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Introduction

These last decades have witnessed an explosion of data collection and diffusion in all fields of
human society. In many scientific fields researchers are becoming aware of a big data problem
and of the need to manage it properly, combining the tools offered by statistics, computer, data
science and informatics. This is particularly true for geo-located data, which can be collected
in a comprehensive manner thanks to new technologies. Spatial econometric methods provide
the right environment for spatial data modelling to identify causal mechanism and to assist
empirically-supported decisions. However, such models become computationally prohibitive even
with increasing power computing machines, when applied to very large datasets. The main
features of big data are the so-called five V: volume, velocity, variety, veracity and value. All
these characteristics can be easily detectable in the new geo-located data, instantly provided in
a huge amount by smartphones, wearable, websites or other technologies.

From this perspective, in this thesis, we aim to identify the limits of the current routines and the
issues which could occur dealing with big spatial dataset. Since, we are specifically interested in
the study of causal relationships between phenomena through regression-type models, our entire
research focuses on the most common spatial econometric models: the Spatial Lag Model and
the Spatial Error Model.

We firstly investigate the main feature of big data: the volume. Are the current spatial
econometric procedures able to handle such a massive quantity of data? We aim at evaluating
the performances of the currently available estimation methods, based not only on an increasing
number of samples, but also on the value of the parameters and the definition of the spatial
topology.

In Chapter 1, Estimation of Spatial Econometric linear models with large datasets: How big can
spatial Big Data be?, we report the results of our systematic Monte Carlo simulation study. We

investigate the estimation of Spatial Lag Model with the Maximum Likelihood, which is the gold



standard in spatial econometric (Ord; 1975), the Two Stages Least Squares Kelejian and Prucha
(1998), and Bayesian estimator. We test their performances for different sample sizes, different
values of the parameters and different levels of sparsity of the weight matrices. We compare the
methods referring to three performance indicators, namely: computing time, storage required
and accuracy of the estimators. From our simulations exercise, we deduce that computational
issues in estimation phase rise both from the sample size n both from high density of the weight
matrix. We observe that computing time increases non-linearly with the sample size for all the
procedures considered and it is also strongly related with the density of the weight matrix. Our
conclusion is that the weight matrix density plays a key role in estimating the model both in
terms of time required and accuracy.

As a second step, we consider the velocity at which data are acquired. The big data revolution
is challenging the state-of-the-art statistical and econometric techniques in many different ways,
not only in terms of volume, but also in terms of velocity. Handling a flow of observations in an
efficient manner is a challenging thematic. From a spatial regression-type model perspective a
focus in data streaming is lacking, nevertheless it is worth to explore this field since neglected
spatial correlation could lead to inefficient estimators. Generally speaking, the presence of spatial
correlation produces disturbance effects on statistical inference so that the classical estimation
methods will lead to biased, inconsistent and inefficient parameter estimators (Cressie; 1993).
In this case, the problem is more complex to solve than in the time series case since the spa-
tial correlation between all observations must be taken into account. In Chapter 2 Handling
streaming of data in spatial econometric modelling we propose an approximation to the available
estimation method of the Spatial Error Model (Arbia; 2014) in order to make recursive writing
of the estimation procedure possible. Since it would be time and space consuming to re-estimate
the model all the time that a new piece of information becomes available, we try to find a re-
cursive approach for the definition of the variables that combined with the Feasible Generalized
Least Squares estimation method (Kelejian and Prucha; 1998) allows to reduce the number of
algorithm steps and the storage required. In particular, we propose to approximate the spatial
parameter p with an initial value and keep it fixed for the following steps of the streaming. Monte
Carlo simulations under different values of the parameters allow us to conclude that, despite the
important approximating assumption, the obtained results are comparable with those computed
with the complete set of information and a recursive formulation of the model is essential to
achieve a fast estimation procedure. Based on these results, we investigate the impact of the

magnitude of the spatial correlation parameter p on the performance of the estimators of Spatial



Error Model. This investigation leads us to consider also the comparison with OLS, which can
be considered a special case of Spatial Error Model with zero spatial correlation.

Chapter 3 On the efficiency of estimators of the Spatial Error Model contains our observations
regarding the relative efficiency of the Feasible Generalized Least Squares and the OLS. As ar-
gued from Kramer and Donninger (1987), under some algebraic condition of the adjacency matrix
W the Feasible Generalized Least Squares and the OLS have the same efficiency, in addition to
being both consistent. In this framework, we further considerate algebraic structure of adjacency
matrix and we investigate the effect on the size and the power of the models. We account for
different structure of the W and values of the parameters involved.

Finally, we focus on one of the basic hypothesis of spatial models: the coefficients stationarity.
In the specific case of large datasets, which are usually spread over large areas, this assumption
is particularly unrealistic and unlikely. In most applications, the socio-economic variables con-
sidered follow specific patterns in the reference area, resulting in a non-homogeneous behaviour
in the data. For this reason, in Chapter 4 Modelling Non-Stationary Spatial Lag Model with
Hidden Markov Random Fields we propose a hierarchical model which, through the use of latent
processes, is able to identify different groups within the observations Besag (1986). In this spirit,
we introduce a latent process evolving according to a Potts model (Okabayashi et al.; 2011),
which drives the coefficients values in a Spatial Lag Model. The Potts model structure allows us
to consider similarities between neighbouring points, thus accounting for the intrinsic topology of
the spatial model. We propose the estimation in a Bayesian framework with a Metropolis within
Gibbs algorithm. Since this kind of models badly scales for large dataset, where needed, some
parts of the code are programmed in C-++ in order to obtain better computation performances.
A simulation exercise was also performed to investigate the influence of individual model pa-
rameters on the accuracy of the results. Criteria to model comparison in order to establish the

optimal number of clusters is also provided.
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Chapter 1

Estimation of spatial econometric
linear models with large datasets:

How big can spatial Big Data be?

1.1 Introduction

Spatial econometrics is currently experiencing the Big Data revolution both in terms of the vol-
ume of data and of the velocity with which they are accumulated. Regional data, employed
traditionally in spatial econometric modeling, can be very large, the information being increas-
ingly available at a very fine resolution at the level of census tracts, local markets, town blocks,
regular grids or other small partitions of the territory. For example the US Census Bureau col-
lects data at the level of about 75,000 census tracts. In the EU, Eurostat encourages the use of a
regular grid to analyze and compare population distributions. The 1000-by-1000 square meters
grid is the official one, thus involving some millions of observations, but many national institutes
(like e.g. ISTAT in Italy) produce a regular grid population distribution at the level of 20-by-20
square meters involving many more data. When dealing with spatial micro econometric models
referred to granular observations of the single economic agent, the number of observations can be
a lot larger (Arbia, Espa and Giuliani; 2018). For example the US Census Bureau’s Longitudi-
nal Business Database (CBD) provides annually geo-coded observations for every private-sector

firm, thus including some million establishments and employees. However, are the current spatial



econometric procedures able to handle such a massive quantity of data? Two are the elements
that produce computational problems in estimation phase: the sample size (n) and the level
of density of the weight matrix W (). In spatial studies a linear increase in the number of
observations corresponds to a quadratic increase in the dimension of the weight matrix thus ex-
acerbating the problems. Furthermore, since all the estimation procedures involve the inversion
of some function of the weight matrix, its level of sparsity also plays a crucial role. Under this
respect when using the Maximum Likelihood (ML) framework, the eigenvalues decomposition
suggested by Ord (1975) has been, for many years, the gold standard in spatial econometrics to
solve computational problems occurring with large data when ’large’ meant only few hundreds.
Unfortunately the computation of eigenvalues may become highly inaccurate already for matrices
with a dimension of 400x400 (Kelejian and Prucha; 1998). The accuracy improves if the weight
matrix is symmetric, which, however, is not the case when dealing with row-standardized weights.
Many approximations proposed in the literature are usually sufficiently accurate if the weight
matrix is sparse, but only if the sample is not too large (for example see Applying the Generalized-
Moments Estimation Approach to Spatial Problems Involving Microlevel Data (2000), where the
case study has a dimension of 2,000 observations). If the weight matrices are, conversely, dense
all approximations become quickly rather inaccurate. The literature reports numerous attempts
to reduce the computational burden by suggesting new approximations (Smirnov and Anselin;
2001; Pace and LeSage; 2004; Griffith; 2000, 2004), new less time-consuming estimators with
respect to ML (the Two Stage Least Squares - 2SLS - suggested by Kelejian and Prucha (1998)
and the asymptotically optimal estimator proposed by Lee (2003)), or by redefining the models
so as to tackle the problem at its very root (LeSage and R.; 2007; Arbia et al.; 2013; Arbia;
2014a; Arbia, Bee, Espa and Santi; 2018; Santi et al.; 2017). A different solution for the com-
putation of the determinant was proposed by (Pace and Barry; 1997a) that illustrate how it is
possible to accelerate dramatically the calculation in spatial econometric model estimation by
exploiting the properties of sparse matrices. Faster solution for estimating Conditionally Autore-
gressive Models were also proposed in the presence of sparse W matrices by (Pace and Barry;
1997b). It is well known that dense W matrices should be avoided in spatial models in order to
reduce computational problems and also due to the bias which they introduce in the estimator
of the spatial parameters (Smith; 2009). Nonetheless fully dense matrices can emerge in practi-
cal circumstances when individual spatial units are strongly connected like in social and neural
network studies (Novikov et al.; 2015) or when W matrices are specified as an inverse function of

pair-wise distances (Qu and fei Lee; 2015). Spatial gravity models provide a further example of



very dense connectivity matrices (LeSage and Pace; 2008). In these cases what are the practical
limitations imposed by the level of connectedness? Furthermore, several commercial software
and Geographical Information Systems (GIS) create by default W matrices based on the inverse-
distance specification (thus fully dense) without making the user aware of the dangers connected
with this choice. Indeed there are only a few attempts in the literature to answer to the question
that we pose in the title of our Chapter. Only (Walde et al.; 2008) evaluate the computing time
associated to various matrix decomposition techniques with the Generalized Spatial Two Stages
Least Squares (GSTSLS) estimators, while Bivand et al. (2013) focus on the accuracy of some
approximate approaches when dealing with sparse matrices (i.e. when the computation of the
determinant is performed on W matrices of dimensions up to 1,000,000x 1,000,000, characterized
by a rook contiguity criterion), but neglecting the case of very large and dense weight matri-
ces. This Chapter reports the results of a systematic simulation study that aims at evaluating
the limits within which the current methodologies are still feasible and reliable when estimating
spatial econometric models with very large data sets and different levels of density of the W
matrices. To allow a comparability of the results between different estimation strategies in our
study we limited ourselves to the Spatial Lag Model which is estimated with 2SLS, ML and a
Bayesian procedure. We test the performances of the various estimators at different sample sizes
and for different levels of density by referring to three performance indicators: computing time,
storage required and accuracy of the estimators. The rest of the Chapter is organized as follows.
In Section 1.2 we present the simulation plan. In Section 1.3 we report the simulation results,

while Section 1.4 is devoted to a summary of the main findings and to some concluding remarks.

1.2 The simulation setup

In our simulations we focus on Gaussian spatial models limiting ourselves, in particular, to the
Spatial Lag specification which is frequently the choice of selection in regional and urban studies.

Formally, the model can be written as follows:

Y =X3+pWY +¢€
€ ~ MVYN(0,0%I).
A key role in the model is played by the spatial autoregressive component pWY |, where W is

the row-standardized weight matrix that describes the spatial structure of connectedness. The

definition of W is crucial in the application of spatial models to real cases because not only it



determines the parameters’ estimations, but it also dramatically influences the computational
features. For more details about the interpretation of SLM see e.g. Arbia (2014b). Although
in the literature a lot of different approaches were proposed in order to solve the estimation
problems, the most popular methods are Maximum Likelihood and 2SLS, whose procedures are
implemented in most econometric software such as R, Matlab or Python. Bayesian routines are
also available.

Our simulation exercise aims at studying the behavior of three performance indicators, namely
(i) computation time, (ii) storage required and (iii) accuracy of the estimations, with respect
to three model characteristics, namely (i) the sample size, (ii) the density of the W matrix and
(iii) the model’s parameters. The simulation experiment is structured as follows. First of all, we
consider a random variable Y = [Y7, ..., Y,,] laid on a regular square lattices. In order to explore
the effects of the different sample sizes, we consider regular lattice grids of increasing dimensions
ranging from 10 x 10 up to 264 x 264, corresponding to a sample size that ranges between 100
and 69,696 observations'. The limit of allocation for the data depends on the computer features,
but also on the method used to store them. In our case (for details of computational resources
see Section 1.3) it was not possible to allocate more than n = 100,000 observations.

We also want to investigate how different density levels of the weight matrix W influence the
results, where the density of W is defined as the proportion of non-zero elements in the matrix (say
d). As it has been proved (Smith; 2009), weight matrix with a huge number of links leads to bias
in the estimation of the spatial correlation parameter. However, many empirical applications
(especially those where the spatial setting depends on some function of the distance between
individual units) require a highly-connected structure of the neighborhood. For this reason it
is necessary to consider the effects of dense W matrices in the estimation procedures. In our
simulations 0 ranges over the values [0.001, 0.07, 0.49, 0.9]. While a density of 0.9 is unusual,
and in any case not recommended given the distortions described by Smith (2009), we consider
useful to report the results also for this limiting case. In order to control for the density of W,
we defined different levels of neighborhood according to the queen’s case contiguity criterion.
Increasing levels of density are obtained considering higher orders of neighborhood. We compute
the weight matrix, say W (n,d), for every combination on n and ¢ using the above procedure
with one remarkable exception. Indeed, when n = 100 and § = 0.001 the only neighbors are the
cells to the left and to the right on the lattice, because in this case it is otherwise not possible

to obtain the target density. Once W (n,d) is computed, in order to obtain samples drawn from

IThe sample sizes considered are precisely of 100, 1024, 5041, 10000, 30276, 50176 and finally 69696.



a random field characterized by that specific spatial structure, we proceed as follows. A vector
of independent disturbances € is generated from a normal distribution with zero mean and a

variance o2, where o2

can assume three different values, namely 0.1, 1 and 10. Secondly, a
vector of observations from a covariate X is generated from a normal distribution with a mean
arbitrarily fixed to 10 and a variance equal to 20. Since X is considered deterministic, its value
is fixed in all simulations. We also fixed the regression slope coefficient 8 equal to 1, and we
computed X = W(n,d)X, thus introducing spatial correlation into the covariate. Furthermore,

we consider three levels for the autoregressive parameter p equal to -0.7, 0 and 0.7. Once all

parameters are specified, we simulated the sample observations from the SLM as follows:
Y(?’L’ 67 P, 027 6) = (1 - pW(’l’L, 6))_1)25 + (1 - pW(TL7 6))_16'

The practical details of the construction of W and the generation of Y are provided in Appendix

A.

1.3 Simulation results

In the current Section we present the main results of our simulation experiment. All the simula-
tions were run using a cluster with 128 GB of RAM and a 3.50 GHz processor. The estimations
are obtained with the spdep package, one of the most popular among researchers and practition-
ers. Bivand and Piras (2015) showed that the results of ML and 2SLS do not differ significantly
when using different software routines like those contained in e.g. Matlab, Stata or R. Even if
all our simulations were run using spdep , for comparison we have tested the procedures using
also Matlab. The results are comparable to those reported here, although generally less time
consuming in the case of Matlab. The package spdep contains user friendly routines for the
ML procedure (the lagsarlm function), for the 2SLS procedure (the stsls function) and the
corresponding Bayesian version (the spBreg_lag function). In the Bayesian framework, the

prior and the likelihood are expressed as follows:

Y|X,8,p,0% ~ N((I - pWY) " (XB),0*(I — pWY) (I - pWY)™ ")
5 ~ N(O, 1012)
o? ~ T(0.001,0.001)

p ~ Beta(1.01,1.01)



In each simulation exercise we run the code for 15,000 iterations (1,500 of which were discarded
as burnin) and with a thinning parameter of 10 we obtained a chain of length 5,000. It should be
noticed that the execution time with the ML method is strongly influenced by the algorithm used
for computing the determinant of the (I — pWV) matrix. While the differences between several
methods proposed in the package (i.e. eigenvalues, LU decomposition, Cholesky decomposition
and Monte Carlo approximation) are not significant with datasets of small dimensions, they
become relevant when increasing the sample size. As suggested by Bivand et al. (2013), we choose
the LU decomposition that has better performances with large datasets and can be applied to
all kind of matrices.

Each simulation experiment was replicated 100 times. In our analysis we considered the average
computing time, the average mean square error (MSE) of the parameters’ estimation and the

storage required.

1.3.1 Computing time considerations

In our simulation, first of all, we notice that the computing time is independent of the values of
p and o2. For this reason Figure 1.1 reports only one specific combination of the parameters,
namely p = 0.7 and 0? = 1. As it was expected, computing time essentially depends on the
sample size. However this relationship is not linear: the time increases more sharply when n is
greater than 5,000. Another remarkable feature is that computing time is strongly dependent
on the density of the W matrix. We notice that timing problems appear also for relatively low
values of §, like 0.07. In this case a sample of 10,000 observations takes more the 30 minutes to be
analyzed. The phenomenon is obviously exacerbated if we consider higher levels of density: the
ML procedure takes 10 hours when dealing with 6 = 0.9 while with the Bayesian procedure the
time goes up to 2 days. With our computing facilities, it was impossible to perform estimations
with a sample size greater than 10,000 and with a high density of the W matrix due to the
prohibitive amount of time required for the estimations. In the case of § = 0.001 it was possible
to estimate models up to, approximately, n = 70,000 observations with the ML procedure and
n = 50,000 with the Bayesian method. It is fair to notice that these problems do not affect
the 2SLS method, which requires only few second in any simulation scenario. Figure 1.2 clearly

displays the computing time required by the three procedures as a function of the sample size.
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Figure 1.2: Computational time related to the estimation of the SLM at different sample sizes,
where the three estimation methods are: ML= Maximum Likelihood, 2SLS= Two Stages Least
Squares, B=Bayesian (p = 0.7, 02 = 1 and § = 0.001).

11



In our evaluation of computing time there are two important points to remark. First of all,
the estimation procedures included in the R routines return different outputs. In the case of
the ML procedure, statistics for significance and information about likelihood and optimization
process are also provided, while they are not calculated in the 2SLS case. This results in an
increase in computing time. Secondly, consistent results can be obtained with other software like

Matlab, which however generally performs better.

1.3.2 Accuracy evaluation

We then proceed to evaluate the accuracy of the estimators using the three estimation procedures
through the analysis of the mean square errors. For the sake of brevity, we only report here some
examples in order to support our conclusions. Figure 1.3 and 1.4 report the error respectively
for B and p. In all graphs n = 1024 while we consider two levels of variance: 0 = 1 and o2 = 10.
More analytical results are reported in Appendix B. In general, all procedures are accurate with
small 02, while, as expected, the error increases with the residuals error variance. This holds, in
particular, for the 2SLS procedure where with "high densities" the error increases dramatically.
Our simulation shows that, although with different patterns, accuracy depends crucially on the

density of W for all estimation methods: estimators become less accurate for denser W matrices.
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Figure 1.3: Comparison of the MSE of the estimator of the regression parameter g with n = 1024
and 02 = 1 (upper graphs), and 02 = 10 (lower graphs) as a function of the density of the W

matrix. Vertical scales can be different in the various graphs.

Generally speaking the estimations of the spatial correlation parameter p are more accurate
than those of the regression parameter 5. Furthermore another important evidence from the ex-
periment is that the Bayesian estimators are less affected by the values of the various parameters

and, even in the worst case, they are less sensitive to the density of the W matrix.

1.3.3 Storage issues

Finally, let us consider the storage required by the various procedures in the different simulation
scenarios. The major results are summarized in Table 1.1. The storage required appears to be
unaffected by the density of W and by the parameters’ values and it seems to only depend on
the sample size with the remarkable exception of the Bayesian estimator. Generally speaking

ML is more space-consuming than the other methods, this behavior depending mostly on the
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Figure 1.4: Comparison of the MSE of the estimator of the spatial correlation parameter p with
n = 1024 and 0% = 1 (upper graphs), and 02 = 10 (lower graphs) as a function of the density of

W matrix. Vertical scales can be different in the various graphs.

structure of the R function 1agsarlm which saves in the output also many summary statistics

and data matrices.

1.4 Summary and Conclusions

In this Chapter, we analyzed, through an intensive simulation study, what are the limits within
which spatial econometric models can be accurately estimated when dealing with very large
datasets. We observed that computing time increases non-linearly with the sample size for all
the procedures considered and it is also related with the density of the weight matrix. As it
is well known 2SLS largely outperforms ML and Bayesian procedure in terms of computing

time. For the last two methods it was not possible to estimate models with more than 10,000
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n=100 | n=1,024 | n=>5,041 | n = 10,000
ML | 0.053 0.423 2,209 4,013
2SLS | 0.003 0.11 0.43 0.83

B 0.860 0.860 0.860 0.860

Table 1.1: Storage required by the different estimation procedures expressed in MegaBytes.

units when matrices are characterized by a high density, due to the prohibitive amount of time
required, while with 2SLS a sample of dimension 70,000 could be easily accommodated. The
density of the W matrix plays a key role in the estimation process since it negatively affects both
the computing time and the accuracy of the results. For this reason in practical applications, it
is suggested to avoid matrices with a very dense structure, as already remarked in papers like
(Pace and Barry; 1997a,b) and Smith (2009). In cases where a dense structure is required by the
problem, it is advisable to introduce a cut-off in order to reduce the computational problems. In
terms of the accuracy of the estimators, by comparing the simulated MSE, we found that ML
and Bayesian methods outperform 2SLS in the estimations of all parameters with all sample sizes
and all densities of the weight matrices in most experimental situations. This results holds, in
particular, when the variability of the disturbances is very high, in which case the MSE obtained
with 2SLS increases dramatically. Furthermore, in most simulation circumstances, the estimation
seems to be affected by the increase of the density of the W matrix. This is particularly true
for the 2SLS procedure, while the Bayesian procedure provides more stable results. Finally, we
observed that the computer storage increases linearly with the sample size for both ML and
2SLS estimators, while it is approximately constant in the case of the Bayesian estimator. ML
is more space-consuming than 2SLS with an average storage of about 4 MB for a sample size
of 10,000 units, against only 0,8 MB required by the 2SLS procedure. Since the increase is
linear our results can help the users to identify what are the limits of the sample size that can
be managed by the computational resources that they have access to. Our results can also
help the researchers to choose between the various estimators in empirical applications. If time
and computer storage is not a constraint it is always better to exploit an ML strategy. 2SLS
is particularly not recommended with very large sample sizes when the weight matrix is very
dense, as it happens in many social interaction applications. The Bayesian estimator seems to

be a reasonable alternative especially when the W matrix is very dense.

Given our results, with the growing diffusion of very large databases including often millions (or
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more) spatial interacting individuals (e.g. in social network applications) and with the state-of-
the-art spatial econometric methodologies, it is easy to forecast that in the near future we will
find ourselves in the practical impossibility to analyze data in a timely and accurate way. Hence
the studies related to time-efficient and statistically-accurate procedures represent an area that
requires urgent solutions and a discontinuity step with respect to the recent evolution of the

methodology.

Appendix A

Below it is briefly described the algorithm to build a W matrix referred to the spatial structure

of a grid of dimension n x m and k levels of neighborhood and the sampler scheme.

Algorithm 1 Data simulation and model estimation
Construction of W

1: fix n and ¢
2: compute the level of neighborhood &

3: generate W following Algorithm 1

Generation of the dataset

4: fix the values of the parameters p,o and
5: sample € ~ N (0, 0?)

6: sample X ~ N (10, 20)

7: compute Y «+ (I — pW) 1 XB +¢)

Estimation of the model

8: modyr, + lagsarlm(Y ~ X listw = mat2listw(W, style =" W'), method =" LU")
9: modasrs + stsls(Y ~ X, listw = mat2listw(W, style =" W'))
10: modp + spBreg lag(Y ~ X, listw = mat2listw(W, style =" W'), type =' lag’)

11: Extract the results and compute MSE, storage and computational time
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Algorithm 2 Generation of W matrices

input: n, m, k
1: d < nm
2: W < matriz(rep(0,d?), nrow = d, ncol = d)
3: for all in 1:d do
4: i < t%%n
5: if i==0 then i < n

6: J + ceiling(t/n)

Y

k1 < min(i — 1, k), ko < min(j — 1,k), ks < min(m — j,k) and kg < min(n —i,k)
neighbours on the right
8: if j==m then {}
9: else W(t,seq(t +n,t + ksn,n)] < 1
neighbours on the left
10: if j==1 then {}
11: else W[t, seq(t — kan,t —n,n)] + 1
neighbours above

12: if i==1 then {}

13: else
14: forlinl:#k; do
15: Wit,seq(t — 1 — kan,t — 1+ ksn,n)] < —1

neighbours below

16: if i==n then {}

17: else
18: forlin1: k4 do
19: Wit,seq(t + 1 — kan,t + 1+ ksn,n)] < —1

20: W <= W/rowSums(W)

return : W
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Appendix B

P B

p=—07 p=0 p=07]p=-07 p=0 p=07

o?=1 | 0.00007 0.00006 0.00001 | 0.00002 0.00003 0.00003

o =000 0?2 =10 | 0.00397 0.00369 0.00111 | 0.18289  0.19684 0.17015
o?2=1 | 0.00245 0.00167 0.00016 | 0.00040  0.00065 0.00048

o =007 02 =10 | 0.03051 0.03456 0.00627 | 1.63291  2.68478 1.79517
o?2=1 | 0.03393 0.04605 0.01253 | 0.00531 0.01345 0.01041

P =049 02=10 | 0.10895 0.63154 1.20799 | 7.50964  10.6728 18.6957
o?2=1 | 0.09770 0.52813 1.58917 | 0.01805 0.01672 0.02190

> =090 02 =10 | 0.09514 0.91970 2.51405 | 281.798  231.448 157.059

Table 1.2: MSE of the estimator of the spatial correlation parameter p and the regression pa-

rameter 3 with n = 1024, obtained with the Maximum Likelihood estimation method.

p B

p=—07 p=0 p=07]p=-07 p=0 p=07

o?=1 | 0.00007 0.00006 0.00001 | 0.00002 0.00003 0.00004

o =000 o2 =10 | 0.00392 0.00359 0.00115 | 0.18321  0.19421 0.17100
o?=1 | 0.00247 0.00153 0.00017 | 0.00040  0.00061 0.00052

o =007 02 =10 | 0.01793 0.02934 0.00689 | 1.49957 2.60625 1.84144
o?2=1 | 0.02207 0.04290 0.01249 | 0.00360 0.01267 0.01041

P =049 02=10 | 0.11244 0.12268 0.53061 | 5.15733  6.73867 13.7950
o2=1 | 0.24355 0.03645 0.53397 | 0.01596 0.01721 0.02095

0 =090 02 =10 | 0.35888 0.01892 0.64652 | 284.881  240.097 142.201

Table 1.3: MSE of the estimator of the spatial correlation parameter p and the regression pa-

rameter § with n = 1024, obtained with the Two Stages Least Squares estimation method.
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p B

p=—07 p=0 p=07p=-07 p=0 p=07

5 — 0.001 o?=1 | 0.00007  0.00006 0.00001 | 0.00002 0.00003 0.00003
02 =10 | 1.95619  1.30728 1.13793 | 0.40572  0.30270 0.41406

o?2=1 | 0.00271  0.00164 0.00015 | 0.00040  0.00065 0.00046

o =007 02 =10 | 16.6949  6.78245 0.45504 | 4.18173  4.98586 0.90919
o2=1 | 0.05699  0.03654 0.01199 | 0.00801 0.01113 0.00971

o =049 0?2 =10 | 27.3203  14.8862 14.3977 | 14.7748 13.9130 46.4945
o2=1 | 221343  1.08794 0.77866 | 0.02536 0.01768 0.02202

o =090 0?2 =10 | 114.767 268.4957 3686.95 | 1168.96 1033.68 2015.23

Table 1.4: MSE of the estimator of the spatial correlation parameter p and the regression pa-

rameter § with n = 1024, obtained with Bayesian estimation method.
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Chapter 2

A recursive spatial regression model
to handle streaming of geo-located

data

2.1 Introduction

Starting a few years ago, the big data revolution has been challenging the state-of-the-art statis-
tical modeling techniques in many different fields of application ranging from computer science to
medicine, to the social sciences to name only a few. As discussed in Chapter 1, these challenges
are produced not only by the huge volume of data which are generated and the consequent ob-
vious increased computational effort, but also by many other factors that include, for example,
the speed with which data become available.

Of particular interest is the case in which data are distributed over space. With the support
of the new information technologies, a wide variety of geo-located data is becoming increas-
ingly available to researchers. Some common (but certainly not exhaustive!) examples include
data generated through sensors, meters or telecommunication networks (like those related to
cell phone conversations or industrial electricity consumption); data generated by credit/debit
cards or fidelity cards transactions; data automatically scraped from the web; and, last but not
least, crowdsourced data voluntarily transmitted regularly through smart phones, in order to

measure phenomena that are otherwise difficult (or unreliable) to quantify with traditional sur-
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veys. Crowdsourced collection of food prices in developing countries (Arbia et al.; 2018) and
epidemiological data (Créquit et al.; 2018) are among the most common example of this last
category.

In this chapter we focus on the particular case related to the streaming of data, i.e. a flow
of data that are continuously received by some automatic process (Bar-Yossef et al.; 2004). For
their very nature, data streams are often too large and the increase in volume is too rapid to
be properly dealt with using traditional tools. Simple statistics (such as variance or correlation)
can be easily calculated in a recursive way (Felber; 2015), but more complex models are far more
difficult to analyze. In a nutshell, the general idea of a recursive approach is to summarize part
of the information and use it when new pieces of information become available. The state-space
models (Ord; 1975), the Kalman-Filter (Welch and Bishop; 2006) and the recurrent neural net-
work (Hochreiter and Schmidhuber; 1997) are all examples of this approach. Recursive forms
equations were derived in a time series context (Hiriotappa et al.; 2017; Escobar and Moser;
1993) as well as in a linear regression framework (Wermuth; 1992; Seidou and Ouarda; 2007).
Most of the research in spatial field is based on the trajectories study (Potamias et al. (2006);
Tang et al. (2014) and Muckell et al. (2010) just to mention a few). An increasing focus can
be notice on spatio-temporal applications (Oud et al.; 2012; Morales and Klette; 2013). Most of
the research in the spatial field is based on the trajectories study (Potamias et al. (2006); Tang
et al. (2014) and Muckell et al. (2010) just to mention a few),even if an increasing interest can
be notice on spatio-temporal applications (Oud et al.; 2012; Morales and Klette; 2013). Among
the various fields of application of the use of spatial data streaming, in addition to those already
mentioned, we can remember the transportation industry (Putatunda; 2017; Patroumpas and
Sellis; 2012), raster image data continuously streaming down to Earth from satellites (Gertz
et al.; 2006). Speaking of a spatial data stream, the major focus is on the management of a huge
flow of geospatial information from an informatic point of view (Fox et al.; 2006; Gali¢ et al.;
2014) in order to improve the performance in storing and querying spatial database (Thakur
et al.; 2015; Zhang; 2006). It is commonly recognized the importance of developing new tools for
the management and analysis of spatial data, especially in view of the increasing speed at which

data is collected (Armstrong et al.; 2019; Raman and Ali; 2010).

From a spatial regression model perspective, techniques to handle data streaming have not
yet been developed. Indeed, the spatial case presents some peculiar difficulties which are related

to the fact that, when a new piece of information becomes available, one needs to update not
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only the dataset, but also the entire topology of the system. In this chapter we consider the
problem of estimating a linear spatial regression model using continuously generated streams
of spatial data. In particular, we restrict our attention to the popular Spatial Error Model
(henceforth SEM - Anselin (1988)). We propose a recursive approach which is based on two
basic simplifying assumptions: First of all, we assume that the spatial correlation parameter
does not change significantly during the process of data acquisition and hence we set it to a
value which is based on the initial regression estimated when the dataset is first made available.
Secondly, we assume a particular specification for the spatial weighting matrix which simplifies
substantially the upgrading process and we derive recursive formulas to estimate the parameters
in the model. Our Monte Carlo results show that, despite the limitation imposed by our two
basic assumptions, both the estimation results and the statistical inference on the model are
comparable with those obtained using the complete set of information in each moment of the
streaming.

The rest of the chapter is organized as follows: Section 2.2 explains in details the procedure
adopted. In Section 2.3 we present the result of the Monte Carlo simulation. Concluding remarks

follow in Section 2.4.

2.2 Modeling approach

In the field of geo-located streaming, we can find several typologies of information. The first
possible situation is the case where data are available only for a range of time. Examples can be
data collected from the smartphone of the peoples location, the position of the available shared
vehicles (cars, bikes or scooters). As expected, the positions of data change quite quickly and
each time step points appear an disappear on the map. In any case, the number of available
information hardly drastically increases. For this reason, a huge quantity of data is not reached.
A different problem is an information flow where the number of observations is continuously
increasing. Real cases are for example the posts on social networks with a spatial tag or the
positions of ill people during and emergency among the others. Especially if the stream of
information is fast, the dimension of the dataset becomes significant. Therefore, it is this second
case that we consider in this paper. In addition, we do not impose restrictions of any kind on the
possible localizations of information, without reducing us to the case of spatial panels where we
have the same statistical units for each time step. We now briefly review the SEM specification

and discuss alternative estimation procedures in order to propose a recursive formulation.
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The SEM specification and estimation

The SEM model is defined as

y=Xp+u (2.1)
u=pWu+e
E%IN(O,UQ)

where X is an n X k matrix of regressors, (3 is a k x 1 vector of parameters, W is an n X n exogenous
spatial weighting matrix that describes the topology of the space, and p is the corresponding
spatial parameter. As it is widely known, the SEM cannot be efficiently estimated by OLS
and, therefore, a GLS approach has to be employed. Generally, either Maximum Likelihood
(ML) or generalized method of moments (GMM) are implemented in order to make the GLS
feasible (FGLS). One of the main advantages of the GMM with respect to ML has to do with
computational time. As the sample size increases the computation of the so-called Jacobian
term becomes an obstacle for ML. In truth, it should be noticed that many exact as well as
approximated solution have been developed for the computation of the Jacobian term (Ord;
1975; Bivand et al.; 2013; LeSage and Pace; 2009; Barry and Pace; 1999; Pace and LeSage; 2004;
Griffith; 2004; Smirnov and Anselin; 2009, 2001; Pace and Barry; 1997). For this reason, GMM
is a natural candidate when the number of spatial units is particularly large, as it is assumed in
this chapter. This is why we briefly review the estimation procedure described in Kelejian and
Prucha (1998, 2010) and Drukker et al. (2013). The procedure develops through the following

four different computational steps:
1. Estimate the first equation in (2.1) by OLS to get an initial estimate of 8 (say B)
2. Calculate the estimated residuals as @ =y — X B

3. Use the estimated residuals to solve the moment conditions (Drukker et al.; 2013) in order

to obtain an estimate of p, (say p)

4. Estimate 8 and 62 from a linear regression on the spatially filtered variables
j=XB+e e N(0,0?)

where § = (I — pW)y and X = (I — pW)X.
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The recursive estimation of the SEM

In data streaming, the number of observations can increase quite rapidly. Assuming that the
new information is geo-located, the spatial weighting matrix should be re-defined and the model
re-estimated whenever a new piece of information becomes available. If the amount of incoming
data is substantially large (or if data arrive at a particularly fast rate), it might be wise to
introduce some assumptions to speed up and simplify the estimation procedure.

Our suggestion is twofold: on the one hand, under the assumption that spatial correlation
does not change dramatically when new data are available, we propose to estimate the spatial
parameter on the initial set of data and keep it fixed throughout the estimation process. Of
course, since the real value of p may vary, at some point the initial estimate should be re-
calibrated when changes become significant. There could be several ways to assess if, and when,
the value of p should be re-estimated. One way could be monitoring the normality of the residuals
(Sargan and Bhargava; 1983; Shapiro and Wilk; 1965). Another way could be defining a-priori a
maximum number of new observations after which the entire model should be used to re-estimate
the spatial parameter. Although interesting, we leave this point for future researches. On the
other hand, we suggest a recursive procedure to update the spatial weighting matrix when a set
of new geo-located data become available. In order to implement such a recursive procedure,
W should be a row-standardized binary matrix defined in terms of some cut-off distance (Arbia;
2014). It is intuitive that the distance between units remain unchanged when new observations
arrive. Hence, each set of neighbors can only increase (or, at most, remain unchanged), when
new observations are available. As we will discuss in the Monte Carlo section, this iterative
procedure presents some relevant advantages in terms of computational speed.

Let s = 1,...,.5 be the index denoting the availability of new observations at subsequent
streaming steps. Similarly, let n = nq,...,ng represent the dimension of the sample at the
steaming step s. In this context, ¥, X and W) relate to the initial sample size ni; while
y®), X and W) are the elements of the new information available at the s-th step of the
steaming. Clearly, X and y can be updated easily, but the recalculation of the weighting matrix
can be challenging. For this reason, a definition of W which allows a recursive formulation would
improve enormously the computational performance. Once the cut-off distance has been fixed
at a certain value (say d*), the elements of W) can be defined as

2V .
0 otherwise
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where d; ; is the distance between units 7 and j, withi=1,...,n; and j =1,...,n;. Let nngl) be

the ¢ — th element of the ny x 1 vector defined as
ni
1 _ (1)
= Wi
j=1

A row-standardized version of W (1) can be defined by dividing each of its rows by the cor-
responding element of nn(Y). For the sake of simplicity, suppose that when s = 2, only one
observation is added (say o2) and the sample size increases from nj to ng = ng + 1. Then, w®

is obtained from W) as
wh

w0

w® —

where w is a ny X 1 binary vector containing the neighbors of the new observation. At this point,

the vector nn(® can be easily obtained by updating nn(!) in the following way:

nngl) i=1,..,n1 if i and o2 are not neighbors

Tmz(-Q) = nnz(-l) +1 i¢=1,...,n1 if i and oy are neighbors
221:1 wr 1=mn7 + 1.
Once W® and nn® are obtained, and with p based on the initial sample of size nq, the filtered

dependent variable at s = 2 can be calculated as

1 ni+1
2 2) . 2) (2 .
( ) = yf ) p(l)w Z W,(])yj( ) i=1,..,n+1 (2.2)
iy~ j=1
2) . 1 1 2
= yl( )5 5 ZW( )¢ )+wzy£ll)+1
s\ =i

—y® MO,

Since all the operations are linear, the last line of (2) can be written in a recursive formulation:

1 . ep - .
Mi( ) i=1,...,n1 if i and oy are not neighbors
(1) v 2
( 1), A1) Ya . o .
Mi(z) = L Mi( ) 4 pH L i =1,..,n; ifiand oy are neighbors
n i nni
. es) ,
p(l)i“”’(%) i=ny+1
NNy 41

with MY = p0 3201 Wiy (D,
A similar procedure is needed to update X @ . In the next section we will test through Monte
Carlo experiment the reliability of the proposed methodology when we want to approximate the

analysis of the whole dataset saving computing time and memory.
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2.3 Simulation setting and results

In this section we report the results of a series of Monte Carlo experiments designed to evaluate
the effect of the approximation on p and to investigate the time gain achieved by employing our

recursive approach.

Monte Carlo design

Using again a spatial error framework, our data generating process is the following:
y=a+pBz+ (I —pWH) e, (2.3)

where the values of = are generated from a Uniform distribution over the interval (0,10) and
they are kept fixed over the different Monte Carlo samples. The value of the intercept « is one,
the value of the slope parameter § is two; and p increases from -0.8 to 0.8 by 0.2. We consider
two different scenarios for the error term. In the first scenario the errors are homoskedastic
g; ~ N(0,0%) while the second scenario allows for heteroskedasticity e; ~ N(0, (o + 0.62;)2).
In both cases the value of ¢ is set to 7. The total number of spatial units ng = 7,000 are
generated from a set of coordinates that are independent draws from a Uniform distribution over
the interval (0,10). In order to mimic the streaming, we recreate a flow of data in six intervals
s=1,...,7, with an initial sample size of n; = 1,000. Observations are added in groups of 1,000
until we reach a total number n; = 7,000. The observations for the initial sample size as well as
those that are added at each interval are chosen randomly.

In the following, we compare the results obtained with the recursive approach described in
the previous section with those obtained by using, at each step of the streaming, the FGLS on
the entire dataset available at the considered step. Figures 2.1-2.4 report the results related to
1,000 Monte Carlo samples for the homoskedastic model. Since they lead to similar conclusions,
the results when the error is heteroskedastic can be found in appendix A. The first two figures
illustrate the bias of the slope parameter S (Figure 2.1) and the spatial parameter p (Figure
2.2) over the streaming. In both Figure 2.1) and 2.2), the blue line corresponds to the recursive
method, the red line to the FGLS and the orange dashed line is the true value of the parameters.

Consistently with the theory, Figure 2.1 shows that there is no bias in estimating g, both
using the FGLS and the recursive approach. It is important to note that the averages of the
estimated values of § are the same only for the initial sample n; = 1000 where the filtered

variables are based on the same estimated value of p. For the other intervals, the parameter p is
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estimated in every step and then used in the FGLS. In contrast, the recursive approach calculates
the filtered variables by keeping the spatial parameter constant at the initially estimated value.

The pattern described by Figure 2.2 is also somewhat predictable. The blue line, indicating
the recursive approach, remains constant at the value of p which was estimated on the initial
set of data (i.e., p()). It is worth noticing that given our setup, we do not know a priori what
is the true parameter value and not even if it will be close or far away from the “final" value
estimated on the entire set of data (i.e., p(7)). Figure 2.2 also shows that the red line starts
from the same value as the blue one but consistently tends to move towards the true value of

the spatial parameter.
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Figure 2.1: Bias of the slope parameter 8 obtained with the recursive formulation and the Feasible

GLS (homoskedastic case).
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and the Feasible GLS (homoskedastic case).
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Figure 2.3: Comparison of the size of the test on £ obtained with the recursive formulation and

the Feasible GLS (homoskedastic case).

The plots reported in Figure 2.3 represent the size of a test on the slope coefficient 8. Each
plot corresponds to a different value of p. It is important to keep in mind that the size of the test
depends upon the variance of 8, that, in turns, depends on the error variance. The estimated
variance of the error is based on the spatial weighting matrix as well as the estimated value of the
spatial parameter. In light of this, the evidence reported in Figure 2.3 is quite surprising in that
the size of the test is very close to the nominal 5% level for both approaches! While this should
be expected for the FGLS, the excellent performance is not obvious for the recursive approach

that keeps p fixed over the different intervals. However, this conclusion seems to be consistent
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with the findings Kramer and Donninger (1987), who demonstrated that the relative efficiency
of SEM is not affected by the spatial correlation parameter under certain regularity conditions.

Finally, let us turn our attention to the power of the test. The power of the test on 8 (Figure
2.4) is only reported at the end of the stream (i.e., when s = 7). Similar conclusions can be

inferred since also the power of the test does not seem to be affected by the approximation of p.

power

1] 08
1) 04 08
04 08

04 8
04 08
04 08

***** RECURSIVE
FGLS

04 8
04 08
04 08

Figure 2.4: Comparison of the power of the test on S obtained with the recursive formulation

and the Feasible GLS (homoskedastic case). The results refer to the last step of the streaming.

Since the general statistical performance of the recursive model is fully comparable with the
standard method, we move on to examine the computational time involved with it and to compare
it with the one required by the FGLS. For this purpose, we simulate a streaming of data where
the sample size increases from 25,000 to 250,000 and, at each steps, 25,000 new observations
are made available. Following a traditional approach, one would need to compute the spatial
weighting matrix at each steps. The major advantage of the recursive approach resides mostly
in the fact that W only needs to be calculated once at the beginning of the steaming process and
then continuously updated as described in Section 2. In a spatial context, the computational
time, in addition to the sample size, is strictly related to the density of W, particularly when

using the GMM approach. In this chapter, to construct W we draw two sets of coordinates
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from a uniform process over the interval (0;2). To maintain more or less constant the percentage
of non-zero elements of the spatial weighing matrix (i.e., to 1.5%), we consider different cut-off

levels for the distances. The distances were calculated using the euclidean distance.
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Figure 2.5: Computational time (measured in second) required from the recursive method and
the Feasible Generalized Least Square to estimate the Spatial Error Model and to compute the

weight matrix W.

Figure 2.5 is made up of two panels: the left hand side panel reports the comparison in
computational time for the recursive and the FGLS while the right hand side panel highlights
the time spent to compute W for each new streaming. Time is measured in seconds on the vertical
axes. The computing time for the W matrix uses the function dnearneigh in the spdep package
(Bivand and Piras; 2015; R Core Team; 2014), and then the auxiliary functions nb2listw
(to transform the list of neighbors into an object of class 1istw) and 1istw2dgCMatrix (to
transform the 1istw into a sparse matrix from the package Mat rix Bates and Maechler (2019)).
For estimation we used the function spreg in the sphet package (Piras; 2010; Bivand and Piras;
2015). Focusing on the left panel, one can immediately observe that for the initial sample size the
timing of both procedures is exactly the same. This is not at all surprising because the streaming
needs to be “initialized" and so the first step is the same. However, while the computational time
for the recursive approach (the blue curve in the graph) is almost linear, the red line follows an
exponential shape that, with the increase of sample size, gets more and more distant from the
blue line. Interestingly, the right hand side panel shows that most of the difference between the

two approaches is due to the computation of the spatial weights matrix.
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2.4 Conclusions

In this chapter, we proposed a new approach, which allows for a recursive estimation of a spatial
error regression model when spatial data are collected in streaming. This approach is based on
an approximation and a “restriction".

The approximation is that the spatial correlation parameter is assumed to be stable and so
it can be estimated only once and then kept fixed for the following streaming steps.

The restriction relates to the fact that the spatial weighting matrix should be row-standardized
and based on of a cut-off distance. Based on the results of our Monte Carlo simulations, we can
conclude that these two hypothesis do not deteriorate the performance of the estimated model
and that the proposed methodology produces relevant advantages in terms of the computational
effort.

Although limited by the specific hypotheses considered in this chapter, our results can be
extremely useful in many practical instances when data are gathered continuously through time
and data-based decisions need to be taken timely and effectively like, for instance, in situations
related to health surveillance (e.g., in monitoring the geographical spread of an epidemic) or
to environmental emergency (e.g., in motoring extreme events like floods or hurricane spatial

diffusion).
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Figure 2.6: Bias of the slope parameter 8 obtained with the recursive formulation and the Feasible

GLS (heteroskedastic case).

Appendix A

In this Appendix, Figures 2.6-2.9 report the simulation results for the heteroskedastic model.
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Figure 2.7: Bias of the spatial correlation parameter p obtained with the recursive formulation

and the Feasible GLS (heteroskedastic case).
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Chapter 3

On the efficiency of estimators of

the Spatial Error Model

3.1 Introduction

It is widely known that the presence of spatial correlation in the disturbance term causes problems
on statistical inference. In particular, OLS estimation while still unbiased, will not be efficient
(Cressie; 1993; Schabenberger and Gotway; 2004). As a consequence of this, many researchers
have estimated a Spatial Error Model (SEM) by taking a Generalized Least Square (GLS) ap-
proach. In a first step, the spatial parameter is obtained either using Maximum Likelihood (Ord;
1975) or Methods of Moments (Kelejian and Prucha; 1999). Then, an OLS model is estimated
on the spatially filtered data.

However, Kramer and Donninger (1987) argued that, under certain conditions the relative
efficiency of the GLS and the OLS in a spatial context is close to one. To prove this point, they
make use of assumptions that are difficult to verify in practice. In this note we compare the
two methods within the framework of a Monte Carlo experiment. Our results show that the
performance of the OLS and GLS are very similar if compared in terms of the size and the power
of a test of hypothesis on the slope coefficients of the model.

The note is organized as follows: Section 3.2 reviews the algebraic conditions that relates
to the structure of the spatial weighting matrix. In Section 3.3, we discuss the details of the
Monte Carlo experiment and comment on the results obtained. Finally, Section 3.4 concludes

the Chapter.
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3.2 Algebraic conditions
A general linear model is defined as:
Y=XB+e e~N(0,V)

where X € R"*? is a fixed design matrix, with full rank, and V' € R™*" the covariance matrix
of the errors.
Let us now consider the column space of X and VX, where X = [z;...¢p] and V is a general

covariance matrix, that is

M = span(X) = {x|x = a1x1 + ... + app, a; € R}
N =span(VX) ={yly=bVx1+ ... +b,Vap, b, € R}

In the following, we list some of the general conditions on V' and X in order for the GLS and

OLS to have the same efficiency (Zyskind; 1967; Puntanen and Styan; 1989): !

C1: A subset of k eigenvectors of V exists, forming a basis for M (Anderson; 1948).

C2: The matrix V can be written as V = [X Z]D[X Z]”, where the matrix [X Z] is orthog-
onal, X is any orthonormal basis of M, Z is any orthonormal basis of M, and D is any

diagonal matrix with non negative elements.
C3: If H denotes the orthogonal matrix projection operator on M, then HV = VH .

C4: M= N ; that is X is V invariant. It follows if N’ C M.

In practice, verifying either of these rules is not trivial, especially for large dimensions of the
data matrix. In fact, the examples provided in the literature are, for the most part, unrealistic
and they only deal with very small matrices (Puntanen and Styan; 1989; Isotalo and Puntanen;
2009).

For an OLS model, V = oI and therefore is quite simple to show that the four conditions
above are satisfied. The SEM error covariance is V. = o2[(I — pW)T(I — pW)]~!, where
I € R™ ™ is an identity matrix, W € R"*" is the spatial weighting matrix, and p is the spatial
error autocorrelation coefficient.

We have to keep in mind that, due to the presence of p, V' is unknown. Formulating any of

the above conditions as a function of p would be extremely challenging. As suggested from

INote that the four conditions below are equivalent in the sense that if one is verified, also the other three are.
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Kramer and Donninger (1987), it is possible to operate with W and W7 instead of V. A brief
demonstration of this assertion is provided below:

if W € M then
i (I —pW) e M because linear transformation of W

i (I—pW)~!e M because if span(I — pW) = y1v1 + ... + YpVp, then span((I — pW)~1) =

Lo+ + Lvp, where 71, ...,7, are the eigenvalues.
Y1 Tp

The same holds for W7,

Thus, C4 becomes
span(WX) C M span(WTX) C M.

Unfortunately, unless W' is symmetric, checking these conditions remains prohibitive. Kramer
and Donninger (1987) also demonstrated that the relative efficiency between OLS and GLS equals
one as long as the eigenvector w,,,, related to the maximum eigenvalue A\, of W belongs to
M. The trivial case is when W is row- standardized. For a row-standardized W, the maximum
eigenvalue \,,q, is one and, therefore, w;,q, is a unit vector. In this case, if the intercept is
included in the model GLS and OLS have the same efficiency. The challenging aspect would be
to investigate the case when w4, is not included in M. Related to this, an interesting question
would be how far w,,, must be from M in order to significantly affect the efficiency. Another
non-trivial aspect is the presence of complex eigenvalues for certain specifications of W. Since
it is no possible to sort complex numbers, it is complicated to identify the maximum eigenvalue.

For the above reasons, we propose an empirical analysis in order to verify the assertions.

3.3 Monte Carlo Simulation

In this Section, we propose a Monte Carlo simulation, which aims to verify empirically a com-
parison between the performance of OLS and GLS. In the following we refers to the coordinates
of the well known Boston dataset (Bivand et al.; 2013). We investigated the effect of different
W matrices, p values and number of neighbors. We computed the W matrix with the k-nearest
neighbours criterion with 5, 10 and 15 neighbours. In the first considered case, W is row stan-
dardized. In the second, we set the weights different from zero as the inverse distance between
the points. Then, the matrix is standardized with minmax rule (Kelejian and Prucha; 2010).

Our aim is to compare the efficiency of GLS and OLS, focusing on the size and the power of
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the test over 5. The setting of our simulation concerns a variable X sampled from a gaussian
distribution (with mean equal to 0 and standard deviation 10) , 3 = 1 and ¢ = 3.5. With
regard to p, the values considered ranges between 0.1 and 0.8 .

Figure 3.1 and 3.2 summarizes the results of 3000 Monte Carlo samples in the case of row stan-
dardized and minmax standardized W respectively. We reported the size (I line) and the power
(IT line). For the sake of succinctness, we decide to print the power for p = 0.8 which is the
situation with higher difference between the two models. On the columns we show instead the

effect of the increasing number of neighbors.

i

f]
\

025 05 075 1
025 05 075 1
025 05 075 1

Figure 3.1: Results for row standardized W: size (I row) and power for p = 0.8 (II row). The

number of neighbours is respectively 5, 10 and 15.

As expected from theoretical properties, the performance of the models are totally comparable
in the case of row standardized matrix (Figure 3.1). This is particularly true with the increase
of the number of neighbors. Regarding the results for minmax standardized matrix (Figure 3.2),

OLS and GLS seem to be also surprisingly similar.

48



\
/

7

0025 0035 0045 0055

0025 0035 0045 0055
[

0025 0035 0045 0055

T T T T T T 1 r T T T T T T 1 r T T T T T T 1
02 03 04 05 06 07 08 01 02 03 04 05 06 0T 08 01 02 03 0& 05 06 07 08

025 05 075 1
025 05 075 1
02 05 075 1

Figure 3.2: Results for minmax standardized W: size (I row) and power for p = 0.8 (II row).

The number of neighbours is respectively 5, 10 and 15.

To further clarify the results obtained, we also check if w;,q,, € M. Since some eigenvalues
belong to C, we decide to order them by the modulus in order to find the maximum one and the
corresponding eigenvector w,,.,. Then, we compute the projection w’  on M. The distance

max

between the two vector is evaluated as

Since the distance between wi,q, and M is greater the 0 (Table 3.1), W4, does not belong to
the subspace. However, the empirical results suggest that is not far enough to lead to a worsening

in the OLS method.

5 neigh 10 neigh 15 neigh
Amaz | 0.7415 0.6858 0.7007
d 0.0095 0.0192 0.0225

Table 3.1: Maximum eigenvalue for minmax standardized W and distance between the relative

eigenvector wy,., and the column space of X.

Since OLS is a particular case of GLS when p is equal to zero, we report the result of a further
experiment which consists in estimating a GLS by imposing a different p from the one used to
generate the data. We sample data from a SEM with a value of p equal to 0.7. Then we estimate

GLS filtering Y and X imposing wrong value of p from 0 to 0.8.
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Figure 3.3 displays the comparison of the size of the estimation of GLS with the true parameter
and with a wrong one referring to 3000 Monte Carlo samples. As we expected, we observe how a

misestimated value of p seems to not affect in a significant manner the performance of the model.

002 003 004 005 006 007 008 009

— os
——  GLS approximated
T T T T T T T T 1

0 01 02 03 04 05 06 07 08

0.01

rho

Figure 3.3:  Size of the estimation of a GLS with correct and wrong values of the spatial

parameter p.

3.4 Conclusions

In this note we reviewed the main properties, which guarantee same efficiency in OLS and GLS
results. In the trivial of row-standardized weight matrices, the relative efficiency is one. In
addition, we observe that also in other specification of W, when the properties are almost true,

the difference between the two methods seem to not appear significant.
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Chapter 4

Modelling Non-Stationary Spatial
Lag Model with Hidden Markov
Random Fields

4.1 Introduction

In spatial statistics and econometrics, it is common practice to model relationships among vari-
ables using Cliff-Ord-type linear regression models (Arbia; 2006; LeSage and Pace; 2010). One
basic assumption which is rarely questioned in the literature, is second-order stationarity, which
in particular can assume the form of homogeneity (i.e. invariance to rigid motion of the generat-
ing process) or isotropy (i.e. invariance to rotations) (Christakos; 1992; Arbia; 2006). If a random
field is second-order stationary, the associated parameters will be invariant to the statistical units
position. In particular, in a linear spatial regression model both the spatial correlation and the
regression coefficients are constant over space implying that a spatial relationship depends only
on the distance between each pair of spatial units irrespective of other possible directional effects.

However, such an assumption is often unrealistic when using a spatial random field to model
socio-economic and epidemiological phenomena. In many empirical situations, indeed, it is un-
reasonable to believe that the relationship between variables could be a realization of a unique
stationary process and that the model’s parameters remain unchanged in different portions of

the study area and it is, indeed, more sensible to conjecture that the parameters vary in space
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according to some regular pattern. For instance, if we are dealing with a large sample size ob-
served on a large geographical area (e.g. a large country or a continent), it is more sensible to
build a more flexible regression mechanism where the relationship between variables is allowed to
change smoothly from one location to the other. In this Chapter we are interested, in particular,
to model different spatial behaviors that are not directly observable, as they are due to hidden
characteristics that changes smoothly over space.

In the literature, there are several attempts to approach the problem of spatially varying
coefficients. A first approach refers to the concept of scan statistics (Fisher; 1959; Glaz et al.;
2001). Following such an approach, rather than considering all available observations together,
we select subsamples that are geographically close and computations are performed within these
subsamples. Arbia (1990) proposes the use of scan statistics to study first- and the second-
order spatial non-stationarity, Ott and Hoh (2012) provide an interesting example of their use to
genome screening, while Paez et al. (2008) show an application in the modelling of hedonic house
prices. A second approach is based on the Locally Weighted Regression (LWR) (Cleveland
and Devlin; 1988). LWR is a non-parametric technique, which can be compared to scan statistic
used to estimate a regression around a point of interest using only a limited number of training
points (McMillen and McDonald; 2004). A particular case of LWR is the so-called Geographically
Weighted Regression (GWR) (Brunsdon et al.; 1996, 1998; Fotheringham et al.; 1998; Brunsdon
et al.; 2007; Fotheringham et al.; 2002; McMillen and McDonald; 2004), that makes use of
the geographical space as a selection criterion. Following a different line of though, Gelfand
et al. (2003) propose to impose a Bayesian structure to individual regression coefficients that are
spatially correlated, with a covariance matrix that takes into account the distances between them.
Another interesting approach is proposed by Li and Sang (2019) who suggest to estimate point-
specific regressor coeflicients by penalizing pairs of neighbors with different parameter values.
The methodology also includes the possibility of a varying spatial correlation coefficient.

Some more recent improvements have been developed in the field of anisotropy suggesting
to estimate the spatial correlation coeflicient as a function of one or more anisotropy-generating
variables (Deng; 2008) or modelling directly anisotropy both in the space (Arbia et al.; 2018)
and in the frequency domain (Santi et al.; 2017).

Our approach tackles the problem of parameters non-stationarity trying to identify groups
of observations that share similar behaviours, through the modelling of a latent process. More
specifically, the latent process evolves as a Hidden Markov Random Field (Besag; 1986). This

assumption allows us to consider the spatial structure typical of the models commonly used in
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the spatial literature and, in this way, to capture similarities in the neighbourhood. Notable
articles in this area (Charras-Garrido et al.; 2011; Green and Richardson; 2002; Spezia et al.;
2018) offer good examples of possible applications in disease mapping and species distribution.

In this spirit, we introduce a latent process evolving according to a Potts model (Okabayashi
et al.; 2011), which drives the value of the coefficients in a Cliff-Ord-type spatial autoregressive
linear model. Since it is reasonable that close-by groups of observations behave in a similar
fashion rather than being different in each point, our choice appears to be realistic and it may
greatly improve the interpretation of the model output. It is also worth recalling that the Potts
model definition allows us to consider similarities between neighbouring points based only on the
value of the latent process in the neighbourhood. This is a crucial characteristic because, in this
way, it does not require the definition of a priori possible causes of non-stationarity. From this
point of view, our approach can be seen as an evolution of the so-called wombling problem (Lu
and Carlin; 2005). In wombling, the interest focuses only in finding borders, i.e. adjacent points
with dramatic differences in the response variable or in some of the covariates (Lee; 2013). In
this sense, the criterion we suggest to detect different groups is a generalization of the wombling
problem. However, while wombling methods are based on dissimilarity matrices defined on the
basis of available covariates, the strength of our approach is the possibility to obtain groups
identification with no need of any further information.

The layout of the Chapter is the following. In Section 2 we specify the model and we describe
the Bayesian strategy for the estimation. Section 3 reports the results of our Monte Carlo
simulations. In Section 4 we apply our method to the well known Boston dataset. In the end,

conclusion follows in Section 5.

4.2 A spatially varying regression model

In this section, we provide an exhaustive explanation of the model and of the estimation scheme.

A criterion to select the best number of groups k is also provided.

4.2.1 Model assumptions

In this section we will illustrate our approach by making reference to the Spatial Lag Model
(SLM) which can be formulated as follows:
iid

Vi = XiB+pwY +e;, & ~N(0,07),
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where the values X; and Y; are collected in the vectors X and Y respectively, with X, Y € R".
The vector w; is the i — th row of W € R™*™. W is the classical weight matrix which describes
the topology of spatial system. For further details about SLM, among others, we refer to Arbia
(2014) and Banerjee et al. (2014). Within this framework, assuming a more flexible definition of
the SLM we can relax the hypothesis of stationariety and we assume the following;:

Y = XiBi + piw Y + €4, e X (0,07), (4.1)

where now ; and p; are observation-specific parameters. Equation (1) expresses non-stationarity
in its extreme formulation by assuming a different parameter value for each location. However,
in practice it is more reasonable to postulate an intermediate formulation with groups of obser-
vations which behave in a similar way. For this reason, we will assume heterogeneity that can be
successfully modelled by the introduction of a discrete latent process capturing the structure of
the unknown groups. Observations in the same group share the same value of the latent process
and, hence, of the parameters. As already mentioned, the factors giving rise to non-stationariety
could be unknown and, in general, they are not captured in an exhaustive way by the covariates.
For this reason we introduce a spatial latent process evolving as an Hidden Markov Random
Field. The main feature of this structure is that the value of the latent variable value depends
only on the value of the variables associated to its neighbours. This seems to be particularly
suitable for the kind of problems at issue.

In our model, we propose a latent process u evolving according to a Potts model (Besag;
1986). We adapt the structure to a K possible groups among the data, thus, we include a

multinomial latent variables u; € {1,..., K},i =1, ...,n. It follows that

K K x
Bi= D mllui=k), pi=> il =k), of =3 wil(ui = k).
k=1 1 pt

To introduce our approach, let us define the diagonal matrices of parameters R = diag(p1, ..., pn),
B = diag(B1, ..., Bn) and S = diag(c?, ...,02) and let us also define the matrix M = (I-RW )~ 1.
Adopting this notation, the likelihood of model (1) can be written as:

Y|y, ¢, u,v ~N(MBX,MSMT).
The hierarchical structure of the latent process w is
uilu—;, 0 ~ Multinom(p1 ;(w—;), ..., pr,i(u—;))
where u_; indicates the vector uw without the i—th element. Given zj, as the number of neighbours

of ¢ within group k, the success probability is given by:
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- k=1
—(01,5—2K 565 k2k)
pr,i(u—i) = P(u; = klu_;,0) = T30, e Thk TR = Tk

K
e (01, k=252 05 k=k)

= K 0. .2
1+Z§:2€ (01,6 =25 5 05,k 2K)

It is worth recalling that the parameter 6; , models the baseline effect, while 6, ; is a penal-
ization parameter that discourages the membership to different groups of adjacent elements.
The priors distribution of the model parameters are set in a standard non-informative way

(Gelman; 2006; Banerjee et al.; 2014; Lingren and Rue; 2015) as follows:

o N(0,02) k=1,.. K,

logit(vr) ' N(0,0%) k=1,..,K,

Vg ind invl'(a,b) k=1,.., K,

0.k %d./\/(O,ag) k=2,..K j=1,.,K,

with hyperparameters o2 = oj = 100, o7, = 10, and a = b = 0.001.

Henceforth, we will refer to our model as Non Stationary Spatial Lag Model (NS-SLM). In
specifying of our model using the Hidden Markov Random Field framework, we encounter the
so-called label switching problem (Jasra et al.; 2005; Bartolucci et al.; 2012), which consists
in a permutation of the clusters labels that can occur during the Markov chain Monte Carlo
(MCMC) estimation process. As a consequence of this phenomenon, even if the observations
are correctly clustered, it would be impossible to properly identify groups from the posterior.
Following Bertarelli et al. (2018), we tackle this issue by ordering the MCMC output at every
iteration with respect to the estimated values of ¢. In particular, we assign the label 1 to the

group with smallest ¢, the label 2 to the group with the second smallest ¢ and so on.

4.2.2 Bayesian Inference

Following the Bayesian paradigm, we propose to estimate our proposed NS-SLM using a MCMC
algorithm. From the prior specifications given in Section 2.1, it follows that the posterior distri-

bution of the model parameters is given by:

p(v,%,0,v,ulY) o< L(Y |y, 9, u,0%)m(v)7(9)p(ul6)n(6)n (o). (4.2)

Equation (2) suggests that u,v and o2 can be updated by Gibbs steps because the full

conditionals are available analytically and are easy to sample from. Let us define Y = MY
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and let us further divide the data into the vectors Yj, X, depending on the value of the underlying

latent process u; then the full-conditional distributions are expressed as:

1 XTx,\ ' X7V, /1 XTX.\ '
’Vk|Y7U:k,/ll)k,VkNN<<a2+ k k) k kv(+M> )

2
5 147 Vi O',y 143

Y — v Xu)T [V — e X
Vk|Y7u,¢r7~invF<a+n;,b+[ k— Uk k]2[ k= Yk k])7

ui|Y , u_i,y,, 0 ~ Multinom(qyi(w—s), ..., qr,i(u—3)),

where
L(}/i|Y7iaui = ka’Ya’l/)?I/) 'pk),i(ufi)
S o LYY ui = .y, 4, v) - pja(u—s)

The details of the computation of the full-conditional distributions are reported in Appendix

Qk,i(uﬂ‘) =

A. The remaining parameters (1, 0) are updated by a Metropolis-Hasting step where adopt a
Gaussian proposal for both parameters. Notice that, since the calculation of the distribution
of u|@ is computationally expensive, we approximate such distribution by the pseudo-likelihood
(Besag; 1986):
P(ul0) ~ [ [ P(uilu—i,0) = [ | P(uilui~;, 6).
i i

4.2.3 Model comparison

An important aspect of our proposed model is constituted by the identification of the number of
groups. However, such identification in an optimal way, in general, is not trivial. Our proposal
is fixing the maximum number of groups, say K, and to estimate models K different models, say
mq,--- , Mk, respectively, with 1,--- | K groups and then to compare them in order to choose a
posteriori the best one. We operate a model selection by using the following approximation of
the probability of model m; involving the integrated likelihood:

p(m;li,Y) _ p(Y|m;) % p(m;)
p(m;|5,Y)  p(Y|m;) — p(m;)

(4.3)

where p(m;) is the prior probability of model m; with ¢ groups. Following Zucchini and Mac-
Donald (2009), we approximate numerically the integrated likelihood p(Y'|m;). Let B be the
number of samples in the MCMC algorithm, for the sake of brevity we indicate with @; all the
parameters of model m;. It has been proved (Congdon; 2006) that

& 2 p(Y108,m;)p( [my)p(m;)

i - ; Q] -1
p(myl,Y) ~ B™' Y p(mylj. Y, ©5)) = B = : : ,
P K p(Y |0, my)p(©\ [my)p(m,)
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4.3 A simulation exercise for the non-stationary SLM

In this section we will present the result of a simulation study aiming at showing the performances
of our proposed model in detecting the correct number of groups and the sensitivity to different
parameters values. As a first step, we perform a simulation study with only two groups. We
sample a spatial dataset of dimension n = 200 based on model (1). The observations are
distributed on a square lattice of dimension 10 obeying to a Complete Spatial Randomness
pattern (Diggle; 1983) with coordinates generated by two independent uniform processes. The W
matrix is defined using a k-nearest neighbour criterion with four neighbours. Such coordinates are
kept as fixed in all the simulation runs. In order to explore the effects of the groups composition,
we considered three different Scenarios (see Figure 1). In Scenario I all the observations belong
to the same group. In Scenario II points are divided into two groups with an horizontal boundary
in the middle of the lattice. Finally, Scenario III proposes a more complex structure where points

belonging to the same groups are separated.

Scenario | Scenario Il Scenario ll

Figure 4.1: Representation of the three simulation Scenarios. The two groups of observations

are coloured differently: Group 1 (red), Group 2 (black).

Consistently with this two-groups specification, the latent process u can assume the values 0
or 1, based on the group membership.

Then, we sample the covariate X from a standard Gaussian distribution, which is also con-
sidered fixed in all simulation runs. Once all the components have been defined, the dataset is

sampled as:
e~ N(0,I),
Y = M(BX +¢).
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Table 1 summarizes the combinations of parameters considered for each Scenario.

Scenario I Scenario 11 Scenario III

Y - 2 2 1 1|2 2 1 1
Y 2 2 2 3 3|2 2 3 3
Yo - 02 01 02 05[02 01 02 05

U1 0.75 07 09 07 05]07 09 07 05

Table 4.1: Combinations of parameters considered in the three simulation Scenarios.

Our aim is to investigate a wide casuistry of plausible situations. For this reason, we consider
those Scenarios where only the spatial correlation (IT A, II B, IIT A and III B) or where the linear
dependence (II D and III D) changes and where both change their values (II D and III D). The
situation with all observations within the same group is the one included in Scenario I.

The goodness of the estimations is evaluated through the Median Absolute Error (MAE),
which is the median of the absolute difference between the real value and the obtained estimation.
When considering the precision of the classification, we apply the Adjusted Rand Index (ARI)
(Santos and Embrechts; 2009). Table 2 shows the MAE for all the parameters and the ARI
for each simulations Scenario. Our results refer to the average computed on 100 Monte Carlo
experiments. In each experiment, the Markov chain contains 50,000 samples, including a burn-in

of 10,000 samples.

Scenario I Scenario IT Scenario III

A B C D A B C D
Yo 0.176 0.228 0.085 0.055 0.985 | 0.148 0.076 0.062 0.419
a4t 0.229 0.168 0.067 0.093 1.037 | 0.121 0.081 0.118 0.416
Yo 0.381 0.155 0.044 0.061 0.058 | 0.073 0.038 0.061 0.052
1 0.097 0.026 0.013 0.017 0.050 | 0.032 0.016 0.019 0.055
ARI 0.022 0.303 0.671 0.870 0.789 | 0.214 0.478 0.851 0.754

Table 4.2: Median Absolute Error and Adjusted Rand Index: average values computed on 100

Monte Carlo experiments.

First of all, we can observe that a more complex topology, such as the one presented in

Scenario III, overall entails more challenges in groups detection. Indeed, for the same values
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of the parameters, ARI in Scenario III is always slightly lower, even though comparable. From
Table 2, we can also deduce that NS-SLM seems to struggle to identify different groups when only
spatial correlation changes (II A, IT B and IITA. IIIB). As expected, the difficulties are higher
the more the values of 1y and v, are closer. It seems that for similar parameters values, there is
no statistical differences in their estimations, thus the model is not able to really distinguish the
two groups. It is also interesting to observe how the difference among ¢ in distinct groups, which
is required in order to properly identify the latent structure is quite high, especially if compared
to limited range of 1.

The information provided by the change of v9 and ~; results to be more informative for the
groups detection, also when ¥y and ¢; are equal. While in the cases where both parameters
change, the classification, hence the estimations, are more precise.

In addition, in order to emphasise the improvement in the estimations in a framework with
non-stationarity of the NS-SLM, we compare our results with a standard SLM estimations.
Following the notation introduced in Section 2.3, we refer to NS-SLM as ms, due to the presence
of 2 distinct groups, and to the standard SLM as mi, which considers all observations in one
single group. We perform model comparison as suggested in Equation 3, by adopting a uniform
prior on the model space (p(m1) = p(mz) = 0.5). Table 3 displays the mean of the posterior
probability p(m2|2,Y) and p(mq|1,Y).

Scenario I Scenario II Scenario III
‘ ‘ A B C D A B C D
p(m1]1,Y) 0.95 095 035 0.02 005|092 051 0.06 0.26
p(m2]2,Y) 0.05 0.06 0.65 098 095 | 0.08 049 094 0.73

Table 4.3: Model comparison: mean of the posterior probability of Spatial Lag Model (mq) and
Non-Stationary Spatial Lag Model (mz).

Our previous interpretation of the results is reinforced by the comparison with the SLM. In
fact, we see that SLM is preferable not only in Scenario I, but also in the case IIA and IITA.
Therefore, in these Scenarios, the estimated optimal number of clusters is equal to be one. As we
argued before, the group structure is not sensible to small spatial correlation parameter changes.
In these cases, there is no statistical evidence to prefer a more complex model to the classical
one. This issue is clearly overcome in the other Scenarios where there is a clear evidence of the

presence of a group structure which partitions the points into two groups.
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It is also interesting to show how mis-classified points are mostly concentrated near to the

boundary of the true groups (see Figure 2 and 3).

0 1 2 3 4 5 & 7T 8 9§ 1 o 1 2 3 4 5 8 7 8 9 1 o 1 2 3 4 5 & 7 8 8 M

Figure 4.2: Mis-classified observations (green points) in different Scenarios. From left to right

Scenario IT A,C and D.

0 1 2 3 4 5 & T 8 9 1 0o 1 2 3 ¢ 5 & 7 8 9 10 0 1 2 3 & 5 & 7T 8 98 M

Figure 4.3: Mis-classified observations (green points) in different Scenarios. From left to right

Scenario III A,C and D.

To complete our simulation exercise, we test the performance of the NS-SLM in the context of
a higher number of groups. In particular, we considered an experiment where points are grouped
in three distinct clusters (see in Figure 4). The combination of parameters that generate the last

experiment is reported in Table 4.
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Yo 7 Vo %o U1 o

real value 7 1 3 0 0.4 0.9
MAE 0.347 1.28 0.140 0.013 0.081 0.023
ARI 0.71

Table 4.4: Values of the parameters, Adjust Rand Index and Median Absolute Error of the

estimations in a three clusters case (average over 100 Monte Carlo experiments).

In this second experiment, our model is able to successfully detect the three different groups,

even if the estimation error (Table 4) are higher than those observed in the two clusters case.
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Figure 4.4: Three cluster case: from the left to the right I) spatial distribution of the cluster,
IT) Mis-classified observations (green points), IIT) Groups identified groups by Non-Stationary
Spatial Lag Model.

Figure 4 also illustrates the mis-classified observations and the border of the groups identified
by NS-SLM. Intuitively, the identification of hidden clusters among the observations leads to the
definition of the borders where the parameters of the model change (Figure 4). A simply method
to identify these borders is to compute the convex hull which contains all the points assigned to

the same cluster.

4.4 A case study: Hedonic house price distribution in Boston

In this section, we describe the results obtained applying NS-SLM to the well known Boston
dataset collected by Harrison and Rubinfeld (1978) and used in many spatial statistical stud-
ies. The dataset contains information about 506 house prices in Boston together with several

explanatory variables which describe the house characteristics (age of the buildings and number
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of rooms), the topology of the area (distance from the city center, accessibility to major roads,
retail business area proportion) the quality of the air and the social composition (proportion of
black population and proportion of lower status population). In our study we aim to identify
groups of houses which displays a different dependence structure between the house price and
the social features of a neighbourhood. More specifically we considered the SLM model as in
Equation (1) and where the house price is explained by three predictors, namely: the distance
from the city center, the crime rate and the black ratio. The results reported here refers to an
MCMC procedure with a 150,000 sample chain, including the burn-in of 75,000 and a thin-in of
15 samples. Convergence analysis has been carried out for all the parameters, and convergence
was achieved in all cases. In particular, for the latent parameters, which are discrete variables,
we follow the procedure proposed by Deonovic and Smith (2017).

The two groups obtained in our analysis are mapped in Figure 4.5 and Table which 4.5 reports

the expected values of the parameters and the standard deviations for both clusters.
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Figure 4.5: Map of the groups obtains with Non-Stationary Spatial Lag Model using the Boston

dataset.

Although the standard deviations in the first cluster are quite high due to the small number
of units included (35 statistical units over a total of 506 data points), there is a relevant difference
in the estimations of the coefficients among the two groups. To better interpret these differences,
we also refer to Table 4.6, which summarizes the distributions of the variables considered within
the groups. We can observe that NL-SLM automatically divides the most expensive houses from
the others. Indeed, the house price is extremely high in the first group. The spatial distribution
of the houses, described by the distance from the city centre is similar in both groups, as well as

the ethnic composition. The second main difference is the crime rate, which is lower in the first

group.
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intercept distance crime black p o?
0.381 0.287 0.119 —1.223 0.117 15.205
Cluster 1
(8.127) (0.343)  (0.025)  (0.529)  (0.106)  (5.310)
3.901 —0.104 0.007 0.165 0.645 13.014
Cluster 2
(0.873) (0.023)  (0.002)  (0.101)  (0.027) (1.048)

Table 4.5: Expected values of the estimated coefficients. The standard deviations of the param-
eters are reported in brackets. Bold numbers correspond to those significantly different from

Z€ero.

As expected, the most expensive houses are located in safer neighbourhoods where the ethnic
composition also appears to be relevant. It is worth to observe the difference between the spatial
correlation parameter 1 in the two cases. In fact, in the second cluster the spatial correlation
assumes a significant positive value, which denotes a greater effect of the perception of the
surroundings. In contrast, in the first group it appears underdeveloped. Referring to the spatial
distribution of the statistical units, this result does not have to surprise because the houses

belonging to this group are less closer to each other.

Cluster 1 Cluster 2

0.1 0.25 0.50 0.75 0.90 0.1 0.25 0.50 0.75 0.90

house price | 39.74  43.30 4850 50.00  50.00 | 12.70  16.45 20.60  24.10  30.10
distance 1.342  2.006 2.894 5.118 6.310 | 1.648 2.105 3.216 5.215 6.819
crime 0.017 0.046 0.520 1.491 6.191 | 0.042 0.083 0.245 3.736  11.108
black ratio | 367.41 377.29 387.31 392.71 395.46 | 272.21 374.71 391.98 396.90 396.90

Table 4.6: Quantiles of the dependent variable and predictors included in the model.

4.5 Conclusions

In this Chapter, we propose the specification of a Spatial Error Model with heterogeneous coef-
ficients. We assume the existence of a finite number of distinct groups among the observations
with different groups corresponding to different parameters values. Heterogeneity is incorporated
in the model through a discrete latent process evolving as an Hidden Markov Random Fields.
In such a way, the structure of the groups is able to account for the spatial dependence in the
data. Our Monte Carlo simulations shows that our proposed model can correctly identify the

heterogeneous structure of the data. In addition, in the case of actual heterogeneity, our non-
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stationary specification outperforms the classical stationary model. As expected, our model is
sensitive to differences in the values of the parameters in the group. In order to properly classify
the observations, small differences in the regressors coefficients are enough, while, for the spatial

dependence coeflicients greater differences are necessary to distinguish the group membership.

Appendix A

Update of ~

The parameters 7y are updated with a Gibbs sampler. Let us define define Y = MY and
divide the data with respect to the value of the latent process, hence we obtain ffk, X. The

full-conditional distributions are computed as:

K
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Since the distribution is factorisable, 4 can be separately updated
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Update of u
The full conditional distribution of u; is

p(us| Y, u_i,v,%,0,v) = L(Yi|Y_i, ui, v, ¥, v) L(Y_i|u_i, 7,9, v)p(uilu_q, 6)p(u_;|0)

X L(K|Y7iaui777¢7 V)p(ui‘ui~j7 0)

LYi|Y_s,u; = L,v,%,v) - pri(u_;)
i =Y uiny,v,,0,v) = : = Qi (U—;
plus = Y wings 7 . 000) = SN = b, ) prauy) ()

Hence

ui|Ya uU—q,7, 11[]7 07 v~ MU’ltinom(ql,i(u—i)a ceey QK,z(U—z))

Update of v

The parameters v are also updated with a Gibbs step:

K
p(v|Y,u,v,v) < L(Y|0?, u,,7) H 7(vk)
5 " 1. )
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It follows that
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Appendix B

Convergence results of the study of Hedonic house price (Section 4). For each parameter we
reported the traceplot, the autocorrelation and the Geweke plot (see Figures 4.6,4.7,4.8,4.9 and
4.10).
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Figure 4.6: Traceplot, autocorrelation and the Geweke plot for the regressor parameters of the

first cluster.
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Figure 4.7: Traceplot, autocorrelation and the Geweke plot for the regressor parameters of the

second cluster.
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Figure 4.8: Traceplot, autocorrelation and the Geweke plot for the variance of the errors term.

Based on the results reported, we can state that convergence is reached for all the parameters.
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Figure 4.9: Traceplot, autocorrelation and the Geweke plot for spatial regression parameters.

The convergence for the latent process is checked using the Mamba package in Julia (Bezanson
et al.; 2017) proposed by Deonovic and Smith (2017). The obtained p-values (all lower than 0.05)

suggest the convergence of the discrete variables for the all observations.
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Figure 4.10: Traceplot, autocorrelation and the Geweke plot for 6.

Since in some case we notice that the autocorrelation in the chain decreases slowly, we also
check the correlation in the parameters chains (Table 4.7) but we do not detect evidences for a

strong correlation a posteriori between the parameters.
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o? o3 i 1y To T int; dist; crime; by inty  dists  crimes by

0’% 1.00 -0.29 0.21 -0.09 0.03 -0.07 0.06 -0.21 -0.05 -0.13  0.07 -0.11 -0.01 0.00
0’3 -0.29 1.00 -0.23 -0.08 0.01 0.12 -0.09 0.18 0.07 0.16 0.02 0.18 -0.02 0.01
[ 0.21 -0.23 1.00 0.00 -0.14 -0.22 0.27 0.04 -0.36 -0.64 -0.02 -0.12 0.01 0.03
(o2 -0.09 -0.08 0.00 1.00 -0.02 0.01 -0.05 -0.04 -0.04 0.06 -0.43 -0.28 0.26 -0.20
) 0.03 0.01 -0.14 -0.02 1.00 091 -0.13 -0.11 0.04 0.18 0.05 -0.02 -0.01 -0.02
1 -0.07 0.12 -0.22 0.01 0.91 1.00 -0.18 -0.04 0.07 0.25 0.03 0.03 0.00 -0.04
inty 0.06 -0.09 0.27 -0.05 -0.13 -0.18 1.00 -0.15 -0.54 -0.89 -0.01 -0.05 -0.02 0.06
distq -0.21 0.18 0.04 -0.04 -0.11 -0.04 -0.15 1.00 0.44 -0.08 -0.05 0.27 0.04 -0.02
crimey | -0.05  0.07 -0.36 -0.04 0.04 0.07 -0.54 0.44 1.00 0.47 0.00 0.13 0.02 -0.03
by -0.13 0.16 -0.64 0.06 0.18 0.25 -0.89 -0.08 0.47 1.00 0.02 0.05 0.00 -0.06
into 0.07 0.02 -0.02 -0.43 0.05 0.03 -0.01 -0.05 0.00 0.02 100 -0.16 -0.55  -0.66
disty | -0.11 0.18 -0.12 -0.28 -0.02 0.03 -0.05 0.27 0.13 0.05 -0.16 1.00 0.22 -0.10
crimes | -0.01  -0.02  0.01 0.26 -0.01 0.00 -0.02 0.04 0.02 0.00 -0.55 0.22 1.00 0.22
bo 0.00 0.01 0.03 -0.20 -0.02 -0.04 0.06 -0.02 -0.03 -0.06 -0.66 -0.10 0.22 1.00

Table 4.7: Posterior correlation

matrix between all parameters.

Figures 4.11 and 4.12 illustrate the Credibility Intervals (level 0.89) which allows to determine

if there are statistical differences between the parameters estimations among the two groups. As

state in Section 4, the intervals for the parameters of the first clusters are wider due to the lower

number of observations identified in that group. However, we can detect a significant different

in the estimations of the spatial correlation parameter and the coefficients of the distance and

the concentration of black people.
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Figure 4.11: Credibility Intervals (level 0.89) for the regressors coefficients.
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