Automatically Testing Interactive
Applications

Exploiting interactive applications semantic similarities for
automated testing

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Daniele Zuddas

under the supervision of

Mauro Pezze

July 2019

Dissertation Committee

Antonio Carzaniga Universita della Svizzera italiana, Switzerland

Paolo Tonella Universita della Svizzera italiana, Switzerland
Atif Memon University of Maryland, USA
Tanja E.J. Vos Technical University of Valencia, Spain

Leonardo Mariani University of Milano-Bicocca, Italy

Dissertation accepted on 8 July 2019

Research Advisor PhD Program Director

Mauro Pezze Prof. Walter Binder, Prof. Olaf Schenk

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Danic‘e% Zuddas
Lugato, 8 July 2019

Abstract

Interactive applications, such as mobile or web apps, have become essential
in our lives and verifying their correctness is now a key issue. Automatic system
test case generation can dramatically improve the testing process for these appli-
cations and has recently motivated researchers to work on this problem defining
a wide range of different approaches. However, most state-of-the-art approaches
automatically generate test cases only leveraging the structural characteristics
of interactive applications GUIs, paying little attention to their semantic aspects.
This led to techniques that, although useful, cannot effectively cover all the se-
mantically meaningful execution scenarios of an interactive application under
test and that are not able to distinguish correct behaviors from faulty ones.

In this Ph.D. thesis, we propose to address the limitations of current techniques
exploiting the fact that interactive applications often share semantic similarities
and implement many functionalities that are not specific to one application only.
Our intuition is that these similarities can be leveraged to complement the classical
structural information used so far, to define truly effective test case generation
approaches. This dissertation presents two novel techniques that exploit this
intuition: AUGUSTO and ADAPTDROID.

AUGUSTO exploits a built-in knowledge of the semantics associated with popu-
lar and well-known functionalities, such as CRUD operations, to automatically
identify these popular functionalities in the application under test and generate
effective test cases with automated functional oracles. We demonstrated the
effectiveness of AUGUSTO experimenting with different popular functionalities in
the context of interactive desktop applications showing that it can reveal faults
that cannot be revealed with other state-of-the-art techniques.

ADAPTDROID instead generates semantically meaningful test cases exploiting
a radically new approach: obtaining test cases by adapting existing test cases
(including oracles) of similar applications instead of generating test cases from
scratch. We empirically evaluated this strategy in the context of Android apps and
showed that ADAPTDROID is the first fully automatic technique that can effectively
adapt test cases, including assertions, across similar interactive applications.

Contents

[Contents

IList of Figures

[List of Tables|
(1__Introduction

(1.1 Research Hypothesis and Contributions|
(1.2 Thesis Organizationot v v i i v ...

|2 Testing Interactive Applications: State of the Art and Open Issues
2.1 Preliminaries|.
[2.2 Interactive Applications Testing|
[2.3 Automatic Testing of Interactive Applications
[2.3.1 Random Approaches.
[2.3.2 Model-Based Approaches|.
[2.3.3 Coverage-Based Approaches|.
[2.3.4 Similarity-Based Approaches|.
[2.4 Limitations and Open Problems

[3 Automated Testing of Desktop Applications: an Empirical Study
3.1 EvaluatedTools
(3.2 Subject Applications
(3.3 Experimental Setup|.
(3.4 Experimental comparison|,

[3.4.1 Fault Revealing Ability
[3.4.2 Execution Space Sampling Ability]
[3.4.3 Timeefficiency

[3.5 DiSCUSSION| . . v v v v o e e e e e e e e e e e e e
3.6 Threatstovalidity|.

iii

ix

xi

(2 IS SN

N

Vi Contents

|4 Similarities Among Applications: An Opportunity for Testing Interac- |

| tive Applications 27
4.1 Application Independent Functionalities| 29
4.2 Cross-Application Test Case Adaptation. 31

[5 AucGusTO: Semantic Testing of Application Independent Functionali- |

[_ties| 35
[5.1 Motivating Example] 35
[5.2 Approach| 37

[5.2.1 AIF Archivel e 38
[5.2.2 RIpPING|. . . « o ¢ o o o e 44
[5.2.3 Structural Matching|, 45
[5.2.4 Match Finalizing 49
[5.2.5 Reification| 50
[5.2.6 Testing v i vt e e 51

[5.3 Prototype implementation|., 52
5.4 Evaluation| e 53
[5.4.1 Empirical Setup. 54
[5.4.2 ROI1-AIFDEetection v v v v v v v it e e e 55
[5.4.3 ROQ2 - Effectiveness], 57
[5.4.4 RQ3-CompariSOn v e vt v vt i e 59
[5.4.5 Threatstovalidity] 61

|[6 ApAPTDROID: Semantic Testing via Cross-Application Test Case Adap- |

[_tationl 63
6.1 Preliminaries/ 63
6.2 Motivating Example| 0 L. 64
6.3 Approach| 67

16.3.1 Cross-app Matching of GUI Events| 68
[6.3.2 Pre-processing| 70
|6.3.3 Generation of the Initial Population| 72
6.3.4 Fitness Calculation 72
[6.3.5 Population Evolution| 76
[6.3.6 Post-Processing|t 78
6.4 Implementation, 78
6.5 Evaluation| 79
[6.5.1 Empirical Setup. 80
[6.5.2 ROI: Effectiveness o v v v v i 82

[6.5.3 RQ2: Comparison with Random Search|. 85

Vii Contents

[6.5.4 RQ3: Greedy-match Initialization and Fitness-driven Muta- |

[tions Evaluation 87
6.5.5 ThreatstoValidity 88

7 Conclusions 91
[7.1 Contributions| e 93
[7.2 Open Research Directions| 94
[A__AIF Models 97
AT AUTH . . . oo e e e e e e e e s 101
A.2 CRUDI e e e e e 105
A3 SAVE . . o o e e e e e 110

Bibliography; 117

viii Contents

Figures

13.1 Distribution of detected faults coverage within the time budgets |

| for the different tools|. 24
4.1 Signin and Sign up in Jenkinsand Ebay 29
|4.2 Example of similar note-pad applications in the Google Play Store| 31
[5.1 AucGusToO logical architecture|. 37
[5.2 Examples of GUI Patternmodel 40
I5.3 A simplified version of the GUI of OnlineShopping|. 44

[5.4 A match between the model of the authentication AIF and the GUI

| of OnlineShopping. Green thick edges are those discovered during |
| the ripping step, while dashed red edges are discovered during the |

| match finalizing step.|. 46
6.1 ADAPTDROID cross-application test adaptation example|. 65
[6.2 ADAPTDROID logical architecture 67
6.3 Crossoverexample| 76
6.4 Average fitness growth ADAPTDROID v§ RANDOM.| 87
6.5 Average fitness growth ADAPTDROID vs ADAPTDROID-SIMPLE.| . . . 88
A1 AUTH GUIPatternmodel 101
[A.2 CRUD GUIPatternmodel 105
[A.3 SAVE GUI Patternmodel|. 111

Figures

Tables

[3.1 Testing tools selected for thestudy| 18
(3.2 Subject applications|. e 20
[3.3 Coverage and Failure revealing capabilities of the tools after 15 |
I hours test sessionsl 22
(3.4 Faults detectedbytool 23
[5.1 Subject applications|., 53
[5.2 RQI1 - AIF Detection]o v i ittt 56
[5.3 RO2-Effectiveness o v v v vt it et 58
[5.4 RQ3-CompariSOn|o v i v i v i et 59
6.1 Running example events descriptors 69
[6.2 Evaluation subjectsand results|. 82
[6.3 RQZ2: Fitness values achieved by ADAPTDROID and RANDOM|. . . . 85
6.4 RQ3: Fitness values achieved by ADAPTDROID and ADAPTDROID- |
I SIMPLE .« « v v v v v v e e e e e e e e e e e e e 87

Xi

xii

Tables

Chapter 1

Introduction

Software verification is an integral part of modern software development
processes and aims to very the correspondence between software expected and
actual behaviors. The most common activity in software verification is testing.
Testing assesses the correctness and quality of a software system by verifying
whether the results produced by executing it with a finite set of inputs match its
expected behavior. IEEE defines testing as

“the dynamic verification that a program provides expected behaviors
on a finite set of test cases, suitably selected from the usually infinite
execution domain” [|29].

Testing can be carried out at different granularity levels depending on which
portion of the application under test (AUT) is targeted: unit testing targets
single classes or components, whereas integration and system testing target sets
of integrated classes or components and the whole system, respectively [189]].
Unit testing aims to reveal faults in the single units, and may miss faults that
occur when integrating the numerous AUT software layers or when executing the
whole system. For this reason, system testing, that is testing the fully integrated
application from the final user viewpoint, is a fundamental type of testing.

System testing requires executing the applications through their interfaces
and stimulating all the layers and components involved in the execution. Since
the number and complexity of the entities typically involved in a system-level
execution could be significant, defining test cases that thoroughly sample and
verify the behavior of an application is difficult and expensive. Automating
the generation and execution of system test cases can dramatically improve the
effectiveness of software verification activities and significantly reduce software
development costs. For this reason, automated system test case generation is
attracting a growing interest in the research community.

This Ph.D. thesis studies the problem of automatically generating system test
cases for a popular type of software system, interactive applications.

Interactive applications are software systems with a Graphical User Interface
(GUI) as the main entry point for interactions with the users. These applications
are extremely widespread and are used every day to perform all sorts of tasks,
from leisure and travel to banking and insurance. For instance, just the Google
Play Store (the official store of Android apps) contains more than 2.5 millions
interactive applications. Interactive applications interact with the users, meaning
that they do not receive an input, process it, and provide an output, but incre-
mentally accept user stimuli (in the form of events on the GUI), reacting to those
stimuli by producing new information, and allowing users to further interact with
new stimuli not available before. Thus, interactive applications guide the users
during the interaction for a more user-friendly experience.

Interactive applications are developed for different platforms, including web,
mobile, and desktop. This thesis focuses on the problem of system testing of
interactive applications independently from the features that characterise a specific
platform, and the proposed approaches are valid for the different platforms.

System test cases for interactive applications are composed of a GUI interaction
and a functional oracle. A GUI interaction is a sequence of user events on the AUT
GUI, while a functional oracle is a set of checks on the response of the application
shown on the GUI aimed to detect errors. Automating the generation of system
test cases for interactive applications faces two main challenges: identifying
meaningful GUI interactions and defining automatic functional oracles.

Meaningful GUI interactions. Given the complexity of contemporary applica-
tions’ GUIs, the number of possible GUI interaction sequences might be huge.
Thus it is important to identify a set of meaningful GUI interactions, that is, in-
teractions that represent a realistic usage scenario of the application, leaving
out irrelevant combinations of GUI events. For example, a GUI interaction that
only navigates through menus and windows is seldom meaningful because it
does not execute any of the functionalities implemented in the AUT, whereas a
GUI interaction that goes in the “register new user” window, fills out the form
with valid data, and clicks “register” is meaningful because it executes an AUT
functionality. Irrelevant GUI interactions greatly outnumber meaningful ones,
thus generating a reasonable set of meaningful GUI interactions that exercise all
relevant AUT usage scenarios is a challenging problem.

Automatic functional oracle. Testing aims to detect failures, i.e., wrong behav-
iors of an application in response to stimuli. While detecting failures that cause
system crashes is easy, detecting failures that produce incorrect behaviors/outputs

requires sets of appropriate assertions (called functional oracle) based on some
knowledge of the application expected behavior. Because of the non-trivial AUT
knowledge required, automatically generating effective functional oracles for
non-crashing failures can be challenging [[18]].

Because of the relevance of interactive applications, the problem of automati-
cally generating system test cases for such applications is increasingly attracting
the interest of the research community [45} 148, 70,77, 180, [115]. State-of-the-art
testing strategies share the common idea of analyzing the AUT GUI structure to
produce a set of GUI interactions that exercise the elements of the GUI according
to some criteria, often based on combinatorial interaction testing, some specific
heuristics, or structural information (e.g., data flow relations).

Approaches that focus on structural elements are efficient, but with limited
effectiveness due to the lack of knowledge of the AUT semantics. Efficiently
identifying all meaningful interaction sequences by exploring the execution space
based only on structural information is usually impossible. Moreover, without
having any knowledge of the AUT semantics they cannot identify non-crashing
failures. Let us consider for instance an interactive application that creates GANTT
charts. State-of-the-art techniques based only on the structure of the GUI with no
knowledge of the nature of a GANTT chart can generate meaningful test cases that
cover some relevant scenarios, e.g., properly allocating activities and resources,
only by chance, and cannot check whether the charts produced by the application
are correct.

In this thesis, we argue that an automatic testing approach to overcome the
limitations discussed above should leverage some information about the AUT
semantics, to enable to both drive the generation of GUI interactions towards
events sequences that are meaningful with respect to the expected usage of the
application, and verify the coherence of the AUT actual behavior with respect
to its expected behavior. We use the term semantic testing approach to refer to
automatic system testing approaches that leverage information about the AUT
semantics, without relying on structural information only.

Semantic testing approaches proposed so far exploit either specifications (SRS)
or models of the software under test [89, [108]. However, specifications and
models are rarely available as they are expensive to produce and maintain.

In this thesis we study the problem of defining cost-effective semantic testing
approaches for interactive applications, that is, we investigate ways to exploit
commonly available semantic information to automatically generate system test
case that can both execute meaningful interaction and have effective functional
oracles, without requiring the presence of artifact expensive to produce and
maintain to support our approaches.

4 1.1 Research Hypothesis and Contributions

1.1 Research Hypothesis and Contributions

The overall research hypothesis of this Ph.D. thesis is:
Cost-effective semantic testing of interactive applications can be achieved exploiting
the fact many functionalities are not specific to one application only but are shared
among many different interactive applications.

Every year a huge amount of different interactive applications are produced
and are made available in the market. In many cases, this myriad of applications
share some similarities. We observe that often interactive applications share
some common functionalities, for instance, many applications implement the
general functionality of authentication. We also observe that several applications
target similar goals, and implement similar use cases, as for instance the many
applications that manage personal expenses and budget.

The many common functionalities shared among different applications repre-
sent an interesting opportunity that can be exploited to produce cost-effective
semantics test cases. In this dissertation we advance the state of the art by defining
techniques that exploit this unexplored opportunity in two different ways:

Application Independent Functionalities This thesis proposes AUGUSTO (AU-
tomatic GUi Semantic Testing and Oracles), an approach that exploits func-
tionalities shared across different applications to automatically generate
semantically-relevant test inputs and oracles. AUGUSTO relies on the obser-
vation that many popular functionalities are implemented in similar ways
and respond to the same abstract semantics when they occur in different
interactive applications. We call these functionalities application indepen-
dent functionalities (AIF). Relevant examples of AIF are authentication
operations, CRUD (Create, Read, Update, Delete) operations, and search
and booking operations. These functionalities are pervasive in software
applications and share the same abstract behavior. AUGUSTO exploits AIFs
for generating semantically relevant test suites by defining the semantics
of popular AIFs once for all according to common knowledge and then
using this pre-defined AIF semantics to automatically reveal and test AIFs
in different AUTs.

Cross-Application Test Case Adaptation This thesis proposes ADAPTDROID, an
approach to adapt system test cases across different applications. ADAPT-
DRroOID relies on the observation that when a new application is developed
there might already exist other similar applications in the market that have
the same overall goal or that, in general, implement the same functionalities.

1.2 Thesis Organization

1.2

These similar applications might include executable system test cases that
can be adapted and reused the new application that is being developed.
ADAPTDROID exploits this opportunity by relying on a search-based algo-
rithm to automatically adapt manually produced system test cases for a
similar interactive application (the donor) to the application under test (the
receiver).

Thesis Organization

The thesis is organized as follows:

Chapter [2] describes the state of the art of automatic test case generation
for interactive applications and discusses strengths and limitations.

Chapter |3/ empirically compares the most mature techniques available for
desktop interactive applications, by relying on a benchmark of subject
applications, and provides empirical evidence of the limitations of the state-
of-the-art approaches.

Chapter 4 describes the concept of semantic testing that we introduce
in this thesis, and discusses how we exploit applications similarities to
automatically generate semantic test case.

Chapter [5|introduces AUGUSTO. It describes how AUGUSTO produces AIF
models that it uses to detect and test AlFs in arbitrary applications and
presents the results of an empirical evaluation of AUGUSTO.

Chapter [6] presents ADAPTDROID. It describes how ADAPTDROID uses a
concept of semantic similarity to match events across different applications,
shows how ADAPTDROID uses a search based algorithm to identify the best
adapted test cases across the possible test cases that can be generated for
the AUT, and presents the results of an empirical evaluation of ADAPTDROID.

Chapter [7] summarizes the contributions of the thesis and discusses open
research directions.

1.2 Thesis Organization

Chapter 2

Testing Interactive Applications:
State of the Art and Open Issues

2.1 Preliminaries

Interactive applications are software systems that accept input from their users
mainly through a Graphical User Interface (GUI) [143]].

Graphical User Interface (GUI)

A GUI is a forest of hierarchical windows|'|where at any given time only one
window can be active and enabled to receive interactions from the user [|77]].

Windows host widgets, that are atomic GUI elements characterized by several
properties, such as (i) the type, (ii) the displayed text, (iii) xpath. The type defines
the looks of the widget and the interactions that are enabled on it, for instance,
click, drag, or text typing. The text property defines a (possibly empty) text that
is shown within the widget and that represents the main information for users to
understand the semantics of the actions associated with the widget. The XPath is
an address that uniquely identifies the widget w in the structural hierarchy of the
window [97]].

At any time, the active window has a state S, which is the collection of the
displayed widgets states, that is, the values of their properties. Based on their
types, widgets offer users events to interact with the GUI, for instance, users can
click widgets of type button or of type menu.

!The term window is mostly used in the context of desktop applications, while for Android
and Web applications, this concept is expressed using the terms activities and pages, respectively.
For simplicity, in this dissertation, we use the generic term window for referring also to activities
and pages.

8 2.2 Interactive Applications Testing

Users interact with interactive applications performing events on the GUI
widgets, such as clicking buttons and filling text fields. Applications interpret
user events and trigger the computation of proper business logic functions that
eventually modify the state of the GUI, for instance, by changing the active window
or modifying the state of the currently active window.

Interactive Application Test Case

A system test case t for an interactive application, from now on simply called
test case, is an ordered sequence of events t = (e, ..., e,) that operate on the GUI
widgets, , typically identifying them through their XPath property. An event is an
atomic interaction between users and widgets, for instance clicking on a button
or filling a text field with some input data.

The execution of a test case induces a sequence of transitions in the observable

GUI state S, BN S, 3 S,... il S,, Where S;_; and S; denote the states of the
active window before and after the execution of event e;, respectively.

Each test t is associated with assertions that check the correctness of the states
observed during the execution of t, and that are used as test oracles. An example
of assertion is stating that a widget displays a given text. Assertions can be used
to verify the correctness of all intermediate states of t execution or to verify only
the final state S,,, with different costs and bug-revealing effectiveness [[76]]. We
use O, to denote the set of assertions associated with a test t.

2.2 Interactive Applications Testing

In the literature, the term GUI testing is used to indicate both the system testing
of interactive applications, as it is performed stimulating the application under
test through its GUI [[13]], and the activity of solely testing the correctness of the
application GUI [[42]]. To avoid confusion, in this thesis we use the term interactive
applications testing to refer to the activity of testing an interactive application by
interacting with its GUI to asses the correctness of the whole application.

Interactive applications testing requires to derive and execute a set of test
cases that thoroughly cover the behaviors of the application and that, ideally,
can expose all the faults. Unfortunately, the number of possible GUI interactions
that can be executed on an interactive application GUI grows exponentially with
the number of GUI widgets and windows, thus making it unfeasible to cover it
exhaustively.

It is common practice to test interactive applications manually, that is, de-
velopers rely on their knowledge of the application to design test cases that

9 2.2 Interactive Applications Testing

properly sample the AUT huge execution space, and then manually execute them
on the GUI. To create executable tests developers often use capture and replay
tools [55}95]] that can record the manually produced test cases to then be able to
re-execute them automatically without additional effort. However, capture and
replay tools still require large human effort as the test cases have to be initially
defined and then be updated every time the application GUI changes even slightly.

To avoid this human cost, it would be preferable to employ an automatic tool
able to autonomously generate sets of effective test cases sparing the developers
from the burden of designing and executing large test suites. However, designing
tools to automatically generate effective test suites faces two main challenges:
identifying meaningful GUI interaction, and defining automatic functional oracles.

Meaningful GUI interaction. The space of every possible GUI interaction for a
non-trivial application is infinitely large. However, many GUI interactions are not
relevant for testing, as they do not execute a meaningful and realistic request of
one of the AUT functionalities. For instance, a sequence of random clicks on a flight
search application GUI would most likely just navigate among different windows
without even getting close to perform a search or buying a ticket. Executing such
sequences of GUI interactions most likely results in executing a very small part of
the application code, leaving the application functionality largely untested. An
effective automatic approach has to identify GUI interactions that execute relevant
scenarios, that is, scenarios that trigger the execution of the AUT functionalities
and execute the AUT business logic methods. If we consider again the example
of an application for booking flights, an important and meaningful interaction
is accessing the flight search page, filling out the required fields related to the
source and destination, and then clicking on the “search” button. But in the space
of the possible GUI interactions, this is a quite rare one since there are many more
interactions in which the events described are executed only partially or in the
wrong order or intertwined with other events that move the application to a page
unrelated with the search.

Automatic Functional Oracle. System crashes, that is, states in which the appli-
cation suddenly closes making it impossible for the user to continue interacting
with it, are easy to detect. Semantic errors, that is, states in which the applica-
tion provides a wrong output or not allow the user to perform a required task
as intended, are hardly detectable without some knowledge of the application
semantics. These types of errors are very important, and to be caught require
appropriate assertions that check the correctness of the information shown in
the GUI after the execution of a given GUI interaction [|76/]. Writing appropriate
assertions requires some knowledge of the semantic of the application under test,
and therefore it is very challenging to automatically generate useful assertions.

10 2.3 Automatic Testing of Interactive Applications

2.3 Automatic Testing of Interactive Applications

Recently, many researchers and practitioners have investigated the challeng-
ing problem of automatically generating test cases for interactive applications.
So far the research community efforts have mostly focused on the problem of
automatically generating GUI interactions, leaving the problem of generating
automatic functional oracles largely open.

The techniques proposed for automating the generation of GUI interactions can
be roughly divided into four classes: random approaches [46,110], model-based
approaches [70, [77]], coverage-based approaches [136, 168], and similarity-based
approaches [21], (84]].

2.3.1 Random Approaches

Random approaches are arguably the most simple type of test case generation
techniques. They produce test cases as sequences of events identified either
randomly or using simple heuristics. Probably, the most famous random technique
is Monkey [[46]], available in the official Android toolkit. Monkey tests an android
application by executing a stream of completely random events on its GUI and
has become the de-facto standard in testing Android apps.

Other random testing techniques use an observe-select-execute cycle, in which
the application GUI is observed to detect which events are enabled before ran-
domly selecting the next event to execute [65,[110]. This approach selects events
that stimulate the AUT widgets appropriately, thus improving over Monkey that
often executes events in GUI states where there are no widgets that accept that
type of event (e.g., clicking in a point where there is no button). These techniques
use different strategies to detect enabled events. Testar-Random targets desktop
applications, and uses the widget types to detect which events can be performed
(e.g., a button widget accepts click events and a text field accepts type events).
Dynodroid targets Android apps and performs a lightweight analysis of the source
code to detect the event listeners registered for each widget (e.g., if a widget
registers a onClick listener then it accepts clicks events).

Ermuth et al. recently proposed a technique that enhances random testing
by exploiting users usage traces (i.e., GUI interactions performed by users while
operating the application). The underlying intuition is to analyze user interactions
with the AUT to infer interaction patterns, i.e., short sequences of elementary
action events that represent atomic operations from the user viewpoint, such as
opening a menu and selecting a menu item. User interaction patterns are used
together with elemental events in a random approach to stimulate the GUI of the

11 2.3 Automatic Testing of Interactive Applications

AUT more effectively.

Because of their simplicity, these techniques are able to generate and execute
test cases very quickly, and therefore they are often used to perform stress testing.
Generally speaking, random testing techniques can be quite effective as they
can very quickly cover big portions of the AUT interaction space with their high
speed [128,[38]]. However, because of their lack of guidance, they struggle to cover
those complex meaningful interactions that require a long and precise sequence
of events. Thus, these approaches often fail to cover entire parts of the application
execution space and might leave relevant AUT functionalities completely untested.

2.3.2 Model-Based Approaches

Model-based approaches derive test cases from a model of the AUT GUI accord-
ing to a given coverage criteria. This model, which we call GUI model, encodes the
structure of the AUT GUI and it is typically built by dynamically exploring the GUI
with the execution of several GUI interactions. Model-based approaches propose
different definitions and encodings of GUI models. In general, GUI models are
directed graphs

GUIModel : (Windows, Edges)

where Windows is the set of GUI windows, and Edges is the set of transitions
among windows. More precisely, windows are defined in terms of the widgets
they contain, and edges are defined as

Edge : (V\/SOMTCC’ Wtarget’ Trlgger)

where W, and W, .., are the windows from which the transition originates
and to which it arrives, respectively, while Trigger is an event that operates on
a widget in W,,,,., that causes the current window shown to pass from W,,,,, to
Wtarget'

Model-based approaches include serial approaches that consists of first build
a GUI model and then generate test cases, and iterative approaches that alternate
model building and test case generation.

The serial approach was first proposed by Memon et al. who defined the GUI
Ripper [[77], a technique that first builds an AUT GUI model by traversing the
AUT GUI in depth-first order, and then uses the AUT GUI model to derive the EFG
model, that is a model of the partial execution order of the events in the GUI [|77].

The GUI Ripper seeded a family of approaches, implemented in a tool called
Guitar, that uses the Ripper GUI model to generate test cases, by traversing the
model using different model abstractions and various GUI coverage metrics based

12 2.3 Automatic Testing of Interactive Applications

on combinatorial interaction testing and heuristics [|78, 79} [115]. This general
approach was initially proposed for desktop applications, and was later applied
to other execution platforms [2, 80]]. Arlt et al. extended the Guitar approach
introducing a model of data flow dependencies between the events extracted with
a lightweight static analysis of the GUI event handlers [[13]]. Arlt et al.’s approach
uses this additional model, called EDG, to identify GUI widgets correlated (i.e.,
that share a data flow dependency) and that therefore should be executed in the
same test case to exercise meaningful execution scenarios. Recently, Linares et
al. proposed an alternative way of building the GUI model, by using recorded
traces of the AUT usage by the developers. Their intuition is that these traces are
probably more effective for exploring the AUT GUI than an automatic exploration
approach like GUI ripping [|64]. Linares et al. also propose a strategy to infer
un-common event sequences (i.e., not seen in the execution traces) that are used
to identify corner cases.

Approaches that merge model inference and test case generation seamlessly
generate test cases and use the information obtained with their execution to
update the GUI model. These techniques start by generating random test cases and
then move to test case generation strategies based on the information contained
in the GUI model. The main difference between the approaches in this class is the
strategy they use to generate test cases. AutoBlackTest (ABT) uses Q-Learning to
learn how to generate test cases that traverse the GUI of a desktop application
triggering the most changes in said GUI [70]. The core intuition of ABT is that a
big change in the GUI in response to an event suggests that a relevant computation
was performed. ABT generates test cases alternating between events selected at
random (80% of the times) with events that maximize the GUI changes (20%
of the times) to balance between exploration of the GUI and exploitation of the
Q-Learning. Testar-QLearning is a variant of Testar-Random (described in the
previous section) that uses Q-Learning [[19]]. In this case, Q-Learning is used
to generate test cases that are able to execute events that were not executed so
far, thus generating always different test cases compared to the previous ones.
SwiftHand instead uses a continuously built GUI model to generate test cases
that can exercise the windows of an Android app while minimizing the number
of times the app is restarted [|37].

Model-based approaches are limited by the completeness of the GUI model
that they build by exploring the AUT GUI. In many applications, some relevant
GUI windows may be reachable only by executing complex sequences of events
that some exploration strategies may miss, resulting in potentially big portions of
unexplored space of GUI interactions. Moreover, current model-based approaches
do not distinguish meaningful from irrelevant interactions when producing test

13 2.3 Automatic Testing of Interactive Applications

cases, thus resulting in potentially large amounts of irrelevant test cases.

2.3.3 Coverage-Based Approaches

Coverage-Based approaches leverage the AUT source code to drive test case
generation and maximize AUT source code coverage, ideally, executing each AUT
source code statement.

Several coverage-based approaches steer test case generation leveraging ge-
netic algorithms, a classical search-based approach [[16] inspired by natural selec-
tion that has been used in many software engineering contexts [[50, 51} [52]]. In
a nutshell, a genetic algorithm starts with a random population of solutions for
its search problem and iteratively evolves them (using crossover and mutations)
selecting the fittest individuals (according to a fitness metric) for reproduction
to produce a better population for the next iteration. In the context of testing
interactive applications, the search problem is defined as finding the set of test
cases with the highest AUT statement coverage. Then, using statement coverage
as the fitness metric, genetic algorithms evolve an initial set of random test cases
combining/mutating them to finally retain those that achieve the highest cover-
age [48] 66, |68]. In some cases, these techniques aim to maximize additional
goals along with code coverage. For instance, Sapienz maximizes code coverage
while also maximizing the number of crashes found and minimizing the length of
the test cases.

Other techniques instead use symbolic/concolic execution [|33]] to generate
test cases that aim to achieve 100% code coverage [[4,/36}/45]. Symbolic execution
is notoriously very expensive as it requires to analyze the AUT source code and it is
typically used on rather small command-line software or at the unit level [11]. To
reduce the computational cost and make it feasible to apply this analysis for testing
interactive applications, Ganov et al. proposed a technique that symbolically
executes only GUI event handlers [45]], while Cheng et al. use a cloud-based
architecture that parallelizes concolic-execution on multiple machines to foster
scalability [136].

Azim et al. proposed a coverage-based test case generation strategy based on
analyzing the source code and statically computing the activity transition graph
of android apps [[15]. This approach systematically covers the activity graph by
generating appropriate sequences of GUI events or directly triggering intents that
can open the targeted activities.

Coverage-based approaches aim to maximize code coverage, thus they are
often able to identify meaningful GUI interaction sequences that cover significant
portions of the code, and discard non-meaningful interaction sequences that

14 2.3 Automatic Testing of Interactive Applications

cover little code. However, coverage-based approaches are limited by the cost of
analyzing the source code and often do not scale well to complex applications.

2.3.4 Similarity-Based Approaches

In recent years, a new category of approaches is emerging: the approaches
based on the intuition that different applications often share some similarities
that can be leveraged for test case generation. Similarity-based approaches are
closely related to this dissertation as they share the same intuition of our research
hypothesis.

By observing that the GUIs of different applications are often similar, Mao et
al. proposed to analyze user interactions across different android applications
to identify generally applicable GUI interaction patterns, that can be used as
building blocks to generate complex GUI interactions using a state-of-the-art
coverage-based approach [|69]]. In their work, they use crowd testing to collect GUI
interactions from multiple applications and they were able to detect several short
interaction patterns that improved the effectiveness of the test case generation
approach.

Moreira et al. also leveraged the idea of generally applicable user interactions
pattern for testing. Moreira et al.’s approach instead of mining these patterns
from execution data relies on a set of pre-defined patterns that testers use to
model the AUT behaviors [84]]. Moreira et al. approach requires an initial step
in which a developer maps the predefined patterns to the elements of the AUT
GUI to which they can be applied. After that, the approach is able to generate
test cases that exploit those patterns using predefined test scenarios.

Some recent research results propose to leverage test cases of existing applica-
tions to generate effective test cases for a different AUT. The Rau, Hotzkow, and
Zeller’s ICSE 2018 poster [|91] illustrates an approach that learns how to gener-
ate meaningful test cases for an AUT from tests designed for other applications.
Behrang et al.’s ICSE 2018 poster proposes to migrate test cases across similar
interactive applications [21]]. Behrang et al.’s core idea is to reuse the test cases of
an application to test a similar one (after suitable syntactical changes). Behrang
et al initially proposed a greedy algorithm to adapt test cases across semantically
equivalent applications in the context of automatizing the grading of student
assignments [22]], and are currently working on extending their technique to
support also adaptation across similar but not equivalent applications.

15 2.4 Limitations and Open Problems

2.4 Limitations and Open Problems

Despite the many approaches proposed to automatically generate test cases
for interactive applications, the problem is still largely open and state-of-the-art
techniques suffer from two main limitations: ineffective exploration of the execution
space and lack of functional oracles.

Ineffective exploration of the execution space: Automatic test case generator shall
produce test cases that exercise all the semantically meaningful execution scenarios
of the AUT to effectively test interactive applications. This requires generating
complex GUI interactions which execute precise, and often long, sequences of
events that suitably stimulate the AUT functionalities. Current techniques can
cover evenly the events in the GUI, but cannot recognize which combinations
of events represent meaningful scenarios, thus they are often unable to cover
important GUI interactions that are required to trigger a certain functionality. Let
us consider for instance the case of an expense manager application in which a
user can set a monthly budget. A meaningful scenario to test would be to set a
monthly budget and then add a set of expenses in a certain month that exceeds
the budget. Generating a test case able to cover this scenario is extremely unlikely
using one of the state-of-the-art approaches as they lack any guidance able to
recognize this scenario as relevant.

Lack of functional oracle: Current techniques can detect crashes, but not
functional failures. Thus, they miss many relevant failures even when they
execute GUI interactions that exercise bugs. If we consider the previous example
again, in case the expense manager application erroneously calculated the sum
of the expenses and showed to the user that the budget was not exceeded, none
of the current techniques would be able to detect that behavior as an erroneous.

Choudhary et al.’s empirical comparison of techniques for testing Android
applications [38]] provides empirical evidence of these limitations. In their paper
they write:

“Considering the four criterion of the study, Monkey would clearly be the
winner among the existing test input generation tools, since it achieves,
on average, the best coverage, it can report the largest number of failures

[..]

Generally speaking, this means that although sophisticated techniques exist, they
perform worse than simple random testing. Also, Choudhary et al.’s comparison
indicates that current techniques do not cover well the AUT code, as in their
study Monkey achieved an average statement coverage of less than 50%. Zeng
et al.’s study on automatic testing of Android apps in an industrial settings also

16 2.4 Limitations and Open Problems

reports similar low coverage results [[118]. These low coverage results indicate
that current techniques have limited effectiveness in executing (meaningful) GUI
interactions that can execute significant portions of the AUT source code.

Choudhary et al. confirm the lack of functional oracles limitation of state-of-
the-art approaches as they write:

“None of the Android tools can identify failures other than runtime
exceptions [... "

Choudhary et al. also report that the vast majority of runtime exceptions detected
are general Java/Android exception and only a few are custom exceptions defined
in the application under test. This suggests that current techniques can be effective
in revealing crashes related to the underlying Android framework, but are less
effective in detecting errors related to the business logic of the tested application.

In a nutshell, these empirical studies provide compelling evidence that the
problem of testing interactive applications is still largely open, and current ap-
proaches do not exercise well vast portions of the behavior of interactive applica-
tions. The results of these studies are specific to Android applications and may not
be straightforwardly generalizable to all interactive applications, for instance, due
to the different limitations imposed by the size of the screen. In this Ph.D. work,
we comparatively evaluated the state-of-the-art automatic test case generators for
desktop interactive applications [|88]] to investigate the generalisability of previous
results. Our study confirms the results of the previous studies on Android applica-
tions, by showing that test cases produced with automatic test case generators for
interactive applications suffer for the same limitations observed in the Android
domain. We report the results of the study in the next chapter.

Chapter 3

Automated Testing of Desktop
Applications: an Empirical Study

In this chapter, we present the results of our comparative empirical study about
the effectiveness of the main state-of-the-art automatic test case generators for
desktop interactive applications. We evaluated the main techniques to generate
test cases for desktop GUI applications comparing them on a common set of
subject applications in terms of:

1. Fault revealing ability. We consider the number of faults each testing technique
reveals in the subject applications.

2. Execution space sampling ability. As a proxy measure for this criteria, we
consider the statement and branch coverage achieved by each technique on
the subject applications.

3. Time Efficiency. We consider the efficiency of each technique with different
time constraints.

3.1 Evaluated Tools

We conducted our study searching the state-of-the-art for automatic test case
generators for desktop application, implemented in tools usable out of the box.
We found several random, model-based, and coverage-based tools for generating
test cases for desktop applications, but no similarity-based techniques that target
desktop applications. We installed the tools publicly available at the time of
writing, and followed the advice of the developers for set up and usage when
developers replied to our requests. In the absence of developers’ support, we

17

18 3.1 Evaluated Tools

Table 3.1. Testing tools selected for the study

Tool Type Help

Testar-Random [[110] Random v
Testar-QLearning [[19] Model-Based v
Guitar-EFG [77] Model-Based x
Guitar-EIG [[115] Model-Based x
Guitar-EDG [[13]] Model-Based x

v

AutoBlackTest [[70] Model-Based

followed the notes in the paper and in the documentation to obtain the best set
up, to our knowledge.

Table reports the testing tools that we compared in the study. We consid-
ered also other testing techniques, but their tools were either not available or we
were not able to use them correctly despite receiving help from their developers.
The table reports the tool name, type (according to the classification discussed in
section [2.3), and whether we received support by their developer to use them
appropriately. We considered different variants of some tool (e.g., Testar and
GUITAR) as separated tools when implementing largely different techniques. In
the remainder of this section, we briefly describe the techniques compared in the
study.

TESTAR-RANDOM [[110]: atechnique implemented in the Testar suite. Testar-
Random generates test cases by iteratively detecting the events enabled in the
AUT GUI, and randomly selecting and executing one of them. Testar-Random
iterates this process until reaching a predefined maximum test case length (100
by default), and then restarts the AUT to start a new test case. Testar-Random
keeps generating test cases until a time budget is reached.

TESTAR-QLEARNING [19]: an evolution of Testar-Random. Testar-QLearning
selects the events to execute using QLearning. Testar-QLearning builds a model
in which each event is associated with a reward that is inversely proportional
to the number of times that event was executed. Using this QLearning model,
Testar-QLearning generates test cases that maximize the total reward collected,
thus each new test case privileges sequences of un-executed events.

GUITAR-EFG [77]: a technique implemented in the Guitar suite. Guitar-EFG
uses a model called event flow graph (EFG) that Guitar builds by automatically
exploring the GUI with GUI ripping. The EFG models the execution order of the
events in the GUI, identifying which events are enabled after the execution of a
certain event. Guitar-EFG generates a test suite that maximizes the combinatorial

19 3.2 Subject Applications

coverage of a given strength t of the EFG model, that is, it covers all possible
event sequences of length t in the EFG model.

GUITAR-EIG [115]]: a version of Guitar that relies on a different model, called
event interaction graph (EIG). An EIG models only the events that interact with
the underlying business logic of the application, filtering out events such as
opening/closing windows. Since it retains only business-logic related events,
Guitar-EIG allows to generate more relevant test cases than Guitar-EFG.

GUITAR-EDG [[13]]: a version of Guitar that relies on a different model,
called event dependency graph (EDG). Guitar-EDG builds EDG models using
a lightweight static analysis of the GUI event handlers that captures dataflow de-
pendencies between GUI events. In a nutshell, the EDG encodes as data-dependent
the GUI events that read/write the same data when executed. Guitar-EDG gen-
erates test cases that combine only data-dependent events and that thus are
correlated.

AUTOBLACKTEST (ABT) [70]: a technique that uses Q-Learning to learn
how to generate test cases that can explore in depth the GUI states space of the
AUT. ABT builds a model that associates a high reward to the events that cause
big changes in the AUT GUI state, following the intuition that a big change in
the GUI state relates to a relevant computation performed. ABT then generates
test cases by alternating the execution of random events (80% of the times) and
events selected according to the QLearning model (20% of the times), that is
events that can cause big changes in the GUI state, to alternate between exploring
the GUI space and exploiting the QLearning model.

3.2 Subject Applications

As a benchmark, we selected a set of Java desktop GUI applications from
different application domains and of different sizes and complexities. In order
to be fair, we selected the subject applications from those used in the empirical
evaluation of the selected tools [[13] [70, [115]. The selection of subjects was
constrained also by the fact that some of the selected testing tools work only with
Java applications.

Table shows the subject applications we selected as our study benchmark.
The table reports the name, version, type, and size in thousands of lines of code
(column kLOCs) of each subject.

20 3.3 Experimental Setup

Table 3.2. Subject applications

Name Vers. Type KkLOCs
Buddi [32]] 3.4.0.8 Personal finance management 10.0
UPM [105] 1.6 Password management 3.4
Rachota [[90]] 2.3 Personal tasks management 10.5

CrossWord [25]] 0.3.5 Crosswords building and solving 1.8

3.3 Experimental Setup

We executed each testing tool in Table [3.1| on the subject applications for 15
hours. Since the Guitar tools do not set a time budget, we used the combinatorial
coverage strength setting to control the execution: Guitar generates a test suite
that covers all combinations of events in the model of a given length n and then
executes it. With big values of n Guitar spends most of the 15 hours to generate
test cases, leaving only a short time for executing them. With small values of n,
Guitar might terminate both phases much before the end of the 15 hours time
window, without completely exploiting the available time. For these reasons, we
run each of the Guitar tools with a setting that allowed the tool to spend the
longest time running test cases within the time budget.

We compared the fault revealing ability of the tools, comparing the failures
revealed by each compared tool in the subject applications. Testar-Random and
Testar-QLearning after testing the AUT report suspicious test cases that might
reveal bugs in the AUT. We considered those test cases as failing test case. In
addition, we inspected the standard error of the subject applications after the
execution of each test case generated with the evaluated tools. We consider
each test case which execution triggered an uncaught exception in the subject
application as a failing test case. We inspected all the failing test cases and we
classified as a bug-revealing every test case that manifests an error in the subject
application from the user perspective (thus a test case that triggers an uncaught
exception that does not cause any issues to the user while using the application
would not be classified as a bug-revealing). Since in some situations multiple test
cases triggered the same failure, we manually clustered the failures according to
the user observable type of error. We consider each cluster as representative of
a single fault in a subject application, and we regard each tool that produces a
failing test case in the cluster as having revealed that fault.

We compared the ability of tools to sample the execution space, by comparing
statement and branch coverage computed with Cobertura [[39]].

We compared the efficiency of the tools, by sampling the results of the execu-

21 3.4 Experimental comparison

tions of the tools (in terms of faults detected and code coverage achieved) after
four intervals during the 15 hours runs: 1 hour, 3 hours, 7 hours, and 15 hours.
Since, Guitar first generates the test cases and then execute them, sampling their
executions in this way would have been unfair (after 1 hour the Guitar tools
would probably still be in the test generation phase, thus having executed no tests,
detected O faults, and achieved 0% coverage). For this reason, we run Guitar four
times on each subject application, each time with a different time budget (1 hour,
3 hours, 7 hours, 15 hours), bounding the run time of Guitar as described above.

We run our experiments on two virtual machines, a Windows 10 OS and
Ubuntu 16.04 OS machine. We use two different virtual machines because of the
different operating systems requirements of the tools. Each virtual machine was
configured with 4 cores and 4GB of RAM.

To configure the tools and the subject applications with an optimal initial
setup (up to our knowledge), we executed the subject applications with some
initial data to increase the possibility of the testing tools to execute interesting
executions scenarios. For instance for Buddi, an expense management tool, we
set up some expenses and some initial accounts.

We repeated each run of the compared tools three times to mitigate the results
randomness.

3.4 Experimental comparison

Table [3.3 summarises the results of our experiments. The table reports av-
erage data that we obtained by executing each tool three times on the subject
applications for 15 hours. For each tool and each subject application, the table
reports the average statement and branch coverage (columns Statement Cov. and
Branch Cov.), the average number of distinct faults detected in each run (column
Faults), and the total number of distinct faults detected over the three runs
(column Tot. Faults).

3.4.1 Fault Revealing Ability

In our study, none of the six testing tools we experimented did ever crash the
application under test (i.e., make it closing abruptly). However, in many cases
they triggered some exception to be printed in the application standard error. We
examined all these exceptions to check whether they were the manifestation of
actual faults that affect the user, and we classified those tests as fault revealing.
The experiments revealed a total of 5 distinct faults.

22 3.4 Experimental comparison

Table 3.3. Coverage and Failure revealing capabilities of the tools after 15 hours
test sessions

Subject Tool Statement Cov. Branch Cov. # Faults Tot. Faults
Testar-Random 36.7 22.0 2.0 2
Testar-QLearning 41.7 25.0 2.0 2

Buddi AutoBlackTest 54.7 36.0 3.0 3
Guitar-EFG 44.0 22.0 1.0 1

Guitar-EIG 44.0 23.0 1.0 1
Guitar-EDG 42.0 21.0 1.0 1
Testar-Random 19.0 11.0 0.0 0
Testar-QLearning 15.3 5.0 0.0 0
CrossWord AutoBlackTest 33.0 15.0 0.0 0
Guitar-EFG 28.0 10.0 0.0 0

Guitar-EIG 26.0 7.0 0.0 0
Guitar-EDG 26.0 7.0 0.0 0
Testar-Random 64.0 40.0 0.0 0
Testar-QLearning 42.7 28.7 0.0 0

Rachota AutoBlackTest 43.3 29.3 0.0 0
Guitar-EFG 62.0 38.0 0.0 0
Guitar-EIG 61.0 37.0 0.0 0
Guitar-EDG 59.0 33.0 0.0 0
Testar-Random 69.0 45.7 1.3 2
Testar-QLearning 61.0 32.0 0.0 0

UPM AutoBlackTest 65.7 40.0 0.0 0
Guitar-EFG 52.0 24.0 0.0 0
Guitar-EIG 52.0 24.0 0.0 0
Guitar-EDG 49.0 24.0 0.0 0

Testar-Random is the testing tools that during the 15 hours run detected
the most faults, detecting four faults, two in Buddy and two in UPM. Instead,
AutoBlackTest detected three faults, all in Buddy, and the Guitar tools detected
only one fault in Buddy. All faults except one were consistently detected in all
the runs, as indicated by the same values in columns # Faults) and Tot. Faults).
Only one fault detected by Testar-Random in UPM was not detected in all three
runs but was detected only in one of the three runs.

Table [3.4 shows which faults each tool was able to detect. In the table, the
three faults in Buddy are labeled B1, B2, and B3, the two faults in UPM are labeled
Ul and U2. The table shows that fault B1 was detected by all compared tools,
fault B2 was detected by all tools but one, the other three faults were detected by
one tool only.

This result provides additional evidence to Choudhary et al.’s statement that
suggests that random is the most effective approach in detecting faults.

23 3.4 Experimental comparison

Table 3.4. Faults detected by tool

Bl B2 B3 Ul U2
Testar-Random v v v Vv
Testar-QLearning | v V'
AutoBlackTest v v Y
Guitar-EFG v
Guitar-EIG v
Guitar-EDG N

3.4.2 Execution Space Sampling Ability

Testar-Random and AutoBlackTest approaches achieved the highest code
coverage. AutoBlackTest achieved the highest coverage for two subjects, and a
significantly lower coverage than other tools for only one subject. Testar-Random
achieved the highest coverage for two subjects as well, but a quite low coverage
for the other two subjects. Guitar approaches always achieve good coverage, but
never the highest.

Even though AutoBlackTest is a model-based approach, during test case gen-
eration it selects most events (80%) randomly. Thus, Testar-Random and Auto-
BlackTest coverage again further corroborates Choudhary’s statement, confirming
that Random is one of the best approaches to explore the GUI execution space of
the AUT.

3.4.3 Time efficiency

Figure shows the average distribution of statement coverage and detected
faults over time. Testar-Random approach is the quickest in finding failures, since
it detects three out of four failures within an hour, and detects all four failures
within the first three hours. AutoBlackTest detects three failures in seven hours.
The distributions of the coverage achieved with the different approaches are
similar. The Guitar approaches increase code coverage slightly quicker in the
first hour but saturate at a lower upper bound than the other approaches: they
do not further increase coverage in the 14 hours after the first one. Instead,
the other approaches increase code coverage in a longer period. Testar-Random
achieves the most noticeable growth: it achieves one of the lowest coverage in
the first hour, but the statement coverage keeps growing (albeit not much) for
the following hours.

24

3.5 Discussion

— Testar-Random Testar-QLearning AutoBlackTest — Guitar-EFG — Guitar-EIG
— Guitar-EDG

Faults Detected Statement Coverage
100%

75%

50%

25%

1h 3h 7h 15h 0 1h 3h 7h 15h

Figure 3.1. Distribution of detected faults coverage within the time budgets for
the different tools

3.5 Discussion

Our experiments lead to some interesting considerations:

1. All the techniques compared in the study detected only faults that manifest

as uncaught exceptions. Testar-Random and Testar-QLearning, potentially,
can also detect faults that manifest as error dialog messages in the AUT.
However, in our study these test oracles did not contribute in revealing
any fault. Thus, the experiments confirm that the fault revealing ability of
current techniques is limited by the limited effectiveness of the test oracles
they employ.

2. All techniques covers the code only up to a limited extent. Some techniques

achieved a reasonable statement coverage for three subjects (between 50%
and 70%), but for CrossWord, none of the techniques achieves more than
33% statement coverage, and in average the studied techniques achieved
less than 50% statement coverage for the four subjects. We do not have
information about the amount of dead code in the applications, thus we do
not have all elements to draw a valid conclusion. However, we believe to
be unlikely that all the uncovered code (more than 50%) is actually dead
code.

. Our results confirm Choudhary et al.’s results that indicate the higher effec-

tiveness for random approaches [138]]. Our study indicates that Test-Random
performed better in terms of detected faults and that both Testar-Random
and AutoBlackTest obtained the highest coverage among the experimented

25 3.5 Discussion

approaches. Testar-Random is a completely random approach, and Au-
toBlackTest generates test cases by alternating random events (80% of
the times) and learned events (20% of the times). This result shows that
techniques with significant random strategies, can detect more faults and
achieve higher coverage on the long run than other techniques.

4. Our study suggests that model-based techniques that generate test cases
after building a GUI model (the Guitar suite), are not very effective in
detecting faults and thoroughly covering the execution space. We argue
that this depends on the combinatorial nature of the Guitar approach to
generate test cases. Long sequences of events may be required to reveal
subtle faults and execute large portions of the source code. However,
Guitar generates fairly short test cases since generating a test suite that
covers all combination of events of higher length is unfeasible because of
combinatorial explosions.

5. Testar-Random is the most effective in short time sessions (less than 3 hours).
In our experiments with short test sessions, Testar-Random detected the
highest number of faults and achieved a good code coverage, albeit other
techniques achieved a slightly better code coverage. Guitar techniques can
achieve code coverage quite fast, but have low fault revealing ability.

6. Long test sessions (above 7h) do not pay off. In our experiments after 7
hours, all testing techniques we experimented with barely achieved new
coverage, and none detected any new fault.

Our empirical study indicates some relevant limitations of the state-of-the-art
approaches discussed in Section [2.4 and confirms the empirical results of the
studies by Choudhary et al. and Zeng et al. The fault revealing ability of the
current techniques appear to be quite limited since none of the techniques can rely
on oracles able to detect errors that do not manifest as system crashes or runtime
exceptions. Also, the automatically generated test suites do not achieve a fully
satisfactory code coverage (in our study statement coverage does not exceed an
average of 50%). Our study indicates that these limitations cannot be overcome
by simply allocating more time. As Figure [3.1 shows, in the first 3 hours the 6
testing tools detected almost all the faults and barely covered new code and they
did achieve new significant results for the following 12 hours.

26 3.6 Threats to validity

3.6 Threats to validity

A threat to the internal validity of our study is related to the manual inspection
of the generated test cases executions performed by the authors of this study
to identify faults. To mitigate this threat, we classified a test case execution as
fault-revealing only if all researchers involved in this empirical study agreed that
it exposes an error in the subject application.

A threat to the internal validity of our study relates to the setup of the compared
approaches. We mitigate this threat by contacting the developers of all the tools
and asking them to support us in the usage of their tool.

An external validity threat of our study relates to the generality of the results
about the set of approaches and subject applications we experimented with. We
mitigate this threat by experimenting with all approaches for which there was an
available tool, and contacting developers to properly set up the tools. We mitigate
any bias in identifying subject applications, by selecting subjects that belong to a
variety of domains, and that were already used in the empirical evaluation of the
tools we compared.

Another threat to the external validity of our study derives from the limited
number of subjects used in the study and on the low number of faults revealed
on those subjects. Even though four subjects and five faults are not enough to
generalize our results, if we consider that in our study we referred to publicly
distributed applications and real faults only, i.e., faults that were present in
subjects distributed versions, our results provide an evidence, albeit limited, of
the performance of the studied tools in a realistic environment.

Chapter 4

Similarities Among Applications: An
Opportunity for Testing Interactive
Applications

As discussed in the previous chapters, state-of-the-art approaches to auto-
matically test interactive applications suffer from two limitations: the ineffective
exploration of the execution space and the lack of functional oracles.

State-of-the-art approaches suffer from these limitations because they rely
mostly on structural information obtained either from the GUI or from the source
code, largely ignoring the semantics of the application under test (AUT). By
considering only structural information, state-of-the-art approaches explore the
AUT GUI interaction space aiming to some kind of structural coverage, hardly
distinguishing meaningful test cases from irrelevant ones or correct from incorrect
behaviors of the AUT.

To overcome these limitations, automatic testing approaches should comple-
ment structural information with semantic information of the AUT, aiming at
what we define a semantic testing approach. In principle, a semantic testing
approach exploits some semantic information to identify semantically relevant
behaviors of the AUT, how they should be executed meaningfully, and how their
correctness can be assessed. Even a simple fragment of semantic information such
as knowing that two AUT windows are used to perform completely unrelated
tasks could be useful: a semantic testing approach could rely on this information
to reduce the GUI interaction space avoiding to generate test cases that alternate
events between two unrelated windows.

The main challenge that we face to design semantic testing approaches is to
identify which semantic information can be leveraged, how to collect it, how to

27

28

exploit it, and how to encode it in a way that can be leveraged by an automatic
testing approach. Since we aim at cost-effective approaches, semantic information
shall be obtainable with low costs, that is, it should be available in the field and
shall not be produced ad-hoc, like in the case of specification-based testing [|72,
89, 108].

In this Ph.D. thesis, we propose to leverage the similarities that exist among
different interactive applications to achieve cost-effective semantic testing.

Considering the interactive applications currently available in the market, we
can notice that there exists a high level of similarity among different applications.
For instance, each app category in the Google Play Store is populated by quite
similar apps that share the overall same goal and that mainly differ in the graphical
aspects, access permissions, side features, and user experience [|63]]. In some cases,
similarities are very extensive. For example, we found thousands of applications
with the exact same goal and almost the same semantics, by simply searching
the Google Play Store for applications to track personal expenses with the query
“personal expense manager”.

In a nutshell, these similarities among applications result in the fact that
often the same functionality can be found implemented in different applications.
Informally, in this thesis we use the term functionality to refer to a semantically
coherent and correlated set of user operations available to the users through the
application GUI that are used to fulfill a specific user goal. For instance, a set
of CRUD operations all referring to money transactions in a personal expense
manager application is a functionality as it is composed of a set of operations on
the GUI (implemented with buttons and other widgets) that are used to fulfill the
goal of managing (adding, deleting, editing) money transactions.

The availability of multiple applications that implement the same functionali-
ties is an opportunity that, although mostly overlooked so far (see Chapter [2),
has been already exploited in some V&V contexts. For instance, it has been
successfully leveraged to support malware detection [|47]].

In this Ph.D. thesis, we propose to leverage this opportunity to define cost-
effective semantic testing approaches that can effectively test these recurrent
functionalities of interactive applications. More precisely, we defined approaches
that can test functionalities that are not specific to one application only more
effectively than current state-of-the-art techniques. In this way, a relevant subset
of the features present in an application can be thoroughly tested automatically,
alleviating the tester from part of the verification effort.

To accomplish this goal, we introduced two new approaches based on the
original ideas of: (i) pre-modeling some particularly standard and popular func-

29 4.1 Application Independent Functionalities

Jenkins @ Jenkins ebay eb

Jenkins Jenkins

User Slgn up ® Personal account Business account
Email or username
Password Email
Username:
Password
Password Password

Full name
Create an account if yol First name Last name
E-mail address

Remember|

E=- +1 Mobile phone

I don't have a mobile phone

Figure 4.1. Sign in and Sign up in Jenkins and Ebay

tionalities and then use these predefined models to identify and test these func-
tionalities effectively in any AUT, and (ii) re-using test cases (and therefore the
testing effort to implement them) across similar applications. We described these
two original ideas in the next sections.

4.1 Application Independent Functionalities

Some popular functionalities have reached a high level of standardization due
to their diffusion in many applications, meaning that they are implemented in
similar ways across different applications GUIs, and have become easily recog-
nizable. This intuition has been investigated in the field of UI design creating
catalogs of UI design patterns [[103,[109] and has led to the definition of GUI
designing tools [23]] that allow creating new GUIs by composing recurring GUI
patterns.

These recurrent functionalities not only share similarities in their implementa-
tion on the GUI, but they also typically share the same semantics, thus offering a
consistently similar behavior that can be barely distinguishable across applications,
once abstracting away some concrete details. For instance, search and save oper-
ations may affect different kinds of entities, but in all cases, they search and save
an entity of some type. However, due to their popularity, the semantics of these
functionalities is not explicitly provided, since users and developers have clear
expectations that derive from their frequent use in many different applications.

In this thesis, we refer to these recurrent functionalities as application inde-
pendent functionalities (AIF) and indicate the shared expectations about their

30 4.1 Application Independent Functionalities

common behaviors as common sense knowledge. These functionalities are perva-
sively present in software applications, and their behavior remains always the
same, despite minor differences.

Application independent functionalities (AIF) satisfy the following properties:

* They are commonly present in several applications. Some AIF might be more
common in certain domains, for instance, the shopping cart management
functionality is very common in the e-commerce domain, whereas others are
generally common, such as CRUD functionalities;

* Their semantics is largely application independent thus it can be defined ab-
stractly in a way that is independent on the specific interactive application. For
example, the general semantics of CRUD functionalities does not depend on
the type of the handled object;

* They can be activated from the GUI according to structural GUI patterns that
users can recognize [[103,[109]. For instance, the sign in and sign up function-
alities in many applications use similar sets of widgets, although these widgets
have different look and feel and placements in the windows. Figure shows
an example of the look and feel of authentication functionality across GUIs of
two different applications.

The authentication functionality, composed of sign in, sign up, and sign out
operations, is a good example of AIF since: (i) it provides an overall functionality,
authentication, which can be found in many applications, (ii) its semantics is
well-known and mostly independent on the specific application, and (iii) its
presentation in the GUI is predictable and easily recognisable.

There are several other examples of AIFs: the functionality of creating, reading,
updating and deleting (CRUD) objects of a type, the functionality of saving the
work on a file and then reloading it, the functionality of searching and booking a
certain service (car, hotel, flight), the functionality of handling an e-commerce cart.
Despite their diffusion, AIFs can easily include faults, even in extremely popular
applications, and thus require careful testing. For instance, faults impacting an
extensive number of users have been reported for CRUD operations in Jenkins [58]]
and for authentication operations in DropBox [[44]].

In the context of testing, AIFs represent a unique opportunity: their semantics
can be specified once for all (in a machine-readable way) according to common
sense knowledge, to be then automatically adapted and reused to test the specific
AlFs in the applications under test. In order words, if defined and made available
once and for all, a semantic testing approach could leverage the semantics of AIFs
to achieve effective automatic testing of these functionalities.

31 4.2 Cross-Application Test Case Adaptation

— [S | \ G—d oo =
‘ ew| R4 —
K4 To po st 1. v =
» E.) =
My Shoppmg List To-Do List & Note Notepad & To do GT\ Tasks Note Simple Note/To D NoteToDo. Notes Simple Tasks & N Tasks & Notes fo

,,,,,, App Innovation Workpail Sharper Prilaga.com Martin Stone UnigTec Inc.

1223 * kK k * ok k k) 1223 *k kk 12232 1223 * kK k

xm ¢ =¥

Note =gl
PEE: 0 V[

2. V| Yol

—

Color To Do List Memospeo: To d Orgzly: Notes & T NoteToDo. Easy. NoteTaker - Note: 2Do - Reminders; To Do List Notes Flasheet - Fast N
to o list Rany82 Developer Orgzly Prilaga.com KunRuch Creations - Ap Beehive Innovations call recorder tm sisterware

>k ke ok * Kk * ok k ko ok ke kk *hkk *hk Kk * ok kK €199 AhkkKk

Figure 4.2. Example of similar note-pad applications in the Google Play Store

In this Ph.D. thesis, we exploit the opportunity of AIFs to achieve semantic
testing in AUGUSTO (described in Chapter|[5), a technique able to autonomously
recognize AlFs in an application and use them to automatically generate semanti-
cally relevant test cases equipped with functional oracles.

4.2 Cross-Application Test Case Adaptation

Often developers write executable system test cases to test interactive applica-
tions [41]]. In the case of open source applications, these test cases are publicly
available in software hosting platforms, such as GitHub or BitBucket. Recently,
Kochhar et. al. presented a study on 627 open-source Android applications show-
ing that 14% of them are released with test cases [|60]]. Even though the release
of executable test cases is not common practice yet, the amount of open-source
applications is growing over time, and the amount of openly available tests is
expected to grow accordingly.

The presence of many applications that implement semantically similar func-
tionalities and the availability of manually-written test suites lead to an interesting
opportunity. When testing an application, developers could rely on the test cases
available for a similar application to test their own application. Intuitively, if two
applications share the same functionality, the test cases to verify that functionality
should be quite similar among the two applications. Thus, it should be possible to
adapt the test cases available for an application to obtain test cases for the other
application. Performing such adaptation automatically would largely reduce the
effort for designing and writing test cases for common test scenarios, leaving
developers with the task to write only test cases for functionalities that are not
shared among similar applications.

32 4.2 Cross-Application Test Case Adaptation

More precisely, let us define two interactive applications as semantically equiva-
lent if they implement exactly the same functionalities. Intuitively, two applications
that implement the same functionalities are applications that differ only in the
graphical aspects in which they offer the same set of functionalities to the users.
Semantically equivalent applications share the same test scenarios and therefore
can be tested in similar ways, and we argue that the test cases written for an ap-
plication could be used to test the execution scenarios of a semantically equivalent
application, after minor adaptations.

The definition of semantic equivalence is quite strict, and applications that are
semantically equivalent might be rare, and difficult to identify.

In this thesis, we consider the less strict concept of semantical similarity.
Informally, we consider two applications semantically similar if they address the
same core user needs, that is, they implement the same core functionalities. As
an example we consider two applications that keep track of expenses as similar
even if they share a set of core functionalities, but implement some different
functionalities. Undoubtedly, this concept of semantic similarity is quite vague,
but it is largely used [47, 163} [75]], and even official application stores, such as
Google Play Store and Apple Store, implement automatic approaches to suggest
apps that are semantically similar to a given app. In general, these approaches
cluster semantically similar applications by analyzing their descriptions (in natural
language) together with any other information provided by the developers (tags,
categorization).

In this thesis, we propose the novel idea of cross-application test adaptation
among semantically-similar applications: Cross-application test adaptation gen-
erates semantically meaningful test cases for an AUT by adapting some of the
test cases of a semantically similar application. The test cases generated through
adaptation should retain both meaningfulness and functional oracle of the original
(manually-written) test case, thus being more effective than those generated by
state-of-the-art testing approaches based on structural information only.

We discuss the opportunity of cross-application test adaptation through the
example of a software company that develops a new application “newApp” for
managing to-do lists. The company can identify thousands of applications se-
mantically similar to “newApp”, by simply searching the Google Play Store with
the query “to-do list” . Figure [4.2| shows the first 16 results of the query per-
formed on March 2019. The Orgzly: Notes & To-Do Lists applicatio (third
applications on the second row in Figure contains several test cases in its

Thttps://play.google.com/store/apps/details?id=com.orgzly

33 4.2 Cross-Application Test Case Adaptation

open-source GitHub repositoryﬂ Some of these tests represent common test
scenarios that could be adapted for testing similar apps. For example, the test
testCreateAndDeleteBook() exercises the test scenario that a newly created
note disappears from the GUI after being deleted. The developers of “newApp”
could (automatically) adapt the existing test cases of Orgzly: Notes & To-Do Lists
to effectively test their new app.

Automatically adapting test cases across interactive applications is a challeng-
ing problem that has not been explored yet, to the best of our knowledge. As
mentioned in Chapter|2, only a few preliminary ideas have been proposed, and at
the time of writing the problem is still largely open. To address this problem, our
intuition is that semantically similar applications implement analogous behaviors
which are exercised through widgets that often have semantically similar textual
descriptors, for instance, “Add To Do” and “Create Task”. As such, test cases could
be adapted across similar applications generating GUI interactions that operate
on widgets with semantically similar descriptors.

In this Ph.D. thesis, we exploit the opportunity with ADAPTDROID (described
in Chapter [6), the first full-fledged technique to automatically adapt test cases
and their functional oracle across similar applications.

Zhttps://github.com/orgzly/orgzly-android

34

4.2 Cross-Application Test Case Adaptation

Chapter 5

AUGUSTO: Semantic Testing of
Application Independent
Functionalities

In this chapter, we present AUGUSTO (AUtomatic GUi Semantic Testing and
Oracles), a semantic testing approach that automatically generates test cases
for application independent functionalities (AIFs) in interactive applications.
AUGUSTO is based on the intuition that some functionalities are commonly im-
plemented in many applications and, despite having small syntactic differences,
they always implement the same semantics, for instance, login, CRUD, and search
functionalities. We call these functionalities application independent functionalities
(AIF). In this thesis, we investigate how the existence of AIFs can be leveraged
to achieve semantic testing, propose a way to define them abstractly and inde-
pendently from the specific applications, and present AUGUSTO, an automatic
approach to discover AlFs, adapt their definition to the AUT, and generate test
cases with semantic oracles.

In this section, we introduce the approach through a motivating example,
present AUGUSTO, and discuss the results of the empirical evaluation of AUGUSTO.

5.1 Motivating Example

Listing [5.1 shows a fault in the signup functionality that handles the user
registration in OnlineShopping, a demo e-commerce application available on
git-hub [59]].

35

36 5.1 Motivating Example

300| private void signup() {

301| if (isValidForm()) {

302 insertIntoDB();

303 JOptionPane.showMessageDialog(SignupPanel, "Please_lLogin_to_get_Started
1", "Congratulations", JOptionPane.DEFAULT_OPTION);

308 card.show(this.getParent(), "startCard");//Return to Initial Window

309| l}else
310 resetForm();
311/}

315| private void insertIntoDB() {

334 if (resultSet.next()) { //User Already Exists

335 JOptionPane.showMessageDialog(SignupPanel, "Username_already_exists");
336 resetForm();
337 }

Listing 5.1. Faulty User Registration in OnShop

When a new user registers, the signup function is executed (line 300). If
the signup form has been correctly filled in, function isValidForm returns true
(line 301), and function insertIntoDB is invoked (line 302). If the username
chosen by the user has been already taken by another user, this function correctly
shows an error message to the user (line 335). The execution then returns to
function signup and a message that informs the user that the registration has been
completed correctly is also shown to the user (line 303). Finally, the application is
redirected to the initial window expecting the user to login (line 308). Thus, this
buggy code causes the application to behave in a quite confusing way showing
both the behavior of a correct and incorrect registration in response to a single
user request.

The described fault is quite simple, and a human tester would be able to detect
it easily. Nevertheless, it cannot be detected with any state-of-the-art technique as
it requires a complex GUI interaction of at least 20 events that performs the sign
up twice using the same username and that can hardly be generated by current
techniques (ineffective exploration of the execution space). Moreover, the described
fault does not cause the crash of OnlineShopping and therefore could not be
detected by current techniques (lack of functional oracle).

Using the pre-defined definition of the authentication AIE AUGUSTO is able to
recognize the sign-in sign-out functionality in OnlineShopping and identify the
execution scenario in which an existing user is registered again as meaningful.
Therefore, AUGUSTO would generate a test case that registers two new users using
the same username. When executing this test case in OnlineShopping, AUGUSTO
would check for a runtime error message when registering the second user, as

Interactive
Application Full Concrete

37 5.2 Approach

AIF Recognition

GUI Model Raw Match Match Match M
—> L0 — L&6F — L@ — (@) — (0 —» =

b aVad oyre oyre

v v v

Ripping Structural Match Reification Testing
Matching — Finalizing
-~ N Ve
1
P \ /
LI \ 7
(I v
\/
. I <ReaD>
<READ> !
\ /
+ K 7
\ AIF Archive /

Figure 5.1. AUGUSTO logical architecture

that is the expected behavior of the authentication AIE therefore exposing the
described fault.

5.2 Approach

Figure [5.1 shows the logical architecture of AuGusTO. The AIF Archive is
the knowledge repository that contains the set of AIFs supported by AUGUSTO.
Each AIF is modeled as a pair <GUI Pattern, Abstract Semantics>, where the GUI
Pattern specifies the set of windows and widgets that may refer to the AIE and the
Abstract Semantics specifies its behavior. The GUI Pattern is used by AUGUSTO to
identify a known AIF in the application under test, while the Abstract Semantics
model is used to generate meaningful test cases equipped with functional oracles
to test it. Both these two types of model allow abstractions and they describe the
modelled AIF in the most general way possible, so that the AIF can be recognised
and tested despite the peculiarities it might have in the specific AUT.

AuGUSTO works in five steps. The Ripping step executes the AUT to dynamically
extract a partial model of its GUI, the GUI Model. The Structural Matching step
exploits the GUI Model to identify the AIFs, by searching for instances of the GUI

Test Reports

38 5.2 Approach

Patterns in the GUI model. This step produces a set of raw matches, which can
be partial, that is, only a subset of a GUI Pattern might match the GUI Model.
AUGUSTO supports partial matches because the GUI Model extracted through
ripping might be incomplete. The Match Finalizing step generates GUI interactions
aiming to complete the partial matches while verifying the consistency between
the behaviors specified in the Abstract Semantics model and the behavior of the
application. This step produces a set of full matches, which includes every AIFs
that have been fully matched in terms of its GUI pattern and its abstract semantics.
The Reification step further refines the full matches by extracting properties about
the concrete behavior of the AUT. For instance, CRUD operations may include
a different amount of unique and mandatory fields to create a correct entity.
AUGUSTO extracts these properties by stimulating the application with different
combinations of inputs. This step produces a set of concrete matches, each being
an AIF that occurs in the AUT. The concrete matches are associated with semantic
information that takes into consideration the specific characteristics of the AUT.
Finally, the Testing step generates and executes test cases using the semantic
information associated to the AIF both to derive interesting scenarios to test and
to check the correctness of the results produced by the application.

5.2.1 AIF Archive

The AIF archive is the repository that contains the manually modelled AIFs
that AUGUSTO can detect and test.

Conceptually, we model each AIF as a graph with conditional edges. In this
graph, the nodes are abstract windows and conditional edges are abstract edges.
An abstract window defines a set of GUI elements that are part of the AIF and that
are shown to the user in the same window in any arbitrary application. An abstract
edge defines a transition among two abstract windows and its annotated with a
precondition that defines when the transition can be executed and a postcondition
that defines the effect of the execution of the transition.

More formally, an AIF model is a pair

AIF : (AbstractWindows,AbstractEdges)
where AbstractWindows is the set of abstract windows and AbstractEdges is the set

of abstract edges defined as

AbstractEdge : (AW, ,urcesAW,arger, TTigger, Precondition, Postcondition)

39 5.2 Approach

where AW,,,,,... and AW, are the source and the destination abstract win-
dows, respectively, and Trigger is an event that operates on a abstract widget in
AW, ... that fires the transition.

The nodes and edges of the graph (abstract windows) define the appearance
of the AIF in the GUI of an arbitrary interactive application, while the edges
pre and post conditions define the behavior of the AIE. In AUGUSTO, these two
concepts are defined in two different types of models: the GUI Pattern model and

the Abstract Semantics model.

GUI Pattern Model

The GUI pattern models specify the general appearance of the AIF and how
it occurs in the GUI of interactive applications. AUGUSTO uses the GUI pattern
models to automatically recognize whether the AUT implements the AIE The
current Ul modeling languages such as IFML [[30] model the concrete UI of a
specific application, and are not designed to model abstract portions of Uls that
are general, flexible and that can fit multiple applications. Thus we decided to
define an ad-hoc language for the GUI pattern model to specify how AIFs occur in
GUISs as sets of abstract windows that contain abstract widgets and are connected
through abstract edges.

An abstract window identifies a window or a portion of a window in the
application, and is defined as a set of abstract widgets that are required to be
present in the window. Abstract widgets refer to widgets in the GUI, and are
not specified using a concrete type (e.g., JButton, JTextField), but they are ab-
stracted in 3 classes according to the type of user event that can be performed
on them: (i) action, which are widgets that can be clicked, for instance buttons,
(ii) input, which are widgets that can be used to enter data, for instance text
fields, and (iii) selectable, which are widgets that can be selected, for instance
lists or tables. Abstract widgets are annotated with both regular expressions and
cardinality. Regular expressions specify the labels associated with the widgets
and cardinality expresses the quantity of that particular widget that can be in a
window. Cardinality can be one (exactly 1), some (1 or more), lone (1 or 0) or
any (0 or more).

Figure 5.2 shows a simplified GUI pattern for an authentication functionality
specified in xml format. The window xml elements define the abstract windows
that compose the AIE In the example of the figure, the Login window corresponds
to the presence of a window that includes an input field for the username, an input
field for the password, an action widget to login, and an optional action widget
for registering. The definitions are flexible as they are not bound to specific GUI

40

5.2 Approach

<window id="loginform" card=one>

<action_widget id="signup" card=lone>
<label>A(registerlsignuplsign up).*$</label>

</action_widget>

<action_widget id="login" card=one>
<label>A(loginlenterlsign in).*$</label>

</action_widget>

<input_widget id="pass" card=one>
<label>A(pass |Ipassword).*</label>

</input_widget>

<input_widget id="user" card=one>
<label>ACuserlusernamelemail).*</label>

</input_widget>

</window>
<window id="signupform" card=one>

<action_widget id=“save" card=one>
<label>A(oklsavelrecordlsignuplsign up)</label>

</action_widget>

<input_widget id="signupuser" card=one>
<label>ACuserlusernamelemail).*</label>

</input_widget>

<input_widget id="signuppass" card=one>
<label>A(?!re-enter|repeat)(pass|password).*</label>

</input_widget>

<input_widget id="signuppass2" card=lone>
<label>A(repeat|re-enter|confirm).*</label>

</input_widget>

<input_widget id="otherfields" card=any>
<label>.*</1label>

</input_widget>

</window>
<window id="loggedpage" card=some>

<action_widget id="logout" card=one>
<label>A(logoutlexitlsign outlsignout).*$</label>
</action_widget>

</window>

<edge
<edge
<edge
<edge

id="ael" type=uncond from=signup to=signupform/>
id="ae2" type=uncond from=logout to=loginform/>
id="ae3" type=cond from=save to=loginform;loggedpage/>
id=“ae4" type=cond from=login to=loggedpage/>

Figure 5.2. Examples of GUI Pattern model

widgets, for instance buttons, but refer to general classes of widgets, for instance
action widgets, and cardinalities allow further abstractions. For example, the

cardinality of the

otherfields fields in the signupform abstract window allows

the abstract window to match a registration form with an arbitrary number of

fields.

An Abstract edge connects an action widget of an abstract window to another
abstract window to indicate a possible execution flow. Unconditional abstract
edges indicate that the target window is always reached when interacting with

the source action

widget, for instance clicking on a navigation menu. Conditional

41 5.2 Approach

abstract edges indicate that the target window is reached only if certain precondi-
tions are satisfied, for instance successfully submitting a form [[93]]. The example
of Figure includes two conditional and two unconditional edges. Uncertainty
is represented as a set of target windows. For example, the edge associated with
the save action widget indicates that after registering the execution may reach
either the login form or a window in which the user is logged in.

Abstract windows are logical windows, thus the same concrete window of
an application may host multiple abstract windows, for instance, the login and
registration abstract windows might be found in the same concrete window.
Windows may have a cardinality to indicate that they are not required to be
present in the target application. This might be useful for example in cases like
confirmation windows which might or might not be shown in an application.

In short, the example GUI Pattern model shown in Figure[5.2 specifies that
an authentication functionality is composed of three logical windows, one con-
taining the login form, one containing the signup form, and one containing the
logout action widget. The pattern specifies that the signup form is composed of
three required input fields (username, password, and repeat password) and an
unspecified number of other input fields. When clicking on the register action
widget on the login form, the application always goes to the signup form. When
the login action widget is clicked, the application conditionally goes to a page con-
taining the logout widget depending on some conditions (the login form is filled
correctly). Also, when clicking the save action widget in the registration form
(if the form is filled correctly) the application might go to either the login form
or to a page containing the logout action widget. This representation, although
very simple, defines the general way in which the authentication functionality is
implemented in the GUI of most applications.

The GUI pattern model is defined similarly to the GUI model described in
Section[2.3.2 (with the exception that widgets, windows, and edges are abstract),
thus can be represented as a tuple:

GUIPatternModel : (AbstractWindows,AbstractEdges)
where an abstract edge is defined as
Edge : <Avvsource’AWtarget’ATrigger)

and AW, and AW,,... are the source and target abstract windows, respectively,

and ATrigger is an event that operates on a abstract action widget in AW, ...

Abstract Semantics Model

42 5.2 Approach
1| /* GUI elements definition x/
2| sig loginform, signupform, loggedpage extends Window{}
3| sig login, signup, register, logout extends Action_widget{}
4| sig user, pass, pass2,..., otherfields extends Input_widget{}
5/one sig Curr_win { /* Current window x*/
6/ is_in: Window one -> Time,
7|}
8| /* Functionality internal state elements */
9|sig Usr {
10| username: one Value,
11| password: one Value
12|}
13| sig Users{
14| list: Usr set -> Time
15| }
16| /* Semantic Property */
17| one sig Required{
18| fields: set otherfields
19| }
20| pred preconditions [w: Widget, t: Time] {
21| w in register => not user.content.t=none A not pass.content.t=none A
22 (V us:Users.list.t | user.content.t7#us.username) A
23 pass.content.t=pass2 A (V iw:Required.fields | not iw.content.t=none)
24| }
25| pred postconditions [w: Widget, t,t’': Time] {
26| w in register = one us:Users | us.username=user.content.t A
27 us.password=pass.content.t A Users.list.t’'=Users.list.t+us A
28 (Curr_win.is_in.t’'=loginform V Curr_win.is_in.t’=1loggedpage)
29|}

Listing 5.2. Examples of Abstract Semantics model

While the GUI Pattern model specifies the structure of a functionality in terms

of logical windows and possible windows transitions, the Abstract Semantics model
specifies the behavior of a functionality, and it is used by AUGUSTO to generate
test cases and oracles. In a nutshell, the Abstract Semantics model specifies the
effect on the application of the interactions with the widgets defined in the AIF
GUI Pattern in terms of

* the condition necessary to successfully execute an operation (precondition),
* the window that is shown after the execution of an event (transition),

* the state of the application after the execution of the event (postcondition).

To produce a model that we can leverage to generate test cases, we Abstract

Semantics model of an AIF requires to be specified formally with a language that

43 5.2 Approach

(1) allows to specify logical predicates, (2) is declarative, (3) can be analyzed
automatically, (4) has appropriate analysis tools. Logical predicates allow us to
express concepts like preconditions and postcondition, a declarative language
allows us to define the behavior of the AIF by specifying only the logic of the oper-
ations without describing their control flow, the availability of tools for automatic
analysis allows us to leverage the models to generate test cases automatically.

Among the different formal specification languages available in the state of the
art, we selected Alloy [57]] to specify the abstract semantics model as it satisfies
all the required properties described above: (i) Alloy is a formal specification
language based on set theory that allows to express predicates in first order
logic. (ii) Alloy is declarative and can precisely specify the behavior of almost any
software system. (iii) Alloy can be analyzed automatically and has an efficient
tool, the Alloy Analyzer, able to analyze an Alloy model and simulate the execution
of the operations defined within the model.

The Abstract Semantics model is specified in Alloy [57]], a formal specification
language based on set theory that allows to precisely specify the behavior of
almost any software system. We decided to use Alloy to benefit from both the
simplicity and expressiveness of the language and the efficiency of the Alloy
Analyzer, an automatic tool able to analyze an Alloy model and simulate the
execution of the operations defined within the model.

Listing[5.2| shows an excerpt of the Abstract Semantics model of the authenti-
cation functionality. The abstract Semantics model shall define every structural
element (windows, action widgets, input widgets, and selectable widgets) that is
defined in the GUI Pattern model of the functionality (lines 2-4). The widgets
defined in the GUI pattern are annotated with a tag (not shown in the example)
whose value is the identifier of the corresponding widget in the Alloy model. In
this way, after mapping a GUI Pattern to the concrete GUI of the application, every
event on a widget can be associated with its semantics. The Abstract Seman-
tics model defines the state variables that are necessary to define the behavior
of the functionality (lines 5-15). In the figure, the model defines the current
window (lines 5-7) and the list of registered users (lines 9-15). Finally, the
model defines the preconditions (line 19) and the postconditions (line 23) of the
functionalities operations. The example figure shows pre and postcondition only
for the registration operation. The precondition requires the username (user)
and the password (pass) to be not empty, the repeated password (pass2) to be
the same than the password, all the required fields (Required. fields) to be not
empty, and the username to be unique. The postcondition adds a new user to the
set of registered users and changes the current window to the window named
loginForm. For simplicity, we omitted some of the checks in the precondition,

44 5.2 Approach

such as the individual validity checks on the input fields.

The behaviors of an AIF might not always be definable in a completely appli-
cation independent way, since it may depend on some semantic properties specific
to the application under test. The Abstract Semantics model shall define these
semantic properties abstractly, thus enabling their inference during the Reification
step. AUGUSTO supports the automatic inference of semantic properties when
they are specified as a property that affects one or more items that should be
fully defined at a later stage. In the model in Listing [5.2, the item Required
expresses the concept of some fields in the registration form to be required to be
filled in to submit the form, and it is an example of a property that is indicated
in advance as affecting set of fields (lines 16-18) and that will be refined based
on the interaction with the actual application. We discuss the properties that our
technique support and the strategy to infer them in Section|5.2.5|

5.2.2 Ripping

" : Sign Up

Home Window |_> Sign In enur

Search Box Q EIEEEN cti10 | Loan Emai Full Name
Password Use

Item Price Quantity

Iphone 7 200$ 12 Password
| senn | Remember Me

Nexus 5 280%

Nokia 3310
Don't have an account yet?
>

Figure 5.3. A simplified version of the GUI of OnlineShopping

To identify possible known AIFs in an application under test, its GUI must
be analyzed and encoded in a suitable form to allow for the searching of GUI
Patterns. The Ripping step dynamically analyzes the GUI of the AUT in input to
produce a data structure that we call GUI Model and that is defined as described
in Section

AuGUSTO builds the GUI model following the GUI ripping technique defined by
Memon and colleagues [[77]]. The GUI Ripping explores the GUI of an application
with a depth-first strategy that clicks on all the widgets in a window and that
recursively continues performing clicks in any newly opened window.

For each widget seen in the AUT GUI, AuGusTO additionally calculates a
descriptor, that is a string that encodes the semantics of the GUI widget, and
saves it in the GUI model together with the other properties of the widget. The

45 5.2 Approach

way the widget descriptor is calculated depends on the type of the widget. For
widgets that are usually described by means of text displayed on the widgets (such
as buttons or menu items) AUGUSTO uses their text property as the descriptor.
For widgets which contain images (such as image buttons), AUGUSTO uses the
file name of the image they show (after splitting the words in the file name if
they are identified by the use of camel case notation or underscores). Instead,
for widgets that normally do not contain a text that describes them (such as text
fields) AUGUSTO uses as descriptor the text contained in a label widgets placed
nearby, according to the strategy proposed by Becce and colleagues [20] (in a
nutshell, a label placed on the left or on top of a text field normally describes it).
For widgets that only show text but do not allow any type of event (such as label
widget) AUGUSTO uses their widget ID (if available) as the descriptor because
these widgets are normally used to present data, thus their text might change.

Figure 5.3 illustrates an excerpt of a GUI model obtained by ripping a Onli-
neShopping. In the “Sign Up” window we can notice that each text field has a label
on top that describes it. AUGUSTO uses those labels as descriptors for the form
fields widgets. The ripping may not discover all the edges and windows and there-
fore the extracted GUI model might be incomplete. In particular, ripping might
not be able to traverse some conditional edges (window transitions executable
only under certain conditions), because it might fail in satisfying the precondition
of the functionality associated with the edge [|93]]. For example, there is no edge
for the Sign In button in the Sign In window of the example GUI model shown
in Figure|5.3|because the edge is traversed only after a successful login. AUGUSTO
addresses this incompleteness when recognizing AlFs in the next steps of the
process.

5.2.3 Structural Matching

The Structural Matching step searches for occurrences of AlFs in the AUT. To
do so, AUGUSTO identifies portions of the AUT GUI model that match the structure
defined in the GUI patterns associated with the AIFs in the AIF archive. A match is
a subgraph of the GUI Model (i.e., a subset of its windows and edges) in which all
the windows and edges match abstract windows and edges of the AIF GUI pattern
model. Since the GUI model extracted through ripping might be incomplete (the
ripping cannot explore conditional edges), the structural matching considers only
the unconditional abstract edges defined in the GUI pattern, and therefore we
call the matches identified in this phase as raw. In practice, AUGUSTO finds a raw
match if it recognizes all the windows reachable by navigating the unconditional
abstract edges of the GUI pattern in the GUI model and if it finds all the abstract

46

5.2 Approach

el <edge type=uncond from=signup to=signupform/>

e2 <edge type=uncond from=logout to=loginform/>

e3 <edge type=cond from=save to=loginform;loggedpage/>

e4 <edge type=cond from=login to=loggedpage/>

<window id="loginform" card=one>

Home Window

Search Box

Item
Iphone 7
Nexus 5

Nokia 3310

i Sign In

<input_widget id="user" card=one>
<label>A(userlusernamelemail).*</label>
</input_widget>

Emai

<input_widget id="pass" card=one>
<label>A(pass|password).*</label>
</input_widget>

| e3 password

action_widget 1d="login" card=one>
<label>A(loginlenterisign in).*$</label>
</action_widget>

+,—_—m

ZOCTION_Widget 1d="Signup . card=tones
<label>A(register|signuplsign up).*$</label>
</action_widget>

— T X

</window>

ndow id="signupform" card=one>

A
=

I lea |et

<input_widget id=“otherfield" card=set>
<label>.*</1label>
</input_widget>

I Sign Up
I |

I T
|

Full Name

<input_widget id="signupuser" card=one>
<label>A(userlusernamelemail).*</label>
</input widget>

I User

<input_widget id="signuppass" card=one>
<label>A(pass|password).*</label>
</input_widget>

<input_widget id="signuppass2" card=lone>
<label>A(repeat|re-enter|confirm).*</label>
</input_widget>

<action_widget id="save" card=one>
<label>A(okl|savelsignuplsign up)</label>
</action_widget>

</window>

<window id="loggedpage" card=some>
<action_widget id="logout" card=one>
<label>A(logoutlexitlsignout).*$</label>
</action_widget>
window>

Home Window

Search Box

Iphone 7
Nexus 5

Nokia 3310

Remember Me

Fc our

| | Don't have an account yet?

Q m Cart(10) | Login

Quantity
12
87

.t

-

e2

Q =N corti10) | Logout= | =

Quantity
12
a7

Figure 5.4. A match between the model of the authentication AIF and the GUI
of OnlineShopping. Green thick edges are those discovered during the ripping
step, while dashed red edges are discovered during the match finalizing step.

unconditional edges that originate from those abstract windows. The conditional
edges, if present in the pattern, are searched in the next step.

Considering the GUI pattern model reported in Figure a raw match must

contain windows that match abstract windows with ids loginform and signupform
(they can be reached navigating unconditional edges only) and edges that match
abstract edge with id ael (it is unconditional and originates from the before
mentioned abstract windows).

47 5.2 Approach

More rigorously, a widget wid matches an abstract widget awid (denoted as
wid ~,,;; awid) if wid has a type compatible with awid type, thus if awid is of
type action wid must be a type of widget that can be clicked and so on, and if
wid descriptor matches the regular expression defined in awid label.

A window w matches an abstract window aw (denoted as w ~,, aw) if there
exists a set of matching widgets wids C w for each abstract widget awid € aw
such that Ywid € wids : wid ~,,;; awid. The matching between a window and
an abstract window considers the cardinality of the widgets, thus the size of set
wids must be compatible with awid cardinality (as defined in the GUI pattern
model). Thus, if aw cardinality is one wids must have size one, if aw cardinality
is some wids must have size greater than zero, and so on.

An edge e in the GUI model matches an abstract edge ae in the GUI pattern
model (denoted e ~, ae) if its source and target windows match ae source and
target abstract windows and if its trigger event operates on a widget that matches
the abstract action widget that is the trigger of abstract edge ae.

Finally, a raw match is a tuple

(MatchedWindows, MatchedEdges)

where

* MatchedWindows and MatchedEdges are a subset of the windows and
edges in the GUI model,

* for each abstract window aw in the GUI pattern model (reachable only
through unconditional abstract edges) exists a set of windows ws C MatchedWindows
such that Yw € ws : w ~,, aw and the cardinality of set ws is consistent
with the cardinality of abstract window aw (as defined in the GUI pattern
model),

* for each abstract unconditional edge ae in the GUI pattern model which
source abstract window is matched by a window w € MatchedWindows
exists a edge e € MatchedEdges : e ~, ae.

Figure[5.4|graphically illustrates the structure of a raw match. The figure shows
the GUI model with the abstract windows in xml format next to the corresponding
matching windows (the upper window does not match any abstract window).
The upper three windows are the windows discovered through the ripping. The
second and third windows (from above) match the loginform and signupform
abstract windows, which are the abstract windows reachable by navigating the
unconditional edges of the AUTH GUI pattern model. Thus, those two windows

48 5.2 Approach

together with edge el generate a raw match between the GUI model and the
AUTH pattern.

Once a raw match is identified, AUGUSTO records the matchings among win-
dows, widgets and edges in the GUI model with their counterpart in the pattern
model. AUGUSTO uses these matchings during the execution of the test cases to
map the events generated from the abstract semantics model to concrete events
on the AUT GUI. The recorded matching are shown in Figure [5.4 with purple
arrows.

/* GUI elements definition x/
sig awl extends register{}
sig iwl extends user{}

sig iw2 extends pass{}

sig iw3 extends pass2{}

sig iw4 extends otherfields{}

AN A W N

Listing 5.3. Lines added to the Abstract Semantics model

The matchings are reflected in the semantics model that the Alloy Analyzer
uses to generate tests for the specific AIF in the AUT. Each widget in the GUI
model that matches an abstract widget in the pattern is added to the semantics
model. Listing[5.3/shows the lines added to the semantic model to reflect the
matchings of the elements of the sign up window in our example AUT. The widget
with id awl matches the action widget register in the GUI pattern, as expressed
in the alloy model with a syntax similar to object extensions in OOP. The last line
shows the matching of field “Full Name” of the form, that has id iw4 in the GUI
model, with the otherfields input widget of the GUI pattern model. These lines in
the model inform the Alloy Analyzer of the elements in the model that have been
matched and that can be used during the generation of the test cases. For example,
since the last line in Listing specifies that one widget matches the otherfields
abstract widget, the Alloy Analyzer generates tests for an authentication AIF that
includes only one extra field in the form aside the classical username, password,
and confirm password.

The problem of identifying GUI patterns in the GUI model is an instance of
the subgraph isomorphism problem, which is proven to be NP-complete [[40]].
However, since the number of distinct windows in an application is not large,
typically not greater than a hundred, the problem can be solved in a few seconds
as confirmed in our empirical experience.

49 5.2 Approach

5.2.4 Match Finalizing

The Match Finalizing step completes the raw matches, that is, each raw match
is either discarded or extended to a full match by including the conditional edges.
To do so, AUGUSTO generates GUI interactions that can explore the parts of the
AUT GUI that are not reached during the ripping phase and therefore completes
the GUI model, by generating GUI interactions using the (partial) information
contained in the raw match.

More precisely, for each conditional abstract edge in the AIF GUI pattern model
of a raw match, AUGUSTO generates a probing GUI interaction that might execute
that edge in the AUT. A probing GUI interaction is a test case that terminates
with the execution of the conditional edge in the AUT when its precondition is
satisfied. The probing GUI interaction is executed on the AUT, and if the expected
transition is observed, the GUI model is updated. Additionally, if a new window
is discovered, the window is explored using the ripping approach before being
added to the GUI model.

AUGUSTO generates the probing GUI interactions by instructing the Alloy
Analyzer to generate a sequence of events that covers a certain operation or
condition of the Alloy model. The Alloy Analyzer requires in input the abstract
semantics model, a condition that must be covered, and the maximum length of
the interaction sequence that must be produced. AUGUSTO asks the Alloy Analyzer
to generate sequences of length up to a given boundary that execute the patterns
conditional edges.

When executing a GUI interaction that requires input values, such as filling a
text field, AUGUSTO uses an archive of input values organized according to their
type (e.g., emails are distinguished from dates) and divided between valid and
invalid values. The archive includes predefined values for most common data
types, but it can be extended with values specific for an AUT.

To generate probing GUI interaction for the specific (candidate) AIF in the
AUT, AuGUSTO updates the AIF abstract semantics model using the information
contained in the raw match, thus concretizing some aspects of the AIF semantics
which have been observed in the AUT. For instance, the abstract semantics model
of the authentication does not specify the number of additional fields (apart from
the typical username, password, and confirm password) in the signup form. Since
the raw match identified that in onlineShopping there is only one additional
field, that information is plugged in the Alloy model.

After generating probing GUI interaction for each conditional edge in the AIF
model, AUGUSTO recalculates the match between the AIF GUI pattern model and
the AUT GUI model, searching also for conditional edges. If a match is found, we

50 5.2 Approach

call it a complete match as it contains all the structural elements defined in the
GUI pattern model.

In the case of the sample raw match of the AUTH pattern with the onlineShopping
application, AUGUSTO starts by generating a probing GUI interaction to execute
the unconditional edge with id ae3 (that is a sequence of events that fill the
signup form and then click on “Sign Up”). When executing that interaction in
onlineShopping GUI, AUGUSTO confirms that the AUT has the expected transi-
tion and confirms the edge. Then, AUGUSTO proceeds to confirm edge with id ae4.
To confirm that edge AUGUSTO generates a GUI interaction that first signs up and
then signs in. When executing that interaction, AUGUSTO finds a new window
that matches the abstract window loggedpage, thus transforming the raw match
into a complete match. The resulting complete match is shown in Figure

5.2.5 Reification

The Reification step adapts a full match to the specific semantics of the appli-
cation, by focusing on the semantic properties defined in the Abstract Semantics
model. The Abstract Semantics model encodes the semantic properties in a gen-
eral way, leaving unspecified parts that are automatically adapted to the specific
characteristics of the AUT. For instance, the property that requires some fields
to be non-empty is defined in Figure[5.2 as being associated with a set of input
widgets, but the exact set of widgets is left unspecified. The Reification step
adapts the semantic properties to the behavior observed for the AUT.

As for the match finalizing step, AUGUSTO generates and executes several
probing GUI interactions on the AUT to observe its behaviors and infer semantic
properties. In a nutshell, AUGUSTO starts by generating a probing GUI interaction
that executes an operation affected by a semantic property, that is the operation
precondition predicates over the semantic property. Considering our running
example, since the required field semantic property is used in the precondition of
the Sign Up, AuGuUsTO will generate probing GUI interactions that execute the
Sign Up. For example, a probing GUI interaction may try to execute the Sign Up
operation present in the Sign Up window of Figure 5.4/ with a non-empty Full
Name, being Full Name the only field that needs to be determined as required
or not. In fact fields username, password and repeated password are known to be
required (see Figure|5.2)).

When executing the GUI interaction, AUGUSTO observes the AUT behavior
and detects whether the AUT behaves as expected, i.e., the AUT performs the
window transition specified in the pattern model. Supposing that when executing
the probing GUI interaction in the AUT the registration is performed correctly

51 5.2 Approach

(thus online shopping transitions to the login page), AUGUSTO uses the Alloy
Analyzer constraint solver to make a guess consistent with the collected evidence.
For instance, AUGUSTO may guess that the field Full Name is mandatory, but
up to now it may also guess the opposite. AUGUSTO automatically includes the
guess in the Alloy model by adding some fields to the set of fields affected by
the property —in this example it adds Full Name to Required.fields— and tries to
generate a new probing GUI interaction which executes the same conditional
edge without satisfying its precondition. In this case, AUGUSTO generates a GUI
interaction that leaves the Full Name field empty. The execution of this interaction
can either confirm or refute the guess. If the interaction refutes the guess, i.e., the
registration was successful also in the second case, AUGUSTO makes a new guess
based on the new evidence. This process iterates, alternating among interactions
that satisfy the precondition and interactions that do not, until either there is
only one possible guess consistent with all the collected observations or a timeout
is reached. In both cases, AUGUSTO incorporates the guess in the model. In the
example, the first guess is correct and it is confirmed by an interaction that fails
to sign up with an empty Full Name.

This process is quite general and can discover several classes of semantic
properties. The current version of AUGUSTO supports any semantic property that
can be expressed as a property associated with a (possibly empty) set of elements
of the GUI, for instance, the property that an input field in a form is either required
or unique.

5.2.6 Testing

The testing phase generates test cases that stimulate the discovered AIFs
within semantically relevant usage scenarios. AUGUSTO generates a test suite that
satisfies the following criteria:

* Conditional edge coverage: This criterion requires sampling the AIFs in
every execution context: for each condition associated with a conditional
edge of the model, and for each combination of truth values computed
according MC/DC [53]], there must exist a test case that exercises that
combination. We selected MC/DC as condition coverage criterion because
it offers a good compromise between cost and completeness. For instance,
the precondition shown in Figure [5.2 at line 20 is a conjunction of four
boolean basic condition. Therefore, AUGUSTO generates five test cases
(MC/DC coverage can be satisfied with n+1 test cases) that stimulate that
precondition and that satisfy MC/DC coverage.

52 5.3 Prototype implementation

* Pairwise edge coverage. This criterion requires combining the execution of
multiple edges to test combinations of operations. For each pair of edges in
the AIF match, there must be a test case that exercises the pair. Considering
our example, this criteria imposes to generate test cases in which both sign
in and sign out are executed subsequently.

AUGUSTO generates test cases that satisfy these criteria using the Alloy Analyzer,
in the same way as it generates the probing GUI interactions of the previous steps.
The maximum test cases length is an input parameter of AUGUSTO, as per the
previous two phases.

AUGUSTO generates a functional oracle for each test case by mapping the post-
conditions, which define the window that must be displayed after the execution
of an event and its content, into assertions that are checked after the execution
of each event. Thus, AUGUSTO generates oracles that predicate on the state of
the GUI and not on the AUT internal state. AUGUSTO examines the correctness of
the AUT internal state indirectly by executing subsequent sequences of events.
For example, in the case of the authentication functionality, AUGUSTO generates a
complex test case that performs a sign up and then signs in the newly created user.
After executing the signup procedure, AUGUSTO oracle verifies that the application
displays the expected window. Displaying the expected window transition does
not guarantee that the user is correctly registered. The subsequent part of the
test case signs in that newly created user, and thus checks the correctness of the
signin, by verifying that the user lands on a window with a log out button, and
indirectly verifies also the internal correctness of the signup procedure.

If we consider again our running example, to cover the conditional edge about
the registration operation with MC/DC (see line 22 of Figure [5.2), AUGUSTO
generates a non-trivial test case that first registers a new user and then registers
again a user with the same username of the already existing user. The test case
includes a functional oracle that checks that the current window is still the window
with the registration form after an error message has been possibly displayed. The
execution of the test leads to a failure that is detected with the oracle, because
the onlineShopping application shows an error message but behaves as if the
registration has been completed successfully, which violates the generated oracle.

5.3 Prototype implementation

To evaluate the effectiveness of the approach described in the previous section,
we developed a prototype of AUGUSTO. The prototype targets Java desktop
interactive applications and uses IBM Rational Functional Tester [55]] as the

53 5.4 Evaluation

underlying technology for interacting with the GUI of the AUT. The prototype
consist of about 15k Java 8 lines of code.

After executing each GUI interaction, the prototype cleans the internal state
of the AUT with a script manually defined for each AUT.

We populate the AIF archive with an initial set of three AIFs:

1. AUTH, the typical authentication functionality that allows users to sign up,
sign in and sign out from the applications to access private contents;

2. CRUD, the common functionality of adding, removing, updating and delet-
ing objects of a type. To give an example, in a budgeting application, the
functionality of adding/removing expenses and bank accounts would be
two instances of the CRUD AIF;

3. SAVE, the typical functionality of desktop application that allows to save
and load data in and from files.

We modeled the AIFs according to a common sense knowledge of these func-
tionalities by the author of this thesis and of the other colleagues involved in
AuGUSTO work. Appendix [7.2 reports the complete models of these AlFs. The
prototype and its implementation are freely available under MIT licensing and it
can be found at http://github.com/danydunk/Augusto.

5.4 Evaluation

Table 5.1. Subject applications

Name Vers. Type KkLOCs
Buddi [32] 3.4.0.8 Personal finance management 10.0
UPM [105] 1.6 Password management 3.4
Rachota [|90] 2.3 Personal tasks management 10.5
Spark [98] 2.7.5 Messaging 2.0
TimeSlotTracker [24] 1.3.1 Personal tasks management 3.5
PDF-sam [[107] 0.7 PDF merging/splitting 3.1
OnlineShopping [59] 1.0 E-commerce 1.5
CrossWord [25] 0.3.5 Crosswords building and solving 1.8

We experimentally evaluated AUGUSTO approach by addressing three research
questions:

http://github.com/danydunk/Augusto

54 5.4 Evaluation

(RQ1) How effective is AUGUSTO in detecting application independent functional-
ities?

This research question investigates the capability of AUGUSTO to automatically
detect the presence of the modeled AIFs in the tested applications.

(RQ2) How effective is AUGUSTO in testing application independent functionali-
ties?

This research question investigates AUGUSTO’s ability to automatically generate
test cases to find and report faults in the detected AIFs.

(RQ3) How does AUGUSTO compare to state of the art testing techniques in testing
AIFs?

This research question investigates if testing the AIFs present in an applica-
tion with AUGUSTO delivers better results than testing the same functionalities
with other approaches, thus motivating the adoption of AUGUSTO in addition
to existing techniques. To answer this question we compared AUGUSTO with all
other available testing techniques for desktop interactive applications, namely
AutoBlackTest (ABT), Testar-Random, Testar-QLearning, Guitar-EFG, Guitar-EDG,
and Guitar-EIG.

5.4.1 Empirical Setup

For our empirical study, we selected as subjects eight interactive applications
from different application domains, six of which were already used in previous
studies [[13} 70, [71]]. Table provides essential information about the selected
applications. Since a database is required to enable all the functionalities in Buddi
and UPM, we configured an initial db with custom data for Buddi and an empty db
for UPM. For each application in the study, we manually defined a state-cleaning
script that deletes the files created by the application AUT during the execution
of the interaction.

The testing techniques compared in RQ3 required the same configurations,
that is, a pool of input values that can be used during the testing activity and
the definitions of some configuration parameters. For all the techniques, we
populated the pool of inputs value with the same valid and invalid values, defined
coherently with the nature of the data processed by the subject applications.

In our evaluation, we used the best configuration possible for each tool, based
on our knowledge of the techniques. In AUGUSTO, we used a test case length of
15 events for all applications with the exception of OnlineShopping that has been
tested with a test case length of 22 events. We set to 30 minutes the maximum
amount of time for the reification step. In ABT we used episodes of 30 events (note

55 5.4 Evaluation

that since each episode can start from any state of the system, the resulting test
cases can have an arbitrary length) and the e—greedy policy with e = 0.8, as used
in ABT original paper [[70]. For Testar-Random and Testar-QLearning we used
test cases of size 100 which is the default configuration. In all the experiments
ABT, Testar-Random, and Testar-QLearning have been executed for the same time
than AuGusTo. Finally, for the techniques of the GUITAR family, we generated
the test cases using 3-wise coverage for test case generation, which guarantees
GUITAR to be executed for a longer time (in some case significantly longer) than
AUGUSTO, thus favoring GUITAR over AUGUSTO.

Since all other testing tools are not limited to AlFs, simply running the tools
on the full applications would produce incomparable data for RQ3. We know by
construction that the other tools can test applications more broadly than AUGUSTO
and AUGUSTO cannot achieve any result of competing tools with non-AIFs. The
purpose of RQ3 is to investigate if the opposite is also true, that is, if AUGUSTO
obtaines better results than competing approaches when testing AIFs. Only for
the purpose of RQ3, to make this comparison as fair as possible and have the
competing techniques spending all the time testing AIFs only, as AUGUSTO does,
we modified the subject applications disabling every functionality that is not an
AIE The result is that all tools spent the whole time budget testing the same set
of functionalities.

We run our experiments on two virtual machines, one with Windows 10 OS
and one with Ubuntu 16.04 OS. We had to use two different virtual machines
because of the different operative systems requirements of the tools. AUGUSTO,
AutoBlackTest, Testar-Random, and Testar-QLearning run in the Windows virtual
machine, while Guitar-EFG, Guitar-EIG, and Guitar-EDG run in the Ubuntu virtual
machine. Each virtual machine was configured with 4 cores and 4GB of RAM.

To mitigate the randomness in the results, we repeated all the experiments
three times and reported average values.

5.4.2 RQ1 - AIF Detection

To answer RQ1, we studied the completeness and precision of the algorithm
for detecting AlFs. We first identified the AIFs present in the subject applications
by inspecting every window of every application, and looking for instances of the
three defined AIFs (CRUD, AUTH, SAVE). We identified a total of 18 occurrences
across the applications. An AIF occurrence is the occurrence of the set of operations
specified in the AIE For example, an instance of a CRUD includes operations to
create, read, update and delete the entities of a kind. The applications and their
AlFs are reported in the AUT and AIF columns of Table|5.2] respectively. Each AIF

56 5.4 Evaluation

Table 5.2. RQ1 - AIF Detection

Sem. Properties

AUT AIF ID Match Structure Compl. P
UPM CRUD 1 yes precise 100% 0
SAVE 2 yes precise n/a n/a
Spark AUTH 3 (yes) precise 100% 0
4 yes precise 100% 0
Rachota CRUD 5 yes precise 100% 0.7
6 no - - -
OShopping AUTH 7 yes precise 100% 1.0
8 yes lack delete button 100% 0.7
9 yes precise 100% 0
. CRUD 10 es recise 100% 0
Buddi 11 (zes) Erecise 50% 3.7
12 yes precise 100% 0
SAVE 13 yes lack replace file window n/a n/a
PDFsam CRUD 14 (yes) precise 100% 0
CRUD 15 yes precise 100% 0

TTracker CRUD 16 no - - .
CRUD 17 no - - R
CrossWord SAVE 18 no - - i

is associated with an identifier (column ID).

We then executed AUGUSTO on the applications and checked the discovered
matches. We indicate the result of this check in column Match: yes indicates
the presence of a concrete match that can be used for generating test cases, no
indicates that no match is found, and (yes) indicates the presence of a match
that AUGUSTO could find only with some manual intervention. Out of 18 cases,
AUGUSTO missed only 4 AlFs. For TTracker the missed matches are caused by the
limitation of the ripping phase that was not able to discover the GUI portions that
contain the AIFs. The missed AIF in Rachota was caused by two CRUD AlIFs sharing
some windows, a case not supported by AUGUSTO. AUGUSTO never identified a
non-AlF functionality as an AIE that is, it never produced false positives during
AIF detection.

AUGUSTO required manual intervention to deal with cases not supported by
the prototype in 3 of the 14 identified AIFs. In the case of Buddi (case 11), we
manually excluded a Combo Box producing behaviors that are not supported by
our technique. To address cases 3 and 14 we extended the definition of two GUI
Patterns to accept labels that are not typically used for the operations of CRUD
and AUTH. For instance, we set the label accounts as a valid alternative of sign

57 5.4 Evaluation

up/register in AUTH. Although these are small interventions, they prevented
the fully automatic execution of the approach in three cases.

We also evaluated the accuracy of the discovered matches in terms of the
widgets included in the AIF match: Column Structure indicates if the match
includes all and only the widgets that we manually identified as related to the AIE.
The value precise indicates a perfect match, that is, no missing neither unrelated
widgets associated with the AIE Note that in 12 out of 14 cases AUGUSTO produced
a perfect match. In case 8 AUGUSTO missed only an element, reported in the
table, due to particular implementation choices in the application, and in case 13
AUGUSTO missed a window because of a bug in the application (the bug was then
reported in the testing phase). In no case AUGUSTO associated unrelated widgets
to the AIE that is, AUGUSTO never confused the additional elements present in a
window with the ones that refer to the identified AIE

We also evaluated the ability of AUGUSTO to identify semantic properties, in
this case, to identify the required and unique fields for CRUD and AUTH AIFs.
We evaluated this aspect by considering completeness, defined as the average
percentage of required and unique fields identified correctly by AUGUSTO (column
Compl.), and false positives, defined as the average number of fields wrongly
associated with a required or unique property (column FP). We report the value
n/a when the AIF does not include any semantic property to be discovered.

The results obtained with semantic properties show that AUGUSTO is quite
effective both in terms of completeness, only in one case some fields have not been
associated with the corresponding property, and rate of false positives, only in four
cases there are false positives. Note that completeness and the number of false
positives associated with semantic properties could be improved by allocating
more time to the reification phase.

In a nutshell, AuGUSTO identified the AIFs present in the subject applications
in 78% of the cases (in 3 cases requiring manual intervention) and produced
highly accurate matches, including 86% perfect matches, and identified the vast
majority of the semantic properties present in the application.

5.4.3 RQ?2 - Effectiveness

The effectiveness of testing techniques is typically assessed by considering
code coverage and fault revealing ability. Since AUGUSTO does not target the
whole application, code coverage is not an informative metric. Thus, to answer
RQ2 we evaluated AUGUSTO by considering only its fault revealing ability. We
measure the number of faults revealed in the subject applications. Note that we

58 5.4 Evaluation

Table 5.3. RQ2 - Effectiveness

AUT AIF ID AvgTC AvgFail AvgFA Avg Fault #Fault (Exc)
UPM CRUD 1 17.0 6.7 0.4 2.0 3
Save 2 75.5 1.0 0.7 0.4 1 (D)

Spark Auth 3 33.7 6.7 6.8 0 0 (0)
Rachota CRUD 4 8.3 0.7 0.6 0 0 (0)
5 76.0 7.3 7.3 0 0 (0)

OShopping Auth 7 17.0 4.5 4.0 0.3 1(0)
8 17.0 5.5 5.5 0 0 (0)

9 18.0 2.7 2.7 0 0 (0)

Buddi CRUD 10 18.7 0 0 0 0 (0)
11 22.8 12.7 6.3 1.0 1(0)

12 19.2 0 0 0 0(0)

Save 13 50.7 12.4 0 1.0 1 (0)

PDFsam CRUD 14 9.4 0 0 0 0 (0)
TTracker CRUD 15 11.7 0 0 0 0 (0)
Overall 7 (2)

did not inject faults in the subject applications thus we can only asses the number
of faults revealed while we cannot evaluate the completeness of the revealed
faults. To assess the effectiveness of AUGUSTO, we manually inspected all the test
cases that were reported as failing by AUGUSTO functional oracle, and manually
classified them as true or false positives depending on whether they show the
manifestation of an error or not.

Table [5.3 reports for each AIF identified by AUGUSTO, the average number
of generated test cases (column Avg TC), the average number of test cases that
fail because of the violation of a functional oracle (column Avg Fail), the average
number of false alarms produced, that is, the number of failing test cases that
do not expose any fault in the program (column Avg FA), the average number
of faults detected per AIF in a run (column Avg Fault), and the total number of
faults detected in the three runs (column #Fault). Column #Faults also indicates
the number of faults that cause the AUT to print an exception on the log. In our
experimentation AUGUSTO did not detect any failure that causes the application
to crash.

The average number of test cases generated by AUGUSTO varies a lot, ranging
from 8.3 to 76.0. This big variability that is observed even for AIFs of the same
kind in the same application (a good example is the number of test cases for the
CRUDs in Rachota), depends on the specific structural match, concrete semantics
and semantic properties that are extracted. This shows how AUGUSTO, can flexibly
adapt these definitions to the specific case, by generating a number of test cases

59 5.4 Evaluation

Table 5.4. RQ3 - Comparison

AUT Hours | Augusto ABT TestarRand | TestarQL | GuitarEFG | GuitarEIG | GuitarEDG

Rep Cov|Rep Cov [Rep Cov |Rep Cov | Rep Cov | Rep Cov
UPM 3.0 4 2 1 2 1 1 1 1 1 1 1 1 1
Spark 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0
Rachota 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0
OShopping 8.0 1 0 0 0 0 0 0 0 0 0 0 0 0
Buddi 11.0 2 0 0 0 0 0 0 0 0 0 0 0 0
PDFsam 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0
TTracker 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0

Overall Reported 7 2 2 1 1 1 1

that depends on the complexity of the tested functionality.

AUGUSTO produces some false alarms as reported in the table. This is due
to two main reasons: acceptable mismatches between the semantics model and
the concrete behavior of the application, and imprecise semantics properties
inference. Both these sources of imprecision cause the generation of imprecise
functional oracles. In several cases sets of failures refer to the same cause (for
instance, a single imprecise property may cause the failure of multiple test cases)
and identifying the cause of the failure for one test can be used to drastically
reduce the inspection time of the other tests failing for the same reason.

In the experiments, AUGUSTO revealed a total of 7 faults, with only two faults
causing the program to log an exception. This result shows that the automatic
functional oracle included in the test cases is an essential element for revealing
failures.

AUGUSTO revealed some interesting faults, such as the one described in chap-
ter[5.2] of this thesis. Another interesting fault was detected in UPM: When editing
the identifier of an account, if the change is undone and the account is saved,
the operation fails with an error message stating that the identifier already exists,
even though the identifier is the current identifier of the edited account.

In a nutshell, AUGUSTO generated test cases for the AlIFs present in several
applications and revealed multiple faults, including several ones that cannot be
detected with standard implicit oracles.

5.4.4 RQ3 - Comparison

We compare the number of faults detected by AuGgusTo with ABT, Testar-
Random, Testar-QLearning, Guitar-EFG, Guitar-EIG, and Guitar-EDG, by manually
inspecting the test cases that each tool reported as failing (typically crashes). We
then inspected the standard error of the application after the execution of each

60 5.4 Evaluation

test case, and considered as failing each test case that causes the AUT to print
an exception. We manually inspected all the failing test cases and we classified
as real failures (as done for AUGUSTO) the test cases that trigger an error in the
subject application from the user perspective.

Table shows the results obtained by AuGUsTO, ABT, Testar-Random, Testar-
QLearning, Guitar-EFG, Guitar-EIG, and Guitar-EDG when testing AIFs. Column
AUT indicates the subject application. Column Hours reports the average time in
hours spent by AUGUSTO to test the application. ABT, Testar-Random, and Testar-
QLearning have been executed for the same amount of time, while Guitar-EFG,
Guitar-EIG, Guitar-EDG have been configurated to be executed at least for that
time. Column AUGUSTO indicates the number of faults detected by AUGUSTO over
all the three runs. For the other tools, the table distinguishes between reported
(column Rep) and covered faults (column Cov). A reported fault is a fault which
manifest as either a crash or as an exception printed on the AUT log (remember
that the other tools do not include a functional oracle) and that we manually
classified as a true failure. A covered fault is a fault that has been activated by
a generated test case, but no failure has been reported due to the lack of an
oracle. Since we do not have knowledge of all the faults in the AUTs and manually
inspecting all the test cases generated by the competing tools was unfeasible, we
consider as covered faults only the faults which were detected by AuGUsTO. Thus,
if one of the tools covered a fault that does not manifest with a crash or with an
exception we had no way of detecting it.

All the faults reported and covered by the competing techniques are a subset of
the faults reported by AUGUSTO, confirming the higher effectiveness of semantics
approaches when testing AIFs. AUGUSTO has been able to test interesting cases
and interesting combinations of events revealing 7 faults, while for 4 of these
faults the other techniques have not been even able to produce the sequence that
covers the faulty case. Moreover, even when the other techniques manage to
cover the fault, there is a good chance that the fault is not reported due to lack of
non-trivial oracles. In our evaluation, all other techniques reported 2 crashing
faults and covered but did not report another fault.

Finally, 4 of the subjects used in this evaluation (Buddi, Rachota, UPM, Cross-
Word) were used also in the empirical study presented in section (3| In that study,
all other state-of-the-art techniques were able to detect a total of 5 faults. Thus, for
these 4 applications, when testing AIFs AUGUSTO managed to report more faults
(7) than all other techniques that tested the whole applications (i.e., without
being restricted to AIFs only). This result corroborates our intuition that semantic
testing approaches are more effective than traditional structural approaches when
testing interactive applications.

61 5.4 Evaluation

In a nutshell, AUGUSTO has been able to both sample the execution space of
the AIFs more effectively than competing approaches and report failures that
could not be reported by any competing approach, at the cost of some false alarms.
AuGUSTO proved to be an effective complement to current general purpose testing
techniques for interactive applications and showed to be able to achieve the
benefits of automatic semantic testing for at least some portions of the application
under test.

5.4.5 Threats to validity

In this section, we discuss the main threats to the validity of the experiments.
A threat to internal validity is the generality of the AIFs models that we used in
our evaluation. To mitigate the risk of defining models that fit the applications
used in the evaluation but not others, we defined the AIF archive before selecting
the subject applications.

Another threat to internal validity is related to the manual activities performed
by the researchers involved in the work to classify the failing test cases reported
by AUGUSTO as faulty or false alarm, and to modify the subject applications for
RQ3. For the first threat, to reduce any bias, only the failing test cases for which
all the researchers involved agree that they expose a fault were classified as faulty.
For the second threat, after modifying the applications we verified that the AIFs
continue working the same including the presence of the faulty behaviors.

The external validity threats of our study relate to the generality of the results
with respect to the set of AIFs and set of applications that we used. Although we
cannot make claims about the generalizability of the results to other AlFs, the
AlFs that we used were all successfully matched and have been all useful to reveal
faults. We thus expect AUGUSTO to be able to effectively exploit other AIFs too.

In terms of subject applications, to mitigate any issue with generalizability;,
we selected applications that belong to a variety of domains, most of which were
already used in other studies, which facilitates comparison, and experimented
with a relatively high number of AIFs per application.

62

5.4 Evaluation

Chapter 6

ADAPTDROID: Semantic Testing via
Cross-Application Test Case
Adaptation

In this chapter, we present ADAPTDROID, a technique to adapt test cases across
similar interactive applications. ADAPTDROID is based on the observation that
there exist many similar applications that offer the same functionalities. ADAPT-
DROID leverages this opportunity to reduce the cost of testing by automatically
adapting existing manually-written test cases of a certain interactive application
to test another similar application.

In a nutshell, we define the goal of ADAPTDROID in the following way:

Given two similar applications A, (donor), Ag (recipient) and a “donor” test case tp,
for Ap, ADAPTDROID aims to generate a test ty that tests Ag in an analogous way
with respect to tp.

In the remainder of this section, we discuss some preliminaries of ADAPTDROID
approach, present a motivating example, describe AUGUSTO approach, and discuss
the empirical evaluation we carried out to evaluate it.

6.1 Preliminaries

To simplify the problem of cross-application adaptation, we make some as-
sumptions on the events and assertions that compose t,, and t: we assume test
cases to contain events of two types

* click(w): clicking on a widget w (e.g., button);

63

64 6.2 Motivating Example

¢ fill(w, input): writing the string input in a widget w (e.g., text field).

Also, we assume test cases to contain assertions only at the end of the test case
(thus, applied after the execution of all t events).
Moreover, we assume assertions to be of two types:

* exists(txt) checks if among all the widgets currently shown in the GUI it
exists a widget whose text is equal to txt. More formally, exists(txt) returns
true (the test passes) if 3w € S : text(w) = txt, false otherwise. This
assertion types can be used to verify that a certain element appears or
disappears after the execution of a certain sequence of events.

* hasText(w, txt) checks if a certain widget exists and has the expected
text. More formally, hasText(w, txt) returns true (the test passes) if w €
S Atext(w) = txt, false otherwise. Widget has text assertions can be used
to verify the correctness of a data shown in certain widgets, such as the
total of a sum.

The notation not (a) denotes the negation of an assertion a, e.g., not (exists(’AB"))
checks for the non existence of a widget with text 'AB’.

We do not consider complex events (e.g., multi-touch gestures, drag-and-drop)
nor assertions that verify peculiar properties of widgets (e.g., its color or position).
However, notice that the considered event/assertion types described above can
cover most of the test scenario of interactive applications. E.g., exists(test’) can
be used to verify if the correct window-transition is performed since ’test’ would
not be visible in case of a wrong transition.

6.2 Motivating Example

This section illustrates the problem of cross-application test adaptation through
an example.

We discuss how to adapt a test case of Splendo, an Android app to manage
tasks lists [[10], to test Bills Reminder, an Android app to manage bills [3]. The test
case of Splendo adds a new task to the task list, and verifies that the task disappears
once marked as done. The test case adapted for Bills Reminder adds a new bill to
the bill list and verifies that the bill disappears once marked as paid. Figure|6.1
shows the donor and adapted test cases of our example. Test cases can be adapted
across these two apps since, although in different domains, they share the logical
operations of creating a new element (a task in Splendo, a bill in Bills Reminder)
and marking it as completed (done in Splendo, paid in Bill Reminder).

65 6.2 Motivating Example

(5) not(exists(‘Test))

‘@ @ 2:46

(1) click(wdl) (2) fill(wd2, Test") (3) click(wd3) (4) click(wd4)

A % @ 2:45

a A ‘4 @ 2:45 A PICEZS
AllLists ~ H & New Task v & New Task v) AllLists ~ Qo AllLists ~ Q
La—— What s to be done? wd3
“_ U Test U
hd = OO0
—— ™ wd4
Due date wd2 Due date
Date not set (i} Date not set (0]
Add to List Add to List
Default a1 Default =

(A) Donor test case tp for Splendo app (Ap)
(1 click(wrl) (2) fill(wr2, Test)) (3) fill(wr3,'100") (4) click(wr4)

| B | Upcoming s+ (| B | Add/Edit Bill =] | B Ada/Edit Bill =] (| B | Add/Edit Bill [E]

Payee/item Payee/ltem
wri ‘ Payee/item ’ Test Test wr4
-
Amount Amount Amount
wr2 - . -
0.00 0.00 -] 100] 86

* Payment URL » Payment URL wr3 * Payment URL
et 7
i@ Long-press to paste URL @} Long-press to paste URL

&} Long-press to paste URL

Create a bill

Due Date Due Date Due Date

a = e
7 o 2019 B 7 uan 2019 B 7 uan 2019 BEH
Category Category Category

(8) not(exists(‘Test™)) | (7) click(wr7) (6) click(wr6) (5) click(wr5)
| B | Upcoming ST

| B |Upcoming z +
7 $ 100.00
RLUN Due Today
< January 2019 >
wr5

SUN MON TUE WED THU FRI SAT

1 2 3 4 5 View/Edit Bill

6 9 107 112 ark as Paid
13 1N 16WE 1 1o g ‘—
Create a bill ' 20 21 22 23|24 25|26

27 28 29 30 31

(B) Recipient test case tg for Bills Reminder app (Ar)

Figure 6.1. ADAPTDROID cross-application test adaptation example

66 6.3 Approach

It is not trivial to generate a test case for Bill Reminder with the meaningful
sequence of events, appropriate data for the bill, and oracle showed in Figure6.1B.
The difficulty in doing so derives from the fact that the events to execute must be
selected from a huge number of possible event combinations. On the contrary,
the donor test case substantially simplifies the generation of that test as it can
directly and explicitly guide the test case generation process through the right
sequence of steps. In addition, test case adaptation offers a unique opportunity:
automatically obtaining an oracle by adapting the oracle in the donor test.

The information in the donor test case are extremely useful for generating a
test case for the recipient app, but adapting the donor test case to the recipient app
still presents several challenges that we exemplify in the example of Figure|[6.1.
The example highlights the three main challenges of automatically adapting test
cases across interactive applications:

Huge set of possible test cases. The space of the possible test cases for
the recipient application grows exponentially with the number of widgets in the
recipient GUI. Since test case adaptation must select the best adaptation of the
donor test among all the possible tests for the recipient application, it requires an
effective strategy that can distinguish the relevant and the irrelevant operations
that can be performed to replicate the donor test case.

Different GUI widgets. The donor test case may exercise GUI widgets that
are logically equivalent but very different from widgets to be exercised in the
recipient test case. For instance, the widget to input the task name to be added in
Splendo is identified with the label “What is to be done?”, while the corresponding
widget in Bills Reminder is identified with the label “Payee /Item”. Also, in Splendo
a task is saved by clicking on the tick mark button, while Bills Reminder requires
to click an image button showing a floppy disk.

No one-to-one GUI event matching. The adapted test case might be com-
posed of a different number of events compared to the donor test case. For
instance, the donor test case shown in Figure @(A) is composed of five events,
while the corresponding recipient test case shown in Figure [6.1(B) is composed
of eight events. In our example, creating a bill in Bills Reminder requires more
events than creating a task in Splendo, and marking a bill as paid in Bills Reminder
requires a date, while marking a task as done in Splendo does not. Finally, the GUI
of the target application might be organized in a way that it imposes to execute
some events in a different order than the donor test case.

67 6.3 Approach

:' - _A_ o 4 Genetic Algorithm N
D
I I
! | o porgjl&titontof Ar Fitness | . test execution
| | | . re- ’ ests Calculation | - similarity calculation
[Processing e !
! ! Initial
o | - descriptors extraction Populatl_on
i PTS i - events weak ordering Generation
=1 - random tests
| — : AR - greedy match tests
. I 5 Populati - crossover
B _’ opulation | _ ,,qom mutations
Evolution | _fiiness-base mutations

v oo

/>
Post- > pdkall
Processing —_—

- test reduction
- oracle adaptation

Figure 6.2. ADAPTDROID logical architecture

6.3 Approach

This section presents ADAPTDROID, an automatic technique for generating
test cases through adaptation. Figure shows the ADAPTDROID process, which
takes as input a donor application A, a donor test t,, and a recipient application
Ag, and generates an adapted test case t, that exercises Az analogously to how
t, exercises A,. Note that ADAPTDROID is entirely black box, that is, it does not
require the source code of the donor and recipient apps but only their binaries.

The test adaptation process is obtained from the execution of five phases: pre-
processing, initial population generation, fitness calculation, population evolution,
and post-processing. The population evolution and fitness calculation phases may
be executed multiple times, as illustrated in Figure |6.2

The pre-processing phase executes the donor test t;, on the donor application
Ap to extract information relevant to the test adaptation process, such as the
identifiers associated with the widgets executed by the donor test case. The
Initial Population Generation, Fitness Calculation and Population Evolution phases
implement a genetic algorithm [50} 51, [52]] that creates and then evolves a
population of candidate tests guided by a fitness function that steers the evolution
toward a ty that is as similar as possible to the donor test case.

ADAPTDROID exploits a specific version of each of these three phases to achieve
this goal, as suggested by the labels present next to each phase in Figure [6.2.
Evolution and fitness evaluation iterate until either a perfect adapted test case

68 6.3 Approach

is found (i.e., fitness equals to one) or a time-budget expires. Finally, before
returning the adapted test case to the developer, the post-processing phase shortens
the test by removing irrelevant events and add adapted assertion extracted from
the donor test case, if present.

To pair in a meaningful way events executed in different applications, ADAPT-
DROID uses a notion of semantic matching, which exploits the descriptors associ-
ated with the widgets executed to perform the events.

The usage of a genetic algorithm equipped with a proper set of evolution
operators allows ADAPTDROID to address the challenge posed by execution space
size (Huge set of possible test cases). The definition of a flexible fitness function
that can capture the different nature of t;, and t; addresses the challenge about
the diversity of the structure and organization of the windows in the donor and
receiving apps (No one-to-one GUI event matching). Finally, the definition of
a matching strategy that takes into account the semantic of the paired events
addressed the challenge about differences of the individual widgets (Different GUI
widgets).

In the next sections, we first explain the concept of cross-app event matching
that ADAPTDROID employs in the approach, then we present each of ADAPTDROID
steps.

6.3.1 Cross-app Matching of GUI Events

To adapt test cases across applications, ADAPTDROID pairs t,, and t; events,
according to their semantics similarity, that is, the logical similarity between
operations in the donor and the recipient applications, while abstracting from
syntactic differences, that is, the two apps may implement semantically similar
operation by interacting with completely syntactically different widgets. Thus
ADAPTDROID measures the similarity between t;, and t; events by considering
exclusively semantic information.

ADAPTDROID computes the semantic matching between an event e; in a donor
test case t;, and an event e; in a recipient test case ty (e; ~ ¢;) based on the events
(i) type, (ii) descriptor, and (iii) textual input of the events.

The type of an event can be either click or fill (see Section .

The descriptor of an event is a semantically relevant string extracted from the
widget that is used to emit the event. In particular, given an event that operates
on a widget w, the descriptor of the event is the descriptor widget w, where the
widget descriptor is calculated using the same strategy used by AUGUSTO and
presented in Section|[5.2.2. Table[6.1 shows the descriptors extracted for each
event in the donor and recipient test cases shown in Figure

69 6.3 Approach

Table 6.1. Running example events descriptors

t events descriptors tr events descriptors
ep; click(wdl) bs_add task eg; click(wrl) action_add
ep, fill(wd2,’'Test’) Whatisto be done? | ez, fill(wr2, 'Test’) Payee/Item
eps click(wd3) action_save_task egs Till(wr3,’100’) Amount
eps Cclick(wd4) Test epq Click(wr4) action_save
egs click(wr5) Test
ere Click(wr6) Mark as Paid
egy click(wr7) 8

The textual input is simply the input data used in events that require inputs.
For instance, a fill event fill(w, txt) is associated with the input txt. If the event
is not associated with any input, this information is empty.

ADAPTDROID computes the similarity between events, by comparing their
attributes semantically. To this end, we defined a function for comparing strings
semantically that compares two strings and returns a Boolean value that indicates
if they represent the same concept. More formally, let ISSEMSIM(txt1, txt2) be
such a Boolean function that returns true if the two input strings txt1 and txt2
are semantically similar, and false otherwise. Each input string of the function
might contain several words, thus txt1=“add account” is a valid input for function
ISSEMSIM.

ADAPTDROID implements function ISSEMSIM using the Word Mover’s Distance
(WMD) [I61]], which is a well-known technique to compute the semantic distance
between two sets of words. WMD is based on Word2vec [82]], a vector-based word
embedding [|[104] where words with similar semantics are located closely in the
vector space [|82]]. We decided to use WMD because it is the only string semantic
distance in the state of the art that handles strings that contain several words.

Given two strings, WMD returns a number between 0 to 1 that expresses
how close these two strings are in the vector space. If the number returned by
WM is greater than a given threshold 7 then ISSEMSIM(txt1, txt2) = true,
false otherwise.

Notice that despite the fact that WMD returns a number, we decided to
define ISSEMSIM as a Boolean function that identifies if two strings represent two
concepts that are semantically close. We decided to opt for a Boolean function
because the distances calculated by WMD are not accurate enough to assume that
the highest similarity is always the best one. For example, it is not possible to

!Stop-words removal and lemmatization [|67] are applied to facilitate WMD calculation and
make it more resilient to differences such as verb conjugation.

70 6.3 Approach

safely consider two strings with WMD 0.55 (e.g., strings “same” and “different”)
to be more (semantically) similar than two string with WMD 0.50 (e.g., strings
“same” and “similar”).

We finally define the semantic matching of events. Given a donor test case
tp, a recipient test case ty, an event e; € t, of type type;, with descriptor d; and
textual input ti;, and an event e; € t; of type type;, with descriptor d; and textual
input ti;, we say that e; semantically matches e;, expressed as e; ~ ¢;, if one of
the following cases holds.

Matching click events: this is the case of events that are both clicks and both
execute a similar functionality. Formally, e; ~ e; iff type; = type; = click(w) A
IsSemSim(d;, d;).

Matching fill events: this is the case of events that are both fill operations
and both execute a similar functionality with the same inputs. Formally, e; ~ €;
iff type; = type; = fill(w,txt) A IsSemSim(d;,d;) A ti; = ti;.

Matching fill-to-click events: this is the case of a fill operation that can
be mapped to an equivalent click operation (e.g., entering the value 1 on a
calculator app can be mapped to clicking the button with the label 1 in another
calculator app). We do not allow the opposite, that is, mapping click events to fill
events, otherwise ADAPTDROID could easily (and incorrectly) obtain a mapping
by entering the values of the labels in the buttons clicked by the donor test case
in the input fields available in the recipient application. Formally, e; ~ e; iff
type; = fill(w,txt) A type; = click(w) A IsSemSim(ti;, dj).

If we consider the events in our running example (see Table[6.1), ADAPTDROID
matches the events in t, with those in t; as follows: ep; ~ egq, €ps ~ €x;

€p3 ™~ €r4, €pg ™~ €Rs.

6.3.2 Pre-processing

The Pre-processing phase collects information about t,, information that ADAPT-
DRroOID uses later during the test case adaptation process. ADAPTDROID traces
two main aspects: the descriptors of t,, events, and the sets of events that can be
likely executed in a different order.

Event sequence: ADAPTDROID executes t,, in A;, and for each event extracts
its descriptor.

Event ordering: The order of the events as executed in the donor test is not
necessarily the only possible one. In several cases, there are groups of events
that can be executed in a different order without affecting the results (e.g., the
fill events necessary to fill in a form). Considering this and that, as mentioned,

71 6.3 Approach

Algorithm 1: Events clustered based on ordering

input :tp = (ey,...,e,), states S = (S, ..., Sp)
output : clusters (ordered list of event clusters)

function CLUSTEREVENTS(E, S)

1
2 clusters « {}

3 ¢ {e}

4 for i from 2 to n-1 do

5 if EVENTISENABLEDINSTATE(e;_1,S;41) A EVENTISENABLEDINSTATE(e;,S;_1)

then

6 | cecU{e}

7 else

8 append c to clusters

9 L ¢« {e;}
10 append c to clusters
11 return clusters

Ap might require to execute the events in a different order, it is important for
ADAPTDROID to know if there exist alternative execution orders of the events of t,.
Knowing these alternative execution orders, ADAPTDROID can ease the adaptation
process by not imposing that t; must follow the same exact event ordering of t,
but allowing it to follow any of t;, equivalent orderings.

ADAPTDROID identifies the possible equivalent event orderings by checking
if pairs of consecutively executed events can be executed in the opposite order
(i.e., both events are enabled in their source states). The consecutive events
that satisfy this condition are part of the same set of events cluster that can be
arbitrarily reordered. Listing [1/shows the pseudocode of the equivalent event
ordering analysis algorithm. The analysis of t,, in Figure [6.1] produces all clusters
each with a single event, thus indicating that the t, events execution order is
the only possible one. Although the algorithm checks pairs of consecutive events,
it can identify clusters of events that can be executed in a different order. For
instance, assuming that e, e,, and e; can be executed in any order, the algorithm
would firstly identify that e; and e, can be executed in the opposite order, and
then it identifies that e, and e; can also be executed in the opposite order, thus
including all three events in the same cluster.

To facilitate the definition of the successive phases of the approach, we intro-
duce the Boolean operator < s, such that e; < . €; iff I¢;,c; € clusters : e; €
ciAe; €c; Al <j. In anutshell, this operator returns true if e; is in a previous
event cluster than e;, and thus it must be executed before.

72 6.3 Approach

6.3.3 Generation of the Initial Population

The first step of a genetic algorithm is to generate the initial population of N
candidate solutions, where N is an input parameter of the approach (P;) [16]. A
candidate solution for ADAPTDROID is a test case tg for the recipient application Ag.
ADAPTDROID populates P, with both randomly generated test cases (to guarantee
diversity in the population) and test cases that are similar to t,, generated in a
greedy fashion (to have“good” genetic material for evolution).

Random Test Cases: ADAPTDROID generates a random test for the initial
population by first randomly selecting the test case length between 1 and a
maximum test case length (given as input). Then, it looks for the events available
on the A initial GUI state, randomly selects an event, executes it, and repeats this
process until generating a test case of the selected length. When ADAPTDROID
executes a fill event, it randomly selects an input string from a pool of input values
composed of the strings used in t, fill events, and a set of randomly generated
strings.

Greedy Match Test: a greedy matching test is a test case that greedily executes
events in Ag that match those of t;,. ADAPTDROID generates greedy match test
cases by opening the target application A, and checking if it can execute an event
that matches t, events in the current state. If it does not identify any event that
matches t,, events, AUGUSTO randomly selects a new event and executes it, and
continues for a number of steps equal to the length of t,.

6.3.4 Fitness Calculation

The ADAPTDROID fitness calculation phase executes the test cases in P;, and
associates them a fitness score between 0 and 1 that characterizes their similarity
to the test case tj,.

Population Execution

Each test case in P; is firstly executed on Az. To execute a test case, ADAPT-
DROID opens A and executes in sequence each event in the test. Note that, as a
result of the population evolution phase it can happen that some test cases are
not completely executable, meaning that not all the events can be performed
(for instance because a widget that has to be clicked is no longer visible). More
specifically, the crossovers and mutations can add unfeasible events in the test
cases. In such a case, ADAPTDROID skips the execution of the unfeasible events
and removes them from the test and then proceeds to execute the following events.

73 6.3 Approach

Note also that the test cases in P; do not include assertions as the assertions are
added only during the post-processing phase.

During the execution of the test cases in the population, ADAPTDROID observes
builds and updates a GUI model of A;. The model is defined as described in
Section [2.3.2 and has exactly the same structure of the GUI model employed
by AUGUSTO (see Section [5.2.2). ADAPTDROID uses AyGUI Model during the
population evolution phase to appropriately combine and mutate the test cases.

Fitness Score

ADAPTDROID computes a score on how much a test case t € P; is similar
to t, considering two aspects: the event similarity and assertion applicability:.
The events similarity captures the similarities between events in t; and t,,. The
assertion applicability captures whether the assertions in the donor test case are
compatible with the states reached by test t;.

Given a donor test case t, the resulting formula for the fitness score is

|M" [+]0; |

FITNESS-SCORE(tR) =
|ty |+ 0p |

where M* represents the events in t that have been properly matched with ¢,
Op represents the assertions present in tp,, and O, represents the assertions in Oy,
that have been properly injected in t;. The operator || indicates the set cardinality
operator. Finally, e an arbitrarily small value that is added to the fitness score to
reward the test cases with the higher potential to improve in the future iterations.
In the following, we describe in details the computation of each element of the
fitness function.

Events similarity. This quantity captures how similar the events in t; are to
those in t,. Considering our flexible semantic matching strategy presented in
Section[6.3.1, the events in t;, can be matched to the events in ty in multiple ways,
for instance, a given click event in t;, might match with multiple click events in
tr (if they have similar descriptors). When counting the number of events in t|
that have been properly matched in tg, there could be multiple ways of pairing
the events, and thus multiple results possible.

More formally, let M denote the set of all possible mappings between the
events in t, and tz. A mapping M is a subset of the events in t;, that have at
least one match in tg, thatis, M € t, : Ve, € M de, € ty Ae, ~e,. To have a
meaningful mapping and thus a meaningful fitness score, ADAPTDROID imposes
some constraints on the mappings in M and filters out those that do not satisfy

74 6.3 Approach

them. A mapping M C t, is a valid mapping if and only if all of these criteria are
satisfied:

Unique events matching. An event in t; can be matched with one event in ¢,
at maximum.

Event ordering. The ordering of the events as extracted in the pre-processing
phase from the donor test case must be respected. More formally, M is valid if
Ve, e; € M C tp with e; <gers € I, €, € tr i€, ~ e, Ae; ~ ey, where a < b.

Consistent matching. A valid mapping must be consistent, meaning that two
events in the donor test case associated with the same event descriptor must
be matched to consistent recipient events. This constraint avoids mapping two
equivalent events in t;, (such as clicking twice on the same button) to different
widgets in Ag. More formally, M is valid if Ve;,e; € M C tp, : d,, = dej, de,, e, €
trie;~egNej~ep Adyg =d,gpe

The event similarity component of the fitness function is computed identifying
the valid mapping M* with the highest cardinality (number of elements), that
is, M* € M satisfies AM € M such that | M |>| M* |. The fitness score considers
| M™ | at the numerator and | t;, | at the denominator to account for the subset of
the events that have been successfully matched in tg.

If consider our running example, we can notice that the possible events
mapping M : ep, ~ eg;, €ps ~ eg; Would be filtered by the unique event matching
constraint, while mapping M* = ep, ~ €g1, €ps ~ €ra» €ps ~ €gs is the valid
mapping with the highest cardinality.

Assertion applicability. The assertion applicability captures the fact that
a good adaptation of the donor test case must reach a state in A; compatible
with the assertions O, available in t;,. In other words, after the execution of the
adapted test events, it should be possible to see a widget which is compatible
with the widget the original assertion predicates upon. ADAPTDROID quantifies
this aspect in the fitness score as the proportion of assertions in t, that can be
checked in tj.

An assertion is checkable if it exists a state traversed by the execution of t,
after the execution of the last event in the mapping M * that includes the elements
that should be verified by the assertion.

Formally, an assertion o € O, (not using a negation) can be applied to a
state S; visited by tg, if there exist a widget w € S; : 1ISSEMSIM(d,,, d,,), where
d, is the assertion descriptor, which we define as follows. If 0 =exists(txt),
d, =txt, otherwise if o =hasText(w,txt), d, = d,,. We also define function
ISAPPLICABLE(0, M™) that returns 1 if o is applicable in a state traversed by ty
after the execution of the last event in the mapping, O otherwise.

75 6.3 Approach

In case o is defined as a negation, such as not(exists(txt)), we apply a
slightly different semantics. In fact, it is easy to find a state that does not contain
a certain widget, indeed most of the states traversed by an execution satisfy this
condition. In this case, we require t; to first cover the positive part of the assertion,
exists(txt) in the example, and then cover the negated assertion in the same
window. In this way, we make sure that t, satisfies the negation explicitly moving
from a state in a window that does not satisfy it to a state in the same window
that satisfies it.

Formally, given o € O, (using a negation), ISAPPLICABLE(0, M™) returns 1 if
the positive version of o is applicable to a state S; traversed during t execution,
its negated version is applicable to a state S; traversed after the last event in
the mapping M*, and S; is traversed before S; and are in the same window; 0O
otherwise.

In our example, t}, assertion verifies that no widget with text “Test” exists. The
assertion is applicable to the last state visited by t; because it does not contain
a widget with the descriptor “Test”, but such widget appears in that window in
state 4.

The quantity O} that is part of the fitness score counts the number of assertions
that are applicable in the adapted test case, thatis, O} = Za <o, ISAPPLICABLE(a, M™).
The contribution to the fitness score is the ratio between | O;, |, the applicable
assertions, and | Op, |, the assertions available in the donor test case.

The value of the fitness score without considering e thus ranges between 0
and 1, with 1 representing an adapted test case that reproduced all the events in
the donor test case, including the assertions. To privilege the test cases that have
more chance to improve in the future, we increase by a small value € > 0 the
fitness score of the test cases that traversed states that can be clearly exploited
to improve the tests in the future (the fitness score is, in any case, bounded to
1). These states are the ones where the events that have not been matched so
far could have been executed. For instance, the state includes a button that is
enabled and that matches with a click event in the donor test case that has not
been matched yet. In this way, when two test cases perform the same in terms of
matching events and applicable assertions, the genetic algorithm privileges the
test cases with the greater potential. The specific value of epsilon is not important
as long as it is less than the increase in fitness given by a matched event or by an

applicable assertion, thus epsilon < ————.
| tp [+10p |

76 6.3 Approach

[o]1]2]3]a]s]e[7]]9] [o]1]2]3]a[3]s[7[5]5]

EEEEEREREE] CEFEEERRRE]

Figure 6.3. Crossover example

6.3.5 Population Evolution

The population evolution phase combines and modifies the best elements
in the current population P; to generate a new population P;,; with fitter test
cases (i.e., higher fitness score). The evolution process follows a classic genetic
approach [[113], which work in four consecutive steps: elitism, selection, crossover,
and mutation.

Elitism

Before starting the evolution phase, ADAPTDROID adds the best E test cases
seen so far into P;, thus obtaining a population of N +E tests, where N is the fixed
size of the population. This process is called elitism [113] and it is a standard way
used in genetic algorithms to ensure that the best solutions are not lost during the
evolution process [[113]. ADAPTDROID then uses the N + E tests in the population
to generate P; ;.

Selection

ADAPTDROID selects N /2 pairs of test cases from P; as candidates for crossover.
ADAPTDROID implements the standard selection approach called roulette wheel [[113],
which gives to each test a probability of being selected proportional to its fitness.
Thus, a test case with a higher fitness is likely to be selected several times, while
a test with low fitness might not be selected at all [[113].

Crossover

Each pair of test cases selected is combined producing a new test case with
probability C, or the tests are left unmodified and passed to the next phase with
probability 1 — C. ADAPTDROID implements a single-point cut crossover. Given a
selected pair tg; and tg,, ADAPTDROID selects two random cut points that split tg,
and tg,, in two segments. Then, it creates two new test cases, one concatenating
the first segment of t;; and the second segment of t,, and the other concatenating

77 6.3 Approach

the first segment of tg, and the second segment of tp,. Figure|6.3|visually depicts
the crossover of two test cases.

The crossover could create an unfeasible test case if the execution of the first
segment terminates in a window that is different from the one that is expected
by the first event in the second segment. To make the test feasible, ADAPTDROID
tries to automatically insert between the two segments a sequence of events that
repairs the test making it runnable. ADAPTDROID identifies such sequence by
querying the GUI Model of A, that represents which events can trigger a window
transition. ADAPTDROID incrementally builds this model observing the window
transitions triggered by the execution of the test cases.

Mutation

When P, reaches a size of N elements, the crossover step terminates and
the algorithm modifies test cases in P, ; by mutating them. As for the generation
of the initial population, ADAPTDROID aims both at introducing random genetic
diversity and converging to a (sub)optimal solution faster. As such, ADAPTDROID
uses two types of mutations: random and fitness-driven.

Random mutations, as the name suggests, randomly modify test cases. Each
test case in P, ; has a probability RM of being mutated by one of the three random
mutations supported by ADAPTDROID: (i) adding an event in a random position;
(ii) removing a randomly selected event; and (iii) adding multiple fill events in a
window containing text fields. The rationale of the last mutation type is that in
case of forms with several fields, it might require a huge number of generations
to fill all those fields with the random add mutation. Thus, this mutation speeds
up the evolution by filling all the text fields in a single mutation.

Fitness-driven mutations mutate a test case applying heuristics with the goal
of improving the fitness score of the modified test case. Each test case in P,,; has
a probability FM of being mutated using one of these two mutations:

* Fitness-Driven Remove. It removes one of the events in t; that does not
match (according to ~) any of event in t,. This mutation helps removing
spurious events that do not contribute to increasing the value of the fitness.

* Fitness-Driven Add. It selects an event e, € t, that is not matched by any
of the events in tz, and adds a new event e; in ty such that e, ~ e;. The
added event is selected among the events which are available during the
execution of tp.

78 6.4 Implementation

6.3.6 Post-Processing

The search for an adapted test case keeps evolving and evaluating populations
of test cases until a predefined number of evolutions have been performed or
when a test case with fitness 1.0 is found. When the search terminates, the test
case with the highest fitness is post-processed and returned to the user. The
post-processing phase performs two operations: reduces the test case length by
eliminating irrelevant events, and applies (if possible) the donor assertions to it.

To reduce the test case length, ADAPTDROID removes one by one the events
that are not part of the mapping used to calculate the fitness score. After one
event is removed, ADAPTDROID executes the test and recalculates its fitness. If
the fitness decreases, the event is added back because the removed event, even
though did not directly contribute to the fitness value, enabled other relevant
events to be executed. If we consider the example in Figure |6._1, events 2, 3,
6, and 7 of the adapted test case were not matched with any of the events in
the donor test case. ADAPTDROID tries to remove these events one by one, but
removing each of them would cause a decrease in the fitness (e.g., if event 3 is
removed the form cannot be submitted and the “Test” item cannot be created),
thus the test case is left unchanged.

Finally, if the fitness function evaluated t,, assertions as applicable to tg,
ADAPTDROID adds them unchanged at the end of the test case. Thus, in our
example the original assertion not (exists(txt)) is applied to the Ay state after
the execution of all the events in t;.

6.4 Implementation

To evaluate the effectiveness of the ADAPTDROID approach, we developed a
prototype that targets Android applications. The prototype is developed in using
Java 8, it comprises about 10k lines of code, and it relies on the Appium [8]
framework as the underlying technology to interact with the Android applications
GUIs.

Appium framework allows to read an Android application GUI and get in-
formation on all the widgets shown in the screen at a given moment but does
not allow to read the widgets that are outside the screen boundaries. In those
cases, it is required to scroll the screen to read and access the hidden widgets.
ADAPTDROID prototype during the evolution phase might randomly add scroll
events in order to access all widgets in the GUI. We did not discuss this technical
detail in the approach to keep the description simpler.

79 6.5 Evaluation

ADAPTDROID prototype executes the android AUT using Android 5.1 emulators
and supports the parallel use of multiple emulators to optimize the test case
execution step. To guarantee that each test case is executed starting from the
same app state, ADAPTDROID prototype deletes and re-installs the AUT in the
emulator before each test case execution.

To calculate the semantics distance between string ADAPTDROID uses a pre-
trained Word2Vec model with more than 3 million words obtained from crawling
Google News [[111].

The prototype and its implementation are freely available under MIT licensing
and it can be found at http://github. com/danydunk/AdaptDroid.

6.5 Evaluation

We experimentally evaluated ADAPTDROID with a prototype implementation
that we used to adapt eight test cases from four different donor apps to generate
test cases for 24 different recipient apps. Our evaluation addresses three research
questions:

(RQ1) Can ADAPTDROID effectively adapt test cases across different interactive
applications?

This research question investigates the capability of ADAPTDROID to automati-
cally produce a test case for the AUT which has the same semantics of a source
test written for a different application.

(RQ2) Does ADAPTDROID explore the search space more effectively than random
exploration?

This research question investigates whether the test case produced by ADAPT-
DroOID could be generated also employing a simple random search and whether
the fitness function presented in Section [6.3.4 is actually fundamental to generate
good solutions.

(RQ3) What is the contribution of the greedy match initial test cases and fitness-
driven mutations on ADAPTDROID approach effectiveness?

This research question investigates whether the population initialization with
greedy-match test cases and the fitness-driven mutation employed by ADAPT-
DRroID are actually helpful in converging to a good solution quicker than the
default random initialization and mutations employed by standard search-based
approaches.

http://github.com/danydunk/AdaptDroid

80 6.5 Evaluation

6.5.1 Empirical Setup

We selected a total of 32 Android apps from the Google Play Store by referring
to the following popular types of mobile applications: “Expense Tracking”, “To-do
List”, “Note Keeping”, and “Online Shopping”. We considered these 4 types of
applications because they represent applications with recurrent functionalities
and therefore we believe they are amenable to test adaptation. We used eight
apps as donor (Ap) and 24 apps as recipients (Ag).

We selected the candidate donor applications by (i) querying the Google Play
Store with the name of each category in the search bar, and (ii) selecting the first
two apps that are either free or freemium and do not require login credentials at
start-up.

We selected three A, for each donor app Ap, by (i) querying the Google Play
Store page of each A, for similar apps, (ii) selecting the first three suggested
similar apps that are were not selected as Aj, and have the same characteristics
of donor apps described above. This process resulted in a total of 24 pairs <A,
Ag> of donors and recipient applications, selected objectively.

Donor test cases. We asked four independent testers to design a total of
eight test cases (one for each donor app) for the eight donor applications, and to
evaluate the total 24 test cases that ADAPTDROID generated for the corresponding
recipient applications. We decided to experiment with donor test cases developed
by independent testers and not on test cases released with the apps, to be able to
ask for an independent assessment of the adaptations that ADAPTDROID generates
for the recipient apps. We believe the best person to assess a test adaptation to be
the creator of the original test case, which would be hard to contact in the case
of test cases released with open-source apps. The independent testers are Ph.D.
students majoring in software engineering, not related to the research project,
and not aware of the goal of the study when designing the tests.

We assigned to each tester two randomly selected A, of different categorie
and asked them to design a test case for each assigned apps.

The first five columns of Table [6.2| provide essential information about the
evaluation subjects. They show the donor apps and their category (Column
Donor App (Ap)), the testers who designed the test (Column Tester), the length of
the donor test cases in terms of number of events (Column |t,]|), the recipient
apps(Columns Recipient App (Ag)), and a progressive id that identify each pair
<Ap, Ag> (column ID).

We asked each tester to evaluate whether their test cases could be adapted
to the corresponding Ag. Each tester evaluated six pairs (A;,Ag) on a scale "Yes",

2In this way, each tester had to design two conceptually different tests.

81 6.5 Evaluation

"No", and "Partially", where "Partially" means that some parts of the donor test
cannot be replicated in the target application (Column Adaptable?). We also asked
the testers to manually adapt the donor test cases for the recipient apps in the
cases they estimated as fully ("Yes") or partially ("Partially") adaptable. The testers
estimated as either fully ("Yes") or partially ("Partially") adaptable 18 and 3 pairs
of test cases, respectively (75% and 12.5%), and considered as non-adaptable
("No") only 3 pairs of test cases (12.5%), thus confirming our intuition that tests
are often adaptable across similar applications.

Testers T2 and T3 designed donor test cases that exercise functionalities of the
donor apps not present in the corresponding recipient application, and thus could
not be adapted. We asked them to design a new donor test cases referring to
functionalities present also in the recipient applications. Tester T2 succeeded (we
mark the corresponding cells in Column Adaptable? with a *), while tester T3 was
not able to do so as the donor app Pocket Universe did not have any functionality
that was found also in the recipient apps.

Running ADAPTDROID. We ran ADAPTDROID 21 times (we excluded the three
cases in which the donor test was not adaptable), giving in input each pair of A,
and Ay and the corresponding manually-written t,. We ran ADAPTDROID with
a budget of 100 generations (i.e., iterations of the genetic algorithm) with the
following configurations: We use a population size (N) of 100 elements, we set
the bound on the maximum test case length to 25 and we set the size of E (#
test cases for the elitism) to 10. ADAPTDROID generates the initial population
with 10% of greedy matching and 90% random test cases. We set the crossover
probability (C) at 0.4, and the probability of both random (RM) and fitness-driven
mutations (FM) to 0.35. We set to 0.65 the threshold 7 for the WMD string
semantic similarity. We selected these configuration values by performing some
trial runs.

Regarding execution time, on average ADAPTDROID completed 100 generations
in 24 hours. Most of ADAPTDROID execution time is spent executing the generated
test cases on the emulator (100 generations containing 100 test cases amounts to
10000 test cases to execute). This time could be significantly reduced by using
more parallel emulators to execute the test cases or using real devices instead of
emulators.

Note that for the adaptation with ID 21, the Appium framework had com-
patibility issues with the recipient application A, that prevented ADAPTDROID to
generate tests for Az. Since we had already asked tester T, to explore A and
manually adapt t,, for the Az, we did not ask him/her to re-do the work for
another Ag.

82 6.5 Evaluation

Table 6.2. Evaluation subjects and results

Tester Donor App (Ap) |ty| ID Recipient App (Ay) Adaptable? Q; |ty| # spurious # missing Qg O. Adapted?
. 1 KPmoney [|6] Partially 3 13 6 0 1,00 No
2 >
E’g“ix%ﬁﬁg)6J 15 2 Monefy [14] Yes 4 10 1 0 1,00 Yes
- P g 3 Money [92] Yes 4 15 0 0 1,00 Wrongly
. . 4 Xnotepad [54] Partially 1 7 4 2 0,50 No
M‘;:QT:?::"IE [)8 3l 10 5 Color Notes [9] Yes 2 15 9 2 075 Wrongly
ping 6 Kepp Mynotes [[112] Yes 1 2 1 5 0,14 No
. 7 Spending Tracker [81] Yes* 2 23 1 8 0,73 Wrongly
M?;ﬁ“ﬁ;\eﬂf’r‘::flz;[?ﬂ 16 8 Smart Expendit [35] Yes* 0o 18 - - 0.00 -
T2 P & 9 Gastos Diarios [|34] Partially* 0 6 - - 0.00
. . 10 Notes [100] Yes 3 8 0 2 0,80 No
B“SI("I‘\;;I;I‘;;::O; k)m] 13 11 Noteme [102] Yes 4 10 0 2 083 Yes
ping 12 Notepad [5] Yes 112 10 11 0,15 Yes
. 13 Seven Habits [|7 No - - - - - -
Pocket Universe [[106] 11 14 Ob Planner [3[1]] No
3 (To-dolist) 15 Simple Checklist [101] No - - - - - -
Aliexpress 1] 16 Banggood [[17] Yes 2 11 4 1 0,88 No
(OnlinepSho ing) 16 17 Lightin the box [62] Yes 1 7 4 5 0,38 No
PPIDE, 18 Shein [49] Yes 0 9 - 0.00 No
19 Zara[117] Yes 3 8 0 0 1,00 No
Zalando [116] 6 20 Romwe [94] Yes 3 s 0 1 083 No
(Online Shopping) 21 Yoox [114] Yes . : ; ; .
T .
4 Splendo [[10] 22 To Do List [186] Yes 3 9 4 6 0,45 Yes
P()To- dolist) 10 23 Tasks [85] Yes 1 8 6 5 0,29 No
24 Tick Tick [56] Yes 1 15 11 8 0,33 Yes

6.5.2 RQT1: Effectiveness

After collecting the output of ADAPTDROID, we asked the testers to evaluate
the effectiveness of ADAPTDROID in adapting their tests. We showed the adapted
tests tz generated by ADAPTDROID for the assigned pairs (Ap,Ag) to each tester.
For each tg, we asked the tester to judge the quality of t; on a scale from O to 4,
where 0 indicates that tj is not related at all to the original test semantics, and
4 indicates that t is an adaptation as good as the one they manually produced.
Column Q; in Table[6.2 shows the tester quality evaluation for each adaptation
case.

If the tester gave a score different from zero, we asked him/her to further
evaluate the test generated by ADAPTDROID by marking the spurious events (those
that do not contribute in the test adaptation) and to give us the number of missing
events to have a perfect adaptation. Note that this process was facilitated by the
fact that the testers have already implemented the adapted test case manually.
Column |tg| shows the length (in terms of the number of events) of the test cases
generated by ADAPTDROID. Columns #Spurious and #Missing show the number
of events in ty the tester marked as spurious and missing, respectively. Using this
information we computed Qg, a structural quality indicator that encompasses the
completeness of the matched events. We calculate Qg as follows:

#missing

Qszl

| tg | —#spurious + #missing

83 6.5 Evaluation

In eight cases out of 20 (40%) testers evaluated ADAPTDROID adaptations as
high quality (Q; = 3), three of which were considered perfect adaptations. In
three cases (15%), the adapted test generated by ADAPTDROID were evaluated
with a medium quality (Q; = 2) and in nine cases (45%) they received a low
quality evaluation (Q; < 1). Overall, ADAPTDROID adaptations received an
average score of 1.95. As Table [6.2 shows, the testers often reported several
spurious and missing events. In particular, indicator Qg, which shows the ratio of
matched events, has an average value of 0.53, indicating that overall ADAPTDROID
was able to execute 53% of the true event matches identified by the testers. There
is a good correlation between the two quality indicators Q; and Qg (Pearson
coefficient [87] is = 0.89), which confirms that adapting a large portion of the
test is important for the testers. However, it is interesting to notice that a low value
of Qg is not always associated with a low value of Q. Consider for instance the
case with ID 22. In that case, ADAPTDROID failed to execute half of the matching
events, but the tester gave those events a low importance and thus still gave a
high Q; score to the adaptation.

We can notice that in the 3 cases where the testers identified that the original
test case could be adapted only partially (ID 1, 4, 9), ADAPTDROID adaptations
had a good quality in one case (ID 1) and low quality in the other two cases (ID
4 and 9). These results seem to suggest that the cases in which the donor test
is only partially adaptable are more challenging (as expected) and that impacts
ADAPTDROID adaptations quality. However, ADAPTDROID approach showed that
in some cases it can achieve a good result also in these cases.

The last Column in Table @ (O. Adapted?) reports whether ADAPTDROID
was not able to adapt the assertions (“No”), adapted the assertions and the tester
evaluated them as correct (“Yes”) or incorrect (“Wrong”). ADAPTDROID adapted
the original assertions in eight cases (40%), and in three cases the adaptation
was incorrect. The reason of the wrong oracle adaptations is due to the fact that
ADAPTDROID (if possible) simply adds the original assertion without performing
any adaptation on it, thus it is not resilient to the possible difference in which
data are presented across the different GUIs. For instance, in the adaptation with
ID 3, the assertion in the donor test checks if a widgets with descriptor “expenses”
has text “100”, but the corresponding widget in the recipient app showed had
text “-100”, which is semantically equivalent (100 expenses = -100 total balance)
but syntactically different and therefore the oracle was deemed as incorrect.

Notice the adapting the assertions of the donor tests was not always possible.
In the three cases in which the donor test was only partially adaptable, the testers
identified their assertions as not adaptable (that contributed to their evaluation
of the donor tests being only partially adaptable). Thus, if we exclude these cases,

84 6.5 Evaluation

ApAPTDROID adapted the original assertions in eight cases out of 17 (47%), five
of which were correct (29%).

To better evaluate the performance of ADAPTDROID, we manually evaluated the
cases in which it performed poorly. We noticed three main issues that prevented
ADAPTDROID to be effective:

1) Significant differences between t;, and tz. In some cases, Az and A, had
significant differences that required complex adaptations that go beyond the
capabilities of ADAPTDROID. For instance, in adaptation with ID 18, t;, searches
in the Aliexpress [[1] Online Shopping application for a USB drive and adds it to
the shopping basket. Since Shein [49]] is an Online Shopping application that sells
clothing, T3 adapted t), searching for a T-shirt instead. As expected, ADAPTDROID
was not able to perform this adaptation as it tried to search for a USB drive
resulting in an empty search result. As another example, in adaptations with ID
23 and 24 t;, adds a task under the pre-existing work tasks list. However, the
recipient applications do not have a predefined work task list, thus t; should
create one. Being task list creation not part of t,, ADAPTDROID was not able to
do so, thus producing a poor adaptation.

2) Missed Event Matches. ADAPTDROID relies on matching events based on their
descriptors extracted from the GUI. However, events matching was not always
effective due to (i) the unsoundness of WMD in matching event descriptors;
and (ii) the limited semantics information of the event descriptors. To give an
example, some of the considered apps had image buttons with file names like
“fabButton.png” which is hardly helpful to describe the semantic of the widget
and identify similar events across applications.

3) Incidental Event Matches. In our experiments, we noticed that ADAPTDROID
often wrongly matched widgets that were actually not semantically equivalent. In
most cases, this problem was caused by the use of the same word but in different
contexts. For instance, WMD identifies as semantically correlated the strings “add
configuration” and “add task” because the two strings both contain the word
“add”.

The first issue described is one of the intrinsic challenges of the test case
adaptation problem. ADAPTDROID approach is able to mitigate this problem when
the differences are of a smaller entity, like those described in the running example
used to present the technique, but it is not able to overcome it in case of significant
difference like those described above.

These other two problems discussed instead, boil down to the overall same
issue: the event matches computed for the fitness function calculation can often
be imprecise due to the limitations of the WMD or limited descriptiveness of the

85 6.5 Evaluation

Table 6.3. RQ2: Fitness values achieved by ADAPTDROID and RANDOM

ADAPTDROID RANDOM ADAPTDROID RANDOM
ID H-Score Gen. H-Score Gen || ID H-Score Gen H-Score Gen
0,64 33 0,30 79 || 11 0,41 86 0,23 6
0,47 59 0,23 3 12 0,11 1 0.11 1
0,47 95 0,30 21 16 0,50 43 0,30 11
0,78 91 0,36 81 17 0,50 75 0,23 23
0,24 4 0,21 40 || 18 0,30 92 0,17 62
0,39 1 0,33 79 || 19 0,42 19 0,38 32
0,74 59 0,72 7 || 20 0,54 5 0,50 1
0,41 25 0,32 3 22 0,63 59 0,38 46
0,50 17 0,37 19 || 23 0,46 32 0,34 59
0,45 15 0,33 61 || 24 0,46 21 0,29 7

O O N OUT A WN R

—_
o

event descriptors. For this reason, in some cases the computed fitness values
mislead the search-based adaptation process causing low quality results. In our
analysis we noticed that this overall issue affected in a way or another basically all
the 20 adaptations instances in our study. However, in some cases ADAPTDROID
search based approach was able to overcome these issues, in some cases learning
to avoid a given (incidentally) matching event cause executing it did not allow
to match other events, or learning sequences of events that even though did not
match the donor events, contributed to arrive to perform other matching events.

Considering the complexity of the problem, the results of our study are both
positive and promising. ADAPTDROID often produced test adaptations which were
deemed of good quality by the testers and that in nearly half of the cases included
oracles, which significantly increase the failure discovery ability of the test cases
compared to tests generated without adaptation. Although we reported data for
every adaptation task we studied, it is possible to configure ADAPTDROID to report
only adapted test cases that reach a minimum fitness score, thus significantly
improving the quality of the generated output for the testers who are not annoyed
with poorly adapted test cases. For instance, with a 0.45 threshold, ADAPTDROID
filters out 5 of the poor test cases, and reports only 4 poor test cases out of a
total of 15 adapted test cases (26%). However, our evaluation showed that more
work is needed to improve the approach. ADAPTDROID widget matching based on
WMD showed to be imprecise and that limited the overall results of the approach,
especially in its ability to adapt the oracle.

6.5.3 RQ2: Comparison with Random Search

RQ2 aims to verify whether ADAPTDROID adaptations could be generated with
random search. To answer RQ2 we created a variant of ADAPTDROID that we call

86 6.5 Evaluation

RanDOM with the following modifications: (i) we removed the roulette-wheel
selection in the crossover phase and we replaced it with random selection; (ii) we
set that all the test cases in the initial population are generated randomly; (iii) we
set the probability of fitness-driven mutations to 0; (iv) we disabled elitism. Thus,
RANDOM carries population initialization and evolution completely random. We
opted to use a random variant of ADAPTDROID rather than an existing random
test generator to perform a meaningful evaluation. If we compare ADAPTDROID
with an existing random test generator we cannot ensure that the differences are
due to the search strategy and not due to the two tools differences in events and
inputs to generate tests.

We ran RANDOM with the same 100 generations budget used to run ADAPT-
DroID and we computed the fitness score of each randomly generated tests. We
compare ADAPTDROID and RANDOM in terms of the highest fitness score they
achieved. The rationale of this choice is to verify whether it is possible to generate
at random test cases of similar quality (i.e., similar fitness value) compared to
those produced by ADAPTDROID. Table shows for ADAPTDROID and RANDOM
the highest fitness score observed after 100 generations (Column “H-Score”) and
the number of the generation in which the H-Score was first observed (Column
“Gen.”). As the results show, RANDOM consistently achieves a lower fitness value
compared to ADAPTDROID, and only in a few cases they achieve similar or equal
values. In average ADAPTDROID achieved a fitness of 0.48, while RANDOM had an
average fitness of 0.32. To further validate this result, we applied a two-tailed
statistical t-test [[12], [99] (after verifying that the distributions of fitness values
achieved by ADAPTDROID and RANDOM follow a normal distribution with the
Shapiro-Wilk test [|96]]). The resulting pvalue is 0.002, thus confirming that
the fitness values achieved by ADAPTDROID are higher than those achieved by
RAaNDOM (higher average fitness) and that this result is statistically significant
(pvalue < 0.05). Moreover, it is interesting to notice that in the few cases in which
ADAPTDROID and RANDOM have similar values they both achieve low fitness.

Figure shows the average “H-Score” per generation of the 20 adaptations.
The figure shows that ADAPTDROID steadily increases while the fitness of Random
achieves saturation much faster. This is also reflected by the fact that ADAPTDROID
often observes the highest fitness after more generations than RANDOM (Column
“Gen.” Table[6.3).

Figure [6.4 indicates that the search-based approach is essential to produce
test cases with high fitness scores. ADAPTDROID starts by generating test cases
that greedily execute events that can match the donor test events, thus it obtains
a higher fitness than RANDOM already in the first generation. However, Figure
shows that this simple greedy strategy is not enough as the fitness value keeps

87 6.5 Evaluation

H-Fitness AdaptDroid —Random

0,500

0,400

0,300 Pp— e E—
0,200
0,100

0,000 '
0 10 20 30 40 50 60 70 80 90 100

Generation
Figure 6.4. Average fitness growth ADAPTDROID vs RANDOM.

Table 6.4. RQ3: Fitness values achieved by ADAPTDROID and ADAPTDROID-
SIMPLE

ADAPTDROID ADAPTDROID-SIMPLE ADAPTDROID ADAPTDROID-SIMPLE
ID H-Score Gen. H-Score Gen ID H-Score Gen H-Score Gen
1 0,64 33 0,57 50 || 11 0,41 86 0,44 41
2 0,47 59 0,43 98 || 12 0,11 1 0.11 1
3 0,47 95 0,40 82 || 16 0,50 43 0,64 36
4 0,78 91 0,77 80 || 17 0,50 75 0,44 72
5 0,24 4 0,27 9| 18 0,30 92 0,30 64
6 0,39 1 0,33 11 || 19 0,42 19 0,42 22
7 0,74 59 0,74 36 || 20 0,54 5 0,54 11
8 0,41 25 0,41 16 || 22 0,63 59 0,55 26
9 0,50 17 0,50 22 || 23 0,46 32 0,38 10
10 0,45 15 0,31 10 || 24 0,46 21 0,53 93

increasing significantly after the first generation.

In summary, the experimental results indicate that ADAPTDROID search-based
approach is effective in exploring the search space, and confirm our hypothesis
that the test cases generated by ADAPTDROID can hardly be generated at random.
Moreover, these results suggest that the search-based approach leveraged by
ADAPTDROID is fundamental to obtain tests with high fitness values.

6.5.4 RQ3: Greedy-match Initialization and Fitness-driven Mu-
tations Evaluation

RQ3 aims to assess the contribution of ADAPTDROID smart initialization and
mutations on the overall approach effectiveness. To answer this research question
we created a variant of ADAPTDROID that we call ADAPTDROID-SIMPLE with the
following modifications: (i) we set that all the test cases in the initial population
are generated randomly; (ii) we set the probability of fitness-driven mutations to

88 6.5 Evaluation

H-Fitness AdaptDroid AdaptDroid-Simple
0,500
0,400
0,300
0,200
0,100
0,000
0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 6.5. Average fitness growth ADAPTDROID vs ADAPTDROID-SIMPLE.

0.

We ran ADAPTDROID-SIMPLE with the same 100 generations budget used to
run ADAPTDROID. Table [6.4 reports for ADAPTDROID and ADAPTDROID-SIMPLE
the highest fitness score observed after 100 generations (Column “H-Score”) and
the number of the generation in which the H-Score was first observed (Column
“Gen.”). As the results show, in most of the cases ADAPTDROID achieves slighter
higher values of fitness value than ADAPTDROID-SIMPLE, while in four cases it is
ADAPTDROID-SIMPLE to achieve higher values. In average ADAPTDROID achieved
a fitness of 0.48, while ADAPTDROID-SIMPLE had a average fitness of 0.45, thus
showing a negligible difference in terms of the best solution that can be reached
over 100 generations.

Figure|6.5shows the average “H-Score” per generation of the 20 adaptations.
The figure shows that even though the two approach reach almost identical fitness
values, ADAPTDROID reaches the highest fitness value quicker, thus requiring tens
of generations less to converge to the final solution.

These results show that although the greedy-match tests initialization and the
fitness-driven mutation have limited impact on the quality (in terms of fitness
value) of the final solution found, our results indicate that the smart initialization
and mutations employed by ADAPTDROID can allow the approach to perform the
search more effectively and converge quicker to the final solution.

6.5.5 Threats to Validity

A threat to external validity derives from the limited set of categories of
applications that we used to select the donor applications, and that questions the
generalisability of our results to other categories of applications. We selected the

89 6.5 Evaluation

donor applications from four categories that we believed to be amenable for test
case adaptation to be able to evaluate the effectiveness of the technique in the
cases when adapting the donor test is indeed possible.

Another threat to external validity derives from the choice of the specific donor
and recipient applications. We avoid biases in the selection of the applications
by choosing the donors from the first search results of Google Play Store and by
choosing the recipients from the similar apps suggested by the Google Play Store.

A threat to internal validity derives from the selection of the testers of our study.
The four testers are all experienced in testing but they are not the developers
of the selected applications. Although their test cases might be different from
those that the original developers of the app would write, we let the testers take
confidence with the apps before designing the test cases, mitigating the issue of
working with non-representative test cases.

Another threat of internal validity derives from the statistical significance
of the results of our study. Since ADAPTDROID has a random component in it,
multiple runs may yield different results. However, since the evaluation of the
results involved human participants, who are able to evaluate a small number
of tests only, we necessarily had to limit the number executions used in the
evaluation.

A final threat to the internal validity derives from the setting of ADAPTDROID
configuration parameters for the empirical study. The selection of different proba-
bilities for crossover, greedy-match initialization, random mutations, fitness-driven
mutations might result in the approach having a significantly different perfor-
mance. We mitigated this issue performing some trial runs and selecting the
best configuration parameters according to the results of those runs and our
knowledge of the technique.

90

6.5 Evaluation

Chapter 7

Conclusions

This thesis addresses the problem of automatically generating system test cases
for interactive applications. This problem has been investigated both academically
and industrially, aiming to reduce the overall cost of verification and validation
activities for the development of interactive applications. So far, most of the
approaches proposed to address this problem mainly explore the GUI of the
application under test guided by structural information to generate test cases.

In this thesis, we study in depth this problem and its state of the art. To study
the strengths and limitations of the current techniques, we present an empirical
comparison that we conducted among the most mature test case generation
techniques for desktop interactive applications. This study provides empirical
evidence showing that the effectiveness of state-of-the-art techniques is still fairly
limited as they often fail to generate semantically meaningful test cases that can
trigger important faults and do not include functional oracles in the test cases
they produce.

This thesis pinpoints the lack of information about the AUT semantics as the
main factor limiting the effectiveness of the existing techniques and to advance
the state of the art proposes a radically new idea: leveraging the recurrence of
functionalities among different interactive applications. The fact that often interac-
tive applications share similarities and often implement the same functionalities
can be exploited as a way of obtaining semantic information that can be used to
effectively generate meaningful test cases equipped with functional oracle. In this
dissertation we elaborated this unexplored opportunity and identified two ways in
which it can be leveraged for semantic testing: (i) the semantics of some popular
and recognizable functionalities in interactive applications, called application
independent, can be predefined once and for all and then be used to automatically
generate effective test cases for these functionalities in any AUT; (ii) the manually

91

92

written test cases used to test certain functionalities in existing applications can
be used, after being properly adapted, to test the same functionalities in the
AUT. To exploit these two ideas, we propose two novel techniques: AUGUSTO and
ADAPTDROID.

AUGUSTO exploits the opportunity of AIF to generate effective test cases, and
we evaluated it on seven desktop interactive applications and compared it to six
state-of-the-art approaches. AUGUSTO was able to reveal five more bugs than
the competing techniques, showing that it is more effective than state-of-the-
art techniques in finding bugs when testing AIFs, thus confirming our research
hypothesis that indeed interactive applications recurring functionalities can be
exploited to achieve effective testing.

ADAPTDROID exploits the possibility of reusing manually written test cases
across similar applications. We evaluated ADAPTDROID in a study with four
human subjects adapting 24 test cases across similar Android apps. In our study
ADAPTDROID adaptations were evaluated as high quality by the human subjects
in 40% of the cases, thus showing that, albeit still limited, the approach is able to
automatically adapt test cases across applications.

The two approaches presented in this thesis are different and complementary
to each other. Ideally, both approaches test functionalities which can be found on
many interactive applications. AUGUSTO requires the initial effort of modeling the
functionalities and to be applicable requires functionalities to be implemented
in a recognizable way across different applications. In these cases, AUGUSTO
demonstrated to be able to generate thorough bug-revealing test suites. Instead,
ADAPTDROID does not require any initial effort (test cases can be mined from
open source applications) and allows the tested functionalities to differ more
across different applications as only the elements involved in the original test case
(and not the whole functionality) have to be recognized. However, the testing
effectiveness of ADAPTDROID depends on the number and quality of the donor test
cases used as input to the adaptation process. Thus, ADAPTDROID is able to detect
faults in the AUT only when an appropriate donor test case that can discover that
fault is available for adaptation. In general, both AUGUSTO and ADAPTDROID can
be used to generate an effective initial test suite able to meaningfully test many
functionalities of an interactive application under test, allowing the developers to
focus most of their testing efforts on the peculiar aspects of their application.

93 7.1 Contributions

7.1 Contributions

The main contributions of this thesis to the problem of testing interactive
applications are an empirical study that compares the main state-of-the-art tech-
niques for desktop applications and the definition of two novel approaches. In
details, this thesis contributes to advancing the state of the art in automatic test
case generation for interactive applications by proposing:

An empirical study that evaluates the test case generation state of the art
for desktop applications. We presented the results of a study in which we
compare the main state-of-the-art techniques for testing desktop application
by applying them on a set of common subject applications. The results of the
study provide new compelling evidence showing that current techniques still have
limited effectiveness in thoroughly covering the execution space of the AUT and in
detecting faults. The results of this study were presented at the 2018 International
Workshop on User Interface Test Automation and Testing Techniques for Event
Based Software [|88]].

A novel approach to generate test cases for Application Independent Func-
tionalities. We propose AUGUSTO, the first automated technique that can generate
meaningful test cases equipped with functional oracles. AuGgusTo differs from the
other approaches in the literature because it targets application independent func-
tionalities (AIF), encoded with high-level models of their expected semantics, to
guide the generation of test cases towards meaningful executions of the AUT, and
to add fault revealing assertions. We empirically evaluated the effectiveness of the
approach modeling three AlFs and running the approach on seven applications.
AUGUSTO was able to detect seven failures in the subject applications, five of which
required a functional oracle to be detected. We also compare AUGUSTO to the
main state-of-the-art techniques showing its superior fault-revealing ability when
testing AIFs. AUGUSTO has been presented at the 2016 International Conference
on Software Testing, Verification and Validation doctoral symposium [[119] and
at the 2018 International Conference on Software Engineering [|73[].

A novel approach to generate effective test cases by adapting and reusing
tests manually written for similar applications. We propose ADAPTDROID, an
automatic approach able to generate meaningful test cases equipped with oracles
by adapting existing test cases of applications similar to the AUT instead of
generating test cases from scratch. ADAPTDROID uses a novel concept of event
semantic matching across applications based on word embeddings to evaluate
the similarity of a given test with respect to the donor one and then relies on a
search-based algorithm to find the most similar test case for the AUT. We evaluated

94 7.2 Open Research Directions

ADAPTDROID adapting a set of eight manually written test cases on 24 similar
applications and then asking the authors of the test cases to evaluate ADAPTDROID
adaptations. The evaluation showed promising results as ADAPTDROID adaptations
were evaluated as good in 40% of the cases. ADAPTDROID approach and evaluation
has been submitted to the 2019 Symposium on the Foundations of Software
Engineering and at the moment of writing is under review [[120].

7.2 Open Research Directions

The results of this thesis open new research directions towards the automatic
generation of effective test case for interactive applications.

Automatic modeling of AIFs. AUGUSTO approach showed to be very effective
given some manually pre-defined AIF models. In this thesis, modeling AlIFs in a
way that is abstracted enough to be usable across many different applications was
done manually. Automatizing this process, for instance, mining applications in
software repositories and detecting similarities, could greatly increase AUGUSTO
applicability and create the space for a wide range of techniques that exploit AIF
existence for different tasks and not only testing.

Cross-platform test case adaptation. ADAPTDROID was the first approach that
showed that test case adaptation across similar applications is feasible and it
demonstrates it with an empirical study on Android applications. Test case
adaptation could be pushed even further, adapting test cases across different
platform. For instance, adapting a test case for an Android app to a similar IOS
application. Thus, enhancing ADAPTDROID to support different platforms allowing
cross-platform adaptation is a possible research direction that would extend the
applicability and effectiveness of test case adaptation.

Appendices

95

Appendix A
AIF Models

This section reports the full AIF model that were used for AUGUSTO evaluation
(see Chapter[5.4).

The following listing presents the Abstract Semantics model preamble, i.e.,
the initial part of the model that is shared by the Abstract Semantics of all AIFs.
1|open util/ordering [Time] as T

2| open util/ternary
open util/relation

oW

sig Time { }

abstract sig Operation { }

sig Click extends Operation {
clicked: one Actionwidget

O NN O »

}
10/ sig Fill extends Operation {
11 filled: one Inputwidget,
12 with: Tlone Value

13|}
14| sig Select extends Operation {
15 wid: one Selectablewidget,
16 which: one Object

17|}
18/ one sig Track {

19 op: Operation lone -> Time
20|}
21| pred transition [t, t’: Time] {

22 (one aw: Actionwidget, c: Click | click [aw, t, t', c]) or

23 (one iw: Inputwidget, v: Value, f: Fill]| fill [iw, t, t’, v, f]) or

24 (one iw: Inputwidget, f: Fill| fill [iw, t, t’, none, f]) or
25 (one sw: Selectablewidget, s: Select, o: Object | select [sw, t, t’,
0, sl)

97

98

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66

}
pred System {

init [T/first]

Vt: Time - T/last | transition [t, T/next[t]]

---------------- Generic GUI Structure ----------------
abstract sig Window {
aws: set Actionwidget,
iws: set Inputwidget,
sws: set Selectablewidget
}
abstract sig Actionwidget {
goes: set Window
}
sig Value { }
one sig Optionvalue® extends Value{ }
one sig Optionvaluel extends Value{ }
one sig Optionvalue2 extends Value{ }
one sig Optionvalue3 extends Value{ }
one sig Optionvalue4 extends Value{ }
sig Tobecleaned extends Value{ }
abstract sig Inputwidget {
content: Value lone -> Time,
val: set Value
}
sig Object {
appeared: one Time
}
abstract sig Selectablewidget {
list: Object set -> Time,
selected: Object lone ->Time

}
fact {
\#Tobecleaned =1 = not(Tobecleaned in Fill.with)
Viw: Inputwidget | iw in Window.iws
Vaw: Actionwidget | aw in Window.aws
Vsw: Selectablewidget | sw in Window.sws
}

fact noredundant{
no t: Time | \#Track.op.t =1 and Track.op.t in Fill and Track.op.t.
with =Track.op.t.filled.content. (T/prev[t])

no t: Time | \#Track.op.t =1 and Track.op.t in Click and Track.op. (T
/prev[t]) in Click and Track.op.t.clicked =Track.op.(T/prev[t]).
clicked

99

67

68

69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
8
85
86
87
88
89
90

~

91

92
93
94
95

96
97
98

no t: Time | \#Track.op.t =1 and Track.op.t in Select and Track.op. (
T/prev[t]) in Select and Track.op.(T/prev[t]).wid =Track.op.t.wid
no t: Time | \#Track.op.t =1 and Track.op.t in Fill and Track.op.(T/
prev[t]) in Fill and Track.op.t.filled =Track.op.(T/prev[t]).
filled
}
---------------- Generic GUI Semantics ---------------
one sig Currentwindow {

isin: Window one -> Time
}
pred click [aw: Actionwidget, t, t’: Time, c: Click] {
--- precondition ---
aw in Currentwindow.isin.t.aws
clickpre [aw, t]
--- effect ---
(clicksemantics [aw, t] and clicksuccesspost [aw, t, t']) or
(not clicksemantics [aw, t] and Currentwindow.isin.t’ =Currentwindow.
isin.t and clickfailpost [aw, t, t'])
--- operation is tracked ---
c.clicked =aw and Track.op.t' =c
}
pred fill [iw: Inputwidget, t, t': Time, v: Value, f: Fill] {
--- precondition ---
(v =none) = not(iw.content.t =Tobecleaned)
iw in Currentwindow.isin.t.iws
fillpre [iw, t, V]
--- effect ---
(fillsemantics [iw, t, v] and iw.content.t’ =v and fillsuccesspost [
iw, t, t', v]) or
(not fillsemantics [iw, t, v] and iw.content.t’ =iw.content.t and
fillfailpost [iw, t, t', v])
--- general postcondition ---
Currentwindow.isin.t’ =Currentwindow.isin.t
Viww: (Inputwidget - iw) | iww.content.t’ =iww.content.t
Vsw: Selectablewidget | sw.selected.t’ =sw.selected.t and sw.list.t’
=sw.list.t
--- operation is tracked ---
f.filled =iw and f.with =v and Track.op.t’ =f
}

100

99| pred select [sw: Selectablewidget, t, t’': Time, o: Object, s: Select] {

100
101
102
103
104
105

106

107
108
109

110
111
112
13|}

--- precondition ---

sw in Currentwindow.isin.t.sws

0 in sw.list.t

selectpre [sw, t, o]

--- effect ---

(selectsemantics [sw, t, o] and sw.selected.t’ =o0 and
selectsuccesspost [sw, t, t’, ol) or

(not selectsemantics [sw, t, o] and sw.selected.t’ =sw.selected.t and
selectfailpost [sw, t, t’, ol)

--- general postcondition ---

Currentwindow.isin.t’ =Currentwindow.isin.t

Vsww: (Selectablewidget - sw) | sww.selected.t’ =sww.selected.t and
sww.list.t’ =sww.list.t

sw.list.t’ =sw.list.t

--- operation is tracked ---
s.wid =sw and s.which =o and Track.op.t’ =s

Listing A.1. Abstract Semantics model preamble

101 A.1T AUTH

A.1 AUTH

This section reports the GUI Pattern model and Abstract Semantics model of
the authentication AIE

<pattern alloy="AUTH.als" name="AUTH">
<window id="pre" dynamic="false" card="lone" alloy="Pre">
<action_widget id="pawl®" card="one" alloy="Go">
<label>.*(login|sign in).*$</label>
</action_widget>
</window>
<window id="initial" dynamic="false" card="one" alloy="Initial">
<action_widget id="pawl" card="one" alloy="Login">
<label>"(login|enter|go).%$</label>
</action_widget>
<action_widget id="paw2" card="one" alloy="Signup">
<label>"(register|signup|sign up|accounts).x$</label>
</action_widget>
<input_widget id="piwl" card="one" alloy="User">
<label>"(user|username|email).*</label>
</input_widget>
<input_widget id="piw2" card="one" alloy="Password">
<label>"(pass|password) .*x</label>
</input_widget>
</window>
<window id="signup" card="one" dynamic="false" alloy="Signup">
<action_widget id="paw3" card="one" alloy="Ok">
<label>"(ok|save|record|signup|sign up|create account)</label>
</action_widget>
<action_widget id="paw&" card="one" alloy="Cancel">
<label>"(cancel|clear|back|close)</label>
</action_widget>
<input_widget id="piw3" card="one" alloy="User_save">
<label>"(user|username|email).*</label>
</input_widget>
<input_widget id="piw4" card="one" alloy="Password_save">
<label>*(?!re-enter|repeat|confirm) (pass|password).*x</label>
</input_widget>
<input_widget id="piw5" card="one" alloy="Re_password">
<label>"(repeat|re-enter|confirm).*</label>
</input_widget>
<input_widget id="piwé" card="set" alloy="Field">
<label>.*x</label>
</input_widget>
</window>
<window id="logged" card="one" dynamic="true" alloy="Logged">
<action_widget id="paw5" card="one" alloy="Logout">
<label>".x(logout|exit|sign out|signout|log out)$</label>
</action_widget>
</window>
<edge type="static"><from>pawl@</from><to>initial</to></edge>
<edge type="dynamic"><from>pawl</from><to>logged</to></edge>
<edge type="static"><from>paw2</from><to>signup</to></edge>
<edge type="static"><from>paw4</from><to>initial</to></edge>
<edge type="dynamic"><from>paw3</from><to>pre</to><to>initial</to></edge>
<edge type="static"><from>paw5</from><to>initial</to><to>pre</to></edge>
</pattern>

Figure A.1. AUTH GUI Pattern model

102

A.T AUTH

Ju—

AN U1 AW N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42

pred

init [t: Time] {

no Track.op.t

Currentwindow.isin.t =aws.Login
\#List.elements.t =0

---------- Generic AUTH Structure

abstract sig Go, Login, Signup, Ok, Cancel, Logout extends Actionwidget { }

abstract sig User, Password, Usersave, Passwordsave, Repassword, Field

fact

{

\#Tobecleaned=1
not(User in Propertyrequired.requireds)
not(Password in Propertyrequired.requireds)
not(Usersave in Propertyrequired.requireds)
not(Passwordsave in Propertyrequired.requireds)
not (Repassword in Propertyrequired.requireds)

extends Inputwidget { }

one sig Propertyrequired{
requireds: set Inputwidget

}

sig Objectinlist extends Object{
vs: Value lone -> Inputwidget

}

one sig List {
elements: Objectinlist set -> Time

}
pred
pred

}
pred

}
pred

}
pred
pred

pred
pred

fillsemantics [iw: Inputwidget, t:
fillsuccesspost [iw: Inputwidget, t
List.elements.t’ =List.eleme

fillfailpost [iw: Inputwidget, t, t
List.elements.t’ =List.eleme

fillpre[iw: Inputwidget, t: Time, v:

Time, v

: Value] { }

, t': Time, v: Value] {

nts.t

": Time
nts.t

, v: Value] {

Value] {

\#iw.content.(T/first) =1 = not(v =none)

selectsemantics [sw:
selectsuccesspost [sw:

selectfailpost [sw:

selectpre[sw:

Selectablewidget, t:

Selectablewidget, t:
Selectablewidget, t, t': Time, o: Object] { }

Time, o: Object] { }

Selectablewidget, t, t': Time, o: Object] { }
Time, o:

Object] { }

103

A.T AUTH

44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62

63
64
65

66
67
68
69
70

72

73]

74

pred

pred

pred

pred
pred

pred

pred

pred

pred

clicksemantics [aw: Actionwidget, t: Time] {
(aw in Login) = filledlogintest [t] and existingtest [t]
(aw in 0k) = filledrequiredtest[t] and uniquefieldstest [t] and
samepasstest [t]

clicksuccesspost [aw: Actionwidget, t, t’': Time] {
Currentwindow.isin.t’ =aw.goes
(aw in Ok) —>add [t, t’] else List.elements.t’ =List.elements.t
(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))

clickfailpost [aw: Actionwidget, t, t’': Time] {
(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))
List.elements.t’ =List.elements.t

clickpre[aw: Actionwidget, t: Time] { }
add [t, t': Time] {
one o: Objectinlist |V iw: (Usersave + Passwordsave + Field) | not(o
in List.elements.t) and o.appeared =t’' and o.vs.iw =iw.content.
t and List.elements.t’ =List.elements.t+o

filledlogintest [t: Time] {
Viw: (User+Password)| \#iw.content.t =1 and not(iw.content.t=
Tobecleaned)

existingtest [t: Time] {
one o: List.elements.t | Password.content.t =o.vs.Passwordsave and
User.content.t =o.vs.Usersave

samepasstest [t: Time] {
Passwordsave.content.t =Repassword.content.t

filledrequiredtest [t: Time] {

\#Usersave.content.t =1 and not(Usersave.content.t=Tobecleaned)

\#Passwordsave.content.t =1 and not(Passwordsave.content.t=
Tobecleaned)

\#Repassword.content.t =1 and not(Repassword.content.t=Tobecleaned)

Viw: Field| (iw in Propertyrequired.requireds) = \#iw.content.t =1
and not(iw.content.t=Tobecleaned)

104

A.1T AUTH
75| }
76| pred uniquefieldstest [t: Time] {
77 Vo: List.elements.t | (\#o0.vs.Usersave= 1 = Usersave.content.t #o.

vs.Usersave)
78] }

Listing A.2. AUTH Abstract Semantics model

105 A.2 CRUD

A.2 CRUD

This section reports the GUI Pattern model and Abstract Semantics model of
the CRUD AIE

<pattern alloy="CRUD.als" name="CRUD">
<window id="initial" dynamic="false" card="one" alloy="Initial">
<action_widget id="pawl" card="set" alloy="Create_trigger">
<label>"(?!window -)(.*%(new | add | create).x|"(new (?!-)|add |create).x|"(new|add|create)$)</label>
</action_widget>
<action_widget id="paw3" card="set" alloy="Update_trigger">
<label>"(?!window -)(.*(edit | update | modify).x|~(edit (?!-)|update |modify).*|”(edit|update|modify)$)</label>
</action_widget>
<action_widget id="paw4" card="set" alloy="Delete_trigger">
<label>A(?!window -)(.*(delete | remove).x|"(delete |remove).x|"(delete|remove)$)</label>
</action_widget>
<selectable_widget id="pswl" card="one" alloy="">
<label>.*</label>
</selectable_widget>
</window>
<window id="form" card="one" dynamic="false" alloy="Form">
<action_widget id="paw5" card="one" alloy="Ok">
<label>"(ok|save|record)</label>
</action_widget>
<action_widget id="pawé" card="one" alloy="Cancel">
<label>"(cancel|clear)</label>
</action_widget>
<input_widget id="piwl" card="some" alloy="">
<label>.x</label>
</input_widget>
</window>
<edge type="static"><from>pawl</from><to>form</to></edge>
<edge type="static"><from>pawé</from><to>initial</to></edge>
<edge type="dynamic"><from>paw5</from><to>initial</to></edge>
<edge type="dynamic"><from>paw3</from><to>form</to></edge>
<edge type="dynamic"><from>paw4</from><to>initial</to></edge>
</pattern>

Figure A.2. CRUD GUI Pattern model

2|pred init [t: Time] {

3 no Selectablewidget.list.t

4 no Track.op.t

5 no Selectablewidget.selected.t

6 Currentwindow.isin.t =sws.Selectablewidget

7 \#Createtrigger =0 = Currentcrudop.operation.t =CREATE else \#
Currentcrudop.operation.t =0

\#Tobecleaned =1

Viw: Inputwidget | \#iw.content.(T/first) > 0
10|}
11| - - - m e e - - - - Generic CRUD Structure ----------

12| abstract sig Ok, Cancel extends Actionwidget { }

13| abstract sig Createtrigger extends Actionwidget { }
14| abstract sig Updatetrigger extends Actionwidget { }

106 A.2 CRUD

15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53

abstract sig Deletetrigger extends Actionwidget { }
fact {
\#0k 2#Selectablewidget = lall iw: Inputwidget |
not(iw.content.(T/first) = Tobecleaned)
= not(iw in Propertysemantic.requireds)

abstract sig Crudop {}
one sig CREATE, UPDATE extends Crudop {}
one sig Currentcrudop {
operation: Crudop lone -> Time
}
one sig Propertysemantic{
uniques: set Inputwidget,
requireds: set Inputwidget
}
sig Objectinlist extends Object{
vs: Value lone ->Inputwidget
}
pred fillsemantics [iw: Inputwidget, t: Time, v: Valuel { }
pred fillsuccesspost [iw: Inputwidget, t, t’': Time, v: Value] {
Currentcrudop.operation.t’ =Currentcrudop.operation.t
}
pred fillfailpost [iw: Inputwidget, t, t’': Time, v: Value] {
Currentcrudop.operation.t’ =Currentcrudop.operation.t
}
pred fillpre[iw: Inputwidget, t: Time, v: Value] {
(\#iw.content.(T/first) =1 and not(iw.content.(T/first) =Tobecleaned
)) == not(v =none)

pred selectsemantics [sw: Selectablewidget, t: Time, o: Object] { }
pred selectfailpost [sw: Selectablewidget, t, t’: Time, o: Object] {
Currentcrudop.operation.t’ =Currentcrudop.operation.t
Viw: Inputwidget | iw.content.t’ =iw.content.t

pred selectsuccesspost [sw: Selectablewidget, t, t’': Time, o: Object] {
\#Createtrigger =0 =— (Currentcrudop.operation.t’ =UPDATE and
loadform[o, t']) else (\#Currentcrudop.operation.t’ =0 and Viw:
Inputwidget | iw.content.t’ =iw.content.t)

pred selectpre[sw: Selectablewidget, t: Time, o: Object] {
0 in sw.list.t

pred clicksemantics [aw: Actionwidget, t: Time] {

107 A.2 CRUD

54

55

56
57
58
59
60

61

62

63

64

65

66

68

69

(aw in Ok and Currentcrudop.operation.t in CREATE) =
filledrequiredtest [t] and uniquetest [t]

(aw in Ok and Currentcrudop.operation.t in UPDATE) —
filledrequiredtest [t] and uniqueforupdatetest [t]

(aw in Deletetrigger) =—>2=(1+1)
}
pred clicksuccesspost [aw: Actionwidget, t, t’': Time] {
Currentwindow.isin.t’ =aw.goes
(aw in Createtrigger) = (Currentcrudop.operation.t’ =CREATE and
Selectablewidget.list.t’ =Selectablewidget.list.t and (V iw:
Inputwidget | iw.content.t’ =iw.content.(T/first)) and \#
Selectablewidget.selected.t’ =0)

(aw in Updatetrigger) = (Currentcrudop.operation.t’ =UPDATE and
Selectablewidget.list.t’ =Selectablewidget.list.t and loadform|[
Selectablewidget.selected.t, t'] and Selectablewidget.selected.t’

=Selectablewidget.selected.t)

(aw in Deletetrigger) = (\#Selectablewidget.selected.t’ =0 and
delete [t, t'])

(aw in Deletetrigger and \#Createtrigger =0) = (Currentcrudop.
operation.t’ =CREATE and (V iw: Inputwidget | iw.content.t’ =iw.
content. (T/first)))

(aw in Deletetrigger and \#Createtrigger > 0) =— (\#Currentcrudop.
operation.t’ =0 and (V iw: Inputwidget | iw.content.t’ =iw.
content. (T/first)))

(aw in Cancel and \#Createtrigger > 0) =— (\#Currentcrudop.operation
.t’ =0 and Selectablewidget.list.t’ =Selectablewidget.list.t and
\#Selectablewidget.selected.t’ =0)

(aw in Cancel and \#Createtrigger =0) = (Currentcrudop.operation.t’
=CREATE and Selectablewidget.list.t’ =Selectablewidget.list.t
and \#Selectablewidget.selected.t’ =0 and (V iw: Inputwidget
iw.content.t’ =iw.content.(T/first)))

(aw in Ok and Currentcrudop.operation.t in CREATE) — (\#
Selectablewidget.selected.t’ =0 and add [t, t'])

(aw in Ok and Currentcrudop.operation.t in UPDATE) — (\#
Selectablewidget.selected.t’ =0 and update [t, t'])

108 A.2 CRUD

70 (aw in Ok and \#Createtrigger > 0) =—> (\#Currentcrudop.operation.t’
=0)

71 (aw in Ok and \#Createtrigger =0) = (Currentcrudop.operation.t’ =
CREATE and (VY iw: Inputwidget | iw.content.t’ =iw.content.(T/
first)) and \#Selectablewidget.selected.t’ =0)

72|}

73| pred clickfailpost [aw: Actionwidget, t, t': Time] {

74 Selectablewidget.list.t’ =Selectablewidget.list.t

75 (V iw: Inputwidget | iw.content.t’ =iw.content.t)

76 Selectablewidget.selected.t’ =Selectablewidget.selected.t

77 Currentcrudop.operation.t’ =Currentcrudop.operation.t

78|}

79| pred clickpre[aw: Actionwidget, t: Time] {

80 (aw in Updatetrigger) = \#Selectablewidget.selected.t =1

81 (aw in Deletetrigger) =— \#Selectablewidget.selected.t =1

82|}

83|pred add [t, t': Time] {

84 one o: Objectinlist |V iw: Inputwidget | not(o in Selectablewidget.
list.t) and o.appeared =t’ and (iw.content.t =Tobecleaned =— \#
0.vs.iw =0 else o0.vs.iw =iw.content.t) and Selectablewidget.list.
t’ =Selectablewidget.list.t+o

85|}

86| pred filledrequiredtest [t: Time] {

87 Viw: Propertysemantic.requireds| not(iw.content.t =Tobecleaned) and
not(\\#iw.content.t =0)

88|}

89| pred uniquetest [t: Time] {

90 Viw: Propertysemantic.uniques | Vo: Selectablewidget.list.t | (\#(o.
vs.iw)=1) = iw.content.t #o.vs.iw

91|}

92| pred uniqueforupdatetest [t: Time] {

93 Viw: Propertysemantic.uniques | Vo: (Selectablewidget.list.t-
Selectablewidget.selected.t) | (\#(o.vs.iw)=1) = iw.content.t
#0.Vs.iw

94|}

95| pred loadform [o: Object, t’': Time] {

96 Viw: Inputwidget | iw.content.t’ =o0.vs.iw

97| }

o8| pred update [t, t': Time] {

109 A.2 CRUD

99 one o: Object | Viw: Inputwidget | not(o in Selectablewidget.list.t)
and o.appeared =Selectablewidget.selected.t.appeared and (iw.
content.t =Tobecleaned = \#0.vs.iw =0 else o.vs.iw =iw.content
.t) and Selectablewidget.list.t’ =(Selectablewidget.list.t -
Selectablewidget.selected.t)+o0

100| }

101|pred delete [t, t': Time] {

102 Selectablewidget.list.t’ =Selectablewidget.list.t - Selectablewidget.
selected.t

103] }

Listing A.3. CRUD Abstract Semantics model

110 A.3 SAVE

A.3 SAVE

This section reports the GUI Pattern model and Abstract Semantics model of
the save AIE

<pattern alloy="SAVE.als" name="SAVE">
<window id="initial" dynamic="false" card="one" alloy="Initial">
<action_widget id="pawl" card="one" alloy="New">
<label>".x— new.x</label>
</action_widget>
<action_widget id="paw2" card="one" alloy="Open">
<label>".%— open.*</label>
</action_widget>
<action_widget id="paw3" card="lone" alloy="Save">
<label>".x— save(?! all).*</label>
</action_widget>
<action_widget id="paw4" card="lone" alloy="Saveas">
<label>".x— save as.*</label>
</action_widget>
</window>
<window id="saving" card="one" dynamic="false" alloy="Saving">
<action_widget id="pawé" card="one" alloy="Saves">
<label>save</label>
</action_widget>
<action_widget id="paw7" card="one" alloy="Cancelsave">
<label>(cancel|back)</label>
</action_widget>
<input_widget id="piwl" card="one" alloy="Filename">
<label>.*name.*x</label>
</input_widget>
</window>
<window id="opening" card="one" dynamic="false" alloy="Opening">
<action_widget id="paw8" card="one" alloy="Openo">
<label>open</label>
</action_widget>
<action_widget id="paw9" card="one" alloy="Cancelopen">
<label>(cancel|back)</label>
</action_widget>
<selectable_widget id="pswl" card="one" alloy="Opening_list">
<label>.*</label>
</selectable_widget>
</window>
<window id="encrypt" card="lone" dynamic="true" alloy="Encrypt">
<action_widget id="pawl@" card="one" alloy="Encryptb">
<label>"(ok|encrypt)</label>
</action_widget>
<action_widget id="pawll" card="one" alloy="Backe">
<label>*(no|cancel)</label>
</action_widget>
<input_widget id="piw2" card="one" alloy="Password">
<label>password.*</label>
</input_widget>
<input_widget id="piw3" card="one" alloy="Repassword">
<label>.x(repeat password|confirm password|confirmation).x</label>
</input_widget>
</window>

111

A.3 SAVE

<window id="decrypt" card="lone" dynamic="true" alloy="Decrypt">

<a

</
<a

</
<i

</
</wind

ction_widget id="pawl2" card="one" alloy="Decryptb">
<label>"(ok|decrypt)</label>

action_widget>

ction_widget id="pawl3" card="one" alloy="Backd">
<label>*(no|cancel)</label>

action_widget>

nput_widget id="piw4" card="one" alloy="Depassword">
<label>password.*</label>

input_widget>

ow>

<window id="choice" card="lone" dynamic="true" alloy="Choice">

<a

</
<a

</
</wind

ction_widget id="pawl4" card="one" alloy="Yes">
<label>"(ok|yes|encrypt)</label>

action_widget>

ction_widget id="pawl5" card="one" alloy="No">
<label>*(no|cancel)</label>

action_widget>

ow>

<window id="replace" card="lone" dynamic="true" alloy="Replacedialog">

<t
<a

</
<a

</

</wind
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge
<edge

</pattern>

itle>.x(replace|exists|overwrite).x</title>
ction_widget id="pawlé" card="one" alloy="Replace">
<label>.*(replace|yes|ok).*</label>
action_widget>
ction_widget id="pawl7" card="one" alloy="Noreplace">
<label>"(no|cancel)</label>
action_widget>
ow>
type="static"><from>pawl</from><to>initial</to><to>saving</to></edge>
type="static"><from>paw2</from><to>opening</to></edge>
type="dynamic"><from>paw3</from><to>saving</to></edge>
type="static"><from>paw4</from><to>saving</to></edge>
type="dynamic"><from>pawé</from><to>initial</to><to>replace</to><to>choice</to><to>encrypt</to></edge>
type="static"><from>paw7</from><to>initial</to></edge>
type="dynamic"><from>paw8</from><to>initial</to><to>decrypt</to></edge>
type="static"><from>paw9</from><to>initial</to></edge>
type="dynamic"><from>pawl@</from><to>initial</to></edge>
type="static"><from>pawll</from><to>saving</to><to>initial</to></edge>
type="dynamic"><from>pawl2</from><to>initial</to></edge>
type="static"><from>pawl3</from><to>opening</to><to>initial</to></edge>
type="static"><from>pawls</from><to>encrypt</to></edge><edge type="static"><from>pawl5</from><to>initial</to></edge>
type="static"><from>pawlé</from><to>initial</to><to>choice</to><to>encrypt</to></edge>
type="static"><from>pawl7</from><to>initial</to><to>saving</to></edge>

SAVE GUI Pattern model

112 A.3 SAVE
I R Initial State---------------

2|pred init [t: Time] {

3 no Track.op.t

4 Currentwindow.isin.t =aws.New

5 \#0peninglist.list.t =0

6 \# (Auxiliary.saved.t) =1

7 no Selectablewidget.selected.t

8 \#Tobecleaned =1

9 Viw: Inputwidget | \#iw.content.(T/first) > 0

10|}

11| --------m - - - Generic SAVE Structure ----------

12| abstract sig New, Open, Save, Saveas, Saves, Cancelsave, Openo, Cancelopen,

Encryptb, Backe, Decryptb, Backd, Yes, No, Replace, Noreplace extends
Actionwidget { }
13| abstract sig Filename, Password, Repassword, Depassword extends Inputwidget
{1}

14| abstract sig Openinglist extends Selectablewidget { }

16| --------------~ Generic SAVE Semantics----------

17| one sig Auxiliary{

18 pwd: Object lone -> Value,

19 haspwd: one Object,

20 names: Object one -> Value,

21 saved: Value lone -> Time

22|}

23| pred fillsemantics [iw: Inputwidget, t: Time, v: Value] {

25|}

26| pred fillsuccesspost [iw: Inputwidget, t, t': Time, v: Value] {

27 Openinglist.list.t’ =Openinglist.list.t

28 (Auxiliary.saved.t’) = (Auxiliary.saved.t)

29| }

30| pred fillfailpost [iw: Inputwidget, t, t’': Time, v: Value] {

31 Openinglist.list.t’ =Openinglist.list.t

32 (Auxiliary.saved.t’') = (Auxiliary.saved.t)

33|}

34| pred fillpre [iw: Inputwidget, t: Time, v: Value] { }

35| pred selectsemantics [sw: Selectablewidget, t: Time, o: Object] {

37(}

38| pred selectsuccesspost [sw: Selectablewidget, t, t’: Time, o: Object] {
39 Openinglist.list.t’ =Openinglist.list.t

40 (Auxiliary.saved.t’') = (Auxiliary.saved.t)

41 (V iw: Inputwidget | iw.content.t’ =iw.content.t)

113 A.3 SAVE

42
4.
44
45
46
47
48
49
50
51
52

w

53
54

55
56
57
58

59
60
61
62

63

64
65

66
67

}
pred selectfailpost [sw: Selectablewidget, t, t’: Time, o: Object] {
Openinglist.list.t’ =Openinglist.list.t
(Auxiliary.saved.t’) = (Auxiliary.saved.t)
(V iw: Inputwidget | iw.content.t’ =iw.content.t)
}
pred selectpre [sw: Selectablewidget, t: Time, o: Object] { }
pred clicksemantics [aw: Actionwidget, t: Time] {
(aw in Save) =— \#(Auxiliary.saved.t) =0
(aw in Openo) = \#O0Openinglist.selected.t =1
(aw in Saves) = \#Filename.content.t =1 and not(Filename.content.t
=Tobecleaned)

(aw in Encryptb) = Password.content.t =Repassword.content.t
(aw in Decryptb) =— Depassword.content.t =(Openinglist.selected.t). (
Auxiliary.pwd)

}
pred clicksuccesspost [aw: Actionwidget, t, t’': Time] {
(aw in New and \#aw.goes =0) =—>new[t,t’]
(aw in New and \#aw.goes > 0) —> same[t,t’'] and Currentwindow.isin.t
' =aw.goes

(aw in Open) =—> same[t,t’'] and Currentwindow.isin.t’ =aw.goes

(aw in Save) =—> same[t,t’] and Currentwindow.isin.t’ =aw.goes

(aw in Saveas) — same[t,t’] and Currentwindow.isin.t’ =aw.goes

(aw in Saves and exisit[t, Filename.content.t]) — ((\#Replace =1)
—> (Currentwindow.isin.t’ =aws.Replace and same[t,t’']) else ((\#
Encryptb =1 or \#Yes =1) — (same[t,t’] and (\#Yes =1 =
Currentwindow.isin.t’ =aws.Yes else Currentwindow.isin.t’ =aws.
Encryptb)) else (savenp[t,t’, Filename.content.t])))

(aw in Saves and not(exisit[t, Filename.content.t])) = ((\#Encryptb
=1 or \#Yes =1) = (same[t,t’] and (\#Yes =1 —
Currentwindow.isin.t’ =aws.Yes else Currentwindow.isin.t’ =aws.
Encryptb)) else (savenp[t,t’, Filename.content.t]))

(aw in Cancelsave) = returned[t, t’']

(aw in Openo) — ((Openinglist.selected.t) in (Auxiliary.haspwd))
= (Currentwindow.isin.t’ =aws.Decryptb and same[t,t’]) else (
openo[t,t’'])

(aw in Cancelopen) = returned[t, t’]
(aw in Encryptb) = save[t,t’', Password.content.t, Filename.content.
t]

114 A.3 SAVE

68 (aw in Backe) = (\#Yes =1) =—> savenp[t,t’, Filename.content.t]
else((aw.goes in aws.New) = returned[t,t’] else (same2[t,t’]
and Currentwindow.isin.t’ =aw.goes))

69 (aw in Decryptb) = openo[t, t’]
70 (aw in Backd) — ((aw.goes in aws.New) =— returned[t,t’] else (
same2[t,t’] and Currentwindow.isin.t’ =aw.goes))

71 (aw in Yes) —> same[t,t’] and Currentwindow.isin.t’ =aw.goes
72 (aw in No) = savenp[t,t’, Filename.content.t]
73 (aw in Replace) = ((\#Encryptb =1 or \#Yes =1) — (same[t,t’] and

(\#Yes =1 = Currentwindow.isin.t’ =aws.Yes else Currentwindow.
isin.t’ =aws.Encryptb)) else (savenp[t,t’, Filename.content.t]))

74 (aw in Noreplace) — ((aw.goes in aws.New) =—> returned[t,t’] else (
same2[t,t’] and Currentwindow.isin.t’ =aw.goes))

75|}

76| pred clickfailpost [aw: Actionwidget, t, t’: Time] {

77 (aw in (Encryptb+Decryptb)) =— (V iw: Inputwidget | iw.content.t’ =
iw.content.(T/first)) else (V iw: Inputwidget | iw.content.t’ =
iw.content.t)

78 Openinglist.list.t’ =Openinglist.list.t

79 Openinglist.selected.t’ =Openinglist.selected.t

80 (Auxiliary.saved.t’) = (Auxiliary.saved.t)

81|}

82| pred clickpre [aw: Actionwidget, t’': Time] { }

83| pred save [t, t': Time, password, filename: Value] {

84 (filename in (Openinglist.list.t).(Auxiliary.names)) =—> (one o:
Object | o in Auxiliary.haspwd and not(o in Openinglist.list.t)
and o.appeared =Auxiliary.names.filename.appeared and (password
=Tobecleaned = \#o. (Auxiliary.pwd)=0 else o. (Auxiliary.pwd) =
password) and o.(Auxiliary.names) =filename and Openinglist.list.
t’ =(0Openinglist.list.t - (Auxiliary.names).filename)+o0) else (
one o: Object | o in Auxiliary.haspwd and not(o in Openinglist.
list.t) and o.(Auxiliary.pwd) =password and o.(Auxiliary.names)
=filename and o.appeared =t’ and Openinglist.list.t’ =
Openinglist.list.t + o)

w

85 \# (Auxiliary.saved.t’) =1
86 Currentwindow.isin.t’ =aws.New
87 \#0peninglist.selected.t’ =0

88| (V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))
89|}
90| pred savenp [t, t': Time, filename: Value] {

115 A.3 SAVE

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

122
123
124
125
126
127

(filename in (Openinglist.list.t).(Auxiliary.names)) = (one o:
Object | not(o in Auxiliary.haspwd) and not(o in Openinglist.list.
t) and o.appeared =Auxiliary.names.filename.appeared and o. (
Auxiliary.pwd) =none and o.(Auxiliary.names) =filename and
Openinglist.list.t’ =(Openinglist.list.t - (Auxiliary.names).
filename)+o) else (one o: Object | not(o in Auxiliary.haspwd) and
not(o in Openinglist.list.t) and o.(Auxiliary.pwd) =none and o. (
Auxiliary.names) =filename and o.appeared =t’ and Openinglist.
list.t’ =Openinglist.list.t + o)

\# (Auxiliary.saved.t’') =1

Currentwindow.isin.t’ =aws.New

\#0peninglist.selected.t’ =0

(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))
}
pred new [t, t': Time] {

\# (Auxiliary.saved.t’) =0

(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))

Openinglist.list.t’ =Openinglist.list.t

\#0peninglist.selected.t’ =0

Currentwindow.isin.t’ =aws.New
}
pred openo [t, t': Time] {

\# (Auxiliary.saved.t’') =1

(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))

Openinglist.list.t’ =Openinglist.list.t

Currentwindow.isin.t’ =aws.New

\#0peninglist.selected.t’ =0
}
pred exisit [t: Time, name: Value] {

name in (Openinglist.list.t).(Auxiliary.names)

}

pred returned [t, t': Time] {
(Auxiliary.saved.t’) = (Auxiliary.saved.t)
(V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))
\#0peninglist.selected.t’ =0
Openinglist.list.t’ =Openinglist.list.t
Currentwindow.isin.t’ =aws.New

}

pred same [t, t': Time] {
(Auxiliary.saved.t’) = (Auxiliary.saved.t)
(V iw: Inputwidget | iw.content.t’ =iw.content.t)
Openinglist.selected.t’ =Openinglist.selected.t
Openinglist.list.t’ =Openinglist.list.t

116 A.3 SAVE

128| pred same2 [t, t’': Time] {

129 (Auxiliary.saved.t’) = (Auxiliary.saved.t)

130 (V iw: Inputwidget | iw.content.t’ =iw.content.(T/first))
131 Openinglist.selected.t’ =Openinglist.selected.t

132 Openinglist.list.t’ =Openinglist.list.t

133 }

SAVE Abstract Semantics model

Bibliography

[1]

[2]

[7]

Alibaba [Accessed: 2018-10-30]. Aliexpress, https://play.google.com/
store/apps/details?id=com.alibaba.aliexpresshd.

Amalfitano, D., Fasolino, A. R., Tramontana, P, De Carmine, S. and Memon,
A. M. [2012]. Using gui ripping for automated testing of Android appli-
cations, Proceedings of the International Conference on Automated Software
Engineering, ASE ’12, ACM, pp. 258-261.

Amazier [Accessed: 2018-10-30]. Bills reminder, https://play.google.
com/store/apps/details?id=com.amazier.apps.billsreminder.

Anand, S., Naik, M., Harrold, M. J. and Yang, H. [2012]. Automated concolic
testing of smartphone apps, Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE ’12, ACM, pp. 59:1-
59:11.

Andrey [Accessed: 2018-10-30]. Notepad, https://play.google.com/
store/apps/details?id=ru.andrey.notepad.

AndroMoney [Accessed: 2018-10-30]. Andromoney, https://play.
google.com/store/apps/details?id=com.kpmoney.android.

andtek [Accessed: 2018-10-30]. Seven habits, https://play.google.com/
store/apps/details?id=com.andtek.sevenhabits.apk.

[8] Appium [Accessed: 2018-10-30]. https://github.com/appium.

[9]

[10]

Apps, D. [Accessed: 2018-10-30a]. Color notes, https://play.google.
com/store/apps/details?id=com.socialnmobile.dictapps.notepad.
color.note.

Apps, S. [Accessed: 2018-10-30b]. Pdfsam, https://play.google.com/
store/apps/details?id=com.splendapps.splendo.

117

https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://play.google.com/store/apps/details?id=com.amazier.apps.billsreminder
https://play.google.com/store/apps/details?id=com.amazier.apps.billsreminder
https://play.google.com/store/apps/details?id=ru.andrey.notepad
https://play.google.com/store/apps/details?id=ru.andrey.notepad
https://play.google.com/store/apps/details?id=com.kpmoney.android
https://play.google.com/store/apps/details?id=com.kpmoney.android
https://play.google.com/store/apps/details?id=com.andtek.sevenhabits.apk
https://play.google.com/store/apps/details?id=com.andtek.sevenhabits.apk
https://github.com/appium
https://play.google.com/store/apps/details?id=com.socialnmobile.dictapps.notepad.color.note
https://play.google.com/store/apps/details?id=com.socialnmobile.dictapps.notepad.color.note
https://play.google.com/store/apps/details?id=com.socialnmobile.dictapps.notepad.color.note
https://play.google.com/store/apps/details?id=com.splendapps.splendo
https://play.google.com/store/apps/details?id=com.splendapps.splendo

118 Bibliography

[11] Aquino, A., Denaro, G. and Pezze, M. [2017]. Heuristically matching solution
spaces of arithmetic formulas to efficiently reuse solutions, Proceedings of the
International Conference on Software Engineering, ICSE '17, IEEE Computer
Society, pp. 427-437.

[12] Arcuri, A. and Briand, L. [2014]. A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering, Software Testing,
Verification and Reliability 24(3): 219-250.

[13] Arlt, S., Podelski, A., Bertolini, C., Schaf, M., Banerjee, I. and Memon,
A. M. [2012]. Lightweight static analysis for gui testing, Proceedings of the
International Symposium on Software Reliability Engineering, ISSRE '12, IEEE
Computer Society, pp. 301-310.

[14] AS, A. [Accessed: 2018-10-30]. Monefy, https://play.google.com/
store/apps/details?id=com.monefy.app. lite.

[15] Azim, T. and Neamtiu, I. [2013]. Targeted and depth-first exploration for
systematic testing of android apps, Proceedings of the International Confer-
ence on Object Oriented Programming Systems Languages and Applications,
OOPSLA 13, ACM.

[16] Back, T. [1996]. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms, Oxford university
press.

[17] Banggood [Accessed: 2018-10-30]. Banggood, https://play.google.
com/store/apps/details?id=com.banggood.client.

[18] Barr, E. T., Harman, M., McMinn, P, Shahbaz, M. and Yoo, S. [2015]. The
oracle problem in software testing: A survey, IEEE Transactions on Software
Engineering 41(5): 507-525.

[19] Bauersfeld, S. and Vos, T. E. [2014]. User interface level testing with testar;
what about more sophisticated action specification and selection?, Seminar
Series on Advanced Techniques and Tools for Software Evolution, SATToSE ’14,
Springer, pp. 60-78.

[20] Becce, G., Mariani, L., Riganelli, O. and Santoro, M. [2012]. Extracting
widget descriptions from guis, Proceedings of the International Conference

on Fundamental Approaches to Software Engineering, FASE ’12, Springer,
pp. 347-361.

https://play.google.com/store/apps/details?id=com.monefy.app.lite
https://play.google.com/store/apps/details?id=com.monefy.app.lite
https://play.google.com/store/apps/details?id=com.banggood.client
https://play.google.com/store/apps/details?id=com.banggood.client

119 Bibliography

[21] Behrang, E and Orso, A. [2018a]. Automated test migration for mobile
apps, Proceedings of the International Conference on Software Engineering,
ICSE Poster ’18, ACM, pp. 384-385.

[22] Behrang, E and Orso, A. [2018b]. Test migration for efficient large-scale as-
sessment of mobile app coding assignments, Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’18, ACM, pp. 164-175.

[23] Bennett, R. [Accessed: 2018-10-30a]. Patternry, http://patternry.com/
patterns/.

[24] Bennett, R. [Accessed: 2018-10-30b]. Timetracker, https://sourceforge.
net/projects/ttracker/.

[25] Benwestgarth [Accessed: 2018-10-30]. Crossword sage, https://
sourceforge.net/projects/crosswordsage/!.

[26] Bishinews [Accessed: 2018-10-30]. Expense manager, https://play.
google.com/store/apps/details?id=com.expensemanager.

[27] Bitslate [Accessed: 2018-10-30]. Notebook, https://play.google.com/
store/apps/details?id=com.bitslate.notebook.

[28] Bohme, M. and Soumya, P [2014]. On the efficiency of automated testing,
Proceedings of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE "14, ACM, pp. 71-80.

[29] Bourque, P and Fairley, R. E. (eds) [2014]. Guide to the Software Engineering
Body of Knowledge, Version 3.0, IEEE Computer Society.

[30] Brambilla, M. and Fraternali, P [2014]. Interaction flow modeling language:
Model-driven UI engineering of web and mobile apps with IFML, Morgan
Kaufmann.

[31] BrightTODO [Accessed: 2018-10-30]. Bright todo, https://play.google.
com/store/apps/details?id=com.obplanner.

[32] Buddi [Accessed: 2018-10-30]. http://buddi.digitalcave.ca.

[33] Cadar, C. and Sen, K. [2013]. Symbolic execution for software testing:
Three decades later, Communications of the ACM 56(2): 82-90.

http://patternry.com/patterns/
http://patternry.com/patterns/
https://sourceforge.net/projects/ttracker/
https://sourceforge.net/projects/ttracker/
https://sourceforge.net/projects/crosswordsage/
https://sourceforge.net/projects/crosswordsage/
https://play.google.com/store/apps/details?id=com.expensemanager
https://play.google.com/store/apps/details?id=com.expensemanager
https://play.google.com/store/apps/details?id=com.bitslate.notebook
https://play.google.com/store/apps/details?id=com.bitslate.notebook
https://play.google.com/store/apps/details?id=com.obplanner
https://play.google.com/store/apps/details?id=com.obplanner
http://buddi.digitalcave.ca

120 Bibliography

[34] Carvajal, M. [Accessed: 2018-10-30]. Gastos diarios, https://
play.google.com/store/apps/details?id=mic.app.gastosdiarios_
clasico.

[35] CASorin [Accessed: 2018-10-30]. Smart expenditure, https://play.
google.com/store/apps/details?id=com.smartexpenditurel

[36] Cheng, L., Chang, J., Yang, Z. and Wang, C. [2016]. Guicat: Gui testing as
a service, Proceedings of the International Conference on Automated Software
Engineering, ASE '16, ACM, pp. 858-863.

[37] Choi, W,, Necula, G. and Sen, K. [2013]. Guided gui testing of android
apps with minimal restart and approximate learning, Proceedings of the
International Conference on Object Oriented Programming Systems Languages
and Applications, OOPSLA ’13, ACM, pp. 623-640.

[38] Choudhary, S. R., Gorla, A. and Orso, A. [2015]. Automated test input
generation for Android: Are we there yet?, Proceedings of the International
Conference on Automated Software Engineering, ASE ’16, IEEE Computer
Society, pp. 429-440.

[39] Cobertura [Accessed: 2018-10-30]. Cobertura, http://cobertura.github.
io/cobertura/.

[40] Cook, S. A.[1971]. The complexity of theorem-proving procedures, Pro-
ceedings of the Annual ACM Symposium on Theory of Computing, STOC 71,
ACM, pp. 151-158.

[41] Coppola, R., Morisio, M. and Torchiano, M. [2017]. Scripted gui testing
of android apps: A study on diffusion, evolution and fragility, Proceedings
of the International Conference on Predictive Models and Data Analytics in
Software Engineering, PROMISE '17, ACM, pp. 22-32.

[42] Dinh, D. T, Hung, P N. and Duy, T. N. [2018]. A method for automated
user interface testing of windows-based applications, Proceedings of the

International Symposium on Information and Communication Technology,
SoICT 2018, ACM, pp. 337-343.

[43] Dix, A. [2009]. Human-computer interaction, Encyclopedia of database
systems, Springer, pp. 1327-1331.

https://play.google.com/store/apps/details?id=mic.app.gastosdiarios_clasico
https://play.google.com/store/apps/details?id=mic.app.gastosdiarios_clasico
https://play.google.com/store/apps/details?id=mic.app.gastosdiarios_clasico
https://play.google.com/store/apps/details?id=com.smartexpenditure
https://play.google.com/store/apps/details?id=com.smartexpenditure
http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/

121 Bibliography

[44] Dropbox [Accessed: 2018-10-30]. Yesterday’s authentica-
tion bug, https://blogs.dropbox.com/dropbox/2011/06/
yesterdays-authentication-bug/.

[45] Ganov, S., Killmar, C., Khurshid, S. and Perry, D. E. [2009]. Event listener
analysis and symbolic execution for testing gui applications, Formal Methods
and Software Engineering, Springer, pp. 69-87.

[46] Google [Accessed: 2017-08-12]. Monkey runner, http://developer.
android.com/tools/help/monkey.html.

[47] Gorla, A., Tavecchia, I., Gross, E and Zeller, A. [2014]. Checking app
behavior against app descriptions, Proceedings of the International Conference
on Software Engineering, ICSE 2014, ACM, pp. 1025-1035.

[48] Gross, E, Fraser, G. and Zeller, A. [2012]. Search-based system testing: high
coverage, no false alarms, Proceedings of the International Symposium on
Software Testing and Analysis, ISSTA 12, ACM, pp. 67-77.

[49] Group, S. [Accessed: 2018-10-30]. Shein, https://play.google.com/
store/apps/details?id=com.zzkko.

[50] Harman, M. [2007]. The current state and future of search based software
engineering, Proceedings of Future of Software Engineering, FOSE ’07, IEEE
Computer Society, pp. 342-357.

[51] Harman, M. and Jones, B. E [2001]. Search-based software engineering,
Information and Software Technology 43(14): 833-839.

[52] Harman, M., Mansouri, S. A. and Zhang, Y. [2012]. Search-based software
engineering: Trends, techniques and applications, ACM Computing Surveys
45(1): 11.

[53] Hayhurst, K. J. and Veerhusen, D. S. [2001]. A practical approach to
modified condition/decision coverage, 20th DASC. 20th Digital Avionics
Systems Conference, NASA Langley Technical Report Server, pp. 1B2/1-
1B2/10 vol.1.

[54] Hlcsdev [Accessed: 2018-10-30]. Bloc notes, https://play.google.com/
store/apps/details?id=com.hlcsdev.x.notepad.

[55] IBM Rational Functional Tester [Accessed: 2018-10-30]. http://www-03.
ibm.com/software/products/en/functional.

https://blogs.dropbox.com/dropbox/2011/06/yesterdays-authentication-bug/
https://blogs.dropbox.com/dropbox/2011/06/yesterdays-authentication-bug/
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://play.google.com/store/apps/details?id=com.zzkko
https://play.google.com/store/apps/details?id=com.zzkko
https://play.google.com/store/apps/details?id=com.hlcsdev.x.notepad
https://play.google.com/store/apps/details?id=com.hlcsdev.x.notepad
http://www-03.ibm.com/software/products/en/functional
http://www-03.ibm.com/software/products/en/functional

122 Bibliography

[56] Inc., A. [Accessed: 2018-10-30]. Ticktick, https://play.google.com/
store/apps/details?id=com.ticktick.taskl

[57] Jackson, D. [2002]. Alloy: a lightweight object modelling notation, ACM
Transactions on Software Engineering and Methodology 11(2): 256-290.

[58] Jenkins [Accessed: 2018-10-30]. Issue 25012, https://issues.
jenkins-ci.org/browse/JENKINS-250127jql=issuetype.

[59] Joriwal, H. [Accessed: 2018-10-30]. Onlineshopping, https://github.
com/himalayjor/0OnlineShoppingGUI/tree/master/0OnlineShopping.

[60] Kochhar, P S., Thung, E, Nagappan, N., Zimmermann, T. and Lo, D. [2015].
Understanding the test automation culture of app developers, Proceedings of
the International Conference on Software Testing, Verification and Validation,
ICST ’15, IEEE Computer Society, pp. 1-10.

[61] Kusner, M. J., Sun, Y., Kolkin, N. I. and Weinberger, K. Q. [2015]. From word
embeddings to document distances, Proceedings of the International Confer-
ence on International Conference on Machine Learning, ICML 15, pp. 957-966.

[62] LightInTheBox [Accessed: 2018-10-30]. Lightinthebox, https://play.
google.com/store/apps/details?id=com.lightinthebox.android.

[63] Linares-Vasquez, M., Holtzhauer, A. and Poshyvanyk, D. [2016]. On auto-
matically detecting similar android apps, Proceedings of the International
Conference on Program Comprehension, ICPC '14, IEEE Computer Society,
pp- 1-10.

[64] Linares-Vasquez, M., White, M., Bernal-Cardenas, C., Moran, K. and Poshy-
vanyk, D. [2015]. Mining android app usages for generating actionable
gui-based execution scenarios, Proceedings of the Working Conference on
Mining Software Repositories, MSR ’17, IEEE Computer Society, pp. 111-122.

[65] Machiry, A., Tahiliani, R. and Naik, M. [2013]. Dynodroid: An input genera-
tion system for android apps, Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 13, ACM, pp. 224—
234.

[66] Mahmood, R., Mirzaei, N. and Malek, S. [2014]. Evodroid: Segmented
evolutionary testing of android apps, Proceedings of the ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, FSE 14, ACM,
pp. 599-609.

https://play.google.com/store/apps/details?id=com.ticktick.task
https://play.google.com/store/apps/details?id=com.ticktick.task
https://issues.jenkins-ci.org/browse/JENKINS-25012?jql=issuetype
https://issues.jenkins-ci.org/browse/JENKINS-25012?jql=issuetype
https://github.com/himalayjor/OnlineShoppingGUI/tree/master/OnlineShopping
https://github.com/himalayjor/OnlineShoppingGUI/tree/master/OnlineShopping
https://play.google.com/store/apps/details?id=com.lightinthebox.android
https://play.google.com/store/apps/details?id=com.lightinthebox.android

123 Bibliography

[67] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J. R., Bethard, S. J. and
McClosky, D. [2014]. The Stanford CoreNLP natural language processing
toolkit, Proceedings of the Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, ACL 14, Association for Computational
Linguistics, pp. 55-60.

[68] Mao, K., Harman, M. and Jia, Y. [2016]. Sapienz: multi-objective automated
testing for Android applications, Proceedings of the International Symposium
on Software Testing and Analysis, ISSTA ’16, ACM, pp. 94-105.

[69] Mao, K., Harman, M. and Jia, Y. [2017]. Crowd intelligence enhances
automated mobile testing, Proceedings of the International Conference on
Automated Software Engineering, ASE ’17, IEEE Computer Society, pp. 16-26.

[70] Mariani, L., Pezze, M., Riganelli, O. and Santoro, M. [2012]. Autoblacktest:
Automatic black-box testing of interactive applications, Proceedings of the
International Conference on Software Testing, Verification and Validation, ICST
12, IEEE Computer Society, pp. 81-90.

[71] Mariani, L., Pezze, M., Riganelli, O. and Santoro, M. [2014]. Automatic
testing of GUI-based applications, Software Testing, Verification and Reliability
24(5): 341-366.

[72] Mariani, L., Pezze, M. and Zuddas, D. [2015]. Recent advances in automatic
black-box testing, Advances in Computers, Elsevier.

[73] Mariani, L., Pezzé, M. and Zuddas, D. [2018]. Augusto: Exploiting popular
functionalities for the generation of semantic gui tests with oracles, Pro-
ceedings of the International Conference on Software Engineering, ICSE 18,
pp. 280-290.

[74] Markushi [Accessed: 2018-10-30]. Expensemanager, https://play.
google.com/store/apps/details?id=at.markushi.expensemanager.

[75] McMillan, C., Grechanik, M. and Poshyvanyk, D. [2012]. Detecting similar
software applications, Proceedings of the International Conference on Software
Engineering, ICSE '12, IEEE Computer Society, pp. 364-374.

[76] Memon, A., Banerjee, I. and Nagarajan, A. [2003a]. What test oracle should
i use for effective gui testing?, Proceedings of the International Conference on
Automated Software Engineering, ASE 03, IEEE Computer Society, pp. 164—
173.

https://play.google.com/store/apps/details?id=at.markushi.expensemanager
https://play.google.com/store/apps/details?id=at.markushi.expensemanager

124 Bibliography

[77] Memon, A. M., Banerjee, I. and Nagarajan, A. [2003b]. GUI ripping: Re-
verse engineering of graphical user interfaces for testing, Proceedings of
The Working Conference on Reverse Engineering, WCRE ’03, IEEE Computer
Society, pp. 260-269.

[78] Memon, A. M., Banerjee, 1., Nguyen, B. and Robbins, B. [2013]. The
first decade of gui ripping: Extensions, applications, and broader impacts,
Proceedings of The Working Conference on Reverse Engineering, WCRE "13,
IEEE Computer Society, pp. 11-20.

[79] Memon, A. M. and Xie, Q. [2005]. Studying the fault-detection effectiveness
of gui test cases for rapidly evolving software, IEEE Transactions on Software
Engineering 31(10): 884-896.

[80] Mesbah, A., Bozdag, E. and van Deursen, A. [2008]. Crawling ajax by infer-
ring user interface state changes, Proceedings of the International Conference
on Web Engineering, ICWE 08, ACM, pp. 122-134.

[81] Mhriley [Accessed: 2018-10-30]. Spending tracker, https://play.google.
com/store/apps/details?id=com.mhriley.spendingtracker.

[82] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. and Dean, J. [2013]. Dis-
tributed representations of words and phrases and their compositionality,
Proceedings of the International Conference on Neural Information Processing
Systems, NIPS 13, pp. 3111-3119.

[83] Mirte [Accessed: 2018-10-30]. Notebook, https://play.google.com/
store/apps/details?id=com.mirte.notebook.apk.

[84] Moreira, R. M., Paiva, A. C. and Memon, A. [2013]. A pattern-based ap-
proach for gui modeling and testing, Proceedings of the International Sympo-
sium on Software Reliability Engineering, ISSRE ’13, IEEE Computer Society,
pp. 288-297.

[85] Nottage, S. [Accessed: 2018-10-30]. Tasks, https://play.google.com/
store/apps/details?id=com.tasks.android.

[86] Ovdovchenko, M. [Accessed: 2018-10-30]. Todo list, https://play.
google.com/store/apps/details?id=com.mykhailovdovchenko.to_
dolist.

[87] Pearson, E. S. [1931]. The test of significance for the correlation coefficient,
Journal of the American Statistical Association 26(174): 128-134.

https://play.google.com/store/apps/details?id=com.mhriley.spendingtracker
https://play.google.com/store/apps/details?id=com.mhriley.spendingtracker
https://play.google.com/store/apps/details?id=com.mirte.notebook.apk
https://play.google.com/store/apps/details?id=com.mirte.notebook.apk
https://play.google.com/store/apps/details?id=com.tasks.android
https://play.google.com/store/apps/details?id=com.tasks.android
https://play.google.com/store/apps/details?id=com.mykhailovdovchenko.to_dolist
https://play.google.com/store/apps/details?id=com.mykhailovdovchenko.to_dolist
https://play.google.com/store/apps/details?id=com.mykhailovdovchenko.to_dolist

125 Bibliography

[88] Pezze, M., Rondena, P and Zuddas, D. [2018]. Automatic gui testing
of desktop applications: an empirical assessment of the state of the art,
Proceedings of the International Symposium on Software Testing and Analysis,
ISSTA companion '18, ACM.

[89] Pezze, M. and Young, M. [2007]. Software Testing and Analysis: Process,
Principles and Techniques, Wiley.

[90] Rachota [Accessed: 2018-10-30]. http://rachota.sourceforge.net/en/
index.html.

[91] Rau, A., Hotzkow, J. and Zeller, A. [2018]. Efficient gui test generation by
learning from tests of other apps, Proceedings of the International Conference
on Software Engineering, ICSE Poster 18, ACM, pp. 370-371.

[92] Realbyteapps [Accessed: 2018-10-30]. Money manager ex-
pense, https://play.google.com/store/apps/details?id=com.
realbyteapps.moneymanagerfree.

[93] Ricca, E and Tonella, P [2001]. Analysis and testing of web applications,
Proceedings of the International Conference on Software Engineering, ICSE
’01, IEEE Computer Society, pp. 25-34.

[94] Romwe [Accessed: 2018-10-30]. Romwe, https://play.google.com/
store/apps/details?id=com. romwe.

[95] Selenium [Accessed: 2018-10-30]. https://www.seleniumhq.org.

[96] Shapiro, S. S. and Wilk, M. B. [1965]. An analysis of variance test for
normality (complete samples), Biometrika 52(3/4): 591-611.

[97] Song, E, Xu, Z. and Xu, E [2017]. An xpath-based approach to reusing test
scripts for android applications, Web Information Systems and Applications
Conference (WISA), 2017 14th, WISA 17, IEEE Computer Society, pp. 143-
148.

[98] Spark [Accessed: 2018-10-30]. https://igniterealtime.org/projects/
spark.

[99] Student [1908]. The probable error of a mean, Biometrika pp. 1-25.

[100] Studio, D. H. D. [Accessed: 2018-10-30]. Bloc note, https:
//play.google.com/store/apps/details?id=com.studio.tools.
one.a.notesl

http://rachota.sourceforge.net/en/index.html
http://rachota.sourceforge.net/en/index.html
https://play.google.com/store/apps/details?id=com.realbyteapps.moneymanagerfree
https://play.google.com/store/apps/details?id=com.realbyteapps.moneymanagerfree
https://play.google.com/store/apps/details?id=com.romwe
https://play.google.com/store/apps/details?id=com.romwe
https://www.seleniumhq.org
https://play.google.com/store/apps/details?id=com.studio.tools.one.a.notes
https://play.google.com/store/apps/details?id=com.studio.tools.one.a.notes
https://play.google.com/store/apps/details?id=com.studio.tools.one.a.notes

126 Bibliography

[101] Systems, J. [Accessed: 2018-10-30]. Simplest checklist, https:
//play.google.com/store/apps/details?id=jakiganicsystems.
simplestchecklist.

[102] Taxaly [Accessed: 2018-10-30]. Fast notepad, https://play.google.
com/store/apps/details?id=com.taxaly.noteme.v2.

[103] Tidwell, J. [2010]. Designing interfaces: Patterns for effective interaction
design, "O'Reilly Media, Inc.".

[104] Turian, J., Ratinov, L. and Bengio, Y. [2010]. Word representations: a sim-
ple and general method for semi-supervised learning, Proceedings of the 48th
annual meeting of the association for computational linguistics, Association
for Computational Linguistics, pp. 384-394.

[105] Universal Password Manager [Accessed: 2018-10-30]. |http://upm.
sourceforge.net/index.html.

[106] Universe, P [Accessed: 2018-10-30]. Ike to do list, https://play.google.
com/store/apps/details?id=com.pocketuniverse.ike.

[107] Vacondio, A. [Accessed: 2018-10-30]. Pdfsam, https://sourceforge.
net/projects/pdfsam/.

[108] Van Lamsweerde, A. [2009]. Requirements engineering: from system goals
to UML models to software specifications, Wiley.

[109] van Welie, M. [Accessed: 2018-10-30]. Pattern library, http://www.welie.
com/patterns/index.php.

[110] Vos, T. E., Kruse, P M., Condori-Ferndndez, N., Bauersfeld, S. and Wegener,
J.[2015]. Testar: Tool support for test automation at the user interface level,
International Journal of Information System Modeling and Design 6(3): 46-83.

[111] W2vec pre-trained model [Accessed: 2018-10-30]. https://code.google.
com/archive/p/word2vec/.

[112] Whiteglow [Accessed: 2018-10-30]. Keep my notes, https://play.
google.com/store/apps/details?id=org.whiteglow. keepmynotes.

[113] Whitley, D. [1994]. A genetic algorithm tutorial, Statistics and computing
4(2): 65-85.

https://play.google.com/store/apps/details?id=jakiganicsystems.simplestchecklist
https://play.google.com/store/apps/details?id=jakiganicsystems.simplestchecklist
https://play.google.com/store/apps/details?id=jakiganicsystems.simplestchecklist
https://play.google.com/store/apps/details?id=com.taxaly.noteme.v2
https://play.google.com/store/apps/details?id=com.taxaly.noteme.v2
http://upm.sourceforge.net/index.html
http://upm.sourceforge.net/index.html
https://play.google.com/store/apps/details?id=com.pocketuniverse.ike
https://play.google.com/store/apps/details?id=com.pocketuniverse.ike
https://sourceforge.net/projects/pdfsam/
https://sourceforge.net/projects/pdfsam/
http://www.welie.com/patterns/index.php
http://www.welie.com/patterns/index.php
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://play.google.com/store/apps/details?id=org.whiteglow.keepmynotes
https://play.google.com/store/apps/details?id=org.whiteglow.keepmynotes

127 Bibliography

[114] Yoox [Accessed: 2018-10-30]. Yoox, https://play.google.com/store/
apps/details?id=com.yoox.

[115] Yuan, X., Cohen, M. B. and Memon, A. M. [2011]. Gui interaction test-
ing: Incorporating event context, [EEE Transactions on Software Engineering
37(4): 559-574.

[116] Zalando [Accessed: 2018-10-30]. Zalando, https://play.google.com/
store/apps/details?id=de.zalando.mobilel

[117] Zara [Accessed: 2018-10-30]. Zara, https://play.google.com/store/
apps/details?id=com.inditex.zara.

[118] Zeng, X., Li, D., Zheng, W,, Xia, E, Deng, Y., Lam, W,, Yang, W. and Xie, T.
[2016]. Automated test input generation for android: Are we really there
yet in an industrial case?, Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 16, ACM, pp. 987-
992.

[119] Zuddas, D.[2016]. Semantic testing of interactive applications, Companion
proceedings of the International Conference on Software Testing, Verification
and Validation, IEEE Computer Society, pp. 391-392.

[120] Zuddas, D., Terragni, V., Mariani, L. and Pezze, M. [2018]. Semantic gui
testing via cross-application test adaptation, Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE '19,
ACM, p. under review.

https://play.google.com/store/apps/details?id=com.yoox
https://play.google.com/store/apps/details?id=com.yoox
https://play.google.com/store/apps/details?id=de.zalando.mobile
https://play.google.com/store/apps/details?id=de.zalando.mobile
https://play.google.com/store/apps/details?id=com.inditex.zara
https://play.google.com/store/apps/details?id=com.inditex.zara

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Hypothesis and Contributions
	Thesis Organization

	Testing Interactive Applications: State of the Art and Open Issues
	Preliminaries
	Interactive Applications Testing
	Automatic Testing of Interactive Applications
	Random Approaches
	Model-Based Approaches
	Coverage-Based Approaches
	Similarity-Based Approaches

	Limitations and Open Problems

	Automated Testing of Desktop Applications: an Empirical Study
	Evaluated Tools
	Subject Applications
	Experimental Setup
	Experimental comparison
	Fault Revealing Ability
	Execution Space Sampling Ability
	Time efficiency

	Discussion
	Threats to validity

	Similarities Among Applications: An Opportunity for Testing Interactive Applications
	Application Independent Functionalities
	Cross-Application Test Case Adaptation

	Augusto: Semantic Testing of Application Independent Functionalities
	Motivating Example
	Approach
	AIF Archive
	Ripping
	Structural Matching
	Match Finalizing
	Reification
	Testing

	Prototype implementation
	Evaluation
	Empirical Setup
	RQ1 - AIF Detection
	RQ2 - Effectiveness
	RQ3 - Comparison
	Threats to validity

	AdaptDroid: Semantic Testing via Cross-Application Test Case Adaptation
	Preliminaries
	Motivating Example
	Approach
	Cross-app Matching of GUI Events
	Pre-processing
	Generation of the Initial Population
	Fitness Calculation
	Population Evolution
	Post-Processing

	Implementation
	Evaluation
	Empirical Setup
	RQ1: Effectiveness
	RQ2: Comparison with Random Search
	RQ3: Greedy-match Initialization and Fitness-driven Mutations Evaluation
	Threats to Validity

	Conclusions
	Contributions
	Open Research Directions

	AIF Models
	AUTH
	CRUD
	SAVE

	Bibliography

