
Reusing Constraint Proofs in Symbolic Analysis

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera Italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Meixian Chen

under the supervision of

Prof. Mauro Pezzè

May 2018

Dissertation Committee

Prof. Walter Binder Università della Svizzera Italiana, Switzerland
Prof. Mehdi Jazayeri Università della Svizzera Italiana, Switzerland

Prof. Andrea De Lucia Università Degli Studi di Salerno, Italy
Prof. Gordon Fraser University of Sheffield, United Kingdom

Dissertation accepted on 24 May 2018

Prof. Mauro Pezzè
Research Advisor

Università della Svizzera Italiana, Switzerland

Prof. Walter Binder Prof. Michael Bronstein
PhD Program Director PhD Program Director

i

I certify that except where due acknowledgement has been given, the work pre-
sented in this thesis is that of the author alone; the work has not been submitted previ-
ously, in whole or in part, to qualify for any other academic award; and the content of
the thesis is the result of work which has been carried out since the official commence-
ment date of the approved research program.

Meixian Chen
Lugano, 24 May 2018

ii

To my family.

iii

iv

Abstract

Symbolic analysis is an important element of program verification and automatic test-
ing. Symbolic analysis techniques abstract program properties as expressions of sym-
bolic input values to characterise the program logical constraints, and rely on Satisfia-
bility Modulo Theories (SMT) solvers to both validate the satisfiability of the constraint
expression and verify the corresponding program properties.

Despite the impressive improvements of constraint solving and the availability of
mature solvers, constraint solving still represents a main bottleneck towards efficient
and scalable symbolic program analysis. The work on the SMT bottleneck proceeds
along two main research lines: (i) optimisation approaches that assist and comple-
ment the solvers in the context of the program analysis in various ways, and (ii) reuse
approaches that reduce the invocation of constraint solvers, by reusing proofs while
solving constraints during symbolic analysis.

This thesis contributes to the research in reuse approaches, with REusing-Constraint-
proofs-in-symbolic-AnaLysis (ReCal), a new approach for reusing proofs across con-
straints that recur during analysis. ReCal advances over state-of-the-art approaches
for reusing constraints by (i) proposing a novel canonical form to efficiently store and
retrieve equivalent and related-by-implication constraints, and (ii) defining a parallel
framework for GPU-based platforms to optimise the storage and retrieval of constraints
and reusable proofs.

Equivalent constraints vary widely due to the program specific details. This thesis
defines a canonical form of constraints in the context of symbolic analysis, and develops
an original canonicalisation algorithm to generate the canonical form. The canonical
form turns the complex problem of deciding the equivalence of two constraints to the
simple problem of comparing for equality their canonical forms, thus enabling efficient
reuse for recurring constraints during symbolic analysis.

Constraints can become extremely large when analysing complex systems, and han-
dling large constraints may introduce a heavy overhead, thus harming the scalability
of proof-reusing approaches. The ReCal parallel framework largely improves both the
performance and scalability of reusing proofs by benefitting from Graphics Processing
Units (GPU) platforms that provide thousands of computing units working in parallel.
The parallel ReCal framework ReCal-gpu achieves a 10-times speeding up in constraint

v

vi

solving during symbolic execution of various programs.

Contents

Contents viii

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Research Hypothesis and Contributions . 5
1.2 Structure of the Dissertation . 6

2 Constraint Solving in Program Analysis 9
2.1 Reducing the Impact of Constraint Solving 10

2.1.1 Parallel Solvers . 10
2.1.2 External Optimisations . 11
2.1.3 Heuristics and Machine Learning . 11
2.1.4 Reducing Redundant States . 12

2.2 Reusing Proofs to Speed Up Symbolic Execution 12
2.2.1 KLEE . 12
2.2.2 Green . 13
2.2.3 GreenTrie . 14
2.2.4 Utopia . 15

3 Reusing Proof in Symbolic Analysis 17
3.1 Reference Logic . 17
3.2 Motivating Examples . 18

3.2.1 Reusing Proofs across Equivalent Constraints 18
3.2.2 Reusing Proofs across Constraints Related by Implication 20
3.2.3 Improving Proof Reusability by Logical Simplifications 21

3.3 The ReCal Proof Caching and Reusing Framework 21
3.3.1 Preprocessing . 22
3.3.2 Logical simplification . 24
3.3.3 Canonicalisation . 26

vii

viii Contents

3.3.4 Efficient Retrieval of Reusable Proofs 27

4 The Canonicalisation Algorithm 31
4.1 The ReCal Canonical Form . 31
4.2 The Canonicalisation Algorithm . 33
4.3 Complexity of Computing the ReCal Canonical Form 39

5 The GPU-based parallel approach to proof reusing 41
5.1 Parallel Deployment of ReCal . 41
5.2 Parallel Logical Simplification . 42
5.3 Parallel Canonicalisation . 43

5.3.1 The Canonical isat ionpar algorithm 45
5.3.2 Executing Canonical isat ionpar . 51
5.3.3 Computational Complexity of Canonical isat ionpar 52

5.4 CUDA ReCal-gpu implementation . 54

6 Evaluation 57
6.1 ReCal Prototype(s) . 58
6.2 Experimental Setting and Design . 59
6.3 Experiment Results . 61

6.3.1 Effectiveness of ReCal . 62
6.3.2 Efficiency of ReCal . 63
6.3.3 Effectiveness of Canonicalisation . 64

6.4 Threads to Validity . 67

7 Conclusion 71

A Proofs and analysis of the Canonicalisation algorithm 77
A.1 Termination of Canonicalisation . 77
A.2 Correctness of Canonicalisation . 79

B Proofs of the parallel canonicalisation algorithms 83

Bibliography 87

Figures

3.1 The ReCal process . 22
3.2 Comparison simplifications . 23
3.3 Example of Preprocessing . 24
3.4 Example of retrieving satisfiable stricter candidates 29

4.1 Intermediate and final results of Canonicalisation on sample constraints 35
4.2 A sample constraint for which Canonicalisation converges with multiple

iterations of the third phase . 38
4.3 Sample constraints for which Canonicalisation converges in the fourth

phase . 38

5.1 Result of parallel Canonicalisation on a sample constraint 47
5.2 Computation of row hashcodes at the first iteration of function row_hashcode

(cfr. Algorithm 3, line 23) . 49
5.3 First iteration of algorithm Canonical isat ionpar on two sample equiv-

alent constraints . 51
5.4 Second iteration of algorithm Canonical isat ionpar on the two sample

equivalent constraints . 53
5.5 Third iteration of algorithm Canonical isat ionpar on the two sample

equivalent constraints . 53

6.1 Summary statistics on the reuse-rates of the different approaches 63
6.2 Time to solve all constraints with the different proof-reusing approaches 65
6.3 Execution time of each step of ReCalgpu and ReCalgpu+ 66
6.4 Execution time (log scale) to solve the constraints of each program with

the different proof-reusing approaches . 69
6.5 Incremental reuse-rate for Inter-program reuse-rates with Canonicalisa-

tion . 70

ix

x Figures

Tables

6.1 Features of the ReCal prototypes . 59
6.2 Subject programs . 60
6.3 Reuse-rates of the different approaches . 61
6.4 Unconvergence of Canonicalization algorithm 67

xi

xii Tables

Chapter 1

Introduction

Program analysis is the automatic process of analysing the behaviour of programs and
verifying the desired properties such as correctness and reliability [PY07]. Many pro-
gram analysis methods, such as model checking, control-flow analysis, data-flow anal-
ysis, testing, have been developed to help programmers understand and evaluate com-
plex systems. Nowadays, program analysis techniques are approaching to industrial
maturity level and play an important role in software development [GLM12].

Symbolic analysis is one of the popular techniques in the field of program analy-
sis and automatic testing. It uses symbolic expressions (logic formulas over algebraic
expressions of typed variables) to describe the possible executions of a program, and
relies on constraint solvers to validate the symbolic expressions and thus to verify the
properties of interest. Symbolic execution is a type of symbolic analysis, whose goal
is to determine the execution conditions of program paths [Kin76, Cla76]. A popular
application of symbolic execution in industry is to generate test cases to achieve high
code coverage of software systems [CDE08, TdH08, CS13]. When used to generate
test cases, symbolic execution (i) traverses the program paths and simulates the exe-
cution of the statements in those paths by assuming symbolic values as program inputs,
(ii) systematically records the conditions to execute each branch in each path, and thus
builds a logic formula (called the path condition) that represents the execution condi-
tions of the path with respect to the symbolic inputs, and (iii) attempts to solve the path
conditions with an automatic constraint solver to find concrete input values to execute
the corresponding program paths, that is, to find a test case for each path. When using
constraint solvers to solve a path condition formula, we may (i) either obtain a satisfi-
ability verdict for the formula, along with concrete values that make the formula hold
true, and that can thus be used as actual inputs to cause the corresponding program
path to execute, (ii) or an un-satisfiability verdict, that is, a proof that the path that
corresponds to the path condition is infeasible.

Automatic constraint solving is known to be a very challenging task, both practi-
cally and theoretically, and it is a very active research field, with many important results

1

2

produced over the last years, but also many open problems yet to be solved [BHvM09,
RVBW06, MHL+13]. A widely studied approach to address the problem is to embrace
restrictions on the formulas that the constraint solver shall cope with, and thus design
constraint solvers that can efficiently compute the solution for formulas that comply
with those restrictions. In particular, many popular constraint solvers embrace the Sat-
isfiability Modulo Theories (SMT) approach that consists in considering only formulas
with variables that belong to a specified domain (called a theory in the terminology
of SMT solvers) and within a limited set of algebraic and logic expressions, and thus
achieve efficient constraint solvers for a relevant set of decidable theories [BFT16].
However, despite the many relevant results in the last years [DMB08, CGSS13, Dut14,
BCD+11], the SMT problem is still a challenge in many cases. Theoretically, depend-
ing on the logic and the underlying theory, it could be NP-hard, and in general un-
decidable [BFT16]. Practically, modern solvers can very efficiently deal with many
constraints within the boundaries of the considered logics and theories, but become in-
creasingly less efficient for formulas of increasing size, and impractically slow to solve
some constraints that belong to non-trivial logic classes, for instance non-linear con-
straints [DMB08, SBdP11].

These limitations crucially impact on the efficiency of the program analysis tech-
niques that rely on constraint solvers. As a matter of facts, the symbolic analysis of
complex software systems produces enormous path conditions that contain heteroge-
neous constraints, making constraint solving be the main bottleneck for symbolic anal-
ysis techniques to achieve industry scale application. Many previous empirical studies
quantified this phenomenon, showing that already to accomplish the symbolic exe-
cution of programs where the path conditions consist of only constraints over linear
expressions, the time spend on constraint solving accounts for more than 90% of the
overall execution time [CDE08, VGD12, BDP16].

To mitigate the impact of constraint solving during symbolic analysis, different ap-
proaches have been proposed in the recent years. Other than the many improvements
achieved from the scientific community that work on constraint solvers to efficiently
target specific domains of logics [BDHJ14, CDW16, BHJ17a, BHJ+17b] several re-
searchers have proposed optimisations that aim to assist and complement the solvers in
the context of the program analysis techniques. For example, Palikareva et al. proposed
to use multiple constraint solvers in parallel, exploiting constraint solvers optimised
for constraints in different logics, aiming to benefit from the fastest answer from any
solver [PC13]. Braione et al. proposed to apply rewriting rules to simplify non-linear
constraints before querying solvers, thus increasing the number of non-linear formulas
that can be successfully solved, and improving the response time of the solver [BDP13].
Erete et al. proposed to exploit information about the domain of the program under
analysis to optimise the usage of solvers, rather than using them in black-box fash-
ion [EO11]. Machine learning techniques and heuristic algorithms have also been ap-
plied to foster the ability of solving complex constraints [LLQ+16, DA14, TSBB17].

3

In this thesis, we focus on approaches for reusing proofs while solving constraints
during symbolic analysis, moving on beyond recent work that caches and reuses solu-
tions [VGD12, YPK12, CDE08]. In particular, this recent work starts from the observa-
tion that, both during the analysis of the same program and across programs, a large
amount of the queries to the constraint solver concern equivalent and logical related
formulas. This observation led to approaches ([VGD12, YPK12, CDE08]) that comple-
ment symbolic execution with caching frameworks that record the proofs of the solved
constraints, to reuse these proofs to solve subsequent formulas that are equivalent or
related by implication to some already solved formula. The available studies provide
initial evidence that this type of approach, which we refer to as proof caching and reuse,
can significantly reduce the number of queries to constraint solvers, and thus drastically
reduce the time required to complete the symbolic analysis of programs.

The innovative idea of reusing proofs to improve the efficiency of symbolic program
analysis opens a promising research direction, but also raises significant challenges. A
core challenge in caching and reusing proofs is the ability of identifying cached proofs
that can be reused to solve new formulas. The seminal work of Visser et al., Cadar et
al., and Yang et al. focused on identifying whether a new formula is equivalent to or
related by implication with an already solved formula [VGD12, YPK12, CDE08]. The
equivalence of two formulas is a sufficient condition to reuse the proof that is available
for either formula. The implication between formulas allows to infer the satisfiability
of a new formula: if a new formula is implied by a formula already proven to be satisfi-
able, or implies a formula already proven to be unsatisfiable, the new formula is either
satisfiable or unsatisfiable, respectively, and we can reuse the available proof. However,
identifying the logical equivalence or the implication relations between constraints is
a hard task, and ultimately can be as complex as solving the formulas in the general
case.

The seminal approaches restrict their attention on identifying equivalence and im-
plication relations that depend on the syntactic structure of the formulas, possibly after
some equivalence-preserving transformations that normalise the structure of the formu-
las to unveil mutually equivalent parts. Cadar et al. [CDE08] optimise the Klee symbolic
executor with a constraint caching framework that identifies equivalent and implication
related constraints, by matching textually identical logical expressions across the con-
straints. They introduced a transformation that they refer to as constraint slicing, which
consists in separating the constraints into logically independent sub-constraints that
predicate on distinct set of variables. This reduces the size of the constraints that must
be dealt in the caching framework, and thus increases the chances of identifying tex-
tual equivalences across the constraints. In the Green framework, Visser et al. [VGD12]
normalise the constraints by abstracting away the names of the program variables, and
exploiting arithmetic rules to reduce the set of comparison operators that appear in
the constraints, thus favouring the chances to spot equivalent constraints across the
analysis of different programs or different parts of a program.

4

The seminal work of Klee and Green indicates the feasibility of reusing proofs to
mitigate the impact of constraint solving in symbolic analysis, but addresses the reuse
of proofs across a limited class of equivalent constraints and constraints related by
implication. As an example, Green would not identify as equivalent two constraints
that consist of the same sub-formulas listed in different order in a conjunctive formula,
because they would appear as different formulas after the renaming the inner variables.
As another example, Klee would not recognise the implication between the formula
V1 > 5 and the formula V1 > 1, because these two formulas do not textually match
with each other.

A main contribution of this PhD work is to define a novel canonical form to repre-
sent constraints in linear integer arithmetics. Our canonical form allows us to identify
equivalences and implications that could not be revealed with approaches that work
on the original structure of the very same constraints. Our canonical form crucially
extends the class of equivalent constraints and constraints related by implication that
can be dealt with in the caching framework. In the thesis, we discuss the properties of
our algorithm for computing the canonical form.

Another significant challenge in caching and reusing proofs is the cost of identi-
fying the reusable proofs. Effective approaches must be faster in identifying reusable
solutions than constraint solvers in computing the proofs. The experimental results
reported in this thesis indicate serious scalability issues for the state-of-the-art proof
reusing approaches, scalability issues that are shared by the serial computations of our
canonical form algorithm. Indeed, when analysing complex programs with symbolic
analysers, the constraints computed during the analysis can become extremely large,
up to including hundred of variables and sub-formulas. Applying transformations like
simplifications and normalisations to such large constraints inevitably causes heavy
computation overhead. In this thesis, we observe that the typical conjunctive structure
of the constraints produced in symbolic program analysis is suitable for parallelising the
computation of our canonical form, and propose a parallel algorithm that we realise
as an instance of General-Purpose computing on Graphics Processing Units (GP-GPU).
A GP-GPU platform can provide thousands of computing units working in parallel, and
allows us to efficiently compute the canonical form for constraints of arbitrary size.

The main contribution of this thesis is ReCal, an approach for REusing-Constraint-
proofs-in-symbolic-AnaLysis. In details, ReCal contributes to the state of the art by:

(i) introducing logical simplification rules, such as eliminating redundant clauses and
checking conflicting clauses pairs, to simplify constraints beyond the simple sim-
plifications defined in Klee and Green,

(ii) defining a notion of equivalence of constraints that goes beyond the simple syn-
tactic normalisation introduced in Green, and proposing an efficient canonicali-
sation algorithm to compute the canonical form of constraints according to our
equivalence relation,

5 1.1 Research Hypothesis and Contributions

(iii) exploiting an innovative parallel algorithm on a GPU-based platform to efficiently
compute the canonical form for constraints of arbitrary size,

(iv) introducing rules to identify the logical implications between constraints beyond
the simple identification of contained sub-formulas of Klee, to enable the reuse of
proofs across a large class of mutually stricter and mutually weaker constraints,

(v) developing an efficient caching framework that implements the ReCal approach
to retrieve proofs over a large repository of constraints,

(vi) presenting a set of experimental results that provide compelling empirical evi-
dence of the benefits of the ReCal approach both in absolute terms and in com-
parison with state-of-the-art approaches for reusing proofs of constraints.

In the last four years, during the development of this PhD work, two new ap-
proaches to reusing proofs across constraints were independently proposed by other
researchers. In 2015, Jia et al. [JGY15] proposed GreenTrie, an approach that extends
the Green framework of Visser and colleagues with mathematic inference rules to reuse
proofs across constraints related by implication. With these rules, GreenTrie captures a
set of implication-related constraints that largely overlap with the constraints that can
be captured with our ReCal approach. Both GreenTrie and ReCal were independently
presented at the International Symposium on Software Testing and Analysis (ISSTA)
in 2015, where we discussed the synergies of thew two approaches. In the exper-
iments reported in this thesis, we report the results of our empirical comparison of
ReCal with GreenTrie that show that ReCal outperforms GreenTrie in both effectiveness
and efficiency. In 2017, Aquino et al. [ADP17] introduced a new framework (UtoPia)
for caching and reusing constraints, in which they heuristically identify constraints that
share available proofs even without being necessarily mutually equivalent or related by
implication. The work of Aquino et al. comes from the same research group, and is
seeded in the initial work on ReCal that continued with two complementary research
lines, the work on UtoPia on one side, and the refinement and parallel implementa-
tion of ReCal on the other side. In the experiments reported in this thesis we report
the results of our empirical comparison of ReCal with UtoPia that show the intrinsic
complementarity of these two approaches.

1.1 Research Hypothesis and Contributions

The main research hypothesis of this PhD work is:

Constraint proofs computed during symbolic analysis can be effectively reused
to incrementally prove new constraints more efficiently than invoking a solver
for proving each constrains, thus improving the overall performance of sym-
bolic analysis.

6 1.2 Structure of the Dissertation

Previous studies have observed that both equivalent and related-by-implication con-
straints recur during symbolic analysis and have proposed different approaches to reuse
proofs [CDE08, VGD12, BDP16]. Our studies confirm the recurrence of equivalent
and related-by-implication constraints, indicate that current approaches can effectively
reuse an interesting subset of proofs, and reveal several intrinsic limitations of state-of-
approaches in proof reuse, leaving a large space for improvements.

In this PhD work, we contribute to the reuse of constraint proofs during symbolic
analysis by

(i) defining a new concept of equivalence of constraints in the context of program
analysis,

(i) proposing ReCal, an approach to reuse proofs based on the new concept of equiva-
lence,

(i) confirming the ability of ReCal to reuse a larger set of proofs than current ap-
proaches, by reporting the results of our experimental study on a large set of con-
straints generated from diverse programs,

(i) defining a parallel algorithm that implements the ReCal approach, and largely im-
proves the overall performance of the ReCal approach,

(i) presenting the GPU-based proof-reusing framework ReCal-gpu, that outperforms all
the current approaches in terms of saving time, and

(i) discussing a set of experimental results that confirm the effectiveness and efficiency
of ReCal-gpu.

We presented the initial results of this PhD work at the Doctoral Symposium and
at the main research track of of the ACM International Symposium on SoftwareTesting
and Analysis (ISSTA) in 2014 [Mei14] and 2015 [ABC+15], respectively.

1.2 Structure of the Dissertation

This document is organised as follows.

• Chapter 2 discusses the main research directions towards mitigating the impact
of constraint solving in symbolic analysis: improving constraint solvers, reduc-
ing the amount of symbolic states to analyse, and reusing proofs. The chapter
discusses in details the approaches for reusing proofs, which are the approaches
most closely related to the research work presented in this dissertation.

• Chapter 3 overviews the ReCal approach, discusses the abstraction and simpli-
fication steps that all together identify equivalent constraints, and presents the
search engine, which extends the reuse of proofs of formulas related by logical
implication.

7 1.2 Structure of the Dissertation

• Chapter 4 introduces the Canonicalisation form, a key element for efficiently re-
trieving reusable proofs, and presents the Canonicalisation Algorithm.

• Chapter 5 presents the GPU-based reusing framework ReCal-gpu, the parallel
computation of the ReCal that largely reduces the computational costs.

• Chapter 6 presents the experimental setup, and discusses the experimental results
that show the effectiveness of ReCal in the comparison with the state-of-the-art.

• Chapter 7 summarises the main contributions of the PhD work and indicates the
new research directions that this work opens.

8 1.2 Structure of the Dissertation

Chapter 2

Constraint Solving in Program Analysis

Symbolic analysis techniques rely on constraint solvers to prove path condi-
tion constraints. Despite the recent progress in theory and the maturity of
the corresponding tools constraint solvers still represent a main bottleneck for
symbolic analysis. This Chapter reviews the achievement of symbolic analysis
techniques and the obstacles to achieve scalability, and overviews the main
approaches to mitigate the impact of constraint solving during symbolic anal-
ysis. It identifies four main research lines, presents in details the work about
reuse of proofs, discusses the core limitations of the current approaches, and
identifies the opportunities of further improving the reuse of proofs, which
inspired the work documented in this dissertation.

Symbolic analysis techniques, such as symbolic execution, are becoming more and
more popular in automatic testing and program analysis, and are approaching an in-
dustrial maturity level.

For example, modern tools based on symbolic execution exploit many different ex-
ploration strategies and path selection methods, to effectively and efficiently explore
programs. The most common strategies are Depth-First Search (DFS), which analy-
ses program paths till the end before backtracking to the deepest and nearest unex-
plored branches, and Breadth-First Search (BFS), which analyses all branches at each
decision point before progressing further through the possible program paths. Other
approaches investigate randomised path selection heuristics. KLEE [CDE08], for in-
stance, refines the path selection strategy by assigning probability factors to program
paths, to favor the paths that were explored fewer times. Other symbolic execution
tools, e.g., EXE [CGP+06], KLEE [CDE08], MAYHEM [CARB12], and S2E [CKC12] in-
troduced heuristics to maximise the code coverage for different classes of programs.

Symbolic analysis relies on Satisfiability Modulo Theories (SMT) solvers [DMB08,
CGSS13, Dut14, BCD+11] to validate the constraints during exploring program paths.
Modern SMT solvers can efficiently handle many complex constraints, but they still
represent a main bottleneck to the scalability of symbolic analysis, due to the intrin-

9

10 2.1 Reducing the Impact of Constraint Solving

sic complexity of the constraint solving problem. In fact, solving SMT problem is in
general very hard: it is NP-complete for classical propositional logic, PSPACE complete
for more complex logics such as the quantifier-free non-linear real arithmetic logic,
and even undecidable for most quantified logics. Moreover, the need to solve many
large constraints, characterised by hundred of variables and hundreds of clauses, exac-
erbates the problem. Several empirical studies indicate that the time spend in solving
constraints accounts for more than 90% of the overall execution time of symbolic anal-
ysis [CDE08, VGD12, BDP16].

For example, a constraint that makes constraint solvers struggle, despite being easy
to solve intuitively, is the quartic Diophantine equation:

A4 + B4 + C4 = D4.

This constraint is known to have infinitely many solutions in the domain of positive
integers, but yet Z3 [DMB08] fails to figure out any of such solutions after running for
24 hours.

Many approaches address the constraint solving bottleneck problem, by exploring
four main research lines: (i) invoking SMT solvers in parallel, (ii) compensating SMT
solvers with external optimisation tailed for specific domains, (iii) reducing the number
of program states to explore by identifying and removing redundant states, (iv) reusing
constraint proofs to reducing the frequency of querying SMT solvers. This thesis is led
by the last thread of approach in proof reusing.

We discuss the first three threads of work in section 2.1. In section 2.2, we inves-
tigate the recent approaches for speeding up symbolic analysis by proof reusing. For
each approach, we discuss about the scope of application, details of the techniques, and
innovative contribution comparing to the other related work.

2.1 Reducing the Impact of Constraint Solving

In this section, we survey the approaches to improve the performance of symbolic anal-
ysis that rely on (i) parallel solvers, (ii) external optimisations, (iii) heuristics and
machine Learning, and (iv) reducing redundant states.

2.1.1 Parallel Solvers

Modern SMT solvers implement various strategies to decide the satisfiability of con-
straint formulas, and perform differently when dealing with different kinds of con-
straints. Thus some solvers may efficiently solve some kinds of formulas, and be much
less efficient in solving other kinds of formulas. Palikareva and Cadar observe that for
most constraint queries, it is impossible to decide in advance which solvers will perform
better, and propose a framework which parallel queries different solvers when solving a
target constraint and getting proof from the fastest one [PC13]. Palikareva and Cadar’s

11 2.1 Reducing the Impact of Constraint Solving

framework is integrated in the KLEE symbolic executor [CDE08]. To efficiently invoke
different solvers, Palikareva and Cadar observe that formulas can be expressed in the
SMT-LIB standard format, which is currently supported by most constraint solvers, but
advice against this practice, due to the verbose format of SMT-LIB, which reduces the
performance of serializing formulas. Palikareva and Cadar use macros and templates
to automatically assert a formula to many solvers by means of their APIs, with a limited
overhead.

2.1.2 External Optimisations

SMT solvers are often used in a black-box fashion during symbolic analysis, without
integrating available contextual and domain information of the programs, thus leaving
many opportunities to optimise the usage of SMT solvers.

Braione et al. propose mathematic rewriting rules to simplify complex constraints,
and suggest a combination of lazy initialisation and rewriting rules to exclude invalid
inputs, thus simplifying path condition constraints by exploiting either program-specific
calculations or the logic of the verification tasks [BDP13].

Erete and Orso optimise the solving procedure during dynamic symbolic execu-
tion [EO11]. Dynamic symbolic execution (DSE) runs a program with both concrete
and symbolic inputs, and uses concrete execution to drive symbolic execution along
a specific path that is guaranteed to be feasible. DSE tracks a path condition for the
explored paths and negates the last constraint in the path condition that corresponds
to a not-yet-covered branch, to execute new paths [CTS08].

Erete and Orso exploit the contextual information of the concrete inputs to help the
solver find a solution to the path conditions corresponding to variations of that path.
They suggest to systematically substitute the variables in a target path condition with
their associated concrete values to reduce the path conditions, and incrementally use
the models built during the evaluation to simplify the constraint solving task.

2.1.3 Heuristics and Machine Learning

Dinges et al. combine linear constraint solving with heuristic search to address non-
linear path conditions [DA14]. Solving nonlinear constraints is in general undecidable.
Some solvers, for instance Z3, Coral, and Dreal [DMB08, SBdP11, GAC12] generate
proofs for some usually small subset of nonlinear constraints within a reasonable time.
Dinges et al. separate complex paths into linear and nonlinear subset, use solvers to
generate proofs for the linear sub-constraint, and use heuristic approaches to search
for solutions that satisfy the nonlinear sub-constraints, starting from the results of the
linear sub-constraints.

Li et al. integrate machine learning technique with constraint solving to tackle
complex path condition [LLQ+16]. Li et al.’s approach translates constraint solving

12 2.2 Reusing Proofs to Speed Up Symbolic Execution

into optimisation problems that they solve through machine learning guided samplings
and validations.

2.1.4 Reducing Redundant States

Both Person et al. and Bugrara and Engler reduce the number of states to be explored
by identifying redundant program states that include (i) states unaffected by the mod-
ification during regression analysis [PYRK11], and (ii) new states that do not improve
program coverage during dynamic program analysis [BE13] .

The DiSE framework of Person et al. [PYRK11] identifies the states that differ across
incremental versions of the program with a combination of forward and backward static
data flow analysis, and symbolically analyse only the new states. The DiSE framework
improves significantly the performance of symbolic execution, but it is limited to re-
gression analysis.

Bugrara and Engler [BE13] observe that not all the paths explored during symbolic
analysis reach new areas of the code, and exclude the states that do not improve test
coverage from analysis, thus speeding up symbolic execution without reducing test cov-
erage. Bugrara and Engler’s approach records the explored states and the constraints
in the corresponding path conditions, and show that new states whose constraint can
be satisfied with a valid combination of solutions (variable assignments) of constraints
of known states, will not reach new code regions, and thus may not be explored.

2.2 Reusing Proofs to Speed Up Symbolic Execution

A recent trend of research has studied techniques for reducing the number of queries
to constraint solvers by caching and reusing results from previous analysis sessions.
The work by Yang et al. on memoized symbolic execution merges states that do not ad-
vance towards the coverage [YPK12]. The Klee caching frameworks limit the number of
queries issued to the constraint solver [CDE08]. Visser et as.’s Green approach [VGD12]
and the Jia et al.’s GreenTrie extension [JGY15] cache formulas together with their so-
lutions in a distributed key-value in-memory database suited for extremely fast local
lookups. Aquino et al.’s [ADP17] Utopia stores formulas with data that characterise
their solution space for retrieving solutions reusable across formulas that share solu-
tions despite their differences.

In the following we provide additional details about Klee, Green, GreenTrie and
Utopia, the approaches most close to ReCal.

2.2.1 KLEE

The KLEE symbolic executor targets LLVM (Low Level Virtual Machine) bytecode. It au-
tomatically generates test cases that maximize code coverage [CDE08]. KLEE reduces

13 2.2 Reusing Proofs to Speed Up Symbolic Execution

the calls to the constrain solver by incrementally cacheing formulas to reuse their solu-
tions for equivalent and implied formulas.

KLEE implements a slicing technique that slices constraints into mutually indepen-
dent and simpler constraints, that is, constraints whose clauses do not share any vari-
ables, as illustrated in the following example.

original constraint F
x + 2y < 0∧ a+ b = 0∧ x − y > 0

independent slices
F ′1 F ′2

x + 2y < 0∧ x − y > 0 a+ b = 0

Slicing may largely reduce the size of the constraints to be solved, due to the way
symbolic execution generates and updates path conditions.

KLEE maintains two caching frameworks the branch cache that stores the results
of individual queries to the constraint solver, and the counter-example cache that store
unsatisfiable constraints with their unsatisfiability proof. KLEE searches the counter-
example cache by exploiting Hoffmann and Hoehler’s UBTree data structure [Com79],
which allows efficient searching for both subsets and supersets of constraint sets. KLEE
uses the counter-example cache to efficiently determine if a new formula either is con-
tained in a satisfiable constraint set or contains any unsatisfiable constraint set solved in
the past, to determine that the path condition is satisfiable or not, respectively. Proofs
between sub/super constraints can be reused: (i) if a satisfiable super constraint of
the target constraint is found, the target constraint can be solved by reusing the proof,
(ii) if an unsatisfiable sub constraint of the target constraint is found, we can infer the
target constraint is unsatisfiable as well, since the target constraint is equivalent or
stricter than any of its sub constraints, (iii) if a satisfiable sub constraint of the target
constraint is found, we can try to reuse the proof to solve part of the target constraint.
KLEE has been successfully experimented to the 89 stand-alone programs in the GNU
coreutils utility suite, which are becoming a common benchmark in the field.

Looking up for a sub/super set is less straightforward than searching for the exact
constraint. KLEE propose to use the UBTree data structure [Com79] to store the con-
straint clauses and retrieval for a sub/super set of clauses. In both reusing strategies,
constraints are stored in memory for fast access.

Experiments with over 89 stand-alone programs in the GNU coreutils utility indicate
that the KLEE cache framework reduces the solving time by 41%.

2.2.2 Green

Visser et al.’s Green framework reuses solutions of integer linear path condition con-
straints [VGD12].

14 2.2 Reusing Proofs to Speed Up Symbolic Execution

Green identifies equivalent constraints generated also across different programs, by
comparing constraints after normalisation. The Green normalisation precess of con-
straints is composed of three steps:

(i) Slicing which implement KLEE’s slicing;

(ii) Mathematic simplification, which implements a set of simple mathematic transfor-
mation rules, for instance the term rewriting x+ y = 2y → x− y = 0, and the di-
vision of coefficients by the greatest common divisor: 4x+8y = 12→ x+2y = 3.

(iii) Normalisation. Green eliminates program specific details by renaming and re-
ordering variables and terms. After mathematically simplifying the formula, Green
reorders first the terms in a clause by the values of the coefficients, for example
3x + y = 2→ y +3x = 2, and then the clauses by lexical order of the coefficients
appearing in each clauses. Finally, Green rewrites the variable names according to
their occurrence in the sorted formulas, for example y + 3x = 2→ v1 + 3v2 = 2.

The normalised constraints as well as the proofs are stored in Redis database [Red21],
which is a key-value in-memory database suitable for fast local lookups. The Green
framework does not support proof reusing by logical implication.

In the empirical study of Green, the author observe that, equivalent constraints
recur not only within the same program, and also from different programs that perform
similar function [VGD12].

2.2.3 GreenTrie

Jia et al.’s GreenTrie approach extend the Green framework with logical implication
rules [JGY15]. Being based on Green caching framework, GreenTrie also targets for-
mulas in QFLIA logic. GreenTrie extends Green based on satisfiability relations that
depend on formula implications: if a formula F is satisfied by a model m, and F implies
a formula G, then also the formula G is satisfied by the model m, and if a formula F is
unsatisfiable and G implies F, then also G is unsatisfiable.

GreenTrie determines implications between formulas by comparing the clauses that
comprise the two formulas using the following syntactical rules:

(R1)
C =⇒ C

(R2)
n 6= n′

P + n= 0 =⇒ P + n′ 6= 0

(R3)
n≥ n′

P + n= 0 =⇒ P + n′ ≤ 0
(R4)

n≤ n′

P + n= 0 =⇒ P + n′ ≥ 0

(R5)
n> n′

P + n≤ 0 =⇒ P + n′ 6= 0
(R6)

n> n′

P + n≤ 0 =⇒ P + n′ ≤ 0

(R7)
n< n′

P + n≥ 0 =⇒ P + n′ 6= 0
(R8)

n< n′

P + n≥ 0 =⇒ P + n′ ≥ 0

15 2.2 Reusing Proofs to Speed Up Symbolic Execution

GreenTrie improves KLEE strategy of reusing super/sub constraints by storing the
constraints in Implication Partial Order Graph (IPOG). In the GreenTrie IPOG, the clauses
of constraints are associated to nodes and are ordered by the clause order appearing in
the normal form.

The type of constraint normalisation exploited in GreenTrie (and in Green) is how-
ever limited for constraints in which the corresponding clauses and variables appear
in different orders. For example, both GreenTrie and Green, would fail to identify the
equivalence of the following constraints:

F1 3x + 2y + z ≤ 0∧ 2x + 3y + z ≤ 0∧ y ≤ 0
F2 3a+ 2b+ c ≤ 0∧ 2a+ 3b+ c ≤ 0∧ a ≤ 0

F1 and F2 can indeed be shown to be equivalent by renaming x to b and y to a,
but the simplification and normalisation rules of GreenTrie and Green produce different
normal forms, that is,

N F1 3V1 + 2V2 + V3 ≤ 0∧ 2V1 + 3V2 + V3 ≤ 0∧ V2 ≤ 0
N F2 3V1 + 2V2 + V3 ≤ 0∧ V1 + 3V2 + V3 ≤ 0∧ V1 ≤ 0

hence failing to identify that the two constraints are equivalent.
The limitations of syntactic normalisation, open the study of new normal forms,

that we propose in Chapter 3.

2.2.4 Utopia

Aquino et al.’s UtoPia framework reuses solutions by heuristically identifying constraints
that share available proofs even without being necessarily mutually equivalent or re-
lated by implication [ADP17]. To this end, UtoPia proposes an original metric, referred
to as SatDelta, to estimate the distance of the solution space of a target constraint (yet
to be solved) from the solution spaces of the constraints with available solutions, and
selects candidate reusable solutions from constraints with close solutions spaces. The
metric SatDelta evaluates the constraints on a set predefined solutions, computes the
amount by which the predefined solutions miss the satisfaction of the atomic predicates
in the constraints, aggregates these missing amounts based on the logical structure of
the constraints, and finally estimates the distance of the solution spaces of constraints
as the absolute difference of the respective SatDelta-values.

To find a reusable solution for a target constraint, Utopia works as follows:

(i) it computes the SatDelta-value of the target constraint,

(ii) it retrieves a small set of candidate reusable solutions, which it takes from the
cached constraints with SatDelta-value closest to the one of the target constraint,

(iii) it tests the candidate solutions against the target constraint and reports the first
satisfying solution, if any, or no reusable solution otherwise.

16 2.2 Reusing Proofs to Speed Up Symbolic Execution

ReCal and UtoPia are complementary to each other. Being a heuristic approach,
UtoPia can experience false negatives, that is, it may fail to identify a reusable solution
that there exists in the repository, because the computation of SatDelta may yield dif-
ferent results for the target and the cached constraint, respectively. In UtoPia, this can
happen regardless of whether the two constraints are equivalent or related by implica-
tion. Conversely, ReCal precisely identifies a large class of equivalent and implication-
related constraints. Utopia has been developed in the same research group in which
we developed this PhD Work, and is seeded in the initial work on ReCal that continued
with two complementary research lines, that is, the work on UtoPia on one side, and the
refinement and parallel implementation of ReCal on the other side. The experiments
reported in this thesis provide empirical evidence of the complementarity of these two
approaches.

Chapter 3

Reusing Proof in Symbolic Analysis

In this chapter, we propose the new ReCal reusing framework, a contribution
of this PhD thesis. The core contribution of the ReCal framework is a novel
canonical form to efficiently identify a large class of equivalent constraints, a
new algorithm to identify a large class of constraints related by logical impli-
cation, and logical simplification rules to increase the likelihood of succeeding
in identifying both types of constraints. The chapter presents the reference
logic of the constraints that can be addressed with ReCal, and a set of sample
constraints collected from symbolic analysis that exemplify the novel charac-
teristics of ReCal with respect to the competitor proof caching and reusing
frameworks at the state of the art. It then presents the logical components of
the ReCal framework, preprocessing, logical simplification, canonicalisation
and search.

This chapter presents the REusing-Constraint-proofs-in-symbolic-AnaLysis (ReCal) ap-
proach. We frame the class of constraints that ReCal addresses, introduce a set of exam-
ples that highlight the distinctive characteristics of the ReCal framework with respect
to the competing approaches at the state of the art, and describe the internals of the
ReCal framework.

3.1 Reference Logic

ReCal addresses constraints expressed as conjunctive formulas in the quantifier-free
linear integer arithmetic (QF_LIA) logic. ReCal focuses primarily on constraints pro-
duced during symbolic execution that consist in quantifier-free formulas in conjunctive
form. Among those, the constraints composed of linear equalities and inequalities over
integers represent a large class of constraints that occur in many practical settings of
symbolic execution. Most popular constraint solvers [DMB08, CGSS13, Dut14] address
constraints in QF_LIA logic, confirming the general interest in coping with constraint

17

18 3.2 Motivating Examples

solving problems in this logic. Similarly to ReCal, also the related approaches Green
and GreenTrie focus on QF_LIA logic constraints.

3.2 Motivating Examples

In this section, we discuss sample constraints collected from practical applications of
symbolic program analysis, and we use them to exemplify the novelty of ReCal. The
examples highlight (i) the type of equivalent constraints that ReCal can identify and
the state-of-the-art approaches cannot, (ii) the type of constraints related by implica-
tion that ReCal can identify and the competing approaches cannot, and (iii) the type
of logical simplifications that ReCal distinctively exploits to increase the likelihood of
succeeding in identifying both equivalent constraints and constraints related by impli-
cation.

3.2.1 Reusing Proofs across Equivalent Constraints

Equivalent constraints may occur with different concrete representations due to pro-
gram specific information and context dependencies. For example, two equivalent con-
straints can refer to different variable names, include the same terms and clauses in
different order of occurrence, or even include different arithmetic expressions. Differ-
ences in the representation of the constraints may preclude the ability of a proof reusing
framework to identify the equivalence of the constraints.

Let us for instance consider the constraint C1

balance ≥ 0 ∧ balance−withdraw_value ≥ 0

that we collected while symbolically analysing a program for computing bank transac-
tions, and the constraint C2

measure_value ≥ alarm_value ∧ measure_value ≥ 0

that we collected from a program that works in the context of alarm signalling system.
Given the simplicity of these two constraints, people can straightforward identify that
they are equivalent: In fact, C1 and C2 map to the same constraint if we both swap the
two clauses of C2, and rename the variables balance and measure_value as V1, and the
variables withdraw_value and alarm_value as V2. These transformations turn the two
constraints in the same formula:

C1 ≡ C2 ≡ V1 ≥ 0∧ V1 − V2 ≥ 0.

Clause swapping and variable renaming are equivalence-preserving transforma-
tions, that is, these transformations do not alter the equivalence of the constraints to
which they are applied. Thus, if we can transform two constraints into exactly the same

19 3.2 Motivating Examples

constraint with these transformations, we can identify that they are indeed equivalent.
Thus, with reference to the above example, if we know a solution for the constraint C1,
say because we already solved C1 at some point of a symbolic analysis session, we can
reuse the solution of C1 to solve C2.

In this example, C1 and C2 are two simple constraints, and thus, as we commented
above, in this case it is easy for people to spot the equivalence preserving transforma-
tions needed to identify the equivalence of these two constraints. However, to auto-
matically reuse proofs, we need an efficient algorithm for deciding the equivalence of
constraints, even when they appear with different representations, and for constraints
of arbitrary size. Furthermore, the perspective algorithm shall be able to efficiently
look up the equivalent constraints out of large repositories of constraints.

The ReCal approach defined in this thesis is grounded on the observation that we
can unveil the equivalence of constraints regardless of whether they may arise with dif-
ferent representations during symbolic analysis, by transforming the constraints into a
suitable abstract canonical form. A core technical contribution of ReCal is the definition
of a canonical form of conjunctive QF_LIA constraints that unveils the equivalence be-
tween constraints that are equivalent modulo a suitable renaming of the variables and
a suitable reordering of the clauses in the constraints. We remark that the constraint
caching framework implemented in Klee maintains the constraints with the original
names of the variables, thus it cannot address equivalent constraints that differ in the
names of the variables, such as the two constraints C1 and C2 in the example above. The
Green constraint caching framework acknowledges the need of normalising the vari-
ables names and the comparison operators in the constraints, to increase the chances
of identifying equivalence of constraints that arise with different representations, but
relies on a very limited normal form based on a positional rewriting of the constraints
that sorts the monomial terms based on their coefficients in descending order. For ex-
ample, with reference to the constraints C1 and C2, since all variables have a unitary
coefficient, Green would simply normalise the names of the variables without changing
their positions in the formulas, thus transforming the the two formulas into

C1 ≡ V1 ≥ 0 ∧ V1 − V2 ≥ 0

C2 ≡ V1 − V2 ≥ 0∧ V1 ≥ 0

that do not suffice to identify the equivalence of C1 and C2 by textual match. The
missing transformation, that is, swapping the two conjuncts in either formula, which
may seem straightforward in this simple example, is far from trivial for constraints with
arbitrary sets of both variables and conjuncts, as the ones that can be dealt with ReCal.

ReCal addresses the problem of identifying equivalent formulas by defining an ab-
stract canonical form of conjunctive QF_LIA constraints that satisfies three essential
properties:

20 3.2 Motivating Examples

(i) semantically equivalent constraints transform into the same constraint once con-
verted into the ReCal canonical form,

(ii) constraints that correspond to the same ReCal canonical form are equivalent to
each other,

(iii) different canonical forms can be strictly ordered.

A canonical form that satisfies the first property allows us to reduce the complex prob-
lem of deciding the equivalence of constraints to the simpler problem of checking their
canonical forms for equality. The second property guarantees the soundness when de-
ciding the constraint equivalence as above. A canonical form that satisfies the strict
ordering property can be used as an index for fast searching through a large repository
of constraints.

3.2.2 Reusing Proofs across Constraints Related by Implication

A proofs derived for a constraint can be re-used for equivalent constraints, as exempli-
fied in the previous section, and also as a proof of satisfiable stricter constraints or of
unsatisfiable weaker constraints. For instance, a solution of the satisfiable constraint
x < 0∧ x + y = 0 is also a solution of the constraint x < 1, since the former constraint
is stricter than (that is, it logically implies) the latter one. Similarly, if we have a proof
that the constraint x < 0∧ x > 0 is unsatisfiable, then we can infer that the constraint
x < 0 ∧ x > 1 ∧ x 6= 2 is also unsatisfiable, since the former constraint is weaker (is
logically implied from) the latter one.

The ReCal approach that we define in this chapter embraces the following definition
of stricter-ness between constraints: Given two constraints C1 and C2 in conjunctive
forms, C1 is stricter than C2 (dually C2 is weaker than C1) if for each clause l2 of C2

there is a corresponding clause l1 in C1, such that l1 is either equal to or stricter than
l2. In this case, if C1 is satisfiable, therefore C2 is also satisfiable and any solution for
C1 is a solution for C2; If C2 is unsatisfiable, C1 is also unsatisfiable.

Identifying logically stricter or weaker constraints can be computationally expen-
sive. In ReCal, we propose an efficient way to identify stricter and weaker constraints
expressed in conjunctive form, based on whether we can determine an inclusion of all
clauses of a constraint with respect to another constraint, by inspecting the relative
order of the constant terms in the clauses of the two constraints, respectively. Further-
more, to efficiently retrieve stricter and weaker constraints through large repositories
of constraints, we define an inverted index that associates each clause that appears
in at least a constraint in the repository to all constraints in the repository that in-
clude that clause. Inverted indexes are a widely used technique for fast information
retrieval [YDS09].

21 3.3 The ReCal Proof Caching and Reusing Framework

3.2.3 Improving Proof Reusability by Logical Simplifications

In ReCal we introduce two logical simplification rules, namely redundant clause elimi-
nation and conflicting clause detection.

Redundant clause elimination simplifies redundant information within a single con-
straint by removing clauses that are implied by other clauses included in the constraint.
For example, let us consider the constraint L1

V1 − V2 ≥ 0∧ V1 − V2 ≥ 1∧ V1 − V2 ≥ 2∧ V1 − V2 ≥ 3

that resembles a typical constraint generated with symbolic execution during the anal-
ysis of a program that iteratively enters a loop condition multiple times. The first three
clauses in this constraint are implied by the last one, thus L1 can be simplified as just
V1 − V2 ≥ 3, by removing these three redundant clauses. By reducing the amount of
redundant information in the constraints maintained in the proof caching and reusing
framework, redundant clause elimination increases the chances of identifying equiva-
lent constraints.

Conflicting clause detection checks whether a constraint includes any pair of clauses
that are mutually contradictory, thus entailing the unsatisfiability of the constraint. If
so, the conflicting clauses represent themselves a solution, that is, an unsat-core that
proves the unsatisfiability of the constraint. In this case, ReCal can return the identified
solution directly.

3.3 The ReCal Proof Caching and Reusing Framework

In this section, we define the ReCal framework for searching for reusable proofs of con-
straints out of a large repository of cached 〈constraint, proof〉 pairs. When queried for
the satisfiability of a target constraint, ReCal searches whether the repository contains
a reusable proof for that constraint in the four phases shown in figure 3.1:

(i) preprocessing, ReCal normalises the target constraint by formula slicing, algebraic
transformations, and variable name abstraction;

(ii) logical simplification, ReCal eliminates redundant clauses, and detects conflicting
ones;

(iii) canonicalisation, ReCal computes the canonical form of the constraint;

(iv) search, ReCal exploits the canonical form of the constraint for quickly searching
for either an equivalent or a stricter/weaker constraint in the repository.

The preprocessing phase exploits the ideas originally proposes in Klee (namely, for-
mula slicing) and Green (namely, algebraic transformations and variable name abstrac-
tion), thus alines ReCal to the state of the art. The logical simplification, canonicalisation
and search phases are an original contributions of ReCal.

22 3.3 The ReCal Proof Caching and Reusing Framework

Figure 3.1. The ReCal process

3.3.1 Preprocessing

The preprocessing phase of ReCal transforms a constraint formula into a simplified and
context independent abstract form, by exploiting ideas inherited from the state-of-the-
art approaches Klee and Green. As shown in Figure 3.1, the preprocessing step includes

(i) (Slicing) a formula slicing step that decomposes the constraint into independent
constraints,

(ii) (Algebraic Transformation) an algebraic transformation step that simplifies vari-
able terms and normalises the structure of each linear inequality clause of a con-
straint,

(iii) (Abstraction) an abstraction step that transforms a constraint into a matrix-based
representation that abstracts away the program-dependent names of the variables
in the constraint.

Slicing

The satisfiability of a conjunctive QF_LIA constraint can be derived from the satisfi-
able results of its independent sub-constraints. Two constraints are independent if
and only if they do not share any variables. Slicing, first proposed in KLEE by Cadar
et al. [CDE08], consists in dividing a conjunctive constraint into independent sub-
constraints, such that the independent sub-constraints do not share any variables. The
sliced sub-constraints can be solved independently from each other, and the satisfia-
bility of a complex constraint can be determined from the satisfiability of its (smaller
and simpler) sub-constraints: if all the independent sub-constraints are satisfiable, the
original constraint is satisfiable too, otherwise, if any sub-constraint is unsatisfiable,
the original constraint is unsatisfiable. Slicing makes the constraints smaller and easier
to handle, ultimately increasing the probability of matching the sub-constraints with
some cached constraints.

23 3.3 The ReCal Proof Caching and Reusing Framework

We implement the formula slicing algorithm in four steps: (i) we initialise an
undirected graph with a node for each clause and each variable in the constraint, (ii) we
connect the nodes that correspond to each clause to the nodes that correspond to the
variables referred in that clause, (iii) we iteratively visit the graph in depth first order,
to identify the connected components, (iv) we extract the clauses that correspond to
each connect component to build a sub-constraint.

Below, we show a simple example of formula slicing:

Constraint before slicing
C0:: a+ 3b < 2∧ c < 0∧ x − 1< 6− 2x∧ 2a+ c 6= 1 x 6= 4

Constraint after slicing

C1: C2

a+ 3b < 2∧ c < 0∧ 2a+ c 6= 1 x − 1< 6− 2x ∧ x 6= 4

ReCal handles the sub-constraints produced in the slicing step independently from
each other in the next phases, and aggregates the corresponding satisfiability results at
the end of the process, to infer the satisfiability value of the original constraint.

Algebraic Transformation

The algebraic transformation step simplifies each inequality clause of a constraint by
applying three mathematic rewriting rules:

(i) summing all the terms that refer to the same variable, and the constant terms,

(ii) replacing the comparison operator with either ≤ or 6= according to the rules de-
scribed in Figure 3.2,

(iii) dividing all the coefficients by their greatest common divisor.

The rules in Figure 3.2 exploit the property that all integer algebraic constraints are
equivalent to constraints expresses only with the comparison operators ≤ and 6=. This
approach could be extended to handle formulas with real operands by including also
the operator =.

Original (in)equality Simplified (in)equality
terms ≤ k terms ≤ k
terms 6= k terms 6= k
terms < k terms ≤ k− 1
terms ≥ k −1 ∗ (terms)≤ −k
terms > k −1 ∗ (terms)≤ −k− 1
terms = k terms ≤ k ∧−1 ∗ (terms)≤ −k

Figure 3.2. Comparison simplifications

24 3.3 The ReCal Proof Caching and Reusing Framework

Abstraction

The abstraction step eliminates the program-specific variable names from constraints.
To this end, we turn the constraints into a matrix-wise representation as follows. Given
a constraint with n clauses and m variables, we turn it in a matrix that associates the
clauses in the constraint with the rows of indexes from 1 to n in the matrix, according
to their order of occurrence of the clauses in the constraint, and the variables in the
constraint with the columns of indexes from 1 to m in the matrix, according to the
lexicographic ordering of the names of the variables. Then, we transform the constraint
formula into a matrix M of size n× (m+ 2) such that:

• M[i, j] = c iff the i-th clause of the formula contains term c ∗ v j and 1≤ j ≤ m,

• M[i, m+ 1] = constant term of the i-th clause,

• M[i, m+ 2] = comparison operator of the i-th clause (either ≤ or 6=).

We call the (m+1)th column of the resulting matrix the constant term column, the
(m+2)th column the comparison operator column, and the rest of the columns the mono-
mial term columns.

Figure 3.3 illustrates the preprocessing phase through a simple example, spelling
out the three elements of the algebraic transformation step.

Input formula x − 1< 6− 2x ∧ x 6= 1

Summing up terms 3x < 7∧ x 6= 1
Transforming comparison operators 3x ≤ 6∧ x 6= 1
Dividing clauses by their gcd x ≤ 2∧ x 6= 1

Abstraction
1 2 ≤
1 1 6=

Figure 3.3. Example of Preprocessing

3.3.2 Logical simplification

The logical simplification step simplifies a constraint by identifying both (i) redundant
clauses, that is, clauses that are subsumed by other clauses in the constraint, and that
thus can simply be pruned away without changing the semantic of the constraint, and
(ii) conflicting clauses, that is, a pair of clauses that are mutually contradictory, and
that thus entail that the whole conjunctive constraint is indeed unsatisfiable.

Redundant Clause Elimination

Constraints generated from symbolic analysis might include redundant clauses. A re-
dundant clause is a clause of a constraint that is logically implied by other clauses in
the same constraint, and can thus be removed without affecting the satisfiability value

25 3.3 The ReCal Proof Caching and Reusing Framework

of the constraint. ReCal identifies and removes redundant clauses from both the stored
and the target constraints, since considering constraints with no (or minimal) clause
redundancy increases the chance of spotting reusable proofs. Moreover, reducing the
size of constraints can speed up the search process.

Since identifying redundant clauses according to the most general interpretation
of logic implication is a hard task, we consider the tradeoff between the amount of
reusable proofs that we can identify and the cost of processing the constraints, and
we deal with the subset of redundant clauses that can be identified by evaluating the
subsumption between pairs of clauses within the same constraint. In details, ReCal
addresses the class of redundant clauses that correspond to inequalities comprised of
the same linear combinations of variables, possibly with the same or related constant
terms and comparison operators. Formally:

Definition 3.1. Redundant clauses:
Given two clauses c1 and c2 of a constraint F, c1 is redundant with respect to c2 (that
is, c2 =⇒ c1) if both c1 and c2 include the same set of variables with equal coefficients,
respectively, and either (i) both c1 and c2 have the same comparison operator and the
same constant term (that is, c1 and c2 represent exactly the same inequality), or (ii) c2

has the comparison operation ≤ and a constant term that is less than the constant term
of c1.

For example, the following constraints contain the redundant clauses marked in
blue:

x + y ≤ 1 ∧ x + y ≤ 1,

x + y 6= 1 ∧ x + y ≤ 0.

Eliminating those redundant clauses does not affect the satisfiability value of the two
constraints.

ReCal eliminates redundant clauses from constraints in matrix form as follows:

(i) it scans the rows in the constraint matrix, and looks for rows that consist of exactly
the same coefficients in the monomial term columns, that is, without considering
the coefficients that represent the constant term and the comparison operator of
the constraint clauses,

(ii) upon finding any pair of matching rows, it compares the values of comparison op-
erator and constant term to decide if either or the two rows represent a redundant
clause with respect to the other, by referring to the definition above.

At the end of the process, ReCal prunes the constraint matrix by removing the rows
that correspond to redundant clauses.

26 3.3 The ReCal Proof Caching and Reusing Framework

Conflicting Clause Detection

Conflicting clauses are groups of clauses that stand by themselves as a logical contra-
diction in a conjunctive constraint, thus implying that the constraint as a whole is it-
self unsatisfiable. Detecting conflicting clause in general is as hard as inferring the
unsatisfiability of a constraints. ReCal focuses only on pair-wise conflicts, that is, con-
flicts between pairs of clauses, aiming to speed up the identification of unsatisfiable
constraints, while keeping the checking time limited within reasonable budget. ReCal
identifies pair-wise conflicting clauses as early as possible, to avoid wasting time in fur-
ther processing and searching for reusable proofs for those unsatisfiable constraints,
which would ineffectively degrade its performance.

Formally, a conflicting clause pair is defined as follows:

Definition 3.2. Conflicting clause pair:
Given a clause c1 in a constraint F, if there exist another clause c2, such that c2 ∧ c1 =⇒
f alse, then c1 and c2 cause a conflict.

To identify pair-wise conflicting clauses, ReCal scans the possible pairs of clauses
that correspond to inequalities of the original constraint, sums the coefficients for the
homologous variables across the two inequalities, and verifies if the resulting inequality
is a purely numeric contradiction.

For example, the constraint below includes a pair of conflicting clauses marked in
red:

2x + 3y ≤ 1∧−2x − 3y ≤ −5 ∧ 2x + y ≤ 0,
since, by summing the homologous coefficients across the first two clauses of the con-
straint, we obtain
(2x + 3y) + (−2x − 3y)≤ 1+ (−5) =⇒ 0≤ −4,

which is a numeric contradiction.
When detecting a conflicting clause pair, ReCal returns an unsatisfiability verdict for

the considered constraint, skipping any further processing of the constraint.

3.3.3 Canonicalisation

The core step of ReCal is canonicalisation, which transforms the matrix representation
of the constraint in canonical form, that is, a matrix representation unique for all equiv-
alent constraints, thus enabling fast lookup over a large repository of constraints. The
ReCal canonical form of constraints satisfies two main properties,

(i) if two constraints are equivalent, they correspond to the same canonical form;

(ii) if two constraints have the same canonical form, then they are equivalent.

27 3.3 The ReCal Proof Caching and Reusing Framework

The first property allows us to use the canonical form to efficiently retrieve equivalent
constraints by comparing their canonical forms for equality. The second property guar-
antees that, by doing so, we soundly identify only equivalent constraints and no false
positive.

ReCal defines the canonical form of the constraints by defining an algorithm, called
the canonicalisation algorithm, that iteratively reorders the rows and the columns of
the constraint matrixes, and is proved to converge to exactly the same matrix if and
only if the corresponding constraints are equivalent. The definition of the canonicali-
sation algorithm is a core contribution of this thesis, and we extensively discuss it in
Chapter 4. Below, we explain the search phase of ReCal under the assumption that the
canonicalisation algorithm guarantees the equality of the matrix representations of the
equivalent constraints.

3.3.4 Efficient Retrieval of Reusable Proofs

The Search phase of ReCal searches for equivalent constraints, and searching for con-
straints related by implication, exploiting the canonic form of the constraints as the
core element for efficiently searching reusable constraint proofs.

Search for Reusable Proofs from Equivalent Constraints

To retrieve equivalent constraints, ReCal exploits the canonic form to build an efficient
search index. The canonic form reduces the complex problem of comparing constraints
for equivalence to the simpler problem of comparing their canonic forms for equality.
Thus, for all constraints stored in its cache, ReCal uses the canonic form of those con-
straint as the entry of a (hashed) map 〈canonic_form, available_proof〉. Upon receiving
a new constraint to solve, ReCal computes the canonical form of that constraint, and
uses the canonical form to lookup a corresponding key in the map. If it finds a cor-
respondence in the map, it returns the proof as a a (reusable) proof for the target
constraint.

Search for Reusable Proofs From Constraints Related by Implication

If the search for equivalent constraints does not return any entry, ReCal continues looks
for proofs from constraints related by implication. In general, if a constraint F1 implies
a constraint F2, the satisfiability result of F1 implies the satisfiability of F2 (since the
solution space of F1 is a subset of the one of F2). Vice-versa, the unsatisfiability of F2

implies the unsatisfiability of F1.
KLEE [CDE08] reuses proofs from super- and sub-constraints identified as con-

straints that include all the clauses of the target constraint, and constraints comprised
of a set of clauses that are all included in the target constraint, respectively. Green-
Trie [JGY15] introduces implication rules that allow proof reusing from constraints

28 3.3 The ReCal Proof Caching and Reusing Framework

with different restriction on the constant terms. The class of constraints related by
implication that we consider in ReCal goes beyond the ones considered in both these
approaches.

ReCal automatically identifies implication relations that can be deduced from com-
paring the clauses of two constraints F and G as follows: a constraint F is stricter than
a constraint G if and only if for each clause cG ∈ G there exists a clause cF ∈ F that im-
plies cG . Notice that F can contain additional other than the clause cF that correspond
to clauses cG . We also say that the constraint G is weaker than F . For example, the
constraint F1

x ≤ 2∧ x + y ≤ −1 y ≤ 0

is stricter than the constraint G1

a ≤ 3∧ a+ b 6= 0

In this example the correspondence between the first two clauses of the constraints
(x ≤ 2 ⇒ a ≤ 3 and x + y ≤ −1 ⇒ a + b 6= 0) is straightforward once defined the
mapping between x , y and a, b (x = a and y = b).

To identify a constraint that is stricter or weaker than a target constraint it is nec-
essary to compare the latter with all the constraints in the repository. To accomplish
this task efficiently, we created an inverted index that associates the clauses of the
constraints in the repository with all the constraints that contain such clauses, draw-
ing inspiration from the Google Search term-to-pages inverted index [BDH03, YDS09].
The inverted index stores pairs of the form
〈clause_entry, {〈constraint_reference, comparison_operator, free_coefficient〉, . . . }〉,
one for each clause that appears in a constraint in the repository. The clause_entries
depend on the coefficients of the variables as computed by the canonicalization algo-
rithm, with the exception of the constant term and the comparison operator. Thus,
clauses with the same sets of variable coefficients map to the same clause_entry in the
inverted index, even if they may differ in the respective constant terms and comparison
operators. The inverted index associates each clause_entry with the set of constraints
that contain at least a clause that corresponds to the clause_entry, that is, a clause with
the same variable coefficients of the clause_entry. For each constraint associated with
a clause_entry, the index keeps also track of the comparison operator and the constant
term of the corresponding clause within the constraint.

To exploit constraints related by implication, ReCal stores the satisfiable constraints
and un-satisfiable constraints in two different repositories. Given a constraint C that
contains the clauses c1, . . . , cn, ReCal searches for reusable proofs from constraints re-
lated by implication as follows.

First, ReCal checks if it can find a satisfiable stricter constraint in the repository of
satisfiable constraints. For each clause ci ∈ C , it accesses the inverted index to identify
the set Si = {C i

1, C i
2, ...} of constraints that contain at least a clause with the same

29 3.3 The ReCal Proof Caching and Reusing Framework

clause_entry of ci . By definition, a satisfiable stricter constraint of C shall contain all
the clause_entries of C , hence ReCal computes the intersection of the sets Si , to get the
set S of constraints that can be stricter than C . We call the constraints in S the candidate
stricter constraints. If the intersection set S is empty, there is no stricter constraint in
the repository. Otherwise, for each collected stricter candidate in S, ReCal pairs the
clauses of the stricter candidate and the ones of C according to results the inverted
index, and compares the comparison operator and the constant term of the clauses
in the stricter candidate with the comparison operator and the constant term of the
clauses in C , respectively. If this check reveals that all clauses in the stricter candidate
are truly stricter than the corresponding ones of C , then ReCal infers that C is indeed
satisfiable, and can reuse the proof associated with the stricter candidate.

Figure 3.4. Example of retrieving satisfiable stricter candidates

Figure 3.4 shows an example of retrieving satisfiable constraint candidates. In the
example, the simplification and canonicalisation steps return a target constraint C with
two clauses (In the figure, we use the variable and clause representation instead of ma-
trix for simplicity of presentation). If the search with the inverted index finds {C1, C2}
by looking up with the first clause_entry 3X , and {C1, C3} by looking up the second
clause_entry X + Y , the intersection of the two sets is ,{C1}, that is, C1 is the only
stricter candidate constraint. ReCal finalises the search by compare the operators and
constant terms of each pair of clauses of C and C1. In this case, ReCal concludes that
C1 is indeed stricter than C , and can reuse the proof of C1 to solve C .

If ReCal does not find any stricter constraint in the repository of satisfiable con-
straints, it searches for unsatisfiable weaker constraints in the other repository. ReCal
identifies the set of constraints with clauses that can be logically implied by any ci in C
using the inverted index.

In a nutshell, the ReCal approach reduces the problem of comparing a target con-

30 3.3 The ReCal Proof Caching and Reusing Framework

straint for stricter- or weaker-ness with respect to the cached constraints, to comparing
the operators and the constant terms of the target constraint with the ones of a small
subsets of constraints identified with the inverted index. ReCal updates the inverted in-
dex offline, when it adds new constraints and proofs to the repository, without affecting
the performance of the search phase of ReCal.

Chapter 4

The Canonicalisation Algorithm

The core of the ReCal approach proposed in this thesis is an effective method
to determine whether two conjunctive QF_LIA constraints are equivalent, ab-
stracting from differences in their representations, that is, they may refer to
variables denoted with different names, and may list corresponding terms and
clauses in different orders. ReCal defines an original canonical form of the
conjunctive QF_LIA constraints, and exploits such canonical form to recast the
difficult problem of deciding the equivalence of constraints to the simple prob-
lem of comparing the equality of the canonical forms of the constraints, thus
enabling an efficient search procedure to find equivalent constraints across
large repositories of constraints. This chapter defines the ReCal canonical
form both declaratively, by specifying the class of equivalent constraints that
it identifies, and operationally, by presenting the Canonicalisation algorithm
that computes the canonical form of a conjunctive QF_LIA constraint.

4.1 The ReCal Canonical Form

The previous chapter presents the core characteristic of ReCal of revealing the equiva-
lence of constraints that may differ in their mutual representations due to the specific
context of symbolic analysis in which they originally arose. In particular, ReCal defines
a canonical form of conjunctive QF_LIA constraints that determines the equivalence of
structurally different constraints, by turning them into the same representation with
equivalence-preserving transformations.

For instance, the following constraints

C1 : 3x + y ≤ 0∧ x + 2y ≤ 0

C2 : 2a+ b ≤ 0∧ a+ 3b ≤ 0

can be turned into equal representations by swapping the two clauses of the second
constraint, renaming the variables x and b as v1 and the variables y and a as v2, re-

31

32 4.1 The ReCal Canonical Form

spectively, and reordering the terms that refer to variable v1 before the ones that refer
to variable v2 in each clause. These transformations do not alter the equivalence char-
acteristics of the constraints and produce

C1 ≡ C2 ≡ 3v1 + v2 ≤ 0∧ v1 + 2v2 ≤ 0

This rewriting of the two constraints indicates a straightforward mapping between the
solutions of C1 and C2.

Below, we formalise the intuitive notion of equivalence that underlies this example
as an equivalence relation among conjunctive QF_LIA constraints that can be rewritten
as the same constraint by suitably permuting clauses and variables, and abstracting
the names of the variables in the constraints. The ReCal canonical form identifies this
equivalence relation.

We define the ReCal canonical form conjunctive QF_LIA constraints as follows. Let
us assume C is a conjunctive QF_LIA constraint with n variables and m clauses, and
permute(C) = {C1, C2, ...Cn!∗m!} is the set containing all the constraints generated by
arbitrarily permuting the terms and clauses in C , and arbitrarily renaming distinct vari-
ables with distinct names. Then, the ReCal canonical form is the canonical form of the
equivalence relation such that

C ≡ C ′ ⇐⇒ C ′ ∈ permute(C)

The readers should notice that this equivalence relation identifies a class of logically
equivalent constraints, because renaming the variables, permuting the terms and per-
muting the clauses of a constraints are equivalence-preserving transformations.

The ReCal canonical form of a constraint C , Canonical isat ion(C), is a permutation
of the constraint C (Canonical isat ion(C) ∈ permute(C)) that satisfies the following
property:

C ≡ C ′ ⇐⇒ Canonical isat ion(C) = Canonical isat ion(C ′) (4.1)

The right arrow part of the co-implication, that is,

C ≡ C ′ =⇒ Canonical isat ion(C) = Canonical isat ion(C ′)

guarantees that two ReCal-equivalent constraints share the same canonical form, thus
allowing ReCal to turn the difficult problem of deciding equivalence of constraints into
the simple comparison of the equality of their corresponding canonical forms. The left
arrow part of the co-implication, that is,

C ≡ C ′ ⇐= Canonical isat ion(C) = Canonical isat ion(C ′)

33 4.2 The Canonicalisation Algorithm

guarantees the soundness of the result when ReCal matches the canonical forms to
determine the equivalence of two constraints.

We define the ReCal canonical form operationally, by designing a deterministic and
terminating algorithm Canonicalisation that is guaranteed to compute a representation
of the constraints that is unique for all constraints that belong to the same equivalence
class. Conversely, the output of algorithm Canonicalisation differs for constraints that
belong to different equivalence classes.

Definition 4.1. Let LC∧ be the set of all conjunctive QF_LIA constraints.
Let permute(C) ∈ 2LC∧ denote the set of constraints that can be obtained by permuting
the clauses and the variables of a constraint C ∈ LC∧.
Let ≡ be an equivalence relation over LC∧ such that C1 ≡ C2 ⇐⇒ C1 ∈ permute(C2),
that is, C1 and C2 are equivalent if it is possible to permute properly the clauses and rename
the variables of C2 to obtain C1. It is easy to verify that this relation is reflexive, symmetric
and transitive.
Then, Canonicalisation : LC∧→ LC∧ is a deterministic and always terminating algorithm
such that:

∀C ∈ LC∧, Canonicalisation(C) ∈ permute(C)

∀C1, C2 ∈ LC∧, C1 ≡ C2 ⇐⇒ Canonicalisation(C1) = Canonicalisation(C2).

4.2 The Canonicalisation Algorithm

Canonicalisation is a deterministic algorithm that iteratively permutes the clauses and
the variables of constraints. Canonicalisation always converges to a fixed point, and
guarantees that the constraint at the fixed point is unique for all input constraints that
belong to the same equivalence class.

Algorithm 1 specifies Canonicalisation. The algorithm processes an input conjunc-
tive QF_LIA constraint, and starts by producing a classic matrix of coefficient represen-
tation of the input formula, abstracting away the names of the variables (line 4). In
ReCal, turning a constraint into a matrix corresponds to the abstraction step that we
presented in chapter 3, that is: Given a formula with n clauses and m variables, the al-
gorithm numbers progressively the variables that appear in the formula, builds an n×m
matrix, and sets the value of the (i, j)th element of the matrix to the coefficient of the
j-th variable in the i-th clause. If a variable does not appear in a clause, the algorithm
sets the corresponding coefficient to 0. The algorithm augments the matrix with two
columns m+1 and m+2 that represent the constant term and the comparison operator
in each clause, respectively. Each row of the resulting matrix represents a clause in the
original formula. The top part of Figure 4.1 exemplifies some sample constraints (Input
constraints) and the corresponding matrix representations (Matrixes at the beginning of
Canonicalisation).

34 4.2 The Canonicalisation Algorithm

Algorithm 1 Canonicalisation (C)

Require:
1: C ∈ LC∧, a conjunctive QF_LIA constraint

Ensure:
2: Returns a matrix representing the canonical form of C

3: /* Algorithm begins */
4: M ← const raintAsMatrix(C)

5: /* Phase 1 begins */
6: M ← orderRowsB yComparisonOp(M)
7: M ← orderRowsB yConstantTerm(M)
8: if conver ged(M) then return M
9: end if

10: /* Phase 2 begins */
11: M ← orderRowsB yGreatestValues(M)
12: M ← orderColsB yGreatestValues(M)
13: if conver ged(M) then return M
14: end if

15: /* Phase 3 begins */
16: repeat
17: M ′← M
18: subM ← ex t ract I temsWithStableCols(M)
19: M ← orderRowsLex icographical l yB ySubM(M , subM)
20: subM ← ex t ract I temsWithStableRows(M)
21: M ← orderColsLex icographical l yB ySubM(M , subM)
22: until not changed(M , M ′) or conver ged(M)
23: if conver ged(M) then return M
24: end if

25: /* Phase 4 begins */
26: subM ← ex t ractRowsAndColsWithUnstableOrder(M)
27: permutations← enumerateAllValidPermutations(subM)
28: p← lex icographicMax(permutations)
29: M ← appl yPermutation(M , p) return M

Algorithm Canonicalisation processes the matrix representation of the input con-
straint in four phases (starting at lines 5, 10, 15 and 25, respectively). Each phase
sorts the rows and the columns of the matrix according to an ordering relation, using
different ordering relations across the four phases. Each phase preserves the order es-
tablished by the previous phases and strengthens the order between the rows and the

35 4.2 The Canonicalisation Algorithm

columns that were not assigned a relative order in the previous phases. Upon conver-
gence, the algorithm determines the same order of the rows and the columns for all
constraints in the same equivalence class (lines 8, 13, 23 or 29). We discuss the four
phases of the algorithm below, and present the proof of convergence and correctness
of the algorithm in Appendix A.

- Input constraints:

C1

3x+y ≤ 0
∧ y 6= 0
∧ y - 1 ≤ 0
∧ x+2y ≤ 0

C2

2a+b ≤ 0
∧ a 6= 0
∧ a+3b ≤ 0
∧ a - 1 ≤ 0

C3

2i+j ≤ 0
∧ i + 2j ≤ 0
∧ i 6= 0
∧ i+3j ≤ 0
∧ i - 1 ≤ 0

- Matrixes at the beginning of Canonicalisation:

C1

3 1 0 ≤
0 1 0 6=
0 1 -1 ≤
1 2 0 ≤

C2

2 1 0 ≤
1 0 0 6=
1 3 0 ≤
1 0 -1 ≤

C3

2 1 0 ≤
1 2 0 ≤
1 0 0 6=
1 3 0 ≤
1 0 -1 ≤

- Matrixes after phase 1 of Canonicalisation:

C1

3 1 0 ≤
1 2 0 ≤
0 1 -1 ≤
0 1 0 6=

C2

2 1 0 ≤
1 3 0 ≤
1 0 -1 ≤
1 0 0 6=

C3

2 1 0 ≤
1 2 0 ≤
1 3 0 ≤
1 0 -1 ≤
1 0 0 6=

- Matrixes after phase 2 of Canonicalisation:

C1

3 1 0 ≤
1 2 0 ≤
0 1 -1 ≤
0 1 0 6=

C2

3 1 0 ≤
1 2 0 ≤
0 1 -1 ≤
0 1 0 6=

C3

3 1 0 ≤
1 2 0 ≤
2 1 0 ≤
0 1 -1 ≤
0 1 0 6=

- Matrixes after phase 3 of Canonicalisation:

C3

3 1 0 ≤
2 1 0 ≤
1 2 0 ≤
0 1 -1 ≤
0 1 0 6=

Figure 4.1. Intermediate and final results of Canonicalisation on sample constraints

36 4.2 The Canonicalisation Algorithm

In the first phase (lines 6—7), algorithm Canonicalisation sorts the rows of the ma-
trix in decreasing order considering only their comparison operators (line 6) and con-
stant terms (line 7). We exemplify the result of this phase in Figure 4.1 (Matrixes after
phase 1 of Canonicalisation). In the examples, we assume that the comparison ≤ is
always greater than 6= (we refer to an enumerative encoding of the comparison opera-
tors).

In Figure 4.1 we observe that, for the constraint C1 the first phase of Canonicalisa-
tion orders the row with comparison operator 6= at the end of the matrix and, out of
the three rows with comparison operator ≤, it orders the one with constant term −1
as last. The relative order of the first two rows and the first two columns is unknown
after this phase. We represent in bold the items that converge to a stable row or column
position after each phase, and underline the items that converge to a stable position on
both dimensions. For example, after phase 1, the relative order of the last two rows of
the matrix of C1 are fixed, and thus it will not change until the end of the algorithm,
while the relative order of the first two rows may change.

In the second phase (lines 11—12), algorithm Canonicalisation sorts the rows and
the columns of the matrix computed in the first phase. When sorting the columns, the
algorithm leaves untouched the last two columns, that is, the columns of constant terms
and comparison operators. In this phase, the ordering criterion depends on comparing
the coefficients of the coefficient vectors in either the rows or the columns, respectively,
and sorting them in decreasing order. Specifically, given two coefficient vectors, the
vector whose greatest coefficient is greater than the greatest coefficient of the other
one will precede the other vector in the sorted matrix. If the greatest coefficients of two
vectors are equal, the order depends on the second greatest coefficients, and so forth.
For example, with reference to Figure 4.1 (Matrixes after phase 2 of Canonicalisation),
comparing according to this criterion the first and second row of the matrix of C2 after
the first phase, we determine that the vector 1,3 is greater than 2,1; thus the algorithm
swaps the first two rows. Similarly, comparing the first and second column of the same
matrix, we determine that 3, 1,0, 0 is greater than 1, 2,1, 1, and thus swap the first two
columns.

In the second phase, algorithm Canonicalisation cannot discriminate the order of
the rows and the columns that contain identical sets of coefficients, though possibly in
different positions in the respective vectors. In the example of Figure 4.1, the second
and third rows of C3 contain the same elements, though in different positions. In the
example, the first two phases of the algorithm produce the canonical forms for C1 and
C2 thus proving the equivalence of the two constraints, but the algorithm needs the
next phase to produce the canonical form of C3.

In the third phase (lines 16—22), algorithm Canonicalisation orders the yet-not-
fully-sorted rows and columns, by leveraging a positional ordering based of the row
and column items that were already assigned an already-sorted position along the other
dimension. In particular, algorithm Canonicalisation orders the rows according to the

37 4.2 The Canonicalisation Algorithm

decreasing lexicographic order of the items of already-sorted column (lines 18 and
19), and the columns according to the decreasing lexicographic order of the items of
already-sorted row (lines 20 and 21). For example, for the constraint C3 in Figure 4.1,
since all columns were already assigned a fixed order after the second phase, the third
phase sorts the third and the second row in lexicographic order, thus converging to the
final canonical form of C3.

Algorithm Canonicalisation iterates the third phase until it can determine incremen-
tally stricter orders of the rows and the columns, and stops when it converges to a fully
ordered canonical form, or when further iterations do not produce new ordering oppor-
tunities. Figure 4.2 shows an example that needs several iterations of the third phase
to converge.

As shown in Figure 4.2 that illustrate the evolution of the matrix representation of
constraint C4, after the first and the second phase of the Canonicalisation algorithm,
the last two rows and the last four columns (including the comparison operators) of
constraint C4 are already sorted. In the first iteration of the third phase, the algorithm
decides the order of the first three unstable rows, by extracting the sub-vectors of the
items that correspond to stable columns (marked in bold in the figure). Since (1, 2,0,≤)
≤ (2,1, 0,≤) = (2, 1,0,≤), the first row can be ordered with respect to the other two.
Similarly, when sorting the columns, we can order them based on the sub-vectors that
correspond to already-sorted rows, that is, the sub-vectors (1,2) ≤ (2,1) = (2,1). At
this point, the order of the first two rows as well as the first two columns are not yet
finalised, hence the algorithm iterates again the third phase. In the new iteration, the
first two rows include four items in sorted columns, thus the algorithm considers the
sub-vectors (1, 2,1, 0,≤)≤ (3,2, 1,0,≤), that lead to swap the two rows. Similarly, for
the columns, the algorithm considers the sub-vectors (1,2, 1)≤ (3, 2,1), and swaps the
first two columns, thus converging to the canonical form of the constraint C4.

In the third phase, algorithm Canonicalisation cannot discriminate the order of the
rows (columns) that contain identical sets of coefficients on all columns (rows) with
final positions, but differ only in the coefficients of columns (rows) with yet unspecified
relative order. As shown in Figure 4.3, matrices with few values repeated many times
may still be different after the third step of the algorithm, despite corresponding to
equivalent constraints.

In the fourth phase (lines 26—29), the algorithm sorts the rows and the columns
that have not been ordered yet, by exhaustively enumerating all possible permutations
of rows and columns. It extracts the sub-matrix formed of the still unsorted rows and
columns (line 26), enumerates the matrices that correspond to permutations of rows
and columns that do not violate the relative order established in the previous phases
(line 27), identifies the maximum permutation according to the lexicographic order of
all matrices flattened as sequences of numbers (line 28), and applies this permutation
to the original matrix (line 29). Since the possible permutations are always a finite set,
this phase is guaranteed to always terminate, and also guarantees the termination of

38 4.2 The Canonicalisation Algorithm

- Input constraints:

C4

2V1 + 2V2 + V3 + V4 + V5 ≤ 0
∧V1 + 4V2 + V3 + 3V4 + 2V5 ≤ 0
∧V1 + V2 + 2V3 + 2V4 + 2V5 ≤ 0
∧2V1 + 1V2 + 3V3 + 4V4 + V5 ≤ 0
∧2V1 + 3V2 + 4V3 + V4 + V5 ≤ 0

- Matrix at the beginning of Canonicalisation:

2 2 1 1 1 0 ≤
1 4 1 3 2 0 ≤
1 1 2 2 2 0 ≤
2 1 3 4 1 0 ≤
2 3 4 1 1 0 ≤

- Matrix after phase 1 and 2 of Canonicalisation:

4 1 3 1 2 0 ≤
1 2 4 2 1 0 ≤
3 4 1 2 1 0 ≤
1 2 2 1 2 0 ≤
2 1 1 2 1 0 ≤

- Matrix after the 1st iteration of phase 3 of Canonicalisation:

2 4 1 2 1 0 ≤
4 1 3 2 1 0 ≤
1 3 4 1 2 0 ≤
2 2 1 1 2 0 ≤
1 1 2 2 1 0 ≤

- Matrix after the 2nd iteration of phase 3 of Canonicalisation:

1 4 3 2 1 0 ≤
4 2 1 2 1 0 ≤
3 1 4 1 2 0 ≤
2 2 1 1 2 0 ≤
1 1 2 2 1 0 ≤

Figure 4.2. A sample constraint for which Canonicalisation converges with multiple
iterations of the third phase

C1

0 0 1 0 ≤
0 1 0 0 ≤
1 0 0 0 ≤

C2

0 0 1 0 ≤
1 0 0 0 ≤
0 1 0 0 ≤

C3

1 0 0 0 ≤
0 1 0 0 ≤
0 0 1 0 ≤

Figure 4.3. Sample constraints for which Canonicalisation converges in the fourth
phase

39 4.3 Complexity of Computing the ReCal Canonical Form

algorithm Canonicalisation in general. In the example of Figure 4.3 the fourth phase of
the algorithm transforms matrices C1 and C2 into C3, which is their canonical form.

While the first three phases are computationally inexpensive, the fourth phase of
Canonicalisation is expensive, and can thus affect the overall performance of the al-
gorithm. In general, the problem of determining the equivalence of constraints is as
hard as the Graph Isomorphism problem, for which no polynomial-time algorithm is
known yet [KST12]. The complexity of canonicalisation algorithm is polynomial up to
the third phase, which is usually enough to determine the equivalence between con-
straints in many practical cases. Specifically, the complexity of the first three steps is
O(min(n, m)∗ n∗m∗ log(max(n, m))). The fourth phase applies only to matrices con-
taining sub-matrices with the same comparison operator for all rows, equal constant
terms, equal sets of variable coefficients, and exactly equal sequences of the coefficients
of those variables for which the first three phases succeeded to establish a stable rel-
ative order. Intuitively, this is a rare case: in the experiments reported in Chapter 6,
the algorithm Canonicalisation converges within phase three on more than 98% of the
constraints that we analysed.

In Appendix A, we present the proof that Canonicalisation algorithm converges on
any input constraint, and the canonical form it generates satisfies Definition 4.1.

4.3 Complexity of Computing the ReCal Canonical Form

In this section we briefly discuss the possibility of using the Canonicalisation algorithm
to address the Graph Isomorphism (GI) problem.

In general, the matrix equivalence problem is as hard as the Graph Isomorphism
(GI) problem, which for the moment is not known to be solvable in polynomial time,
and many researchers believe it is NP-hard [KST12]. Two graphs are isomorphic if they
contain the same number of graph vertices connected in the same way. Formally, two
graphs G and H with graph vertices V = {v1, v2, ..vn} are isomorphic if there exists
a permutation p of V , such that (vi , v j) is in the set of graph edges EG if and only if
(p(vi), p(v j)) is in the set of graph edges EH .

In particular, the GI problem can be reduced to the matrix equivalence problem in
two steps:

(i) Reduce the GI problem to the Bipartite Graph Isomorphism problem.
Given an undirected graph G = (VG , EG), where V is the vertex set and E is the
edge set, G can be transformed into a bipartite graph GB = (V1, V2, EGB

) by map-
ping BG:

VG → V1

EG → V2

{(v1, v2)|v1 ∈ VG , v2 ∈ EG , v2 = (v1, _)or(_, v1)} → EGB
.

40 4.3 Complexity of Computing the ReCal Canonical Form

Two graphs G1 and G2 are isomorphic, if and only if their bipartite graphs BG(G1)
and BG(G2) are isomorphic.

(ii) Reduce the Bipartite Graph Isomorphism problem to Matrix Equivalent problem .
A bipartite graph GB = (V1, V2, EGB

) can be represented in adjacency matrix M ,
with the rows for vertices of V1, and columns for vertices of V2, and cell M[i, j] for
edge e = (v1i

, v2 j
∈ EGB

). Two bipartite graphs GB1
and GB2

are isomorphic, their
adjacency matrices M1 and M2 can be transformed to each other by permutation
on rows and columns.

By reducing GI problem to the matrix equivalence problem (and the reduction as
above can be done in polynomial time), any algorithm that solves the matrix equiva-
lence problem can be adopted to solve the GI problem. Thus, although theoretically
there not exist a polynomial algorithm to solve GI problem, our Canonicalisation algo-
rithm can be used to efficiently solve the problem in many practical cases.

Chapter 5

The GPU-based parallel approach to
proof reusing

Extending symbolic program analysis with a proof reusing approach like the
ReCal approach proposed in this thesis, aims to improve the efficiency of the
analysis, under the hypothesis that retrieving and reusing a proof should be
significantly faster than solving the constraint a constraint solver. However,
effective proof reusing approaches rely on sophisticated simplifications and
normalisations of the constraints that may incur in critical overheads, up to
even penalising the overall performance of the analysis. In this chapter, we
present ReCal-gpu, a parallel proof reusing framework that implements the
ReCal approach described in the previous chapters by exploiting a parallel GPU
computing capability to achieve very high efficiency. The chapter describes the
overall structure of ReCal-gpu with respect to the structure of ReCal, and
presents the parallel version of both the logical simplification and the Canon-
icalisation steps.

5.1 Parallel Deployment of ReCal

The parallel deployment of the ReCal approach is an instance of general purpose com-
puting on graphics process units (GP-GPU) that consists in applying Graphics processing
units (GPU) to implement highly efficient applications out of the domain of computer
graphics. GPUs are parallel computation platforms originally designed to rapidly ma-
nipulating computer graphics and image processing. Thanks to the massive-parallel
architecture, GPUs can execute computationally intensive tasks very much faster than
conventional CPUs. In this chapter, we present the GP-GPU deployment of ReCal.

In ReCal, simplification and normalisation of the constraints by means of the Canon-
icalisation algorithm are essential steps to identify many equivalent constraints and
constraints related by implication. However, when dealing with large constraints char-

41

42 5.2 Parallel Logical Simplification

acterised by hundred of variables and clauses, processing these simplifications and nor-
malisations can incur in high overheads. In this chapter, we propose a parallel GP-GPU
version of ReCal, which efficiently simplifies and normalises constraints, thus overcome
the scalability issues of the serial algorithms.

The basic intuition of the GP-GPU deployment of ReCal is to exploit the conjunc-
tive and linear structure of the constraints, the elaborate in separate parallel threads
the computations that relate to distinct clauses and distinct variables of the constraints,
which in turn correspond to distinct rows and columns, respectively, in the matrix repre-
sentation of the constraints. Based on this intuition, we design ReCal-gpu, a GPU-based
parallel proof reusing framework.

The logical architecture of ReCal-gpu shares the work flow of ReCal that we present
in Figure 3.1 at page 22. After preprocessing, ReCal-gpu abstracts the input constraint
as matrixes, and exploits the matrix representation to parallelise both the logical sim-
plification and Canonicalisation phases, which account for the large majority of the pro-
cessing time of ReCal. ReCal-gpu executes the logical simplification step by allocating
a computation unit for each pair of rows of the matrix (that is, pairs of clauses of the
constraint), and executes each phase or iteration of the Canonicalisation algorithm by
allocating a computation unit to reason on each row and column of the matrix. Notice
that, to achieve high efficiency, the parallel version of Canonicalisation implements up
to the first three steps of the serial Canonicalisation (Algorithm 1).

We present the parallel algorithms of the logical simplification and Canonicalisation
phases in the next sections.

5.2 Parallel Logical Simplification

The ReCal-gpu logical simplification phase is composed of a redundant clauses elimina-
tion and a conflicting clauses detection step: ReCal-gpu checks (i) each pair of clauses in
parallel to evaluate which pairs include redundant clauses (Definition 3.1) and (ii) whether
there exists any pair that corresponds to conflicting clauses (Definition 3.2).

The logical simplification phase logically simplifies the input matrix representation
of the constraint, by forking separate threads that evaluate redundancy and conflicts
with respect to each possible pairs of clauses of the input constraint. For a formula
with n clauses, The logical simplification phase elaborates n(n− 1)/2 pairs, which for
a constraint with 100 clauses amount to 4,950 pairs. Thus, the computation can be
executed very efficiently on a standard GPU processor that can host the execution of
thousands of threads, and indeed can execute thousands of those threads in parallel.
For example, a GeForce GTX 580 GPU Unit can host 24,576 threads, and optimises their
execution with very high degree of parallelism.

Algorithm 2 describes the parallel logical simplification phase in pseudocode. It
instantiates two global variables, a boolean variable conflict with initial value set to
false, and an array redundant, with a cell for each row in the input matrix, with all

43 5.3 Parallel Canonicalisation

the values initialised as 0 (false). Function Simplification starts by calling function
parallel_simpl, which in turn spawns two sets of parallel threads that check conflicting
clauses according to function check_con f l ic t and redundant clauses according to func-
tion el iminate_redundant_clauses, respectively. Each of these thread sets includes a
thread for each possible pair ((M[i,∗], M[j,∗])) of rows of the constraint matrix M .
When all the threads terminate, if con f l ic t was marked as t rue in any of the con-
flict detection threads, Simplification returns UNSAT , otherwise, it returns the matrix
M ′ obtained by pruning the rows of M that positionally correspond to the items of
redundant that were marked as t rue in any of the redundancy detection threads.

Function check_con f l ic t checks whether a pair of clauses correspond to conflict-
ing clauses. It evaluates if a pair ((M[a,∗], M[b,∗])) of clauses satisfies the Defini-
tion 3.2, and if it is the case, it marks the global variable conflict as t rue. Func-
tion el iminate_redundant_clauses evaluates if a pair of clauses includes a redundant
clause. It checks if the clause M[a,∗] implies the clause M[b,∗] (or vice-versa clause
M[b,∗] implies M[a,∗]) according the Definition 3.1, if so, it marks the b-th value
(resp. a-th) in array redundant as 1 (true). To avoid critical races, all parallel threads
access the matrix as read-only, and update the values of the global variables conflict and
redundant only once a pair of conflicting clauses or a redundant clause is confirmed.

For an input constraint matrix with n rows and m columns, the asymptotic complex-
ity of parallel logical simplification is O(m), because the algorithm processes the n rows
in parallel, with each thread simply scanning the m coefficients in the corresponding
row. The non parallel version has complexity O(n ∗m).

5.3 Parallel Canonicalisation

Algorithm Canonicalisation is a core component of ReCal: it identifies the class of equiv-
alent constraints that can be turned into exactly the same canonical form by suitably
renaming the variables, and suitably permuting the order of the clauses and the vari-
ables in the constraints. The iterative version of algorithm Canonicalisation that we
introduced in the previous chapter to operationally define the ReCal canonical form in-
curs crucial scalability issues, since it goes through several expensive permutations of
the input constraint matrix. Our experiments indicate that implementing the Canon-
icalisation algorithm as a direct transposal of the corresponding definition algorithm
leads to crucial performance penalties, when dealing with constraints with hundreds
of clauses over large amounts of variables.

This section presents a parallel version of the ReCal Canonicalisation algorithm,
which we implement in ReCal-gpu, and which dramatically improve the performance
of ReCal.

The parallel Canonicalisation algorithm sorts rows and columns of the constraint
matrix to obtains the same matrix for all constraints belonging to the same equivalence
class. The parallel Canonicalisation exploits the values in each row and column (first

44 5.3 Parallel Canonicalisation

Algorithm 2 Parallel logical simplification
/* Global variables (in the GPU memory): */

1: con f l ic t ← f alse /* True as soon as a conflict is detected */
2: redundant ← {0, 0, ...} /* redundant marks for each clause, initialised as non-redundant */

3: function Simpli f icat ion(M)
/* M : a matrix (n rows, m columns) representing a constraint */

4: paral lel_simpl(M)
5: if con f l ic t == True then

return UNSAT /* Implemented in GPU-opt */
6: end if
7: for i=1..n do
8: if redundant[i] ==0 then add M[i,*] to M’
9: end if
10: end for

return M’
11: end function

12: function paral lel_simpl(M)
/* M : a matrix (n rows, m columns) representing a constraint */

13: Spawn thread (∀i = 1..n, j = (i + 1)..n) :
check_con f l ic t(M[i,∗], M[j,∗])

14: Spawn thread (∀i = 1..n, j = (i + 1)..n) :
el iminate_redundant_clauses(M[i,∗], M[j,∗])

15: Start all threads and wait all terminate
16: end function

17: function check_con f l ic t(M[a,∗], M[b,∗])
18: if M[a, m− 1] == “≤ ” && M[b, m− 1] == ‘≤ ” then
19: allZero←∀ j = 1..m− 2 : M[a, j] +M[b, j] == 0
20: if allZero && M[a, m] +M[b, m]< 0 then
21: conflict = true
22: end if
23: end if
24: end function

25: function el iminate_redundant_clauses(M[a,∗], M[b,∗])
26: allSame←∀ j = 1..m− 2 : M[a, j] == M[b, j]
27: if allSame == True then
28: if M[b, m− 1] = “≤ ” && M[a, m]> M[b, m] then
29: redundant[a] =1
30: end if
31: if M[a, m− 1] = “≤ ” && M[a, m]< M[b, m] then
32: redundant[b] =1
33: end if
34: end if
35: end function

two phases of the algorithm), as well as the incrementally identified rows and columns
with stable mutual ordering (third phase of the algorithm). It works by allocating
separate threads to process each row and each column of the constraint matrix, to
compute a hash code that uniquely identifies each row and each column, and exploits
these hash codes to identify the unique mutual ordering of rows and columns according
to the order of the corresponding hash codes.

45 5.3 Parallel Canonicalisation

Parallel Canonicalisation generates the hash codes iteratively, following the phases
of the sequential algorithm. It computes the hash codes of rows and columns with
respect to the sorted values in the rows and columns, and then exploits the values in
the incrementally identified columns (rows) with finalized mutual ordering, until either
obtaining hash codes different for all raws and columns, thus uniquely identifying rows
and columns, or or reaching a fixed-point.

Below, we present the parallel Canonicalisation algorithm in detail, discuss the con-
sistence between the sequential and the parallel version of Canonicalisation, and com-
pare their complexity.

5.3.1 The Canonical isat ionpar algorithm

Canonical isat ionpar , the parallel version of the Canonicalisation algorithm, is de-
signed to to parallelise the computation, and minimise memory copying when executed
on a cluster of GPU processing units.

Algorithm 3 presents Canonical isat ionpar in pseudocode. The algorithm starts
executing function parallel_canonicalise, which takes in input a constraint represented
in matrix form, and suitably permutes the rows and columns of the matrix. The per-
mutation depends on the row and column hashcodes that is computed with function
compute_hashcodes, and applies to all columns but the last two that represent constant
terms and comparison operators. Function parallel_canonicalise returns the re-ordered
matrix as the canonical form of the input constraint.

Figure 5.1 illustrates the algorithm through the example of the sample constraint
that we presented in Chapter 4 (Figure 4.2). The figure shows (a) a sample constraint
with 5 variables and 5 clauses, (b) its matrix representation (5 rows and 7 columns),
(c) the 32-bit hashcodes (in hexadecimal format) computed for both the rows and
the columns of this matrix when executing function compute_hashcodes, and (d) the
canonical form that function parallel_canonicalise returns after permuting rows and
columns of the matrix according to their corresponding hashcodes.

The core characteristic of Algorithm 3 is the parallel computation of the hashcodes
of rows and columns: Function compute_hashcodes spawns a thread for computing the
hashcode of each row and each column. Each thread receives an index that identifies
either a row or a column of the input matrix, and a vector entry to the values of the
row or column, respectively. All threads access the constraint matrix in parallel as
read-only, and write their results (the hashcodes) in the global arrays hrows and hcols
at mutually exclusive positions, thus avoiding critical races by construction. When
all threads terminate, the values of row and column hashcodes are available in the
global vectors hrows and hcols, respectively, and function compute_hashcodes returns
the results to function parallel_canonicalise.

The parallel threads coordinate each other through a set of shared global vectors
(Algorithm 3, lines 13—18): The global vectors hrows and hcols, initially set to zero,

46 5.3 Parallel Canonicalisation

Algorithm 3 Canonical isat ionpar

1: function paral lel_canonical ise(M)
/* M : a matrix (n rows, m columns) representing a constraint */

2: hrows, hcols← compute_hashcodes(M)
3: M ′← sort the rows of M by decreasing hrows
4: M ′′← sort the first m− 2 columns of M ′ by decreasing hcols
5: return M ′′

6: end function

7: function compute_hashcodes(M)
/* M : a matrix (n rows, m columns) representing a constraint */

8: Spawn thread (∀i = 1..n): row_hashcode(i, M[i,∗])
9: Spawn thread (∀ j = 1..m): col_hashcode(j, M[∗, j])
10: Start all threads and wait all terminate
11: return hrows, hcols
12: end function

/* Global variables (in the GPU memory): */
13: hrows← {0, 0, ...} /* Row hashcodes (n items, initially zero) */
14: hcols← {0,0, ...} /* Column hashcodes (m items, initially zero) */
15: hrows′ /* Additional locations for the row hashcodes */
16: hrows′′ /* Further additional locations for the row hashcodes */
17: hcols′ /* Additional locations for the column hashcodes */
18: hcols′′ /* Further additional locations for the column hashcodes */

19: function row_hashcode(i, vals)
/* i: row index */
/* vals: row values */

20: unique← f alse
21: f i x point ← f alse
22: while ¬unique ∧ ¬ f i x point do

23: hrows′′[i]← hash(sort(pairs(vals, hcols)))
24: hrows′[i]← hrows[i]

25: synch_all_threads

26: unique←
∧

j 6=i hrows′′[i] 6= hrows′′[j]
27: f i x point ← |{distinct(hrows′′)}|= |{distinct(hrows′)}|
28: ∧ |{distinct(hcols′′)}|= |{distinct(hcols′)}|
29: hrows[i]← hrows′′[i]

30: synch_all_threads
31: end while

32: hrows′[i]← hrows[i]
33: return
34: end function

35: function col_hashcode(j, vals)
/* ...Omitted: Dual case with respect to function row_hashcode... */

36: end function

store the row and column hashcodes incrementally computed by each thread, thus
allowing any thread to inspect the hashcodes computed by other threads. The vectors
hrows′, hrows′′, hcols′ and hcols′′ provide additional locations to redundantly store

47 5.3 Parallel Canonicalisation

2V1 + 2V2 + V3 + V4 + V5 ≤ 0
∧V1 + 4V2 + V3 + 3V4 + 2V5 ≤ 0
∧V1 + V2 + 2V3 + 2V4 + 2V5 ≤ 0
∧2V1 + 1V2 + 3V3 + 4V4 + V5 ≤ 0
∧2V1 + 3V2 + 4V3 + V4 + V5 ≤ 0

(a) Input constraint

2 2 1 1 1 const(0) ≤
1 4 1 3 2 const(0) ≤
1 1 2 2 2 const(0) ≤
2 1 3 4 1 const(0) ≤
2 3 4 1 1 const(0) ≤

(b) A constraint matrix M
(cfr. Algorithm 3, line 1)

hrows = [2956225,5e554618, c5729135, d0253753, 70e97b53]
hcols = [e19e72a5,1e f d529e, 832 f 0d f 7, acb9d1 f 7, e0 f 84795,−,−]

(c) The row/column hashcodes
(cfr. Algorithm 3, line 2)

1 2 2 1 1 const(0) ≤
2 1 4 1 3 const(0) ≤
1 2 3 4 1 const(0) ≤
2 1 1 2 2 const(0) ≤
1 2 1 3 4 const(0) ≤

(d) M with permuted rows and columns
(cfr. Algorithm 3, lines 3 and 4)

Figure 5.1. Result of parallel Canonicalisation on a sample constraint

temporary values of the hashcodes, to avoid critical read/write races during the parallel
computations.

Function row_hashcode (Function col_hashcode), the core part of the Canonical isat ionpar

algorithm, computes a row (column) hashcode. Here we decribe in details Function
row_hashcode.

48 5.3 Parallel Canonicalisation

Function row_hashcode iterates through a loop (lines 22—31) that computes the
value of the hashcode multiple times, until either computing a hashcode value that
uniquely identifies the current row with respect to the hashcodes of the other rows
(condition unique at line 22), or reaching a fixed-point at which any additional iter-
ation would not add new information on the relative positions of the rows (condition
f i x point at line 22). Below we explain the core steps of each iteration: the computa-
tion of the hashcode value (line 23), the check of uniqueness of the computed hashcode
(line 26), and the check of fixed-point convergence (line 27).

The algorithm computes the value of the hashcode (line 23) by (i) pairing each row
coefficient with the current hashcode of the column that correspond to the coefficient,
(ii) sorting the pairs in descending order, and (iii) hashing the sorted list of pairs to a
32-bit hashcode.1 This step computes distinct hashcodes for rows that either differ in
the (sorted) list of their coefficients, or include the same coefficients in columns that
are identified with distinct hashcodes, since the sorted list of 〈row coefficient, column
hashcode〉 pairs will differ in these cases, up to the rare case hashing collisions.

Figure 5.2 illustrates the first iteration of the computation of the row hashcodes
(line 23) through the example of the matrix of Figure 5.1 (a). The figure shows (a) the
input constraint matrix, (b) the vectors of pairs 〈value, column_hashcode〉 that the
row_hashcode threads build at the beginning of the first iteration of the loop, by pairing
the values in the considered row with the hashcodes of their corresponding columns
(the readers should notice that all column hahscodes are initially set to zero because we
are showing the first iteration of the loop), (c) the sorted vectors obtained by sorting
the pairs in descending order, and (d) the new row hascodes computed by applying the
hash function to the sorted vectors.

In Figure 5.2 we observe that the computations associate the same hashcode value
(e1a3c9d5) to the second, fourth and fifth rows of the input matrix, as expected, since
these rows are identical after sorting the 〈row coefficient, column hashcode〉 pairs. The
first and third rows correspond to distinct sorted vectors, and thus result in comput-
ing distinct hashcodes (e19e72a5 and e0 f 84795, respectively, marked in blue). At the
first iteration of the loop, which is the case illustrated in the figure, the distinctness of
the hashcodes depends only on the distinctness of the sorted lists of row coefficients,
since all column hashcodes are initially zero. (The result is consistent with the example
shown in Figure 4.2, Chapter 4: after the first and the second phrase of the Canonical-
isation algorithm of sorting by constant, comparison operator and coefficient values,
the first and third rows can be distinguished from the other row.) In the following iter-
ations, col_hashcode threads compute different hashcodes, which distinguish the three
rows with equal hashcodes after the first iteration.

The threads of function row_hashcode compute the hashcodes in parallel, and no
thread overrides the previous value of the hashcode with the new one before synchro-

1Our prototype implementation of the algorithm refers to the popular hash function djb:
http://www.cse.yorku.ca/ oz/hash.html.

49 5.3 Parallel Canonicalisation

2 2 1 1 1 const(0) ≤
1 4 1 3 2 const(0) ≤
1 1 2 2 2 const(0) ≤
2 1 3 4 1 const(0) ≤
2 3 4 1 1 const(0) ≤

(a) The input matrix

〈2, 0〉 〈2,0〉 〈1, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈4,0〉 〈1, 0〉 〈3,0〉 〈2, 0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈1,0〉 〈2, 0〉 〈2,0〉 〈2, 0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈1,0〉 〈3, 0〉 〈4,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈3,0〉 〈4, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉

(b) The 〈coefficient, hashcode〉 pairs

〈2, 0〉 〈2,0〉 〈1, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈4, 0〉 〈3,0〉 〈2, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈2,0〉 〈2, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈4, 0〉 〈3,0〉 〈2, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉
〈4, 0〉 〈3,0〉 〈2, 0〉 〈1,0〉 〈1, 0〉 〈const(0), 0〉 〈≤, 0〉

(c) The sorted pairs

2956225
dc2a7465
c5729135
dc2a7465
dc2a7465

(d) The hashcodes

Figure 5.2. Computation of row hashcodes at the first iteration of function
row_hashcode (cfr. Algorithm 3, line 23)

50 5.3 Parallel Canonicalisation

nising (line 25), since threads can only read value of the hashcode. Each thread tem-
porarily stores the newly computed hashcode value in vector hrows′′ (line 23), and
the previous value of the hashcode in vector hrows′ (line 24) to make values available
to the next step. After threads synchronization (line 25), vectors hrows′ and hrows′′

contain the values of all hashcodes before and after the computation of this step, re-
spectively.

At the next step, all threads compute the uniqueness (line 26) and fixed-point
(line 27) checks, and update the main hashcode vector (line 29) in parallel, up to the
next synchronization point (line 30). Both the uniqueness and fixed-point checks refer
to the values in the vectors hrows′ and hrows′′ that are only read and never modified
at this step.

The uniqueness of the computed hashcode (line 26) is determined by comparing
the newly computed hashcode with the hashcodes computed by the other row_hashcode
threads. For example, with reference to Figure 5.2(d), after the first iteration of all
row_hashcode threads, the uniqueness check at line 26 succeeds for the threads that
are computing the hashcodes of either the first and the third rows of the input ma-
trix, since both these threads resulted in computing hashcode values (2956225 and
c5729135, respectively) that are distinct from the ones of all other rows. Conversely,
the uniqueness check fails for the threads that are computing the hashcodes of the first,
the third and the fifth row, since all these threads computed the same hashcode value
(dc2a7465) and then this hashcode value does not univocally identify these rows.

Once generated unique hashcodes for all rows and columns, we can uniquely order
rows and columns. For any thread that terminates due to the success of the uniqueness
check, the algorithm forces the three vectors hrows, hrows′ and hrows′′ to hold exactly
the same hashcode value at the corresponding locations (line 29 and line 32), thus
guaranteeing that all other running threads will read consistent values when referring
to any of these vectors at any later iteration for computing the hashcodes of the other
dimension. The uniqueness check is equivalent to the converge concept in the sequential
Canonicalisation algorithm in phase 3.

Function row_hashcode evaluates fixed-point convergence (line 27) by checking the
absence of changes between consecutive iterations. The hashcodes that reach a fixed-
point, leave undecided the ordering of the rows or columns (end of phase 3), and
are disambiguated with phase 4 of the algorithm. Canonical isat ionpar refers to the
sequential implementation for computing this phase.

In Chapter 6, we report the empirical results of the experiments about both the
convergence of Canonical isat ionpar on constraints generated in symbolic analysis and
the impact of the non-convergence cases on the ability of ReCal to find equivalent con-
straints.

In the next section, we exemplify the execution of algorithm Canonical isat ionpar

on two sample equivalent constraints, and compare Canonical isat ionpar with Canon-
icalisation.

51 5.3 Parallel Canonicalisation

2 2 1 1 1 const(0) ≤
1 4 1 3 2 const(0) ≤
1 1 2 2 2 const(0) ≤
2 1 3 4 1 const(0) ≤
2 3 4 1 1 const(0) ≤

〈2, 0〉 〈2,0〉 〈1,0〉 〈1, 0〉 〈1,0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈4,0〉 〈1,0〉 〈3, 0〉 〈2,0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈1,0〉 〈2,0〉 〈2, 0〉 〈2,0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈1,0〉 〈3,0〉 〈4, 0〉 〈1,0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈3,0〉 〈4,0〉 〈1, 0〉 〈1,0〉 〈const(0), 0〉 〈≤, 0〉

2956225
dc2a7465
c5729135
dc2a7465
dc2a7465

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

〈1, 0〉 〈2, 0〉 〈2,0〉 〈1, 0〉 〈1,0〉
〈1, 0〉 〈3, 0〉 〈2,0〉 〈4, 0〉 〈1,0〉
〈1, 0〉 〈1, 0〉 〈2,0〉 〈3, 0〉 〈4,0〉
〈2, 0〉 〈4, 0〉 〈1,0〉 〈1, 0〉 〈3,0〉
〈2, 0〉 〈1, 0〉 〈1,0〉 〈2, 0〉 〈2,0〉

e0 f 84795
e1a3c9d5
e1a3c9d5
e1a3c9d5
e19e72a5

2 1 2 1 2 const(0) ≤
1 2 1 2 1 const(0) ≤
1 3 4 2 1 const(0) ≤
1 1 3 2 4 const(0) ≤
2 4 1 1 3 const(0) ≤

〈2, 0〉 〈1,0〉 〈2,0〉 〈1, 0〉 〈2,0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈2,0〉 〈1,0〉 〈2, 0〉 〈1,0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈3,0〉 〈4,0〉 〈2, 0〉 〈1,0〉 〈const(0), 0〉 〈≤, 0〉
〈1, 0〉 〈1,0〉 〈3,0〉 〈2, 0〉 〈4,0〉 〈const(0), 0〉 〈≤, 0〉
〈2, 0〉 〈4,0〉 〈1,0〉 〈1, 0〉 〈3,0〉 〈const(0), 0〉 〈≤, 0〉

c5729135
2956225
dc2a7465
dc2a7465
dc2a7465

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

〈2, 0〉 〈1, 0〉 〈1,0〉 〈4, 0〉 〈3,0〉
〈1, 0〉 〈2, 0〉 〈2,0〉 〈2, 0〉 〈1,0〉
〈2, 0〉 〈1, 0〉 〈4,0〉 〈3, 0〉 〈1,0〉
〈1, 0〉 〈2, 0〉 〈3,0〉 〈1, 0〉 〈4,0〉
〈2, 0〉 〈1, 0〉 〈1,0〉 〈1, 0〉 〈2,0〉

e1a3c9d5
e19e72a5
e1a3c9d5
e1a3c9d5
e0 f 84795

(a) The input matrices (b) The 〈coefficient, hashcode〉 pairs (d) The hashcodes

Figure 5.3. First iteration of algorithm Canonical isat ionpar on two sample equiv-
alent constraints

5.3.2 Executing Canonical isat ionpar

This section discusses the execution algorithm Canonical isat ionpar by example, refer-
ring to two sample constraints. Figure 5.3 illustrates the first iteration of the algorithm,
by showing

(a) the two input matrices that represent the sample constraints that are equivalent,
but require non trivial permutations of rows and columns to be turned into canon-
ical form in order to reveal their equivalence,

(b) the 〈coefficient, hashcode〉 pair vectors built at the beginning of the first iteration of
the row_hashcode (resp.col_hashcode) threads for each row (resp. column) of both
these matrices (as we commented above, at the beginning of the first iteration, all
hashcodes hold the initial value, that is, zero),

(c) the new hascodes computed by the row_hashcode and col_hashcode threads for all
rows and columns.

We already presented the computation of the row_hashcode threads for the first of
the two matrixes in Figure 5.2. We report it here to facilitate comparing the results of
the algorithm on the two constraints.

52 5.3 Parallel Canonicalisation

In the figure, we mark in blue the row and column hashcodes that are unique with
respect to the ones of all other rows and columns, respectively. The threads that com-
puted these marked hashcodes terminate immediately after the first iteration, due to
the success of the uniqueness check. The readers should notice that rows and columns
characterised by different sets of coefficients result in distinguishable hashcodes already
after the first iteration.

After the first iteration, the state of the hashcode vectors does not satisfy the fixed-
point convergence check, thus the algorithm executes further iterations of the threads
row_hashcode and col_hashcode that are still alive. Figure 5.4 and Figure 5.5 illustrate
the second and third iteration of the threads, where the coefficients in the rows and
columns are paired with the (non-zero) hashcodes of the crossing columns and rows,
respectively, and then a new hashcode value is computed based on these pair vectors.
The second iteration produces 3 new rows and 3 new columns with unique hashcodes,
and the third iteration converges because all rows and columns have unique hashcodes
for both constraints. By sorting the rows and columns of the two input matrixes ac-
cording to the final hashcodes, the two constraints are both transformed to the same
canonical form, the one that was already shown in Figure 5.1(d).

By comparing the above examples with the example in Figure 4.2 (previous chap-
ter), we observe that the second and third iterations of Canonical isat ionpar and Canon-
icalisation yield the same ordering of the two matrixes. In Appendix B, we present
the proof that Canonical isat ionpar is consistent with the sequential Canonicalisation
algorithm, thus confirming its correctness with respect to the definition of the ReCal
canonical forms of constraints.

5.3.3 Computational Complexity of Canonical isat ionpar

This section discusses the computational complexity of algorithm Canonical isat ionpar

when executed on an input constraint matrix with n rows and m columns.
The complexity of a single iteration of a row_hashcode thread is O(m ∗ log(m)),

because the complexity is dominated by the step that sorts the 〈row coefficient, column
hashcode〉 pair vector, and this vector contains m pairs. Dually, the complexity of a
single iteration of a col_hashcode is O(n ∗ log(n)).

Since each iteration increases the convergence of rows and columns by at least one,
otherwise the algorithm reaches the fixed-point, the upper bound to the number of
iterations of the row_hashcode and col_hashcode threads is n and m, respectively. Thus,
the worst case complexity of executing all threads is O(n ∗m ∗ log(max(n, m))).

Our current data indicate that the convergence is usually much faster than n or m
iterations: In our empirical studies, the algorithm converges within 4 iterations for the
99% of the constraints).

All other steps of the algorithm are linear in either n or m, thus the overall com-
plexity is dominated by the execution of the threads: O(n ∗ m ∗ log(max(n, m))).

53 5.3 Parallel Canonicalisation

2 2 1 1 1 const(0) ≤
1 4 1 3 2 const(0) ≤
1 1 2 2 2 const(0) ≤
2 1 3 4 1 const(0) ≤
2 3 4 1 1 const(0) ≤

. .
〈1, e19e72a5〉 〈4, e1a3c9d5〉 〈1, e1a3c9d5〉 〈3, e1a3c9d5〉 〈2, e0 f 84795〉 〈const(0),−〉 〈≤,−〉

. .
〈2, e19e72a5〉 〈1, e1a3c9d5〉 〈3, e1a3c9d5〉 〈4, e1a3c9d5〉 〈1, e0 f 84795〉 〈const(0),−〉 〈≤,−〉
〈2, e19e72a5〉 〈3, e1a3c9d5〉 〈4, e1a3c9d5〉 〈1, e1a3c9d5〉 〈1, e0 f 84795〉 〈const(0),−〉 〈≤,−〉

2956225
5e554618
c5729135
b0e3a418
b0e3a418

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

. .
〈1, 2956225〉 〈3, dc2a7465〉 〈2, c5729135〉 〈4, dc2a7465〉 〈1, dc2a7465〉
〈1, 2956225〉 〈1, dc2a7465〉 〈2, c5729135〉 〈3, dc2a7465〉 〈4, dc2a7465〉
〈2, 2956225〉 〈4, dc2a7465〉 〈1, c5729135〉 〈1, dc2a7465〉 〈3, dc2a7465〉

. .

e0 f 84795
718bb09e
718bb09e
1e f d529e
e19e72a5

2 1 2 1 2 const(0) ≤
1 2 1 2 1 const(0) ≤
1 3 4 2 1 const(0) ≤
1 1 3 2 4 const(0) ≤
2 4 1 1 3 const(0) ≤

. .

. .
〈1, e0 f 84795〉 〈3, e1a3c9d5〉 〈4, e1a3c9d5〉 〈2, e19e72a5〉 〈1, e1a3c9d5〉 〈const(0), 0〉 〈≤, 0〉
〈1, e0 f 84795〉 〈1, e1a3c9d5〉 〈3, e1a3c9d5〉 〈2, e19e72a5〉 〈4, e1a3c9d5〉 〈const(0), 0〉 〈≤, 0〉
〈2, e0 f 84795〉 〈4, e1a3c9d5〉 〈1, e1a3c9d5〉 〈1, e19e72a5〉 〈3, e1a3c9d5〉 〈const(0), 0〉 〈≤, 0〉

c5729135
2956225
b0e3a418
b0e3a418
5e554618

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

. .
〈1, c5729135〉 〈2,2956225〉 〈2, dc2a7465〉 〈2, dc2a7465〉 〈1, dc2a7465〉
〈2, c5729135〉 〈1,2956225〉 〈4, dc2a7465〉 〈3, dc2a7465〉 〈1, dc2a7465〉
〈1, c5729135〉 〈2,2956225〉 〈3, dc2a7465〉 〈1, dc2a7465〉 〈4, dc2a7465〉

. .

718bb09e
e19e72a5
718bb09e
1e f d529e
e0 f 84795

(a) The input matrices (b) The 〈coefficient, hashcode〉 pairs (c) The hashcodes

Figure 5.4. Second iteration of algorithm Canonical isat ionpar on the two sample
equivalent constraints

2 2 1 1 1 const(0) ≤
1 4 1 3 2 const(0) ≤
1 1 2 2 2 const(0) ≤
2 1 3 4 1 const(0) ≤
2 3 4 1 1 const(0) ≤

. .

. .

. .
〈2, e19e72a5〉 〈1,1e f d529e〉 〈3, 718bb09e〉 〈4, 718bb09e〉 〈1, e0 f 84795〉 〈const(0),−〉 〈≤,−〉
〈2, e19e72a5〉 〈3,1e f d529e〉 〈4, 718bb09e〉 〈1, 718bb09e〉 〈1, e0 f 84795〉 〈const(0),−〉 〈≤,−〉

2956225
5e554618
c5729135
d0253753
70e97b53

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

. .
〈1,2956225〉 〈3, 5e554618〉 〈2, c5729135〉 〈4, b0e3a418〉 〈1, b0e3a418〉
〈1,2956225〉 〈1, 5e554618〉 〈2, c5729135〉 〈3, b0e3a418〉 〈4, b0e3a418〉

. .

. .

e0 f 84795
acb9d1 f 7
832 f 0d f 7
1e f d529e
e19e72a5

2 1 2 1 2 const(0) ≤
1 2 1 2 1 const(0) ≤
1 3 4 2 1 const(0) ≤
1 1 3 2 4 const(0) ≤
2 4 1 1 3 const(0) ≤

. .

. .
〈1, e0 f 84795〉 〈3, 1e f d529e〉 〈4,718bb09e〉 〈2, e19e72a5〉 〈1, 718bb09e〉 〈const(0), 0〉 〈≤, 0〉
〈1, e0 f 84795〉 〈1, 1e f d529e〉 〈3,718bb09e〉 〈2, e19e72a5〉 〈4, 718bb09e〉 〈const(0), 0〉 〈≤, 0〉

. .

c5729135
2956225
70e97b53
d0253753
5e554618

| | | | |
| | | | − − − −
| | | b − − − −
| | b − − − − −
| b − − − − − −
b − − − − − − −

. .
〈1, c5729135〉 〈2,2956225〉 〈2, 718bb09e〉 〈2,718bb09e〉 〈1, 5e554618〉
〈2, c5729135〉 〈1,2956225〉 〈4, 718bb09e〉 〈3,718bb09e〉 〈1, 5e554618〉

. .

. .

acb9d1 f 7
e19e72a5
832 f 0d f 7
1e f d529e
e0 f 84795

(a) The input matrices (b) The 〈coefficient, hashcode〉 pairs (c) The hashcodes

Figure 5.5. Third iteration of algorithm Canonical isat ionpar on the two sample
equivalent constraints

54 5.4 CUDA ReCal-gpu implementation

Thus, algorithm Canonical isat ionpar is an order of magnitude faster than the se-
quential version of the Canonicalisation algorithm presented in Algorithm 1, which is
O(min(n, m) ∗ n ∗m ∗ log(max(n, m))).

5.4 CUDA ReCal-gpu implementation

We implemented a prototype of ReCal-gpu on the CUDA platform, a parallel computing
platform introduced by Nvidia, which allows software engineers to use a CUDA-enabled
GPUs for general purpose processing. CUDA consists of a software layer that enables
direct access to the GPU’s virtual instructions and parallel computational elements,
making it easier for specialists in parallel programming to use GPU resources [SK10].
The ReCal-gpu prototype is implemented in C++ programming language.

In this section, we present the main structure of the implementation of the parallel
algorithm of logical simplication and canoncalisation. The implementation includes two
parts, the sequential part running on CPU and the parallel part running on GPU. CUDA
provides memory copy functions such as cudaMemcpy for communication between the
sequential and the parallel functions.

The parallel processing of a constraint (function normal) starts from mapping the
constraint matrix into GPU memory (line 4 in the code shown below), and then calls
function normalisation to compute the canonical form on the GPU units. Function nor-
malisation is declared in file Kernel.cu, where we define the parallel functions to execute
on the GPU units.

1 // Normalise.cpp

2 int* normal(int* matrix){

3

4 cudaMemcpy(gpu_matrix,matrix, size,cudaMemcpyHostToDevice);

5 int* canon_form = normalisation(gpu_matrix, ...);

6 return canon_form;

7 }

Kernel.cu declares two parallel functions: function kernel_logical_simplification and
function kernel_compute_hashcodes. The former function realises the logical simplifi-
cation steps check_conflict and eliminate_redundant_clauses (Algorithm 2). The latter
function realises the Canonical isat ionpar algorithm (Algorithm 3).

Function normalisation invokes kernel_logical_simplification by passing the param-
eters of thread-grid size, the address of the constraint matrix, and the address of the
global flags to mark conflicts and redundant clauses, while it refers to the thread ID to
select the matrix rows to be inspected for conflict and redundancy. The API cudaDe-
viceSynchronize allows for waiting the termination of all logical simplification threads.
Then, function normalisation iteratively executes function kernel_compute_hashcodes
to compute the hashcodes, until converging or reaching the fixed-point. At the end,
function normalisation copies the hashcodes in the CPU memory, permutes the matrix
according to the hashcodes, and returns the permuted matrix as the canonical form.

55 5.4 CUDA ReCal-gpu implementation

1 // Kernel.cu

2 __global__ void kernel_logical_simplification(int* gpu_mat, boolean* conflict, ←-
int* redundant,...);

3 __global__ void kernel_compute_hashcodes(int* gpu_mat,signed long* hashcodes, ←-
...);

4
5 int* normalisation(int* gpu_matrix, ...){

6 ...

7 // logical simplification

8 kernel_logical_simplification<<<threadsPerBlock,blocksPerGrid>>>(gpu_mat, ←-
conflict, redundant,...);

9 cudaDeviceSynchronize();

10
11 //canonicalisation

12 while(converge == false or fixed_point == false){

13 kernel_compute_hashcodes<<<threadsPerBlock,blocksPerGrid>>>(gpu_mat, ←-
hashcodes,...);

14 cudaDeviceSynchronize();

15 }

16
17 cudaMemcpy(hashcodes_c, hashcodes, size,cudaMemcpyDeviceToHost);

18 permutation(matrix, hashcodes_c);

19 return matrix;

20 }

56 5.4 CUDA ReCal-gpu implementation

Chapter 6

Evaluation

In this chapter we presents the experimental evaluation of the ReCal proof-
reusing approach. The experiments indicate both to what extent the approach
fosters the reuse of available proofs across, by referring to a large benchmark
of constraints generated during the symbolic analysis of a set of programs,
and to what extent ReCal improves the performance of constraint solving
with respect to the constraints in the benchmark. We replicate the experi-
ments with the state-of-the-art approaches Green, GreenTrie and Utopia, to
better interpret the experimental data about ReCal. The results of our ex-
periments complement previous experiments in the field by providing further
evidence of the occurrence of equivalent and implication-related constraints
during symbolic analysis, and testify the crucial contribution of ReCal to im-
prove the efficiency of symbolic program analysis: In our experiments ReCal
improves the constraint solving speed of a factor of 10 with respect to solving
all constraints with the cutting-edge solver Microsoft Z3, and outperforms all
competing proof-reusing approaches.

In the previous chapters of this thesis we presented the ReCal proof-reusing ap-
proach that aims to improve the performance of symbolic analysis by reusing proofs
that recur across multiple constraints. In this chapter, we provide empirical evidence
that ReCal meets its goal. We collected a large benchmark of constraints generated by
using the symbolic executors JBSE [BDP16] and Crest [BS08] to analyse many pro-
grams, and we experimented with ReCal to improve the performance of solving these
constraints.

In the experiments, we quantify both the ability of ReCal to reuse proofs for the
considered constraints and the performance improvement that derives from using the
ReCal proof-reusing framework. The overall goal of proof-reusing frameworks is to re-
duce the constraint solving time, and thus mitigate the bottleneck of constraint solvers.
This goal competes with the costs of the constraint processing steps that the proof-
reusing frameworks exploit to increase their effectiveness in identifying many reusable

57

58 6.1 ReCal Prototype(s)

proofs, that is, simplification and normalisation of the constraints. In ReCal such costs
may cause critical overheads, especially for arbitrarily large constraints. In this thesis,
we propose a parallel algorithm for GP-GPU to reduce the constraint solving costs.

The experiments discussed in this chapter are designed to answer the following
research questions:

Q1 How frequently do equivalent and implication-related constraints occur during sym-
bolic program analysis, and how effective is ReCal in reusing proofs by identifying equiv-
alent and implication-related constraints?

Q2 To what extent does ReCal improve the efficiency of symbolic program analysis?

Q3 What is the impact of the ReCal canonical form (computed with the Canonicalisation
algorithm) on the effectiveness of the proof-reusing framework?

Research question Q1 focus on the feasibility of using the ReCal proof-reusing ap-
proach to improve the efficiency of symbolic program analysis. The usefulness of ReCal
depends on both the frequency of equivalent and implication-related constraints and
the effectiveness of ReCal in identifying reusable proofs by exploiting these relations
across the constraints.

Research question Q2 focus on the end-to-end efficiency of ReCal, since process-
ing the constraints with simplification and normalisation algorithms can cause critical
overheads. We address Q2 by comparatively evaluating the efficiency of solving con-
straints with Z3, ReCal (with both its parallel and sequential version) and the competing
state-of-the-art proof-reusing approaches, Green, Greentrie and Utopia.

The research question Q3 focus on the contribution of the Canonicalisation algo-
rithm, which is a distinctive characteristic of ReCal with respect to the other proof-
reusing approaches.

6.1 ReCal Prototype(s)

We experiment with three prototypes implementations of ReCal, which implement the
different aspects of the approach: ReCalseq, ReCalgpu and ReCalgpu+.

ReCalseq implements the sequential ReCal, and is limited to reusing proofs from
equivalent constraints. It is implemented in Python. It includes the sequential imple-
mentation of the Canonicalisation algorithm, and uses the canonical form of the con-
straints as search index for efficiently searching equivalent constraints. With ReCalseq,
we measure the amount of constraints that can be reused by equivalence checking,
which we use as a baseline to quantify both the improvement of identifying constraints
related by implication and the improvements in execution cost of the Canonicalisation
algorithm.

ReCalgpu implements the parallel ReCal, with the same characteristics of ReCalseq.
It is implemented in C++ on the CUDA platform [SK10]. With ReCalgpu, we mea-

59 6.2 Experimental Setting and Design

sure the efficiency gain that we obtain with the parallel algorithm with respect to the
sequential one.

ReCalgpu+ extends the parallel implementation of ReCal with the identification of
constraints related by implication, and the detection of internal conflicts between pairs
of clauses in the constraints. With ReCalgpu+, we measure the effectiveness and effi-
ciency gain of the new these new characteristics of ReCal.

Table 6.1 summarises the differences between the prototypes.

Canonicalisation Parallelism Conflict Detection Logical Implication
ReCalseq

ReCalgpu

ReCalgpu+

Table 6.1. Features of the ReCal prototypes

6.2 Experimental Setting and Design

We evaluate the effectiveness and efficiency of ReCal by experimenting with a dataset of
constraints that we generated by analysing a set of 22 third party subject programs with
symbolic execution. The program set consists of both C and Java programs, and we use
the symbolic executors Crest [BS08] and JBSE [BDP16] to analyse the C and the Java
programs, respectively. Table 6.2 lists the subject programs (column Program), the sizes
in lines of code (column LOC), the programming language (column Language) and
the number of constraints (uniquely different from each other) (column Constraints)
that we collected during the analysis of each program. The programs are taken from
different repositories and are used as case studies in many scientific papers.1

When experimenting with the constraints from a program, ReCal starts with an
empty repository, and considers the constraints incrementally in the order in which
they are generated during symbolic execution. For each constraint, ReCal tries to find
an equivalent constraint or a suitable implication-related constraint in the repository.
When ReCal does not find any suitable constraint in the repository (we say that the
current constraint results in a cache miss), ReCal generates a proof with the constraint
solver Z3, and incrementally populates the repository with the constraint and the proof
computed with Z3. After processing all the constraints from a program, ReCal reports
the overall solving time, that is, the time spent to process the constraint and searching

1The interested readers can find the references to the subject programs at
http://star.inf.usi.ch/recal/refs

60 6.2 Experimental Setting and Design

Program LOC Language #Constraints
afs 75 Java 203
avl 519 Java 11,161
ball 271 Java 210
block 79 Java 505
cdaudio 2171 C 55,329
collision 127 Java 6,812
dijkstra 142 Java 85
diskperf 1104 C 103,505
division 87 Java 1,257
floppy 1137 C 100,006
grep 10068 C 100,126
kbfiltr 599 C 188
knapsack 120 Java 7651
doubly-linked-list 806 Java 876
multiplication 277 Java 25,217
old-tax 78 Java 43
new-tax 78 Java 55
reverseword 32 Java 173
swapwords 181 Java 38,104
tcas 200 Java 13,476
treemap 806 Java 332,950
wbs 297 Java 239

Table 6.2. Subject programs

for proofs plus the solving time spent in case of cache misses, and the reuse-rate, that
is, the percentage of constraints for which it succeeded in identifying a reusable proofs
(we say that these constraints resulted in cache hits). In detail ReCal computes the
reuse-rate as:

reuse-rate=
H

H +M
(6.1)

where H is the number of constraints for which ReCal identified a proof from the repos-
itory (cache hit), and M is the number of constraints for which ReCal fails to identify a
reusable proof (cache miss).

We conducted comparative experiments with the same settings by using the state-of-
the-art approaches Green, GreenTrie and Utopia, and measured the overall solving time
and the proof reuse-rate across the same constraint datasets with these approaches.

We stored the constraint repository during the execution of ReCal with Redis [Red21],

61 6.3 Experiment Results

program Green GreenTrie Utopia ReCalseq ReCalgpu+

afs 76% 97% 99% 98% 99%
avl 73% 84% 91% 94% 95%
ball 6% 55% 94% 83% 84%

block 33% 56% 49% 35% 36%
cdaudio 16% 65% 99% 99% 99%
collision 76% 97% 99% 99% 99%
dijkstra 0% 48% 68% 96% 99%
diskperf 44% 87% 99% 99% 99%
division 0% 99% 99% 14% 99%
floppy 46% 93% 99% 99% 99%
grep 0% 99% 99% 99% 99%

kbfiltr 11% 51% 95% 92% 99%
knapsack 57% 99% 99% 68% 99%

doubly-linked-list 87% 96% 96% 91% 94%
multiplication 0% 99% 99% 99% 99%

new-tax 36% 82% 65% 43% 89%
old-tax 37% 86% 65% 44% 90%

reverseword 99% 99% 99% 99% 99%
swapwords 0 % 99% 99% 49% 99%

tcas 39% 98% 99% 99% 99%
treemap 96% 99% 99% 99% 99%

wbs 20% 66% 97% 99% 99%

Table 6.3. Reuse-rates of the different approaches

an in-memory database store that supports efficient data retrieval. We executed the ex-
periments on a machine with 2.3 GHz Intel Core i7 processor and 16 GB of RAM, and
a NVIDIA GeForce GT 650M 1024 MB GPU processor. The benchmark data and the
prototypes are available on GitHub: https://github.com/meixianchen/ReCal-sym.

6.3 Experiment Results

In this section, we report the experiment results to answer the research questions out-
lined at the beginning of this chapter.

62 6.3 Experiment Results

6.3.1 Effectiveness of ReCal

We evaluate the effectiveness of ReCal in fostering the reuse of constraint proofs, as the
reuse-rate of ReCal obtained with the prototypes ReCalseq, ReCalgpu and ReCalgpu+.
We recall that in each experiment, ReCal starts with an empty repository, and solves the
constraints incrementally, in the order in which they are generated during symbolic ex-
ecution. For each target constraint, ReCal slices it into independent sub-constraints,
applies preprocessing, simplification and canonicalisation to compute the canonical
form of the sub-constraints, and uses the canonical forms as search index to iden-
tify equivalent (ReCalseq, ReCalgpu and ReCalgpu+) or implication-related (ReCalgpu+)
constraints that were solved in the the analysis session up to that point.

Table 6.3 reports the reuse-rates measured for the constraints of the programs con-
sidered in the experiments, with Green, GreenTrie, Utopia, ReCalseq and ReCalgpu+.
The reuse-rate of ReCalgpu is the same as the reuse-rates of ReCalseq, by construction.
We highlight the best results for each program in green colour. We visualise the compar-
ison between the approaches in the box-plot of the data in Figure 6.1. The experimental
results shown in Figure 6.1 suggest the following observations:

(i) ReCalseq yields a reuse-rate higher than 90% for 15 (out of 22) programs, and
higher than 95% for 12 programs. The first quartile, median, and third quar-
tile are 68%, 98%, and 99%, respectively. The results confirm that equivalent
constraints occur frequently during symbolic analysis.

(ii) ReCalgpu+ improves the proof-reusing power by identifying constraints related
by implication, further increasing the reuse-rate. The first quartile, median, and
third quartile increase to 95%, 99%, and 99%, respectively. ReCalgpu+ steadily
achieves high reuse-rates on most programs.

(iii) Green [VGD12], which identifies equivalent constraints by clause normalisation,
results in a lower reuse-rate than ReCal on the average, with a median value of
37%.

(iv) GreenTrie [JGY15], which identifies constraints related by implication with induc-
tion rules, and Utopia [ADP17], which heuristically searches for candidates solu-
tions from similar constraints, result in reuse-rate similar to ReCalgpu+. ReCalgpu+
and Utopia reach the highest rate (> 95%) at the first quartile.

In summary, our results suggest that Utopia and ReCalgpu+ steadily achieve high
reuse-rate, and are effective in identifying reusable proofs. The good results of Green-
Trie are less steady than Utopia and ReCalgpu+. Since Utopia considers a wider scope of
proofs than ReCal, we are not surprised to find out in some cases it outperforms ReCal
in finding more proofs. However, ReCalgpu+ achives a better reuse-rate than Utopia for
program avl, dijkstra, kbfiltr, new-tax and old-tax, as shown in Table 6.3. This suggest
a good degree of complementarity between Utopia and ReCalgpu+.

63 6.3 Experiment Results

Figure 6.1. Summary statistics on the reuse-rates of the different approaches

6.3.2 Efficiency of ReCal

Proof-reusing approaches aim to reduce the constraints solving time in order to foster
efficient program analysis. In the experiments we quantified the efficiency gain that
can be obtained with ReCal, by comparing the time spent to solve all constraints in
our experiments with the solver Z3, with the time spent when using Green, GreenTrie,
Utopia, ReCalseq, ReCalgpu and ReCalgpu+, as illustrated in Figure 6.2. The experimen-
tal results shown in Figure 6.2 suggest the following observations:

(i) ReCalseq improves only a 14% of the running time with respect to using the solver
Z3 without reusing any proof, and is very much slower than Green, GreenTrie, and
Utopia. For example, comparing ReCalseq and Green, we see that ReCalseq takes
approximatively twice the time of Green, even though in the previous section we
observed that ReCalseq obtains higher reuse-rates than Green.

(ii) ReCalgpu significantly reduces the running time of ReCal from 6,662 seconds to
521 seconds.

(iii) ReCalgpu+ further reduces the running time to 330 second, which is less than 5%
of the running time of solver Z3.

64 6.3 Experiment Results

The results suggest that the relatively low performance of ReCalseq depends mainly
on the overhead of the simplification and canonicalisation steps, which the the par-
allel GPU computing of ReCalgpu and the reuse of proofs from logical implication of
ReCalgpu+ largely improve.

In summary, ReCalgpu+ outperforms all other approaches in our experiments. As
discussed above, the excellent performance of ReCalgpu+ when considering constraint
related by implication and conflicting clauses derives from conflict detection and iden-
tification of implication-related constraints. With conflict detection, ReCalgpu+ can
straightforwardly decide the unsatisfiability of some constraints without further pro-
cessing, thus avoiding unnecessary computation. The time of each step in ReCalgpu

and ReCalgpu+ is presented in Figure 6.3: by considering conflicting clauses, ReCalgpu+
takes more time than ReCalgpu in the simplification step, but saves 75% of the time
spend in canonicalisation, which accounts for most of the execution time of ReCalgpu.
We run the experiment for 10 times to estimate the variance of the execution time: the
variances of time of the ReCalgpu and ReCalgpu+ are within 10%.

Figure 6.4 refines the reported data, by providing the details on the running time
of ReCalgpu+ and the other approaches on a per-program basis. The figure indicates
the execution time in log scale, and highlights the time-axis at the time of 1 seconds.
We observe that the most competitive approaches are ReCalgpu+ and Utopia. Utopia
is often faster than ReCalgpu+ in the context of the programs for which the overall
running time is less than 1 second, but ReCalgpu+ outperforms Utopia in most of the
cases that demand high solving effort.

We further investigated the type of constraints for which Utopia outperforms ReCalgpu+.
A representative case is the one of constraints that require many iterations for the
Canonicalisation algorithm to converge. For example, for program AVL, Utopia takes
9.14 seconds to solve all the constraints, while ReCalgpu+ takes 13.6 seconds, the size
of constraints from AVL is up to 7 clauses with 28 variables, but the Canonicalisation
algorithm takes up to 9 iterations (with an average of 4 iterations). In many other
cases, the Canonicalisation algorithm converges quickly in 3 or less than 3 iterations.
This indicates the complementarity of ReCalgpu+ and Utopia.

6.3.3 Effectiveness of Canonicalisation

In this section, we report the results of a set of experiments designed to evaluate the
impact of the Canonicalisation step on the effectiveness of ReCal, and provide data on
how often the algorithm Canonical isat ionpar converges to computing the complete
canonical form of the constraints in our benchmark.

We evaluate the impact of algorithm Canonicalisation on the effectiveness of ReCal,
by measuring the reuse-rate of ReCal both with and without activating the Canonicali-
sation step across our experiments. Without the Canonicalisation step, ReCal achieves
results similar to the Green approach, that is, it can identify the equivalent constraints
that turn into equal formulas after normalising and simplifying their clauses, but cannot

65 6.3 Experiment Results

Figure 6.2. Time to solve all constraints with the different proof-reusing approaches

identify the equivalent constraints in which the corresponding clauses and the corre-
sponding terms are listed in different orders. Indeed, for the constraints of the programs
considered our experiments, the reuse-rates of ReCal with and without the Canonicali-
sation step correspond to the reuse-rates of ReCalgpu and Green that we already sum-
marised in Figure 6.1. These data confirm the significant impact of the Canonicalisation
step that allows ReCalgpu to achieve a median reuse-rate of 98%, while Green achieves
a median reuse-rate of only 37%.

To further strengthen the evidence of the impact of the Canonicalisation step, we
investigate the effectiveness of ReCal across the constraints of different programs, both
with and without the Canonicalisation step, considering both the cases of inter- and
intra-program constraints. We experimented ReCal on inter-program constraints as fol-
lows: For each pair of programs, we use one program to populate the repository and
the other program to measure the reuse-rate with respect to these latter constraints
only. Figure 6.5 illustrates the relative increase in the reuse-rate measured for each
pair of programs when we repeated the related experiment either with and without the
Canonicalisation step. The figure shows only the programs that share at least a con-
straint with at least another program, and marks with colours of increasing intensity
the program pairs depending on the increment of reuse rate (from 0 to 40%, with a grey
mark indicating no reuse). Figure 6.5 confirms the positive impact of Canonicalisation
that improves the inter-program effectiveness of ReCal up to 40% extra reuse.

Algorithm Canonical isat ionpar implements the first three phases of the definition
of Canonicalisation given in Chapter 4, dismissing the fourth phase that has exponen-
tial complexity. Thus, Canonical isat ionpar trades precision for efficiency, and may not

66 6.3 Experiment Results

Figure 6.3. Execution time of each step of ReCalgpu and ReCalgpu+

converge for constraints that require the fourth phase, a rare case in practice. We eval-
uate the impact of the fourth step to identify reusable proofs as the ration between the
constraints for which Canonical isat ionpar converges to the complete canonical, and
the constraints for which Canonical isat ionpar reaches a fixed-point the third phase
without converging. In Table 6.4, we list the programs considered in our experiments
(column program), the total number of constraints for each program (column total),
and the number of these constraints for which Canonical isat ionpar does not converge
(column unconverge). These data indeed confirm that the non-convergence cases are a
very limited portion of the total in each program, and overall 1.23% of the constraints
in our benchmark.

The constraints that do not converge to the complete canonical form may nonethe-
less succeed in revealing equivalent constraints, because the incomplete canonical forms
are often very close (or sometimes even equal) to the complete ones. Thus, to better
quantify the impact of the non-convergence cases of algorithm Canonical isat ionpar ,
we measured (column hit-over-unconverge) for how many of these constraints ReCal
was able to identify a matching equivalent constraint, regardless of computing the in-
complete canonical form. The results indicate that ReCal can find equivalent constraints
for 97.94% of the constraints with incomplete canonical form.

The few cache-miss of the constraints with incomplete canonical form are constraint
for which either there is at leat one equivalent constraint, and ReCal fails to find the
match due to the incomplete canonical form, or there exist no equivalent constraints of
the target constraint in the repository. We measure these effects by executing the the
fourth phase of the algorithm on the small set of cache-miss constraints with incom-

67 6.4 Threads to Validity

plete canonical form. Column miss-over-unconverge of Table 6.4 reports the number of
cache-miss constraints that would have been identified if we had computed a complete
canonical form (including the fourth phase). The results indicate that cache-misses
due to un-convergence of algorithm Canonical isat ionpar are indeed rare, occurring
for only 0.003% of the (about 800,000) constraints considered in our experiments.

In summary, the data reported in this section confirm that the Canonicalisation step
of ReCal is effective and precise for identifying equivalent constraints.

program total unconverge hit-over-unconverge miss-over-unconverge

afs 203 0 0 0
avl 11161 3034 (27.18%) 2867 (94.50%) 26(0.23%)
ball 210 0 0 0

block 505 2 (0.4%) 1(50%) 1(50%)
cdaudio 55329 0 0 0
collision 6812 40 (0.59%) 38 (95%) 1 (0.2%)
dijkstra 85 0 0 0
diskperf 103505 0 0 0
division 1257 0 0 0
floppy 100006 0 0 0
grep 100126 0 0 0

kbfiltr 188 0 0 0
knapsack 7651 0 0 0

list 876 0 0 0
multiplication 25217 0 0 0

new-tax 55 0 0 0
old-tax 43 0 0 0

reverseword 38104 0 0 0
swapwords 173 0 0 0

tcas 13476 54 (0.4%) 52 (96.3%) 1 (0.01%)
treemap 332950 6712 (2.02%) 6681 (96.3%) 4 (0.00%)

wbs 239 0 0 0

total 798171 9842 (1.23%) 9639 (97.94%) 33 (0.003%)

Table 6.4. Unconvergence of Canonicalization algorithm

6.4 Threads to Validity

The main threat to the validity of our results concerns the generality of our proof-
reusing approach in symbolic analysis. The specificity of the considered subject pro-

68 6.4 Threads to Validity

grams and program analysis tools can impact the construct validity of the experiments.
We selected the subject programs from popular online software repositories, including
repositories used for other scientific testing and analysis experiments, covering different
kind of programs. In this dissertation, we focus on constraints produced with symbolic
execution that represents a widely studied analysis technique that integrates with SMT
solvers. To test ReCal beyond symbolic execution constraints, we executed a prelimi-
nary experiment on constraints generated by the invariant synthesiser GK-tail [MPS17]
for a set of programs of the Guava library. The constraints from GK-tail are in different
logic and not in conjunctive form, and thus we applied transformations to turn them
into disjunctive normal form, and then applied our approach to each of the conjunctive
sub-constraints. Our proof reusing approach achieves very higher score of reuse-rates
on these sub-constraints. Due to the different logic of the constraints of GK-tail, these
preliminary results are not included in this dissertation, but they suggest the generality
of the proof reusing approaches for more analysis tools.

In the context of our approach, parallelisation is the key element to improve the
efficiency of proof reusing. Conceptually, it would be possible to exploit parallel algo-
rithms in other proof reusing approaches by defining proper data structures to repre-
sent constraints, and normalisation algorithms that allow parallel decomposition of the
computation. However, none of these requirements is directly satisfiable in the existing
approaches, which is why we could not compare our approach with the parallel version
of the other approaches.

As mentioned in Chapter 2, there exist proposals of different path selection strate-
gies in symbolic execution, which would probably affect proof reusing. Thus, it would
be an interesting future work to further investigate the improvement of proof reusing
under different path selection strategies.

69 6.4 Threads to Validity

Figure 6.4. Execution time (log scale) to solve the constraints of each program with
the different proof-reusing approaches

70 6.4 Threads to Validity

Figure 6.5. Incremental reuse-rate for Inter-program reuse-rates with Canonicalisa-
tion

Chapter 7

Conclusion

Symbolic analysis is a popular program analysis techniques. Symbolic analysis de-
scribes program properties with symbolic expressions, and relies on constraint solvers to
validate the symbolic expressions and verify the properties of interest. Constraint solv-
ing accounts for a large part of the overall execution time, and still represents a main
bottleneck towards the applicability and scalability of symbolic analysis techniques, in
spite of the advanced development of solvers in the recent decades.

In this dissertation, we explore the feasibility of proof reusing to mitigate the impact
of constraint solvers during the process of symbolic analysis. Previous studies show
that constraints re-occur when analysing a program, and that it is possible to identify
and reuse recurrent constraints, thus reducing the calls to constraint solvers. Previous
work on reusing recurrent constraints achieves a significant, but still limited reuse due
to some intrinsic limitations of the approaches.

In this thesis, we propose ReCal, REusing-Constraint-proofs-in-symbolic-AnaLysis, a
novel approach for reusing proofs by exploiting the relations among constraints. ReCal
improves over the state-of-the-art proof reusing techniques by both re-defining the con-
cept of equivalence of constraint of the QF_LIA logic, and proposing a parallel Canoni-
calisation algorithm to effective identify reusable proofs during symbolic analysis. Proof
reusing approaches propose some simplifications and normalisations to quickly search
for equivalent constraints. Simplifications miss many reuse opportunities, while current
normalisation approaches results in significant overhead, thus reducing the effective-
ness of proof reuse, especially for constraints that consist of many clauses and variables.

With ReCal, we propose a new canonical form that identifies a larger set of reusable
proofs than previous approaches, and a parallel framework ReCal-gpu, which signif-
icantly speeds up the constraint solving processes. We report the results of a set of
experiments on a large set of constraints generated from a variety of real-world pro-
grams by symbolic execution tools. The empirical results indicate that ReCal can both
effectively identify reusable proofs and reuse them to solve more than 90% of con-
straints during symbolic execution and significantly reduce to constraint solving time

71

72

than calling solver directly, largely improving over state-of-the-art approaches.
The current ReCal approach focuses on conjunctive QF_LIA constraints, and we

mainly investigated the application of reusing constraint proofs during symbolic execu-
tion. Thus, an interesting future work of this PhD dissertation would be to extend the
reusing approach to other logics and theories, such as, non-linear logics, logics based
on real number arithmetics, and logics that include operators other than conjunction.
Moreover, given that this PhD work has demonstrated the effectiveness of improving
symbolic execution with proofs reusing capabilities, another interesting research direc-
tion would be to investigate the improvement of proof reusing in other static analysis
techniques with heavy constraint solving requirements.

Contributions

The main contribution of this thesis is a parallel proof reusing approach that exploits
relations of constraints to mitigate the bottleneck of constraint solving in symbolic anal-
ysis. In details, this thesis contributes to the state of the art in reusing proofs during
symbolic analysis as follows:

Canonical form: We define a new concept of equivalence of constraints, and propose
a Canonicalisation algorithm to generate the canonical form for efficiently search-
ing for equivalent constraints with reusable proofs. The canonical form fulfils two
purposes: deciding constraint equivalence, and serving as indices for fast look-up
over a large repository of constraints.

Logical implication rules: We extend the current existing normalisation tactics of con-
straints by introducing logical simplification rules to eliminate redundant clauses
and check conflicting clauses, thus further simplifying constraints by self-implication.
We propose proof reusing by logical implication, which goes beyond reusing
proofs from equivalent constraints. By introducing logical implication rules, Re-
Cal expand the scope of reusable proofs.

Parallel GPU computing for proof reusing: We explore the feasibility of applying par-
allel computing in proof reusing approaches, and propose the first parallel GPU
deployment of ReCal.

Prototype implementation: We implement both the sequential and the parallel frame-
work of the ReCal approach. We implement the parallel framework on CUDA plat-
form, which invokes GPU processors for general purpose computation requiring
GPU computing resources, and use the prototypes to experimentally evaluate the
effectiveness and efficiency of different versions of ReCal.

Evaluation of the technique: We evaluate the ReCal approaches on eight hundred
thousand constraints generated by symbolic analysis on real-world programs,

73

and compare the performance of ReCal to cutting-edge solver and state-of-the-
art approaches. Our results indicates that, the ReCal approach is very effective
and efficient in identifying reusing proofs, it identifies more reusable proofs in
most of cases than the existing approaches, and outperforms all of them in term
of performance. ReCal speeds up the process of constraint solving by an order
of magnitude, thus confirming the feasibility of reusing proofs to improve the
performance of symbolic analysis.

74

Appendices

75

Appendix A

Proofs and analysis of the
Canonicalisation algorithm

This chapter demonstrates that Canonicalisation converges to the canonical form stated
in Definition 4.1.

A.1 Termination of Canonicalisation

Definition A.1. Let LC∧ be the set of all conjunctive linear formulas.

Definition A.2. Let permute(C) ∈ 2LC∧ denote the set of formulas that can be obtained
by permuting the clauses and the terms of a formula C ∈ LC∧.

Definition A.3. Let≡ be the equivalence relation over LC∧ such that, ∀C1, C2 ∈ LC∧ C1 ≡
C2 ⇐⇒ C1 ∈ permute(C2).

It is easy to verify that the ≡ relation is indeed reflexive, symmetric, and transitive.

Definition A.4. Let Canonicalisation : LC∧ → LC∧ be the algorithm defined in Algo-
rithm 1 in Chapter 4.

To prove the correctness of the Canonicalisation we first prove two simple lemmas.

Lemma A.5. The algorithm Canonicalisation terminates for any input formula.

Proof. To prove that the Canonicalisation algorithm terminates for any given input for-
mula it is sufficient to prove that each phase terminates independently from its input
(i.e., a formula for the preliminary phase, a matrix for all the other phases).

Convergence of the preliminary phase: The transformation of any given conjunctive
formula into a matrix is a deterministic always terminating process. Each inequal-
ity is transformed in at most 2 rows of the resulting matrix, since all the iterations
required to achieve this transformations can be executed with bounded for loops
this preliminary phase is always terminating.

77

78 A.1 Termination of Canonicalisation

Convergence of phase 1: phase 1 sorts the rows of the input matrix once (according
to the comparisons and free coefficients contained in the last two columns). The
sorting of a set of elements is an always terminating process, thus this phase is
always terminating.

Convergence of phase 2: phase 2 sorts the rows and columns of the matrix once (ac-
cording to the terms contained in the terms sub-matrix). The same considerations
on the previous phase hold, thus this phase is always terminating.

Convergence of phase 3: phase 3 iterates on the matrix reordering the rows and columns
that have not being assigned a stable position yet according to the elements fixed
during the previous phases. This phases is repeated until a fixpoint is reached and
is thus potentially non-determinating. Notice that whenever a row or a column
is moved during any iteration it will never move again on the next iterations;
in fact, a necessary condition to move a given row (or column) is that the fixed
elements on that row (or column) are strictly smaller or larger than others in an-
other row (or column) thus enforcing a stable position for that row (or column).
Because of this at any iteration there are only two possibilities:

1. at least one row or column (so far not in a stable position) is assigned a
stable position. But then the total number of rows and columns yet to be
assigned stable positions diminishes. Since this number is finite (roughly
accounting to the sum of the number of rows and columns of the matrix)
it will eventually turn to zero terminating this phase (since the matrix con-
verged, i.e., all rows and columns are in stable positions).

2. No row or column is assigned a stable position. But then no row nor column
moved with respect to the previous phase thus producing a fix point and
terminating the algorithm.

In other words, at any iteration either a fix point is reached or new rows and/or
columns are assigned a stable position. Since there are a finite number of rows
and columns, after a finite number of steps all the rows and columns of the ma-
trix are assigned a stable position and the phase terminates (since the matrix
converged).

Convergence of phase 4: In the last phase the sub-matrix composed of the elements
that have not being assigned stable positions in the past is considered. Since the
original matrix is finite, this is a finite rectangular matrix. During this phase all
possible permutations of the rows and columns of this sub-matrix are considered.
If the extracted sub-matrix has n rows and m columns this accounts to consider
n!×m! permutations. Although potentially huge this number is finite. Phase 4
considers all this permutations one by one, applies them to the extracted sub-
matrix and identifies the one that produces the maximum matrix (according to

79 A.2 Correctness of Canonicalisation

the lexicographical order of the matrices flattened as lists of numbers). The max-
imal permutation is then mapped back and applied to the original matrix once.
Since the algorithm checks a finite (even if potentially huge) number of permuta-
tions and since the comparison of a pairs of permuted sub-matrices can be easily
performed in linear time this phase always terminates.

A.2 Correctness of Canonicalisation

In this section, we prove the correctness of the Canonicalisation algorithm. First we
proof that the canonical form computed by Canonicalisation is a permutation of the
target constraint.

Lemma A.6. ∀C ∈ LC∧, Canonicalisation(C) ∈ permute(C).
That is, the algorithm Canonicalisation computes a permutation of the input formula.

Proof. The proof directly follows from the observation that each step of the algorithm
produces a permutation of the matrix that represents the input constraint. Thus the
lemma is trivially true by the construction of the algorithm.

Now we prove the correctness of Canonicalisation.

Theorem A.7. For any given pair of formulas C1, C2 ∈ LC∧ it holds that C1 ≡ C2 ⇐⇒
Canonicalisation(C1) = Canonicalisation(C2).

Proof. We first prove the right-to-left implication of the theorem. That is, ∀C1, C2 ∈
LC∧ Canonicalisation(C1) = Canonicalisation(C2) =⇒ C1 ≡ C2.

This can be proved by combining Lemma A.6 (Canonicalisation permutes the input
constraints) and the definition of the equivalence relation ≡ (Definition A.3). In fact:

• Canonicalisation(C1) ∈ permute(C1) =⇒ C1 ≡ Canonicalisation(C1);

• Canonicalisation(C2) ∈ permute(C2) =⇒ C2 ≡ Canonicalisation(C2);

• C1 ≡ Canonicalisation(C1) = Canonicalisation(C2)≡ C2;

and thus C1 ≡ C2;
We now prove the left-to-right implication of the theorem. That is, ∀C1, C2 ∈

LC∧ C1 ≡ C2 =⇒ Canonicalisation(C1) = Canonicalisation(C2).
First, since C1 and C2 are equivalent, that is C1 ∈ permute(C2), there exists a

bijective correspondence between the clauses and the variables of the two formulas
that are in the same positions after a permutation that makes C2 equal to C1. Let us
consider this bijection and denote it as ∼ cor respondence.

80 A.2 Correctness of Canonicalisation

Next, we demonstrate that the four phases of Canonicalisation yield the same deci-
sions on the relative order between any ∼corresponding pairs of clauses and variables
of C1 and C2, that is, the∼corresponding pairs of clauses (variables) have the same rel-
ative order or unknown relative order when considered in the scope of either formula.

Algorithm Canonicalisation – phase 1 The decisions on the relative order of the clauses
depend on the comparison operator and the constant term in the clauses; notice
that ∼corresponding clauses have the same comparison operator and the same
constant term.

Thus, if two given clauses in C1 have different comparison operators or different
constant terms they will be reordered by this phase, and their ∼corresponding
clauses in C2 will be reordered in the same way. Otherwise, both the clauses in
C1 and their ∼corresponding clauses in C2 will not be assigned any order.

Algorithm Canonicalisation – phase 2 The decisions on the relative order of the clauses
(variables) depend on the set of coefficients associated with each clause (vari-
able); notice that ∼corresponding clauses (variables) share the same sets of co-
efficients.

Thus, if two clauses (variables) of C1 result in either unknown order because they
are associated with identical sets of coefficients or in a specified order because the
sets of coefficients differ, then the two ∼corresponding clauses in C2 will result
in exactly the same unknown or specified order.

Algorithm Canonicalisation – phase 3 All iterations of the third phase take order de-
cisions based on the clauses and the variables with stable position after the first
two phases and the previous iterations. A clause or variable has a stable position
if its relative order is strictly specified with respect to all other clauses or vari-
ables, that is, its position will not change any further though the next steps of the
algorithm. We develop the proof by showing that the following statements hold:

1. At the beginning of phase 3, the clauses and the variables with stable position
in C1 ∼correspond to clauses and variables with stable position in C2.

2. Any iteration of phase 3 maintains that, after the iteration, the clauses and the
variables with stable position in C1 ∼correspond to clauses and variables with
stable position in C2.

3. Any iteration of phase 3 yields the same decisions on the relative order between
any ∼corresponding pairs of clauses and variables of C1 and C2.

The first statement provides the base case for an inductive proof of the second
statement that, in turn, is used in the proof of the third statement. The third state-
ment guarantees that, regardless of the number of iterations, phase 3 will yield
always the same decisions on the relative order between any ∼corresponding
pairs of clauses and variables of C1 and C2.

81 A.2 Correctness of Canonicalisation

Base of the induction: The first two phases of the algorithm guarantee the same
relative order of any ∼corresponding clauses and variables in both C1 and C2.
As a consequence, if after the first two phases a clause or a variable has a stable
position in C1, the ∼corresponding clause or variable of C2 must have stable
position too. This proves statement 1.

Inductive step: Let us consider that all clauses and variables with stable posi-
tion in C1 ∼correspond to clauses and variables with stable position in C2 at the
beginning of an iteration of phase 3. Next, we analyse the effect of the iteration
on the order of the clauses of C1 and C2. Let c1a be a clause in C1 and let c2a be
its ∼corresponding clause in C2, and let 〈c1

1a, c2
1a, ...〉 and 〈c1

2a, c2
2a, ...〉 be the vec-

tors of the coefficients of the variables with stable position in these clauses. We
observe that, since the variables with stable positions are in ∼ cor respondence
between C1 and C2, the coefficients c1

1a, c2
1a, ... and in c1

2a, c2
2a, ... stand at the cross

between the ∼corresponding clauses c1a and c2a and the ∼corresponding vari-
ables in the two constraints. This implies that c1

1a will be necessarily equal to
c1
2a, c2

1a will be necessarily equal to c2
2a, and so forth. Thus, in the current itera-

tion, the ∼corresponding clauses of C1 and C2 will be ordered based on identical
vectors of coefficients and will result in the same relative order within the two
constraints. All above considerations can be repeated with reference to the or-
dering of the variables in the constraints. This proves statement 2 by induction
because the statement holds at the beginning of the first instruction (statement 1)
and continues to hold after each iteration, and proves that statement 3 holds for
any iteration of phase 3.

Algorithm Canonicalisation – phase 4 The fourth phase orders the clauses and the
variables of C1 and C2 with yet unstable positions after the first three phases.
The algorithm consists of enumerating the set of the possible permutations of
these clauses and variables, and selecting the maximum element after ordering
the set lexicographically. We develop the proof by observing that:

1. Enumerating the possible permutations of the clauses and the variables with
yet unstable positions always produces a finite set of constraints, since the possi-
ble permutations of a finite set of clauses (variables) are a finite number.

2. Enumerating the possible permutations of the clauses and the variables with
yet unstable positions out of C1 and C2 always results in exactly the same set of
constraints. This descends from the assumption that C1 and C2 are ≡-equivalent,
and thus the transitivity of the relation guarantees that any permutation of C1 is
equivalent to C2 and the vice versa.

3. Since C1 and C2 share the same set of possible permutations, the maximum
element of the set correspond to the same constraint for both C1 and C2.

In the end, if the algorithm converges in any of the first three phases, then it guar-

82 A.2 Correctness of Canonicalisation

antees that all clauses and variables have been ordered to stable relative positions with
complete ∼ cor respondence between C1 and C2, and thus, since the crosses between
∼corresponding clauses and variables correspond to equal coefficients in C1 and C2,
we have that Canonicalisation(C1) = Canonicalisation(C2). Otherwise the algorithm
converges in the fourth phase that always yields exactly the same constraint for both
C1 and C2.

Appendix B

Proofs of the parallel canonicalisation
algorithms

This chapter demonstrates the formal proof of the relation of the Canonical isat ionpar

algorithm described in Algorithm 3 in Chapter 5 regarding to the sequential version
Canonicalisation presented in Algorithm 1 in Chapter 4, refered as sequential-canonicalise.
Specifically, we prove that algorithm Canonical isat ionpar subsumes sequential-canonicalise
up to phase 3.

Theorem B.1. Algorithm Canonical isat ionpar subsumes sequential-canonicalise up
to phase 3: Given a constraint C, by applying sequential-canonicalise up to phase 3, if
the order a row (or column without losing the generality) k is stable, then by applying the
algorithm Canonical isat ionpar , the hashcode of row k is distinct from other rows.

To prove this theorem, we separately discuss the completeness of the algorithm
Canonical isat ionpar in comparison with to sequential-canonicalise phase 1-2 and phase
3.

Lemma B.2. Phase 1-2 on position-free values: Given a constraint C, by applying ReCal
Canonicalisation phase 1-2, if the order a row k is stable, then by applying algorithm
Canonical isat ionpar , the hashcode generated after the 1st iteration of row k is distinct
from other rows.

Proof. ReCal Canonicalisation phase 1 is to reorder the matrix by constant terms and
comparison operators, and the phase 2 is to reorder by the position-free coefficient
values of rows or columns. If the order row k is decidable after phase 1-2, then row
k consist of a different set of coefficient values than other rows. Applying algorithm
Canonical isat ionpar , in the 1st iteration, the hashcode hrow1

k computed in line 21−22
(now hcols are all initialised as 0) is to hash the set of (coe f f icient, 0) pairs. Since
row k consists of different coefficient values than other rows, its hashcode hrow[k]1 is
distinct.

83

84

Lemma B.3. Phase 3 of iteration: Given a constraint C, by applying ReCal Canonicalisa-
tion phase 3, if the order a row k is stable, then by applying algorithm Canonical isat ionpar ,
the hashcode generated of row k is distinct from other rows.

We provide the proof of the lemma by induction.

Proposition B.4. Base of the induction: Lemma B.3 holds after the 1nd iteration of
Canonicalisation phase 3. I.e., given a constraint C, by applying ReCal Canonicalisation
phase 3 iteration 1, if the order a row k is stable, then by applying algorithm 3, the
hashcode after iteration 2 generated of row k is distinct from other rows.

Proof. Canonicalisation phase 3 decides the new order of rows based on the lexico-
graphic order of the partial stable values. If row k becomes stable after the phase 3 itera-
tion 1, let Mki1 , Mki2 , .., Mkit

be the sequence of partial stable values in row k, then there
is no such another row j consists of the same sequence in the same position (otherwise
the order of row k is undecided). By definition, the order of the corresponding columns
i1, i2, ..it are decided after ReCal phase 2, and based on lemma B.2 the hashcode of
columns i1, i2, ..it computed by the 1st iteration of algorithm Canonical isat ionpar are
distinct. Thus, applying algorithm Canonical isat ionpar iteration 2, the set of pairs to
compute hrows[k]2 contains unique combination of (Mki1 , hcols[i1]1),(Mki2 , hcols[i2]1),
...,(Mkit

, hcols[it]1), then hrows[k]2 is distinct after algorithm Canonical isat ionpar it-
eration 2.

Proposition B.5. Inductive step: if Lemma B.3 holds after the n-th iteration, the Lemma B.3
also holds after n+ 1-th iteration.

The proof of the inductive step is similar to the base step.

Proof. Suppose after Canonicalisation phase 3, iteration n − 1-th , if the order of a
row (or column) j is stable, applying n iteration of algorithm Canonical isat ionpar

on the same constraint matrix, the hashcode of corresponding rows are distinct. As-
sume the order of row k become stable in Canonicalisation phase 3, iteration n-th, let
Mki1 , Mki2 , .., Mkit

be the sequence of partial stable values in row k, then there is no such
another row j consist the same sequence in the same position (otherwise the order of
row k is undecided). By definition, the order of the corresponding columns i1, i2, ..it are
decided after Canonicalisation phase 3, iteration n−1-th, and the hashcode of columns
i1, i2, ..it computed by the n-th iteration of algorithm Canonical isat ionpar are distinct.
Thus, applying algorithm Canonical isat ionpar iteration n+1, the set of pairs to com-
pute hrows[k]n+1s contains unique combination of (Mki1 , hcols[i1]n),(Mki2 , hcols[i2]n),
...,(Mkit

, hcols[it]n), then hrows[k]n+1 is distinct after algorithm Canonical isat ionpar

iteration n+ 1.

So far we finish the proof of Theorem B.1. In practical setting, we apply sequential-
canonicalise up to phase 3 to generate canonical form for proof reusing (the enumera-
tion phase 4 is very costly). Theorem B.1 suggests that the canonical forms generated by

85

Canonical isat ionpar have as effective as the ones generated by sequential-canonicalise
in finding equivalent constraints.

86

Bibliography

[ABC+15] Andrea Aquino, Francesco A. Bianchi, Meixian Chen, Giovanni Denaro, and
Mauro Pezzè. Reusing constraint proofs in program analysis. In Proceedings
of the International Symposium on Software Testing and Analysis, ISSTA ’15,
pages 305–315. ACM, 2015.

[ADP17] Andrea Aquino, Giovanni Denaro, and Mauro Pezzè. Heuristically match-
ing solution spaces of arithmetic formulas to efficiently reuse solutions. In
Proceedings of the International Conference on Software Engineering, ICSE
’17, pages 427–437. IEEE Computer Society, 2017.

[BCD+11] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, De-
jan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In
International Conference on Computer Aided Verification, pages 171–177.
Springer, 2011.

[BDH03] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet:
The google cluster architecture. Micro, IEEE, 23(2):22–28, 2003.

[BDHJ14] Anton Belov, Daniel Diepold, Marijn JH Heule, and Matti Järvisalo. Pro-
ceedings of sat competition 2014. 2014.

[BDP13] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. Enhancing symbolic
execution with built-in term rewriting and constrained lazy initialization.
In Proceedings of the European Software Engineering Conference held jointly
with the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE ’13, pages 411–421. ACM, 2013.

[BDP16] Pietro Braione, Giovanni Denaro, and Mauro Pezzè. JBSE: A symbolic ex-
ecutor for java programs with complex heap inputs. In Proceedings of the
European Software Engineering Conference held jointly with the ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, ES-
EC/FSE ’16, pages 1018–1022. ACM, 2016.

87

88 Bibliography

[BE13] Suhabe Bugrara and Dawson Engler. Redundant state detection for dy-
namic symbolic execution. In Proceedings of the 2013 USENIX conference on
Annual Technical Conference, pages 199–212. USENIX Association, 2013.

[BFT16] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

[BHJ17a] Tomáš Balyo, Marijn JH Heule, and Matti Järvisalo. Sat competition 2016:
Recent developments. In Association for the Advancement of Artificial Intel-
ligence, pages 5061–5063, 2017.

[BHJ+17b] Tomáš Balyo, Marijn JH Heule, Matti Järvisalo, et al. Proceedings of sat
competition 2017. 2017.

[BHvM09] Armin Biere, Marijn Heule, and Hans van Maaren. Handbook of satisfiabil-
ity, volume 185. IOS press, 2009.

[BS08] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test gener-
ation. In Proceedings of the International Conference on Automated Software
Engineering, pages 443–446. IEEE Computer Society, 2008.

[CARB12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley.
Unleashing mayhem on binary code. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 380–394. IEEE, 2012.

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the Symposium on Operating Systems Design and Implemen-
tation, OSDI ’08, pages 209–224. USENIX Association, 2008.

[CDW16] David R Cok, David Déharbe, and Tjark Weber. The 2014 smt competition.
Journal on Satisfiability, Boolean Modeling and Computation, 9:207–242,
2016.

[CGP+06] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Daw-
son R. Engler. Exe: Automatically generating inputs of death. CCS ’06,
pages 322–335. ACM, 2006.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The mathsat5 smt solver. In Proceedings of the Interna-
tional Conference on Tools and Algorithms for Construction and Analysis of
Systems, pages 93–107. Springer, 2013.

[CKC12] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The s2e plat-
form: Design, implementation, and applications. ACM Transactions on
Computer Systems (TOCS), 30(1):2, 2012.

www.SMT-LIB.org

89 Bibliography

[Cla76] Lori A. Clarke. A program testing system. In Proceedings of the 1976 Annual
Conference, ACM ’76, pages 488–491. ACM, 1976.

[Com79] Douglas Comer. Ubiquitous b-tree. ACM Computer Surveys, 11(2):121–
137, 1979.

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:
Three decades later. Communications of the ACM, 56(2):82–90, February
2013.

[CTS08] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: Dy-
namic symbolic execution for invariant inference. In Proceedings of the In-
ternational Conference on Software Engineering, ICSE ’08, pages 281–290.
ACM, 2008.

[DA14] Peter Dinges and Gul Agha. Solving complex path conditions through
heuristic search on induced polytopes. In Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’14,
pages 425–436. ACM, 2014.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In Proceedings of the International Conference on Tools and Algorithms for
Construction and Analysis of Systems, TACAS/ETAPS ’08, pages 337–340.
Springer, 2008.

[Dut14] Bruno Dutertre. Yices 2.2. In Proceedings of the International Conference on
Computer Aided Verification, CAV ’2014, pages 737–744. Springer, 2014.

[EO11] Ikpeme Erete and Alessandro Orso. Optimizing constraint solving to better
support symbolic execution. In Proceedings of the International Conference
on Software Testing, Verification and Validation, ICST ’11, pages 310–315.
IEEE Computer Society, 2011.

[GAC12] Sicun Gao, Jeremy Avigad, and Edmund M Clarke. Delta-decidability over
the reals. In Logic in Computer Science (LICS), 2012 27th Annual IEEE
Symposium on, pages 305–314. IEEE, 2012.

[GLM12] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage: Whitebox
fuzzing for security testing. ACM Queue, 10(1):20–27, 2012.

[JGY15] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. Enhancing reuse of constraint
solutions to improve symbolic execution. In Proceedings of the International
Symposium on Software Testing and Analysis, ISSTA ’15, pages 177–187.
ACM, 2015.

90 Bibliography

[Kin76] James C King. Symbolic execution and program testing. Communications
of the ACM, 19(7):385–394, 1976.

[KST12] Johannes Kobler, Uwe Schöning, and Jacobo Torán. The graph isomor-
phism problem: its structural complexity. Springer Science & Business Me-
dia, 2012.

[LLQ+16] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin Chen,
and Xuandong Li. Symbolic execution of complex program driven by
machine learning based constraint solving. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
pages 554–559. ACM, 2016.

[Mei14] Chen Meixian. Reusing constraint proofs for scalable program analysis. In
Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 449–452. ACM, 2014.

[MHL+13] Antonio Morgado, Federico Heras, Mark Liffiton, Jordi Planes, and Joao
Marques-Silva. Iterative and core-guided maxsat solving: A survey and
assessment. Constraints, 18(4):478–534, 2013.

[MPS17] Leonardo Mariani, Mauro Pezzè, and Mauro Santoro. Gk-tail+ an efficient
approach to learn software models. IEEE Transactions on Software Engi-
neering, 43(8):715–738, 2017.

[PC13] Hristina Palikareva and Cristian Cadar. Multi-solver support in symbolic
execution. In Proceedings of the International Conference on Computer Aided
Verification, CAV ’13, pages 53–68. Springer, 2013.

[PY07] Mauro Pezzè and Michal Young. Software Testing and Analysis: Process,
Principles and Techniques. Wiley, 2007.

[PYRK11] Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Di-
rected incremental symbolic execution. In Proceedings of the Conference on
Programming Language Design and Implementation, PLDI ’11, pages 504–
515. ACM, 2011.

[Red21] Redis. Redis NoSQL database. http://redis.io, Accessed: 2017-12-21.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint
programming. Elsevier, 2006.

[SBdP11] Matheus Souza, Mateus Borges, Marcelo d’Amorim, and Corina S Păsăre-
anu. Coral: solving complex constraints for symbolic pathfinder. In NASA
Formal Methods, pages 359–374. Springer, 2011.

http://redis.io

91 Bibliography

[SK10] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional, 2010.

[TdH08] Nikolai Tillmann and Jonathan de Halleux. Pex: White box test generation
for .NET. In Proceedings of the International Conference on Tests and Proofs,
TAP ’08, pages 134–153. Springer, 2008.

[TSBB17] Julian Thomé, Lwin Khin Shar, Domenico Bianculli, and Lionel Briand.
Search-driven string constraint solving for vulnerability detection. In Soft-
ware Engineering (ICSE), 2017 IEEE/ACM 39th International Conference on,
pages 198–208. IEEE, 2017.

[VGD12] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. Green: Reduc-
ing, reusing and recycling constraints in program analysis. In Proceedings
of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE ’12, pages 1–11. ACM, 2012.

[YDS09] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and
query processing with optimized document ordering. In Proceedings of the
18th international conference on World wide web, pages 401–410. ACM,
2009.

[YPK12] Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. Memoized sym-
bolic execution. In Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA ’12, pages 144–154, 2012.

	Contents
	List of Figures
	List of Tables
	Introduction
	Research Hypothesis and Contributions
	Structure of the Dissertation

	Constraint Solving in Program Analysis
	Reducing the Impact of Constraint Solving
	Parallel Solvers
	External Optimisations
	Heuristics and Machine Learning
	Reducing Redundant States

	Reusing Proofs to Speed Up Symbolic Execution
	KLEE
	Green
	GreenTrie
	Utopia

	Reusing Proof in Symbolic Analysis
	Reference Logic
	Motivating Examples
	Reusing Proofs across Equivalent Constraints
	Reusing Proofs across Constraints Related by Implication
	Improving Proof Reusability by Logical Simplifications

	The ReCal Proof Caching and Reusing Framework
	Preprocessing
	Logical simplification
	Canonicalisation
	Efficient Retrieval of Reusable Proofs

	The Canonicalisation Algorithm
	The ReCal Canonical Form
	The Canonicalisation Algorithm
	Complexity of Computing the ReCal Canonical Form

	The GPU-based parallel approach to proof reusing
	Parallel Deployment of ReCal
	Parallel Logical Simplification
	Parallel Canonicalisation
	The Canonicalisationpar algorithm
	Executing Canonicalisationpar
	Computational Complexity of Canonicalisationpar

	CUDA ReCal-gpu implementation

	Evaluation
	ReCal Prototype(s)
	Experimental Setting and Design
	Experiment Results
	Effectiveness of ReCal
	Efficiency of ReCal
	Effectiveness of Canonicalisation

	Threads to Validity

	Conclusion
	Proofs and analysis of the Canonicalisation algorithm
	Termination of Canonicalisation
	Correctness of Canonicalisation

	Proofs of the parallel canonicalisation algorithms
	Bibliography

