Compiler Analysis for Hardware/Software
Co-design and Optimization

An automation framework
towards more efficient Heterogeneous Computing

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Georgios Zacharopoulos

under the supervision of

Prof. Laura Pozzi

January 2020

Dissertation Committee

Prof. Cesare Alippi Universita della Svizzera italiana, Switzerland
Prof. Luca Carloni Columbia University in the City of New York, USA
Prof. Timothy Jones University of Cambridge, United Kingdom

Prof. Olaf Schenk Universita della Svizzera italiana, Switzerland

Prof. Aviral Shrivastava Arizona State University, USA

Dissertation accepted on 9 January 2020

Research Advisor PhD Program Director

Prof. Laura Pozzi The PhD program Director pro tempore

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Georgios Zacharopoulos
Lugano, 9 January 2020

i

To my parents Areti and Dimitris.
For always being there for me.

iii

iv

Men give me credit for some
genius. All the genius I have lies in
this; when I have a subject in
hand, I study it profoundly. Day
and night it is before me. My mind
becomes pervaded with it. Then
the effort that I have made is what
people are pleased to call the fruit
of genius. It is the fruit of labor
and thought.

Alexander Hamilton

vi

Abstract

Performance increase, in terms of faster execution and energy efficiency, is a
never-ending research domain and does not come for free. The breakdown of
Dennard scaling, along with the seemingly inevitable end of Moore’s law eco-
nomic aspect, present a new challenge to computer architects striving to achieve
better performance in modern computer systems. Heterogeneous computing
emerges as one of the solutions to overcome these limitations and keep the per-
formance trend rising. Heterogeneous platforms employ specialized hardware
(HW) that can accelerate the execution of a software (SW) application, or a part
of that application. However, the design of efficient HW/SW computer architec-
tures is a challenging problem, as it entails integration of a general purpose CPU
with a number of specialized HW accelerators.

The choice of which parts of an application to be accelerated as well as the op-
timizations to be applied to the HW accelerated parts, while taking into account
the underlying memory system and the platform characteristics that the HW ac-
celerators are implemented onto, are all non-trivial research questions and de-
pend heavily on the characteristics of the SW applications that are going to be ac-
celerated. Therefore, an in-depth SW analysis can be crucial, prior to designing a
heterogeneous system, as it can provide valuable information and subsequently
highly benefit performance. My research has focused on building automation
frameworks that can aid HW engineers in the early stages of the design process.
I have extended the capabilities of compiler infrastructures, while addressing
these research questions, so that better decisions are made and, in turn, faster
execution and improved energy efficiency is achieved. The frameworks I devel-
oped are, hence, valuable automation aids for the HW/SW partitioning and op-
timization phases, driving the designs of effective heterogeneous platforms one
step forward.

vil

viil

Acknowledgements

I had my first computer when I was about 12 years old. It was bought second
hand by the office of a bank in Athens that was updating its systems with new
ones. I remember a big desktop PC with a large CRT screen and running Windows
98 as an operating system. It was not yet connected to the Internet (the type of
beautiful dial-up connections with the distinct sounds that we all have in our
heads and that would forbid any incoming phone calls), so I was spending some
time exploring the interface, configuring the wallpaper and of course playing
some of the default games. One of these was mine sweeper. I had become pretty
good at it and I could beat the game within some tens of seconds. Around forty
seconds, then thirty — I was setting a new record every day.

One day I broke the twenty seconds barrier and I told my father. He re-
sponded that he had just done it in 9.8 seconds. I was devastated. How could
this be possible? I had dedicated so much time believing that I had set the un-
breakable record and then my father beats it, and even worse, under ten seconds.
I never even though that was possible. So now that I knew it could be done I
had to do it myself. So I tried, and I tried, and I tried. I improved my personal
record but I could not beat the ten-second barrier. No matter how quickly I was
marking the mines and figuring out where they were, it was just impossible for
me to break the new record. I was disappointed but I was not going to give up
that easily.

I decided to go to my father and ask him how he managed to do it. He
responded in a way as if it was the most natural and obvious thing in the world.
“Well, I was just playing the game and then it suddenly stopped. That is when
I saw that I had beaten it.” This is when I realized it. I was focusing so much
on the clock ticking and the seconds passing that I was not fully concentrated in
the game. I was more obsessed with breaking the record than actually playing
the game. So I followed his advice and decided to forget about the record and
just play the game. After a few rounds and while I was really into it and having
fun it suddenly stopped. The clock was showing 8.9 seconds. I had broken the
unbreakable.

X

I wish I could say that this was a life lesson that took immediate action, but
it wasn’t. In many instances throughout my life I was focused too much on the
final end or goal that made me lose concentration on what I was actually doing.
So at some point during my adulthood I remembered what had happened with
minesweeper and decided to pursue only what would make me feel motivated
and fully into it, so that the final goal would arrive naturally. As a general rule, if
what I was doing was not enjoying, captivating, inspiring and meaningful then it
was not worth doing it. This is of course easier said than done, but as I have found
out it is also easier done than initially thought or feared. By no means pursuing
what is meaningful means that it is only going to be all joy and no hardships.
Quite the contrary. It means that besides all the difficulties I am convinced that
if a given task is meaningful, then it is worth doing and despite any obstacles I
can feel accomplished even if the result is not what I had expected to begin with.
And this last sentence sums up an informal definition of what “doing research”
is all about according to my understanding.

The whole period of my PhD was like embarking on an adventure in which
simultaneously I had to figure out where it lead. A pursuit of research and inno-
vation. And it has been one of the most fulfilling and exceptional periods of my
life. I managed to grow in many aspects of my personality and personal knowl-
edge, while having by my side remarkable people. The person that invited me,
guided me and gave me the opportunity to embark on this research journey is
Prof. Laura Pozzi, who I cannot thank enough. Her support, advice, careful as-
sessment of our work and belief in me have been nothing short of invaluable. I
wish that I can adopt some of her key attributes and values, so that I can also be
as helpful to any people that I supervise in the future as she has been to me.

I want to also thank all the intelligent, talented and skillful researchers that
I have collaborated with for their team work, patience and discussion of my
suggestions and ideas. The members of my research group in Universita della
Svizzera italiana: Dr. Giovanni Ansaloni, whose feedback and co-operation have
been tremendously helpful during the whole period of my PhD, and Lorenzo Fer-
retti. Also, I have to thank the researchers from Columbia University: Prof. Luca
Carloni who offered me the chance to work in his lab during my six-month visit
and Dr. Giuseppe Di Guglielmo. Prof. Carloni has guided me with his experience
during our meetings and has provided me with important insights and valuable
feedback, both throughout our collaboration and and as a member of my PhD
committee. Dr. Giuseppe Di Guglielmo has provided me with indispensable sup-
port and advice while I was acquiring new skills during my visit. Furthermore,
Emanuele Giaquinta has collaborated with us in my first journal publication, i.e.,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

pal

and I thank him for his contribution. I feel indebted to all these people I have
worked with.

Special thanks and loads of gratitude to my collaborator, flat mate for almost
four years straight, and good friend Andrea Barbon. Andrea is an exceptional
person that has motivated me to try and learn new things and we have spent
countless hours having fruitful discussions, working together, having fun and
traveling. I feel blessed and lucky having friends like him. Also I want to thank
my friends and colleagues Vassilis Triglianos and Ioannis Mantas. We have shared
many great discussions and moments together. Vassilis has given me the spark
to start exploring beyond the domain of my expertise and consider the role that
psychology plays in our lives. This led to a project idea that was carried out
by students under my supervision, regarding a Machine Learning approach to
predict professional career paths based on personality assessment, and has been
a fantastic experience. Ioannis has shared many insights regarding politics and
history with me and we have worked on a number of organizational aspects
together as PhD representatives. I believe that, as a result, we have managed to
benefit the PhD students community in our faculty.

It is a good opportunity to also thank collaborators and colleagues from Up-
psala University that assisted me and worked alongside with me during my Mas-
ter’s studies in numerous projects and have continued to be supportive to me
during the period that I was pursuing my PhD. Georgios Ntounas, Panagiotis
Stamatakopoulos and losif Karkanis: I am really grateful for having you as my
friends. Also my MSc thesis supervisor Prof. Alexandra Jimborean, my MSc
thesis reviewer Prof. Stefanos Kaxiras, Dr. Vasileios Spiliopoulos and Dr. Kon-
stantinos Koukos who worked alongside with me in my first paper publication,
that also resulted in the best paper award in the 25th International Conference
on Compiler Construction.

I want to thank some of the students that I have supervised during their
projects. Alexander Mamyshev completed his bachelor Thesis under the super-
vision of Prof. Laura Pozzi and myself and the co-operation with him has been
terrific. Paul Krahenmann and Kalyma Leon were the high school students that I
supervised and worked on the project regarding Machine Learning and psychol-
ogy, whom I want to thank for their patience and enthusiasm throughout the
course of the project.

Prof. Antonio Carzaniga, Prof. Matthias Hauswirth and Prof. Marc Langhein-
rich, thank you for all our interesting and stimulating discussions. I feel indebted
to the members of my committee, Prof. Cesare Alippi, Prof. Luca Carloni, Prof.
Timothy Jones, Prof. Olaf Schenk and Prof. Aviral Shrivastava for their valuable
feedback and suggestions.

xii

I want to thank Universita della Svizzera italiana as a whole and the Swiss
National Science Foundation (SNSF) for providing all the necessary funding to
perform my research. SNSF has provided me both the funding for the total dura-
tion of my PhD and for my upcoming PostDoc research period and I feel deeply
grateful for that.

I owe an honorary mention to a number of my secret heroes: Alexander
Hamilton, Richard Feynman and Jordan Peterson whose books, work and words
of wisdom have helped me significantly during the last four years. Special thanks
to Prof. David Brooks from Harvard University that has given me the opportunity
to continue this research journey in his lab upon the completion of my PhD. I feel
both honored and excited to keep working towards the accomplishment of my
dreams in such a stimulating and fascinating research community in Cambridge,
Massachusetts.

I want to thank Iliana Zantza for accompanying me not only in the final part
of my adventures in Lugano, but anywhere in the world of my thoughts. I believe
that this is merely the start and there are more yet to come as the adventure and
search for truth goes on indefinitely like our imagination, creativity and thirst for
discovery. May we never focus on the clock.

Finally, I feel deeply indebted to my family and infinitely grateful for having
them in my life. I cannot thank enough my sister Evgenia Zacharopoulou for her
support and inside jokes. As there is no way to express my gratitude and love to
my parents for being always there for me and providing me and my sister with
more than I could possibly ask for. For their support and perseverance under any
circumstances and wherever [was. For teaching me qualities such as integrity
and virtue, the latter being also an interpretation of my mother’s name. For their
love. To Areti and Dimitris.

Contents

[Contents
Introduction|
1 Automatic Identification and Selection of Accelerator
(1.1 MOtiVation| . . . « v vt it et e e e e e e e e e
(1.2 Problem Formulation
(1.3 Region Selection Algorithms
1.3.1 ExactMethodl,
1.3.2 GreedyMethod
(1.3.3 Exact-on-cropped Method
(1.4 The RegionSeeker Framework
1.4.1 LIVM Toolchain.
[1.4.2 Platform Model and Performance Metrics|.
1.4.3 Benchmarks|
(1.5 Experimental Results|
[1.5.1 Regions as a Choice for Accelerators|.
[1.5.2 Performance of Selection Algorithms|.
[1.5.3 Impact of the Interface Overhead|.
(1.6 RegionSeeker MuLTliVersioning
(1.6.1 Methodology|
(1.6.2 Experimental Results|
1.7 Related Work|.
1 1 ftwarel.
1.9 Conclusions|. L

Automatic Optimization for HW/SW Co-design|

2.1 Datareuse Analysis|,

[2.1.1 MOLIVALION . « « v v v v o o e e e e e e e e e e e e e e e e e
2.1.2 Related Work|

xiii

O N

10

13
13
14
14
15
17
17
17
22
25
26
26
28
30
32
32

xiv Contents

2.1.3 Methodology| 35
[2.1.4 Experimental Results| 40
2.1.5 Conclusions| 43

[2.2 Machine Learning Approach for Loop Unrolling
[Factor Prediction| 44
2.2.1 MotIVation . . .« v v v v e e e e e e 44
2.2.2 RelatedWork| 45
[2.2.3 Methodology| 46
[2.2.4 Experimental Results| 50
2.2.5 Released Softwarel 55
2.2.6 Conclusionsl 55
[3 Identification and Selection of System-Aware Accelerators 57
[3.1 AccelSeeker: Accelerators for Speedup| 58
BII MOGVALOM « - « v v v v voe e e e e e e e e e e 58
3.1.2 RelatedWork| 59
B.1.3 Candidate Identification| 62
3.1.4 Problem Statement and Candidate Selection 63
[3.1.5 Selection Algorithm 64
[3.1.6 Cost and Merit Estimation| 66
(3.1.7 Compiler Analysis| 68
(3.1.8 Experimental Setup| 70
(3.1.9 Experimental Results| 72
[3.2 EnergySeeker: Accelerators for Energy Efficiency] 78
[3.2.1 MOtIVALION « « v v v v v v e e e e e e e e e e e e e e 78
3.2.2 RelatedWork| 79
[3.2.3 Methodology| 80
(3.2.4 Experimental Setup|, 81
(3.2.5 Experimental Results| 82
I3.3 Released Softwarel. 84
3.4 Conclusions|. e 84
[Conclusions 85

89

Introduction

Performance increase, in terms of faster execution and higher energy efficiency,
is the target of a never-ending research effort and does not come for free. Liv-
ing in an era where there is an immense amount of data, the demand for per-
formance by modern computing systems rises even more. Technological giants,
such as Google and Facebook, gather and compute loads of data, for instance dur-
ing Machine Learning related applications and lengthy simulations. This large
amount of data processing requires immense computational power and ends up
in lengthier and lengthier execution time.

Moore’s law [68]], an observation made by the co-founder of Intel Gordon
Moore, predicts that the number of transistors that can be used in the same area
of an integrated circuit will double roughly every 18 months. Complimentary to
that, Dennard scaling [[22]], also known as MOSFET scaling, states that voltage
and current are proportional to the size of a transistor. Therefore, as long as the
same chip area is retained, power stays constant and, at the same time, more
transistors of smaller size can fit onto it. Unfortunately, this is no longer the
case. The transistor size has decreased over the years, but the amount of power
per transistor has, recently, stopped decreasing accordingly, a phenomenon also
known as the Breakdown of Dennard scaling [24].

The breakdown of Dennard scaling, along with the seemingly inevitable end
of Moore’s law economic aspect [[73]], present a new challenge to computer ar-
chitects striving to achieve better performance in the modern computer systems.
Heterogeneous computing is emerging as one of the solutions in order to keep
the performance trend rising. This is achieved by turning the focus to special-
ized hardware (HW) that can accelerate the execution of a software (SW) ap-
plication or a part of that application. Specialized HW accelerators are imple-
mented in platforms where they can be either reprogrammable, thus allowing
for a large degree of flexibility as various implementations may take place utiliz-
ing the HW resources of the platform (e.g. an FPGA board), or hardwired, such
as an Application-Specific Integrated Circuit (ASIC). The first type of HW imple-
mentation sacrifices part of the potential performance achieved by allowing for

2 Contents

flexible designs, as the same HW resources can be reprogrammed. The latter
offers no flexibility but can provide better performance in comparison to FPGAs.
Under the scope of this research both HW implementations were considered.

Since the performance of a general purpose CPU is becoming limited, due
to physical and technological constrains, alternative computer architectures are
required. Homogeneous parallel CPUs are used in order to expose parallelism of
computation in SW applications, but performance is still restricted by the parts of
computation that cannot be parallelized, a fact known also as Amdahl’s law. In-
stead of a general purpose CPU — or homogeneous parallel CPUs — managing the
execution of SW applications, specialized pieces of HW, namely accelerators, can
be used alongside with a general purpose CPU and execute the most demanding
parts of an application in terms of computation. Consequently, the need for a
powerful single CPU is no more that critical, as the execution can be offloaded to
other parts of HW as well. As a result, we achieve both a more balanced execution
with the use of different HW resources, and we offload the execution of specific,
more demanding parts of the computation to specialized HW accelerators.

One example of a widely spread heterogeneous architecture is the addition
of a GPU to a CPU on the same chip, in order to exploit the parallelism and
computing power that a GPU has to offer, when it comes to image processing
and 3D graphics rendering. Other examples are general purpose CPUs coupled
with dedicated HW that execute specific kernels or even full applications. The
latter architecture could come in a number of variations, with one or more HW
accelerators, and different types of coupling, tightly or loosely [20]]. The design
of the first option, tightly or co-processor model, is done by using the accelerator
as an Instruction Set Extension in the default pipeline of the CPU. The latter
implements the connection between CPU and accelerator loosely, without any
knowledge of the underlying CPU micro-architecture.

The goal of HW/SW co-design research is to design efficient heterogeneous
computer architectures, so that the time latency and energy requirements are
ever decreasing. The heterogeneous system that I considered during my research
comprises a general purpose CPU, loosely coupled with a number of specialized
HW accelerators, dedicated to the acceleration of specific parts of an application.

High Level Synthesis (HLS) tools, that generate hardware instances given a
SW-level specification of an application as input, have improved significantly in
recent years [49]]. Commercial tools such as Xilinx Vivado HLS [|85]] support the
design of large accelerators directly from application source code (e.g. C/C++
code). HLS dramatically shortens development cycles by employing C/C++ de-
scriptions as entry points for the development of both software and hardware,
greatly facilitating the task of migrating functionalities between the two.

3 Contents

The choice of which parts of an application to be accelerated, though, as well
as the type of accelerators to be used, while taking into account the underlying
memory system, are all non-trivial research questions and depend heavily on the
SW applications characteristics that are going to be accelerated. In addition to
the accelerator selection problem, every HW accelerator can be synthesized with
a number of optimizations embedded onto it, according to the characteristics of
the task that is targeted for acceleration. For instance, in case a loop is included
in the execution, there could be a loop unrolling factor taken into account dur-
ing the synthesis of the accelerator that may dramatically affect execution time.
Another example is the addition of a memory buffer, e.g. a scratchpad memory,
to reduce the memory latency of the execution. Furthermore, the underlying
memory system, as in every computer architecture, can significantly affect the
overall performance, due to communication latency, and should be taken into
account during the selection of the accelerators to be implemented, along with
their respective potential optimizations.

Therefore, an in-depth SW analysis can be crucial, prior to designing a hetero-
geneous system, as it can provide valuable information and subsequently highly
benefit performance. Furthermore, such analysis can be performed in a short
time (typically within a few seconds) and can be portable to other target appli-
cations or platforms. The research during my PhD has revolved around various
ways that SW analysis, by extending the LIVM compiler framework [[42]], can
guide a HW engineer by making informed decisions early in the development
cycle. Moreover, with this work I attempt to bring automation of the HW/SW
co-design one step forward by bridging the gap between the application that
we aim to accelerate and the current state-of-the-art HLS tools, that require the
selection of the parts of an application to be accelerated to be done manually.

An overview of the research conducted during my PhD is depicted in Figure[1}
This can be viewed as a map of this PhD thesis in order to navigate throughout my
research time-line and present a high level view of how each piece is connected
to each other.

Chapter 1 answers the question of what should be accelerated, namely which
parts of computation, given a constraint on HW area resources. Under the scope
of this chapter the RegionSeeker tool-chain is presented [[96]]. RegionSeeker is an
LIVM based framework that, given a SW application provided as input, identifies
and selects, in a fully automatic fashion, HW accelerators under the constraint of
an area (HW resources) budget. The granularity of the candidates for accelera-
tion considered is that of a subgraph of the control flow graph of a function, with
a single control input and a single control output. These candidates are called
regions. After identification takes place, a selection algorithm solves the problem

4 Contents

What? How? Where?

>

Figure 1. Overview of the research that has been conducted during my PhD
and the respective chapters of the PhD thesis.

of finding the subset of the initial regions list that, under a given area constraint,
maximizes the collective speedup obtained. The evaluation of RegionSeeker took
place by using both an industrial tool, Xilinx Vivado HLS [85]], and a research HW
accelerator simulator, Aladdin [[71]]. Experiments carried out with these tools re-
vealed an improvement of performance compared to the state-of-the-art and a
speedup gain of up to 4.6x.

In Chapter 2, the analysis that is presented attempts to answer the research
question of how the identified and selected HW accelerators should be imple-
mented in order to achieve improved performance. Under that scope, Data Reuse
analysis, during the execution of a specific domain of applications, reveals the
effectiveness of private local memory structures [[93[]. This is achieved with the
aid of compiler polyhedral analysis that detects the amount of data reuse in a
specific domain of applications. The analysis provides automatically the appro-
priate dimensions of a memory buffer attached to the HW accelerator that can
carry out the execution of the applications while minimizing the communication
between accelerator and main memory. Furthermore, for HW accelerators that
contain loops, an optimal Loop Unrolling factor can be predicted for each of the
included loops [94]]. The most suitable Loop Unrolling factor for each loop is
defined according to the target of optimization, which can be either less use of
HW resources or better speedup. With the aid of an LLVM based analysis of the
loops and Machine Learning classification, predictions can be performed on a set
of loops and the respective Loop Unrolling factors may be subsequently applied
during the synthesis phase of the accelerators.

5 Contents

Finally, Chapter 3 also tackles the research question of what should be acceler-

ated but at the same time taking into account where the specialized HW is hosted.
An analysis of the system at hand and its memory hierarchy can affect vastly the
identified and selection of HW accelerators and subsequently the performance
achieved. In fact, latency due to data exchange between the HW accelerators and
main memory can add a significant overhead to the overall computation time.
In this chapter AccelSeeker, an LIVM based tool-chain, is presented. AccelSeeker
performs thorough analysis of applications and estimates memory latency along
with computational latency of candidates for acceleration. The granularity of the
candidates for acceleration is that of a subgraph of the entire call graph of the ap-
plication. HW accelerators are selected by an algorithm that maximizes speedup
or energy efficiency under a given area budget. The evaluation of AccelSeeker
took place on Zynq UltraScale platform by Xilinx, considering a demanding and
complex application such as H.264. With respect to methodologies based solely
on profiling information AccelSeeker attained an improved performance, of up
to 2X.
Automating the design and implementation of heterogeneous systems while im-
proving their performance is the broad goal of this PhD thesis. All chapters of this
document attempt to provide a step closer to attaining this goal and expanding
the state-of-the-art, as well as opening new paths to future work.

Contents

Chapter 1

Automatic Identification and Selection
of Accelerators

Moving towards a heterogeneous era, HW accelerators, dedicated to a specific
task, can improve both speedup of execution and energy efficiency in comparison
to a general purpose CPU or a set of homogeneous CPUs. Nonetheless, the identi-
fication and selection of which parts of the computation are to be implemented in
HW is a complex and demanding task. A thorough understanding of the applica-
tion to be accelerated is necessary, the HW resources (area) budget is often tight
and the granularity of the candidates for acceleration can dramatically affect the
overall execution time. Furthermore, optimizations may be applied to a given,
identified HW accelerator and this can produce multiple versions of equivalent
computation instances, that in turn can result in various heterogeneous architec-
tures with different characteristics and different performance gains. In order to
address these issues I present an automated methodology that receives as input
the source code of a given application and outputs a number of HW accelera-
tors to be considered for acceleration. Among these candidates a selection takes
place that maximizes collective speedup, given an area constraint. Finally, multi-
ple versions of the same candidate can be considered during the selection phase.

1.1 Motivation

What is the rationale behind designer choices, when manually choosing applica-
tion parts to be accelerated in HW, and how can those choices be replicated by an
automated tool instead? Although it is possible, perhaps, that all of a designer’s
rationale cannot be replicated automatically — potentially because it requires a

8 1.1 Motivation

source

a) b)

Figure 1.1. a) Example Control Flow Graph of a function, color-coded with
frequency of execution (the darker the basic block, the more frequent). b) B
and C are Valid Subgraphs; A and D are not Valid Subgraphs because they
contain a forbidden node. B is also a CFG region, because it has a single
control flow input and output.

deep knowledge of the application at hand - it is certainly still desirable to iden-
tify at least a subset of the actions that can be automated.

Typically the designer aim will be: given an available accelerator area, extract
as much as possible of the computation, under the constraint to require no more
than that area, in order to maximize the resulting speedup.

Under the scope of this research I identify subgraphs of the control flow graph
that have a single input control point and a single output control point, which
herein will be called regions, as good candidates for acceleration. The rationale
is that these subgraphs have a single entry point, and this corresponds to the mo-
ment of execution when the accelerator is called, and a single exit point, hence
duly returning to a single location in software when the accelerator is done.
Note that this type of control flow subgraph has been previously proposed and
explored in compiler research — under the name of SESE (Single Entry Single
Exit) in [2], [38]], and under the name of Simple Region in an LIVM implemen-
tation [42]] — with the aim of improving the quality of SW code generation, and
as a scope for applying compiler optimizations and parallelization. The idea of
identifying the same type of subgraph is borrowed and applied here in a novel
way and to a different scenario and aim: that of automatically selecting HW
accelerators.

A motivational example is provided in Figure [1.1j, which depicts the CFG of
an example function, color-coded with frequency of execution (the darker the

9 1.2 Problem Formulation

basic block, the more frequent). A possible choice, when manually identifying
accelerators, is to work at the granularity of functions: implement, in HW, the
function most frequently executed. However, this choice might not be ideal, as
the downside can be twofold: 1) a part of a function might be less frequently ex-
ecuted than other parts (the right side of the CFG, in the example in Figure[1.1p),
therefore effectively wasting accelerator real estate. 2) a part of a function might
contain non-synthesizable constructs — such as the “write to file" system call in
Figure [1.1], or a function call that cannot be inlined. On the other side of the
spectrum, choosing simply within the scope of single basic blocks — therefore,
the body of the frequently executed loop in the picture — may not be ideal ei-
ther, as the accelerator will be called once in every iteration of the loop, which
may results in a large overhead. Furthermore, some speedup potential might be
missed, as larger CFG regions might expose better synthesis optimizations.

CFG regions are proposed therefore as candidates for accelerators considering
a granularity that can go from a single loop to an entire function, and anything
in between. The main body of my research for this work is the consideration
of CFG regions as candidates and a method to automatically identify and select
these regions.

1.2 Problem Formulation

The suggested methodology identifies and investigates the performance of re-
gions by analyzing, at the Intermediate Representation (IR) level, the Control
Flow Graphs of the functions comprising a target application. A CFG represents
the flow of control through a program.

Definition: CFG. A CFG is a Directed Cyclic Graph G, where V(G) is the set
of nodes and E(G) is the set of edges. Each node in a CFG corresponds to a basic
block in a function, and each edge to the control flow within that function.

A source node is added, connected only to the entry basic block of the func-
tion, and a sink node, connected only to the exit of the function. Figure ub
shows an example of CFG. A node in the CFG is marked as forbidden if it corre-
sponds to a basic block containing instructions that cannot be synthesized in HW
— for example operating system calls.

Definition: Valid Subgraph. A Valid Subgraph is any subgraph of the CFG
that does not contain a forbidden node. In Figure[1.1p: B, and C are Valid Sub-
graphs; A and D are not Valid Subgraphs because they contain a forbidden node.

Definition: Region. A region R of a CFG G is a Valid Subgraph such that there
exists a single edge going from a node in V(G) \ V(R) to a node in V(R) and a

10 1.3 Region Selection Algorithms

single edge going from a node in V(R) to a node in V(G) \ V(R). In Figure[1.1p:
B is a region, while C is not.

Under the scope of this chapter, all and only regions are considered as candi-
dates for identification of accelerators. Given a merit M () and cost C() function
for each region we can formulate the problem of selecting regions as follows:

Problem: Region Selection

Let Z = {Ry,R,,...,R,} be a set of regions, with associated cost and merit
functions C and M. For any subset X C {1,2,...,n} of regions, we denote by
M(X) = >,y M(R;) the sum of the merits of its regions, and we denote by
C(X)= Ziex C(R;) the sum of the costs of its regions.

We want to select a subset X of regions such that

1. No two regions belonging to the same CFG overlap, i.e., V(R,)NV(R;) =,
forall1<i,j<n

2. The cost C(X) is within a user-given cost budget C,,,,,
3. The merit M(X) is maximized

This problem definition maps to what we have identified in the previous sec-
tion as the designer aim: given an available accelerator area, extract as much as
possible of the computation, under the constraint to require no more than that
area, in order to maximize the resulting speedup.

1.3 Region Selection Algorithms

The Region Selection Problem requires a previously identified set of regions as
input. To identify regions, and hence gather such set, an existing LIVM pass
is reused, which in turn is based on an algorithm of linear time complexity pub-
lished in [[38]. Then, given the available set of regions, the more computationally
expensive Region Selection Problem must be tackled, and algorithms to solve it
are explained in the following.

Firstly an exponential, exact branch-and-bound method based on a binary-
tree search is provided; secondly, a fast (polynomial) non-exact, greedy method;
thirdly, a meet-in-the-middle approach, still exponential but scaling faster than
exact, that we call exact-on-cropped.

Before delving into the algorithm explanation, a running example is provided
in Figure The Figure depicts the CFGs of two functions, and highlights five
regions identified within them (labeled A,B,C,D,E in the picture).

11 1.3 Region Selection Algorithms

[or) A
AN

source

©
&] B ®
i

b)

Figure 1.2. a) Running example, used to explain the selection algorithms:
the CFGs of two functions are depicted, with five regions identified in them —
labelled from A to E. b) The overlap graph for the five regions.

In the following, we denote by O the set of region overlaps, i.e., the set

{@G DI VRINV(R)) # 0}

The edges of the graph represented in Figure [1.2b correspond to set O of region
overlaps, for the running example.

1.3.1 Exact Method

In the exact method the Problem Region Selection is reduced to the independent
set problem. In particular, we construct an undirected graph G where V(G) =
{1,2,...,n}, i.e., there is one node for each region, and E(G) = O, i.e., two
nodes are connected if the corresponding regions overlap. It is easy to see that
a set {iy,i,,...,1,} satisfies condition 1 of the Region Selection Problem if it is an
independent set of G. Figure [1.2b shows the overlap graph G corresponding to
the running example: region A overlaps with all regions but E, hence edges are
added linking A with B, C and D, and so on. Examples of independent sets in
this graph are {A}, {B,D}, {B,C,E}.

The algorithm recursively explores the independent sets of G, similarly to
the Bron-Kerbosch algorithm [[11]], and its steps will be followed with the aid of
the running example, and of its corresponding tree exploration, shown in Fig-
ure The algorithm maintains a set X, which is the active independent set
(initialized to @) and a set P of available nodes (initialized to V(G)). At each
iteration, the algorithm chooses a node u in P such that C(X U {u}) < C,,,, i.€.,

12 1.3 Region Selection Algorithms

it satisfies condition 2 of the Region Selection Problem, and recursively explores
the configurations

1. X’ =X U{u}, P’ =P\ ({u} UN(w))
2. X'=X,P' =P\ {u}

where N(u) = {v | (u,v) € E(G)} is the set of neighbours of u in the overlap
graph. Configuration 1 traverses all the independent sets that contain X and u.
The choice of P’ maintains this invariant, as all the neighbours of u are removed
from P. Instead, configuration 2 traverses all the independent sets that contain
X but not u. Note that any independent set is visited once only.

This process can be exemplified through Figure the root of the tree repre-
sents the empty set, and set P at this point contains all regions. Then, inclusion
of region A is first explored, and the set P is updated by removing all regions
overlapping with A: P = {E}. According to the merit and costs of all regions in
this example, shown in the table within the picture, the merit (60) and cost (35)
of the solution currently explored is also updated.

At every point of the exploration, a new node u is considered for addition in
the current independent set. If there is no node u satisfying condition 2 of the
Region Selection Problem, the algorithm records the set X and backtracks, as X
is maximal with respect to condition 2. For the running example in Figure [1.3]
the cost budget C,,, is equal to 35. Hence, exploration stops at X = {A} because
the cost budget has been reached, and backtracks. The next region chosen is B,
sets X and P are again updated accordingly, to X = {B} and P = {C, D, E}, and
exploration continues.

Optimization 1: To speed up the search, the algorithm maintains the maxi-
mum merit M,,,, of the independent sets explored so far. In this way, if M(X U
P) < M,,,, the algorithm can backtrack, as no superset of X has a merit larger
than the maximum one found so far. This optimization can be seen at work,
among others, in the tree-node where X = {B} and P = {D, E}. In fact, M, is
75 at that point in the exploration (it was reached by set X = {B, C, E}), while
the current merit M({B}) is 30, and the remaining potential gain of P = {D, E}
is 40. M., cannot be reached, and the algorithm can backtrack.

Optimization 2: To make the above exact pruning action effective, the algo-
rithm adopts the strategy of choosing the node u with maximum merit among
the ones which satisfy condition 2 of the Region Selection Problem. In practice,
this means that candidate regions are considered in order of decreasing merit.
In Subsection[1.5.2] it is shown that these two optimizations greatly increase the
scalability of the exact method.

13 1.3 Region Selection Algorithms

Root
X={} X={} REGION | MERIT | cOST
P={A,B,C,D,E} not A notB | P={COE} A 60] | 35
MERIT 0
COST 0 \| COST 0 B 30 10
X={B} C 25 20
g | P=(CDE x D 20 5
A %={A} MERIT 30 backtrack E 20 2
,/ p=(E} COST 10
; MERIT 60 X={B} !Z)ptimization 2
x COST 35 P={D,E (exploring in order of
backtrack \ decreasing merit)
MERIT 55 y COsT10
COST 30 Overlap Graph
X=(B,C,E} | E backtrack
=0 ©
MERIT 75 P
cOST 39 o .th|m|zat|on 1 @ .@ @
(maximum merit cannot be reached) e

Figure 1.3. Tree exploration performed by exact, for the running example of
Figure[1.2} and for a cost budget of 35.

At the end of the exploration, the algorithm reports the set(s) recorded with
merit equal to M,,,, i.e., satisfying condition 3 of the Region Selection Problem.
In the running example, this corresponds to set X = {B, C,E}.

1.3.2 Greedy Method

The algorithm implementing a greedy selection maintains a set X (initialized to
(), which is the current partial solution, and a set P of available regions (initial-
ized to {1,2,...,n}). At each iteration, the algorithm selects the region u in P
with largest merit such that C(X U {u}) < C,,,, and continues to the next iter-
ation with X’ = X U {u} and P’ =P\ ({u} U {v | (u,v) € O}). The choice of P’
guarantees that the set X satisfies condition 1 in each iteration. If there is no
region u satisfying condition 2 the algorithm terminates and reports X. In the
running example of Figure[1.3] this corresponds to simply stopping exploration
at set X = {A}.

Since the greedy method never backtracks, it is often trapped in local minima,
and therefore cannot guarantee optimality. On the other hand, it converges to
a solution very fast, and is used as a naive strategy for generating comparative
results (Subsection[1.5.2)).

1.3.3 Exact-on-cropped Method

The previous two algorithms represent two ends of the spectrum: exact and ex-
ponential on one side; non-exact, fast and naive on the other. A third solution,

14 1.4 The RegionSeeker Framework

which strikes a balance between them, comes from the observation that while
the list of regions identified in an application is long — potentially too long to be
processed exactly — the list of meaningful regions is short, where by meaning-
ful is meant contributing tangibly to the overall speedup. In other words, the
distribution of regions with respect to speedup provided is very skewed.

The third algorithm alternative is therefore to apply the exact algorithm (Sec-
tion|1.3.1), but only to a cropped list of regions in input. This in practice corre-
sponds to ignoring a number of low-speedup regions in the selection problem.
In Subsection it is showed that such approach, while of course still of ex-
ponential complexity, can greatly improve the scalability of the exact algorithm,
still retrieving high-quality solutions.

1.4 The RegionSeeker Framework

The RegionSeeker framework is an automated methodology that identifies and
selects candidates for HW acceleration from application source code. An exten-
sive SW analysis, based on the LIVM compiler infrastructure, performs, apart
from identification, an estimation of the performance gain (merit), along with
the HW resources (cost), of each candidate. Subsequently given a HW resources
constraint, a selection of the identified HW accelerators takes place that max-
imizes the cumulative performance gain, as detailed in Section First the
LIVM toolchain built for this purpose is analyzed; then, the employed platform
model and the benchmarks used for a comparative evaluation are detailed.

1.4.1 LLVM Toolchain

The analysis passes of RegionSeeker were built within version 3.8 of the LLVM
Compiler and Toolchain [|42]]. The LLVM infrastructure provided the compiler
ground in order to develop my own analysis passes, as well as the tools used for
profiling. A Region Identification pass, as depicted in Algorithm|[1, was developed
to identify and provide an initial estimate of the cost and merit of the identified
regions. The pass receives as input applications developed in C or C++ and
performs the analysis in the Intermediate Representation (IR) level.

The Region Identification pass iterates over every function of the provided
input application and, using the existing RegionInfo LLVM pass [79]], identifies
regions within every function. Subsequently, forbidden nodes within regions are
identified and labeled, such as system calls or calls to functions that are not in-
lined. The regions containing these nodes are marked as invalid. Conversely,

15 1.4 The RegionSeeker Framework

Algorithm 1 LIVM Analysis Pass - Region Identification
Input: Application written in C/C++
Output: List of Identified and Profiled Regions

1: function RunOnFunction()

2 Region List =NULL

3 RI = getRegionInf oAnalysis()

4 for Region in Function do

5: if RegionIsValid() then

6 EvaluateRegion(Region)
7 Region_List.Add(Region)
8

9

return Region_List

10: /= Estimate Merit for Regionx /

11: function EvaluateRegion(Region)

12: for Basic Block in Region do

13: getProfilingInf o(Basic Block)

the valid regions are evaluated by a profiling via instrumentation routine. Pro-
filing via instrumentation requires generating an instrumented version of the
code, which gives more detailed results than a sampling profiler. Using this in-
formation, the basic blocks are annotated in each function with their respective
execution frequency, with the aid of ClrFreqCFGPrinter LIVM pass [97]].

The Region Identification pass also performs an early evaluation of a region
merit and cost, implemented directly within the LLVM toolchain. Such evaluation
relies on the LIVM IR and does not need any manual modification to perform
function outlining on the benchmark source code. It estimates the cost of a region
as the area required to implement its DFG nodes, and its merit as the cycles saved
between SW and HW execution, where the latter is the delay of the nodes on the
DFG critical paths. The final output of our analysis pass is a list of valid regions,
or else accelerator candidates, each annotated with an estimated merit and cost.

The region list output is saved in a file, which is in turn processed by the se-
lection algorithms exact, greedy and exact-on-cropped, implemented as stan-
dalone programs in C++.

16 1.4 The RegionSeeker Framework

j Data I/F Pro'cessor
Processor [« —> private

memory

y

> Shared
Accelerator _ Datal/f
memory

y
A

Control I/F

Shared
memory

v*

Accelerator | patal/F

A

Figure 1.4. Target ASIP model, featuring a host processor interfacing special-
function accelerators through control interfaces and shared data memories.

1.4.2 Platform Model and Performance Metrics

The performance benefit achievable by application-specific acceleration is de-
pendent on multiple target-specific parameters, including the adopted memory
hierarchy, the employed bus protocol, the interconnect strategy and the number
of considered processors, accelerators and memories.

In order to assess the performance of RegionSeeker, a system comprising a
single processor and multiple accelerators was assumed, exchanging shared data
with scratchpad memories (Figure[1.4)). The processor activates the accelerators
via a memory-mapped interface, thus requiring a transaction on the system bus.
When activated, accelerators read and write data to and from the scratchpads,
computing their outputs, which can then be accessed by the processor. In this
way, no data movement surrounding the execution of accelerations is required.
Accelerators are interfaced to scratchpad memories with ports having a latency
of one clock cycle. The control interface between the processor and the acceler-
ators has a latency of 10 clock cycles. These parameters correspond to the ones
employed by the ap_memory and s_axilite interfaces, respectively, provided by
Xilinx Vivado.

The run-times of the non-accelerated part of the considered benchmarks are
measured using the gem5 simulator [[8], modeling an ARMv8-A processor with
an issue width of 1. The processor model is atomic, with in-order execution. It
is interfaced with separate instruction and data memories with an access latency
of one clock cycle.

High Level Synthesis tools, as mentioned in the Introduction, have matured
over the years and, once a target for acceleration is selected, they can produce
the respective HW instance to be implemented in a heterogeneous system. Un-
der the scope of our evaluation, hardware execution times are retrieved using

17 1.5 Experimental Results

two different HLS frameworks: the Aladdin simulator and the Xilinx Vivado HLS
commercial tool-suite. Aladdin targets ASIC implementations. It allows a fast
evaluation, but does not produce a synthesizable netlist as output; nonetheless,
the estimations offered by this tool are claimed to be within 1% of the ones de-
rived from an RTL implementation [71]]. Hardware instances generated with
Vivado HLS are instead intended for FPGA designs. Synthesis-runs within this
framework are more time-consuming, but provide exact cost (HW resources)
and merit (speedup) figures of each accelerator, as well as a direct path to its
realization.

The cost C() of regions (and, for comparison, basic blocks and functions) was
computed as the amount of required resources. We expressed them in terms of
IC area in the case of Aladdin (mM?), and the maximum between their required
flip-flops and look-up tables, on a Virtex7 FPGA, in the case of Vivado. The merit
M () of a region was set as the difference between its hardware and software run
time, across all its invocations in an application.

1.4.3 Benchmarks

Real-world applications of varying size from the CHStone embedded applications
benchmark suite [[37] were considered. adpcm performs an encoding routine,
whereas sha is a secure hash encryption algorithm, widely used for generating
digital signatures and the exchange of cryptographic keys. aes is a symmetric-
key encryption algorithm. gsm performs a linear predictive coding analysis, used
for mobile communication. dfmul and dfsin are smaller kernels that perform
double-precision floating-point multiplication and sine functions employing in-
teger arithmetics. jpeg and mpeg2 are larger applications, implementing JPEG
and MPEG-2 compression, respectively.

1.5 Experimental Results

This section investigates and quantitatively assesses the results and contributions
of RegionSeeker from multiple perspectives. First, the speedup deriving from
considering regions as targets for acceleration is evaluated, with respect to state-
of-the-art solutions based on functions and basic blocks. Then, the performance
of the algorithms proposed to solve the Region Selection Problem is analyzed.
Finally, the robustness of region-based acceleration when varying architectural-
specific parameters is explored.

18

1.5 Experimental Results

adpcm aes
1.7 18
16 17 // ¥
15 e 16 = = 5
El 1l4 . g 15 -
el B el
g s — o 8 14 A
& /}, & 13 7
:f / ! 1.2 /
. o 1.1
1 ZLE & = 1 J/ek
10 30 50 80 100 130 150 180 10 20 40 60 80 100 120
Area (10 mM?) Area (10 mM?)
dfmul dfsin
1.12 4
1.1 J/ 35 /
/
g 108 ?T g 3
B 106 B 25 = Y
& roal & /
1.02 l 15
10 h 1
150 200 300 400 500 600 700 800 9001000 12345678910 12 15
Area (10 mM?) Area (10" mM?)
gsm ipeg
2.4 2.6
2.2 2.4
22
g 2 s 2 e
5 18 g 18|/
2 16 g sl/
() 0 .
141 F ¥ & 14T o
1.2 1.2 58—
1 1 b—m—s—a— e |
10 50 100 200 300 400 100 200 300 400 500 600 700 800 900 1000
Area (108 mMZ) Area (10’3 mMz)
mpeg2 sha
45 35
I
4 / 3
o 35 / & e
I / g pd
F—O—o—O—9
2 25 2 2 Bl
wn 2 / n
e | . o e a
15 / 1_532{!/
1 1
100 200 300 400 500 600 700 800 900 1000 100 500 1000 1500 2000 2500 3000 3500 4000

Area (108 mM2)

regions —»—

Area (107 mM2)

bbs —8— funcs —e—

[18] [28] [37]

Figure 1.5. Comparison of speedups obtained on eight CHStone benchmarks
by selecting regions, only basic blocks and only functions, varying the area
constraint, using Aladdin and gemb for merit and cost evaluation.

19

1.5 Experimental Results

Speedup

Speedup

Speedup

Speedup

adpcm aes
1.6 2.2
-)(////" 2 "ae_~—4
1.4 a 18| - yﬂ’
,)f/// 3
13 3 16
Ny & 4l
1.1 // 1.2
1 1 ?J
1 2 3 4 5 6 7 8 12 4 6 810 13 16 19 22 25
Area (10° LUTs/FFs) Area (10° LUTs/FFs)
dfmul dfsin
1.12 / 4
1.1 / /. 35 /}
1.08 s 3
106 // 2 s A
| // - Vo
1.04 @ 2
1.02 /'[/ 15
1 I—/ £ =) =) 88— 1
4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20 22 24
Area (10° LUTs/FFs) Area (10° LUTs/FFs)
gsm ipeg
2.4 2.8
Y o —— 2.6
2.2
) o4 “’a(/*,gy—x/»e’“
a 22)/
18 3 2
1.6 2 18
14 - & 18|/ !
. A—H _g—o—o—0—0—6—6—0—4
12 1:; T1i;:;;_i;_EP4a—43—{}—{*—5—45—43—{}—5&—T
iy 4 1
1 2 3 4 6 8 1234567 8 9101112131415
Area (10° LUTs/FFs) Area (10° LUTs/FFs)
mpeg2 sha
5 3.5
45
4 /- 3
35 // S 25
3 g ///////’““’
25 // (% 2 ~* = = i
2
. 15 - =
Py & & 8 &] ;
1 5 1.0 15 2.0 25 12 4 8 10 12 14
Area (10° LUTs/FFs) Area (10° LUTs/FFs)
regions —»— bbs —8&— funcs —6—

[18] [28] [37:

1

Figure 1.6. Comparison of speedups obtained on eight CHStone benchmarks
by selecting regions, only basic blocks and only functions, varying the area
constraint, using Vivado HLS and gemb for merit and cost evaluation.

20 1.5 Experimental Results

1.5.1 Regions as a Choice for Accelerators

In order to evaluate the benefits of RegionSeeker, we comparatively assess it
against two state-of-the-art alternatives. The first is to identify accelerators auto-
matically, but only within the scope of data flow — which means within the scope
of single basic blocks — as done by state-of-the-art approaches such as [[17]], [28],
[62]], [67], and [91]] to name only a few. In particular, the state-of-the-art al-
gorithm proposed in [I82]] and used in [28]] and in [60]] was implemented, that
identifies maximum convex subgraphs within basic blocks. These methods iden-
tify the largest part that can be synthesized and accelerated within a basic block,
and hence represent an upper-bound on the speedup that can be achieved by
identification methods that work at the data-flow (basic block) level. The sec-
ond is to mimic the manual approach of selecting entire functions, which is also
the scope supported by high-level synthesis tools [[15] [[83] [I85].

Two sets of experiments were performed: first Aladdin, and then Vivado
HLS were used to estimate merit and cost, highlighting that the RegionSeeker
methodology can be used across different high-level synthesis tools, and more im-
portantly verifying that the regions selected are largely the same, independently
of the cost and merit estimation model used. In the experiments, RegionSeeker
with the exact-on-cropped selection method was used, discarding regions that
provide less than 10% of the maximum merit.

Figure showcases the achieved speedup, when employing Aladdin, by the
accelerators selected by RegionSeeker (labeled regions in the figure), with re-
spect to the entire run-time of the applications and for different area constraints.
For small-to-medium size applications such as adpcm, aes, gsm and sha speedup
gains for RegionSeeker vary from 1.6x up to 3.2x. For smaller kernels, larger
variations can be observed, as for dfmul and dfsin the speedup reaches 1.12x
and 3.9x respectively. Finally, for larger benchmarks such as jpeg and mpeg2
speedup is fairly significant: 2.5x for the former and up to 4.3x for the latter can
be reached using RegionSeeker.

Similar trends are observed when Vivado HLS is instead used for the accel-
erator synthesis, as reported in Figure [1.6} RegionSeeker consistently outper-
forms state-of-the-art approaches which target either single basic blocks or en-
tire functions, across all benchmarks. These results highlight that the achievable
speedups are highly influenced by which segments of applications are selected for
accelerations, and that such choice is only marginally influenced by the adopted
merit and cost estimation tool. In fact, it was verified that across the two sets of
experiments, the regions chosen were the same in 80% of the cases. As an exam-
ple, out of 10 regions selected to achieve a 2.2x speedup for the jpeg benchmark,

21 1.5 Experimental Results

8 are the same when using either Aladdin or Vivado HLS for merit and cost es-
timation, and the ones that differ contribute to less than 14% of the provided
gain.

The speedup that can be obtained by accelerating basic blocks is hampered
by their small granularity and, consequently, the high number of switches be-
tween software and hardware execution. Moreover, in this setting many opti-
mization opportunities during the hardware implementation of the accelerators
are missed, because they only arise when control flow is considered, as is instead
the case for regions. On the other hand, the speedup derived by selecting whole
functions trails the one corresponding to regions, because of two reasons. First,
function selection is limited to the ones which do not present forbidden nodes,
and this might rule out promising regions within them. Second and more im-
portantly, it is also inflexible from an area viewpoint, which is especially visible
when only a small amount of hardware resources are available for acceleration.
In those cases, the selection of functions often detects only few feasible candi-
dates, with a small merit (e.g., in jpeg and mpeg2, for an area of less than 0.5
mM?).

This limitation is not present for regions, as only the part pertaining to in-
dividual hotspots inside a function can be selected. Indeed, the performance of
RegionSeeker stems from the high flexibility of the selection approach, as it al-
lows the consideration of the entire spectrum of granularity ranging from whole
functions to single loops, ultimately enabling a better exploitation of speedup for
a given area budget.

regions — bbs funcs =z
1

0.8 |- -
S 06 -
°
[
2
o 04 -

0.2 - -

%, .
R

»,
GQ/)

Figure 1.7. Normalized Speedup of RegionSeeker with respect to function and
basic block selection, considering, for each benchmark, a fixed area constraint.
Synthesis performed with Vivado HLS.

22 1.5 Experimental Results

A summary of the performed experimental exploration is presented in Figure
It reports the normalized speedups obtained by RegionSeeker compared to
basic block and function identification, when the maximum considered area bud-
get and Vivado HLS are employed. The rightmost column set illustrates that, on
average, RegionSeeker harnesses approximately 30% higher speedups with re-
spect to the two baseline methods. Moreover, while in some cases the baselines
match the performance of RegionSeeker (e.g.: gsm for basic blocks, dfsin for
functions), neither of them can do that consistently across different area con-
straints and across applications, showcasing the suitability of control-flow re-
gions as accelerator candidates.

1.5.2 Performance of Selection Algorithms

In Section three selection algorithms were presented: an exact algorithm
that might not scale for large benchmarks, a naive greedy, and a meet-in-the-
middle approach where the exact algorithm is applied only to a cropped list of
regions, as opposed to all regions of a benchmark. In this section, the perfor-
mance of these algorithms is evaluated, in terms of scalability and of goodness
of the solution found.

h264 h264
10000 16
14
1000 12
1] 1]
5 5 10
g 100 | g 8t
B S L
+ + 6
10 E 4 -
2 - .
0
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
% Percentage of maximum merit % Percentage of maximum merit

Figure 1.8. Left: The 1745 regions of H.264 are partitioned here in ten bins,
according to their merit M(). Regions providing up to 10% of the maximum
merit fall in the first bin, from 10% to 20% in the second bin etc. Notice that
the distribution is extremely skewed. Right: The nine most profitable bins
are here shown in linear scale, for clarity. The skewness of this distribution is
leveraged by the exact-on-cropped selection algorithm.

To this end, a complex benchmark is targeted (namely, H.264 [[75]]), which
has a code size of more than ten thousand lines of code and contains thousands

23 1.5 Experimental Results

h264 h264
1.7 10000
16 R T 1000 .
% *
g 15 /&:,;é/ 7 100 s
E E 3 10 * 5
e a2 2 £ £
i 1.3 ///) = 0.1 o e oo » SYSTS VN FUNUVOPoT o PSP
12~ 0.01 e
11K 0.001 I ——
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Area (10% LUTs/FFs) Area (10° LUTs/FFs)
5% —F— 20% —<— 5% —F— 20% —<—
108 —e— greedy A 10% —e— greedy A

Figure 1.9. Left: Speedup achieved on the H.264 benchmark by
exact-on-cropped, cropped by considering only regions providing at least 5%,
10% and 20% of the maximum merit, and by greedy. Right: Corresponding
algorithms execution time.

of regions. Note that, while Aladdin provides merit and cost estimation for a re-
gion very quickly (a matter of milliseconds per region) and therefore could have
been employed for this experiment of algorithm scalability, it does, however, re-
quire the outlining of the selected accelerator specifically as a function call within
the application source code — and this currently needs to be done manually. This
technical limitation means that Aladdin estimations cannot be used for the scal-
ability experiments in this section. Hence, a more abstract model was employed,
which could be implemented directly within the LIVM toolchain, relying on the
LIVM intermediate representation and without needing manual intervention on
benchmark source code. The cost of a region was estimated as the area required
to implement its DFG nodes, and its merit as the cycles saved between SW and
HW execution, where the latter is the delay of the nodes on the DFG critical
paths, each multiplied by their respective frequency.

Firstly, Figure shows, for the H.264 benchmark, the distribution of all
regions with respect to their merit M (). It becomes apparent in this figure that
the distribution is extremely skewed, with very few regions having high merit and
the majority providing a negligible one. This is to be expected, as it is well known
that a large percentage of time, in running a software application, is typically
spent on a small percentage of code. And of course a region merit is proportional
to the frequency of execution of its corresponding code segment.

For a large benchmark such as H.264, the exact algorithm does not scale if

it is fed all 1745 regions. However, it is reasonable to expect that, given the dis-
tribution seen, the goodness of the solution found should decrease only slightly

24 1.5 Experimental Results

h264

100000 F .
L e |
1000 |

100 fo

Time (secs)

1k ,/,/,/, [X]

0.01 k
5 10 15 20 25 30 35 40 45 50

Area (10° LUTs/FFs)

no-optl —*— no-opt2—e— all-opt —<—

Figure 1.10. Execution time of the exact-on-cropped algorithm (cropping
level at 10%), when the two optimizations described in subsection [1.3.1 are
removed.

when discarding a large number of low-potential regions, while scalability could
grow tangibly. This assumption is confirmed by the data in Figure where the
comparison of performance and scalability of the exact-on-cropped selection
algorithm is performed, at three different levels of cropping — that is, consid-
ering any regions providing at least 5%, 10% and 20% of the maximum merit,
respectively.

Figure (left) plots the estimated speedup achieved by implementing a
set of regions in hardware, selected by the three exact-on-cropped levels, and
by greedy, for different area constraints. It can be seen that, when changing
the level of cropping, the goodness of the solutions found by exact-on-cropped
differs only slightly (as expected, little is lost when some low-potential regions
are ignored) and it is altogether largely superior to fast but naive greedy.

However, as a second issue worth observing, the exploration space for the
three different levels of cropping differs greatly, and hence the time spent by
each of these algorithms to terminate. This can be seen in Figure [1.9] (right) :
orders of magnitude separate the time spent by each, with exact-on-cropped
at 5% taking hours, and at 10% taking seconds.

Last, the effect of the optimizations that were devised for improving search
tree exploration is shown. These optimizations were described in Section
and exemplified in Figure They are 1: pruning the exploration tree when a
certain best merit, found so far, cannot be reached, and 2: processing regions in
order of decreasing merit. In Figure it can be seen how the two optimiza-
tions affect the algorithm run time. When pruning is turned off, more than three

25 1.5 Experimental Results

orders of magnitude are lost, in time. When the list of regions is processed in
an order different than that of decreasing merit (in this experiment, an order of
decreasing density is considered, i.e. merit divided by cost) more than two orders
of magnitude are lost.

1.5.3 Impact of the Interface Overhead

The initiation of an accelerated routine on a dedicated hardware block always
entails a timing penalty Ty, . heqq- Such overhead is highly dependent on the in-
terface protocol between the processor and the application-specific accelerators.
While the definition of such protocol is outside the scope of this work, the im-
pact of adopting different values for this parameter is worth investigating, when
different selection methods are employed.

Two observations can be made by analyzing the results of Figure [1.11, re-
ported for the sha benchmark. Firstly, the speedup obtained by RegionSeeker
is not affected in any significant way by the variation of the value of Ty, heqd
among one, ten and twenty cycles, while the speedup for basic blocks is indeed
affected. This is to be expected, since basic block level accelerators require a
higher number of invocations (e.g.: for each iteration of an intensive loop) than
region-level accelerators. Secondly, while by decreasing the value of Ty, neqq the
speedup of basic block increases, it does not increase in a significant way and is
still less tangible than the speedup achieved by RegionSeeker.

Speedup

|
12 4 8 10 12 14
Area (10° LUTSs/FFs)

regions - overhead 1 —x—
regions - overhead 10 —%—
regions - overhead 20 —%—
bbs - overhead 1 —&5—
bbs - overhead 10 —&—
bbs - overhead 20 —&—

Figure 1.11. Impact of the initiation overhead for regions and basic blocks
selection strategies, considering Tp,erneqq Values of 1, 10, and 20 clock cycles.

26 1.6 RegionSeeker MuLTiVersioning

1.6 RegionSeeker MuLTiVersioning

High Level Synthesis tools, such as Vivado HLS by Xilinx, may employ optimiza-
tions to HW accelerators design in order to increase performance, i.e. obtain
faster execution. Nonetheless, optimized HW accelerators typically require a
greater amount of HW resources in order to be implemented. Therefore, there is
a trade-off between the gain, in terms of performance, and the cost, in terms of
area resources, that are finite and often scarce. To support different optimization
levels, an extension of the RegionSeeker framework is presented in this section,
which performs the selection not only among possible CFG subgraphs, but also
among different implementations of each identified subgraph, namely different
versions of the regions identified. This extension is referred to in the rest of the
document as RegionSeeker: the MuLTiVersioning approach.

1.6.1 Methodology

The rationale, supporting the extension of RegionSeeker framework, is to achieve
improved speedup by exploiting a more varied set of HW accelerators to select
from, with different optimizations implemented onto them. This goal is achieved
by instantiating different versions of each HW accelerator with the same func-
tionality, yet different speedup gains and different area (HW resources) require-
ments. The set of optimizations that were considered in order to design different
HW implementations of the same accelerators are:

1. The Loop Unrolling (LU) factor, in accelerators that contain loops.
2. The loop pipelining option, being either on or off.

3. The array partition factor, which is the number of input and output ports
of the memory buffer (scratchpad) attached to the accelerator.

Loop unrolling optimization is an HLS directive that, in the context of High
Level Synthesis instantiates multiple copies of the logic implementing the func-
tionality defined in a loop body, drastically impacting the performance of HW
accelerators [|40] [[41]. This directive can be applied in HW accelerators con-
taining loops whose trip count can be statically defined. It should nonetheless
be applied in a careful manner, as it entails a high area cost for the duplicated
logic. Furthermore, the resulting benefits can be hampered by frequent mem-
ory accesses and loop-carried dependencies, which impose a serialization of the
run-time execution, thus negating any benefits resulting from loop unrolling.

27 1.6 RegionSeeker MuLTiVersioning

A2
Al Cc2

C
O C1

B1 C3

B2

Figure 1.12. Left: Example of an overlapping graph for three candidates for
acceleration. Right: The corresponding overlapping graph for multiple versions
of the same candidates, where A and B have two versions and C has three
versions.

Loop pipelining is an additional HLS directive applied in loops that allows
the pipelining of the operations contained in a single body of a loop and across
consecutive iterations. Restrictions regarding loop-carried dependencies across
consecutive iterations can also limit the application of the loop pipelining opti-
mization as the result of the output of a loop iteration would be required in the
following one, thus not allowing the pipelining of the loop body operations.

Given an initial set of HW accelerators, i.e., a set of regions that is derived
by the RegionSeeker framework, multiple versions for each region can be gen-
erated that maintain the same functionality. Each version may employ one of
the optimizations listed above, or a combination of them. Seven versions for
each HW accelerator were generated. A combination of three different loop un-
rolling factors along with two loop pipelining options (on and off) and a version
with a specific cyclic array partitioning were considered. The versions that were
dominated by others, with respect to their performance and area requirements,
were then removed. The total number of regions evaluated in the Experimental
Results subsection were 27 and their respective versions were 189.

Contrary to RegionSeeker, where there is an early performance (merit) and
area (cost) estimation for every candidate for acceleration, this is not the case for
the MuLTiVersioning approach. For every version of a single HW accelerator we
rely on the Aladdin simulator to manually evaluate all HW accelerators versions.
Aladdin, as mentioned in[1.4.2} provides a fast evaluation of HW accelerators,
but does not generate a synthesizable netlist, as opposed to Vivado HLS. For
all simulated versions of the selected regions (or HW accelerators), the number
of Cycles and number of Functional Units (FU) Area were retrieved. For the
SW execution time the gem5 simulator [|8] was used with two CPU settings: a)
TimingCPU (a simple and slow CPU with only two pipeline stages) and b) O3CPU

28 1.6 RegionSeeker MuLTiVersioning

(a complex and fast CPU with five pipeline stages and other resources such as a
branch predictor, reorder buffer etc).

The exact selection algorithm, as detailed in Subsection was used
subsequently to perform the subset selection that maximizes speedup, given an
initial set of HW accelerators along with their respective versions, as well as a
specific area (HW resources) budget. An important note is that no more than
one version of each candidate can be selected, as only one realization of the re-
spective SW execution is required. To ensure that, the selection takes place by
considering an extended version of the overlapping graph compared to the one
considered by RegionSeeker. An instance of the extended version of the over-
lapping graph is presented in Figure [1.12. As a result, multiple versions of the
same region cannot be selected during the selection phase as this would violate
the first condition of the Region Selection problem as defined in Subsection [1.2]

1.6.2 Experimental Results

The experimental setup was the same as in the RegionSeeker framework, with a
system comprising a single SW processor (O3CPU setting) and multiple loosely
coupled HW accelerators, exchanging shared data with private local memories.
The processor invokes the accelerators via a memory-mapped interface, thus re-
quiring a transaction on the system bus and as soon as the HW accelerators ex-
ecution is complete, control returns to the SW processor. Experiments were run
on the jpegimage encoding/decoding benchmark from the CHStone embedded
applications benchmark suite, as detailed in Subsection (1.4.3

Three single-version approaches were compared against the MuLTiVersion-
ing approach. A) The min approach where exclusively the regions with the least
amount of area are included in the initial set of regions, and hence can be se-
lected by the exact algorithm. This approach takes into account candidates for
acceleration that require the least possible HW resources and, thus, have no opti-
mizations embedded onto them. B) The base approach where only single versions
of regions with median values of area are considered. These versions are opti-
mized, yet not to their fullest potential according to the number of optimizations
that were listed in the previous subsection (1.6.1). As a result they can offer
greater speedup compared to min but they require more HW resources as well.
C) Finally the max approach where single versions of regions with maximum
area were considered for selection. These single version candidates are fully op-
timized, with respect to the set of optimizations considered in[1.6.1} and require
the largest area budget compared to the previous single-version approaches.

The MulTiVersioning approach, instead, takes into account all available op-

29 1.6 RegionSeeker MuLTiVersioning

timized versions of the initial region set and, subsequently, all versions are avail-
able for selection. The speedup achieved on jpeg over the whole run time of the
application (Figure [1.13 Top), as well as over the run time of solely the selected
regions (Figure [1.13 Bottom) is showcased.

1.8

1.7
a 1.6
2 15
|
& .

1.2

1.1

1
110 30 50 80 100 120 140 160 180
Area (107 mm? FUs)
regions base —»— regions min —6—
regions mv —B— regions max

- ipeg
@
70]
S S i |
§ BO [gl
>
3 10
S
2 10 5 100 150 200 250 300 350 400

Area (107 mm? FUs)

regions base —%— regions min —6—
regions mv —B— regions max

Figure 1.13. Comparison of the speedup obtained by MuLTiVersioning to single
versioning approaches on jpeg benchmark varying the area constraint, using
Aladdin and gemb respectively, for HW and SW latency evaluation. Top:
Over the total run time of the application. Bottom: Over the run time of the
regions selected.

The strength of the MuLTiVersioning approach and the benefit of having a
variety of potential candidates to select from is demonstrated by the experimental
outcome of the jpeg application for different area constraints. In Figure [1.13]
(Top) for any given area point, the speedup obtained is higher than any other
methodology. In Figure[1.13 (Bottom) the difference among the four different
strategies, i.e., MuLTiVersioning compared to the three single-version methods,
becomes more apparent. For a medium area point (200K uM?), the speedup

30 1.7 Related Work

achieved with MuLTiVersioning is 1.7x more than the second best, base approach.
For a large area constraint (400K uM?) the MuLTiVersioning speedup is more
than 2x compared to base and more than 6x compared to min.

1.7 Related Work

Automatically identifying parts of computation to be accelerated is often called,
in literature, Instruction Set Extension identification, or also HW/SW Partition-
ing. The distinction that is most relevant, for the research work presented in this
chapter, is the scope at which the suggested techniques perform identification:
identifying accelerators or custom instructions at the data flow or the control
flow level.

Data Flow Level. State-of-the-art methods have been published in literature to
automatically identify, within a single basic block, the subgraph of data flow that
maximize speedup when implemented in HW as a custom instruction according
to varying architectural constraints. A non-extensive list includes works [[10]]
(171, [28], [471], [62]], [67] and [|91]], where the problem of identifying subgraphs
under convexity, I/O constraint, and/or area is tackled; in [[60/]] and [|82] the I/O
constraint is relaxed, to be regained via I/O serialization [3]], [6], [63], [82].
In [[18]] the focus of the identification process is also on DFG nodes within single
basic blocks, and the constraints that are taken into account are a limited number
of read and write ports, and area. The methodology proposed in [27] is not
limited by I/O in the selection process, but clusters MAXMISOs [i4] in order to
form MIMOs (Multiple Input Multiple Output instructions) that can be executed
as a single instruction.

In none of the above pieces of research, though, the inclusion of the con-
trol flow of the application is considered during the identification process. The
technique proposed in this chapter, instead, pushes identification beyond the ba-
sic block level and identifies entire regions of the Control Flow Graph of the
application as candidates for acceleration. Compiler transformations such as if-
conversion and loop-unrolling can be, and are, used by several of the techniques
mentioned above in order to enlarge the scope of within-basic-block identifica-
tion, by enlarging basic blocks. Nevertheless, the scope remains limited to those
techniques and cannot include all kinds of control flow.

Control Flow Level. A smaller amount of research has looked into identifica-
tion within CFGs. In [|98]] it is proposed to implement CFG regions with multiple
control exits as accelerators. However, the presence of multiple control outputs
significantly complicates the processor-coprocessor interface, as opposed to a

31 1.7 Related Work

single-entry single-exit approach. Another paper proposing HW/SW partition-
ing [7] presents a clustering methodology that operates on a control-data net-
work compiled from an Extended Finite State Machine (EFSM) model. While it
targets control flow to a certain extent, their methodology is limited to applica-
tions that can be modeled using EFSMs, therefore considering a much more lim-
ited scope than that of generic Control Data Flow Graphs compiled from source
code, as does the methodology proposed in this chapter.

Finally, the authors of a recent work [2] consider Single Entry Single Exit re-
gions but their target is to identify strictly parallelizable loop regions and offload
them to an MPSoC target platform. This approach is limited in terms of exclud-
ing non-parallel regions from being potential candidates to be accelerated, and
also in terms of not being cost-efficient, in case a designer needs to set a specific
area constraint for the accelerators.

Compiler Transformations. Within compiler research, it is fairly common to
identify CFG subgraphs for code optimization reasons. For example, trace schedul-
ing, superblock and hyperblock scheduling [136]], identify regions of the CFG in
order to perform global code scheduling and improve code generation. SESE
(Single Entry Single Exit) regions have been proposed in [[38]], and their iden-
tification was reimplemented in the LLVM framework in an analysis pass called
Regionlnfo, for the purpose of improving the performance of code generation.
For my SW analysis, the idea of CFG region identification was borrowed from
compiler research and was applied to automatically identify and select HW ac-
celerators.

Application Specific Instruction set Processor (ASIP) architectures and design
practices. HW Accelerators that are embedded in an Application Specific Proces-
sor can be either developed as hardwired Integrated Circuits (ICs), or mapped
onto reprogrammable systems. In the first scenario, examples of Application-
Specific Integrated Circuit (ASIC) platforms exist, such as the Tensilica Xtensa
from Cadence [[14]] and the ARC processor from Synopsys [[76]. These tools can
be extended with accelerators and complex instructions. The CPUs can be config-
ured during the design process to maximize performance and efficiency, without
enduring the overhead of reconfiguration. An alternative, not as performing yet
more flexible, is offered by FPGA-based Systems-on-Chips (SoCs), such as the
Arrial0 family [5] by Altera and the Zynq SoCs [86] by Xilinx.

The instances mentioned above support the generation of HW circuits, but do
not provide implementation paths for differentiating the execution between HW
and SW. Conversely, High Level Synthesis (HLS) tools allow designers to move
parts of applications, written in C or C++, between processors and accelerators.
Research endeavors in this domain include LegUp [[15]] and ROCCC [31]], while

32 1.8 Released Software

commercial applications comprise the Vivado HLS [85] suite from Xilinx (for
FPGAs) and StratusHLS [[13]] from Cadence (for ASIC development). However,
these HLS frameworks place the responsibility of partitioning a SW application
on the application developer.

1.8 Released Software

The LIVM passes developed for RegionSeeker, along with the respective scripts
that invoke them and the documentation, can be downloaded here: https://
github.com/GiorgioZacharo/RegionSeeker.

1.9 Conclusions

The RegionSeeker framework, along with its MuLTiVersioning extension, are
methodologies that extend the state-of-the-art in the HW/SW co-design domain.
They provide efficient solutions to the problem of automatically deciding which
parts of an application should be synthesized to HW, under a given area bud-
get. The accelerators identified by RegionSeeker consistently outperform the
ones derived by data flow level algorithms and by considering strictly function
level candidates, across applications of widely different sizes and for varied area
constraints. As an example, RegionSeeker offers up to 4.5x speedup for the
mpeg2 benchmark compared to SW execution and up to 2x speedup compared
to the better performing state-of-the-art approach. This work was published in
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) journal [[96]]. The MuLTiVersioning approach extends the initial pool of
candidates by introducing multiple optimized versions of these candidates. Re-
gionSeeker MuLTiVersioning offers 1.8x speedup over the total run-time of the
jpeg application compared to SW execution and up to 65x speedup on the parts
of the computation that are synthesized into HW. Moreover, compared to single-
version approaches it achieves 2-6x speedup over the run time of the selected
regions.

https://github.com/GiorgioZacharo/RegionSeeker
https://github.com/GiorgioZacharo/RegionSeeker

Chapter 2

Automatic Optimization for HW /SW
Co-design

Identifying good candidates for HW acceleration is the first step to realize hetero-
geneous computing system designs that offer increased performance compared to
a homogeneous system restricted to general purpose SW CPU(s). However, as we
have seen, a set of optimizations applied on HW accelerators can decrease even
more the computation times, thus leading to improved performance compared
to default non-optimized HW accelerator implementations. Modern High Level
Synthesis tools can apply such optimizations to HW accelerators and increase
the performance of their implementations, as well as the overall performance of
the entire heterogeneous system. HLS tools such as Vivado HLS [I85]], however
efficient, require a lot of manual decisions from the programmer’s part when it
comes to the choice of how these accelerators can be synthesized. Furthermore,
the resolution of which optimizations may be applied to which HW accelerators
can be a complex problem, as it depends heavily on each HW accelerator char-
acteristics.

In order to bring automation one step forward in HW/SW co-design, and un-
der the scope of this part of my research, I tackled the problem of automating the
decision process of which optimizations should be applied to candidates for HW
acceleration within a certain context. potential optimizations, as already men-
tioned, include memory management of the data consumed and produced by the
HW accelerators, a set of optimizations targeted to loops (e.g. loop pipelining,
loop unrolling, loop flattening etc), pipelining consecutive pieces of computa-
tion such as subsequent function calls or loop bodies of consecutive iterations
and array optimizations, such as array partitioning in blocks of the same size.
Among the various optimizations available, I have focused on two categories: a)

33

34 2.1 Data reuse Analysis

Data Reuse analysis and b) Loop Unrolling factor prediction. These instances are
explained in more detail in the following two sections.

2.1 Data reuse Analysis

2.1.1 Motivation

Loops are ideal candidates for acceleration. In almost every application, there is
a number of loops that contain a large number of iterations and a large amount
of computation time is spent during their execution. In addition to that, there
are nested loops which commonly show a high level of data reuse. An effective
exploitation of data reuse across consecutive iterations of loops can significantly
lower the required amount of data exchange between HW accelerators and main
memory, thus reducing the bandwidth to and from accelerators, and increasing
their performance.

Sliding window applications, common in the image processing field, are a
common target for acceleration. An example of high data reuse can be observed
in these applications, where there is typically a window of accesses scanning a
wider domain, such as a two-dimensional array. Given that the level and pattern
of data reuse is known a priori, it is feasible to design specific memory structures,
also known as memory buffers, attached to the HW accelerators. These memory
buffers can exploit data reuse by keeping data locally and, hence, minimize the
memory latency due to communication with main memory.

Data reuse exploitation in High Level Synthesis is still in premature stage.
State-of-the-art methods [|80Q] either rely on manually rewriting the source code,
preceding HLS, or on source-to-source translation [|61]] [[70], and are therefore
poorly integrated in HLS tool-chains.

The methodology detailed in Subsection attempts to bridge this gap. It
presents a compiler-driven framework, based on the LLVM Polly [[79] library, able
to identify automatically data reuse potential in computational kernels in order
to guide the synthesis of complex HW accelerators.

2.1.2 Related Work

In the domain of identifying automatically accelerators, research has so far fo-
cused mostly on accelerating data-flow [28[] [I33]], not taking into equal account
the potential for optimization by memory accesses. Exceptions are provided by
papers [9] [34] where the authors support the claim that accelerators with cus-

35 2.1 Data reuse Analysis

tom storage can provide better speedup compared to the ones that accelerate
data-flow only. However, these papers focus on the identification of the accelera-
tors, and do not present a methodology to automatically identify the optimization
potential, as well as synthesize them accordingly.

In sliding window applications, there are research endeavors both by academia
and industry to exploit data reuse. The smart buffers [32]] generated by the
ROCCC compiler [|83]] allow for automatic detection of data reuse opportunities,
but cannot be interfaced with interconnects of varying width. The methodol-
ogy described in [48] employs reuse buffers spanning multiple frame columns,
which pose a significant area overhead. Both [32]] and [|48]] are not able to com-
bine hardware unrolling and pipelining, which are instead jointly supported by
the methodology detailed here. An alternative approach, described in [23]], re-
quires a large amount of hardware resources, as it demands the storage of large
parts of a frame being processed inside the custom hardware. In [90], the au-
thors propose an analytical method to gather microarchitectural parameters for
sliding-window applications on FPGAs. Their design however ultimately needs
to be manually implemented and hence the work neglects High Level Synthesis
aspects.

The commercial Vivado HLS tool requires extensive manual rewrite of the
source code, in order to instantiate a reuse memory buffer. The approach pre-
sented here, instead, relies on automated code analysis to derive the character-
istics of the target application.

2.1.3 Methodology

In order to generate custom-storage accelerators we proceed with a two-steps
methodology, where first we perform software analysis and then we synthesize
the part of computation to be implemented in HW. The phases of software analy-
sis and synthesis are depicted in Figure along with the evaluation procedure
we follow. The first phase includes static data reuse analysis, while in the synthe-
sis phase, details regarding the hardware implementations are provided. These
phases lead to the design and implementation of custom-storage accelerators
that manage to minimize the latency due to data transfer between main memory
and the HW accelerators.

Data Reuse Opportunities

Our framework leverages both hardware unrolling and pipelining to achieve a
high degree of inter-iteration data reuse. Figure [2.2] illustrates the reuse con-

36 2.1 Data reuse Analysis

Software : High-level : Evaluation
Analysis : Synthesis :
source
d SCOP. : ROCCC J f FPGA area,
code J [analysis] : { : synthesis cr. path

window datapath

parameters | : HLS

. (interface | :
MO

HDL #elk
simulation cycles

developed SoA
D tools D tools

1/0 width

Figure 2.1. Block scheme of our framework. Code analysis retrieves the pa-
rameters of SCoP kernels, which are employed, along with input/output con-
straints, to guide the automated design of highly efficient hardware accelerators.

cept from a high-level perspective, assuming, without loss of generality, that the
sliding window moves first in the vertical direction and then, at the end of each
frame column, in the horizontal one.

Window applications proceed by computing output values from a subset of an
entire frame, localized in a small two-dimensional block. It is therefore possible
to limit the internal storage of the local memory of the accelerator to the data
used in a single window, called the managed set, resulting in a compact hardware
implementation (Figure [2.2p).

Nonetheless, by adopting a larger local memory, the data required by mul-
tiple windows can be stored at the same time. We observe (Figure) that
the managed sets of horizontally adjacent windows are highly overlapping, only
differing by a number of columns of elements equal to the vertical stride of the
application. Multiple (overlapping) managed sets can therefore be supported
with little overhead in the size of the local buffer. Each window enclosed in the
buffer can then be processed in parallel by a different datapath, implementing
unrolling with data reuse in hardware.

Data reuse is also present in the vertical dimension. In fact, the managed set
of subsequent iterations differ by a number of rows equal to the horizontal stride
(Figure[2.2c). This source of data reuse can be efficiently harnessed by hardware
pipelining, implementing the local storage as a row-wise shift register.

Our framework supports both types of data reuse concurrently (Figure[2.2[d).
In this setting, updating the managed set entails the transfer from main memory
of the data corresponding to a buffer row (as opposed to a window row in Figure
[2.2kc). We use this added degree of freedom to tailor both the local storage struc-
ture and the number of implemented datapaths according to the input/output

37 2.1 Data reuse Analysis

unrolling with data reuse
no yes
o frame hor. size | data reuse
's) T 1 [——
5
MR window
0|33
S15(2
S1s P/—/—— ﬁ—|
Q 2 = [Window hor. size window 1
8 s window 2
s = Frame Buffer hor. size
i
S
c a) b)
=
3 ~
2l |k 3
SEHE e
9] 3
s |E|° 3
S|g|=
- 4 aling
unrolling
c) d)

Figure 2.2. At each iteration, sliding window applications process a subset of
the input data (a). The managed set of subsequent iterations present a high
degree of overlap, both in the horizontal (b) and vertical (c) dimensions. Our
framework automatically leverages both, maximizing data reuse (d).

width of the communication interface (i.e.: number of data elements that can be
concurrently read or written).

Data Reuse Analysis

In order to identify code sections corresponding to sliding window kernels, the
control flow graph (CFG) of the application is analyzed, looking for loop nests.
Then, the LLVM Polly [[79] library is used to verify whether the CFG structure of
nests is a SCoP (Static Control Part), which is a subgraph of the CFG where the
flow of control is known statically. If so, its polyhedral model, derived by Polly,
is analyzed to provide the SCoP parameters required for its hardware implemen-
tation.

To automate exploitation of data reuse in SCoPs, information about the win-
dow size, the stride and the frame size must be collected from application source
code. The window size defines the access pattern within the innermost body of
the loop. The innermost and outermost loop stride is the value of the induction
variable increase for the innermost and the outermost loop respectively. Finally,
the frame size is defined as the iteration space in which the sliding window is
moving. To obtain these values, we developed a compiler analysis pass, build-

38 2.1 Data reuse Analysis

Algorithm 2 LIVM Analysis Pass - SCoP Identification and Data Reuse Analysis
Input: Application written in C/C++

Output: List of Identified SCoPs and their respective Frame, Window, Stride
sizes/values.

1: function RunOnRegion()

2 getAnalysis(Scoplnfo)

3 scop = getScop()

4 RunOnScop (scop)

5:

6: function RunOnScop (scop)

7 LI = getLoopInfo()

8 SE = getSE()

9: if L == OutermostLoop then
10: getTripCountFortLoop()
11: getStrideForLoop()
12: else if L == InnerMostLoop then
13: getReadMemoryAccesses()
14: ComputeDistancesForReadAccesses()
15: ComputeWindowSize()

ing on the capabilities offered by the LLVM Polly framework [79]]. Application-
specific parameters are then considered in conjunction with architecture con-
straints (input/output width) to automatically synthesize efficient SCoP acceler-
ators.

The Analysis Pass that we have developed iterates over regions of the applica-
tion functions identified as Static Control Parts by Polly. As reported in Algorithm
for each SCoP Loop and Scalar Evolution (SE) information is extracted from
the current body of the loop, by using the analysis passes provided by LIVM. Loop
information provides the loop depth, and thus whether a loop is the innermost or
the outermost one in a SCoP. SE information includes the loop trip count method,
which computes the iteration space for each loop. This information enables the
computation of the frame size.

The SCoP horizontal and vertical stride is calculated by the getStrideForLoop
function, which takes as argument the basic block corresponding to the loop
body. We developed it by leveraging the getStride method included in the LIVM
ScopInfo Analysis pass and functions included in the Integer Set Library (isl)
[811].

39 2.1 Data reuse Analysis

INy : input width

w : win. width

:> { &\:&E&‘\: § 1. input
reuseﬂ &\\\\\\\&\ ;3 interface
g buffer \\\‘\\\& | ‘S:
5 ==
€
.% opl 2. parallel
€

datapaths
DP2

(—— ‘. 3. output
{ interface
—
output width

Figure 2.3. The automatically generated accelerators include multiple datap-
aths, executing the loop body of two-dimensional SCoPs.

Finally, the read memory accesses residing in the innermost body of the loop
are identified by using is1 functions within our own ComputeDistancesForReadAc-
cesses function. We compute the distance (or delta) of each of these accesses with
respect to the first identified one. From the access pattern, the window size is
computed as its minimum enclosing rectangle.

Hardware Implementation

The parameters retrieved with the analysis pass (frame size, stride, horizontal
and vertical window size) and the characteristics of the interconnect (input and
output width) are employed to derive efficient HW accelerators implementation
with local storage and data reuse.

The implementation that is proposed is showcased in Figure [2.3| and ex-
plained in the following. Accelerators embed multiple combinatorial datapaths,
each executing one iteration of the loop body of the target application. The input
interface embeds a local storage, whose horizontal size corresponds to the avail-
able input data width of IN;, data elements, while its vertical size is equal to the
vertical size of the application window h. It is implemented as a IN,, * h shift
register, operating in the vertical (top-down) direction. During execution, the
first row of the shift register is filled with input data in each clock cycle. A subset

40 2.1 Data reuse Analysis

Pipelining | Unrolling | Parametric
data reuse | data reuse | I/O width

Our Methodology Yes Yes Yes
Vivado Manual No Yes
ROCCC Yes No No

Table 2.1. Summary of the features of the accelerators generated by our frame-
work, compared with state-of-the-art tools.

Window Input width, #DPs

Benchmark size Conf.1 | Conf.2 | Conf.3
SAD 4x4 41 | 8,5 |16, 13
Max. Filter 8x8 8, 1 16, 9 | 24, 17
Sobel 3x3 3,1 8, 6 |16, 14

Table 2.2. Benchmarks characteristics and employed configurations. Conf.1
presents a single datapath, while Conf.2 and Conf.3 have a moderate to large
number of datapaths. Window sizes and input widths are expressed in bytes.

of the elements stored in the shift register is connected to each of the different
datapaths according to their managed sets, e.g.: the first one has inputs corre-
sponding to the buffer columns ranging from 0 to w—1 (the horizontal size of the
window) and the second one corresponding to the buffer columns ranging from
1 to w. Figure[2.3]illustrates such scheme for the simple case of INy, = w + 1.

At the beginning of execution, h rows are stored in the shift register before
activating the datapaths logic. Afterwards, this activation is performed for each
new row, discarding the last (topmost) line and storing a new one in the first
(bottom) position of the shift register. At the completion of a vertical slide of
the window through the frame, a new one is started, increasing the horizontal
displacement of the buffer by IN,, —w + 1 elements.

Finally, since no reuse opportunities are present for outputs, the output in-
terface simply concatenates the values generated by the datapaths, and transfers
them as a single and wide memory access.

2.1.4 Experimental Results

The comparison of the proposed approach is carried out against two state-of-the-
art HLS tools: ROCCC and Vivado HLS. Vivado HLS is compared in two modes,
one being the default (Vivado norew) and the other one after extensive man-
ual rewrite of the source code (Vivado rew) in order to obtain increased data

41 2.1 Data reuse Analysis

reuse [[80]]. Table[2.1|provides a high-level summary of the main features of each
framework.

The evaluation of our methodology is carried out in three benchmarks of vary-
ing window sizes. Sobel is an edge detection algorithm with an access pattern
of a 3x3 window. BlockSAD is a kernel in H.264 and is used to detect the simi-
larity among 4x4 blocks. Finally, Maximum Filter computes the brightest pixel
among neighbors in 8x8 blocks. Three different configurations were considered,
spanning from a singe datapath and minimum input width (Conf.1) to multiple
datapaths and increased input width (Conf.2 and Conf.3) as summarized in Ta-
ble Multiple datapaths translate to more parallel windows executing and,
hence, increased demand in area resources.

m ROCCC " F
500000

B Vivado_norew

m Vivado_rew 50000

H Confl
Conf.2 5000
Conf.3

500
Sobel MaxFilter BlockSAD

Figure 2.4. Execution time to process a 100x100 frame.

B ROCCC

10000 10000
i i H Vivado_norew

m Vivado_rew

1000 + 1000 A
E ® Confl
Conf.2
100 - 100 - Conf3
Sobel MaxFilter BlockSAD Sobel MaxFilter BlockSAD
a) b)

Figure 2.5. Comparison of required resources for our generated systems and
for baseline approaches: LUTs (a) and Flip-Flops (b).

Execution Time. Execution time, shown in Figure[2.4] is extracted from a tar-
geted Xilinx Virtex7 FPGA platform. It can be observed that ROCCC systems have
similar performance to that of Vivado norew ones. Conf.1 accelerators — even

42 2.1 Data reuse Analysis

YT mspeed
12 - peedup
10 +— ™ Area overhead (LUTs)

Area overhead (FFs)

OLQ o
i
s
=l

|

O AN
F & & F &
S N & S B &
@'b Q7\0 @’b Q}O
f l f |
Conf.2 vs. Vivado_rew Conf.3 vs. Vivado_rew

Figure 2.6. Comparison of multi-datapath and optimised Vivado implementa-
tions.

though they do not require code modifications — are as efficient as Vivado_rew
ones. Conf.2 and Conf. 3 representing the framework presented in dra-
matically decrease run-times, with an order-of-magnitude speedup on average
between Conf.1 and Conf.3. The other state-of-the-art tools fail to provide an
equivalent solution with such low execution time.

Required resources. Figure reports the amount of area resources re-
quired by ROCCC, Vivado HLS and our own generated accelerators. Unsurpris-
ingly, accelerators featuring a high number of datapaths (Conf.3) require more
resources than single-datapaths approaches (Conf.1, Vivado). The area increase
in terms of Flip-Flops is comparable to that of other state-of-the-art tools, as
the size of the buffer only is increased slightly to support a high degree of paral-
lelism. On the other hand, the results highlight that complex accelerators require
an increased amount of combinatorial logic (LUTs), with respect to ROCCC and
Vivado HLS.

As illustrated in Figure the speedup improvements due to parallel data-
paths compare favourably with the area overheads: in the case of the BlockSAD
benchmark, for example, Conf.3, which embeds 13 parallel datapaths, requires
6x more LUTs with respect to the Vivado rew implementation, but at the same
time results in a 9.2x speedup. Again, it is important to note that state-of-the-art
tools do not support unrolling with data reuse, but stop at the level of speedup
that can be achieved by single-datapath solutions.

The framework presented in[2.1.3|brings High-Level Synthesis one step closer
to mimicking manual hardware-designer decisions. The Conf.3 accelerator for
BlockSAD, presented above, is essentially the same as the one designed manually

43 2.1 Data reuse Analysis

by Hameed et. al [[35], in a paper aimed at manually designing accelerators for
the H.264 application. The authors have indeed chosen to invest area for as
many as 16 BlockSAD datapaths in parallel, in order to 1) maximize speedup
and reuse, and 2) exploit the high bandwidth present between processor and
accelerator, in their Cadence Tensilica Xtensa processor [78]. The present work
mimics the rationale followed there, but is able to do so automatically. HLS
state of the art tools can automate some of the decisions taken by the framework
presented in this section, but not all — in particular, they cannot automatically
and jointly exploit unrolling and pipelining while considering reuse, and hence
deliver the levels of speedup provided here.

2.1.5 Conclusions

Static source code analysis can be crucial, when automatically optimizing the syn-
thesis of accelerators that are dedicated to sliding window applications. My SW
analysis identifies data reuse, as well as data locality, and subsequently allows
to exploit these characteristics by making use of appropriate memory buffers.
The experimental results reveal an order-of-magnitude performance improve-
ment with respect to state-of-the-art methodologies. This work was published in
HiPEAC IMPACT 2017 Seventh International Workshop on Polyhedral Compila-
tion Techniques [|93]].

2.2 Machine Learning Approach for Loop Unrolling
44 Factor Prediction

2.2 Machine Learning Approach for Loop Unrolling
Factor Prediction

2.2.1 Motivation

High Level Synthesis tools, as mentioned in the beginning of the chapter, require
manual decisions to be made, so as to build efficient accelerators. These decisions
include the choice of high-level optimizations and transformations to be applied,
therefore a good understanding of the SW parts to be accelerated is essential. In
addition to that, the selection of optimizations is a challenging task due to two
main reasons. First, hardware synthesis is a time-consuming process, limiting in
practice the amount of possible implementations that can be evaluated. Second,
the effect of assigning different values to directives is difficult to foresee, due to
low-level application characteristics.

Simulation tools, such as Aladdin [[71]] mentioned in Chapter 1, have been
developed in order to rapidly estimate the performance and cost (area) of HLS-
defined designs. Nonetheless, even when employing estimation tools, an ex-
haustive evaluation of all directives settings for each candidate accelerator in a
heterogeneous system is still unfeasible beyond simple cases. Addressing this
challenge, a machine learning framework is proposed that is able to infer the
proper implementation of an HLS design based on its characteristics, automat-
ically derived from a source code analysis pass, based on the LIVM compiler
framework [|42].

In this section, the focus is placed on loop unrolling, an already well known
optimization from the compiler domain, as well as the HW domain. The loop
unrolling optimization replicates the body of a loop a given number of times in
order to expose parallelism, which especially in a HW implementation can lead
to substantial speedup gains [|41]]. This directive should nonetheless be applied
sensibly, because it entails a high area cost for the duplicated logic; in addition,
its ensuing benefits can be hindered by loop-carried dependencies and frequent
memory accesses.

It is thus clear that there is a trade-off between execution time and the area
budget that a computer architect has at hand, as well as the level of complexity
and more potential side effects that need to be taken into consideration. Since
HW realizations are targeted, the goal of this work is to reach a sweet spot be-
tween performance and HW resources.

Within the sphere of this research work, the following contributions are made.
First, a novel Machine Learning approach is introduced, based on Random For-

2.2 Machine Learning Approach for Loop Unrolling
45 Factor Prediction

est classification, instead of estimation-based models, to predict accurately the
optimal loop unrolling factor of loops in applications to be synthesized in HW.
The use of this methodology can provide results with better prediction score and
in much less time, compared to the state-of-the-art. Second, the whole process
is fully automated, from the analysis of the input applications, using the LIVM
compiler infrastructure [|42]], up to the training of the Random Forest Classifier.
Finally, the trained Random Forest classifier can be used to generate accurate
loop unrolling predictions for any given application — a piece of information that
can directly be used by an HLS tool such as Vivado HLS, in order to synthesize
parts of these applications to HW.

2.2.2 Related Work

Research papers have explored the applicability of machine learning to apply
compiler optimizations. In software compilers, it has been employed by Agakov
et al. [[1] to speed up iterative compilation, by Monsifrot et al. [[51]] to produce
compiler heuristics and by Kulkarni et al. [[40] to select the order in which opti-
mization passes should be performed. Stephenson et al. [[74]] have made use of
Supervised Classification, such as near neighbor (NN) classification and Support
Vector Machines (SVM) methods, to produce accurate predictions in optimal un-
rolling factors. In all above-mentioned research works the authors targeted soft-
ware compilation; in Subsection|2.2.4] a comparative performance evaluation of
the framework presented in Subsection to the methodology proposed by
Stephenson et al. is carried out, showcasing the benefit of the choice of loop
features and classification strategy in the HLS scenario.

Liu et al. [44] used a Random Forest classification model in the context of
HLS, extending the Iterative Refinement framework proposed in [46]] [55] [|89]
and [99]. They address a different problem with respect to the one tackled in
this section: that of retrieving the set of Pareto-optimal implementations of a
given design by navigating its configuration space. A similar stance, addressing
system-level design, is illustrated by Ozisikyilmaz et al. [54]. As opposed to
these works, my aim is to perform a predictive assignment of synthesis directives,
based on a training performed on an independent input set. This problem was
also investigated by Kurra et al. [41]]. Contrary to their strategy, my methodology
does not depend on a detailed estimation delay model of the loop body so as to
predict loop unrolling factors in HLS instances.

2.2 Machine Learning Approach for Loop Unrolling
46 Factor Prediction

©) Omic e
X11 X1.2.. Xin|[[Z
LM X =|| X2 X2_2 .. X2_n o
LUP Analysis || g
n |00ps X5_1 X5_2 .. X1_n 8
)
G+ @ 111 L12.. Ll1n
Application @ Al_1 AL2 .. Aln || X
laddi =
7 Random
L7.1 7.2 .. L7_n S Forest
A7.1 A7.2 .. A7n || @ Classification

Impact Function

Y11 Y12 .. Yin

@ Y=(v21 v22. Y2n

Y31 Y32 . Y3n
n Toops

—>
suoluny
pedw)| €

Figure 2.7. Overview of the Loop Unrolling Prediction methodology.

2.2.3 Methodology

In this section, first the employed objective function that determines the optimal
loop unrolling factor is presented. Then, the LLVM analysis pass that was devel-
oped in order to automatically extract relevant loop features and the approach
followed to retrieve the area and run-time performance of HLS designs is de-
tailed. Lastly, the supervised learning classifier method is demonstrated, which,
during the training phase, gathers the data from the previous steps to produce
a loop unrolling predictor, and, during the test phases, assigns loop unrolling
factors based on loop features.

Optimal Loop Unrolling Factor — Objective Function

The optimal loop unrolling factor is defined as follows. Given a defined set S of
unrolling factors, e.g. S: <1, 2, 4, 8, 16, 32, 64>, there is one for every loop that
maximizes the Impact (I), given by the following formula:

(a=1) | g (A=A

,a+ph=1
L, Ay p

I(L,A)=a-

where L, is the latency of the function containing a loop and being synthe-
sized as HW accelerator, for Loop Unrolling Factor (LUF) that is equal to one,
i.e., a fully rolled loop. L is the latency of the HW accelerator for any possible
LUF from the defined set. Respectively, A, is the area requirement of the HW
accelerator with LUF equal to one and A the area for any possible LUF from the

2.2 Machine Learning Approach for Loop Unrolling
47 Factor Prediction

defined set.

Subsequently, the optimal LUF is defined as the one that maximizes the Im-
pact function above. Note that, when LUF = 1, then I(L,A) = 0 which corre-
sponds to a baseline implementation. I(L,A) may also be negative for suboptimal
LUF choices (where unrolling might increase area without decreasing latency),
but will always be > 0 for optimal unrolling factors.

For the evaluation presented in Subsection [2.2.4] three different strategies
were considered: a) Optimize for both latency and area (a = § = 0.5). In this
configuration a balance is maintained between decreasing the number of execu-
tion cycles and keeping low the usage of HW area resources in a given implemen-
tation. b) Optimize for latency (a = 0.7, 8 = 0.3). Minimizing latency is favored
by this approach, thus focusing on increasing the speedup of an application, and
finally ¢) Optimize for area (a = 0.3, 3 = 0.7). This approach aims at decreasing
the area budget of the implementation, therefore achieving an average speedup,
but maintain low usage of HW area resources. All three configurations fulfill
different architectural needs and explore realistic alternative scenarios.

LLVM Analysis Pass — Loop Features Extraction

Loop features are automatically identified by an analysis pass (depicted as point 1
in Figure that was developed within the LLVM compiler infrastructure [42]].
Features are retrieved starting from applications written in C or C++, operating
on their Intermediate Representation, provided by the LLIVM front-end passes.

My LLVM Loop Unrolling Prediction Analysis Pass iterates over functions of
the applications and identifies loops. On each of them, it performs loop, scalar
evolution and dependence analysis to extract their features, summarized in Table
the critical path, the trip count, the presence of loop carried dependencies
and the required memory accesses (load and stores).

The choice of features is based on the factors that influence the cost and the
achievable speedup of hardware unrolled loops: a loop with a long critical path
may be expensive to duplicate, while loop carried dependencies and memory
accesses may force a serialization of execution irrespectively of the degree of
unrolling. These observations lead us to consider a markedly different feature list
with respect to works focusing on software targets, such as the one of Stephenson
et al. (Table[2.4).

To gather the required feature values, we built upon existing methods (e.g.
the getTripCount method belonging to the ScalarEvolution class reference), and
implemented an LIVM analysis pass, whose pseudo-code is presented in Algo-
rithm [3| The output of the algorithm is, for each loop, a feature vector X stating

2.2 Machine Learning Approach for Loop Unrolling
48 Factor Prediction

Features - X Vector
Critical Path
Loop Trip Count

Has Loop Carried Dependencies

Load Instructions
Store Instructions

Table 2.3. Features extracted by LLVM LU Analysis Pass.

Features - X Vector 1 |Features - X Vector 2

Operands # Floating Point Operations
Range Size Loop Nest Level

Critical Path # Operands

Operations # Branches

Loop Trip Count # Memory Operations

Table 2.4. Feature vectors selected by Stephenson et al. [74].

its characteristics, represented as point 2 in Figure Feature vectors are used
during training to tune the classifier (described in Subsection [2.2.3), and during
the test phase to predict high-impact loop unrolling factors.

Latency and Area Estimation

To establish a link between LUFs and performance/cost of implementations, la-
tency and area values must be extracted both for the loops in the training set
(in order to optimize the classifier) and the ones in the test set (to measure its
accuracy).Aladdin [71] (point 3 in Figure [2.7), a pre-RTL power-performance
simulator for hardware accelerators was utilized in order to retrieve latency and
area information. All functions in the considered benchmarks were simulated
by employing each feasible unrolling factor in the S set defined above on every
one of their loops. Latency is reported by Aladdin in clock cycles, while area
is expressed in um? in a 45nm technology. The result is shown as point 4 in
Figure

The Impact (I) was computed afterwards for the different @ and f values, to
retrieve the optimal loop unrolling factor for every loop of a function, which is the
index of the LUF that maximizes I. The result is three vectors {Y'1,Y2,Y 3} (point
5 in Figure(2.7)) that contain the target values for the classification algorithm. The

2.2 Machine Learning Approach for Loop Unrolling
49 Factor Prediction

Algorithm 3 LIVM Analysis Pass - Loop Unrolling Prediction Analysis
Input: Application written in C, C++
Output: X (Feature Vector)

: function RunOnFunction()
for BB in Function do
if L=getLoopForBB() then
LoopUnrollingPredictionAnalysis(BB,L)

: function LoopUnrollingPredictionAnalysis(Basic Block BB, Loop L)
LI=getLoopInfoAnalysis()

SE=getScalarEvolutionAnalysis()

: DA=getDependenceAnalysis()

10: /* Gather Features for X Vector */

11: x1=getCriticalPath(BB)

12: x2=getTripCountForLoop (L)

13: x3=getLoopCarriedDependencies(BB)

14: x4 =getNumberOfLoadInstructions(BB)

15: x5=getNumberOfStorelnstructions(BB)

1
2
3
4
5.
6
7
8
9

Y1 vector includes the optimal loop unrolling factor that balances the hardware
implementation of the accelerators in terms of low latency and low area. Values
in the Y2 vector favors low-latency implementations, applying more aggressive
loop unrolling, whereas Y 3 favors low-area ones.

Random Forest Classification

This information (X and Y vectors) extracted as described above are used as input
to a Random Forest (RF) classifier (point 6 in Figure @ Supervised learning
is performed by detecting the correlation between the input — the compiler ex-
tracted information used as the X feature vector — and the output, which is the
optimal loop unrolling factor for each loop.

Random Forest was used as the supervised learning model, which has been
shown by Liu et al. [|44] to outperform alternatives such as Multilayer Neural Net-
works and Support Vector Machines classification in the context of HLS design
space exploration. Random Forest algorithms follow a decision tree methodol-
ogy, combining many weak classifiers to derive a strong one, allowing the gen-
eration of low-complexity and robust classifiers.

2.2 Machine Learning Approach for Loop Unrolling
50 Factor Prediction

Algorithm 4 Random Forest Classification - Training and Test
Input: X and Y Vectors
Output: Trained Random Forest Classifier

1: for iin NumberOfTrainingSessions do

2 X train, X_test, Y train, Y_test=train_test split(X,Y)
3 /* Training Phase */

4: M=RandomPForestLearningModel

5: M.train(X _train, Y_train)

6 /* Evaluation Phase */

7 Pred=M.predict(X_test)

8 Error=abs(Pred-Y _test)

9 Score=M.score(X_test-Y_test)

The algorithm employed, as presented in Algorithm |4, follows an approach
similar to a k-fold cross validation strategy. The whole data set (X and Y vectors,
see points 2 and 5 in Figure[2.7) is divided randomly between a training set and
a test set, where the training set is equal to 80% of the whole data set and the
remaining 20% is the test set. Then, the Random Forest model is used for the
training process on the training set and out-of-sample predictions are carried out
for each element of the test set. After all predictions on the test set have been
computed, the prediction score and the average error (as defined in Subsection
2.2.4) are computed for the current training session.

2.2.4 Experimental Results

To evaluate the classification performance of a trained classifier, two different
metrics were adopted. The Prediction Score states the percentage of optimal (ac-
cording to I(L,A)) LUFs that were correctly identified on the out-of-sample test
set. The Average Error instead measures the average distance between the in-
dexes in S of the correct and the predicted LUE

In order to comparatively evaluate the proposed methodology, combining
Random Forest classification and LIVM-based loop features extraction, bench-
marks of different complexity were considered. Small and medium-sized ones
are adpcm, an audio encoding kernel, stencil, an implementation of an iter-
ative algorithm that updates array elements according to a given pattern, and
sha, a secure hash encryption method used in the information security domain.
jpeg and mpeg?2 are instead larger benchmarks, which perform image and video

2.2 Machine Learning Approach for Loop Unrolling
51 Factor Prediction

compression, respectively. Applications were drawn from the CHStone [37]] and
the Scalable Heterogeneous Computing (SHOC) benchmark suites [21]]. In total,
they comprise 87 different loops.

Random Forest classification was implemented using the Scikit-learn suite
[56]], that includes state-of-the-art implementations of Machine Learning models
in python. Scikit-learn was also employed to re-implement the two methods
proposed by Stephenson et al. [[74], that are consider as baselines.

Giving an initial proof of concept for the strategy proposed, Figure [2.8| re-
ports the difference between the indexes of the predicted optimal (according to
impact value) loop unrolling factors and the ones retrieved with an exhaustive
exploration, considering 18.000 out-of-sample predictions on all the benchmark
loops. Results are highly concentrated on zero, indicating a high rate of correct
predictions.

12000 Prediction Error

10000
8000
6000
4000

Frequency

2000

-6 -4 -2 0 2 4 6

Figure 2.8. Distribution of Loop Unrolling Factor Prediction Errors over 18.000
out-of-sample predictions.

Classification Models and Features

The evaluation of the choice of features (X vector in Table [2.3) and training
model Random Forest (RF) takes place against two state-of-the-art methodolo-
gies proposed by Stephenson et al. [[74]. The latter present different classifica-
tion strategies: Support Vector Machines (SVM) and Near Neighbor (NN) and
a different choice of investigated loop features, reported in Table [2.4 Figure
|2;9| shows, for a choice of a = 0.5, the prediction score and the average error
of the nine strategies resulting from different feature vectors and classification
strategies. Experimental results highlight that the presented framework (X fea-
ture vector and RF classification) outperform other choices, reaching a prediction
score above 60% and an average error of less than 1.4. Similar results were ob-
tained for impact functions favoring area or latency (Y2 and Y 3 vectors).

2.2 Machine Learning Approach for Loop Unrolling

52 Factor Prediction
X o X —
Stephenson_X1 & Stephenson_X1
Stephenson_X2 wszzzs Stephenson_X2 sz
0.65 1.9
— 1.8
9 0.6
< . 17
o 055 <]
S s 16
S o5 o 15
S o045 g 14 i
S Q 13} .
= 0.4 z L i
o 035 \ 1.1 \ \ b
0.3) 1 NN
RF NN SVM RF NN SVM

Figure 2.9. Left: Comparison of the Prediction Score across Random Forest,
Nearest Neighbor, Support Vector Machines models and the respective feature
selection: X vector, Stephenson et al. X1 and X2 vectors [74]. Right: Features
extracted by my LLVM Loop Unrolling Analysis Pass.

Tterative Refinement

In the second round of experiments, the comparison of the proposed method was
carried out against an Iterative Refinement approach, used in [[46]] [|55]] [89]] [99].
Iterative Refinement uses part of the training data set to obtain a first version of
the classifier, whose performance is then improved by using a second, disjoint
set of input and outputs.

For this evaluation, three different settings of Y target vectors {Y'1,Y2,Y3}
were considered, as described in Subsection The employed data, the fea-
tures (X vector) and the training model (Random Forest) were the same both
for Algorithm |4 and the one using Iterative Refinement. For Iterative Refine-
ment, 75% of the training set is allocated for the initial training phase, and the
remaining 25% for the refinement phase.

The prediction score, as seen in Figure [2.10| ranges from 53% to 63% across
the three Y vectors. Nevertheless, our methodology consistently outperforms
the Iterative Refinement approach, while achieving the highest prediction score
(63%) for the setting that favors low area resources (Y 3). A similar observation
can be made for the average error values, where the suggested approach keeps
a lower average error for all predictions, across all vectors, with the one related
to the Y 3 vector being the lowest (1.32).

Figure reports the speedup, area and impact metrics of HLS designs op-
timized with our predictive method, comparing them to an Iterative Refinement
approach and to results obtained from an exhaustive exploration. The graphs
correspond to an impact function with a = 0.9 (similar results were obtained
for other a values). Two considerations can be drawn from the reported data:

2.2 Machine Learning Approach for Loop Unrolling
53 Factor Prediction

Our Algorithm s Iter. Refinement &t Our Algorithm s Iter. Refinement
0.65 1.6

0.6

1.5

0.55
1.4

0.5

1.3

0.45

Average error

1.2
0.4

Prediction Score (%)

1.1

0.35

0.3 1

Y1 Y2 Y3 Y1 Y2 Y3

Figure 2.10. Left: Comparison of the Prediction Score across Random Forest,
Nearest Neighbor, Support Vector Machines models and the respective feature
selection: X vector, Stephenson et al. X1 and X2 vectors [74]. Right: Features
extracted by my LLVM Loop Unrolling Analysis Pass.

first, in most cases the methodology presented in the section closely tracks the
user-defined trade-off between area and latency. In this respect, jpeg-huff and
stencil-stencil are outliers, since their loop structure is quite complex, mak-
ing their optimization challenging to automate. Second, the impact achieved by
our approach is equal or higher (by 66% in the case of mpeg2) than the impact
attained by Iterative Refinement. On average, our methodology obtains 86% of
the speedup achieved by the optimal factor retrieved with a costly exhaustive
exploration (90% for a = 0.5 and 92% for a = 0.1).

Convergence Time Comparison

Besides retrieving high-quality LUF predictions, the framework presented here
also requires a lower computational effort with respect to other methods. In
this regard, experimental evidence is shown in Figure [2.12, reporting the time
required for training and testing, comparing different classification strategies,
feature vectors and impact functions.

As expected, the choice of employed features, as well as the relative relevance
of area and latency, does not tangibly impact the computing time. On the other
hand, the type of employed classifier has a noticeable effect, with Random Forest
being slower to converge than NN and SVM. Nonetheless, only 14 seconds were
required by our approach. The difference between the Iterative Refinement ap-
proach and our methodology, though, is even more significant, as the the former
requires almost four times more than our methodology to converge.

It is worthwhile to mention that all these approaches require orders of mag-
nitude less convergence time with respect to exhaustive explorations, whose run-

Speedup

Area

Impact

2.2 Machine Learning Approach for Loop Unrolling
54 Factor Prediction

Optimal — Our Algorithm =y Iter. Refinement ===

L
1.4 [

0.6
0.5 [
0.4 [Fommm
0.3 |

0.2 |

-0.1
-0.2

406,0 Dg,
% %,
() (/,},

Figure 2.11. Comparison of the Speedup, Area and Impact achieved for every
function by our algorithm and by an Iterative Refinement approach [46] [55]
[89] [99], compared to the optimal solutions derived from exhaustive explo-
rations. Speedup and Area numbers are normalized with respect to fully rolled
configurations.

Time (Secs)

2.2 Machine Learning Approach for Loop Unrolling
) Factor Prediction

X m— Our Algorithm - Iter. Refinement o
Stephenson_X1 60
Stephenson_X2 wxzsn

16
14 N
12
10

50

40

30

Time (Secs)

20

o N A O

RF NN SV Y1 Y2 Y3

Figure 2.12. Left: time required to converge for state-of-the-art Machine Learn-
ing models with our X feature vector and Stephenson et al. X1 and X2 vectors
[74]. Right: convergence time of our algorithm and Iterative Refinement across
all three Y vectors.

time may range from minutes (for estimation tools like Aladdin [71]]) to hours
(for synthesis frameworks such as Vivado HLS [85]]).

2.2.5 Released Software

The LIVM pass developed for analyzing loops and extracting the features re-
quired to build the X feture set, as presented in Table [2.3] along with the re-
spective scripts that invoke it and the documentation can be downloaded here:
https://github.com/GiorgioZacharo/LoopAnalysisML.

2.2.6 Conclusions

A novel methodology based on LIVM analysis and Random Forest classification
that performs loop unrolling factor prediction for HLS designs was presented.
This approach achieves better prediction score in comparison to state-of-the-art
Machine Learning methods. Experimental evidence showcases that, by carrying
out accurate predictions of loop unrolling factors, high performance accelerator
implementations can be realized, while avoiding time-consuming exhaustive ex-
plorations. This work was published in the 2018 International Conference on
High Performance Computing & Simulation (HPCS) [[94].

https://github.com/GiorgioZacharo/LoopAnalysisML

o6

2.2 Machine Learning Approach for Loop Unrolling
Factor Prediction

Chapter 3

Identification and Selection of
System-Aware Accelerators

In this chapter of the dissertation the notion of automatic selection of HW ac-
celerators is extended by increasing the scope of the candidates for acceleration,
in order to target platforms with a complex memory hierarchy, such as a Xilinx
Zynq Ultrascale+ PSoC board. The knowledge of the characteristics of the sys-
tem that is targeted can be critical for the choice of the HW accelerators to be
implemented. The memory system of a platform for instance can vastly affect
latency due to data exchange between the main memory of the system and the
HW accelerators.

Identifying and selecting accelerators for a large and complex application,
such as the H.264 decoder [|45]], on a platform such as the one mentioned above
will therefore need to take into account the communication overhead, that in
some instances exceeds the computation time. To tackle this issue, the granu-
larity of the candidates for acceleration is expanded to that of a subgraph of the
entire call graph of an application, in order to enlarge the scope for accelera-
tion and hence identify candidates with a higher computation to communication
ratio.

AccelSeeker, an LIVM-based tool-chain, is presented as a framework that per-
forms automatic identification and selection of HW accelerators targeted to a spe-
cific System-on-Chip (SoC). It performs thorough analysis of applications source
code and estimates memory latency along with computational latency of candi-
dates for acceleration. AccelSeeker then selects accelerators that can minimize
the overall latency of an application and can offer increased speedup compared
to approaches based on profiling-only information, that mimic the manual deci-
sions of a designer.

57

58 3.1 AccelSeeker: Accelerators for Speedup

In addition to accelerators targeting speedup, an extension of this methodol-
ogy focuses on energy-saving heterogeneous designs. EnergySeeker extends the
latency estimation of the previous framework and considers power estimation of
hardware and software in order to target energy efficient HW accelerators; hence
EnergySeeker performs identification and selection of accelerators that can offer
substantial energy benefits to a heterogeneous computing system compared to
a powerful, yet power-hungry, software processor and against methodologies
based solely on profiling information.

3.1 AccelSeeker: Accelerators for Speedup

3.1.1 Motivation

System-level design, and heterogeneous computing as a whole, is witnessing a
breakthrough. Emerging best practices based on High Level Synthesis allow un-
precedented productivity levels. HLS tools, as mentioned in previous chapters,
reduce the time needed to synthesize HW accelerators by accepting application
source code as input. However, the design of heterogeneous systems comprising
SW processors and HW accelerators is still a demanding endeavor, during which
key decisions are left solely to manual effort and designer expertise [[12] [52]].
Furthermore, as already discussed, HW synthesis requires significant amounts of
time and, coupled with a significantly large space of alternative implementations
exposed by real-world applications, the number of accelerator choices that can
be considered manually by a designer, before HW/SW partitioning is settled, is
in practice limited.

Addressing these issues, performance estimators have been proposed that,
while not providing working hardware implementations, can gauge the charac-
teristics of different accelerator implementation alternatives [[72[] [[39]]. Nonethe-
less, these tools can only evaluate one choice of accelerated function at once.
Hence, when using them, the evaluation of each potentially viable HW/SW par-
titioning alternative requires distinct experimental runs, a time-consuming task
for large-sized target applications.

In order to limit the entailed designer effort, it is therefore crucial to identify
the set of viable acceleration options quickly, and also early in the design process,
before performing later and more detailed estimations. This key step is currently
poorly supported by design automation tools. Indeed, state-of-the-art early par-
titioning strategies are solely based on profiling information [88]] [[42/] which, as
was also shown by the authors of [[77]], may often be misleading.

59 3.1 AccelSeeker: Accelerators for Speedup

To fill this gap and offer an efficient solution to the problem stated above,
AccelSeeker is presented. AccelSeeker offers a methodology to identify and se-
lect the suitable system-aware acceleration candidates in an application, from
its software source code. Being implemented within the LIVM [42]] compiler in-
frastructure, it first performs an estimation of the cost (required resources) and
merit (potential speedup) of all candidate accelerators in a single, quick pass, and
then selects the set that maximizes the estimated speedup, while not exceeding
a resource target. The use of AccelSeeker can therefore guide Integrated Circuit
architects in the early design phases, highlighting which segments of a comput-
ing flow should be targeted with HLS, and hence where to focus the process of
applying optimizations to.

Moreover, it indicates which parts are not likely to yield tangible benefits
if realized in HW - either because they present a low computational footprint,
or because their characteristics hamper their potential for HW acceleration, e.g.
they require an excessive amount of data transfers while performing limited com-
putations.

The approach of AccelSeeker is markedly different from that of performance
estimators, as the most promising candidates are identified in a single, high-level
exploration, reducing the scope of further, and more detailed, estimations. It also
differs from approaches based solely on profiling information, as profilers do not
offer a measure of costs and run-times of HW implementations. Furthermore,
they do not account for invocation overheads — potentially leading to the selec-
tion of frequently called, but small, candidates. Finally, the transfer of data is an
important factor that state-of-the-art profilers do not take into account — hence
potentially suggesting candidates requiring an excessive amount of communi-
cation, that in turn can significantly weaken any potential performance gained.
AccelSeeker, instead, considers both the communication overhead and the char-
acteristics of the underlying platform in order to generate an estimation model
which leads to high-performance HW accelerators choices.

3.1.2 Related Work

High Level Synthesis tools have considerably matured in recent years [49]]. Nowa-
days, available commercial tools (e.g.: Xilinx Vivado HLS [85]], Cadence Stratus
HLS [[13]]), as well as academic alternatives (e.g.: Legup [[15]], Bambu [|58]]) sup-
port the design of very large accelerators from C/C++ code. They reach perfor-
mance levels comparable to hand-crafted implementations specified in low-level
Hardware Description Languages (HDL) such as VHDL or Verilog [45]].
Nonetheless, the automated selection of the application parts most amenable

60 3.1 AccelSeeker: Accelerators for Speedup

c)

Figure 3.1. Evolution of the SoA in automatic selection of custom instruction-
s/accelerators: (a) from data-flow level [62] [28], (b) to control-flow level (Re-
gionSeeker in Chapter 1) [96] [53], (c) to function-call graph level (AccelSeeker
in this chapter).

to HW acceleration is still an open research topic. Selection approaches based
on synthesis results [[16] scale poorly to complex applications, as these are only
available late in the design process. Estimation frameworks offer a detailed anal-
ysis on the performance and resource requirements of a HW-accelerated system
while avoiding full synthesis runs, either by interfacing software and HW simu-
lators (e.g., gem5 [8]] and Aladdin [[71] in [|72]]), or by adopting a hybrid stance,
in which HW execution times are estimated, while software ones are measured
on a target platform (as in Xilinx SdSoC [[39]]). However, in both cases, estima-
tions are performed after the partitioning of HW and software, which is left to a
trial-and-error basis. A methodical solution for partitioning is instead proposed
in this chapter.

The downside of poor partitioning choices, and consequently the importance
of automated tools such as AccelSeeker that guide the selection of high-quality
accelerators, is even more prominent when considering the high effort required
to optimize the implementation of HLS-defined accelerators. Design optimiza-
tion entails the specification of multiple directives to steer designs towards the
desired area-performance trade-off. The link between directives and the perfor-
mance of implementations is not straightforward, hence requiring the evaluation
of multiple alternatives to reach the intended results, as exemplified in [25]] [26]
[44] [I57]] [94]. It is therefore key to focus up-front this optimization effort only
on those candidate accelerators which can lead, from an application perspective,
to tangible speedups.

To this end, the approach introduced here is inspired by previous works on au-

61 3.1 AccelSeeker: Accelerators for Speedup

Application Set of selected
source code AccelSeeker AccelCands
| .)

L |
@ : AccelCand list, : ©
Conflict Graph .
AccelCand Selec.tlon
Identification| AccelCand list, algorithm
and Compiler Basic blocks M and C
Analysis = frequency, =)[M() and C() |=) of each J
CFGs, estimation AccelCand
DFGs, [....] 3
Architectural C_max

characterization

Figure 3.2. The phases of the AccelSeeker approach. A) Candidates for ac-
celeration are identified, from source code analysis. B) Given an estimation
of merit and cost for each candidate, and C) given a maximum available cost,
AccelSeeker performs selection of a subset of such candidates.

tomatic identification of instruction set extensions. Most techniques in this field
target customizable processors augmented with application-specific functional
units, within the processor pipelines. Hence, these techniques usually constrain
their search to the scope of single basic blocks [|62]] [28], as depicted in Fig-
ure [3.1p. In Chapter 1, with the presentation of the RegionSeeker framework,
and in [53]] there was instead a focus on the identification of larger code seg-
ments, including control-flow structures belonging to single functions (depicted
in Figure [3.1p). However, such scope still falls short when targeting platforms
where accelerators are interfaced on a system bus [20]. In this setting, the cost
of data movement becomes so prominent that even control-flow structures inside
functions fail to deliver performance. Suitable accelerator candidates must then
encompass entire functions, including in turn all functions called within their call
tree. AccelSeeker considers this same granularity (Figure [3.1f), advancing the
state-of-the-art in automatic accelerators identification.

The methodology of AccelSeeker, as depicted in Figure [3.2] is presented in
more detail in the following subsections. First, we define what a candidate for
acceleration is, and then we detail how we select, among a pool of such candi-
dates extracted from an application source code, the subset to be implemented
in hardware (A and C in the figure). Finally, the approach employed to estimate
the candidates performance (Merit) and resource requirements (Cost) (B in the
figure) is presented.

62 3.1 AccelSeeker: Accelerators for Speedup

3.1.3 Candidate Identification

In order to discover which parts of an application can be most profitably acceler-
ated in hardware, we investigate its function-call graph, i.e., a Directed Acyclic
Graph G(N,E), where every node n € N corresponds to a function and every
edge e = (u,v) € E corresponds to a call from function u to function v. A root
is a node that reaches all other nodes of the graph, i.e., for every other node
n € N, there exists a path from the root to it. The function-call graph G has
a root, which represents the top-level function of the application. Figure
shows an example of a call graph (note that edge directions are not shown here,
for picture clarity; they are, however, intended from top to bottom).

a) b) <)

Figure 3.3. a) An example call graph. Black nodes are the functions present
in a SW application, and edges represent function calls. Subgraph A is an
AccelCand. b) Subgraphs B and C are not AccelCands (B has outgoing edges,
C has no root). ¢) Call graph resulting from selection of A as accelerator.

A candidate accelerator is defined, and called AccelCand, as a subgraph
S(N,, E,) of graph G, exhibiting the following two characteristics: the subgraph
has a root; the subgraph has zero outgoing edges. The former means that the sub-
graph has a node that reaches all other nodes in the subgraph; the latter means
that, for every node n, € N,, no edge (n,, m,) exists in G such that m, ¢ N.,.

Figure and show three example subgraphs, labeled A, B, C. While
subgraph A is an AccelCand, subgraph B is not, because it does not have zero
outgoing edges, and subgraph C also is not an AccelCand, because it does not
have a root. The call graph resulting from selection of AccelCand A as accelerator
is shown in Figure[3.3c: the whole subgraph is subsumed to a single (accelerator)
call.

The methodology is limited to considering call graphs that are acyclic, and
hence constructs such as recursion cannot be dealt with. This is in line with the
limitations of HLS tools.

63 3.1 AccelSeeker: Accelerators for Speedup

conflict graph

A
] >
B

Figure 3.4. a) Three overlapping AccelCands: A, B, C. b) Conflict graph
considered in the problem formulation: complete overlap is a conflict, while
partial overlap is allowed c¢) Conflict graph adopted in [96] instead, where any
kind of overlap is considered a conflict.

3.1.4 Problem Statement and Candidate Selection

Given a call graph G(N, E), there exist |[N| AccelCands in it; every node of G is,
in fact, the root of one and only AccelCand. The problem of Selection is that of
choosing, among all of the |[N| AccelCands, the subset to be realized as acceler-
ators.

Each AccelCand is associated with a merit M () — an estimation of the number
of cycles saved by it when implemented in HW as opposed to SW — and a cost C()
— an estimation of the area needed by it when implemented in HW. Note that the
methodology here proposed is agnostic to the way cost and merit are defined.
Of course, their definition should correctly reflect the SW and HW architectures
that the methodology is targeting, and the details of how functions M() and C()
are defined for this study are given in Subsection|[3.1.6

Given a set of AccelCands, defined and identified as described in the previous
subsection, and given a cost and merit associated to each of them, the problem
that is addressed is the following.

Problem: Accel Selection

LetA={A,,A,,...,A,} be a set of AccelCands, with associated cost and merit
functions C and M. For any subset S C A, it is denoted by M(S) = >,..s M(4;)
the sum of the candidate merits, and by C(S) = >_._ C(4;) the sum of their costs.

A subset S of AccelCands is selected such that:

1. The merit M(S) is maximized

2. The cost C(S) is within a user-given cost budget C,,.,

64 3.1 AccelSeeker: Accelerators for Speedup

3. No two candidates in set S are in conflict

The concept of conflict is defined in the following way: two candidates A; and
A;in S arein conflictif and only if A; C A;VA; C A,, i.e., if one completely includes
the other. This is exemplified with the help of Figure [3.4] A call graph is shown,
where 3 AccelCands (out of the possible 8, as there are 8 nodes in the call graph)
are highlighted, and they are labeled A, B, and C. A conflict graph is presented
as well, in Figure [3.4p, which is an undirected graph where nodes represent
AccelCands, and an edge is added between two nodes if the two candidates are
in conflict. A and B are in conflict because B is completely contained in A.

The reason behind the concept of conflict is that, in the problem formulation
(and in the implementation to solve it), the merit of a set of candidates is defined
as additive: it is the sum of the individual merits of candidates selected. Since the
merit of B is already completely counted within the merit of A, the two candidates
should not be both selected (and their merit should not be counted twice). Note
that, if the overlap is instead only partial — as is the case for candidates A and
C, which in this example share a call to a single function — the two merits are
correctly modeled separately, as our tool is able to identify the “shared” functions
come from within candidate A, and how many come from within candidate B.
Hence, partial overlap does not constitute a conflict.

The problem formulation of Accel Selection borrows from that found in Chap-
ter 1. It has however an important difference. In Section candidates for
acceleration are within the scope of the control-flow graph of a single function,
therefore no overlaps are allowed within the same selection. Conversely, in the
current section, subgraphs of the function-call graph are considered, hence al-
lowing solutions including partially overlapping AccelCands.

3.1.5 Selection Algorithm

Solving the Accel Selection problem on the function-call graph of the application
corresponds to solving the independent set problem on the resulting conflict graph.
The conflict graph expresses which pairs of AccelCands are in conflict; thus, an
independent set of the conflict graph satisfies condition 3 of the Accel Selection
Problem.

An algorithm is therefore implemented that recursively explores the indepen-
dent sets of the conflict graph, similarly to the Bron-Kerbosch algorithm [[11]],
which was also used in Chapter 1 and detailed in Section[1.3] The implemented
algorithm returns the set S with the highest merit M(S) (hence satisfying con-
dition 1 of the problem formulation) and whose cost C(S) does not exceed a

65 3.1 AccelSeeker: Accelerators for Speedup

call graph conflict graph maximum independent sets

C_max =40
2) b) C_max =25 (merit: 800
AccelCand | 1 2 3 4 5 6 7 P (merit: 700 cost: 40)
cost: 24)
Merit 900 | 800 | 150 | 50 | 300 | 400 | 100 | 50
Cost 100 | 40 | 60 | 20 | 12 12 | 10 | 30 d)

c)

Figure 3.5. a) An example call graph with eight nodes, and hence eight Accel-
Cands, and b) the corresponding conflict graph. c¢) Given example merits and
cost values associated to the eight AccelCands, d) and given a maximum toler-
ated cost C,,,, maximum independent sets that solve problem Accel Selection
are shown. A maximum independent set maximizes merit, while not exceeding
the given cost, and not including conflicts.

user-given maximum cost C,,,, (hence satisfying condition 2 of the problem for-
mulation). This returned set represents the optimal solution to the Accel Selection
Problem.

An algorithm solving an independent set problem is of course one of non-
polynomial complexity. The exact implementation is still able to find the optimal
solution for the experiments in Subsection[3.1.9]in a matter of milliseconds, even
for the considerable dimension of the function-call graph of the application con-
sidered (a graph of 63 nodes, as detailed in the Experimental Results Subsection
3.1.9).

An example of selection can be seen in Figure [3.5] First the example call
graph is depicted, which has 8 nodes and hence 8 AccelCands, each rooted in
one of the 8 nodes. The eight corresponding AccelCands are not depicted in this
figure, but some of them can be seen in Figure[3.4p: for example, the AccelCand
rooted in node 2 is depicted there and labeled A, the AccelCand rooted in node
3 is also depicted in the same Figure and labeled B, etc. Figure depicts the
complete conflict graph corresponding to this example. As can be seen, candidate
1 (corresponding to the whole graph) is in conflict with all other candidates,
candidates 2 and 3 are not in conflict (they only overlap in function 7) etc. Now,
given example values of cost and merit for each candidate (in Figure [3.4f), the
maximum independent set is found in the conflict graph, which maximizes the
sum of merits of the candidates selected, does not overcome a maximum sum

66 3.1 AccelSeeker: Accelerators for Speedup

of cost, and does not include conflicts. Two examples (for C,,,, = 25 and for
Cnax = 40) are shown in Figure [3.4d.

3.1.6 Cost and Merit Estimation

Herein, the abstract cost and merit, which are automatically computed from
source code, are detailed (Figure M B). As the goal of the presented frame-
work is to select the most performing candidates in advance of their optimization,
AccelSeeker considers their default implementations, e.g., ones where no func-
tion is inlined and no loop is unrolled. High-performance implementations will
likely have greater resource requirements, in turn potentially requiring to discard
some of the selected AccelCands. Nonetheless, these additional design decisions
will be performed within the limited scope of the candidate set retrieved by Ac-
celSeeker (as opposed to the whole design) thereby easing the ensuing effort.

Architectural characterization.

AccelSeeker bases its estimations on few parameters characterizing the target
platform. As they are only related to the modeled architecture, but indepen-
dent from the application, the characterization represents a one-time effort for
a given hardware target. For the experiments in Section this task was
performed by employing a series of micro-benchmarks, synthesized on a Zynq
Programmable System-on-Chip (PSoC). The methodology, however, is not lim-
ited to this target. On the contrary, it can be adapted to different computing
architectures (e.g.: ASIC implementations) by measuring 1) the area and criti-
cal path of single operators (adders, multipliers, etc.), 2) the overhead entailed
by initiating an acceleration invocation, 3) the time required to transfer inputs
and outputs and 4) the resources employed to realize accelerator-memory links
(realized by default as master axi ports in Zynq systems).

Cost Estimation.

The cost C() of an AccelCand is computed as the sum of its estimated logic and
memory real estates. Regarding logic, the sum of the required resources (inde-
pendently for look-up tables and DSP blocks) of the arithmetic operations present
in its top function is computed. If function calls are present, then recursively the
area of the called functions is also taken into account. Furthermore, mimicking
the default implementation of Xilinx PSoC accelerators, the addition of the cost of
the logic required by a master axi port for each array present in the AccelCand

67 3.1 AccelSeeker: Accelerators for Speedup

cr.path(BB1)
#exec(BB1)
- - candidate
—TT
o 1
cr.path(BB5) I'
#exec(BBS) \
\ 15() J
\\~ "/
a) b) c)

Figure 3.6. Estimation of hardware computation times at the basic block (a),
function (b) and AccelCand (c) levels.

parameters list is added. Then, the memory area is derived from the size of the
arrays storing the input/output and intermediate values required by the accel-
erator. The I/O size is determined by analyzing the elements in the parameters
list of the candidate top function, while the memory required for intermediate
values is derived from the variable declarations in each candidate, ultimately de-
termining the number of required BRAM blocks. In line with the limitation of
HLS tools, dynamic memory allocations are not supported.

Merit Estimation.

The merit M () of an AccelCand is expressed in terms of the number of clock cycles
that are saved by implementing it as a hardware accelerator instead of execut-
ing it in software. In turn, the estimation of hardware run times must account
both for computation bounds and host-accelerator communication overheads.
The latter are retrieved by considering the number of required memory accesses,
scaled by an architecture-specific factor.

To assess the computation time of candidates in hardware, a bottom-up ap-
proach was carried out, as also exemplified in Figure [3.6] First, the maximum
propagation delay of each of the basic blocks (BBs) present in an AccelCand (both
in the top function and in its callees) is computed. This is achieved by traversing
their DFGs and accounting for the operations delays, thus retrieving the longest
input-to-output paths (Figure [3.6h). Critical paths of BBs are then expressed in
clock cycles, dividing the propagation delays with the period of the system clock.
By multiplying the critical paths with the number of executions of each BB, the

68 3.1 AccelSeeker: Accelerators for Speedup

associated workload is computed. Finally, an estimate of the computation time of
an AccelCand is the sum of the workloads of its constituent BBs (Figure -c).

Software run-times are estimated in a similar fashion, but instead of comput-
ing critical paths at the BB level, the sum of the latency (in clock cycles) of all
its constituent operations is computed, thus modeling that these are processed
sequentially in software.

From the gathered data, the merit of an AccelCand i is computed as follows:

M (i) = [Ts,, (i) — (Top, + max (T, " (D), T ™ (0)))] X Mgy

where T, (i) is the AccelCand run-time in software, T, is the fixed overhead
required to configure and start the hardware acceleration, T, (i) and T°™™(i)
are the run-times when i is hardware-accelerated, assuming its performance is
either computation or communication bound. Finally, n,,,. is the number of
times the AccelCand is executed in the application.

3.1.7 Compiler Analysis

AccelSeeker is implemented as a compiler pass within the LLVM 3.8 [|42] infras-
tructure as seen in Algorithm 5. The resulting implementation comprises meth-
ods for the identification and analysis of the AccelCands (Figure M A), for the
estimation of their merit and cost (Figure M B), and for their selection (Fig-
ure C). Further details are provided on how the data needed in these phases
is retrieved using LLIVM IR-level analysis.

AccelCands identification and analysis. For the generation of the call graph,
every function is annotated with caller/callee relationships; the call graph is sub-
sequently traversed to identify all valid AccelCands as defined in section[3.1.3| At
this level, information is detected regarding the overlapping of such AccelCands,
needed for the creation of the conflict graph, and for subsequent selection. The
control flow graph of each candidate, and the data flow graph of each basic block
are extracted so that they can be used as input for the cost and merit calculation,
according to the method already detailed above.

Execution Frequency. The number of invocations of each candidate as well
as the execution frequency of each basic block in each candidate is retrieved via
LIVM with dynamic profiling. A profiling-via-instrumentation routine is used,
which requires the generation of an instrumented version of the code, and then
enables the obtained frequencies to be annotated back to the IR level.

SW Latency Estimation. The SW latency estimation is computed by an im-
plemented function within the LIVM analysis pass according to the number of

69 3.1 AccelSeeker: Accelerators for Speedup

Algorithm 5 LIVM Analysis Pass - Cost and Merit Estimation
Input: Application written in C, C++
Output: Candidate List with Estimated Merit and Cost

1: function RunOnModule(M)

2: RunOnFunction(F)

3:

4: function RunOnFunction(F)

/* Merit Estimation */

Ty =getSWLatencyEstimation(F)

T ¥ =getHWLatencyEstimation (F)
Nerec =getNumberOfiInvocations(F)

T =getlORequirements(F)

0 RN

10:

11: /* Cost Estimation */

12: Ay =getHWAreaEstimation (F)

13: Apax; =getMAXIAreaEstimation (F)

IR instructions included in a given candidate, as well as the number of IR in-
structions included in function calls, if any. The number of invocations of each
candidate is derived from the execution frequency obtained by runtime profiling.

HW Latency Computation Estimation. Conversely, we estimate the HW latency
by computing the latency of instructions, characterized accordingly for the HW
implementation that is being targeted. The implemented function computes the
HW latency of each basic block as the critical path of the basic block multiplied
by its respective execution frequency. The total HW latency of a candidate is
retrieved by summing up all HW latencies of all basic blocks included in the can-
didate. Both the SW and the HW estimation take place in a bottom-up fashion,
by first performing the estimations of the leaf candidates and moving upwards
to the ones containing calls to others.

HW Latency Communication Estimation. In order to take into account the
memory latency overhead due to data exchange between the implemented HW
accelerators and main memory (T;;2""™(i)), I/O requirements for each AccelCand
are estimated within the LIVM framework by retrieving the parameter list of each
candidate and obtaining the data requirements of each candidate type (e.g. size
of array of integers, size of a struct etc).

Area of HW Logic Estimation. The cost of the candidate is estimated as the
total area resources required. The area of logical units is computed by accounting

70 3.1 AccelSeeker: Accelerators for Speedup

for the Look Up Tables (LUTs) and the DSPs of characterized operations within
a single Basic Block, and subsequently summing up all the resources of all Basic
locks included in a candidate.

Area of Master AXI ports Estimation. To account for the HW resources required
for a Master AXI port, the parameter list of each candidate is analyzed. Every
array identified accounts for extra logical units (LUTs), contributing to the total
area.

3.1.8 Experimental Setup

The outcome of the selection of candidates was evaluated by implementing the
corresponding hardware-accelerated systems on a Xilinx Zynq Ultrascale+ PSoC
running the Linux operating systems. The system is clocked at 100MHz, with
one of its Cortex A53 processors being dedicated to the execution of the software
(non-accelerated) parts of the considered benchmark.

Baselines for Comparative Evaluation

The quality of the choice of accelerators given by AccelSeeker was compared
against the ones a designer would obtain when guided solely by a software pro-
filing tool instead. For such baseline solutions, the gprof tool [29] was utilized.
Gprof retrieves the software execution time of all functions, but provides no sup-
port for the estimation of hardware execution times, hardware area, nor I/O and
invocation overheads. Mimicking the possible strategies a designer would follow
based on profiling data, three possible alternatives were considered:

* In abreadth-first approach (termed gprof1), the leaf function with the high-
est computing time is selected first. Further functions are considered for
hardware execution recursively, as the ones a) having the highest compu-
tation time in software, and b) that are either leaves in the call graph, or,
in case they have callees, those have all been already selected in previ-
ous steps. After synthesis, a candidate is implemented in hardware if its
inclusion in the accelerator set does not violate the area constraint.

* Conversely, gprof2 adopts a depth-first stance. It also starts from the most
compute-intensive leaf in the application call graph. It then traverses it
by iteratively considering the parents of the current candidate, in order of
decreasing workloads, selecting the highest-workload one which does not
exceed the area budget.

71 3.1 AccelSeeker: Accelerators for Speedup

Function Call graph for H264
scale_residual4x4_and_trans_inverse

ProcessSlice

decode_main

/

process_luma process_croma

Clip3 showbits TrailingOnes_TotalCoeff

residual_block_cavic_16

Figure 3.7. Call graph of H.264, with a few function names highlighted.

* Finally, gprof3 selects the most compute-intensive functions (without ac-
counting for their callees) first, regardless of the call graph hierarchy.

In all cases, these baselines disregard functions that contribute less than 0.5%
to the total run-time, as these will not be of interest to a designer. In the following
subsection it is shown that AccelSeeker outperforms the strategies above, outlin-
ing that the more comprehensive insights it offers are crucial towards pinpoint-
ing the candidates leading to higher speedups, and defines higher-performance
hardware/software partitioning under a given resource constraint.

Benchmark Application

The experiments were performed on the H.264 video decoding benchmark re-
leased by University of Illinois [45]], processing three video segments provided by
the benchmark authors (in QCIF (176x144), CIF (352x288) and VGA (640x480)
formats, respectively). The targeted implementation comprises 63 functions and
more than 6000 lines of code. It is derived from the H.264 reference code de-
scribed in [[75]], which was adapted to avoid non-synthesisable constructs. Its call
graph is presented in Figure 3.7}, along with the names of some of the functions.

3.1.9 Experimental Results
Ranking of Acceleration Candidates

In this subsection the effectiveness of AccelSeeker in identifying the AccelCands
most amenable to hardware acceleration is demonstrated. For this round of ex-
periments, we implemented the best suggested candidates either by gprof or by

72 3.1 AccelSeeker: Accelerators for Speedup

Validation Estimation | Estimation

Candidate Ranking Ranking Ranking

Zynq Ultrascale+ || (AccelSeeker) (gprof)
residual-block-cavlc-16 1 1 4
TrailingOnes-TotalCoeff 2 2
inter-prediction-chroma-double 3 3 5
scale-residual4x4 4 7 6
total-zeros 5 5 9
prediction-Chroma 6 10 13
Intralnfo 7 9 18
run-before 8 4 15
showbits 17 17 1
Clip3 18 18 3

Table 3.1. Ranking of AccelCands, based on application speedup when imple-
mented as accelerators on the Zynq PSoC implementation (column 2), as well
as according to early estimation strategies (AccelSeeker, column 3, and gprof,
column 4).

AccelSeeker, disregarding those which are too large to be mapped in the pro-
grammable logic of the employed test system (Xilinx Zynq XCZU9EG). In Table
AccelCands are ordered by the speedup they provide on the Zynq PSoC when
implemented as accelerators (column 2), compared to a fully software execution.
AccelSeeker estimates a very similar ranking (reported in column 3), with only
minor differences. Instead, a ranking based on profiling-only information such as
gprof (column 4) badly correlates with actual achievable speedups. Indeed, some
candidates suggested (e.g.: Clip3() and showbits()) actually present a larger run-
time in hardware than in software, and are ranked poorly both by AccelSeeker
and by validation. Results refer to the QCIF test video. Very similar outcomes
were retrieved using the CIF and VGA inputs, as seen in Table Nine out of
ten of the highest-merit candidates are the same, with almost identical ranking,
as on average the ranking varies by 0.7 in the ranking sequence, comparing QCIF
to CIE and 0.3, comparing QCIF to VGA ranking.

Performance of resource constrained accelerator selections

In order to evaluate the performance of the proposed method, the application
speedups of the hardware-accelerated systems selected by AccelSeeker, under
different C,,,, constraints, are compared to those selected by the baseline meth-

73 3.1 AccelSeeker: Accelerators for Speedup

AccelSeeker AccelSeeker AccelSeeker
Candidate Ranking Ranking Ranking
QCIF (176x144) || CIF (352x288) | VGA (640x480)

residual-block-cavlc-16 1 1 1
TrailingOnes-TotalCoeff 2 2 2
inter-prediction-chroma-double 3 3 3
run-before 4 4 4
total-zeros 5 6 5
inter-prediction-chroma-single 6 5 -
residual-block-cavlc-4 7 9 6
scale-residual4x4 8 8 8
TrailingOnes-ChromaDc 9 10 10
GetAnnexbNALU 10 - 9

Table 3.2. Ranking of AccelCands, based on merit estimation by AccelSeeker
for different input sizes (QCIF, column 2, CIF, column 3 and VGA, column 4).

AccelSeeker gprof2
gproft C—3 gprof3

0.5

14400 20000 30000 34400
(Artix-Z-7007S?_ (Artix-Z-7012S)
Area (LUTS)

6000 10000

Figure 3.8. Speedup obtained over the whole runtime of H.264 decoder by
implementing, as hardware accelerators, the candidate sets obtained with Ac-
celSeeker and the ones retrieved by gprofl, gprof2 and gprof3 profiling strategies
(as detailed in @), varying the area constraint.

ods. Such constraint is expressed as a maximum number of LUTs dedicated to
the accelerators implementation (including that of two real-world PSoCs, namely
Xilinx Artix Z-7007S and Z-7012S [I86]]); similar considerations could be derived
by limiting BRAMs or DSPs, or combinations of the three.

74 3.1 AccelSeeker: Accelerators for Speedup

Figure shows these results for the QCIF test input. The speedups are
obtained by comparing the run-time of the benchmark application on accelerated
systems (where selected AccelCands are executed in hardware) with the non-
accelerated one (where all parts are run on the PSoC processor). The figure
comparatively reports also the speedups obtained when using the three profiling-
based strategies outlined in Section The results show that the approach
proposed here returns a performance increase even for very low area constraints,
and a 1.9X speedup for an area budget of 34400 look-up tables (the amount
available on the mid-range Artix Z-7012S).

On the other hand, the candidates identified by all profiling strategies fail
to save any run-time (leading instead to slowdowns) for tight areas, because the
advantages of hardware acceleration are dwarfed by invocation and data transfer
overheads, which are not estimated by tools based only on profiling data. Even
when some performance enhancement is achieved, as is the case for gprof2 and
gprof3 for more lenient constraints, the retrieved selections are of inferior quality
with respect to the AccelSeeker ones. Moreover, in baseline strategies an increase
in the resources dedicated to hardware acceleration may even worsen the actual
performance of the system, since more and more ill-performing candidates are
earmarked for hardware execution. Conversely, the sets of AccelCands selected
by AccelSeeker monotonically increase in performance as the C,,,, constraint is
relaxed.

Further detailing the outcomes of this methodology and the considered profil-
ing based baselines, Table[3.3|reports the root function of the AccelCands selected
for hardware acceleration under different area constraints, while Figure 3.9 de-
picts them on the H.264 call graph for a budget of 30K LUTs. This experimental
evidence highlights that the breadth-first gprof1 approach tends to select a large
number of small, leaf functions which, due to the high implied overheads, fail to
achieve high performance. A depth-first stance (embodied in gprof2) may instead
select too few candidates, as it is restricted to focus only on a single branch of the
function-call graph. Speedup opportunities are also missed by disregarding the
call graph hierarchy entirely, as done in gprof3. Ultimately, higher performance
can be obtained through the non-obvious selection of accelerator sets identified
by AccelSeeker.

The reasons behind this superiority are twofold. Firstly, AccelSeeker is not
only guided by execution frequency, as profiling is: it can instead account for the
potential speedup that can be harnessed via HW execution, and for the traded-
off overhead due to transferring data between processors and accelerators. It
can then evaluate this in the light of the resource cost that a dedicated hardware
unit entails. Secondly, AccelSeeker is empowered by the selection algorithm de-

75 3.1 AccelSeeker: Accelerators for Speedup

inter_prediction_chroma_subblock_double ACCELSEEKER

scale_residual4x4_and_trans_inverse

inter_luma_double/bitzero

s)

7
.
0

et

‘::E;—C“;)_o, ST “showbits -
“\E‘Z’J’\tota I_zeroes
inter_prediction_chroma_subblock_double —run_before GPROF1

z>
: \

X7 ity N
cnp3/ . residual_block_cavic_16
GPROF3

Figure 3.9. H.264 call-graphs highlighting the acceleration candidates selected
by by AccelSeeker, and by the three gprof strategies, for a 30k LUTs area
budget.

scribed in Subsection|[3.1.5], which solves the Accel Selection Problem, maximizing
merit under cost constraint. Given an instance such as H.264, with a call-graph
of 63 functions, and resulting in a conflict graph of 63 nodes and 361 edges, it
becomes evident that the problem should not be left to be solved manually by de-
signers. As opposed to manual approaches based on profiling only, the suggested
compiler-based strategy is well-suited to guide this complex challenge.

76 3.1 AccelSeeker: Accelerators for Speedup
Max LUTs | AccelSeeker gprofl gprof2 gprof3
TrailingOnes_TotalCoeff showbits showbits showbits
6 000 TrailingOnes_TotalCoeff TrailingOnes_TotalCoeff | TrailingOnes_TotalCoeff
Clip3 Clip3
write_luma write_luma
Cliply Cliply
inter_prediction_chroma_double | showbits showbits showbits
scale_residual4x4 TrailingOnes_TotalCoeff TrailingOnes_TotalCoeff | TrailingOnes_TotalCoeff
Clip3 Clip3 scale_residual4x4
10000 scale_residual4x4 Cliply
Cliply total_zeros
total_zeros
TrailingOnes_TotalCoeff showbits residual_block_cavlc_16 | Clip3
inter_prediction_chroma_double | TrailingOnes_TotalCoeff residual_block_cavlc_16
scale_residual4x4 Clip3 scale_residual4x4
20 000 scale_residual4x4 Cliply
inter_prediction_chroma_double
inter_luma_double_bizero_skip
total_zeros
residual_block_cavlc_16 showbits residual_block_cavle_16 | Clip3
inter_prediction_chroma_double | TrailingOnes_TotalCoeff residual_block_cavlc_16
scale_residual4x4 Clip3 scale_residual4x4
prediction_Chroma scale_residual4x4 Cliply
30 000 inter_prediction_chroma_double inter_prediction_chroma_double
inter_luma_double_bizero_skip inter_luma_double_bizero_skip
total_zeros
copy_V
run_before

Table 3.3. Root function of the selected H.264 candidates, from the reference
code in [45], for different methods and resource budgets.

Designer Effort Analysis

A single invocation of AccelSeeker retrieves an entire set of acceleration can-
didates, focusing on those that can best leverage hardware acceleration. Con-
versely, all profiling-based baselines necessitate a trial-and-error stance, because
resource estimations are not available and cannot be relied upon to discard up-
front AccelCands that exceed available budgets. Therefore, these strategies ei-
ther mandate a large number of synthesis runs for many possible choices (gprof1,
gprof3) or overly restrict the set of possible acceleration candidates, thereby ham-
pering the resulting speedups (as is the case of gprof2). Indeed, this effort is
reported in Figure[3.10: the majority of the candidates identified by profiling ul-
timately violate the resource constraints, across different strategies and amounts
of available resources. The synthesis of such candidates is avoided by instead
employing AccelSeeker, hence greatly reducing the designer effort towards the
selection of highly effective hardware/software partitionings. Indeed, the col-
lection of all AccelSeeker phases took a time in the order of milliseconds for the

experiments in Figures[3.8/and

7 3.1 AccelSeeker: Accelerators for Speedup

used mmmmm discarded

of Candidates considered

Area (LUTs)
6000 10000 14400 20000 30000 34400
(Artix-Z-7007S) (Artix-Z-7012S)

Figure 3.10. Number of candidates selected by AccelSeeker and, for compari-
son, by the gprof-based strategies, while varying the area constraints. Candi-
date accelerators selected by gprof exceeding resource constraints can only be
discarded after their implementation.

78 3.2 EnergySeeker: Accelerators for Energy Efficiency

3.2 EnergySeeker: Accelerators for Energy Efficiency

3.2.1 Motivation

Since battery-powered System-on-Chip devices become more prominent and are
in high demand, the need for specialized hardware that can serve the purpose of
saving significant amounts of energy, in addition to accelerating applications as
seen in the previous section, becomes higher. HLS and HW Description Language
(HDL) tools, as mentioned in the previous chapters, require manual decisions to
be made from the programmer’s part. When facing a tight area budget, the deci-
sion of which parts of the computation are more demanding in terms of energy
consumption, in order to materialize them in low power HW accelerators, is not
trivial. It requires a deep understanding of the software application and its char-
acteristics, as aspects of computation intensity and memory management are
complex and hard to identify.

Furthermore, as discussed in the previous section, hardware synthesis re-
quires significant amounts of time and, given the vast number of possible alter-
native implementations as well, restricts the number of low-power accelerators
that can be consider in a manual fashion by an engineer. Simulation tools on
the other hand, such as Aladdin [71] utilized in Chapters 1 and 2, offer energy
and HW resources estimation of a selected target, and thus faster evaluation
compared to HLS tools. These tools, though, are not generating a functional
hardware implementation that can be used on a physical PSoC board, such as
Xilinx Zynq Ultrascale+ that was used during the experimentation phase of Ac-
celSeeker (Subsection [3.1.9). In addition to that, simulation tools still require
considerable manual effort to set up experimental environments, a task that must
be repeated for every considered candidate.

In order to offer a solution to the problem of identifying and selecting which
parts of an application would offer the most energy saving benefits, under a
given area budget, EnergySeeker is presented in this section. It is a methodology
that automatically estimates the suitability of energy saving hardware candidates
from application source code, subsequently allowing their automatic identifica-
tion and selection. EnergySeeker, implemented within the LIVM [[42]] compiler
infrastructure and based on AccelSeeker, first provides a measure of the cost (re-
quired resources) and merit (potential energy saved) of candidate accelerators,
and then selects the set that maximizes the estimated energy efficiency gain,
within a specified HW resources budget. The use of EnergySeeker can assist en-
gineers in the early design phases, indicating which parts of computation are
power-hungry and should be targeted for the synthesis of low-power accelera-

79 3.2 EnergySeeker: Accelerators for Energy Efficiency

tors, and which parts, instead, are not likely to lead to any significant energy
savings. The reason for the latter could be that the computation time in HW
could be drastically increased compared to the one in SW (e.g. they have a high
memory communication overhead) or that the HW resources required are so en-
ergy costly that they match, or exceed, the respective energy requirements of the
SW-only side.

3.2.2 Related Work

A large body of research work has been dedicated to energy efficiency in het-
erogeneous computing systems. In [[19]] [50] the authors present a clustered
many-core computing system with tightly coupled OpenRISC 32-bit processing
elements. Energy efficiency is achieved through parallelism, yet it is stated that
more attention to the memory hierarchy and more specialization in HW real-
izations would improve both performance and energy efficiency in their pro-
posed system. Applied on small kernels, ultra-low-power RISC-V cores result in
a slowdown but offer improvements in energy savings, when long idle periods
are present in Internet of Things (IoT) applications [[69]]. Convolutional Neural
Networks (CNNs) are present in IoT devices as well. In [|65/] a dedicated hard-
ware realization is suggested to carry out the execution of CNNs on a 65-nm
SoC, and thus achieve reduced energy consumption. In none of these instances,
though, identification, estimation or selection of the parts of execution to be
synthesized in hardware are addressed. Methods including automatic insertion
of Hardware Transactional Memory in the prefetching phase of applications for
energy efficiency have been investigated as well [92]].

In [|66] an automated methodology that estimates performance and applies
optimizations on hardware accelerators for low-power Deep Neural Networks
(DNNs) is presented. Aladdin simulator [[71]] is used to perform the power re-
quirements estimation and the final implementation is validated on a 40-nm
CMOS technology. EnergySeeker, however, offers an automated selection phase
that maximizes potential energy gains under a given area budget, apart from
power estimation. Furthermore, researchers have targeted Machine Learning
accelerators. A Support Vector Machine accelerator and an Active Learning Data
Selection accelerator have been coupled with a low-power processor [|43]] to run
medical applications and minimize the power requirements.

HW/SW partitioning has been investigated [84] in order to achieve better
energy efficiency in the Advanced Encryption Standard (AES) algorithm by us-
ing the OpenSSL [[64] library. According to the data blocks size of the encryption
an automated method partitions incoming encryption tasks to hardware imple-

80 3.2 EnergySeeker: Accelerators for Energy Efficiency

mentations or extended Instruction Set implementations of the existing software
processor. These methodologies focus on implementing energy efficient HW re-
alizations on a) specific applications while b) automating some of the processes
of identification, estimation and selection of the parts of the execution to be ma-
terialized in hardware. EnergySeeker is instead general enough to accept any
application as input written in C or C++ while fully automating all the processes
required to identify and select the most suitable hardware accelerators resulting
into enhanced energy efficiency.

Finally in [30]] an automated methodology that performs estimation on per-
formance and power for SW/HW partitioning is suggested. Given a functional
C/C++ description and user defined HW/SW mapping, an estimation is pro-
vided and subsequently a design space exploration and optimization phase in
order to improve a given configuration. Contrary to the suggested methodology,
the selection process of the hardware candidates is not automated and an area
resources budget is not taken into account.

3.2.3 Methodology

A similar approach to the AccelSeeker methodology was employed for Energy-
Seeker. The definition of a candidate for energy saving, along with the Cost and
Merit estimation and the final selection algorithm of a subset of candidates to
be implemented in hardware are the same, as presented in Subsections |3.1.3]
13.1.4][3.1.6/ [3.1.5| The main difference is that during the performance estima-
tion of the hardware accelerators, Merit M () is expressed not in cycles saved but
in energy saved. Note that as stated in[3.1.6} the methodology is not limited to a
given target and can be adapted to different variables associated to Merit and/or
Cost (e.g. cycles saved, energy saved for Merit).

The cost C() is estimated as the sum of its estimated logic and memory real
estates. The first is the sum of look-up tables (LUTs) and DSP blocks. The latter
(memory) depends on the I/O requirements of the accelerator that determine
the number of necessary BRAM blocks. The energy saved estimation, or Merit
M(), for a hardware accelerator i is instead measured in nanoJoules (nJ) and
derived by the following formulation:

M(i) = Esw(i) _EHW(i)

The energy consumption of the software CPU (Es,,) and the respective energy
consumption of the hardware accelerators (Ej,) are given by:

81 3.2 EnergySeeker: Accelerators for Energy Efficiency

ESW(i) = PSW(l) X TSW(l) X nexec
Epw (i) = Py (i) X Ty (1) X My

where Energy is expressed as the product of Power (P), Time (T) and the
number of invocations (n,,,.) of a given accelerator. Pg,, and Py, are measured
in Watts (W) and while the implementation of a software CPU is obviously fixed,
for a hardware accelerator the power required depends on its hardware real-
ization (e.g. number of LUTs, DSPs, BRAMs etc). The running time T, of the
software processor is measured in cycles (0.83 nanoSec per cycle for 1.2 GHz
CPU frequency) and for the respective running time of the hardware accelerator,
Tyw is clocked at 100 MHz frequency which translates to 10 nanoseconds per
cycle.

Finally the initial Merit equation becomes:

M (i) = [(Psy (1) X To (1)) — (P (1) X Ty (1))] X Npyee

Under the scope of identifying and selecting energy saving accelerators, the
LIVM based compiler analysis for EnergySeeker is extended. HW latency due to
computation, SW latency and latency due to communication of the main memory
and the accelerators are carried out as detailed in Subsection Also, area
estimation for HW logic and Master AXI ports is performed as described in[3.1.7]
Additionally, a power estimation for the hardware accelerators takes place that
requires: a) the logical units area, b) the number of BRAMs, ¢) the number of
DSPs and d) the number of arrays interfaced to every accelerator, as the latter
are going to account for the estimation of the power consumption due to their
interconnects.

3.2.4 Experimental Setup

The selection of candidates by EnergySeeker was evaluated by implementing the
hardware accelerators on a Xilinx Zynq Ultrascale+ PSoC board considering the
reduction of dynamic power. The software Cortex A53 processor was clocked
at 1.2 GHz and the hardware accelerators at 100 MHz. The main memory of
the system is a DDR4 SDRAM. For the power requirements of both the software
CPU and the accelerators, the Xilinx Power Estimator (XPE) [87] was utilized.
XPE by Xilinx offers a worst-case power analysis tool that estimates the power
consumption of a given design at any phase of the design cycle.

The baselines for the comparative evaluation were profiling strategies based
on the gprof tool (gprofl, gprof2 and gprof3), as detailed in Subsection [3.1.8]

82 3.2 EnergySeeker: Accelerators for Energy Efficiency

The application benchmark used to carry out the experimentation was H.264
decoder [45]], the same that was used in the Subsection [3.1.9, processing as
input a video of QCIF (176x144) format.

3.2.5 Experimental Results

To perform the evaluation of the performance of EnergySeeker, the application
energy efficiency of the hardware-accelerated parts selected by EnergySeeker,
under different area constraints (maximum number of LUTS), to those selected
by the baseline methods are compared. The energy efficiency is retrieved by
comparing the energy consumption for the whole run-time of the benchmark
application on the software processor over the energy consumption for the hy-
brid design, where selected hardware accelerators are used along with the the
non-accelerated parts that remain to the software processor. Figure[3.11/compar-
atively shows the energy efficiency obtained when using the three profiling-based
strategies outlined in Section [3.1.8|against EnergySeeker.

Three different rounds of experiments took place. One where a single soft-
ware CPU core was active, one with two active cores and one with four. It can be
observed that EnergySeeker consistently outperforms all three gprof-based pro-
filing strategies for various area constraints and in all three settings (one, two
and four active CPU cores). A HW/SW approach guided by EnergySeeker is up
to 2.2x more energy efficient compared to a SW-only approach due to the fact
that the hardware used utilizes significantly less power compared to a power-
hungry CPU processor, that is clocked at a higher frequency with respect to pro-
grammable logic.

Comparing EnergySeeker to state-of-the-art, profiling-only based methodolo-
gies, our approach employs a latency estimation model, as shown in the previous
section[3.1.7} which is paired with an accurate power estimation of the required
HW resources. In addition to that, EnergySeeker is supported by the selection
algorithm described in which maximizes energy efficiency gains under an
area constraint. EnergySeeker, thus, leads to more efficient energy-wise choices,
as for equal area budgets better selections are made, that require both less time
for the the accelerators to run and less power, compared to selections based solely
on profiling information.

83 3.2 EnergySeeker: Accelerators for Energy Efficiency

EnergySeeker mmmmmm gprof2 mx
gprofi ——— gprof3 ez
2
1.8
1.6
S 14
= —
g 12
G
>
[e2]
5 0.8 [
=
L?j' 0.6
04
0.2 -
0 £ | |
6000 10000
Area (LUTs)
1 CPU Core(s)
EnergySeeker mmmmmm gprof2
gproft —— gprof3 Emmm
2
18
1.6
S 14 - 1
= —
g 2 = 1
T |
>
jo2l
’5 0.8 - q
=
L‘.'j 0.6 4
0.4 - s
02 - .
° 4000 6000 10000 20000 30000
Area (LUTs)
2 CPU Core(s)
EnergySeeker mmmmm gprof2
gproft —— gprof3 Emmzm
25
2
>
o
C
% 15] | 7
g
i}
>
o
5 1+ 1
c
[0}
fin}
05 .

4000 6000 10000 20000 30000

Area (LUTs)
4 CPU Core(s)

Figure 3.11. Energy efficiency obtained over the whole runtime of H.264 de-
coder by implementing, as hardware accelerators, the candidate sets obtained
with EnergySeeker and the ones retrieved by gprofl, gprof2 and gprof3 pro-
filing data strategies, varying the area constraint. Number of software CPU
active cores: One Core, Two Cores and Four Cores.

84 3.3 Released Software

3.3 Released Software

The LIVM passes developed for AccelSeeker and EnergySeeker, along with the re-
spective scripts that invoke them and the documentation, can be downloaded in
the following links: https://github.com/GiorgioZacharo/AccelSeeker and
https://github.com/GiorgioZacharo/EnergySeeker.

3.4 Conclusions

AccelSeeker and EnergySeeker frameworks were presented for assisting system
architects during the early design phase of hardware-accelerated systems. They
target better speedup and improved energy efficiency, respectively, in HW/SW
designs.

By automatically assessing the potential speedup of different hardware ac-
celeration choices, in their default implementation, as well as the hardware re-
sources they demand, AccelSeeker allows architects to pinpoint the code sections
that are worthy targets for further, more detailed analysis and optimization. Ac-
celSeeker performs the identification of candidate accelerators, as well as their
area and speedup estimations, through compiler analysis passes implemented
within the LIVM compiler, without requiring lengthy and detailed evaluations of
each acceleration candidate individually. It then automatically selects the set of
candidates that maximize estimated speedup under a given resource constraint.
Experimental evidence highlights that the hardware/software partitioning se-
lected by AccelSeeker vastly outperforms choices that are solely based on pro-
filing information. This research work was published in the 2019 International
Conference on Computer Design (ICCD) [95]].

EnergySeeker offers an extension of the previous tool-chain that focuses on
energy efficient selections by performing a power estimation of the accelerators,
along with their latency estimation offered by the AccelSeeker framework. Ex-
perimentation revealed significant energy savings of up to 55% less energy re-
quired compared to a software-only approach and a consistently better perfor-
mance compared to methodologies based on profiling-only information.

https://github.com/GiorgioZacharo/AccelSeeker
https://github.com/GiorgioZacharo/EnergySeeker

Conclusions

Heterogeneous computing emerges among the most promising approaches to
acquire improved performance on future computing systems. Nonetheless, re-
search to design efficient and effective HW/SW execution platforms calls for
great attention and challenges. The selection of which parts of an application
to be accelerated in HW in an automatic fashion, the choice of optimizations
to be applied on the HW accelerated parts, as well as the consideration of the
platform characteristics that the HW accelerators are implemented onto are all
complex problems and research questions.

In order to address them, I have developed novel compiler-driven method-
ologies that perform analysis on the source code of software applications. The
main benefit spawning from such approach is twofold. First, work and decisions
previously performed manually by designers and engineers are dealt in a system-
atic and automatic manner that result into faster and less error-prone processes.
Second the performance achieved, either translated as speedup or as energy effi-
ciency, in the implemented heterogeneous designs is vastly improved compared
to state-of-the-art methods. Following is the summary of my contributions as
detailed in the previous chapters of the dissertation.

Contributions

In Chapter 1 a novel methodology, RegionSeeker, was described that presents
insights addressing the research question of what part, or which parts, of an
application should be synthesized to HW under a constrained area budget. Re-
gionSeeker performs automatic identification and selection of HW accelerators
whose granularity is within the boundaries of the control flow graph of a func-
tion. Control flow inclusion in candidate selection for HW acceleration show-
cased a tangible performance increase of up to 2x with respect to state-of-the-art
proposed methods and an up to 4.5x speedup was attained compared to SW-only
execution.

Chapter 2 details methodologies that address the research questions of how

85

86 3.4 Conclusions

HW accelerators should be synthesized, namely which type of optimizations
should be implemented to specific HW accelerators upon their selection. Section
2.1 describes an automated methodology that identifies the data reuse potential
of a specific type of applications (sliding window applications) with the aid of
polyhedral analysis. This information is exploited in order to design memory
buffers, tailored to the requirements of every application. The experimental re-
sults showcased an order-of-magnitude performance improvement compared to
state-of-the-art methodologies. In Section [2.2]a novel loop-unrolling factor pre-
diction method, with the aid of Machine Learning classification, was presented.
An automated compiler analysis was employed to extract loop characteristics that
are used for the training of a Random Forest classification algorithm. This ap-
proach achieved better prediction score in comparison to state-of-the-art Machine
Learning methods. Experimental evidence revealed that accurate predictions of
loop unrolling factors resulted into high performance accelerator implementa-
tions, while simultaneously avoiding time-consuming exhaustive explorations.

Finally Chapter 3 takes into account the target platform where the HW imple-
mentations are synthesized. When demanding computing systems with complex
memory hierarchies are targeted, latency due to communication between the
main memory and the HW accelerators can be substantial. AccelSeeker in Sec-
tion 3.1]is presented that offers an extended scope of candidates for acceleration
— that of the entire function call graph of an application. AccelSeeker performs
the identification of candidate accelerators, as well as their area and speedup
estimations, through compiler analysis passes. Subsequently, automatic selec-
tion of the set of candidates that maximizes estimated speedup under a given re-
source constraint takes place. Experimental evaluation on a complex benchmark,
the H.264 decoder, demonstrated that AccelSeeker vastly outperforms choices
that are solely based on profiling information. As an extension of the previous
tool-chain, EnergySeeker (Section [3.2) focuses on energy efficient selections by
performing a power estimation of the accelerators, along with their latency esti-
mation offered by the previous framework. Experimentation revealed significant
savings of up to 55% less energy required compared to a software-only approach
and a consistently better performance compared to profiling-only based method-
ologies.

Limitations

The methodologies summarized above address the research questions posed in
the Introduction of this document, but leave room for extending and improving
my research work. The analysis performed in Chapter 1 and Chapter 3 could

87 3.4 Conclusions

become more application-specific and target types of applications with common
characteristics, in order to build accelerators specialized for a domain of appli-
cations (e.g Machine Learning accelerators). Furthermore, the analysis for esti-
mating the performance of candidates for acceleration can be extended so that it
estimates the latency and the HW resources required for optimized HW acceler-
ators prior to selection, thus fully automating the MuLTiVersioning approach in
Section

The automatic methodologies in Section [2.1] and Section can be inte-
grated with RegionSeeker and AccelSeeker in order to provide a framework that
performs both selection and optimization of candidates for acceleration at the
same time. Furthermore, more types of optimizations than the ones already con-
sidered can be included, such as more complex memory buffers (e.g. ping-pong
buffer) and combinations of them in special cases (e.g. loop unrolling and cyclic
array partitioning). These limitations leads me to the consideration of the subse-
quent steps in my research, which are presented as future work in the following
section.

Future Work

The collective research work presented in the current document attempts to both
automate the HW/SW co-design process, thus providing a smoother and faster
approach, and achieve better performance in terms of speedup of execution and
energy efficiency in heterogeneous computing systems. Following are a number
of research directions that are considered for future work.

Domain Specific Compiler Analysis. The AccelSeeker framework can be ex-
tended to domain specific applications in order to obtain even more efficient
choices, tailored to a specific type of applications and identify patterns that are
recurring in them. For instance in Machine Learning there are many matrix-
to-matrix or matrix-to-vectors multiplications. Identifying automatically these
patterns could lead to the realization of high performance Machine Learning
HW accelerators. Similar patterns can be found in processes that researchers in
other scientific disciplines use as the ground of their experimentation routines
(e.g. physics and biomedical engineering simulations). These experiments in-
clude quite demanding and lengthy simulations that engage in repetitive tasks
that could be accelerated with the aid of suitable HW accelerators.

Estimation of Optimized HW Accelerators Performance. The analysis performed
by both RegionSeeker and AccelSeeker (3.1)) is considering default HW im-
plementations without optimizations. This analysis can be extended to estimate
automatically the performance and HW resources of multiple versions of candi-

88 3.4 Conclusions

dates for acceleration that acquire a number of optimizations such as loop un-
rolling, loop pipelining and array partitioning, as described in the RegionSeeker
MulLTiVersioning approach in Section This would require a more complex
and rigorous analysis and offer an intermediate tool between my current devel-
oped frameworks and simulation tools such as Aladdin [|71]].

Integration of AccelSeeker to automatic optimizations methods. The automatic
methodologies in Section [2.1] and Section can be used as standalone tools
to aid the employment of optimizations to HW accelerators, but each targets a
specific feature, i.e., loop unrolling factor prediction and memory buffers de-
sign respectively. An integration of these methodologies with RegionSeeker and
AccelSeeker could lead to a more complete and unified solution for HW/SW co-
design, as both selection and optimization of candidates could be carried out
by an integrated framework. This integration would enable data reuse analysis
during the execution of the HW accelerators and analysis of the loops to extract
information regarding their unrolling potential. The first could lead to the gen-
eration of more efficient memory structures to hold data that are reused. The
latter would lead to suggestions from the tool in order to apply optimizations
related to minimizing the latency of loops computation time. Subsequently, a
thorough analysis can lead to an early estimation of the performance and the
required HW resources of optimized accelerators, that can in turn be selected for
HW implementation.

Combination of Optimizations. I would attempt to expand the capabilities of
the automated methods that generate optimizations by extending the current
LIVM based analysis methodology for data reuse and loop information. This
would lead to more complex combinations of the optimizations applied simul-
taneously by estimating and predicting their suitability with the aid of both an
LIVM based analysis model and a trained Machine Learning classification algo-
rithm. Moreover, a greater number of optimizations can be considered, such as
state-of-the-art local memory implementations for HW accelerators [[59], use of
different types of ports (e.g. accelerators-to-processor interconnects) and buses,
as well as combinations of loop unrolling and cyclic array partitioning factors in
order to minimize the number of cycles required for the execution of loops.

All these are interesting and motivating future research directions that I plan
to explore in the next phase of my academic career. Research is, after all, a
never-ending journey.

Bibliography

[1]

[7]

E Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. E O’Boyle,
J. Thomson, M. Toussaint, and C. K. Williams. Using machine learning to
focus iterative optimization. In Proceedings of the 4th International Sympo-
sium on Code Generation and Optimization, pages 295-305. IEEE Computer
Society, 2006.

M. A. Aguilar, R. Leupers, G. Ascheid, and L. G. Murillo. Automatic paral-
lelization and accelerator offloading for embedded applications on hetero-
geneous mpsocs. In Proceedings of the 53rd Design Automation Conference,
pages 49:1-49:6. ACM, June 2016.

J. Ahn and K. Choi. Isomorphism-aware identification of custom instruc-
tions with I/O serialization. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(1):34-46, Jan. 2013.

C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami. A DAG based design ap-
proach for reconfigurable VLIW processors. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition, pages 778-79,
Mar. 1999.

Altera. Arria 10 SoCs: Highest system level integration SoC in pro-
duction. www.altera.com/products/soc/portfolio/arria-10-soc/
overview.html, Nov. 2016.

K. Atasu, R. G. Dimond, O. Mencer, W. Luk, C. C. Ozturan, and G. Diin-
dar. Optimizing instruction-set extensible processors under data bandwidth
constraints. In Proceedings of the Design, Automation and Test in Europe Con-
ference and Exhibition, pages 588-593, Nice, France, Feb. 2007.

M. Baleani, E Gennari, Y. Jiang, Y. Patel, R. K. Brayton, and A. Sangiovanni-
Vincentelli. HW/SW partitioning and code generation of embedded control
applications on a reconfigurable architecture platform. In Proceedings of the

89

www.altera.com/products/soc/portfolio/arria-10-soc/overview.html
www.altera.com/products/soc/portfolio/arria-10-soc/overview.html

90

Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[16]

10th International Workshop on Hardware/Software Codesign, pages 151—
56, Estes Park, CO, May 2002.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM
SIGARCH Computer Architecture News, 39(2):1-7, Feb. 2011.

P Biswas, N. Dutt, P Ienne, and L. Pozzi. Automatic identification of
application-specific functional units with architecturally visible storage. In
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, pages 212-217, Mar. 2006.

P Bonzini and L. Pozzi. A retargetable framework for automated discovery
of custom instructions. In Proceedings of the 18th International Conference
on Application-specific Systems, Architectures and Processors, pages 334-41,
Montréal, Canada, July 2007.

C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. In Communications ACM, volume 9, pages 575-577, 1973.

M. Cacciotti, V. Camus, J. Schlachter, A. Pezzotta, and C. Enz. Hardware ac-
celeration of HDR-image tone mapping on an FPGA-CPU platform through
high-level synthesis. In International System-on-Chip Conference, pages
158-162. IEEE, Sept. 2018.

Cadence. Stratus high-level synthesis. WWW .
cadence.com/content/cadence-www/global/en_US/
home/tools/digital-design-and-signoff/synthesis/
stratus-high-level-synthesis.html, Apr. 2016.

Cadence. Tensilica customizable processors. https://ip.cadence.com/
ipportfolio/tensilica-ip/xtensa-customizable, Mar. 2017.

A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D.
Brown, and J. H. Anderson. LegUp: An open-source high-level synthesis
tool for FPGA-based processor/accelerator systems. ACM Transactions on
Embedded Computing Systems (TECS), 13(2):1-27, Sept. 2013.

A. Canis, J. Choi, B. Fort, R. Lian, Q. Huang, N. Calagar, M. Gort, J. J.
Qin, M. Aldham, T. Czajkowski, et al. From software to accelerators with
LegUp high-level synthesis. In Proceedings of the International Conference
on Compilers, Architectures, and Synthesis for Embedded Systems, page 18.
IEEE, Sept. 2013.

www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/stratus-high-level-synthesis.html
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable

91

Bibliography

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

X. Chen, D. L. Maskell, and Y. Sun. Fast identification of custom instructions
for extensible processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 26(2):359-68, Feb. 2007.

J. Cong, Y. Fan, G. Han, and Z. Zhang. Application-specific instruction gen-
eration for configurable processor architectures. In Proceedings of the 2004
ACM /SIGDA 12th International Symposium on Field Programmable Gate Ar-
rays, pages 183-89, Monterey, CA, Feb. 2004.

E Conti, D. Rossi, A. Pullini, I. Loi, and L. Benini. Pulp: A ultra-low power
parallel accelerator for energy-efficient and flexible embedded vision. Jour-
nal of Signal Processing Systems, 84(3):339-354, 2016.

E. G. Cota, P Mantovani, G. Di Guglielmo, and L. P Carloni. An analysis of
accelerator coupling in heterogeneous architectures. In Proceedings of the
52nd Design Automation Conference, pages 1-6. ACM, June 2015.

A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P C. Roth, K. Spaf-
ford, V. Tipparaju, and J. S. Vetter. The scalable heterogeneous com-
puting (SHOC) benchmark suite. In Proceedings of the 3rd Workshop on
General-Purpose Computation on Graphics Processing Units, pages 63-74.
ACM, 2010.

R. H. Dennard, E H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc.
Design of ion-implanted mosfet’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256-268, 1974.

Y. Dong, Y. Dou, and J. Zhou. Optimized generation of memory structure
in compiling window operations onto reconfigurable hardware. In Recon-
figurable Computing: Architectures, Tools and Applications, ARC, pages 110-
121, 2007.

H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In ACM SIGARCH Computer
Architecture News, volume 39, pages 365-376, 2011.

L. Ferretti, G. Ansaloni, and L. Pozzi. Cluster-based heuristic for high level
synthesis design space exploration. IEEE Transactions on Emerging Topics in
Computing, (99):1-9, Jan 2018.

L. Ferretti, G. Ansaloni, and L. Pozzi. Lattice-traversing design space explo-
ration for high level synthesis. In Proceedings of the International Conference
on Computer Design, pages 210-217. IEEE, Oct. 2018.

92

Bibliography

[27] C. Galuzzi, E. M. Panainte, Y. Yankova, K. Bertels, and S. Vassiliadis. Au-

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

tomatic selection of application-specific instruction-set extensions. In Pro-
ceedings of the International Conference on Hardware /Software Codesign and
System Synthesis, pages 160-165, Oct. 2006.

E. Giaquinta, A. Mishra, and L. Pozzi. Maximum convex subgraphs under
I/O constraint for automatic identification of custom instructions. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,
34(3):483-494, 2015.

S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: a call graph exe-
cution profiler. In ACM Sigplan Notices, volume 17, pages 120-126. ACM,
June 1982.

K. Griittner, P A. Hartmann, K. Hylla, S. Rosinger, W. Nebel, E Herrera,
E. Villar, C. Brandolese, W. Fornaciari, G. Palermo, et al. The complex ref-
erence framework for HW/SW co-design and power management support-
ing platform-based design-space exploration. Microprocessors and Microsys-
tems, 37(8):966-980, 2013.

Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized generation of
data-path from C codes for FPGAs. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pages 112-117, Mar. 2005.

Z. Guo, B. Buyukkurt, and W. A. Najjar. Input data reuse in compiling win-
dow operations onto reconfigurable hardware. In Proceedings of the 2004
ACM Conference on Languages, Compilers, and Tools for Embedded Systems,
pages 249-256, 2004.

G. Gutin, A. Johnstone, J. Reddington, E. Scott, and A. Yeo. An algorithm
for finding input-output constrained convex sets in an acyclic digraph. J.
Discrete Algorithms, 13:47-58, 2012.

M. Haaf3, L. Bauer, and J. Henkel. Automatic custom instruction identifi-
cation in memory streaming algorithms. In Proceedings of the International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems,
pages 1-9, Oct. 2014.

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of
inefficiency in general-purpose chips. Commun. ACM, 54(10):85-93, 2011.

93

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

R. Hank, S. Mahlke, R. Bringmann, J. Gyllenhall, and W. Hwu. Superblock
formation using static program analysis. In MICRO 26: Proceedings of the
26th Annual International Symposium on Microarchitecture, pages 247-255,
Sept. 1993.

Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii. CHStone: A
Benchmark Program Suite for Practical C-Based High-Level Synthesis. In
Proceedings of the 2008 IEEE International Symposium on Circuits and Sys-
tems, pages 1192-1195. IEEE, 2008.

R. Johnson, D. Pearson, and K. Pingali. The program structure tree: Com-
puting control regions in linear time. In ACM SIGPLAN Notices, volume 29,
pages 171-185. ACM, June 1994.

V. Kathail, J. Hwang, W. Sun, Y. Chobe, T. Shui, and J. Carrillo. SDSoC: A
higher-level programming environment for Zynq SoC and Ultrascale+ MP-
SoC. In Proceedings of the 2016 ACM /SIGDA 24th International Symposium
on Field Programmable Gate Arrays, pages 4—4, Feb. 2016.

S. Kulkarni and J. Cavazos. Mitigating the compiler optimization
phase-ordering problem using machine learning. ACM SIGPLAN Notices,
47(10):147-162, 2012.

S. Kurra, N. K. Singh, and P R. Panda. The impact of loop unrolling on con-
troller delay in high level synthesis. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, pages 391-396. EDA Consor-
tium, 2007.

C. Lattner and V. Adve. LIVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the 2nd International
Symposium on Code Generation and Optimization, pages 75-88, Mar. 2004.

K. H. Lee and N. Verma. A low-power processor with configurable embed-
ded machine-learning accelerators for high-order and adaptive analysis of
medical-sensor signals. IEEE Journal of Solid-State Circuits, 48(7):1625—
1637, 2013.

H.-Y. Liu and L. P Carloni. On learning-based methods for design-space
exploration with high-level synthesis. In Proceedings of the 50th Design
Automation Conference, pages 1-6. IEEE, June 2013.

94

Bibliography

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

X. Liu, Y. Chen, T. Nguyen, S. Gurumani, K. Rupnow, and D. Chen. High
level synthesis of complex applications: An h. 264 video decoder. In Pro-
ceedings of the 2016 ACM/SIGDA 24th International Symposium on Field
Programmable Gate Arrays, pages 224-233, Feb. 2016.

G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano. Oscar: An optimization
methodology exploiting spatial correlation in multicore design spaces. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
31(5):740-753, 2012.

K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and E Charot. Constraint
programming approach to reconfigurable processor extension generation
and application compilation. ACM Transactions on Reconfigurable Technol-
ogy and Systems (TRETS), 5(2):10, 2012.

W. Meeus and D. Stroobandt. Automating data reuse in high-level synthesis.
In Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, pages 1-4, Mar. 2014.

W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt. An
overview of today’s high-level synthesis tools. Design Automation for Em-
bedded Systems, 16(3):31-51, Sept. 2012.

D. Melpignano, L. Benini, E. Flamand, B. Jego, T. Lepley, G. Haugou, E Cler-
midy, and D. Dutoit. Platform 2012, a many-core computing accelerator for
embedded SoCs: performance evaluation of visual analytics applications.
In Proceedings of the 49th Design Automation Conference, pages 1137-1142.
ACM, 2012.

A. Monsifrot, E Bodin, and R. Quiniou. A machine learning approach to
automatic production of compiler heuristics. In AIMSA, volume 2, pages
41-50. Springer, 2002.

S. Nouri, J. Rettkowski, D. Gohringer, and J. Nurmi. HW/SW co-design of
an IEEE 802.11 a/g receiver on Xilinx Zynq SoC using high-level synthesis.
In International Symposium on Highly-Efficient Accelerators and Reconfig-
urable Technologies, pages 1-6. ACM, June 2017.

J. Oppermann and A. Koch. Detecting kernels suitable for C-based high-
level hardware synthesis. In Smart World Congress, pages 1157-1164. IEEE,
July 2016.

95

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

B. Ozisikyilmaz, G. Memik, and A. Choudhary. Efficient System Design
Space Exploration Using Machine Learning Techniques. In Proceedings of
the 45th Design Automation Conference, pages 966-969. ACM, June 2008.

G. Palermo, C. Silvano, and V. Zaccaria. ReSPIR: a Response Surface-Based
Pareto Iterative Refinement for Application-Specific Design Space Explo-
ration. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 28(12):1816-1829, Nov 2009.

E Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research, 12:2825-
2830, 2011.

L. Piccolboni, P Mantovani, G. D. Guglielmo, and L. Carloni. COSMOS:
coordination of high-level synthesis and memory optimization for hardware
accelerators. ACM Transactions on Embedded Computing Systems (TECS),
16(5s):150:1-150:22, Sept. 2017.

C. Pilato and E Ferrandi. Bambu: A free framework for the high level
synthesis of complex applications, Mar. 2012.

C. Pilato, P Mantovani, G. Di Guglielmo, and L. P Carloni. System-level
optimization of accelerator local memory for heterogeneous systems-on-
chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 36(3):435-448, 2016.

N. Pothineni, A. Kumar, and K. Paul. Application specific datapath exten-
sion with distributed I/O functional units. In Proceedings of the 20th Inter-
national Conference on VLSI Design, pages 551-558, Bangalore, India, Jan.
2007.

L.-N. Pouchet, P Zhang, P Sadayappan, and J. Cong. Polyhedral-based data
reuse optimization for configurable computing. In Proceedings of the 2013
ACM /SIGDA 21st International Symposium on Field Programmable Gate Ar-
rays, pages 29-38, Feb. 2013.

L. Pozzi, K. Atasu, and P Ienne. Exact and approximate algorithms for the
extension of embedded processor instruction sets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(7):1209-29,
July 2006.

96

Bibliography

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

L. Pozzi and P Ienne. Exploiting pipelining to relax register-file port con-
straints of instruction-set extensions. In Proceedings of the International
Conference on Compilers, Architectures, and Synthesis for Embedded Systems,
pages 2-10, San Francisco, CA, Sept. 2005.

T. O. Project. OpenSSL library. www.openssl.org, Dec. 1998.

A. Pullini, E Conti, D. Rossi, I. Loi, M. Gautschi, and L. Benini. A heteroge-
neous multicore system on chip for energy efficient brain inspired comput-
ing. IEEE Transactions on Circuits and Systems II: Express Briefs, 65(8):1094—
1098, 2017.

B. Reagen, P Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Herndndez-Lobato, G.-Y. Wei, and D. Brooks. Minerva: Enabling low-
power, highly-accurate deep neural network accelerators. In Proceedings of

the 43rd Annual International Symposium on Computer Architecture, pages
267-278. IEEE, 2016.

J. Reddington, G. Gutin, A. Johnstone, E. Scott, and A. Yeo. Better than
optimal: Fast identification of custom instruction candidates. In Proceed-
ings of the 12th IEEE International Conference on Computational Science and
Engineering, pages 17-24, 2009.

R. R. Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52-59, 1997.

P D. Schiavone, E Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand,
and L. Benini. Slow and steady wins the race? a comparison of ultra-low-
power risc-v cores for internet-of-things applications. In 27th International
Symposium on Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 1-8. IEEE, 2017.

M. Schmid, O. Reiche, E Hannig, and J. Teich. Loop coarsening in C-based
high-level synthesis. In Proceedings of the 26th International Conference on
Application-specific Systems, Architectures and Processors, pages 166-173,
July 2015.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin: A pre-RTL, power-
performance accelerator simulator enabling large design space exploration
of customized architectures. In Proceedings of the 41st Annual International
Symposium on Computer Architecture, pages 97-108. IEEE, July 2014.

www.openssl.org

97 Bibliography

[72] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks. Co-designing
accelerators and SoC interfaces using gem5-aladdin. In MICRO 49: Pro-
ceedings of the 46st Annual International Symposium on Microarchitecture,
pages 1-12, Oct. 2016.

[73] T. Simonite. Moore’s law is dead. Now what? MIT Technology Review, May,
13:40-41, 2016.

[74] M. Stephenson and S. Amarasinghe. Predicting unroll factors using super-
vised classification. In Proceedings of the 3rd International Symposium on
Code Generation and Optimization, pages 123-134. IEEE, 2005.

[75] K. Suehring and al. H.264/AVC reference software. http://iphome.hhi.
de/suehring/tml/, May 2015.

[76] Synopsys. ARC processor cores. www.Synopsys.com/designware-ip/
processor-solutions/arc-processors.html, Dec. 2016.

[77] B. A. Syrowik, B. Fort, and S. D. Brown. Use of CPU performance coun-
ters for accelerator selection in HLS-generated CPU-accelerator systems. In
International Symposium on Highly-Efficient Accelerators and Reconfigurable
Technologies, pages 1-6, June 2018.

[78] Xtensa customizable processors: http://ip.cadence.com/ipportfolio/tensilica-
ip/xtensa-customizable.

[79] C.L. Tobias Grosser, Armin Groesslinger. Polly - Performing polyhedral opti-
mizations on a low-level intermediate representation. In Parallel Processing
Letters, Apr 2012.

[80] E Valina. Implementing memory structures for video processing in the Vi-
vado HLS tool. In Xilinx, Sept. 2012.

[81] S. Verdoolaege. isl: An integer set library for the polyhedral model. In
International Congress on Mathematical Software, pages 299-302. Springer,
2010.

[82] A. K. Verma, P Brisk, and P Ienne. Rethinking custom ISE identification: A
new processor-agnostic method. In Proceedings of the International Confer-
ence on Compilers, Architectures, and Synthesis for Embedded Systems, pages
125-134, Salzburg, Austria, Oct. 2007.

http://iphome.hhi.de/suehring/tml/
http://iphome.hhi.de/suehring/tml/
www.synopsys.com/designware-ip/processor-solutions/arc-processors.html
www.synopsys.com/designware-ip/processor-solutions/arc-processors.html

98

Bibliography

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]

[93]

J. R. Villarreal, A. Park, W. A. Najjar, and R. Halstead. Designing modular
hardware accelerators in C with ROCCC 2.0. In Proceedings of the 18th
IEEE Symposium on Field-Programmable Custom Computing Machines, pages
127-134, 2010.

C. Xiao, Y. Xie, and L. Zhang. Aeas-towards high energy-efficiency design
for openssl encryption acceleration through HW/SW co-design. In Proceed-
ings of the 2018 on Great Lakes Symposium on VLSI, pages 171-176. ACM,
2018.

Xilinx. Vivado high-level synthesis. www . xilinx.com/products/
design-tools/vivado/integration/esl-design.html, Mar. 2017.

Xilinx. Xilinx all programmable SoC portfolio. www.xilinx.com/
products/silicon-devices/soc.html, Mar. 2017.

Xilinx. Xilinx Power Estimator (XPE), Sept. 2019.
Xilinx embedded system tools reference manual, 2018.

S. Xydis, G. Palermo, V. Zaccaria, and C. Silvano. A meta-model assisted co-
processor synthesis framework for compiler/architecture parameters cus-
tomization. In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition, pages 659-664, 2013.

H. Yu and M. Leeser. Automatic sliding window operation optimisation
for FPGA-based computing boards. In Proceedings of the 14th IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pages 7688,
April 2006.

P Yu and T. Mitra. Scalable custom instructions identification for instruction
set extensible processors. In Proceedings of the International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, pages 69-78,
Washington, DC, Sept. 2004.

G. Zacharopoulos. Employing hardware transactional memory in prefetch-
ing for energy efficiency, 2015.

G. Zacharopoulos, G. Ansaloni, and L. Pozzi. Data reuse analysis for au-
tomated synthesis of custom instructions in sliding window applications.
HiPEAC IMPACT 2017 Seventh International Workshop on Polyhedral Com-
pilation Techniques, Jan. 2017.

www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
www.xilinx.com/products/silicon-devices/soc.html
www.xilinx.com/products/silicon-devices/soc.html

99

Bibliography

[94]

[95]

[96]

[97]

[98]

[99]

G. Zacharopoulos, A. Barbon, G. Ansaloni, and L. Pozzi. Machine learning
approach for loop unrolling factor prediction in high level synthesis. 2018
IEEE International Conference on High Performance Computing & Simulation
(HPCS), pages 91-97, 2018.

G. Zacharopoulos, L. Ferretti, G. Ansaloni, G. Di Guglielmo, L. Carloni, and
L. Pozzi. Compiler-assisted selection of hardware acceleration candidates
from application source code. Proceedings of the International Conference
on Computer Design, pages 1-9, 2019.

G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni, and L. Pozzi. Re-
gionSeeker: Automatically identifying and selecting accelerators from ap-
plication source code. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 38(4):741-754, Apr. 2019.

G. Zacharopoulos and L. Pozzi. ClrFreqCFGPrinter: A tool for frequency
annotated control flow graph generation. Technical report, European LLVM
Developers Meeting, Mar. 2017.

M. Zuluaga, T. Kluter, P Brisk, N. P Topham, and P Ienne. Introducing
control-flow inclusion to support pipelining in custom instruction set exten-
sions. In Proceedings of the 7th Symposium on Application Specific Processors,
pages 114-121, 2009.

M. Zuluaga, A. Krause, P Milder, and M. Piischel. Smart design space sam-
pling to predict Pareto-optimal solutions. In ACM SIGPLAN Notices, vol-
ume 47, pages 119-128, 2012.

	Contents
	Introduction
	Automatic Identification and Selection of Accelerators
	Motivation
	Problem Formulation
	Region Selection Algorithms
	Exact Method
	Greedy Method
	Exact-on-cropped Method

	The RegionSeeker Framework
	LLVM Toolchain
	Platform Model and Performance Metrics
	Benchmarks

	Experimental Results
	Regions as a Choice for Accelerators
	Performance of Selection Algorithms
	Impact of the Interface Overhead

	RegionSeeker MuLTiVersioning
	Methodology
	Experimental Results

	Related Work
	Released Software
	Conclusions

	Automatic Optimization for HW/SW Co-design
	Data reuse Analysis
	Motivation
	Related Work
	Methodology
	Experimental Results
	Conclusions

	Machine Learning Approach for Loop Unrolling Factor Prediction
	Motivation
	Related Work
	Methodology
	Experimental Results
	Released Software
	Conclusions

	Identification and Selection of System-Aware Accelerators
	AccelSeeker: Accelerators for Speedup
	Motivation
	Related Work
	Candidate Identification
	Problem Statement and Candidate Selection
	Selection Algorithm
	Cost and Merit Estimation
	Compiler Analysis
	Experimental Setup
	Experimental Results

	EnergySeeker: Accelerators for Energy Efficiency
	Motivation
	Related Work
	Methodology
	Experimental Setup
	Experimental Results

	Released Software
	Conclusions

	Conclusions
	Bibliography

