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Abstract

Different coordinate systems allow to uniquely determine the position of a ge-
ometric element in space. In this dissertation, we consider a coordinate system
that lets us determine the position of a two-dimensional point in the plane with
respect to an arbitrary simple polygon. Coordinates of this system are called gen-
eralized barycentric coordinates in 2D and are widely used in computer graphics
and computational mechanics.

There exist many coordinate functions that satisfy all the basic properties of
barycentric coordinates, but they differ by a number of other properties. We
start by providing an extensive comparison of all existing coordinate functions
and pointing out which important properties of generalized barycentric coordi-
nates are not satisfied by these functions. This comparison shows that not all of
existing coordinates have fully investigated properties, and we complete such a
theoretical analysis for a particular one-parameter family of generalized barycen-
tric coordinates for strictly convex polygons. We also perform numerical analysis
of this family and show how to avoid computational instabilities near the poly-
gon’s boundary when computing these coordinates in practice. We conclude this
analysis by implementing some members of this family in the Computational
Geometry Algorithm Library.

In the second half of this dissertation, we present a few novel constructions of
non-negative and smooth generalized barycentric coordinates defined over any
simple polygon. In this context, we show that new coordinates with improved
properties can be obtained by taking convex combinations of already existing
coordinate functions and we give two examples of how to use such convex com-
binations for polygons without and with interior points. These new constructions
have many attractive properties and perform better than other coordinates in in-
terpolation and image deformation applications.
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Chapter 1

Introduction

It is known since the days of Peripatetic School and usually contributed to Archime-
des (c. 287 BC – c. 212 BC) [d. Monantheuil, 1599] that a lever [v1, v2] with two
weights w1 and w2 attached to its ends is balanced when a fulcrum is placed at
the point p ∈ [v1, v2] such that

w1l1 = w2l2, (1.1)

where l1 = p − v1 and l2 = v2 − p (see Figure 1.1). Equation (1.1) is called the
law of the lever and the point of balance p is called the centre of mass of this lever
or its barycentre (from Ancient Greek βάρος = “weight” and κέντρον = “centre”).
The weights w1 and w2 are often called homogeneous, because multiplying them
with a common non-zero scalar α does not change the equation. Rearranging
terms, (1.1) can be written in the form

w1(v1 − p) +w2(v2 − p) = 0 (1.2)

and further as
w1v1 +w2v2 =W p, W = w1 +w2.

Choosing the scalar α= 1
W , we can define the normalized weights b1 = αw1 and

b2 = αw2 and write the barycentre p as an affine combination of the ends of the

v1 v2

w1 w2

p

Figure 1.1. Law of the lever.
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2 1.1 Barycentric coordinates for simplices

lever with these weights,

b1 + b2 = 1, (1.3)

b1v1 + b2v2 = p. (1.4)

The normalized weights b1 and b2 are called the barycentric coordinates of the
point p with respect to the segment [v1, v2].

While the problem above is about finding the barycentre p for the given
weights, it is also interesting to study the opposite problem. Given the end points
v1 and v2 of an arbitrary segment and some point p along this segment, how do
we find the barycentric coordinates b1 and b2 of p with respect to this segment?
It turns out that they are uniquely determined by (1.3) and (1.4) as ratios of
lengths,

b1 =
l2
l

, b2 =
l1
l

,

where l = l1 + l2 = v2 − v1 is the length of the segment.

1.1 Barycentric coordinates for simplices

In 1827, the German mathematician August Ferdinand Möbius (1790 – 1868)
considered the problem of finding barycentric coordinates with respect to an
arbitrary d-simplex in d ∈ N dimensions [Möbius, 1827]. For example, a 1-
simplex is a line segment in 1D, a 2-simplex is a triangle in 2D, and a 3-simplex
is a tetrahedron in 3D (see Figure 1.2).

Given a non-degenerate d-simplex 4 with d + 1 vertices v1, . . . , vd+1 ∈ Rd ,
we search for d + 1 functions b = [b1, . . . , bd+1]: 4 → Rd+1, which satisfy the
partition of unity property

d+1
∑

i=1

bi(p) = 1 ∀p ∈4 (1.5)

Figure 1.2. From left to right: 1-simplex, 2-simplex, 3-simplex.



3 1.1 Barycentric coordinates for simplices

and the linear reproduction property
d+1
∑

i=1

bi(p)vi = p ∀p ∈4. (1.6)

The functions b1, . . . , bd+1 are called barycentric coordinates with respect to 4.
Analogously to the one-dimensional case that we discussed earlier, it turns out

that these barycentric coordinates are uniquely determined by (1.5) and (1.6),
and Möbius shows that they are ratios of volumes,

bi(p) =
Vi(p)

V
, i = 1, . . . , d + 1, (1.7)

where Vi(p) = Vol[v1, . . . , vi−1, p, vi+1, . . . , vd+1] are the volumes of the corre-
sponding d-simplices and V = V1(p) + · · · + Vd+1(p) = Vol[v1, . . . , vd+1] is the
volume of 4 and does not depend on p.

For example, let simplex 4 be a triangle in the plane whose vertices v1, v2,
and v3 are given in anticlockwise direction, and we treat the vertex indices cycli-
cally, that is vi+3k = vi for i ∈ {1,2, 3} and k ∈ Z (see Figure 1.3). If we let
p = (x , y) and vi = (x i, yi), we can find the signed areas A1(p), A2(p), and A3(p)
of the triangles opposite to the vertices v1, v2, and v3, respectively, through the
determinant definition of the signed triangle area

Ai(p) = Area(p, vi, vi+1) =
1
2

�

�

�

�

�

�

1 1 1
x x i x i+1

y yi yi+1

�

�

�

�

�

�

, i = 1,2, 3.

Since Ai(p) are exactly the volumes Vi(p) used in (1.7) with d = 2, we obtain
the barycentric coordinates with respect to 4 as

λi(p) =
Ai(p)

A
, i = 1, 2,3,

where A= A1(p)+A2(p)+A3(p) is the total area of4 and λi is a special notation
for barycentric coordinates computed over triangles.

A1

A2A3

�

v2

v3

v1

p

Figure 1.3. Notation used for barycentric coordinates with respect to a triangle.



4 1.2 Generalized barycentric coordinates

Figure 1.4. From left to right: 2-polytope, 3-polytope.

1.2 Generalized barycentric coordinates

To the best of our knowledge, Kalman [1961] was the first to propose a general-
ization of barycentric coordinates to convex polyhedra, and in recent years there
has been a growing interest in the problem of finding barycentric coordinates
with respect to arbitrary polytopes (for example, 2-polytope is a polygon and 3-
polytope is a polyhedron, as shown in Figure 1.4). Throughout this dissertation,
we consider a non-degenerate polytope P with n≥ d+1 vertices v1, . . . , vn ∈ Rd .
We denote the boundary of this polytope by ∂ P, its interior, viewed as an open
set, by Ω ⊂ R2 and its closure by Ω̄, so that Ω̄ is the convex hull of the vertices.

Definition 1. Given the polytope P, the n functions b = [b1, . . . , bn]: Ω̄ → Rn

are called generalized barycentric coordinates if they satisfy the partition of unity
property

n
∑

i=1

bi(p) = 1 ∀p ∈ Ω̄ (1.8)

and the linear reproduction property
n
∑

i=1

bi(p)vi = p ∀p ∈ Ω̄. (1.9)

For n= d+1, the only functions that satisfy the properties in Definition 1 are
the bi in (1.7). For n> d+1, however, the bi are no longer uniquely determined,
which is the reason for the existence of the different constructions of generalized
barycentric coordinates that we review in Chapter 2.

In addition to the defining properties (1.8) and (1.9), it is often desirable for
the functions bi to have a few extra properties,

• Non-negativity: bi(p)≥ 0 for any p ∈ Ω̄; (1.10a)

• Lagrange property: bi(v j) = δi j, where δi j is the Kronecker delta; (1.10b)

• Linearity on the boundary: bi is linear on each facet of P; (1.10c)

• Smoothness: bi ∈ C∞. (1.10d)
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(0,0)

(1,1)

v1 v2

v3v4

pP P

Ai−1
p

Ai
Bi

vi

vi+1

vi−1

Figure 1.5. Notation used for barycentric coordinates with respect to the unit
square (left) and to an arbitrary convex quadrilateral (right).

We remark that all these properties are satisfied in the case n = d + 1 for the
linear functions bi in (1.7).

For a simple example of generalized barycentric coordinates in 2D, consider
the unit square P = [0,1]× [0,1] with the vertices v1, . . . , v4, which are given in
anticlockwise direction, and we treat the vertex indices cyclically, that is vi+4k =
vi for i ∈ {1, . . . , 4} and k ∈ Z (see Figure 1.5, left). If we let p = (x , y), then we
can define the barycentric coordinates with respect to P as

b1(p) = (1− x)(1− y), b2(p) = x(1− y), b3(p) = x y, b4(p) = (1− x)y.

These unit coordinates (see Figure 1.6, left) clearly satisfy all properties above.
The latter coordinates can be generalized to an arbitrary convex quadrilateral

(see Figure 1.6, right) by viewing this quadrilateral as the image of a bilinear map
from the unit square [Floater, 2015]. It then follows that for each p there exist
some parameters s, t ∈ (0, 1) such that the coordinate functions bi are defined as

b1(p) = (1− s)(1− t), b2(p) = s(1− t), b3(p) = st, b4(p) = (1− s)t.

Figure 1.6. Unit coordinates (left) and bilinear coordinates (right) with respect
to the marked vertex of the corresponding quadrilateral. The thick and the thin
curves represent contours for the function values 0.0, 0.1, . . . , 0.9 and 0.01,
0.02, . . . , 0.09, respectively.
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Floater [2015] shows how to find s and t as functions of p and presents a simple
unified formula for these bilinear coordinates

bi(p) =
4Ai+1(p)Ai+2(p)
Gi+1(p)Gi+2(p)

, i = 1, . . . , 4,

where

Gi = 2Ai − Bi − Bi+1 +
q

B2
1 + B2

2 + 2A1A3 + 2A2A4, i = 1, . . . , 4,

and Ai and Bi are the signed areas shown in Figure 1.5, right.
There are two types of generalized barycentric coordinates. On the one hand,

there are coordinates with a closed form. Except for the direct definition as of unit
and bilinear coordinates above, analogously to (1.2), the closed-form definition
is often based on certain weight functions w = [w1, . . . , wn]: Ω → Rn, which
satisfy

n
∑

i=1

wi(p)(vi − p) = 0 ∀p ∈ Ω. (1.11)

These weight functions are also called homogeneous coordinates, because normal-
izing them gives the generalized barycentric coordinates

bi(p) =
wi(p)
W (p)

, W (p) =
n
∑

j=1

w j(p), i = 1, . . . , n. (1.12)

On the other hand, there are computational coordinates that can only be obtained
numerically, for example, by solving an optimization problem. We show more ex-
amples of closed-form and different constructions of computational generalized
barycentric coordinates in Chapter 2.

1.3 Applications

In general, the main application of generalized barycentric coordinates is inter-
polation. It follows from (1.8) and (1.9) that the function f : Ω̄→ Rd with

f (p) =
n
∑

i=1

bi(p) fi (1.13)

reproduces affine functions and from (1.10b) that this function interpolates the
data f1, . . . , fn ∈ Rd at the vertices v1, . . . , vn. This barycentric interpolant f is
also linear along the facets of P if the coordinates bi satisfy the property (1.10c),



7 1.4 Contributions

lies in the convex hull of the data fi if the coordinates are non-negative, and
is as smooth as the coordinates. Throughout this dissertation, we use colour
interpolation [Meyer et al., 2002] and image deformation [Hormann and Floater,
2006; Warren et al., 2007] (see also Sections 2.3.1 and 2.3.2 for more details) as
two example applications of the interpolant f to compare different generalized
barycentric coordinates.

Except for colour interpolation and image deformation, generalized barycen-
tric coordinates are also used in a variety of other applications in geometry pro-
cessing, computer graphics, and computational mechanics. To name a few in
the context of geometry processing and computer graphics, they can be used for
geometric modelling [Loop and DeRose, 1989], mesh parameterization [Floater,
1997], rendering quadrilaterals [Hormann and Tarini, 2004], shape deforma-
tion [Ju, Schaefer and Warren, 2005], polygon shading [Hormann and Floater,
2006], deformation transfer [Ben-Chen et al., 2009], image compositing [Farb-
man et al., 2009], texture mapping [Desbrun et al., 2002] and texture synthe-
sis [Takayama et al., 2010], and gradient mesh simplification [Li et al., 2013].
In the context of computational mechanics, they are widely used as basis func-
tions in polygonal finite elements and for solving high-order partial differential
equations (see [Sukumar and Malsch, 2006] for more details).

1.4 Contributions

The main focus of this dissertation is on closed-form generalized barycentric co-
ordinates in 2D. As mentioned in the previous section, these coordinates can be
applied in many different contexts due to their particular properties. If we con-
sider interpolation as main application of generalized barycentric coordinates,
the non-negativity property (1.10a) ensures that the interpolated result stays
in the convex hull of the given data, and the interpolation property itself is
guaranteed by the Lagrange property (1.10b). Linearity along edges (see Equa-
tion (1.10c)) is important for image deformation, and for smooth results in all
applications, the coordinates have to satisfy the smoothness property (1.10d). In
some applications, as we will show later, we also need to have coordinate func-
tions, which are locally supported (see Chapter 5 for more details), but since this
property is not usually required for other applications, we do not list it above.
Finally, the coordinate functions have to be well-defined for any simple polygon,
where by a simple polygon we mean any convex or concave polygon without
self-intersections, and they need to have a simple analytic expression, so that
we could compute them easily. Hence, the main goal of this dissertation is to
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study different properties of already existing coordinate functions and present
new constructions that compare favourably with other generalized barycentric
coordinates, both in terms of quality and computational cost.

In Chapter 2, we start from discussing the most-known constructions of bary-
centric coordinates with respect to polygons and polyhedra, where we also present
an extensive comparison of 2D coordinates. From this comparison it becomes
clear that none of existing constructions leads to coordinates, which comply with
all necessary properties of generalized barycentric coordinates. For example, all
non-negative coordinates either do not have a simple closed form or are not
smooth functions. It is then important to construct new coordinate functions
that satisfy all properties from Section 1.2, and we present such constructions
in Chapters 5 and 6. This chapter, as well as the beginning of the introductory
chapter, are based on:

Anisimov, D. [2017]. Generalized Barycentric Coordinates in Computer Graph-
ics and Computational Mechanics, Chapter 1, in K. Hormann and N. Sukumar
(eds), to appear, CRC Press, Florida.

After studying all existing coordinate functions in Chapter 2, we realized that
there are coordinates, whose properties are not fully investigated, and, in Chap-
ter 3, we perform theoretical analysis of a particular one-parameter family of
generalized barycentric coordinates for strictly convex polygons. This family of
coordinates includes three well-known coordinate functions, that are used in
many different applications and posses many nice properties. Hence it is also
important to understand which properties of generalized barycentric coordinates
are satisfied by other members of this family. In particular, we managed to show
that all members of this family are continuous generalized barycentric coordi-
nates in the closure of any strictly convex polygon. This result is based on the
following publication:

Anisimov, D., Hormann, K., and Schneider, T. [2017]. Behaviour of exponen-
tial three-point coordinates at the vertices of convex polygons, to appear.

After the theoretical analysis of the family above, we also perform its numer-
ical analysis and show that while in theory these coordinates are well-defined
everywhere inside the polygon, in practice, the computation is not stable in the
vicinity of the polygon’s boundary. In this context, we show how to avoid such
instabilities when computing these coordinates and implement some important
members of the family in the Computational Geometry Algorithm Library [CGAL,
2016]. These results are based on the following publication:
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Anisimov, D., Bommes, D., Hormann, K., and Alliez, P. [2016]. 2D general-
ized barycentric coordinates. In CGAL User and Reference Manual. CGAL
Editorial Board, 4.9 Edition.

When we analyzed some properties of already existing coordinate functions, we
tried to construct new coordinates with favourable properties. Our first attempt,
which becomes a motivation for our main results in Chapters 5 and 6, is based
on the idea of a convex combination of two members from the one-parameter
family of coordinates above. By taking such a convex combination, we construct
new coordinates with some improved properties that we discuss in Chapter 4,
which is based on the following poster:

Anisimov, D. [2012]. Blended barycentric coordinates. Poster in NSF Work-
shop on Barycentric Coordinates in Geometry Processing and Finite/Bound-
ary Element Methods, New York, USA.

We further elaborate on the idea of blending barycentric coordinates using con-
vex combinations in Chapter 5 and present, to the best of our knowledge, the first
closed-form coordinates for arbitrary simple polygons that satisfy all properties
from Section 1.2 and solve the main problem of how to construct non-negative
and smooth coordinate functions with a closed form for any simple polygon. This
chapter is mainly based on the following publication:

Anisimov, D., Panozzo, D., and Hormann, K. [2017]. Blended barycentric
coordinates. Computer Aided Geometric Design, to appear, 2017.

Although our construction in Chapter 5 has all necessary properties of general-
ized barycentric coordinates, such blended coordinates are not well-defined for
polygons with interior points and so, in Chapter 6, we show how to construct
non-negative and smooth coordinate functions for any simple polygon with inte-
rior points. We construct such coordinates using subdivision and show that new
coordinates have many attractive properties in interpolation and image defor-
mation applications. This chapter is based on the following publication:

Anisimov, D., Deng, C., and Hormann, K. [2016]. Subdividing barycentric
coordinates. Computer Aided Geometric Design, 43:172–185.
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We finally conclude and point out some interesting future directions in Chapter 7
and present pseudocodes for computing some closed-form generalized barycen-
tric coordinates in Appendix A.



Chapter 2

State of the art

To offer a full overview of existing generalized barycentric coordinates in differ-
ent dimensions, we first present the most important 2D barycentric coordinates
(see Section 2.1). We then also describe the most important 3D constructions
and their extensions to higher dimensions (see Section 2.2) and conclude the
chapter with several examples of applying the coordinates to colour interpola-
tion and image deformation (see Section 2.3).

2.1 2D coordinates

We first focus on the 2D case and consider a simple polygon P. Without loss of
generality, we assume the vertices vi of this polygon to be given in anticlock-
wise direction, and we treat the vertex indices cyclically, that is, vi+kn = vi for
i ∈ {1, . . . , n} and k ∈ Z. Note that all the coordinates in this section, except for
Hermite and complex, are generalized barycentric coordinates in the sense of
Definition 1.

vi−1

vi
vi−1 vi

0

1Ω

Figure 2.1. Consider the barycentric coordinate function for the concave vertex
vi and the cross section along the line defined by this vertex and the neighbour-
ing vertex vi−1 (dashed line). If this function is C1 at vi, then it must be greater
than one in Ω, which implies that another coordinate function is negative.

11
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The earliest generalizations of barycentric coordinates in 2D were closed-
form constructions and restricted to convex polygons. In this setting, the key
objective is finding smooth and positive weights wi, which satisfy (1.11). It is
then known [Floater et al., 2006] that the normalized weights bi in (1.12) are
well-defined generalized barycentric coordinates with respect to P and satisfy
all properties in (1.10). However, most of these constructions lead to negative
weights wi at certain points inside non-convex polygons. Even worse, the de-
nominator W may vanish, so that the bi are not necessarily well-defined for all
p ∈ Ω. So far, no closed-form construction of positive weights for arbitrary non-
convex polygons is known, and even if it exists, the resulting coordinates would
not be more than C0 at concave corners (see Figure 2.1). We discuss different
closed-form coordinates in Sections 2.1.1–2.1.7.

It was later realized that bi can also be obtained numerically as the solu-
tion of an optimization problem subject to the constraints given by the required
properties of the coordinates. This optimization problem can either be global
or local, and we present different kinds of such computational coordinates in
Sections 2.1.8–2.1.10.

If the points vi are not given as vertices of a polygon, but rather as scattered
points pi, Definition 1 and properties (1.10b) and (1.10d) still make sense. In
this setting, we can define generalized barycentric coordinates bi with respect
to the set Π = {p1, . . . , pn} ∈ R2 of n ≥ 3 scattered points, and we review three
different constructions in Sections 2.1.11–2.1.13.

We also give a short overview of coordinates that generalize Definition 1 in
some other way. In particular, we briefly discuss Hermite and complex coordi-
nates in Sections 2.1.14 and 2.1.15.

2.1.1 Wachspress coordinates

Wachspress [1975]was one of the first who suggested a generalization of barycen-
tric coordinates to a polygon with n> 3 vertices. Later, Meyer et al. [2002] pro-

vi−1

vi

vi+1

P p

ri

αi

βi

γi

ei
vi−1

vi

vi+1
AiAi−1

P p

vi−1

vi

vi+1

P p

Ci

Bi

Figure 2.2. Notation used for signed angles, distances, and signed areas in a
polygon P.
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Figure 2.3. Zero level set (dashed) of the denominator W for the Wachspress
(left) and the discrete harmonic (right) coordinates with respect to a concave
polygon. In both cases, the zero level curves cross the polygon’s interior and
hence the coordinates are not well-defined at the corresponding points.

pose a simple local formulation of these Wachspress coordinates, which is given
by the normalization (1.12) of the weight functions

wi =
cotγi−1 + cotβi

r2
i

, i = 1, . . . , n, (2.1)

where γi−1 and βi are the angles shown in Figure 2.2 and ri = ‖vi − p‖. These
coordinates are rational functions with numerator and denominator of degrees at
most n−2 and n−3, respectively, which are the minimal possible degrees [War-
ren, 2003].

For strictly convex polygons, it is clear that all wi(p) > 0 for any p ∈ Ω, so
that Wachspress coordinates are well-defined and satisfy all properties in (1.10).
They are also affine invariant. For non-convex polygons, the coordinates are not
well-defined at some points in the polygon’s interior, because the denominator
W vanishes (see Figure 2.3), but they can be generalized to weakly convex poly-
gons [Malsch and Dasgupta, 2004].

2.1.2 Discrete harmonic coordinates

Discrete harmonic coordinates [Pinkall and Polthier, 1993; Eck et al., 1995] arise
from the standard piecewise linear finite element approximation to the Laplace
equation and are given by the weight functions

wi = cotβi−1 + cotγi, i = 1, . . . , n, (2.2)

where βi−1 and γi are the angles shown in Figure 2.2. Interestingly, it turns out
that for all polygons, whose vertices lie on a common circle, these coordinates
are identical to Wachspress coordinates and therefore possess the same prop-
erties [Floater et al., 2006]. For other strictly convex polygons, they are still
well-defined and satisfy all properties in (1.10), except for non-negativity. For
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v1

L L

v1

Figure 2.4. Mean value coordinates are only C0 at the vertices of the polygon
(left), while positive mean value coordinates are also C0 along two dashed lines
in the polygon’s interior and are not defined outside the polygon (right). Both
functions are plotted along the line L with respect to the vertex v1.

non-convex polygons, the denominator W of these coordinates vanishes at some
points in the polygon’s interior, so that they are not well-defined (see Figure 2.3).

2.1.3 Mean value coordinates

The derivation of discrete harmonic coordinates suggests that different properties
of harmonic functions can be exploited to derive other generalized barycentric
coordinates. Floater [2003] considers the circumferential mean value property
of a harmonic function u: Ω→ R, which states that for any disc B = B(p, r) ⊂ Ω
of radius r > 0, centred at p, with boundary ∂ B,

u(p) =
1

2πr

∫

x∈∂ B

u(x )dx . (2.3)

He then shows that applying (2.3) to a piecewise linear function leads to mean
value coordinates. These coordinates are given by the weight functions

wi =
tan(αi−1/2) + tan(αi/2)

ri
, i = 1, . . . , n, (2.4)

where αi−1 and αi are the angles shown in Figure 2.2 and ri = ‖vi − p‖.
Hormann and Floater [2006] show that mean value coordinates are well-

defined even for sets of nested simple polygons and everywhere in the plane.
They are positive inside the kernel of a star-shaped polygon and satisfy proper-
ties (1.10b) and (1.10c). Moreover, mean value coordinates are positive inside
any quadrilateral, similarity invariant, and smooth, except at the vertices of P,
where they are only C0 (see Figure 2.4, left).

To derive positive mean value coordinates for non-convex polygons, Lipman
et al. [2007] use the transfinite description of mean value coordinates [Ju, Schae-
fer and Warren, 2005] and restrict the integration to the part of ∂ P that is visible
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from p. These coordinates can be efficiently evaluated by exploiting the GPU,
but they are only C0 along certain lines inside the polygon (see Figure 2.4, right).

2.1.4 Complete family of coordinates

Floater et al. [2006] show that for arbitrary real functions ci : Ω→ R, the weights

wi =
ci−1Ai − ciBi + ci+1Ai−1

Ai−1Ai
, i = 1, . . . , n, (2.5)

with the signed areas Ai and Bi shown in Figure 2.2, satisfy the property (1.11).
Therefore, the task of finding generalized barycentric coordinates simplifies to
finding functions ci such that the weights in (2.5) are positive or, if not, at least
sum up to a non-vanishing denominator W , without having to worry about prop-
erties (1.8) and (1.9), which are satisfied by construction, and the resulting co-
ordinates are as smooth as the functions ci. Moreover, any set of generalized
barycentric coordinates can be expressed in terms of the weights in (2.5) with
the proper choice of ci.

An interesting special case of this complete family of coordinates is given by
ci = ‖vi − p‖p for any p ∈ R. In this case, the choices p = 0, p = 1, and p = 2
give Wachspress, mean value, and discrete harmonic coordinates, respectively.
Surprisingly, the only coordinates for this choice of ci, which are non-negative
for any convex polygon, are Wachspress and mean value coordinates [Floater
et al., 2006]. For any p, the coordinates are similarity invariant, and a simple
geometric interpretation can be found in [Langer et al., 2006, Appendix A].

An alternative geometric construction for general weight functions wi, which
satisfy (1.8) and (1.9) and are non-negative by construction, is based on power
diagrams [Budninskiy et al., 2016]. However, the resulting power coordinates are
not necessarily smooth.

2.1.5 Metric coordinates

Malsch et al. [2005] and Sukumar and Malsch [2006] construct the so-called
metric coordinates, which are given by the weight functions

wi =
Ai−2

Ci−1qi−2qi−1
− Bi

Ciqi−1qi
+

Ai+1

Ci+1qiqi+1
, i = 1, . . . , n,

where Ai, Bi, and Ci are the areas shown in Figure 2.2, and

qi = ri + ri+1 − ei
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with ri = ‖vi − p‖ and ei = ‖vi+1 − vi‖. The functions qi are non-negative ev-
erywhere in the plane, which guarantees a non-vanishing denominator W for all
simple polygons [Hormann and Floater, 2006]. Metric coordinates are not nec-
essarily positive inside convex polygons, satisfy properties (1.10b) and (1.10c),
and they are smooth, except at the vertices of P, where they are only C1. These
coordinates are not well-defined for polygons with three consecutive collinear
vertices.

2.1.6 Poisson coordinates

Taking inspiration from the derivation of mean value coordinates, Li and Hu
[2013] derive Poisson coordinates from the Poisson integral formula for a har-
monic function u: Ω→ R, which states that for any disc B = B(r) ⊂ Ω of radius
r > 0, centred at the origin, with boundary ∂ B and any point p ∈ B,

u(p) =
1

2πr

∫

x∈∂ B

r2 − ‖p‖2

‖p − x‖2 u(x )dx . (2.6)

Poisson coordinates extend mean value coordinates, because the circumferential
mean value theorem (2.3) is a special case of the formula (2.6) when p is at
the centre of B. They are well-defined for any simple polygon P and possess the
same properties as mean value coordinates. Moreover, following a specific con-
struction, Poisson coordinates are proved to be pseudo-harmonic, that is, they
reproduce harmonic functions on n-dimensional balls (see [Chen and Gotsman,
2016] for more details on pseudo-harmonic coordinates). The closed-form ex-
pressions of the Poisson weights wi are rather lengthy and can be found in [Li
and Hu, 2013, Section 4.1].

2.1.7 Gordon–Wixom coordinates

Consider a line L through p ∈ Ω along some direction at a given angle θ with
respect to a fixed axis, which intersects ∂ P at the points x1, . . . , xm (see Fig-

P Lx1

x2

x3

p

ρ1

xm

θ

Figure 2.5. Notation used for the Gordon–Wixom interpolant.
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ure 2.5). Summing over all m intersections, Belyaev [2006] and Belyaev and
Fayolle [2015] extend Gordon–Wixom coordinates [Gordon and Wixom, 1974]
from convex to arbitrary simple polygons and show that they can be obtained as
basis functions from the transfinite interpolant

f (p) =
1

2π

∫ 2π

0

� m
∑

i=1

εi f (x i)
ρi

Á m
∑

i=1

εi

ρi

�

dθ (2.7)

where f (x i) are data sampled from a piecewise-linear function f given along
the polygon’s boundary, ρi = ‖p − x i‖, and εi ∈ {−1, 0,1} with εi = −1 if the
ray from p to x i approaches x i from the outside of P, εi = 0 if it is tangent
to ∂ P at x i, or εi = 1 if it approaches x i from the inside of P. These coor-
dinates satisfy properties (1.10b) and (1.10c), but they can be negative inside
non-convex polygons. Manson et al. [2011] extend (2.7) and present positive
Gordon–Wixom coordinates inside any simple polygon, which are as smooth as
the boundary. The analytic expressions of these coordinates are rather lengthy,
and we refer the reader to [Manson et al., 2011, Section 3.2].

2.1.8 Harmonic coordinates

As observed in [Floater et al., 2006], one way of acquiring generalized barycen-
tric coordinates with respect to any simple polygon is by solving the Laplace
equation

∆b = 0 (2.8)

subject to suitable Dirichlet boundary conditions. These boundary conditions are
given by a set of piecewise linear functions g = [g1, . . . , gn]: ∂ P → Rn such that
every gi has the Lagrange property (1.10b). These so-called harmonic coordinates
satisfy all properties in (1.10).

The classical way [Joshi et al., 2007] to approximate these coordinates is by
discretizing (2.8) over the space of piecewise linear functions with respect to
a triangulation of P. Alternatively, harmonic coordinates can also be approx-
imated using the method of fundamental solutions [Martin et al., 2008], the
boundary element method [Rustamov, 2008], and the complex variable bound-
ary method [Weber and Gotsman, 2010].

2.1.9 Maximum entropy coordinates

Sukumar [2004] and Arroyo and Ortiz [2006] show independently that general-
ized barycentric coordinates can be obtained as the solution of a constrained op-
timization problem based on the principle of maximum entropy [Jaynes, 1957].
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These maximum entropy coordinates are non-negative, but the Lagrange prop-
erty (1.10b) holds only for strictly convex polygons. It was later realized in [Suku-
mar and Wright, 2007] that, using prior distributions [Kullback and Leibler,
1951; Jaynes, 1963; Shore and Johnson, 1980], the constrained optimization
can be modified to be

max
b(p)∈Rn

+

−
n
∑

i=1

bi(p) ln
bi(p)
ωi(p)

subject to (1.8) and (1.9), where ωi : Ω → R+ is a prior estimate for bi, which
can also be viewed as a weight function.

Hormann and Sukumar [2008] show how to construct ωi such that maxi-
mum entropy coordinates satisfy all properties in (1.10), except smoothness, for
any simple polygon. Regarding the smoothness, these coordinates are proven
to be C0-continuous [Sukumar and Wets, 2007] for any set of C k prior func-
tions with k ≥ 0 and assumed to be as smooth as the priors. Unlike harmonic
coordinates, maximum entropy coordinates do not require solving a global opti-
mization problem, but can rather be evaluated locally at any point p ∈ Ω, using
Newton’s method that converges quadratically.

2.1.10 Local coordinates

Zhang et al. [2014] propose to minimize the sum of total variations of the coor-
dinate functions bi,

min
b

n
∑

i=1

∫

Ω

‖∇bi‖ ,

subject to the constraints given by (1.8), (1.9), (1.10a), (1.10b), and (1.10c),
where the total variation of bi is the L1-norm of ‖∇bi‖ in Ω. The solution of this
convex minimization problem gives the so-called local coordinates, which are at
least C0. The name stems from the fact that the numerically computed function
values are very close to zero in a large part of Ω. The exact support of these
coordinates, however, is not known.

2.1.11 Affine coordinates

Among all generalized barycentric coordinates with respect to a scattered set
of points Π (see Figure 2.6), Waldron [2011] suggests to consider those with
minimal L2-norm, which are uniquely defined as the affine functions

bi(p) = (p − c) · ((M M ∗)−1(pi − c))T +
1
n

, i = 1, . . . , n,
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cp1

p2

pi

pn Π

p

Figure 2.6. Notation used for affine coordinates.

where c = 1
n

∑n
i=1 pi is the barycentre of Π, M = (p1 − c, . . . , pn − c) is a 2 × n

matrix, and M ∗ is the adjoint of M . These coordinates are non-negative inside
a convex region that contains c, and they are equal to 1

n at c. They are smooth
and well-defined everywhere in the plane, but, in general, the Lagrange prop-
erty (1.10b) holds only in the case n= 3 (see Section 1.1).

2.1.12 Sibson coordinates

Let V be the Voronoi diagram [Voronoi, 1908] of the set Π and Ci be the Voronoi
cell in V that contains pi. Further let Vp be the Voronoi diagram of Π∪ {p} and
Cp be the Voronoi cell in Vp that contains p (see Figure 2.7). Intersecting the
cells Ci with Cp , we can define the weight functions

wi = Area[Ci ∩ Cp], i = 1, . . . , n. (2.9)

These areas were originally proposed by Sibson in [Sibson, 1980, 1981] with the
emphasis on natural neighbour interpolation, where the natural neighbours of
some p are all points from Π for which wi(p) 6= 0.

Normalizing the weights in (2.9) as in (1.12) defines the Sibson coordinates.
These coordinates are well-defined over the convex hull ofΠ, have local support,
and satisfy the Lagrange property (1.10b). They are C1, except at pi, where they

p
CpCp

si

ri Ci
pi

Figure 2.7. Voronoi diagram of a set of scattered points (left) and notation used
for the construction of Sibson and Laplace coordinates (right).
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are only C0. A simple computational algorithm for Sibson coordinates can be
found in [Sukumar, 2003] and further details in [Sukumar et al., 1998].

2.1.13 Laplace coordinates

The concept of natural neighbours (see Section 2.1.12) is also used for the def-
inition of so-called Laplace coordinates [Christ et al., 1982; Belikov et al., 1997;
Sugihara, 1999], which are given by the weight functions

wi =

¨

si
ri

, if i ∈ Ip ,

0, otherwise,
i = 1, . . . , n,

where si is the length of the edge of Cp that is contained in Ci, ri = ‖pi − p‖,
and Ip ⊂ {1, . . . , n} is the subset of indices of the natural neighbours of p (see
Figure 2.7).

These coordinates have the same properties as Sibson coordinates, but they
are only C0 along the boundary of their support. Interestingly, for polygons,
whose vertices lie on a circle, Sibson, Laplace, Wachspress, and discrete harmonic
coordinates are all identical [Sukumar and Malsch, 2006]. A simple computa-
tional algorithm for Laplace coordinates can be found in [Sukumar, 2003] and
further details in [Sukumar et al., 2001].

2.1.14 Hermite coordinates

To interpolate not only boundary data, but also derivative information along the
boundary, we can complement the functions bi with a second set of n functions
di and substitute the Lagrange property (1.10b) with the Hermite property

bi(v j) = δi j, di(p) = 0 ∀p ∈ ∂ P,
∂ bi

∂η
(p) = 0 ∀p ∈ ∂ P,

∂ di

∂η
(p) = δi j ∀p ∈ [v j, v j+1],

(2.10)

where η is the unit vector normal to the boundary ∂ P. In this setting, the key
properties of generalized barycentric coordinates in Definition 1 take on the form

n
∑

i=1

bi(p) +
n
∑

i=1

di(p) = 1 ∀p ∈ Ω̄, (2.11)

n
∑

i=1

bi(p)vi +
n
∑

i=1

di(p)ηi = p ∀p ∈ Ω̄, (2.12)
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where ηi is the unit normal of the edge [vi, vi+1]. Note that (2.11) is essentially
the same as (1.8), because di(p) = 0.

To the best of our knowledge, Lipman et al. [2008] were the first to derive
coordinates bi and di that satisfy (2.11) and (2.12) from Green’s third identity.
These Green coordinates have a closed form, but do not satisfy (2.10). By fitting a
bivariate polynomial in a weighted least squares sense to values and derivatives
given along the polygon’s boundary, Manson and Schaefer [2010] construct mov-
ing least squares coordinates, which are defined for arbitrary, even disconnected
polygons and have a closed form. Another closed-form solution for Hermite co-
ordinates with property (2.10) for arbitrary simple polygons is presented by Li
et al. [2013], who derive cubic mean value coordinates from the mean value prop-
erty of biharmonic functions. Weber et al. [2012] extend harmonic coordinates
to biharmonic coordinates, which satisfy (2.10), but do not posses a closed form.

2.1.15 Complex coordinates

If we interpret P as a subset of C and view its vertices vi = (x i, yi) as complex
numbers zi = x i + i yi, then we can reformulate generalized barycentric coordi-
nates as complex functions [Weber et al., 2009, 2011]. These complex coordinates
are very useful in the context of planar shape deformation, for example, for im-
age deformation (see Section 2.3.2). The complex setting also reveals that Green
coordinates (see Section 2.1.14) can alternatively be derived from Cauchy’s in-
tegral formula [Weber et al., 2009].

2.1.16 Comparison

To compare the generalized barycentric coordinates from this section, except for
Hermite and complex, we summarize some of their properties in Table 2.1 and
show contour plots of some coordinate functions for a convex as well as a concave
polygon in Figures 2.8–2.11.

In particular, Table 2.1 lists the domain for which the coordinates are well-
defined and whether or not they have a closed-form definition, are non-negative
(1.10a), and satisfy the Lagrange property (1.10b). In addition, the table shows
how smooth the coordinates are over the interior of the respective domain. The
partition of unity (1.8) and linear reproduction (1.9) properties are not included
in the table, because all the coordinates comply with them. Moreover, we do
not include the extra property (1.10c) since it is satisfied by all the coordinates
defined for polygons and does not apply to coordinates for scattered points. Fi-
nally, all these constructions have in common that they depend on the number
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of the polygon’s vertices, and the time complexity for a single evaluation of the
coordinate functions at some p ∈ Ω is at least O(n).

For a better comparison we group all coordinates by the first two properties.
The first group includes Wachspress (WP), discrete harmonic (DH), and the com-
plete family (CF) of coordinates. These coordinates are well-defined for convex
polygons only and have a closed form. The second group consists of mean value
(MV), positive mean value (PM), metric (MT), Poisson (PS), Gordon–Wixom
(GW), and positive Gordon–Wixom (PG) coordinates that are well-defined for
arbitrary simple polygons and have a closed form. In the third group, we list
harmonic (HM), maximum entropy (ME), and local (LC) coordinates that are
also well-defined for arbitrary simple polygons, but can be obtained only nu-
merically. The last group includes affine (AF), Sibson (SB), and Laplace (LP)
coordinates that are defined with respect to sets of scattered points.

Figures 2.8 and 2.9 provide a visual comparison of all coordinates by show-
ing contour plots of two different basis functions for a convex polygon. A similar
comparison of all coordinates that are well-defined for a concave polygon is given
in Figures 2.10 and 2.11. In all plots, the thick curves represent contours for the
function values 0.0, 0.1, . . . , 1.0 and allow for a comparison of the general shapes
of the coordinate functions. In addition, the decay towards zero can be deduced
from the thin curves, which represent contours for the values 0.01,0.02, . . . , 0.09.
The same contour spacing is used for negative function values, and the corre-
sponding regions are shaded in light grey. Likewise, regions with function values
greater than one are shaded in dark grey. As a representative of the complete
family (CF) of coordinates, we choose the function

ci = 2ri
sinαi−1 + sinαi

sinαi−1 + sinαi + sin(αi−1 +αi)
,

which was proposed in [Floater et al., 2006, Section 5]. For affine, Sibson,
and Laplace coordinates we treat the vertices of the polygon as a set of scat-
tered points and restrict the plot to the convex hull. The plots show that mean
value, Poisson, and Gordon–Wixom coordinates can become negative inside non-
convex polygons. The same is true for metric coordinates, also for convex poly-
gons, and for affine coordinates, which do not even necessarily satisfy the La-
grange property.
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Table 2.1. Properties of 2D generalized barycentric coordinates.

Coordinates
(Section)

Valid
domain

Closed
form

Non-
negativity

Lagrange
property

Smooth-
ness

WP (2.1.1) 3 3 3 C∞

DH (2.1.2) 3 3 C∞

CF (2.1.4) 3 3 C∞

MV (2.1.3) 3 3 C∞

PM (2.1.3) 3 3 3 C0

MT (2.1.5) 3 3 C∞

PS (2.1.6) 3 3 C∞

GW (2.1.7) 3 3 C0

PG (2.1.7) 3 3 3 C0

HM (2.1.8) 3 3 C∞

ME (2.1.9) 3 3 C k

LC (2.1.10) 3 3 C0

AF (2.1.11) 3 C∞

SB (2.1.12) 3 3 3 C1

LP (2.1.13) 3 3 3 C0
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WP DH CF

MV PM MT

PS GW PG

HM ME LC

AF SB LP

Figure 2.8. 2D generalized barycentric coordinates for a convex polygon with
respect to the marked vertex.
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WP DH CF

MV PM MT

PS GW PG

HM ME LC

AF SB LP

Figure 2.9. 2D generalized barycentric coordinates for a convex polygon with
respect to the marked vertex.
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MV PM MT

PS GW PG

HM ME LC

Figure 2.10. 2D generalized barycentric coordinates for a concave polygon with
respect to the marked vertex.
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MV PM MT

PS GW PG

HM ME LC

Figure 2.11. 2D generalized barycentric coordinates for a concave polygon with
respect to the marked vertex.
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4i
pp

P
Pd

�i�i

vi

Figure 2.12. Polar dual Pd of a hexagon P centred at p, where the triangle 4i is
dual to the vertex vi.

2.2 3D coordinates

We now focus on the 3D case and consider a polyhedron P with n vertices
v1, . . . , vn and m faces F1, . . . , Fm. We present explicit formulations for some gen-
eralized barycentric coordinates in this setting, which are direct extensions of the
corresponding 2D constructions. Since the properties of these coordinates carry
over from 2D to 3D, we do not mention them explicitly.

2.2.1 Wachspress coordinates

Wachspress coordinates can be generalized to convex polyhedra in which all ver-
tices have exactly three incident faces [Wachspress, 1975; Warren, 1996; Warren
et al., 2007], and to arbitrary convex polyhedra using the concept of polar du-
als [Ju, Schaefer, Warren and Desbrun, 2005]. The polar dual of a bounded
convex polyhedron that contains the origin is itself a convex polyhedron of the
form Pd = {x ∈ R3 | x · y ≤ 1 ∀y ∈ P}. Since each vertex vi of P has a dual
polygonal pyramid 4i in Pd (see Figure 2.12 for a 2D example), translating P
such that p is at the origin and letting

wi = Vol[4i], i = 1, . . . , n

leads to 3D Wachspress coordinates after the normalization in (1.12). Note that
the constructions in [Warren, 1996; Warren et al., 2007] also extend to higher
dimensions.

2.2.2 Discrete harmonic coordinates

It was first mentioned in [Meyer et al., 2003] that 3D discrete harmonic coordi-
nates exist, but no exact formula was given. Later, Ju et al. [2007] show that for
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v k
1

v k
2

v k
3

ek
1

Tk

rk
1

αk
1 p

v j

v j−
v j+

p

vivi

v j

v j−
v j+

p

vivi

Aj Aj−

v j

v j−
v j+

p

vivi

Bj
β jβ j

h j

αi, jαi, j

Figure 2.13. Notation used for signed angles, distances, and signed volumes in
a polyhedron with triangular faces.

convex polyhedra with triangular faces these coordinates are given by the weight
functions

wi =
∑

j∈Ni

h j cotβ j, i = 1, . . . , n,

where Ni ⊂ {1, . . . , n} is the subset of the indices of the vertices in the one-ring
neighbourhood of vi, β j is the dihedral angle between the faces [vi, v j, v j+] and
[p, v j, v j+], and h j =





v j − v j+




 (see Figure 2.13).
Interestingly, unlike their 2D counterparts (see Section 2.1.2), discrete har-

monic and Wachspress coordinates are not identical for polyhedra, whose ver-
tices lie on a common sphere. However, [Ju et al., 2007, Section 3.2.2] introduce
Voronoi coordinates, which are identical to Wachspress coordinates on such poly-
hedra.

2.2.3 Mean value coordinates

Floater et al. [2005] and Ju, Schaefer and Warren [2005] independently gener-
alize mean value coordinates to arbitrary polyhedra with triangular faces. Con-
sider a face Fk = [v k

1 , v k
2 , v k

3 ] of P. By projecting Fk onto the unit sphere centred
at p we obtain a triangular wedge Tk. The weight functions for 3D mean value
coordinates with respect to the vertices v k

j of the face Fk are then defined as

wk
j =

ek
j − ek

j−1 cosαk
j+1 − ek

j+1 cosαk
j−1

rk
j sinαk

j+1 sinαk
j−1

, j = 1, . . . , 3, k = 1, . . . , m,

with the angles αk
j and the spherical edge lengths ek

j as shown in Figure 2.13

and rk
j =








v k
j − p








. Details regarding the generalization of this construction to

polyhedra with arbitrary faces can be found in [Floater, 2015].
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2.2.4 Complete family of coordinates

Ju et al. [2007] show that for convex polyhedra with triangular faces, Wach-
spress, discrete harmonic, and mean value coordinates can all be unified in a
simple framework, which closely resembles the one in Section 2.1.4. This com-
plete family of 3D coordinates is given by the weight functions

wi =
∑

j∈Ni

c j, j+

A j
+
∑

j∈Ni

ci, jB j

A jA j−
, i = 1, . . . , n,

where ci, j : Ω→ R are arbitrary real functions, A j and B j are the signed volumes
shown in Figure 2.13, and Ni ⊂ {1, . . . , n} is the subset of the indices of the
vertices in the one-ring neighbourhood of vi. The name stems from the fact that
this framework includes all possible coordinates for polyhedra with triangular
faces. For example, given the signed angle αi, j formed by vi − p and v j − p, the
choices

ci, j = 2−
�

‖vi − p‖




v j − p






+





v j − p






‖vi − p‖

�

· cosαi, j,

ci, j =




(vi − p)× (v j − p)






2
,

ci, j =




(vi − p)× (v j − p)




 ·αi, j

lead to Wachspress, discrete harmonic, and mean value coordinates, respectively.
Alternatively, all non-negative coordinates for convex polyhedra can be rep-

resented as 3D power coordinates [Budninskiy et al., 2016], and both approaches
can be extended to convex polytopes in higher dimensions.

2.2.5 Other coordinates

The extensions of positive mean value [Lipman et al., 2007], harmonic [Joshi
et al., 2007], maximum entropy [Hormann and Sukumar, 2008] and local [Zhang
et al., 2014] coordinates to 3D are straightforward and mentioned in the respec-
tive papers. Extensions of Sibson and Laplace coordinates to arbitrary higher
dimensions are discussed in [Bobach et al., 2006] and to higher continuity in
[Hiyoshi and Sugihara, 2000]. The other 2D coordinates in Section 2.1 can prob-
ably be extended to 3D, too, but to the best of our knowledge, this has not been
done so far. Apart from Wachspress coordinates, the only other coordinates that
have been explicitly extended to arbitrary higher dimension are affine coordi-
nates [Waldron, 2011].
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2.3 Applications

As we explained in Section 1.3, the main application of generalized barycen-
tric coordinates is interpolation. We now discuss colour interpolation (see Sec-
tion 2.3.1) and image deformation (see Section 2.3.2) as two example applica-
tions of the barycentric interpolant f in (1.13). Since, the majority of the coordi-
nate functions in Section 2.1 are not usually applied to these applications, from
now on we compare colour interpolation and image deformation based only on
mean value, metric, harmonic, maximum entropy, and local coordinates.

2.3.1 Colour interpolation

Given a polygon P with RGB colour data fi ∈ [0,1]3 specified at the vertices vi

of P, we can propagate these colours to the interior of P by applying (1.13). If
the coordinates bi are not bounded between 0 and 1, then the interpolated RGB
values can happen to be outside the valid range [0, 1] and we truncate these
values to 0 or 1, respectively. Due to this truncation, the interpolation function
f is only C0 along certain curves inside the polygon, and this can be seen in
Figure 2.14, where mean value and metric coordinates posses the truncation
artefacts, while harmonic, maximum entropy, and local coordinates do not.

MV < 0

MV

MV > 1

MT

MT < 0

HM

MT > 1

ME LC

Figure 2.14. Colour interpolation with different generalized barycentric coordi-
nates (bottom row) and regions where the interpolation of the blue and green
colour channels has been truncated for values < 0 and > 1, respectively (top
row). Note, that in this example, the mean value and metric interpolation of the
red channel and the interpolations of all channels with harmonic, maximum
entropy, and local coordinates are within the range [0, 1].
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P

P̃

HM

P̃

MV

P̃

ME

P̃

MT

P̃

LC

Figure 2.15. Comparison of image deformation with different generalized
barycentric coordinates.

2.3.2 Image deformation

We can deform an image that is contained in the source polygon P by specifying
a target polygon P̃ with the vertices ṽ1, . . . , ṽn and using (1.13) with the data
fi = ṽi, that is

f (p) =
n
∑

i=1

bi(p)ṽi. (2.13)
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Given a source image I : Ω→ C that maps Ω to some colour space C and a target
image Ĩ : Ω̃→ C , the deformed image is then generated by simply setting

Ĩ( f (p)) = I(p).

Since it is often necessary in image deformation to preserve straight edges, image
deformation based on generalized barycentric coordinates is particularly useful
due to property (1.10c). We also want to remark that the deformed image de-
pends smoothly on the target vertex positions, because the coordinate functions
bi are defined with respect to the source polygon, which remains unchanged.

Figure 2.15 gives a visual comparison of the deformed images using different
generalized barycentric coordinates. While mean value, harmonic, maximum
entropy, and local coordinates lead to similar results, the deformation with metric
coordinates suffers from high distortions and is visually inappropriate for this
example. We also notice that the locality of local coordinates guarantees the
mapping to be isometric and leads to a less distorted shape of the horse.

A 3D analogue of image deformation is character articulation. By computing
3D generalized barycentric coordinates bi(p) for all points p of a 3D object with
respect to the vertices vi of the cage P ⊂ R3 around this object, the object is
deformed with respect to the modified cage P̃ ⊂ R3 with the vertices ṽi using the
interpolant (2.13).



Chapter 3

Exponential three-point coordinates

As discussed in Section 2.1.4, Floater et al. [2006] present a complete family of
generalized barycentric coordinates for strictly convex polygons. In particular,
for any given set of functions c1, . . . , cn : Ω→ R, let

wi(p) =
ci+1(p)Ai−1(p)− ci(p)Bi(p) + ci−1(p)Ai(p)

Ai−1(p)Ai(p)
, i = 1, . . . , n, (3.1)

where Ai(p) and Bi(p) are the triangle areas shown in Figure 3.1. The functions
bi are then computed as in (1.12),

bi(p) =
wi(p)
W (p)

, i = 1, . . . , n (3.2)

with

W (p) =
n
∑

i=1

wi(p), (3.3)

and they are well-defined and satisfy conditions (1.8) and (1.9) for any p ∈ Ω,
as long as the denominator W (p) does not vanish. Moreover, if the wi in (3.1)

v1

v2

vn

vn−1
vi+1

vi−1

vi

p Ai−1

Ai
riri

P
v1

v2

vn

vn−1
vi+1

vi−1

vi

p
Bi

Ci

P

Figure 3.1. Notation used for the definition of exponential three-point coordi-
nates with respect to a strictly convex polygon P.

34
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are non-negative on Ω, then the bi extend continuously to Ω̄ and satisfy condi-
tion (1.10b). However, the non-negativity of the wi is only a sufficient condition
and the construction above usually leads to proper generalized barycentric coor-
dinates even if it is not satisfied.

Floater et al. [2006] further study a particular one-parameter family of co-
ordinates that we call exponential three-point coordinates. These coordinates are
defined by setting ci(p) = ri(p)

p in (3.1) for some p ∈ R and ri(p) = ‖vi − p‖
(see Figure 3.1). It also turns out that Wachspress (Section 2.1.1), mean value
(Section 2.1.3), and discrete harmonic coordinates (Section 2.1.2) are special
members of this family for p = 0, p = 1, and p = 2, respectively, and that p = 0
and p = 1 are the only choices of p for which the wi in (3.1) are positive. Accord-
ing to the sufficient condition mentioned above, this implies that Wachspress and
mean value coordinates satisfy all three conditions (1.8), (1.9), and (1.10b), but
is that true for other values of p, too? In this chapter, we confirm that all expo-
nential three-point coordinates do satisfy these conditions (Section 3.1), analyse
some numerical issues that arise when implementing these coordinates (Sec-
tion 3.2), and present both numerically stable and efficient implementations of
Wachspress, mean value, and discrete harmonic coordinates for the Computa-
tional Geometry Algorithm Library [CGAL, 2016] (Section 3.3).

3.1 Theoretical aspects

To show that all exponential three-point coordinates satisfy conditions (1.8),
(1.9), and (1.10b), let us first observe that the denominator W (p) in (3.3) does
not vanish for any p ∈ Ω.

Proposition 1. Exponential three-point coordinates are well-defined over Ω for any
p ∈ R.

Proof. Omitting the argument p and noticing that Ai−1 + Ai = Bi + Ci with Ci =
Area(vi−1, vi, vi+1), as shown in Figure 3.1, we can write W as

W =
n
∑

i=1

r p
i+1Ai−1 − r p

i (Ai−1 + Ai − Ci) + r p
i−1Ai

Ai−1Ai

=
n
∑

i=1

r p
i+1 − r p

i

Ai
+

n
∑

i=1

r p
i Ci

Ai−1Ai
−

n
∑

i=1

r p
i − r p

i−1

Ai−1

=
n
∑

i=1

r p
i Ci

Ai−1Ai
, (3.4)
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which is clearly positive for p ∈ Ω. Therefore, the bi in (3.2) do not have any
singularities in Ω.

Next, let us analyse the behaviour of the functions bi as p approaches any of
the open edges Ei = (vi, vi+1), i = 1, . . . , n of P. In this case, the area Ai con-
verges to zero, so that wi and wi+1 diverge to infinity. We can fix this problem by
introducing the products

A =
n
∏

j=1

A j, Ai =
n
∏

j=1
j 6=i

A j, Ai−1,i =
n
∏

j=1
j 6=i−1,i

A j, i = 1, . . . , n, (3.5)

of all areas A j and those with one or two terms missing, respectively, and consid-
ering the functions

w̃i = wiA = r p
i+1Ai − r p

i BiAi−1,i + r p
i−1Ai−1, i = 1, . . . , n, (3.6)

and

W̃ =WA =
n
∑

i=1

w̃i. (3.7)

Since A is well-defined and does not vanish over Ω, it is clear that the functions

b̃i =
w̃i

W̃
, i = 1, . . . , n, (3.8)

coincide with the bi on Ω, but they have the advantage of being well-defined
over the open edges of P.

Proposition 2. Exponential three-point coordinates extend continuously to Ω ∪
E1 ∪ · · · ∪ En and are linear along E1, . . . , En for any p ∈ R.

Proof. Let us write p ∈ E j as p = (1− t)v j + tv j+1 for some t ∈ (0, 1) and note
that A j(p) = 0 and

− B j(p)

A j−1(p)
=

r j+1(p)

r j(p)
=

1− t
t

.

Therefore, by (3.6) and omitting the argument p,

w̃ j = r p
j+1A j + r p−1

j r j+1A j =
�

r p−1
j+1 + r p−1

j

�

r j+1A j

and similarly
w̃ j+1 =

�

r p−1
j+1 + r p−1

j

�

r jA j.
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Moreover,
W̃ = w̃ j + w̃ j+1 =

�

r p−1
j+1 + r p−1

j

��

r j + r j+1

�

A j > 0,

because w̃k = 0 for k 6= j, j + 1, and so

b̃ j =
r j+1

r j + r j+1
= 1− t, b̃ j+1 =

r j

r j + r j+1
= t, (3.9)

and b̃k = 0 for k 6= j, j + 1.

The functions b̃i are not well-defined at the polygon’s vertices v j, except for
p = 0, but the linear behaviour along the edges E j in (3.9) implies that b̃i(p)
converges to δi j as p approaches v j along ∂ P. It turns out that this behaviour
also holds for p approaching v j arbitrarily inside P (see Section 3.1.1), so that a
continuous extension of exponential three-point coordinates to Ω̄ is obtained by
enforcing the Lagrange property (1.10b). For p ≤ 1, the coordinates can further
be extended to some region around P, but they have unremovable singularities
arbitrarily close to the vertices for p > 1 (see Section 3.1.2).

3.1.1 Convergence from inside

Let us first consider the case p < 0 and analyse the behaviour of the functions b̃i

as p approaches some vertex v j of P. In this case, the distance r j converges to
zero, so that r p

j and at least w̃ j diverge to infinity. Similar to above, we can fix
this problem by introducing the products

R =
n
∏

j=1

r−p
j , Ri =

n
∏

j=1
j 6=i

r−p
j , i = 1, . . . , n,

and considering the functions

ŵi = w̃iR =Ri+1Ai −RiBiAi−1,i +Ri−1Ai−1, i = 1, . . . , n, (3.10)

and

Ŵ = W̃R =
n
∑

i=1

ŵi.

Since R is well-defined and does not vanish over Ω∪ E1∪ · · · ∪ En, it is clear that
the functions

b̂i =
ŵi

Ŵ
, i = 1, . . . , n,

coincide with the b̃i on Ω ∪ E1 ∪ · · · ∪ En, but they have the advantage of being
well-defined at the vertices of P.
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v1

v2

vn

pen

e1

τn

τ1

Figure 3.2. Notation for angles and edge lengths used in the proofs of Lemmas 2
and 3.

Lemma 1. Exponential three-point coordinates extend continuously to Ω̄ for p < 0.

Proof. First observe that A j−1(p), A j(p), and r j(p) vanish at p = v j. Therefore,
Ai = 0 for all i, Ai−1,i = Ri = 0 for i 6= j, and A j−1, j,R j > 0, so that all terms of
the ŵi in (3.10) vanish, except for the second term of ŵ j. Consequently, ŵi = 0
for i 6= j, ŵ j = −R jB jA j−1, j > 0, Ŵ = ŵ j > 0, and finally b̂i(v j) = δi j.

The reasoning in the proof of Lemma 1 does not carry over to the case p > 0,
because R and Ri for i 6= j diverge to infinity as p approaches v j. However, for
0 < p < 1, this divergence is counterbalanced by the zero-convergence of the
areas A j−1 and A j, so that the ŵi converge to finite values at p = v j.

Lemma 2. Exponential three-point coordinates extend continuously to Ω̄ for 0 <
p < 1.

Proof. Without loss of generality, we consider the case where p approaches v1,
so that A1, An, and r1 converge to zero, while all other Ai and ri remain strictly
positive. The key idea now is to show that the two quotients A1/r

p
1 and An/r

p
1

converge to zero, too. Denoting the length of E1 by e1 = ‖v2 − v1‖ and the signed
angle between the vectors v2−v1 and p−v1 by τ1 (see Figure 3.2), we can bound
the first quotient as

0≤ A1

r p
1

=
r1e1 sinτ1

2r p
1

≤ r1−p
1 e1

2
(3.11)

for any p ∈ Ω. Since the upper bound is zero at p = v1, we conclude

lim
p→v1

A1(p)
r1(p)

p = 0 (3.12)

and similarly

lim
p→v1

An(p)
r1(p)

p = 0. (3.13)
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It follows that all terms of the ŵi in (3.10) with a diverging factor Ri, i 6= 1,
converge to zero, because they contain one of these two quotients. Among the
other three terms with factor R1, which is finite at p = v1, the terms in ŵ2

and ŵn are zero, because A1 and An vanish, so that only the second term in
ŵ1 is non-zero. Consequently, limp→v1

ŵi(p) = 0 for i 6= 1, limp→v1
ŵ1(p) =

−R1(v1)B1(v1)An,1(v1) > 0, limp→v1
Ŵ (v1) > 0, and finally limp→v1

b̂i(p) = δi,1.

The proof of Lemma 2 does not extend to the case p > 1, because the upper
bound in (3.11) diverges. Going back to the functions b̃i in (3.8), we see that
they are not well-defined at the vertices of P, because all the w̃i and thus also W̃
are zero at p = v j. However, for p > 1, this problem can be fixed by considering
the functions w̃i/r j, i = 1, . . . , n, and W̃/r j.

Lemma 3. Exponential three-point coordinates extend continuously to Ω̄ for p > 1.

Proof. As in the proof of Lemma 2, we consider only the case where p approaches
v1. Like in (3.11), we can bound the quotients A1/r1 and An/r1 for any p ∈ Ω as

0≤ A1

r1
≤ e1

2
, 0≤ An

r1
≤ en

2
, (3.14)

where en = ‖vn − v1‖ is the length of En (see Figure 3.2). Since these bounds are
constants, they also hold in the limit. For i 6= 1, we then observe that all terms
of w̃i in (3.6) contain either A1 or An plus one other factor (A1, An, B2, Bn, or r p

1 )
that vanishes at v1, so that limp→v1

w̃i(p)/r1(p) = 0. It remains to show that

w̃1

r1
=
� r p

2 An

r1
− r p−1

1 B1 +
r p

n A1

r1

�

An,1,

and thus also W̃/r1, converges to a non-zero, finite value. By (3.14),

r p
2 An

r1
+

r p
n A1

r1
≤ r p

2 en + r p
n e1

2

for any p ∈ Ω and this upper bound converges to the positive constant c? =
(ep

1 en + ep
ne1)/2. Moreover,

r p
2 An

r1
+

r p
n A1

r1
=

r p
2 en sinτn + r p

n e1 sinτ1

2

≥min(r2, rn)
p min(e1, en)(sinτ1 + sinτn)/2

≥min(r2, rn)
p min(e1, en)(sinτ1 cosτn + sinτn cosτ1)/2

=min(r2, rn)
p min(e1, en) sin(τ1 +τn)/2,
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Figure 3.3. Notation used in Section 3.1.2.

where τn is the signed angle between p−v1 and vn−v1 (see Figure 3.2), and this
lower bound converges to the positive constant c? =min(e1, en)

p+1 sin(τ1+τn)/2.
It follows that (r p

2 An + r p
n A1)/r1 converges to a positive, finite value c ∈ [c?, c?]

and since r p−1
1 vanishes at p = v1 and An,1 does not, the proof is complete. Note

that the limit cAn−1 of w̃1/r1 may not be the same for two different sequences
of p, which both converge to v1, but this does not affect the proof, because the
ratio (w̃1/r1)/(W̃/r1) always converges to 1.

We are now ready to summarize our observations.

Theorem 1. Exponential three-point coordinates are continuous generalized barycen-
tric coordinates over Ω̄ for any p ∈ R.

Proof. It follows from Proposition 1 and Proposition 5 in [Floater et al., 2006]
that exponential three-point coordinates are continuous and satisfy conditions
(1.8) and (1.9) over Ω for any p ∈ R. Proposition 2 and Lemmas 1, 2, and 3 fur-
ther show that they can be extended continuously to Ω̄ for p 6= 0,1 and that this
extension satisfies condition (1.10b) and is piecewise linear along the boundary
∂ P. For p = 0 and p = 1, the same boundary behaviour follows from Corollary 2
in [Floater et al., 2006], and it implies that conditions (1.8) and (1.9) hold for
any point on ∂ P and thus for any p ∈ Ω̄.

3.1.2 Convergence from outside

Let us now enlarge the domain from Ω̄ to the open set Ωε by adding all points
p ∈ R2, which are ε-close to Ω (see Figure 3.3), and analyse the continuity of
exponential three-point coordinates over Ωε.

To this end, let hi(p) be the (shortest) distance between a point p and the
line through vi and vi+1, and let

h? = min
i, j=1,...,n
j 6=i−1,i

h j(vi), h? = max
i, j=1,...,n

h j(vi)
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Figure 3.4. Notation used in the proof of Lemma 4.

be the minimum and maximum distance between the vertices and the supporting
lines of P. We further denote the minima and maxima of distances between
vertices of P, of edge lengths, and of areas Ci by

r? = min
i, j=1,...,n

j 6=i

r j(vi), r? = max
i, j=1,...,n

r j(vi),

e? = min
i=1,...,n

‖vi − vi+1‖ , e? = max
i=1,...,n

‖vi − vi+1‖ ,

C? = min
i=1,...,n

Ci, C? = max
i=1,...,n

Ci,

respectively and finally introduce the positive constants

c? =min(h?, r?, e?, C?), c? =min(h?, r?, e?, C?), (3.15)

which we use for defining upper bounds on ε that guarantee W̃ to be positive
over Ωε \ Ω̄ for p < 1.

Lemma 4. If p < 0 and

ε <
c?

n8n

� c?
c?

�2n−p
, (3.16)

then W̃ (p)> 0 for any p ∈ Ωε \ Ω̄.

Proof. Since n≥ 3, p < 0, and c? ≤ c?, we conclude from (3.16) that

ε < c?/4. (3.17)

Without loss of generality, we now focus on the situation around v1 and consider
the three regions (see Figure 3.4)

S1 = {p ∈ Ωε : A1(p)< 0, An(p)≥ 0, r1(p)≤ r2(p)},
S2 = {p ∈ Ωε : A1(p)< 0, An(p)< 0},
S3 = {p ∈ Ωε : A1(p)≥ 0, An(p)< 0, r1(p)≤ rn(p)},

(3.18)
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because all other cases follow by symmetry.
Let us start with the case p ∈ S1 and establish some bounds for ri(p) and

Ai(p). Since p is closer to v1 than to v2, we can use the triangle inequality
and (3.17) to get

r1(p)≤ e1/2+ ε < e?/2+ c?/4< c?

and thus
r p

1 > (c
?)p, (3.19)

because p < 0. Moreover, since p and vi for i ≥ 3 lie on opposite sides of the
line through v1 and v2, we have

ri(p)> h1(vi)≥ h? ≥ c?, i = 3, . . . , n. (3.20)

We next derive some bounds for hi(p), which then turn into bounds for Ai(p)
because |Ai(p)|= eihi(p)/2. We first note that h1(p)< ε, hence

|A1(p)|= e1h1(p)/2< e?ε < c?ε. (3.21)

In general, we can get an upper bound for all hi(p) by triangle inequality,

hi(p)≤ hi(v1) + r1(p)≤ h? + r? < 2c?.

For i = 2, a lower bound can be obtained by recalling that p is closer to v1 than
to v2, so that

h2(p)> h2(v1)/2− ε > h?/2− c?/4≥ c?/4.

For i ≥ 3, the minimum distance from any point on the edge [v1, v2] to the line
through vi and vi+1 is either hi(v1) or hi(v2), and so, since p is ε-close to [v1, v2],

hi(p)>min(hi(v1), hi(v2))− ε > h? − c?/4> c?/4.

Overall, we conclude that

(c?)2

8
< Ai(p)< (c

?)2, i = 2, . . . , n. (3.22)

The idea now is to use (3.4) to rewrite W̃ in (3.7) as

W̃ = r p
1 C1An,1 + r p

2 C2A1,2 − |A1|
n
∑

i=3

r p
i CiA1,i−1,i (3.23)

with

A1,i−1,i =
n
∏

j=2
j 6=i−1,i

A j,
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and to show that the first term in (3.23) dominates the last term. To this end,
we observe that

(c?)pC1An,1

c?
∑n

i=3 r p
i CiA1,i−1,i

(3.15)
>

(c?)pc?An,1

c?
∑n

i=3 r p
i c?A1,i−1,i

(3.20)
>

(c?)pc?An,1

c?
∑n

i=3 (c?)
pc?A1,i−1,i

(3.22)
>

(c?)pc?(c?)2(n−2)/8n−2

c?
∑n

i=3 (c?)
pc?(c?)2(n−3)

=
(c?)2n−3−p

(n− 2)8n−2(c?)2n−4−p

(3.16)
> 2ε,

where we obtain the second inequality by recalling that p < 0, and so

1
2
(c?)pC1An,1 > c?ε

n
∑

i=3

r p
i CiA1,i−1,i.

Using (3.19) and (3.21), we then conclude

1
2

r p
1 C1An,1 > |A1|

n
∑

i=3

r p
i CiA1,i−1,i, (3.24)

which implies W̃ > 0, and similar arguments lead to

1
2

r p
1 C1An,1 > |An|

n−1
∑

i=2

r p
i CiAn,i−1,i (3.25)

for the case p ∈ S3. If p ∈ S2, then we rewrite W̃ as

W̃ = r p
1 C1An,1 − |A1|r p

n CnA1,n−1,n − |An|r p
2 C2An,1,2 +

n−1
∑

i=3

r p
i CiAi−1,i,

which is positive because of (3.24) and (3.25), which are also valid in this case.

Lemma 5. If 0≤ p < 1 and

ε < c?

�

1
n8n

� c?
c?

�2n
�

1
1−p

, (3.26)

then W̃ (p)> 0 for any p ∈ Ωε \ Ω̄.
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Proof. As in the proof of Lemma 4, it follows from (3.26) that ε < c?/4, and we
proceed by considering the first of the three regions in (3.18). For any p ∈ S1,
the bounds in (3.21) and (3.22) still hold, and we further observe that

|A1(p)|= e1h1(p)/2< e?r1(p)/2< c?r1(p)

and therefore
r p

1 ≥ (|A1|/c?)p. (3.27)

Moreover, by triangle inequality we get the upper bound

ri(p)≤ r1(p) + ri(v1)< e1/2+ ε+ ri(v1)< c?/2+ c?/4+ c? < 2c? (3.28)

for any i. With these bounds at hand we conclude that

C1An,1

(c?)p
∑n

i=3 r p
i CiA1,i−1,i

(3.15)
>

c?An,1

(c?)p
∑n

i=3 r p
i c?A1,i−1,i

(3.28)≥ c?An,1

(c?)p
∑n

i=3 (2c?)pc?A1,i−1,i

(3.22)
>

c?(c?)2(n−2)/8n−2

(c?)p
∑n

i=3 (2c?)pc?(c?)2(n−3)
=

(c?)2(1−p)

2p(n− 2)8n−2

� c?
c?

�2n−3

> 2(c?)1−p(c?)
1−p 1

n8n

� c?
c?

�2n

(3.26)
> 2(c?ε)1−p

(3.21)
> 2|A1|1−p,

so that
1
2
(|A1|/c?)pC1An,1 > |A1|

n
∑

i=3

r p
i CiA1,i−1,i.

Using (3.27), we then get

1
2

r p
1 C1An,1 > |A1|

n
∑

i=3

r p
i CiA1,i−1,i,

which implies W̃ > 0, exactly as in the proof of Lemma 4, and also the other
cases p ∈ S3 and p ∈ S2 follow analogously.
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p = 0.8 p = 0.9 p = 1.0 p = 1.1

p = 1.2 p = 2.0 p = 3.0 p = 4.0

Figure 3.5. Zero level set {p ∈ R2 : W̃ (p) = 0} (dashed) for different values of p
and close-ups, which zoom to the regions next to the left, top, and right corners
of the polygon.

The reasoning in Lemma 5 does not extend to the case p = 1, because the upper
bound in (3.26) converges to zero as p approaches 1. This suggests that W̃
vanishes at the vertices of P for p ≥ 1, and Figure 3.5 confirms that the zero
level curve {p ∈ R2 : W̃ (p) = 0} passes through the vertices of P for p ≥ 1.
For p = 1, this is not a problem, because Hormann and Floater [2006] prove
that the corresponding mean value coordinates are continuous over R2. But the
following two examples show that exponential three-point coordinates for p > 1
can have non-removable singularities in R2 \ Ω̄ arbitrarily close to the vertices of
P, and so they are, in general, not continuous over Ωε for any ε > 0. Note that
the polygons in both examples were chosen to keep the calculations as simple as
possible, but that we observed the same phenomena for all other polygons that
we tested.

Example 1. Let us examine the exponential three-point coordinates for 1< p < 2
over the unit square with vertices v1 = (0, 0), v2 = (0,1), v3 = (−1, 1), v4 =
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(−1, 0). For x ≥ 0, it turns out that

W̃ (x , 0) = (x p(1+ x)− (1+ x)p x)/8,

hence W̃ (0,0) = 0 and (∂ W̃/∂ x)(0,0) = −1/8, because p > 1. Consequently,
there exists some ε ∈ (0,1), such that W̃ is negative over the open edge between
v1 = (0,0) and p x

ε
= (ε, 0), and from Proposition 2 we know that W̃ is positive

over the open edge between v1 and p y
ε
= (0,ε). It follows that for any δ ∈ (0,ε)

there exists some point pδ on the open edge (p x
δ
, p y
δ
), such that W̃ (pδ) = 0.

At least for the coordinate function b3 = w̃3/W̃ it is easy to see that these sin-
gularities are non-removable close to v1, because w̃3 is negative over the open tri-
angle4δ = (v1, p x

δ
, p y
δ
) for δ sufficiently small. To see this, we recall from (3.6)

that w̃3 = w̄3A1A4 with

w̄3(p) = r4(p)
pA2(p)− r3(p)

pB3(p) + r2(p)
pA3(p).

Since w̄3(v1) = 1− 2
p
2−1 > 0 for p < 2, there exists some δ > 0 such that w̄3 is

positive over 4δ. Therefore, w̃3 is negative over 4δ, because A1 is negative and
A4 is positive over this region.

Despite the existence of these non-removable singularities, it seems hard
to find an example of a sequence (uk)k∈N with limk→∞ uk = v j, such that the
limk→∞ bi(uk) 6= bi(v j) in the case 1 < p < 2. In particular, our numerical ex-
periments suggest that bi always converges to the correct value at v j, if v j is
approached along any line through v j. This is not the case for p ≥ 2, though.

Example 2. For the case p ≥ 2, we consider the quadrilateral with vertices v1 =
(1, 0), v2 = (0,1), v3 = (−2,0), v4 = (0,−1) and study the behaviour of b1

along the vertical ray R = {(1, y) : y > 0}. For p = 2, we find that b1(1, y) =
(9− 4y2)/15 for y > 0, hence

lim
p→v1
p∈R

b1(p) = lim
y→0+

b1(1, y) = 3/5< 1= b1(v1),

which shows that b1 is not continuous over Ωε for any ε > 0. For p > 2, we get

w1(1, y) = 2
(1+ (1+ y)2)

p
2 − (1+ (1− y)2)

p
2

y
− 4y p−2

for y > 0, and using L’Hôpital’s rule, we obtain

lim
y→0

w1(1, y) = 2
p
2+1p.
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Similar reasoning shows that

lim
y→0

W (1, y) = 2
p
2+1p+ 8(3p−1 − 2

p
2 )/3,

hence

lim
p→v1
p∈R

b1(p) = lim
y→0+

w1(1, y)
W (1, y)

=
9p

9p+ 3p22− p
2 − 12

< 1= b1(v1),

which again demonstrates that b1 is not continuous over Ωε for any ε > 0.

We should point out that the direction of the ray R does not by chance happen
to be tangent to the zero level curve {p ∈ R2 : W̃ (p) = 0} at v1 in this exam-
ple. In fact, our numerical experiments suggest that bi converges to the correct
value at v j along any other line through v j. Overall, we conclude this section by
summarizing our observations.

Theorem 2. For any p ≤ 1, there exists an ε > 0, such that the exponential three-
point coordinates are continuous barycentric coordinates that satisfy (1.8), (1.9),
and (1.10b) over Ωε.

Proof. For p = 1, the statement is proven in [Hormann and Floater, 2006], and
for p < 1, it follows from Theorem 1, Lemmas 4 and 5, and by noting that
Lemmas 1 and 2 carry over from Ω̄ to Ωε. The proof of Lemma 1 extends because
Ŵ (p) > 0 for any p ∈ Ωε, and the only change in the proof of Lemma 2 is that
the lower bound for the ratio A1/r

p
1 in (3.11) must be replaced by −r1−p

1 e1/2,
because A1 can now be negative, but this does not affect the limit in (3.12) and
similarly for the limit in (3.13).

3.2 Practical aspects

A naive implementation of exponential three-point coordinates is quite straight-
forward, however to make this implementation numerically stable for a general
set of polygons, a few problems have to be solved. We first explain these prob-
lems and show how to solve them for a general value p in Section 3.2.1. We
then further consider three special cases, p = 0 for Wachspress coordinates (Sec-
tion 3.2.2), p = 2 for discrete harmonic coordinates (Section 3.2.3), and p = 1
for mean value coordinates (Section 3.2.4).
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3.2.1 Computing exponential three-point coordinates

Given a strictly convex polygon, for any p ∈ Ω and p ∈ R, the exponential three
point coordinates bi(p) can be computed through the normalization (3.2) with
the weights

wi(p) =
r p

i+1(p)Ai−1(p)− r p
i (p)Bi(p) + r p

i−1(p)Ai(p)

Ai−1(p)Ai(p)
, i = 1, . . . , n, (3.29)

as long as the denominator (3.3) does not vanish. As shown in Proposition 1, this
denominator never vanishes for any value of the exponent p. However, when
p is approaching an open edge Ei, the area Ai(p) converges to zero, and our
numerical experiments reveal that wi(p) and wi+1(p) are not well-defined not
only along Ei (see Section 3.1) but also at some p ∈ Ω in the vicinity of Ei (in
general, approximately 10−10 away from Ei and closer). The latter problem is
caused by the numerical division by zero that happens because of the insufficient
precision of the standard real data types used in computers. Since exponential
three-point coordinates comply with the property (1.10c), they can be computed
separately for all p ∈ ∂ P by linearly interpolating between the vertices of P (see
Equations (3.32) below). For other p, there are three different ways how to
avoid the numerical instabilities.

The first option is to use a multiple precision library, for example MPFR
[MPFR, 2016], however, in general, these libraries are not easy to use and they
do not provide a full solution to the problem. For any defined precision, there
always exists some p ∈ Ω in the vicinity of the polygon’s boundary, where this
precision would not be enough to avoid all numerical instabilities. In addition,
the computation becomes slower.

Another way to fix the problem is to treat all p ∈ Ω, such that for some chosen
threshold ε > 0 the (shortest) distance

hi(p) =




p ′ − p




< ε, (3.30)

where p ′ ∈ ∂ P is the orthogonal projection of p onto the segment [vi, vi+1] (see

p

vi vi+1p ′
hi(p)

Figure 3.6. The orthogonal projection p ′ of the point p onto the segment
[vi, vi+1] and the shortest distance hi(p) between these points.
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Figure 3.6), as boundary points. Alternatively, condition (3.30) can be substi-
tuted by condition

|Ai(p)|= |(vi − p)× (vi+1− p)|< ε and (vi − p) · (vi+1− p)< 0, (3.31)

where “×” and “·” denote the cross and dot product, respectively. If condi-
tion (3.31) is true, we set the coordinates b j(p), j 6= i, i + 1 to zero, and the co-
ordinates bi(p) and bi+1(p) are computed with respect to the segment [vi, vi+1]
as (see also Chapter 1)

bi(p) =
‖p ′ − vi+1‖

ei
=
(p − vi+1) · (vi − vi+1)

e2
i

, bi+1(p) = 1− bi(p), (3.32)

where the edge length ei = ‖vi − vi+1‖ (see Figure 3.2). This solution works
well in practice, however the threshold ε must be carefully chosen for each new
polygon by the user, and snapping to the boundary only approximates the correct
result at the given p.

The last option to solve the numerical problems above is to use the modified
weights (3.6) and to compute the coordinates as in (3.8). As shown in Propo-
sition 2, these modified weights lead to the well-defined coordinates b̃i(p) for
all p ∈ Ω ∪ E1 ∪ . . . ∪ En. Although we demonstrate in Section 3.1.1 that this
definition does not extend to the whole Ω̄, due to Theorem 1, the coordinates b̃i

at the vertices v j can be obtained separately according to the Lagrange property
b̃i(v j) = δi j. To detect the situation when p is at the vertex vi of the polygon, it
is enough to check if

r2
i (p) = (vi − p) · (vi − p) = 0. (3.33)

The third solution is more general than the first two, but it comes at the price
of computational speed. Since, for each weight (3.6), the products Ai, Ai−1,i, and
Ai−1 with n−2 elements have to be computed, the time to evaluate the modified
coordinate functions b̃i at one point p with respect to n vertices of the polygon
is O(n2). The time to compute the original coordinates bi(p) for n vertices of the
polygon is only O(n).

We know that for any p ∈ Ωε \ Ω̄, Theorem 2 states that exponential three-
point coordinates with p ≤ 1 satisfy the partition of unity (1.8), linear reproduc-
tion (1.9), and the Lagrange (1.10b) property. However, in practice, only the
coordinates with p = 1 (or mean value coordinates) can be computed safely for
such exterior points, because they are well-defined everywhere in R2 [Hormann
and Floater, 2006]. For other values of p, this ε-region, where the coordinates
are valid, may happen to be too small for any practical applications. At some
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other points, the denominator W may vanish (see Figure 3.5 for p ≤ 1) and
unavoidable division by zero occurs.

To conclude this section, we want to remark that all exponential three-point
coordinates with p = {2k, k ∈ Z} can be computed symbolically or in other
words exactly, because, for any p ∈ R2, the signed areas Ai(p) = Area(p, vi, vi+1)
and Bi(p) = Area(p, vi−1, vi+1) can be computed symbolically by using the de-
terminant definition of area as in Section 1.1 and the distance r2k

i (p) can be
represented as

r2k
i (p) = ((vi − p) · (vi − p))k, i = 1, . . . , n.

All exponential coordinates with p = {2k + 1, k ∈ Z} involve a square root
operation and can be only approximated.

3.2.2 Computing Wachspress coordinates

To compute Wachspress coordinates, one approach would be to use (3.29) with
p = 0, however this formula can be simplified if we recall that Ci = Ai−1+Ai−Bi,
where Ci = Area(vi−1, vi, vi+1) is a constant area (see Figure 3.1), and all Ci have
to be computed only once. In this case, the weights for computing Wachspress
coordinates become

wi(p) =
Ci

Ai−1(p)Ai(p)
, i = 1, . . . , n. (3.34)

These weights are not numerically stable for some p ∈ Ω in the vicinity of the
polygon’s boundary, as discussed in Section 3.2.1, and can be modified as

w̃i(p) = CiAi−1,i(p), i = 1, . . . , n, (3.35)

where the product Ai−1,i is defined in (3.5). The coordinate functions b̃i(p)
in (3.8) with the modified weights w̃i(p) are well-defined for all p ∈ Ω ∪ E1 ∪
. . . , ∪ En (see Section 3.1), and at the vertex v j they are computed according to
the Lagrange property b̃i(v j) = δi j.

An alternative way to compute Wachspress coordinates is to use the original
definition (2.1). Since the direct computation of the cotangents cotβi and cotγi

(see Figure 2.2 for angle notation) is not error-resistant, Meyer et al. [2002]
propose to compute them for each index i as

cotβi =
(vi+1 − vi) · (p − vi)
|(vi+1 − vi)× (p − vi)|

, cotγi =
(vi − vi+1) · (p − vi+1)
|(vi − vi+1)× (p − vi+1)|

. (3.36)
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However, this formulation is not numerically stable for some p ∈ Ω in the vicinity
of the polygon’s boundary as well as the one in (3.34).

According to our numerical experiments, we suggest to use the weights (3.34)
with the O(n) time complexity to implement Wachspress coordinates for all appli-
cations, where a query point is known to be at least 10−10 distance away from the
polygon’s boundary (see Pseudocode 2 in Appendix A), and the weights (3.35)
with the O(n2) time complexity for all other applications (see Pseudocode 3 in
Appendix A).

3.2.3 Computing discrete harmonic coordinates

Analogously to Section 3.2.2, discrete harmonic coordinates can be computed by
using (3.29) with p = 2,

wi(p) =
r2

i+1(p)Ai−1(p)− r2
i (p)Bi(p) + r2

i−1(p)Ai(p)

Ai−1(p)Ai(p)
, i = 1, . . . , n (3.37)

or its numerically stable version (see Section 3.2.1 for more details)

w̃i(p) = r2
i+1(p)Ai(p)− r2

i (p)Bi(p)Ai−1,i(p) + r2
i−1(p)Ai−1(p), i = 1, . . . , n.

(3.38)
In addition, the original formulation (2.2) can also be used, where the cotangents
cotβi and cotγi (see Figure 2.2 for angle notation) are computed as in (3.36),
but it exhibits the same numerical issues as the weights in (3.37).

According to our numerical experiments, we suggest to use the weights (3.37)
with the O(n) time complexity to implement discrete harmonic coordinates for
all applications, where a query point is known to be at least 10−10 distance
away from the polygon’s boundary (see Pseudocode 4 in Appendix A), and the
weights (3.38) with the O(n2) time complexity for all other applications (see
Pseudocode 5 in Appendix A).

3.2.4 Computing mean value coordinates

Mean value coordinates are the most interesting member of the exponential
three-point coordinates, because they are well-defined for all p ∈ R2 and for
all simple polygons [Hormann and Floater, 2006]. Analogously to Sections 3.2.2
and 3.2.3, the first way to compute these coordinates is to use the weights (3.29)
with p = 1 or its numerically stable version (see Section 3.2.1 for more details)

w̃i(p) = ri+1(p)Ai(p)− ri(p)Bi(p)Ai−1,i(p) + ri−1(p)Ai−1(p), i = 1, . . . , n.
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It then follows that the coordinates b̃i(p) in (3.8) can be computed for all p ∈
Ω ∪ E1 ∪ . . . , ∪ En, but they are not defined for any p = v j (see Section 3.1).
While for other exponential three-point coordinates, we suggest to compute the
b̃i(v j) separately according to the Lagrange property (1.10b), for mean value
coordinates, there is a way to overcome this constraint and obtain a numerically
stable formulation for all points in the plane.

Given a strictly convex polygon, let us consider the original definition (2.4)
of mean value coordinates. Floater [2014] suggests to use the trigonometric
identity (see Figure 2.2 for angle notation)

tan
�αi

2

�

=

√

√1− cosαi

1+ cosαi

in this definition, to obtain the weights

ŵi = (ri−1ri+1 − si−1 · si+1)
1/2

∏

j 6=i−1,i

(r j r j+1 + s j · s j+1)
1/2, i = 1, . . . , n, (3.39)

where si = vi − p and ri = ‖si‖, which after the normalization

b̂i =
ŵi

Ŵ
, i = 1, . . . , n

are identical to the bi over Ω, but have the advantage of being well-defined over
Ω̄. Since, by definition, the weights ŵi are always non-negative, they cannot be
used for computing the coordinates with respect to concave polygons and for
points outside a polygon. We solve this problem by introducing the weights

w̄i = σiŵi, i = 1, . . . , n, (3.40)

vi+1

vi−1

vi+
+

+

−
vi+1

vi−1

vi
+

+

−−

Figure 3.7. Signs of the mean value weight ŵi(p) for a p ∈ R2 with respect to a
convex and a concave polygon. The black piecewise linear curve separates the
positive and negative regions.
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Pseudocode 1 Computing the sign σi(p) of the mean value weight ŵi(p) (see
Equation (3.39)) for a point p ∈ R2.

1: function σi(p)
2: if Ai−1(p)> 0 and Ai(p)> 0 and Bi(p)≤ 0 then return 1

3: if Ai−1(p)< 0 and Ai(p)< 0 and Bi(p)≥ 0 then return −1

4: if Bi(p)> 0 then return 1

5: if Bi(p)< 0 then return −1

6: return 0

where σi is the sign function with the values shown in Figure 3.7. This sign
function defines the correct sign of the weight ŵ(p) with respect to any simple
polygon and for any p ∈ R2, and it can be computed as in Pseudocode 1.

Except for the formulas above, there are a few other ways how to obtain mean
value coordinates. These formulations are not as precise as (3.40), but they of-
fer a nice trade-off between computational speed and precision. As described
in [Hormann and Floater, 2006], the first option is to use the trigonometric iden-
tity

tan
�αi

2

�

=
1− cosαi

sinαi
=

ri ri+1 − si · si+1

2Ai
, i = 1, . . . , n

in the original formulation (2.4). However, analogously to the weights (3.29)
with p = 1, the wi(p) based on this identity involve division by the area Ai(p)
and are not numerically stable for p ∈ R2 in the vicinity of the line through the
vertices vi and vi+1 (see Figure 3.5 for p = 1), where the numerical division by
zero can happen. The problem can be partially fixed without sacrificing compu-
tational speed by considering the trigonometric identity

tan
�αi

2

�

=
sinαi

1+ cosαi
=

2Ai

ri ri+1 + si · si+1
, i = 1, . . . , n. (3.41)

The mean value weights based on this identity exhibit numerical instabilities only
in the vicinity of the polygon’s boundary when the angle αi approaches 180◦ and
so si · si+1 = ri ri+1 cosαi ≈ −ri ri+1.

According to our numerical experiments, we suggest to use the weights (2.4)
based on the trigonometric identity (3.41) with the O(n) time complexity to
implement mean value coordinates for all applications, where a query point is
known to be at least 10−10 distance away from the polygon’s boundary (see Pseu-
docode 6 in Appendix A), and the weights (3.40) with the O(n2) time complexity
for all other applications (see Pseudocode 7 in Appendix A).
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Figure 3.8. Generic design adopted in CGAL.

3.3 Computational Geometry Algorithm Library

The Computational Geometry Algorithm Library [CGAL, 2016] (CGAL) is an open
source C++ library that provides efficient and reliable implementations of differ-
ent geometric algorithms. It is used in geographic information systems, computer
graphics, molecular biology, robotics, and many other areas. The key features of
this library are the high quality of the provided code and accuracy of the algo-
rithms behind this code.

Several algorithms in CGAL require an efficient and reliable implementation
of some closed-form generalized barycentric coordinates. The current implemen-
tation of these coordinates is based on the old and error-prone formulas, and the
code itself is not flexible enough for introducing new constructions of barycentric
coordinates in the library. The latter suggests to create a new package with the
state of the art constructions of some commonly used closed-form generalized
barycentric coordinates.

We shortly explain the main design concepts that are adopted in CGAL in
Section 3.3.1. We then show how these concepts are applied to implement the
package with different generalized barycentric coordinates in Section 3.3.2 and
discuss the package performance in Section 3.3.3.

3.3.1 Design concepts

The main goal of CGAL is to provide the users with correct, robust, and flexible
implementations of different geometric algorithms. It means that each pack-
age needs to behave according to its specification, contain as precise as possible
implementations of the geometric algorithms, be modular, extendable, and com-
patible with other C++ libraries.

To fulfil the flexibility requirement, this library follows a generic design and
consists of three major layers (see Figure 3.8). The highest layer is the layer with
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Segment_coordinates_2

Triangle_coordinates_2

Generalized_barycentric_coordinates_2

Wachspress_2

Discrete_harmonic_2

Mean_value_2

FT
Point_2
Vector_2

Compute_area_2
....

BarycentricTraits_2

Figure 3.9. The traits class used in the package 2D Generalized Barycentric
Coordinates.

geometric algorithms and data structures that are parameterized by the types of
geometric objects and operations, which they use. These objects and operations
are collected in special classes that are called the traits classes. A simple exam-
ple of the traits class is a geometric kernel that defines different geometric objects
such as points, lines, circles and operations on these objects such as intersections,
orientations, and so on. The traits classes are in turn parameterized by differ-
ent number representations with the corresponding arithmetic. For example, the
geometric kernel above can be used either with floating-point number represen-
tations such as IEEE 754 [Standards Committee et al., 2008] or exact number
representations such as LEDA rational [LEDA, 2016].

To describe a set of requirements for each class in CGAL, it is common to
call this set of requirements a concept, where a concrete implementation of this
concept that fulfils all the corresponding requirements is called a model. For ex-
ample, Cartesian<FT> is the model of the concept Kernel that is parameterized
by the field number type FT, contains different geometric primitives from the
geometric kernel, and is used to parameterize different geometric algorithms.

All three layers are implemented using C++ templates, object-oriented solu-
tions and generic design patterns. Many algorithms in CGAL are purely sequen-
tial, however the library permits and even encourages parallelization.

3.3.2 Package

Our package is called 2D Generalized Barycentric Coordinates and is the part of
the library’s layer with geometric algorithms and data structures. This package
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follows the generic programming paradigm employed in CGAL and contains dif-
ferent implementations of Wachspress (Section 3.2.2), discrete harmonic (Sec-
tion 3.2.3), and mean value (Section 3.2.4) coordinates. For completeness, we
also implemented barycentric coordinates with respect to a line segment (see
Equation 3.32) and a triangle (see Section 1.1). The package consists of six
classes, which are parameterized by the traits class that has to be a model of the
concept BarycentricTraits_2 (see Figure 3.9). This concept includes a field
number type FT and the following

• 2D geometric objects:

– Point_2 : a 2D point,

– Vector_2 : a 2D vector,

• 2D constructions:

– Compute_area_2 : returns the signed area of a triangle in the plane,

– Compute_squared_distance_2 : returns the squared Euclidean dis-
tance between two points,

– Compute_squared_length_2 : returns the squared length of a vector,

– Compute_scalar_product_2 : returns the dot product of two vectors,

• 2D predicates:

– Equal_2 : checks if a point equals to another point,

– Collinear_2 : checks if three points are collinear,

– Collinear_are_ordered_along_line_2 : checks if a point is in be-
tween two other points and all three points are collinear.

All geometric kernels implemented in CGAL satisfy the criteria of the concept
BarycentricTraits_2 and can be used to parameterize the barycentric coordi-
nate classes, where the three main classes are

• Segment_coordinates_2,

• Triangle_coordinates_2,

• Generalized_barycentric_coordinates_2.
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Segment_coordinates_2 Triangle_coordinates_2

Generalized_barycentric_coordinates_2

operator()
compute_weights()
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Figure 3.10. Generic design adopted in the package 2D Generalized Barycentric
Coordinates.

While the first two classes contain direct implementations of barycentric co-
ordinates with respect to a line segment and a triangle, the third class is the
base class for all generalized barycentric coordinates and implemented according
to the behavioural software design pattern called the strategy pattern [Gamma
et al., 1995]. This class provides a common interface for a majority of closed-
form generalized barycentric coordinates (see Figure 3.10) and is parameter-
ized by the concrete coordinate class that has to be a model of the concept
BarycentricCoordinates_2. This concept includes the class constructor and
the three methods

• weights : returns generalized barycentric weights,

• coordinates_on_bounded_side : returns coordinates computed over the
polygon’s interior,

• coordinates_on_unbounded_side : returns coordinates computed out-
side the polygon,

which implement the main behaviour of the base class that can be accessed by
the operator

• operator() : computes generalized barycentric coordinates for a query
point in the plane, and by the method

• compute_weights : computes generalized barycentric weights for a query
point in the plane.
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The base class also contains the implementation of the correct behaviour (3.32)
of the coordinates for a query point on the polygon’s boundary that is provided
by the methods

• compute_on_edge : computes generalized barycentric coordinates for a
query point on a polygon’s edge,

• compute_on_vertex : computes generalized barycentric coordinates for a
query point at a polygon’s vertex.

The concept BarycentricCoordinates_2 has currently implemented three dif-
ferent models

• Wachspress_2,

• Discrete_harmonic_2,

• Mean_value_2,

and all three classes provide an option to choose between the fast O(n) and the
precise O(n2) implementation (see Section 3.2.1) of the corresponding coordi-
nates.

All implementations are optimized for different computing platforms (for ex-
ample, Windows, Linux, and Mac OS) and contain different data-checking mech-
anisms (for example, C++ and CGAL assertions), for situations such as wrong
input data, division by zero, and many others. We also prepared and passed a
test suite on a variety of computing platforms that contains 24 different tests
controlling the correct behaviour of the package according to its specification.
We finally remark that our package does not depend on other CGAL packages,
and all classes are encapsulated in the namespace Barycentric_coordinates

and so separated from the rest of the CGAL code.
Mean value coordinates are the most generic coordinates in this package, be-

cause they allow arbitrary simple polygons and 2D query points as input. Wach-
spress and discrete harmonic coordinates are, by definition, limited to strictly
convex polygons only. Segment coordinates take as input any non-degenerate
segment, and triangle coordinates allow an arbitrary non-degenerate triangle.

The main entry point to the component is an input iterator over the vertices of
a polygon. The polygon’s vertices must follow clockwise or anticlockwise order-
ing and can be of any type. However, internally the classes use the type Point_2,
that is why an appropriate traits class that converts the user’s point type to the
type Point_2 must be provided, and the same argument holds for query points.
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Table 3.1. Some values related to the package 2D Generalized Barycentric Co-
ordinates, where STL stands for the Standard Template Library in C++.

Property Value
Version 1.0
Classes 6
Extendable design yes

Supported CGAL kernels any
Supported iterators any STL like iterator
Supported query points Point_2 like points
Supported output containers any

Number of tests 24
Number of examples 7
Number of performance experiments/trials 18/100

Once instantiated for some polygon, the coordinates can be computed multiple
times for different query points with respect to all the vertices of the provided
polygon. The output of the computation is a set of coordinate values that can
be stored in an arbitrary container providing an appropriate output iterator. In
addition, all coordinate classes return a pointer to the last stored element and a
status of the computation (Boolean true or false). Some summarized statistics
about the package can be found in Table 3.1, and a typical usage example can
be found in Listing 3.1.

Listing 3.1. Computing mean value coordinates in CGAL.
// Example with mean value coordinates.

// Some CGAL includes.

#include <CGAL/Barycentric_coordinates_2/Mean_value_2.h>

#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>

#include <CGAL/Barycentric_coordinates_2/Generalized_barycentric_coordinates_2.h>

// Some convenient typedefs.

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

typedef Kernel::FT Scalar;

typedef Kernel::Point_2 Point;

typedef std::vector<Scalar> Scalar_vector;

typedef std::vector<Point> Point_vector;

typedef std::back_insert_iterator<Scalar_vector> Vector_insert_iterator;

typedef boost::optional<Vector_insert_iterator> Output_type;
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typedef CGAL::Barycentric_coordinates::

Mean_value_2<Kernel> Mean_value;

typedef CGAL::Barycentric_coordinates::

Generalized_barycentric_coordinates_2<Mean_value, Kernel> Mean_value_coordinates;

using std::cout; using std::endl; using std::string;

int main()

{

// Construct a polygon.

const int number_of_vertices = 10;

Point_vector vertices(number_of_vertices);

vertices[0] = Point(0, 0); vertices[1] = ...;

// Instantiate some interior points in the polygon.

const int number_of_interior_points = 8;

const Point interior_points[] = { Point(1, 1), ... };

// Instantiate the class with mean value coordinates for the polygon above.

Mean_value_coordinates mean_value_coordinates(vertices.begin(), vertices.end());

// We use the fast O(n) algorithm.

const auto type_of_algorithm = CGAL::Barycentric_coordinates::FAST;

// We compute coordinates in the polygon’s interior.

const auto query_point_location = CGAL::Barycentric_coordinates::ON_BOUNDED_SIDE;

// Print some information about the polygon and coordinates.

mean_value_coordinates.print_information();

// Create an std::vector to store coordinates.

Scalar_vector coordinates;

// Compute mean value coordinates for all the interior points above.

for (int i = 0; i < number_of_interior_points; ++i) {

const Output_type result = mean_value_coordinates(interior_points[i],

std::back_inserter(coordinates),

query_point_location,

type_of_algorithm);

// Output the coordinates b for each point p.

const string computation_status = (result ? "success." : "failure.");

cout << "\nFor p_" << i + 1 << " status: " << computation_status << endl;

for (int j = 0; j < number_of_vertices; ++j)

cout << "b_" << j + 1 << " = " << coordinates[i * number_of_vertices + j] << endl;

}

return EXIT_SUCCESS;

}
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Figure 3.11. Log-log plot: Time in seconds to evaluate n coordinate functions
for a polygon with n vertices at 1 million points with the dashed O(n) and the
solid O(n2) algorithms for Wachspress (blue), discrete harmonic (red), and mean
value (green) coordinates. The black dashed and solid lines show the linear
y = x and the squared y = x2 trend, respectively.

3.3.3 Performance

Except for the most important requirement on barycentric coordinates to be as
precise as possible, it is very important for them to be as fast as possible to com-
pute. These coordinates are used in many applications (see Section 1.3), where
they must be computed for millions of points and so their real time usage is cru-
cial. When writing the code, we tried to fulfil this important requirement, and in
this section we present a few results about the computation times of Wachspress,
discrete harmonic, and mean value coordinates.

The structure of the performance experiment that we run for all coordinate
functions consists of computing coordinate values at ≥ 1 million strictly interior
points with respect to a given polygon. At each iteration of the loop, we create
a query point, pass it to the function, and compute n coordinates using the fast
O(n) or the precise O(n2) algorithm. We perform 100 trials of this experiment,
and the time presented in the log-log plot in Figure 3.11 is the arithmetic mean
of all trials.

The time to compute coordinates depends on many factors such as mem-
ory allocation, input kernel, output container, number of points, etc. In our ex-
periments, we use the most standard C++ and CGAL features with minimum
memory allocation. Therefore, the final time is the average time that can be ex-
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pected without deep optimization but still with efficient memory allocation. It
also means that it may vary depending on the usage of the package.

For all tests we use a MacBook Pro 2011 with 2 GHz Intel Core i7 processor
(2 cores) and 8 GB 1333 MHz DDR3 memory. The installed operating system
is Mac OS X 10.9 Maverick. In order to compile the suite with all performance
experiments, we use the Clang 5.0 64 bit compiler.

From Figure 3.11 it is easy to see that for a small n, the precise O(n2) algo-
rithm is as fast as the more efficient O(n) algorithm but, when we increase n,
the linear algorithm outperforms the squared one, as expected. One of the rea-
sons for this to happen is because for a small n the operation of multiplication
over n − 2 elements inside the O(n2) algorithm, when computing generalized
barycentric weights, takes almost the same time as the corresponding operation
of division in the O(n) algorithm. For a polygon with many vertices, this multi-
plication is much slower.



Chapter 4

A convex combination of Wachspress
and mean value coordinates

Since Wachspress coordinates (see Sections 2.1.1 and 3.2.2) are rational poly-
nomials that are well-defined over the domain Ωε (see the proof of Theorem 2)
for a strictly convex polygon, they are C∞ at the vertices of this polygon. In fact,
they are C∞ at the vertices of any simple polygon as long as the denominator W
in (3.3) does not vanish at these vertices. However, since this denominator may
vanish at some points inside concave polygons, Wachspress coordinates are not
well-defined for such polygons. On the contrary, mean value coordinates (see
Section 2.1.3) are only C0 at the polygon’s vertices, but they are well-defined
for all p ∈ R2 and for all simple polygons. These particular properties suggest
that new closed-form generalized barycentric coordinates for any simple poly-
gon, which are C∞ at the polygon’s vertices and well-defined for all p ∈ R2, can
be obtained as a convex combination of Wachspress and mean value coordinates.
Indeed, it turns out that such coordinates have a rather simple formulation and
we discuss it in Section 4.1. We then compare these coordinates with some other
generalized barycentric coordinates in Section 4.2 and conclude with a few re-
marks on the proposed approach in Section 4.3.

4.1 Construction

Let P be an arbitrary simple polygon in the plane with n vertices v1, . . . , vn (see
Figure 4.1). We denote by

bWP = [b
WP

1 , . . . , bWP

n ]: R
2→ Rn,

bMV = [b
MV

1 , . . . , bMV

n ]: R
2→ Rn

63
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Figure 4.1. Notation used for generalized barycentric coordinates in Section 4.1.

the Wachspress and the mean value coordinates with respect to P. In particular,
we use the closed-form formulation (1.12) for both coordinate functions,

bWP

i =
wWP

i

W WP
, bMV

i =
wMV

i

W MV
, i = 1, . . . , n.

We also consider the blending function

µ: R2→ [0, 1]

such that

µ(p) =

¨

0, ∀ p ∈ R2 : W WP(p) = 0,

1, ∀ p ∈ R2 : ri(p) = 0 and W WP(p) 6= 0, i = 1, . . . , n,
(4.1)

where ri(p) = ‖p − vi‖ and the zero level set W WP
0 = {p ∈ R2 : W WP(p) = 0} of

the Wachspress denominator W WP is shown in Figure 4.1. Using the Wachspress
and the mean value coordinates bWP and bMV, we finally define new coordinate
functions b = [b1, . . . , bn]: R2→ Rn (see Figure 4.2) as a convex combination

bi = µbWP

i + (1−µ)bMV

i , i = 1, . . . , n, (4.2)

where the blending function µ is such that the coordinates bi are the mean value
coordinates for all the points from the set W WP

0 and are the Wachspress coordi-
nates at the polygon’s vertices if the zero level curve W WP

0 does not pass through
these vertices. The coordinates bi satisfy the partition of unity property (1.8),
because for a point p ∈ R2 we have

n
∑

i=1

bi(p) = µ(p)
n
∑

i=1

bWP

i (p) + (1−µ(p))
n
∑

i=1

bMV

i (p)

= µ(p) + 1−µ(p) = 1.
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Figure 4.2. The coordinate functions b2 and b5 for the concave v2 (bottom row)
and the convex v5 (top row) vertices are defined by multiplying the Wachspress
coordinates bWP

2 and bWP
5 with the blending function µ and then adding to the

result of the multiplication of the mean value coordinates bMV
2 and bMV

5 with the
blending function 1− µ. The magenta, blue/red, and cyan colour ranges show
where the coordinates are < 0, belong to the interval [0, 1], and > 1, respec-
tively. The white curves are the contour lines with the 0.1 interval. The inset
shows the cross sections of all coordinates along the horizontal lines through v2

and v5 (see left column).

and the linear reproduction property (1.9), because

n
∑

i=1

bi(p)vi = µ(p)
n
∑

i=1

bWP

i (p)vi + (1−µ(p))
n
∑

i=1

bMV

i (p)vi

= µ(p)p + p −µ(p)p = p.

Since both Wachspress and mean value coordinates can be negative inside con-
cave polygons and µ ∈ [0,1], the coordinate functions bi can also be negative
inside these polygons. It further follows directly from the definition that the bi

satisfy the Lagrange property (1.10b) and are linear along the polygon’s edges.
Finally, due to the construction of the blending function µ, the coordinates bi are
C∞ at the vertex v j as long as the zero level curve W WP

0 does not pass through this
vertex, which can happen only for polygons with three or more collinear vertices
(see Figure 4.3). In this case, the bi at v j are C0 as mean value coordinates. For
all other p ∈ R2 \ {v1, . . . , vn}, since Wachspress and mean value coordinates are
both C∞, the bi are as smooth as the blending function µ.

To this end, we still have to show how to construct a blending function µ that
satisfies the conditions (4.1). Taubin [1994] proposes an efficient approach for
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0

Figure 4.3. For polygons with three or more collinear vertices the zero level
curve W WP

0 passes through some vertices of the polygon.

approximating the Euclidean distance dW from p to the implicit curve W WP
0 (see

Figure 4.1) as

dW (p) =
|W WP(p)|
‖∇W WP(p)‖ .

We further define the position of p with respect to the polygon’s vertices as

dV (p) =
n
∏

i=1

ri(p),

where ri(p) = ‖p − vi‖ (see Figure 4.1). The blending function µ can then be
constructed as

µ=

¨

dW 4

dV 2+dW 4 , dV 2 + dW 4 6= 0,

0, dV 2 + dW 4 = 0.
(4.3)

On the one hand, if W WP(p) = 0 for some p ∈ R2, then it follows that dW (p) = 0
and hence µ(p) = 0. On the other hand, if ri(p) = 0 for any index i = 1, . . . , n,
then it follows that dV (p) = 0 and hence µ(p) = 1. We also note that the
denominator dV 2(p)+ dW 4(p) = 0 if and only if both dV (p) = 0 and dW (p) =
0, which can happen only for polygons with three and more collinear vertices
(see Figure 4.3). It is also clear from the definition (4.3) that the function µ is a
smooth function and satisfies conditions (4.1).

4.2 Comparison

Figures 4.4 and 4.5 show a comparison of our (WM) coordinates with Wach-
spress (WP) and mean value (MV) coordinates for two different polygons and
coordinate functions associated to convex and concave vertices. As expected, for
the convex polygon all coordinates are well-defined and non-negative, but this is
different for the concave polygon, where Wachspress coordinates have poles. In-
stead, our coordinates are well-defined for such polygons as well as mean value
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P

P

WP MV WM

Figure 4.4. Comparison of different barycentric coordinate functions for two
different vertices with respect to a convex polygon. The colour range shows
function values between 0 (blue) and 1 (red), and the white curves are the con-
tour lines at 0.1, 0.2, . . . , 0.9. The inset shows the cross sections along the centre
part of the lines depicted in the left column.

P

P

WP MV WM

Figure 4.5. Comparison of different barycentric coordinate functions for a con-
vex and a concave vertex with respect to a concave polygon. The magenta,
blue/red, and cyan colour ranges show where the coordinates are < 0, belong
to the interval [0,1], and > 1, respectively. The white curves are the contour
lines with the 0.1 interval. The inset shows the cross sections along the centre
part of the lines depicted in the left column.

coordinates and are C∞ at the polygon’s vertices, while mean value coordinates
are only C0 at these vertices (shown in the corresponding inset). Our coordi-
nates are also C∞ at the vertices of the convex polygon and are very similar to
Wachspress coordinates in this case.
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WP MV WM

Figure 4.6. Extension of the Figure 4.4 to the polygon’s exterior. The magenta,
blue/red, and cyan colour ranges show where the coordinates are < 0, belong
to the interval [0,1], and > 1, respectively. The white curves are the contour
lines with the 0.1 interval.

Even though Wachspress coordinates are well-defined and C∞ at the vertices
of a convex polygon, they may have poles outside this polygon. Instead, our
coordinates are C∞ at the polygon’s vertices and are well-defined everywhere in
the plane (see Figure 4.6).

We implemented all coordinates above in C++ on a MacBook Pro 2013 with
2.4 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. Since it is
important for our coordinates to obtain the correct position dW of p with respect
to the implicit curve W WP

0 and any numerical instabilities may have a negative
impact on the final result, we suggest to implement these coordinates with the
slower but precise O(n2) algorithm. In particular, in our implementation, we use
the precise weights (3.35) for computing Wachspress coordinates bWP

i and the
distance dW , the precise weights (3.40) for computing mean value coordinates
bMV

i , and compute the function dV =
∏n

i=1 r2
i with the squared distance r2

i defined
as in (3.33) (see Pseudocode 8 in Appendix A). For a fair comparison, we also
use the O(n2) algorithms (see Pseudocodes 3 and 7 from the same appendix) to
evaluate Wachspress and mean value coordinate functions.

4.3 Discussion

While convex combinations of barycentric coordinates keep their defining prop-
erties (1.8) and (1.9), the right choice of the weighting coefficients makes it
possible to calibrate some other important properties of these coordinates. We
showed that taking a convex combination (4.2) of Wachspress and mean value
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P MV MT

Figure 4.7. For a simple unit square P with three collinear vertices, while mean
value coordinates with respect to the centre vertex are bounded between 0 (blue)
and 1 (red), which is indicated by the contour lines at 0.1, . . . , 0.9, metric coordi-
nates are not well-defined and it can be seen from the plot where the red colour
indicates all values between 1 and 100 and the cyan range with the contour
lines at 100, . . . , 1000 shows the function values > 100.

coordinates is a good start to obtain new coordinates with the improved proper-
ties. In particular, we construct new coordinate functions that are both smooth
at the polygon’s vertices as Wachspress and are well-defined everywhere in the
plane and for all simple polygons as mean value coordinates.

In principle, instead of mean value coordinates one could use any other bary-
centric coordinates as a building block for our construction, as long as they are
well-defined everywhere in R2 and have a simple closed form. For example,
an alternative choice could be metric coordinates (see Section 2.1.5), which do
satisfy these constraints. However, these coordinates are not well-defined for
polygons with three consecutive collinear vertices (see Figure 4.7) and this is the
reason for us to choose mean value coordinates instead.

The main limitation of our approach is that for polygons with three and more
collinear vertices, not all coordinates bi are guaranteed to be C∞ at the poly-
gon’s vertices, because the zero level curve W WP

0 passes through some of these
vertices (see Figure 4.3) that makes the construction only C0 at these vertices.
Moreover, our coordinates do not satisfy the non-negativity property (1.10a) (see
Figures 4.2 and 4.5), because both Wachspress and mean value coordinates can
be negative inside concave polygons. Therefore it still remains future work to
build smooth barycentric coordinate functions that are non-negative inside an
arbitrary simple polygon and have a closed form, and we do the first steps to-
wards this goal in Chapters 5 and 6.



Chapter 5

Blended mean value coordinates

Let us recall from Section 2.1 that generalized barycentric coordinates, which
satisfy the non-negativity property (1.10a) for non-convex polygons, cannot be
more than C0 at concave corners of such polygons. By sacrificing the non-nega-
tivity property, we show in Chapter 4 that smooth coordinate functions at the
vertices of a simple polygon can be obtained as a convex combination or blend of
Wachspress and mean value coordinates. We now show that blending mean value
coordinates alone over the triangles of the constrained Delaunay triangulation of
the input polygon with appropriate blending functions can be used to construct
non-negative coordinates for any simple polygon. In addition, these coordinates
are also C k-continuous in Ω with k > 0 and local, where the locality is defined
by the size of the support (the coordinate function is local if the support is small)

Supp(bi) = {p ∈ Ω | bi(p) 6= 0}. (5.1)

These coordinates have a closed-form definition and can be evaluated in constant
time, due to the local support. Note that the constrained Delaunay triangulation
of the polygon needs to be computed in a preprocessing step, and depending on
the application, an additional cost on the order of O(log n) for each evaluation
may apply, but even in this case, the computation time compares favourably to
that of other coordinates. We describe the blending construction in Section 5.1
and compare our coordinates with some other generalized barycentric coordi-
nates in Section 5.2. We further present several examples of applying our coordi-
nates to colour interpolation and image deformation in Section 5.3 and conclude
with a few remarks on the proposed approach in Section 5.4.

70



71 5.1 Blended mean value coordinates
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Figure 5.1. Pentagon can be split into three triangles (left), and hexagons can be
split into four triangles (centre and right).

5.1 Blended mean value coordinates

It is known [Hormann and Tarini, 2004] that mean value coordinates are al-
ways positive inside any quadrilateral. We first show how this property can
be exploited to obtain non-negative barycentric coordinates for pentagons (Sec-
tion 5.1.1) before extending this construction to hexagons (Section 5.1.2) and
to arbitrary polygons (Section 5.1.3).

5.1.1 Coordinates for pentagons

Let P = [v1, . . . , v5] ⊂ R2 be a pentagon in the plane. Without loss of gen-
erality, we assume that it can be split into three triangles 41 = [v2, v3, v4],
42 = [v1, v2, v4], and 43 = [v1, v4, v5] (see Figure 5.1, left). Alternatively, this
triangulation can be seen as two overlapping quadrilaterals

�1 =41 ∪42 = [v1, v2, v3, v4],

�2 =42 ∪43 = [v1, v2, v4, v5]

with the common triangle 42. We denote by

b1 = [b
1
1, b1

2, b1
3, b1

4]: �1→ R4

the mean value coordinates with respect to the quadrilateral �1 and by

b2 = [b
2
1, b2

2, b2
4, b2

5]: �2→ R4

those with respect to the quadrilateral �2. We also consider two blending func-
tions

µ1,µ2 : 42 \ {v4} → [0,1]
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Figure 5.2. Construction of blended coordinates for the pentagon in Figure 5.1
(left). The coordinate function b3 (left) is defined by multiplying the mean value
coordinate function b1

3 for �1 with the blending function µ1 over42 (outlined in
grey). To construct b4 (right), we likewise multiply the mean value coordinates
b1

4 and b2
4 with µ1 and µ2, respectively, and add the results. The colour range

shows function values between 0 (blue) and 1 (red), and the white curves are
the contour lines at 0.1, 0.2, . . . , 0.9.

such that

µ1(p) =

¨

1, p ∈ [v2, v4),

0, p ∈ (v4, v1],
, µ2(p) =

¨

0, p ∈ [v2, v4),

1, p ∈ (v4, v1],
,

and µ1(p)+µ2(p) = 1 for any p ∈42\{v4}. Since µ1 and µ2 are not defined at v4

and actually diverge as p → v4, we exclude this vertex from the definition, but,
as we will show later, this does not affect the final construction of our barycentric
coordinates.

To construct µ1 and µ2, we follow a simple procedure. Given the triangle
42, we first determine the unique barycentric coordinates λ1,2 : 42→ [0,1] (see
Section 1.1) corresponding to v2 and v1 as

λ1(p) =
Area[v1, p, v4]
Area[v1, v2, v4]

, λ2(p) =
Area[p, v2, v4]
Area[v1, v2, v4]

∀ p ∈42.

In order to guarantee smooth coordinates (see details below), we then choose a
smooth monotonic function q : [0,1]→ [0,1] and define the blending functions
as

µ1 =
σ1

σ1 +σ2
, µ2 =

σ2

σ1 +σ2
, σ1 = q ◦λ1, σ2 = q ◦λ2. (5.2)

Using the quadrilateral mean value coordinates b1 and b2 and the blending
functions µ1 and µ2, we finally define the blended coordinate functions bi : Ω̄ \
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{v4} → R, i = 1, . . . , 5 (see Figure 5.2) as

bi(p) =











b1
i (p), p ∈41,

b1
i (p)µ1(p) + b2

i (p)µ2(p), p ∈42 \ {v4},
b2

i (p), p ∈43,

i = 1, 2,4, (5.3a)

b3(p) =











b1
3(p), p ∈41,

b1
3(p)µ1(p), p ∈42 \ {v4},

0, p ∈43,

(5.3b)

b5(p) =











0, p ∈41,

b2
5(p)µ2(p), p ∈42 \ {v4},

b2
5(p), p ∈43.

(5.3c)

These functions satisfy the partition of unity property (1.8), because

p ∈41 ⇒
5
∑

i=1

bi(p) =
∑

i=1,2,3,4

b1
i (p) = 1,

p ∈42 \ {v4} ⇒
5
∑

i=1

bi(p) =
∑

i=1,2,3,4

b1
i (p)µ1(p) +

∑

i=1,2,4,5

b2
i (p)µ2(p)

= µ1(p) +µ2(p) = 1,

p ∈43 ⇒
5
∑

i=1

bi(p) =
∑

i=1,2,4,5

b2
i (p) = 1

and the linear reproduction property (1.9), because

p ∈41 ⇒
5
∑

i=1

bi(p)vi =
∑

i=1,2,3,4

b1
i (p)vi = p,

p ∈42 \ {v4} ⇒
5
∑

i=1

bi(p)vi =
∑

i=1,2,3,4

b1
i (p)viµ1(p) +

∑

i=1,2,4,5

b2
i (p)viµ2(p)

= p(µ1(p) +µ2(p)) = p,

p ∈43 ⇒
5
∑

i=1

bi(p)vi =
∑

i=1,2,4,5

b2
i (p)vi = p.

It further follows directly from the definition that the functions bi satisfy the
non-negativity property (1.10a) and have the Lagrange property (1.10b) at all
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0

1

0.5

0.5 1

q1
q2

Figure 5.3. Examples of polynomial functions q1 and q2 used for the construction
of C1 and C2 blended coordinates, respectively.

v j for j 6= 4. To prove the Lagrange property at v4, we first observe that

b1
i (p)µ1(p) + b2

i (p)µ2(p)≥min{b1
i (p), b2

i (p)}
b1

i (p)µ1(p) + b2
i (p)µ2(p)≤max{b1

i (p), b2
i (p)} ∀ p ∈42 \ {v4}

for i = 1, 2,4, because µ1(p) +µ2(p) = 1, and

0≤ b1
3(p)µ1(p)≤ b1

3(p), 0≤ b2
5(p)µ2(p)≤ b2

5(p) ∀ p ∈42 \ {v4}
since µ1(p) ∈ [0,1] and µ2(p) ∈ [0, 1]. As all lower and upper bounds converge
to δi,4 as p approaches v4, we conclude that

lim
p→v4

bi(p) = δi,4

for all i = 1, . . . , 5.
If q has k > 0 vanishing derivatives at 0 and at 1, then the construction above

guarantees that µ1 and µ2 blend with C k continuity into the constant functions
with values 0 or 1 along the edges [v2, v4) and (v4, v1], which in turn implies the
C k continuity of the coordinate functions bi. The simplest choices of q for k = 1
and k = 2 (see Figure 5.3) are the polynomials

q1(x) = 3x2 − 2x3 and q2(x) = 6x5 − 15x4 + 10x3 ∀ x ∈ [0,1].

The function q1 was used for the examples in Figures 5.2 and 5.4, and a com-
parison between C1 and C2 continuous coordinates, constructed with q1 and q2,
respectively, can be found in Figures 5.6, 5.7, and 5.8.

5.1.2 Coordinates for hexagons

To construct blended coordinates for a planar hexagon, a similar approach can
be used after splitting the hexagon into four triangles. If all triangles of the split
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Figure 5.4. The construction of the blended coordinate function b3 for the
hexagon in Figure 5.1 (right) involves three blending functions over 44 (out-
lined in grey) for combining the quadrilateral mean value coordinates b1

3, b2
3,

and b3
3.

have only one or two neighbouring triangles (see Figure 5.1, centre), then the
blended coordinates are constructed as described in Section 5.1.1. However, it
can also happen that one of the triangles has three neighbours (see Figure 5.1,
right). Given such a hexagon P = [v1, . . . , v6] ⊂ R2 in the plane, let

�1 =41 ∪44 = [v1, v2, v3, v5],

�2 =42 ∪44 = [v1, v3, v5, v6],

�3 =43 ∪44 = [v1, v3, v4, v5]

be the quadrilaterals that overlap over the triangle 44 = [v1, v3, v5]. As in Sec-
tion 5.1.1, we first determine three sets of mean value coordinates b1, b2, and b3

for these quadrilaterals, respectively, and then consider the blending functions

µ1,µ2,µ3 : 44 \ {v1, v3, v5} → [0,1],

such that

µ1(p) =

¨

1, p ∈ (v1, v3),

0, p ∈ (v3, v5)∪ (v5, v1),

µ2(p) =

¨

1, p ∈ (v5, v1),

0, p ∈ (v1, v3)∪ (v3, v5),

µ3(p) =

¨

1, p ∈ (v3, v5),

0, p ∈ (v5, v1)∪ (v1, v3),
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and µ1(p)+µ2(p)+µ3(p) = 1 for any p ∈44\{v1, v3, v5}. Again, µ1, µ2, and µ3

are not defined at the vertices of44, but this does not affect the final construction
of generalized barycentric coordinates. Now, given the triangle 44, if we define
the unique barycentric coordinates λ1,2,3 : 44 → [0,1] corresponding to v5, v3,
and v1 as

λ1(p) =
Area[v1, v3, p]
Area[v1, v3, v5]

,

λ2(p) =
Area[v1, p, v5]
Area[v1, v3, v5]

,

λ3(p) =
Area[p, v3, v5]
Area[v1, v3, v5]

∀ p ∈44,

then we can construct the blending functions as

µ1 =
σ1

σ1 +σ2 +σ3
, µ2 =

σ2

σ1 +σ2 +σ3
, µ3 =

σ3

σ1 +σ2 +σ3
, (5.4)

with

σ1 = (q ◦λ2)(q ◦λ3), σ2 = (q ◦λ3)(q ◦λ1), σ3 = (q ◦λ1)(q ◦λ2)

and q as defined in Section 5.1.1. The construction of the blended coordinate
functions bi : Ω̄ \ {v1, v3, v5} → R, i = 1, . . . , 6 (see Figure 5.4) is then analogous
to the construction (5.3), and with the same arguments as above it can be shown
that these functions satisfy the key properties (1.8) and (1.9), are non-negative,
have the Lagrange property, even at the vertices v1, v3, and v5, and are smooth.

5.1.3 Coordinates for arbitrary polygons

We are now ready to present the construction of blended barycentric coordi-
nates for arbitrary simple polygons. Given the constrained Delaunay triangula-

�1

�2

�3

�4

�5
�6

�7 �8

v1

P

Figure 5.5. Example of a general polygon and its constrained Delaunay triangu-
lation.
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tion 4 = {41, . . . ,4m} of a planar polygon P = [v1, . . . , vn] with n > 6 vertices,
we consider all quadrilaterals defined by two triangles that share an interior edge,
determine the mean value coordinates with respect to these quadrilaterals, and
blend them as explained above. For example, for the polygon in Figure 5.5, the
quadrilateral mean value coordinates are blended over the triangles 41, . . . ,46

as in Section 5.1.1 and over the triangles 47 and 48 as in Section 5.1.2. In this
way, we obtain coordinate functions with the same properties as before.

Since it is lengthy to write down the analytic expressions of the blended co-
ordinate functions bi as in (5.3), we do not present these formulas, but rather
discuss how to evaluate them efficiently at any point p inside the polygon. Sup-
pose we know the triangle4 j ∈4 that contains p, we then compute the blended
coordinates following a simple procedure with two steps. In the first step, we find
the k triangles in 4 that share an edge with 4 j. In the second step, depending
on the number k ∈ {1,2, 3}, we evaluate the k + 3 functions bi that correspond
to the k + 3 vertices of the k quadrilaterals that overlap at 4 j, using one of the
three routines given in Pseudocodes 9, 10, and 11 from Appendix A. All other
coordinates can be safely set to zero. On the one hand, this implies that the time
complexity for the evaluation of all coordinates at any p is O(1). On the other
hand, it shows the locality of blended coordinates, because the support Supp(bi)

C1 BL C2 BL MV ME HM LC

Figure 5.6. Comparison of different coordinate functions for a convex (top)
and a concave (bottom) vertex. The white curves are the contour lines at
0.1,0.2, . . . , 0.9 (and at −0.2 and −0.1 for mean value coordinates), the con-
tour line at 10−4 is shown in green, and the orange line marks the support.
The constrained Delaunay triangulation of the polygon for blended coordinates
is outlined in grey, and the magenta colour range shows the negative function
values for mean value coordinates.
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C1 BL C2 BL MV ME HM LC

Figure 5.7. Comparison of different coordinate functions for a convex (top)
and a concave (bottom) vertex. The white curves are the contour lines at
0.1,0.2, . . . , 0.9 (and at −0.3,−0.2,−0.1 for mean value coordinates), the con-
tour line at 10−4 is shown in green, and the orange line marks the support.
The constrained Delaunay triangulation of the polygon for blended coordinates
is outlined in grey, and the magenta colour range shows the negative function
values for mean value coordinates.

of the coordinate function bi is just the union of the triangles adjacent to vi and
their neighbouring triangles. For example, the support of b1 in Figure 5.5 is
Supp(b1) =41 ∪45 ∪47.

In addition to the constant cost of this evaluation procedure, the constrained
Delaunay triangulation 4 of P needs to be computed in a preprocessing step in
O(n log n) time, and, depending on the application, some time may be spent on
finding the triangle 4 j that contains p. We shall briefly discuss three possible
scenarios. To generate the images in Figures 5.6, 5.7, and 5.8, we used seven
linear subdivision steps to refine 4, evaluated the coordinates at the vertices of
this refined triangulation, and rendered the result. In this scenario, careful book-
keeping during the subdivision process provides4 j for free, and the same holds
in any application that allows to choose the evaluation points p per triangle
of 4. Another scenario is image deformation (see Section 2.3.2), where the
coordinates need to be evaluated for each pixel of the deformed image. In this
situation,4 j has to be found only once for the first pixel, and subsequently a local
search with constant time complexity can be used to find 4 j for the next pixel.
Such a local search can also be used to evaluate the coordinates at the vertices of
a (dense) triangulation of the polygon, if the vertices are visited, for example, by
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C1 BL C2 BL MV ME HM LC

Figure 5.8. Comparison of different coordinate functions for a convex (top)
and a concave (bottom) vertex. The white curves are the contour lines at
0.1,0.2, . . . , 0.9 (and at −0.1 for mean value coordinates), the contour line at
10−4 is shown in green, and the orange line marks the support. The constrained
Delaunay triangulation of the polygon for blended coordinates is outlined in
grey, and the magenta colour range shows the negative function values for mean
value coordinates.

breadth-first traversal. In the worst case, if the application requires to compute
coordinates at truly random points p, then 4 j can be found in optimal O(log n)
time [Devillers, 1998] by using a hierarchy of Delaunay triangulations, and we
report some timings for this situation below.

5.2 Comparison

Figures 5.6, 5.7 and 5.8 show a comparison of C1 and C2 continuous blended
(BL) coordinates with mean value (MV), maximum entropy (ME), harmonic
(HM), and local (LC) coordinates for three different polygons (with 7, 13, and
39 vertices, respectively) and coordinate functions associated to convex and con-

Figure 5.9. Concave test polygons, composed of 1, 2, and l pieces with 8, 14,
and n= 6l + 2 vertices, respectively.
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Figure 5.10. Isotoxal star polygons with 8, 14, and n vertices, respectively.

cave vertices. While mean value coordinates can be negative inside the polygon,
blended coordinates are always positive by definition. Maximum entropy and
harmonic coordinates are also positive inside the polygon, but they are globally
supported and can be computed only numerically. Instead, blended coordinates
are local and have a closed form. Local coordinates also fulfil the locality require-
ment, but they can again be computed only numerically, and the exact support
of these coordinate functions is not known. The numerical solver used to com-
pute them generates small function values even outside the probable support,
and Zhang et al. [2014] suggest to treat all values below 10−4 as numerically
zero. In turn, the exact support of blended coordinate functions is clearly de-
fined.

We implemented all coordinates above in C++ on a MacBook Pro 2013 with
2.4 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. For blended
coordinates, we first build the constrained Delaunay triangulation of the poly-
gon with TRIANGLE code [Shewchuk, 1996] and then evaluate the coordinate
functions as explained above, using the corresponding pseudocodes from Ap-
pendix A. For mean value and maximum entropy coordinates, we implemented
the pseudocodes 6 from Appendix A and [Hormann and Sukumar, 2008, Section
5], respectively. For harmonic coordinates, we use the sparse Cholesky decompo-
sition in EIGEN [Guennebaud et al., 2010] to solve the linear system arising from
the standard finite element discretization of the Laplace equation with Dirichlet
boundary conditions, and local coordinates are computed with the code provided
by Deng and Liu [2014].

To compare the performance, we created two sets of test polygons. The first
set is shown in Figure 5.9 and consists of 5 concave polygons with n = 6l + 2
vertices that are composed by concatenating l = 2p copies of the piece shown
on the left, for p = 0, 1, . . . , 4. The constrained Delaunay triangulations of these
polygons have exactly 2 triangles with one neighbour, 6l − 2 triangles with two
neighbours, and no triangle with three neighbours. The second set in Figure 5.10
consists of 5 isotoxal star polygons with the same numbers of vertices. In this
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case, the constrained Delaunay triangulations have 3l + 1 triangles with one
neighbour, no triangles with two neighbours, and 3l − 1 triangles with three
neighbours.

For all test polygons, we evaluated the different coordinates at the 50000 in-
terior vertices of a dense Delaunay triangulation, and the results are summarized
in Tables 5.11, 5.13 and Figures 5.12, 5.14. In case of blended coordinates, the
given times correspond to the construction of the constrained Delaunay triangu-
lation, which is less than 0.0004 sec, even for n= 98, plus the evaluation of the n
coordinate functions at all evaluation points, where the difference between using
q1 or q2 was not noticeable. For mean value and maximum entropy coordinates,
we report the pure evaluation times, and for harmonic coordinates we added the
times for assembling the matrix, factorizing it, and solving the linear system for
all n coordinates with back substitution. In case of local coordinates, the solver
did not converge for such a dense triangulation, and so we decided to use in-
stead a Delaunay triangulation with only 500 interior vertices. The given times
include the initialization of the solver and running it for a fixed number of 500
iterations, which is barely enough to guarantee convergence for n= 8. Even for

n= 8 n= 14 n= 26 n= 50 n= 98

BL 0.025 0.026 0.025 0.026 0.026
MV 0.024 0.029 0.039 0.061 0.104
ME 0.058 0.083 0.135 0.237 0.448
HM 0.163 0.163 0.174 0.218 0.315
LC 0.290 0.535 1.028 2.206 5.706
TS 0.019 0.019 0.020 0.023 0.028

Figure 5.11. Table with timings for polygons in Figure 5.9.
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Figure 5.12. Plots with timings for polygons in Figure 5.9.
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n= 8 n= 14 n= 26 n= 50 n= 98

BL 0.026 0.025 0.026 0.026 0.026
MV 0.024 0.029 0.040 0.061 0.104
ME 0.058 0.083 0.136 0.240 0.451
HM 0.202 0.194 0.207 0.244 0.326
LC 0.268 0.501 0.964 2.437 8.501
TS 0.019 0.019 0.019 0.021 0.022

Figure 5.13. Table with timings for polygons in Figure 5.10.
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Figure 5.14. Plots with timings for polygons in Figure 5.10.

this comparatively small number of interior vertices, the timings are about one
order of magnitude slower, and they would be even worse if the solver would be
allowed to run until convergence. To give an idea about the worst-case scenario
for blended coordinates regarding the additional cost for finding the triangles
that contain the query points, we also report the time needed for this triangle
search (TS) with the hierarchical Delaunay triangulation strategy implemented
in CGAL [Yvinec, 2016], and show the overall cost (BL+TS) in the plots.

The data confirms that the evaluation of blended coordinates has constant
time complexity, with an additional O(log n) cost for the triangle search in the
worst case, while for all other coordinates the evaluation time depends linearly
on n. It also shows that blended coordinates are on par with mean value coordi-
nates, the fastest competitor, even for small values of n. In a nutshell, the pure
evaluation of blended coordinates is faster than that of all other coordinates for
polygons with n ≥ 10 vertices, and with triangle search the break-even point is
around n= 35.

Another observation is that blended coordinates have approximately the same
timings for both sets of test polygons. To explain this behaviour, remember that
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for the polygons in Figure 5.9, most of the query points lie in triangles with two
neighbours, while for the polygons in Figure 5.10, about half the query points are
contained in triangles with one neighbour, and the other half in triangles with
three neighbours. Counting instructions, it now turns out that two calls to Pseu-
docode 10 are about as expensive as executing Pseudocode 9 and Pseudocode 11
once each. Similar timings are actually to be expected for other polygons with
the same number of vertices, because of a simple fact that follows from Euler’s
formula. If we denote the number of triangles with k = 1, 2,3 neighbours in the
constrained Delaunay triangulation of P by mk, then it follows that m3 = m1−2,
that is, triangles with one and three neighbours always come in pairs. Con-
sequently, Pseudocodes 9 and 11 are always called similarly often for random
evaluation points inside an arbitrary polygon, and the average evaluation time
is therefore close to that of Pseudocode 10. Comparing the number of instruc-
tions in this routine with those for mean value coordinates further explains the
break-even point at around n= 10.

5.3 Applications

As we discussed in Section 1.3, the main application of generalized barycentric
coordinates is interpolation, and we use colour interpolation (see Section 2.3.1)
and image deformation (see Section 2.3.2) as two example applications for de-
monstrating the behaviour of different generalized barycentric coordinates. In
this section, we present several examples of applying blended coordinates to
these applications and compare them to the examples based on mean value, max-
imum entropy, harmonic, and local coordinates.

ME HM LC C2 BL

Figure 5.15. Comparison of colour interpolation with different generalized
barycentric coordinates.



84 5.4 Discussion

5.3.1 Colour interpolation

In Figure 5.15, we propagate eight RGB colours specified at the vertices of the
polygon from Figure 5.9 to its interior. Since all coordinates are bounded be-
tween 0 and 1, the interpolated colour values are always in the convex hull of
the given data at the polygon’s vertices. Due to the global support of maximum
entropy coordinates, we note that the violet colour propagates well into the cen-
tre part of the polygon. On the contrary, the locality of local coordinates leads
to better separated colours. Instead, blended coordinates are less local than lo-
cal coordinates for this example and result in colour interpolation similar to the
one with harmonic coordinates, but they better separate the white colour and
the obtained colour interpolant is C2 continuous, while the one with harmonic
coordinates is only piecewise linear. The interpolation result with C1 blended co-
ordinates is visually indistinguishable from the one with C2 blended coordinates,
and we omit it here.

5.3.2 Image deformation

We can also use blended coordinates to deform an image that is contained in
the source polygon P with respect to a target polygon P̃ (see Figure 5.16). For
this example, the deformation with maximum entropy, harmonic, local, and C2

blended coordinates are quite similar, but blended coordinates are much faster to
evaluate and can be used in real-time deformations even for very high-resolution
images. The deformation with mean value coordinates suffers high distortions
and is visually inappropriate for this example. We also note that the deformation
result with C1 blended coordinates is visually indistinguishable from the one with
C2 blended coordinates, and we omit it here.

5.4 Discussion

Blending approaches are frequently used in geometric modelling as a promising
recipe for getting interpolants that inherit certain global properties from corre-
sponding local properties and are efficient to evaluate. Our construction fol-
lows this idea and can actually be seen as a bivariate variant of Catmull–Rom
splines [Catmull and Rom, 1974], with the quadrilateral mean value coordinates
taking the role of the local polynomial interpolants and the compactly supported
B-spline blending functions replaced by the blending functions µi per triangle.
Our construction has four crucial ingredients. First, the non-negativity and par-
tition of unity property of the blending functions guarantees that the properties
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Figure 5.16. Comparison of image deformation with different generalized
barycentric coordinates. The inset shows the coordinate functions for two differ-
ent vertices of the polygon, where the colour scale is logarithmic, ranging from
10−4 to 100.

of the local quadrilateral mean value coordinates carry over to the blended coor-
dinate functions for the whole polygon. Second, the k > 0 vanishing derivatives
of the blending functions across the edges of the blending region provide C k

continuity of the coordinates bi. Third, the non-negativity of mean value coordi-
nates for arbitrary quadrilaterals is the key for obtaining bi that are non-negative
globally. And finally, the locality of the construction leads to favourable computa-
tional cost. In principle, one could use other barycentric coordinates as the main
building blocks for our construction, as long as they are well-defined and non-
negative for arbitrary quadrilaterals. However, to the best of our knowledge,
mean value coordinates are the only known coordinates with these properties
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Figure 5.17. Moving a vertex of the polygon (left) can lead to a different con-
strained Delaunay triangulation and a discontinuous change of the coordinate
functions (centre). This can be overcome by keeping the triangulation (right), as
long as no triangle folds over, even if the triangulation becomes non-Delaunay.

and a closed-form definition, and using computational coordinates for this pur-
pose would compromise the efficiency of the approach.

Blended coordinates also have a few drawbacks. First, they do not depend
continuously on the vertices of the polygon, because even a small perturbation
of some vi can lead to a different constrained Delaunay triangulation and a dis-
continuous change of the coordinate functions bi (see Figure 5.17, centre). This
problem can be overcome to some extent by keeping the triangulation, because
the construction clearly works for non-Delaunay triangulations, too (see Fig-
ure 5.17, right), but only as long as the triangles of the triangulation do not

4

C1 BL

C2 BL

Figure 5.18. C1 and C2 blended coordinates computed for the top vertex with
respect to different initial triangulations 4 (the first three columns) and their
averaged version over all possible (shown in grey) initial triangulations (last col-
umn).
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flip. But in many applications it is the data associated with the vertices of vi

that changes, while the polygon and its triangulation are fixed, and then the
behaviour of the barycentric interpolant is smooth. For example, interactively
changing the vertices of the target polygon in an image deformation application
(see Sections 2.3.2 and 5.3.2) will not introduce any unexpected, discontinuous
behaviour. Second, even for perfectly symmetric polygons, like the ones in Fig-
ure 5.10, the coordinate functions are not symmetric, because the constrained
Delaunay triangulation is not. One way to resolve this problem would be to av-
erage the coordinate functions with respect to all possible triangulations of the
polygon (see Figure 5.18), but since the number of such triangulations grows ex-
ponentially with n, this approach is computationally feasible only for polygons
with a small number of vertices. Another option is to add interior points to the
triangulation of P before defining the blended coordinates. Unfortunately, our
coordinates are discontinuous at interior points, and it remains future work to
come up with a different blending construction that can deal with interior points.
This would then also open the door to an extension to 3D, where interior points
may be necessary for triangulating the given polyhedron, as in the case of the
Schönhardt polyhedron [Schönhardt, 1928]. By reformulating this problem, we
show in Chapter 6 how the coordinates with similar properties to our blended
coordinates can be obtained for polygons with interior points.



Chapter 6

Subdividing barycentric coordinates

As we know from Chapter 4, convex combinations of generalized barycentric
coordinates keep their key properties (1.8) and (1.9). We also know from Chap-
ter 5 that such combinations can be used for constructing non-negative, local, and
smooth coordinate functions, but these functions are not well-defined for poly-
gons with interior points. In this chapter, we investigate the idea of combining
barycentric coordinates in more detail and show how to obtain new coordinates
with favourable properties both for polygons with and without interior points.

We start from presenting a novel construction that can be used for improving
some properties of harmonic (see Section 2.1.8) and local (see Section 2.1.10)
coordinates. The main idea is to start with a piecewise linear approximation
of these coordinates over a coarse triangulation of P and then to use subdivi-
sion [Zorin and Schröder, 2000] to refine the coordinate functions (Section 6.1).
While the coordinate functions remain piecewise linear after any finite num-
ber of subdivision steps, the refinement process gives C1 continuous and non-
negative coordinates in the limit for many common subdivision schemes, and
these limit coordinates can be evaluated like maximum entropy coordinates (see
Section 2.1.9) by solving a local convex optimization problem (Section 6.1.1).
In particular, we focus on Loop subdivision [Loop, 1987] and show that the re-
sulting C1 limit coordinate functions combine the favourable shape properties of
harmonic coordinates or the small support of local coordinates with the possibil-
ity of evaluating them and their derivatives efficiently at any p ∈ Ω (Section 6.2).
We further discuss briefly how to obtain similar results with Catmull–Clark sub-
division [Catmull and Clark, 1978] (Section 6.3).

We continue by showing that Loop (Section 6.4) and Catmull–Clark (Sec-
tion 6.5) subdivision can also be used for generating new barycentric coordinates
in the polygon’s interior starting from the polygon’s tessellation without interior

88
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vertices. This process defines non-negative, local, and C2 coordinate functions
in the polygon’s interior and we apply them to colour interpolation and image
deformation in Section 6.6.

We finally conclude the chapter by discussing the proposed approach and
future work in Section 6.7.

6.1 Refining piecewise linear barycentric coordinates

Our main observation, which motivated us to investigate the idea of subdividing
barycentric coordinates, is that affine combinations of points and barycentric
coordinates commute in the following sense.

Lemma 6. Suppose we are given m points p1, . . . , pm ∈ R2 with barycentric co-
ordinates b(p1), . . . , b(pm) and some weights ω1, . . . ,ωm ∈ R that sum to one,
∑m

j=1ω j = 1. Let p =
∑m

j=1ω j p j ∈ R2 be the point given by the affine combination
of the points p j with the weightsω j and b(p) =

∑m
j=1ω j b(p j) be the affine combi-

nation of the coordinates b(p j) with the same weights. Then b(p) are barycentric
coordinates of p. Moreover, if the coordinates b(p j) and the weights ω j are non-
negative, then so are the coordinates b(p).

Proof. To prove the first statement, we refer to Definition 1 and observe that

n
∑

i=1

bi(p) =
n
∑

i=1

m
∑

j=1

ω j bi(p j) =
m
∑

j=1

ω j

n
∑

i=1

bi(p j) =
m
∑

j=1

ω j = 1

and

n
∑

i=1

bi(p)vi =
n
∑

i=1

m
∑

j=1

ω j bi(p j)vi =
m
∑

j=1

ω j

n
∑

i=1

bi(p j)vi =
m
∑

j=1

ω j p j = p.

The second statement follows, because convex combinations of non-negative val-
ues are non-negative.

Another well known fact, which turns out to be useful in this context, is that
affine combinations in general, and in particular those of barycentric coordinates,
commute with linear functions.

Lemma 7. If the barycentric coordinates b(p j) of the points p j in Lemma 6 lie on
a common linear function, that is, b(p j) = M p j + a for some matrix M ∈ Rn×2,
vector a ∈ Rn, and j = 1, . . . , n, then so does their affine combination b(p).
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b0
i

vi

40

b1
i

vi

41

b2
i

vi

42

Figure 6.1. Main idea of refining piecewise linear barycentric coordinates: A
triangulation40 of the polygon P is refined by a linear subdivision scheme with
special rules to keep the boundary fixed. In parallel, the same subdivision rules
are applied to the barycentric coordinates associated with the vertices of the tri-
angulation, thus creating a sequence of piecewise linear barycentric coordinate
functions bk

i (shown for the vertex vi) with a C1 continuous limit. The white
curves are the contour lines at 0.1,0.2, . . . , 0.9.

Proof. The statement holds, because

b(p) =
m
∑

j=1

ω j b(p j) =
m
∑

j=1

ω j(M p j + a) = M

� m
∑

j=1

ω j p j

�

+ a

� m
∑

j=1

ω j

�

= M p + a.

Suppose now that 40 is a triangulation of P and that we are given for each
vertex p of 40 some initial barycentric coordinates b(p). We then consider the
piecewise linear function b0 = [b0

1, . . . , b0
n]: 4

0 → Rn which interpolates the
given barycentric coordinates at the vertices of 40.

Corollary 1. If the initial barycentric coordinates at the vertices vi of P are

b(vi) = δi = [δ1,i, . . . ,δn,i], i = 1, . . . , n, (6.1)

then the components b0
i of b0 are barycentric coordinate functions. If all initial

barycentric coordinates are non-negative, then so are the functions b0
i .

Proof. For any p ∈ P, let 4 = [p1, p2, p3] be the triangle in 40 that contains
p, so that p =

∑3
j=1λ j p j, where λ j are the unique barycentric coordinates of p

with respect to 4 (see Section 1.1). By the definition of b0 we have b0(p) =
∑3

j=1λ j b(p j), and Lemma 6 assures not only that b0(p) are valid barycentric
coordinates of p in the sense of Definition 1 but also the statement about non-
negativity (1.10a). Condition (6.1) further guarantees that b0

i satisfies the La-
grange property (1.10b).
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We then refine 40 successively with some linear subdivision scheme S [Zorin
and Schröder, 2000] to generate the sequence of triangulations 40,41, . . . and
apply the subdivision rules not only to the (x , y) coordinates of the vertices,
but also to the associated barycentric coordinates. That is, if the vertex p of
4k+1 is generated by the affine combination p =

∑m
j=1ω j p j of some vertices

p1, . . . , pm of 4k, then we associate with p the values b(p) =
∑m

j=1ω j b(p j),
and it follows from Lemma 6 that b(p) are valid barycentric coordinates of p.
As above, we now consider at each level k the piecewise linear function bk =
[bk

1, . . . , bk
n]: 4

k→ Rn, which interpolates the generated barycentric coordinates
at the vertices of 4k (see Figure 6.1).

Theorem 3. Let S be a subdivision scheme that

1. is convergent,

2. generates C1 continuous limits,

3. is equipped with boundary rules for interpolating corner vertices and preserv-
ing straight boundary segments.

Further assume that the triangulations4k are regular in the sense that they do not
contain any degenerate or flipped triangles, even in the limit. Then the components
bk

i of bk converge to C1 continuous barycentric coordinate functions b∞i : Ω̄→ R as
k →∞. Moreover, if the initial barycentric coordinates at the vertices of 40 and
the weights of the subdivision rules are non-negative, then so are the b∞i .

Proof. Using the appropriate boundary rules along the edges of P ensures that
4k is a triangulation of P. Moreover, tagging the vertices of P as corners and ap-
plying to them the interpolating subdivision rule guarantees that condition (6.1)
is preserved at any level k. With the same reasoning as in the proof of Corollary 1
we then conclude that the bk

i are barycentric coordinate functions. Note that we
have to assume here that 4k is regular, because otherwise it could happen that
some p ∈ P is contained in more than one triangle of4k and then bk

i would not
be well-defined.

To study the limit behaviour of this subdivision process, we recall that the
natural parameterization of a subdivision surface is the one with respect to the
midpoint-subdivided control mesh [Zorin and Schröder, 2000]. In our setting,
this means that we use P as our domain, consider the sequence of triangulations
T 0, T 1, . . . , where T 0 =40 and T k+1 is derived from T k by midpoint subdivision,
and regard4k as the image of the piecewise linear functionϕk : P → P that maps
from each triangle in T k to the corresponding triangle in 4k (see Figure 6.2).
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T 0 40

-

ϕ0

T 1 41

-

ϕ1

T 2 42

-

ϕ2

Figure 6.2. Natural parameterization ϕk of the subdivided triangulation4k over
the refined domain T k for k = 0, 1,2.

Under the given conditions on S, this sequence of functions converges to a C1

continuous mapping ϕ̄ : P → P. Likewise, subdividing the initial barycentric
coordinates gives a C1 continuous mapping b̄ = [b̄1, . . . , b̄n]: P → Rn in the limit.
Putting both together, we conclude that the barycentric coordinate functions bk

i
converge to the C1 continuous functions b∞i = b̄i ◦ ϕ̄−1. Note that we have to
assume here the regularity of 4k in the limit in order to ensure that ϕ̄−1 exists
and is C1 continuous, according to the inverse function theorem. The functions
b∞i are barycentric coordinate functions, because

n
∑

i=1

b∞i (p) =
n
∑

i=1

lim
k→∞

bk
i (p) = lim

k→∞

n
∑

i=1

bk
i (p) = lim

k→∞
1= 1

and

n
∑

i=1

b∞i (p)vi =
n
∑

i=1

lim
k→∞

bk
i (p)vi = lim

k→∞

n
∑

i=1

bk
i (p)vi = lim

k→∞
p = p,

and the statement about the non-negativity of b∞i follows immediately from the
given conditions.

The conditions on S in Theorem 3 are not very restrictive and satisfied by many
popular subdivision schemes [Zorin and Schröder, 2000; Cashman, 2012]. How-
ever, we recommend to use approximating schemes, because interpolating sche-
mes, like the butterfly scheme [Dyn et al., 1990; Zorin et al., 1996] have subdivi-
sion rules with negative coefficients, so that the non-negativity of the limit coor-
dinates b∞ is not guaranteed. We further note that Corollary 1 and Theorem 3
work for any initial data, but in our examples we mainly focus on the setting
where the initial piecewise linear barycentric coordinates b0 are either harmonic
or local coordinates, computed for some triangulation40 of P. By construction,
the initial coordinate functions b0

i are linear along the edges of P in these cases,
and it follows from Lemma 7 and the third condition on S in Theorem 3 that the
same is true for bk

i and the limit coordinate functions b∞i .
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6.1.1 Evaluation

For the evaluation of the limit coordinates b∞, there are three possible scenar-
ios. First, there are many applications, where it is sufficient to have a piecewise
linear approximation of the coordinates. In this situation, we simply carry out a
finite number of, say k = 5 or k = 6 subdivision steps, and take bk as the desired
piecewise linear approximation over 4k. We can further use the limit rules of S
to snap the vertices p of 4k to their limit positions p̄, thus giving a new trian-
gulation 4̄k. Concurrently we apply the same limit rules to the corresponding
coordinates bk(p) to compute b∞(p̄). Overall this results in piecewise linear
coordinates b̄k over 4̄k, which interpolate the limit coordinates at the vertices p̄
of 4̄k instead of only approximating them.

The other two scenarios require the availability of a general routine for eval-
uating the limit surfaces generated by S at arbitrary parameter values, which
in our setting allows to compute ϕ̄(p) and b̄(p) at any p ∈ P. For spline sub-
division schemes which generate polynomial patches in regular regions, such a
routine with constant time complexity can be designed by following the ideas
of Stam [1998a,b], and non-polynomial schemes can be evaluated with the ap-
proach of Schaefer and Warren [2007, 2008]. On the one hand, we can then
map any p ∈ P to its limit position p̄ = ϕ̄(p) ∈ P and compute the limit coordi-
nates b∞(p̄) = b̄(p) of p̄. This is sufficient, for example, for applications which
require to evaluate b∞ at a dense set of points, but where the exact positions
of the points do not matter. On the other hand, we can also determine the limit
coordinates b∞(p) of p ∈ P itself by first finding q = ϕ̄−1(p), which in turn
requires solving the local convex optimization problem

min
q∈P
‖p − ϕ̄(q)‖2 , (6.2)

for example with Newton’s method [Nocedal and Wright, 1999]. Once q is
found, we compute the limit coordinates of p as b∞(p) = b̄(q).

6.1.2 Connection to standard surface subdivision

Before continuing with some concrete examples, we would like to point out a
different perspective on the subdivision process described above. Suppose we
attach the i-th barycentric coordinate bi(p) as a z-coordinate to each vertex p of
the triangulation4k. This turns4k into the 3D triangle mesh Gk

i , which is noth-
ing but the graph of the barycentric coordinate function bk

i , and generating Gk+1
i

from Gk
i is just the standard surface subdivision process. Under the given condi-

tions on S in Theorem 3, it is then clear that the sequence of meshes G0
i , G1

i , . . .
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Figure 6.3. Standard Loop subdivision rules for interior vertices (a), interior
edges (b), boundary vertices (c), and boundary edges (d). Corner vertices are
simply interpolated. The modified edge rule (e) depends on the interior angle
at the adjacent corner vertex (f).

converges to a C1 continuous limit surface G∞i , and the regularity of 4k in the
limit guarantees that G∞i is the graph of a function, namely the limit coordinate
function b∞i .

6.2 Coordinates based on Loop subdivision

In order to verify the theoretical results from the previous section, we decided to
use Loop subdivision [Loop, 1987] with the modification proposed by Biermann
et al. [2000]. That is, we mark vertices and edges of P as corners and creases to
preserve the boundary of the polygon and use the subdivision rules in Figure 6.3,
where the parameter ω for an interior vertex with valency m is ω =

�

5
8 −

�

3
8 +

1
4 cos 2π

m

�2�
/m. The standard rules are used everywhere, except at interior edges

adjacent to exactly one corner. For these edges, the corner is weighted by the
modified coefficient α = (1 + cosθ )/4, where mθ is the interior angle at the
corner and m is the number of adjacent triangles.

As the subdivision rules have non-negative weights, they generate non-nega-
tive coordinate functions b∞i in the limit. These rules further guarantee that
the coordinate functions are C2 almost everywhere in the interior and along the
edges of P, and they are C1 at extraordinary interior vertices with valency other
than 6 and at convex corners. The b∞i are only C0 at concave corners, but this is
not surprising, because non-negative coordinate functions cannot be C1 at such
corners (see Section 2.1).
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6.2.1 Evaluation

To evaluate these Loop coordinates b∞, we implemented the three strategies out-
lined in Section 6.1.1 in C++ on a MacBook Pro 2013 with 2.4 GHz Intel Core
i7 processor and 8 GB 1600 MHz DDR3 memory. The first option is to subdivide
the triangulation40 and the initial barycentric coordinates b0 until4k has about
one million vertices and to snap both the vertices p of 4k and the correspond-
ing coordinates bk(p) to the limit using the usual limit rules [Loop, 1987]. This
gives a rather detailed piecewise linear interpolant of b∞. Our implementation
takes about 2 seconds for subdividing the (x , y) coordinates of the vertices of
the triangulation and managing the data structures, plus another 0.02n seconds
for subdividing the associated barycentric coordinates. By means of the tangent
vector rules, we can even determine the gradients ∇b∞i of the limit coordinate
functions at the limit points at an additional cost of 0.2+ 0.05n seconds. Note
that computing harmonic coordinates for a triangulation with the same number
of vertices costs about 0.2n seconds in our implementation, which is based on
EIGEN [Guennebaud et al., 2010], plus 15 seconds for assembling and factorizing
the matrix. Hence, it is even a bit faster for small n, but the resulting piecewise
linear coordinate functions do not interpolate the true harmonic coordinates at
the vertices and gradients can only be approximated.

The second option is to evaluate for any p ∈ P the limit mappings ϕ̄ and b̄,
so as to get the limit coordinates b∞(p̄) = b̄(p) at p̄ = ϕ̄(p). To this end, we
first subdivide 40 and b0 twice in a preprocessing step, to separate extraordi-
nary vertices, and then find the triangle 4 in 42 that contains p. If 4 is not
adjacent to the boundary of 42, then we use Stam’s algorithm [Stam, 1998b],
otherwise we resort to the method of Zorin and Kristjansson [2002], which is
slightly more complex but works for points near the boundary. With our imple-
mentation, which uses a quadtree to store the triangles of 42, evaluating one
million points this way takes about 3.2 seconds for finding the triangle 4 and
computing p̄, plus 0.1n seconds for evaluating b∞(p̄). We can further use Stam’s
approach to compute first derivatives of b∞i at p̄ at roughly the same cost and
even second derivatives, except when p is an extraordinary vertex of 42 with-
out well-defined second derivatives. To compute derivatives at points near the
boundary, we subdivide the triangulation around p locally until the triangle that
contains p is not adjacent to the boundary anymore before calling Stam’s rou-
tine, because Zorin and Kristjansson do not discuss how to compute derivatives
with their method. However, the cost of these local subdivisions has a negligible
effect on the average runtime.

The third option is to compute b∞(p) for any p ∈ P, which requires to solve
the optimization problem (6.2). We implemented a simple Newton method with
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40 41 42 43

Figure 6.4. Example of an initial triangulation 40 for which the subdivided
triangulations 4k fold over at the concave corner.

40 41 42 43

Figure 6.5. The foldovers in Figure 6.4 can be avoided by our vertex adjustment
strategy (see Figure 6.6).

adaptive step size, taking advantage of the fact that we can use Stam’s method
as explained above to get the gradient and the Hessian of the objective function.
At extraordinary vertices, where the Hessian is undefined, we resort to a finite
difference approximation of the Hessian. Our experiments show that the optimal
point q = ϕ̄−1(p) is usually found in less than three iterations with an accuracy of
10−7 at an average cost of 2 ·10−6 seconds per point. Note that this cost does not
depend on n, since it is a problem in R2. Once q is found, we proceed to compute
b∞(p) = b̄(q) as in the second option above. Overall, our implementation takes
about 5+0.1n seconds for evaluating one million points this way. This is roughly
on par with the runtime of our implementation of maximum entropy coordinates,
which takes about 2+ 0.15n seconds for the same task.

While the third option is the least efficient, it is the only one that delivers the
limit coordinates b∞(p) at an arbitrary p ∈ P. Moreover, the additional cost with
respect to the second option becomes marginal for large n, and in comparison to
the first option it requires less memory, as it needs to store only the triangulation
42 instead of 4k.

6.2.2 Concave corners

In the reasoning above, we tacitly assumed that the subdivision process gives
regular triangulations 4k, even in the limit as k → ∞. However, as noticed
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Figure 6.6. Our vertex adjustment strategy relocates the vertices in the one-ring
neighbourhood of a concave corner (left) so that all adjacent triangles have the
same shape and size (right).

by Biermann et al. [2000], foldovers may occur at concave corners, not only in
the limit, but already after a small number of subdivision steps (see Figure 6.4).
Consequently, the limit coordinates will not be well-defined in these regions.
However, we can avoid this problem (see Figure 6.5) by modifying 40 before
determining the initial barycentric coordinates b0.

To this end, we adjust the positions of the vertices pi in the one-ring neigh-
bourhood of a concave corner p as shown in Figure 6.6. That is, we first deter-
mine the length

r =min{r0, r1, . . . , rm},
where ri = ‖p − pi‖, of the shortest edge adjacent to the concave corner. We
then place all neighbours regularly spaced on a circle with radius r around p,

p ′0 = p + (p0 − p)r/r0, p ′i = p + Riθ (p
′
0 − p), i = 1, . . . , m, (6.3)

where θ is defined as above and Rβ denotes the rotation matrix for anticlockwise
rotation by β . If this vertex adjustment strategy creates foldovers of 40 in the
2-ring neighbourhood of p, then we repeatedly halve r until the foldovers disap-
pear. Note that this strategy generally requires that the one-ring neighbourhoods
of the concave corners do not contain common vertices.

Theorem 4. If the neighbours of a concave corner p have been adjusted with the
strategy in (6.3), then the triangulations 4k are regular around p, even in the
limit.

Proof. We first note that the adjusted neighbours of p satisfy

pi+−1 = p + R+−θ (pi − p), i = 1, . . . , m− 1.

Recalling that
Rθ + R−θ = 2cosθ I = (8α− 2)I ,
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40 41 42

Figure 6.7. For this convex triangulation with regular interior vertices, foldovers
occur in the interior after two subdivision steps.

40 41 42

Figure 6.8. We can eliminate the foldovers in Figure 6.7 by smoothing the initial
triangulation.

where α is defined as above and I denotes the identity matrix, we find that after
one subdivision step with the modified edge rule in Figure 6.3 (e), the new inte-
rior neighbours p̃i of p for i = 1, . . . , m−1 are just the edge midpoints of the old
interior edges,

p̃i = [8αp + (6− 8α)pi + pi−1 + pi+1]/8

= [8αp + (6− 8α)pi + 2p + (Rθ + R−θ )(pi − p)]/8

= [8αp + (6− 8α)pi + 2p + (8α− 2)(pi − p)]/8

= [p + pi]/2.

As the same holds for the new boundary neighbours p̃0 and p̃m, due to the bound-
ary edge rule in Figure 6.3 (d), we conclude that each subdivision step simply
scales the one-ring neighbourhood of p by a factor of 1/2. This clearly avoids
foldovers at p, even in the limit.

6.2.3 Internal foldovers

While our vertex adjustment strategy takes care of foldovers at concave corners,
interior foldovers may still occur in the interior of 4k, even for convex initial
triangulations 40 where all interior vertices are regular with valency 6 (see Fig-
ure 6.7). A formal analysis of this problem is beyond the scope of this disser-



99 6.2 Coordinates based on Loop subdivision

(a) (b) (c) (d)

Figure 6.9. To create the initial triangulation 40 for a given polygon P (a), we
first specify uniformly spaced vertices on the edges of P (b), then compute a
constrained Delaunay triangulation (c), and finally modify the one-ring neigh-
bourhood of each concave corner with our vertex adjustment strategy (d).

tation, but we observed that this problem does not appear if we construct the
initial triangulation as shown in Figure 6.9.

Given a polygon P and a target edge length e, we first sample each edge of P
with uniformly spaced vertices such that the spacing is as close as possible to e.
We then use TRIANGLE [Shewchuk, 1996] to compute a conforming constrained
Delaunay triangulation of P which contains the sample vertices, does not create
any further boundary vertices, and has triangles with areas less than A= e2

p
3/4,

the area of the equilateral triangle with target edge length e. This usually gener-
ates a triangulation with a maximum edge length e? close to e and not too many
extraordinary vertices. In the final step, we apply the vertex adjustment strategy
from Section 6.2.2 to create the initial triangulation 40 of P.

To test our conjecture that the limit mapping ϕ̄ is regular so that ϕ̄−1 exists
and the limit coordinates are well-defined, we generated 100 random simple
polygons and triangulated them for different values of e. We then subdivided
each initial triangulation until the number of triangles was above one million and
applied three tests. For each triangle with three regular vertices (usually more
than 99.9% of all triangles), we checked the condition in [Ginkel et al., 2007,
Lemma 3] to verify that the corresponding limit patch is regular. We further
computed the limit tangents at all extraordinary vertices and checked that the
limit mapping does not fold at these vertices. Both tests restrict the potential
occurrence of foldovers to the triangles adjacent to extraordinary vertices and we
evaluated the limit tangents at 1000 random points inside each of these triangles
as explained in Section 6.2.1. All initial test triangulations passed these tests,
which makes us confident that our conjecture is true.

If it is necessary to keep the original connectivity of the triangles in Figure 6.7,
we observed that the internal foldovers in this triangulation can be eliminated
by applying three smoothing steps with the regular vertex rule (ω = 1/16 and
m= 6) in Figure 6.3, (a) to the initial triangulation (see Figure 6.8).
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Figure 6.10. Example of Loop coordinate functions and the norm of their gradi-
ents (shown for the bottom and centre vertices) using piecewise linear harmonic
coordinates over 40 as initial coordinates b0.

6.2.4 Examples

Figure 6.10 shows some examples of Loop coordinate functions for harmonic
initial coordinates. Despite the low resolution of the triangulation 40, the func-
tions are smooth and no visual artefacts are recognizable at the extraordinary
interior vertices. Not too surprisingly, they actually look very similar to harmonic
coordinates, and Figures 6.11 and 6.12 further illustrate this behaviour. In both
examples, we first computed harmonic coordinates over a mesh with two million
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Figure 6.11. Comparison of the errors bHM
i − b0

i (centre) and bHM
i − b∞i (bot-

tom) between the true harmonic coordinate function bHM
i , the piecewise linear

approximation b0
i , and the Loop coordinate function b∞i for the bottom vertex

and different resolutions of the triangulation 40 with maximum edge lengths
e?. The top log-log plot shows the maximum errors
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i ) (blue) and D(b∞i )− D(bHM

i ) (red).
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Figure 6.12. Comparison of the errors bHM
i − b0

i (centre) and bHM
i − b∞i (bottom)

between the true harmonic coordinate function bHM
i , the piecewise linear ap-

proximation b0
i , and the Loop coordinate function b∞i for the concave vertex

and different resolutions of the triangulation 40 with maximum edge lengths
e?. The top log-log plot shows the maximum errors





bHM
i − b0

i







∞ (blue) and
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∞ (red) over e?, and the bottom log-log plot shows the differences
of the Dirichlet energies D(b0

i )− D(bHM
i ) (blue) and D(b∞i )− D(bHM

i ) (red).

triangles and took this approximation as referential true harmonic coordinates
bHM. As expected, the log-log plots show that the piecewise linear harmonic co-
ordinate functions b0

i over 40 converge to bHM
i as the maximum edge length e?

of 40 tends to 0, and that the same holds for the Dirichlet energy

D(g) =
1
2

∫

P

‖∇g‖2 , g : P → R,

which is of course minimal for bHM
i . The plots also show that the Loop coor-

dinate functions b∞i with b0
i as initial coordinates and their Dirichlet energies

converge at the same rate and are consistently closer to bHM
i . The behaviour

is confirmed by the error visualizations which illustrate that Loop subdivision
effectively smoothes out the error between approximate and true harmonic co-
ordinates.

In Figure 6.13, we compare local (computed with the code provided by Deng
and Liu [2014]) and the corresponding Loop coordinates for different resolu-
tions of 40. Although the theory suggests that local coordinate functions are
locally supported, the numerical solver used in [Deng and Liu, 2014] generates
small function values even outside the probable support and Zhang et al. [2014]
suggest to consider all values below 10−4 as numerically zero. We modify their
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6.61 sec

466 vertices

135 sec

1784 vertices

11194 sec

6979 vertices

59172 sec

27605 vertices

Figure 6.13. Comparison of local coordinates (top) and the corresponding Loop
coordinates (bottom) for different resolutions of the initial triangulation 40. For
local coordinates, the contour line at 10−4 is shown in green, and the orange
line marks the support of the Loop coordinates. The timings for computing local
coordinates are given at the top.

data in the following way. For each vertex p of40 with one or more coordinates
bi(p) < 10−4 we set bi(p) to exact zero and perturb the other coordinates in a
least squares sense to restore the key barycentric properties in Definition 1. We
then use these modified coordinates as b0. The plots show that the correspond-
ing Loop coordinates are truly locally supported and that the support is slightly
larger, but also smoother than the numerical support of the original local coor-
dinates. We further observe that the shape of the Loop coordinates for the initial
triangulations with 1784 and 6979 vertices is visually the same, which suggests
that, given the exponential cost of computing local coordinates, it is better to
smooth them with Loop subdivision instead of further increasing the resolution
of the initial triangulation. The fact that the coordinate functions for the trian-
gulation with 27605 vertices look apparently different from the others is due to
the fact that the solver had not fully converged, even after the indicated 59172
seconds.

One potential drawback of our approach is that the Loop coordinates b∞

depend on the initial triangulation 40. An example of this effect is given in
Figure 6.14, which shows two coordinate functions for two different initial tri-
angulations as well as the difference between them. For convex corners, this
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Figure 6.14. Comparison of barycentric coordinate functions for one convex
and one concave vertex and different initial triangulations 40 and 4̃0 using
piecewise linear harmonic coordinates as initial coordinates.

difference is usually less than 0.5% and less than 2% for concave corners, but
the contour and gradient plots confirm that the global shapes of the coordinate
functions are very similar.

6.3 Coordinates based on Catmull–Clark subdivision

The refinement process described in Section 6.1 works analogously with linear
subdivision schemes for quadrilateral meshes. We start from an initial quad-
rangulation �0 of P with given barycentric coordinates at the vertices p of �0,
and use the scheme to generate the sequence of quadrangulations �0,�1, . . . as
well as to compute barycentric coordinates at the vertices of each �k. Under the
same conditions as in Theorem 3, this gives C1 continuous barycentric coordinate
functions in the limit.

The main difference is that we need to be careful with the definition of the
functions bk = [bk

1, . . . , bk
n]: �

k → Rn, which interpolate the initial or computed
barycentric coordinates at the vertices of �k, so as to guarantee the equivalent
of Corollary 1. One possibility is to split each quadrilateral of �k into two regu-
lar triangles and let bk be piecewise linear over the triangles obtained this way.
Another choice is to let bk be smooth over each quadrilateral by utilizing mean
value coordinates (see Section 2.1.3) in the following way. For any p ∈ P, let
� = [p1, p2, p3, p4] be the quadrilateral in �k that contains p, let ω1, . . . ,ω4

be the mean value coordinates of p with respect to �, that is, p =
∑4

j=1ω j p j,

and set bk(p) =
∑4

j=1ω j b
k(p j). Lemma 6 then guarantees that bk(p) are valid

barycentric coordinates of p, and since the weightsω j are non-negative, even for
a concave quadrilateral � [Hormann and Tarini, 2004] (see also Chapter 5), the
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Figure 6.15. Standard Catmull–Clark subdivision rules for faces (a), interior ver-
tices (b), interior edges (c), boundary vertices (d), boundary edges (e), and mod-
ified edge rule (f). Corner vertices are simply interpolated.

non-negativity statement in Corollary 1 carries over to the quadrilateral setting.
As a case study for this quadrilateral setting we decided to use Catmull–Clark

subdivision [Catmull and Clark, 1978] with the modifications proposed by Bier-
mann et al. [2000]. As in Section 6.2, we mark vertices and edges of P as
corners and creases to preserve the boundary of the polygon and use the sub-
division rules in Figure 6.15, where the parameters for an interior vertex with
valency m are ω1 =

3
2m and ω2 =

1
4m and the coefficient for the modified edge

rules is α = (3 + 2 cosθ )/8 with θ as in Section 6.2. Like Loop coordinates,
these Catmull–Clark coordinates are C2 almost everywhere, except at extraordi-
nary interior vertices and convex corners, where they are only C1 and at con-
cave corners, where they are C0. To evaluate them, we implemented the same
three options as described in Section 6.2.1 with similar runtimes, using Stam’s
algorithm [Stam, 1998a] for the evaluation of ϕ̄ and b̄ in the interior and the
method of Zorin and Kristjansson [2002] near the boundary. The vertex adjust-
ment around a concave corner p is done as in (6.3) for the adjacent neighbours
p0, . . . , pm of p, and the opposite corners q0, . . . ,qm−1 of the adjacent quadrilat-
erals are moved to

q ′i = p ′i + p ′i+1 − p, i = 0, . . . , m− 1,

so that all adjacent quadrilaterals become congruent parallelograms. With the
same arguments as in Theorem 4, one can then show that this configuration
scales by a factor of 1/2 with each subdivision step, thus avoiding foldovers at p,
even in the limit. We did not further investigate the issue of internal foldovers,
but did not experience any problems in our numerical examples.



105 6.4 Loop coordinates

�
0 b∞1





∇b∞1






0

3

2

1

b∞3




∇b∞3




 20

0

10

15

5

Figure 6.16. Example of Catmull–Clark coordinate functions and their gradients
(shown for the bottom and middle vertices) with harmonic coordinates over �0

as initial coordinates b0.

6.3.1 Examples

Figure 6.16 is the analogue to Figure 6.10 and shows some examples of Catmull–
Clark coordinate functions for harmonic initial coordinates. Since the initial
quadrangulation has no extraordinary interior vertices, these functions are C2

in the interior of P, and the plots confirm that they are also visually smooth.
In Figure 6.17, we computed harmonic coordinates over a triangulation 40

and a quadrangulation �0 of the same polygon and used them as initial coordi-
nates for Loop and Catmull–Clark coordinates, respectively. The example shows
that both subdivision schemes have a very similar smoothing effect and that the
coordinate functions are almost identical. Since quadrangulating a given poly-
gon is much harder than triangulating it, this suggests that Loop coordinates are
probably the method of choice in most cases. However, for certain polygons like
the one in Figure 6.25 it is more natural to use Catmull–Clark coordinates.

6.4 Loop coordinates

Loop coordinates can also be computed for polygons without interior points. The
key advantage of this approach is that the initial triangulation40 is very coarse,

40
�

0

Figure 6.17. Comparison of Loop (left) and Catmull–Clark (right) coordinate
functions (shown for one convex and one concave vertex) with harmonic coor-
dinates over 40 and �0, respectively, as initial coordinates b0.
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Figure 6.18. Support (shaded in grey) of the Loop coordinate functions bk
i for

one convex and one concave vertex after k = 0, . . . , 3 subdivision steps and in
the limit (from left to right).

including only the vertices of the given polygon. In addition, we do not need
to compute harmonic, local, or any other generalized barycentric coordinates
as initial coordinates b0 over 40, and the resulting coordinate functions are C2

everywhere except at the vertices of P. At convex and concave corners they are
C1 and C0, respectively.

The locality of the subdivision rules in Figure 6.3 also implies that these co-
ordinates are locally supported. In particular, bk

i (p) = 0 for all vertices p of 4k

with topological edge distance de(p, vi) ≥ 2k+1 − 1, and even less in the vicinity
of the other vertices v j of P. Therefore, the functions bk

i are local, as shown in
Figure 6.18. In the limit, the support of b∞i is contained in ϕ̄(Ni), where Ni is
the union of all triangles in the two-ring neighbourhood of vi in 40.

For the example in Figure 6.19, we computed Loop coordinates for a triangu-

P

40

LO MV ME HM

Figure 6.19. Comparison of different barycentric coordinate functions for one
convex and one concave vertex. Loop coordinates were computed for the initial
triangulation 40 shown in the bottom left. The inset shows the cross section
along the dashed line.
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lation40 without interior vertices, using only the barycentric coordinates in (6.1)
as initial coordinates at the vertices vi of P. Because of the lack of extraordinary
interior vertices, the resulting coordinate functions are C2 in the interior of P.
The comparison to harmonic (HM), maximum entropy (ME), and mean value
coordinates (MV) shows that Loop coordinates (LO) are more local at convex
and less steep at concave corners.

6.4.1 Limitations

Though Loop coordinates for polygons without interior points possess many nice
properties, they have quite a few limitations. First of all, we cannot avoid fold-
overs at concave corners of the polygon (see Figure 6.20, left) without adding
extra vertices to the initial triangulation 40. To avoid such foldovers and keep
the number of extra vertices to minimum, we propose two different approaches.

The first approach is to increase the valency of a concave corner vi by adding
boundary vertices to40 and connecting them with vi (see Figure 6.21, left). As a
rule of thumb, each triplet of adjacent triangles should form an angle less than π
at vi. Before starting the subdivision process, we must assign initial barycentric
coordinates to the new vertices. Since they lie on the edges of P, we simply
interpolate the barycentric coordinates at the neighbouring corners linearly as in

40 43 40 42

Figure 6.20. Subdividing the initial triangulation 40 creates the foldover at the
concave corner (left). We can fix it by applying a ternary linear subdivision step
of 40 with the vertex adjustment strategy from Section 6.2.2 (right).

40 43 40 43

Figure 6.21. We can also fix the foldover at the concave corner in Figure 6.20
by adding extra boundary (left) or interior (right) vertices to 40.
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Equation (3.32), so as to maintain the linear behaviour along the edges.
The second approach is to increase the valency of concave corners by adding

interior vertices to 40 (see Figure 6.21, right). To compute the initial barycen-
tric coordinates at an interior vertex p, we consider the polygon P̃, formed by
the neighbours p1, . . . , pm of p, and determine the mean value coordinates (see
Section 2.1.3) ω1, . . . ,ωm of p with respect to P̃. As p lies in the kernel of P̃,
these ω j are positive, so that setting b(p) =

∑m
j=1ω j b(p j) gives non-negative

coordinates at p, according to the Lemma 6.
In general, these approaches work well in practice, however they introduce

irregular vertices to 40, where the limit functions are only C1, if we subdivide
interior edges adjacent to irregular boundary vertices with the modified edge
rule [Biermann et al., 2000] and irregular interior vertices with the appropriate
rules [Loop, 1987]. They also do not guarantee the absence of foldovers in the
limit, although they usually work well for up to k = 6 subdivision steps, which
is good enough for many applications.

If we want to keep the C2 continuity of Loop coordinates everywhere except
at the polygon’s vertices and avoid foldovers at concave corners also in the limit,
we need to apply a ternary linear subdivision step of40 and get back to our ver-
tex adjustment strategy in Section 6.2.2 (see Figure 6.20, right). To update the
barycentric coordinates associated with the neighbours of concave corners after
adjusting their positions, we sample the piecewise linear coordinate functions
that we obtain after the ternary step. This strategy not only guarantees bijectiv-

Figure 6.22. Comparison of Loop coordinate functions for one convex and one
concave vertex without (top row) and with vertex adjustment (bottom row). In
addition to the white contour lines at 0.1, 0.2, . . . , 0.9, the support is marked by
the orange line.
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Figure 6.23. Loop coordinates for an arbitrary triangulation of P (left), for the
constrained Delaunay triangulation (centre), and for the average of all possible
(shown in grey) triangulations (right).

ity at concave corners, but also shrinks the support of the coordinate functions,
as shown in Figure 6.22.

Another limitation of Loop coordinates is that their shape depends on the
initial triangulation 40 (see Figure 6.23). As thin triangles with small angles

Figure 6.24. Loop coordinates for this star-shaped polygon can be symmetrized
by averaging over all possible (shown in grey) initial triangulations (middle row)
or by adding an extra interior vertex to the initial triangulation (bottom row).
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P

�
0

CC HM ME LC

Figure 6.25. Comparison of different barycentric coordinate functions for one
convex and one concave vertex. Catmull–Clark coordinates were computed for
the initial quadrangulation �0 shown in the bottom left. The inset shows the
cross section along the dashed line. The contour line at 10−4 is shown in green,
and the orange line marks the support.

usually lead to coordinate functions with less natural shapes, we suggest to use
the constrained Delaunay triangulation of P as default. It is also possible to
avoid this dependence on 40 by averaging the coordinate functions for all pos-
sible initial triangulations of P, but as the number of these triangulations grows
exponentially, this approach is computationally feasible only for polygons with a
small number of vertices.

Figure 6.24 shows that Loop coordinates can also be non-symmetric for sym-
metric polygons. This can be fixed either by the averaging procedure described
above or by adding interior vertices to the initial triangulation, so as to sym-
metrize 40 (see also Figure 6.17). However, while the first option preserves all
the properties of Loop coordinates, including C2 continuity, the second option
may introduce irregular vertices, where the coordinate functions are only C1, as
explained earlier in the text.

6.5 Catmull–Clark coordinates

Similarly to Loop coordinates in Section 6.4, we can also obtain Catmull–Clark
coordinates for polygons without interior points. For example, in Figure 6.25, we
show such coordinates for a quadrangulation �0 without interior vertices, using
only the barycentric coordinates in (6.1) as initial coordinates at the vertices vi

of P. Consequently, the resulting coordinate functions are C2 everywhere except
at vi. The comparison to harmonic (HM) and maximum entropy coordinates
(ME) shows that Catmull–Clark coordinates (CC) are also more local at convex
and less steep at concave corners, and they are smoother, but less local than local
coordinates (LC).
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Figure 6.26. Catmull–Clark coordinates for this star-shaped polygon can be sym-
metrized by adding an extra interior vertex to the initial quadrangulation.

These Catmull–Clark coordinates have the same limitations as Loop coordi-
nates in Section 6.4.1 and they can be fixed similarly, for example, the symmetry
of the coordinate functions for the star polygon in Figure 6.24 can be restored
by adding an interior vertex to 40 (see Figure 6.26). However, since it is not
common to quadrangulate polygons, it is more natural to use Loop coordinates
instead.

6.6 Applications

It follows from (1.10b) that the function f k : P → Rd with

f k(p) =
n
∑

i=1

bk
i (p) fi (6.4)

interpolates the data f1, . . . , fn ∈ Rd at the vertices v1, . . . , vn and from Defini-
tion 1 that the Loop interpolant f k reproduces affine functions. Moreover, f k

converges to f∞ = f̄ ◦ ϕ̄−1, where f̄ : P → Rd is the d-dimensional Loop surface
generated by subdividing the initial data fi. We now use Loop coordinates from
Section 6.4 and further conclude from their properties that the Loop interpolant
is linear along the edges of P, lies in the convex hull of the data fi, depends
on a small subset of these data, and is C2 continuous everywhere except at the
vertices of P.

Analogously to Chapter 5, we use colour interpolation (see Section 2.3.1) and
image deformation (see Section 2.3.2) as two example applications for demon-
strating the behaviour of Loop coordinates.

6.6.1 Colour interpolation

Given a polygon P with RGB colour data fi ∈ [0, 1]3 specified at the vertices vi of
P, we want to propagate these colours to the interior of P. Note that, since the
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HM LC LO
Figure 6.27. Comparison of colour interpolation with different generalized
barycentric coordinates.

Loop coordinates bk(q) are non-negative for any q ∈ P, the interpolated RGB
values are always inside the valid range [0,1].

To determine the Loop interpolant at level k, it is actually not necessary to
compute the n coordinate functions bk

i by subdividing the initial data (vi,δi) ∈
R2+n and evaluating f k as in (6.4). Instead, we apply the subdivision process to
the initial data (vi, fi) ∈ R5, which is faster, because usually n> 3. An argument
similar to the one used in the proof of Lemma 6 then guarantees that we obtain
f k after k subdivision steps.

Figure 6.27 shows a comparison between the colour interpolants based on
harmonic, local, and on Loop coordinates at level k = 6. All three functions give
visually smooth results, but due to the global support of harmonic coordinates,
the pink colour propagates well into the triangle spanned by the three white-
coloured vertices. At the same time, local and Loop coordinates behave more
locally and better separate regions with different colours.

6.6.2 Image deformation

Using Loop coordinates, we can also deform an image that is contained in the
source polygon P by specifying a target polygon P̃ with vertices ṽ1, . . . , ṽn and
using (6.4) with the data fi = ṽi ∈ R2. After k subdivision steps, each vertex
p of 4k has an associated vertex p̃ = f k(p) and replacing all p with p̃ defines
the target mesh 4̃k. The image is then deformed by rendering 4̃k using the ver-
tices p as texture coordinates and the source image as texture (see Figure 6.28).
Note that the deformed image depends smoothly on the target vertex positions,
because the coordinate functions bk

i are defined with respect to the source poly-
gon, which remains unchanged.

Figure 6.29 shows that local and Loop coordinates lead to very similar results.
In this example, the hat undergoes a rigid transformation, and the neck of the
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k = 0 k = 2 k = 4 k = 6
Figure 6.28. Loop coordinates can be used to deform a source image (left) by
moving the vertices of the control polygon. The quality of the deformed image
improves as the level k of subdivision increases, and the result is visually smooth
for k ≥ 4, which can be seen in particular in the close-ups, which zoom to the
upper part of the tail and the region next to the udder of the cow.

cactus is deformed non-rigidly. While the property (1.9) of barycentric coordi-
nates guarantees the reproduction of rigid transformations, we can see that the
hat is deformed by maximum entropy and harmonic coordinates, because it is
also influenced by the control points in the neck region. In contrast, the locality
of local and Loop coordinates guarantees the mapping to be isometric in the hat
region. Deformation with mean value coordinates suffers high distortions and is
visually inappropriate for this example.

Figure 6.30 gives an example of image deformation using different initial
triangulations. The constrained Delaunay triangulation of P leads to foldovers
at concave corners, but they can be fixed either by adding to 40 a few extra
boundary vertices or by our vertex adjustment strategy (see Section 6.4.1). Both
approaches give visually similar results, but vertex adjustment does not require
any manual interaction. In addition, both methods improve the locality of the
coordinate functions.

MV ME HM LC LO
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10−3

10−4

Figure 6.29. Comparison of image deformation with different barycentric coor-
dinates. The inset shows the coordinate functions for two different vertices of
the polygon, where the colour scale is logarithmic, ranging from 10−4 to 100.
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Figure 6.30. Comparison of image deformation with Loop coordinates for differ-
ent initial meshes: the constrained Delaunay triangulation of P (second row) and
the modified triangulations after adding boundary vertices (third row) or vertex
adjustment (bottom row). The right column shows the coordinate functions for
one convex and one concave vertex, where the colour scale is the same as in
Figure 6.29.

We implemented two variants of this image deformation algorithm in C++
on a MacBook Pro 2013 with 2.4 GHz Intel Core i7 processor and 8 GB 1600
MHz DDR3 memory. For a given subdivision level k, the first variant computes
and stores the mesh4k as well as the coordinate functions bk

i in a preprocessing
step and determines the target mesh 4̃k by evaluating (6.4) for all vertices p
of 4k whenever the target polygon changes. The second variant computes and
stores the k meshes 41, . . . ,4k in a preprocessing step and then determines 4̃k

by subdividing the initial data fi = ṽi whenever required. Figure 6.31 shows
that both methods are interactive up to k = 6, which is sufficient for achieving
visually smooth results (see Figure 6.28), and that the first variant is generally
faster, even though the preprocessing is more costly. However, it is much less
memory efficient, because it has to store the precomputed coordinates for all
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Figure 6.31. Timings for image deformation for k = 1, . . . , 8, using (6.4) (black)
and by subdividing the target vertex data (green). The dashed lines refer to the
preprocessing costs.

vertices of the subdivided mesh 4k. For the cow example with k = 8, this data
does not fit into the main memory and has to be swapped to the hard disk, which
explains the unexpected increase in the corresponding plot. Note that image
deformation with harmonic or local coordinates would face the same problem,
because it requires to precompute and store the same data.

We should note that subdivision has been used before for image deforma-
tion [DeRose et al., 1998; Van den Bergh et al., 2002], but neither in the context
of barycentric coordinates nor addressing the problem of foldovers at concave
corners.

6.7 Discussion

Mesh subdivision is widely known in computer graphics as a technique for creat-
ing smooth surfaces with arbitrary topology by repeatedly refining an initial base
mesh with simple local rules. In this chapter, we show that subdivision can also
be used to construct barycentric coordinates with favourable properties. While
the theory developed in Section 6.1 is general and works for a large class of
subdivision schemes, we believe that Loop subdivision is the method of choice,
for two reasons. On the one hand, it is simple and comes with well-understood
boundary rules and exact evaluation routines. On the other hand, our examples
confirm that the main shape of the limit coordinate functions b∞i is dictated by
the initial functions b0

i , and we do not expect other subdivision schemes to yield
qualitatively better results.

However, it still remains future work to develop a strategy for constructing
initial triangulations 40, for which it can be formally proven that the refined
triangulations 4k are regular in the interior, even in the limit. Note that this
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problem is not restricted to the construction of well-defined Loop coordinates, as
it addresses the general question under which conditions the two-dimensional
Loop mapping ϕ̄ : P → P is bijective. Another direction for future work is the
extension of our approach to 3D by using volumetric subdivision schemes [Chang
et al., 2002; Schaefer et al., 2004].



Chapter 7

Conclusion

The main goal of this dissertation is to give an extensive overview of generalized
barycentric coordinates in 2D, analyse and improve some properties of several
well-known coordinate functions, provide their numerically stable implementa-
tion, and present new constructions with favourable properties. We also show
that barycentric coordinates have the well-developed theoretical basis and are
often used in practice as a building block for different applications in computer
graphics and geometry processing.

The key observation that we use throughout this dissertation is that the affine
combination

m
∑

j=1

ω j b j =ω1 b1 +ω2 b2 + · · ·+ωm bm,
m
∑

j=1

ω j = 1 (7.1)

of barycentric coordinates b j with some coefficients ω j keeps the defining prop-
erties (1.8) and (1.9) of the coordinates. Moreover, if both b j and ω j are non-
negative, that is, (7.1) is the convex combination, the non-negativity property also
holds for the new coordinates formed by this combination. Finally, the correct
choice of the coefficients above gives some freedom to calibrate other important
properties of the new coordinates, and we give three examples of such choices
in Chapters 4, 5, and 6.

While the construction in Chapter 4 is used only to improve the smoothness
property at the vertices of a polygon, it gives a basic idea of how to combine differ-
ent barycentric coordinates and becomes a motivation for our new construction
in Chapter 5. We further generalize the idea of constructing new coordinates
using convex combinations in Chapter 6.

Both constructions in Chapters 5 and 6 provide generalized barycentric coor-
dinates in terms of Definition 1 that are non-negative inside any simple polygon,
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satisfy the Lagrange property (1.10b), are linear along the polygon’s edges, and
are C1\C2 for any p ∈ Ω ∪ E1 ∪ . . . ∪ En, where Ei = (vi, vi+1) is the i-th open
edge of P. At the polygon’s vertices these coordinates are at least C0, but we
show in Chapter 4 that this property can be improved and C∞ coordinates at
the convex corners of P can be constructed. At concave corners, the C∞ conti-
nuity can be achieved only if we drop the non-negativity property (1.10a), be-
cause non-negative coordinate functions cannot be more than C0 at such corners
(see Chapter 2). Finally, both constructions give locally supported coordinates
and this support is well-defined, which, to the best of our knowledge, was not
achieved by any other construction before.

In addition, the coordinate functions above are also easy to evaluate for any
p ∈ Ω. While the blended coordinates in Chapter 5 are the first, to the best of
our knowledge, that have a closed form and can be computed in constant time
for any simple polygon, the other construction in Chapter 6 does not offer such
an efficient evaluation but has an advantage of being well-defined for polygons
with interior points.

However, it still remains future work to extend these or construct new coordi-
nates with similar properties that are also well-defined in the polygon’s exterior
and in higher dimensions. Note that in this case the non-negativity property
cannot be guaranteed for any p ∈ Rd \ Ω̄.

Except for new constructions, we also analysed in Chapter 3 some well-known
closed-form coordinates, namely the family of exponential three-point coordi-
nates. We formally proved that these coordinates are well-defined inside strictly
convex polygons and satisfy the Lagrange property for any parameter p ∈ R.
We further analysed some numerical issues that arise when implementing these
coordinates and introduced the package in the Computational Geometry Algo-
rithm Library [CGAL, 2016] with an efficient and accurate implementation of
three important members of this family that are Wachspress, discrete harmonic,
and mean value coordinates.

However, it still remains future work to add other generalized barycentric
coordinates to our package and investigate numerical problems that can happen
when computing these coordinates with the standard floating point representa-
tion of numbers. In addition, it would also be interesting to explore the problem
of finding new coordinates with all properties from Section 1.2 that have a closed
form and can be evaluated symbolically for any simple polygon.

We finally remark that the pseudocodes for some closed-form coordinates
discussed in this dissertation can be found in Appendix A, and a C++ implemen-
tation of all coordinates can be found in the supplementary material on:
www.anisimovdmitry.com



Appendix A

Pseudocodes

In this appendix, we provide the pseudocodes for the efficient evaluation of some
closed-form barycentric coordinate functions b discussed in this dissertation. In
all pseudocodes, we use i to denote the vertex index, and the superindices “+”
and “−” refer to the “next” and “previous” indices. For other notation, we denote
the vector from the query point p to the vertex vi by si, the length of this vector
by ri, the vector from the vertex vi to the vertex vi+ by ei, the dot product of two
vectors by “·”, the signed area of the triangle [vi, vi+ , p] by Ai/2 = (si × si+)/2,
where “×” denotes the cross product, and the products Ai−1,i, Ai, and Ai−1 from
Equation (3.5) by X i, Yi, and Zi, respectively.

We want to remark that the last three pseudocodes 9, 10, and 11 adopt
slightly different notation and are used for the efficient evaluation of the non-zero
blended coordinate functions bi from Chapter 5 at a given point p inside a trian-
gle 4 with one, two, or three overlapping quadrilaterals. In these pseudocodes,
we use j to denote the edge index as shown in Figure A.1, and k is reserved for
indexing the related variables inside each quadrilateral. For the sake of clarity,
we decided to use only local indices in these pseudocodes and, therefore, an ac-
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Figure A.1. Local vertex and edge indices used in the Pseudocodes 9 (left), 10
(centre), and 11 (right).
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Pseudocode 2 Wachspress coordinates with the O(n) time complexity (see Sec-
tion 3.2.2).

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: ei := vi+ − vi

5: for i = 1 to n do . Compute all necessary areas
6: Ai := si × si+

7: W := 0 . Compute Wachspress weights
8: for i = 1 to n do
9: wi := (ei × −ei−)/ (Ai− Ai)

10: W :=W +wi

11: for i = 1 to n do . Compute Wachspress coordinates
12: bi := wi /W

Pseudocode 3 Wachspress coordinates with the O(n2) time complexity (see Sec-
tion 3.2.2).

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: ei := vi+ − vi

5: W := 0 . Compute Wachspress weights
6: for i = 1 to n do
7: wi := ei × −ei−

8: for j = 1 to n do
9: if j 6= i− and j 6= i then

10: wi := wi (s j × s j+)

11: W :=W +wi

12: for i = 1 to n do . Compute Wachspress coordinates
13: bi := wi /W

tual implementation must take special care of correctly mapping all local indices
to the corresponding global indices. For example, in Pseudocode 10, the local
indices i and i+ for j = 4 in the second loop over all edges are the local vertex
indices 1 and 4 (see Figure A.1, centre), which in turn refer to certain global
vertex indices, depending on 4.
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Pseudocode 4 Discrete harmonic coordinates with the O(n) time complexity (see
Section 3.2.3).

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: r2

i := si · si

5: for i = 1 to n do . Compute all necessary areas
6: Ai := si × si+

7: W := 0 . Compute discrete harmonic weights
8: for i = 1 to n do
9: wi := (r2

i+ Ai− − r2
i (si− × si+) + r2

i− Ai)/ (Ai− Ai)
10: W :=W +wi

11: for i = 1 to n do . Compute discrete harmonic coordinates
12: bi := wi /W

Pseudocode 5 Discrete harmonic coordinates with the O(n2) time complexity
(see Section 3.2.3).

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: r2

i := si · si

5: for i = 1 to n do . Compute the products of areas
6: X i := 1
7: for j = 1 to n do
8: if j 6= i− and j 6= i then
9: X i := X i (s j × s j+)

10: Yi := X i (si− × si), Zi := X i (si × si+)

11: W := 0 . Compute discrete harmonic weights
12: for i = 1 to n do
13: wi := Yi r2

i+ − X i r2
i (si− × si+) + Zi r2

i−

14: W :=W +wi

15: for i = 1 to n do . Compute discrete harmonic coordinates
16: bi := wi /W
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Pseudocode 6 Mean value coordinates with the O(n) time complexity (see Sec-
tion 3.2.4).

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: ri := ‖si‖
5: for i = 1 to n do . Compute all necessary data
6: t i := (si × si+)/ (ri ri+ + si · si+)

7: W := 0 . Compute mean value weights
8: for i = 1 to n do
9: wi := (t i− + t i)/ ri

10: W :=W +wi

11: for i = 1 to n do . Compute mean value coordinates
12: bi := wi /W

Pseudocode 7 Mean value coordinates with the O(n2) time complexity (see Sec-
tion 3.2.4), where the sign σi is computed as in Pseudocode 1.

1: function b(p)
2: for i = 1 to n do . Iterate over all vertices
3: si := vi − p
4: ri := ‖si‖
5: for i = 1 to n do . Compute mean value weights
6: wi := ri− ri+ − si− · si+

7: for j = 1 to n do
8: if j 6= i− and j 6= i then
9: wi := wi (r j r j+ + s j · s j+)

10: wi := σi
p

wi

11: W :=W +wi

12: for i = 1 to n do . Compute mean value coordinates
13: bi := wi /W
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Pseudocode 8 Convex combination of Wachspress and mean value coordinates
from Chapter 4, where the functions “getdWx()” and “getdWy()” return partial
derivatives dWx and dWy of the Wachspress denominator W WP with respect to x
and y coordinates.

1: function b(p)
2: {bWP, W WP} := computeWPCoordinates(p) . See Pseudocode 3

3: dWx := getdWx(p) . Compute blending function
4: dWy := getdWy(p)
5: σ1 := dWx dWx + dWy dWy , σ2 := 1
6: for i = 1 to n do
7: si := vi − p
8: σ2 := σ2 (si · si)
9: σ1 := (W WP)4 / (σ1)2

10: Σ := σ1 +σ2, µ := 0
11: if Σ> 0 then
12: µ := σ1 /Σ

13: bMV := computeMVCoordinates(p) . See Pseudocode 7

14: for i = 1 to n do . Final convex combination
15: bi := µ bWP

i + (1−µ) bMV
i

Pseudocode 9 Blended coordinates from Chapter 5, case: one quadrilateral.
1: function b(p)
2: for i = 1 to 4 do . Iterate over all vertices
3: si := vi − p
4: ri := ‖si‖
5: for j = 1 to 4 do . Iterate over all edges
6: t j := (si × si+)/ (ri ri+ + si · si+)

7: W := 0 . Mean value weights
8: for k = 1 to 4 do
9: wk := (t j− + t j)/ ri

10: W :=W +wk

11: for i = 1 to 4 do . Blended coordinates
12: bi := wk /W
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Pseudocode 10 Blended coordinates from Chapter 5, case: two overlapping
quadrilaterals.

1: function b(p)
2: for i = 1 to 5 do . Iterate over all vertices
3: si := vi − p
4: ri := ‖si‖
5: for j = 1 to 7 do . Iterate over all edges
6: A j := si × si+

7: t j := A j / (ri ri+ + si · si+)

8: A := A1 + A2 + A3, a1 := A1 /A, a2 := A2 /A . Blending functions
9: σ1 := q(a2), σ2 := q(a1), Σ := σ1 +σ2

10: µ1 := σ1 /Σ, µ2 := σ2 /Σ

11: W1 := 0, W2 := 0 . Mean value weights
12: for k = 1 to 4 do
13: w1

k := (t1
j− + t1

j )/ r1
i , w2

k := (t2
j− + t2

j )/ r2
i

14: W1 :=W1 +w1
k, W2 :=W2 +w2

k

15: for k = 1 to 4 do . Mean value coordinates
16: b1

k := w1
k /W1, b2

k := w2
k /W2

17: for i = 1 to 3 do . Blended coordinates
18: bi := b1

k µ1 + b2
k µ2

19: b4 := b1
4 µ1, b5 := b2

4 µ2
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Pseudocode 11 Blended coordinates from Chapter 5, case: three overlapping
quadrilaterals.

1: function b(p)
2: for i = 1 to 6 do . Iterate over all vertices
3: si := vi − p
4: ri := ‖si‖
5: for j = 1 to 9 do . Iterate over all edges
6: A j := si × si+

7: t j := A j / (ri ri+ + si · si+)

8: . Blending functions
9: A := A1 + A2 + A3, a1 := A1 /A, a2 := A2 /A, a3 := A3 /A,

10: σ1 := q(a2)q(a3), σ2 := q(a1)q(a2), σ3 := q(a1)q(a3), Σ := σ1 +σ2 +σ3

11: µ1 := σ1 /Σ, µ2 := σ2 /Σ, µ3 := σ3 /Σ

12: W1 := 0, W2 := 0, W3 := 0 . Mean value weights
13: for k = 1 to 4 do
14: w1

k := (t1
j− + t1

j )/ r1
i , w2

k := (t2
j− + t2

j )/ r2
i , w3

k := (t3
j− + t3

j )/ r3
i

15: W1 :=W1 +w1
k, W2 :=W2 +w2

k, W3 :=W3 +w3
k

16: for k = 1 to 4 do . Mean value coordinates
17: b1

k := w1
k /W1, b2

k := w2
k /W2, b3

k := w3
k /W3

18: for i = 1 to 3 do . Blended coordinates
19: bi := b1

k µ1 + b2
k µ2 + b3

k µ3

20: b4 := b1
4 µ1, b5 := b2

4 µ2, b6 := b3
4 µ3
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