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Abstract: The activation of the PI3K/AKT/mTOR pathway is a main driver of cell growth, 
proliferation, survival, and chemoresistance of cancer cells, and, for this reason, represents an 
attractive target for developing targeted anti-cancer drugs. There are plenty of preclinical data 
sustaining the anti-tumor activity of dual PI3K/mTOR inhibitors as single agents and in combination 
in lymphomas. Clinical responses, including complete remissions (especially in follicular lymphoma 
patients), are also observed in the very few clinical studies performed in patients that are affected by 
relapsed/refractory lymphomas or chronic lymphocytic leukemia. In this review, we summarize the 
literature on dual PI3K/mTOR inhibitors focusing on the lymphoma setting, presenting both the three 
compounds still in clinical development and those with a clinical program stopped or put on hold.  
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1. Introduction 

The activation of the phosphoinositide 3-kinase (PI3K)/v-akt murine lymphoma viral oncogene 
homolog (AKT)/mammalian target of rapamycin (mTOR) pathway is a main driver of cell growth, 
proliferation, survival, and chemoresistance of cancer cells [1–5]. The PI3K/AKT/mTOR pathway has 
already represented an attractive target for developing targeted anti-cancer drugs for many years, and, 
indeed, many isoform-specific, pan-inhibitors, or dual PI3K/mTOR inhibitors have already entered the 
clinical evaluation and also undergone approval by regulatory agencies [1–4]. The pathway is also 
important for lymphoma cells and its pharmacological inhibition has shown clinical benefit for patients 
that are affected by different lymphoproliferative neoplasms [1,2,6].  

The present review will focus on dual PI3K/mTOR inhibitors in clinical and pre-clinical 
development for patients that are affected by hematological malignancies after providing an overview 
of the pathway in relation with cancer. 

2. The PI3K Signaling Pathway 

Human cells express three classes of PI3Ks proteins, according to primary sequence homology, 
regulation, and in vitro substrate specificity [1,3,4,7,8]. PI3Ks are composed by a catalytic isoform 
complexed with a regulatory subunit, which regulates the activity, localization, and binding of the 
dimer. In mammals, class I PI3Ks are divided into IA and IB subclasses that are based on their 
regulation criteria. Class IA PI3Ks includes heterodimers of p110 catalytic subunit and p85 regulatory 
subunit. The class IA catalytic subunit isoforms are encoded by the genes PIK3CA, PIK3CB, and PIK3CD 
(p110α, p110β, and p110δ, respectively). These isoforms can associate with any of five regulatory 
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isoforms, p85α and its splicing variants p55α and p50α (PIK3R1), p85β (PIK3R2), and p55γ (PIK3R3), 
generally called p85 type regulatory subunits [7]. Class IB PI3Ks are heterodimers of a p110γ catalytic 
subunit (PIK3CG) with regulatory isoforms p101 (PIK3R5) or p87 (PIK3R6). The catalytic isoforms 
p110α and p110β are ubiquitously expressed, while p110δ and p110γ are mainly expressed in 
leukocytes, but also in other tissues, such as heart, pancreas, liver, and skeletal muscle [8]. Class IA are 
activated by receptor tyrosine kinases (RTKs), while G protein-coupled receptors (GPCR) activate class 
IB PI3Ks. The phosphotyrosines in the RTK consensus YxxM sequence can physically interact with the 
regulatory subunit or indirectly through adaptor proteins, such as IRS1 (insulin receptor substrate) and 
IRS2, leading to the autophosphorylation of tyrosines by RTK homodimerization and the recruitment 
of PI3K to the plasma membrane [7]. Ras (Rat sarcoma) can activate class I PI3Ks by direct binding to 
the p110 catalytic isoform [3]. Class II PI3Ks solely consist of the catalytic subunit, which has three 
isoforms PI3K-C2α, PI3K-C2β, PI3K-C2γ (encoded by PIK3C2A, PIK3C2B, PIK3C2G), while using 
phosphatidylinositol 4-phosphate (PI(4)P) as substrate [8]. Class II PI3Ks regulate angiogenesis, cellular 
growth and survival, but they are less characterized than class I PI3Ks [8]. Class III PI3Ks is composed 
by a single PIK3C3 gene, translated in the VPS34 (vacuolar protein sorting-associated protein 34) 
protein, which forms a heterodimer with VPS15 (encoded by PIK3R4) and produces 
phosphatidylinositol 3-monophosphate (PI(3)P) [9]. The VPS34-VPS15 dimer is implicated in 
intracellular trafficking and autophagy [10]. 

The various forms of PI3K play different roles, among them memory storage and retrieval [11,12], 
metabolism and insulin signaling [13], and immunity [14]. The activated form of the lipid kinases PI3Ks 
phosphorylates the 3′-hydroxyl group of plasma membrane phosphoinositides (PtdIns), producing 
three types of second messengers: phosphatidylinositol 3-monophosphate (PI(3)P), 
phosphatidylinositol 3,4-biphosphate (PI(3,4)P2), and phosphatidylinositol 3,4,5-triphosphate 
(PI(3,4,5)P3/PIP3) [7]. The PIP3 levels are regulated by PTEN (phosphatase and tensin homolog), which 
is an important tumor suppressor, with phosphatase activity that is able to convert PIP3 to PI(3,4)P2. 
When the second messenger PIP3 is formed, downstream PI3K targets, such as AKT and mTOR, are 
activated (Figure 1). PIP3 binds and phosphorylates AKT at Ser473 by the mammalian target of 
rapamycin complex 2 (TORC2) and at Thr308 by phosphoinositide-dependent protein kinase-1 (PDK1) 
[7]. The activation of AKT is maximal when both sites are phosphorylated, and it leads to the 
phosphorylation of large spectra of proteins that are involved in cell growth, survival and progression, 
protein synthesis, and metabolism [7,8,15]. AKT can activate TORC1 complex, which regulates 
ribosomal protein S6 kinase 1 (S6K1, or p70S6K), eukaryotic translation initiation factor 4E-binding 
protein 1 (4EBP1), two key regulators of protein synthesis [16], RAS/ERK, forkhead/winged helix box 
class O (FOXO) family, and other pathways. AKT inhibits the apoptotic pathway by negatively 
regulating the pro-apoptotic Bcl2 family proteins and mediating p53 degradation. In lymphocytes, the 
TEC family tyrosine-kinase proteins BTK (bruton tyrosine kinase), ITK (IL2 inducible T-cell kinase), 
and TEC are PI3K effectors that are activated by PIP3, with potential anti-tumor therapeutic 
implications. TORC1 or S6K1 are involved in a negative feedback regulation loop; their activation leads 
to the deactivation of the PI3K, AKT, and ERK pathway [17,18]. 
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Figure 1. Simplified scheme of the PI3K/mTOR signaling cascade. 

3. PI3K Pathway and Metabolism 

PI3K signaling is activated upon grow factor stimulation and grow factor receptors activation, 
including insulin receptor (INSR), which regulates metabolic homeostasis. Conformational changes of 
the activated receptors allow autophosphorylation and the activation of INSR, which recruits IRS 
proteins, which are phosphorylated by INSR and finally create the binding motif for p85 [3,19]. The 
early insulin-driven PI3K signaling leads to enhanced glucose transporters (GLUT) translocation in the 
membrane [20] and augmented transcription and translation of genes coding for these transporters [21], 
increasing the glucose uptake in muscle and fat cells. The isoform p110α mediates glucose homeostasis 
in muscle, liver, and fat [22]. The regulatory subunit p85 could act both as a positive and negative 
regulator of insulin signaling. In fact, p85 could also block IRS signaling [23], which causes the 
inhibition of insulin signaling and formation of insulin resistance. Based on its normal biologic 
functions, it is obvious that pharmacological targeting the of PI3K/mTOR pathway as cancer treatment 
is unlikely to be devoid of on-target metabolism-related toxicities. Indeed, drugs that target p110α 
induce acute insulin resistance, which causes severe hyperglycemia, leading to hyperinsulinemia [3]. 

4. Deregulation of the Signaling in Cancer 

As already mentioned, a constitutive activation and deregulation of the PI3K/AKT/mTOR 
pathway is almost a hallmark of cancers cells [1,2,4,24,25]. Somatic mutations in the genes encoding for 
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the catalytic PI3K isoforms (i.e., PIK3CA) or regulatory isoforms (i.e., PIK3R1) are frequent [24,26,27]. 
Mutations targeting catalytic class I PI3K isoforms are only associated to PIK3CA catalytic isoform, 
while in the other class I catalytic isoforms PIK3CB, PIK3CD, and PIK3CG tumor associated mutations 
are very rare [28,29]. Mutations in the PIK3CA are associated with augmented kinase activity and 
cluster in two ‘hotspots’, one in the exon 9 (E542K and E545K, in the helical domain), the other in exon 
20 (H1047R, in the kinase domain) [28,30,31]. The E542K and E545K mutations disrupt the inhibitory 
interface with the regulatory subunit p85, while H1047R mutation enhance the interaction of the kinase 
domain with cell membranes. Nevertheless, proteins p100β, p100δ, and p100γ are also capable of 
inducing oncogenic transformation in their wild-type form [32], in line with the fact that PIK3CB, 
PIK3CD, and PIK3CG are generally amplified or overexpressed, but not mutated, in cancer. Genes 
encoding AKT isoforms, mTOR, and PTEN are targeted by somatic mutations deregulating the 
PI3K/AKT/mTOR pathway. Mutations in the RTK or RAS genes, RTK receptor 
overexpression/amplification, autocrine loops involving RTKs, and the ligands are also recurrent 
events [6]. 

The regulatory isoforms p85 are also involved in tumorigenesis. Specific PIK3R1 mutations in the 
region of the protein that interacts with p110 stabilize the p110 isoforms and abrogate the inhibitory 
action of p85 on p110 [33]. Mutations in other PI3K regulator subunits are rare.  

The amplification of AKT1 and AKT2 and activating mutation of AKT1 (in E17K) increase AKT1 
binding to the plasma membrane and its phosphorylation in solid tumors [34].  

A study investigated the somatic alterations involving the PI3K/AKT/mTOR pathway in pan-
cancers, finding mutations or copy number alterations in PIK3CA (14% mutated, 6% amplified), PTEN 
(9% mutated, 7% deletion or two-hit loss), PIK3R1 (4% mutated), AKT1 (1% mutated, 3% amplified), 
and MTOR (4% amplified) [24]. In 5% of cases, genomic rearrangements in PTEN and PIK3R1 have 
been found. Mutations in AKT1, MTOR, PIK3CA, PIK3R1, and PTEN with predicted functional effects 
have higher phospho-AKT levels when compared to tumors with no alteration, and the PTEN copy 
losses were associated with AKT activation. They also found an association between STK11 mutation, 
STK11 copy loss, PTEN copy loss, PIK3CA amplification, higher phospho-4EBP1 expression, and worst 
patient outcome. Interestingly, mutations that were related to RTK signaling were not associated with 
PI3K/AKT/mTOR pathway activation. 

5. Deregulation of the Signaling in Lymphoma 

The PI3K pathway is activated by a large number of mechanisms across B-cell malignancies. In 
patients, PIK3CA mutations or amplification were found, respectively, in 8% of DLBCL (diffuse large 
B-cell lymphoma), mainly in the catalytic domain, [35,36], and in 68% of mantle cell lymphoma (MCL) 
[37,38]. Chronic lymphocytic leukemia (CLL) patients rarely have PIK3CA mutations [39] and 
amplification of PIK3CA has been reported in 5.6% of the cases [40]. PTEN loss was observed in 15% of 
MCL patients [37,38], in 37–55% of DLBCL patients [35,41,42], and in 21% of follicular lymphoma (FL) 
[43]. Low levels of PTEN were observed also in CLL patients [44]. Among DLBCL, the loss of PTEN 
expression was found in 55% of GCB (germinal center B-cell type) DLBCL patients, and only in 14% of 
non-GCB DLBCL cases [41]. In GCB DLBCL cell lines and primary patient samples, PTEN status was 
inversely correlated with the activation of the PI3K/AKT pathway, suggesting that activation of this 
pathway could give an oncogenic addiction for this subtype of DLBCL. In fact, in GCB DLBCL, 
deletions of PTEN, and amplification of the MIR17HG (microRNA-17-92 cluster) sustain cell 
proliferation [45]. Similar deregulation of PTEN and MIR17HG is also in place in Burkitt lymphoma 
(BL) cells, in which the constitute activation of the MYC oncogene that is due to chromosomal 
translocation also directly activates PI3K/AKT/mTOR [46–49].  

PI3K pathway activation can also be mediated by B cell receptor (BCR) signaling. The 
phosphorylation of CD19 by BCR leads to the binding of the regulatory subunit p85, and the 
recruitment of the p110 catalytic subunit [50]. BTK, which is a downstream protein of BCR, is activated 
by PI3K (by PIP3) in B cells.  
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Recurrent mutations in PIK3CD, PIK3R1, and MTOR occur in DLBCL primary tumors [51]. Three 
cases were characterized by single point mutation T  G in the catalytic domain of PIK3CD, converting 
Asp (uncharged side chains) in Lys (charged side chains). The mutations in PIK3CD, PIK3R1, and 
MTOR did not all cluster in a single hot spot of the gene, but they were spread across it. PIK3CD 
mutations were localized in the catalytic domain (N948K, E1021K), PIK3R1 mutations occurred in the 
RhoGAP-p85 domain (V172M, A210D), and in the COG4942 domain (Y470D, D560G), MTOR 
mutations were in the HEAT domain (A835T), close to the FAT and rapamycin binding domains 
(N1765D, A37T, T182K), and to the FATC domain (V619I). The cell lines with MTOR mutations showed 
a higher sensitivity to PI3K inhibitor than those that did not harbor MTOR mutations, which suggests 
that sensitivity to PI3K inhibitors correlates with MTOR mutations.  

In GCB DLBCL cell lines, a tonic (antigen-independent) BCR signaling activates AKT, regulates 
proliferation and size with different magnitudes, and AKT knockout resulted in toxicity [52]. 

Chronic active BCR signaling is typical of ABC (activated B cell) DLBCL, the subgroup of DLBCL 
with constitutive activation of NFκB (nuclear factor κB), also regulated by PI3K [53]. 

The phosphorylation of AKT was detected in 52% of DLBCL [54], and the sensitivity to AKT 
inhibition correlated to the efficacy of the inhibitor to block phosphorylation of S6K1 and RPS6 [55]. 
Cell lines expressing AKT-independent S6K1, as activated by upregulation of PIM2 (Pim-2 Proto-
Oncogene, Serine/Threonine Kinase) or activation of BCR, are resistant to AKT inhibitors. Combining 
AKT inhibitor with BTK, PIM2, or S6K1 inhibitors could overcome resistance to AKT inhibition in this 
subtype of lymphoma. 

Finally, the PI3K/AKT/mTOR signaling also plays an important role in the different non-neoplastic 
cells that are present in the tumor microenvironment, for example regulating the proliferation and 
migration of endothelial cells, the M1/M2 polarization of macrophages, and the activation and/or 
differentiation of T cells [56–62].  

6. Dual PI3K/mTOR Inhibitors in Lymphoma 

We can recognize different classes of compounds targeting the PI3K/AKT/mTOR pathway: pan-
PI3K inhibitors, isoform specific inhibitors (i.e., idelalisib), dual PI3K/mTOR inhibitors, AKT inhibitors, 
allosteric mTOR inhibitors (rapalogs) inhibitors, and mTOR kinase inhibitors [1,2,4,14,63–69]. An 
interesting strategy is to target several PI3K isoforms as well as mTOR instead of a single PI3K isoform 
or only mTOR. In fact, the catalytic isoform of the p110 subunit and mTOR have structural similarities, 
and targeting two crucial points of the same pathway could lead to higher efficacy, could overcome 
feedback inhibition coming from mTOR inhibition [70], and the risk of drug resistance that should 
easily come out in the case of treatment with compounds targeting a single p110 isoform [71–73]. 
Indeed, the dual PI3K/mTOR inhibitors have shown, at least in the preclinical setting, an improved 
than what achieved targeting individually single PI3K isoforms, all PI3K isoforms or mTOR [74–77]. 
Table 1 shows an exhaustive list of the dual class I PI3K and mTOR inhibitors. Table 2 summarizes the 
clinical data available for patients that are affected by lymphoma enrolled in phase I/II studies with 
such a class of compounds. The chemical structures, International Union of Pure and Applied 
Chemistry (IUPAC) names, and molecular weights for all of the compounds are shown in Table 3 or 
Table S1, depending on their current clinical development stage. Indeed, there are only three dual 
PI3K/mTOR inhibitors that are still in clinical development for humans: bimiralisib, GDC-0084, and 
gedatolisib.  
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Table 1. List of dual Pi3K/mTOR inhibitors sorted by their official name, if assigned, or by their common/alternative name. 

Official Name Common/Alternative Name Company/Developer 
Ability to Cross 

the BBB 
Clinical Stage Orphan Drug Status Development Status * 

Apitolisib  GDC-0980, RG7422 Genentech; Piramed No/low Phase I/II - Discontinued * 
Bimiralisib PQR309 Piqur Therapeutics yes Phase I/II DLBCL On-going trials 

Dactolisib BEZ235, NVP-BEZ235, RTB-
101, NVP-BEZ235-NX 

Novartis; resTORbio n.a.    

Gedatolisib 
PF-05212384/PKI-587, 1197160-

78-3 Wyeth; Pfizer n.a. Phase I/II/III - On-going trials 

Omipalisib 
GSK2126458, GSK458, GSK-

212 GlaxoSmithKline yes Phase I - No on-ongoing trials 

Panulisib P7170, S9WA04F921 Piramal Healthcare n.a. Phase I - No on-going trials 
Samotolisib LY3023414, GTPL8918 Eli Lilly and Company n.a. Phase I/II - Discontinued * 
Voxtalisib XL765, SAR245409 EMD Serono; Exelixis; Sanofi yes Phase I/II - Discontinued * 

- BGT226, NVP-BGT226 Novartis n.a. Phase I/II - Discontinued * 
- DS7423, 70895382 Daiichi Sankyo yes Phase I - Discontinued * 

- GDC-0084, RG 7666 
Genentech; Kazia 

Therapeutics yes Phase I/II/III 
glioblastoma 
multiforme On-going trials 

- GNE-477 Genentech n.a. - - No on-going trials 
       
- PF-04691502 Pfizer n.a. Phase I/II - Discontinued * 
- PF-04979064 Pfizer n.a. - - No on-going trials 
- PI-103, 9884685 Merck yes - - No on-going trials 
- PKI-179 Wyeth; Pfizer n.a. - - Discontinued * 
- PKI-402, 44187953 Wyeth n.a. - - No on-going trials 
- PQR530 Piqur Therapeutics yes - - No on-going trials 

- PWT33597, VDC-597 
Pathway Therapeutics; 

VetDC 
n.a. Phase I - No on-going trials 

- SF-1126 Semafore; SignalRx 
Pharmaceuticals 

n.a. Phase I CLL Status unknown 

- SN32976, 1246202-11-8 The University of Auckland n.a. - - Status unknown 
- VS-5584, SB2343 S*BIO; Verastem n.a. Phase I Mesothelioma Discontinued * 

n.a., data not available; *, based on http://adisinsight.springer.com/ and/or https://clinicaltrials.gov accessed in December 2019. BBB, blood brain barrier; DLBCL, 
diffuse large B cell lymphoma; CLL, chronic lymphocytic leukemia.
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Table 2. Clinical trials evaluating dual PI3K/mTOR inhibitors as single agents that have enrolled lymphoma patients *. 

Drug Phase Trial Lymphoma 
Population 

Overall Response Rate Complete Remission Rate Partial Response Rate 

Bimiralisib I/II 
NCT02249429 

[78]^ 53, R/R 

Whole cohort, 27% (3/11) ^ 
DLBCL 100% (1/1) 

FL, 25% (1/4) 
T-cell lymphoma, 0% (0/1) 

MZL, 100% (1/1) 
MCL, 0% (0/2) 
HL, 0% (0/2) 

Whole cohort, 9% (1/11) ^ 
DLBCL, 0% (0/1) 

FL, 25% (1/4) 
T-cell lymphoma, 0% (0/1) 

MZL, 0% (0/1) 
MCL, 0% (0/2) 
HL, 0% (0/2) 

Whole cohort, 18% (2/11) ^ 
DLBCL 100% (1/1) 

FL, 0% (0/4) 
T-cell lymphoma, 0% (0/1) 

MZL, 100% (1/1) 
MCL, 0% (0/2) 
HL, 0% (0/2) 

Bimiralisib II NCT03127020 9, R/R n.r. n.r. n.r. 

Bimiralisib II NCT02669511 
21, R/R 
PCNSL n.r. n.r. n.r. 

Voxtalisib I NCT00485719 [79] 16 **, R/R 

Whole cohort, 19% (3/16) 
FL, 20% (1/5) 

MCL, 17% (1/6) 
DLBCL, 50% (1/2) 

Whole cohort, 6% (1/16)  
FL, 20% (1/5) 

MCL, 0% (0/6) 
DLBCL, 0% (0/2) 

Whole cohort, 13% (2/16) 
FL, 0% (0/5) 

MCL, 17% (1/6) 
DLBCL, 50% (1/2) 

Voxtalisib II NCT01403636 [80] 167 ***, R/R 

Whole cohort, 18% (30/167); 
FL, 41% (19/47); 

MCL, 12% (5/42); 
CLL, 11% (4/36); 

DLBCL, 5% (2/42). 

Whole cohort, 5%; 
FL, 11% (5/47); 

MCL, 7% (3/42); 
CLL, 0% (0/36); 

DLBCL, 0% (0/42). 

Whole cohort, 13%; 
FL, 30% (14/47); 
MCL, 5% (2/42); 
CLL, 11% (4/36); 

DLBCL, 5% (2/42). 

SF1126 I ^^ NCT00907205 [81] 5 ****, R/R 
Whole cohort, 0% (0/16) 

CLL, 0% (0/4) 
DLBCL 0% (0/1) 

Whole cohort, 0% (0/16) 
CLL, 0% (0/4) 

DLBCL 0% (0/1) 

Whole cohort, 0% (0/16) 
CLL, 0% (0/4) 

DLBCL 0% (0/1) 
*, based on what reported in https://clinicaltrials.gov accessed in December 2019; **, 6 MCL, 5 FL, 2 DLBCL, 1 anaplastic large cell lymphoma, 1 HL, 1 transformed 
[79]; ***, 47 FL, 42 MCL, 42 DLBCL, 36 CLL [80]; ****, 1 DLBCL, 4 CLL [82]; n.r., not reported; ^, based on 11 evaluable patients reported in an abstract [78]; ^^, the trial 
also allowed the addition of rituximab. 
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Table 3. Chemical structures of the three dual PI3K/mTOR inhibitors still in clinical development. Data collected from https://www.ebi.ac.uk/chembl/ [83], 
http://zinc.docking.org/substances/home/ [84], https://pubchem.ncbi.nlm.nih.gov/ [85], https://www.drugbank.ca/ [86], https://fdasis.nlm.nih.gov/srs/. MW, 
molecular weight. IUPAC, International Union of Pure and Applied Chemistry. Additional dual PI3K/mTOR inhibitors are presented in Table S1. 

Official /Common/ 
Alternative Name 3D-Structure IUPAC Name MW 

Bimiralisib, 
PQR309 

 
 
 
 

 
 

 
 
 

 

5-[4,6-bis(morpholin-4-yl)-1,3,5-
triazin-2-yl]-4-

(trifluoromethyl)pyridin-2-amine 
411.39 

Gedatolisib, 
PF-05212384/ 

PKI-587,  
1197160-78-3 

 
 
 
 

 

 

1-{4-[4,6-bis(morpholin-4-yl)-1,3,5-
triazin-2-yl]phenyl}-3-{4-[4-

(dimethylamino)piperidine-1-
carbonyl]phenyl}urea 

615.74 

GDC-0084, 
RG 7666 

 
 

 
 

 
 
 

 
 
 

 

 
5-[6,6-dimethyl-4-(morpholin-4-
yl)-6H,8H,9H-[1,4]oxazino [3,4-
h]purin-2-yl]pyrimidin-2-amine 

 

382.4 
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GDC-0084 (RG 7666) is orally given and it passes the blood brain barrier (BBB) and it has been 
specifically developed for patients with brain tumors or with brain metastases from solid tumors [87–
89]. Gedatolisib (PF05212384/PKI-587) is an intravenous inhibitor of PI3Ks (preferentially of p110α, 
also acting on the mutant forms) and TORC1/TORC2 with preclinical activity in different solid tumor 
models [90,91]. There are no data in lymphoma models, while the compound has been extensively 
tested in lymphoblastic and myeloid leukemia models [92–95]. No lymphoma patient was treated in 
the phase I study [96]. 

Bimiralisib (PQR309) inhibits all of the PI3Ks (p110α, first, followed by p110δ, p110β, and 
p110γ) and TORC1/TORC2 [97]. It is an oral compound and it is capable of crossing the BBB [97]. 
When comparing the published data [97,98], bimiralisib has an overlapping inhibition of p110α with 
voxtalisib, a reduced inhibition of p110δ, p110β, and p110γ, a higher activity on mTOR, and a reduced 
activity on the off-target DNA-PK [97]. Bimiralisib has in vitro and in vivo anti-lymphoma activity in 
models that were derived from B and T cell lymphomas [75], and also from canine DLBCL [99]. The 
pattern of activity is highly correlated to what was achieved by apitolisib, another dual PI3K/mTOR 
inhibitor (see below), but bimiralisib shows higher IC50 values [75]. Bimiralisib also shows in vitro 
activity in lymphoma cell lines with primary or secondary resistance to the PI3Kδ inhibitor idelalisib 
[75]. Analysis of transcriptome and phospho-proteomics of DLBCL cells that were exposed to 
bimiralisib demonstrates that the compound modulates transcripts and proteins that are involved in 
fundamental pathways and signaling cascades: BCR signaling, NFκB pathway, PI3K/AKT/mTOR 
pathway, mRNA processing, apoptosis, cell cycle, MAPK/RAS signaling, Myc pathway, and 
glycolysis [75]. Moreover, the modulation of these pathways occurs via changes at both the RNA and 
protein phosphorylation levels. However, while the mTOR pathway and mRNA metabolism are 
more regulated at the protein level, cell cycle and BCR signaling changes are more driven by 
expression level changes [75]. Interestingly, the early changes at the RNA level seen after bimiralisib 
exposure are largely overlapping with what was observed after exposing the same DLBCL cell lines 
to the p100δ inhibitor idelalisib, the p100δ/ p100γ inhibitor duvelisib, or the BTK inhibitor ibrutinib 
[75], in accordance with studies that were performed in normal B cells after BTK and PI3K genetic 
silencing [100]. Importantly, an adaptive mechanism with an early upregulation of genes coding 
members of the BCR signaling is induced by bimiralisib, idelalisib, duvelisib and ibrutinib, partially 
explaining the benefit of targeting the BCR signaling with compounds targeting multiple of its 
members [75]. Bimiralisib as well as other BCR signaling inhibitors, up-regulates CXCR4, which is a 
possible marker of adaptive resistance [75,101]. 

Following the completion of a phase 1 study in patients with advanced solid tumors [102], 
bimiralisib has entered the clinical setting for patients with relapsed/refractory lymphoma (phase I/II: 
II NCT02249429, NCT03127020), and for patients with relapsed/refractory primary central nervous 
system lymphomas (NCT02669511). Unfortunately, the only data publicly available refer to the first 
15 patients that were enrolled in the phase I (NCT02249429). Reported severe (G3/G4) side effects 
include hyperglycemia, rhabdomyolysis, anorexia, neutropenia, sepsis, pneumonitis, and fatigue. 
Clinical responses were seen in 27% of 11 evaluable patients with one complete response (CR) in a 
FL patient and partial responses (PR) in two patients (DLBCL, MZL) (Table 2), and stable diseases 
(SD) in FL (3/4 patients), MCL (1/2 patients), and T-cell lymphoma (1/1 patients) [78]. The pattern of 
activity, with most of the responses in FL, is similar to what was reported with another dual 
PI3K/mTOR inhibitor voxtalisib (see below) [79,80]. 

All of the other dual PI3K/mTOR inhibitors have not reached the clinical development stage or 
the latter has been permanently or temporarily stopped. Among these, here we will only discuss the 
two agents with available clinical data, whilst we refer to the Supplementary Material for the other 
compounds. 

Voxtalisib (XL765/SAR245409) preferentially targets p110γ, followed by p110α, p110δ, p110β, 
and TORC1/TORC2 with activity in a variety of solid tumor models [98]. It is an oral compound and 
passes the BBB [98]. Voxtalisib also has preclinical anti-tumor activity in models of lymphoma and 
CLL [103]. The positive laboratory data have led to different clinical trials as single agent and also in 
combination in patients with hematological cancers [79,80,104]. 
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Sixteen patients with relapsed or refractory lymphoma (MCL, FL, DLBCL, others) received 
voxtalisib in an expansion cohort [79] of the phase I study for patients with solid tumors 
(NCT00485719) [105] (Table 2). The toxicity profile included fatigue, gastrointestinal and cutaneous 
adverse events, liver enzyme abnormalities, and cytopenia [79]. Three patients achieved a clinical 
response with one CR in a FL patients and two PR in patients (DLBCL, MCL, one patient each) [79]. 
Although not reaching the definition of PR, two FL experienced tumor regression and six patients 
had SD, with one MCL and one FL receiving treatment for four months or longer [79]. Reductions in 
PI3K/mTOR and ERK pathway activity were seen in the serial tumor biopsies done, which were only 
successfully performed in one patient (MCL with PR) [79]. There was no evident modulation of 
chemokine or cytokine levels by drug exposure. Only two of 12 patients that underwent serial 
measurements presented changes [79]. Although they were both cases with clinical responses (CR 
and PR), the observed changes were not concordant with no overlapping changes and with the IL16 
(interleukin 16) levels behaving in the opposite way [79]. Based on these results, a phase II study with 
voxtalisib (NCT01403636) enrolled 167 patients with relapsed or refractory disease (FL, MCL, 
DLBCL, CLL) [80] (Table 2). Clinical responses were seen in all of the subtypes, but especially in FL 
(41%), followed by MCL and CLL (12 and 11%, respectively) [80]. Only two of the 42 (5%) DLBCL 
patients responded [80]. Complete responses were observed in FL (11%, 5/47) and MCL (7%, 3/42) 
[80]. SD was seen in 33% (14/42) of MCL patients, 30% (14/46) of FL, 10% (4/41) of DLBCL, and 66% 
(23/35) of CLL [80]. The median progression-free survival was 58 weeks for FL patients, 24 for CLL, 
nine for MCL, and seven for DLBCL [80]. 

No useful information came from genetic studies done on tumor samples before treatment or 
from the measurement of cytokines and chemokines in plasma samples in both the phase I [79] and 
in the phase II [80] voxtalisib studies. In the phase I study, only two of 12 patients that underwent 
serial measurements presented changes [79]. Although they were both cases with clinical responses 
(CR and PR), the observed changes were not concordant and the IL16 levels modulated in the 
opposite way [79]. 

The combination has also been studied in a phase I clinical trial study (NCT01410513), evaluating 
voxtalisib in combination with the anti-CD20 monoclonal antibody rituximab plus or minus the 
chemotherapy agent bendamustine in patients with relapsed or refractory B-cell malignancies [104]. 
The study enrolled 37 patients, 16 in the rituximab arm (CLL, n.=11; MCL, n.=3; FL, n.=2) and 21 in 
the triple combination arm (CLL, n.=12; MCL, n.=6; FL, n.=3) [104]. The safety profile (characterized 
by nausea, fatigue, and vomiting) was acceptable, with no interactions among drugs at the 
pharmacokinetic level [104]. There was clinical activity: one CR in FL patient and five PRs in the 
voxtalisib/rituximab; three CRs (one patient with MCL, two with CLL) and eight PRs in the 
voxtalisib/rituximab/bendamustine arm [104]. 

The clinical development of voxtalisib has been stopped [106] due to limited clinical anti-tumor 
activity observed in two phase I studies enrolling 83 (NCT00485719) [105] and 49 (NCT01596270) 
[106] patients with advanced solid tumors. 

The LY294002/SF1101 derivative SF1126 is a multikinase inhibitor, which targets the PI3K 
isoforms and TORC1/TORC2, but also DNA-PK and the BET Bromodomain proteins [107–109]. 
SF1126 has preclinical anti-tumor activity in B and T cell lymphoma models [110], as well from 
multiple myeloma [111]. None of the five patients with B cell lymphoid neoplasm that were enrolled 
in the phase I study (NCT00907205) achieved a CR or PR [81] (Table 2). Two CLL patients (one with 
no prior therapy) achieved a SD [81]. 

7. Future Perspective for Dual PI3K/mTOR Inhibitors 

As evident from what summarized for each individual compound, dual PI3K/mTOR inhibitors 
that have entered the clinical evaluation have not achieved as good results as expected. The main 
reason could be the frequent occurrence of dose-limiting toxicities that do not allow for reaching 
potentially active doses [1–4,112]. This does not come as a surprise since dual PI3K/mTOR inhibitors 
target multiple proteins that play fundamental roles in a variety of normal tissues. The main toxicities 
include diarrhea [80,81,102,113–117], vomiting [102,114,116–118], nausea [80,102,114,117–119], rash 
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[96,102,106,113,114,118–121], fatigue [80,102,105,106,113,114,117,118,121,122], decreased appetite 
[80,105,117–119], hyperglycemia [96,102,114,115,119,120,122,123], mucositis [89,96,114,115,118,122], 
increase in liver enzymes [96,102,105,124], and thrombocytopenia [114,122,124]. The additional dose 
limiting toxicities reported in individual trials, which does mean they are specific to a single 
compound, include allergic reactions [124], bradycardia and myocardial ischemia [89], dysgeusia 
[118], hypertension [102], pneumonitis [115], uveitis [114], and suicide attempt [102]. 

Different dosing schedules could improve the toxicity profile and provide the best therapeutic 
window. For example, apitolisib given once weekly [123] has shown better tolerability than once 
daily [120]. Other approaches include intermittent dosing, dose reductions, and interruptions that 
are based on side effects [1–3]. 

Alternative modalities to decrease the side effects that have been explored are the delivery of the 
compounds preferentially to cancer cells (sparse preclinical data with BEZ235 in CaCO(3) 
nanocrystals [125] or in liposomes [126]) or lowering the doses of the dual PI3K/mTOR inhibitors in 
the context of combination therapies can help to overcome the toxicity issue. Combinations would 
also be important for two additional reasons. First, the addition of a second compound can overcome 
the primary or acquired resistance to the dual PI3K/mTOR inhibitors [3–5]. Indeed, resistance to both 
PI3K and mTOR inhibitors is due to genetic events that maintain the same pathway active or via 
activation of alternative signaling cascades [3,4,64]. Second, the activation of PI3K/mTOR signaling 
is a frequent mechanism of resistance to other targeted agents [3,4]. Studies conducted mainly in the 
solid tumor setting suggest that combinations with other agents can be feasible [104,113,114,127,128], 
although toxicities can still be an issue [106,127,129–133]. 

Preclinical data that were obtained in different lymphoma models indicate that dual PI3K/mTOR 
inhibitors synergize with both targeted and chemotherapy agents, as presented in Table 4. For few 
combinations, synergism has been observed in different laboratories and/or obtained with different 
dual PI3K/mTOR inhibitors, underlying the robustness of the data. 

Table 4. Combinations based on dual PI3K/mTOR inhibitors with available preclinical data in 
lymphomas. 

Additional Mechanism of 
Action 

Combination Partner PI3K/mTOR Inhibitor Disease Model 

AKT inhibition 
Perifosine [134], 
Oridonin [135] Dactolisib [134] 

ABC DLBCL [135], MCL 
[134] 

Anti-CD20 monoclonal 
antibody 

Rituximab Bimiralisib [75], 
PF04691502 [136] 

DLBCL [75,136], 
MCL[136] 

Anti-CD30 antibody drug 
conjugate 

Brentuximab vedotin Omipalisib, BGT226 
[137],  

HL [137] 

Autophagy inhibition Chloroquine Dactolisib [138] 
GCB DLBCL, MCL, T-

NHL [138] 

BCL2 inhibition Venetoclax 
Bimiralisib [75], 

Dactolisib [139,140], 
Omipalisib [141] 

ABC DLBCL [75], GCB 
DLBCL [75,139,140], MCL 

[75], CLL [75], T-NHL 
[141] 

BCL2/BCL-XL inhibition Navitoclax Dactolisib [76] GCB DLBCL [76] 
BCL2/BCL-XL/MCL1 

inhibition 
Obatoclax Dactolisib [76] ABC DLBCL [76] 

BET Bromodomain 
degradation 

ARV-825 Bimiralisib [75] DLBCL [75] 

BET Bromodomain 
inhibition JQ1 Dactolisib [142] Murine T-NHL [142] 

BTK inhibition Ibrutinib 
Apitolisib [143], 
Bimiralisib [75], 
Dactolisib [143] 

ABC DLBCL [75,143], 
MCL [75] 

Chemotherapy Doxorubicin 
Dactolisib [144], 
Omipalisib [141] MCL [144], T-NHL [141] 
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Chemotherapy Vincristine Dactolisib [142] 
MCL, murine T-NHL 

[142] 
Complex I 

(NADPH:ubiquinone 
oxidoreductase)  

inhibition 

Metformin Bimiralisib [75] DLBCL [75] 

HDAC inhibition Panobinostat [75,145], 
Vorinostat [141] 

Dactolisib [145], 
Bimiralisib [75], 
Omipalisib [141] 

DLBCL [75,145], MCL 
[145], CLL [75], T-NHL 

[141] 

IRF4/SPIB inhibition Lenalidomide Bimiralisib [75], 
Dactolisib [146] 

ABC DLBCL [75,146] 

JAK1/2 inhibition INCB16562 Dactolisib [147] DLBCL [147] 
MEK inhibition AZD6244  Dactolisib [148] GCB DLBCL, BL [148] 

mTOR inhibition Everolimus Dactolisib [134] MCL [134] 
Multikinase inhibition  Enzastaurin Dactolisib [134] MCL [134] 

Myc inhibition 10058-F4 Dactolisib [142] Murine T-NHL [142] 
NF-κB inhibition BAY-11-7082 Dactolisib [76] ABC-DLBCL [76] 
PAK1 inhibition IPA-3 Dactolisib [74] DLBCL [74] 

PIM inhibition 
SGI-1776 [76], 
AZD1208 [75]  

Dactolisib [76], 
Bimiralisib [75] 

ABC DLBCL [75,76], 
GCB-DLBCL [75] 

Proteasome inhibition 
Bortezomib [144,149], 

[141], Marizomib  
[75] 

Dactolisib [144,149], 
Bimiralisib [75], 
Omipalisib [141] 

ABC DLBCL [75], t-
FL/GCB DLBCL [149], 

MCL [144], T-NHL [141]. 
Steroids Dexamethasone [150] Omipalisib[150] T-NHL [150] 

ABC DLBCL, activated B-cell like diffuse large B cell lymphoma; GCB DLBCL, germinal center B-cell 
type diffuse large B cell lymphoma; MCL, mantle cell lymphoma; t-FL, transformed follicular 
lymphoma; CLL, chronic lymphocytic leukemia; HL, Hodgkin lymphoma; T-NHL: T-cell lymphoma;. 

While also considering the toxicity profile and its already established role in CLL and 
lymphomas [151], the BCL2 inhibitor venetoclax appears as an interesting drug to be combined with 
dual PI3K/mTOR inhibitors. Bimiralisib, dactolisib, and omipalisib have all shown synergism when 
combined with venetoclax [75,139–141]. Combining dactolisib with venetoclax induces the 
accumulation of pro-apoptotic BAD and BIM and down-regulation of the anti-apoptotic MCL1 
[139,140], with the ability to revert secondary resistance to venetoclax [139]. The combination of 
bimiralisib with venetoclax is much more active than the single agents in GCB and ABC DLBCL 
xenograft models, as well as causing an increase in cell death in CLL primary cells [75]. 

Another combination that is sustained by multiple data is with histone deacetylase (HDAC) 
inhibitors. Dactolisib, bimiralisib, and omipalisib have been successfully combined with panobinostat 
[75,145] or Vorinostat [141]. In ABC, GCB and double hit DLBCL, and MCL cell lines, dactolisib had 
major effect when combined with HDAC inhibitor panobinostat, AKT inactivation, MCL1 
downregulation, and BIM upregulation contribute to the effect of the combination of dactolisib with 
panobinostat [145,147,152]. 

Combination with the FDA approved BTK inhibitor ibrutinib appears to be another interesting 
combination, as shown using apitolisib, bimiralisib [75], and dactolisib [143] in ABC DLBCL and MCL 
models [75,143]. 

Bimiralisib and other BCR signaling inhibitors induce the increased expression of both PIM1 and 
PIM2, kinases that are involved in lymphomagenesis and potential therapeutic targets. The 
combination of bimiralisib with the PIM inhibitor AZD1208 [153] is largely synergistic in both GCB 
and ABC DLBCL cells with an increased G0/G1 cell cycle arrest [75]. The addition of the PIM inhibitor 
SGI-1776 to dactolisib is associated with MCL1 downregulation and increased cell death in the ABC 
DLBCL cell lines [76]. 

Bimiralisib [75] and PF04691502 [136] have been beneficially combined with the anti-CD20 
monoclonal antibody rituximab in the DLBCL and MCL cell lines. The addition of rituximab to a dual 
PI3K/mTOR inhibitors with rituximab is the only combination that has been clinically evaluated. 
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Indeed, we have already mentioned the voxtalisib phase I trial that has reported some clinical activity 
[104]. 

Similar results have been obtained with three dual PI3K/mTOR inhibitors (dactolisib, 
bimiralisib, and omipalisib) added to proteasome inhibitors (bortezomib or marizomib) 
[75,141,144,149]. In particular, the addition of dactolisib reverts the resistance to proteasome 
inhibitors in a bortezomib-resistant MCL cell line decreasing AKT and mTOR signaling [144]. 

Finally, the effect of this class of agents on the tumor microenvironment and how this indirect 
activity can be exploited, especially in combination with immuno-oncology drugs, such as the 
bispecific antibodies, is an open issue [154,155]. 

8. Conclusion 

Based on the importance of the p110α in different solid tumors, a bigger relevance to this isoform 
has been given in the design of compounds and in the population of patients that are enrolled in the 
clinical studies. However, there are plenty of preclinical data sustaining the anti-tumor activity of 
dual PI3K/mTOR inhibitors as single agents and in combination in lymphomas. Additionally, clinical 
responses, including CR (especially in the FL setting), are clearly observed in the very few clinical 
studies that were performed in patients affected by relapsed/refractory lymphomas or CLL. 
Unfortunately, the vast majority of clinical trials that were performed in patients with solid tumors 
have been disappointing due to unacceptable toxicity profile and/or to a lack of meaningful clinical 
activity. Based on these clinical results, the clinical development of all but three dual PI3K/mTOR 
inhibitors has been stopped, although they could be beneficial for some patients that were affected 
by lymphoid neoplasms. Different schedules of dual PI3K/mTOR inhibitors given as single agents in 
specific patients’ populations (for example, high risk or relapsed/refractory FL patients) or 
combination regimens (for example, with venetoclax) appear still worthy of further clinical 
investigations. The use of tools to identify the responders at an early time-point, possibly paired with 
still-to-be defined robust biomarkers, will help in optimizing the use of dual PI3K/mTOR inhibitors, 
avoiding both toxicities to patients that are unlikely to benefit and costs to the health care system. 
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