Figure 5.5. The prototype requires as in-
put the source code of the thread-safe class under test and the crash stack trace of
the failure to reproduce. Once successfully reproduced the failure, the prototype
generates as output the failure-inducing test case, in the form of an executable
Java class, and the failure-inducing interleaving, which is encoded in a textual
file reporting the ordered sequence of instructions to execute to reproduce the
failure. The output produced by CONCRASH allows to easily debug and localize
the concurrency fault that causes the given failure.

We built the prototype test case generator on top of AUTOCONTEST [132], a
concurrent test case generator developed by Terragni and Cheung based on the
sequential coverage metric. We configure AUTOCONTEST to implement the CON-
CRASH algorithm: (i) we tune the test case generation step to generate only test
cases with the crashing method as first parallel suffix, as described in Section 5.3;
(ii) we apply CONCRASH pruning strategies after generating each candidate test
case, to determine whether the test case is either redundant or irrelevant, as
described in Section 5.3; (iii) we invoke the CONCRASH interleaving explorer de-
scribed in Section 5.4 for each test case that is not retained by the CONCRASH

pruning strategies.
The prototype interleaving explorer relies on CORTEX, an interleaving explo-

ration tool developed by Machado et al. [84]. CORTEX leverages the Soot instru-
mentation framework [135] to perform static program analysis, Java PathFinder
(JPF) [138] for symbolic execution, and Z3 [33] as constraint solver. We ex-
tended Java PathFinder to support the bytecode instructions that check for equal-
ity and inequality between references. These instructions are not supported by
the publicly available version of the tool and are required to reproduce some of
the failures we considered in our evaluation.

Overall, the CONCRASH prototype includes around 40 thousands lines of code.
The Test Case Generator, which includes the tuned version of AutoConTest with
our pruning strategies, is composed of 300 Java classes and amounts to around
27 thousands lines of code. The Interleaving Explorer, which relies on the orig-
inal implementation of Cortex, is implemented by combining C++ and Java
code. In particular, the Interleaving Explorer is composed of 14 C++ and 75
Java classes, for a total amount of around 13 thousands lines of code.

To answer RQ2 which investigates the effectiveness of the pruning strate-

70 6.2 Experimental Setting

gies adopted by CONCRASH, the prototype can be easily configured to enable
or disable the different pruning strategies. We denote the versions of the CON-
CRASH prototype with the different pruning strategies as PS-Stack, PS-Redundant,
PS-Interfere, PS-Interleave, respectively, and the version of CONCRASH without
pruning strategies as NO-Pruning. All six CONCRASH prototypes have PS-Exception

enabled since is not our contribution, thus we are not interested in evaluating its
effectiveness in isolation.

Competing approaches

We compared CONCRASH with CONTEGE [104] and AUTOCONTEST [132],
two representative state-of-the-art approaches that generate concurrent test cases
for testing concurrent programs. We use the publicly available versions of AUTO-
CONTEST and CONTEGE for our experiments.

CONTEGE randomly generates sequential call sequences and randomly com-
bines them in concurrent test cases. It adopts a feedback-directed approach [95],
which consists in executing each generated call sequence and discarding those
that throw exceptions. CONTEGE relies on stress testing for exploring interleav-
ings, which amounts to execute a test case several times, aiming to observe dif-
ferent interleavings. Stress testing does not offer any guarantee of observing a
given portion of the interleaving space, and does not introduce any mechanism to
improve the probability of executing new interleavings. CONTEGE uses lineariz-
ability [53] as a test oracle. A linearizability oracle reports a violation whenever
a thread interleaving produces a suspicious behavior that cannot be produced by
any sequential test execution where all methods are executed atomically [92].

AUTOCONTEST is a coverage-based test case generation technique. In line
with other coverage-based techniques for concurrent systems, AUTOCONTEST re-
lies on interleaving coverage criteria which identify properties that an interleav-
ing must satisfy to be considered as a coverage requirement. More specifically,
AUTOCONTEST relies on the sequential coverage (see Section 5.2). It explores
the interleaving space of each generated test case with a dynamic detector of
atomicity violations and outputs the generated test cases and interleavings that
lead to a system crash.

Both CONTEGE and AUTOCONTEST are failure-oblivious, that is, they are de-
signed to detect and find concurrency failures rather than to reproduce a given
one. In absence of techniques that generate test cases for reproducing a given
failure, we use CONTEGE and AUTOCONTEST as baseline to assess the ability of
CONCRASH to drive the generation of test cases towards a specific failure.

71 6.2 Experimental Setting

Subjects

We selected a benchmark of ten classes with known thread safety violations
that have been used in the evaluation of previous work [92, 104, 115, 132]. We
considered the subjects used in the related papers, and selected the subjects that
(i) produce a crash stack, (ii) have been confirmed to be failures, and (iii) can
be analysed with JPF without compatibility issues. For each subject we obtained
a single crash stack either from the bug report, when available, or by executing
a failure-inducing test case documented in related work [104, 132]. We added
the program assertions encoding the failures, as required by the Interleaving
Explorer (CORTEX [84]). We easily inserted such assertions relying on the POF
and the type of the thrown exception reported in the crash stack.

Tables 6.1 and 6.2 provide details about the subject programs and failures,
respectively: column ID introduces a unique identifier that we use in the paper
to identify the subject program; column Class Under Test (CUT) is the class under
test of the subject program; columns Version and Code Base report the version and
the code base that contains the faulty class, respectively; columns Total SLOC and
CUT SLOC report the total number of Source Lines of Code of both the code base
and of the CUT, including non-abstract super classes, if any, respectively; column
Methods indicates the number of public methods of the CUT; columns Issue ID,
Fault Type, Type of Exception and Crash Depth report the identifier of the issue in
the corresponding bug repository, the type of the known fault, the type of the
resulting exception and the number of frames in the crash stack, respectively.

The subjects are taken from five Java code bases. Apache Commons DBCP is
a popular library to create and manage pools of database connections. Apache

Commons Math is a library that provides a series of self-contained mathematics
and statistics components. Java JDK is the development environment of Java,
subjects with ID 4 and 6 belong to the java.io package, while the subject with
ID 5 belongs to the java.util.logging package. JFreeChart is a popular library
for displaying various types of charts. Log4j is one of the most popular Java-
based logging utility.

Experimental Setup

We run each technique on all the subjects. Each experiment terminates ei-
ther when the technique successfully reproduces the failure or exhausts a time
budget of five hours. Although CONCRASH systematically explores method call
sequences and input parameters, the order of exploration is arbitrary, and thus,
different runs of CONCRASH can lead to different results as portions of the search

72 6.2 Experimental Setting

Table 6.1. ConCrash Evaluation Subjects

Subjects

ID Class Under Test (CUT) Version Code Base
Total

SLOC

CUT

SLOC
Methods

1 PerUserPoolDataSource 1.4
Commons DBCP

9,451 719 68

2 SharedPoolDataSource 1.4 9,451 546 44

3 IntRange 2.4 Commons Math 18,016 278 44

4 BufferedInputStream 1.1

Java JDK

3,791 304 12

5 Logger 1.4.1 2,193 528 45

6 PushbackReader 1.8 11,562 143 13

7 NumberAxis 0.9.12
JFreeChart

64,713 1,662 119

8 XYSeries 0.9.8 51,614 200 28

9 Category 1.1
Log4j

10,773 387 43

10 FileAppender 1.2 10,273 185 13

Table 6.2. ConCrash Evaluation Failures

Concurrency Failures

ID
Issue

ID

Fault

Type
Type of Exception

Crash

Depth

1 369 Race ConcurrentModificationException 4

2 369 Race ConcurrentModificationException 4

3 481 Atom. AssertionError 1

4 4225348 Atom. NullPointerException 2

5 4779253 Atom. NullPointerException 4

6 8143394 Atom. NullPointerException 1

7 806667 Atom. IllegalArgumentException 2

8 187 Race ConcurrentModificationException 4

9 1507 Atom. NullPointerException 1

10 509 Atom. NullPointerException 2

73 6.3 Experimental Results

space containing failure inducing test case could be explored before or after, de-
pending on such order. Such order is set pseudo-deterministically with an input
random seed. To mitigate threats that may derive from the non-deterministic
choices while generating test cases, we repeat each experiment five times using
different random seeds, in line with the experimental setup of related work [29,
104, 132]. We measure the effectiveness of each technique with the following
metrics:

Failure Reproduction (FR) that is 1 if the failure is reproduced within the given
time budget B, 0 otherwise.

Failure Reproduction Time (FRT) that is the overall elapsed time in seconds
for identifying the first test case and failure inducing interleaving. This
time includes the cost of both generating test cases and exploring their
interleavings. If the failure is not reproduced within B, that is, FR= 0, we
optimistically underapproximate FRT to B.

Failure-inducing Test ID (FTID) that is the ID of the first failure-inducing test
case. The IDs are assigned in ascending order. FTID = n indicates that
CONCRASH explored the interleaving space of n test cases before reproduc-
ing the failure. A low value of FTID indicates that the technique is effective
in generating a failure-inducing test case. If the failure is not reproduced
within B (FR = 0), we underapproximate FTID to the, ID of the last gen-
erated test case.

Failure-inducing Test Size (FTS) that is the size of the failure-inducing test case
measured as the total number of outermost method calls in δp, δs1, and δs2.
The lower the value of FTS is, the easier localizing and understanding the
failure is. If the failure is not reproduced within B, that is, FR= 0, we set
FTS = N/A.

6.3 Experimental Results

In this section, we report the results of our experimental evaluation to answer
the research questions presented in Section 6.1.

6.3.1 RQ1 - Effectiveness

Our first research question investigates the effectiveness of CONCRASH to re-
produce concurrency failures from crash stack traces. To answer this research

74 6.3 Experimental Results

Table 6.3. RQ1: ConCrash Effectiveness Results

ID FR FRT (sec.) FTID FTS

% min max avg sd ci min max avg sd ci avg

1 100% 27 99 63 34 30 1 4 2 2 1 4

2 100% 22 85 42 27 24 1 4 2 1 1 4

3 100% 10 16 13 2 2 1 1 1 0 0 4

4 100% 10 21 15 5 4 1 2 2 1 0 5

5 100% 39 84 70 18 16 2 4 3 1 1 5

6 100% 7 7 7 0 0 1 1 1 0 0 4

7 100% 27 31 30 2 1 1 1 1 0 0 3

8 100% 26 185 107 64 56 1 15 8 6 5 6

9 100% 17 33 25 7 6 1 1 1 0 0 5

10 100% 23 183 92 68 60 1 9 5 3 3 10

AVG 100% 21 74 46 23 20 1 4 3 1 1 5

question, we ran the CONCRASH prototype on our benchmark and collected a set
of metrics as described in Section 6.2.

Table 6.3 reports the experimental results about the effectiveness of CON-
CRASH in reproducing concurrency failures. The table reports the aggregated
results of the five runs for each subject. For the Failure Reproduction Time (FRT)
and Failure-inducing Test ID (FTID) metrics, the table shows the minimum, the
average, and the maximum value that the prototype achieves on each subject in
the five runs. Moreover, we report the standard deviation and the 95% confi-
dence interval.

Column FR, Failure Reproduction, indicates that CONCRASH reproduces all
the concurrency failures in all the five runs. We inspected every failure-inducing
test case and interleaving generated by CONCRASH to check whether they lead to
the same crash stack trace given as input. In particular, we executed the failure-
inducing test cases augmented with the specified failure-inducing interleaving.
The execution of the failure-inducing interleaving was achieved by manually in-
serting sleep statements in the test cases. Overall, all the executions led to the
same failure and crash stack trace given as input. Thus, CONCRASH correctly re-
produces the given failures and reports to developers the required information
to debug and fix the fault.

Columns FRT, Failure Reproduction Time, indicate a time for reproducing

75 6.3 Experimental Results

the failures that ranges from seven seconds in the best case to 185 seconds in
the worst case, with an average of 46 seconds. We also measured the time for
generating test cases and exploring interleavings with CONCRASH, and we notice
that CONCRASH spends 1% of the time for generating test cases and 99% of the
time for exploring interleavings , on average on all fifty runs. This result indicates
the effectiveness of CONCRASH test case generator in identifying failure-inducing
test cases.

Columns FTID, Failure Inducing Test ID, indicate that CONCRASH explored
the interleaving space of a minimum of 1 test case and a maximum of 15 test
cases, with an average of 3 test cases. We check that such low value of explored
test cases is indeed due to the effectiveness of CONCRASH pruning strategies,
by repeating the measurements on a version of CONCRASH with all the pruning
strategies disabled, and observing an average FTID of 147 test cases (the results
are reported in Table 6.4). This means that CONCRASH pruning strategies prune
144 test cases on average, thus significantly saving time for reproducing a failure.

Column FTS, Failure-inducing Test Size, reports the size of the generated test
cases that ranges from 3 to 10 outermost method calls, on average. As described
in Section 5.3, short test cases are preferable since are easier to understand and
debug. The low value of FTS in our experiments is achieved with the Breadth-
First Search exploration strategy.

The results indicate the effectiveness of CONCRASH. The approach reproduces
all the considered failures on all the fifty runs within a reasonable time, with test
cases of reasonable size. The results also confirm that the cost of reproducing a
concurrency failure mostly depends on the cost of exploring interleavings. The
ability of CONCRASH to effectively steer the test case generation through a failure-
inducing test case is the main efficiency factor. CONCRASH generates three test
cases on average and at most 15 test cases in the worst cases to identify a failure-
inducing test case.

6.3.2 RQ2 - Pruning Strategies

Our second research question investigates the effectiveness of the pruning
strategies that CONCRASH implements to reduce the space of test cases that CON-
CRASH needs to further explore. To answer this research question, we compare
the effectiveness of the CONCRASH prototype with all the pruning strategies dis-
abled with the effectiveness of CONCRASH with a single pruning strategy enabled,
for each pruning strategy.

The rightmost columns of Table 6.4 report the experimental results about the
effectiveness of the different pruning strategies. The table reports the Failure

76 6.3 Experimental Results

Table 6.4. RQ2: ConCrash Pruning Strategies Effectiveness Results

NO-Pruning PS-Stack PS-Redundant PS-Interfere PS-Interleave

ID FR FRT FTID FR FRT FTID FR FRT FTID FR FRT FTID FR FRT FTID

% avg avg % avg avg % avg avg % avg avg % avg avg

1 20% 15,456 376 100% 526 23 40% 14,749 258 100% 727 18 20% 15,395 430

2 80% 9,240 250 100% 362 17 80% 7,294 128 100% 390 10 80% 9,128 195

3 100% 204 13 100% 157 13 100% 138 8 100% 17 1 100% 196 13

4 100% 77 7 100% 64 7 100% 63 5 100% 43 4 100% 26 2

5 100% 6,520 491 100% 2,576 36 100% 3,200 232 100% 543 32 100% 3,369 185

6 100% 33 3 100% 20 3 100% 34 3 100% 11 1 100% 31 3

7 100% 508 11 100% 294 11 100% 463 9 100% 52 1 100% 491 11

8 100% 2,758 269 100% 166 14 100% 2,752 269 100% 1,292 126 100% 2,751 269

9 100% 348 28 100% 267 27 100% 336 28 100% 60 3 100% 345 28

10 100% 540 22 100% 487 22 100% 342 12 100% 122 5 100% 523 23

AVG 90% 3,569 147 100% 492 17 92% 2,937 95 100% 326 20 90% 3,226 116

Reproduction (columns FR), the Failure Reproduction Time (columns FRT) and
the Failure-inducing Test ID (columns FTID) for the different pruning strategies.
We do not report the Failure-inducing Test Size, as we did not record signifi-
cant modifications with respect to the experiment discussed above that has been
carried on with the main CONCRASH approach.

PS-Stack and PS-Interfere reproduce the concurrency failures for all runs
(columns FR=100%), while No-Pruning, PS-Redundant and PS-Interleave repro-
duce the failures only in some runs (rows ID 1 and ID 2), leading to an average
failure reproduction rate (columns FR) of 90%, 92%, and 90%, respectively.

The average failure reproduction time (columns FRT) ranges from 326 sec-
onds for PS-Interfere to 3,569 seconds for NO-Pruning, while the average failure-
inducing test ID (columns FTID) ranges from 1 to 430 test cases. The cell back-
ground highlights the contribution of each pruning strategy by indicating the de-
gree of speedup with respect to NO-Pruning: LOW (>1.0x and <2.0x), MEDIUM

(≥ 2.0 and < 10.0), or HIGH (≥ 10.0). Both PS-Stack and PS-Interfere strate-
gies lead to a speedup for all subjects, with an average medium and high speedup,
respectively (bottom row AVG). On the contrary, PS-Redundant and PS-Interleave

strategies lead to a speedup for five and three subjects, respectively, and they both
achieve a low overall average speedup (bottom row AVG). The results indicate
that the effectiveness of the various pruning strategy can vary across subjects.

PS-Stack is particularly effective when only few executions reach the POF

77 6.3 Experimental Results

under the calling context specified in the crash stack trace (CST), as it prunes
all those test cases that fail to do so. In fact, PS-Stack is more effective for the
subjects with the highest CST depth (four) (ID 1, 2, 5, and 8), while it is less
effective for those subjects with depth one (ID 3, 6, and 9). Intuitively, the deeper
the CST is, the harder is to reach the POF with the right calling context.

PS-Redundant is particularly effective when the execution space of the CUT
methods is characterized by few execution paths. In such situation, the invoca-
tion of the same method with different parameters leads to a redundant sequen-
tial coverage, thus increasing the effectiveness of PS-Redundant.

PS-Interfere is particularly effective when the object fields read by the crash-
ing method are written by only few methods in the CUT, as it prunes the test
cases in which the interfering methods do not write such fields. For instance, in
the subject IntRange the crashing method reads object fields that are written by
only one of the 18 methods in the CUT, and PS-Interfere drastically reduces the
search space to only one pair of crashing and interfering methods.

PS-Interleave is particularly effective when a CUT largely adopts synchro-
nization mechanisms to access its object fields. This is the case, for instance, of
a Java class that declares most of its methods as synchronized. In such case,
PS-Interleave prunes many irrelevant test cases. For instance, PS-Interleave is
very effective with BufferedInputStream (ID 4), as the crashing methods and the
majority of the CUT methods are declared as synchronized.

The results indicate that PS-Interfere is in general the most effective prun-
ing strategy, followed by PS-Stack, PS-Redundant and PS-Interleave. However,
PS-Interfere does not achive the highest speedup for every subjects. For in-
stance, PS-Stack and PS-Interleave are more effective than PS-Interfere for
two subjects (ID 4 and ID 8, respectively). This result suggests that the effec-
tiveness of CONCRASH derives from the synergetic combination of all pruning
strategies.

The diagrams in Figure 6.1 show that CONCRASH outperforms each pruning
strategy in isolation. The diagram in Figure 6.1 (a) plots the average FR of all
the ten subjects for CONCRASH and for the different pruning strategies with re-
spect to the time (in log scale), and indicates that CONCRASH achieves a failure
rate of 100% much faster than any individual pruning strategy. The diagram in
Figure 6.1 (b) plots the success rate of the first TOP-N test cases generated with
CONCRASH and with the different pruning strategies. CONCRASH achieves more
than 90% of failure success rate with only 10 test cases, and 100% within the
first 25 ones. PS-Stack achieves 100% of failure success rate within the first 100
test cases, while all the other pruning strategies never achieves 100% within 100
test cases.

78 6.3 Experimental Results

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 4 16 64 256 1024

Av
g.

 F
ai

lu
re

 R
ep

ro
du

ct
io

n
(F

R)

Time seconds (log scale)

ConCrash

PS-Stack

PS-Redundant

PS-Interfere

PS-Interleave

No-Pruning

(a) Time vs Average Failure Reproduction Rate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TOP1 TOP3 TOP5 TOP10 TOP25 TOP50 TOP100

Av
g.

 F
ai

lu
re

 R
ep

ro
du

ct
io

n
(F

R)

Top@ generated test codes

ConCrash

PS-Stack

PS-Redundant

PS-Interfere

PS-Interleave

NO-Pruning

(b) # of Generated Test Cases vs Average Failure Reproduction Rate

Figure 6.1. Aggregate comparison of the ConCrash pruning strategies for the
ten subjects

79 6.3 Experimental Results

Table 6.5. Comparison with test case generators

ID

CONTEGE [104] AUTOCONTEST [132]
FR FRT FTID FTS FR FRT FTID FTS

% avg avg avg % avg avg avg

1 0% 18,000 14,177 N/A 0% 18,000 N/A N/A
2 0% 18,000 7,736 N/A 0% 18,000 N/A N/A
3 0% 18,000 25,712 N/A 100% 23 1 56

4 80% 4,487 7,465 12 0% 18,000 6 N/A
5 0% 18,000 1,491 N/A 0% 18,000 6 N/A
6 20% 14,510 5,796 10 - - - -

7 0% 18,000 34,960 N/A 100% 93 1 124

8 40% 12,387 25,215 10 0% 18,000 N/A N/A
9 40% 14,410 41,461 15 - - - -

10 0% 18,000 39,912 N/A - - - -

AVG 18% 15,379 20,392 12 28% 12,874 4 90

6.3.3 RQ3 - Comparison with Testing Approaches

Our third research question compares the effectiveness of CONCRASH with the
state-of-the-art approaches for generating test cases for concurrent programs.
To answer this research question we ran CONTEGE and AUTOCONTEST on our
benchmark.

Table 6.5 reports the failure reproduction (columns FR), the average values
for the failure reproduction time (columns FRT), the failure-inducing test ID
(columns FTID), and the failure-inducing test size (columns FTS) for CONTEGE

and AUTOCONTEST. The results are directly comparable with the corresponding
columns of Table 6.3 that report the data for CONCRASH on the same benchmark.
The results indicate that CONCRASH outperforms both CONTEGE and AUTOCON-
TEST. CONTEGE presents an average failure reproduction rate of 18%, since it
reproduces the crash stacks in 9 out of 50 runs, while generating more than
20,000 test cases, on average.

AUTOCONTEST also achieves a low average failure reproduction rate, with
an average of 28%. AUTOCONTEST focuses on atomicity violations only, is in-
effective in the presence of data race failures (subjects ID 1, 2, 8), suffers from
compatibility problems with subjects ID 6, 9, and 10 ("-" in the table), and does
not reproduce the failure of class Logger, since it covers the failure-inducing in-

80 6.4 Limitations

terleaving (atomicity violation) with inputs that do not trigger the failure. The
effectiveness of AUTOCONTEST is comparable with CONCRASH in the cases it suc-
ceeds, but AUTOCONTEST generates much larger test cases than CONCRASH.

Our results suggest that testing techniques that are designed as failure-oblivious
are not effective in reproducing a specific concurrency failure, as they generate
many test cases that are irrelevant for the specific failure. On the other hand,
CONCRASH leverages crash stacks and novel pruning strategies to effectively drive
the test case generation towards a failure-inducing test case.

We conclude the comparison observing that in many experiments CONTEGE

and AUTOCONTEST exposed failures with crash stacks different from the one we
considered as input, and these failures may or may not be triggered by the same
concurrency fault that triggers the failure considered in the experiments. These
experiments aim to compare the effectiveness of the different approaches in re-
producing a given concurrency failure, and not the fault-detection effectiveness
of the approaches. This result confirms that state-of-the-art testing techniques
can be in general effective in detecting concurrency failures, but they are not
suitable for reproducing a specific concurrency failure.

6.4 Limitations

In this section, we discuss the current limitation of CONCRASH, highlighting
their impact and nature.

CONCRASH automatically reproduces concurrency failures that manifest as
runtime exceptions and produce a crash stack trace. Thus CONCRASH does not
reproduce deadlocks, which do not generate a crash stack trace when they occur.
CONCRASH can be extended to reproduce also deadlocks by integrating dedicated
runtime monitors that generate a crash stack trace when a deadlock is detected.

CONCRASH generates concurrent test cases composed of exactly two concur-
rent suffixes, following a recent empirical study that shows that most of the con-
currency failures can be exposed by interleaving two execution flows only [81].
This means that CONCRASH cannot reproduce failures that can be exposed only
with the interleaving of more than two threads. CONCRASH can be easily ex-
tended to overcome such limitation, albeit with some performance issues.

CONCRASH could fail in generating a test case that reproduces a failure for
failures that can be exposed only with very specific input parameters of the meth-
ods comprising the test case. CONCRASH chooses the input parameters from a
pool of randomly generated values, and this pool will unlikely contain the specific
value required to trigger the failure.

81 6.5 Threats to Validity

Finally, CONCRASH may not be very effective when a failure can be triggered
only with a complex state of the class-under-test, which requires a sequential
prefix composed of several method calls to be reached. Since CONCRASH ex-
plores the space of possible test cases by using a breadth-first search strategy,
CONCRASH requires much time to generate and explore test cases with long se-
quential prefixes.

6.5 Threats to Validity

In this section we briefly discuss the threats that could affect the validity of
our empirical evaluation and the countermeasures that we adopted to mitigate
such threats.

One important threat to the validity of the results presented in this disser-
tation concerns the correctness of the prototype implementation and the results
it produces. To mitigate this threat, we extensively tested the prototype and we
manually checked that each failure-inducing test case and interleaving generated
by CONCRASH were actually able to reproduce the input failure by executing them
in a controlled environment. We released the prototype and evaluation results
to help replicating our empirical results [45].

The results of our empirical evaluation may also be biased by the experi-
mental setting, and in particular by the order in which CONCRASH explores the
space of possible test cases. Although CONCRASH systematically explores such
space, the order of exploration is arbitrary, and different runs of CONCRASH

can lead to different results as portions of the search space containing failure-
inducing test cases could be explored before or after, depending on such order.
In the CONCRASH prototype we implemented the order of exploration is pseudo-
deterministic, since it depends on an input seed. To mitigate threats that may
derive from the order of exploration of the space of possible test cases, in our em-
pirical evaluation we repeated each experiment five times using different random
seeds, simulating different orders of exploration. We did not reveal significant
differences in the results produced by CONCRASH.

Another threat to the validity of our empirical evaluation is that our results
may not generalize on other subjects, as the number of subject classes is rather
limited. We mitigated this threat by selecting real world concurrency failures,
which have been confirmed and fixed by developers. The considered concurrency
failures are taken from different five different popular code bases. We included
subjects with a wide range of LOC, depth of the crash stack trace, and type of
runtime exception they throw.

82 6.5 Threats to Validity

Chapter 7

Conclusion

This thesis addresses the problem of automatically exposing concurrency fail-
ures, that is, the highly relevant and widely investigated problem of determining
the program conditions that lead to system failures. In the case of concurrency
failures, such conditions can be defined as pairs of a test case and an interleaving
that jointly trigger the failure, since the behavior of concurrent systems depends
on both the behavior of the single threads and their interleaving.

This thesis contributes to the problem of exposing concurrency failures both
with a comprehensive survey and taxonomy of the state-of-the-art techniques
for exposing concurrency failures and with a technique to expose and reproduce
concurrency field failures.

The first contribution of the thesis is the first comprehensive survey, analysis,
and classification of the state-of-art techniques for exposing concurrency failures.
We present a set of classification criteria that characterize the techniques for ex-
posing concurrency failures, and introduce a classification schema that we use to
classify and survey the different approaches. The survey reveals many interest-
ing properties regarding the state-of-the-art techniques, and highlights strengths
and weaknesses. Research on exposing concurrency failures can benefit from
this study. The survey appeared on IEEE Transactions on Software Engineer-
ing [10], and has been selected as Journal- First paper for presentation at the
Joint Meeting on Foundations of Software Engineering (FSE) in 2017.

The second contribution of this thesis is a novel approach to expose and repro-
duce concurrency field failures. Our survey reveals that the problem of automat-
ically reproducing concurrency field failures has not received enough attention,
and the few techniques that have been proposed present two main limitations:
They rely on execution traces or memory core dumps that may be expensive
and hard to collect, respectively, and identify failure-inducing interleavings but

83

84 7.1 Contributions

do not synthesize failure-inducing test cases. We propose a novel technique that
overcomes such limitations by relying only on crash stack traces, which are easily
obtainable and commonly available, and automatically identifying both a failure-
inducing test case and interleaving. We implemented a prototype of the approach
and we conducted an empirical evaluation demonstrating its effectiveness. The
approach described in this dissertation and the results of the empirical evalua-
tion appeared in the proceedings of the Joint Meeting on Foundations of Software
Engineering (FSE) in 2017 [11].

7.1 Contributions

The main contributions of this thesis are the first comprehensive survey of
the state-of-the-art techniques for exposing concurrency failures and a technique
to automatically expose and reproduce concurrency field failures. In details,
this thesis contributes to the state of the art in exposing concurrency failures by
proposing:

A classification schema for techniques for exposing concurrency failures. We
propose a set of criteria for classifying techniques to expose concurrency
failures, and propose a classification schema that we use to survey the
state-of-the-art techniques. The classification schema uses the selection
of interleavings as main classification criterion, and distinguishes between
property-based, space exploration, and reproduction techniques.

A taxonomy of techniques for exposing concurrency failures. We use the pro-
posed classification schema to provide a taxonomy of the state-of-the-art
techniques for exposing concurrency failures. The taxonomy classifies and
compares the state-of-the-art techniques, discusses their advantages and
limitations, and indicates open problems and possible research directions.

A novel approach to reproduce concurrency field failures We propose CON-
CRASH, the first automated technique that reproduces concurrency failures
from the limited information available in crash stack traces. CONCRASH dif-
fers from the approaches proposed in the literature in that it requires com-
monly available information that does not introduce either overhead or
privacy issues, and synthesizes both failure-inducing concurrent test cases
and related interleavings. CONCRASH adopts a suitable set of search prun-
ing strategies to efficiently explore the huge space of possible inputs and
interleavings of the system. The pruning strategies trim both test cases

85 7.2 Open Research Directions

that are redundant with respect to previously generated test cases and test
cases that are irrelevant with respect to the concurrency failure in input.

Prototype implementation. We developed a prototype Java implementation of
our CONCRASH approach. The prototype requires as input the crash stack
trace of the failure to reproduce and synthesizes a failure-inducing test case
in the form of both an executable Java class and a failure-inducing inter-
leaving, which is encoded in a textual file reporting the ordered sequence
of instructions to execute to reproduce the failure. We used this prototype
to experimentally evaluate the effectiveness of the approach presented in
this dissertation.

Evaluation of the technique. We evaluated CONCRASH on a benchmark of ten
concurrency failures taken from different popular code bases. Our results
show that CONCRASH successfully reproduces all the considered failures
within a reasonable time and that its effectiveness is given by the syner-
getic combination of the pruning strategies it adopts. Moreover, our results
show that CONCRASH outperforms state-of-the-art testing approaches by a
large margin, both in terms of failures successfully reproduced and of its
performance.

7.2 Open Research Directions

The results of this thesis open new research directions towards automatically
exposing concurrency failures.

Exposing concurrency failures in message passing systems. One of the main
findings of our survey is that the vast majority of approaches for exposing
concurrency failures target shared memory systems. Validation and veri-
fication of message passing as well as event-driven systems has exploited
mostly static analysis and model checking approaches, leaving the impor-
tant area of exposing concurrency failures in message passing and event-
driven systems open for future research.

Generating concurrent test cases. Our survey reveals that most of the tech-
niques for exposing concurrency failures target the problem of selecting
relevant interleavings, and few techniques focus on test case generation.
Current approaches rely on assumptions that might be invalid in many
cases: for instance, they assume that concurrency failures can be exposed

86 7.2 Open Research Directions

by interleaving two threads only and by accessing a single shared object in-
stance. Furthermore, they do not support the wait-notify mechanism that is
largely adopted in Object-Oriented programs, and whose misuse can lead
concurrent systems to deadlock. Relaxing the restrictive assumptions of
current approaches and supporting the wait-notify mechanism is an open
research topic.

Generating test oracles. Our survey highlights that the state-of-the-art tech-
niques for exposing concurrency failures rely solely on implicit oracles to
detect failures. Implicit oracles deem as erroneous any system crash and
unhandled exception, and are effective in identifying generally wrong be-
haviors, but cannot identify semantic failures, that is, incorrect results pro-
duced by the system. How to automatically generate test oracles that detect
semantic failures taking into account concurrency is yet another important
open research direction.

Extending CONCRASH to reproduce deadlocks. CONCRASH automatically repro-
duces concurrency failures that manifest as runtime exceptions and gen-
erate a crash stack trace. Thus, CONCRASH cannot reproduce deadlocks,
which usually do not generate a crash stack trace when they occur. En-
hancing CONCRASH to support also the reproduction of deadlock failures
is a possible research direction, which requires to extend CONCRASH with a
dedicated runtime monitor that generates a crash stack trace when a dead-
lock is detected and with an interleaving explorer specific for deadlocks.

Bibliography

[1] Agarwal, R., Sasturkar, A., Wang, L. and Stoller, S. D. [2005]. Optimized
run-time race detection and atomicity checking using partial discovered
types, Proceedings of the International Conference on Automated Software
Engineering, ASE ’05, ACM, pp. 233–242.

[2] Altekar, G. and Stoica, I. [2009]. Odr: output-deterministic replay for mul-
ticore debugging, Proceedings of the Symposium on Operating Systems Prin-
ciples, SOSP ’09, ACM, pp. 193–206.

[3] Andrews, G. R. [1991]. Concurrent programming: principles and practice,
Benjamin/Cummings Publishing Company.

[4] Andrews, G. R. and Schneider, F. B. [1983]. Concepts and notations for
concurrent programming, ACM Computing Surveys 15(1): 3–43.

[5] Armstrong, J. [2013]. Programming Erlang, Pragmatic Bookshelf.

[6] Artho, C., Havelund, K. and Biere, A. [2003]. High-level data races, Soft-
ware Testing, Verification and Reliability 13(4): 207–227.

[7] Artzi, S., Ernst, M. D., Kieżun, A., Pacheco, C. and Perkins, J. H. [2006].
Finding the needles in the haystack: Generating legal test inputs for object-
oriented programs, Workshop on Model-Based Testing and Object-Oriented
Systems, M-TOOS ’06.

[8] Artzi, S., Kim, S. and Ernst, M. D. [2008]. Recrash: Making software fail-
ures reproducible by preserving object states, Proceedings of the European
Conference on Object-Oriented Programming, ECOOP ’08, Springer, pp. 542–
565.

[9] Batty, M., Owens, S., Sarkar, S., Sewell, P. and Weber, T. [2011]. Math-
ematizing c++ concurrency, Proceedings of the Symposium on Principles of
Programming Languages, POPL ’11, ACM, pp. 55–66.

87

88 Bibliography

[10] Bianchi, F. A., Margara, A. and Pezzè, M. [2018]. A survey of recent trends
in testing concurrent software systems, IEEE Transactions on Software Engi-
neering 44(8): 747–783.

[11] Bianchi, F. A., Pezzè, M. and Terragni, V. [2017]. Reproducing concurrency
failures from crash stacks, Proceedings of the Joint Meeting on Foundations
of Software Engineering, ESEC/FSE ’17, ACM, pp. 705–716.

[12] Billes, M., Møller, A. and Pradel, M. [2017]. Systematic black-box analysis
of collaborative web applications, Proceedings of the Conference on Program-
ming Language Design and Implementation, PLDI ’17, ACM, pp. 171–184.

[13] Billes, M., Møller, A. and Pradel, M. [2017]. Systematic black-box analysis
of collaborative web applications, Proceedings of the Conference on Program-
ming Language Design and Implementation, PLDI ’17, ACM, pp. 171–184.

[14] Biswas, S., Huang, J., Sengupta, A. and Bond, M. D. [2014]. Dou-
blechecker: efficient sound and precise atomicity checking, Proceedings of
the Conference on Programming Language Design and Implementation, PLDI
’14, ACM, pp. 28–39.

[15] Boehm, H.-J. and Adve, S. V. [2008]. Foundations of the c++ concurrency
memory model, Proceedings of the Conference on Programming Language
Design and Implementation, PLDI ’08, ACM, pp. 68–78.

[16] Bond, M. D., Coons, K. E. and McKinley, K. S. [2010]. Pacer: Proportional
detection of data races, Proceedings of the Conference on Programming Lan-
guage Design and Implementation, PLDI ’10, ACM, pp. 255–268.

[17] Brodeur, D. and Fors, T. [2002]. Capturing Snapshots of a Debuggee’s State
during a Debug Session. US Patent App. 09/963,085.
URL: https://www.google.com/patents/US20020087950

[18] Burckhardt, S., Kothari, P., Musuvathi, M. and Nagarakatte, S. [2010]. A
randomized scheduler with probabilistic guarantees of finding bugs, Pro-
ceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’10, ACM, pp. 167–
178.

[19] Burnim, J., Sen, K. and Stergiou, C. [2011]. Testing concurrent programs
on relaxed memory models, Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA ’11, ACM, pp. 122–132.

89 Bibliography

[20] Cai, Y. and Cao, L. [2015]. Effective and precise dynamic detection of hid-
den races for java programs, Proceedings of the European Software Engineer-
ing Conference held jointly with the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ESEC/FSE ’15, ACM, pp. 450–461.

[21] Cai, Y. and Chan, W. K. [2012]. Magicfuzzer: Scalable deadlock detection
for large-scale applications, Proceedings of the International Conference on
Software Engineering, ICSE ’12, IEEE Computer Society, pp. 606–616.

[22] Cai, Y., Wu, S. and Chan, W. K. [2014]. Conlock: A constraint-based ap-
proach to dynamic checking on deadlocks in multithreaded programs, Pro-
ceedings of the International Conference on Software Engineering, ICSE ’14,
ACM, pp. 491–502.

[23] Chen, F., Serbanuta, T. F. and Rosu, G. [2008]. jpredictor: A predictive
runtime analysis tool for java, Proceedings of the International Conference
on Software Engineering, ICSE ’08, ACM, pp. 221–230.

[24] Chen, J., Hierons, R. and Ural, H. [2004]. Conditions for resolving ob-
servability problems in distributed testing, Proceedings of the IFIP Interna-
tional Conference on Formal Techniques for Networked and Distributed Sys-
tems, Springer, pp. 229–242.

[25] Chen, J. and MacDonald, S. [2007]. Testing concurrent programs using
value schedules, Proceedings of the International Conference on Automated
Software Engineering, ASE ’07, ACM, pp. 313–322.

[26] Chen, N. and Kim, S. [2015]. Star: stack trace based automatic crash repro-
duction via symbolic execution, IEEE Transactions on Software Engineering
41(2): 198–220.

[27] Chen, Q., Wang, L., Yang, Z. and Stoller, S. D. [2009]. Have: Detecting
atomicity violations via integrated dynamic and static analysis, Proceedings
of the International Conference on Fundamental Approaches to Software En-
gineering, FASE ’09, Springer, pp. 425–439.

[28] Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V. and Sridharan, M.
[2002]. Efficient and precise datarace detection for multithreaded object-
oriented programs, Proceedings of the Conference on Programming Language
Design and Implementation, PLDI ’02, ACM, pp. 258–269.

90 Bibliography

[29] Choudhary, A., Lu, S. and Pradel, M. [2017]. Efficient detection of thread
safety violations via coverage-guided generation of concurrent tests, Pro-
ceedings of the International Conference on Software Engineering, ICSE ’17,
IEEE Computer Society, pp. 266–277.

[30] Cogumbreiro, T., Hu, R., Martins, F. and Yoshida, N. [2015]. Dynamic dead-
lock verification for general barrier synchronisation, Proceedings of the Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’15, ACM,
pp. 150–160.

[31] Computerworld [2012]. Nasdaq’s facebook
glitch came from race conditions, https://www.

computerworld.com/article/2504676/financial-it/

nasdaq-s-facebook-glitch-came-from--race-conditions-.html.
Last access: december 2017.

[32] Coons, K. E., Burckhardt, S. and Musuvathi, M. [2010]. Gambit: Effec-
tive unit testing for concurrency libraries, Proceedings of the Symposium on
Principles and Practice of Parallel Programming, PPoPP ’10, ACM, pp. 15–24.

[33] De Moura, L. and Bjørner, N. [2008]. Z3: An efficient SMT solver, Proceed-
ings of the International Conference on Tools and Algorithms for Construction
and Analysis of Systems, TACAS/ETAPS ’08, Springer, pp. 337–340.

[34] Dimitrov, D., Raychev, V., Vechev, M. and Koskinen, E. [2014]. Commutativ-
ity race detection, Proceedings of the Conference on Programming Language
Design and Implementation, PLDI ’14, ACM, pp. 305–315.

[35] Dingel, J. and Liang, H. [2004]. Automating comprehensive safety anal-
ysis of concurrent programs using verisoft and txl, Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
FSE ’12, ACM, pp. 13–22.

[36] Dinning, A. and Schonberg, E. [1990]. An empirical comparison of mon-
itoring algorithms for access anomaly detection, Proceedings of the Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP ’90, ACM,
pp. 1–10.

[37] Elmas, T., Qadeer, S. and Tasiran, S. [2007]. Goldilocks: A race and
transaction-aware java runtime, Proceedings of the Conference on Program-
ming Language Design and Implementation, PLDI ’07, ACM, pp. 245–255.

https://www.computerworld.com/article/2504676/financial-it/nasdaq-s-facebook-glitch-came-from--race-conditions-.html
https://www.computerworld.com/article/2504676/financial-it/nasdaq-s-facebook-glitch-came-from--race-conditions-.html
https://www.computerworld.com/article/2504676/financial-it/nasdaq-s-facebook-glitch-came-from--race-conditions-.html

91 Bibliography

[38] Eslamimehr, M. and Palsberg, J. [2014a]. Race directed scheduling of con-
current programs, Proceedings of the Symposium on Principles and Practice
of Parallel Programming, PPoPP ’14, ACM, pp. 301–314.

[39] Eslamimehr, M. and Palsberg, J. [2014b]. Sherlock: scalable deadlock de-
tection for concurrent programs, Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE ’14, ACM,
pp. 353–365.

[40] Farzan, A., Madhusudan, P., Razavi, N. and Sorrentino, F. [2012]. Predicting
null-pointer dereferences in concurrent programs, Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
FSE ’12, ACM, pp. 1–11.

[41] Flanagan, C. and Freund, S. N. [2004]. Atomizer: A dynamic atomicity
checker for multithreaded programs, Proceedings of the Symposium on Prin-
ciples of Programming Languages, POPL ’04, ACM, pp. 256–267.

[42] Flanagan, C. and Freund, S. N. [2009]. Fasttrack: Efficient and precise
dynamic race detection, Proceedings of the Conference on Programming Lan-
guage Design and Implementation, PLDI ’09, ACM, pp. 121–133.

[43] Flanagan, C., Freund, S. N. and Yi, J. [2008]. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs, Proceed-
ings of the Conference on Programming Language Design and Implementation,
PLDI ’08, ACM, pp. 293–303.

[44] Fonseca, P., Li, C. and Rodrigues, R. [2011]. Finding complex concur-
rency bugs in large multi-threaded applications, Proceedings of the ACM
SIGOPS EuroSys European Conference on Computer Systems, EuroSys ’11,
ACM, pp. 215–228.

[45] Francesco Bianchi [2017]. ConCrash, http://star.inf.usi.ch/star/
software/concrash/. Last access: 5 April 2018.

[46] Fraser, G. and Gargantini, A. [2009]. Experiments on the Test Case Length
in Specification Based Test Case Generation, 2009 ICSE Workshop on Au-
tomation of Software Test, AST ’13, pp. 18–26.

[47] Ganai, M. K. [2011]. Scalable and precise symbolic analysis for atomicity
violations, Proceedings of the International Conference on Automated Soft-
ware Engineering, ASE ’11, IEEE Computer Society, pp. 123–132.

http://star.inf.usi.ch/star/software/concrash/
http://star.inf.usi.ch/star/software/concrash/

92 Bibliography

[48] Gao, Q., Zhang, W., Chen, Z., Zheng, M. and Qin, F. [2011]. 2ndstrike: To-
ward manifesting hidden concurrency typestate bugs, Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’11, ACM, pp. 239–250.

[49] Godefroid, P. [1996]. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem, Springer.

[50] Goetz, B. and Peierls, T. [2006]. Java Concurrency in Practice, Pearson Ed-
ucation.

[51] Hammer, C., Dolby, J., Vaziri, M. and Tip, F. [2008]. Dynamic detection of
atomic-set-serializability violations, Proceedings of the International Confer-
ence on Software Engineering, ICSE ’08, IEEE Computer Society, pp. 231–
240.

[52] Havelund, K. [2000]. Using runtime analysis to guide model checking
of java programs, Proceedings of the International SPIN Workshop on SPIN
Model Checking and Software Verification, SPIN ’00, Springer, pp. 245–264.

[53] Herlihy, M. P. and Wing, J. M. [1990]. Linearizability: A correctness con-
dition for concurrent objects, ACM Transactions on Programming Languages
and Systems 12(3): 463–492.

[54] Hong, S., Ahn, J., Park, S., Kim, M. and Harrold, M. J. [2012]. Testing
concurrent programs to achieve high synchronization coverage, Proceedings
of the International Symposium on Software Testing and Analysis, ISSTA ’12,
ACM, pp. 210–220.

[55] Hovemeyer, D., Pugh, W. and Spacco, J. [2002]. Atomic instructions in
java, Proceedings of the European Conference on Object-Oriented Program-
ming, ECOOP ’02, Springer, pp. 133–154.

[56] Hsiao, C.-H., Yu, J., Narayanasamy, S., Kong, Z., Pereira, C. L., Pokam, G. A.,
Chen, P. M. and Flinn, J. [2014]. Race detection for event-driven mobile
applications, Proceedings of the Conference on Programming Language Design
and Implementation, PLDI ’14, ACM, pp. 326–336.

[57] Huang, J., Liu, P. and Zhang, C. [2010]. Leap: Lightweight deterministic
multi-processor replay of concurrent java programs, Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
FSE ’10, ACM, pp. 207–216.

93 Bibliography

[58] Huang, J., Luo, Q. and Rosu, G. [2015]. Gpredict: Generic predictive con-
currency analysis, Proceedings of the International Conference on Software
Engineering, ICSE ’15, ACM.

[59] Huang, J., Meredith, P. O. and Rosu, G. [2014]. Maximal sound predic-
tive race detection with control flow abstraction, Proceedings of the Confer-
ence on Programming Language Design and Implementation, PLDI ’14, ACM,
pp. 337–348.

[60] Huang, J. and Zhang, C. [2011]. Persuasive prediction of concurrency ac-
cess anomalies, Proceedings of the International Symposium on Software Test-
ing and Analysis, ISSTA ’11, ACM, pp. 144–154.

[61] Huang, J., Zhang, C. and Dolby, J. [2013]. Clap: Recording local executions
to reproduce concurrency failures, Proceedings of the Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, ACM, pp. 141–
152.

[62] Jin, W. and Orso, A. [2012]. Bugredux: Reproducing field failures for in-
house debugging, Proceedings of the International Conference on Software
Engineering, ICSE ’12, IEEE Computer Society, pp. 474–484.

[63] Joshi, P., Naik, M., Sen, K. and Gay, D. [2010]. An effective dynamic anal-
ysis for detecting generalized deadlocks, Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10,
ACM, pp. 327–336.

[64] Joshi, P., Park, C., Sen, K. and Naik, M. [2009]. A randomized dynamic
program analysis technique for detecting real deadlocks, Proceedings of the
Conference on Programming Language Design and Implementation, PLDI ’09,
ACM, pp. 110–120.

[65] Joshi, P. and Sen, K. [2008]. Predictive typestate checking of multithreaded
java programs, Proceedings of the International Conference on Automated
Software Engineering, ASE ’08, IEEE Computer Society, pp. 288–296.

[66] Kahlon, V. and Wang, C. [2010]. Universal causality graphs: A precise
happens-before model for detecting bugs in concurrent programs, Proceed-
ings of the International Conference on Computer Aided Verification, CAV ’10,
Springer, pp. 434–449.

94 Bibliography

[67] Karmani, R. K., Madhusudan, P. and Moore, B. M. [2011]. Thread contracts
for safe parallelism, Proceedings of the Symposium on Principles and Practice
of Parallel Programming, PPoPP ’11, ACM, pp. 125–134.

[68] Kasikci, B., Zamfir, C. and Candea, G. [2012]. Data races vs. data race
bugs: Telling the difference with portend, Proceedings of the International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS XVII, ACM, pp. 185–198.

[69] Kasikci, B., Zamfir, C. and Candea, G. [2013]. Racemob: Crowdsourced
data race detection, Proceedings of the Symposium on Operating Systems
Principles, SOSP ’13, ACM, pp. 406–422.

[70] Kim, K., Yavuz-Kahveci, T. and Sanders, B. A. [2009]. Precise data race de-
tection in a relaxed memory model using heuristic-based model checking,
Proceedings of the International Conference on Automated Software Engineer-
ing, ASE ’09, IEEE Computer Society, pp. 495–499.

[71] Lai, Z., Cheung, S. C. and Chan, W. K. [2010]. Detecting atomic-set serial-
izability violations in multithreaded programs through active randomized
testing, Proceedings of the International Conference on Software Engineering,
ICSE ’10, ACM, pp. 235–244.

[72] Lamport, L. [1978]. Time, clocks, and the ordering of events in a distributed
system, Communications of the ACM 21(7): 558–565.

[73] Lamport, L. [1979]. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs, IEEE Transactions on Computers C-
28(9): 690–691.

[74] Lauterburg, S., Dotta, M., Marinov, D. and Agha, G. A. [2009]. A framework
for state-space exploration of java-based actor programs, Proceedings of the
International Conference on Automated Software Engineering, ASE ’09, IEEE
Computer Society, pp. 468–479.

[75] Lee, D., Chen, P. M., Flinn, J. and Narayanasamy, S. [2012]. Chimera: Hy-
brid program analysis for determinism, Proceedings of the Conference on Pro-
gramming Language Design and Implementation, PLDI ’12, ACM, pp. 463–
474.

[76] Leveson, N. G. and Turner, C. S. [1993]. An investigation of the Therac-25
accidents, Computer 26(7): 18–41.

95 Bibliography

[77] Li, D., Srisa-an, W. and Dwyer, M. B. [2011]. Sos: Saving time in dynamic
race detection with stationary analysis, Proceedings of the International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’11, ACM, pp. 35–50.

[78] Lipton, R. J. [1975]. Reduction: A method of proving properties of parallel
programs, Communications of the ACM 18(12): 717–721.

[79] Lu, S., Jiang, W. and Zhou, Y. [2007]. A study of interleaving coverage
criteria, Proceedings of the European Software Engineering Conference held
jointly with the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC-FSE companion ’07, ACM, pp. 533–536.

[80] Lu, S., Park, S., Hu, C., Ma, X., Jiang, W., Li, Z., Popa, R. A. and Zhou, Y.
[2007]. Muvi: Automatically inferring multi-variable access correlations
and detecting related semantic and concurrency bugs, Proceedings of the
Symposium on Operating Systems Principles, SOSP ’07, ACM, pp. 103–116.

[81] Lu, S., Park, S., Seo, E. and Zhou, Y. [2008]. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics, Pro-
ceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS ’08, ACM, pp. 329–
339.

[82] Lu, S., Tucek, J., Qin, F. and Zhou, Y. [2006]. AVIO: Detecting atomicity
violations via access interleaving invariants, Proceedings of the International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’06, ACM, pp. 37–48.

[83] Machado, N., Lucia, B. and Rodrigues, L. [2015]. Concurrency debugging
with differential schedule projections, Proceedings of the Conference on Pro-
gramming Language Design and Implementation, PLDI ’15, ACM, pp. 586–
595.

[84] Machado, N., Lucia, B. and Rodrigues, L. [2016]. Production-guided con-
currency debugging, Proceedings of the Symposium on Principles and Practice
of Parallel Programming, PPoPP ’16, ACM, pp. 29:1–29:12.

[85] Maiya, P., Kanade, A. and Majumdar, R. [2014]. Race detection for Android
applications, Proceedings of the Conference on Programming Language Design
and Implementation, PLDI ’14, ACM, pp. 316–325.

96 Bibliography

[86] Manson, J., Pugh, W. and Adve, S. V. [2005]. The java memory model,
Proceedings of the Symposium on Principles of Programming Languages, POPL
’05, ACM, pp. 378–391.

[87] Marino, D., Musuvathi, M. and Narayanasamy, S. [2009]. Literace: Effec-
tive sampling for lightweight data-race detection, Proceedings of the Confer-
ence on Programming Language Design and Implementation, PLDI ’09, ACM,
pp. 134–143.

[88] Musuvathi, M. and Qadeer, S. [2007]. Iterative context bounding for
systematic testing of multithreaded programs, Proceedings of the Confer-
ence on Programming Language Design and Implementation, PLDI ’07, ACM,
pp. 446–455.

[89] Mutlu, E., Tasiran, S. and Livshits, B. [2015]. Detecting javascript races
that matter, Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE ’15, ACM.

[90] Narayanasamy, S., Wang, Z., Tigani, J., Edwards, A. and Calder, B. [2007].
Automatically classifying benign and harmful data races using replay anal-
ysis, Proceedings of the Conference on Programming Language Design and
Implementation, PLDI ’07, ACM, pp. 22–31.

[91] Netzer, R. H. B. [1991]. Race Condition Detection for Debugging Shared-
memory Parallel Programs, PhD thesis.

[92] Nistor, A., Luo, Q., Pradel, M., Gross, T. R. and Marinov, D. [2012]. Balle-
rina: Automatic generation and clustering of efficient random unit tests for
multithreaded code, Proceedings of the International Conference on Software
Engineering, ICSE ’12, IEEE Computer Society, pp. 727–737.

[93] Norris, B. and Demsky, B. [2013]. Cdschecker: Checking concurrent data
structures written with c/c++ atomics, Proceedings of the International Con-
ference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, ACM, pp. 131–150.

[94] O’Callahan, R. and Choi, J.-D. [2003]. Hybrid dynamic data race detection,
Proceedings of the Symposium on Principles and Practice of Parallel Program-
ming, PPOPP ’03, ACM, pp. 167–178.

[95] Pacheco, C., Lahiri, S. K., Ernst, M. D. and Ball, T. [2007]. Feedback-
directed random test generation, Proceedings of the International Conference
on Software Engineering, ICSE ’07, ACM, pp. 75–84.

97 Bibliography

[96] Papadimitriou, C. H. [1979]. The serializability of concurrent database
updates, Journal of the ACM 26(4): 631–653.

[97] Park, C.-S. and Sen, K. [2008]. Randomized active atomicity violation de-
tection in concurrent programs, Proceedings of the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE ’08, ACM,
pp. 135–145.

[98] Park, S., Lu, S. and Zhou, Y. [2009]. Ctrigger: Exposing atomicity violation
bugs from their hiding places, Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’09, ACM, pp. 25–36.

[99] Park, S., Vuduc, R. W. and Harrold, M. J. [2010]. Falcon: Fault localiza-
tion in concurrent programs, Proceedings of the International Conference on
Software Engineering, ICSE ’10, ACM, pp. 245–254.

[100] Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K. H. and Lu, S.
[2009]. Pres: probabilistic replay with execution sketching on multipro-
cessors, Proceedings of the Symposium on Operating Systems Principles, ACM,
pp. 177–192.

[101] Perkovic, D. and Keleher, P. J. [1996]. Online data-race detection via co-
herency guarantees, Proceedings of the Symposium on Operating Systems De-
sign and Implementation, OSDI ’96, ACM, pp. 47–57.

[102] Petrov, B., Vechev, M., Sridharan, M. and Dolby, J. [2012]. Race detec-
tion for web applications, Proceedings of the Conference on Programming
Language Design and Implementation, PLDI ’12, ACM, pp. 251–262.

[103] Pozniansky, E. and Schuster, A. [2003]. Efficient on-the-fly data race de-
tection in multithreaded c++ programs, Proceedings of the Symposium on
Principles and Practice of Parallel Programming, PPoPP ’03, ACM, pp. 179–
190.

[104] Pradel, M. and Gross, T. R. [2012]. Fully automatic and precise detection
of thread safety violations, Proceedings of the Conference on Programming
Language Design and Implementation, PLDI ’12, ACM, pp. 521–530.

[105] Pradel, M. and Gross, T. R. [2013]. Automatic testing of sequential and
concurrent substitutability, Proceedings of the International Conference on
Software Engineering, ICSE ’13, IEEE Computer Society, pp. 282–291.

98 Bibliography

[106] Pradel, M., Huggler, M. and Gross, T. R. [2014]. Performance regression
testing of concurrent classes, Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA 2014, ACM, pp. 13–25.

[107] Prvulovic, M. and Torrellas, J. [2003]. Reenact: Using thread-level spec-
ulation mechanisms to debug data races in multithreaded codes, ISCA ’03,
ACM, pp. 110–121.

[108] Pugh, W. [1999]. Fixing the java memory model, Proceedings of the ACM
Conference on Java Grande, JAVA ’99, ACM, pp. 89–98.

[109] Rajagopalan, A. K. and Huang, J. [2015]. Rdit: Race detection from in-
complete traces, Proceedings of the European Software Engineering Confer-
ence held jointly with the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ESEC/FSE ’15, ACM.

[110] Raychev, V., Vechev, M. and Sridharan, M. [2013]. Effective race detection
for event-driven programs, Proceedings of the International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
’13, ACM, pp. 151–166.

[111] Samak, M. and Ramanathan, M. K. [2014a]. Multithreaded test synthesis
for deadlock detection, Proceedings of the International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’14,
ACM, pp. 473–489.

[112] Samak, M. and Ramanathan, M. K. [2014b]. Trace driven dynamic dead-
lock detection and reproduction, Proceedings of the Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, ACM, pp. 29–42.

[113] Samak, M. and Ramanathan, M. K. [2015]. Synthesizing tests for de-
tecting atomicity violations, Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’15, ACM.

[114] Samak, M., Ramanathan, M. K. and Jagannathan, S. [2015]. Synthesizing
racy tests, Proceedings of the Conference on Programming Language Design
and Implementation, PLDI ’15, ACM, pp. 175–185.

[115] Samak, M., Tripp, O. and Ramanathan, M. K. [2016]. Directed synthesis of
failing concurrent executions, Proceedings of the International Conference on
Object Oriented Programming Systems Languages and Applications, OOPSLA
’16, ACM, pp. 430–446.

99 Bibliography

[116] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P. and Anderson, T. E.
[1997]. Eraser: A dynamic data race detector for multithreaded programs,
ACM Transactions on Computer Systems 15(4): 391–411.

[117] Security Focus [2004]. Software Bug Contributed to Blackout, http://
www.securityfocus.com/news/8016. Last access: november 2017.

[118] Sen, K. [2007]. Effective random testing of concurrent programs, Pro-
ceedings of the International Conference on Automated Software Engineering,
ASE ’07, ACM, pp. 323–332.

[119] Sen, K. [2008]. Race directed random testing of concurrent programs,
Proceedings of the Conference on Programming Language Design and Imple-
mentation, PLDI ’08, ACM, pp. 11–21.

[120] Sen, K. and Agha, G. [2006]. Automated systematic testing of open dis-
tributed programs, Proceedings of the International Conference on Fundamen-
tal Approaches to Software Engineering, FASE ’06, Springer, pp. 339–356.

[121] Shacham, O., Bronson, N., Aiken, A., Sagiv, M., Vechev, M. and Yahav,
E. [2011]. Testing atomicity of composed concurrent operations, Proceed-
ings of the International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, ACM, pp. 51–64.

[122] Shacham, O., Sagiv, M. and Schuster, A. [2005]. Scaling model checking
of dataraces using dynamic information, Proceedings of the Symposium on
Principles and Practice of Parallel Programming, PPoPP ’05, ACM, pp. 107–
118.

[123] Sheng, T., Vachharajani, N., Eranian, S., Hundt, R., Chen, W. and Zheng,
W. [2011]. Racez: A lightweight and non-invasive race detection tool for
production applications, Proceedings of the International Conference on Soft-
ware Engineering, ICSE ’11, ACM, pp. 401–410.

[124] Shi, Y., Park, S., Yin, Z., Lu, S., Zhou, Y., Chen, W. and Zheng, W. [2010].
Do i use the wrong definition?: Defuse: Definition-use invariants for de-
tecting concurrency and sequential bugs, Proceedings of the International
Conference on Object Oriented Programming Systems Languages and Applica-
tions, OOPSLA ’10, ACM, pp. 160–174.

http://www.securityfocus.com/news/8016
http://www.securityfocus.com/news/8016

100 Bibliography

[125] Shirako, J., Peixotto, D. M., Sarkar, V. and Scherer, W. N. [2008]. Phasers:
A unified deadlock-free construct for collective and point-to-point synchro-
nization, Proceedings of the Annual International Conference on Supercom-
puting, ICS ’08, ACM, pp. 277–288.

[126] Singhal, M. [1989]. Deadlock detection in distributed systems, IEEE Com-
puter 22(11): 37–48.

[127] Sinha, N. and Wang, C. [2010]. Staged concurrent program analysis,
Proceedings of the ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, ACM, pp. 47–56.

[128] Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J. and Flanagan, C. [2012].
Sound predictive race detection in polynomial time, Proceedings of the Sym-
posium on Principles of Programming Languages, POPL ’12, ACM, pp. 387–
400.

[129] Sorrentino, F., Farzan, A. and Madhusudan, P. [2010]. Penelope: Weav-
ing threads to expose atomicity violations, Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10,
ACM, pp. 37–46.

[130] Steenbuck, S. and Fraser, G. [2013]. Generating unit tests for concur-
rent classes, Proceedings of the International Conference on Software Testing,
Verification and Validation, ICST ’13, IEEE Computer Society, pp. 144–153.

[131] Tasharofi, S., Pradel, M., Lin, Y. and Johnson, R. E. [2013]. Bita:
Coverage-guided, automatic testing of actor programs, Proceedings of the
International Conference on Automated Software Engineering, ASE ’13, IEEE
Computer Society, pp. 114–124.

[132] Terragni, V. and Cheung, S.-C. [2016]. Coverage-driven test code gener-
ation for concurrent classes, Proceedings of the International Conference on
Software Engineering, ICSE ’16, ACM, pp. 1121–1132.

[133] Terragni, V., Cheung, S.-C. and Zhang, C. [2015]. Recontest: Effec-
tive regression testing of concurrent programs, Proceedings of the Interna-
tional Conference on Software Engineering, ICSE ’15, IEEE Computer Society,
pp. 246–256.

101 Bibliography

[134] Tian, C., Nagarajan, V., Gupta, R. and Tallam, S. [2008]. Dynamic recog-
nition of synchronization operations for improved data race detection, Pro-
ceedings of the International Symposium on Software Testing and Analysis,
ISSTA ’08, ACM, pp. 143–154.

[135] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P. and Sundaresan,
V. [2010]. Soot: A java bytecode optimization framework, CASCON First
Decade High Impact Papers, IBM Corp., pp. 214–224.

[136] Vaziri, M., Tip, F. and Dolby, J. [2006]. Associating synchronization con-
straints with data in an object-oriented language, Proceedings of the Sympo-
sium on Principles of Programming Languages, POPL ’06, ACM, pp. 334–345.

[137] Veeraraghavan, K., Chen, P. M., Flinn, J. and Narayanasamy, S. [2011].
Detecting and surviving data races using complementary schedules, Pro-
ceedings of the Symposium on Operating Systems Principles, SOSP ’11, ACM,
pp. 369–384.

[138] Visser, W., Pǎsǎreanu, C. S. and Khurshid, S. [2004]. Test input generation
with java pathfinder, Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA ’04, ACM, pp. 97–107.

[139] von Praun, C. and Gross, T. R. [2001]. Object race detection, Proceedings
of the International Conference on Object Oriented Programming Systems Lan-
guages and Applications, OOPSLA ’01, ACM, pp. 70–82.

[140] Wang, C., Said, M. and Gupta, A. [2011]. Coverage guided systematic
concurrency testing, Proceedings of the International Conference on Software
Engineering, ICSE ’11, ACM, pp. 221–230.

[141] Wang, L. and Stoller, S. D. [2006]. Runtime analysis of atomicity for mul-
tithreaded programs, IEEE Transactions on Software Engineering 32(2): 93–
110.

[142] Weeratunge, D., Zhang, X. and Jagannathan, S. [2010]. Analyzing multi-
core dumps to facilitate concurrency bug reproduction, Proceedings of the In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’10, ACM, pp. 155–166.

[143] Wester, B., Devecsery, D., Chen, P. M., Flinn, J. and Narayanasamy, S.
[2013]. Parallelizing data race detection, Proceedings of the International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’13, ACM, pp. 27–38.

102 Bibliography

[144] Wu, R., Xiao, X., Cheung, S.-C., Zhang, H. and Zhang, C. [2016]. Casper:
An efficient approach to call trace collection, Proceedings of the Symposium
on Principles of Programming Languages, POPL ’16, ACM, pp. 678–690.

[145] Wu, R., Zhang, H., Cheung, S.-C. and Kim, S. [2014]. Crashlocator: Lo-
cating crashing faults based on crash stacks, Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’14, ACM, pp. 204–214.

[146] Wyatt, D. [2013]. Akka Concurrency, Artima Incorporation.

[147] Xu, M., Bodík, R. and Hill, M. D. [2005]. A serializability violation de-
tector for shared-memory server programs, Proceedings of the Conference on
Programming Language Design and Implementation, PLDI ’05, ACM, pp. 1–
14.

[148] Yu, J., Narayanasamy, S., Pereira, C. and Pokam, G. [2012]. Maple: a
coverage-driven testing tool for multithreaded programs, Proceedings of the
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’12, ACM, pp. 485–502.

[149] Yu, T., Srisa-an, W. and Rothermel, G. [2013]. Simracer: An automated
framework to support testing for process-level races, Proceedings of the In-
ternational Symposium on Software Testing and Analysis, ISSTA ’13, ACM,
pp. 167–177.

[150] Yu, T., Srisa-an, W. and Rothermel, G. [2014]. Simrt: An automated frame-
work to support regression testing for data races, Proceedings of the Inter-
national Conference on Software Engineering, ICSE 2014, ACM, pp. 48–59.

[151] Yu, T., Zaman, T. S. and Wang, C. [2017]. Descry: Reproducing system-
level concurrency failures, Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’17, ACM, pp. 694–
704.

[152] Yu, Y., Rodeheffer, T. and Chen, W. [2005]. Racetrack: Efficient detection
of data race conditions via adaptive tracking, Proceedings of the Symposium
on Operating Systems Principles, SOSP ’05, ACM, pp. 221–234.

[153] Yuan, X., Wu, C., Wang, Z., Li, J., Yew, P.-C., Huang, J., Feng, X., Lan, Y.,
Chen, Y. and Guan, Y. [2015]. ReCBuLC: reproducing concurrency bugs
using local clocks, Proceedings of the International Conference on Software
Engineering, IEEE Computer Society, pp. 824–834.

103 Bibliography

[154] Zamfir, C. and Candea, G. [2010]. Execution synthesis: A technique for
automated software debugging, Proceedings of the ACM SIGOPS EuroSys Eu-
ropean Conference on Computer Systems, EuroSys ’10, ACM, pp. 321–334.

[155] Zhai, K., Xu, B., Chan, W. K. and Tse, T. H. [2012]. Carisma: A context-
sensitive approach to race-condition sample-instance selection for multi-
threaded applications, Proceedings of the International Symposium on Soft-
ware Testing and Analysis, ISSTA ’12, ACM, pp. 221–231.

[156] Zhang, W., Lim, J., Olichandran, R., Scherpelz, J., Jin, G., Lu, S. and Reps,
T. [2011]. Conseq: Detecting concurrency bugs through sequential errors,
Proceedings of the International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XVI, ACM, pp. 251–
264.

[157] Zhang, W., Sun, C. and Lu, S. [2010]. Conmem: Detecting severe concur-
rency bugs through an effect-oriented approach, Proceedings of the Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS XV, ACM, pp. 179–192.

[158] Zhou, J., Xiao, X. and Zhang, C. [2012]. Stride: Search-based deter-
ministic replay in polynomial time via bounded linkage, Proceedings of the
International Conference on Software Engineering, IEEE Computer Society,
pp. 892–902.

	Contents
	List of Figures
	List of Tables
	Introduction
	Contributions
	Structure of the Dissertation

	Concurrency
	Concurrent Systems
	Interleaving of Execution Flows
	Concurrency Faults
	Data Races
	Atomicity violations
	Deadlocks
	Order violation

	A Classification Schema for Techniques for Exposing Concurrency Failures
	Exposing Concurrency Failures
	Towards a Classification Schema
	Input
	Selection of Interleavings
	Property of Interleavings
	Output and Oracle
	Guarantees
	Target System
	Technique

	Classification Schema

	A Taxonomy of Techniques for Exposing Concurrency Failures
	Property Based Techniques
	Data Race
	Atomicity Violation
	Deadlock
	Combined
	Order Violation

	Space Exploration Techniques
	Stress Testing
	Exhaustive exploration
	Coverage criteria
	Heuristics

	Reproduction Techniques
	Record-and-replay
	Post-processing

	Reproducing Concurrency Failures From Crash Stack Traces
	Overview
	The ConCrash Approach
	Test Case Generator
	Modeling the Test Cases Search Space
	Test Case Minimization
	Exploring the Test Cases Search Space
	Pruning Strategies

	Interleaving Explorer
	Symbolic Trace Collection
	Computing Failing Interleavings with Constraint Solving

	Evaluation
	Research Questions
	Experimental Setting
	Experimental Results
	RQ1 - Effectiveness
	RQ2 - Pruning Strategies
	RQ3 - Comparison with Testing Approaches

	Limitations
	Threats to Validity

	Conclusion
	Contributions
	Open Research Directions

	Bibliography

