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Transcriptional signature of human pro-
inflammatory TH17 cells identifies reduced IL10
gene expression in multiple sclerosis
Dan Hu1, Samuele Notarbartolo 2, Tom Croonenborghs3,4,5, Bonny Patel1, Ron Cialic1, Tun-Hsiang Yang6,

Dominik Aschenbrenner2,10, Karin M. Andersson7, Marco Gattorno8, Minh Pham1, Pia Kivisakk1,

Isabelle V. Pierre1, Youjin Lee1, Karun Kiani3, Maria Bokarewa 7, Emily Tjon1, Nathalie Pochet 3,

Federica Sallusto2,9, Vijay K. Kuchroo1 & Howard L. Weiner1

We have previously reported the molecular signature of murine pathogenic TH17 cells that

induce experimental autoimmune encephalomyelitis (EAE) in animals. Here we show that

human peripheral blood IFN-γ+IL-17+ (TH1/17) and IFN-γ−IL-17+ (TH17) CD4+ T cells display

distinct transcriptional profiles in high-throughput transcription analyses. Compared to TH17

cells, TH1/17 cells have gene signatures with marked similarity to mouse pathogenic TH17

cells. Assessing 15 representative signature genes in patients with multiple sclerosis, we find

that TH1/17 cells have elevated expression of CXCR3 and reduced expression of IFNG, CCL3,

CLL4, GZMB, and IL10 compared to healthy controls. Moreover, higher expression of IL10 in

TH17 cells is found in clinically stable vs. active patients. Our results define the molecular

signature of human pro-inflammatory TH17 cells, which can be used to both identify

pathogenic TH17 cells and to measure the effect of treatment on TH17 cells in human

autoimmune diseases.
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TH17 cells are a subset of interleukin-17 (IL-17)-secreting T-
helper (TH) cells implicated in the pathogenesis of multiple
sclerosis (MS), rheumatoid arthritis, juvenile idiopathic

arthritis (JIA), and psoriasis1,2, whose differentiation is regulated
by the transcription factor RAR-related orphan nuclear receptor

gamma (RORγt)3. Initially, TH17 cells were considered a uni-
formly pro-inflammatory population driven by IL-23 and
expressed a unique pattern of pro-inflammatory cytokines dif-
ferent from TH1 and TH2 cells4–6. Subsequent studies showed the
function of TH17 cells in autoimmune diseases and defense
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Fig. 1 Transcriptionally distinct human TH17 subsets in peripheral blood. a IFN-γ and IL-10 expression in human TH17 cells. Isolated PBMCs were stimulated
with PMA and ionomycin for 4 h. Production of indicated cytokines in CD4+ T cells were assessed by flow cytometry with intracellular cytokine staining
assay. Dotplots shown were gated on CD4+ lymphocytes. Data are representative of two independent experiments with similar results. b Isolation of live
TH1/17, TH17, TH1, and DN cells from human PBMC for nCounter analysis. CD4+ T cells isolated from the peripheral blood of healthy donors were
stimulated with PMA and ionomycin for 3 h. CD3+CD4+-TH1/17 (IFN-γ+IL-17+), TH17 (IFN-γ−IL-17+), TH1 (IFN-γ+IL-17−), and DN (IFN-γ−IL-17−) cells were
sorted after being stained with fluorescence-conjugated anti-CD3 and CD4 in combination with cytokine secretion detection kits (Miltenyi) (n= 5). b
Isolated CD4+ T subsets were stimulated and stained as in a. c–f CD4+ T-cell subsets treated as in a were measured using the nCounter (nanoString
Technologies) CodeSet HuTH17 and subsequently analyzed (hereafter abbreviated as nCounter analysis). c Differential expression analysis of mRNA levels
of IL17A and IFNG. *p< 0.05, **p< 0.005, ***p< 0.0005, One-way ANOVA with Tukey’s multiple comparison test (mean± s.d.). d Differential expression
analysis of mRNA levels of IL10. Two tailed, paired Student’s t test p-value was shown (mean± s.d.). The 326 out of the 418 measured genes in the HuTH17
CodeSet that showed unsupervised variation across the sample population were used for e hierarchical clustering of the individual samples (individual
donors: A, B, C, D, and E), f hierarchical clustering of the Pearson’s linear correlations between the samples (individuals n= 5; individual donors: A, B, C, D,
and E), and g principal component analysis of the samples (individuals n= 5)
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against bacterial and fungal pathogens7–10. TH17 cells can be
induced to produce TH1 and TH2 cytokines11 and not all TH17
cells are pathogenic. Murine TH17 cells are pathogenic or non-
pathogenic based on their ability to induce experimental auto-
immune encephalomyelitis (EAE)12; pathogenic TH17 cells
express higher levels of IFN-γ while non-pathogenic TH17 cells
produce IL-10 with IL-1713.

As in mice, human TH17 cells can also co-produce IFN-γ or IL-
10. IL-10-producing TH17 cells are induced in response to Sta-
phylococcus aureus, whereas TH17 cells induced by Candida
albicans produce IL-17 and IFN-γ. Both types of TH17 cells are
enriched in a subset of human memory CD45RA–CD4+ TH cells
expressing the chemokine receptors CCR6 and CCR4, while IFN-
γ-secreting TH17 (TH1/17) cells may additionally express
CXCR39,14. A deficiency in IL-17 or the TH17 pathway com-
promises host defenses against S. aureus and C. albicans, and
reduces the frequency of circulating CCR6+ memory CD4+ TH

cells15,16. Thus both IFN-γ and IL-10-producing TH17 cells may
be protective during infection.

IFN-γ and IL-10-producing TH17 cells are considered pro-
inflammatory and anti-inflammatory, respectively, and have
opposite functions in autoimmunity17,18. Studies of T-cell
libraries from patients with MS showed that CCR6+ myelin-
reactive T cells exhibit enhanced production of IFN-γ, IL-17, and
GM-CSF and reduced production of IL-10, when compared with
those from healthy individuals19. In JIA, IFN-γ-secreting TH1/17
cells are highly enriched in the synovial fluid (SF) of inflamed
joints20. The inflammatory environment in diseased joints can
induce IFN-γ-negative TH17 cells to co-produce IFN-γ, impli-
cating plasticity of TH17 cells21. The proportions of TH1/17-
enriched CD4+CD161+ T cells in the SF of affected joints cor-
relate with the erythrocyte sedimentation rate and serum levels of
C-reactive protein, suggesting these cells function in disease
pathogenicity20. These and other reports of elevated numbers of
TH1/17 cells in inflamed tissues in human autoimmune
diseases21–23 associate TH1/17 cells with human autoimmune
diseases.

The complexity of TH17 function is further manifested in
therapeutic studies. Although anti-IL-17 therapy benefits psor-
iasis, blocking the IL-17 pathway in Crohn’s disease is either
ineffective or exacerbates diseases24–26. Similarly, in the
CD45RBhi adoptive transfer mouse model of experimental colitis,
a deficiency of IL-17 production or IL-17R expression in trans-
ferred CD45RBhi CD4 T cells results in accelerated disease27. The
protective function of IL-17 in these studies may be due to the
fact that TH17 cells that line the gut mucosa prevent invasion of
the gut microbiome and promote intestinal homeostasis28. In
tumors, TH17 cells are reported to have both beneficial29–31 and
detrimental effects32 both in animal models and human disease.
Hence, the function of TH17 cells in diverse immune responses is
complex.

We previously reported that murine TH17 cells can be differ-
entiated into pathogenic vs. non-pathogenic subsets, as well as
characterized the molecular signature of murine pathogenic TH17
cells through global gene expression analysis12. In the present
study, we compare the gene expression profiles between human
IFN-γ+ and IFN-γ– TH17 subsets, and between IL-10+ and IL-10–

TH17 clones. Comparative transcriptomic analyses show that
human TH1/17 cells and IL-10– TH17 clones display gene sig-
natures with marked similarities to mouse pathogenic TH17 cells.
We then assess TH1/17 cells in patients with MS and find reduced
expression of anti-inflammatory IL10 and elevated expression of
CXCR3. When we compare clinically active vs. stable patients, we
find that stable patients have higher IL10 expression in TH17 cells,
whereas active patients have higher expression of STAT3 in IFN-
γ–/IL-17– CD4+ T cells. Our results define the molecular

signature of human pro-inflammatory TH17 cells, which can be
used to both identify pathogenic TH17 cells and to measure the
effect of treatment on TH17 cells.

Results
Transcriptionally distinct TH17 subsets in peripheral blood.
We first performed intracellular cytokine staining of blood CD4+

T cells and identified distinct populations of IFN-γ co-producing
TH17 cells, but no IL-10 co-producing TH17 cells (Fig. 1a; Sup-
plementary Fig. 1). It is known that IFN-γ+ TH17 cells are
increased in inflamed tissues in human autoimmune
diseases21–23, and are also present in the blood of healthy indi-
viduals, whereas IL-10+ TH17 cells are barely detected14. We
divided peripheral TH17 cells into IFN-γ+ (TH1/17) and IFN-γ–
(TH17) subsets. We utilized a capture assay that separates live
CD4+ T subsets based on differential secretion of IL-17 and/or
IFN-γ to sort ex vivo TH1/17 cells and TH17 cells without in vitro
polarization and with only short-term (3 h) Phorbol 12-myristate
13-acetate (PMA) plus ionomycin stimulation (Fig. 1b; Supple-
mentary Fig. 2). Based on our global transcriptional analysis of
murine TH17 cells and studies on autoimmunity from ours and
other groups, we designed a nanoString nCounter CodeSet
HuTH17 that detects 418 genes associated with human TH cell
differentiation and activation. The HuTH17 CodeSet encompasses
genes encoding transcription factors, cytokines, cell surface
markers, kinases, lytic proteins, and housekeeping proteins
(Supplementary Data 1). We used this CodeSet to generate high-
throughput transcription profiles of isolated ex vivo TH1/17,
TH17, TH1, and double negative (DN) CD4+ T cells from five
healthy donors to generate high-throughput transcription pro-
files. We found high expression of IL17A in TH17 and TH1/17
cells and high expression of IFNG in TH1 and TH1/17 cells,
whereas only minimal expression of IL17A was observed in TH1
and DN cells and minimal expression of IFNG was observed in
TH17 and DN cells (Fig. 1c), thus demonstrating that we isolated
pure populations of TH1/17, TH17, and TH1 cells. IL10
gene expression was detected in both TH17 and TH1/17 cells
(Fig. 1d).

For the 20 CD4+ T-cell subset samples from the five healthy
individuals we analyzed, 362 of the 418 genes demonstrated
unbiased variation across the population, defined as an
unsupervised expression difference (difference between max-
imum and minimum relative gene expression values, not taking
into account information about the subset classes) ≥5 across all
samples, and these genes were selected for further study.
Hierarchical clustering of gene expression profiles of the 20
individual samples from the CD4+ subpopulations in the context
of these 362 unsupervised varying genes properly segregated the
TH1/17, TH17, TH1, and DN cells into four different clusters,
revealing their distinct transcriptional features (Fig. 1e). The in-
group Pearson correlation values for these gene expression
profiles were high for all four CD4+ T-cell subsets and ranged
from 0.95± 0.06 for DN cells to 0.98± 0.02 for TH1 cells. Pearson
correlation values for the gene expression profiles of TH1/17 vs.
TH17 and TH1/17 vs. TH1 were 0.83± 0.05 and 0.78± 0.06,
respectively, whereas the correlation coefficient for TH17 vs. TH1
was only 0.43± 0.06 (Fig. 1f), which were consistent with the
degree of similarities observed among the cell subsets in the
hierarchical clustering analysis (Fig. 1e). Principal component
analysis (PCA) showed that DN cells were clearly distinct from
the other three subsets, whereas TH1/17 cells lay in between TH17
and TH1 cells (Fig. 1g). These results demonstrate that human
TH17 cells can be transcriptionally categorized into IFN-γ+ TH17
(TH1/17) and IFN-γ– TH17 (TH17) subsets and that TH1/17 show
a close relationship to both TH17 and TH1 cells.
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Human ex vivo TH17 subsets vs. murine TH17 cells. Murine
TH17 cells generated with TGF-β3/IL-6 or IL-1/IL-6/IL-23 induce
more severe EAE than TH17 cells generated with TGF-β1/IL-612.
In comparing TGF-β3 vs. TGF-β1-induced murine TH17 cells, we
defined a pathogenic transcriptional signature composed of 16
upregulated genes in TGF-β3-induced pathogenic TH17 cells
including CCL3, CCL4, CLL5, CSF2, IL22, IL3, GZMB, STAT4,
and TBX2112. In humans, 10 of the 16 signature genes were
upregulated in CCR6+ myelin-reactive memory CD4+ T cells in
patients with MS although these cells also displayed elevated
levels of IL1019, while 12 genes were upregulated in TH1/17-
enriched CCR7loCCR6+CCR4loCXCR3hi memory CD4+ T cells
in healthy donors compared to TH17-enriched CCR7loCCR6+

CCR4hiCXCR3lo cells33 (Supplementary Data 2). There are no
known unique surface markers for TH17 cells and all of memory
CD4+ T-cell populations contain not only IFN-γ+ and IFN-γ–
TH17 cells but also IL-17–IFN-γ+ TH1 cells, especially for
CCR7loCCR6+CCR4loCXCR3hi memory CD4+ T cells, for which
the frequency of IL-17–IFN-γ+ cells may be up to four times
higher than IL-17+ cells33. Among the 14 signature genes shared
by murine TH17 cells and human TH17-enriched CD4+ T cells, 13
are included in the HuTH17 CodeSet (Supplementary Data 2) and
we assessed their expression in TH1/17, TH17, TH1, and DN CD4+

T cells (Fig. 2a). We found that except for LRMP, the other 12
genes were detected by the CodeSet. Compared to TH1/17 cells,
10 of the 12 genes had comparable or higher messenger RNA
(mRNA) levels in TH1 cells, which included CCL3, CCL4, CCL5,
GZMB, ICOS, IL3, IL7R, LAG3, STAT4, and TBX21, emphasizing
the importance of minimizing TH1 contamination when analyz-
ing the gene signature of pro-inflammatory or pathogenic TH17
cells. The high purity of the TH1/17 and TH17 cells we isolated
based on IL-17 and IFN-γ secretion allowed us to determine the
pathogenicity-associated molecular signature of human
TH17 subsets.

We identified 60 genes differentially expressed in TH1/17 cells
vs. TH17 cells with 39 upregulated and 21 downregulated
(Supplementary Data 3). To test the hypothesis that the
relationship of TH1/17 to TH17 cells in humans is similar to
that of mouse pathogenic vs. non-pathogenic TH17 cells, we
performed gene set enrichment analysis (GSEA)34. The upregu-
lated and downregulated genes in TH1/17 cells relative to TH17
cells were divided into two gene sets. Since both TGF-β3/IL-6 and
IL-1/IL-6/IL-23 induced mouse pathogenic TH17 cells whereas
TGF-β1/IL-6 induced non-pathogenic TH17 cells12, our first
comparison (Scenario I) explored microarray data from TGF-β3/
IL-6-induced TH17 cells (pathogenic) vs. TGF-β1/IL-6-induced
TH17 cells (non-pathogenic) and the second comparison
(Scenario II) explored microarray data from IL-1/IL-6/IL-23-
induced TH17 cells (pathogenic) vs. TGF-β1/IL-6-induced TH17
cells (non-pathogenic). GSEA results demonstrated that genes
upregulated in human TH1/17 vs. TH17 cells were enriched in
mouse pathogenic TH17 cells vs. non-pathogenic TH17 cells in
both scenarios with 17 “leading edge” genes in Scenario 1 and 19
genes in Scenario 2 (Kolmogorov–Smirnov test p< 0.0001; false
discovery rate (FDR) q< 0.0001 for both scenarios) (upper panels
of Fig. 2b, c). The “leading edge” subset of genes is defined as
genes that drive the enrichment scores, thus the genes that appear
in the top of the ranked list of genes at, or before, the point where
the running sum reaches the maximum deviation from zero. The
“leading edge” subset can be interpreted as the core subset of a
gene set that accounts for the enrichment signal34. Genes
upregulated in human TH17 vs. TH1/17 cells were also enriched
in mouse non-pathogenic TH17 cells vs. pathogenic TH17 cells in
both comparison scenarios, with seven identical “leading edge”
genes (Kolmogorov–Smirnov test p= 0.0007; FDR q= 0.001 for
Scenario I; Kolmogorov–Smirnov test p= 0.004; FDR q= 0.004

for Scenario II) (lower panels of Fig. 2b, c). The gene signatures
obtained from both scenarios were almost identical even though
the TGF-β3/IL-6-induced TH17 cells and IL-1/IL-6/IL-23-
induced TH17 cells were differentiated via treating naive CD4+

T cells with different cytokines, suggesting that the integrated
gene expression analysis identified common features shared by
the two types of mouse pathogenic TH17 cells. Thus, we found
marked similarities in differential gene expression signatures
between human IFN-γ+ vs. IFN-γ– TH17 cells and mouse
pathogenic vs. non-pathogenic TH17 cells indicating that human
TH1/17 and TH17 cells are counterparts of murine pathogenic
and non-pathogenic TH17 cells.

Among the 27 signature genes identified in both comparison
scenarios, 13 had an absolute fold change >1.5 for TH1/17 vs.
TH17 cells, which were selected as the robust predicted
pathogenic signature (PreP-Signature) of TH1/17 cells for later
analyses (Fig. 2d). The upregulated robust PreP-Signature genes
with pro-inflammatory/pathogenic potential can be grouped into
chemokines and cytokines (CCL3, CCL4, CCL5, CSF2, IFNG, and
IL3), chemokine and cytokine receptors (CXCR3 and IL23R),
cytokine responding genes (EPSTI1), effector proteins (GZMB),
and signaling molecules (RGS2). The downregulated genes are the
chemokine receptor (CCR6) and the transcription factor
(STAT1).

We also investigated genes not shared between human and
mouse pathogenic/non-pathogenic Th17 cells to identify other
potentially relevant genes to test in human conditions. We
identified 33 non-shared genes including 19 that were upregu-
lated and 14 that were downregulated (Supplementary Data 4).

Human ex vivo TH17 subsets vs. TH17 clones. IL-10 has a
pivotal role in regulation of both innate and adaptive immunity35

and murine TGF-β1/IL-6-induced non-pathogenic TH17 cells
produce IL-1013. Human IL-10+ TH17 cells are a potential
counterpart of mouse non-pathogenic TH17 cells. However, IL-
10-secreting TH17 cells cannot be directly isolated from human
blood for nCounter gene expression analysis because few or no
TH17 cells produce IL-10 after PMA/ionomycin stimulation
(Fig. 1a). This is likely due to the delayed production of IL-10
after stimulation. Nonetheless, for established human TH17
clones, IL-10+ TH17 clones can be identified by IL-10 intracellular
staining 5 days after T-cell receptor activation9. Thus, we estab-
lished CD4+ T cells clones from CCR6+CCR4+CXCR3– memory
CD4+ T cells (Supplementary Fig. 3) that were enriched for TH17
cells14,18 and screened for clones producing IL-17 with or without
co-secretion of IL-10. qRT-PCR showed that IL-10– TH17 clones
expressed high levels of IFNG, low levels of IL10, and high levels
of IL23R, whereas IL-10+ TH17 clones expressed minimal levels of
IFNG and high levels of IL10 (Fig. 3a). To assess whether the gene
expression profile of cloned TH17 cells maintained their pro or
anti-inflammatory features after long-term culture, we used the
HuTH17 CodeSet to analyze the gene expression profile of IL-10–

and IL-10+ TH17 clones. We identified 63 genes that were dif-
ferentially expressed between IL-10– vs. IL-10+ TH17 clones with
49 upregulated and 14 downregulated genes (Supplementary
Data 5). To compare genes differentially expressed between
human TH1/17 vs. TH17 cells (Supplementary Data 3) to those
between IL-10– vs. IL-10+ TH17 clones (Supplementary Data 5),
we assessed enrichment of overlaps between gene lists using the
hypergeometric enrichment test. We found that genes upregu-
lated in TH1/17 vs. TH17 cells display significant overlap with
genes upregulated in IL-10– vs. IL-10+ TH17 clones (one-sided
Fisher’s exact test p< 0.0001, FDR q= 0.0001) (Fig. 3b). The
upregulation of CBLB, CLL5, CXCR3, IL23R, REL, TBX21, and
TNFSF14 in IL-10– TH17 clones is shared by human TH1/17 cells

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01571-8

4 NATURE COMMUNICATIONS |8:  1600 |DOI: 10.1038/s41467-017-01571-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


and mouse pathogenic TH17 cells (Fig. 2b, c). To identify reg-
ulatory molecules predicted to influence the differentiation/
development of TH1/17 cells and IL-10– TH17 clones, we inter-
rogated genes differentially expressed between TH1/17 vs. TH17
cells (Supplementary Data 3) and between IL-10– vs. IL-10+ TH17
clones (Supplementary Data 5) for upstream regulator prediction
analysis in ingenuity pathway analysis (IPA). TH1/17 cells and IL-
10– TH17 clones displayed a similar pattern of the activation of

signaling pathways involved in TH17 differentiation/development
(Fig. 3c), especially for activation of IL-1β signaling, which is
critical to promote co-producing IFN-γ and to inhibit IL-10
production in TH17 cells9. These results demonstrate the simi-
larities between TH1/17 vs. TH17 cells and IL-10– vs. IL-10+ TH17
clones, and also indicate that IL-10– and IL-10+ TH17 clones
maintained their pro- or anti-inflammatory characteristics after
long-term culture.
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Human TH17 clones vs. murine TH17 cells. We performed
GSEA to investigate the similarity between human TH17 clones
and mouse TH17 cells. The upregulated and downregulated genes
in IL-10– TH17 clones relative to IL-10+ TH17 clones TH17 cells
were divided into two gene sets (Supplementary Data 5) to
explore the enrichment of the gene sets in Scenarios I and II
(defined above). GSEA showed that genes upregulated in IL-10–

vs. IL-10+ TH17 clones were enriched in mouse pathogenic vs.
non-pathogenic TH17 cells in both scenarios, with 17 “leading
edge” genes in Scenario I (Kolmogorov–Smirnov test p= 0.004;
FDR q= 0.005) and 14 “leading edge” genes in Scenario II
(Kolmogorov–Smirnov test p= 0.005; FDR q= 0.010). Among
the “leading edge” genes, 11 overlapped between both scenarios
(upper panels of Fig. 3d, e). Genes upregulated in human IL-10+

vs. IL-10– TH17 clones were also enriched in mouse non-
pathogenic vs. pathogenic TH17 cells in both scenarios, with six
“leading edge” genes in Scenario I (Kolmogorov–Smirnov test
p= 0.004; FDR q= 0.003) and seven “leading edge” genes in
Scenario II (Kolmogorov–Smirnov test p= 0.016; FDR q= 0.009).
Among the “leading edge” genes, six genes were represented in
both scenarios (lower panels of Fig. 3d, e). These results
demonstrate extensive similarities between human IL-10– vs. IL-
10+ TH17 clones and mouse pathogenic vs. non-pathogenic TH17
cells.

TH17 PreP-signatures predict STAT3 as an upstream regulator.
Integrated analysis of gene expression profiles of human ex vivo
TH17 cells, human TH17 clones, and cytokine-induced mouse
TH17 cells resulted in four sets of gene signatures associated with
the pathogenicity of TH17 cells (Figs. 2, 3). We merged the
“leading edge” genes from the above GSEA comparisons and
consolidated these four gene signatures into one complete PreP-
Signature for human ex vivo TH17 cells with 27 signature genes
and one complete PreP-Signature for human TH17 clones with
26 signature genes. Among the signature genes upregulated in
human TH1/17 cells and IL-10– TH17 clones, seven genes were
shared by both types of TH17 cells, while for downregulated
genes, two genes overlapped between TH1/17 cells and IL-10–

TH17 clones (Fig. 4a). Since our molecular signatures derive from
integrated analysis of pro-inflammatory human TH17 cells with
mouse pathogenic TH17 cells in autoimmunity, they reduce the
number of potential targeting genes and also help define human
TH17 cells with potential pathogenicity in autoimmunity.

We interrogated the complete PreP-Signatures of ex vivo TH1/
17 cells and IL-10– TH17 clones for upstream transcription factor
prediction analysis using the Enrichr ChEA2016 analysis36,37.
STAT3 in CD4+ T cells was the top predicted transcription factor
common for both resulting lists (Fig. 4b; Supplementary Datas 6,
7) and thus may regulate the pathogenicity of human TH17 cells
in autoimmune diseases.

Investigation of PreP-Signature genes in multiple sclerosis. To
investigate PreP-Signature genes in human pro-inflammatory
TH17 cells in MS, we isolated TH1/17 and TH17 cells from
untreated patients with relapse-remitting MS (RRMS) and age
and sex-matched healthy controls (Table 1; Supplementary
Fig. 2), assessed frequencies of TH1/17 and TH17 cells, and
measured the expression of the PreP-Signature genes. TH1 and
DN cells were isolated in parallel as internal controls. Of 19
patients with RRMS, sufficient RNA for quantitative PCR (qPCR)
analysis was obtained from 15 TH1/17 samples, 18 TH17 samples,
19 TH1 samples, and 19 DN samples. Of 16 healthy controls, we
obtained sufficient RNA for qPCR analysis from 16 TH1/
17 samples, 14 TH17 samples, 16 TH1 samples, and 16 DN
samples. We found no difference in frequency of TH1/17, TH17,
and total TH17 cells among total CD4+ T cells in patients vs.
controls (Fig. 5a). The percentage of TH1/17 in total TH17 cells
was also similar (Fig. 5b). To assess purity of isolated cell subsets,
we measured the expression of IL17 and IFNG by qPCR. We
detected high levels of IL17 in TH1/17 and TH17 cells but not in
DN cells (Supplementary Fig. 4a), and high levels of IFNG in
TH1/17 cells but not in TH17 and DN cells (Supplementary
Fig. 4b), demonstrating that the isolated populations were of high
purity. In both groups, IL17 expression was higher in TH17 vs.
TH1/17 cells (Supplementary Fig. 4a), whereas IL17 expression
was similar for TH1/17 and TH17 cells (Fig. 5c). To validate the 13
robust PreP-Signature genes identified via the nCounter analysis,
we measured their expression in TH1/17 and TH17 cells in healthy
controls by qPCR (Fig. 5d, left). For the 11 genes upregulated in
TH1/17 cells, 9 were confirmed; the 2 downregulated genes were
not validated. In MS, the nine validated genes displayed the
similar upregulated expression pattern (Fig. 5d, right). Thus, the
transcriptional regulation of the nine validated robust PreP-
Signature genes of TH1/17 cells was tightly associated with IFN-γ
secretion in both controls and MS. These results indicate that
studying frequency or number of IFN-γ-secreting TH17 cells may
not identify important biological differences.

We investigated differences between MS and control using the
robust PreP signature genes we identified above. We first measured
the expression of the 13 robust PreP-Signature genes in TH1/17 cells
in MS and found elevated expression of CXCR3 and reduced
expression of IFNG, CCL3, CLL4, and GZMB (Fig. 6a). In TH17
cells, GZMB showed reduced expression in MS (Fig. 6b). No
difference was observed between MS and controls in TH1 cells
(Supplementary Fig. 5). Thus, the altered expression of these five
PreP-Signature genes are specific for TH1/17 and TH17 subsets, but
not for TH1 cells. We then measured the expression of TBX21 and
IL10, since we found downregulation of TBX21 and upregulation of
IL10 in IL-10+ TH17 clones (Fig. 3a, d). We found TBX21
expression elevated in TH1/17 relative to TH17 cells in MS and
controls (Fig. 6c, upper panel), with no difference in IL10

Fig. 2 Gene expression comparison between human TH1/17 vs. TH17 cells and mouse pathogenic vs. non-pathogenic TH17 cells. a The expression of
previously reported murine and human TH17 signature genes in purified ex vivo TH1 cells. The mRNA gene expression levels in TH1/17, TH17, TH1, and DN
cells were measured as described in Fig. 1. *p< 0.05, repeated measures one-way ANOVA; **p< 0.05, pairwised group comparison with Tukey’s multiple
comparison test (mean± s.d., n= 5). b, c Gene set enrichment analysis comparing human TH1/17 vs. TH17 cells with mouse pathogenic vs. non-pathogenic
TH17 cells. b Heatmap of upregulated (upper panels) and downregulated (lower panels) “leading edge” genes of comparison Scenario 1: human TH1/17 vs.
TH17 cells vs. mouse TGF-β3 plus IL-6-induced TH17 cells vs. TGF-β1 plus IL-6-induced TH17 cells (Kolmogorov–Smirnov test p< 0.0001; FDR q< 0.0001
for upregulated genes; Kolmogorov–Smirnov test p= 0.0007; FDR q= 0.001 for downregulated genes). c Heatmap of upregulated (upper panels) and
downregulated (lower panels) “leading edge” genes of comparison Scenario 2: human TH1/17 vs. TH17 cells vs. mouse IL-1, IL-23 plus IL-6-induced TH17
cells vs. TGF-β1 plus IL-6-induced TH17 cells (Kolmogorov–Smirnov test p< 0.0001; FDR q< 0.0001 for upregulated genes; Kolmogorov–Smirnov test p=
0.004; FDR q= 0.004 for downregulated genes). Each column represents one donor in human (n= 5) or one sample in murine (n= 4). d The robust
predicted pathogenic signature (PreP-Signature) of human TH1/17 cells. Signature genes are those identified as differentially expressed between human
TH1/17 and TH17 cells that are identified as enriched “leading edge” genes when assessing these human genes in the mouse profiles in b, c and that are
additionally curated for robustness based on supervised absolute fold change >1.5. Two tailed, paired Student’s t test p-value< 0.05. *p< 0.05, **p< 0.05,
***p< 0.0005, n= 5
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expression (Fig. 6d, upper panel). However, when we compared
TH1/17 and TH17 cells between MS and controls, IL10 was reduced
in TH1/17 and TH17 cells in patients (Fig. 6d, lower panel), though
no difference was detected with TBX21 expression (Fig. 6c, lower
panel). The predicted upstream transcription factor STAT3 was
elevated in the DN cells in MS (Fig. 6e, upper panel), while the
expression of its antagonistic transcription factor STAT5A38–40 was
reduced (Fig. 6e, lower panel).

Thus, the altered expression of five PreP-Signature genes for
TH1/17 cells in MS (CXCR3, IFNG, CCL3, CLL4, and GZMB) is
TH17-specific. The low expression of IL10 in CXCR3hi TH1/17
cells in MS suggests these pro-inflammatory cells may more
readily migrate to central nervous system (CNS) since CXCL10
(IP-10), a ligand for CXCR3, is increased in the inflamed CNS in
MS41–44. It has been suggested that STAT3 facilitates TH17
differentiation and STAT5 facilitates Treg differentiation38–40,
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which is consistent with our observation of their expression in
DN cells in MS.

We then investigated whether the PreP-Signature genes, which
had altered expression in MS, were linked to disease activity in
MS. Disease activity was defined as a gadolinium-enhancing
lesion on magnetic resonance imaging (MRI) or disease relapse
within 6 months to the time of blood sampling. All patients were
untreated at the time of blood sampling. From 12 active patients,
we obtained sufficient RNA for qPCR from 8 TH1/17 samples, 12
TH17 samples, and 12 DN samples. From seven stable patients,
we obtained sufficient RNA for qPCR from 7 TH1/17 samples, 6
TH17 samples, and 7 DN samples. We found reduced expression
of IL10 in TH17 cells (primarily in TH1/17 cells) and increased
expression of STAT3 in DN cells in active patients with RRMS
(Fig. 7). Given the facilitating role of STAT3 in TH17
differentiation and the anti-inflammatory function of IL-10,
these results together with the altered expression of CXCR3,
IFNG, CCL3, CLL4, GZMB, IL10, STAT3, and STAT5A in MS
(Fig. 6) are consistent with an important role for TH17
cells in MS.

Discussion
We found human IL-17-secreting CD4+ helper T cells were dis-
tinct from TH1 cells, and could be transcriptionally segregated
into IFN-γ+ TH17 (TH1/17) and IFN-γ– TH17 (TH17) subsets. On
a transcriptional level, TH1/17 cells have features of both TH17
and TH1 cells. In addition to IFN-γ, TH1/17 cells expressed ele-
vated levels of the pro-inflammatory molecules CCL3, CCL4,
CCL5, granzyme B, IL-3, IL-22, GM-CSF, STAT1, T-bet, and
IL-23R, which are pathogenic signature genes of mouse TH17
cells12. These results not only transcriptionally segregate human
TH1/17 cells from other TH17 cells, but also indicate that these
cells have acquired pro-inflammatory properties similar to mur-
ine pathogenic TH17 cells. This provided the foundation for the
cross-species comparative transcriptomic analysis between mouse
and human.

We compared the gene expression profiles of human TH1/17
cells vs. TH17 cells with mouse pathogenic vs. non-pathogenic
TH17 cells via GSEA and found human TH1/17 vs. TH17 cells
displayed gene expression signatures that were enriched in mouse
pathogenic vs. non-pathogenic TH17 cells. We obtained similar
results in comparing human IL-10– vs. IL-10+ TH17 clones with
and mouse pathogenic vs. non-pathogenic TH17 cells. Through
this integrated analysis, we identified gene expression features to
support the hypothesis that TH1/17 cells are the pathogenic TH17
population in immune-mediated human disease.

The PreP-Signature genes derived from comparative tran-
scriptional analysis of human and mouse studies identify genes
shared between human TH1/17 vs. TH17 cells or between human
IL-10– vs. IL-10+ TH17 clones and mouse pathogenic vs. non-
pathogenic TH17 cells. We obtained a robust PreP-Signature for
TH1/17 cells of 13 genes and assessed them in MS. We find that
TH1/17 cells in patients with MS have elevated expression of
CXCR3 and reduced expression of IL10. It has been shown that
CXCL10 (IP-10), a ligand for CXCR3, is increased in the inflamed
CNS of MS41–44. Given that IL-10 is a potent anti-inflammatory
cytokine, this combination may facilitate migration of more pro-
inflammatory CXCR3hiIL-10low TH1/17 cells to the inflamed
CNS. However, it is unexpected to observe reduced expression of
signature genes IFNG, CCL3, CLL4, and GZMB in TH1/17 cells in
MS vs. healthy controls, especially the reduced expression of
IFNG. Natalizumab, a humanized monoclonal antibody targeting
α4 integrin used in the treatment of MS, functions by preventing
immune cells from crossing the blood–brain barrier45. A study
has shown that both natalizumab treated and untreated patients
during relapse have lower frequencies of TH17 cells in peripheral
blood compared to stable patients. Moreover, TH17 cells become
almost undetectable in patients with breakthrough disease that
occurs following natalizumab withdrawal46. Thus, one explana-
tion for reduced expression of IFNG, CCL3, CLL4, and GZMB in
TH1/17 cells in MS could be that migration of cells to the CNS
removes CXCR3 high, active TH1/17 cells from the blood.
Another possibility may be that expression of IFN-γ ensures high
expression of CXCR3, which is critical for cells to migrate to
inflamed CNS, and reduced IFN-γ may indicate the further
enhancement of the pathogenicity of IL-10lo TH17 cells in MS.
IFN-γ-stimulation is required for CXCR3 induction on T cells
upon T-cell receptor stimulation47. Although counter-intuitive,
the potent pro-inflammatory TH1 cytokine IFN-γ is protective
during EAE induction48–50. It suppresses EAE induction by
inhibiting generation of TH17 cells51, converting CD4+CD25–

T cells to CD4+ Tregs52 and limiting myelin lipid peroxidation in
CNS53. IFN-γ is dispensable for generation of pathogenic TH17
cells, however, T-bet the transcription factor for TH1 was initially
considered essential due to the high resistance of Tbet−/− mice to
EAE54,55. Later studies show that T-bet is essential for TH1 but
not TH17-mediated EAE56,57. Studies in Tbet−/− mice have shown
that reduced IFN-γ in TH17 cells does not affect their patho-
genicity though the conversion of TH17 cells to TH1/17 cells as
well as TH1-like IFN-γ + ex-TH17 cells is prevented56,58,59.

Interrogating the PreP-Signatures for the identification of
upstream regulators and transcription factors36,37, we identified
STAT3 as the top predicted upstream transcription factor from

Fig. 3 Gene expression comparison between human TH1/17 vs. TH17 cells and IL-10– vs. IL-10+ TH17 clones. a Quantitative RT-PCR analysis of gene
expression in human IL-10– and IL-10+ TH17 clones isolated from healthy donors (two tailed, paired Student’s t test, mean± s.d., n= 3). For IFNG, IL17A, and
IL23R, resting TH17 clones were stimulated with anti-CD3 and anti-CD28 for 4 h before RNA extraction. For IL10, resting TH17 clones were stimulated with
anti-CD3 and anti-CD28 for 5 days, then cells were re-stimulated with anti-CD3 and anti-CD28 for 4 h before RNA extraction. b Hypergeometric
enrichment test between human TH1/17 vs. TH17 cells and IL-10– vs. IL-10+ TH17 clones. Genes differentially expressed between human TH1/17 and TH17
cells (Supplementary Data 3) were analyzed for enrichment in those of human IL-10– vs. IL-10+ TH17 clones (Supplementary Data 5). Heatmap shows the
overlapping genes (one-sided Fisher’s exact test p< 0.0001, FDR q= 0.0001). Each column represents one donor (n= 5). c Predicted upstream regulators
for TH1/17 and IL-10– TH17 clone differentiation. The differentially expressed genes with corresponding fold changes and p-values from the TH1/17 vs. TH17
comparison (Supplementary Data 3) and IL-10– vs. IL-10+ TH17 clone comparison (Supplementary Data 5) were analyzed using the IPA upstream regulator
analysis. Ex vivo, TH1/17 vs. TH17 comparison; Clone, IL-10– vs. IL-10+ TH17 clone comparison. d, e Gene set enrichment analysis comparing human IL-10–

vs. IL-10+ TH17 clones with mouse pathogenic vs. non-pathogenic TH17 cells. d Heatmap of upregulated (upper panels) and downregulated (lower panels)
“leading edge” genes of comparison Scenario 1: human IL-10– vs. IL-10+ TH17 clones vs. mouse TGF-β3 plus IL-6-induced TH17 cells vs. TGF-β1 plus IL-6-
induced TH17 cells (Kolmogorov–Smirnov test p= 0.004; FDR q= 0.005 for upregulated genes; Kolmogorov–Smirnov test p= 0.004; FDR q= 0.003 for
downregulated genes). e Heatmap of upregulated (upper panels) and downregulated (lower panels) ‘‘leading edge” genes of comparison Scenario 2:
human IL-10– vs. IL-10+ TH17 clones vs. mouse IL-1, IL-23 plus IL-6-induced TH17 cells vs. TGF-β1 plus IL-6-induced TH17 cells (Kolmogorov–Smirnov test p
= 0.005; FDR q= 0.010 for upregulated genes; Kolmogorov–Smirnov test p= 0.016; FDR q= 0.009 for downregulated genes). Each column represents
one donor in human (n= 5) or one sample in murine (n= 4)
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previous studies in CD4+ T cells, which suggests that STAT3 may
regulate the pathogenesis of human TH17 cells in autoimmune
diseases. It has been reported that STAT3 is a critical regulator for
the induction of TH17 cells in humans. Humans with a genetic
defect in STAT3 expression not only have reduced expression of
TH17 without any impact on other T-cell subsets, but also
develop a hyper-IgE syndrome with severe infections of
C. albicans and S. aureus60,61. STAT3 and STAT5 are a pair of
mutual restraint transcription factors that regulate TH17 and Treg
differentiation with STAT3 facilitates TH17 differentiation and

STAT5 facilitates Treg differentiation38–40. We thus investigated
the expression of STAT3 and STAT5A in MS. We found upre-
gulation of STAT3 and downregulation of STAT5A in DN cells
from patients with MS, which included naive and other memory
CD4+ T cells but not TH1/17, TH17, and TH1 cells. One expla-
nation for the different behavior of STAT3 and STAT5A between
DN vs. TH1/17 and TH17 cells is that STAT3 may be critical for
TH17 differentiation but not required for TH17-associated
immunopathology after differentiation.

Leveraging comparative transcriptomic approaches, we inte-
grated gene expression profiles derived from human and mouse
TH17 cells to identify pathogenicity-associated signature (PreP-
Signature) genes that are shared by human pro-inflammatory
TH17 cells and mouse pathogenic TH17 cells, and to predict the
upstream regulators or transcription factors that may be critical
for the differentiation of human pro-inflammatory TH17 cells.
These comparative transcriptomic analyses allowed us to identify
altered gene expression associated with TH17 subsets and their
differentiation in subjects with MS and to identify associations of
the expression of STAT3 in DN cells and IL10 in TH17 cells that
are dependent on MS disease activity. Of note, we used a
nCounter codeset with a limited set of pre-selected 418 genes,
which may miss other disease related, highly discriminant genes
in humans. Thus, follow-up studies, such as RNA-sequencing
analysis on TH17 and TH1/17 subsets isolated from MS patients,
may help to identify more disease-related genes.
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Fig. 4 Predicting STAT3 as upstream transcription factor by the PreP-Signatures of TH17 cells. a Venn diagram representations of signature genes
upregulated (left) and downregulated (right) in human TH1/17 cells and IL-10– TH17 clones. Complete PreP-Signatures from GSEA comparison Scenarios I
and II were merged for ex vivo cells (Fig. 2b, c) and TH17 clones (Fig. 3d, e), respectively. Genes with supervised absolute fold change >1.5 in either ex vivo
cells or TH17 clones were shown in italic bold letters. Ex vivo, differentially expressed “leading edge” genes from TH1/17 vs. TH17 GSEA comparisons
presented in green circles; Clone, differentially expressed “leading edge” genes from IL-10– vs. IL-10+ TH17 clone GSEA comparisons presented in yellow
circles. b Predicted upstream transcription factors for TH1/17 and IL-10– TH17 clone differentiation. The molecular signatures of TH1/17 cells and IL-10– TH17
clones in a were analyzed using the Enrichr ChEA2016 analysis and the predicted transcription factors with Benjamini–Hochberg adjusted p-value <0.05
were shown. TF transcription factor

Table 1 Demographics of patients with multiple sclerosis
and healthy controls

RRMS patients Healthy controls

Participants, n 19 16
Gender f/m, n 15/4 13/3
Female
Age, y 46± 12 48± 11
Male
Age, y 41± 9 42± 8
Disease duration, y 10± 10 n.a.
EDSS 2.0± 1.2 n.a.

EDSS expanded disability status scale ranging from 0 to 10, n.a. not applicable, RRMS untreated
relapsing-remitting multiple sclerosis
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In summary, our study demonstrates that human TH1/17 cells
and IL-10− TH17 clones display significant similarities to mouse
pathogenic TH17 cells in their transcriptomic patterns. The ele-
vated expression of pro-inflammatory cytokines and chemokines
in human IFN-γ-secreting TH17 cells and the similarity in gene
expression profiles between human IFN-γ-secreting TH17 cells
and mouse pathogenic TH17 cells indicates a higher pro-
inflammatory capacity of human TH1/17 cells and additionally
provides transcriptional evidence to support the role of human
TH1/17 in the pathogenesis of human autoimmune diseases. The
differential molecular signature of human IFN-γ-secreting TH17
cells that we identified provides a new tool that can be utilized to
assess TH17 cells both under physiologic conditions and in
association with disease.

Methods
Reagents. EasySep human CD4+ T-cell enrichment kit (catalog number 19052) for
CD4+ T-cell isolation was purchased from StemCell Technologies. FITC-
conjugated anti-human IFN-γ (clone, B27; 1:100), Alexa 647-conjugated anti-
human IL-17A (clone, N49-653; 1:20), PE-conjugated anti-human IL-10 (clone,
JES3-19F; 1:660), and their corresponding isotype control antibodies for intracel-
lular cytokine staining assay were purchased from BD Biosciences. IFN-γ cytokine
secretion detection kit (APC) (catalog number 130-090-762) and IL-17 cytokine
secretion detection kit (PE) (catalog number 130-094-537) were purchased from
Miltenyi Biotec. nCounter CodeSet HuTH17 was custom designed and manu-
factured by nanoString Technologies. Fluorescence-conjugated antibodies for cell
surface staining for flow cytometry were purchased from Biolegend. RNAqeous
micro total RNA isolation kit (catalog number AM1931), SuperScript VILO master
mix (catalog number 11755050), TaqMan preAmp master mix (catalog number
4391128), TaqMan fast universal PCR master mix (2x) (catalog number 4352042),
and qPCR primers (Supplementary Data 8) were purchased from ThermoFisher
Scientific.

Human subjects. Blood samples for TH17 cloning from healthy donors were
obtained from the Swiss Blood Donation Center of Basel and Lugano. Informed,
written consent was obtained from all donors. All uses of human material were
approved by the Federal Office of Public Health (authorization no. A000197/2 to F.
S.). Blood samples from MS patients and healthy controls were obtained from the
Partners MS Center at Brigham and Women’s Hospital under IRB Protocol

2001P001431 and 2014P000124. Informed, written consent was obtained from all
donors. MS patients were untreated for a minimum of 6 months before sampling.
Disease activity was identified as a gadolinium-enhancing lesion on MRI or disease
relapse within 6 months of sampling. Age- and sex-matched healthy donors did not
have history of autoimmune diseases or malignancies and no acute or chronic
infections. The samples from healthy donors for nCounter gene expression analysis
were fresh blood samples. The MS samples and age- and sex-matched healthy
control samples were frozen peripheral blood mononuclear cells (PBMCs).

Intracellular cytokine staining. For intracellular cytokine staining for PBMC or
CD4+ T cells, assays were carried out with staining buffers and antibodies from BD
Biosciences. Briefly, cells were seeded into a 96-well plate (up to 1 × 106 cell per
well) and stimulated with PMA (100 ng/ml) and ionomycin (1 μg/ml) in the pre-
sence of GolgiStop for 4 h. After stimulation, cells were fixed with BD Cytofix
fixation buffer and washed with BD Perm/Wash buffer. Cells in each well were
equally divided into two wells, with one for intracellular cytokine staining and the
other for isotype control staining. The following fluorophore-conjugated antibodies
from BD Biosciences were used for staining analysis or as isotype controls: anti-
CD4-pacific blue (clone: RPA-T4; 1:330), anti-IL-17A-Alexa647 (clone: N49-653;
1:20), anti-IFN-γ-FITC (clone: B27: 1:100), anti-IL-10-PE (clone: JES3-19F: 1:660),
mouse IgG1-Alexa647 (clone: MOPC-21; 1:40), mouse IgG1-FITC (clone: MOPC-
21; 1:100), and rat IgG2a-PE (clone: R35-95: 1:660). Stained cells were analyzed
with a BD LSR II cytometer. Cytokine secretion in CD4+ lymphocytes was accessed
with FlowJo.

Isolation of viable TH subsets from human PBMC. PBMC isolated with Ficoll-
Pague PLUS (GE Healthcare) gradient centrifugation from the peripheral blood of
healthy donors. Total CD4+ T cells were purified with the EasySep human CD4+ T-
cell enrichment kit (StemCell Technologies). CD4+ T cells seeded in a 96-well plate
(1 × 106 cells/well) were stimulated with PMA (30 ng/ml) and ionomycin (1 μg/ml)
for 3–4 h (3 h for fresh blood samples and 4 h for frozen PBMC samples). Viable
TH1/17, TH17, TH1, and DN cells were sorted with a FACSAria (BD Biosciences)
after being stained with IFN-γ and IL-17 cytokine secretion detection kits (Miltenyi
Biotec) and fluorescence-conjugated anti-CD3 and anti-CD4 antibodies following
the manufacturer’s suggested protocol.

Isolation of human IL-10− and IL-10+ TH17 clones. PBMC were isolated by Ficoll-
Paque PLUS (GE Healthcare) separation. CD4+ T cells were isolated from PBMC
by positive selection using CD4 magnetic microbeads (Miltenyi Biotec). CCR6+

CCR4+CXCR3–CD45RA–CD25–CD8–CD14–CD19–CD56– (enriched in TH17
cells) memory CD4 T cells were sorted with a FACSAria (BD Biosciences) and
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Fig. 5 Frequency of TH17 subsets and differential expression of PreP-Signature genes in TH1/17 vs. TH17 cells in MS. Peripheral CD4+ T cells isolated from
the PBMC of untreated RRMS patients (n= 19) and age- and sex-matched healthy controls (HC) (n= 16) were stimulated, stained, and sorted for TH1/17,
TH17, TH1, and DN cells as described in Fig. 2b. RNA isolated from sorted cell subsets was subjected to low-input qPCR analysis. a Frequencies of TH1/17,
TH17, and total TH17 cells in total peripheral CD4+ T cells (Welch’s t test, p-values, mean± s.d.). b Frequency of TH1/17 in total TH17 cells (Welch’s t test,
mean± s.d.). c, d qPCR analysis of gene expression in isolated CD4+ T-cell subsets. c Comparison of IL17A expression between HC and patients in TH1/17
or TH17 cells (Welch’s t test, mean± s.d.). d Differential expression of PreP-Signature genes between TH1/17 vs. TH17 cells in HC and MS patients. Two
tailed, paired Student’s t test, *p< 0.05, **p< 0.001, ***p< 0.0001
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seeded at 0.6 cells per well in a 384 well plate. The following antibodies were used
for FACS-based sorting: anti-CD45RA-Qdot655 (Life Technologies; clone: MEM-
56; 1:1000); anti-CCR7-BV421 (Biolegend; clone: G043H7; 1:80); anti-CCR6-PE
(BD Biosciences; clone: 11A9; 1:80) or anti-CCR6-BV605 (Biolegend; clone:
G034E3; 1:60); anti-CCR4-PECy7 (BD Biosciences; clone: 1G1; 1:100); anti-
CXCR3-PE-Cy5 or anti-CXCR3-APC (BD Biosciences; clone: 1C6; 1:20); anti-

CD8-FITC or anti-CD8-PE-Cy5 (Beckman Coulter; clone: B9.11; 1:25); anti-CD25-
FITC or anti-CD25-PE-Cy5 (Beckman Coulter; clone: B1.49.9; 1:25); anti-CD14-
FITC or anti-CD14-PE-Cy5 (Beckman Coulter; clone: RMO52; 1:25); anti-CD19-
FITC (BD Biosciences, clone: HIB19), or anti-CD19-PE-Cy5 (Beckman Coulter;
clone: J3-119; 1:25); CD56-PE-Cy5 (Beckman Coulter; clone: N901; 1:25). CD4 T-
cell clones were established in the presence of irradiated (45 Gy) allogeneic PBMC
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(25,000 cells per well) and phytohaemagglutinin (PHA-L) (1 μg/ml) in medium
supplemented with IL-2 (500 U/ml). A small portion of cells of each CD4+ T-cell
clone was used for intracellular cytokine staining assay for IL-17A (anti-IL-17A-
eF660; eBioscience, catalog number 50-7179-42 clone: eBio64DEC17; 1:200), IL-10
(anti-IL-10-PE; BD Biosciences, catalog number 559330; clone: JES3-19F1; 1:20),
and IFN-γ (anti-IFN-γ-FITC; BD Biosciences, catalog number 554700; clone: B27;
1:800) production. IL-10– and IL-10+ TH17 clones were selected for further
analysis.

Regular quantitative real-time PCR. To measure gene expression in TH17 clones
with qPCR, IL-10– and IL-10+ TH17 clones from an individual donor were pooled.
They were stimulated or not with plate-bound anti-CD3 (clone TR66, 5 μg/ml) and
anti-CD28 (clone CD28.2, 1 μg/ml) (αCD3/CD28) for 4 h, or stimulated with
αCD3/CD28 for 5 days followed with or without a second αCD3/CD28 treatment

for 4 h. Pooled TH17 clone cells were subjected to RNA isolation. Total RNA was
extracted with the E.Z.N.A. Total RNA kit I (Omega Bio-tek, product number
R6834). qPCR analysis was run and analyzed with the ViiA 7 Real-Time PCR
System (Life Technologies). Quantitative comparison between IL-10– and IL-10+

TH17 clones was calculated using comparative ΔCT. Gene expression was nor-
malized to the expression of β2m.

Low-input quantitative real-time PCR. To measure gene expression in TH1/17,
TH17, TH1, and DN cells sorted from frozen PBMC with qPCR, total RNA was
isolated and digested with DNase I with the RNAqeous micro total RNA isolation
kit. cDNA was synthesized with the SuperScript VILO master mix and pre-
amplified for 14 cycles with the TaqMan preAmp master mix following the
manufacture’s instruction. qPCR analysis was run and analyzed with the ViiA 7
Real-Time PCR System (Life Technologies) using the TaqMan fast universal PCR
master mix (2x) and qPCR primers purchased from ThermoFisher Scientific. The
comparative threshold cycle method and an internal control (β2m) were used for
normalization of the target genes. Relative expression was calculated as: ΔCT=
CTgene of interest – CTβ2m; ΔΔCT=ΔCT cell subset of interest –mean of ΔCT DN of healthy

control; the relative change of gene expression between the expression level of sample
of interest and the mean expression level of all DN samples in healthy controls was
given by this formula: (2 –ΔΔCT) × 10. All qPCR reactions were performed in
duplicate.

nCounter analysis of mRNA expression. We designed a nanoString CodeSet
HuTH17 that constitutes a 418-gene expression detection panel specific for human
T-cell activation and differentiation (Supplementary Data 1). Cell lysates were
prepared from sorted TH1/17, TH17, TH1, and DN cells with the RLT-Plus buffer of
the RNeasy Plus Mini Kit (Qiagen, catalog number 74134) and gene expression
levels were generated using the CodeSet HuTH17 according to the protocol pro-
vided by the manufacturer (NanoString Technologies). For gene expression in IL-
10− and IL-10+ TH17 clones, total RNA was used for nCounter analysis following
the manufacturer’s suggested protocol (NanoString Technologies).

Data analysis. nCounter gene expression data were normalized for code count
using the geometric mean, for background using the mean, and for sample content
using the geometric mean of housekeeping genes (isolated human CD4+ T-cell
subsets: B2M, RPL3, and beta actin; human TH17 clones: B2M, GAPDH, and beta
actin) with the R 3.2.0. NanoStringNorm package. Mouse gene expression data
were downloaded from GEO (GSE39820) and normalized using RMA62 and
ComBat63 in GenePattern (http://www.broadinstitute.org/cancer/software/
genepattern/) as previously published12. Genes for which multiple probes were
measured on the mouse microarray were collapsed to unique genes by selecting the
probe with the highest average expression across all samples. Hierarchical clus-
tering of the human samples and of the pairwise Pearson linear correlations were
done based on the 362 genes that varied across the population in an unbiased
manner (unsupervised expression difference (Δ=maximum expression value –
minimum expression value)≥5, defined as the difference between maximum and
minimum relative gene expression values across the population without con-
sidering the subset classes) using Pearson linear correlation and average linkage in
GENE-E. PCA of the isolated human CD4+ T-cell subsets was done in R (prcomp)
based on the same 362 genes. We selected differentially expressed genes between
TH1/17 and TH17 cells using the two tailed, paired Student’s t test followed by
supervised filtering for expression differences between mean TH1/17 and mean
TH17 (Δ=MEANTH1/17−MEANTH17)>20 for robustness. The same approach was
used to select differentially expressed genes between IL-10− and IL-10+ TH17
clones. GSEA was done in GenePattern using default settings (weighted scoring
scheme, Signal2Noise metric, 1000 permutations)34,64,65 to test the enrichment of
human signatures in the mouse expression profiles. Gene set overlap statistic
analysis was done using the hypergeometric test in R (phyper, with N equal to the
number of genes measured on the NanoString CodeSet). Storey’s q-value is used to
control the FDR. Visualization of the gene expression heatmaps was done in
GENE-E [http://www.broadinstitute.org/cancer/software/GENE-E/]. Il23r was not
included in our microarray chip for mouse TH17 cell analysis, but we found
upregulation of Il23r in murine pathogenic TH17 cells by qPCR12. Thus, we
included Il23r in the murine gene expression profiles. The IPA upstream regulator
analysis was performed for the differentially expressed genes (using corresponding
fold changes and p-values) to identify key upstream regulatory molecules.
Upstream regulators with z-scores >2 and z-scores <−2 represent activator and
inhibitor mechanisms, respectively. The Enrichr ChEA2016 database and analytic
tools were used to predict key upstream transcription factors36,37.

Statistical analysis. Statistical analysis was performed with Prism 7 (GraphPad
Software), R statistical software (version 3.2.0), and Excel version 14.4.7. One-way
analysis of variance with Tukey’s multiple comparison test was performed to
compare the differential gene expression among TH subsets within HCs or MS
patients when more than two cell subsets were included, while two tailed, paired
Student’s t test was performed when only two cell subsets were included. Welch’s t
test (unpaired t test with Welch’s correction) was performed to compare the
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Fig. 7 Correlation of IL10 and STAT3 expression with disease activity in MS.
The mRNA levels of signature genes with altered expression in MS (Fig. 6)
were compared between active and stable patients. Signature gene
expression in a TH1/17 (active, n= 8; stable, n= 7), b TH17 (active, n= 12;
stable, n= 6), and c DN cells (active, n= 12; stable, n= 7) (Welch’s t test,
mean± s.d.)
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differential gene expression between healthy controls and MS patients on a specific
TH subset. Two sided p-values of <0.05 were considered statistically significant.

Code availability. Computer code used to generate results is available from the
corresponding author upon request.

Data availability. The authors declare that the main data supporting the findings
of this study are available within the article and its Supplementary Information
files. Gene expression data that support the findings of this study have been
deposited in the Gene Expression Omnibus with the accession code (GSE104024).
(All other relevant data are available from the corresponding author upon rea-
sonable request.
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