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Abstract

The rise of worldwide Internet-scale services demands large distributed systems.
Indeed, when handling several millions of users, it is common to operate thou-
sands of servers spread across the globe. Here, replication plays a central role, as
it contributes to improve the user experience by hiding failures and by providing
acceptable latency. In this thesis, we claim that atomic multicast, with strong
and well-defined properties, is the appropriate abstraction to efficiently design
and implement globally scalable distributed systems.

Internet-scale services rely on data partitioning and replication to provide
scalable performance and high availability. Moreover, to reduce user-perceived
response times and tolerate disasters (i.e., the failure of a whole datacenter),
services are increasingly becoming geographically distributed. Data partitioning
and replication, combined with local and geographical distribution, introduce
daunting challenges, including the need to carefully order requests among repli-
cas and partitions. One way to tackle this problem is to use group communication
primitives that encapsulate order requirements.

While replication is a common technique used to design such reliable dis-
tributed systems, to cope with the requirements of modern cloud based “always-
on” applications, replication protocols must additionally allow for throughput
scalability and dynamic reconfiguration, that is, on-demand replacement or pro-
visioning of system resources. We propose a dynamic atomic multicast protocol
which fulfills these requirements. It allows to dynamically add and remove re-
sources to an online replicated state machine and to recover crashed processes.

Major efforts have been spent in recent years to improve the performance,
scalability and reliability of distributed systems. In order to hide the complex-
ity of designing distributed applications, many proposals provide efficient high-
level communication abstractions. Since the implementation of a production-
ready system based on this abstraction is still a major task, we further propose
to expose our protocol to developers in the form of distributed data structures.
B-trees for example, are commonly used in different kinds of applications, in-
cluding database indexes or file systems. Providing a distributed, fault-tolerant
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and scalable data structure would help developers to integrate their applications
in a distribution transparent manner.

This work describes how to build reliable and scalable distributed systems
based on atomic multicast and demonstrates their capabilities by an implemen-
tation of a distributed ordered map that supports dynamic re-partitioning and
fast recovery. To substantiate our claim, we ported an existing SQL database
atop of our distributed lock-free data structure.
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Chapter 1

Introduction

1.1 Problem statement

The rise of worldwide Internet-scale services demands large distributed systems.
In little less than two decades, we have witnessed the explosion of worldwide on-
line services (e.g., search engines, e-commerce, social networks). These systems
typically run on some cloud infrastructure, hosted by datacenters placed around
the world. Moreover, when handling millions of users located everywhere on the
planet, it is common for these services to operate thousands of servers scattered
across the globe. A major challenge for such services is to remain available and
responsive in spite of server failures, software updates and an ever-increasing
user base. Replication plays a key role here, by making it possible to hide fail-
ures and to provide acceptable response time.

While replication can potentially lead to highly available and scalable sys-
tems, it poses additional challenges. Indeed, keeping multiple replicas consis-
tent is a problem that has puzzled system designers for many decades. Although
much progress has been made in the design of consistent replicated systems [30]],
novel application requirements and environment conditions (e.g., very large user
base, geographical distribution) continue to defy designers. Some proposals have
responded to these new “challenges” by weakening the consistency guarantees
offered by services. Weak consistency is a natural way to handle the complex-
ity of building scalable systems, but it places the burden on the service users,
who must cope with non-intuitive service behavior. Dynamo [|40], for instance,
overcomes the implications of eventual consistency by letting the application
developers decide about the correct interpretation of the returned data. While
weak consistency is applicable in some cases, it can be hardly generalized, which
helps explain why we observe a recent trend back to strong consistency (e.g.,

1
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16, 13, 136, [106]).

In order to scale, services typically partition their state and strive to only
order requests that depend on each other, imposing a partial order on requests.
Sinfonia [6]] and S-DUR [[101[], for example, build a partial order by using a
two-phase commit-like protocol to guarantee that requests spanning common
partitions are processed in the same order at each partition. Spanner [36]] orders
requests within partitions using Paxos and across partitions using a protocol that
computes a request’s final timestamp from temporary timestamps proposed by
the involved partitions. This thesis claims that atomic multicast, with strong and
well-defined properties, is the appropriate abstraction to efficiently design and
implement globally scalable distributed systems.

Additionally, to cope with the requirements of modern cloud based “always-
on” applications, replication protocols must further be able to recover from crashes
under production workload, allow for elastic throughput scalability and dynamic
reconfiguration; that is, on-demand replacement or provisioning of system re-
sources. Nevertheless, existing atomic multicast protocols are static, in that cre-
ating new multicast groups at run time is not supported. Consequently, replicas
must subscribe to multicast groups at initialization, and subscriptions and un-
subscriptions can only be changed by stopping all replicas, redefining the sub-
scriptions, and restarting the system. This thesis presents Elastic Paxos, the first
dynamic atomic multicast protocol. Elastic Paxos allows replicas to dynamically
subscribe to and unsubscribe from atomic multicast groups.

Scalable state machine replication has been shown to be a useful technique
to solve the above challenges in building reliable distributed data stores [[14} 21]].
However, implementing a fully functional system, starting from the atomic mul-
ticast primitives, supporting required features like recovery or dynamic behav-
ior is a challenging and error-prone task. Providing higher-level abstractions
in the form of distributed data structures can hide this complexity from sys-
tem developers. For example, given a distributed B-tree, services like distributed
databases [|5]] or file systems [[75]] can be implemented in a distribution transpar-
ent manner. Therefore, another goal of this work is to implement a distributed
ordered map as a ready-to-use data structure.

Existing distributed data structures often rely on transactions or distributed
locking to allow concurrent access. Consequently, operations may abort, a be-
havior that must be handled by the application. We implemented a distributed
ordered map (DMap) that does not rely on transactions or locks for concurrency
control. Relying on atomic multicast, all partially ordered operations succeed
without ever aborting. Additionally, DMap is scalable, fault-tolerant and sup-
ports consistent long-running read operations on snapshots to allow background
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data analytics.

In this thesis, we contend that instead of building a partial order on requests
using an ad hoc protocol, intertwined with the application code, services have
much to gain from relying on a middleware to partially order requests, analo-
gously to how some libraries provide total order as a service (e.g., [[9]]). Moreover,
such a middleware must include support for service recovery and add dynamic
reconfiguration, both non trivial requirements which should be abstracted from
the application code. As a consequence, application developers should only be
exposed to strong consistent geo-distributed data structures as building blocks
instead of directly implementing low-level coordination protocols. The research
question is: How to achieve scalability, fault tolerance and consistency in practi-
cal usable dynamic distributed systems?

1.2 Research contributions

The research conducted within this dissertation provides three major contribu-
tions:

URingPaxos This work has contributed an efficient implementation of an atomic
multicast protocol [[I5]]. We have shown that atomic multicast is a suitable ab-
straction to build global and scalable systems [[14]]. First, we propose an atomic
multicast protocol capable of supporting at the same time scalability and strong
consistency in the context of large-scale online services. The Multi-Ring Paxos
protocol we describe in this work does not rely on network-level optimizations
(e.g., IP-multicast) and allows services to recover from a wide range of fail-
ures. Further, we introduce two novel techniques, latency compensation and
non-disruptive recovery, which improve Multi-Ring Paxos’s performance under
strenuous conditions. Second, we show how to design two services, MRP-Store
and DLog, atop URingPaxos and demonstrate the advantages of our proposed
approach. Third, we detail the implementation of URingPaxos, MRP-Store, and
DLog. Finally, we provide a performance assessment of all these components
while we set out to assess its performance under extreme conditions.

Elastic Paxos In today’s cloud environments, adding resources to and remov-
ing resources from an operational system without shutting it down is a desirable
feature. Atomic multicast is a suitable abstraction to build scalable distributed
systems, but atomic multicast, as discussed previously, relies on static subscrip-
tions of replicas to groups. Subscriptions are defined at initialization and can only
be changed by stopping all processes, redefining the subscriptions, and restart-
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ing the system. In this contribution, we motivate and define Elastic Paxos [[16]],
a dynamic atomic multicast protocol. We show how Elastic Paxos can be used
to dynamically subscribe replicas to a new multicast stream (i.e., a new parti-
tion), which let a replicated data store be repartitioned without service interrup-
tion. Further, we demonstrate how dynamic subscriptions offer an alternative
approach to reconfiguring Paxos.

DMap To overcome the complexity of implementing dynamic scalable replica-
tion protocols from scratch, we claim that developers can gain much from dis-
tributed data structures. DMap makes the following contributions. First, we
propose a lock-free distributed ordered map with strong consistency guarantees
and which implements the Java SortedMap interface. Second, we show how
DMap can be used to reliably distribute Java applications, like a transactional
database. Third, we detail the implementation of DMap and highlight the un-
derlying replication and ordering techniques. Finally, we provide a performance
assessment of all these components.

1.3 Document outline

The remainder of this thesis is structured as follows:

Chapter[2]introduces the system model and formalizes some definitions. Chap-
ter [3|demonstrate how atomic multicast can be used to build global and scalable
distributed systems and how recovery under full system load can be achieved.
Chapter 4| extends atomic multicast with dynamic behavior and evaluates a dis-
tributed key-value store in a highly dynamic cloud environment. Chapter [5| ex-
plains how a lock-free concurrent data structure can be distributed using the
developed algorithms and how an existing SQL database can be run atop of it.
Chapter [6] concludes this thesis. Appendix [A] details the implementation of the
source code library developed within this thesis.



Chapter 2

Background

This chapter will furnish some theoretical background information on topics re-
lated to the thesis and introduce the algorithms it relies upon.

2.1 System Model

We assume a distributed system composed of a set IT = {p;,p,,...} of inter-
connected processes that communicate through point-to-point message passing.
Processes may fail by crashing and subsequently recover, but do not experience
arbitrary behavior (i.e., no Byzantine failures).

Processes are either correct or faulty. A correct process is eventually opera-
tional “forever” and can reliably exchange messages with other correct processes.
This assumption is only needed to prove liveness properties about the system. In
practice, “forever” means long enough for processes to make some progress (e.g.,
terminate one instance of consensus).

The protocols in this thesis ensure safety under both asynchronous and syn-
chronous execution periods. The FLP impossibility result [48] states that under
asynchronous assumptions consensus cannot be both safe and live. To ensure
liveness, we assume the system is partially synchronous [44]: it is initially asyn-
chronous and eventually becomes synchronous. The time when the system be-
comes synchronous, called the Global Stabilization Time (GST) [[44], is unknown
to the processes. When the system behaves asynchronously (i.e., before GST),
there are no bounds on the time it takes for messages to be transmitted and ac-
tions to be executed; when the system behaves synchronously (i.e., after GST),
such bounds exist but are unknown by the processes.
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2.2 Consensus and Atomic Broadcast

A fundamental problem in distributed systems is reaching consensus among mul-
tiple processes [[47]]. In a crash failure model, consensus is defined as follows [[28]]:

Termination: Every correct process eventually decides some value.
Agreement: No two correct processes decide differently.
Uniform integrity: Every process decides at most once.

Uniform validity: If a process decides v, then v was proposed by some process.

The consensus problem is notoriously difficult to solve in the presence of pro-
cess failures and message losses. How can process a be sure that process b has de-
cided on the same value? In a synchronous system, in which we have the notion
of time, the first process can wait on a response or a timeout and proceed based
on whatever happens first. A crash of a process can be detected in a synchronous
system. But in an asynchronous system there is no notion of time. Tolerating
crashes while using asynchronous systems is exactly what we want in practice.
One reason to build distributed systems is that we can tolerate failures. Since
the synchronous model only shifts the problem and failures in the asynchronous
model are not acceptable to reach consensus, we have either to weaken the prob-
lem or strengthen the model assumptions. By weakening the problem, we could
for example tolerate at most k different values (k-agreement) [[108]. Another so-
lution to prevent processes in the asynchronous system from not making progress
is to use failure detectors [12]].

Chandra and Toueg [[28]] propose a class of algorithms which use failure detectors
to solve consensus. Further, they implement atomic broadcast. Atomic broadcast
has similar properties to consensus:

Validity: If a correct process AB-broadcasts a message m, then it eventually AB-
delivers m.

Agreement: If a process AB-delivers a message m, then all correct processes
eventually AB-deliver m.

Uniform integrity: For any message m, every process AB-delivers m at most
once, and only if m was previously AB-broadcast by sender(m).
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Total order: If two correct processes p and q deliver two messages m and m’,
then p delivers m before m’ if and only if g delivers m before m’.

In fact, it turns out that atomic broadcast can be reduced to consensus and
vice versa. To achieve consensus in a distributed system, we can simply atomic
broadcast a value. Since we have total order, processes can decide on the first
received value. On the other side, we can run a consensus protocol to decide
on multiple independent instances of consensus. This sequence of consensus in-
stances can be used to implement atomic broadcast [28]. One consequence of
the reduction of atomic broadcast to consensus is that atomic broadcast is not
solvable in an asynchronous system in the presence of process crashes.

Despite the difficulties to build consensus and atomic broadcast protocols, they
are very important in practice, since the communication paradigm they provide
is very powerful. For example, a lot of protocols require a leader, a master pro-
cess which coordinates the protocol. Once we have leader election, the protocol
implementations are trivial. In general, atomic broadcast can be used for many
kinds of distributed coordination services, like mutual exclusion.

Another example where atomic broadcast protocols are required is state ma-
chine replication [99]. In this form of replication, the commands are sent through
atomic broadcast to a set of replicas. Every replica executes the deterministic
command in the same order. This results in the same state at every replica (see

Section [2.7).

2.3 Paxos

Paxos is a distributed and failure-tolerant consensus protocol. It was proposed by
Lamport [[69],[70] and combines many properties which are required in practice.
While Paxos operates in an asynchronous model and over unreliable channels, it
can tolerate crash failures. By using stable storage, processes can recover from
failures. To guarantee progress, Paxos assumes a leader-election oracle.

The protocol distinguishes three roles: proposers, acceptors and learners. The
algorithm works as follows (Figure [2.1): In phase 1la a proposer sends a mes-
sage with a unique number to all acceptors. If the acceptors never saw a higher
number for this consensus instance, they confirm the reservation of the ballot
by sending back a phase 1b message. If the proposer receives at least a quorum
[(n+1)/2] of acceptor answers, where n is the number of acceptors, it can start
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Figure 2.1. Paxos Algorithm

with phase 2a. To get a quorum, a majority of acceptors must be alive. This
means that Paxos requires 2f + 1 acceptor nodes to tolerate up to f failures.

Phase 2a starts with a message, including the value to be proposed and the
ballot number, from the proposer to all acceptors. If the ballot in the message
corresponds to what the acceptors in phase 1 promised to accept, they will store
the value. All acceptors will propagate their decision with a phase 2b message.

This is of course the most trivial case, in which no acceptor crashes and mul-
tiple proposers do not try to reserve the same consensus instance. None of these
scenarios will affect the safety of the protocol. The later, however, could cause
liveness problems. A liveness problem can prevent the algorithm from making
progress, which would violate the termination property of consensus. Such a
scenario can happen when P, receives a phase 1b message but before the accep-
tors receive its phase 2a message, a second proposer P, already increased the
ballot with another 1a message. P; will re-try after a timeout while waiting for
a 2b message and again send a message 1a with increased ballot. With unlucky
timing, this can go on forever. Paxos solves the problem by assuming a leader
election oracle, which selects one proposer only to execute phase 1.

The above Paxos algorithm solves only consensus for one instance. To use it
as an atomic broadcast protocol, Paxos must be extended to run consensus for
different incrementing instances.

Paxos is not the only protocol that can be used to implement atomic broadcast.
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A good overview of other total order broadcast algorithms is provided in [41]].
This survey identifies five categories of protocols. The fixed sequencers, where
one process is elected for ordering, and the moving sequencer, which balances
the work by transferring the sequencer role across different processes. Further
there are privilege-based protocols where the senders can only propose values
when they hold a token. The category of communication history-based protocols
are like the privilege-based protocols coordinated by the senders. In the case
of communication history, all processes can send in parallel. The ordering is
achieved by using logical timestamps, like vector clocks [|67]].

2.4 Ring Paxos

While Paxos brings already a lot of interesting features in its original form, it
is not very efficient. Ring Paxos [82]] is a derivation of Paxos. It relies on the
same safety and liveness properties as Paxos, but optimizes throughput. The
new algorithm is based on a few observations in practice.

* The throughput of IP multicast scales constantly with the number of re-
ceivers, while IP unicast decreases proportional to the number of receivers.

* Minimizing packet loss by limiting the number of IP multicast senders to
one.

* Limiting the number of incoming connections per host to one is more effi-
cient than having many.

Concluding all of these observations, Ring Paxos has one coordinator which
is also an acceptor and the multicast sender. Proposers send the values to this co-
ordinator. Optimized phase 1 and phase 2 are executed in a ring of the acceptors.
The decisions are multicast to all nodes.

While Ring Paxos can reach almost nominal network bandwidth (e.g., 1 Gbit/s)
with a good average latency [I82]], it depends on IP multicast. In some envi-
ronments (e.g., wide-area networks), however, IP multicast is not available. To
overcome this shortcoming, multicast can be replaced by pipelined unicast con-
nections. Unicast pipelining almost achieves the same throughput as multicast,
and may introduce delays, a price which has to be payed to port Ring Paxos to
WAN links.

The Ring Paxos algorithm implemented in this thesis is based on unicast connec-
tions only. In this case, all nodes form a ring, not only the acceptors (Figure|2.2]).
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Figure 2.2. Unicast Ring Paxos Algorithm

Hereafter we call this protocol implementation URingPaxos. While Paxos uses
two different messages per phase (a/b), URingPaxos uses several. Phase 1 has
only one message with a vote count. Phase 2 has a message with a vote count and
additionally a separate decision message. A proposer starts sending a message
v to its ring successor. This node will store the value and forward the message
until it reaches the coordinator. Where the roles are placed in the ring is not
important for correctness, but it has an impact on the overall latency.

Once the coordinator receives a value, since it is also an acceptor, it starts
learning the value with a phase 2 message. Phase 1 is not shown in the figure
and can be done for multiple instances before a value is proposed.

When an acceptor receives a phase 2 message, it will increase the vote count
in the message and store the value. At this point, the value is not yet decided.
The decision message is issued by the last acceptor in the ring, if the vote count
is larger than or equal to the quorum. The decision messages are forwarded in
the ring until they reach the predecessor of the last acceptor.

Phase 2 and the decision message do not always include the full value. The
algorithm ensures that every value is only transmitted once in the ring. This is
possible because the value contains a unique identifier and an actual value. The
later can be removed when not needed before forwarding in the ring.

2.5 Atomic Multicast

Ring Paxos solves the shortcoming of Paxos by making it fast in terms of through-
put. However, the resulting protocol is not scalable. Scalability is the ability to
increase the overall performance by adding more resources. Ring Paxos is not
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scalable since all traffic must be submitted to all acceptors. Thus adding more
acceptors, doesn’t allow more messages to be ordered.

Atomic multicast [[55]] is an abstraction used by process groups to communicate.
It defines two communication primitives: multicast(y, m) and deliver(m). Client
processes invoke multicast(y, m) to submit requests, encoded in message m, to
the replica processes associated with stream y. Replicas subscribe to one or more
multicast streams, and deliver client requests with primitive deliver(m). Atomic
multicast is defined as follows:

Agreement: If a correct process delivers a message m, then every correct pro-
cess in y eventually delivers m.

Validity: If a correct process multicast a message m, then every correct process
in y eventually delivers m.

Integrity: For any message m, every correct process p deliver m at most once.

Partial order: If two correct processes p and g deliver two messages m and m’,
then p delivers m before m’ iff q delivers m before m’.

2.6 Multi-Ring Paxos

Multi-Ring Paxos [81]] is an atomic multicast algorithm designed for scalability.
The core idea behind it is simple. By using multiple rings, the single-ring per-
formance can be summed up. To guarantee total order, Multi-Ring Paxos uses a
deterministic merge function to combine the output of multiple rings.

The merge function can be a simple round-robin procedure. First take m val-
ues from the first ring, than m values from the second ring and so on (Figure[2.3)).
This assumes that all rings make progress at the same speed. If this is not the
case, then sooner or later, some of the learners in the faster rings will wait until
the slower rings deliver enough values. To overcome this problem, the coordina-
tor of every ring keeps track of its ring throughput. The maximum throughput of
the fastest ring in the system is a configuration parameter (A). Each coordinator
compares its actual throughput with A and issues enough skip messages every
time interval At to match A.

A skip message is a special null value, which means that the multi-ring learner
can skip one value since there are not enough values proposed in this ring. Sev-
eral skip messages are batched and learned in one single Paxos instance. This
keeps the overhead of skip messages minimal.
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Figure 2.3. Multi-Ring Paxos Algorithm

With this approach, it is also possible to combine rings with different through-
put. While one goal is to scale local disk writes, equally distribute ring through-
put; another goal is to combine different WAN links. In the case of WAN links,
fast local rings could be connected to slower but globally connected rings.

2.7 State Machine Replication

Sate machine replication, also called active replication, is a common approach to
building fault-tolerant systems [[99]]. Replicas, which can be seen as deterministic
state machines, receive and apply deterministic commands in total order [69]].
Their state therefore evolves identically and an ensemble of multiple replicas
form a multi-master data store.

With one exception, in this thesis we consider strongly consistent services
that ensure linearizability. A concurrent execution is linearizable if there is a
sequential way to reorder the client operations such that: (1) it respects the
real-time semantics of the objects, as determined in their sequential specs, and
(2) it respects the order of non-overlapping operations among all clients [59]].
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In Section we use a weaker consistency criteria: sequential consistency.
A concurrent execution is sequentially consistent if there is a sequential way to
reorder the client operations such that: (1) it respects the semantics of the ob-
jects, as determined in their sequential specs, and (2) it respects the order of
operations at the client that issued the operations [|68]].

State machine replication [[67, 99] simplifies the problem of implementing
highly available linearizable services by decomposing the ordering of requests
across replicas from the execution of requests at each replica. Requests can be
ordered using atomic broadcast and, as a consequence, service developers can
focus on the execution of requests, which is the aspect most closely related to the
service itself. State machine replication requires the execution of requests to be
deterministic, so that when provided with the same sequence of requests, every
replica will evolve through the same sequence of states and produce the same
results.

State machine replication, however, does not lead to services that can scale
throughput with the number of replicas. Increasing the number of replicas re-
sults in a service that tolerates more failures, but does not necessarily serve more
clients per time unit. Several systems resort to state partitioning (i.e., sharding)
to provide scalability (e.g., Calvin [[106], H-Store [64]). Scalable performance
and high availability can be obtained by partitioning the service state and repli-
cating each partition with state machine replication. To submit a request for
execution, the client atomically multicasts the request to the appropriate parti-
tions [21]]. Performance will scale as long as the state can be partitioned in such
a way that most commands are executed by a single partition only. Atomic mul-
ticast helps design highly available and scalable services that rely on the state
machine replication approach by ensuring proper ordering of both single- and
multi-partition requests.
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Chapter 3

Scalable and Reliable Services

3.1 Introduction

Internet-scale services are widely deployed today. These systems must deal with a
virtually unlimited user base, scale with high and often fast demand of resources,
and be always available. In addition to these challenges, many current services
have become geographically distributed. Geographical distribution helps reduce
user-perceived response times and increase availability in the presence of node
failures and datacenter disasters (i.e., the failure of an entire datacenter). In
these systems, data partitioning (also known as sharding) and replication play
key roles.

Data partitioning and replication can lead to highly scalable and available sys-
tems, however, they introduce daunting challenges. Handling partitioned and
replicated data has created a dichotomy in the design space of large-scale dis-
tributed systems. One approach, known as weak consistency, makes the effects
of data partitioning and replication visible to the application.

Weak consistency provides more relaxed guarantees and makes systems less
exposed to impossibility results [|48, [52]]. The tradeoff is that weak consistency
generally leads to more complex and less intuitive applications. The other ap-
proach, known as strong consistency, hides data partitioning and replication from
the application, simplifying application development. Many distributed systems
today ensure some level of strong consistency by totally ordering requests using
the Paxos algorithm [69]], or a variation thereof. For example, Chubby [25]] is
a Paxos-based distributed locking service at the heart of the Google File System
(GFS); Ceph [[111]] is a distributed file system that relies on Paxos to provide a
consistent cluster map to all participants; and Zookeeper [60] turns a Paxos-like
total order protocol into an easy-to-use interface to support group messaging and

15
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distributed locking.

Strong consistency requires ordering requests across the system in order to
provide applications with the illusion that state is neither partitioned nor repli-
cated. Different strategies have been proposed to order requests in a distributed
system, which can be divided into two broad categories: those that impose a
total order on requests and those that partially order requests.

Reliably delivering requests in total and partial order has been encapsulated
by atomic broadcast and atomic multicast, respectively [57]]. We extend Multi-
Ring Paxos, a scalable atomic multicast protocol introduced in [|81]], to (a) cope
with large-scale environments and to (b) allow services to recover from a wide
range of failures (e.g., the failures of all replicas). Addressing these aspects re-
quired a redesign of Multi-Ring Paxos and a new library called URingPaxos: Some
large-scale environments (e.g., public datacenters, wide-area networks) do not
allow network-level optimizations (e.g., IP-multicast [[81]]) that can significantly
boost bandwidth. Recovering from failures in URingPaxos is challenging because
it must account for the fact that replicas may not all have the same state. Thus,
a replica cannot recover by installing any other replica’s image.

We developed the URingPaxos library and two services based on it: MRP-
Store, a key-value store, and DLog, a distributed log. These services are at the
core of many internet-scale applications. In both cases, we could show that the
challenge of designing and implementing highly available and scalable services
can be simplified if these services rely on atomic multicast. Our performance
evaluation assesses the behavior of URingPaxos under various conditions and
shows that MRP-Store and DLog can scale in different scenarios. We also illus-
trate the behavior of MRP-Store when servers recover from failures.

This chapter makes the following contributions. First, we propose an atomic
multicast protocol capable of supporting at the same time scalability and strong
consistency in large-scale environments. Intuitively, URingPaxos composes mul-
tiple instances of Ring Paxos to provide efficient message ordering. The URing-
Paxos protocol we describe in this chapter does not rely on network-level opti-
mizations (e.g., IP-multicast) and allows services to recover from a wide range of
failures. Further, we introduce two novel techniques, latency compensation and
non-disruptive recovery, which improve URingPaxos’s performance under stren-
uous conditions. Second, we show how to design two services, MRP-Store and
DLog, atop URingPaxos and demonstrate the advantages of our proposed ap-
proach. Third, we detail the implementation of URingPaxos, MRP-Store, and
DLog. Finally, we provide a performance assessment of all these components
while we set out to assess their performance under extreme conditions. Our
performance assessment was guided by our desire to answer the following ques-
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tions.

* Can URingPaxos deliver performance that matches high-end networks (i.e.,
10 Gbps)?

* How does a recovering replica impact the performance of operational repli-
cas computing at peak load?

* URingPaxos ensures high performance despite imbalanced load in com-
bined rings with a skip mechanism. Can URingPaxos’s skip mechanism
handle highly skewed traffic?

* How many combined rings in a learner are “too many”?

* Can URingPaxos deliver usable performance when deployed around the
globe and subject to disasters?

3.2 Why Atomic Multicast

Two key requirements for current online services are (1) the immunity to a wide
range of failures and (2) the ability to serve an increasing number of user re-
quests. The first requirement is usually fulfilled through replication within and
across datacenters, possibly located in different geographical areas.

The second requirement is satisfied through scalability, which can be “hori-
zontal” or “vertical”. Horizontal scalability (often simply scalability) consists in
adding more servers to cope with load increases, whereas vertical scalability con-
sists in adding more resources (e.g., processors, disks) to a single server. Hori-
zontal scalability boils down to partitioning the state of the replicated service and
assigning partitions (i.e., so-called shards) to the aforementioned geographically
distributed servers.

Consistency vs. scalability. The partition-and-replicate approach raises a chal-
lenging concern: How to preserve service consistency in the presence of requests
spanning multiple partitions, each partition located in a separate data center, in
particular when failures occur? When addressing this issue, middleware solu-
tions basically differ in how they prioritize consistency vs. scalability, depending
on the semantic requirements of the services they support. That is, while some
services choose to relax consistency in favor of scalability and low latency, others
choose to tolerate higher latency, possibly sacrificing availability (or at least its
perception thereof by end-users), in the interest of service integrity.
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Prioritizing scalability. TAO, Facebook’s distributed data store [24]] is an exam-
ple of a middleware solution that prioritizes scalability over consistency: with
TAO, strong consistency is ensured within partitions and a form of eventual con-
sistency is implemented across partitions. This implies that concurrent requests
accessing multiple partitions may lead to inconsistencies in Facebook’s social
graph. To lower the chance of potential conflicts, data access patterns can be
considered when partitioning data (e.g., entries often accessed together can be
located in the same partition). Unfortunately, such optimizations are only pos-
sible if knowledge about data usage is known a priori, which is often not the
case.

Some middleware solutions, such as S-DUR [[101]] and Sinfonia [6], rely on
two-phase commit [[17] to provide strong consistency across partitions. Scat-
ter [53]] on the other hand prohibits cross-partition requests and uses a two-phase
commit protocol to merge commonly accessed data into the same partition. A
common issue with storage systems that rely on atomic commitment is that re-
quests spanning multiple partitions (e.g., cross-partition transactions) are not
totally ordered and can thus invalidate each other, leading to multiple aborts.
For example, assume objects x and y in partitions p, and p,, respectively, and
two transactions T; and T, where T, reads x and updates the value of y, and T,
reads y and updates the value of x. If not ordered, both transactions will have
to abort to ensure strong consistency (i.e., serializability).

Prioritizing consistency. When it comes to prioritizing consistency, some pro-
posals totally order requests before their execution, as in state machine replica-
tion [99]], or execute requests first and then totally order the validation of their
execution, as in deferred update replication [92]]. (With state machine replica-
tion requests typically execute sequentially [l, with deferred update replication
requests can execute concurrently.) Coming back to our example of conflict-
ing transactions T; and T,, while approaches based on two-phase commit lead
both transactions to abort, with deferred update replication only one transaction
aborts [91]], and with state machine replication both transactions commit. Many
other solutions based on total order exist, such as Spanner [[36] and Calvin [[106].

The Isis toolkit [[22]] and later Transis [[10] pioneered the use of totally or-
dered group communication at the middleware level. With Isis, total order is
enforced at two levels: first, a consistent sequence of views listing the replicas
considered alive is atomically delivered to each replica; then, messages can be
totally ordered within each view, using an atomic broadcast primitive. In the

!Some proposals exploit application semantics to allow concurrent execution of commands in
state machine replication (e.g., [38} 66} [79] [80]]).
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same vein, many middleware solutions rely on atomic broadcast as their basic
communication primitive to guarantee total order.

The best of both worlds. We argue that atomic multicast is the right com-
munication abstraction when it comes to combining consistency and scalability.
Indeed, atomic broadcast implies that all replicas are in the same group and
must thus receive each and every request, regardless its actual content, which
makes atomic broadcast an inefficient communication primitive when data is par-
titioned and possibly spread across datacenters. With atomic multicast, on the
contrary, each request is only sent to the replicas involved in the request, which is
more efficient when data is partitioned and possibly distributed across datacen-
ters. Compared to solutions that rely on atomic broadcast to ensure consistency
within each partition and an ad hoc protocol to handle cross-partition requests,
atomic multicast is more advantageous in that requests are ordered both within
and across partitions. As a matter of fact, most existing middleware solutions
rely on atomic broadcast only to ensure consistency within each partition, while
ensuring cross-partition consistency in an ad hoc manner, i.e., without relying on
a well-defined communication primitive.

Not only do we advocate atomic multicast as basic communication primitive
to build middleware services, but we also believe that the traditional group ad-
dressing semantics should be replaced with one that better fits the context of
large-scale Internet services. With traditional atomic multicast primitives (e.g.,
[42, 56, 95| (97, 98]), a client can address multiple non-intersecting groups of
servers, where each server can only belong to a single group. Rather, we ar-
gue that clients should address one group per multicast and each server should
be able to subscribe to any group it is interested in, i.e., any replication group
corresponding to the shards the server is currently replicating, similarly to what
IP multicast supports. As we shall see in Section this somehow “inverted”
group addressing semantics allows us to implement a scalable atomic multicast
protocol.

Atomic Multicast and the CAP theorem [52]]. Atomic multicast ensures con-
sistency, in the form of a well-defined order property, is partition-tolerant, in the
sense that partitions may happen, but violates availability: Aring isonly available
if a majority of acceptors remains in the same partition and can communicate. A
learner will be available as long as all the rings it subscribes to remain available.

Recovering from failures. The ability to safely recover after a failure is an
essential aspect of the failure immunity requirement of large-scale middleware
services. Furthermore, fast crash recovery is of practical importance when in-
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memory data structures are used to significantly decrease latency. Yet, similarly
to what is done to ensure cross-partition consistency, existing middleware solu-
tions tend to deal with recovery issues in an ad hoc manner, directly at the service
level, rather than factor out the solution to recovery issues in the underlying com-
munication layer. A different approach consists in relying on atomic multicast to
orchestrate checkpointing and coordinate checkpoints with the trimming of the
logs used by the ordering protocol. This is particularly important in the context
of atomic multicast since recovery in partitioned systems is considerably more
complex than recovery in single partition systems (see Section [3.4).

Architecture overview. Figure presents an overview of our middleware
solution based on atomic multicast, implemented by URingPaxos. Online services
can build on atomic multicast’s ordering and recovery properties, as described
in the next two sections. As suggested by this figure, atomic multicast naturally
supports state partitioning, an important characteristic of scalable services, and
no ad hoc protocol is needed to handle coordination among partitions.

Key-Value Store Service ] [ Distributed Log Service

(Multi-Ring Paxos)

Atomic Broadcast
(Ring Paxos)

‘ Atomic Multicast ’
[ Network ]

Figure 3.1. Architecture overview.

3.3 URingPaxos

Intuitively, URingPaxos turns an atomic broadcast protocol based on Ring Paxos
into an atomic multicast protocol. That is, URingPaxos is implemented as a col-
lection of coordinated Ring Paxos instances, or rings for short, such that a distinct
multicast group is assigned to each ring. Each ring in turn relies on a sequence
of consensus instances, implemented as an optimized version of Paxos.
URingPaxos is based on Multi-Ring Paxos which was introduced in [[81]. In
this section, we recall how URingPaxos works and describe a variation of Ring
Paxos that does not rely on network-level optimizations (e.g., IP-multicast) to
achieve high throughput. In the next section, we introduce URingPaxos’s recov-

ery.
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Ring Paxos. Similarly to Paxos, Ring Paxos [[82]] differentiates processes as pro-
posers, acceptors, and learners, where one of the acceptors is elected as the coor-
dinator. All processes in Ring Paxos communicate through a unidirectional ring
overlay, as illustrated in Figure (a). Using a ring topology for communication
enables a balanced use of networking resources and results in high performance.

Figure (b) illustrates the operations of an optimized Paxos, where Phase 1
is pre-executed for a collection of instances. When a proposer proposes a value
(i.e., the value is atomically broadcast), the value circulates along the ring until
it reaches the coordinator. The coordinator proposes the value in a Phase 2A
message and forwards it to its successor in the ring together with its own vote,
that is, a Phase 2B message. If an acceptor receives a Phase 2A/2B message and
agrees to vote for the proposed value, the acceptor updates Phase 2B with its vote
and sends the modified Phase 2A/2B message to the next process in the ring. If
a non-acceptor receives a Phase 2A/2B message, it simply forwards the message
as is to its successor. When the last acceptor in the ring receives a majority of
votes for a value in a Phase 2B message, it replaces the Phase 2B message by a
decision message and forwards the outcome to its successor. Values and decisions
stop circulating in the ring when all processes in the ring have received them. A
process learns a value once it receives the value and the decision that the value
can be learned (i.e., the value is then delivered). To optimize network and CPU
usage, different types of messages for several consensus instances (e.g., decision,
Phase 2A/2B) are often grouped into bigger packets before being forwarded.
Ring Paxos is oblivious to the relative position of processes in the ring. Ring
configuration and coordinator’s election are handled with a coordination system,
such as Zookeeper.
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Figure 3.2. (a) The various process roles in Ring Paxos disposed in one logical
ring; (b) an execution of a single instance of Ring Paxos; and (c) a configuration
of URingPaxos involving two rings (learners L; and L, deliver messages from
Rings 1 and 2, and leaner L, delivers messages from Ring 2 only).
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URingPaxos. With URingPaxos, each Learner can subscribe to as many rings as
it wants to and participates in coordinating multiple instances of Ring Paxos for
those rings. In Figure (c), we picture a deployment of URingPaxos with two
rings and three learners, where learners L1 and L2 subscribe to rings 1 and 2,
and learner L3 subscribes only to ring 2. The coordination between groups relies
on two techniques, deterministic merge and rate leveling, controlled with three
parameters: M, A, and A.

Initially, a proposer multicasts a value to group y by proposing the value to
the coordinator responsible for y. Then, Learners use a deterministic merge strat-
egy to guarantee atomic multicast’s ordered delivery property: Learners deliver
messages from rings they subscribe to in round-robin, following the order given
by the ring identifier. More precisely, a learner delivers messages decided in M
consensus instances from the first ring, then delivers messages decided in M con-
sensus instances from the second ring, and so on and then starts again with the
next M consensus instances from the first ring.

Since multicast groups may not be subject to the same load, with the de-
terministic merge strategy described above replicas would deliver messages at
the speed of the slowest multicast group, i.e., the group taking the longest time
to complete M consensus instances. To counter the effects of unbalanced load,
URingPaxos uses a rate leveling strategy whereby the coordinators of slow rings
periodically propose to skip consensus instances. That is, at regular A intervals,
a coordinator compares the number of messages proposed in the interval with
the maximum expected rate A for the group and proposes enough skip instances
to reach the maximum rate. To skip an instance, the coordinator proposes null
values in Phase 2A messages. For performance, the coordinator can propose to
skip several consensus instances in a single message.

3.4 Recovery

For a middleware relying on URingPaxos to be complete and usable, processes
must be able to recover from failures. More precisely, recovery should allow pro-
cesses to (a) restart their execution after failures and (b) limit the amount of
information needed for restart. URingPaxos’s recovery builds on Ring Paxos’s re-
covery. In the following, we first describe recovery in Ring Paxos (Section |3.4.1]
and then detail the subtleties involving recovery in URingPaxos (Section [3.4.2)).
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3.4.1 Recovery in Ring Paxos

The mechanism used by a process to recover from a failure in Ring Paxos depends
on the role played by the process. In a typical deployment of Ring Paxos (e.g.,
state machine replication [|67, [99]]), clients propose commands and replicas de-
liver and execute those commands in the same total order before responding to
the clients. In this case, clients act as proposers and replicas as learners, while
acceptors ensure ordered delivery of messages. In the following, we focus the
discussion on the recovery of acceptors and replicas. Recovering clients is com-
paratively an easier task.

Acceptor Recovery. Acceptors need information related to past consensus in-
stances in order to serve retransmission requests from recovering replicas. So,
before responding to a coordinator’s request with a Phase 1B or Phase 2B mes-
sage, an acceptor must log its response onto stable storage. This ensures that
upon recovering from a failure, the acceptor can retrieve data related to consen-
sus instances it participated in before the failure. In principle, an acceptor must
keep data for every consensus instance in which it participated. In practice, it can
coordinate with replicas to trim its log, that is, to delete data about old consensus
instances.

Replica Recovery. When a replica resumes execution after a failure, it must
build a state that is consistent with the state of the replicas that did not crash.
For this reason, each replica periodically checkpoints its state onto stable storage.
Then, upon resuming from a failure, the replica can read and install its last stored
checkpoint and contact the acceptors to recover the commands missing from this
checkpoint, i.e., the commands executed after the replica’s last checkpoint.

Optimizations. The above recovery procedure is optimized as follows. If the
last checkpointed state of a recovering replica is “too old"E] the replica builds
an updated state by retrieving the latest checkpoint from an operational replica.
This optimization reduces the number of commands that must be recovered from
the acceptors, at the cost of transferring the complete state from a remote replica.

3.4.2 Recovery in URingPaxos

Recovery in URingPaxos is more elaborate than in Ring Paxos. This happens
because in URingPaxos replicas may deliver messages from different multicast
groups and thus evolve through different sequences of states. We call the set of

2That is, it would require the processing of too many missing commands in order to build an
up-to-date consistent state.
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replicas that deliver messages from the same set of multicast groups a partition.
Replicas in the same partition evolve through the same sequence of states. There-
fore, in URingPaxos, a recovering replica can only recover a remote checkpoint,
to build an updated state, from another replica in the same partition.

As in Ring Paxos, replicas periodically checkpoint their state. Because a
replica p’s state may depend on commands delivered from multiple multicast
groups, however, p’s checkpoint in URingPaxos is identified by a tuple k, of con-
sensus instances, with one entry in the tuple per multicast group. A checkpoint
identified by tuple k, reflects commands decided in consensus instances up to
k[x],, for each multicast group x that p subscribed to. Since entries in k, are
ordered by group identifier and replicas deliver messages from groups they sub-
scribe to in round-robin, in the order given by the group identifier, predicate
holds for any state checkpointed by replica p involving multicast groups x and

y:

x<y=k[x],=zkl[y], (3.1)

Note that Predicate establishes a total order on checkpoints taken by replicas
in the same partition.

Periodically, the coordinator of a multicast group x asks replicas that sub-
scribe to x for the highest consensus instance that acceptors in the correspond-
ing ring can use to safely trim their log. Every replica p replies with its highest
safe instance k[x], to the coordinator, reflecting the fact that the replica has
checkpointed a state containing the effects of commands decided up to instance
k[x],. The coordinator waits for a quorum Q; of answers from the replicas,
computes the lowest instance number K[x]; out of the values received in Q;
and sends K[x]; to all acceptors. That is, we have that the following predicate
holds for K[x];:

Vp € Qr : K[x]r < k[x], (3.2)

Upon receiving the coordinator’s message, each acceptor can then trim its log,
removing data about all consensus instances up to instance K[x ];.

A recovering replica contacts replicas in the same partition and waits for re-
sponses from a recovery quorum Q. Each replica q responds with the identifier
k, of its most up-to-date checkpoint, containing commands up to consensus in-
stances in k,. The recovering replica selects the replica with the most up-to-date
checkpoint available in Qj, identified by tuple Ky such that:

Vq€Qp:ky <Kg (3.3)
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If Q; and Qy intersect, then by choosing the most up-to-date checkpoint in Qp,
identified by Kj, the recovering replica can retrieve any consensus instances miss-
ing in the selected checkpoint since such instances have not been removed by the
acceptors yet.

Indeed, since Q; and Qj intersect, there is at least one replica r in both quo-
rums. For each multicast group x in the partition, from Predicates[3.1]and[3.3] we
have k[x], < Kg[x]. Since r isin Q, from Predicate 3.2} we have K;[x] < k[x].
and therefore:
<Ky (3.4

which then results in:
K; <Kj (3.5)

Predicate implies that for every multicast group x in the most up-to-date
checkpoint in Qj, the acceptors involved in x have trimmed consensus instances
at most equal to the ones reflected in the checkpoint. Thus, a recovering replica
will be able to retrieve any instances decided after the checkpoint was taken.

3.4.3 Latency compensation

The skip calculation described in Section [3.3]is very effective in networks subject
to small latencies (e.g., within a datacenter). However, with large and disparate
latencies (e.g., geographical deployments), a late skip message may delay the de-
livery of messages at a learner (see Figure[3.2|(c)). This delay might happen even
if the number of skip instances is accurately calculated to account for imbalanced
traffic among rings.

We overcome this problem by revisiting the skip mechanism to take into con-
sideration the approximate time skip messages need to reach their concerned
learners. In equation (3.6), avg delay is an approximated average of the de-
lays between the ring coordinator and the ring learners. The intuition is to skip
additional messages to make up for the time it takes for a skip message to arrive
at the learners.

skips(t o) = Ak (t0, — ts —avg_delay)—skipped (3.6)

3.4.4 Non-disruptive recovery

Recovering a failed learner in URingPaxos, as described before, boils down to
(a) retrieving and installing the most recent service’s checkpoint and (b) recov-
ering and executing commands that are not included in the retrieved snapshot,
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the log tail. While this procedure can be optimized in many ways [[19]], recovery
in URingPaxos is inherently subject to a tradeoff that involves the frequency of
checkpoints and the size of the log tail: frequent checkpoints result in small log
tails and, conversely, infrequent checkpoints lead to large log tails.

Since checkpoints tend to slow down service execution, reducing the fre-
quency of checkpoints seems desirable. However, restricting the log tail size is
equally important because retrieving commands from the log during recovery has
negative effects on the service’s performance. This happens because acceptors
must participate in new rounds of Paxos and at the same time retrieve values ac-
cepted in earlier rounds (i.e., the log tail). We have experimentally assessed that
even under moderate load the recovery traffic drastically affects performance
(see Section [3.7.6).

To minimize disruption of service performance during normal service execu-
tion and recovery of a learner, we revisited URingPaxos’s original recovery mech-
anism. With the new method, a recovering learner starts by caching new ordered
messages. This silent procedure does not place acceptors under additional stress.
The replica then must retrieve a valid checkpointed state from another replica
(or from remote storage), that is, a checkpoint that contains all commands that
precede the cached commands. With a valid checkpoint, the replica can apply
the cached commands not in the checkpoint and discard the ones already in the
checkpoint. This procedure prioritizes performance during normal operation but
it may increase the time needed to recover a learner.

3.5 Services

We have used two services, a key-value store and a distributed log, to illustrate
the capabilities of URingPaxos. In this section we briefly discuss these services.

3.5.1 MRP-Store

MRP-Store implements a key-value store service where keys are strings and val-
ues are byte arrays of arbitrary size. The database is divided into [ partitions
Py, Py, ..., P; such that each partition P; is responsible for a subset of keys in
the key space. Applications can decide whether the data is hash- or range-
partitioned [[87], and clients must know the partitioning scheme. The service
is accessed through primitives to read, update, insert, and delete an entry (see
Table [3.1). Additionally we provide a range scan command to retrieve entries
whose keys are within a given interval.
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Table 3.1. MRP-Store operations.

Operation Description

read(k) return the value of entry k, if existent
scan(k,k’) | return all entries within range k..k’
update(k,v) | update entry k with value v, if existent
insert(k,v) | insert tuple (k,v) in the database
delete(k) delete entry k from the database

MRP-Store replicates each partition using the state machine replication ap-
proach [|69]], implemented with URingPaxos. A request to read, update, insert,
or delete entry k is multicast to the partition where k belongs; a scan request is
multicast to all partitions that may possibly store an entry within the provided
range, if data is range-partitioned, or to all partitions, if data is hash-partitioned.

MRP-Store ensures sequential consistency [[11]], that is, there is a way to se-
rialize client operations in any execution such that: (1) it respects the semantics
of the objects, as determined in their sequential specifications and (2) it respects
the order of non-overlapping operations submitted by the same client. Atomic
multicast prevents cycles in the execution of multi-partitions operations, which
would result in non-serializable executions.

3.5.2 Dlog

DLog is a distributed shared log that allows multiple concurrent writers to append
data to one or multiple logs atomically (see Table[3.2)). Append and multi-append
commands return the position of the log at which the data was stored. There
are also commands to read from a position in a log and to trim a log at a certain
position. Like MRP-Store, DLog uses state machine replication implemented with
URingPaxos. Commands to append, read, and trim are multicast to the log they
address and multi-append commands are multicast to all logs involved. A DLog
server holds the most recent appends in-memory and can be configured to write
data asynchronously or synchronously to disk.

3.6 Implementation

In this section, we discuss important aspects about the implementations of UR-
ingPaxos and the services we built on top of it.
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Table 3.2. DLog operations.

Operation Description

append(l,v) append v to log [, return position p
multi-append(%,v) | append value v to logs in &
read(l, p) return value v at position p in log [
trim(l, p) trim log [ up to position p

3.6.1 URingPaxos

URingPaxos is implemented mostly in Java, with a few parts in C. All the pro-
cesses in URingPaxos, independent of their roles, are multi-threaded. Threads
communicate through Java’s standard queues. A learner has dedicated threads
per each ring it subscribes to. Another thread then deterministically merges the
queues of these threads. Acceptors, when using in-memory storage, have access
to pre-allocated buffers with 15k slots, each slot of size 32 kbytes. This allows the
acceptors to handle re-transmission during approximately 3 seconds of execution
time under the most strenuous conditions. Disk writes are implemented using
the Java version of Berkeley DB. All communication within URingPaxos is based
on TCP Automatic ring management and configuration management is handled
by Zookeeper. Applications can use URingPaxos by including it as a library or by
running it standalone. In standalone mode, applications can communicate using
a Thrift APIE] URingPaxos is publicly available for download

3.6.2 MRP-Store

In our prototype, clients connect to proposers through Thrift and replicas imple-
ment the learner interface. The partitioning schema is stored in Zookeeper and
accessible to all processes. Clients determine an entry’s location using the parti-
tioning information and send the command to a proposer of the corresponding
ring. Clients may batch small commands, grouped by partition, up to 32 kbytes.
Replicas reply to clients with the response of a command using UDP. There are
multiple client threads per client node and each one only submits a new request
after the first response from a replica in single-partition commands or for at least
one response from every partition in scan operations is received.

Database entries are stored in an in-memory tree at every replica. Replicas
comply with URingPaxos’s recovery strategy (see Section by periodically

Shttp://thrift.apache.org/
“https://github.com/sambenz/URingPaxos
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taking checkpoints of the in-memory structure and writing them synchronously
to disk. After a majority of replicas have written their state to stable storage,
Paxos acceptors are allowed to trim their logs. A recovering replica will contact
a majority of other replicas and download the most recent remote checkpoint.

3.6.3 Dlog

Similarly to MRP-Store, DLog clients submit commands to replicas using Thrift.
Multiple commands from one client can be grouped in batches of up to 32 kbytes.
Replicas implement the learner’s interface to deliver commands. Replicas append
the most recent writes to an in-memory cache of 200 Mbytes and write all data
asynchronously to disk. Results from the execution of commands are sent back
to clients through UDP A trim command flushes the cache up to the trim position
and creates a new log file on disk.

3.7 Experimental evaluation

In this section, we experimentally assess various aspects of the performance of
our proposed systems:

* We establish a baseline performance for URingPaxos, MRP-Store, and DLog.

* We measure vertical and horizontal scalability of MRP-Store and DLog in a
datacenter and across datacenters.

* We evaluate the impact of recovery on performance.

Additionally, we assess the behavior of URingPaxos under a range of “ex-
treme” conditions, including wide-area channels and high-performance links.
Since we do not have access to an experimental environment that simultane-
ously accommodates all these characteristics, we conducted our experiments in
different environments, as described next.

* We scale the number of rings to achieve high performance in a high-end
10 Gbps network.

* We stress URingPaxos skip mechanism with highly skewed traffic.

* We assess the impact of a global ring and a disaster failure in a geographi-
cally distributed deployment.
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* We evaluate the impact of a recovering replica on the performance of op-
erational replicas under peak load.

3.7.1 Hardware setup

The local-area network experiments (i.e., within a datacenter) were performed
in two environments: (a) A cluster of 4 servers equipped with 32-core 2.6 GHz
Xeon CPUs and 128 GB of main memory. These servers were interconnected
through a 48-port 10-Gbps switch with round trip time of 0.1 millisecond. For
persistency we use solid-state disks (SSDs) with 240 GB and 5 7200-RPM hard
disks with 4 TB each. (b) A cluster of 24 Dell PowerEdge 1435 servers and 40
HP SE1102 servers connected through two HP ProCurve 2910 switches with 1-
Gbps interfaces. The globally distributed experiments (i.e., across datacenters)
were performed on Amazon EC2 with instances in 5 different regions. We used
r3.large spot-instances, with 2 vCPU and 15 GB DRAM. To avoid disk bottlenecks,
all experiments were executed with in-memory storage.

3.7.2 URingPaxos configuration

URingPaxos has three configuration parameters [81]]: M, A and A,. M is the
number of messages delivered (or skipped) contiguously from the same single
ring; if not stated otherwise, we use M = 1.

We have empirically determined that A, the virtually maximum throughput
of a ring, should be set a bit higher than the actual maximum achievable perfor-
mance. Too high A values lead to wasted CPU cycles in the deterministic merge
function; too low A values cap performance.

Parameter A, determines how often skip messages are proposed in a Paxos
instance. In general, small values for A, are preferred, to reduce the latency of
actual messages; too low A, values, however, waste Paxos instances and intro-
duce additional overhead in the system.

3.7.3 Experimental setup

Within a datacenter, URingPaxos was initialized as follows: M =1, A = 5 mil-
lisecond, and A = 9000. Across datacenters, the following configuration was
used: M =1, A = 20 millisecond, and A = 2000. We keep machines approx-
imately synchronized by running the NTP service before the experiments. We
used Berkeley DB version JE 5.0.58 as persistent storage. Unless stated oth-
erwise, acceptors use asynchronous disk writes. When in synchronous mode,
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batching was disabled, that is, instances were written to disk one by one. Each
experiment is performed for a duration of at least 100 seconds.

3.7.4 Baseline performance

In this section, we evaluate the performance of a single multicast group in URing-
Paxos with a “dummy service” (i.e., commands do not execute any operations)
under varying request sizes and storage modes. We also compare the perfor-
mance of MRP-Store and DLog to existing services with similar functionality.

URingPaxos

Setup. In this experiment there is one ring with three processes, all of which are
proposers, acceptors, and learners, and one of the acceptors is the coordinator.
Proposers have 10 threads, each one submitting requests whose size varies be-
tween 512 bytes and 32 kbytes. Batching is disabled in the ring. We consider five
different storage modes: in-memory, synchronous and asynchronous disk writes
using solid-state disks and hard disks.

Results. As seen in the top-left graph of Figure regardless the storage
mode, throughput increases as the request size increases. With synchronous disk
writes, the throughput is limited by the disk’s performance. With in-memory
storage mode, the throughput is limited by the coordinator’s CPU (bottom-left
graph). The coordinator’s CPU usage is the highest in asynchronous mode. This
is due to Java’s parallel garbage collection (e.g., 200% CPU). For in-memory
storage, we allocate memory outside of Java’s heap and therefore performance
is not affected by Java’s garbage collection. The bottom-right graph of Figure|(3.3
shows the CDF of latency for 32 kbyte values. In synchronous disk write mode,
more than 90% of requests take less than 10 milliseconds.

MRP-Store

Setup. In this experiment, we use Yahoo! Cloud Serving Benchmark (YCSB) [35]
to compare the performance of MRP-Store against Apache’s Cassandra and a sin-
gle MySQL instance. These systems provide different consistency guarantees,
and by comparing them we can highlight the performance implications of each
guarantee. In the experiments with MRP-Store, we use three partitions, where
participants in a partition subscribe to a ring local to the partition. Each ring is
deployed with three acceptors, all of which write asynchronously to disk. We test
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Figure 3.3. URingPaxos with different storage modes and request sizes. Four
metrics are measured: throughput in mega bits per second (top-left graph), av-
erage latency in milliseconds (top-right graph), CPU utilization at coordina-
tor (bottom-left graph), and CDF for the latency when requests are 32 KBytes
(bottom-right graph). The y-axis for throughput and latency is in log scale.

configurations of MRP-Store where replicas in the partitions subscribe to a com-
mon global ring and where there is no global ring coordinating the replicas (in
the graph, “independent rings”). All the rings are co-located on three machines
and clients run on a separate machine. In the experiments with Cassandra, we
initiate three partitions with replication factor three. MySQL is deployed on a
single server. In all cases, the database is initialized with 1 GByte of data.

Results. With the exception of Workload E, composed of 95% of small range
scans and 5% of inserts, Cassandra is consistently more efficient than the other
systems since it does not impose any ordering on requests (see Figure [3.4). Or-
dering requests within partitions only (i.e., independent rings) is cheaper than
ordering requests within and across the system. This happens because with inde-
pendent rings, each ring can proceed at its own pace, regardless the load in the
other rings. To a certain extent, this can be understood as the cost of ensuring
stronger levels of consistency. In our settings, MRP-Store compares similarly to
MySQL. As we show in the following sections, MRP-Store can scale with addi-
tional partitions while keeping the same ordering guarantees, something that is
not possible with MySQL.
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Figure 3.4. Performance of Apache’s Cassandra, two configurations of MRP-
Store, and MySQL, under Yahoo! cloud serving benchmark (YCSB). The graphs
show throughput in operations per second (top) and average latency in msecs
(bottom).

DLog

Setup. In this experiment, we compare the performance of our DLog service to
Apache’s Bookkeeper [63]]. Both systems implement a distributed log with strong
consistency guaranties. All requests are written to disk synchronously. The DLog
service uses two rings with three acceptors per ring. DLog learners subscribe to
both rings and are co-located with the acceptors. Bookkeeper uses an ensemble
of the same three nodes. A multithreaded client runs on a different machine and
sends append requests of 1 KBytes.

Results. Figure [3.5| compares the performance of our DLog service with
Apache Bookkeeper. The DLog service consistently outperforms Bookkeeper,
both in terms of higher throughput and lower latency. With 200 clients, DLog
approaches the limits of the disk to perform writes synchronously. The large la-
tency in Bookkeeper is explained by its aggressive batching mechanism, which
attempts to maximize disk use by writing in large chunks.
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3.7.5 Scalability

In this section, we perform a set of experiments to assess the scalability of our
proposed services. We consider vertical scalability with DLog and URingPaxos
(i.e., variations in performance when increasing the resources per machine in a
static set of machines) and horizontal scalability with MRP-Store (i.e., variations
in performance when increasing the number of machines).

Vertical scalability of disk writes

Setup. In this experiment, we evaluate vertical scalability with the DLog service
by varying the number of multicast groups (rings). Each multicast group (ring)
is composed of three processes, one of which assumes the learner’s role only
and the others are both acceptors and proposers. We perform experiments with
up to 5 disks per acceptor, where each ring is associated with a different disk.
Therefore, by increasing the number of rings, we add additional resources to the
acceptors. In each experiment, learners subscribe to k rings and to a common
ring shared by all learners, where k varies according to the number of disks used
in the experiment. Processes in the rings are co-located on three physical ma-
chines. Clients are located on a separate machine and generate 1 KByte requests,
which are batched into 32 KByte packets by a proxy before being submitted to
URingPaxos. The workload is composed of append requests only. Throughput is
shown per ring. The reported latency is the average over all the rings.

Results. Figure shows the throughput and latency of URingPaxos as the
number of rings increases. Throughput improves steadily with the number of
rings. The percentages show the linear scalability relative to the previous values.
The latency CDF corresponds to the reported throughput for writes to disk 1.

Vertical scalability in a local 10 Gbps network

In this section, we evaluate the vertical scalability of URingPaxos in a local 10
Gbps network environment.

Setup. We perform two sets of experiments, one with 200-byte messages
and another with 32-kbyte messages. For each message size, we increase the
number of rings from 1 (i.e., Ring Paxos) up to 10. Four servers are involved:
one server runs one proposer and one acceptor per ring, two other servers play
the role of acceptors only, with one acceptor deployed per ring; the last server
runs a learner, which subscribes to up to 10 rings. The proposer in each ring
uses multiple threads (20), one thread per client. We report peak throughput,
measured at the learner.



36 3.7 Experimental evaluation

—
2

(%2}

Q.

(=]

e

5 0,
a é - 97%
£ O disk 5 o,

=] O disk4 105%

o . o disk3

£ 2 = disk 2 106%

o> B disk 1

g 95%

=4 3

© 100%

el

o

©

D

o 1 2 3 4 5
3

< Number of synchronized logs (rings)

© ‘77‘:::”:‘”?”
S 34
X i — 1log
% | ---- 2logs
= < | | 3logs
% S = -~ 4logs
O 4 - 5 logs
o | ﬁﬁ
© 7 T T T T T T
0 5 10 15 20 25 30

Latency (msec)
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msecs (bottom).

Results. Figure on the left shows that URingPaxos reaches peak perfor-
mance with 9 rings for large messages and with 8 rings for small messages. With
large messages, URingPaxos reaches 8.41 Gbps, very close to 8.75 Gbps, the max-
imum usable TCP throughput (i.e., without TCP/IP headers) we could produce
with iperfﬂ With small messages, URingPaxos achieves about 570 K messages
per second. We also report the latency CDE measured in 1-millisecond buckets,
for the peak load (center graphs) and the CPU consumption at the learner (right
graphs). The 90-th latency percentile under these conditions is below 5 mil-
liseconds. The protocol is network-bound with large messages and CPU-bound
with small messages. (Since there is one communication thread per ring at the
learner, 10 rings can use up to 1000% CPU.)

In both experiments we can see on the left that as the number of rings a
learner subscribes to increases, the throughput achieved by each ring decreases.
This happens because the load in the learner’s Java virtual machine increases

Shttp://iperf.sourceforge.net/
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Figure 3.7. Scaling up URingPaxos in a 10 Gbps network. The graphs show
the aggregate and per ring throughput in megabits per second for 32-kbyte
(left top) and 200-byte (left bottom) messages; the latency CDF, measured in
T-millisecond buckets (center); the CPU usage (right). All measurements per-
formed at the learner process.

with each new ring, slowing down the learner. In URingPaxos, a slow process
reduces the overall traffic, as a result of flow control.

Horizontal scalability across the globe

Setup. In this experiment, we evaluate horizontal scalability with the MRP-Store
service, globally deployed across four Amazon EC2 regions (one in eu-west, two
in us-west, and one in us-east). In each region there is one ring composed of
a replica with three proposers/acceptors, and one client running on a separate
machine. Replicas from all the rings are also part of a global ring. Clients send
1 KByte commands to their local partitions (rings) only. Each client machine
batches the requests into packets of 32 kbytes before sending them. The work-
load is composed of update requests only. Latency is measured in the us-west-2
region.

Results. Similarly to the DLog service, throughput increases as new parti-
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Figure 3.8. Horizontal scalability of MRP-Store in asynchronous mode. The
graphs show aggregate throughput in operations per second (top) and latency
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tions are added to the collection (see Figure[3.8). As expected, latency is almost
constant with the number of rings. We note that the local throughput of a region
is not influenced by other regions, the reason for the scalability of the service.
The percentages show the linear scalability relative to the previous values.

Data center fault tolerance

In this section, we evaluate the global scalability and fault tolerance of URing-
Paxos. The goal is to show that having a large global ring, which allows to send
ordered commands to geographically distributed partitions (local rings), does
not slow down local traffic. We also evaluate the effect of a data center outage
during runtime.

Setup. For this experiment, we used Amazon EC2 instances. We deployed
5 local rings, each in its own region: us-west-1 (N. California), us-west-2 (Ore-
gon), eu-west-1 (Ireland), ap-southeast-1 (Singapore), ap-southeast-2 (Sydney).
All nodes in each local ring are placed on the same availability zone. We also de-
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ployed a global ring, composed of three acceptors (placed in separate regions)
and all learners from each of the local rings. This deployment allows for progress
even in the presence of a disaster taking down an entire datacenter. We simu-
lated a datacenter outage by forcibly killing all processes belonging to one of the
regions containing an acceptor of the global ring.

Results. We first evaluate the fault tolerance of URingPaxos. Figure [3.9
shows the throughput in each of the local rings, using messages of 32 kbytes.
We can see that, despite the outage of a complete region (at around 25 seconds
into the execution), the remaining rings maintain normal traffic after a short
disruption caused by the global ring reconfiguration.

To assess the impact of a global ring on the performance of local rings, we
conducted a few other experiments using the same deployment of 5 datacenters,
each with a local ring. We consider a baseline case with local rings only (i.e.,
no global ring) and setups with a global ring synchronizing all nodes, with and
without latency compensation (Section [3.4.3). We use the same load (number
of clients) in all three cases, roughly 80% of the peak throughput for the case
with compensation enabled, with 200-byte messages. Figure shows the
throughput obtained in each case and the latency CDE The local throughput went
down by around 23% with a global ring connecting all the nodes. The results also
show that compensating the latency difference between rings is fundamental.
The “steps” visible in the latency CDF for the scenario with no compensation
reflect the latency difference across rings.

URingPaxos ring scalability

In URingPaxos, learners can subscribe to any combination of existing rings. Im-
balanced traffic across rings is compensated with the skip mechanism. In this
experiment, we assess the overhead of the skip mechanism on highly skewed
traffic.

Setup. This experiment was conducted in a local cluster with a 1 Gbps net-
work. In this experiment, a single learner subscribes to multiple rings. Each
ring is composed of three acceptors and the learner. In order to assess the proto-
col’s inherent latency without any queuing effects, we consider executions with
a single client. We varied the number of rings from 1 up to 32. Except for the
configurations with 16 and 32 rings, we deploy one acceptor per node. For the
experiments with 16 rings, there are two acceptors per node; with 32 rings, there
are four acceptors per node. To assess the efficacy of the skip mechanism, the
client submits 200-byte messages to one of the rings; the other rings rely solely
on the skip mechanism. In these experiments, A was set to 5 milliseconds.
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Figure 3.9. Impact of a data center outage after 25s into the execution in the
performance of a global URingPaxos deployment.

Results. The most visible impact in Figure is the transition from one to
two rings. One ring is not constrained by any synchronization and can achieve
the lowest latency. Additional rings introduce an overhead, that eventually in-
creases linearly with the number of rings. Since we have one client only, from
Little’s law [|61]], the throughput is the inverse of the latency.

3.7.6 Recovery
Impact of recovery on performance

In this section, we evaluate the impact of failure recovery on the system’s perfor-
mance using the MRP-Store service.

Setup. We deploy one ring with three acceptors, all performing asynchronous
disk writes, and three replicas in the local cluster. The system operates at 75%
of its peak load and there is one client generating requests against the replicas.
The replicas periodically checkpoint their in-memory data store synchronously
to disk to allow the acceptors to trim their log. One replica is terminated after 20
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Figure 3.10. Impact of a global ring to local maximum throughput with and
without latency compensated skip calculation.

seconds and restarts after 240 seconds, at which point it retrieves the most recent
checkpoint from an operational replica. The instances that are not included in
the checkpoint will be retrieved directly from the acceptors.

Results. Figure shows the impact of recovery on performance. As seen
in the graph, re-starting a terminated replica causes a short reduction in per-
formance. Writing checkpoints synchronously to the disk does not disrupt the
service. We note that checkpoints are not written to disk at the same time by all
the replicas and that the client waits only for the first response form any replica.
Performance is mostly affected by trimming the acceptor logs and also when the
recovering replica retrieves and installs a checkpoint.

Non-disruptive recovery under peak load

We use MRP-Store to evaluate our optimized recovery procedure. Our key-value
store service implements commands to insert and remove tuples of arbitrary size,
read and update an existing entry, and query a range of tuples. Replicas use a
copy-on-write data structure to allow checkpoints in parallel with the execution
of commands.

Setup. The experimental setup uses a ring with 3 nodes, each acting as an
acceptor and a learner (i.e., replica). Four clients (each with 150 threads) sub-
mit 1024-byte update requests to the replicas through YCSB [I35]. Each replica
executes every request and replies back to the client using UDP. Every replica
periodically checkpoints its state into a distributed file systemﬁ accessible to all
replicas. The state checkpointed by a replica has 1.5 million entries (1.5 gbyte).

®http:/ /www.xtreemfs.org/
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Figure 3.11. Impact of the number of groups (rings) a learner subscribes to on
throughput and latency (since there is a single client, from Little’s law through-
put is the inverse of latency).

Results. Figure shows the behavior of URingPaxos’s new non-disruptive
recovery under maximum load, which for 1024-byte values is around 800 Mbps.
For comparison, we also depict the behavior of the classic recovery protocol un-
der lower load, around 400 Mbps, since the classic protocol cannot sustain higher
load. Around 45 seconds into the execution, we crash one of the replicas, which
starts recovery around time 110. With the new recovery protocol, the average
throughput during recovery is 78% of the throughput under normal operation.
Performance troughs are due to garbage collection (events labelled “1” in the
graph) and ring management (event with label “2”). Since processes communi-
cate in a ring, a pause in any of the nodes (e.g., due to garbage collection) can
have a visible effect on throughput. The fact that the recovering learner has to
batch new commands and that replicas have to use multiple (in-memory) copy-
on-write data structures forces us to use large heaps, which lead to longer and
unpredictable garbage collection pauses.
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Figure 3.12. Impact of recovery on performance (1: one replica is terminated;
2: replica checkpoint; 3: acceptor log trimming; 4: replica recovery; 5: re-
proposals due to recovery traffic).

3.8 Related work

In this section, we review related work on atomic multicast, geo-replication, dis-
tributed logging, and recovery.

Atomic multicast. The first atomic multicast protocol can be traced back to [23]],
where an algorithm was devised for failure-free scenarios. To decide on the fi-
nal timestamp of a message, each process in the set of message addressees lo-
cally chooses a timestamp, exchanges its chosen timestamps, deterministically
agrees on one of them, and delivers messages according to the message’s final
timestamp. As only the destinations of a message are involved in finalizing the
message’s timestamp, this algorithm is scalable. Moreover, several works have
extended this algorithm to tolerate failures [[50, 56,95, [97], where the main idea
is to replace failure-prone processes by fault-tolerant disjoint groups of processes,
each group implementing the algorithm by means of state machine replication.
The algorithm in [[42]] proposes to daisy-chain the set of destination groups of a
message according to the unique group ids. The first group runs consensus to
decide on the delivery of the message and then hands it over to the next group,
and so on. Thus, the latency of a message depends on the number of destination
groups.

While most works on multicast algorithms have a theoretical focus, Spread [9]]
implements a highly configurable group communication system, which supports
the abstraction of process groups. Spread orders messages by means of intercon-
nected daemons that handle the communication in the system. Processes connect
to a daemon to multicast and deliver messages. To the best of our knowledge,
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Figure 3.13. Recovery of a key-value store snapshot with 1.5 million en-
tries. Throughput of URingPaxos’s new and old recovery protocols (top) and
latency of new recovery protocol (bottom, where “1" identifies garbage collec-
tion events and “2" identifies ring management events).

URingPaxos is the first high-performance atomic multicast library available for
download. Similarly to Mencius [77]], coordinators in URingPaxos account for
load imbalances by proposing null values in consensus instances. Differently
from Mencius, which is an atomic broadcast protocol, URingPaxos implements
atomic multicast by means of the abstraction of groups. While the group abstrac-
tion is similar to the Totem Multi-Ring protocol [[1]], Totem uses timestamps to
achieve global total order. URingPaxos’s deterministic merge strategy is similar
to the work proposed in [[7]], which totally orders message streams in a widely
distributed publish-subscribe system.

Geo-replication There are different approaches to handling the high latency
inherent of globally distributed systems. Some systems choose to weaken con-
sistency guarantees (e.g., Dynamo [40]), while others cope with wide-area round
trip times. Mencius [[77]], WHEAT [[104]] and EPaxos [85]] are latency optimized.
Both protocols implement atomic broadcast and therefore do not scale. P-store [[98]]
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relies on atomic multicast. In order to scale, it partitions the service state and
strives to order requests that depend on each other, imposing a partial order on
requests. Sinfonia [[6]] and S-DUR [[101]] build a partial order by using a two-
phase commit-like protocol to guarantee that requests spanning common par-
titions are processed in the same order at each partition. Spanner [36]] orders
requests within partitions using Paxos and across partitions using a protocol that
computes a request’s final timestamp from temporary timestamps proposed by
the involved partitions.

Chain replication. Conceptually, chain replication [[110] looks similar to URing-
Paxos. All processes are organized in an overlay. The two replication techniques
however, differ significantly. In chain replication, all write requests must be sent
to the first replica in the chain and all read request must be sent to the last process
in the chain. This does not apply to URingPaxos. All commands can be sent to
any processes in the ring, since the order property is achieved by the Paxos pro-
tocol and not the position in the ring. Further, URingPaxos can recover naturaly
from failures (e.g., lost messages), while chain replication requires an external
oracle in case of a process failure. Recovering in chain replication is similar to
virtual synchrony, where the view of the system is changed to exclude a faulty
replica.

Distributed logging. Atomic broadcast is not the only solution to totally or-
der requests in a distributed environment. Distributed logging is an alternative
approach, where appending a log entry corresponds to executing a consensus
instance in an atomic broadcast protocol. CORFU [[76] implements a distributed
log with a cluster of network-connected flash devices, where the log entries are
partitioned among the flash units. Each log entry is then made fault-tolerant
using chain replication and a set of flash devices. New data is always appended
to the end of the distributed log. To append a message, a client of CORFU (e.g.,
application server) retrieves and reserves the current tail of the distributed log
through a sequencer node. Although appends are directly applied to the flash
devices, the scalability of retrieving the log’s next available offset is determined
by the centralized sequencer’s capacity. In our DLog service, the increasing ap-
pend load is smoothly absorbed by adding new rings to the ensemble, and is not
subject to central components. Disk Paxos [|51] is another implementation of a
distributed log that does not rely on a sequencer. However, Disk Paxos is not
network efficient since appending new data clients leads to contention over the
log entries. An advantage to CORFU and similar systems [|58]] is that the distri-
bution of appends among the storage units can be balanced. Tango [[13[], builds
on CORFU to implement partitioned services, where a collection of log entries is
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allocated to each partition. The replicas at each partition only execute the subset
of the log entries corresponding to their partitions, and skip the rest. Globally
ordering the entire set of log entries simplifies ensuring consistency with cross
partition queries. However, the number of partitions a service can be divided into
is limited by the log’s capacity at handling the appends. In our DLog service, an
unbounded number of partitions can be created by adding new rings; moreover,
queries concerning disjoint partitions are not globally ordered.

Recovery. Recovery protocols often negatively affect a system’s performance.
Several optimizations can be applied to the logging, checkpointing, and state
transfer to minimize the overhead of recovery as we discuss next.

Optimized logging. A common approach to efficient logging is to log requests
in batches [[19, 26| 33| 49| [103]]. Since stable storage devices are often block-
based it is more efficient to write a batch of requests into one block rather than
to write multiple requests on many different blocks. Another optimization is to
parallelize the logging of batches [[19]. Parallel logging benefits most applica-
tions in which the time for processing a batch of requests is higher than the time
required for logging a batch. The overhead of logging can be further reduced by
using solid-state disks (SSD) or raw flash devices instead of magnetic disks [[94]].
Similarly, in our DLog service we support both hard disks and SSDs, and syn-
chronous and asynchronous disk writes to enable batched flushes to the disk.

Optimized checkpointing. Checkpoints are often produced during the normal
operation of a system, while processing of the requests is halted [26}169,94,103].
Not handling requests during these periods makes the system unavailable to
clients and reduces performance. If instead processes take checkpoints at non-
overlapping intervals, there will always be operational processes that can con-
tinually serve the clients. Building on this idea, in [[19]] processes schedule their
checkpoints at different intervals. As the operation of a quorum of processes is
sufficient for the system to make progress, a minority of processes can perform
checkpointing while the others continue to operate. Another optimization is to
use a helper process to take checkpoints asynchronously [32]. In this scheme,
two threads, primary and the helper, execute concurrently. While the primary
processes requests, the helper takes checkpoints periodically. Similarly, in our
DLog service replicas can take snapshots at different non-overlapping intervals.

Optimized state transfer. State transfer has its own implications on perfor-
mance. During state transfer, a fraction of the source processes’ resources (e.g.,
CPU, network) are devoted to the transmission of the state, which is not to the
advantage of performance. To protect performance, state transfer can be de-
layed to a moment in which the demand on the system is low enough that both



47 3.8 Related work

the execution of new requests and the transfer of the state can be handled [60]].
Another optimization is to reduce the amount of transferred information. Repre-
senting the state through efficient data structures [[26]], using incremental check-
points [27, [32]], or compressing the state are among these techniques. In [19],
the authors propose a collaborative state transfer protocol to evenly distribute
the transfer load across replicas.
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Chapter 4

Dynamic Atomic Multicast

4.1 Introduction

Today’s on-demand computing resources, common in public cloud environments,
provide operators of distributed systems with the possibility to react quickly to
changes in application workload. Starting up new webservers once increased
traffic is detected or switching off low utilized servers to save costs are common
operations. Dynamically adding or removing resources when servers are stateful
(e.g., databases), however, is much more challenging than reconfiguring stateless
servers (e.g., webservers). In fact, building fault-tolerant (replicated) distributed
services that provide strong consistency and scalable performance is a daunting
task in itself. Further requiring these services to dynamically scale up and down
resources introduces additional complexity.

Services are typically made scalable and fault-tolerant by means of state parti-
tioning (sharding) and replication (e.g., [36, 6, 90]). But handling sharded and
replicated data in a distributed environment is challenging if services are not
willing to give up strong consistency. Strong consistency requires client requests
to be ordered across partitions and replicas. Atomic multicast is a communica-
tion abstraction that can help the design of scalable and highly available stateful
services [21],[14]] by consistently ordering requests. Therefore, much of the com-
plexity involved in designing scalable and fault-tolerant services is encapsulated
by atomic multicast.

Nevertheless, existing atomic multicast protocols are static, in that creating
new multicast groups at run time is not supported. Consequently, replicas must
subscribe to multicast groups at initialization, and subscriptions and unsubscrip-
tions can only be changed by stopping all replicas, redefining the subscriptions,
and restarting the system. This chapter presents Elastic Paxos, the first dynamic
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atomic multicast protocol. Elastic Paxos allows replicas to dynamically subscribe
to and unsubscribe from atomic multicast groups.

Dynamic subscriptions in Elastic Paxos should not be confused with dynamic
reconfiguration. In dynamic reconfiguration (e.g., [23, [71], [72, [73] [74]]), the
goal is to change the set of participants of a system (e.g., group membership).
Elastic Paxos seeks to allow replicas to dynamically change the multicast groups
they subscribe to, while the membership of the system may remain constant.
Interestingly, we show in this chapter that one can use dynamic subscriptions to
reconfigure a system.

In brief, our dynamic atomic multicast protocol composes multiple sequences
of Paxos [|69, [39]], where each sequence is referred to as an atomic multicast
stream, to provide efficient message ordering. The protocol ensures that no two
replicas order the same requests in different orders and allows to add and re-
move additional streams during run time. To illustrate the design of a scalable
and highly available prototypical service, we consider a storage service (i.e., a
key-value store). The storage is partitioned into disjoint partitions and each par-
tition is replicated by a group of replicas. There is one atomic multicast stream
per partition, which the replicas of the partition subscribe to, and one atomic
multicast stream that is shared by all replicas. The storage service supports two
types of operations: single-partition operations (i.e., get and put on a single key)
and multi-partition operations (i.e., a consistent get range operation that returns
all keys in a specified interval). Single-partition operations are multicast to the
replicas of the partition that contain the accessed key; multi-partition operations
are multicast to all replicas, using the shared atomic multicast stream.

This chapter makes the following contributions.

* We introduce Elastic Paxos, an atomic multicast protocol that supports dy-
namic subscriptions.

* We show how Elastic Paxos can be used to design strongly consistent, scal-
able and highly available dynamic services.

* We detail the implementation of our new protocol.

* We evaluate the performance of Elastic Paxos

4.2 Motivation

Atomic multicast is a suitable abstraction to build scalable distributed systems.
But creating new groups during run time is not supported by existing atomic
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multicast systems. In this section, we motivate and define dynamic atomic mul-
ticast and explain why we need a new protocol to implement dynamic atomic
multicast.

Atomic multicast, as discussed in the previous chapters, relies on static sub-
scriptions of replicas to groups (streams), that is, subscriptions are defined at
initialization and can only be changed by stopping all processes, redefining the
subscriptions, and restarting the system.

In today’s cloud environments, adding resources to and removing resources
from an operational system without shutting it down is a desirable feature [[34].
Combining the benefits of atomic multicast and dynamic subscriptions at run
time allows several practical use cases, as we describe next.

Vertical elasticity. Although atomic broadcast is typically implemented with
a single message stream, it can be also implemented with multiple streams, as
long as all processes subscribe to all streams. When implemented with a single
stream, the performance of atomic broadcast will be typically limited by the per-
formance of the coordinator (CPU) or the acceptors (disk write performance) of
the stream. However, replicas can increase the throughput of atomic broadcast
by dynamically subscribing to multiple streams.

In doing so, each stream contributes to the aggregated throughput of atomic
broadcast. (Section|4.7.3))

Horizontal elasticity. Scaling out a key-value store service can be achieved
by horizontally partitioning (sharding) the service state. Partitioned state intro-
duces the problem of how to ensure consistency of cross-partition queries. Paxos
and other atomic broadcast algorithms ensure total order of commands within
one partition (e.g., get and put commands), consistent cross-partition operations
(e.g., getrange) must be coordinated using additional mechanisms, such as two-
phase commit and synchronized clocks (e.g., [36]). Atomic multicast offers an
alternative by ordering both single-partition and cross-partition commands, as
needed (i.e., partial order). If replicas can dynamically subscribe to a new stream
(i.e., a new partition), then a replicated data store can be repartitioned without
service interruption. (Section |4.7.4)

Reconfiguration. Reconfiguration means changing the set of processes in a dis-
tributed system. It is used, for example, to replace a failed server or a server
whose disk is full. Reconfiguring a replicated state machine has been consid-
ered before (e.g., [23] [71], [72] [73, [74]). In general, existing solutions consist
in stopping processes in the current configuration (i.e., the running state ma-
chine), redefining the set of processes in the new configuration, and re-starting
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the processes in the new configuration [[73]].

In Paxos, the real challenge is reconfiguring the set of acceptors since these
are the processes that store the state of Paxos (e.g., accepted values). Moreover,
processes must know the set of acceptors of each consensus instance (i.e., system
membership). Lamport [[69] suggests to manage membership by making the set
of acceptors part of the state of the system and handling membership changes as
commands, which must also be ordered by consensus. Such a mechanism, how-
ever, prevents multiple consensus instances from executing concurrently, which
limits performance [[74]].

Dynamic subscriptions offer an alternative approach to reconfiguring the ac-
ceptors in a single stream S;. We first create a new stream S with the new set
of acceptors, then have the learners subscribe to S7, and finally unsubscribe from
S;. Note that this approach does not impose any constraints on the intersection
between S; and S; (e.g., S; and S; can be disjoint sets).

4.3 Dynamic Atomic Multicast

After arguing for dynamic subscriptions in atomic multicast, we extend the atomic
multicast interface with two additional primitives: subscribe msg(G,S) and un-
subscribe_msg(G, S), which replicas in replication group G can use to subscribe
to and unsubscribe from stream S. After replicas subscribe to stream S, they
will eventually deliver messages multicast to S. Similarly, if replicas unsubscribe
from S, they will eventually stop delivering messages multicast to S. In both
cases, atomic multicast guarantees acyclic ordered delivery (see Section [2.5)).

A simple (but incorrect) solution. Conceptually, one can easily reconfigure a
replicated state machine (atomic broadcast) by proposing a special new_conf(C)
command that starts a new configuration C [[69,23],[73[]. The position of the deci-
sion of new_conf(C) in the sequence of consensus instances defines the new con-
figuration. Consensus instances decided before the instance in which new_conf(C)
is decided use the current configuration; instances that succeed the instance in
which new_conf(C) is decided use the new configuration C. Could a similar sim-
ple approach be used to handle dynamic subscriptions in partially replicated state
machines (atomic multicast)?

Consider a replica R; in replication group G; that currently subscribes to
stream S; and wishes to subscribe to stream SZEI To ensure that replicas in G,

!Note that subscribing to the very first stream is trivial since it does not involve coordination
with any other streams.
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agree on the instance in S; and S, where the merge occurs, so that they can de-
liver messages from both streams without violating acyclic order, R, proposes a
subscription request, denoted by sub(G,,S,), in S; and in S,. Once ordered in
S;, the subscription request will determine when messages from both streams
will be merged. The subscription request in S, determines what messages in the
new stream will start to be delivered by replicas in G, (see Figure 4.1)). After
the sub(G,,S,) is ordered in both streams, the deterministic merge starts to de-
liver messages from each stream in round-robin, starting with S;. Note that the
subscription messages ordered at streams S; and S, are only used by replicas to
agree on how to merge the streams; the subscription messages are not passed to
the application.

merged instances

in group G1 / f

|
Stream S, my mg | [|sub(G{,So)| | Mg | [m7
consensus
8 9 10 1 12 instance number

Stream S, M2 | [sub(G4,So)| | My | Mg
7 8 9 10

Figure 4.1. A simple scheme to dynamically subscribe to a stream.

Consider now a more complex case in which replica R; in G; initially sub-
scribes to S; and wishes to subscribe to S,, and R, in G, with a subscription to
S, wishes to subscribe to S; (see Figure [4.2). This would be the case in our
key-value store service, for example, if two partitions were merged as a single
partition. To determine the instance in which the merge occurs, R; proposes
message sub(G,,S,) in streams S; and S,, and R, proposes message sub(G,, S;)
in S; and S,. But since subscription requests can be delivered in S; and S, in
any order, it may happen that after both replicas subscribe to streams S; and S,
the merged streams violate acyclic order of atomic multicast. In the example in
Figure R, orders mg before m,, and R, orders m, before my.

The example above shows that simply having a deterministic scheme for repli-
cas to merge two or more streams is not enough to ensure consistent order of
messages. In the next section, we introduce a more sophisticated technique,
which ensures that replicas in a group deliver the same sequence of messages,
and replicas in the same group and in different groups do not violate acyclic
order.



54 4.4 Elastic Paxos

merged instances
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in group G, merged instances

Figure 4.2. Example of order violation with simple scheme (i.e., mg and m,).

4.4 Elastic Paxos

In this section, we present an overview of the Elastic Paxos protocol, describe
Elastic Paxos in detail, introduce a few optimizations, and argue about the cor-
rectness of Elastic Paxos.

4.4.1 Overview

We seek decentralized solutions that properly coordinate dynamic subscriptions
in atomic multicast without relying on a single entity, such as an oracle that
oversees all subscribe and unsubscribe requests. In the following, we provide an
overview of our solution. We describe how a replica R in replication group G can
subscribe to and unsubscribe from a stream.

Every replica in G starts with a subscription to a default stream, S;;. In order
for R to subscribe to a new stream Sy, R must atomically broadcast request sub-
scribe_msg(G,Sy) to (a) the new stream Sy ; and (b) a stream S that R currently
subscribes to (e.g., the default stream). Upon delivering the subscription request
from S, the deterministic merger that executes at R spawns a new learner task at
R for stream Sy. The new learner starts by recovering all messages in Sy until it
reaches the subscribe request subscribe_msg(G, Sy ).

When the subscribe request is ordered in both streams S and Sy, the merger
determines the “merge point”, that is, the instance after which the replica will
start combining messages from the new stream with messages from the cur-
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rently subscribed streams. To avoid order violations, Elastic Paxos uses the same
instance in both streams, computed as the maximum between the instances in
which the subscribe request was delivered in each stream (see Figure[4.3). Intu-
itively, this works because the merge point is “aligned” at all subscribed streams.

merged instances

Replica Ry | M4 sub(G,Sy) mg| [mg| [m5| |mg| | m7

in group G1
max(10,10) discarded
A A
[ :
Stream Sy [Mq [ [sUb(Gy,Sy)[ || mg | [ms f:|sub(Gp,Sq)| [m7
9 10 1 '
u' //
Stream S, mo sub(G4,So)| [my
9 10 11
ER
discarded max(1 2.1 3)
Replica Ry my | | My | | Mg sub(Go,S4) my | | mg
in group G, merged instances

Figure 4.3. How Elastic Paxos ensures acyclic ordering.

Unsubscriptions are simpler than subscriptions because there is already a to-
tal order among messages in all subscribed streams. Therefore, it is enough
to broadcast a single unsubscribe_msg(group,stream) request to any of the sub-
scribed streams. As soon as the request is delivered, the dMerge task removes
the requested stream from the set of streams the replica subscribes to.

4.4.2 Detailed protocol

Algorithm (1| details how a replica R in replication group G subscribes to a new
stream Sy. Every replica consists of multiple tasks. There is one dMerge task,
and one learner task per subscribed stream. The dMerge task orders messages
from the various streams a replica subscribes to and handles subscription and un-
subscription requests. dMerge holds an array of stream queues (Q), from which
it deterministically (round-robin) delivers decided values. Every stream queue is
filled by a background learner task. When a replica subscribes to a new stream,
one more learner task is created. This new learner will recover (Section [4.6) all
decided values and put them in Q.
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Algorithm 1 Replica R in G subscribes to stream Sy

1: Initialization:

2:

3
4
5
6:
7.
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

30

31:
32:
33:
34:
35:

36

37:

38

39:

40:
41:
42:
43:
44.

45:
46:
47:

// return the next (cyclic) S in &

task Learner(S)
Initialization:
ptr[S]«<0
for i from 1 to max decided instance in S do
Q[S][i] « recover(i)

upon deliver(v) do

i—i+1

Q[1..max_stream][1l..max_instance] < L1,1,...
start task dMerge {init deterministic merge}
: task dMerge {Deterministic merge}
Initialization:
2 —{Ss} {set of subscribed streams, with default stream}
start task Learner(Sg) {start the first learner}
S« S; {set first stream }
ptr[S]«<0 {next instance in a stream}
while forever do {round-robin delivery }
ptr[S]« ptr[S]+1 {set pointer to next message in S }
wait until Q[S][ptr[S]]# L
v < Q[S][ptr[s]]
if v =subscribe_msg(G,,S,) and G, = G then
Sy < S,
start task Learner(Sy)
while Q[Sy 1[ptr[Sy]] # v do {find same subscribe...}
ptr[Syl < ptr(Syl+1 {...msg in both streams}
merge ptr « max_ptr(ptr)+1
while ptr[Sy] < merge_ptr do {align stream }
ptr[Sy]l < ptr[Sy]+1 {skip}
else
if v # subscribe_msg(G,,S,) then
deliver v {v is ordered, pass it to the application}
if VS e X : ptr[S]=merge_ptr then
Y —XuU{Sy} {update current subscriptions}
S « first(X) {after subscription start from first group }
else
S «— next(X) {next group for round-robin delivery}
: procedure max_ptr(ptr)
// return maximum ptr[S] for all streams S in %
x <0
for each S € X do
if ptr[S]> x then x « ptr[S]
return x
: procedure first(%)
// return the first S in &
: procedure next(%)

{Learner of stream S}

{recover all decided instances }

Q[S][i]« v {fill queue while Paxos instances get decided}
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For every queue, dMerge keeps a pointer per stream (ptr) with the posi-
tion of the last ordered value in the stream that has already been delivered to
the application. The subscription point is the maximum stream position of the
two subscription messages (i.e., the new stream and the currently subscribed
stream). Round-robin delivery from the new stream will start in the round after
the maximum stream position.

For the sake of simplicity, in Algorithm [1|a stream position corresponds to a
Paxos instance. In our prototype, the stream position is not related to the decided
Paxos instances. Since multiple values or skip messages can be decided in one
Paxos instance (batching), in our prototype the pointer refers to a value, after
discarding skip messages.

4.4.3 Extensions and optimizations

A subscription request subscribe_msg(G,Sy) must be broadcast to Sy and to a
currently subscribed stream S. Since this requires two invocations to atomic
broadcast, it is possible that a process fails in between invocations, in which case
the replica would block. To cope with such cases, if the dMerge of a replica does
not deliver the subscription request from the second stream after some time,
it broadcasts the request in the stream. Duplicated subscription requests are
discarded by the replicas.

As Algorithm [1| shows, after receiving a subscribe request, the dMerge task
interrupts the handling of messages until the same request is received in the new
stream. Since the dMerge task does not know where in the stream the missing
subscription request is, the simplest approach is to scan all previous messages.
This procedure can be optimized if the process that triggers a subscription first
broadcasts a hint to learners. Upon receiving such a hint (prepare_msg(G, Sy)),
learners start scanning the new stream for subscription requests.

4.4.4 Correctness

Atomic multicast is a generalization of atomic broadcast and implements the
abstraction of groups I' = Sy, ..., S,,, also known as streams, where for each S €
I',S C II. Processes may belong to one or more streams. If process p € S, we
say that p subscribes to stream S. Atomic multicast is defined by the primitives
multicast(S,m) and deliver(m) (Section [2.5).

Elastic Paxos resembles URingPaxos in the absence of subscriptions and un-
subscriptions. However, Elastic Paxos introduces the ability to add and remove
subscriptions dynamically. Algorithm 1 describes how a replica R in replication
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group G subscribes to a new stream Sy, (i.e., by atomically broadcasting request
subscribe(G, Sy) to the new stream Sy, and to R’s default stream). In the follow-
ing, we show that dynamic subscriptions do not violate any of the above specified
properties of Atomic Multicast.

Proposition 1 Validity. If a correct process multicasts a message m to S, then all
correct processes in S will eventually deliver m.

PROOF: It follows from the correctness of the Ring Paxos instance implementing
S that m will be eventually in the decision of a consensus instance executed by
all correct processes in S. Consequently, from an argument similar to that of
uniform agreement, all such correct processes eventually deliver m. O

Proposition 2 Uniform agreement: If a process delivers message m multicast to S;,
then all correct processes in S; deliver m.

PROOF: Assume p and q subscribe to S; and q delivers m multicast to S; . From
the correctness of the Ring Paxos instance responsible for S;, if p is correct, it will
eventually decide on an instance that contains m. We claim that p will eventually
deliver m. If p only subscribes to S;, this is obviously true. Thus, assume that p
also subscribes to stream S; , where j <i. Process p will deliver m after having
delivered M messages from each S;. There could simply not be so many messages
multicast to S;. If so, the coordinator of the Ring Paxos instance responsible for
S; eventually times out and submits enough skip instances to reach the optimum
in the interval. Thus, eventually enough application messages or skip messages
will be decided to complete M, and eventually m is delivered by p. O

Proposition 3 Uniform partial order. If processes p and q deliver messages m and
m’, then they deliver them in the same order.

PrOOF: Two cases must be considered:

(a) m and m’ were multicast to the same stream S;

(b) m and m’ were multicast to streams S; and S;, respectively, where i < j.

We assume that both processes p and q are correctly subscribed to S, respec-
tively, S; and S ; (Proposition 4).

Once p and q are subscribed to S, in case (a), it is simple to see from Algorithm
1 that both messages are delivered in the same order by all processes. Partial
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order also holds for case (b), where processes p and g both are subscribed to
both streams S; and S;. This, from the fact that processes order streams in the
same way and first deliver M (round-robin messages, e.g. M = 1) messages
from one stream and then deliver M from the other. Assume m is delivered in
consensus instance k; and m’ in consensus instance k;. If k; < k;, then both p
and q will deliver m first and then m’. If k; > k;, then both processes will deliver
m’ first and then m. O

Proposition 4 Dynamic subscriptions ensures acyclic ordering. If processes p and
q subscribe both to streams S; and S;, then they deliver eventually the same suffix
of messages.

PROOF: By propositions 1 and 2, every process p that belongs to the same repli-
cation group G will eventually receive a subscription message in the old stream
S; and one in the new stream S;. Subscription messages are proposed like any
other messages and therefore decided in a consensus instance; k; in S; and k; in
S;. The maximum instance number of k; and k; defines the subscription point a
for all p in G, therefore, every replica in G will start delivering messages after k,,
from the new stream S;.

If two processes p and g, belonging to G and G’, concurrently subscribe to
S; and §;, that is, p subscribes to S; and q adds S;, they will eventually deliver
the same suffix of messages. Since every subscription message will be decided
in a unique consensus instance (k; # k! and k; # k;), the two processes will
calculate a # a’. Accordingly, the common suffix of delivered messages start
after max(a, a’), since both replication groups G and G’, will start deterministi-
cally deliver messages beginning from the k, ,, consensus instance from the first
stream S. O

4.5 Scalable services with Elastic Paxos

Designing services that are highly available and capable to scale throughput with-
out giving up strong consistency is a daunting task. In this chapter, we extended
the MRP-Store (Section to be a strongly consistent service that ensures
linearizability and supports dynamic subscriptions.

Figure illustrates a key-value store service developed with atomic multi-
cast. There are commands to read and write single entries in the store (get and
put) and to query multiple entries (getrange). For simplicity, we partition the
store in two partitions, although the approach trivially generalizes to a higher
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Figure 4.4. Architecture overview of a highly available and scalable store service
developed with elastic multicast.

number of partitions. Replicas in G, subscribe to streams S; and S, and repli-
cas in G, subscribe to streams S, and S;. Atomic multicast is implemented with
Elastic Paxos, which pipelines acceptors in a stream. The streams that a replica
subscribes to are combined by the dMerge component.

Client commands are multicast to the replicas by the client stub, which re-
ceives the response, possibly combines the answer from different replica groups
and returns the answer to the client. get and put commands are multicast to the
stream that reaches the required partition, either S; or S;; getrange commands
are multicast to S; or Ss, if the command involves a single partition, and to S, if
the command involves both partitions.

In the case of a multi-partition getrange command, replicas coordinate the ex-
ecution to ensure linearizability [21]]. Without coordination, single-partition and
multi-partition commands can interleave in ways that may violate linearizability.
We use the coordination technique proposed in [21] to guarantee linearizable
execution of commands.

4.6 Implementation

To evaluate the capabilities of Elastic Paxos, we extended the URingPaxos libraryE]
to handle dynamic subscriptions. URingPaxos implements Ring Paxos [|82], a
high throughput atomic broadcast protocol based on TCP. Further, it implements
atomic multicast by combining multiple instances of Ring Paxos [[81]]. The library

2https://github.com/sambenz/UringPaxos
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is written in Java with some performance critical sections in C (JNI). URingPaxos
uses ZooKeeper [60] to store ring management and protocol configuration data.
Elastic Paxos replaces the static deterministic merge procedure of URingPaxos
with a new procedure (Algorithm|I)).

To demonstrate Elastic Paxos in a real application, we extended a partitioned
key-value store service (MRP-Store) with operations to handle subscribe and un-
subscribe events and support for dynamic scalability. Clients can submit put, get,
and getrange commands to replicas. Replicas execute the commands to their in-
memory data store and reply back directly to the client. Every replica belongs
to one hash-partitioned partition of the whole state and every partition has a
dedicated Paxos stream to order commands. To achieve linearizability for multi-
partition operations, the replicas coordinate their executions with direct signal
messages [121]].

An important part of Elastic Paxos is recovery. The URingPaxos library has
several mechanisms built in to recover and trim Paxos acceptors log and coordi-
nate replica checkpoints and state transfer [[14} [15]].

Further, we added support to OpenStack. A controller or a client can create or
destroy virtual machines, forming additional streams depending on the currently
measured application throughput. Adding a new stream from newly created
virtual machines (three acceptors) takes approximately 60 seconds.

4.7 Experimental evaluation

In this section, we describe our experimental environment, explain our goals and
methodology, and evaluate Elastic Paxos.

4.7.1 Experimental setup

All experiments were performed on SWITCHenginesE] an laaS cloud service for
academics. The platform uses OpenStack to provide virtual machines and Ceph
as a distributed parallel block storage, serving the virtual machines.

The hardware consists of 32 physical machines; 16 are dedicated for compute
nodes and 16 act as storage nodes. Every node (Intel S2600GZ) has 256 GB of
main memory. The distributed file system uses 128 4 TB (WD4000F9YZ) spin-
ning drives and a replication factor of 3. During our experiments, approximately
500 other virtual machines were running on the cluster.

3http:/ /www.switch.ch/services/engines/
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All virtual machines used in the experiments have 2 vCPU and 2 GB of mem-
ory. The network between these VMs is virtualized and tunneled between the
physical nodes. Paxos acceptors and replicas are scheduled to different physical
machines using the OpenStack anti-affinity host groups. Since the virtual ma-
chines do not provide local storage on real disk devices, all experiments were
run in memory only.

URingPaxos has two important parameters, A and A,. A defines the max-
imum virtual system throughput per stream, measured in Paxos instances per
second. A, defines the sampling interval to compare the actual throughput in a
stream and A. In all experiments, A is set to 4000 and A, to 100ms.

4.7.2 Objectives and methodology

We assess the behavior of Elastic Paxos under a range of different practical de-
ployments, as described next.

* We evaluate the performance of Elastic Paxos when multiple Paxos streams
are added dynamically to a set of replicas. This is important in practice
whenever the ordering protocol is the bottleneck in a SMR setup.

* We assess how Elastic Paxos can be used with a partitioned key-value store
application to dynamically re-partition the replicas under load. Re-partitioning
is required whenever the replicas are the bottleneck (e.g., due to CPU sat-
uration).

* We demonstrate how a set of Paxos acceptors can be reconfigured under
full system load. This is useful to replace a failed acceptor or an acceptor
that runs out of disk storage.

* We demonstrate how Elastic Paxos can be used as an atomic multicast
protocol to send consistent cross-partition commands, like creating par-
tial snapshots. Consistent multi-partition commands are required for any
task that requires total order across partitions.

4.7.3 Vertical elasticity

In this experiment we demonstrate how Elastic Paxos can be used to dynamically
add multiple streams to a single set of replicas.

Setup. We start the experiment with a client VM (5 threads per stream) that
sends 32 kbyte values to two replica VMs. We limited the single stream through-
put to 30% not to saturate the replicas at the beginning of the experiment. Every
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Figure 4.5. Dynamically adding streams to a set of replicas to scale up the
coordination layer. Every 15 seconds replicas subscribe to a new stream.

15 seconds replicas subscribe to a new stream and immediately deliver new com-
mands from the added stream. Every stream contains 3 acceptor VMs which are
deployed as OpenStack Heat-AutoScaling groups. In this experiment, all VMs
are started up from the beginning, but Heat-AutoScaling allows clients to boot
up or shutdown the virtual machines that participate in the streams.

Results. Figure shows the aggregated throughput at the replicas. The
most visible impact is right after the subscribe message. This is due to the fact
that we intentionally do not use the prepare _msg request (see to inform
replicas about the changes. During recovery of the new stream, a number of
messages are queued up in memory at the replicas and delivered right after the
subscription process is over. The interval averages increasing from 735, 1498,
2391 to 2660 ops/s by adding additional streams. With 4 streams, this corre-
sponds to an increase of 3.62 times the system throughput.
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4.7.4 Horizontal elasticity

In this section we evaluate how Elastic Paxos can be used to dynamically scale
out a partitioned key-value store. For this experiment we use the partitioned
key-value store described in Section [4.6]

Setup. We start the experiment with a client VM (100 threads) that sends
1024-byte put commands to random keys. Two replica VMs apply these com-
mands to their local in-memory storage and send back a command response to
the client thread. Initially only one partition is present in the system and serves
every request. Every partition is coordinated by a stream of 3 acceptor VMs.
At 30 seconds, one of the replicas subscribes to a new stream with additional
3 acceptors and informs the whole system 5 seconds later about the partition
change. The client is notified about the change in the partitioning by ZooKeeper
and starts sending random commands to both partitions.

Results. Figure shows the system throughput during re-partitioning un-
der 75% peak load. The duration of the re-partitioning is 1 second and mainly
caused by a client timeout. Commands from clients which are received by the
wrong partition after the split are discarded. The clients will resend them after
a timeout to the correct partition. The throughput after splitting the partition is
half at every replica. Further, also the CPU consumption at every replica drops af-
ter the re-partitioning event. Therefore, both partitions could now clearly handle
100% more operations per second.

4.7.5 Reconfiguration

In this experiment we show how Elastic Paxos can be used to reconfigure a state
machine under full system load. Since reconfiguration of atomic broadcast is
a sub problem of reconfigure atomic multicast, we use dynamic subscriptions to
replace the set of acting acceptors. Changing the set of acceptors is required, if for
example they run out of disk space, one acceptor stable storage is not recoverable
or to tolerate more failures (e.g., 5 instead of 3 acceptors). The goal of this
experiment is to show that dynamic subscription is an efficient solution to state
machine reconfiguration.

Setup. We start the experiment with a client VM (60 threads) that sends
32 kbyte values to two replica VMs. These two replicas subscribe to the first
stream which contains 3 acceptor VMs. After 40 seconds, we inform the replicas
that we will add a second stream (with a prepare_msg request). After 45 seconds
we let the replicas subscribe to the new stream containing 3 different acceptor
VMs. Right after the subscribe message we submit a unsubscribe message to the
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Figure 4.6. Re-partitioning of a key-value store (75% peak load). After 35 sec-
onds the throughput and CPU consumption at both replicas decreased.

original stream.

Results. Figure shows the reconfiguration under full load of 550 Mbps.
Since the replicas received a prepare_msg (see [4.4.3)), they can start up and re-
cover the new stream in the background without blocking the main message
execution. With this optimization, reconfiguration introduces almost no over-
head.

4.7.6 Consistent cross-partition commands

We now show how Elastic Paxos can link any subset of partitions to send consis-
tent cross-partition commands.

Setup. We start the experiment with a client VM (70 threads) sending 1024-
byte put commands to random keys. Four replica VMs serve each 1 partition,
apply these commands to their local in-memory storage and send back a response
(using a UDP) to the client thread. All partitions are coordinated by a stream of
3 acceptor VMs each. Every 12 seconds we subscribe different partitions to an
additional fifth stream and send a getrange command to it. Right after sending
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Figure 4.7. State machine reconfiguration under full system load. At 45 seconds
we replace the set of active acceptors with a new one.

the command, we unsubscribe both replicas from the common stream.

Results. Figure shows the throughput at the client that sends put com-
mands to all 4 partitions. The performance impact, visible when any subset of
partitions is connected, is due to the increased latency during re-configuration.
The fixed amount of threads block and depending on how many partitions are
involved or randomly addressed the aggregated throughput drops during a short
period. The latency of the getrange commands is less than 100 msec but higher
than the one of the put commands. This is because they arrive at the replicas
during the subscription process.

4.8 Related work

In this section, we briefly review related work on atomic multicast, group mem-
bership and state machine reconfiguration.

Atomic multicast. An overview of atomic multicast algorithms is provided in
Section3.8] Elastic Paxos is based on URingPaxos which is iteslef based on Multi-
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Figure 4.8. Use Elastic Paxos to send consistent cross-partition commands. The
different subset of partitions are created dynamically at runtime.

Ring Paxos [|81]]. The algorithm of Elastic Paxos to reconfigure the deterministic
merge function is similar to [23]]. The chosen timestamps for subscribe and un-
subscribe messages are the stream positions which are persisted in the streams
themselves. Therefore for reconfiguration, Elastic Paxos requires each involved
stream (group) to be able to reach consensus.

E-Cast [[109]] addresses similar problems like Elastic Paxos does. Compared to
Elastic Paxos, E-Cast defines multicast as a stateful routing problem. E-Cast uses
replicated routers (sequencers) to partially order messages and reconfigure the
system, while Elastic Paxos uses the deterministic merge function in each replica.
Therefore, Elastic Paxos does not require a global sequencer to order messages
and reconfigure the system.

Group membership. Group membership has been an active field of research for
decades, in the context of group communication protocols [31]]. While in atomic
broadcast total order is achieved by a sequence of individual consensus rounds,
group communication protocols are based on a sequence of view changes. Group
membership is a special case of the set membership problem, in which all pro-
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cesses decide on which non-faulty processes belong to the current set (view) [96]].

In Elastic Paxos, the round-robin delivery order can be seen as a dynamic set
of changing streams. While the total order within a stream is based on atomic
broadcast, the deterministic merge function is based on a sequence of subscrip-
tion changes, similar to view changes. Compared to group communication pro-
tocols, Elastic Paxos does not use view changes to remove faulty replicas, but to
dynamically scale. Additionally, the subscriptions in Elastic Paxos are persisted
in the streams, every recovering replica can re-learn all subscription changes.

Rollup [54]] is a protocol designed for fast cluster membership updates. The
main goal is to avoid disruptive behavior when the master or leader of a proto-
col is replaced. Since Elastic Paxos is based on Paxos, frequent changes of the
coordinator have an impact on performance. Compared to Rollup, Elastic Paxos
is designed to scale atomic multicast groups rather than addressing fast replace-
ment of the Paxos leader.

State machine reconfiguration. Changing the set of acting acceptors is dis-
cussed in [[71} [73]]. Elastic Paxos uses a different approach. It does not change
the set of the acceptors itself, rather it replaces all of them by a new set (i.e., new
stream).

Group communication protocols reconfigure the system to tolerate failures
(e.g., process crashes). In general they use a fault-tolerant consensus algorithm
to coordinate the view change. As already described, Elastic Paxos uses a similar
way to add and remove new streams.

Similar to Elastic Paxos, SMART [[74] uses different independent Paxos streams
to reconfigure a replicated state machine. But, while SMART changes the set of
replicas, Elastic Paxos keeps the replication group constant and changes the sub-
scriptions. This allows Elastic Paxos, additionally to reconfiguration, also to scale
by adding multiple Paxos streams to a single replication group. Adding a new
replica to a replication group is part of Elastic Paxos’s recovery procedure.

Elastic SMR [|86] optimizes static splits and merges of partitions. Instead
of implementing ad-hoc state transfer protocols and performing scaling opera-
tions as background tasks, it proposes a modular partition transfer protocol for
creating and destroying such partitions at runtime. The view manager of BFT-
SMaRt [20] uses robust algortithms that tolerate byzantine failures.

Eve [[65] implements scalable state machine replication on multi-core servers,
but it is static and does not allow reconfiguration. DynaStore [[4]] allows recon-
figuration without consensus and can operate in a completely asynchronous sys-
tem [[48]. However, compared to Elastic Paxos, DynaStore considers a strictly
weaker model (i.e., read/write register instead of an arbitrary state machine).



Chapter 5

Distributed Atomic Data Structures

5.1 Introduction

Most modern cloud services are distributed systems. Today’s on-demand com-
puting resources, common in public cloud environments, provide operators of
these systems with the possibility to provision as many servers as needed by the
service and to react quickly to changes in application workload. Starting up new
servers once increased traffic is detected and shutting down low utilized servers
to save costs are common operations. While it is relatively easy to reconfigure
stateless components (e.g., application servers), dynamically provisioning state-
ful components (e.g., storage) is complicated.

Major effort has been spent in the recent years to improve the performance,
scalability and reliability of distributed data stores. But when it comes to using
research results in real applications, existing solutions are often not sufficient.
Implementing applications that support strong consistency, elastic scalability and
efficient recovery is a daunting task.

Scalable state machine replication has been shown to be a useful technique
to solve the above challenges in building reliable distributed data stores [[14, 21]].
However, implementing a fully functional system, starting from the atomic mul-
ticast primitives, supporting required features like recovery or dynamic behav-
ior is a challenging and error-prone task. Providing higher-level abstractions
in the form of distributed data structures can hide this complexity from sys-
tem developers. For example, given a distributed B-tree, services like distributed
databases [[5]] or file systems [[75]] can be implemented in a distribution transpar-
ent manner. In this chapter we discuss how to implement a distributed ordered
map as a ready-to-use data structure.

Existing distributed data structures often rely on transactions or distributed
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locking to allow concurrent access. Consequently, operations may abort. A be-
havior which must be handled by the application. We implemented a distributed
ordered map (DMap) that does not rely on transactions or locks for concurrency
control. Relying on atomic multicast, all partially ordered operations succeed
without ever aborting. Additionally, DMap is scalable, fault-tolerant and sup-
ports consistent long-running read operations on multi-partition snapshots to
allow background data analytics.

This chapter makes the following contributions. First, we propose a lock-free
distributed ordered map with strong multi-partition consistency guarantees that
implements the Java SortedMap interface. Second, we show how DMap can be
used to reliably distribute any Java application, like a transactional database.
Third, we detail the implementation of DMap and highlight the underlying repli-
cation and ordering techniques. Finally, we provide a performance assessment
of all these components.

5.2 DMap Service

DMap is a distributed sorted key-value store which implements the full Java Sort-
edMap (Table and the ConcurrentMap interface (Table[5.3).

It is generic in the sense that it allows arbitrary Java objects as keys and val-
ues. For example, one can define a SortedMap that uses Integer objects as keys
and String objects as values:

SortedMap<Integer,String> m;

or a map that uses String objects as keys and holds other complete Java maps
as values. DMap also supports user generated objects, as long as they are Java
serializable:

SortedMap<String,Map<String, YourObject>> n;

DMap can be used to distribute any local Java application relying on a Sort-
edMap (or Map) by simply replacing the interface implementation. For example,

by replacing:
SortedMap<K,V> m
by:
SortedMap<K,V> m

new TreeMap<K,V>();

new DistributedOrderedMap<K,V>(...);
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DMap uses dynamic atomic multicast (Chapter |4)) to implement a lock-free
concurrent data structure. All operations in DMap are strongly consistent and
ensure linearizability (Section[2.7). This includes multi-partition commands like
size() or subMap() (range).

Linearizability is important, since DMap is built to replace local data struc-
tures. Because we can not know the guarantees a Java application expects from
the underlying data structure, either implicit or explicit, DMap must provide the
strongest form of consistency.

Therefore, DMap runs with any existing code. For example, iterating over all
entries in the data structure can be achieved as follows.

Iterator i = dmap.entrySet().iterator();
while(i.hasNext()){
Entry e = i.next();
System.out.println(e);

Iterators operate on consistent multi-partition snapshots (Section and
never throw a ConcurrentModificationException. The ordered set of entries is
streamed to the client (Section as it uses it. This implementation allows
long-running data analytics operations over huge data sets.

5.3 System Architecture

In this section, we give an overview of DMap, detail how the dynamic ordering
protocol is used, explain the replicated database and highlight the implemented
recovery techniques.

5.3.1 DMap overview

DMap achieves scalability trough hash partitioning, supports dynamic re-partitioning,

recovery and uses scalable state machine replication to provide fault-tolerance.
Clients use the Apache Thrift [[| RPC framework to communicate with the

DMap servers. To initialize a DMap client, a map identifier and a connection

Thttps://thrift.apache.org/
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Table 5.1. DMap operations (Java Map interface).

Interface Map<K,V>
/* Removes all of the mappings from this map. */
void clear()
/* Returns true if this map contains a mapping
for the specified key. */
boolean containsKey(K key)
/* Returns true if this map maps one or more
keys to the specified value. */
boolean containsValue(V value)
/* Returns the value to which the specified key is mapped,
or null if this map contains no mapping for the key. */
V get(K key)
/* Returns true if this map contains no key. */
boolean isEmpty()
/* Associates the specified value with the specified
key in this map. */
V put(K key, V value)
/* Removes the mapping for a key from this map
if it is present. */
V remove(K key)
/* Returns the number of key-value mappings
in this map. */
int size()
Interface Iterator<E> (from keySet(),values(),entrySet())
/* Returns true if the iteration has more elements. */
boolean hasNext()
/* Returns the next element in the iteration. */
E next()

to a ZooKeeper E] server are required. Zookeeper is used to look-up at least one

DMap server, which will be used to download the initial system partition map.
The partition map is a mapping between a 32 bit integer token, indicating

the position in a hash ring, and a set of DMap servers responsible for the corre-

Zhttps://zookeeper.apache.org/
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Table 5.2. DMap operations (Java SortedMap interface).

Interface SortedMap<K,V> extends Map<K,V>

/* Return a view of the portion of this map whose
keys range from fromKey to toKey: */

SortedMap<K,V> subMap (K fromKey, K toKey);

/* Return a view of the portion of this map whose
keys are strictly less than toKey: */

SortedMap<K,V> headMap (K toKey);

/* Return a view of the portion of this map whose
keys are greater than or equal to fromKey: */

SortedMap<K,V> tailMap (K fromKey);

/* Return the first (lowest) key currently
in this map: */

K firstKey();

/* Return the last (highest) key currently
in this map: */

K lastKey();

/* Return a Set view of the keys contained
in this map: */

Set<K> keySet();

/* Return a Collection view of the values contained
in this map: */

Collection<V> values();

/* Return a Set view of the mappings contained
in this map: */

Set<Entry<K, V>> entrySet();

sponding token. Every DMap client holds a cached version of the partition map,
including their version number in memory. DMap servers are contacted directly
for a specific command on a key (e.g., put(K,V)); or any server can be contacted
to send multi-partition commands (e.g., size()). Commands include the partition
map version. If a server detects a command with a outdated version number, the
client will be notified and can install the most recent partition map. Figure
shows the Client-Server RPC communication. Among the servers responsible for
a partition, a client chooses randomly one for each command.

Client commands, received trough Thrift at one server, are atomically multi-
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Table 5.3. DMap operations (Java ConcurrentMap interface).

Interface ConcurrentMap<K,V>

/* If the specified key is not already associated
with a value, associate it with the given value. */

V putIfAbsent(K key, V value)

/* Removes the entry for a key only if currently
mapped to a given value. */

boolean remove(Object key, Object value)

/* Replaces the entry for a key only if currently
mapped to some value. */

V replace(K key, V value)

/* Replaces the entry for a key only if currently
mapped to a given value. */

boolean replace(K key, V oldValue, V newValue)

casted to all involved servers; executed by all involved servers and the response
is sent back to the client by the one server that originally received the command.

Thrift Dmap
server | Server G1

Map operations:

get, put, size
:

Dmap Client | gient

7\

Thrift

Thrift
server

Figure 5.1. DMap Client-Server communication.

5.3.2 Multi-Partition Snapshots

To ensure the ordered delivery of entries while iterating over the hash partitioned
map, DMap clients proceed as follows: First, they create a global consistent in-
memory snapshot at all partitions. Second, they stream the snapshot in parallel
from every partition a couple of entries at a time. Third, they deliver to the
application the lowest entry of all partitions until all entries are delivered. This
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procedure allows to iterate over a huge amount of data, since only some of them
are kept in memory.

The key to implementing such efficient iterators over a hash-partitioned sys-
tem is the ability to create multi-partition snapshots. Creating such snapshots is
complicated since the partitions (or even the processes) do not share a common
clock [29]. DMap relies on atomic multicast to create in-memory snapshots at
the replicas. Atomic multicast, as described below, allows to send partially, or in
this case totally, ordered commands to be executed at every replica. As shown
in [[14]], such global messages do not impact commands sent to a single partition.

5.3.3 DMap replicated database

DMap uses atomic multicast to order all commands for implementing scalable
state machine replication (Figure [5.2). Atomic multicast is a communication
abstraction defined by the primitives multicast(S, m) and deliver(m), where m is
a message and S is a multicast stream. Processes choose from which multicast
groups they wish to deliver messages. If process p chooses to deliver messages
multicast to stream S, we say that p subscribes to stream S.

DMAP ]

(Elastic Paxos)

‘ Atomic Multicast ’
‘ (Multi-Paxos)

Atomic Broadcast ’

[ Network ]

Figure 5.2. Atomic multicast protocol stack.

Atomic multicast, as discussed above, relies on static subscriptions of replicas
to streams, that is, subscriptions are defined at initialization and can only be
changed by stopping all processes, redefining the subscriptions, and restarting
the system. To let DMap dynamic re-partition the state, it relies on Elastic Paxos
(Chapter [4). Elastic Paxos allows to dynamically add and remove resources to /
from an online partially replicated state machine.

Elastic Paxos extends the atomic multicast interface with two additional prim-
itives: subscribe_msg(G, S) and unsubscribe_msg(G, S), which replicas in replica-
tion group G can use to subscribe to and unsubscribe from stream S. After repli-
cas subscribe to stream S, they will eventually deliver messages multicast to S.
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Similarly, if replicas unsubscribe from S, they will eventually stop delivering mes-
sages multicast to S. In both cases, atomic multicast guarantees acyclic ordered
delivery.

The design of DMap is similar to the one of MRP-Store introduced in Sec-
tion There are however, some important differences between MRP-Store
and DMap. First, DMap has a fully replicated partition map which is part of the
system itself. While clients in MRP-Store rely on ZooKeeper to locate replicas,
DMap clients can retrieve the partition map from every replica. Further, changes
in the partitioning schema of DMap are partially ordered with all other requests
in the system. Second, in MRP-Store all replicas send back an UDP message as
a response to an executed command. In DMap, the client-server communica-
tion is entirely handled by Thrift (TCP) and therefore only the randomly chosen
replica is answering to a client. This improves the overall throughput, since not
all replicas are required to respond to a command. Moreover, UDP showed poor
performance in some cloud environments. Third, DMap uses global in-memory
snapshots to optimize the state transfer during recovery and re-partitioning. Af-
ter a checkpoint is created, the data can be streamed by multiple replicas in
parallel.

5.3.4 Recovery

The mechanism used by a process to recover from a failure depends on the role
played in the server. In a typical deployment of Paxos (e.g., state machine repli-
cation, clients broadcast commands and replicas deliver and execute those com-
mands in the same total order before responding to the clients. In this case,
clients act as proposers and replicas as learners, while acceptors ensure ordered
delivery of messages.

Acceptors need information related to past consensus instances to serve re-
transmission requests from recovering replicas. So, before responding to a coor-
dinator’s request with a Phase 1B or Phase 2B message, an acceptor must log its
response onto stable storage. This ensures that upon recovering from a failure,
the acceptor can retrieve data related to consensus instances it participated in
before the failure.

Learners can always recover by requesting a retransmission of decided in-
stances from the acceptors. However, such retransmission negatively impact the
system throughput [19]. Therefore, each replica periodically checkpoints its state
onto stable storage. Upon resuming from a failure, the replica retrieves and in-
stalls its last stored checkpoint and recovers from the acceptors the commands
missing in this checkpoint (i.e., the commands executed after the replica’s last
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checkpoint). Acceptors can coordinate with replicas to delete data about old
Paxos instances. If all replicas have saved a checkpoint that reflects messages
decided in the i-th Paxos instance, then acceptors can delete data related to in-
stances prior to i [[14]].

DMap can be configured to recover from stable storage like explained above.
However, it supports also a full in-memory mode. In such a configuration, Paxos
acceptors keep only the last 15k instances in memory and replicas do not check-
point to stable storage. A recovering replica will first subscribe to all required
multicast groups. Elastic Paxos ensures that after subscribing to all streams, the
message ordering is guaranteed. Followed by requesting the most recent parti-
tion map and a snapshot of the current data on all replicas. To download and
install of these checkpoints a recovering replica behaves like a DMap client. The
version of the partition map and the snapshot id are the unique values of the
Paxos instance in which the commands are decided. Therefore, the recovering
replica can skip learned commands before the snapshot id and start applying
commands with ids right after the snapshot. To finish recovery, a replica adds
itself to the system partition map. After this point, clients will start sending com-
mand to the recovered replica.

5.4 H2 database on DMap

To demonstrate how useful a distributed data structure like DMap is, we imple-
mented a transactional database on top of it. We replaced the storage engine
(MVStore) of the H2 E] database by DMap.

H2 has a modular design, which encapsulates the SQL query processor from
the storage, B-tree, layer. Assuming a distributed storage engine, multiple in-
dependent H2 query processor instances can run simultaneous on the same dis-
tributed data.

The core of H2 is MVStore. MVStore allows to create multiple independent
sorted maps. The whole database relies on this storage abstraction. All database
schema information, primary and secondary indexes, even the undo log is per-
sisted in this layer. Therefore, replacing the MVMap used by MVStore with DMap
distributes the whole database. H2 with MVStore supports read-commited trans-
actions. Even tough DMap is linearizable, it can not provide stronger guarantees
than MVStore itself.

We needed less than 500 lines of source code to achieve our goal and run
multiple H2 instances on top of DMap. Moreover, the modular design of H2

3http:/ /www.h2database.com



78 5.5 Experimental evaluation

and the expressive interface of DMap allows us to use all special database op-
erations, like: creating or altering tables, creating indexes or using transactions
without further modifications. The new system supports distributed transactions,
based on a distributed undo log, and online database schema altering (e.g., cre-
ating tables) which are immediate visible to all query processors. However, since
some query optimizers rely on data local to the query processors, such operations
would require additional work to distribute the required information.

By adding one additional Java class to H2, we could not only distribute the
whole database, but due to the properties of DMap, we could implement a scal-
able (partitioned) and fault-tolerant (active replicated) system.

5.5 Experimental evaluation

In this section, we experimentally assess various aspects of the performance of
our proposed systems:

* We measure the baseline performance and horizontal scalability of DMap.
* We evaluate the impact of recovery on performance.
* We evaluate the performance under splitting a partitioning.

* We use TPC-C ﬂ to evaluate the performance of H2 running on DMap.

5.5.1 Hardware setup

All the experiments were performed in a cluster of 10 HP SE1102 servers, equipped
with 2x 2.5 GHz Intel Xeon CPUs and 8 GB of main memory. These servers were
interconnected through a HP ProCurve 2910 switch with 1 Gbps interfaces. The
round trip time is 0.1 millisecond between the nodes. In all the experiments,
clients and servers were deployed on separate machines. Elastic Paxos was ini-
tialized as follows: A = 5 millisecond, A = 15k and use in-memory storage. We
keep the machines approximately synchronized by running a NTP service.

“http:/ /www.tpc.org
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5.5.2 Throughput and Latency
Scalability of DMap

Setup. In this experiment 60 clients per partition send put() commands to ran-
dom keys in a closed loop. The values are strings of approximately 380 bytes
each. We use up to 3 partitions. Every partition is served by 3 replicas running
on one server each.

Results. Figure (left) shows the throughput increase of the overall system
while adding new partitions. The scalability is linear in the number of partitions,
while it still offers the ability to execute consistent cross-partition commands.
Figure (right) shows the aggregated throughput and latency over time to
three partitions. Avg. throughput is 33170 operations per second with an aver-
age latency of 5.3 ms.

Figure [5.4] shows the cumulative distribution function of the latency for all
requests. Commands to one partition show a sharp CDF around the average
latency. Increasing the number of involved partitions also increases the coordi-
nation overhead of Elastic Paxos. In Elastic Paxos, inbalances of client loads are
compensated every A time interval. In this case 5 ms. Adding more partitions
increases the probability that one partition must wait until it can proceed with
the next executions. This is visible in the CDF with a bend in the curve around 5
ms.
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Figure 5.3. Throughput scalability (left) of DMap with 3 partitions. Runtime
behavior (right) of throughput and latency with 3 partitions.
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Figure 5.4. Cumulative distribution function of the command executions for 1
to 3 partitions.

Performance of Iterators

Setup. In this experiment, an increasing number of clients create an iterator
(snapshot) in DMap with 3 partitions. We measure how fast every client can
iterate over the whole distributed data set. The data set was previously provi-
sioned with 1.2 million key-value pairs.

Results. As seen in Figure the iterators show a better performance than the
single command throughput. Initially, creating a snapshot is slow (200 ms), but
once a snapshot (iterator) is created, every client can stream the data parallel
from every replica in all partitions. A single iterator achieves 50k entries per
second while the number of parallel iterators scales almost linearly up to 50
clients.

Yahoo! Cloud System Benchmark

Setup. We evaluate the performance of DMap using the Yahoo! Cloud System
Benchmark (YCSB [35]). To evaluate a baseline performance, we compare with
an unreplicated server, using only the Thrift interface. Both systems are deployed
with 3 partitions and we use 180 clients. The data set was previously provisioned
with 1.2 million key-value pairs. All 6 core workloads are evaluated.

Workload A (Update heavy workload): This workload has a mix of 50/50
reads and writes. An application example is a session store recording recent
actions.
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Figure 5.5. Performance of retrieving entries of an DMap iterator for 1 to 100
parallel clients.

Workload B (Read mostly workload): This workload has a 95/5 read-
s/write mix. An application example is photo tagging where adding a tag is
an update, but most operations are reads.

Workload C (Read only): This workload is 100% read. An application ex-
ample is a user profile cache, where profiles are constructed elsewhere (e.g.,
Hadoop).

Workload D (Read latest workload): In this workload, new records are
inserted, and the most recently inserted records are the most popular. An appli-
cation example is user status updates, where people want to read the latest.

Workload E (Short ranges): In this workload, short ranges of records are
queried, instead of individual records. An application example is a threaded
conversations, where each scan is for the posts in a given thread (assumed to be
clustered by thread id).

Workload F (Read-modify-write): In this workload, the client will read a
record, modify it, and write back the changes. An application example is a user
database, where user records are read and modified by the user or the user ac-
tivities are recorded.

Results. The YCSB throughput of all workloads is shown in Figure[5.6] Workload
B,C and D correspond to the baseline performance of single partition commands.
Workload A and F send update and read-modify-write commands. The way YCSB
is implemented in DMap, such commands are composed of a read, followed by
a write command. YCSB is a multi-map which allows to update a single entry in
the value. DMap must first read the value as map, update field and put again the
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whole value.

Workload E shows the performance of small scans. Retrieve a scan in DMap,
creates an iterator and loops over a small amount of values. Since the cost in
DMap is creating iterators (snapshots) and not looping over iterators, the overall
performance in case E is only 290 scans per second.

In all workloads, except E, the unreplicated Thrift implementation is faster.
This is obvious, since all partitions run independent from each other (consistent
scans are not possible) and there is no latency overhead of atomic multicast.
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Figure 5.6. Yahoo! Cloud Serving Benchmark for A:update heavy, B:read
mostly, C:read only, D:read latest, E:short ranges, F:read-mod-write workloads.

5.5.3 Recovery

Setup. As in the previous experiments, we use 180 clients to generate load on
3 partitions with 3 replicas each. The data set was previously provisioned with
1.2 million key-value pairs. After 20 s we kill one replica on one partition. At
40 s we bring back the killed replica, which immediate starts to recover (Sec-
tion|>.3.4).

Results. Figure shows the system throughput over time while recovery is
active. Annotation (1) indicates the Kkill of one replica.

The performance drops to almost zero, since all commands to the failed
replica are timing out. Additionally, all clients have to update their locally cached
partition map. The partition map got updated, because the killed replica was
removed. At (2), the replica starts recovering. Point (3) indicates the end of
recovery. The recovered replica updates the partition map with the information
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that it is operational. Clients will install a new partition map; but compared to
(1), no Thrift connections are invalidated. State transfer while recovering is very
fast, since it uses the iterators evaluated in Figure|5.5
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Figure 5.7. Impact on client throughput due to recovery of a DMap replica
under full system load.

5.5.4 Re-Partitioning

Setup. In this experiment we start with 2 partitions (P1, P3) and after 20 s we
dynamically add a third one (P2). We use 180 clients generating load and the
data set was previously provisioned with 1.2 million key-value pairs. The new
set of 3 replicas first recover the state from the currently available partition (not
shown in this experiment), reconfigure all involved atomic multicast streams and
later update the system partition map.

Results. Subscribing to and unsubscribing from multicast streams have no vis-
ible impact, as seen in Figure The overall throughput drops during re-
partitioning for a short period to 50% (half of the clients are re-assigned to the
new partition). After re-partitioning, the overall throughput increases. The split-
ted partition (P1) was responsible for 2/3 of the hash space and therefore over-
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loaded. After re-partitioning, every partition is responsible for 1/3 of the keys,
which explains why the average latency decreases.
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Figure 5.8. Impact on performance while splitting a partition in DMap.

5.5.5 Performance of H2 database running on DMap

Setup. In this experiment we use DMap with 3 partitions which act as distributed
storage for the H2 database. To evaluate the performance we run the TPC-C on-
line transaction processing benchmark.

TPC-C simulates a computer system to fulfill orders from customers. The com-
pany sells 10000 items and keeps its stock in 2 warehouses. Each warehouse has
10 sales districts and each district serves 300 customers. TPC-C involves a mix
of five concurrent transactions (20 threads’) of different types and complexity:

* New-order: receive a new order from a customer: 43% (9 SQL statements)

* Payment: update the customers balance to record a payment: 43% (9 SQL
statements)

SMVStore provides read-commited as isolation level. To execute TPC-C correctly the multi-
programming level should be set to one thread..
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* Delivery: deliver orders asynchronously: 4% (8 SQL statements)

e Order-status: retrieve the status of customer’s most recent order: 4% (6
SQL statements)

* Stock-level: return the status of the warehouse’s inventory: 4% (3 SQL
statements)

Results. In TPC-C, throughput is defined by executed New-Order transactions
per minute while the system executes all transaction types. H2 on DMap achieves
480 New-Order transactions per minute. This is 5.4 times slower than a repli-
cated H2 instance accessed over TCP

Figure [5.9] shows all operations the database executes on DMap during the
execution of TPC-C. Single-partition commands run in parallel and can be scaled
by adding new replica sets. The all-partition commands must be executed by
every replica and are not scalable. The create range commands are due to select
queries of a range. H2 executes more than 100 DMap operations per second.
But, the TPC-C throughput of the New-Order transaction is only about 8 per
second. This can be explained while analyzing how many DMap operations a
SQL statement requires (Table [5.4). On average, every SQL statement requires
10 DMap operations to update the undo log twice and setting the locked and final
value to the table. The H2/DMabp integration is not optimized to use a transaction
cache. Such a cache could possibly reduce the number of DMap operations. The
current implementation to use DMap in H2 consists of only one Java class. The
goal was to demonstrate the simplicity of integration and not to result in a fast
database.

Table 5.4. Overview of H2 SQL queries and resulting DMap operations.

H2 : "insert into test values (1,’String’)"

DMap: 4*GET, PUT, PUTIFABSENT, 2*GET, PUT, REMOVE
H2 : "select * from test where id=1"

DMap: GET

H2: "update test set value name="XYZ’ where id=1"

DMap: 4*GET, PUT, REPLACE, 3*GET, PUT, REPLACE,
2*GET, PUT, REMOVE, 2*GET, PUT, REMOVE

H2: "select * from test"
DMap: SIZE, CREATERANGE
H2: "delete from test where id=1"

DMap: 4*GET, PUT, REPLACE, 2*GET, 2*REMOVE
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Figure 5.9. H2 operations on DMap while performing the TPC-C benchmark.

5.6 Related work

In this section, we review related work on distributed data structures, atomic
multicast, and recovery.

Distributed data structures. There exists a variety of systems that implement
distributed data structures. An overview is shown in Table They provide
different interfaces, consistency guarantees or are built for specific optimized
use-cases. To the best of our knowledge, no system implements a generic Java
interface and provides scalable, consistent range queries.

One of the first distributed data structures similar to our ordered map was
a B-tree algorithm based on a B-link tree proposed in [62]]. However, the tree
was designed for distributed memory architectures and not high latency net-
works. Even in the modern literature, not many distributed tree structures exist.
SD-RTree [43]] is a scalable distributed R-tree designed for networks. This data
structure is based on a binary tree and optimized for spatial objects. The first dis-
tributed B-tree that tries to address similar requirements to the ones described
in this thesis is presented in [3]]. The concurrency control is based on trans-
actions and not locking, which was common in B-trees for distributed memory.
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Table 5.5. Overview of existing distributed data structures.

System Generic Java Iface Type Consistency Partitioned

DMap SortedMap SortedMap strong yes

Yesquel no SortedMap strong yes

HBase no SortedMap strong yes

Cassandra no Map weak yes

Redisson ConcurrentMap Map weak yes
SortedSet SortedSet weak yes

Hazlecast = ConcurrentMap Map weak yes

Dynamo no Map (w/ Scan) weak yes

Hyperdex no Map (w/ Scan) strong yes

SimpleDB  no Map (w/ Scan) consistent reads  yes

Ignite JCache Map strong replicated or partitioned

Atomix no Map strong no

Minuet, a scalable distributed multiversion B-tree [[105]] addresses the problem of
long-running data analytics workloads in the context of short-living transactions.
Minuet is based on Sinfonia [6]] but provides an optimistic concurrency control
mechanism to scale parallel inserts and updates. Further, it implements consis-
tent snapshots and copy-on-write tree branches. Recent work on distributed data
structures also proposes to use skip lists to implement efficient range queries for
dictionaries [|8]. Compared to the work presented in this thesis, it uses a hard-
ware level message passing interface (MPI).

Several other publications propose B-trees to build distributed systems. Box-
wood [[75]] uses a distributed B-tree to implement a file system. The tree oper-
ations are coordinated by a distributed lock service. Hyder [[18]] implements an
index structure based on a binary tree on a shared flash log. Similar to Hyder,
Tango [[13]] generalizes distributed data structures on append only logs. Both use
the log for transaction control and append a new version of the changed index
to the log.

HyperDex [46] and Yesquel [[5]] are two systems that are the most related
to the work proposed here. HyperDex implements a partitioned key-value store
which allows efficient search functions and secondary indexes based on a novel
multi-dimensional hash function. Yesquel implements a distributed B-tree and
proposes several optimizations to use the tree for a distributed SQL database. The
architecture and concurrency control used in Yesquel is very similar to Sinfonias’s
mini-transactions. Both systems implement a rich API. However, compared to
DMap, their interfaces are not compatible to existing well-know Java interfaces.
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Distributed databases. The idea of running multiple independent query proces-
sors on a distributed data store is not new. MoSql [[107]] implements a distributed
storage engine for the MySQL database. Compared to H2/DMap, it uses deferred
update replication to certify concurrent transaction before commit. Yesquel [[5]]
also replaces the local B-tree implementation of SQlite with their distributed
balanced tree. F1 [[102] is a distributed SQL database which drives the Google
ad-words business. The storage engine used by F1 is Spanner [[36].



Chapter 6

Conclusion

The rise of worldwide Internet-scale services demands large distributed systems.
Indeed, when handling several millions of users, it is common to operate thou-
sands of servers spread across the globe. Here, replication plays a central role, as
it contributes to improve the user experience by hiding failures and by providing
acceptable latency. In this thesis, we claim that atomic multicast, with strong
and well-defined properties, is the appropriate abstraction to efficiently design
and implement globally scalable distributed systems.

In this thesis is, we contend that instead of building a partial order on requests
using an ad hoc protocol intertwined with the application code, services have
much to gain from relying on a middleware to partially order requests. Moreover,
such a middleware must include support for service recovery and add dynamic
reconfiguration, both non trivial requirements which should be abstracted from
the application code. For that reason, application developers should only be
exposed to strong consistent geo-distributed data structures as building blocks
instead of directly implementing low-level coordination protocols.

6.1 Research assessment

The research conducted within this dissertation provides three major contribu-
tions: (i) We have shown that atomic multicast is a suitable abstraction to build
global and scalable systems. (ii) We could demonstrate how Elastic Paxos can
be used to dynamically reconfigure atomic multicast, which let a replicated data
store be repartitioned without service interruption. (iii) We could show how
a distributed data structure middleware based on Elastic Paxos (DMap) can be
used to reliable distribute any Java application, like a full transactional database.
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URingPaxos. With an efficient implementation of an atomic multicast algo-
rithm, we could demonstrate the capabilities of such an abstraction to support
at the same time scalability and strong consistency in the context of large-scale
online services. URingPaxos scales not only in local-area environments up to the
maximum network line speed of 10 Gbit/s but also on globally distributed wide
area networks. It allows to build scalable partial ordered data stores. Further,
we could contribute a novel technique to recover atomic multicast, even under
full system load, and proposed new mechanism to reduce latency of global com-
mands.

Elastic Paxos. In today’s cloud environments, adding resources to and remov-
ing resources from an operational system without shutting it down is a desirable
feature. As we could show, atomic multicast is a suitable abstraction to build
scalable distributed systems. But atomic multicast, as discussed above, relies
on static subscriptions of replicas to groups, that is, subscriptions are defined
at initialization and can only be changed by stopping all processes, redefining
the subscriptions, and restarting the system. Therefore, we designed a dynamic
atomic multicast algorithm, Elastic Paxos. We could show how Elastic Paxos can
be used to dynamically subscribe replicas to a new multicast group (i.e., a new
partition), which let a replicated data store be repartitioned without service inter-
ruption. Further, we demonstrate how dynamic subscriptions offer an alternative
approach to reconfiguring a Paxos replicated state machine.

DMap. Scalable state machine replication has been shown to be a useful tech-
nique to solve the challenges in building reliable distributed data stores. How-
ever, implementing a fully functional system, starting from the atomic multicast
primitives, supporting required features like recovery or dynamic behavior is a
challenging and error-prone task. Providing higher-level abstractions in the form
of distributed data structures can hide this complexity from system developers.
For that reason, we proposed that system developers can gain much from dis-
tributed data structures, instead of implementing low level abstractions. We
implemented DMap, a lock-free concurrent ordered map, supporting dynamic
re-partitioning and recovery, exposed as a well known Java interface. Different
to existing distributed data structures, which often rely on transactions or dis-
tributed locking to allow concurrent access, DMap relies on Elastic Paxos to par-
tially order all operations. Further, it supports global consistent snapshots which
allows long-running read operations for background data analytics. Finally, to
strengthen our claims, we ported a transactional database on top of DMap.
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6.2 Future directions

Latency in globally distributed environments. While we could show that
atomic multicast is a suitable abstraction to build global distributed data stores,
our algorithms could be improved in terms of latency in global distributed envi-
ronments. Mult-Ring Paxos and Elastic Paxos are designed to maximize through-
put. The underlying ring topology, however, introduces additional latency. While
this effect can be neglected in local-area networks, spawning instances around
the globe causes unnecessary latencies. One direction of future work could be
to replace the ring topology for global commands with latency optimal algo-
rithms [|69]].

Atomic Multicast in other research domains. Much of the studies in this thesis
focus on distributed data stores. There are however many other fields of research
and practical systems which could benefit from strong ordering guaranties and
scalability of atomic multicast. One such field could be for example distributed
composite event detection. Many industries are confronted with the challenges
of pervasive sensor data (e.g., internet of things). But when it comes to their
analysis, many platforms are still implemented in a centralized manner and batch
processing principles (e.g., MapReduce jobs). Such systems assume that one can
store all data in memory or on disk and filter the relevant part afterward. Once
the incoming traffic to store grows, it is more efficient to implement such systems
in a distributed control loop.

Atomic multicast could be used to distribute composite event detection. The
execution of the pattern matching should be close to the event sources to handle
the ever-increasing amount of data. Existing solutions differ in the expressive-
ness of their languages. One approach is to run complex queries on top of aggre-
gated data windows, another is to let data change the states in an automaton.
Query data windows let the language allow data aggregation and joins. Esper is
a good example of such an implementation. The drawback of this approach is the
scalability, since all implementations we know of use a single-server approach.
Detection based on finite state automaton seems to be well studied [|93]] [[100].
While other works to detect patterns also exist [|37]], the approaches to scale are
similar. Pietzbuch [[93]] split the automaton into sup-expressions and deploy the
execution of them to different servers. Sub-expressions may be reused in other
queries. This requires a clever placement of the sub-automaton to have minimal
client latency and maximal automaton reusing. Cugola [37] splits the execution
of more trivial expressions along a hierarchically shortest path tree of all message
brokers.
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Appendix A

URingPaxos Library

URingPaxos is a is publicly available libraryE] developed in the contect of this
thesis and at the core of Chapters [3|through

Since URingPaxos has been used in research projects and publications outside
of the scope of this thesis [[89, 78,121}, 188,12} 183),184]], this Appendix will describe
the implementation of the core library in more details.

The complete library presented in this thesis is written in Java and has approx-
imately 25000 lines of code. Some performance critical storage parts, however,
are implemented in C, using the Java native interface (JNI). The decision to use
Java instead of C or C++ was mainly due to the better code readability and main-
tainability of Java. While C is fast, the benefits that Java brings, for example, in
the collections and concurrency frameworks, outweigh the small performance
penalty we have to pay.

A.1 Core Algorithm

The core algorithm implemented in URingPaxos is a unicast version of Ring
Paxos [|82]]. Scalability is achieved by combining multiple rings with Multi-Ring
Paxos or Elastic Paxos. The following description will point out some important
details of the Ring Paxos core.

A.1.1 Proposer

A proposer is one of the simplest roles in the Paxos algorithm. In its original form,
it can propose a command (value) by executing phase 1 followed by phase 2. As

'https://github.com/sambenz/URingPaxos
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soon as we have more than one proposer in the system, this could cause liveness
problems in the algorithm [[69]]. An optimized proposer will send the commands
to a coordinator (i.e., leader).

While in Paxos the values can be sent through multicast to the coordinator,
in Ring Paxos, the commands are forwarded along the ring until they reach the
leader (Figure[2.2). Ring Paxos introduces a new message type for this purpose.

Proposers are usually also learners. This is required to detect if an actual
command has really got learned or to throttle down the generated load. While
in Ring Paxos all decisions are forwarded to all participants, proposers have to
subscribe to the multicast group of the learners to receive phase 2b messages.

In this Ring Paxos implementation a proposer has two operation modes. An inter-
nal one which reads commands from standard input and an external one which
can be used to directly embed the proposer in an application. Embedded values
can be proposed using the following propose() method:

public FutureDecision propose(byte[] b);

The argument is a byte array. This command or value is wrapped in a Value
object. A Value object has the actual byte array and a unique identifier (ID),
which is generated in the proposer. This ID enables indirect consensus [45]] and
opens the possibility to remove the byte array from following messages. For
performance reasons, this ID is not a real UUID but it is a combination of time in
nano seconds and the unique ring position of the proposer.

The return type of propose() is a FutureDecision. A future decision will contain
eventually a Decision, once the byte array is learned. It contains also a Count-
DownLatch on which the calling thread can wait until the decision is set. By
waiting on this lock, the caller can implement a blocking call, while the over-
all nature of propose is still non-blocking. This feature is for example used to
measure the latency of a proposed value.

A.1.2 Coordinator

The coordinator is the process that starts phase 1. It is elected out of the group
of acceptors. While the algorithm can tolerate multiple coordinators and still
guarantee safety, it is more efficient when a single leader exists. Coordinator
election is done with Apache Zookeeper. The first acceptor in the ring acts as the
coordinator.
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After a coordinator is elected, it starts a new thread which is responsible for
phase 1. While Paxos has a dedicated phase 1a/b message, Ring Paxos uses only
one message with an additional vote count (Figure[A.2). Whenever a coordina-
tor successfully reserves a ballot for an instance, it generates a Promise object
which contains an instance number and a corresponding ballot and stores it in a
BlockingQueue. While the instance numbers are continuously increasing, the bal-
lot numbers are composed out of a counter and the last digit of the coordinator
ID. This guarantees that ballot numbers are always unique in the whole system.
If the proposed ballot for an instance is smaller than what the acceptors already
promised to accept, then they will answer with a nack message or by sending
nothing (timeout at coordinator). If the instance was already decided, the ac-
ceptor will respond with a Value. In this case, the coordinator must re-propose
the Value with a higher ballot by starting phase 2.

The promise queue is not bounded to a fixed value of instances. A thread
ensures that at any time the Promises in the queue are more than half of the
pl preexecution number. The reservation of multiple instances can be done
in one message. This implementation, however, is conservative: Only when the
smallest instance number in such a range message is higher than the highest
instance the acceptors have ever seen, the range message is accepted. Otherwise,
URingPaxos falls back to a standard phase 1 messages for every instance.

When a coordinator receives a Value to propose, it starts executing phase 2.
First it takes the next Promise from the queue and generates a Proposal. A Pro-
posal is mainly a Value and a timestamp. The later is used to detect timeouts
while proposing. Phase 2 is started by composing the Promise and the Proposal
into a phase 2 message. Further, the coordinator keeps track of what is decided
to remove the Proposal from an internal map or re-propose the same Value with
a new Promise.

In the case of URingPaxos or Elastic Paxos, the coordinator has also the addi-
tional task to measure the ring throughput. The throughput per time interval is
compared to a global maximum of A messages. Whenever the actual throughput
is smaller than A, additional skip messages will be sent. Skip messages are special
values, but normal Paxos instances. They are proposed and learned like every
other value in Paxos, but the content is only evaluated in the MultiRingLeaners
or ElasticLearners.

A.1.3 Acceptors

The most complex part of Paxos is implemented in the acceptors. Every acceptor
has to keep track of which ballot it has promised to accept. Further, once a value
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is learned, it creates a Decision object that contains the instance, the ballot and the
Value. This Decision is persisted over the StableStorage interface (Section [A.4).
Decisions can be updated, but only the ballot. Once a Value is learned, it can’t be
changed anymore.

A URingPaxos acceptor uses a hash map to keep track of what ballot it has
promised to accept in which instance. Further, it uses another hash map to cache
the byte arrays from the Values and the StableStorage interface for all Decisions.
Instead of sending back a 2b message to the proposer, a URingPaxos acceptor
increases the vote count in the message. The last acceptor in the ring checks if the
vote count is larger than or equal to a predefined quorum. If so, it will generate
a decision message which is forwarded along the ring up to the predecessor of
the last acceptor.

Another optimization in URingPaxos is that every byte array of a Value only
gets transmitted once over the network. Depending on which Role a Node in the
ring has and at which position it is located, a phase 2 or decision message may
not contain the content (byte array). The Value object with the ID, however, is
always present and can be used to store and look-up the content from a map.

A.1.4 Learners

Learners in the URingPaxos implementation are interested in the decision mes-
sages. Like the acceptors, also the learners have to cache the content of the
Values, since the decision messages not always contain them.

While a simplistic learner delivers the values at the receipt, we usually want
the learner to deliver the values in the order of the increasing instances instead.
But this could block a learner in the case of an outstanding or missing instance.
For that reason, a learner must also implement a proposer part to “ask” for such
missing instances. In this implementation, a learner proposes a null value for an
outstanding instance by starting phase 1 with a very high ballot number. This
approach, described by [|69]], will decide the instance to null if it was undecided
or return the previously learned value.

Like the proposers, the learners can also run in a “service mode”. A learner
service will not write the decisions to the logging mechanism but rather store
them in a BlockingLinkedList for further use. One application of this mechanism
is a MultiRingLeaner.

A MultiRingLeaner is started if the Node is a learner in multiple rings. It is
a wrapper around several independent learners and delivers m messages from
every ring in a deterministic round-robin procedure. If one ring has no value to
deliver, the multi-ring learner blocks on the take() method until some data are
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available in this ring. To guarantee the progress even in the absence of traffic in
one ring, the Multi-Ring Paxos algorithm introduces the concept of skip messages.

Skip messages are issued by the ring coordinator. As already mentioned,
they are proposed and learned in normal Paxos instances. The values that these
instances include, however, have the static ID of “Skip!”. Whenever a multi-ring
learner gets such a skip message from a queue, it will not deliver this instance,
but interpret the content of the value to figure out how many values it must skip.
As described in Figure these skip messages are not delivered but used to
deliver values from all rings in a constant speed.

A.2 Ring Management

The heart of URingPaxos is the ring management. It is responsible for creating
the network connections, looking up configurations and providing a dynamic
view of the current ring. The main entity is a Node. A Node is the class that
implements main(). It is started with several command-line arguments to define
a List of RingDescriptions.

A.2.1 Abstract Role

For every RingDescription, the Node initializes a RingManager, which holds an
Apache Zookeeper connection. Further, it starts the threads for all Paxos roles
described in the previous section, and registers them in the ring, using the Ring-
Manager. Every role has a concrete implementation which extends the abstract
class Role:

public abstract class Role implements Runnable {}
public void deliver(RingManager fromRing,Message m);

The RingManager is passed to the constructor of every Role. This allows them
to look up the responsible NetworkManager and register themselves for message
delivery. The network will invoke the deliver() callback for the messages targeted
to the specific role.
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Figure A.1. Class diagram of the ring management

A.2.2 RingManager

The RingManager is the central component of the system. It spawns the Network-
Manager to automatically open and close the required network connections to the
ring successor, and is always informed about all changes on the ring. Moreover,
it is available to all Roles and it is responsible for starting and stopping the coor-
dinator process. Figure shows the class diagram with these dependencies.
During the initialization, the RingManger registers the node ID in the given
ring on Zookeeper. The RingManager is the only component in the system that in-
teracts with Zookeeper. It will also publish its IP address and its randomly chosen
TCP port as additional data with the ID. Further, it looks up the configurations
map, also stored in the Zookeeper directory. After the initialization, the RingMan-
ager will have learned the ring topology and it will automatically open a network
connection to the ring successor. The ring is monitored by a Zookeeper Watcher.
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Whenever the successor changes, the old network connection is closed and the
new one will be opened. If a node in the ring crashes unexpectedly, Zookeeper
will detect this and inform its manager after a timeout of some seconds.

Coordinator election is done in the same Watcher. The coordinator is the
acceptor that has the lowest ID. The required thread with the corresponding role
is also started by the RingManager.

Every node in the ring can look up the IP address and port of every other
node with Zookeeper. The nodes get the addresses by parsing the local network
interface configurations. For the Amazon EC2 deployment the IP is taken from
an environment variable.

A.2.3 Failures and recovery

Nodes that fail by crashing are detected by the Zookeeper instance and removed
from the ring. The changes are propagated to all other nodes. If required, the
network connections are rebuilt. If the failing node was the coordinator, a new
coordinator will be elected and started.

The same is true for process recovery. Whenever a new node joins the ring, its
ID defines the position in the ring. The new node will automatically be included
by the existing nodes.

While the RingManager is only responsible for the ring management, the roles
must implement the required recovery methods. Acceptors are able to recover
correctly if they use stable storage (Section|A.4). Learners can also be configured
to recover. If so, they will start learning from the first instance or the last acceptor
log trim point.

A.3 Network communication

Networking is a very important component in the implementation since the goal
of Ring Paxos and Multi-Ring Paxos is to achieve maximum throughput and low
latency. Such requirements are hard to achieve by using existing frameworks
(e.g., RPC stacks). They usually over-abstract the important features to make
them simple. If we want to get the maximum out of the underlying hardware,
careful tweaking of all possible parameters is required.
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A.3.1 Transport

One of the goals of this thesis is the implementation of a unicast Multi-Ring Paxos
(URingPaxos). With this version, which doesn’t use IP multicast, it is possible to
experiment on WAN links. For the transport layer we want to have a reliable mes-
sage oriented protocol such as the Stream Control Transmission Protocol (SCTP).
This relatively new protocol combines the message-oriented principles from UDP
with the reliability and congestion control of TCP Since this protocol seems to
be perfect for this purpose, the first implementation was built on top of it. The
throughput test on the cluster has shown that SCTP is significantly slower than
TCP For this reason the implementation switched entirely to TCP. The reason
why SCTP is slow is not clear, one reason could be that it has not been as much
optimized as TCP. TCP however is being optimized for more than twenty years.

TCP is stream oriented but Paxos is entirely message based. The use of TCP
implies implementing our own message framing. In the current version, a length-
prefix framing is used. This prepends the length in bytes of the following message
(frame). The receiver will read the first two bytes interpreted as length, following
the message itself. While this approach is very simple and works well in practice,
it has the drawback that once a receive buffer is out of synchronization, it will
not find the frame borders anymore. For that reason an additional magic-number
preamble is sent to re-synchronize the frame handling.

The current transport layer lets itself configure the TCP nodelay option (dis-
able Nagle’s algorithm) and the TCP send and receive windows.

While the first implementation of TCP used standard (blocking) Java IO, the
current implementation uses the non-blocking new Java IO (NIO). The reason to
switch was not the demand for a scalable non-blocking API. But the NIO directly
exposes DMA mapped ByteBuffers instead of simple byte arrays, like in standard
IO. This reduces the number of copies involved in transferring data, which im-
proves speed.

A.3.2 Serialization

A critical piece to the overall protocol performance is the efficiency of serializa-
tion. Serialization is the conversion of a high-level abstraction of a message to
its byte representation on the network line interface. While in C, de-serializing
bytes received over the network is a simply cast to the corresponding message
struct, in Java we have to re-create all required objects. It was an early design
decision that the Java code will always operate on well-defined objects and never
directly with byte arrays.
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Figure A.2. Class diagram of Message

The classes which are responsible for messaging are defined in Figure
The actual serialization part are the static methods fromWire() and toWire() in
the Message class. The implementation of these two methods in the initial version
of the prototype was done with Java object serialization (ObjectInputStream).
This proved too slow for a high speed implementation.

The next, very modular and interoperable approach, was done using Google’s
protobufﬂ protocol buffers. Protobuf is a framework for message serialization. It
contains an interface-definition language and a compiler. The compiler, which is
available for different programming languages, will generate the required bind-
ings.

A long test run showed that the protocol was not as fast as expected, even
after several modifications everywhere in the code were conduced. Finally, we
decided to remove protobuf and use our own object structure for the messages,
which does not copy the objects before serialization. This re-copying of the data
caused before a very high object creation rate which results in a increased cumu-
lative garbage collection time which is shown in Figure Figure shows
the protobuf implementation in red, which allocates almost 400 MByte /s objects.
Since the line speed is 1 Gbit/s, an optimal allocation rate should be around 125

2https://developers.google.com/protocol-buffers
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Figure A.3. Cumulative garbage collection time in seconds for protobuf (red)
and direct serialization (blue)

MByte/s. This was achieved with a direct serialization (blue line). Direct seri-
alization is implemented by copying every field of the Message object as byte to
a ByteBuffer. This approach, together with the directly mapped network Byte-
Buffers from Java NIO, resulted in an reasonable object creation rate.

A.3.3 NetworkManager

All the incoming and outgoing TCP connections are handled by the NetworkMan-
ager. The NetworkManager is provisioned by the RingManager. Once the server is
running, the incoming messages are dispatched to the different roles which had
subscribed for delivery. Local messages, for example from a proposer to a coor-
dinator running on the same node, are also sent through the NetworkManager
manager. The manager takes care that such messages are never sent through the
network.

Further, the receive() method inside the NetworkManager, called from a TC-
PListener, will first try to forward the message in the ring and then deliver the
message locally. This saves some latency for messages that are not directly tar-
geted to this node. Before forwarding, unneeded content will be removed from
Values. This guaranties that the content of a Value is only sent once to every node.

The structure of NetworkManager is shown in Figure TCPSender and
TCPListener both run as threads. Messages are sent out through a TransferQueue
which combines the send() method in the NetworkManager with the socket.write()
in the TCPSender. The TCPListener creates a SessionHandler for every incoming
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ization (blue)

connection and waits on a Selector for interruptions from the hardware. While
in a NIO implementation this part would be typically done in a thread pool, this
implementation is single-threaded. A thread pool is not required since we will
always have only one open incoming connection.

A.4 Stable storage

Depending on the actual implementation of the StableStorage interface, an ac-
ceptor may or may not recover after a crash. Everything that implements this
interface can be configured in the Zookeeper cluster as back-end. The class is
loaded with Class.forName(name).newlInstance() and must follow the definition
below:

public interface StableStorage {
public void putBallot(Long instance, int ballot);
public int getBallot(Long instance);
public boolean containsBallot(Long instance);
public void putDecision(Long instance, Decision decision);
public Decision getDecision(Long instance);
public boolean containsDecision(Long instance);
public boolean trim(Long instance);
public Long getLastTrimInstance();
public void close();
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Figure A.5. Class diagram of the network management

The current implementation includes the following storage back-ends:

NoMemory: This implementation is for testing purpose only. Without storage,
acceptors are not able to answer a single missing value. It is provided to
measure the raw throughput without impact of garbage collection or disk
writes.

InMemory: The InMemory implementation uses a LinkedHashMap to keep up
to 15k Decisions in memory. Unfortunately, the overall throughput is very
poor (550 Mbit/s). Even with the new garbage collector G1 the throughput
can only reach 800 Mbit/s. This is more than 200 Mbit/s slower than the
NoMemory implementation.

CyclicArray: CyclicArray is a array implementation in C. It uses JNI to provide a
storage for up to 15k Decisions, not on the Java heap. This implementation
has the same speed as NoMemory. Since the objects are stored outside the
heap, no garbage collection is required while overwriting old entries.

BufferArray: BufferArray holds an array of 15k prealocated ByteBuffer. It is
not as fast a the CyclicArray, but achives similar performance with less
configuration (compiled JNI) overhead.
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Figure A.6. Performance comparison of different StableStorage implementa-
tions.

BerkeleyStorage: BerkeleyStorage is a key-value store used to provide stable
storage on spinning hard disks or solid state disks (SSD). The database
uses deferred writes, which means that we can tolerate the crash of a Paxos
process but not of the whole machine.

SyncBerkeleyStorage: SyncBerkeleyStorage is a wrapper of BerkeleyStorage which
enables synchronous disk writes. This is the safest configuration, since it
can tolerate the crash of a whole machine.

A comparison of the different implementations deployed in a local-area network
is provided in the Figure[A.6
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