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...entre deux vérités du domaine

réel, le chemin le plus facile et le
plus court passe bien souvent par
le domaine complexe.

[...between two truths of the real
domain, the easiest and shortest
path quite often passes through
the complex domain.]

Paul Painlevé, 1900
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Abstract

Linear barycentric rational interpolants are a particular kind of rational in-
terpolants, defined by weights that are independent of the function f. Such
interpolants have recently proved to be a viable alternative to more classical
interpolation methods, such as global polynomial interpolants and splines, es-
pecially in the equispaced setting. Other kinds of interpolants might indeed
suffer from the use of floating point arithmetic, while the particular form of
barycentric rational interpolants guarantees that the interpolation of data is
achieved even if rounding errors affect the computation of the weights, as long
as they are non zero.

This dissertation is mainly concerned with the analysis of the convergence
of a particular family of barycentric rational interpolants, the so-called Floater—
Hormann family. Such functions are based on the blend of local polynomial
interpolants of fixed degree d with rational blending functions, and we investi-
gate their behavior in the interpolation of the derivatives of a function f.

In the first part we focus on the approximation of the k-th derivative of the
function f with classical Floater-Hormann interpolants. We first introduce the
Floater-Hormann interpolation scheme and present the main advantages and
disadvantages of these functions compared to polynomial and classical rational
interpolants. We then proceed by recalling some previous result regarding the
convergence rate of the k-th derivatives of these interpolants and extend these
results. In particular, we prove that the k-th derivative of the Floater—-Hormann
interpolant converges to f*) at the rate of O(h;l“_k), for any £ > 0 and any
set of well-spaced nodes, where h; is the local mesh size.

In the second part we instead focus on the interpolation of the derivatives of
a function up to some order m. We first present several theorems regarding this
kind of interpolation, both for polynomials and barycentric rational functions,
and then we introduce a new iterative approach that allows us to generalise the
Floater—-Hormann family to this new setting. The resulting rational Hermite
interpolants have numerator and denominator of degree at most (m + 1)(n +
1) — 1 and (m + 1)(n — d), respectively, and converge to the function at the
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rate of O(R(mFD(@+1) a5 the mesh size h converges to zero.

Next, we focus on the conditioning of the interpolants, presenting some clas-
sical results regarding polynomials and showing the reasons that make these
functions unsuited to fit any kind of equispaced data. We then compare these
results with the ones regarding Floater-Hormann interpolants at equispaced
nodes, showing again the advantages of this interpolation scheme in this setting.
Finally, we extend these conclusions to the Hermite setting, first introducing
the generalisation of the results presented for polynomial Lagrange interpolants
and then bounding the condition number of our Hermite interpolant at equi-
spaced nodes by a constant independent of n. The comparison between this
result and the equivalent for polynomials shows that our barycentric rational
interpolants should be in many cases preferred to polynomials.
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Chapter 1

Introduction

1.1 Motivation

This thesis is mainly concerned with the interpolation of data, either defined as
samples of a known function f or as a finite set of values fy, ..., f,. In the for-
mer case interpolation can simplify the evaluation of certain special functions,
providing an approximation of f which can be evaluated in a finite number
of arithmetic operations. The second case often arises in natural sciences,
where the data are the result of experimental procedures and one wishes to
approximate the underlying, unknown function. In both cases it is important
to be able to approximate the function with arbitrary accuracy, in order for
the forthcoming results to be reliable. This certainly requires some tool to be
able to judge the approximation quality of the interpolant or, in other words,
to ‘measure’ the distance between the function f and its approximation, g. In
this work we always consider the absolute value of the difference of the function
and the approximant, and we define the norm as

I = gll = max|(z) - g(a)|

where [a, b] is the interval in which we want to interpolate the function f.
Before the spread of computers, the global polynomial interpolant, that is
the unique polynomial passing through the data set, was considered a valu-
able tool for interpolation. Since each computation was performed by hand,
it was practically impossible to handle polynomials of high degree and the ap-
proximation quality achieved with polynomials of low degree was considered
perfectly reasonable. With the spread of computers it was natural to ask for
higher accuracy in order to better describe functions and physical phenomena.
On the other hand, computers also allowed the computations of polynomial
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interpolants of much higher degree. Assuming that the data set is given at
certain locations, or interpolation nodes, the polynomials can still lead to very
accurate results. This is the case when the data are given at the Chebyshev
points of the first kind (Brutman| [1997]),

241
xi:—cos<(l+>7r>, i=0,...,n (1.1)

2n + 2

or at the Chebyshev points of the second kind (Brutman| [1997])

xi:—cos<m>, 1=0,...,n. (1.2)

n

Depending on the smoothness of the function f, if the n + 1 data are sampled
at these nodes, polynomial interpolation converges algebraically as n increases,
that is (Trefethen [2013])

If =7l < Cn7

where C'is a constant and 5 € N depends on the differentiability of the function
f. If furthermore f is analytic and bounded in an ellipse in the complex plane
containing [a, b], the convergence is exponential, that is (Trefethen [2013])

If =l <Cp"

for some p < 1 depending on the size of the ellipse.

Unfortunately, in most applications, it is not possible to specify the location
of the data but one still has to deal with the interpolation problem and these
are the cases where polynomials have shown their limitations. An important
example is given by the equispaced interpolation nodes,

where polynomial interpolation is often assumed to converge in theory but
diverges in machine-precision arithmetic because of the amplifications of the
rounding errors. There are moreover several examples in which the quality of
polynomial approximation worsens with the increase in the number of data,
even if the function f is analytic in a domain containing the interpolation
interval. In general the convergence of the sequence of polynomials interpolants
is strongly influenced by the analyticity of f not only in the interpolation
interval but also in a neighborhood of [a, b] in the complex plane.
Furthermore, in many practical applications it is not sufficient to interpo-
late a simple data set but it is required to impose further conditions on the
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shape of the interpolating curve. Such a result can be achieved by impos-
ing certain values to the derivative of the interpolant. These values can be
sampled again from a function f, or imposed separately, in order to satisfy
physical requirements. A similar demand can involve also second and higher
order derivatives, and there are cases in which it is simply not possible to sat-
isfy these requirements using polynomial interpolants with minimal degree. As
an example, given the function

~25(z —1)(x+1)
N x—5 ’

()

x € [-1,1],

there is no quadratic polynomial p, satisfying

pa(z0) = f(2o), pIQ(xl) = f/($1)> pa(w2) = f(2)

at the equispaced nodes x; =i —1,7=0,1, 2.

There are several alternative methods for approximating a function and
most of them represent huge advantages over classical polynomial interpolation
in the equispaced setting. Here we recall the following.

o Splines. Consist of piecewise polynomial interpolants, where each poly-
nomial interpolates two consecutive samples and the remaining degrees of
freedom are used to ensure some order of continuity. The main advantage
is that it is not necessary to use polynomials of high degree to achieve
good approximation results and then the drawbacks of classical polyno-
mial interpolation do not show up. On the other hand, using piecewise
polynomials of degree k, the resulting interpolant is only C*~! and higher
smoothness cannot be achieved.

o Interpolatory subdivision schemes. Introduced initially for curves and
surface design, they soon became key ingredients for both computational
science and image processing. The idea is to recursively define the inter-
polant, starting from the data samples by applying a refinement scheme
to get a smoother result. There are several subdivision schemes that can
be divided into stationary and non-stationary, depending on whether the
refinement scheme is always the same or changes at every recursion step.
An example is the 4-point subdivision scheme defined by Dyn et al.|[1987],
where the sequence of refined curves has been proved to converge to a
C'[a, b] curve.

e Radial basis functions. These interpolants are widely used in higher di-
mensions, in particular for scattered data sets. The interpolant is defined
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as a linear combination of n+ 1 basis functions, one for each interpolation
point, whose value at x depends on its distance from the corresponding
node. This method offers high accuracy and geometric flexibility. Its
smoothness depends on the continuity of the basis functions involved.

o C(lassical rational interpolation. These interpolants use rational polyno-
mials and have been observed to give better results than polynomials (Bu-
lirsch and Rutishauser| [1968]). Unfortunately they suffer from problems
that are not easy to overcome. We give more details on these interpolants
in the following chapters.

A more exhaustive list of available interpolation methods is presented by Platte
et al.| [2011].

In this work we concentrate on barycentric rational functions and in par-
ticular on the Floater—Hormann family of interpolants. Such interpolants have
been proved to be analytic on the whole real line and to have high rates of ap-
proximation. Moreover, as we show in the following chapters, Floater-Hormann
interpolants are perfectly suited for interpolation of equispaced samples and
thus represent one of the best alternative methods for interpolation of univari-
ate data.

1.2 Overview

This dissertation represents an overview of the work I have carried out as a
PhD student at Universita della Svizzera italiana, divided by arguments and
basically in chronological order.

In Chapter [2] we begin by giving more insights about the problems that af-
fect polynomial interpolation. We present some classical result by Runge| [1901]
and [Faber| [1914] and we emphasize the dependence of the convergence of the
polynomial interpolation scheme on the continuity of the function f. Then we
introduce classical rational interpolation and explain the two main drawbacks
that affect this kind of approximants, the occurrence of poles and unattainable
points. In Section [2.2] we introduce the barycentric approach and the barycen-
tric form, presenting the advantages of writing a rational interpolant in this
particular way. Some theorems and lemmas that shall be useful in the rest of
the thesis are presented in this section. They are mainly related to the location
of poles, unattainable points, and to the computation of the derivatives of a ra-
tional interpolant in barycentric form. In Section [2.3] we focus on barycentric
rational interpolation, presenting Berrut’s first and second interpolants (Berrut
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[1988]), and their generalization by Floater and Hormann| [2007]. We moreover
define some basic constants and index sets that will be used in the rest of the
work.

In Chapter|3|we focus on a more general problem, in which the interpolation
of the values of the derivatives of f up to order m is required. After introducing
the polynomial solution, we review some classical results about the convergence
of the sequence of polynomial interpolants to the function f in this new setting.
We remark how equispaced nodes still represent an insurmountable problem
for such a solution and therefore we generalise the barycentric approach to this
more general setting. In Section [3.2] we give an overview of the previous results
in the field, by presenting the generalisations by Schneider and Werner| [1991]
of the theorems in Chapter 2] Some of these results shall come in handy in
the next sections. Finally we discuss the advantages of barycentric rational
interpolants over polynomials and review some specific method by Schneider
and Werner| [1991], [Floater and Schulz| [2009] and Jing et al.| [2015].

Chapter [4 goes deeper into the whole interpolation process, as we present a
theoretical result that shows how polynomial interpolation is basically useless
for large sets of equispaced nodes. In this chapter we present the concept of
interpolation as the result of operators that act on the function f, and we show
how the norms of these operators give important information on the quality of
the obtained interpolant. We first introduce the theory behind the interpolation
operator and present several classical results by [Bernstein [1931], Erdés [1961],
Rivlin [1974] and Brutman| [1984] in the polynomial setting. Then we review
some recent result regarding the Berrut and Floater-Hormann interpolation
scheme by Bos et al.|[2011], Bos et al.|[2012], Bos et al.|[2013] and |Zhang] [2014],
emphasizing again the advantages of these interpolants over polynomials in the
equispaced case. We then generalise the same theory to the interpolation of
the derivative of the function f, showing that, also in this case, the situation
is often not favorable to polynomials.

1.3 Contributions

The main focus of this dissertation is on barycentric rational interpolation of
a function f and its derivatives. Since polynomial interpolants suffer from
problems impossible to overcome at equispaced nodes, our aim is to show that
Floater—-Hormann interpolants represent the state-of-the-art tool to solve this
kind of problems.

In Chapter 2] we analyse in detail the behavior of the k-th derivative of the
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error produced by the Floater-Hormann interpolants. We first present some
previous result by Berrut et al.| [2011] and |Klein and Berrut| [2012] and then
we provide a local bound in which the error does not depend on the mesh size
of the interpolation nodes, but on the length of the subinterval [z;, z;44] in
which we are evaluating it. Namely we prove that the k-th derivative of the
error at x € [z, ;1] converges to zero as O(h{*t'™") for any set of well-spaced
nodes, where h; = x;41 — ;. To this end we split our proof in two parts,
one related to the value of the error at the nodes and one at the intermediate
points. Several numerical examples conclude Chapter [2 This part is mainly
based on our work

Cirillo, E., Hormann, K. and Sidon, J. [2017]. Convergence rates of deriva-
tives of Floater—Hormann interpolants for well-spaced nodes, Applied Nu-
merical Mathematics 116:108-118.

After the analysis of the behavior of the derivatives of Floater—Hormann inter-
polants, we focus on the interpolation of the derivatives of a function f, up to
a certain order m. The main goal of Chapter [3]is to generalise this family of
barycentric rational interpolants to the Hermite setting and, to this end, we
present a general, iterative approach that allows us to generalise any sufficiently
continuous Lagrange interpolant to the new setting. The application of this
iterative method to the Floater-Hormann interpolants leads to the definition
of an infinitely smooth family of barycentric rational Hermite interpolants with
no poles in R. We first find a closed form for the barycentric weights of the new
interpolants and then, in Section [3.4] we provide a bound for the error. This
section is divided into two parts. In the first we focus on the cases m =1 and
m = 2 and prove that the interpolants converge as O(h?@+1)) and O(h3@HD),
respectively, as the mesh size h converges to zero. This proof relies on the
closed form of the barycentric weights found previously, but does not allow an
easy generalisation to the general case. In the second part, we generalise these
results for any m > 0, proving that our iterative Hermite interpolant converges
to the function as O(R™+D@+1D)) ag b, — 0. This proof, valid also for the first
two cases, uses completely different techniques and it is therefore my opinion
that both versions deserve to be included here. Several numerical examples
conclude this chapter. This part of the thesis is based on the following works.

Cirillo, E. and Hormann, K. [2018]. An iterative approach to barycentric
rational Hermite interpolation, Numerische Mathematik 140(4):939-962;

Cirillo, E., Hormann, K. and Sidon, J. [2019]. Convergence rates of iterative
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rational Hermite interpolants. Submitted.

In the last part of the thesis we further analyse the iterative Hermite interpolant
proposed in Chapter [3] Inspired by the unfavorable growth of the condition
number of polynomial Hermite interpolants at equispaced nodes, Section
is devoted to the application of the theory presented in the first part of the
chapter to the interpolant introduced in Chapter |3l In particular we prove that
the condition number of our interpolant is bounded from above by a constant
independent of n. Some numerical experiments show that the same quantity
grows exponentially with d, a behavior that recalls the one experienced by
classical Floater—-Hormann interpolants in the Lagrange setting. This final
part of the thesis is mainly based on our work

Cirillo, E. and Hormann, K. [2019]. On the Lebesgue constant of barycentric
rational Hermite interpolants at equidistant nodes, Journal of Computational
and Applied Mathematics 349:292-301.
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Chapter 2

Barycentric rational interpolation

Given a real valued function f € C°[a,b] and the set of n + 1 nodes

X, = {25, 2,y (2.1)

() ) o ... < (™ = b, the Lagrange interpolation problem

such that a = x5’ < o)
consists in finding a function ¢ such that

gla™) =[f]=r@@l™),  i=0,...m (2.2)
We are mainly interested in studying the behavior of
@)= f(z) —[g(=) (2.3)

as the number of nodes n increases, that is, given a triangular array =
(Xn)nen of nodes in [a, b],

Ty
x(()l) x(11)
x(()2) x§2) Ig2)
. (2.4)
oA o0

we analyse the behavior of e(z) as n — oo. Each X, is called a set of nodes,
while we refer to X as a system of interpolation nodes. When no confusion
is likely to arise, we omit the superscript that refers to the number of nodes,
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We emphasize that the interpolant g clearly depends on the number of in-
terpolation nodes and on the function f and therefore we should more formally
write ¢ = g, = gn[f]. Nevertheless, we assume this to be clear to the reader
and we omit the dependance of g on n and f, when it is not strictly necessary.

We finally denote the couple (x;, f;) as the i-th support point of the inter-
polant g (Stoer and Bulirsch) [1993]).

In the next section, we introduce the polynomial solution of the Lagrange
interpolation problem and give more details regarding polynomial inter-
polation. Then we present classical rational interpolants and the linearised
interpolation conditions and we point out the main issues that affect this kind
of interpolants. In Section [2.2] we introduce the barycentric approach and
present some of the theorems that will be used later on. In Section we
focus on Berrut’s rational interpolants and their generalisation by Floater and
Hormann, together with some result regarding the main properties of these
interpolants. After presenting some previous results about the convergence of
the derivatives of the Floater-Hormann interpolants, in Section we extend
them to a more general case.

2.1 Polynomial and classical rational interpolation

Let us denote with |22, the space of polynomials of degree at most d. Given the
n + 1 nodes in (2.1)), there exists a unique set of n + 1 polynomials in &,

ey = ] —2,  i=0,....n (2.5)
j=05#i Y1 T~ X
that satisfies the Lagrange property
gz(l']) = 51'7]', (26)

where 0; ; is the Kronecker delta

0, ifi#j,
03 5| = e
1, ife=7.

Such polynomials are called Lagrange basis functions, since, in a moment, we
shall show that they are a basis for the (n + 1)-dimensional vector space &,.

Definition 2.1. Let ® be a vector space of dimension d. A set of d elements
{¢1,..., 04} is called a basis for & if its elements are linearly independent. In
this case we write

® = span{¢,..., ¢4}
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fa P
I3
f2
fi
—f
- D
fod
X0 X1 o) x3 Tyq

Figure 2.1. The Lagrange polynomial p (in red) interpolating the function f (in
blue) at 5 equispaced nodes.

Given a function f € C%a,b], let

p(x) = pulfl(x) = 3_li(x) i (2.7)

By the Lagrange property of the Lagrange functions, p is the unique polynomial
solution of minimal degree for the Lagrange interpolation problem , see
Figure [2.1]

For any choice of n, such a polynomial satisfies the following, see Davis

[1975).

Theorem 2.1. Let f € C"[a,b] and suppose that f("*!) exists at each point of
(a,b). Then the polynomial interpolant ({2.7)) satisfies

FrD(E)
e(r) = f@)m,
where ¢ is in the convex hull of x, xg, x1,..., 2, and depends on f and

n

((z)|=[[(z — ) (2.8)

=0

is the nodal polynomial associated to the nodes x, ..., x,.

Letting A,(z) = || f™*V||¢(x), the previous theorem states that we have
convergence as long as

|45l
= 2.
R (n+1)! 0 (2.9)
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and, in this case, p converges to f as O(h™™!), where

: max (z; — T;_1)- (2.10)

i=1,...,n

From Theorem moreover descends the fact that the Lagrange functions are
a basis for the linear space &, since, if f € 2,, it can be written as a linear
combination of the ¢;’s with coefficients given by the samples of f at the nodes.

As pointed out by Berrut and Trefethen| [2004], Equation (2.7)) requires
O(n?) operations for each evaluation of p and the insertion of a new node z,, 14
with a corresponding value f,.1 requires a new computation from scratch.
However p can be rearranged in a computationally less expensive form. By
considering the nodal polynomial , we rewrite each /; as

((x)

(x — )0 (z;) B r — x

li(z) = (2.11)

with
= 1/0 () (2.12)

and the corresponding interpolant as

n wi

pla) = () Y s e (2.13)
This form is called the first form of the barycentric interpolation formula
(Rutishauser| [1990]). The computation of each w; requires O(n?) operations
but, since these values do not depend on the function f, they can be precom-
puted to approximate several functions on the same set of nodes. Once this is
done the evaluation of the polynomial itself requires O(n) operations. More-
over the insertion of a new node requires only to update w;, = 0,...,n, and
to compute w1, and both operations can be done in O(n) steps. This form of
the polynomial interpolant has been shown by [Higham| [2004] to be backward
and forward stable.

Definition 2.2. The evaluation method f used to evaluate a function f is back-
ward stable if, for any z € R,

f(z) = f(z + ox)

for some small backward error |0x|. Moreover if

IF=fll_
T

for some small forward error |dy|, f is said to be forward stable.
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In practice, a backward stable evaluation method provides the right value
of f at the almost right value of z, while a forward stable evaluation method
outputs a value that is ‘close enough’ to the right answer. The difference
between the two notions is substantial. Suppose for example that = = 7/2 —
1072, and f(z) = tan(z). An evaluation method f with a backward error
|6z] = 21073 can still result in a relatively big forward error |dy| ~ 0.25.
Conversely, if f is very flat around z, a pretty big backward error dx can still
result in a small forward error dy.

If we denote with u the unit roundoff, the first barycentric form satisfies
the following.

Theorem 2.2 (Higham| [2004]). The value p(x) of the polynomial interpolant
as computed with the first barycentric form (2.13|) satisfies

f: Y f(5n + 5,

zO'r ZT;

where

k
=[] (1+&)" pi = £1
=1

and §; < u.

This result states that the value computed using the first barycentric form
can be interpreted as the exact solution of the Lagrange interpolation problem
for the slightly perturbed data values

fi=fiGn+5),  i=0,...,n.

As for the forward stability, we need to introduce the condition number of
p at x with respect to f.

Definition 2.3 (Higham [2004]). The condition number of p at x with respect

to f is

Pulf](@) = pulf + AS)(2)
opnlf(7)

The condition number of p can be thought of as the maximum relative error
of p produced by a slight perturbation of the function f.

cond(z,n, f) = (lsin% sup {
%

HAf(2)] < 5|f(ﬂ?)\}-

Theorem 2.3 (Higham| [2004]). The value p(x) of the polynomial interpolant
as computed with the first barycentric form (2.13) satisfies

p(r) — p(x)
p(x)

(5n 4+ 5)u

=T (Gn+t 5)Ucond(a:,n, f)-
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The first barycentric formula it is not the end of the story, as, by Theo-
rem [2.1], the Lagrange basis functions satisfy the partition of unity property

i= Ox_xl

Therefore, dividing (2.13)) by 1 and simplifying the common factors, we get

=y -y

,:off_% ZOZL‘—$Z

(2.14)

This new form has been called by Rutishauser| [1990] the second form of the
barycentric formula and has been shown to be forward stable.

Theorem 2.4 (Higham| [2004]). The polynomial interpolant p(z) as computed
with the second barycentric form satisfies

W < (3n + 4yucond(z,n, f) + (3 + 2uA, + O(u?),
where
An _igﬁﬁzw

This result shows that the second barycentric form is forward stable as
long as the constant A, is not too large. We give more details about this
important quantity in Chapter [d] where we also specify favorable choices for
the interpolation nodes, that guarantee a slow growth of A,,.

Higham| [2004] concludes his work by specifying that the second barycentric
formula is in general not backward stable, while Mascarenhas and de Camargo
[2014] make this observation more precise, specifying that is backward
stable as long as the constant A,, remains small.

Despite the restriction on A,,, the second barycentric form has a practical
benefit over the first one, as noted by Berrut and Trefethen [2004]. Since the
weights w; appears linearly in the numerator and the denominator of p, all their
common factors can be factored out to avoid overflows and underflows. There
exist several simple expressions for the weights for particular systems of nodes.
For example, if the nodes are equispaced, Henrici| [1982] proves that

w; = (—1)i<7z>,
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no matter the length of the interval [a, b]. For the Chebyshev nodes of the first
kind (1.1]), Henrici [1982] finds

i . (2 4+ D ,

= (—1)isin T —0,...
w; = (—1)"sin SR 1=0,...,n

while, for the Chebyshev nodes of the second kind (1.2)), Salzer [1972] finds

1 ; 1"
= wi= (=1, i=1,...,n—1, wn—(z).

(2.15)

For general distributions of nodes, instead, Berrut and Trefethen| [2004] suggest
to multiply all the factors in ¢'(z;) by 4/(b—a), in order to avoid overflows and
underflows in the weights (2.12).

Comparing the weights for Chebyshev and equispaced nodes we can notice
a huge difference. While with the former the weights vary as O(n), in the
equispaced case the weights vary exponentially as O(2"). In this latter case
it is clear that, for large n, we cannot prevent overflows or underflows with
a rescaling of the weights. Berrut and Trefethen| [2004] remark that this fact
is not strictly correlated with the barycentric form but with the polynomial
interpolation per se, as we will illustrate in the following lines.

From Theorem [2.1] it is clear that the convergence of the polynomial p as
n — oo is strongly influenced by the behavior of the nodal polynomial
and thus by the location of the nodes. If the nodes are equally spaced, Runge
[1901] proves that the sequence of polynomial interpolants may diverge as n
increases, even when the function f is analytic. An example in which the
polynomial interpolant diverges as n — oo is displayed in Figure [2.2] left. The
Lagrange polynomials for n = 5,10, 15 converge to the Runge function

B 1
14 2522

(@) z € [~1,1] (2.16)

exponentially in the middle of the interpolation interval, while they diverge as
x approaches the endpoints of [—1,1]. The reason for this divergence is the
location of the poles of the Runge function in the complex plane. As noticed
by Runge, indeed, the convergence of the sequence of polynomial interpolants
(Pn)nen is strongly influenced by the location of these poles in the neighbor-
hood of the interpolation interval. Runge| [1901] understands that it is not
sufficient for f to be analytic in [a, b] but it must be analytic in a larger Runge
region (Trefethen| [2013]). Since is not analytic inside this area, the
polynomial interpolants fail to converge as n — oo, see Figure 2.2] right. Sim-
ilarly, functions which have poles near the boundary of this region, will tend
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Figure 2.2. Left: the Lagrange polynomials interpolating the Runge function
in (2.16) (in black), for n = 5,10,15, at equispaced nodes. Right: the Runge
region for the interval [—1,1] (in blue) and the poles of the Runge function (in
red).

to converge or diverge slowly. For example, consider the functions

9 49
- d -
ho) = oo ™ F = 002 129"

with poles in +0.37 and +0.7:, respectively. In Figure [2.3| we represent the
behavior of the errors e; = || fi — p|| and e3 = || fo — p||, for n = 5,10, ..., 40.
We notice a slow divergence for the function f; and a slow convergence for fs.
The farthest the poles are away from the boundary of the Runge region, the

(2.17)

most these trends are visible.

Faber| [1914] extends Runge’s observation, by proving that, no matter how
the points are distributed, polynomial interpolation cannot converge for all
continuous functions.

Despite this last discouraging result, [Trefethen| [2011] notices that, if the
nodes z; are nicely distributed (e.g. Chebyshev nodes), the polynomial in-
terpolants are guaranteed to converge, as long as the function f is at least
Lipschitz continuous, i.e. if

1f(x) = fW)| < Llz—vyl,  z,y€la,b]

for some constant L > 0, a condition that is easily met (see also Griinwald
[1942]). Moreover the following important result holds.

Theorem 2.5 (Rivlin [1981]). For any f € C°[a,b] there exists a system of
nodes X such that p converges uniformly to f in [a,b] as n — co.
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Figure 2.3. Behavior of the errors e; = ||fi — p|| (in blue) and ex = || f2 — p||
(in red) for the functions f; and fy in (2.17)) and n = 5,10, ..., 40 at equispaced
nodes. The straight reference line (in black) represents the O(h™*!) behavior.

Anyway in most applications one cannot choose the interpolation points and
has somehow to deal with the prescribed distribution of nodes. It is therefore
necessary to look for interpolants different from polynomials.

One suitable alternative to polynomial interpolation is the use of rational
functions

ri@) ===, PEP, qEPn
with [ +m = 1}, to solve the linearised interpolation conditions

p(z;) = fiq(xy), i =0,...,n. (2.18)

As Bulirsch and Rutishauser| [1968] notice, classical rational interpolants often
give better results than polynomials, especially when we want to approximate
a function f close to its poles and discontinuities. As an example they consider
the function f(x) = cot(x) sampled at the equispaced nodes z; = i + 1, i =
0,...,4. In Figure 2.4 we interpolate the function using a polynomial of degree
4 and a rational function with [ = m = 2. Since polynomials are smooth, they
are not well suited for interpolation of functions close to points of discontinuity:.
On the other hand, rational functions are flexible enough to interpolate f in a
neighborhood of a pole, as shown in this particular example. The corresponding

!The rational interpolant 7 is determined only up to a common factor of the [ 4+ m + 2
coeflicients of p and ¢q. Therefore we can freely fix one of those coefficients, so as to normalise
r
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Figure 2.4. Interpolation of cot(z) (in blue) at 5 equispaced nodes with a polyno-
mial p (in red) and a rational function r (in yellow).

rational function r has a pole in the interpolation interval at x &~ 3.1635, that
nicely approximates the pole of cot(z) at = already for n = 4.

The situation is completely different if the function f is continuous in the
whole interpolation interval. In this case, the lack of tools to control the oc-
currence and the position of poles makes it impossible to handle such kind of
interpolants, see Figure left. The other big disadvantage of classical ratio-
nal interpolants is the occurrence of unattainable (support) points, a problem
that has been pointed out by Claessens| [1978] and that is due to the use of
the linearised interpolation conditions. Indeed, the node z; may be a zero of
both polynomials p and ¢, making the i-th support point unattainable, see
Figure right. As an example, Stoer and Bulirsch| [1993] consider the nodes

=i, i=0,1,2

with function values
fo=1, fi=/f=2

The use of the linearised interpolation conditions (2.18)) with [ =m =1 gives
p(x) =2z, q(x)==

and the support point corresponding to zy is unattainable for the rational
interpolant
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Figure 2.5. Left: a rational interpolant (in red) of a function (in blue) at 5 equi-
spaced nodes with a pole. Right: a different rational interpolant (in red) of the
same function at the same nodes with an unattainable point.

The main goal of this thesis is to explore a third, more promising approach
and to investigate the properties of the obtained interpolants. In particular
we deal with an alternative kind of solutions to the Lagrange interpolation
problem, the so-called barycentric rational interpolants, which has recently
proved to compare favorably with more classical methods such as polynomials,
splines and rational functions in the equispaced setting.

2.2 The barycentric approach
Barycentric interpolants are a special kind of interpolants of the form

o) = Y b(@)f, (219)

where the barycentric basis functions|b) i = 0, ..., n, satisfy the three proper-
ties

Lagrange property: bi(x;) = 6y, (2.20a)
Partition of unity: > bi(z) =1, (2.20b)
i=0
Barycentric property: > bi(z)x; = . (2.20¢)
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It is clear that any interpolant g that reproduces linear functions stems from a
set of basis functions that satisfy all the three barycentric properties. Anyway,
Hormann| [2014] remarks that it is common use to name an interpolant as
barycentric only if there exists an explicit closed form for b; and ¢ reproduces
linear functions.

Berrut and Mittelmann| [1997] prove that any rational interpolant with a
certain degree can be written in a form that is similar to .

Theorem 2.6 (Berrut and Mittelmann| [1997]). Let (x;, f;), ¢ = 0,...,n be
n + 1 distinct support points. Then any rational function r of degree at most
n satisfying (2.2)) can be written in linear form as

En:b, )fi, (2.21)

=0

bi(x) = 2.22
(z) T — xz/ T — ( )

for some B = (B, ..., 0,) € R™

with

Any interpolant as in (2.21)) is said to be expressed in barycentric form,
while the quantities fy, ..., 3, are called barycentric weights and, in order to
retrieve their form, we give a sketch of the proof of the theorem. Let

rx) ===, peP, qeP,

with [, m < n. Since the Lagrange basis functions are a basis for &,, we resort

to (2.11)) and rewrite p and q as
Z i and Z i

lO.ﬁE—.Tl ZOJS—iL‘Z

Then, using the linearised interpolation conditions ([2.18)),

) /
0:)3—:171 ZO$—:)31

1=

with 8; = w;q(z;), i« = 0,...,n. We notice in particular that the barycen-
tric weights depend only on the denominator of r, and therefore, once this is
specified, the interpolant is completely determined.
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The similarity between the barycentric form and might bring us to
conclude that any choice of barycentric weights guarantees r to be a barycen-
tric interpolant but, despite each b; in satisfies and , the
answer is in general negative. The following proposition gives the last charac-
terisation.

Proposition 2.1. A rational interpolant in barycentric form ([2.21]) satisfies the
barycentric property (2.20c) if and only if

then the corresponding interpolant satisfies the barycentric property. The other
implication is trivial. O

We remark that, since the functions in (2.22)) satisfy the Lagrange property,
they are actually a basis of some linear subspace of rational functions

Rg = span{by, ..., b,},

where the subscript B emphasises the dependence of the subspace on the
barycentric weights 8 = {f, ..., 8.}. As an example, if we consider ; = w;,
t=20,...,n from , then the function r is a polynomial of degree at most
n and therefore Z, = 2,.

The big advantage of the barycentric form is that we can replace each weight
B; with some other non-zero weight, being sure that the interpolation property
is still preserved. This property stems from the following result.

Lemma 2.1 (Berrut et al. [2005]). Let (z;, f;), ¢ = 0,...,n, be n + 1 distinct
support points. Then if §; # 0, the interpolant r in (2.21)) interpolates f; at
x;, that is

:}1_1}2 r(z) = fi.

To prove this result it is sufficient to multiply both numerator and denom-
inator in by the nodal polynomial ¢(z) and to compute the limit as
T — ;.

This represents a great advantage from a computational point of view
since, even if rounding errors in the computation of the weights occur, the
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function does not lose its interpolation property. Moreover, by the similar-
ity of and , any interpolant in barycentric form inherits all the
properties regarding the precomputation and storage of the weights we already
noticed in the previous section. We observe that, by Lemma [2.1] the choice
Bi = w;, © =0,...,n, is the only way to get a polynomial from the barycentric
form , while any other choice results in a proper rational function for any
f.

The barycentric weights provide the tools that in classical rational interpo-
lation lacks. Indeed, |Schneider and Werner| [1986] prove the following results
for barycentric rational interpolants in reduced form, regarding occurrence of
poles and unattainable points.

Proposition 2.2 (Schneider and Werner| |[1986]). The support point (z;, f;) is
unattainable for an interpolant r in barycentric form if and only if g; = 0.

Proposition 2.3 (Schneider and Werner [1986]). If an interpolant r in barycen-
tric form has no poles in [a, b], then

sign 3; = —sign [;11, 1=0,...,n—1.

If sign B; = sign B;,1 for some i = 0,...,n — 1 then r has an odd number of
poles in the i-th subinterval (z;, z;4+1), with multiplicities taken into account.

Figure [2.6|represents all the possible cases described by the previous propo-
sitions. The function in blue is being interpolated at 6 equispaced nodes. In
(a), the signs of the weights are alternating and the interpolant has neither
poles nor unattainable points. In (b), we set the first weight to 0 obtaining an
unattainable point as described by Proposition [2.2] The last two examples are
related to Proposition . In (c) we represent an interpolant with

sign (7 = sign [y = sign fs.

As predicted by Proposition [2.3] it has an odd number of poles in both subin-
tervals (x1,22) and (22, x3). Unfortunately, the condition on the alternating
sign is not sufficient. In (d) we show the interpolant corresponding to the
weights

Bo=—Ps =441, [y =—P4=—125, [y =—pF5=290.

Even if the weights alternate in sign, the corresponding interpolant still has
poles in [a, b]. By Proposition this interpolant must have an even number



23 2.2 The barycentric approach

of poles in each subinterval and this is confirmed by looking at the denominator
of the corresponding interpolant,

2 2
3 7
q(z) = 24000 <x — 10) (I - 10) ;

which has two roots with double multiplicity at z = 13—0, %.

We finally would like to recall another proposition by [Schneider and Werner
[1986], regarding the differentiation of rational interpolants in barycentric form.
Such functions are easy to differentiate both at the nodes and at the interme-
diate points x € (x;,x;+1). Before stating the result, let us recall the definition

of divided differences.

Definition 2.4. Given n + 1 support points (z;, f;), ¢ = 0,...,n, the divided
differences of f are defined as

flzi] = £, j=0,...,n

f[xj7"'7xj+k] = f[ijFl""’ijrk] — f[xj7...’xj+k71]7 J=0,....,n— k?
Ljtk — Xj

forany k=1,...,n

We shall often use the k-fold notation

k times

Proposition 2.4 (Schneider and Werner| [1986]). Let r be an interpolant in
barycentric form. Then

o Ifz € R\ {xg,...,2,} and z is not a pole of r,

r(k)(x):klzn: b r[( Z

k> 0.
T Ox—xz
o If x =a; for some j =0,...,n, we get
T(k) ;) = Z 53 , 4]
/831 =0,i#j

This proposition will come in handy in Section[2.4.3]and in the next chapter,
where we treat the Hermite interpolation problem.
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Figure 2.6. Some example illustrating all possible cases in Propositions and
for 4 different interpolants of the same function (in blue) at 6 equispaced nodes: (a)
An interpolant (in red) with neither poles nor unattainable points; (b) an interpolant
(in yellow) with an unattainable point; (c) an interpolant (in purple) with an odd
number of poles in the subintervals (z1,x2) and (x2,23); (d) an interpolant (in
green) in barycentric form with weights with alternating sign and an even number

of poles in the subintervals (z1,x2) and (z3,x4).

(d) B = (441, —125,90, —90, 125, —441)
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Therefore, barycentric rational interpolants are natural candidates for the
solution of the Lagrange interpolation problem at equispaced nodes, since they
enjoy the best properties of both polynomial and classical rational interpola-
tion, without inheriting any of their disadvantages. Indeed, a suitable choice of
barycentric weights can guarantee that the corresponding interpolant does not
suffer from divergence problems as polynomials do, and, on the other hand, can
solve the two main issues of classical rational interpolation, i.e., the difficulty
of handling poles and unattainable points. In the next section we review a
particular choice of barycentric weights §;, ¢ = 0,...,n, that guarantees the
absence of poles and unattainable points and a favorable convergence rate of
the corresponding interpolant to the function f.

2.3 Barycentric rational interpolation

While Schneider and Werner investigate the rational interpolants in barycentric
form in depth for any choice of the barycentric weights, Berrut| [198§]
is the first author who proposes an accurate analysis of the interpolant for a
particular choice of the values ;. His strategy is very simple. Since the weights
w; in are the only non-zero weights for which the interpolant is
a polynomial, any different choice is guaranteed to give a rational interpolant.
Between all the possible choices of weights 3;, we search for the ones that
guarantee the interpolant to have no poles.

In order to introduce his rational interpolant, let us consider the unique
polynomial interpolant of the function f at the nodes g = a and x; = b. By

recalling the weights (2.12)) we get

—l'(xo) =l (r1)=b—a
and, after rescaling, ’

wi= (-1, i=0,1

These weights clearly correspond to an interpolant with no poles in R, no
matter how the two nodes xg,x; are placed. Inspired by this fact, [Berrut
[1988] suggests to use the weights

and proves the following result.

Lemma 2.2 (Berrut| [1988]). For any = € R,

a() = ()3 Y

i=0 L~ i

£0.
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Therefore the rational function corresponding to this choice of barycentric
weights has no real poles for any distribution of nodes. We refer to this rational
interpolant as Berrut’s first interpolant. Supported by some numerical tests,
Berrut| |[1988] conjectures that this interpolant converges to the function as
O(h) as h — 0, where h is the global mesh-size (2.10).

We can immediately see from Proposition that Berrut’s first interpolant
is not barycentric for even n but Berrut| [1988] also proposes a different choice
of the ;’s that corresponds to a barycentric interpolant, that is

) 1 if 7 =0 | =
pi = (=1)'rs, m:{’ LI OR

2, otherwise.

We refer to this interpolant as Berrut’s second interpolant and |Baltensperger
et al.| [1999] conjecture a faster convergence O(h?) in this case.

Berrut’s first interpolant can be understood in a completely different man-
ner. If we consider the values fy,..., f, as n + 1 constant polynomial inter-
polants, we can see Berrut’s rational function as a blend of these local inter-
polants with rational blending functions

(—1)2“/2”: <_1)j’ i=0,...,n,

L= =0T

see Figures 2.7], left, and 2.9

This consideration leads |Floater and Hormann| [2007] to generalise Berrut’s
approach by using local polynomial interpolants of degree [d, with 0 < d < n.
Namely, let us denote by I the index set

[|=10,1,...,n—d}.
{ }

Then for every i € I, let p; be the unique polynomial interpolant of degree at
most d for the support points (z;, f;), j =14,...,7+d and let

oy
Ail@) (x — ) ... (x — ®igq) (2.23)

see Figure [2.8] Then the Floater-Hormann interpolant is defined as

r(z) = z M (@)pila) z (), (2.24)

see Figure [2.9, right. This construction reproduces Berrut’s first interpolant
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Figure 2.7. Left: local constant polynomial interpolants for Berrut's first in-
terpolant in Figure 2.9, left. Right: the corresponding weighting functions

(=1)"/(z—w:) ;
= ~ ,1=0,....n
j=0 (—1)]/(I_I]) ’ !
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Figure 2.8. Left: the local quadratic polynomial interpolants for the Floater—
Hormann interpolant in Figure 2.9 right. Right: the corresponding weighting
functions \;(z)/ S Ni(z), i =0,...,n — 2.
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D

Xo X1 X2 X3 X4 Xo X1 X2 X3 ;1
Figure 2.9. Left: Berrut's first interpolant (in red) of the function (in blue) at 5
randomly distributed nodes. Right: Floater—Hormann interpolant for d = 2 (in
red) of the same function at the same nodes.

for d = 0 but additionally defines n different interpolants, one for each choice
of d < n. We refer to these rational functions as the Floater—Hormann family
of interpolants. Floater and Hormann! [2007] confirm Berrut’s conjecture about
his first interpolant and prove the following result regarding the convergence

rate of the interpolant ([2.24]).

Theorem 2.7 (Floater and Hormann|[2007]). Suppose d > 0 and f € C42[a, b],
and let A be as in (2.10). Then the Floater—-Hormann interpolant satisfies

le(z)| < Cht,

where the constant C' depends only on d, the derivatives of f, the interval
length b — a, and, only in the case d = 0, on the local mesh ratio

8= max min{xi“ i } (2.25)

L )
1<i<n—2 Ty — Xi—1 Tipo — Tiy1

The local mesh ratio 5 emphasizes the dependence of this construction on
the distribution of the nodes, and will appear also in the following chapters.

Since the Floater-Hormann interpolants are defined as a blend of polyno-
mials, it is reasonable to expect the Runge phenomenon to arise for a large
number of equispaced nodes. In practice this happens only if the degree d
increases together with the number of nodes n, while, if d is fixed, the Runge
phenomenon does not show up. In his PhD thesis, Klein| [2012] gives a detailed
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analysis of the underlying reasons for this fact and the following intuitive expla-
nation. Since the error of the Floater-Hormann interpolant can be expressed
as

f(2) - r(z) = z (@) (f () - pil2) z M (@),

it is strongly influenced by the error of the n —d+ 1 polynomials p; € 2;. Each
of them interpolates the function f in [x;, z;14], and the size of this subinterval
tends to zero as n — 0o. Therefore, the Runge region corresponding to [z;, ;4]
shrinks as n increases, excluding the poles of f that are potentially close to the
interpolation interval [a, b].

Since is a generalisation of Berrut’s first interpolant it is natural to
expect that r has no poles for any d and this is confirmed by the following.

Theorem 2.8 (Floater and Hormann| [2007]). For any d, 0 < d < n, the rational
function in (2.24)) has numerator and denominator of degree at most n and n—d,
respectively, and has no poles in R.

Therefore, by Theorem the Floater-Hormann interpolants can be writ-
ten in barycentric form with barycentric weights (Floater and Hormann| [2007])

i+d 1

wj:(—l)j_dZHma J=0,...,n, (2.26)
icl; 1};;; J k

where I; is the index set defined by

[={iel:j—d<i<j} (2.27)

In order to avoid confusion we remark that, here and in the rest of this dis-
sertation, we denote with w;, the Floater—Hormann weights defined in ([2.26)),
with w; the weights corresponding to the polynomial interpolant in barycentric
form and with ; a general set of barycentric weights.

Floater and Hormann| [2007] notice that the weights (2.26]) simplify to

wj:(—1)jdz< d > (2.28)

1€l J—t

if the nodes are equispaced. Explicitly writing the first values of |w,| for dif-
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ferent d’s we get

1L,1,...,1,1, d=0,
1,2,2,...,2,2,1, d=1,
1,3,4,4,...,4,4,3,1, d=2, (2.29)
1,4,7,8,8,...,8,8,7,4,1, d=3,
1,5,11,15,16,16,...,16,16,15,11,5,1, d = 4.

This shows a pattern, that appears clearly by having a more careful look
at (2.27). The sum in (2.28)) contains at most d + 1 terms of the type

o) () (53 )

and therefore |w;| < 29, a property that will come in handy in Chapter . This
observation is made more precise by Bos et al. [2012] for n > 2d, who note that

?%:0 (Z)? lf] S du

wj = (=173 (k B ) = {9d, ifd<j<n-—d (2.30)
k=d J

Wy—j, if j>n—d.
We point out that, if the nodes are equispaced, the case d = 1 in ([2.29)
corresponds to Berrut’s second interpolant and therefore its convergence rate
conjectured by Baltensperger et al.|[[1999] is also confirmed by Theorem .
Instead of resorting to Proposition [2.1] to prove that the Floater-Hormann
interpolant is barycentric for any d > 2, |Floater and Hormann| [2007] show that
r reproduces polynomials up to degree d. If f; = q(x;) for some polynomial
q € #;, indeed, by the uniqueness of the local polynomial interpolant we get
that p;(z) = q(z), i =0,...,n — d and therefore

S N@pi(e) () S M) .
r(z) = S s )

In particular, r reproduces linear functions and we can conclude that it is
barycentric with barycentric basis functions

b; = ’ I 2.31
(@)= 2 3 231

The functions b;, 1 = 0,...,n, clearly depend on d and we refer to them as the
Floater—Hormann basis functions.
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—d=1
—d=0

Figure 2.10. The inclusion chain of the linear spaces %,,, (vertical ellipses) and
@, (horizontal ellipses) for n =4 and d =0, ..., 4.

Now, let us fix n and denote by
R, = spaniby, ..., b,} (2.32)

the linear space spanned by these basis functions. For any d, with 0 < d < n,
T € Rpn—d, Where % ,,, denotes the space of rational functions with numer-
ator and denominator of degree at most [ and m, respectively. Therefore
R, C Rnn—d, Where the inclusion is strict, as %, is a linear space, while
Rn n—q is not. Moreover, by the reproduction property of the Floater-Hormann
interpolant, we have #; C #,,,, and then

gd g %wd C c%n,n—da

with
dim &Z; < dim #,,, < dim RZ,, 4.

Hence, Z,, is an (n + 1)-dimensional linear space that contains a space of
increasing dimension, &;, and, at the same time, is contained in a space whose
dimension is decreasing, %, ,—4. We may imagine %, as a linear space of
fixed dimension, embedded in £, ,, that ‘squeezes’ on &#,_; as d = n — 1, see
Figure . For d = n both &, and %, have the same dimension as %,,, and
therefore #,,, = 2,. For that reason, the corresponding Floater-Hormann
interpolant coincides with the unique polynomial interpolant of degree at most
n.

The next section is devoted to the analysis of the derivatives of the error e
produced by the Floater-Hormann interpolant. We start by presenting some
result by Berrut et al. [2011] regarding ¢’ and e”, valid for any system of nodes.
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Then we proceed with the analysis by Klein and Berrut| [2012] of e, k > 3,
at quasi-equispaced nodes. In the last part of this section we generalise these
previous results to any £ = 0, ..., d for a more general system of nodes, in what
is the main contribution of this chapter.

2.4 Convergence rates of derivatives for well-spaced
nodes

Since Floater-Hormann interpolants are infinitely smooth, the interest of the
community has recently moved towards the investigation of the convergence
rate of their derivatives to the corresponding derivatives of f.

Since r is a blend of local polynomial interpolants of degree at most d, it
is reasonable to expect that e*) converges to 0 at a rate of O(h%+!=*)  for any
kE<d.

This initial conjecture is supported by the following theorem, regarding the
behavior of the first derivative of e(z).

Theorem 2.9 (Berrut et al.| [2011]). If d > 1 and f € C%3[a, b], then
l€'(x)] < Ch, x € [a,}]

with A as in (2.10)) and where the constant C' depends only on d, the derivatives
of f, the interval length b — a and, only if x is not a node and d = 1, on the
quantity

(2.33)

(L = Mmax{ max Tit1 = % max Tit1 = %
p— L 7’ L - .
1Sisn—1T; — X1 0S9Sn—=2 2,9 — T4

If z = z;, Berrut et al.|[2011] prove a similar bound also for d = 0, under
less stringent conditions on the continuity of the function f.
They also provide a similar bound for e”.

Theorem 2.10 (Berrut et al|[2011]). If d > 2 and f € C4"*[a, b], then
@) <CH, we fad)
with h as in (2.10) and where the constant C' depends only on d, the derivatives

of f, the interval length b — a and, only if x is not a node, on the quantity u
in ([2.33).
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In the same work, a similar bound is proved also for the case d = 1, if z
is a node and, also in this case, the condition on the continuity of f is less
requiring.

The previous theorems make our observation on the expected rate of |e(*)|
more precise about the continuity of the function f. In particular it seems
that, in order to have a convergence rate of O(h¢"!1=*) in [a, b], it is necessary
for the function f to be C¥*+2[q, b].

As for the generalisation of the previous results to k > 3, a straightforward
recursive approach turned out to be too complicated to be carried out. More
recently [Klein and Berrut| [2012] establish this convergence rate for k£ > 3, but
at the cost of restricting themselves in two ways. On the one hand they study
the behavior of the k-th derivative of the error only at the nodes and not at
the intermediate points € (x;,2;4+1), J = 0,...,n — 1, while, on the other,
they considered the nodes to be quasi-equispaced.

Definition 2.5. A system of interpolation nodes X = (X,), oy is said to be
quasi-equispaced, if

- <c (2.34)

with ¢ > 1,
hmin = min (95@ - xifl)

i=1,...,n

and h as in (2.10)), holds for every set X,,.

Under these assumptions on the distribution of the nodes, it is possible to
prove the following result.

Theorem 2.11 (Klein and Berrut [2012]). Let X be a system of quasi-equispaced
nodes, k < d, and f € C*'**[q b]. Then

e®(;)] < CRHE, - j=0,....m,

with A as in (2.10) and where C' is a constant depending only on ¢, d, k, and
derivatives of f.

Definition [2.5] characterises a set of nodes that does not let any subinterval
decrease too fast with respect to h, as n — oo. This is a strong requirement
which, de facto, excludes many important systems of nodes such as the Cheby-

shev nodes of first (1.1]) and second kind ([1.2). The latter, for example, can be
seen as the projection of n + 1 uniformly sampled points on the upper half of

the unit circle , ,
it
¢; = | cos —,sin —

n n
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] ™S
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= L xl L v

-1.0 -0.5 0 0.5 1.0

Figure 2.11. Chebyshev points of the second kind in [—1,1].

on the z-axis, see Figure [2.11l Therefore, for even n,

Pin = 1 — cos(ﬁ>, h = (:os(7T — W) = sin(w>,
n 2 n n

and hence,

lim —— = lim _om(E) lim L cos(3)

= +00.
=00 By M0 ] cos(%) n—oo sm(%)

For odd values of n and Chebyshev nodes of the first kind, the result can be
proved along similar lines. The goal of this chapter is to generalise these results
about r*) in two directions.

We first show that the convergence rate of ¢ (z) is O(h®+1=*) for any k > 1
under the assumption of using well-spaced interpolation nodes. If we denote
with

hi = hit14, hij = |zi — ;]

such interpolation nodes are defined by the following.

Definition 2.6 (Bos et al.[[2013]). A system of interpolation nodes X = (Xy,),,
is well-spaced, if there exist constants R, Ry > 1, independent of n, such that
the two conditions

1 hi

— < <R =1,....n—1 2.35
Rl_hz‘_l_ 1, 1 ) y I 9 ( )
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and
h; R . .
< 2 j=0,...,4, i=0,...,n—1,
hiv1j i+ 1—] (2.36)
h; Ry . ) '
< —; j=it+1,...,n, i=0,...,n—1,
hje = J—1

hold for every set X,.

While condition (2.35) bounds the mesh ratio locally, (2.36) is a global
condition that limits the factor by which the length h; of an interval can be
larger than the average lengths

hicg + hicgpr + -+ Ry and hi+ hiv1+ -+ higy
k+1 E+1

of neighboring intervals to the left and to the right for all valid k.

Bos et al|[2013] prove that the previous definition includes not only eq-
uispaced and quasi-equispaced nodes, but also extended Chebyshev noded] to
obtain interpolation at the endpoints. (Brutman| [1997]). Using similar argu-
ments as in their proof, it is possible to show that the same is valid also for
Chebyshev nodes of the first kind.

For a general characterisation of well-spaced nodes, Bos et al. [2013] prove
that they are strictly correlated with reqular distribution functions.

Definition 2.7. A function G € C[0, 1] is a regular distribution function if it is
a strictly increasing bijection on the interval [0, 1] and G’ has at most a finite
number of zeros, all of which have a finite multiplicity.

Then, if we define the nodes as an equispaced sample of a regular distribu-
tion function, that is

z; = G(i/n), i=0,...,n, (2.37)
the following holds.
Theorem 2.12 (Bos et al.|[2013]). Let G be a regular distribution function and

X,, be the set defined by ([2.37) for any n € N. Then, the system X = (X,,)nen
is well-spaced.

2Extended Chebyshev nodes are obtained from the Chebyshev nodes of the first kind by
mapping them to the interval [a, b], in order
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This last result shows that well-spaced nodes include also Chebyshev nodes
of the second kind, since ([1.2]) shows that they are generated by the regular
distribution function

G(z) = — cos(mx).

Despite being very general, Definition does not include all possible sys-
tems and some customary example of points do not satisfy relations
and . An example of a set satisfying only are nodes in geometric
progression, ‘

uw—1
=T
for any g > 1. This set is characterised by nodes that tend to cluster at the
beginning of the interval while they tend to form subintervals of uniform size

x; i=0,...,n, (2.38)

n—1 _ 1 1
lim r_—-_ -,
n—00 ,LLn —1 7

near its end, see Figure [2.12] left. Similarly the set

Ty = O,

2 Ti—q + ]_, 1 Odd, (239)
rT; — —

an | xi—1 +mn, 1 even,

with
{n2 +1, if n is odd,
a, =

n(n+1), if nis even,
satisfies only ([2.36]). Indeed, if i is odd,
h;
hioi

and therefore this set tends to produce couples of nodes, separated by larger
subintervals, see Figure right.

The other direction in which we generalise the results by Berrut et al. [2011]
and Klein and Berrut| [2012] is the localization of the behavior of the error, by
showing that it depends on the local mesh size rather than on the global mesh
size. More precisely, we establish the following upper bounds on the error and
its derivatives.

Theorem 2.13. For any set of well-spaced nodes, any k£ with 0 < k£ < d, and
f c Od+k+2[a,b],
e® (@) < ChHE T x e [a,b],
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n=9ees e o o . . n=9 e o o o o
n=8ewee o o o . . n=8 ee o o o .
n="7 n=7
n=6ee e o o . . n=6ee oo oo .
n=5e 0 o e . . n=5e oo oo
n=4 n=4
n=3e . . . n=3e . . .
"= 02 o4 06 08 ! "= 02 o4 06 08 1
Figure 2.12. Two sets of non well-spaced nodes for n = 2,...,9. Left: the set
defined by for = 3/2. Right: the set defined by .
and more specifically,

le®) ()] < C’h}“l_k, T € [T, Tj41], j=0,...,n—1 (2.40)

Note that in Theorem [2.13] and throughout the rest of the chapter we de-
note by C' a generic constant depending only on k, d, the derivatives of f,
the interval length b — a, and the constants R; and R, from Definition [2.6]
To establish the bounds in Theorem [2.13] we first analyse the error at the
nodes z; (Subsection and then at intermediate points = € (z;,241)
(Subsection . We conclude this chapter with several numerical examples
which confirm the bound in (2.40) and highlight the dependence on the local
mesh size h; (Subsection [2.4.3).

2.4.1 Error at the nodes

In what follows, it helps to remember that [Floater and Hormann| [2007] write
the error (2.3) of their interpolant as

e(z) = 28 (2.41)
where »
Ax) = 2 (=)' fl2i, Tig1s - - - Tiva, 2]
and
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Let us now study the convergence rate of the derivatives of e at the interpolation
nodes.

Lemma 2.3. For any set of well-spaced interpolation nodes, any k£ with 1 <
k <d,and f € C4k+2[q b,

e®)(z;)| < CRITTF, j=0,...,n—1

and
e® (@) < ChEIF, j=1,...,n.

Proof. Throughout this proof we consider only the first statement, since the
second can be established analogously by taking into account that h; < Ryh;_q,
according to (2.35)). We also point out that the proof is largely inspired by the
proof of Theorem 2.1 by Klein and Berrut| [2012], except that we utilize
and to derive local error bounds in %; instead of the global error bounds
in h that were considered by those authors. Moreover, we resort to Hoppe’s
formula in as a generalization of the chain rule to higher derivatives
instead of Faa di Bruno’s formula, which was used by Klein and Berrut| [2012]
for the same purpose, because the latter does not lead to our local error bounds.
We start by fixing the index j and expressing the error in as

where

o(r) =2 —xj, é(x) = , D(z) = ¢(z)B(x).

By the Leibniz rule, we have
M (x) = p(x)e® (2) + k' (x)e* " (x)
and
e® (x;) = ke* D (x;).
Again, we use the Leibniz rule to obtain

k—1

é(kfl)(:l:j) _ Z (k ; 1) A(kfl—l)(xj)(Dfl)(l) ().

=0

Since Lemma 2 by [Berrut et al.|[2011] guarantees that the absolute values of A
and its derivatives are bounded by some constant over [a, b] for f € C1+*[q b],
it remains to show that

D HO(z)| < Cht, 1=0,...,d—1.
J J
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Using Hoppe’s formula (see the works by [Hoppe [1845] and [Johnson| [2002])
we obtain

07)0) =X s 3 (D)o@, a2

so that z 0
L (p) ("))
CRRTEN (k<o

and the final step now is to prove by induction over m that

‘(Dm)(l)(xj)’ d—1
- L (Ch 1=0,....d—1 2.43
D7y = e 243)

for any m > 0.
We obtain this result by first deriving a lower bound for |D(z;)| and an
upper bound for |[D®(x;)|, and to this end it helps to write D(z) as

D(x) = E(x) + ¢(x) F(x)

with
; i+d 1
Ex)=> (-1)" ] ——
i€l; k=i k2 L — Tk
Li+d 1
F(z)= Y (-1)']]
iel\I; po T Tk

and [; as in (2.27). Berrut et al. [2011] show that

i+d

D(z;)| = |E@)| = [ hjp i€l (2.44)
k=i,k#j

and continue to bound the right hand side from below by Ch~?. Instead, we

use (2.35)) to conclude

min(n—1,j+d—1) min(n—1,j4+d—1) )
hin< Y hm< Y RVTh; < 24RMh, (2.45)
m=max(0,j—d) m=max(0,j—d)

for all h;j in (2.44)), which leads to the lower bound

|D(x;)| > Chy“. (2.46)
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For the upper bounds on the derivatives of D at x;, we assume [ > 1 for
the moment, follow Klein and Berrut [2012], and use the relation

DY (a;) = BO(a;) + 1F" ()

and the Leibniz rule to get
i+d 1

EN@) =3 (- Y 1 (& —ap)iron’

i€l | ;=1 k=ik#j

where the second sum ranges over all d-dimensional multi-indices
o = (e, ... s Q1 Q- , @i+q) Whose non-negative integer components

add up to [. By and ,
i+d
(RSP S g

i€l oy, i|l=l k=ik#j

i+d 1+ag
i€l; \a”\ I k=ik#j hjlj — k|

and the same upper bound can be derived analogously for |F(=1(x;)|, so that
overall

DO (z)| < CR; ™ 1=1,...,d—1. (2.48)

Let us now return to ([2.43|) and observe that the base case m = 0 and the
special case [ = 0 follow directly from (2.46)). For the induction step assume
that (2.43)) holds for an arbitrary value of m > 0 and apply again the Leibniz
rule to get

(D™ HO(z) S, (é) (D™)=R) (2) DW) ()
Dm+2(x) D™ (2)D(x) )
Using the induction hypothesis as well as the bounds in (2.46) and (2.48)), we
then have -

(D™ 1)0()] _ Theo (IO @)D (a,)
D) S D)D)
OOy < <z> (D™)09) (2] |DP ()|
= D) T2 \p) Dy D)
d—1 L dfl+p02h )
< C1hf +pz_:1<p>01hj o

< Chi™!

p=1
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fori=1,...,d—1. O]

Lemma generalises Theorem by Klein and Berrut| [2012] in two
ways. On the one hand, it covers well-spaced interpolation nodes, which in-
cludes equidistant and quasi-equidistant nodes as special cases. On the other
hand, it provides an error bound in terms of the local mesh size h; instead
of the global mesh size h. The special cases £k = 1 and k = 2 also appear as
Theorems and by Berrut et al. [2011], which are more general than
Lemma in the sense that they do not require the nodes to be well-spaced,
but, as in the work of Klein and Berrut| [2012], the error bound is given in
terms of the global mesh size only.

2.4.2 Error at intermediate points

We now consider the convergence rate of the derivatives of e at the intermediate
points between the interpolation nodes.

Lemma 2.4. For any set of well-spaced interpolation nodes, any k& with 0 <
k <d,and f € CF2[q, b),

e® (@) < ChIE w e (wy,a551),  j=0,....n— 1.

Proof. The proof of this lemma is largely inspired by Theorem 5 by Berrut
et al.| [2011] and roughly follows the same reasoning as the proof of Lemma .
Hence, we expect the reader to already be familiar with the main arguments
and keep the exposition brief.

We start by fixing the index j and writing the error in as

e(z) = P(z)e(x),

where

P(x) = (v —zj)(x — xj41), é(x) = D(z) = (x)B(x).

By the Leibniz rule, we have

M (@) = Y(@)e® () + k! (2)e* D (@) + ———
and since it follows from the definition of i) that

()| < b3, ¥ (z)| < 2hy;, [ ()] <2, (2.49)
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it remains to show that [é®(z)] < ChY™'"*. As in the proof of Lemma m, we
use the Leibniz rule to obtain

and since the absolute values of A and its derivatives are bounded by some
constant over [a,b] for f € CT2* it is sufficient to prove

(D™HD (@) < CrEL, 1=0,...,d

Using again Hoppe’s formula and the same reasoning as in the previous proof,
the final step now is to prove by induction over m that

(D™ ()] ™) ($)| d-1-1
< Chj [=0,....d 2.50
D) . 250
for any m > 0, and the crucial ingredients are a lower bound for |D(z)| and an
upper bound for |D®(x)].
For the lower bound, we recall from Berrut et al.| [2011] that
i+d 1 . .
D@z I — i€eL\{j—d}
= ‘x - mk’

k5,5 +1

but instead of further bounding this from below by Ch~@=Y  we use (2.45)) to

obtain
i+d

_ —(d—
|>H@Hkﬂ}ﬁzc%(u (2.51)
k=j+2

For the upper bounds on the derivatives of D, we assume [ > 1 for the
moment, split D) (x) into five parts as in Berrut et al.| [2011],

D(l)(ilf) = E&)(aj) + Eél)(g;) + Eél)(x) + Ei)( ) + E(l)( ),

where
B(o) =) T Ae) Bale) = w(a)ale),
B =u@) > Mo B = (el
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and derive separate upper bounds for each of the terms Ei(l) (x).
For BV (z), we let

j—d—1 j—d—1 itd
= > M@= > (U)']—
i=0 i=0 k=i T~ Tk

and use the Leibniz rule to get

B0 (2) = (@) FO ) + 10/ ) F{ 0 ) + D) ),
Using the Leibniz rule again we further find that
SNEILTD o)) Fee
i=0 b= (@ = @) 1O

where the second sum ranges over all (d 4+ 1)-dimensional multi-indices B; =
(Bi, - .., Bira) whose non-negative integer components sum up to [. Since x €
(xj,z;4+1), the terms of the first sum alternate in sign and increase in absolute

value, so that |F{” (z)| is bounded from above by the absolute value of the last
term. With the same reasoning as in (2.47)) we then have

1

7j—1
FO@l<n Y 1
1Bj—a—1|=l k=j—d—1
7j—1
<t Y T
1Bj—a—1|=l k=j—d—1 hj,k
< CpHD,
and together with (2.49)) we conclude
|E£l) (:13)| < C’hj_(d_lﬂ), I=1,....d (2‘52)

For Eél)(x), we let

Fy(x) = (z — zj)Aj_g(z) = (-1’1 11

so that
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and
1

J a;__xk 1+ﬂk

Fw -y s ]

|,Hj dl lk=j—
with B3,_4 defined as before. Therefore,

(d+1)
|F2 )| <UD H 1+ﬁk— Ch;
|ﬂj dl L k= .] —d jk

and
|EP (@) < O =1, d. (2.53)
For ES”(x), we notice that
J : i+d 1
Es(z)= > (=1 ]I ,
i=j—d+1 k=i LT Tk
k#3,3+1
hence :
U)( ) zi: ‘*ﬁl j{: iﬁf 1
EP (z) = : SR —
’ i=j—d+1 e C Y ks
k#j,j+1
and
; J i+d d1tl
EP(2)] < i <Op;H =1 d (2,54
3 1+Bk J
i=j—d+1 |B;|=l J=]+1 7k

Combining (2.52), (2.53), (2.54), and noting that the error bounds for
E{(z) and EV(z) can be derived similarly as the bounds for E{(z) and
Eil) (x), respectively, we finally conclude

IDO(@)| < Ch;7 0 1=1,...d (2.55)

We now observe that the base case m = 0 of (2.50) and the special case [ =0
follow directly from ([2.51]) and the induction step follows from (2.51]) and ([2.55| -
with the same arguments as in the proof of Lemma

While the special cases £ = 0,1,2 were already covered by [Floater and
Hormann| [2007] and Berrut et al.| [2011], Lemma [2.4] generalises the result to
general 0 < k£ < d and provides a local instead of a global error bound. How-
ever, this comes at the cost of having to assume that the interpolation nodes
are well-spaced. Theorem [2.7| by |[Floater and Hormann| [2007] and Theorem
by [Berrut et al|[2011] hold for any nodes and, only in the cases k = 0 = d,
k=1=d,k=2<d, and k = 2 = d, require that the mesh ratio is bounded,
which is basically the first condition ([2.35]) of well-spaced nodes.
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10*F
10%

10°

1072 107!

Figure 2.13. Log-log plot of ||e®)|| over h for f; in (2.56)), using equidistant nodes
and d = 3. The straight reference lines represent the expected O(h*"'~*) behavior.

IH //|| /ll||

n Ilell order lle order lle order lle order
10 | 4.03e—02 4.22e+4-00 1.57e4-02 2.88e+4-03

20 | 1.81e—03 4.48 | 3.59e—01 3.56 | 2.80e+01 2.49 | 1.0le+03 1.51
40 | 2.85e—06 9.31 | 1.11e—03 8.34 | 1.77e—01 7.30 | 1.34e4+01 6.23
80 | 3.43e—08 6.38 | 2.66e—05 5.38 | 8.60e—03 4.37 | 1.33e4+00 3.33
160 | 2.03e—09 4.08 | 3.14e—06 3.08 | 2.04e—03 2.08 | 6.40e—01 1.06
320 | 1.23e—10 4.04 | 3.81e—07 3.04 | 4.97e—04 2.04 | 3.14e—01 1.03

640 | 7.58e—12 4.02 | 4.69e—08 3.02 | 1.23e—04 2.02 | 1.55e—01 1.01

Table 2.1. Norm and approximation order of the error and its derivatives for f;
in (2.56)), using equidistant nodes and d = 3. Compare Figure m

2.4.3 Numerical examples

To confirm our theoretical results, we prepared four numerical examples, using
Proposition by Schneider and Werner| [1986] for evaluating the derivatives
of the rational interpolant r both at the nodes and at intermediate points. In
the first two examples we investigated the behavior of the norm ||e®)|| of the
error and its derivatives in dependence of the global mesh size h. For both
examples we used MATLAB with double precision (about 16 digits precision)
and approximated ||e®|| by evaluating |e*)(x)| at 100 equidistant points in
each interval [z;, x;41], j = 0,...,n — 1. Instead, the last two examples were
prepared with MAPLFE using a precision of 30 digits and illustrate the pointwise
values |e®)(z)| for various = and k with respect to the local mesh size.

In our first example we study the Floater-Hormann interpolant with d = 3
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Figure 2.14. Log-log plot of ||| over h for f, in (2.57)), using Chebyshev nodes
and d = 2. The straight reference lines represent the expected O(h®*'~*) behavior.

n lle]l s order le'lcc  order | |l€”||cc  order | €|l  order
10 | 2.13e—04 4.90e—03 2.85e—01 1.10e+01

20 | 2.71e=05 3.03 | 1.27e—03 1.98 | 6.87e—02 2.09 | 9.58e+00 0.20
40 | 3.44e—06 2.99 | 3.22e—04 1.99 | 3.31e—02 1.06 | 9.24e4-00 0.05
80 | 4.30e—07 3.00 | 8.10e—05 1.99 | 1.65e—02 1.00 | 9.15e+00 0.01
160 | 5.39e—08 3.00 | 2.03e—05 2.00 | 8.27e—03 1.00 | 9.13e4-00 0.00
320 | 6.74e—09 3.00 | 5.07e—06 2.00 | 4.14e—03 1.00 | 9.17e+00 —0.01
640 | 8.42e—10 3.00 | 1.27e—06 2.00 | 2.07e—03 1.00 | 9.25e+00 —0.01

Table 2.2. Norm and approximation order of the error and its derivatives for f,
in (2.57)), using Chebyshev nodes and d = 2. Compare with
Figure [2.14]

for Runge’s function in the interval [0, 1],

1
142522 —1)%

fi(z) z € [0,1], (2.56)

sampled at n+ 1 equidistant nodes. Table 2.1 reports the maximum norm and
estimated approximation order of the error and its derivatives for several values
of n. Figure [2.13] shows the maximum norm of the error and its derivatives in
dependence of h for all even n from n = 10 to n = 500. We did not include the
values for odd n in the plot, because they follow the same trend, but are always
a bit smaller, so that including them would have resulted in slightly confusing
zigzag curves. The data clearly support the first bound in Theorem [2.13

In our second example we consider the Floater—Hormann interpolant with
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Figure 2.15. Plot of the regular distribution function G in (2.59)).

d = 2 for the function
fo(z) = sin(rz), z€0,1], (2.57)

sampled at the Chebyshev nodes of the second kindE| Table[2.2|and Figure
are similar to those of the first example. Again, the data supports our theo-
retical results, and the case £ = 3 shows that the expected bound also holds
for k = d+ 1. But since we only get boundedness and not convergence in this
case, we did not include it in the statement of Theorem [2.13

In our third example we sample the function

fa(z) = exp(z?), = €]0,1], (2.58)

at the interpolation nodes generated as in (2.37) with the regular distribution

function )
Glz)=q—922+3z—1, we [ ), (2.59)

2P —3x+1, z¢€ [%,1},

%x, T E [0,

Y

W=
winy Wik

see Figure [2.15, The obtained family of interpolation nodes is well-spaced
by Theorem by Bos et al. [2013]. For this function, the local mesh size
h; around x = 1/4 and = = 3/4 behaves differently, namely like O(h) and
O(h?), respectively. Therefore, the expected convergence rates of e*)(1/4)

3Note that this example is for illustration purposes only. We do not advocate the use of
Floater—Hormann interpolation for these nodes, for which polynomial interpolation is better
in every respect, see |Trefethen, [2013, Chpts. 7-8].
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Figure 2.16. From top left to bottom right: log-log plot of (" = le®)(1/4)|
(in blue) and e = |e®)(3/4)| (in red) over h for fs in (2.58), for the well-
spaced nodes generated by the regular distribution function G in , d=3
and k = 0,1,2,3. The straight reference lines (in black) represent the expected
O(h¥1=F) and O(h*@*+1=k)) behaviors.

and e (3/4), according to Theorem are O(h?+1=F) and O(h2(@+1-k),
respectively. This is confirmed by the plots in Figure for the case d = 3.

In our last example we go back to Chebyshev nodes, consider the Floater—
Hormann interpolant with d = 1 for the function

fi(z) = 267(9%2)2/4 + %67(9x+1)2/49 + 567(9%7)2/4 + %67(9%4)2’ z € [0,1],
(2.60)
and study the convergence rate of €'(z) at the start and the center of the
interpolation interval. According to Theorem 4 in Klein and Berrut| [2012],
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Figure 2.17. Left: log-log plot of €] = |€/(0)| (in blue) and e, = |€’(1/2)] (in
red) over h for f in (2.60)), for Chebyshev nodes of the second kind, d = 1 and
even n. The straight reference lines (in black) represent the O(h) and the O(h?)
behavior. Right: the same quantity for odd n. The straight reference line (in
black) represents the O(h?) behavior.

the expected convergence rates of €/(0) and ¢'(1/2) with respect to the global
mesh size are both O(h), but while the left plot in Figure confirms this
rate for €/(1/2), it also illustrates that ¢'(0) converges at the rate of O(h?).
Theorem [2.13|explains this result, because the local mesh size at x+ = 0 behaves
like O(h?), while the local mesh size at x = 1/2 behaves like O(h). However,
the right plot in Figure shows that €/(1/2) converges at the rate of O(h?),
too, if restricted to odd n, so that z = 1/2 is not an interpolation node, and it
remains future work to better understand the underlying reason.
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Chapter 3

A Hermite generalisation

Given a real valued function f € C™[a,b], a set of n + 1 interpolation nodes
as in (2.1) and m € N, the Hermite interpolation problem consists in finding a
function [g,,]: R — R, such that
k .

g,(,’f)(mi):fi( ):f(k)(xi), i=0,....,n, k=0,...,m. (3.1)
We remark that, in its original form, m might not be the same at each node but,
in order to keep the notation simple, in this chapter we consider the problem as
stated in (3.1)). However, the methods discussed here can be easily generalised
to solve the original Hermite problem.

As for Lagrange interpolation, we are interested in the analysis of

(x) = f(:L‘) - gm(ilj‘)

as the number of nodes increases. So we consider a family of interpolation
nodes and we analyse the behavior of e,,(x) as n — 0o. Also in this case
the Hermite interpolant of order m depends on n and f, that is ¢, = gmn =
Gm.n|f], but we shall omit the dependence on n and f, whenever no confusion
is likely.

In the previous chapter we have seen that, when it comes to solving the
Lagrange interpolation problem, the Floater—Hormann interpolant represents
a valuable alternative to several other interpolation methods such as splines,
classical rational interpolants and polynomials. On the one hand it is assured
to be infinitely smooth while, on the other, it does not suffer from divergence
problems, occurrence of poles and unattainable points. It is therefore natural
to investigate whether it is possible to generalise this family of interpolants to
the Hermite setting, so as to inherit these favorable properties.

51
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The main result of this chapter is the introduction of a general, iterative
approach that allows us to generalise any Lagrange interpolant of the form

n
g(x) = > bi(x)f”
i=0
to the Hermite setting, under assumptions on the continuity of the basis func-
tions b;.

In the following sections, we first present the classical polynomial approach,
highlighting its advantages and critical issues. Then, we generalise the barycen-
tric form (2.21)) and some related result to the Hermite setting and we present
some state-of-the-art methods for solving the Hermite problem with barycen-
tric rational interpolants. In Section we present the iterative method for
the Hermite problem and we apply it to the Floater-Hormann basis func-
tions . An analysis of the convergence and several numerical examples
conclude this chapter.

3.1 Polynomial Hermite interpolation

Let m € N be fixed. Given a set of n+1 nodes as in (2.1)), Szabados [1993] proves
that there exists a unique set of (m + 1)(n + 1) polynomials in 4 1)(n+1)-1

&‘(I)T’H—l m—j lz(,@],(xl)

givj (.I’) = ) Z | (33' - ‘xi)k_‘—j (32)
J! - K
with )
lim(T) = ——=5, 1=20,...,n, 3.3
n(8) = s 33)
that satisfies the Hermite property
0 () = 0,005k, G k=0,...,n, j,p=0,...,m. (3.4)

The polynomials ¢; ; are the generalisation of the Lagrange basis functions, and,
in analogy to ¢;, 2 = 0, ...,n, we refer to them as the Hermite basis functions of
order m, see Figure [3.1] This name is justified by the fact that ¢;; are a basis
for Zmi1)(m+1)-1, a fact that we shall show in a moment. Given a function

f e C™a,bl, let
<x> =SS @) 35
j=0i=0
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Figure 3.1. Left: the Hermite basis functions ¢;(x) at 7 equispaced nodes for
m = 1. Right: the corresponding basis functions ¢; ().

By the Hermite property and the uniqueness of the Hermite basis functions,
Pm is the unique polynomial solution of minimal degree for the Hermite inter-
polation problem , see Figure

For any choice of n, the polynomial p,, satisfies the following, see
Bulirsch| [1993].

Theorem 3.1. Let f € C™*DV(+1[q p]. Then the polynomial interpolant (3.5)
satisfies

(m+1)(n+1)
em(x) _ €<x>m+1 f (é) :
(m+1)(n+1))!
where ¢ is inside the convex hull of x, xg, x4, ..., 2, and depends on f, and ¢ is

the nodal polynomial in (2.8)).

Letting Ay, () = ()| f0D@HD || the previous result gives a condi-
tion for the convergence of the polynomial Hermite interpolants to the function
f, that is

[Am.nll

M D+ 1)) (3.6)

In this case the sequence of polynomial interpolants converges to f as
O(RmHIHD) "with h as in (2.10).

It follows from Theorem [B.1] that the Hermite functions are a basis for the
vector space Pmi1)(n+1)—1, Since it shows that, if f € Pni1)nt1)-1, it can
be written as a linear combination of the ¢; ;’s, with coefficients given by the
samples of f and its derivatives at the nodes.
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Figure 3.2. The Hermite polynomial p; (in red) for m = 1 of the function f (in
blue) at 5 equispaced points. Compare Figure .

The evaluation of the interpolant p,, in (3.5)) is computationally expensive.
Besides the obvious cost of summing up the (n + 1)(m + 1) terms in (3.5)),
the computation of £;(x)™"! and lz(]f?)l(xl) in adds extra operations. Even
assuming that these last constants are precomputed, each evaluation of the
interpolant still requires O(m?n(m + n)) operations.

In order to decrease this number, also in this case it is possible to resort
to more convenient forms. Such expressions are the generalisation of the first
and second barycentric form and . To get the former, we recall
and and the first barycentric form of the Lagrange basis functions
to write

= - fz x ,m
pm(x) _ Z Z ( ?l Z R ' ( xz)k+]fz(])
j=0i=0 J- = K
E( )m+1 Zn: i wZnJrl mz_:j lf,’jzz(xl) ( )kJrJf(J)
= Qj poy i i
=0 7=0 j'(l‘ - 'IZ) i k=0 k!

m k m— ]
+1 l( )(331) k fi(])

m = Wz’ 2,m
= €($) ! Z Z X )erlfk k! Z

=00 (T —x; §=0 J!

e w "
SR R D) DD SR R
£ £ — k!

where »
[m] _ L(x’) m+1
(m—j!"
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and w; as in (2.12)). We will refer to this form as the first Hermite barycentric
form, in analogy to the Lagrange counterpart.

As pointed out by [Floater and Schulz [2009], considering again (2.11)
and (3.3)), the barycentric weights wZLZ-lJ can be simplified to

(m—3)
| = Lo () (3.7)
i TR

A straightforward approach might still require a considerable number of opera-
tions for the computation of the barycentric weights but [Schneider and Werner
[1991] propose an algorithm to compute them in O(m?n?) operations. Once
this is done, the evaluation of the polynomial itself requires additional O(m?n)
operations. Clearly, also for the first Hermite barycentric form it is possible to
precompute the barycentric weights wl[f?] in higher precision and to store them
for specific sets of nodes. We remark that, in most practical scenarios, m < n
and, in the analysis of the convergence of p,,, it can be considered constant.
Hence, the quadratic behavior on m should not be a source of worries.
Similar to what we have observed in the Lagrange case, the first barycentric
form can be further improved. Theorem leads us to the partition of unity

property of the Hermite basis functions

n m [m]
m wi,'
i=0 j=0 (z — ;)

Thus, dividing the first barycentric form by 1 and simplifying the common
factor €(x)m+1, we get the second Hermite barycentric form,

n m [m] J (k)
Wi j Ji k
z% z% (IL’ . Jj)j+1 kz% k! (;C xz)
1=0 y= A =
pm(2) = — o i (3.9)

This form of the polynomial interpolant can also be evaluated in O(m?n) op-
erations, but, as the Lagrange counterpart, it is less susceptible to rounding
errors in the computation of the weights, as we show in the next section, where
we review additional properties of this Hermite barycentric form for general
weights.

Relation shows that the convergence of the sequence of polynomial
interpolants is strongly influenced by the system of interpolation nodes and by
the continuity of the derivatives of f. For this reason, most of the literature
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about Hermite interpolation studies the convergence of p,, for fixed m and some
special sets of nodes. For example, Grinwald [1942] provides several theorems
on the convergence of the sequence of polynomials to the function f in the case
m = 1. In this case the Hermite basis functions in simplify to

io(z) = Uz(@g?(?"’)

g )
lia(z) = (x — 2:) (), (3.10)

with
ui(z) =1 —2(x — ;) 0(x;), i=0,...,n.

Griinwald focuses on the so-called normal and p-normal nodes.

Definition 3.1. A system of interpolation nodes X = (X,,),en is said to be
normal if there exists a p € R such that

wi(z) > p >0, i=0,...,n, z€]la,b
holds for any set X,,. If p > 0, X is said to be p-normal.

He points out that examples of normal families are the roots of certain
Jacobi polynomials P,ﬁi’f) in [—1,1]. For 0 < o, < 1/2, the corresponding
family is normal with p = min{1 — 2,1 — 25}. In Figure we show such
sets of nodes for (o, 8) = (1/10,1/10) (left) and («a, 5) = (1/2,1/2) (right)
and we notice that, similarly to Chebyshev nodes of the first and second kind,
the roots of the Jacobi polynomials tend to cluster near the endpoints of the
interpolation interval.

If the function f has a continuous derivative, uniform convergence is guar-
anteed as long as we sample f at p-normal nodes.

Theorem 3.2 (Griinwald| [1942]). Let f € C'[a,b] and X be a p-normal system
of interpolation nodes. Then the sequence of polynomial Hermite interpolants
converges uniformly to f in [a,b], that is

lim ||e,,(x)|| = 0. (3.11)

n—oo

If the function is only continuous, the derivatives of f must be uniformly
bounded or X must be p-normal.

Theorem 3.3 (Griinwald| [1942]). Let f € C°a, b] and suppose that f’ exists at
each point of [a,b]. Then (3.11)) holds if one of the following conditions does

o X is a (p-)normal family and || f/|| < A, A € R,
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Figure 3.3. Two normal family of interpolation points, corresponding to the roots
of Jacobi polynomials for n = 2,...,9. Left: the family corresponding to («, 5) =
(1/10,1/10). Right: the one corresponding to (o, 5) = (1/2,1/2).

« X is a p-normal family and || f'|| < n?~¢, for some € > 0.
More recently, Shi gives a more general result about arbitrary sets of nodes.

Theorem 3.4 (Shi [2000]). Let m > 1 be odd and f € C™[a,b]. Then (3.11]
holds if

max Zwl’o(l')' < C,

z€[a,b] e

for some constant C' independent of n.

We emphasize that, even though there is no explicit requirement on the
distribution of the points, the function Y7 ,|¢; o(x)| is strongly influenced by
the location of the interpolation nodes. We give further details on the behavior
of this important quantity in the next chapter, where the conditioning of the
polynomial interpolant is analysed.

In Figure [3.4| we display the polynomial interpolants of the C°[—1, 1] func-
tion ) 9 5

2
flx) = §|3m+ 1] — 6% 1%
sampled at the root of the Jacobi polynomials Pﬁr/f‘ 1 4), for n = 10, 20, 40, 80.
For more results about the convergence of polynomial Hermite interpolants,
see [Szabados| [1993], Shi [2000] and references therein.

It should be by now clear to the reader that the polynomial Hermite interpo-

lation converges remarkably well under assumptions on the distribution of the
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Figure 3.4. From top left to bottom right: the Hermite interpolation polynomials
for n = 10, 20, 40, 80 at the roots of the Jacobi polynomial P,Ei/f’l/@.

nodes. However, the similarity between Theorem and Theorem might
convince us that polynomial Hermite interpolation can behave catastrophically
in the equispaced setting, and this is actually the case, see Figure [3.5] The
result of the Hermite interpolation of the Runge function shows the same
behavior highlighted in the previous chapter, with exponential convergence in
the middle of the interpolation interval and exponential divergence as we ap-
proach the tails of [—1,1]. When comparing with Figure[2.2] we notice that the
width of the oscillation is roughly the same already for lower values of n. The
reason for this is the factor £(z)™" in the expression of the error for Hermite
interpolation in Theorem 3.1} As m increases, this factor becomes predominant
in (3.6) and the Runge phenomenon becomes stronger. Therefore, no matter
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Figure 3.5. The Hermite polynomials interpolating the Runge function in (2.16)
(in black), for n = 3,6,9 and m = 1 at equispaced nodes.

how many derivatives of f we know and how many samples we can get from
them, the sequence of polynomial interpolants is not going to converge to the
function. This problem easily disappears as long as we can modify the distri-
bution of the nodes, see Figure [3.6] but, as noticed in the previous chapter,
this is not always possible.

It is therefore necessary to look for some different means of solving the
Hermite interpolation problem at equispaced points. In the next section we
present the generalisation of the barycentric form to the Hermite setting
and statements equivalent to Propositions [2.2] and [2.4 Moreover, we show
how to retrieve the barycentric weights from the denominator of a rational Her-
mite interpolant, similarly as in Theorem Finally, we review a particular
choice of barycentric weights.

3.2 Barycentric Hermite rational interpolation

A rational Hermite interpolant r,, is said to be in barycentric form if

;:);) (z — xi)j+1 Z lic! (&~ )"
rm(T) = : (3.12)

n m [
>3 b T

=0 j=0 .CE—ZUZ
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Figure 3.6. The Hermite polynomials interpolating the Runge function in ([2.16|)
(in black), at Chebyshev nodes for n = 3,6,9 and m = 1.

for some barycentric weights

[m] 5([]7’7}] [m]

0,0 0,n
oo |8 Al
B Bt oo B

Schneider and Werner|[1991] prove several important properties of the barycen-
tric weights B}?J and how they affect the behavior of r,,. In particular, they
give a sufficient condition for a barycentric Hermite interpolant in reduced form
to be a solution of and a necessary condition for the absence of poles in
the interpolation interval.

Proposition 3.1 (Schneider and Werner| [1991]). Let r,, be as in (3.12). If

5}%_“1 == 5?,",{ =0 and /B}j”f,{_k # 0 for some 0 < k& < m, then

Moreover, if r,, has no pole in [a, b], then
. (ml _ (_qym+l [m] -
signf; (—1) SignBii i 1=0,...,n.

The previous result states two important properties for the Hermite barycen-
tric form. On the one hand, r,, is a solution of the Hermite interpolation
problem as long as 62[7:;1 #0,7=0,...,n, while no restriction is needed for all
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Figure 3.7. An example illustrating Proposition for two different interpolants
of the same function (in blue) at 6 equispaced points: (a) an interpolant (in red)
with two poles in (z1,x2) and (z2,23); (b) an interpolant (in yellow) with an
unattainable point.

other barycentric weights. On the other hand, we can easily identify the first
unattainable support point (z;, f(m k+) ) by finding the integer £ such that
ﬂg:LkH = ... = [ ] = 0 but B@m r 7 0, see Figure , left. From these
properties and the unlqueness of the Hermite basis functions, we deduce that
w™ in are the only non-zero weights for which the function is a

Z?-]
polynomial. Moreover, denoting with

CITEED ) S
a\r

Y
i=0 j=0 (x — )

the polynomial denominator of r,,, it has been proved the following closed form
for the error of r,,.

Proposition 3.2 (Schneider and Werner| [1991]). Let r,, be as in (3.12]) and
z € R be such that ¢(z) # 0. Then

f( m+1 n m

em(x) = (@) ZZBJ )" . (3.13)

=0 57=0

Schneider and Werner| [1991] also provide formulas for the computation of
the derivatives of r,,, both at the nodes and at the intermediate points.

Proposition 3.3 (Schneider and Werner| [1991]). Let 7, be as in (3.12)). Then
the following holds.
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o Ifzx e R\ X, and ¢(x) # 0,

e I 8™ £0for some 0 <p<mbut 8™ =0for1<gq< p, then for

anyvsepNsuchthats—p+m20 e
ria Pt ()
(s—p+m)
1 = ke [m] k+1 s " [m] Tﬁ;]”f—i_S) (.T])
— | 2 2o Bkrl@) T (@) T+ >l Bk Gt )
i m—p \i=0,i%£j k=0 k=0 :

This proposition will be useful in next section, where we provide an upper
bound for the error of our interpolant for m = 2. Finally, the same authors
find a relation between the denominator ¢ and the barycentric weights.

Lemma 3.1 (Schneider and Werner| [1991]). The barycentric weights of the
Hermite interpolant r,, satisfy

Bimr = (@) (),

with

and l; , in (3.3).

Lemma [3.1] will be useful in Section to obtain a closed form for the
barycentric weights of our family of interpolants. Note that if r,, is the Hermite
polynomial interpolant, by the partition of unity property , the barycentric
weights formula simplifies to (3.7).

Since the interpolant is defined by the barycentric weights BZ[T;] and
the support points (z;, fi(k)), Lemma shows that, also in this setting, the
interpolant r,, is completely determined by its denominator. Therefore, [Schnei-
der and Werner| [1991] propose to prescribe ¢ and define the interpolant r,, ac-
cordingly. Their strategy consists in choosing a positive denominator in [a, b]
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Figure 3.8. Left: Schneider-Werner interpolant 71 (in red) of the function f (in
blue) in (3.15)) at 10 equispaced nodes. Right: error produced by r; for the same
function and n = 3,5, 7,9, at equidistant nodes.

such that it minimises the term |[¢(z)™"" /q(x)| in (3.13) and they focus on the
choice

o) =TT o=+ T o 1) (3.1

j=0 j=bn

where

n/2—1 if n is even,
n:{/ v and

_Jn/2+1  if nis even,
(n—1)/2 if nis odd, N

(n+1)/2 if nis odd.

Unfortunately the corresponding interpolant r,, can give huge approximation
errors near the center of [a, b] for odd n, see Figure left. Already for n =9
we observe a huge oscillation of the interpolant r; of the function

1
40022 — 2002 + 26

f(z) x € [0,1], (3.15)
near the center of [0,1]. This effect is due to the fact that has been
chosen in order to uniformly bound the term |¢(z)™"" /q(x)| only near the end
points of the interpolation interval, in order to prevent the appearance of the
Runge phenomenon due to the factor E(:zc)mJrl in (3.13)). The corresponding
error for n = 3,5,7,9 is displayed in Figure |3.8] right.

Zhao et al| [2010] propose a different approach based on the optimisation
of the weights B}?J. Their method minimises the square of the approximation
error subject to certain constraints, including the positivity of ¢q. Anyway this
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requires to solve a nonlinear optimization problem and the resulting weights
are not independent of f.

In order to get barycentric rational Hermite interpolants with no poles in
R and good approximation rates, the Floater—-Hormann interpolant has been
generalised in two ways.

Floater and Schulz| [2009] derive a Hermite version of the Floater—Hormann
interpolant by considering a set of interpolation nodes with multiplicity m + 1,
that is

Yos -+ -5 Ymy Ym+1y - - - Y2m+15 - - Yn(mA41)s -+ -5 Yn(m+1)+m -

=x0 =z =z,

Their idea arises from the fact that the polynomial interpolant in Newton form

n(m+1)4+m ;—1

p(z) = ; [[()(fc—yj)f[yo,--.,yi] (3.16)

coincides with the Hermite interpolant p,, in (Gautschi| [1997]). The
Floater—-Hormann interpolant defined on such a set of nodes results then
to be a blend of local Hermite polynomial interpolants of different orders. If we
denote this interpolant with rF° it can be shown that it satisfies the following
result.

Proposition 3.4 (Floater and Schulz [2009]). If d > m, the rational function £

m

has no poles in R and is a solution of the Hermite interpolation problem (|3.1)).
(m)

If d < m, the support points (z;, f;" '), ¢ = 0,...,n, are unattainable.

The interpolant 7E5 does not suffer from the same problem shown for the
approach proposed by Schneider and Werner| [1991], see Figure . Indeed,
since it is defined as the classical Floater—Hormann interpolant on a particular
set of nodes, the interpolant rfS satisfies Theorem and so converges uni-
formly as O(h4*1), as h — 0. [Floater and Schulz| [2009] also provide a closed
form for the barycentric weights 5}3“ and propose to compute them efficiently
with the algorithm by [Schneider and Werner| [1991].

The second generalisation of Floater—Hormann interpolants is the one pro-
posed by [Jing et al.| [2015] who focus on the special case m = 1 and propose
to define the rational function

4 (z) = 3 N(@)qi(x) [ D Nilw)?,
i=0 i=0
where ¢; denotes the unique Hermite polynomial of degree at most d that
interpolates f]@) and f;l) at z;,7 =1,...,i+(d—1)/2 and \; defined as in (2.23)).
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Figure 3.9. Left: the Hermite interpolant ri° (in red) of the function f (in blue)
in (3.15) at 10 equispaced nodes. Right: error produced by 7t5 for the same
function and n = 3,5,7,9, at equidistant nodes. Compare with Figure .

Since m = 1, the local polynomial interpolant must have odd degree, so the
q;’s are well-defined. For any d, 0 < d < n, such a construction guarantees
that 7{** is a solution for the Hermite problem (3.1)).

The approaches of |Jing et al.| [2015] and [Floater and Schulz [2009] are similar
but the latter is a blend of a larger number of local polynomial interpolants, see
Figure In the example, we show the local polynomials of degree at most
1 that are used to construct r{** and riS. While the former blends only local
Hermite polynomials of maximal order at every point, the approach by
and Schulz [2009] additionally blends the Lagrange polynomials of degree 1
connecting the support points (z;, fj(o)), j=0,...,n.

The lower number of local interpolants clearly must have an effect on the
approximation order of the method. Indeed, if we denote with eJ** the error

produced by 7{¥? it is possible to show the following.

Theorem 3.5 (Jing et al.|[2015]). Suppose d = 2k+1, k > 0, and f € C4*[a, b].
If the system of nodes is quasi-equispaced, then

le?*l < Che,

where C' is a constant depending on d, the constant ¢ in ({2.5)), the interpolation
interval [a, b] and derivatives of f.

Jing et al.|[2015] derive also bounds for the approximation rate of the first
JKZ
1 .

derivative of r
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Figure 3.10. Left: the linear local polynomial interpolants used to construct ¥

Right: the linear polynomials used to construct 75

Theorem 3.6 (Jing et al.[[2015]). Suppose d = 2k+1, k > 2, and f € C%*?[a, b].
In the system of nodes is quasi-equispaced, then

lef|| < Ch=2,

where C' is a constant depending on the constant ¢ in (2.5)), the interpolation
interval [a, b] and derivatives of f.

Jing et al. improve this last result for d = 3, but at the cost of requir-
ing that (2.33)) is bounded. Finally, they also provide a closed form for the
barycentric weights Bl[?] that can be computed in O(d*n) operations.

In the next section we propose an iterative approach which is general enough
to extend the Floater-Hormann interpolant to the Hermite setting, providing
an alternative barycentric rational solution to . The main idea behind our
approach is that it is possible to define a Hermite interpolant starting from the
simpler Lagrange solution, by iteratively correcting its higher order derivatives
at the nodes. After the description of the method and an example, we analyse
the convergence rate of the proposed interpolant and we compare it with the
methods reviewed in this section. We show that our approach produces an
interpolant 7, that has the same convergence rate as the interpolant by |Floater
and Schulz| [2009], but with a smaller maximum approximation error in all our

numerical tests (Section [3.4.3)).
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Figure 3.11. Left: the Hermite interpolant r{*# (in red) of the function f (in blue)
in (3.15) at 10 equispaced nodes. Right: error produced by r{** for the same
function and n = 3,5,7,9, at equidistant nodes. Compare Figures and .

3.3 An iterative approach to barycentric rational
Hermite interpolation

In the last section we have seen that the polynomial Hermite interpolant can ei-
ther be expressed as or in Newton form , but it can also be obtained
iteratively in the following way.

Starting from the Lagrange polynomial

the polynomial p; € %,,,, that additionally interpolates the first derivatives
fél), .., fY at @, ..., z,, can be obtained by adding the correction term

ai(x) =" Lia(@) (£ = pi(2).

with ¢;; as in (3.10]). Indeed, since ¢;; satisfies the Hermite property (3.4)), it
is clear that

n

pi(@) = pol) + ar(w) = 3 ()10 + i) (10 = (),

1=0

satisfies the conditions in (3.1]) for m = 1, and by the uniqueness of the poly-
nomial Hermite interpolant, p; coincides with the interpolant (3.5). A similar
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approach can be used to construct the polynomial r,, € Z(41)(n+1)—1 that fits
the data up to the m-th derivatives by iteratively adding appropriate correction
terms.

Our key observation is that this construction works for any sufficiently
smooth initial set of basis functions that satisfy the Lagrange property, and
the main purpose of this section is to discuss the combination of this approach
with the rational basis functions of the Floater—-Hormann interpolation scheme.
The resulting Hermite interpolant has no poles in R and has numerator and
denominator of degree at most (m+1)(n+1)—1and (m+1)(n—d), where d is
the degree of the local polynomial interpolants in . After the discussion
of the iterative approach, and some clarifying example, we proceed with the
derivation of the barycentric form of the new interpolant.

3.3.1 Iterative Hermite interpolation

Let m € N and by, ...,b, be some basis functions that satisfy the Lagrange
property (2.6) and are m times differentiable at z; for [ = 0,...,n. We then
define the functions

) ,
bij(x) = Mbi(x)”l, i=0,...,n, j=0,...,m. (3.17)
4!
Lemma 3.2. The functions b, ; in (3.17) satisfy the Hermite property (3.4).

Proof. For j = 0, the statement follows directly from the Lagrange property of
the functions b;. For j > 0, we prove it by induction over j. To this end, let

ci(x) = (x — )b (x),

so that we can write b; ; as

By the Leibniz rule,

1F (kN o
@) = Ly ( )< P @) (x),

Ci=\p

and since ¢;(x;) = 0 and pP)

ii1(21) = 0 for p < j—1 by the induction hypothesis,
we get

) R AN
bi.; () = - G (xl)bi,j—l(xl>-
J p=j—1 \P
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The statement then follows by noticing that the sum is empty if £ < j, and
that if £ = j, then

Lig
b;’?(ﬂfl) - j(] _ 1) ( )blj 1 (.73[) = 5i,l7

again by the induction hypothesis and the fact that ¢(z;) = 1. O

Starting from the Lagrange interpolant

- (0)
= bio(@)f,
i=0
we can now use the functions b; ; to construct

gj(x) :gjfl(x)—i_%(x)? ] = 17"'7m7 (318)

by iteratively adding the correction terms

Zﬁg V(£ =), G=1,.m,

to get the Hermite interpolant g,,.

Theorem 3.7. The function g,, in (3.18) satisfies the Hermite interpolation
conditions (3.1)).

Proof. By Lemma we have

n , 0, if k <7,
= 3l ﬂﬂ—g@x%>::{
] ~ ( J ) l(k) _ g]_1($l), if k=7,
hence i
gy = (Ol k<
l
: i itk =,
and the statement then follows by induction over j. O]

By construction, it is clear that the Hermite interpolant g,, depends linearly
on the given data. In the special case of polynomial interpolation, where the
b; are the Lagrange basis functions , we notice that b;; € & 11)(nt1)—1 for
i=20,...,nand j = 0,...,m, hence g, € P41)(nt1)-1. Therefore, by the
uniqueness of the polynomial Hermite interpolant, the iteratively defined and
the classical Hermite interpolant must be the same.
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Figure 3.12. The Hermite basis functions for m = 1 and the interpolation nodes
x; =1, 1=0,...,4. Left: the polynomials b; = b,y = ¢; . Right: the polynomials
bin =Lz

Example 3.1. For n = 4, let us consider the interpolation nodes
zo =0, =1, Ty = 2, T3 =3, x4 =4,
the function values
o) =5 fV=3  f=-5  f=-1  f¥=0
and the derivative data
0 =17, W=7 fP=—2 D — 0, 1) — 33,

Taking the Lagrange basis functions, see Figure [3.12 left, as b; in (3.17]) gives
the polynomial Lagrange interpolant

po(7) = 2% — 9% + 5z + 5,

see Figure [3.13] Its first order derivatives

do not match the given derivative data, except at 1 = 1. This can be fixed by
adding the correction term

a1 (I) = 12b071(I) + 5b271(I) — 5b371(1‘) + 4b471($),
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]

0 05 1 15 2 25 3 35 4

Figure 3.13. Lagrange interpolant p, for the data in Example and the basis
functions in Figure 3.12]

see Figure [3.14], left, because the basis functions
bin(x) = (x — z)bi(z)* = (v — z:)li(x)’,

see Figure [3.12] right, of this correction term modify only the first derivatives
at the interpolation nodes, but not the function values, to yield the polynomial
Hermite interpolant

pi(z) = po(z) + ¢: ()
= %xg — g—}lxs + 2g—7x7 — 12425 + 7144387%54—

— 3334 T3 3022 4 170 + 5,

see Figure |3.14] right.

3.3.2 Iterative rational Hermite interpolation

In order to combine the iterative construction in Subsection [B.3.1] with the
Floater—Hormann interpolation scheme, we recall that it can be rewritten in
barycentric form as

ro(z) = ﬁng}“, (3.19)

with the basis functions b; in (2.31]) that satisfy the Lagrange property and the
barycentric weights in (2.26)).
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Figure 3.14. Left: correction term ¢, for the data in Example and the basis
functions in Figure 3.12, Right: the corresponding Hermite interpolant p;.

Following the construction in (3.18]), we now define the iterative rational
Hermite interpolant as

Z Z T — ;) ’b )jﬂgi,j, (3.20)

=0 j=0

where

9i0 = fz‘(O)’ 9ij = (fi(j) (j (2 ))/J' (3.21)

forj=1,...,m

It follows from Theorem that r,, satisfies , and since Floater—
Hormann interpolants and in particular the basis functions in do not
have any poles in R, it is clear by construction that the same holds for r,,. Let
us now investigate the degree of r,,.

Proposition 3.5. The numerator and denominator of the iterative rational Her-
mite interpolant r,, in (3.20) have degree at most (m + 1)(n + 1) — 1 and
(m 4+ 1)(n — d), respectively.

Proof. We first recall from Theorem [2.§] that the degrees of the numerator
and the denominator of the Floater—Hormann interpolant r are at most n and
n — d, respectively. Therefore, the basis functions b; in (2.31) can be written
in rational form as
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Figure 3.15. The rational Floater—Hormann basis functions for m =1, d = 1 and
the interpolation nodes z; =4, i = 0,...,4. Left: the rational functions b; = b, .
Right: the rational functions b; ;.

with certain numerators P; € &, and a common denominator ) € &,_4, so
that

i) = 33— (B

i=0 j=0
Loy (@ — 2 P(2) T Q(2)™  gi
Q(.T)m+1 .

Independently of i, the degrees of the terms in the numerator of r, in (3.22))
are

(3.22)

j+G+Dn+m—Hn—d) <(m+1Dn+1)—1, j=0,...,m,

and the degree of the denominator of r,, is at most (m + 1)(n — d). O

Example 3.2. For the interpolation nodes, functions values, and derivative data
from Example , the Floater—-Hormann basis functions b; in (2.31)) for d = 1,
see Figure|3.15| left, give rise to the rational Lagrange interpolant

_ 3xt — 172 + 312* — 38z + 30

ro(w) 22 — 4z +6

Y

see Figure [3.16], whose first order derivatives
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]
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Figure 3.16. Lagrange interpolant 7y for the data in Example and the basis
functions in Figure [3.15]

do not match the given derivative data. This can be fixed by adding the
correction term

1 (.T) = 20[)071 (.T) — 4()1’1 -+ 9b2,1<l’> — 9[)371 (.T) -+ 12()471(37),

see Figure [3.17] left, resulting in the rational Hermite interpolant

r (x) _ 429 —8128+69927 —332126494452° —164462*+1712023 —95202:2 +14882+720
)= 4(22—42+6)> ’

see Figure|3.17] right.

3.3.3 The barycentric form

Neither of the formulas in and are suitable for an efficient con-
struction and evaluation of the rational Hermite interpolant r,,, because the
data values g; ; in (3.21)) are defined recursively in terms of the derivatives of
the interpolants r;, 7 = 0,...,m — 1 and depend on the data fi(k). A better
choice is to write r,, in barycentric form . We can use Lemma to find

a closed form expression for our barycentric weights wz"; )

Theorem 3.8. The iterative rational Hermite interpolant r,, in (3.20)) can be

written in barycentric form (3.12)) with barycentric weights

m+1

wz[zl} = (_1)j+1 Z H 191}71& 1=0,...,n, J=0,...,m, (323)

[y|=m—j k=1
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Figure 3.17. Left: correction term ¢, for the data in Example and the basis
functions in Figure 3.15] Right: the corresponding Hermite interpolant ;.

where the sum ranges over all (m+1)-dimensional multi-indices vy = (y1, .- ., Ym+1)
whose non-negative integer components sum up to m — j and

Vio = —w;, Vi; = Z Lj, j=1...,m, (3.24)
k=0kzi (Ti — T)
with w; in ([2.26]).

Proof. We first notice that [; ,,, in (3.3)) can be written as

l x —x;\"T!
m ( {(x) > ’

and therefore, ng Vin Lemma reads

Ql(z) = ni(x)’™,  j>0, (3.25)

where
n

k=0k#i T — Tk

Wy

By the general Leibniz rule for higher order derivatives of a product of several
functions,

[m]\ (4) 7 = J e (W) (o
(@) (@) Z<71,...,%+1>H"2 (x),

Iv|=J k=1
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w%] wz[zl] wz[j;z] wz[g]
m=0 w;
m=1 21,02'191'71 w?
m =2 —31012191'72 + Swiﬁil 3wi219i71 wf
m=3 4w§19i73 — 1221)319@2’(9@1 + 4wﬂ9?71 —4w;°’19i72 + 6’LUZ2’L9,L271 4@U?’l9i71 @Uf

Table 3.1. Barycentric weights of the iterative rational Hermite interpolant r,,, for
m < 3.

where the sum ranges over all (m+1)-dimensional multi-indices vy = (71, ..., Ym+1)
whose non-negative integer components sum up to j. Since

0 (@) = (=1 510, 5, (3.26)

with ¢; ; as defined in (3.24]), by Lemma we have

m+1
m m—j+1
Wiy = D" T Vi
ly|=j k=1
and the statement follows after substituting m — j with j. m

Table lists the weights in (3.23]) for m < 3.

Remark 3.1. In the special case of equidistant interpolation nodes, the weights
w; of the Floater—-Hormann interpolant are known to be very simple, see Equa-
tions (2.28)) and (2.29)), and the same is true for the weights wz[rﬂ = w!™. For
J < m, however, the weights wg?] do not seem to have a simple form, and,
unlike the weights of the interpolants by Floater and Schulz [2009] and [Jing
et al.| [2015], they depend on n.

Remark 3.2. Although we did not notice any numerical problems in our exper-
iments, it remains future work to study the stability of computing the weights
wz[?} as in (3.23)). Indeed, if two nodes x; and x;41 are very close and m is
large, then the evaluation of ¥, ; in (3.24)) may suffer from cancellation. How-
ever, by Proposition , the barycentric form (3.12]) comes with the advantage
of maintaining the interpolation property even if rounding errors occur during
the computation of the weights, as long as wl[”:,l # 0. And since the weights
are determined in a preprocessing step, it is also possible to carry out these

computations in high precision arithmetic, despite the additional cost.
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3.4 Approximation error

Let us now analyse the approximation power of the iterative rational Hermite
interpolant defined in Section . We show that the interpolant r,, in (3.20)
converges to the function f as O(R V@) In the following two sections we
prove this approximation rate separately for the cases m = 1,2 and for m > 3.
The two proofs use completely different techniques as, for the cases m = 1,2,
it is sufficient to exploit the closed-form expression of the barycentric weights
1[7?} in Theorem , while for the general case we need a new form of the
interpolant 7,,.

w

3.4.1 The cases m =1 and m =2
We start with the case m = 1. Denoting the denominator of (2.31)) by

W(r)=3 —2— (3.27)

jzox—xj

it follows from ([3.20) that
ow; w;
) = 1) = 10~ gy = S

1 "w; T w, o) — (@) — Wi
_V[/(x)anﬁ—xZ (]Ox_xj(f( ) — f(x5)) zgz,)
- Mf/ig? (3.28)

with

Recalling from Proposition [2.4] that

n

—wirg(x;) = Y w;fla, zj],

J=0,j#i
hence .
W;igi1 = wz‘f[l'z', xz] - wir(/)(%') = Z wjf[$i7 Ij]a (3~29)
=0

we observe that A(z) simplifies to

Ax) = iwii)wjf[x,xi,xj]. (3.30)
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But before we proceed to bound the error, we need an auxiliary result.

Lemma 3.3. The barycentric weights in (2.26) satisfy

szfxxz :Z x$17'-'7xi+d]

for any x € R.

Proof. Following Hormann and Schaefer| [2016], we let
Vd::[, Z:O,,n—d

7

and , )
J VJ
j—1 Vi i . :
VT = + : i=0,...,n—j+1,
Titj—1 — Tj-1 Litj — Ty

for j=d,d—1,...,1, tacitly assuming that V;-j =0fore<0andi>n—jto
keep the notation simple. Then,

n—d
(1)l il

- n_d(—l)inf[x’ Tits - Tivd — [T, 20, Tia]
i=0 ‘ Tivd — Ti
it A Vv
— Z (_1)1—1;1f[$’$17,1‘1+d_1]
i=1 Titd—1 — Ti-1
n—d d
W
_ Z(_l)lm'f{x’ Liyowo 7x7j+d71]
=0 i+d — Lj
n—d+1 ' :
— (_1)1—1‘/;d—1f[1',$i, ey Tigd— 1 Z z dVO I xi]’
=0 s

and the statement follows by recalling from Section 3 by Hormann and Schaefer
[2016] that V0 = (—1)"+dw; O

Note that Lemma is also true if x is replaced by two or more variables.
Now we are ready to get an error bound in the maximum norm.

Theorem 3.9. Suppose d > 0 and f € C%(@+2)[q, b], and let h be as in ([2.10)).
Then the error of the iterative interpolant r; satisfies

||61H S ChZ(d+1),

where the constant C' depends only on d, the derivatives of f, the interval
length b — a, and, only in the case d = 0, on the local mesh ratio g in (2.25|)
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Proof. Since rq interpolates f at the interpolation nodes, it suffices to consider
x € [a,b]\{zo,...,z,}. Our main idea is to derive an upper and a lower bound
on the numerator and the denominator of the quotient in , respectively,
and we proceed as in the proof of Theorem 2 by |Floater and Hormann, 2007).

For the numerator, we first apply Lemma twice to and thus get

QL

n
(_I)Jf[fL',l'i, vy Lijgdy Ly - ,I'j_l,_d].

i

Aw) =3 (1)

<
Il
o

Let us now assume that n —d is odd, so that the number of terms in both sums
is even. Combining the first and second terms of the second sum, the third
and forth, and so on, we then have

n—d ) n—d
A(x) = - Z (—1)z Z ($j+d+1 - xj)f[l’,fm, vy Ligds Ly v - 73?j+d+1],
=0 7=0, 7 even
and after applying the same strategy with respect to the first sum, we arrive
at
n—d
Az) = Z (Titdr1 — T3)
1=0, 7 even
o (3.31)
Z (Ij+d+1 - xj)f[xa Liy oo oy Litd+1, Tgs - - - ;Ij+d+1]-
7=0, 7 even
Since
n—d—1
> (@irar — ;) < (d+1)(b - a), (3.32)
i=0

as shown in the proof of Theorem 2 by |[Floater and Hormann| [2007], it follows
that

|A(z)| < (d+1)*(b— a)2m (3.33)
- (2d+4)! ‘
If n — d is even, then a similar reasoning reveals that
LFE LFEHD L fE
|A(z)| < (d+1)*(b—a)? +2(d+1)(b—a) . (3.34)

(2d + 4)! (2d+3)! " (2d +2)!

For the denominator, we remember from Section 4 by [Floater and Hormann
[2007] that

W) = Xi(x), (3.35)
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with \; as defined in (2.23)), and from the proofs of Theorem 2 and Theorem 3
by [Floater and Hormann| [2007] that

1
(W (z)| = P (3.36)
ifd>1 and
1
w > 3.37
Wl > (3.37)
if d = 0. The statement then follows by combining these bounds. O

Equations (3.33)) and (3.34) allow us to deduce the degree of polynomial
reproduction of 7.

Corollary 3.1. The iterative rational Hermite interpolant r; reproduces poly-
nomials of degree 2d + 1 and even of degree 2d + 3, if n — d is odd.

Let us now turn to the case m = 2. By (3.20) and (3.28)), we have

F(@) = ra(a) = f(2) = 1) = ——5 > ——gin =

with

i—0 r — T;
To simplify B(x), we first note that

n

2)%[}5[% wl =2 w; Y
=

=0 k=0k#j Li — Lk

Wk

f[xiwrj]

n

:Zw' i xlﬁmj Zw Z wk: $zaxk]
J J

=0 k=0k#£j :1: Tk 20 k=0k#j i Tk

_iwj zn: 'wkf[xiamjvxk]-

We then recall from Proposition [3.3] that

1
_iwz[ll]r/{(x) Z mf -Tm$] + Z mf $Z7$J7x]]
0 j=0,57#1

=Y wy > wpflri g, a]+ Y wiflo,xg, ),

j=0  k=0,k#j Jj=0,j#i
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hence

1
w?gm = wff[ivi, T, T — iwz[,l%ri,(fﬂz‘)

n

iy weflrsxg, ] + Y0 wi s g, a) (3.39)

n

> w

J=0  k=0k#j =0
n

> w

7=0

n

j Z wy, flxi, Ty, Tk).
k=0

Using (3.30), we then get
B(z) => w;
=0

n n
w; Y wiflx, @,z .
=0 k=0

The approximation order and degree of polynomial reproduction of 7, can then
be proven along the same lines as for r; above.

Theorem 3.10. Suppose d > 0 and f € C3(@+2)[q, b], and let h be as in ([2.10)).

Then the error of the iterative interpolant ry satisfies
leal| < CRHY,

where the constant C' depends only on d, the derivatives of f, the interval
length b — a, and, only in the case d = 0, on the local mesh ratio (2.25)).

Corollary 3.2. The iterative rational Hermite interpolant ry reproduces poly-
nomials of degree 3d + 2 and even of degree 3d + 5, if n — d is odd.

For m > 2, the closed-form of the barycentric weights becomes more difficult
to handle and the approach we have just seen for the cases m = 1,2 becomes

too complex. The challenging task consists in proving that ((3.29)) and ([3.40)
generalise to

n

W Gim = Z wj, - Z wj, flzi, ©js o ] (3.40)

Jj1=0 Fm=0
If we could prove the previous relation, the following generalisation of (3.28])
would follow immediately.

Conjecture 3.1. Suppose d > 0 and f € C"TD(+2)[q p]. Then

Ap(x)

enl) = 1) = (o) = 1
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where
n

Ap(z) =D wig -+ > wi, flz @i, -, 34, (3.41)

i9=0 im=0

and W as in (3.27)).

Instead of proving (3.40)), in the following section, we use a different strat-
egy and prove Conjecture directly. From this we shall easily deduce the
following results.

Conjecture 3.2. Suppose d > 0 and f € C"*V@*2)[g p] and let h be as
in (2.10). Then,
HemH < Ch(erl)(dJrl),

where the constant C' depends only on d, the derivatives of f, the interval
length b — a, and, only in the case d = 0, on the local mesh ratio (2.25]).

Conjecture 3.3. The iterative rational Hermite interpolant r,, reproduces poly-
nomials of degree (m +1)(d+ 1) — 1 and even of degree (m + 1)(d + 2) — 1, if
n — d is odd.

3.4.2 The general case

The main task of this subsection is to prove Conjectures [3.2] and [3.3] and, to
this end, we define the function

An(z)
W([L‘)m+1
that clearly satisfies Conjecture [3.1 and prove that ¢,, and r,, coincide. From
this the main results will follow easily.

In order to do that we need to prove that g, satisfies (3.1]) but first we need
an auxiliary result regarding the functions QEJ Vin (13.25)).

Gm (2) = f(z) — (3.42)

Lemma 3.4. For any k£ > 0,

(0w,

with 9, ; as in (3.24)).

<

(k + 3)!
jl

Proof. First, let us fix the index i. Then, following the same arguments as in
the proof of Theorem , the k-th derivative of QEJ } can be written as

AP k e .
@) w-x (" e,

lvI=k =1
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where the sum ranges over all multi-indices v = (7,...,7j4+1) whose non-
negative integer components sum up to k. We now recall and observe
that there are exactly (Hj
therefore we conclude that
j+1
k! Z H ﬁim

(@) ()| =
|v|=k =1

k+j ;
< k:'( +‘7> max 0,7+
J 1=0,...,k

=U,...,

) possible 4’s whose components sum up to k, and

O
By considering ([3.41)) and Newton’s error formula (Gautschi| [1997]) for the
polynomial interpolant of the values fi(oo), ot (©) at the nodes Tigy -+ s Tipys
f@) = flwg, ... x4, H — ;) = fl, @i, . w,) [[ (@ — 23,),
k=0 =0 k=0
we rewrite ¢, as
Am(x)
m(r) = f(x) —
= m (Z : Zwim<m()_f[x7‘ri07"'7xi0]>>
W(a: = im_o j ol® — i)
" flxigs - -5 T,
= m Wi * W;,y, (343)
) W ()" z;) ’ z,,;o Z j= k(:E - xlg)

We now prove that ¢, is a Hermite interpolant of order m.
Proposition 3.6. Let f € C*™*1[q,b]. Then g, satisfies

e (z;) = 0, i=0,...,n,
forany £k =0,...,m

Proof. In order to prove this result, we follow the same arguments as in the
proof of Lemma 2.3] Let us start by fixing the index ¢ and by rewriting e, as

em () = dm()én (),
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Then, for any £k =0, ..., m, the Leibniz rule gives

k

W) =3 (’;) S0 () (z,) (3.44)

and we only need to prove that [6%)(x;)| is bounded for any j = 0,...,m. We
apply again the Leibniz rule to obtain

. J ] .

() =3 () 445 w0,
1=0

and we proceed by considering separately the terms AY~) and BY). By the

derivative formula for divided differences (Atkinson|[1989]; Isaacson and Keller

[1966]) we get

‘A%*U(xl Z Wi * Z wlm J i y Ligy e 7'rim]

7,0 =0 lm =0

< O fomrmyy,

(j=0D!

where C' is a constant depending on m, n, the indices 7 and [, and the barycen-
tric weights w;.
As for the term BY(z;), we notice that
1

)= gy

with ng](x) as in (3.25)), and then, resorting to Hoppe’s formula, we get

Z() sl (@)

W(
)
m+1)—1
01,0 ¢ (ng( " ]) (w:)
—Z Q[m] (z:) z:: Qg(q—&—l)(m-i-l)—l](mi) : (3.45)

where we use the relation

. X =
Z QD= 0y if > 0.

By recalling (3.25)), and noting that n;(z;) = w;, we conclude that

Q" (z;) = w™+, (3.46)
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and hence all denominators in (3.45)) are non-zero. Therefore, we deduce by
Lemma that )B,(fl)(:cl)‘ is bounded, and so is |6Y)(z;)|, 7 = 0,...,m. The
statement then follows directly from (3.44]) by noting that

o®(z;) =0, k=0,...,m.
O

Before proving Conjecture we need to rewrite the interpolant r,, in
rational form. To this end we recall (2.31)), (3.35)) and (3.20) to write

where
Q(z) = l(z)W (z)

is a polynomial of degree at most n — d.

Theorem 3.11. Suppose d > 0 and f € CFD@+2)[q b]. Then the iterative
interpolant r,, satisfies

(3.48)

with A,, in (3.41)) and W in (3.27).

Proof. 1t is sufficient to prove that ¢, in (3.42) coincides with r,,. Using
the same idea outlined above we multiply numerator and denominator of ¢,

in (3.43) by ¢(z)™"", obtaining

1 n n m
Qm(:p) = W Z Wi = = Z Wiy, lg]f[ziov e 7$ik]pk,m($)a

i0=0 =0
where "
(x)™

Pem(2) = =)

j=k (:E - xij)



86 3.4 Approximation error

is a polynomial of degree at most
(m+1n+1)—(m—-k+1) < (m+1)(n+1)—1.

Thus r,, and ¢, share the same denominator and, by Proposition [3.5], have
two numerators of the same degree. Therefore the coefficients that define both
numerators are completely determined by the (m+1)(n+1) conditions required
to solve the Hermite interpolation problem and therefore must coincide. O

With the error e,, written as in (3.48)), we now prove Conjecture

Theorem 3.12. Suppose d > 0 and f € C"*DE+2)[q b and let h be as
in (2.10). Then,
HemH < Ch(erl)(dJrl),

where the constant C' depends only on d, the derivatives of f, the interval
length b — a, and, only in the case d = 0, on the local mesh ratio (2.25)).

Proof. We point out that this theorem can be proved following similar argu-
ments as those used in the proof of Theorem [3.9 We assume the reader to be
familiar with those arguments and keep the exposition short.

Since r,, interpolates f at the nodes, it is sufficient to bound this quantity
for any = € [a,b] \ {z0o,...,2,}. By Theorem we proceed by deriving
an upper bound for the numerator and a lower bound for the denominator
of (3.48), again as in the proof of Theorem 2 in [Floater and Hormann| [2007].

As for the former, we apply Lemma (m 4+ 1) times to A,, to obtain

n—d n—d
Am<$) = Z (—1)10 cee Z (—1)lmf[$, Ligy e ooy Ligtdy » v o s Ly v v - 7$im+d].
10=0 im=0

Applying to the m + 1 sums of A,, the same strategy as that used in the proof
of Theorem 3.9/ and recalling (3.32)), we conclude that

Hf((m—i—l)(d—i—Q)) H

| A (2)] < (d+ )™ (b — a)™! CEDED)k (3.49)
if n — d is odd, and
R M) kg g LT
| A (2)] < kz:% ( k; )(d—l— )b —a) (m+ D(d+2) = k) (3.50)

if n — d is even. The statement then follows from recalling (3.36)) and (3.37))
O

and combining these bounds.
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Equations (3.49)) and (3.50)) also allow us to deduce the following result.

Corollary 3.3. The rational Hermite interpolant r,, reproduces polynomials of
degree (m+1)(d+1) — 1 and even of degree (m+1)(d+2) — 1, if n —d is odd.

We are now able to show Equation (3.40)).

Corollary 3.4. If m > 0 and f € C?™"[a, b], then

n
w;™ gzm+1 Z Wig * - Z wimf[%"xz‘ow-.,xim]a
10=0 im=0

for every 1 =0,...,n.

Proof. Let the index ¢ be fixed. By Theorem [3.11] we notice that

Gim1 = (mlw S ()
_ M(Amom)(m“)(xi), i=0... . .n
where
Cnle) = on(@)Ba(s),  Bu(®) = o rmr, dnle) = (=2

Then, by applying the Leibniz rule and the derivative formula for divided
differences we obtain

m+1 m+l 1
wim+1gi,m+1 = (wl_i_l)‘ Z (m;— )A%Hk)(%)c(k)(iﬁi)
m :

m+41

k
= w;""! Z k! Z Wig * - Z Wi, f m+2 S Tigs - Ti JOR (22),
’L() 0 Zm—O
and therefore it remains to prove that
0 if £ <m,
(m+ D)/w™ if k=m+ 1.

O (i) = {
To this end, let us apply again the Leibniz rule to C), to get

=5 (M) 9 () B0
> () s ie 51
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rational Hermite numerator denominator approximation
interpolant degree degree order

rm in (3.47) (m+1(n+1)—1 (m+1)(n—d) (m+1)(d+1)
Floater and Schulz [2009] (m+1)(n+1)—1 (m+1)(n—d) (m+1)(d+1)
Jing et al|[2015] (m=1) 2n+1 2(n —d) 2d+1

Table 3.2. Properties of the rational Hermite interpolants that we compare in our
numerical experiments.

By recalling (3.25) and noting that

1
" ()

(2

Bm<x1> = )
a similar argument as the one used in the proof of Proposition can be used

to conclude that ’Bﬁr{) (x;)| is bounded for every j = 0,...,m + 1. Moreover,
since,

oW () =0, 0<j<m, (3.52)

we deduce that C(¥)(z;) = 0 for any k =0,...,m
For k =m+ 1, (3.51)) reads

Cr(nm+1)(l,i) _ ¢(m+1) xl xz Z (m + ) (xi)Bfnm+1fJ)(xi)

¢(m+1)(

- 3 ("o m )

R R =i

and the statement follows from ([3.46)), (3.52)) and the boundedness of ‘Bﬁr{)(x
forj=1,...,m+ 1. ]

3.4.3 Numerical experiments

We have tested our rational Hermite interpolant r,, and compared it with
the rational Hermite interpolants proposed by [Floater and Schulz [2009], 7FS
and by Jing et al. [2015], rJX%. Table lists the degrees of numerator and
denominator, as well as the approximation orders of these three interpolants.
We recall that the interpolant of Jing, Kang and Zhu is defined only for
the case m = 1 and so we can compare with their interpolant only in this
case. Moreover we use 2d + 1 and (m + 1)(d + 1) — 1 as degrees of the local
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Experiment m d f Figure Table
1 10 1/(1+4252c—1)2) 318 [3.4

2 2 1 (1+tanh(—9z +1))/2 319 3.5

3 4 1 @122 3200 3.

4 1 1 101e®/((100z — 101)(100z + 1)) +1 321  [3.7

5 2 4 PBr—1+Bz—1)/2-Bz—12* [B22 B3
6 1 3 e%/cos(z) 3.23)

7 2 2 sin(107z)x 3.24 —

Table 3.3. Parameters m and d, functions f, and interpolation nodes x; used in
our numerical experiments.

ES
El
—_— El

1072 107!

Figure 3.18. Log-log plot of the error with respect to h for Experiment 1. The
straight reference lines (in black) represent the expected behaviors.

polynomial interpolants in the construction of Jing, Kang and Zhu and Floater
and Schulz, respectively, so that both their interpolants have the same degree
as ours. In our numerical experiments, we chose various values for the order
m and the degree d of the local polynomials used in the construction of the
rational interpolants, and we tested several test functions f, with equidistant,
Chebyshev, and other nodes, but the interpolation interval was always [a, b] =
[0, 1].

Table summarises the settings. Note that, except for Experiment 1,
we decided to mainly focus on equidistant nodes, since polynomial Hermite
interpolation behaves badly in this case. In Experiment 1 we utilize Chebyshev
nodes of the second kind in the interval [0,1]. We observed similar results for
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n  F order FE*S order E{X? order

10 4.07e—02 4.19e—02 5.49e—02

20 1.89¢e—03 451 7.92¢—04 5.83 7.43e—03 294
40 2.92e—05 6.05 5.40e—04 0.56 4.00e—03 0.90
80 5.72¢e—06 2.35 1.38e—04 1.97 2.20e—03 0.87
160 1.44e—06 1.99 3.47e—-05 1.99 1.14e—03 0.95
320 3.6le—07 2.00 8.67e—06 2.00 5.80e—04 0.98
640 9.03e—08 2.00 2.17e—06 2.00 2.92e—04 0.99

Table 3.4. Errors and approximation orders for Experiment 1.

1078

10710

10” 12

1074

10716

1072 107!

Figure 3.19. Log-log plot of the error with respect to h for Experiment 2. The
straight reference line (in black) represents the expected O(h*@+1)) behavior.

other nodes.
For each experiment we report the maximum error

En = ||€m||

and the approximation order, where F,, is computed by evaluating the point-
wise error at 100 equidistant points in each of the n subintervals [x;, x;11],
i=0,...,n—1. Also for F,, we use the superscripts ‘FS’, ‘JKZ’, and ‘FH’ to
refer to the Hermite interpolants proposed by |Floater and Schulz [2009] and
by |Jing et al.| [2015], and to the barycentric Lagrange rational interpolant by
Floater and Hormann| [2007], respectively.

The first three experiments support Theorems [3.9) .10, and [3.12] and
more generally confirm the approximation orders listed in Table 3.2] In order
to verify the approximation orders even for small h, all computations were
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n  Fy order EI order

10 2.09e—05 6.79e—05

20  8.11e—08 8.01  2.86e—07 7.89
40 1.23e—09 6.04 5.68e—09 5.65
80 1.90e—11 6.01 9.87e—11 5.85
160 2.98e—13 6.00 1.59e¢—12 5.95
320 4.66e—15 6.00 2.52¢e—14 5.98
640 7.28¢e—17 6.00 3.96e—16 5.99

Table 3.5. Error and approximation order for Experiment 2.

10—14
10716
10718
10720
10722
10724

10726
10728

1072 107!

Figure 3.20. Log-log plot of the error with respect to h for Experiment 3. The
straight reference line (in black) represents the expected O(h*@+1)) behavior.

performed in C++ using the multiple-precision MPFR (Fousse et al. [2007]).
Note that the plots in Figures show the error only for the even values
of n, from 10 to 640, because the errors for the odd values follow the same trend
but with a lower constant and would thus have resulted in more confusing
graphs. The thin straight reference lines represent and support the expected
convergence rates, that is, O(RMm*DE+)) for F,, and ET and O(h?**!) for
EjXz,

Overall, these experiments show that for m = 1, our interpolant is better,
in terms of approximation error and order, than the one proposed by Jing
et al. [2015]. For general m, it matches the interpolant proposed by Floater
and Schulz| [2009], but we observed that it typically gives an approximation
error which is smaller by a factor of 2 to 5.
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n  Fj order FE%S order
10 2.91e—16 2.38e—14

20  1.14e—18 8.00 8.02e—17 8.21
40  4.44e—-21 8.00 2.89e—19 8.12
80  1.73e—23 8.00 1.08¢—21 8.06
160 6.77e—26 8.00 4.12e—24 8.03
320 2.64e—28 8.00 1.59e—26 8.02
640 1.03e—30 8.00 6.18¢e—29 8.01

Table 3.6. Error and approximation order for Experiment 3.

n Ey order EIS order FE{X? order EjH order
10 1.78 2.01 2.51 7.82e—01

20 5.64e—01 1.66 6.58¢—01 1.61 8.7le—01 1.53 4.44e—01 0.82
40 1.35e—01 2.07 1.66e—01 1.99 2.44e—01 1.84 2.03e—01 1.13
80  2.23e—02 2.60 2.99e—02 247 5.3le—02 220 7.36e—02 1.46
160 2.51e—03 3.15 3.81le—03 2.97 9.14e—03 2.54 2.24e—02 1.72
320 2.10e—04 3.58 3.63e—04 3.39 1.34e—03 2.77 6.11le—03 1.87
640 1.48e—05 3.83 2.86e—05 3.67 1.82e—04 2.89 1.59¢—03 1.94

Table 3.7. Error and approximation order for Experiment 4.
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25 2.5
20 2|
1.5} 15}
1 1H
05 0.5 M
0f 0f
-0.5 -0.5
-1} -1t
-15F -15}
ol ol
0 0.102 0304 050607 0809 1 0 0.102 030405 0.6 0.7 0809 1
25 25
2 2|
1.5 15}
1H 1F
05| 0.5 r
0 0t
-05 | -0.5
1L 1L
-15} -15}
Y S R
0 0.102 0304 0506 0.7 0809 1 0 0.102 0304050607 0809 1

Figure 3.21. From top left to bottom right: the iterative rational Hermite inter-
polant for n = 10, 20, 40, 80 for Experiment 4.

Experiments 4 and 5 show the interpolation quality of the proposed iterative
rational Hermite interpolant at equidistant nodes for a C'** function with poles
outside but near the endpoints of the interpolation interval in Figure and
for a C° function in Figure Tables and report the corresponding
numerical results for all rational Hermite interpolants and for the classical
Floater-Hormann interpolant at (m + 1)(n + 1) equidistant nodes, that is, for
the same number of overall data values.

All computations were carried out in MATLAB with standard precision.
For the smooth function in Experiment 4, our interpolant has the smallest
approximation error among the three Hermite interpolants. The Lagrange
Floater-Hormann interpolant is more accurate for small n < 20, but it is out-
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0 010203040506070809 1

0.6 0.6
0.4 0.4
0.2 0.2
0F 0
-0.2 -0.2
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
-1F -1
-12F o -1.2F o,
0 0.10.203040506070809 1 0 0.10.203040506070809 1

Figure 3.22. From top left to bottom right: the iterative rational Hermite inter-
polant for n = 10, 20, 40, 80 for Experiment 5.

performed by the Hermite interpolants for larger n, because the latter have a
higher approximation order. Experiment 5 shows that the smoothness condi-
tion on f in Theorems [3.10] and [3.12] is essential for the approximation
order of our rational Hermite interpolant, which drops to O(h), if f is only
continuous. The same is true for the other interpolants, and we observe that
the best approximation error is obtained by the Floater—-Hormann interpolant

in this experiment.

In Experiments 6 and 7, we compare the numerical stability of the ratio-
nal Hermite interpolants in the case of equidistant interpolation nodes. All
computations were performed in C'++ with 15 decimal digits of precision. Fig-
ures and show that all interpolants reach the level of rounding errors
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n  Ey order FE5S order FE§H order

10 9.19e—-01 2.35e—01 1.90e—02

20 2.23e—01 2.05 5.30e—02 2.15 9.50e—03 1.00
40 5.58e—02 2.00 1.33e—02 2.00 4.75e—03 1.00
80 1.36e—02 2.04 3.74e—03 1.83 2.38e—03 1.00
160 3.40e—03 2.00 1.87e—03 1.00 1.19¢e—03 1.00
320 9.36e—04 1.86 9.36e—04 1.00 5.94e—04 1.00
640 4.68¢e—04 1.00 4.68¢—04 1.00 2.97e—04 1.00

Table 3.8. Error and approximation order for Experiment 5.

107°
EIIKZ
—EIFS
—E
10710
10—15 1 1 1 1 1
0 50 100 150 200 250 300

Figure 3.23. Semi-log plot of the error with respect to n for Experiment 6.

for sufficiently large n and that our interpolant is the fastest to converge.
However, we noticed that further increasing n may lead to a slight increase
of the error for some test functions, as shown in Figure Since this oc-
curs for all three interpolants, it is probably not related to the computation
of the barycentric weights, but it may indicate a numerical instability of the
barycentric form (3.12). It remains future work to further investigate this
phenomenon.
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Figure 3.24. Semi-log plot of the error with respect to n for Experiment 7.



Chapter 4

The Lebesgue constant

In the first chapter we have seen that the n+1 Lagrange basis functions consti-
tute a basis of the polynomial space &, and therefore the Lagrange polynomial
interpolant of a function f sampled at n+ 1 arbitrary nodes can be interpreted
as its projection on £,. In order to formalise this concept, we define the La-
grange interpolation operator

: Co[a, b — 2,

that associates to each function f € C°[a, b] the corresponding interpolant p of
degree at most n, that is
Lnf =pc 2, n-.

L, is a continuous and linear operator between the two function spaces and,
since L,, reproduces polynomials up to degree n, it is a projection on this space
of polynomials, that is

L,L,f = L,p=p.

This formalisation of an interpolation scheme as a projection on some func-
tion space is not a purely theoretical exercise, since, as we shall see in this
chapter, the study of the norm of L,

[ Lnll = sup [|Ln f]].

1<t

gives important information on the quality of the interpolant.

In this chapter we present some well-known results about the unfavorable
behavior of || L,|| for equispaced nodes as n — oo, and we emphasise how this
influences the quality of the overall polynomial interpolation scheme. We then
present some literature regarding the behavior of the interpolation operator for

97
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the Berrut and Floater-Hormann schemes in the Lagrange setting, and show
how they compare to L,.

Then, we focus on the Hermite interpolation operator and we compare
its behavior with that of the operator associated to the barycentric rational
Hermite interpolation scheme presented in the previous chapter.

4.1 The Lagrange polynomial interpolation oper-
ator

In this section we focus on the Lagrange polynomial interpolation operator L,,.
The first step to undertake is to retrieve a closed form for the norm of the
Lagrange polynomial interpolation operator, see Cheney and Light| [2000].

Lemma 4.1. The operator norm ||L,|| satisfies
L,|| = max li(x
2.1 = mas 1)

where ¢;, i = 0,...,n, are the Lagrange basis functions (2.5)).

This is a classical result in approximation theory and can be obtained as
follows. For any f with ||f|| <1

30

and therefore ||L,|| < max}" ,|¢;(x)|. In order to prove the inequality in the
other direction, it is sufficient to pick £ € [a, b] such that

e S 14()] = 3140

xz€la, b]

IZnfll = max

< max ZM )V fi] < max Z\f

and a function f such that f; = sign ¢;(£). Then we get

io ZM )| = max ZM

[Lnll = 1 LnfI| =

The function

and the constant
= A(X,) = max A,(z) (4.1)
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are respectively called the Lebesque function and the Lebesque constant for
Lagrange interpolation (Gautschi| [1997]) and are fundamental quantities to es-
timate the quality of the polynomial interpolant. For example, if the Lebesgue
constant is small, the forward stability of the second barycentric form of La-
grange polynomial interpolant is guaranteed by Theorem [2.4] but, even ig-
noring the issues related to floating point arithmetic, A, gives also important
information on the theoretical behavior of the polynomial p. Indeed, since

Il = Lo fIF < Anll 1l (4.2)

the Lebesgue constant gives information about the potential oscillations of
the interpolant p, independently of f. Moreover, it provides a first estimate
for the interpolation error (Gautschi [1997]). If p is the polynomial of best
approximation of the function f, that is

p = argmin|| f — p|,
PEPn

then the Lebesgue constant is useful to estimate how far the Lagrange polyno-
mial interpolant is from p. Indeed we have

If =2l < If =2l + [[1La(f =D < X+ An)l[f = I, (4.3)

and therefore, the smaller the Lebesgue constant, the more we approach the
best possible among the polynomial solutions of the Lagrange interpolation
problem ([2.2)).

The use of floating-point arithmetic in modern computers makes the func-
tion values fy,..., f, only an approximation of the real values we want to
interpolate. In many practical applications, these values are further manipu-
lated, increasing the difference between the real values and the ones that we
actually use. This most certainly has an effect on the quality of the interpola-
tion of the original data and the Lebesgue constant provides a good measure for
this. Let fo,..., f. be the real values we want to interpolate and fo, cee fn be
the values subject to round-off and possible measurement errors and suppose
that

The approximated values can be seen as samples of a different function f such
that || f — f|| = e. The constant A,, is then a good measure of the sensitivity of
the polynomial interpolant to perturbation of the data since, by (4.2)), we get

lp = Bll = 1La(f = DIl < Ave, (4.4)
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where p = L, f is the interpolant of the perturbed function f. It is then
clear that the difference between the ‘desired’ interpolant and the interpolant
of f is strongly influenced by the Lebesgue constant, and, if A, > e, this
can easily lead to undesired results. In this sense we say that the Lebesgue
constant measures the conditioning of polynomial interpolation with respect
to perturbations of the values f;.

The role of the Lebesgue constant in polynomial interpolation should now
be clear to the reader and it should not be a surprise that its behavior as
n — oo has been extensively studied. It is clear from its definition that the
behavior of the Lebesgue constant is strongly influenced by the distribution of
the nodes and Brutman| [1997] recalls that there exists an optimal set of nodes
X such that
A =AX]) = min A(Xy).

n n

The problem of finding the optimal set of nodes X, for any n € N is still
unresolved, but it has been shown by [Bernstein [1931] that the corresponding
Lebesgue constant grows at least logarithmically, that is

2
Al > ( + 0(1)) In(n + 1), n — 0o.
m

Erdos| [1961] makes this statement more precise, by proving the following.

Theorem 4.1 (Erdds| [1961]). Let X,, be any system of interpolation nodes in
[—1,1]. Then there exist two constants C; > 0 and Cy > 0 such that

2 2

Since the closed form for the nodes X/ is unknown, these results might seem
discouraging. How well can the Lebesgue constant behave for some prescribed
distribution of nodes? [Rivlin| [1974] provides a first answer to this question by
proving the following result regarding the Chebyshev nodes of the first kind.

Theorem 4.2 (Rivlin [1974]). Let T,, be the set of n + 1 Chebyshev nodes of
the first kind. Then the sequence (t,),en defined by

2
t, =AT,) — —In(n+1), neN
T

is strictly monotonically decreasing with maximum value ¢; = 1.

This remarkable result has been generalised to the Chebyshev nodes of the
second kind.
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Figure 4.1. Left: the Lebesgue constant for n = 10,11,...,320 of polynomial
interpolation at extended Chebyshev nodes (in blue) with the lower and upper
bounds in (4.5)) (in black). Right: the Lebesgue function for n = 5,7, 10 extended
Chebyshev nodes. Compare Figure .

Theorem 4.3 (Brutman| [1984]). Let U, be the set of n + 1 Chebyshev nodes
of the second kind. Then

AT, 1), if n is odd,
AU,) =
ANT,—1) — a,, if nis even,
where
"8 < 222D
4n? 4n?

Finally, Brutman| [1978] shows that a similar result holds also for extended
Chebyshev nodes T,,. In particular he proves that

;+imm+n<A@Q<Amp<Aﬁm<2+imm+m, (4.5)
where A(X,,) denotes the least local maximum of the Lebesgue function for the
set of nodes X,,, see Figure [4.1]

By Theorem the Chebyshev nodes are nearly optimal for polynomial
interpolation and this results in a good conditioning of polynomial interpolation
for Chebyshev-spaced values.

Example 4.1. For n = 10, let us consider the Chebyshev nodes of the second
kind, and the function

f= <|Sin(27rx)| sin(?wm))3 € C?0,1]. (4.6)
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Figure 4.2. Effect of the perturbation of the data, with £ = 1.9908 - 1072, on the
polynomial interpolant at 11 Chebyshev nodes of the second kind.

Let .
fi= f(x) +&

and f be the corresponding ‘perturbed’ function. Figure , displays the result
of the perturbation corresponding to

€= max g =~ 1.9908-107>.

=0,...,n

The original polynomial, p, and the perturbed one, p, differ by at most
Ip— 5l ~ 2.00- 1072,

while the ratio
lp — B
€
shows that the perturbation of the interpolant is roughly as large as €.

~ 1.0047 (4.7)

The situation can change quite dramatically if we modify the setting, and
again the use of equispaced nodes reveals the issues of polynomial interpolation.
Let us show with another example the effect of a perturbation of the data in
the equispaced setting.

Example 4.2. For n = 10, let us consider the function f in Example sampled
at equispaced nodes. By considering the same width for the perturbation as in
Example the original and perturbed polynomials differ as much as

lp — p| ~ 1.2181 - 107,
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Figure 4.3. Effect of the perturbation of the data, with £ = 1.9908 - 10~2 for the
polynomial interpolant at 11 equispaced nodes. Compare Figure .

while the ratio
lp — Bl
€
shows that, in this setting, the same perturbation as in Example [4.1] produces
a difference in the interpolating polynomials which is roughly 6 times larger

than ¢, see Figure [1.3]

~ 6.1185

Considering the importance of equispaced nodes in many practical scenar-
ios, the behavior of the Lebesgue constant in this setting has been extensively
analysed. The first result about the growth of A,, goes back to Tietze| [1917],
who proves a result regarding the local maxima of the Lebesgue function at
equispaced nodes and observes that these values decrease monotonically as we
get closer to the center of the interpolation interval, see Figure [d.4] left. [Schon-
hage [1961] proves the following result related to the asymptotic expression of
A,, at equispaced nodes,

Theorem 4.4 (Schonhage| [1961]). Let E = (E,,), .y be the system of equispaced

neN
nodes. Then
2n+1
AE,) ~ ——, n — 00
en(Inn + )
where ~ is the Fuler—Mascheroni constant
"1
v = lim <Z T In n) ~ 0.5772. (4.8)
k=1

Trefethen and Weideman, [1991] instead prove the following theorem that
holds for any n > 1, see Figure [£.4] right.
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Figure 4.4. Left: the Lebesgue function at equispaced nodes for n = 5,7,10. Com-
pare Figure [4.1] Right: the Lebesgue constant for n = 10, ..., 320 of polynomial
interpolation at equispaced nodes (in blue) with lower and upper bounds in (4.9))
(in black).

Theorem 4.5 (Trefethen and Weideman| [1991]). For each integer n > 1,

2n—2 2n+3

< A(E,) <
n? (En) n

(4.9)

Theorem shows how the effects of a perturbation such as the one de-
picted in Example can get worse very quickly as n increases and that even
smaller perturbations, like those obtained by using floating-point arithmetic,
can give unpredictable results.

We remark that these results are independent of the function f and of
the location of its poles and, unlike the Runge phenomenon, they regard all
functions, even the ones that are analytic in the whole complex plane. This
makes polynomial interpolation at equispaced nodes practically useless as soon
as n > 70. It is therefore necessary to look again at some other tool for solving
the interpolation problem in this setting and, as we have seen in the previous
chapters, Floater—-Hormann interpolants are a natural candidate for this role.

4.2 The Berrut and Floater-Hormann interpola-
tion operators

The Floater—-Hormann interpolation scheme can also be understood as the re-
sult of a projection of f on the space %, in (2.32). To illustrate this we define
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the operators
I%: C%a,b] — Ry,, d=0,...,n

that at each function in C[a, b] associates the corresponding Floater-Hormann
interpolant of degree d, that is

If =1 € R,

with r as in . In the case d = 0, we refer to the corresponding operator
I? as the Berrut interpolation operator and we denote it as I,,, omitting the
dependance on d. We call the general I? the Floater—-Hormann interpolation
operator.

For any d, 0 < d < n, I is a continuous linear projection on the space %,
and similar relations to , and are valid also for the Floater—
Hormann interpolation scheme. It is therefore natural to extend the analysis
we have seen for L,, to this case.

The same techniques used to prove Lemma can be used to prove that
the norm of I¢ can be expressed in closed form as

]d — ‘wl
178 = g 3 ,x_m/

where the w;’s are the barycentric weights in ([2.26]). Therefore, in analogy with
the polynomial case, we define the function

i OiU—fEZ

A () = z ]

|z — 2]

i OJZ—Z[‘Z

and the quantity
A? = AY(X,) = max A%(x),
z€la,b]
as the Lebesgue function and the Lebesgue constant of the Floater—-Hormann
interpolant of degree d.

One of the main issues in the analysis of the Lebesgue constant in this
setting consists in bounding adequately the barycentric weights w; and this is
the reason for which most of the literature focuses on special family of nodes
or on the case d = 0 (Berrut’s interpolant), for which the expression of the
weights is particularly simple.

The first result in this direction is the work of Bos et al|[2011] who focus
on the study of the Lebesgue constant AY at equispaced nodes and prove the
following.
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Figure 4.5. Left: the Lebesgue constant of Berrut's interpolant at equispaced nodes
for n = 10,...,320 (in blue) with the lower bound in Theorem and the upper
bound in Theorem (in black). Right: the Lebesgue function at equispaced
nodes for n = 5,7, 10.

Theorem 4.6 (Bos et al. [2011]). For the set E,, of equispaced nodes

2
" n(n+1) < A%E,) <2+ In(n).

4+ nmw

Since the Lebesgue constant at the nodes is always equal to 1, the main
idea behind their proof is to consider separately numerator and denominator
for € (x, xr41) and to multiply these quantities by (z — xy)(2k41 — ), in
order to avoid terms that grow indefinitely.

More recently, a sharper upper bound for equispaced nodes has been pro-
vided.

Theorem 4.7 (Zhang [2014]). For a set of equispaced nodes

AY(E,) <
(En) < 24 + 72

In(n+1) 41, n > 174.

Figure [4.5] left, shows that the upper and lower bounds provided by The-
orems and [£.7 are not yet sharp and that much can still be improved.
Moreover the bound provided by holds also for n < 174, showing
that this is not a practical limitation. Moreover it is possible to notice that,
unlike polynomials, the maximum of the Lebesgue function seems to be at-
tained towards the midpoint of the interpolation interval, see Figure [4.5] right.
We remark that a sharper upper bound for A? for equispaced nodes has been
provided by Deng et al.|[2016].
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Figure 4.6. The Lebesgue constant for n = 10, ...,320 of Berrut's interpolant at
equispaced nodes (in blue) with the lower bound (in black) and the estimate (in
red) in (4.10]).

Finally, we would like to mention the article by [Ibrahimoglu and Cuyt
[2016] that, after extensive numerical studies on the behavior of the Lebesgue
function, concludes that

2 2 1
1 1)+In2+7) < A? ~ 1 1)+In2 — | (4.10
) 2) < A o (o) a2 1) (410

with v as in , see Figure . This result seems to give sharper upper
and lower bounds but is based on the assumption that the maximum of the
Lebesgue function is attained near the midpoint of a subinterval (z;, x;:1).
This is justified by their numerical observations but cannot be considered as a
formal proof for the bounds of the Lebesgue constant.

The consequences of these results are remarkable. As|Zhang| [2014] notices,
the results in Theorems[4.6|and [4.7|overall suggest that the asymptotic behavior
of AY could be

A ~ C,In(n + 1), n— oo

with 5 o4
" <o <2
44+ nm — — 24 4+ 72

Since 5 5
lim — — 2~ 0.6366,

n—oo 4 + nir T

Zhang suggests that there might be an optimal factor C' € [%, 5 4147#] such that

A ~ Cln(n+1).
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Moving from this idea and inspired by the observations of [Bos et al. [2011],
Zhang| [2017] proves that the exact constant is 2/m and concludes that the
Lebesgue constant of Berrut’s interpolant at equispaced nodes grows asymp-
totically as the polynomial one for Chebyshev nodes. This result is further
confirmed by |Ibrahimoglu and Cuyt| [2016].

The situation seems to be slightly different at extended Chebyshev nodes,
as the following result shows.

Theorem 4.8 (Bos et al| [2013]). If X = (X,,), .y is a family of well-spaced
nodes, then there exists a constant C' > 0 such that

A’(X,,) < Cln(n).
In particular, for T = (Tn)neN,
AY(Ty,) < 3+ 372 1In(n).

The upper bound in Theorem [4.§] is larger than the one obtained in The-
orem for the operator L,. In the following example we demonstrate the
effect of the perturbation on Berrut’s interpolant at Chebyshev and equispaced
nodes.

Example 4.3. We consider the same setting as in Example and we inter-
polate the original function f in and the perturbed one with Berrut’s
interpolant, see Figure [4.8] left. The perturbation in the data produces a dif-
ference
|r — 7| = 1.9910 - 102

and the ratio R

I =71 1 o001
shows that the perturbation of the interpolant is roughly as big as €. Com-
paring this value with the one obtained in (4.7) we see that the polynomial
interpolant seems to be more susceptible to the perturbation of the data in
this particular example, despite the lower upper bound in Theorem [4.3] for
polynomials. Figure [£.7 shows that the upper bound of Theorem [£.8]is indeed
far from being tight.

We remark that, despite the favorable behavior of Berrut’s interpolant in
this particular example, polynomials should be everyone’s choice for interpola-
tion at Chebyshev-spaced data, because of the favorable result of Theorem [4.3]
and the faster convergence rate warranted by polynomials at these nodes (Tre-
fethen| [2013]). Anyway, Theorem shows that the growth of AY also in this
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Figure 4.7. The Lebesgue constant for n = 10,...,320 of Berrut's interpolant
at extended Chebyshev nodes (in blue) with the upper bound in Theorem (in
black).

case, is far from being exponential and Berrut’s interpolant represents still a
valid alternative to polynomials.

If we choose equispaced nodes instead, the situation is completely different,
see Figure [4.8] right. The perturbation produces a difference

|r — 7| ~ 1.9925 - 102

in Berrut’s interpolant and the ratio

lr =7

3

~ 1.0009

shows that the perturbation of the interpolant is still roughly comparable with
e up to the third digit.

The bound of the Lebesgue constant A4 for d > 1 requires in general more
efforts, as bounding the barycentric weights w; for a general family of nodes is
far from being a trivial task. For this reason, all results make strong assump-
tions about the distribution of the nodes. The first result in this setting is the
one by Bos et al.| [2012] who prove the following result for equispaced nodes.

Theorem 4.9 (Bos et al,| [2012]). If 1 < d < [%], then

1 (2 1
W( d; ) 1n(z - 1) < AYE,) <272+ 1nn).
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Figure 4.8. Left: effect of the perturbation of the data, with ¢ = 1.9908 - 102
for Berrut's rational interpolant at 11 Chebyshev nodes of the second kind. Right:
the effect of the same perturbation at 11 equispaced nodes. Compare Figures

and .

The idea behind their proof is to exploit the particular form that
the weights assume at equispaced nodes and to bound these quantities by 2¢.
Figure [4.9] left, shows that the bounds in Theorem [£.9)for d = 4 are not sharp.
This is probably due to the fact that the barycentric weights play a role in
keeping the Lebesgue constant low and that bounding each w; by 2¢, is not the
best strategy to find a tight upper bound for A2. We moreover remark that,
unlike Berrut’s interpolant, for this particular choice of d, the maximum of the
Lebesgue function seems to be always attained towards the extremities of the
interpolation interval.

Hormann et al. [2012] generalise this result to quasi-equispaced nodes and
improve the upper bound provided by Theorem for Berrut’s interpolant.
Furthermore, [brahimoglu and Cuyt [2016] remark that also holds for
d =1, while for d > 1,

= )
A, < ——|In(n+1)+m2+~v+—|. (4.11)

The strategy used to obtain this last result always resorts to the form ([2.30))
and, though sharper than the bound provided by Hormann et al|[2012], it is
still quite distant from the actual values of AZ, see Figure m

Example 4.4. Under the same assumptions as in Example |4.3] we interpolate
the original and the perturbed function with the Floater—-Hormann interpolant
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Figure 4.9. Left: the Lebesgue constant of Floater—Hormann interpolant for d = 4
and n = 10, ..., 320 at equispaced nodes (in blue) with the upper and lower bounds
in Theorem (in black). Right: the Lebesgue function at equispaced nodes for
n =>5,7,10.

with d = 5. With the Chebyshev nodes of the second kind, the perturbation
produces a difference in the original interpolant

|r — 7| ~ 2.0225 - 1072
and the ratio

[l =7l

3

~ 1.0159,

see Figure [£.11] left. The same experiment with equispaced nodes produces
instead
|r — 7| ~2.2731 - 1072

and the ratio R
[r — 7

3

~ 1.1418,
see Figure [4.11], right.

Comparing the values obtained in this last example with the ones in Exam-
ple [4.3] it is possible to notice a stronger sensitivity of the Floater-Hormann
interpolant to the perturbation of the data. Plotting the Lebesgue constant A%
for fixed n, it is possible indeed to notice an exponential growth with respect to
d, see Figure [£.12] We remark that the case d = 1 seems to even have a better
Lebesgue constant than the case d = 0. Overall we can conclude that, even
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Figure 4.10. The Lebesgue constant of Floater—Hormann interpolant at equispaced
nodes (in blue) for n = 10,...,320 and d = 4 with the upper bound in (4.11]) (in
black).

though the bound 2¢ for the weights does not seem to be tight, the Lebesgue
constant increases exponentially with d.

In the next sections we extend this kind of analysis to the Hermite setting
for m = 1. We first introduce the Hermite interpolation operator and show that
the polynomial interpolant is again extremely well conditioned at Chebyshev
nodes. After presenting a result regarding the Lebesgue constant at equispaced
nodes, we study the Lebesgue constant of the operator associated with the
iterative Hermite interpolant introduced in Section for equispaced nodes.

4.3 The Hermite interpolation operator

Also the Hermite polynomial can be seen as the result of a projection operator
from the space of m times differentiable functions to the space of polynomials
of degree at most (m-+1)(n+1)— 1. In this section we focus on the case m =1
and on the interpolant

pi(z) = i&,o(@fi + iﬁi,l(x)f{a (4.12)

with ¢; o and ¢;; as in (3.10). Most of the previous results are indeed related
to this setting, even if some of them can be extended to the interpolation of
higher order derivatives.

Let us define the Hermite interpolation operator

Hnl C’l[a, b] — 92,14_1,
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Figure 4.11. Left: effect of the perturbation of the data, with ¢ = 1.9908 - 102,
for Floater—Hormann interpolant for d = 5 at 11 Chebyshev nodes of the second
kind. Right: the effect of the same perturbation at 11 equispaced nodes. Compare

with Figures , and .

that to each function f € C'[a,b] associates the corresponding Hermite inter-

polant 7 in (4.12)), that is
H,f =p1 € Pt

As its Lagrange counterpart, H, is a continuous linear projection on the poly-
nomial space &,,,1 and, extending the concept from Lagrange interpolation,
we call
A= sup [ Hafl,
£l <1

the Lebesgue constant of the Hermite interpolant (4.12)), where

LA = I D

It is easy to verify that, substituting || f|| with || f||,, the relations and
generalise to the Hermite setting but, unfortunately, in this case it is not pos-
sible to express A,, in a simple closed form equivalent to the one in Lemma [4.1]
Anyway, as Manni [1993] notices,

Ql,n S An g maX{QO,na Ql,n}7 (413)

where
Qo,, = max Qg (), Q1 = max Q ,(2), (4.14)

a<z<b a<z<b
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Figure 4.12. Left: the Lebesgue constant A¢ forn = 10,...,320andd = 1,...,4.
Right: semi-log plot of A%, for d =0, ..., 25.

and
Qop(z) = El&,o(ﬂf)l, Qup(z) = Z]&,l(a:)\. (4.15)

Both €y, and Q;, play a crucial role in measuring the approximation
quality of p;, as|Natanson| [1965] mentions

1f = pall < ((b— @)X+ Qo) + 210) | £ = Bl

where p is the polynomial of degree at most 2n that best approximates f’ on
la, b].

The constants Q, and €, have been extensively studied for many distri-
bution of nodes and, for example, Natanson| [1965] recalls that, for p-normal
sets of nodes,

Qon =1, Q, < , (4.16)
p

which in turn implies convergence of the Hermite interpolation process, by The-
orem ﬂ For Chebyshev nodes, the upper bound in (4.16|) can be significantly

improved.

Theorem 4.10 (Szabados| [1993]). For the Chebyshev nodes of the first kind
there exists a constant C' independent of n such that

Inn
Q, <C—.
n
In the same work Szabados proves a more general result regarding any
system of nodes.
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Theorem 4.11 (Szabados [1993]). For an arbitrary system of nodes, there exists
a constant C' independent of n such that

Inn
Ql,n Z 07
n
Therefore the Lebesgue constant for polynomial interpolants at p-normal
sets of nodes is bounded from above and below by two constants, while for

Chebyshev nodes of the first kind it satisfies

n

see Figures and 4.14]  This clearly has a favourable effect on the condi-
tioning of the Hermite polynomial interpolant at Chebyshev nodes of the first
kind, which is very insensitive to the perturbation of the data.

Example 4.5. For n = 10, let us consider the Chebyshev nodes of the first kind,
and the function in (4.6)). Let

fi=flx) +e
fi=fl(x:) +¢

and f be the corresponding ‘perturbed’ function. Figure shows the result
of the perturbation corresponding to

e = max (|g| + |€l]) =~ 2.9670 - 1072

The original polynomial (in red) and the perturbed one (in yellow) differ by at
most
Ip1 — Pull & 1.9908 - 1072,

while the ratio R
||p1 - ]9~1H
1f = fl

confirms that the Hermite polynomial interpolant is extremely well conditioned.

~ 1.0000

However, this favorable behavior does not hold in other interpolation set-
tings, and the equidistant case shows again all the limitations of polynomial
interpolation. It can be proved that for equispaced nodes the following asymp-
totic behaviors for £, and €, hold.
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Figure 4.13. From top left to bottom right: Qo ,(x) (in blue) and £ ,,(z) (in red)
forn =5,7,9,11, 13,15 and Chebyshev nodes of the first kind in [0, 1].
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Figure 4.14. Qo (in blue) and €, (in red) for n = 10,...,320 at Chebyshev
nodes of the first kind with the upper bound for €, ,, in Theorem m (in black).

Theorem 4.12 (Manni| [1993]). For a set of n + 1 equispaced nodes

4 22n+1 b—CL 22n+1
Qo ~ 555 D~ =y
e2m y2n e2\/m y2n%\/n

where v, = 3%, 1/j, as n — oc.

We can therefore expect wild effects on polynomial Hermite interpolant if
the original data are perturbed, as the following example confirms.

Example 4.6. For n = 10, we sample the function f in (4.6]) at equispaced nodes
and we perturb the corresponding values f; and f; with the same perturbation
as in Example [4.5] The interpolants after the perturbation differ by at most

llp1 — p1|| = 1.4078,

while the ratio R
lp1 — 1l

I1f = fll
shows that the interpolants differ 70 times more than the initial perturbation,

see Figure [4.16]

In the Lagrange case, we have seen that Floater-Hormann interpolants
have a much better conditioning than polynomial interpolants at equidistant
nodes, since the related Lebesgue constants grow only logarithmically with n.
In the following section we show that a similar result holds also for the iterative

~ 70.7200
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Figure 4.15. Effect of the perturbation of the data, with ¢ = 2.9670 - 10~2 for the
Hermite polynomial interpolant at 11 Chebyshev nodes of the first kind.

interpolants presented in Chapter [3| by proving that their Lebesgue constants
are bounded from above by a constant independent of n. Before doing that we
shall identify the function space in which we are projecting the function f and
the corresponding basis functions. We then proceed by bounding the norm of
the associated operator utilising the equivalent of inequality .

4.4 The barycentric rational Hermite operator

In this section we analyse the generalisation of the operator I¢ introduced in
Section [4.2] In order to better visualize such operator we first need to rewrite
the iterative interpolant defined in Chapter [3|for m =1

ri(z) = sz‘@)fi + Z(m - iﬂz)bz(f)Q(fz, —1'(2:)), (4.17)
i=0 i=0
in a way that is linear in the data f; and f/, i = 0,...,n, so as to identify two

sets of basis functions and the function space that they span.
To this end, we recall from Proposition that

i) =) ————
j;) wi(x; — ;)
j#i

W w;

, bi(x;) = , j#i  (4.18)

w;(w; — x;)

and we rewrite the barycentric rational Hermite interpolant r; as

n@) =Y bo(e)fi + Y b (@) (119)

n
1=0 =0
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Figure 4.16. Effect of the perturbation of the data, with ¢ = 2.9670 - 1072 for the
Hermite polynomial interpolant at 11 equispaced nodes.

The functions b; o and b; ; are defined as in (3.10), but with ¢; replaced by b;,

as the following proposition shows.

Proposition 4.1. The barycentric rational Hermite interpolant r; in (4.17)) can
be written as (4.19) with

bio(z) = (1= 2(x — z:)b(x:) ) bs(2)”, bir(z) = (& — z)bs(x)”.
Proof. By ,

ri(z) = Zf:obz(x)fz + zf:o(x — x)bi(x)?f! — Z(Jc — z;)bi(z)? éb}(%)fj,

hence it remains to show that

n

bilx) = (= w;)b; ()"0 (x5) = bi(x)” = 2(x — 2V (w)bi(w)". (4.20)

J=0

Using (2.20b)) and (4.18]) we have

= () 3 by (0) — (& — b)) — 3o~ () o
7 2 o
= bi(@)? = (& = 2)b() b ) + Z(@-(z) - _“”;Jibm;“;)b] (x)
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Now, since

and (4.20) then follows by using again (4.18]). O

Now we consider the space of rational functions

'%(1) Spa‘n{bo,Oa s 7bn707 bO,la R bn,l}

wd:

and the operator
If’n: C'a,b] — %Sj,
that associates the barycentric rational interpolant r; at each function f &
C'[a, b], that is
I.f=reaxl

in (4.19).
Before proceeding with the analysis of the norm of Iﬁn, let us see how 7y
reacts to perturbations of data with an example.

Example 4.7. Let us consider the setting in Example [£.6] We interpolate the
function f and the perturbed one f with the barycentric rational interpolant rq
of degree d = 2 at equispaced points. The perturbation produces a difference
in the interpolants of

|7y — 71| ~ 1.9908 - 1072

and a ratio ~
[l — 7l

M =0 1 0000,
If = £l

see Figure [L.17]

The previous example suggests that the Hermite interpolant r; is extremely
well conditioned with equispaced nodes and, in this section, we show that

A = (1|
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Figure 4.17. Effect of the perturbation of the data, with ¢ = 2.9670 - 1072 for
Floater—Hormann interpolant for d = 2 at 11 equispaced nodes. Compare Fig-

ure @

is bounded from above by a constant independent of n. To this end, we assume

n > 2d, recall (2.30) and write
Ww; = (—1)ivi, i:O,...,n,
with . p
=Y < ) < 2% (4.21)
j=d N T
Now we derive an upper bound for the Lebesgue constant by bounding £,
and € ,, in (4.14) for the basis functions written as in Proposition . We then
resort to (4.13) to bound A{, from above. In order to keep the notation as
simple as possible we restrict ourselves to the interval [0, 1], but the discussion
is valid for any arbitrary interval [a,b] C R.
Inspired by the proof of Theorem 1 by Bos et al. [2012], we focus on the
case where zj, < x < x4 for some k with 0 < k£ < n — 1 and rewrite Qg ()
and Q4 ,(z) as

. No&(l‘) B Nl,k(.iﬁ)
Pl =Dy P T
where
Now(@) = (& — )2 (zrs1 — 1) Zo 1 - 2(a — 2)bi(xy) (xi’x)Q (4.22)
Nig(z) = (2 — z)*(Tp1 — 33)22 E il:cll’ (4.23)
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and

Dy(x) = (& — @) (2r41 — 2)° (En% - l_szl) '

As proved by Bos et al.|[2012], the denominator satisfies
1

TL2

Dy(z) > = (4.24)

and it remains to establish appropriate upper bounds for the numerators Ny ()
and Ny g (z).

Lemma 4.2. Let x; < x < x5y for some k£ with 0 < k < n — 1. Then,

for some constant C' that does not depend on k, d, and n.

Proof. Since

n k ’U2 n n U-2
z%‘x_:’:l’ lz%x—a:i i:;rlwl zzox_xk zzk;rlmkﬂ_x
and
2 4 4
(@ = 2 (241 — 2)" < s, (@ =) (@he1 —2) < 5 gy (4.25)
we have ,
N. 2
(@) S 52 EO"’
and the statement then follows from (4.21]). m
Lemma 4.3. Let xp < x < xp4q for some k with 0 < k <n — 1. Then,
4%(d+1
Nox(z) < C¥7
n
for some constant C' that does not depend on k, d, and n.
Proof. Using (4.18) and (4.21]), we first notice that
iu—z(gg—x)b'_(mn <4 zn: +20+1 Z f: (=1,
i=0 ' (z — 372) B )2 oz — :1:1\ j=0 i = Ti

J#i
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and we proceed to bound the two sums over ¢ separately. For z;, < x < xp41,

we have
z": I P S 1 Ly 1
iz (r — xi)z =0 (z— xz)Q ( — x1) (Thy1 — x)z i=k+2 (z; — I)2
k—1 2 n
1 T -z 1
<y - (Tpt1 — k) N
o0 (@ —m)” (=) (e —2)° S (T — Ti)
B k=l 2 1 1 2”: n?
S (k=i 0’ (z—a) (e — )" e (i—k— 1)
k n—k—1
1 1 1 1
2 2
=n e +n -
o nt(x— mk)Q(karl — ) ; i
< 27T2 + 1 1 e 2
n°— 4 — n —,
6 n*(z— ) (zh1 — @) 6
and since
(2 — o) (s — 1) < — (4.26)
k k+1 ~ 16”47 .
we conclude that
" C
2
(z Ik (Tpy1 — @) ; (x — xl) n2‘

To bound the second sum, we first use (4.21]) to get

;o J—Z jgoj—ig L=
J#i J#i
_ i(d) S
o\l S g~
j#i
n—l _1]
< 2% max Z ( ),,
Oglgdj 71‘7—@
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and since
n—l _1]
Z(, >,, 0<i<d-l,
j=d—1 J T
n—l _1j i—(d—1) _1] (n—=0)—1 _1]
§:<.) = 2:(.)—- ( >, d—1<i<n-—I,
j=d—1 J — 1 = J = J
i n—I 1)]
( -1, n—I1<i<n,
j=d—1 Y7
with
n—l _1j 1
( ) < - 0<i<d—1,
Pl Rl (d—1)—1i
1 n+d
i (d— ; i ; d—1<i< —1
i—(d l)(_l)] (n l)z(_1>] _ Z—(d—l)—l—l’ ST > 5 )
; < T 1 n+d
= J = J —1<i<n-—
) _ir1 g lsisnol
n—l _1)j 1 '
y U . n-l<i<n,
i i—(n—1)

we further have

1 0<i<d,

1 n

o — i(ﬂ)% cod)i—d+1 I=i=5
= I ! D<i<n—d
i#i (m—d)—i+1 2~ =" %
1, n—d<i<n.

Let us now assume that d < k <n/2 —1and 2y < x < 2, 1. Then,

k—1 Cs d—1 1 k—1 1
IR S S <),
=0

i=0 (k=0 —d+1)
and
Ci 2d Ck+1 2d

S y S ’
T — Tk T — Tk Tpy1 — T Tpy1 — T
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and
n A [n/2]
R e ——
i:k+22—/€—1 izk—f—?l_k_l i—d+1 n—-d—i+1
n—d
1
+ ; -
izk;rz(z—k:—l)(n—d—qul)
“ 1
+ 0y —
i:n—d+1@_k_1)
; [n/2] 1
<2
B i:zk—:m(i_k_l)(i_d"i_l)
—d—k— n—1 1
+ ; (n—d k—1) Zzn;di—k
2
§2< +1+d>
6
Therefore,
D e D S
i=0 |:E - l’z| j=0 Lj — Li J? — T
J#i
Ch41 9 — i
Tp41 — T 1_%;2 —k-1
§2d<n2(d+1)+ &
r — T

2
+n+n2<ﬂ+1+d>>.
Tpy1 — X 6

Using (4.25)) and (4.26]), we finally obtain

" (=1 ;| 2%(d+1)
_ < C.
(v — xp) (Tps1 — Z e $@| ]z% | w2
JFi
The other cases k < d and k > n/2 — 1 can be treated similarly. O

We are now ready to state our main result.
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Figure 4.18. Left: log-log plot of £, over n for different values of d. Right:
semi-log plot of €, over d for n = 20.

Theorem 4.13. The Lebesgue constant associated with Floater—Hormann Her-
mite interpolation with m = 1 at equidistant nodes satisfies
A, < 44d+1)C,
for some constant C' that does not depend on d and n.
Proof. If x =z, for k =0,...,n, then
bio(x) = (1= 20wk — 2)bj(w) )bi(an)” = 0, bia(@) = (w — 2i)bi(r)” = 0

and consequently Q¢ ,,(z) = 1 and Q4 ,(z) = 0. Otherwise, it follows from (4.24)),
Lemma [4.2] and Lemma [£.3] that there exists some constant C' that does not
depend on n and d, such that

Qo (1) < 4%d+1)C, Qi (1) < 4°9C.

The statement then follows from (4.13]). O

4.5 Numerical results

We performed several experiments to confirm numerically that the upper bounds
derived above are correct. Figure [1.19] shows Qg ,,(x) and Q;,(z) for Floater—
Hormann Hermite interpolation at equidistant nodes in the interval [0, 1] for
several values of d and n. Note that Q,(z) dominates Q4 ,, () in all examples,
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a behavior that we consistently observed in our experiments. Also note that
the maxima £y, and €, of both functions are obtained inside the first and
the last sub-interval, except for d = 0, and that Q, is basically independent
of n in all examples. This is confirmed by the plot in Figure (left), which
additionally shows that € ,, although independent of n, seems to grow expo-
nentially with d, as suggested by the upper bound in Lemma 4.3, This trend
can also be observed in Figure M(right), where the same quantity is plotted
for a fixed value of n and d between 0 and n/2.

A completely different result can be observed for non-equidistant nodes. For
example, in the case of Chebyshev nodes, Q, grows quickly as n increases,
except for d = 0, as shown in Figure £.200 We therefore recommend to use
Floater-Hormann Hermite interpolation for equidistant nodes, but to stick to
polynomial Hermite interpolants for Chebyshev nodes. It remains future work
to investigate other choices of interpolation nodes.
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Figure 4.19. Qq,(x) (in blue) and Q;,(z) (in red) for d = 0,1,2 (from top to
bottom) and n = 10,20 (from left to right) and equidistant nodes in the interval
[0, 1].
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Figure 4.20. Qq,(x) (in blue) and Q;,(z) (in red) for d = 0,1,2 (from top to
bottom) and n = 10,20 (from left to right) and Chebyshev nodes of the second
kind in the interval [0, 1].
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Conclusion and future work

Barycentric rational interpolants are nowadays recognised as a valid alternative
to more classical interpolation methods thanks to their flexibility, robustness
and favorable convergence rate. The use of Floater—Hormann weights
results in an extremely versatile tool for interpolation of univariate data, espe-
cially in the equispaced setting, where the Runge phenomenon and the unfavor-
able growth of the Lebesgue constant make polynomial interpolants basically
useless. The convergence rate of the Floater—-Hormann interpolants and the
slow growth of the corresponding Lebesgue constants make these tools a state-
of-the-art method for interpolation at equispaced nodes. The main goal of this
dissertation was to investigate the use of the Floater-Hormann family in the
context of approximation and interpolation of derivatives of a function, and to
show that, also in this setting, these interpolants provide a good alternative to
more classical interpolation methods.

In the context of the approximation of derivatives of a function at well-
spaced nodes, we have shown that the k-th derivative of the error produced
by Floater—Hormann interpolants converges as O(h%™'7%) and that the error
can be localised, meaning that e(z) is strongly influenced by the subinterval
in which z is located. This is a property that can be extremely useful when
more accuracy is required in some parts of the interpolation interval, as it is
sufficient to get more samples of the function in that region. Although this
is an expected result, to the best of our knowledge, no other interpolation
method enjoys such a theoretical bound. We proved this result for the so-
called well-spaced nodes, a class of interpolation points that, despite being
quite general, does not include all possible systems. Our extensive numerical
tests suggest that [|e®)|| converges to zero as O(h%™'=%) for any set of nodes,
but the localisation of the error is a special property related to well-spaced
nodes. Bounding this quantity for general sets of nodes, so as to generalise
Theorems and by Berrut et al.| [2011], should still be considered as a
potential future work.

As for the interpolation of the derivatives of a function we have presented

131
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a new iterative method that allows us to obtain a Hermite interpolant start-
ing from any Lagrange interpolant with sufficiently continuous basis functions.
The divergence problems experienced by polynomials, also in this setting,
make again barycentric rational interpolants a valid alternative for interpo-
lation at equispaced points. When applied to the Floater—Hormann basis func-
tions , our method results in a smooth barycentric rational Hermite in-
terpolant with numerator and denominator of degree at most (m+1)(n+1)—1
and (m+1)(n—d), respectively, with a convergence rate of O(h(m+1(@+1)) This
iterative interpolant compares favorably with the ones proposed by [Schneider
and Werner| [1991], Floater and Schulz [2009] and |Jing et al.| [2015] and rep-
resents one of the most valuable tools for Hermite interpolation at equispaced
nodes. In this setting, it would be interesting to investigate the behavior of
the derivatives of the iterative interpolant in the same way as Theorem [3.6]
so as to understand how well the k-th derivative of f is approximated by r(*)
k=20,...,m.

In the last part of this thesis we analysed the behavior of the Lebesgue
constant of the iterative rational Hermite interpolant for m = 1, at equispaced
nodes. The comparison between Theorem and Theorem shows again
that this interpolant should be strongly considered as one of the state-of-the-
art interpolants in this setting. The extension of this result to the Hermite
interpolants of higher order and different sets of interpolation nodes is still an
important open question that we should consider in the future.

Finally, it would be extremely important to extend the Floater—Hormann
construction to the interpolation of multivariate functions f: RP — R, with
p > 1and ¢ > 1. A similar construction as the one proposed by Floater
and Hormann have been proposed for bivariate functions by [Little [1983], us-
ing linear polynomials interpolating f at the vertices of a triangle. Such a
construction is guaranteed to converge quadratically for very general triangula-
tions (Dell’Accio et al.|[2016]), a similar behavior experienced by the univariate
Floater—Hormann interpolants for d = 1. The extension of this approach to
polynomials of higher degree is a challenging but yet intriguing task.
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