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Chapter 1

Introduction

In the last century, the increasing amount of quantitative data available due to the improvements of informa-
tion technology has been accompanied by the development of dimensionality reduction techniques allowing
the researchers in all disciplines to easily interpret the data. Latent - or unobserved - factor models have been
among the earliest tools proposed by the statistical literature since the beginning of the twentieth century
to summarize the vast amount of quantitative information, and capture its relevant dependence structure. In
this type of models, the repeated observations over time of a numerical variable for different units of mea-
surement - or individuals - are assumed to be functions of (a) few unobservable factors common to all the
units in the panel examined, and (b) observational errors with negligible dependence to the factors. Un-
doubtedly, linear factor models are the most widely used and studied among the general class of unobserved
factor models. For this type of models, individual observations are a linear combination of a small number
of common factors and idiosyncratic errors. This statistical tool has been used to examine a wide variety
of phenomena in economics and finance, as it can be exploited to efficiently describe the common features
of multiple observable variables, and it often involves limited computational complexity even if applied on
large panels of data.

Among the first and most prominent applications of factor models in economics and finance are empirical
models of macroeconomic fluctuations and models of financial asset pricing. In the latter case, the stochastic
return of an asset is a linear combination of few systematic risk factors, plus an asset-specific random shock.
This idea is at the core of the equilibrium arbitrage pricing theory explaining returns of assets in large
economies initiated by Ross (1976). The typical dataset used in empirical finance consists of a large number
of observations, usually returns, for many different assets, i.e. they feature a large cross-sectional dimension.
In these settings, the natural estimators of the common factors for a linear factor model consist of computing
cross-sectional averages of the observations at each date, mainly using extensions of the principal component
methods as in Chamberlain and Rothschild (1983), Connor and Korajczyk (1986), Connor and Korajczyk
(1988), Connor and Korajczyk (1993), Bai and Ng (2002), and Bai (2003). Also Macroeconomics has
contributed - both from the theoretical and empirical sides - to the development of factor models for large
number of economic indicators, especially with the seminal contributions of Forni and Reichlin (1996), Forni
and Reichlin (1998), Stock and Watson (1998), Forni, Hallin, Lippi, and Reichlin (2000), Stock and Watson
(2002a). The main findings in this strand of literature is that business cycle fluctuations are determined
by few factors driving a large cross-section of macroeconomic time series. These factors are particularly
useful for the construction of leading and coincident indicators of the economic activity, or when used in
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forecasting, nowcasting, and other policy exercises.
This thesis considers new latent factor models, and their estimation methodologies, suitable for settings

relatively unexplored in the econometric literature as (i) a nonlinear model for the joint dynamics of a large
cross-sectional distribution of asset returns, and the persistence of the ranks of the individuals inside it; (ii)
approximate linear latent factor models for large panels of mixed-frequency data; and (iii) small scale state
space models featuring multiple time series with stochastic volatility and observed at different frequencies.

Regarding point (i), the literature on asset allocation has found convenient to use the linear models de-
veloped in asset pricing theory to obtain a parsimonious representation of the expected excess returns of the
different assets to be included in a portfolio, and of their dependence structure as measured by the associ-
ated variance-covariance matrix. These models, depending on the dynamic specification of the factors and
the errors, allow to predict the evolution of the entire cross-sectional distribution of returns, the expected
return and the riskiness of each asset, and those of the portfolio itself. They proved to be central tools to
solve, both theoretically and empirically, asset allocation problems consisting on the maximization of the
risk-adjusted performance of the portfolio, where the risk adjustment is due to the manager’s utility func-
tion which is written on the portfolio value. More recently the literature on “fund tournaments”, initiated
by Brown, Harlow, and Starks (1996), has noted that money managers might also be interested in the relative
performance of their portfolios with respect to competitors, justifying new types of utility functions defined
on the rank, or relative position, of the portfolio return within a certain cross-sectional distribution of com-
peting returns (see, for instance, Guéant (2013)). In order to solve portfolio allocation problems based on
the maximization of these new rank-based utility functions, standard linear model of asset returns might not
be flexible enough as they imply a specific dynamic for the shape of the entire cross-sectional distribution
of returns, and also for the relative positions of asset returns inside the cross-sectional distribution. In the
literature there seem to be no available model for the disjoint characterization of the dynamic of the shape
of the cross-sectional distribution of returns, and the dynamic of the relative positions of the assets inside
it, which is valuable to solve rank-utility maximization problems. Inspired by - but differently from - the
copula model of Bonhomme and Robin (2009), we propose a model with two type of latent factors: the first
one driving the functional form of the cross-sectional distribution of returns, while a second type of factors
driving the autoregressive coefficient of the ranks of the single individuals. The latter factors allow to capture
commonalities over time in the persistence of the relative positions. This model implies a wider range of
possible rank dynamics than the standard linear factor model, due to the various nonlinearity features, and at
the same time can be estimated by maximum likelihood on a large panel of assets, as the estimators involve
only the alternation of time-series and cross-sectional averages of appropriate functions of the data.

Turning to point (ii), the vast majority of the models mentioned up to this point assume that all the avail-
able data are (time) sampled at the same frequency. Nevertheless, the data used in empirical research in
economics and finance are often observed at different frequencies, for example stock returns are available
at daily or higher frequency, while macroeconomic indicators are usually published at monthly or quarterly
frequency. On one side, the direct use of mixed frequency data generates new opportunities to better under-
stand the underlying structure of the economy, but on the other it poses some challenges from an econometric
point of view. In fact, empirical research generally avoids the direct use of mixed frequency data by either
first aggregating higher frequency series and then performing estimation and testing at the low frequency
common across the series, or neglecting the low frequency data and working only with the high frequency
series. The literature on large scale factor models is no exception to this practice, see e.g. Forni and Reichlin
(1998), Stock and Watson (2002a,b) and Stock and Watson (2010), although recently a number of mixed
frequency factor models have been proposed. Usually these models rely on small cross-sections, as in the
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seminal papers of Mariano and Murasawa (2003), Nunes (2005), Aruoba, Diebold, and Scotti (2009). Stock
and Watson (2002b) and Jungbacker, Koopman, and Van der Wel (2011) are among the rare recent attempts
to extend these models to large panels of mixed-frequency observables. Moreover, often the data sampled at
different frequencies are of a slightly different in nature, therefore a natural question to ask is whether groups
of data corresponding to different frequencies share any common factor, or their dynamics are decoupled.
Therefore, there appears to be need of a generic class of linear models which can be easily estimated using
extensions of principal component methods (i.e. that do not require computationally intensive recursive esti-
mation methods), and can handle large panels of mixed frequency observables, allowing for common factors
pervasive to all data, and also for factors loading only on the group of data observed at a specific frequency.

Concluding with point (iii), the first type of factor models developed for panels with small cross-sectional
dimensions, and actually very much used also for modeling single time series, are known under the name of
“state space models”. In order to be able to identify and estimate the latent factors from the data, specific
parametric assumptions are explicitly made on the dynamic specification for the latent factors and for the
idiosyncratic errors, and not only on the dependence structure between the factor and the observables. When
the specifications of the first two dynamics are linear and Gaussian, and the observables load linearly on
the factors, then maximum likelihood estimation is possible using a special kind of filtering algorithm for
the latent factor, called Kalman filter. When either one of the linearity and Gaussianity assumptions on the
idiosyncratic errors are relaxed, like in the case of idiosyncratic errors featuring stochastic volatility (which
can be seen as an additional latent factor loading on its variance), then ad-hoc nonlinear filters can be ap-
plied for maximum likelihood estimation. An advantage of these models is that they can be easily adapted
to handle mixed frequency observables. On the other hand, any departure from the linearity and Gaussian-
ity assumptions, or the increase of the number of observables, often imply an higher computational burden
of the filtering technique, with the associated risk of numerical instability of the estimation procedure. In
these situations the use of the indirect inference methods (see Gouriéroux, Monfort, and Renault (1993),
Smith (1993) and Gallant and Tauchen (1996)) becomes a fast and easy to implement alternative, provid-
ing an appropriate auxiliary model - i.e. a misspecified model matching the main features of the true one,
and easily estimable - can be found. In a recent paper, Bai, Ghysels, and Wright (2013) find a one-to-one
mapping among the optimal forecast of a low frequency variable attainable from a state space model with
mixed frequency observables, and a specific type of Mixed Data Sampling (MIDAS) forecasting regres-
sions, i.e. regressions involving as explanatory variables the same high frequency variables included in the
state space model (MIDAS regressions were introduced in the seminal paper of Ghysels, Santa-Clara, and
Valkanov (2006)). This insight, together with the older tradition in finance of using ARCH-type auxiliary
models to estimate stochastic volatility models (see, for instance, Engle and Lee (1999)), allow to have the
proper auxiliary models to perform indirect inference estimation of small scale state space models featuring
stochastic volatility in the idiosyncratic term of the observables.

The objectives of this thesis are the development of new econometric methodologies for the estimation
of latent factor models on large and mixed frequency datasets, and their application to asset allocation, the
study of comovement in the output growth of different sectors of the US economy, and the forecasting of
European GDP. The rest of the thesis is articulated in three additional chapters. Chapter 2, corresponds
to an article coauthored with Patrick Gagliardini and Christian Gourieroux, and presents a new type of
asset allocation strategies based on a novel dynamic model of the cross-sectional distribution of returns
and the ranks of assets inside the same cross-sectional distribution. These strategies are implemented on a
large panel of US stocks, and are shown to perform well compared to traditional asset allocation strategies.
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Chapter 3, corresponds to a paper coauthored with Elena Andreou, Patrick Gagliardini and Eric Ghysels,
and proposes a new class of approximate latent factor models suitable for large panels of data observed at
different frequencies. An empirical application uncovers the common components of monthly data output
growth rates of the US Industrial Production sectors, and the yearly output growth rates of all the remaining
sectors of the US economy, mainly services. Chapter 4, corresponds to a paper coauthored with Patrick
Gagliardini and Eric Ghysels. It introduces indirect inference estimators for state space models featuring
mixed frequency observables and stochastic volatility, and considers an application to forecasting quarterly
European GDP using monthly macroeconomic indicators. The content of each chapter is outlined more
extensively below.

Detailed outline of the chapters

Chapter 2: Positional portfolio management

The second chapter, corresponds to the paper Positional Portfolio Management. It introduces a new type of
asset allocation strategies named “positional portfolio” strategies. Positional portfolio management is based
on the maximization of the expected utility of the future rank, or position, of the portfolio value, as opposed
to the traditional portfolio management which focuses on the expected utility of the future portfolio value
itself. Specifically, we study positional portfolio management in which the manager maximizes an expected
utility function written on the cross-sectional rank, or position, of the portfolio return. This objective function
is introduced to reflect the portfolio manager’s goal to be well-ranked among competitors. This goal, which
does not necessarily coincide with the standard objective of maximizing the risk-adjusted performance of
the portfolio, is compatible with the desire of the manager to increase his/her asset under management, and
therefore his/her fees, when faced with potential new investors who value only the relative performance
with respect to competing funds. In this respect, also the manager might be more interested in relative
performance than in absolute performance, as documented by the literature on “fund tournaments” (see
e.g. Brown, Harlow, and Starks (1996) and Guéant (2013), among others).

To implement positional allocation strategies, we specify a nonlinear factor model for the asset returns
featuring unobservable individual heterogeneities and latent dynamic factors. The model disentangles the
dynamics of the cross-sectional distribution of the returns and the dynamics of the ranks, or positions, of
the individual assets within the cross-sectional distribution. We estimate our model on a large set of stocks
traded in the NYSE, AMEX and NASDAQ markets between 1990/1 and 2009/12, and implement the posi-
tional strategies for different investment universes. The factor model that we specify allows enough reduction
in the dimension of the parameter space to be able to implement the strategies on the same large dimensional
set of assets considered for the estimation. We compare the performance of positional strategies with tra-
ditional momentum, reversal, mean-variance, minimum-variance and equally-weighted portfolio allocation
strategies. We find that the positional strategies implemented out-of-sample outperform momentum and re-
versal strategies, as well as mean-variance and minimum-variance strategies in terms of average positional
utility and Sharpe ratio. The performance of the positional strategies is similar to that of the equally-weighted
portfolio according to these criteria, but the former outperform the latter in terms of probability to be well-
ranked. The fact that the strategies based on our model perform well when implemented both in-sample,
and out-of-sample, is an indication that the model is sophisticated enough to capture relevant features of the
dynamics of the cross-section of US stocks returns.
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Chapter 3: Is Industrial Production Still the Dominant Factor for the US Economy?

The third chapter corresponds to the paper Is Industrial Production Still the Dominant Factor for the US
Economy?. This article introduces a new class of approximate latent factor models in the spirit of Bai and
Ng (2002) suitable for large panels of data observed at different frequencies. For expository purposes and
compatibility with the empirical application, we consider the simplified setting in which a first panel of mea-
surements is observed at high frequency and a second panel of measurements is observed at low frequency.
The model allows for the presence of latent factors common to both high and low frequency data panels,
and factors specific to the high and low frequency data. It can be written as a group factor model, and in
the proposed identification strategy, the groups correspond to panels observed at different sampling frequen-
cies. While there is a literature on how to estimate factors in a grouped model (see e.g. Krzanowski (1979),
Flury (1984), Kose, Otrok, and Whiteman (2008), Goyal, Pérignon, and Villa (2008), Bekaert, Hodrick, and
Zhang (2009) and Moench, Ng, and Potter (2013)), there does not exist a general unifying asymptotic theory
for large panel data. We propose estimators for the common and group specific factors, and an inference
procedure for the number of common and group specific factors based on canonical analysis of the principal
components estimators on each subgroup. The procedure is general in scope, can be extended straightfor-
wardly to the case of more than two groups of observables, and has many applications in economics and
other fields.

The empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor
analytic methods to decompose industrial production (IP) into components arising from aggregate and sector-
specific shocks. They focus exclusively on the industrial production sectors of the US economy. Yet, IP has
featured steady decline as a share of US output over the past 30 years, as the US economy has become more
a service sector economy. Contrary to IP, we do not have monthly or quarterly data about the cross-section
of US output across non-IP sectors, but we do on an annual basis. We identify three factors with our mixed
frequency approximate factor model, where the first is a high frequency factor common to all sectors, the
second is a high frequency factor specific to IP-sectors and a third is a low frequency factor pertaining only to
non-IP sectors. Despite the growth of service sectors, we find that a single common factor explaining 90% of
the variability in IP output growth index also explains 60% of total GDP output growth fluctuations. A single
low frequency factor unrelated to manufacturing explains 14% of GDP growth. Moreover, we re-examine
whether these common factors reflect sectoral shocks that have propagated by way of input-output linkages
between service sectors and manufacturing. Hence, our analysis completes an important part missing in
the original study of Foerster, Sarte, and Watson (2011), which omitted, among others, the services sector:
a major ingredient of US economic activity. A structural factor analysis indicates that one common and
two frequency-specific factors to the productivity innovations, or technological shocks, continue to be the
dominant source of variation in the output growth of the US economy, but IP sectors technology shocks do
not play a dominant role.

Chapter 4: Indirect inference estimation of mixed frequency state space models with stochas-
tic volatility

The fourth and concluding chapter corresponds to the paper Indirect Inference Estimation of Mixed Fre-
quency Stochastic Volatility State Space Models using MIDAS Regressions and ARCH Models, joint work
with Patrick Gagliardini and Eric Ghysels. This article examines the relationship between MIDAS regres-
sions and the estimation of state space models applied to mixed frequency data featuring stochastic volatility.
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To estimate the parameters of the model, we introduce indirect inference estimation procedures proposed by
Gouriéroux, Monfort, and Renault (1993), Smith (1993) and Gallant and Tauchen (1996). More specifically,
we use MIDAS regressions introduced by Ghysels, Santa-Clara, and Valkanov (2006) combined with ARCH
specifications for the errors, as well as mixed frequency Vector Autoregressive (VAR) models (see e.g. Ghy-
sels (2014)) as auxiliary models. It is worth noting that in some specific cases we know the binding function
between the state space model and the implied MIDAS regression, as discussed in Bai, Ghysels, and Wright
(2013). However, these cases are rather too simple to be practical, so that the use of indirect inference is
a natural way to tackle the unknown binding function. In addition to the estimation of the parameters of
the model, we filter the latent factors given observables, using reprojection methods proposed by Gallant
and Tauchen (1998). Also these filters involve simple regression-based methods combined with ARCH.
Hence, we provide a simple estimation methodology alternative to computationally demanding approximate
nonlinear filters.

We assess the efficiency of our indirect inference estimator for the stochastic volatility model by com-
paring it with the Maximum Likelihood estimator (MLE) in Monte Carlo simulation experiments. The ML
estimate is computed with a simulation-based Expectation-Maximization algorithm, in which the smoothing
distribution required in the Expectation step is obtained via a particle forward-filtering/backward-smoothing
algorithm. The Monte Carlo simulations show that the proposed Indirect Inference procedure is very ap-
pealing, as its statistical accuracy is close to that of MLE but the former procedure has clear advantages in
terms of computational efficiency. Even in the linear Gaussian case, we find our indirect inference methods
remarkably accurate, when compared to the standard MLE based on the Kalman filter. An application to
forecasting quarterly GDP growth in the Euro area with monthly macroeconomic indicators illustrates the
usefulness of our procedure in empirical analysis. Last, it is worth noting that same frequency data set-
tings are a special case of mixed frequency ones. The methodology proposed by this paper is therefore also
applicable to standard state space models.
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Chapter 2

Positional Portfolio Management

Abstract

We study positional portfolio management in which the manager maximizes an expected utility function
written on the cross-sectional rank (position) of the portfolio return. The objective function reflects the
manager’s goal to be well-ranked among competitors. To implement positional allocation strategies, we
specify a nonlinear unobservable factor model for the asset returns which disentangles the dynamics of the
cross-sectional distribution and the dynamics of the ranks of the individual assets. Using a large dataset of
stocks returns we find that positional strategies outperform standard momentum, reversal and mean-variance
allocation strategies, as well as equally weighted portfolio for criteria based on position.

JEL Codes: C38, C55, G11.

Keywords: Positional Good, Robust Portfolio Management, Rank, Fund Tournament, Factor Model, Big
Data, Equally Weighted Portfolio, Momentum, Positional Risk Aversion.
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2.1 Introduction

The management fees of portfolio managers should be designed to reconcile the objectives of these managers
with the objectives of the investors. They depend on the asset under management for mutual funds, and also
on the returns of the portfolio above some benchmark threshold, the so-called high-water mark, for hedge
funds [Brown, Harlow, and Starks (1996), Aragon and Nanda (2012), Darolles and Gourieroux (2014)].
These designs might be not entirely satisfactory and induce spurious portfolio management. For instance,
the effect of high-water mark can lead managers to take too risky short term positions and use a high leverage.
Similarly, to increase his/her market share, that is the asset under management, the manager has to get better
performance than his/her competitors. In this respect, the manager might be more interested in relative
performance than in absolute performance, especially when the journals for investors write lead articles or
even make their cover page on the ranking of funds. For instance, “in the Managed and Personal Investing
section of the Wall Street Journal Europe, the Fund Scorecard provides the return of the top fifteen performers
in a category” [Goriaev, Palomino, and Prat (2001)].

The traditional Finance theory assesses the quality of a portfolio management strategy by considering
the expected (indirect) utility of the portfolio value, or of the portfolio return. A portfolio with 10% expected
return is preferred to a portfolio with 8% expected return for a given level of risk. However, this preference
ordering can be questioned if we account for the context, that is, for competing portfolio managements. Do
we prefer a 10% return when the competing portfolio return is 20%, or a 8% return when the competing
portfolio return is 5% ? Indeed, with 8% return the portfolio manager is number one, whereas he/she is not
with 10% return. Economic theory uses the term positional good to “denote the good for which the link be-
tween context", i.e., the behaviour of other economic agents, “and evaluation is the strongest", and the term
nonpositional good to denote that for which the link is the weakest [Hirsch (1976), Frank (1991)]. Positional
theory has proved useful to explain the escalation of expenditures in armaments, the race for technology
in electronic financial markets [Biais, Foucault, and Moinas (2013)], the negative association between hap-
piness measures and average neighbourhood income [Easterlin (1995), Frey and Stutzer (2002)], the sharp
increase in the surface of newly constructed houses in the United States, the labour force participation of
married women [Neumark and Postlewaite (1998)], and the demand for luxury goods [Frank (1999)]. The
application of positional theory in Finance, which is the closest to the topic of this paper, is the competition
for talented agents, especially for CEOs, fund managers, or traders in the finance sector [see e.g. Gabaix and
Landier (2008), Thanassoulis (2012)]. Indeed, the fact that investors look for talented fund managers might
explain the incentive for positioning introduced in the contracts for management fees, as well as the race of
fund managers to be well ranked, i.e. the so-called fund tournament [Goriaev, Palomino, and Prat (2001),
Goriaev, Nijman, and Werker (2005), Chen and Pennacchi (2009), Schwarz (2012)].

The aim of this paper is to introduce the positional concern in portfolio management. The positional
portfolio management is based on the maximization of the expected utility of the future rank (or position) of
the portfolio value, as opposed to the traditional portfolio management which focuses on the expected utility
of the future portfolio value itself. The positional portfolio management leads to new types of allocations
strategies, which we compare theoretically and empirically with traditional allocation strategies, such as
mean-variance, momentum and contrarian (or reversal) strategies, as well as the naive 1/n portfolio. We
measure the ability of positional strategies to yield portfolio returns that rank well cross-sectionally. A
positional strategy diverts resources to be well ranked in the race among portfolio managers and might
diminish the absolute performance compared to nonpositional strategies. In this respect, such a management
does not necessarily act in the interest of investors. Therefore, one goal of our analysis is to measure the loss
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(or gain) of absolute performance due to a positional strategy.1

In Section 2.2, we introduce the notion of cross-sectional rank (position). This notion is used to define a
positional portfolio management, and is at the core of the distinction of this management from the standard
management based on the expected utility of future portfolio returns. A positional strategy can be interpreted
as a standard strategy in which the utility function is replaced by a stochastic utility, which is function of
the stochastic future cross-sectional distribution of returns. To implement the positional portfolio strategy
we need an appropriate specification which disentangles the dynamics of the ranks from those of the cross-
sectional distribution of returns. The model for the dynamics of ranks is introduced in Section 2.3. The
Gaussian ranks follow a conditionally Gaussian autoregressive process, with the autoregressive coefficient
accounting for positional persistence. The latter can depend on unobservable individual heterogeneities
and stochastic dynamic factors. The dynamic model for the ranks is used in Section 4 to construct a first
type of positional portfolio allocation strategies, which are compared with standard momentum and reversal
strategies on a large panel of returns for stocks traded in the NYSE, AMEX and NASDAQ markets. The
investment universe for these positional strategies consists of about 1000 stocks, which illustrates the big data
aspect of our analysis. In Section 2.5 we complete the model by introducing an appropriate specification for
the dynamics of the cross-sectional distribution of individual stock returns. The distribution is chosen in
the Variance-Gamma family, with stochastic mean, variance, skewness and kurtosis driven by unobservable
common factors, in order to accommodate time-varying higher-order moments of the cross-sectional returns
distribution. The full vector of macro-factors driving positional persistence and the moments of the cross-
sectional distribution follows a vector autoregressive (VAR) process. The specifications for the dynamics
of positions, cross-sectional distribution and underlying factors define the joint dynamics of returns. The
complete dynamic model is summarized in Scheme 1.

Scheme 1: The model structure

Positional factor Ranks

Returns

Distributional factors Cross-sectional distribution

This complete dynamic model is used in Section 6 to construct efficient positional portfolio allocation strate-
gies. We compare the performance of the momentum and efficient positional strategies with the performance
of traditional mean-variance, minimum-variance and 1/n strategies. We find that the positional strategies
implemented out-of-sample outperform momentum and reversal strategies, as well as mean-variance and
minimum-variance strategies in terms of average positional utility and Sharpe ratio. The performance of the
positional strategies is similar to that of the equally-weighted portfolio according to these criteria, but the
former outperform the latter in terms of probability to be well-ranked. Section 2.7 concludes. Technical
proofs and a discussion of the Nash equilibrium of positional strategies are gathered in Appendices.

1We do not discuss in this paper the positive or negative effects of such tournaments on the global social welfare, as possible
misuse of resources on the negative side, and acceleration of innovation on the positive side.
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2.2 Positional portfolio management

2.2.1 Returns and positions

Let us consider a set of n risky assets i = 1, . . . , n, which can be either stocks, or fund portfolios, and a
riskfree asset with riskfree rate rf,t. We denote by yi,t the return of risky asset i in period t, for t = 1, ..., T .
At any given date, the observed returns can be used to define the ranks (or positions) of the assets. For this
purpose, it is necessary to distinguish the ex-ante and ex-post notions of rank (or position). The ex-post
ranks are simply obtained by ranking at any given date t the asset returns from the smallest one to the largest
one, and then taking their positions in this ranking (divided by n). Formally, the ex-post ranks are defined as
û∗i,t = Ĥ∗t (yi,t), where Ĥ∗t (·) is the empirical cross-sectional (CS) cumulative distribution function (c.d.f.)
of the returns at date t. In the ex-ante analysis, the empirical cross-sectional c.d.f. at the current date t is
replaced by its theoretical analogue, denoted byH∗t (·) (see Appendix 1). Then, the ex-ante ranks are given by
u∗i,t = H∗t (yi,t). The rank u∗i,t corresponds to the position of return yi,t ex-ante with respect to the observation
of the other asset returns. The ex-ante ranks have a cross-sectional uniform distribution on the interval [0, 1],
whereas the ex-post ranks have the discrete empirical uniform distribution on {1/n, 2/n, ..., 1}.

Since the ranks are defined up to an increasing transformation, we can also introduce the ex-ante and
ex-post Gaussian ranks. They are obtained from the corresponding uniform ranks by applying the quantile
function of the standard normal distribution:

ui,t = Φ−1(u∗i,t) and ûi,t = Φ−1(û∗i,t), (2.2.1)

where Φ is the c.d.f. of the standard normal distribution. The ex-ante Gaussian ranks ui,t (resp. the ex-
post Gaussian ranks ûi,t) are standardized to ensure a cross-sectional standard normal distribution (resp. a
cross-sectional distribution close to the standard normal one for large n). For instance, if asset i has ex-post
rank û∗i,t = 0.95, there are 95% of assets in the sample with a smaller or equal return on time t, and 5% of
assets with a larger return. The corresponding ex-post Gaussian rank is ûi,t = 1.64, that is the 95% quantile
of the standard normal distribution. If an asset i has ex-ante rank ui,t = 0.95, there is a probability equal
to 0.95 that the return at time t of any other asset is smaller or equal to the return of asset i. The ex-ante
Gaussian ranks are related to the returns by the equation ui,t = Ht(yi,t), where Ht is the compound function
Ht = Φ−1 ◦H∗t .

To illustrate the notions of ex-ante and ex-post cross-sectional distributions, we consider the subsample of
all Center for Research in Security Prices (CRSP) common stocks 2 traded on the New York Stock Exchange
(NYSE), the American Stock Exchange (AMEX) and the NASDAQ, for which the monthly holding-period
returns are available for the period ranging from January 1990 to December 2009. We exclude from the
dataset the stocks for which monthly volume data are either missing, or equal to 0, at some months. We get a
balanced panel for the returns of n = 939 companies, with T = 240 monthly observations. We compute the
empirical cross-sectional distribution of returns Ĥ∗t at the end of each month of the sample. The associated
smoothed probability density functions are displayed in Figure 2.1.

2Common stocks are stocks with CRSP End of Period Share Code 10 and 11. Therefore, our sample does not include Certifi-
cates, American Depositary Receipts (ADR), Shares of Beneficial Interest (SBI), Units, Exchange-Traded Funds (ETF), Companies
incorporated outside the U.S., Close-ended funds, and Real Estate Investment Trusts (REIT). Stock prices are denominated in US
dollars. The CRSP dataset includes 15044 different common stocks listed in the NYSE, the AMEX and the NASDAQ, in the period
from January 1990 to December 2009.
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[ FIGURE 2.1: Time series of cross-sectional distributions of monthly CRSP stock returns. ]

We deduce from these distributions the associated 5%, 25%, 50%, 75%, 95% empirical cross-sectional
quantiles, which are time varying. The time series of these quantiles are displayed in Figure 2.2.

[ FIGURE 2.2: Time series of quantiles of the CS distributions of monthly CRSP stock returns.]

The empirical cross-sectional distributions are generally unimodal, with a mode close to the zero return.
They vary over time, mainly in their concentration and tails. As expected, we observe in Figure 2.2 an
endogenous clustering of these effects: the individual returns are more cross-sectionally concentrated at
some periods of time, and less concentrated at some other ones.

In Figure 2.3 we consider an hypothetical riskfree asset with a constant monthly return 0.05 and provide
the time series of its ex-post Gaussian ranks.

[ FIGURE 2.3: Time series of ex-post Gaussian ranks associated with a constant monthly return of 0.05.]

This constant return is below the CS median in some months, and above the 95% CS quantile in other
months. In Figure 2.3 these effects are reflected by the fact that the ex-post Gaussian rank is smaller than 0,
or larger than 1.64, respectively, at some months.

2.2.2 Positional management strategies

Let us assume that the investor’s information at date t, denoted by It, includes the current and past real-
izations of all asset returns: It = (rf,t, yt), where yt = (yt, yt−1, . . . ) and yt = (y1,t, . . . , yn,t)

′. The
standard (myopic) portfolio management summarizes the preferences of the investor by means of an increas-
ing concave indirect utility function U written on the future portfolio value. The investor selects at time
t the portfolio allocation which maximizes the expected utility of the future portfolio value. Let us con-
sider a portfolio invested in both risky and riskfree assets and denote by γ the vector of dollar allocations
in the risky assets, wr = γ′e the budget invested in the risky assets, and e the n-dimensional unit vector.
Then, α = γ/wr is the vector of relative allocations in the risky assets. By taking into account the budget
constraint, the future portfolio value is equal to:

Wt+1 = Wt(1 + rf,t) + γ′ỹt+1 = Wt(1 + rf,t) + wrα
′ỹt+1,

where Wt is the portfolio value at date t and ỹt+1 = yt+1 − rf,te is the vector of excess returns. The
optimization problem provides the optimal allocations γ̂t by:

γ̂t = arg max
γ

Et
(
U [Wt(1 + rf,t) + γ′ỹt+1]

)
, (2.2.2)

where Et(·) = E(·|It) is the conditional expectation given the available information at time t, and the
allocation γ̂t can depend on this information. The optimal values γ̂t, ŵr,t = γ̂′te and α̂t = γ̂t/ŵr,t are also
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solutions of the two equivalent constrained optimization problems:

γ̂t = arg max
γ

Et
(
U [Wt(1 + rf,t) + γ′ỹt+1]

)
,

s.t. γ′e = ŵr,t,

and:

α̂t = arg max
α

Et
(
U [Wt(1 + rf,t) + ŵr,tα

′ỹt+1]
)
, (2.2.3)

s.t. α′e = 1.

Thus, the optimization can be splitted into two parts. In a first step we consider the optimal allocation of the
total budget between the riskfree asset and the set of risky assets, that isWt− ŵr,t and ŵr,t. Then, the budget
ŵr,t is allocated between risky assets. For a CARA indirect utility function and conditionally Gaussian
returns, we get the standard mean-variance efficient allocation [see e.g. Ingersoll (1987), p. 98]. In this case
the quantity ŵr,t depends on the risk aversion and on the conditional distribution of excess returns, but not
on the initial portfolio value Wt. The relative allocations vector α̂t depends on the conditional distribution
of excess returns only:

α̂t =
1

e′ [Vt(ỹt+1)]−1Et(ỹt+1)
· [Vt(ỹt+1)]−1Et(ỹt+1).

The objective of a fund manager could be, for instance, to provide a high portfolio (excess) return, or
perhaps to provide a better (excess) return than his competitors. In the latter case, he can prefer to be in the
“top ten”, whatever the return levels are. Such a positional strategy can be developed for the whole portfolio
including both riskfree and risky assets, or only for the risky part of the portfolio once the budgets for the
riskfree and risky parts of the portfolio have been fixed. We follow the second approach, that is, we derive
the optimal positional allocations vector γ subject to the constraint γ′e = wr, for wr given. We keep the
same definition of the ranks as in Section 2.1, that is, we compare the position of portfolios with the positions
of each individual stock. Thus, in a first step we consider as exogenous competitors portfolios invested in
single assets. We show in Appendix 2 i) that the optimal positional strategy is γ∗t = wrα

∗
t , where:

α∗t = arg max
α: α′e=1

Et
[
U
(
Ht+1(α′yt+1)

)]
(2.2.4)

= arg max
α: α′e=1

Et

[
U

(
Ht+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

))]
, (2.2.5)

where U(·) is a utility function written on the Gaussian rank Ht+1(α′yt+1) of the future return α′yt+1

of the risky part of the portfolio. Equation (2.2.5) leads to three remarks. First, the optimal positional
relative allocations vector α∗t is independent of wr, i.e., it can be computed for a risky portfolio of unitary
value 1. The reason is that a positional strategy is not interested in the levels of the portfolio values, but
only on their comparison. Second, the ranks are computed on the returns. Indeed, the ranks computed
on the returns, or on the excess returns, are the same. Third, in equation (2.2.5) the future portfolio rank

Ht+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

)
is a nonlinear aggregate of the individual future ranks [see Appendix 2 ii)].
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The nonlinear aggregation scheme involves the stochastic future cross-sectional distribution of returns H∗t+1

via function Ht+1 = Φ−1 ◦H∗t+1.
By comparing equations (2.2.3) and (2.2.4), we note that the positional utility function U is different from

the rescaled indirect utility function Ut, with Ut(r) = U [Wt(1+rf,t)+ŵr,tr], written on the portfolio excess
return r = α′ỹt+1 of the risky part of the portfolio. In particular, the argument of the rescaled indirect utility
functionUt admits the unit: $ at time t+1 over $ at time t, while the argument of the positional utility function
U is dimensionless. A positional strategy replaces the increasing and concave rescaled utility function Ut by
an endogenous stochastic utility function Ut+1 = U ◦Ht+1, which is strictly increasing, but non-concave in
general. The positional portfolio management depends on the choice of the positional utility function U, but
also on the selected definition of ranks, that can be uniform or Gaussian, and on the universe of stocks used to
compute these ranks. Moreover, the optimal allocation α∗t of the fund manager is defined by considering in a
first step the function Ht+1 as exogenous. In particular, we have chosen the return distribution of portfolios
invested in single assets as such exogenous benchmark. When the rank is computed with respect to the
performance of other managed portfolios, the future “portfolio returns” distribution has also to account for
the possible reactions of the other fund managers, who also want to be in the “top ten”. In this case, all
portfolios associated with the funds would be optimized jointly. Thus, the performance of the fund is seen
as a public good [see e.g. Hirsch (1976), Frank (1991)]. In other words, if we considered the positional
equilibrium condition as the analogue of the standard CAPM, the equilibrium would be with respect to the
prices, information set and also to the cross-sectional distribution Ht+1. In Appendix 2 iii) we describe the
Nash equilibrium for the positional allocation problem of fund managers in such a complex framework. The
objective function in equation (2.2.4) would involve the behaviours of the other fund managers. Therefore,
our analysis is related to the literature on social interactions [see e.g. Davezies, D’Haultfoeuille, and Fougère
(2009) and Blume, Brock, Durlauf, and Jayaraman (2013)], especially the part of this literature interested
in strategic complementarities in production [Calvo-Armengol, Patacchini, and Zenou (2009)]. However, it
differs from this literature because of the more sophisticated objective function which is considered 3. In
particular, at the equilibrium we do not get bilateral effects only, i.e. peer effects only. In our framework the
individual decision involves in a complicated way the complete distribution of other managers’ decisions.
The extension to an endogenous benchmark Ht+1 is not considered further in the main body of the paper.

The preferences based on expected positional utility satisfy some axioms of the expected utility theory
introduced by von Neumann and Morgenstern (1944), but not all of them. For instance, the expected posi-
tional utility is a linear function of the probability of the future state including in our case the returns of all
assets. However, the compatibility with the second-order stochastic dominance for the portfolio returns is
clearly not satisfied, since the preferences also involve the distributions of the other stock returns.4

In order to implement the positional strategies defined in (2.2.5) and to compare them with the standard
allocation strategies based on the expected utility of future portfolio values, we need an appropriate dynamic
model for both the rank processes and the transformed cross-sectional distributionHt linking the returns and

3In the standard social interaction models, the individual utility functions are quadratic functions of the individual actions (i.e.
the portfolio allocations). They depend on these individual actions by summaries interpretable as cross-sectional portfolio values up
to a change of probability. This leads to linear models for the Bayesian-Nash equilibrium strategies.

4In this respect our approach differs from the theory of anticipated utility, also called rank dependent expected utility theory.
This theory introduced by Quiggin (1982) [see also Kahneman and Tversky (1992) for the extension to prospect theory] is using
some ranks to overweigh rare extreme events. In this approach, the rank would be computed as the rank of the portfolio value across
states of nature, that is, with respect to the (conditional) distribution of the portfolio return. In our framework the rank is computed
with respect to the cross-sectional distribution of the stock returns. Thus, the benchmark distribution used to compute the rank varies
with the state of nature.
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the ranks. An illustrative example is discussed below and is extended in the next sections to accommodate
the empirical features of the return processes.

2.2.3 A toy-model of cross-sectional Gaussian returns

Let us consider a simple joint dynamic model for returns and Gaussian ranks, in which the returns are cross-
sectionally Gaussian and the ranks are serially persistent. We use this toy-model to provide a simple intuition
for positional portfolio allocation, and will extend it for empirical analysis.

The model is defined in two steps, by specifying first the dynamics of the Gaussian ranks and then the
link between the individual asset returns and their ranks. The ex-ante Gaussian ranks ui,t are assumed such
that:

ui,t = ρui,t−1 +
√

1− ρ2εi,t, (2.2.6)

where the idiosyncratic disturbance terms εi,t are independent and identically distributed (i.i.d.) standard
normal variables. The autoregressive coefficient ρ has a modulus smaller than 1 in order to ensure the
stationarity of the process of Gaussian ranks. The unconditional distribution of ui,t coincides with the theo-
retical cross-sectional distribution and is standard normal. When coefficient ρ increases, the position of any
asset features more serial persistence.

Suppose that the returns are defined from the Gaussian ranks by an affine stochastic transformation:

yi,t = σtui,t + µt, (2.2.7)

where the scale and drift coefficients define the macro-dynamic factor Ft = (µt, σt)
′. The scale σt, that is the

cross-sectional standard deviation, is a strictly positive process. Then, the cross-sectional return distribution
at date t is Gaussian N(µt, σ

2
t ). The function Ht mapping returns into Gaussian ranks is given by Ht(y) =

(y− µt)/σt. It simply consists in cross-sectionally demeaning and standardizing the returns. The individual
return processes are not Gaussian, since they feature stochastic mean and variance due to factors µt and σt.

Let us now consider a portfolio invested in both risky and riskfree assets, with relative risky allocation
vector α. The future return of the risky part of the portfolio is given by:

α′yt+1 = σt+1α
′ut+1 + µt+1,

since α′e = 1, and the corresponding excess return is:

α′ỹt+1 = σt+1α
′ut+1 + µt+1 − rf,t.

The future position of return α′yt+1 is:

Ht+1(α′yt+1) =
(σt+1α

′ut+1 + µt+1)− µt+1

σt+1
= α′ut+1. (2.2.8)

Thus, the position of the future return of the risky part of the portfolio is a linear combination of the Gaussian
ranks of the individual risky assets, with weights equal to the relative risky allocations α. This property
is a consequence of the linearity of the (transformed) quantile function Ht+1(·), that is, of the Gaussian
assumption for the CS distribution, and holds for any dynamics of the ranks. By taking into account the
dynamics (2.2.6) of the Gaussian ranks, we get:

α′ỹt+1 = σt+1ρα
′ut + σt+1

√
1− ρ2α′εt+1 + µt+1 − rf,t, (2.2.9)
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and:
Ht+1(α′yt+1) = ρα′ut +

√
1− ρ2α′εt+1. (2.2.10)

In the standard approach to portfolio management, we assume a CARA indirect utility functionU(W ;A) =
− exp(−AW ) written on the portfolio value, whereA > 0 is the absolute risk aversion of the investor. From
(2.2.3) and (2.2.9) the expected utility is:

−E[exp(−AWt(1 + rf,t)−Awrα′ỹt+1)|Ft, yt]

= − exp(−AWt(1 + rf,t))E
{
E[exp(−Awrα′ỹt+1)|Ft+1, yt]|Ft, yt

}
= − exp(−A(Wt + (Wt − wr)rf,t))

×E
{

exp(−Awrσt+1ρα
′ut −Awrµt+1 +

A2

2
w2
rσ

2
t+1(1− ρ2)α′α)|Ft, yt

}
.

The optimal portfolio is obtained by maximizing the above expected utility with respect to wr and α subject
to α′e = 1. The optimal allocation depends on the joint dynamics of the cross-sectional mean and cross-
sectional variance. If these dynamics are Markovian and exogenous with respect to the ranks, the optimal
allocation depends on the current factor values (µt, σt) and ranks vector ut. The allocations γ̂t and α̂t in the
risky assets are independent of the initial portfolio value Wt.

In the positional approach, we assume a CARA utility function U(v;A) = − exp(−Av) written on the
Gaussian rank of the future return of the risky part of the portfolio, with a positional risk aversion parameter
A > 0. By using equation (2.2.10), the expected positional utility is:

−E[exp(−AHt+1(α′yt+1))|Ft, yt] = − exp

(
−Aρα′ut +

A2

2
(1− ρ2)α′α

)
.

The expected positional utility is independent of the factor values at time t and depends on the returns
histories by means of the current positions vector ut only. The optimal positional portfolio allocation is

derived by maximizing Aρα′ut −
A2

2
(1 − ρ2)α′α with respect to vector α subject to the budget constraint

α′e = 1. We get the optimal relative positional allocation in the risky assets:

α∗t =
1

n
e+

1

A

ρ

1− ρ2
(ut − ūte), (2.2.11)

where ūt = u′te/n denotes the cross-sectional average of the Gaussian ranks at date t. This cross-sectional
average tends to 0, which is the mean of the standard normal distribution, when the number of assets n tends
to infinity. The optimal relative positional allocation α∗t is a linear combination of two popular portfolios.
The first one is the equally weighted portfolio, with weight 1/n in each asset [see e.g. DeMiguel, Garlappi,
and Uppal (2009) and Beleznay, Markov, and Panchekha (2012)]. We see from (2.2.10) that this portfolio
minimizes the conditional variance of future portfolio rank. For large n, the 1/n portfolio ensures the risk
free median rank, but its return is still risky due to the effect of macro-factors. The second portfolio is an
arbitrage portfolio (zero-cost portfolio) with dynamic allocations proportional to the current ranks of the
assets in deviation from their cross-sectional average. The weight of the arbitrage portfolio in the relative
risky allocation α∗t is increasing with respect to the persistence ρ of the ranks, and decreasing with respect to
the positional risk aversion coefficient A of the investor. The optimal positional allocation α∗t deviates from
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the 1/n portfolio by overweighting the assets with larger (resp. smaller) current ranks, when the persistence
parameter is positive (resp. negative)5. Thus, in this example the optimal positional allocation strategy
combines the 1/n portfolio with momentum (resp. reversal) kind of strategies. The term ρ(ut − ūte)
in equation (2.2.11) is equal to the vector of expected future ranks in deviation from their cross-sectional
average. Thus, we can also interpret the arbitrage portfolio in (2.2.11) as a portfolio investing long in assets
with large expected future rank and short in assets with small expected future rank, irrespective of the sign of
the persistence parameter. This interpretation applies to more general specifications of the individual ranks
dynamics, as shown in the next section.

2.3 The dynamics of positions

This section extends the toy dynamic model of positions in Section 2.3 to accommodate relevant empirical
features. The main issue is that in our sample positional persistence varies across stocks and time [see
Appendix 3 for evidence based on an Analysis of Variance (ANOVA)]. Therefore, we let the positional
persistence depend on both stock-specific random effects and stochastic common dynamic factors.

2.3.1 Model specification

The joint dynamics of the individual Gaussian rank processes (ui,t) is now specified as:

ui,t = ρi,tui,t−1 +
√

1− ρ2
i,tεi,t, (2.3.1)

ρi,t = Ψ(βi + γiFp,t), (2.3.2)

where i) the idiosyncratic shocks (εi,t), the individual random effects δi = (βi, γi)
′, and the macro-factor

Fp,t are mutually independent, ii) the shocks (εi,t) are standard Gaussian white noise processes indepen-
dent across assets, and iii) the individual random effects δi are i.i.d. across assets. In equation (2.3.1) we
assume that the Gaussian rank process (ui,t) of any stock follows a conditionally Gaussian first-order Auto-
Regressive [AR(1)] model. The autoregressive coefficient ρi,t characterizes the positional persistence of
stock i between months t − 1 and t. The dependence of the autoregressive coefficient ρi,t on the macro-
factor and the individual effects is specified in equation (2.3.2). The single stochastic factor Fp,t drives the
positional persistence over time, that is, it is a positional macro-factor, whose interpretation has to be dis-
cussed jointly with the interpretation of the distributional macro-factors driving the cross-sectional return
distribution (see Section 5). The individual effects βi and γi introduce heterogeneity across stocks in the
long run average positional persistence and in the sensitivity to the positional persistence factor, respectively.
We select function Ψ(s) = (e2s − 1)/(e2s + 1), for s ∈ R, to guarantee an autoregressive coefficient ρi,t
between −1 and 1 and to get a one-to-one increasing relationship between ρi,t and the positional persistence
score βi + γiFp,t. Since Ψ(s) ≈ s for an argument s close to 0, the positional persistence ρi,t is approx-
imately equal to the score βi + γiFp,t, when the latter is small in absolute value. The model in equations
(2.3.1)-(2.3.2) extends specification (2.2.6) to individual and time dependent positional persistence. The joint
process of individual Gaussian ranks defined in equations (2.3.1)-(2.3.2) satisfies the constraint of a standard
Gaussian CS distribution [see Appendix 4, Subsections i) and ii)].

5Even if the model of the example is symmetric in the individual assets, the portfolio allocation is not symmetric in the assets,
since they have different returns, and then ranks, at date t.
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The dynamic model (2.3.1)-(2.3.2) introduced for describing the evolution of the ranks is appropriate
to represent the idea of market dislocations, that are “circumstances in which financial markets operating
under stressful conditions cease to price assets correctly on a ... relative basis” [see Pasquariello (2014)].
Such a situation of dislocation arises for instance at the beginning of the 2007 financial crisis, more precisely
on August 8 and 9 as shown in Khandani and Lo (2011) by analyzing the properties of contrarian portfolio
management strategies. To illustrate this point, let us consider a homogeneous set of assets (for expository
purpose), with individual effects equal to β̄ and γ̄. The serial dependence of the individual ranks in this set of
assets is generally positive, if the probability for the positional factor to take values larger than−β̄/γ̄ is large
enough. Then, the ranking of these assets is rather stable in time. Let us now consider a stressed situation
where the factor takes a very negative value; then, the serial correlations between the individual ranks become
negative, which implies that a lot of well ranked assets will become bad ranked, and vice-versa.

As usual in latent factor models, the factor values and the factor loadings are identifiable up to a one-to-
one linear (affine) transformation. Indeed, systems (Fp,t, βi, γi) and (cFp,t + d, βi − d/c, γi/c) are observa-
tionally equivalent, for any values of constants c and d, with c 6= 0. Therefore, without loss of generality, we
assume:

E(Fp,t) = 0, E(F 2
p,t) = 1, (2.3.3)

for identification purpose. Thus, for an asset i with small βi and γi, the historical mean and variance of the
positional persitence are approximately βi and γ2

i , respectively.

2.3.2 Model estimation

Let us now estimate the model of ranks dynamics on the dataset of n = 939 CRSP stocks described in
Section 2.2.1.

i) Estimation procedure

We estimate the values of the positional persistence factor Fp,t at all months t, and heterogeneities βi
and γi for all stocks i, by maximizing the Gaussian conditional log-likelihood function of rank processes
(ui,t) after replacing the unobservable ex-ante Gaussian rank ui,t with the empirical ex-post Gaussian rank
ûi,t defined in Section 2.2. Indeed, the ex-post and ex-ante ranks are close, when the cross-sectional size
n is large6. We treat factor values and individual heterogeneities as unknown parameters. The fixed effects
estimators F̂p,t of the factor values, for t = 1, ..., T , and β̂i, γ̂i of the heterogeneities, for i = 1, ..., n, are
obtained from the maximization problem:

max
Fp,t, t = 1, ..., T
βi, γi, i = 1, ..., n

T∑
t=1

n∑
i=1

{
−1

2
log(1− ρ2

i,t)−
(ûi,t − ρi,tûi,t−1)2

2(1− ρ2
i,t)

}
, (2.3.4)

where ρi,t = Ψ(βi + γiFp,t), subject to the constraints:

1

T

T∑
t=1

Fp,t = 0,
1

T

T∑
t=1

F 2
p,t = 1. (2.3.5)

6This is a consequence of the Law of Large Numbers (LLN) applied cross-sectionally conditionally on the path of macro-factors.
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The constraints (2.3.5) are the empirical analogues of the identification conditions (2.3.3). In Appendix 4 iii),
we provide a sequential updating algorithm for the iterative computation of the estimates that are solutions
of the constrained maximization problem (2.3.4)-(2.3.5). This sequential updating algorithm avoids the
inversion of matrices of dimensions (n, n) or (T, T ) corresponding to the parameter dimension. Thus, it has
a small degree of numerical complexity appropriate in our big data framework.

ii) Empirical results

We provide in Figure 2.4 the time series of factor estimates F̂p,t. The estimated serial autocorrelations
are not significant. Thus, we will assume that the factor values Fp,t are independent and identically dis-
tributed over time. This assumption implies the independence across time of common shocks to positional
persistence, but not the absence of positional persistence itself.

[ FIGURE 2.4 : Time series of positional factor estimates F̂p,t. ]

[ FIGURE 2.5 : Positional factor vs. CRSP EW index returns. ]

Figure 2.5 shows a negative association between the estimated positional factor values and the monthly
returns of the equally weighted (EW) CRSP index returns, at least for the months with negative EW CRSP
index returns. This finding is similar to Figure 4 in Moskowitz, Ooi, and Pedersen (2012) who report a
U-shape relationship between their momentum strategy and the S&P 500 index returns.

Let us now consider the estimated heterogeneity parameters β̂i and γ̂i. Their marginal distributions are
displayed in Figure 2.6, and some insight on their joint distribution is given by the scatterplot in Figure
2.7. The marginal distributions are unimodal and the values of β̂i and γ̂i in the support have the same order
of magnitude. The marginal distribution of the β̂i is close to a Gaussian distribution, while the marginal
distribution of γ̂i features right skewness. Thus, for large positive (resp. negative) values of positional factor
Fp,t, we expect a large proportion of stocks with large positive (resp. negative) positional persistence. Figure
2.7 shows that the nonparametric regression of γ̂i on β̂i is almost linear. We observe a significant positive
slope in this regression. Hence, the stocks which feature more positional persistence on average, also feature
more time variation in this positional persistence.7

[ FIGURE 2.6 : Histograms of estimated individual effects.]

[ FIGURE 2.7 : Scatterplot of γ̂i vs. β̂i. ]

7We find some association between the individual effects (βi, γi) and the industrial sectors. For instance the sector with the
largest average value of sensitivity γi to the positional factor is Energy, and the one with the smallest average value is Healthcare,
Medical Equipment, and Drugs. A standard t-test rejects the null hypothesis that the mean values of the distributions of the γi in the
two sectors are the same.
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The effect of the heterogeneity parameters on positional persistence is rather complex, since it involves
the distribution of individual effects βi and γi including their dependence, the level of the factor Fp,t, and
passes through the nonlinear transformation Ψ. Figure 2.8 displays the distribution of the positional persis-
tence for different factor levels.

[ FIGURE 2.8 : Histograms of positional persistence ρ̂i,t as function of Fp,t. ]

When the positional factor value is negative (resp. positive), we observe a negative (resp. positive) average
value of the positional persistence. When the factor Fp,t gets larger in absolute value, the main effect comes
from the γi distribution and the dispersion of the distribution of positional persistence increases. When the
factor is close to 0, corresponding to the median of its distribution, we observe mainly the distribution of
sensitivities βi. Overall Figures 2.6 - 2.8 show that the estimated model accommodates for some stocks
featuring momentum and others featuring reversal at a given date. Moreover, a given stock might feature
momentum at some dates, and reversal at other dates, depending on the value of the positional factor Fp,t.

2.3.3 Efficient positional allocation with Gaussian CS distribution

In this section we derive the optimal positional allocation when the individual positions follow the autoregres-
sive model (2.3.1)-(2.3.2) with stochastic persistence, and the CS distributions of returns are in the Gaussian
family with stochastic mean and variance as in (2.2.7). Let us consider the CARA positional utility function
U(v) = − exp(−Av), with A > 0. The optimal positional allocation α∗t defined in (2.2.4) is such that [see
Appendix 4 iv)]:

α∗i,t = wi,t +
1

A

(
ξi,t − wi,t

n∑
i=1

ξi,t

)
, (2.3.6)

where:

wi,t = [Eαt (1− ρ2
i,t+1)]−1

/ n∑
i=1

[Eαt (1− ρ2
i,t+1)]−1, (2.3.7)

ξi,t =
Eαt (ρi,t+1)ui,t

Eαt (1− ρ2
i,t+1)

, (2.3.8)

and Eαt (·) denotes the conditional expectation under a modified probability distribution such that
Eαt (ρi,t+1) = E

[
ρi,t+1 exp

(
−AHt+1(α∗′t yt+1)

)
|Ft, yt

]
/E
[
exp

(
−AHt+1(α∗′t yt+1)

)
|Ft, yt

]
. The opti-

mal positional allocation (2.3.6) extends the allocation derived in (2.2.11) to the case of stochastic positional
persistence. This allocation is a linear combination of two portfolios. The first one has positive weights
wi,t, that vary across assets as an increasing function of the modified conditional expectation Eαt (ρ2

i,t+1) of
the squared positional persistence. If the positional persistence were time invariant, i.e. ρi,t+1 = ρi, this
portfolio would be the portfolio with the least risky future rank, conditional on the current values of the
ranks. The second portfolio is an arbitrage portfolio (zero-cost portfolio), with weights involving the modi-
fied conditional expected ranks Eαt (ρi,t+1)ui,t. Equation (2.3.6) defines the optimal positional allocation α∗t
in an implicit way, since the RHS of this equation depends on vector α∗t through the modified conditional
expectation of the positional persistence and its square.
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Since the positional persistence values for most assets and dates are rather small (see Figure 2.8), in
order to get more intuition on equation (2.3.6), we can consider its first-order expansion w.r.t. ρi,t+1. In
this approximation we have wi,t ' 1/n and ξi,t ' Et(ρi,t+1)ui,t [see Appendix 4 vi)], where Et(ρi,t+1) =
E(ρi,t+1|Ft, δi). This yields an explicit formula for the approximate optimal positional allocation:

α∗i,t =
1

n
+

1

A

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)
. (2.3.9)

Thus, the optimal positional allocation is the linear combination of the equally weighted portfolio and an
arbitrage portfolio, whose weights are given by the conditional expected ranks of the assets in deviation
from their cross-sectional average. Equation (2.3.9) is the generalization of (2.2.11), for small stock-specific
and time varying positional persistence.

2.4 Momentum strategies based on ranks

In this section we compare simple (suboptimal) positional allocation strategies which are based on the ranks
of the assets and their dynamics, only.

2.4.1 Investment universe versus positioning universe

When analyzing a positional strategy, it is important to precisely define the investment universe, that is the
set of assets potentially introduced in the portfolio, and the positional universe, that is the set of assets and
portfolios used to define the rankings. For instance, for a fund (resp. fund of funds) manager, the investment
universe may be a fraction of the stocks (resp. funds), whereas the positioning universe can be the set of all
stocks (resp. all funds, or all funds including the funds of funds). The dynamic model for positions developed
in Section 2.3 is appropriate for an investment universe nested in the positioning universe. In this section,
we consider simple positional strategies for which both the positioning universe and the investment universe
are the set of 939 stocks in our balanced panel from CRSP.

2.4.2 Positional momentum strategies

As a first illustration of positional strategies, let us consider momentum and contrarian (reversal) approaches
[see e.g. Lehmann (1990), Jegadeesh and Titman (1993), Chan, Jegadeesh, and Lakonishok (1996)]. These
strategies will be applied on the complete universe of stocks. We consider below the nine following strate-
gies:

i) The (positional) momentum strategies denoted by PMS1 (resp. PMS2), which select an equally
weighted portfolio including all stocks whose current return is in the upper 5% quantile of the CS distribution
(resp., between the upper 10% and 5% quantiles), i.e. the past winners. The current (ex-post) Gaussian ranks
of these stocks are such that ûi,t ≥ 1.64 (resp., 1.64 ≥ ûi,t ≥ 1.28). These strategies are similar to standard
momentum strategies, but are based on the rank of the return on the current month, instead of the rank of the
return over a longer period in the past. It is commonly believed that many stocks feature reversal in returns
at a short monthly horizon [see e.g. Jegadeesh (1990) and Avramov, Chordia, and Goyal (2006)], likely due
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to overreaction of some investors to news8 [De Bondt and Thaler (1985)]. Therefore, we also consider (posi-
tional) reversal strategies PRS1 (resp. PRS2), which select an equally weighted portfolio including all stocks
with current rank in the lowest 5% quantile (resp., between the lower 10% and 5% quantiles), i.e. the past
losers.

ii) The expected positional momentum strategies EPMS1 IN and EPMS1 OUT (resp. EPMS2 IN and
EPMS2 OUT) based on the information on the rank histories. These strategies select equally weighted
portfolios including the stocks with the 5% largest expected future ranks at each month (resp., the stocks with
expected future ranks between the 5% and 10% upper quantiles). The estimated model in Section 3 is used
to compute the conditional expectation of the future ranks given the current information. As the positional
factor (Fp,t) is assumed i.i.d. over time, the expected future rank of asset i is given by Et(ui,t+1) = ρ̄iui,t,
where the expected positional persistence ρ̄i = E[Ψ(βi + γiFp,t+1)|βi, γi] involves the expectation with
respect to the historical distribution of Fp,t+1. In our numerical implementation, the expectation is replaced
by a sample average over the factor estimates F̂p,t+1, the stock-specific effects are replaced by the estimates
β̂i and γ̂i, and the ex-ante current rank is replaced by the ex-post rank ûi,t. For the in-sample strategies
EPMS1 IN and EPMS2 IN the entire available sample of returns from January 1990 to December 2010 is
used to estimate the factor model. On the other hand, in order to assess the out-of-sample performance,
for the out-of-sample strategies EPMS1 OUT and EPMS2 OUT the model is re-estimated at each month
using a rolling window of 10 years of data. The expected future ranks determining the EPMS allocation are
computed using these rolling estimates.

iii) As a benchmark, we also consider the market portfolio defined as the equally weighted portfolio
computed on all stocks.

We provide in Figure 2.9 the ex-post properties of these portfolios over the period from January 2000 to
December 2009.

[ FIGURE 2.9 : Ex-post properties of the portfolio strategies, 2000-2009. ]

Panel (a) provides the evolution of the Gaussian ranks for the management strategies PMS2, PRS1,
EPMS1 OUT, EPMS2 OUT, and the equally weighted portfolio, and panels (b) and (c) the evolution of their
excess returns and cumulated returns over the period. The series of Gaussian ranks of the equally weighted
portfolio is less disperse than the others. For ease of comparison, we provide historical summary statistics
of Gaussian ranks and returns in Table 2.1.

[ TABLE 2.1 : Ex-post properties of the portfolio strategies, 2000-2009. ]

Even if the standard financial theory suggests that the market portfolio has some efficiency properties,
we observe that it is not systematically well ranked, or with the highest return. The historical average of the
Gaussian ranks of the equally weighted portfolio and momentum strategies PMS1 and PMS2 are slightly
larger than 0. Thus, on average, the return of these strategies is slightly above the CS median, while the
historical averages of the ranks of the reversal and expected positional momentum strategies are larger.

8More precisely, Chan, Jegadeesh, and Lakonishok (1996) report reversal in stock returns at short horizons smaller than 6
months, and for periods between 3 and 5 years, but momentum in returns between 6 months and 3 years.
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The largest average Gaussian rank is featured by the positional strategy EPMS1 IN, and is equal to 0.22,
followed by PRS1, EPMS2 IN and EPMS2 OUT with 0.20, 0.17 and 0.14, respectively. As expected from
the discussion in Section 3.3, the equally weighted portfolio is close to the median rank. The Sharpe ratios
of the expected positional momentum strategies in sample are the largest ones (both higher than 1.10), while
PRS1 has a Sharpe ratio (0.96) only slightly larger than EMPS2 OUT (0.94). All positional strategies based
on the 5%-10% quantile range are less volatile than the corresponding positional strategies based on the first
5% quantile since they avoid extreme effects. However, while this fact results in a larger Sharpe ratio for
EPMS2 OUT compared to EPMS1 OUT, for strategies based on expected future ranks in-sample and reversal
strategies, considering the upper 5%-10% quantile range yields a smaller Sharpe ratio than considering the
upper 5% quantile. The ranks of the reversal strategy PRS1 are the most volatile ones. Moreover, the series of
excess returns of the reversal strategies are negatively skewed and feature the largest negative values, as can
be deduced by the historical 5% quantile. To summarize, the out-of-sample expected positional momentum
strategy based on the 5%-10% quantile range performs almost as good as the reversal strategy PRS1 in terms
of Sharpe ratio, but has substantially smaller downside risk. This is made possible by the combination of
momentum and reversal type of allocations across stocks, that is implicit in this strategy. Moreover, the
in- and out-of-sample expected positional momentum strategies outperform the equally weighted portfolio,
both in terms of average Gaussian rank and Sharpe ratio.

Finally, panel (d) in Figure 2.9 and the bottom part of Table 2.1 give some insight on the asset turnover
of the portfolio strategies. The asset turnover is measured by the unweighted proportion of selected stocks
which are not kept in the portfolio between two consecutive dates. This unweighted measure of asset turnover
provides an information on the potential transaction costs of the portfolio updating. However, this informa-
tion is rather crude, since it does not account for the variation in the quantities of assets included in the
portfolio. For instance, there is no unweighted asset turnover in the equally weighted portfolio, but the trans-
action costs are not zero for this portfolio, as rebalancing is required to keep the relative allocations in value
constant at 1/n. Among the eight reversal and momentum strategies, the ones based on expected future
ranks in the first 5% quantile, both in-sample and out-of-sample, have the smallest average asset turnover.

2.5 The full-fledged model

The positional portfolio strategies implemented in Section 4 rely on the dynamics of the individual ranks
only. However, the optimal positional allocation defined in Section 2 generally involves the entire distri-
bution of the return histories. In fact, the portfolio rank is a nonlinear aggregate of the individual ranks
depending on the cross-sectional return distribution. Two features have to be considered in order to pass
from the dynamics of the ranks to the dynamics of the returns (see Scheme 1 in the Introduction). First,
we have to specify the cross-sectional distribution in a flexible way. This cross-sectional distribution varies
in time as a function of macro factors. Second, we have to explain how these macro factors, that impact
the cross-sectional distribution, are linked to the positional factor, that drives the persistence of ranks dy-
namics. To get a tractable model, we assume in Section 2.5.1 that the cross-sectional distributions belong
to the Variance-Gamma (VG) family (see Appendix 5 for a review on the VG family). The macro factors
are time varying parameters characterizing the distributions in this family. Next, in Section 2.5.2 we specify
the joint dynamics of the positional and distributional macro-factors by a Gaussian Vector Autoregressive
(VAR) model.
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2.5.1 Specification of the cross-sectional distributions

Let us first complete the analysis of Section 2 by investigating if the empirical CS distributions are close to
Gaussian distributions, and studying how empirical CS summary statistics, such as mean, standard deviation,
skewness and kurtosis, vary over time. In Figures 2.10 and 2.11, we provide the empirical CS distributions
and their Gaussian approximations at some months. In particular, in Figure 2.11 we focus on the period
around the 2008 Lehman Brothers bankruptcy.

[ FIGURE 2.10: Cross-sectional distributions of monthly CRSP stock returns. ]

[ FIGURE 2.11: Cross-sectional distributions around the 2008 Lehman Brothers bankruptcy. ]

The comparison between the panels in Figure 2.10 shows that the empirical CS distribution may be close
to a Gaussian in some months (e.g. August 1998), may feature rather fat tails (e.g. July 1995, December
2006), or be asymmetric (e.g. November 2000). In Figure 2.11, we see that in July and August 2008,
before the Lehman Brothers crisis, the CS distribution is non-normal, with a peak close to 0 and is slightly
right-skewed. Instead, in October 2008, the month after Lehman Brothers filed for Chapter 11 bankruptcy
protection (September 15, 2008), the CS distribution is close to Gaussian with a large negative mean of about
−18%.

The above empirical evidence shows that it is necessary to choose the cross-sectional distributions in an
extended family including the Gaussian family as a special case, and to introduce additional macro-factors
accounting for time-varying higher-order moments. We consider in our analysis the Variance-Gamma (VG)
family. The distributions in this family are indexed by four parameters, that are in a one-to-one relationship
with the mean µt, the log-volatility log σt, the skewness st and the log excess kurtosis log k∗t , where k∗t =
kt − 3(1 + s2

t /2) and kt denotes the kurtosis (see Appendix 5). The excess kurtosis k∗t is a measure of the
fatness of the tails of the CS distribution of returns at month t, in excess of 3(1 + s2

t /2). The latter value
is the minimum admissible kurtosis for a VG distribution with skewness parameter st. Since the above four
transformed parameters can vary independently on the entire real line, they are chosen to define the vector
of distributional macro-factors:

Fd,t = (µt, log σt, st, log k∗t )
′. (2.5.1)

We provide in Figure 2.12 the time series of estimated distributional macro-factor values F̂d,t, obtained from
the empirical CS moments, along with their asymptotic (large n) pointwise 95 % confidence bands 9.

[ FIGURE 2.12: Time series of estimated distributional macro-factors. ]

The series of the cross-sectional mean (Panel (a)) is rather close to the return series of the CRSP Equally
Weighted Index (not shown). The log CS standard deviation (Panel (b)) is larger around crisis periods,
namely in 1991 (Gulf crisis), 1998 (LTCM crisis), 2000-2001 (tech bubble) and 2008-2009 (the subprime
crisis). A value of factor log σt close to -2 corresponds to a standard deviation of the CS distribution of

9The asymptotic standard errors of the distributional macro-factors are computed with the results in Bai and Ng (2005).
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returns of about 13.5%. The CS skewness is mostly positive, that is, the CS distributions are often right
skewed. The log excess kurtosis varies between 1 and -6, which correspond to excess kurtosis values close
to 3 and 0 respectively. The series of CS skewness and kurtosis can be used to compute the Jarque-Bera
statistic for the CS distribution of returns for each month. Crisis periods are among the months characterized
by the smallest values of the CS Jarque-Bera statistic, that are months in which the CS distribution is closer
to a Gaussian one [see panel (b) of Figure 2.10 for August 1998 (LTCM Crisis), and Panel (d) of Figure
2.11 for October 2008 (Lehman Brothers crisis)]. This feature has already been noted by the econophysics
literature for daily returns [see e.g. Borland (2012)].

2.5.2 The factor dynamics

Let us now specify the factor dynamics. We assume that the joint vector of distributional and positional
macro-factors Ft = (F ′d,t, Fp,t)

′ follows a 5-dimensional Gaussian Vector Autoregressive process of order 1
[VAR(1)]:

Ft = a+AFt−1 + ηt, ηt ∼ IIN(0,Σ), (2.5.2)

where a is the vector of intercepts, A is the matrix of autoregressive coefficients, and Σ is the variance-
covariance matrix of the innovations. We estimate parameters a, A and Σ in the joint VAR dynamics in
equation (2.5.2) after replacing the unobservable values of the positional and distributional macro-factors
with their estimates F̂t = (F̂ ′d,t, F̂p,t)

′, where F̂d,t is defined in Section 2.5.1 and F̂p,t is defined in equations
(2.3.4)-(2.3.5).

In Table 2.2 we present the parameter estimates for the macro-factor VAR dynamics with their standard
errors in parentheses. We also provide the estimated correlation matrix of the innovations vector.

[ TABLE 2.2 : Estimates of the VAR (1) model for the macro-factor process. ]

Five coefficients in the estimated autoregressive matrix are statistically significant (at the 1% level). As
expected, the autoregressive coefficient of the log CS standard deviation is significant and large (0.84) point-
ing to a strong serial persistence in the dispersion of the CS distribution. The CS mean also features positive
serial persistence, with estimated autoregressive coefficient 0.32. This multivariate regression coefficient
has to be compared with the univariate autoregressive coefficient of the monthly return series of the CRSP
Equally Weighted Index, that is equal to 0.28 in our sample period. We find a strong evidence for the analog
of the Black leverage effect [Black (1976)], namely a negative regression coefficient of the current log CS
standard deviation on the past CS mean return equal to -0.79. The estimated coefficient -0.61 of log CS
excess kurtosis on lagged log CS standard deviation suggests that the tails in the CS distribution get thinner
after a month characterized by a positive shock on the CS dispersion. This effect is likely related to the
finding that the CS distribution is close to Gaussian in crisis periods. The multivariate autoregressive coeffi-
cient for the log CS excess kurtosis in Table 2.2 is not statistically significant. However, from the clustering
in fat tails of the CS distributions observed in Figures 2.1 and 2.2, the CS (excess) kurtosis features serial
persistence. Indeed, the univariate autoregressive coefficient of log CS excess kurtosis is equal to 0.37 and
is statistically significant. The difference between the univariate and multivariate autoregressive coefficients
is explained by the dynamic link between log excess CS kurtosis and log CS standard deviation, and by the
contemporaneous correlation between the innovations on these two series. The autoregressive coefficient
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of the positional factor, and its regression coefficients on the lagged values of the cross-sectional factor,
are not statistically significant. This finding is compatible with the marginal white noise property of the
positional factor found empirically in Section 3.2 and used in Section 4. The eigenvalues of the estimated
autoregressive matrix are 0.811, and two pairs of complex conjugate eigenvalues with modulus 0.187 and
0.071, respectively. Thus, the modulus of all eigenvalues is smaller than 1, which implies the stationarity of
the estimated VAR process of the macro-factors driving both the dynamics of ranks and the dynamics of the
cross-sectional distribution.

All the estimated contemporaneous covariances of the shocks are significantly different from 0. In par-
ticular, we observe a negative contemporaneous correlation equal to -0.32 between the shocks on CS mean
and the positional persistence factor. Thus, a small cross-sectional mean of returns tends to be associated
with a large positional persistence for those stocks having positive loadings on the positional factor. Such
stocks are the majority in our sample (see Figure 2.6). The factor Fd,t driving the univariate CS distributions
and the factor Fp,t driving the positional persistence are not independent. 10

2.6 Efficient positional strategies

Let us now implement the efficient positional strategies defined in Section 2.2 using the complete dynamic
model. Since the efficient positional or mean-variance management strategies demand the inversion of a
n-by-n matrix, they can only be applied with a limited number n of assets, significantly smaller than 939.
We apply these strategies to an investment universe corresponding to the n = 57 stocks in the industrial
sector of utilities. The strategies are the following ones: i) The efficient positional strategy (EPS), with
CARA positional utility function and positional risk aversion A = 3. We implement the EPS strategy both
in-sample (EPS IN) by using the entire available sample of returns from January 1990 to December 2010 to
estimate the factor model, and out-of-sample (EPS OUT) by using an expanding window of past returns for
estimation from January 1990 to the investment date; ii) The positional momentum strategy (PMS) based
on the 20 stocks with the largest current ranks; iii) The positional reversal strategy (PRS) based on the 20
stocks with the smallest current ranks; iv) An expected positional momentum strategy (EPMS) based on the
20 stocks with the largest expected future ranks; v) The sectoral equally weighted (EW) portfolio; vi) The
standard mean-variance (MV) strategy based on the unconditional moments. The financial literature reports
poor out-of-sample properties for the MV strategy, which is often outperformed by the minimum-variance
portfolio strategy [see e.g. Jagannathan and Ma (2003)]. For this reason, we include also the unconditional
minimum-variance (MinV) strategy in our comparison. We implement strategies EMPS, MV and MinV
out-of-sample 11.

We give in Appendix 6 a numerical algorithm to solve the constrained maximization problem (2.2.4)
defining the EPS strategy. The algorithm involves the inversion of a n×nHessian matrix, and computational
costs grow quadratically in the number of stocks n in the investment universe. This explains the choice to
restrict the investment universe compared to Section 2.4. An alternative optimization algorithm with linearly
growing computational costs could be obtained by replacing the above Hessian matrix with a diagonal matrix

10The point estimate of the conditional variance of factor Fp,t is slightly larger than 1. By taking into account the standard
deviation of the estimate, this is compatible with the normalization of unconditional variance equal to 1.

11Given the relatively large cross-sectional dimension, we use a shrinkage estimator for the variance-covariance matrix of excess
returns in both the mean-variance and minimum-variance strategies, as proposed by Ledoit and Wolf (2003). This estimator consists
in an optimally weighted average of the sample covariance matrix of the excess returns and a single-index covariance matrix.
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having the same diagonal elements.
We provide in Figure 2.13 the time series of cumulated portfolio excess returns for the above strategies.

Summary statistics of the Gaussian ranks and excess returns series are presented in Table 2.3.

[TABLE 2.3 : Ex-post properties of the portfolio strategies, utilities sector, 2000-2009.]

[FIGURE 2.13 : Time series of cumulative returns of the portfolio strategies, utilities sector, 2000-2009.]

We consider different criteria to compare the performances of the strategies. They include: i) the mean
and standard deviation of the Gaussian ranks, and the average positional utility; ii) the frequency of returns
above a certain cross-sectional quantile of the investment universe; iii) summary statistics and Sharpe ratios
of the excess returns. The in-sample EPS strategy outperforms the other allocation strategies according to
most criteria. This finding is also confirmed by the series of the cumulated returns in Figure 2.13. The
EPS strategy implemented out-of-sample outperforms the PMS, PRS, MV and MinV strategies according
to both the average positional utility and Sharpe ratio. Along those dimensions, EPS OUT and the equally
weighted portfolio perform similarly, but the former ensures larger probabilities to be well-ranked. For
instance, the returns of the EPS OUT strategy is about 60% of the times above the CS median of the returns
in the investment universe, and about 10% of the times above the CS 60% quantile. Instead, the equally
weighted portfolio is above the CS 60% quantile only in 3% of the months. The standard (positional)
momentum and reversal strategies PMS and PRS ensure large probabilities to be well ranked, but feature
Gaussian ranks that are among the most volatile ones. A similar remark can be done for the MV strategy,
which provides a large probability to be in the top 30%, but a very small value of the expected positional
utility. In fact the MV strategy alternates very high ranks and very low ranks and appears as very risky.
These remarks explain the low average positional utility of the PMS, PRS and MV strategies. Similarly as
in Section 2.4, the EPMS strategy outperforms the PMS along all criteria, and features the largest Sharpe
ratio. The EPMS overperforms also the PRS concerning the expected positional utility and the Sharpe ratio.
In fact, the reversal strategy PRS, which is found to perform rather well for the larger investment universe in
Section 2.4, features the smallest Sharpe ratio among the positional strategies for the investment universe of
the utilities. The overperformance of the EPMS compared to traditional momentum and reversal strategies
is likely due to the ability of the former strategy to exploit the time-varying and stock-specific positional
persistence (see Figures 2.6 and 2.7). Indeed, the traditional momentum (resp. reversal) strategies implicitly
assume that all stocks feature a positive (resp. negative) positional persistence, that is constant through time.
Instead, the EPMS provides a combination of momentum and reversal strategies based on the stock-specific
and time-specific information.

In order to better understand the similarities in the performances of the efficient positional strategy and
the EW portfolio, in Figure 2.14 we display the relative discrepancy between the allocation vectors implied
by these strategies overtime.

[FIGURE 2.14: Observed measure of relative discrepancy of optimal positional allocation from EW
portfolio for the subsample of utilities]

30



The relative discrepancy at a given month t is measured as n

√√√√ 1

n

n∑
i=1

(α∗i,t − 1/n)2, where the α∗i,t are the ef-

ficient positional allocations in (2.2.4). This measure corresponds to the ratio between the standard deviation√√√√ 1

n

n∑
i=1

(α∗i,t − 1/n)2 and the mean 1/n of the allocations across assets in the efficient positional portfolio.

The relative discrepancy varies overtime between 0.4 and 1.2. In panel (b) of Figure 2.14 we see that the
discrepancy increases when the predicted value E(Fp,t+1|Ft) of the positional factor Fp,t+1, based on the
full vector of macro-factors Ft, becomes larger in absolute value. We can understand qualitatively the pattern
in panel (b) of Figure 2.14 by means of equation (2.3.9), which provides an approximation of the efficient
positional allocation when the CS distribution of returns is close to Gaussian and the positional persistence is

small. From (2.3.9), the quantity
1

n

n∑
i=1

(α∗i,t− 1/n)2 is equal to the empirical cross-sectional variance of the

conditional expected ranks, divided by A2. When the investment universe is large, i.e. n tends to infinity, the
Law of Large Numbers (LLN) implies that this empirical cross-sectional variance converges to its theoretical
counterpart, and we get [see Appendix 4 vii)]:

1

n

n∑
i=1

(α∗i,t − 1/n)2 ' 1

A2
E[(βi + γiE(Fp,t+1|Ft))2 |Ft], (2.6.1)

where the expectation in the RHS is w.r.t. the distribution of the random effects (βi, γi). We get a quadratic
function of the conditional expectation E(Fp,t+1|Ft) of the positional factor. This quadratic function is
minimized when the macro-factor vector Ft is such that E(Fp,t+1|Ft) = −E[βiγi]/E[γ2

i ]. From Figures 2.6
and 2.7, the individual effect βi has a mean close to zero, and the covariance between the individual effects
βi and γi is positive, which explains why the minimum of the discrepancy measure in panel (b) of Figure
2.14 is attained for a negative value of the predicted positional factor.

Finally, Table 2.3 also provides information on the turnover of the strategies. The measure of the turnover
is now weighted to account for the different weights introduced in an efficient portfolio, and is defined as
follows: Turnovert =

∑57
i=1 |αi,t−αi,t−1|, where αi,t is the relative weight of stock i at date t for a certain

strategy. Among the positional strategies, EPS OUT has the lowest and less volatile turnover.

2.7 Conclusions

In this paper we introduce different positional portfolio allocation strategies, that are the expected positional
momentum strategies (EPMS) and the efficient positional strategies (EPS). We consider these allocation
strategies in a big data framework, in which the investment universe consists of hundreds, or even thousands,
of stocks. The implementation of expected positional momentum strategies simply requires a dynamic model
for the ranks. This model is used to detect at each date the stocks with high expected future ranks, and the
ones with low expected future ranks. This information is implicitly used in the EPMS strategies to mix in an
efficient way momentum and reversal (or contrarian) strategies and leads to a closed-form characterization
of the EPMS portfolios. The implementation of the efficient positional strategies is more demanding, since
these strategies require a complete dynamic model for both the ranks and the cross-sectional distributions
of returns. Moreover, the necessity of solving a constrained optimization problem implies that EPS can be
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applied only with more limited number of assets (57 in our example). As expected, these positional strategies
have good properties in terms of the position of the portfolio returns. More surprising are their rather nice
properties concerning the portfolio returns themselves. The main reason is that these strategies based on
positions are robust to abnormal returns. It is well known that the standard mean-variance allocation strategy
is very sensitive to outliers, especially when it is applied with a large number of assets. In particular, its
performance can be much worse than the performance of the naive equally weighted portfolio, or 1/n-
strategy, giving the impression that sophisticated allocation strategies are not useful. Our analysis shows
that, indeed, the equally weighted portfolio is difficult to outperform for portfolios invested in stocks. For
instance, the 1/n-strategy is clearly competitive with other strategies as the basic momentum, reversal and
min-variance strategies. However, the positional strategies outperform the equally-weighted portfolio for
performance criteria based on positions.

The positional strategies considered in this paper can be extended in various ways. For instance, we can
consider a fund manager interested jointly in different rankings. Then, he or she will optimize a positional
utility function depending on these different ranks associated with different universes. It is possible to
manage jointly the ranking among the funds of the same management style and the ranking among all
funds, and to weight differently the two associated universes. In the perspective of an analysis applied to
funds managers’ behaviors, it would be interesting to develop inference methods to test if the managers
follow positional strategies, and to estimate their selected positioning universes and positional risk aversion
parameters. Moreover, as noted in the mutual fund literature, if the rankings are published at the end of each
year, the fund managers compete in annual tournaments that begin in January and end in December. They
could follow a standard management at the beginning of the year and pass to a positional management with
more risk in the second part of the year, if they performed poorly in the first part of the year [see Brown,
Harlow, and Starks (1996), Chen and Pennacchi (2009) and Schwarz (2012)]. These questions are left for
future research. Likely, the analysis will encounter an identification problem, especially if several fund
managers follow such endogenous strategies [see the reflection problem highlighted by Manski (1993)].
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2.8 Tables of Chapter 2

Table 2.1: Ex-post properties of the portfolio strategies, 2000-2009.

PMS1 PMS2 PRS1 PRS2 EPMS1 EPMS2 EPMS1 EPMS2 EW
IN IN OUT OUT

Gaussian ranks
Mean 0.0276 0.0258 0.2043 0.1318 0.2171 0.1703 0.1105 0.1360 0.0646
St. dev. 0.4591 0.3574 0.4783 0.3748 0.4762 0.3181 0.4179 0.2587 0.1059

Excess returns
Mean 0.0061 0.0059 0.0228 0.0158 0.0230 0.0184 0.0138 0.0155 0.0088
St. dev. 0.0690 0.0566 0.0818 0.0709 0.0681 0.0565 0.0680 0.0573 0.0490
Sharpe ratio (ann.) 0.3041 0.3587 0.9667 0.7736 1.1706 1.1295 0.7017 0.9357 0.6244
Skew. 0.1896 0.4073 -0.0891 -0.5103 0.2988 0.0581 0.1986 -0.1735 -0.6151
Exc. kurt. 1.1989 1.9350 1.1367 1.7235 1.1672 1.8834 1.5131 1.6940 2.2703
Quant. 5% -0.1208 -0.0751 -0.1405 -0.1161 -0.0783 -0.0762 -0.1042 -0.0809 -0.0898
Quant. 25% -0.0343 -0.0334 -0.0185 -0.0144 -0.0152 -0.0136 -0.0284 -0.0176 -0.0171
Quant. 50% 0.0106 0.0054 0.0214 0.0159 0.0203 0.0196 0.0141 0.0195 0.0093
Quant. 75% 0.0492 0.0488 0.0717 0.0573 0.0587 0.0508 0.0572 0.0498 0.0418
Quant. 95% 0.1010 0.0801 0.1445 0.1216 0.1372 0.1042 0.1119 0.1030 0.0737

Turnover
Turn mean 0.8971 0.9415 0.8931 0.9356 0.8214 0.9080 0.8248 0.9094 0.0000
Turn std 0.0962 0.0933 0.1070 0.0927 0.1073 0.0931 0.0988 0.0940 0.0000

The table provides summary statistics for the monthly series of the Gaussian ranks, and of the excess returns, for the
eight portfolio allocation strategies PMS1, PMS2, PRS1, PRS2, EPMS1 IN, EPMS2 IN, EPMS1 OUT and EPMS2
OUT, and for the equally weighted portfolio (EW), in the period 2000/1 - 2009/12. Strategy PMS1 (resp. PMS2) selects
an equally weighted portfolio of all stocks whose current return is in the upper 5% quantile of the CS distribution
(resp. between the upper 10% and 5% quantiles). Strategy PRS1 (resp. PRS2) selects an equally weighted portfolio
of all stocks whose current return is in the lower 5% quantile of the CS distribution (resp. between the lower 10% and
5% quantiles). Strategy EMPS1 IN (resp. EPMS2 IN) selects an equally weighted portfolio of all stocks with the 5%
largest expected future rank (resp., with the expected future rank between the upper 5% and 10% quantiles), with the
parameters of the model estimated on the full sample (1990/1-2009/12). Strategy EMPS1 OUT (resp. EPMS2 OUT)
selects an equally weighted portfolio of all stocks with the 5% largest expected future rank (resp., with the expected
future rank between the upper 5% and 10% quantiles), with the parameters of the model estimated on the available
sample up to the investment date. The investment universe consists of all the n = 939 NYSE, AMEX and NASDAQ
stocks in our sample (see Section 2.2 for a description). The ranks are computed w.r.t. the CS distribution of the
monthly returns of all the stocks in our sample. The Sharpe ratio is annualized. The table also provides the mean and
the standard deviation of turnover. The turnover is measured by the proportion of selected stocks which are not kept in
the portfolio between two consecutive dates.
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Table 2.2: Estimates of the VAR (1) model for the macro-factor process.

The model for the dynamics of the factor Ft = (µt, log σt, st, log k∗t , Fp,t )′ is the Gaussian VAR(1) process:

Ft = a+AFt−1 + ηt, ηt ∼ IIN(0,Σ) .

The estimates for the period 1990/01 - 2010/12 are given by:

â =



0.0005
(0 .0342 )
−0.3834∗∗∗

(0 .0948 )
0.1084
(0 .3787 )
−0.8249∗∗∗

(0 .2729 )
−0.1230
(0 .8227 )


, Â =



0.3156∗∗∗ −0.0076 −0.0096 −0.0117 −0.0026
(0 .0914 ) (0 .0155 ) (0 .0080 ) (0 .0091 ) (0 .0029 )
−0.7889∗∗∗ 0.8406∗∗∗ −0.0128 0.0369 0.0066
(0 .2532 ) (0 .0430 ) (0 .0221 ) (0 .0251 ) (0 .0080 )
2.9916∗∗∗ −0.0966 0.0023 −0.0911 −0.0252
(1 .0113 ) (0 .1718 ) (0 .0882 ) (0 .1004 ) (0 .0321 )
0.2588 −0.6060∗∗∗ −0.0427 −0.0211 −0.0294

(0 .7290 ) (0 .1238 ) (0 .0636 ) (0 .0723 ) (0 .0232 )
−0.3748 −0.0341 −0.2034 0.1702 −0.0112
(2 .1973 ) (0 .3732 ) (0 .1917 ) (0 .2181 ) (0 .0698 )


,

Σ̂ =



0.0017∗∗∗

(0 .0001 )
0.0009∗∗∗ 0.0134∗∗∗

(0 .0002 ) (0 .0009 )
0.0128∗∗∗ 0.0125∗∗∗ 0.2134∗∗∗

(0 .0011 ) (0 .0025 ) (0 .0138 )
−0.0015∗∗ −0.0153∗∗∗ −0.0359∗∗∗ 0.1109∗∗∗

(0 .0006 ) (0 .0019 ) (0 .0072 ) (0 .0072 )
−0.0135∗∗∗ 0.0177∗∗∗ −0.0574∗∗∗ −0.0416∗∗∗ 1.0073∗∗∗

(0 .0020 ) (0 .0054 ) (0 .0213 ) (0 .00154 ) (0 .0650 )


,

with standard errors in parentheses. The asterisks ∗∗∗, ∗∗, ∗ denote that the coefficient is significant at the 1%, 5%, and
10% levels, respectively. The correlation matrix corresponding to the estimated variance-covariance matrix Σ̂ is:

1.0000
0.1892 1.0000
0.6614 0.2348 1.0000
−0.1075 −0.3979 −0.2336 1.0000
−0.3211 0.1528 −0.1238 −0.1246 1.0000

 .
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Table 2.3: Ex-post properties of the portfolio strategies, utilities sector, 2000-2009.

EPS IN EPS OUT PMS PRS EPMS EW MV MinV

Gaussian ranks
Mean 0.0906 0.0534 0.0484 0.0589 0.0678 0.0566 -0.0556 0.0119
St. dev. 0.4090 0.4034 0.4406 0.4437 0.4224 0.4043 0.7532 0.4252
E(pos. utility) -1.6012 -1.7596 -2.0378 -1.9668 -1.9388 -1.7471 -22.6449 -2.2134

Top positions
> 50% quant. 0.7000 0.6083 0.4833 0.6083 0.5833 0.6167 0.4000 0.4667
> 60% quant. 0.1750 0.0917 0.1917 0.2833 0.2667 0.0333 0.3000 0.2750
> 70% quant. 0.0250 0.0083 0.0667 0.0667 0.0500 0.0000 0.2500 0.2083

Excess returns
Mean 0.0104 0.0076 0.0076 0.0076 0.0083 0.0079 0.0006 0.0052
St. dev. 0.0424 0.0410 0.0414 0.0476 0.0433 0.0414 0.0611 0.0339
Sharpe Ratio (ann.) 0.8529 0.6436 0.6371 0.5532 0.6614 0.6593 0.0353 0.5344
Skew. -0.5238 -0.7922 -0.4227 -0.8576 -0.8488 -0.7210 0.1965 -0.2710
Exc. kurt. 1.9679 1.3576 1.3186 1.1699 1.6654 1.1882 2.2707 3.4109
Quant. 5% -0.0759 -0.0720 -0.0735 -0.0818 -0.0754 -0.0703 -0.1074 -0.0503
Quant. 25% -0.0090 -0.0111 -0.0135 -0.0099 -0.0100 -0.0138 -0.0320 -0.0137
Quant. 50% 0.0142 0.0124 0.0134 0.0142 0.0134 0.0141 -0.0013 0.0066
Quant. 75% 0.0381 0.0327 0.0321 0.0355 0.0358 0.0326 0.0336 0.0219
Quant. 95% 0.0701 0.0702 0.0706 0.0719 0.0683 0.0692 0.1028 0.0527

Turnover
Mean 0.5745 0.4825 1.2379 1.1833 1.1818 0.0000 0.4398 0.0862
St. dev. 0.1559 0.1192 0.2378 0.2230 0.2953 0.0000 0.2636 0.1109

The table provides summary statistics for the monthly series of the Gaussian ranks, and of the excess returns, for the
eight portfolio allocation strategies with investment universe being 57 stocks in the utilities sector in the period 2000/1
- 2009/12. The efficient positional strategy EPS IN uses the model estimated on the full sample (1990/1-2009/12).
EPS OUT is the efficient positional strategy based on the model estimated on the available sample up to the investment
date. The positional utility is a CARA function with positional risk aversion parameter A = 3. The strategy PMS
(resp. PRS) selects an equally weighted portfolio of the 20 stocks with largest current ranks (resp., smallest current
ranks). The strategy EPMS selects an equally weighted portfolio of the 20 stocks with largest expected future ranks.
The ranks are computed w.r.t. the CS distribution of the monthly returns of all the NYSE, AMEX and NASDAQ stocks
in our sample. Strategies MV and MinV are mean-variance and minimum-variance strategies implemented using a
shrinkage estimator for the variance-covariance matrix of excess returns. E(pos. utility) is the time series average of
the positional utility of the portfolio returns. In the panel denoted “Top positions” we report the observed frequency
of portfolio returns above a certain cross-sectional quantile of the stock returns in the investment universe. The Sharpe
ratio is annualized. The table also provides the mean and the standard deviation of turnover, computed at each month t
as follows: Turnovert =

∑n
i=1 |αi,t − αi,t−1|, where αi,t is the weight of stock i at date t.
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2.9 Figures of Chapter 2

Figure 2.1: Time series of cross-sectional distributions of monthly CRSP stock returns.

The figure displays the time series of cross-sectional distributions of monthly CRSP stock returns from
January 1990 to December 2009. The monthly returns are computed as yi,t = pi,t/pi,t−1 − 1, where pi,t is
the price of stock i at month t. The returns are not annualized and not in percentage. The CS probability
density function (p.d.f.) are kernel estimates with Gaussian kernel and bandwidths selected by the rule of
thumb in Silverman (1986).
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Figure 2.2: Time series of quantiles of the CS distributions of monthly CRSP stock returns.
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The figure displays the time series of the 5% CS quantile (lower dash-dotted line), the 25% CS quantile (lower solid
line), the CS median (bold solid line), the 75% CS quantile (upper solid line), the 95% CS quantile (upper dash-dotted
line).
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Figure 2.3: Time series of ex-post Gaussian ranks associated with a constant monthly return of 0.05.
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The solid bold line is the time series of ex-post Gaussian ranks of an asset with constant 0.05 monthly return. The
dashed-dotted, thin solid and dotted horizontal lines represent the Gaussian ranks of a constant position at the 5%, 50%
and 95% quantile of the cross-sectional distribution at each month, respectively.
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Figure 2.4: Time series of positional factor estimates F̂p,t.
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Monthly time series of estimates of the positional factor F̂p,t, obtained via the estimator in Equation (2.3.4), computed
as described in Appendix A.4.
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Figure 2.5: Positional factor vs. CRSP EW index returns.
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The figure displays a scatterplot of the estimates F̂p,t of the positional factor versus the monthly returns of the equally
weighted (EW) CRSP index. The solid and dashed lines correspond to a linear regression fit, and a nonparametric
regression curve, respectively. The nonparametric regression curve is obtained as a kernel smoothing regression using a
Gaussian kernel, with bandwidth equal to 0.0617, selected using the rule-of-thumb suggested by Bowman and Azzalini
(1997).

40



Figure 2.6: Histograms of estimated individual effects.
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The figure displays the histograms of the estimated individual effects β̂i and γ̂i in panels (a) and (b), respectively. The
estimates are obtained via the estimator in Equation (2.3.4), computed as described in Appendix A.4.
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Figure 2.7: Scatterplot of γ̂i vs. β̂i.
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The figure displays the scatterplot of γ̂i vs. β̂i, as well as the fitted linear regression line (solid) and the kernel smoothing
regression line (dashed) corresponding to the regression of γ̂i on β̂i. The smoothing regression is performed using a
Gaussian kernel, with bandwidth equal to 0.0248, selected using the rule-of-thumb suggested by Bowman and Azzalini
(1997).
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Figure 2.8: Histograms of positional persistence ρ̂i,t as function of Fp,t.
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(a) Fp,t = −1.7106
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(b) Fp,t = −1.2298
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(c) Fp,t = −0.6365
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(d) Fp,t = 0.0417
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(e) Fp,t = 0.5985
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(f) Fp,t = 1.2018
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(g) Fp,t = 1.6792

The figure displays the histograms of the positional persistence ρ̂i,t = Ψ(β̂i + γ̂iFp,t) across stocks i, for different
values of the positional factor Fp,t. These values of Fp,t correspond to the 5%, 10%, 25%, 50%, 75%, 90% and 95%
quantiles of the historical distribution of the positional factor in panels (a), (b), (c), (d), (e), (f) and (g), respectively.
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Figure 2.10: Cross-sectional distributions of monthly CRSP stock returns.
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(a) Cross-sectional distribution on July 1995.
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(b) Cross-sectional distribution on August 1998.
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(c) Cross-sectional distribution on November 2000.
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(d) Cross-sectional distribution on December 2006.

Each panel displays the kernel estimator of the CS density of the CRSP stock returns for a particular month (solid line),
and compares it with a Gaussian distribution N(µ̂t, σ̂

2
t ) (dashed line), where µ̂t and σ̂2

t are the cross-sectional mean
and variance:

µ̂t =
1

n

n∑
i=1

yi,t , σ̂2
t =

1

n

n∑
i=1

(yi,t − µ̂t)2.
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Figure 2.11: Cross-sectional distributions around the 2008 Lehman Brothers crisis.
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(a) Cross-sectional distribution on July 2008.
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(b) Cross-sectional distribution on August 2008.
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(c) Cross-sectional distribution on September 2008.
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(d) Cross-sectional distribution on October 2008.

Each panel displays the kernel estimator of the CS density of the CRSP stock returns for a particular month (solid line),
and compares it with a Gaussian distribution N(µ̂t, σ̂

2
t ) (dashed line), where µ̂t and σ̂2

t are the cross-sectional mean
and variance:

µ̂t =
1

n

n∑
i=1

yi,t , σ̂2
t =

1

n

n∑
i=1

(yi,t − µ̂t)2.
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Figure 2.14: Observed measure of relative discrepancy of optimal positional allocation from EW portfolio
for the subsample of utilities.
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Panel (a) displays the time series of the observed measure of relative discrepancy of the optimal positional allocation

from the EW portfolio n
√

1
n

∑n
i=1(a∗i,t − 1

n )2 for the subsample of utilities. Panel (b) displays the scatterplot of

n
√

1
n

∑n
i=1(a∗i,t − 1

n )2 vs. E(Fp,t+1|Ft), as well as the 5-th order polynomial fit of the data (solid blue line). The
conditional expectation E(Fp,t+1|Ft) is computed by using the estimated VAR(1) model of the macro-factor process
(see Section 2.5.2).
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2.10 Appendix A

Appendix A.1: The factor model of stock returns and the ex-ante ranks

In this appendix we describe more formally the factor structure of stock returns introduced in Section 2,
and give the definition of ex-ante ranks. We assume a factor structure for asset returns as in the assumption
below.

Assumption A. 1. i) The individual return histories yi = (yi,t), with i = 1, . . . , n, are independent and
identically distributed (i.i.d.) conditionally on the path of an unobservable factor (Ft).

ii) The conditional distribution of the return yi,t given the past return history yi,t−1 = (yi,t−1, yi,t−2, ...)

and the entire factor path (Ft) depends on the latter by means of the current and past factor values Ft =
(Ft, Ft−1, ...) only.

The factor Ft can be multidimensional and corresponds to systematic, or common, risks. When the un-
observable factor path (Ft) is integrated out, the individual asset returns histories become dependent. Under
Assumption A.1 i), the factor process (Ft) fully captures the dependence across assets returns. Assumption
A.1 ii) implies that the conditional distribution of Ft given the past histories of the factor Ft−1 and the returns
yi,t−1, i = 1, ..., n, is independent of the latter, that is, the factor process is exogenous.

The unconditional distribution of assets returns is exchangeable, that is, invariant to asset permutations.
This property corresponds to the ex-ante homogeneity of the population of assets. However, the assets are
ex-post heterogeneous, as they have different distributions conditional on the past return histories. Indeed,
under Assumption A.1, the model is compatible with assets having different individual unobservable char-
acteristics (such as the factor sensitivities and idiosyncratic volatilities for stocks, or the manager’s skill for
fund portfolios) and the past return histories are informative for these individual unobservable characteristics.

Assumption A. 2. The process (Ft) is strictly stationary and Markov.

Under Assumption A.1, the returns at date t, that are y1,t, . . . , yn,t, are conditionally i.i.d. variables
admitting a cumulative distribution function (c.d.f.) H∗t defined byH∗t (y) = P(yi,t ≤ y|Ft). The distribution
H∗t is conditional on the current and past realizations Ft = (Ft, Ft−1, . . . ) of the systematic factor.

Assumption A. 3. The cross-sectional returns c.d.f. H∗t is continuous and strictly increasing.

Under Assumption A.3, at any date t there is a one-to-one mapping between the stock returns and the
ex-ante ranks, that are defined next.

Definition 1. i) The uniform ex-ante ranks are defined as u∗i,t = H∗t (yi,t).

ii) The Gaussian ex-ante ranks are defined as ui,t = Φ−1(u∗i,t) = Ht(yi,t), where Φ denotes the c.d.f. of
the standard normal distribution, and Ht = Φ−1 ◦H∗t .

The ex-ante uniform ranks (resp. the ex-ante Gaussian ranks) at a given date are conditionally i.i.d. variables
with cross-sectional uniform distribution on the interval [0, 1] (resp. a standard Gaussian distribution).

The model introduced in Sections 2-5 can be cast in the framework of Assumptions A.1 - A.3 with
multiple factor Ft = (F ′d,t, F

′
p,t)
′. The specification is such that the CS distribution H∗t (·) depends on the

current value of component Fd,t, and belongs to the Variance-Gamma family (Section 2.5.1 and Appendix
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A.5). The component Fp,t drives the positional persistence of the Gaussian ranks (Section 2.3.1). The
unobservable characteristics δi = (βi, γi)

′ introduce heterogeneity in the positional persistence of stocks
(Section 3.1).

Appendix A.2: Positional management strategies

i) Derivation of the optimal positional allocation

In this section we derive the optimal positional allocation. For given budget wr allocated in the risky assets,
the future value of the risky part of the portfolio iswr+γ′yt+1 = wr(α

′yt+1+1), where the dollar allocations
vector γ (resp., the relative allocations vector α) is such that γ′e = wr (resp., α′e = 1). The rank of this
future portfolio value has to be computed with respect to the cross-sectional distribution of the values at
month t + 1 of portfolios with budget wr invested at month t in any single risky asset i. These values are
wr(yi,t+1 + 1) and their cross-sectional distribution is:

H̃t+1(w) = P[wr(yi,t+1 + 1) ≤ w|Ft+1] = P[yi,t+1 ≤ w/wr − 1|Ft+1] = H∗t+1(w/wr − 1),

where H∗t+1 is the cross-sectional distribution of stock returns at month t + 1. Thus, the Gaussian rank of
the future value of the risky part of the portfolio with dollar allocation γ is given by:

Φ−1
[
H̃t+1(wr + γ′yt+1)

]
= Φ−1

[
H∗t+1(γ′yt+1/wr)

]
= Ht+1(γ′yt+1/wr) = Ht+1(α′yt+1).

The optimal positional dollar allocation γ∗t is obtained by maximizing the expected positional utility of the
Gaussian rank of the future portfolio value subject to the budget constraint:

γ∗t = arg max
γ: γ′e=wr

Et
[
U
(
Ht+1(γ′yt+1/wr)

)]
.

The solution is γ∗t = wrα
∗
t , where the optimal positional relative allocation α∗t is given in equation (2.2.4).

ii) Aggregation of ranks

In this section we discuss the criterion function for positional allocation in terms of aggregation of ranks.
There exist two ways to aggregate ranks. a) Let us consider a set of weights π1, . . . , πn with πi ≥ 0, for

i = 1, . . . , n, and
n∑
i=1

πi = 1. It is usual to aggregate ranks by considering either the quantity
n∑
i=1

πiu
∗
i,t,

or the quantity
n∑
i=1

πiui,t. This ad-hoc approach is frequently used, for instance for selecting the stocks to

include in a market index with a given number of assets in order to account jointly for the capitalization
of the last month, the capitalization of the last three months and different liquidity measures. It has also
been suggested in the latest draft released by the Basel Committee on Banking Supervision (BCBS, Basel
Committee on Banking Supervision (2013) ) to aggregate the scores for five categories of importance of risks:
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size, cross-jurisdictional activity, interconnectedness, substitutability/financial institution infrastructure and
complexity. b) An alternative consists in considering the rank of the associated weighted returns:

H∗t

( n∑
i=1

πiyi,t

)
= H∗t

( n∑
i=1

πiH
∗−1
t (u∗i,t)

)
, (2.10.1)

or:

Ht

( n∑
i=1

πiyi,t

)
= Ht

( n∑
i=1

πiH
−1
t (ui,t)

)
. (2.10.2)

We get H∗t - and Ht-means of the individual ranks, respectively, instead of the time independent arithmetic
means used in the first approach.

The second definition is more appealing in our framework. Indeed the set of weights πi, i = 1, . . . , n
can be considered as a portfolio allocation, for instance a portfolio of stocks, or a fund of funds. The average

return
n∑
i=1

πiyi,t is the portfolio (resp. fund of funds) return and is used to rank the new portfolio among the

initial assets, that are the basic stocks (resp. funds). Moreover, definitions (2.10.1) and (2.10.2) are easily
extended to negative πi, or to πi which are not summing up to 1. This is not the case with the first definition,

since
n∑
i=1

πiu
∗
i,t might be outside the unit interval [0, 1] for negative weights for instance. It is seen that the

second definition of rank aggregation corresponds to the criterion function in equation (2.2.5).

iii) Nash equilibrium with endogenous cross-sectional distribution

In this section we describe the Nash equilibrium for the positional asset allocation problem. The cross-
sectional distribution that defines the position of the portfolio value of a given investor is no more considered
as exogenous. Instead, this distribution becomes endogenous and is determined at the equilibrium by the
portfolio allocations of the population of investors.

Let us consider a continuum of portfolio managers, indexed by j, with j ∈ [0, 1]. To simplify the
exposition, let us assume that these managers have the same budget, normalized to 1, but different positional
risk aversion parameters Aj . These parameters admit a distribution Q(dA). Each manager j allocates her
budget in a portfolio of risky assets, with allocation vector αj and portfolio return α′jyt. We denote by
G(dyt) the (exogenous) conditional distribution of the vector of asset returns, where for expository purpose
we omit the time index t− 1 of the conditional information. The distribution G is defined by the joint model
of the assets returns (see Assumptions A.1-A.2 in Appendix A.1).

When solving the asset allocation problem, a given manager j considers the expected positioning of
her portfolio with respect to the distribution of the portfolio values of the other managers. In the Nash
equilibrium, the portfolio allocations of the other managers are considered as given by manager j. Let us
denote by Hj the cumulative distribution function of the portfolio values of the other managers. The portfolio
allocation problem of manager j becomes:

α∗j = arg max
α:α′e=1

EG
[
U(Hj(α

′yt);Aj)
]

= arg max
α:α′e=1

∫
U(Hj(α

′yt);Aj)G(dyt). (2.10.3)
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Let us further assume that all managers have the same prior on the portfolio strategies of their competitors.
Since any manager is negligible compared to the totality of the other managers, this assumption implies that
the distribution Hj = H is independent of j. Then, the solution of the constrained maximization problem
(2.10.3) is such that:

α∗j = α∗(Aj , G,H), say,

for some given function α∗ of the positional risk aversion parameter, the asset returns distribution and the
cross-sectional portfolio values distribution.

Let us now derive the Nash equilibrium condition.12 The future portfolio value for manager j is
α∗(Aj , G,H)′yt. This portfolio value is stochastic due to its dependence on the positional risk aversion Aj ,
with distribution Q, and on the asset returns vector yt, with distribution G. Then, the distribution V, say, of
the portfolio value in the population of managers is:

V(w) = PQ,G[α∗(Aj , G,H)′yt ≤ w] =

∫
1{α∗(Aj , G,H)′yt ≤ w}Q(dAj)G(dyt).

This distribution depends onQ,G and H, and let us make this dependence explicit by writing V(·;Q,G,H),
say. Then, the Nash equilibrium condition requires that the prior distribution H corresponds to the distribu-
tion derived ex-post, that is:

H = V(·;Q,G,H). (2.10.4)

The equilibrium distribution H∗ = H∗(Q,G) is obtained by solving the functional fixed-point equation
(2.10.4). The discussion of the existence and uniqueness of the solution is beyond the scope of this paper.

Appendix A.3: ANOVA on Gaussian ranks

In order to motivate empirically the dynamic model for the Gaussian ranks with time variation and individual
heterogeneity in positional persistence introduced in Section 3, let us perform a descriptive analysis of the
empirical Gaussian rank processes. We consider the two-way panel regression:

ûi,t = a+ bi + ct + ei,t, (2.10.5)

where the empirical Gaussian ranks are explained in terms of a constant a, individual specific effects bi,

time specific effects ct and disturbances ei,t. For identification purpose, we set
n∑
i=1

bi =

T∑
t=1

ct = 0. The

importance of individual and time effects to explain cross-sectional and time series variation of the Gaussian
ranks can be assessed by testing the null hypotheses H1

0 : {bi = 0 for all i} , H2
0 : {ct = 0 for all t}, and the

joint hypothesis H3
0 : {bi = 0 and ct = 0 for all i and t}. The values of the Fisher statistics F for the three

hypotheses are provided below along with their corresponding critical values F∗ at 95% level.

Eq. (2.10.5) H1
0 H2

0 H3
0

F 0.725 0.005 0.578
F∗ 1.077 1.155 1.069

12Our approach can be compared with the equilibrium defined for two periods and two fund managers in Goriaev, Palomino, and
Prat (2001).
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The Fisher statistics fail to reject the three null hypotheses H1
0 , H2

0 and H3
0 . This descriptive analysis

suggests that the rank processes feature neither individual, nor time effects in their levels. The estimate of
parameter a is 0.0014. The absence of time effects, and a small estimate of parameter a, were expected since
the cross-sectional distribution of the Gaussian ranks ui,t is standard Gaussian at every date t.

In order to test for individual and time effects in positional persistence, we next consider the regression:

(ûi,t − ¯̂ui,·)(ûi,t−1 − ¯̂ui,·,−1) = a+ bi + ct + ei,t, (2.10.6)

where ¯̂ui,· =
1

T

T∑
t=1

ûi,t is the time average of the Gaussian ranks of stock i, and similarly for ¯̂ui,·,−1. The

explained variable in this regression is the cross-product of demeaned individual ranks at consecutive dates.
We test the three hypotheses H1

0 , H2
0 and H3

0 . The results for the test statistics are displayed next and show
the presence of both individual and time effects in positional persistence.

Eq. (2.10.6) H1
0 H2

0 H3
0

F 1.433 6.088 2.375
F∗ 1.077 1.155 1.069

Thus, in Section 3 we focus on the modelling of the positional persistence parameters.

Appendix A.4: The dynamics of ranks

i) Strict stationarity of the rank processes

Let us consider the rank dynamics in equations (2.3.1) and (2.3.2), and assume that the common factor
(Fp,t) is a strictly stationary process (see Assumption A.2). Then, for any asset i, the rank process (ui,t) is
strictly stationary. Indeed, conditionally on any value δi = (βi, γi)

′ of the random individual effect, the strict
stationarity condition for a stochastic autoregressive process [see e.g. Bougerol and Picard (1992)], namely:
E [ log |ρi,t| | δi] < 0, is satisfied.

ii) Cross-sectional distribution of the ranks

Let us now verify that the cross-sectional distribution of the Gaussian ranks ui,t, for i varying at date t,
implied by equations (2.3.1) and (2.3.2) is standard Gaussian. By solving backward the autoregressive
equation (2.3.1), we get an infinite-order Moving Average MA(∞) representation for process ui,t, that is,

ui,t =
∞∑
`=0

πi,t(`)εi,t−`,

where the moving average coefficients πi,t(0) = ρi,t and πi,t(`) = ρi,tρi,t−1...ρi,t−`+1

√
1− ρ2

i,t−`, for ` ≥
1, are time-varying and stock-specific. Since the disturbances (εi,t) are independent Gaussian white noises
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and
∞∑
`=0

πi,t(`)
2 = 1, we get that variable ui,t admits a standard Gaussian N(0, 1) distribution conditional

on the factor path (Ft) and individual heterogeneity δi. This implies that ui,t admits a standard Gaussian
distribution conditional on the factor path only.

iii) A simple sequential updating procedure for numerical computation of the fixed effects
estimators in equations (2.3.4)-(2.3.5)

Let us now provide an algorithm with a small degree of numerical complexity for computing of the fixed
effects estimates of the factor values Fp,t, for t = 1, ..., T , and the individual effects βi and γi for i = 1, ..., n
defined in equations (2.3.4)-(2.3.5). The Lagrangian function of the constrained maximization problem is:

L =
T∑
t=1

n∑
i=1

φ(ûi,t, ûi,t−1; ρi,t)− λ
T∑
t=1

Fp,t − µ
T∑
t=1

F 2
p,t,

where:

φ(z, w; ρ) = −1

2
log(1− ρ2)− (z − ρw)2

2(1− ρ2)
,

ρi,t = Ψ(βi + γiFp,t) = Ψ(δ′ixt), with δi = (βi, γi)
′ and xt = (1, Fp,t)

′, as in equation (2.3.2), and λ and
µ are the Lagrange multipliers for the constraints in (2.3.5). The first-order conditions for Fp,t, t = 1, ..., T
and δi, i = 1, ..., n are given by:

n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi − λ− 2µFp,t = 0, t = 1, ..., T, (2.10.7)

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,txt = 0, i = 1, ..., n, (2.10.8)

respectively, where ψi,t = Ψ′(βi + γiFp,t) and the partial derivative of the function φ w.r.t. ρ is given by:

∂φ

∂ρ
(z, w; ρ) =

1

1− ρ2

{
(z − ρw)w − ρ

[
(z − ρw)2

1− ρ2 − 1

]}
.

By summing the equations in (2.10.7) over t = 1, ..., T , we get:

n∑
i=1

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi − Tλ− 2µ

T∑
t=1

Fp,t = 0.

The first term (resp. the third term) in the equation is equal to 0 from (2.10.8) [resp. from (2.3.5)]. It
follows that λ = 0. Similarly, by multiplying both sides of equation (2.10.7) by Fp,t and summing again
over t = 1, ..., T , we get:

n∑
i=1

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tFp,tγi − 2µ

T∑
t=1

F 2
p,t = 0.
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The first term in the equation is equal to 0 from (2.10.8), while we have
T∑
t=1

F 2
p,t = T from (2.10.8). It

follows that µ = 0. The Lagrange multipliers are zero since the maximized function value is the same with
or without the constraints (2.3.5). Thus, the estimators can be computed from the equations:

n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi = 0, t = 1, ..., T, (2.10.9)

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,txt = 0, i = 1, ..., n, (2.10.10)

imposing the identification constraints (2.3.5). We solve the system of equations (2.10.9) - (2.10.10) by a
Newton-Raphson method, in which the updating is performed sequentially with respect to time and individ-
ual effects. In contrast to the joint updating, which would require the inversion of matrices of dimension
(2n+T, 2n+T ) and has a large degree of numerical complexity, the sequential updating simplifies consid-
erably the computation, since it allows to update the values of the effects Fp,t, and δi independently across
dates and individuals without matrix inversions. Specifically, let F (q)

p,t , δ(q)
i denote the values of the parame-

ters at step q satisfying the constraints (2.3.5), and let x(q)
t , ρ(q)

i,t and ψ(q)
i,t be the corresponding values of xt,

ρi,t and ψi,t. Let us expand equation (2.10.9) for date t w.r.t. Fp,t around the solution at step q. We have:
n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )ψ

(q)
i,t γ

(q)
i

+

[
n∑
i=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q)
i,t )[ψ

(q)
i,t ]2[γ

(q)
i ]2 +

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )τ

(q)
i,t [γ

(q)
i ]2

)]
(Fp,t − F (q)

p,t ) ' 0,

where τ (q)
i,t = Ψ′′(β

(q)
i + γ

(q)
i F

(q)
p,t ). By solving the above approximate equation, the new values of the time

effects up to an additive constant and a multiplicative scale are given by:

F̃
(q+1)
p,t = F

(q)
p,t −

[
n∑
i=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q)
i,t )[ψ

(q)
i,t ]2 +

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )τ

(q)
i,t

)
[γ

(q)
i ]2

]−1

·

[
n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )ψ

(q)
i,t γ

(q)
i

]
. (2.10.11)

Similarly, we update at step q + 1 the individual effects by performing a Taylor expansion of the equations
in (2.10.10) w.r.t. the βi and γi individual by individual, by taking into account the update of the time effects
at step q + 1:

δ̃
(q+1)
i = δ

(q)
i −

[
T∑
t=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )[ψ

(q+1/2)
i,t ]2

+
∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )τ

(q+1/2)
i,t

)
x

(q+1)
t [x

(q+1)
t ]′

]−1

×

[
T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )ψ

(q+1/2)
i,t x

(q+1)
t

]
, (2.10.12)
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where xq+1
t = (1, F̃

(q+1)
p,t )′, ρ(q+1/2)

i,t = Ψ(β
(q)
i + γ

(q)
i F̃

(q+1)
p,t ) and similarly for ψ(q+1/2)

i,t and τ
(q+1/2)
i,t .

Finally, we get the estimates at step q + 1 by recentering and rescaling the values in (2.10.11) - (2.10.12) to
account for the constraints:

F̂
(q+1)
p,t =

F̃
(q+1)
p,t − 1

T

T∑
t=1

F̃
(q+1)
p,t√√√√ 1

T

T∑
t=1

([
F̃

(q+1)
p,t

]2
− 1

T

T∑
t=1

F̃
(q+1)
p,t

)2
, t = 1, ..., T,

γ̂
(q+1)
i = γ̃

(q+1)
i

√√√√ 1

T

T∑
t=1

([
F̃

(q+1)
p,t

]2
− 1

T

T∑
t=1

F̃
(q+1)
p,t

)2

, i = 1, ..., n,

β̂
(q+1)
i = β̃

(q+1)
i + γ̃

(q+1)
i

1

T

T∑
t=1

F̃
(q+1)
p,t , i = 1, ..., n.

iv) Proof of equation (2.3.6)

From the assumption of Gaussian CS distribution, the future position of the risky portfolio return is [see
equation (2.2.8)]:

Ht+1(α′yt+1) = α′ut+1

=

n∑
i=1

αiρi,t+1ui,t +

n∑
i=1

αi

√
1− ρ2

i,t+1εi,t+1. (2.10.13)

Then, by using that the (εi,t) are independent Gaussian white noise processes, the expected positional utility
is:

−E
[
exp

(
−AHt+1(α′yt+1)

)
|Ft, yt

]
= −E

{
E
[
exp

(
−AHt+1(α′yt+1)

)
|Ft+1, yt

]
|Ft, yt

}
= −E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A2

n∑
i=1

α2
i (1− ρ2

i,t+1)

)
|Ft, yt

]
.

The Lagrangian function for the maximization of the expected positional utility w.r.t. the portfolio allocation
α subject to the constraint α′e = 1 is:

L = −E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A2

n∑
i=1

α2
i (1− ρ2

i,t+1)

)
|Ft, yt

]
+ λ(α′e− 1),

where λ is the Lagrange multiplier. The first-order condition for αi is:

AE

[(
ρi,t+1ui,t −A(1− ρ2

i,t+1)αi
)

exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A2

n∑
i=1

α2
i (1− ρ2

i,t+1)

)
|Ft, yt

]
+λ = 0.
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In the conditional expectation, the exponential function can be replaced by exp
(
−AHt+1(α′yt+1)

)
. We

deduce that the solution α = α∗t satisfies the implicit equation:

α∗i,t =
1

A2

λ

Eαt (1− ρ2
i,t+1)

+
1

A
ξi,t, (2.10.14)

where ξi,t is defined in equation (2.3.8). From the constraint
n∑
i=1

α∗i,t = 1, we get that the Lagrange multiplier

is such that:
λ

A2
=

1
n∑
i=1

[Eαt (1− ρ2
i,t+1)]−1

(
1− 1

A

n∑
i=1

ξi,t

)
.

By replacing this expression into equation (2.10.14), we get equation (2.3.6).

v) Portfolio with least risky future rank

In this subsection, we assume that positional persistence is time invariant, i.e. ρi,t = ρi. Then, from (2.10.13)
the conditional variance of the future portfolio rank given the individual assets ranks is:

V
[
Ht+1(α′yt+1) | ut

]
=

n∑
i=1

α2
i (1− ρ2

i ).

By maximizing this conditional variance w.r.t. α subject to the constraint α′e = 1, we get the portfolio
allocation with conditionally least risky future rank:

αi =
(1− ρ2

i )
−1

n∑
i=1

(1− ρ2
i )
−1

.

vi) Proof of equation (2.3.9)

At first-order in the persistence parameter we have:

Eαt (1− ρ2
i,t+1) ' 1,

and:

Eαt (ρi,t+1) =

E

[
ρi,t+1 exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A2

n∑
i=1

α2
i (1− ρ2

i,t+1)

)
|Ft, yt

]

E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A2

n∑
i=1

α2
i (1− ρ2

i,t+1)

)
|Ft, yt

]
' E

[
ρi,t+1|Ft, yt

]
' E [ρi,t+1|Ft, δi] .

Then, from (2.3.7) and (2.3.8) we get wi,t ' 1/n and ξi,t ' Et(ρi,t+1)ui,t. By plugging these approxima-
tions in (2.3.6), we get equation (2.3.9).
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vii) Proof of approximation (2.6.1)

From equation (2.3.9) we have:

1

n

n∑
i=1

(α∗i,t − 1/n)2 =
1

A2

1

n

n∑
i=1

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)2

. (2.10.15)

When n→∞, the strong Law of Large Numbers implies:

1

n

n∑
i=1

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)2

→ V (Et(ρi,t+1)ui,t|Ft), (2.10.16)

where the convergence is almost surely. Moreover, we have:

V (Et(ρi,t+1)ui,t|Ft) = E(Et(ρi,t+1)2u2
i,t|Ft) = E(Et(ρi,t+1)2|Ft), (2.10.17)

where we use that the Gaussian ranks are such that ui,t ∼ N(0, 1) conditional on Ft, δi, and the process of
the macro-factors is Markov. Let us now approximate the quantity E(Et(ρi,t+1)2|Ft) for small positional
persistence. By a first-order Taylor expansion of function Ψ(s) = (e2s − 1)/(e2s + 1) around s = 0, the
conditional expected positional persistence is such that:

Et(ρi,t+1) ' Ψ(0) + Ψ′(0)[βi + γiE(Fp,t+1|Ft)] = βi + γiE(Fp,t+1|Ft). (2.10.18)

By combining (2.10.15)-(2.10.18), approximation (2.6.1) follows.

Appendix A.5: Parametrization of the Variance-Gamma distribution

The Variance-Gamma (VG) is a parametric family of distributions yielding a flexible yet tractable specifica-
tion of third and fourth order moments. The VG distribution was first used in Finance by Madan and Seneta
(1990) to describe the historical distribution of security returns. In our paper, we use the VG family to model
the theoretical CS distribution of CRSP stock returns. The theoretical CS p.d.f. h∗t (y) = ∂H∗t (y)/∂y at
month t is given by [see Seneta (2004), p. 180]:

h∗t (y) =
2 exp{γt(y − ct)/ωt}√

2πωt(1/λt)λtΓ(λt)

(
|y − ct|√
2ωtλt + γ2

t

)λt−1/2

Kλt−1/2

(
|y − ct|

√
2ωtλt + γ2

t

ωt

)
,

(2.10.19)

where Kλ(·) denotes the Bessel function of the third kind 13 with index λ, Γ(·) is the Gamma function14 and
ct ∈ R, ωt > 0, γt ∈ R and λt > 0 are the parameters for month t. The four VG parameters ct, ωt, γt, λt
are time-varying and stochastic. They correspond to transformations of the elements of a four-dimensional
common stochastic factor Fd,t that drives the pattern of the theoretical CS distribution of stock returns. The

13The Bessel function of the third kind with index λ is defined as Kλ(x) =
1

2

∫ +∞

0

tλ−1e−
1
2
x(t+t−1)dt, for x > 0.

14The Gamma function is defined as Γ(x) =

∫ +∞

0

tx−1e−tdt, for x > 0.
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VG distribution in equation (2.10.19) is the distribution of returns yi,t at month t, for i varying, conditional
on the observed factor Fd,t. Since the VG family of distributions can be parameterized in several alternative
ways, vector Fd,t is defined up to a one-to-one transformation. We select this transformation such that the
parameters, i.e. the components of vector Fd,t, admit simple interpretations and vary without constraints in
the domain R4. The latter condition eases the specification of a dynamic model for process (Ft) in Section
2.5.2. To define the parameter transformation, let us consider the first four standardized cross-sectional
power moments at month t. They are given by [see Seneta (2004)]:

µt = E[yi,t|Fd,t] = ct + γt, (2.10.20)

σ2
t = V [yi,t|Fd,t] = γ2

t /λt + ωt, (2.10.21)

st =
E[(yi,t − µt)3|Fd,t]

σ3
t

=
γt
λt

2γ2
t /λt + 3ωt

(γ2
t /λt + ωt)3/2

, (2.10.22)

kt =
E[(yi,t − µt)4|Fd,t]

σ4
t

= 3 +
3

λt

ω2
t + 4ωtγ

2
t /λt + 2γ4

t /λ
2
t

(γ2
t /λt + ωt)2

. (2.10.23)

We have the following result, which is proved at the end of this Appendix.

Lemma 1. i) In the VG family, the kurtosis kt is lower bounded, with the lower bound depending on the
skewness st:

kt > 3(1 + s2
t /2). (2.10.24)

ii) Define:
k∗t = kt − 3(1 + s2

t /2). (2.10.25)

Then, the parameters µt ∈ R, σt > 0, st ∈ R and k∗t > 0 vary independently on their domains, and are
jointly in a one-to-one relationship with the original parameters ct ∈ R, ωt > 0, γt ∈ R and λt > 0.

The inequality (2.10.24) on the third and fourth order moments of the VG distribution is more restrictive
than the condition valid for any distribution, namely kt > 1 + s2

t [see Pearson (1916)]. Moreover, in the VG
model the kurtosis is larger than 3, that is, the kurtosis of a Gaussian distribution. A Gaussian distribution
is the limit of the VG distribution when st = 0 and k∗t → 0 [see Seneta (2004)]. Lemma 1 i) suggests
to consider k∗t defined in (2.10.25) as a measure of excess kurtosis. Then, we define the factor Fd,t as in
equation (2.5.1), namely Fd,t = (µt, log σt, st, log k∗t )

′. Its components are in one-to-one relationship with
the parameters of the VG family from Lemma 1 ii), and they are free to vary in the unbounded domain R4.

Proof of Lemma 1: We omit the time index of the parameters as it is not relevant here. Define the parameter
transformations:

ξ =
γ/
√
λ√

γ2/λ+ ω
, η =

1√
λ
. (2.10.26)

The parameters µ ∈ R, σ > 0, ξ ∈ (−1, 1) and η > 0 vary independently on their domains, and are in a
one-to-one relationship with the original parameters c ∈ R, ω > 0, γ ∈ R and λ > 0. Indeed, the original
parameters can be written as c = µ − ξσ/η, ω = σ2(1 − ξ2), γ = ξσ/η and λ = 1/η2. Moreover, the
skewness and kurtosis can be written as:

s = ηξ(3− ξ2), (2.10.27)

k = 3 + 3η2(1 + 2ξ2 − ξ4), (2.10.28)
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and are functions of parameters η and ξ only. From equation (2.10.27), when ξ 6= 0 we have η = s/[ξ(3 −
ξ2)]. By replacing this expression of η into equation (2.10.28) we get:

k = 3 + 3s2g(ξ2), (2.10.29)

where function g is defined by g(z) =
1 + 2z − z2

z(3− z)2
, for z > 0. The function g is monotonic decreasing on

the interval (0, 1), with g(z)→∞ as z → 0 and g(1) = 1/2. We deduce inequality (2.10.24).
Defining k∗ as k∗ = k−3(1+s2/2), the parameters µ ∈ R, σ > 0, s ∈ R and k∗ > 0 are in a one-to-one

relationship with the original parameters. Indeed, given the values of s ∈ R and k∗ > 0, we can determine
uniquely the values of η > 0 and ξ ∈ (−1, 1):
i) If s = 0, from equations (2.10.27), (2.10.28) and the definition of k∗ it follows ξ = 0 and η =

√
k∗/3.

ii) If s 6= 0, we can use equations (2.10.29), the definition of k∗, and the monotonicity of function g to get
ξ2 = g−1[k∗/(3s2) + 1/2] ∈ (0, 1). From equation (2.10.27), the sign of ξ is the same of that of s. Then,
η = s/[ξ(3− ξ2)]. QED.

Appendix A.6: Numerical implementation of efficient positional strategies

In this appendix we provide a feasible numerical algorithm for the computation of the optimal positional
portfolio allocation defined in equation (2.2.4). The algorithm consists in the application of the Newton-
Raphson method for the solution of a maximization problem with equality constraints [see, e.g. Boyd and
Vandenberghe (2004)]. Then, the conditional expectations in the gradient and the Hessian of the criterion are
computed using the estimated joint model for Gaussian ranks, cross-sectional distribution and macro-factor
dynamics in Sections 3 and 5.

i) Newton-Raphson algorithm with equality constraints

The maximization problem associated with equation (2.2.4) can be written as:

max
α

Vt(α)

s.t. α′e = 1

where α = (α1, ..., αn)′, e is an n-vector of ones, and

Vt(α) = Et
[
U
(
Ht+1(α′yt+1)

)]
= Et

[
U

(
Ht+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

))]
.

The associated Lagrangian function for the constrained maximization problem is:

Lt(α, λ) = Vt(α) + λ(α′e− 1),

and the first-order conditions are:  ∂Vt(α)

∂α
+ λe = 0

α′e− 1 = 0
.
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By applying an extended Newton’s procedure based on the Taylor’s expansion of the first-order conditions
with respect to (α′, λ)′, the solution of the problem is obtained by an iterative algorithm with (q+ 1)-th step
given by [see, e.g. Boyd and Vandenberghe (2004)]:

[
α(q+1)

λ(q+1)

]
=

[
α(q)

0

]
−

 ∂2Vt(α
(q))

∂α∂α′
e

e′ 0

−1  ∂Vt(α
(q))

∂α
α(q)′e− 1

 .
The initial step of the algorithm uses α(0) =

1

n
e, that is, the equally weighted portfolio.

ii) Formulas for the gradient vector and Hessian matrix of the expected CARA positional
utility function

In the case of a CARA positional utility function with U(v;A) = − exp(−Av), where A > 0 is the posi-
tional risk aversion parameter, written on the Gaussian rank of the portfolio return, the expected positional
utility Vt(α) is:

Vt(α) = −Et
[
exp

{
−AHt+1

(
α′yt+1

)}]
.

The gradient vector of the expected CARA positional utility function is:

∂Vt(α)

∂α
= AEt

[
exp

{
−AHt+1

(
α′yt+1

)}
H ′t+1(α′yt+1)yt+1

]
, (2.10.30)

where H ′t+1(y) =
dHt+1(y)

dy
. The Hessian matrix of the expected CARA positional utility function is:

∂2Vt(α)

∂α∂α′
= AEt

[
exp

{
−AHt+1

(
α′yt+1

)} (
−AH ′t+1(α′yt+1)2 +H ′′t+1(α′yt+1)

)
yt+1 y

′
t+1

]
,(2.10.31)

where H ′′t+1(y) =
d2Ht+1(y)

dy2
.

Let us now compute the two functions H ′t+1(y) and H ′′t+1(y). Recall from Definition 1 ii) in Appendix
1 that:

Ht(y) = Φ−1(H∗t (y)), (2.10.32)

where H∗t is the cross-sectional c.d.f. of the VG family at date t. Therefore, we have:

H ′t(y) =
1

φ[Φ−1(H∗t (y))]
h∗t (y),

where h∗t (y) ≡ h∗(y|Fd,t) = dH∗t (y)/dy is the VG p.d.f. in equation (2.10.19) and φ(·) = Φ′(·) is the
p.d.f. of the standard Gaussian distribution. This allows to compute:

H ′′t (y) =
Φ−1(H∗t (y))

(φ[Φ−1(H∗t (y))])2
(h∗t (y))2 +

1

φ[Φ−1(H∗t (y))]

dh∗t (y)

dy
.
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Finally, we can re-write equation (2.10.31) as:

∂2Vt(α)

∂α∂α′
= AEt

[
exp

{
−AHt+1

(
α′yt+1

)}
ξt+1

(
α′yt+1

)
yt+1 y

′
t+1

]
, (2.10.33)

where:

ξt (y) = −AH ′t(y)2 +H ′′t (y)

=
Φ−1(H∗t (y))−A

(φ[Φ−1(H∗t (y))])2
(h∗t (y))2 +

1

φ[Φ−1(H∗t (y))]

dh∗t (y)

dy
. (2.10.34)

iii) Estimation of the gradient vector and Hessian matrix of the expected CARA positional
utility function

Let us finally discuss the estimation of the conditional expectations in the gradient vector and Hessian matrix
of the criterion given in equations (2.10.30) and (2.10.33).

The conditioning information at date t includes the past history of assets returns yt and systematic factors
Ft, and the individual effects δi = (βi, γi)

′ for all assets. We use that functions Ht+1(·) and ξt+1(·) in equa-
tions (2.10.32) and (2.10.34) involve the future factor value Ft+1, the asset returns are yi,t+1 = H−1

t+1(ui,t+1),
and the joint process (Ft, u1,t, ..., un,t) is Markov conditional on the individual effects. Then, the conditional
expectations in equations (2.10.30) and (2.10.31) are taken with respect to future factor value Ft+1 and Gaus-
sian ranks ui,t+1, given Ft, ui,t and δi for all assets in the investment universe. These conditional expectations
are computed by Monte Carlo integration by simulating future ranks and factor values according to their es-
timated models in Sections 3 and 5. The current values of the factor Ft and ranks ui,t, and the individual
effects δi in the conditioning set are replaced by their estimated values.

66



2.11 Bibliograpghy of Chapter 2

ARAGON, G. O., AND V. NANDA (2012): “Tournament Behavior in Hedge Funds: High-Water Marks, Fund
Liquidation, and Managerial Stake,” The Review of Financial Studies, 25, 937–974.

AVRAMOV, D., T. CHORDIA, AND A. GOYAL (2006): “Liquidity and Autocorrelations in Individual Stock
Returns,” The Journal of Finance, 61, 2365 – 2394.

BAI, J., AND S. NG (2005): “Tests for Skewness, Kurtosis, and Normality for Time Series Data,” Journal of
Business and Economic Statistics, 23, 49–60.

BASEL COMMITTEE ON BANKING SUPERVISION (2013): “Global Systemically Important Banks: Updated
Assessment Methodology and the Higher Loss Absorbency Requirement,” July.

BELEZNAY, A., M. MARKOV, AND A. PANCHEKHA (2012): “Hidden Benefits of Equal Weighting : The
Case of Hedge Fund Indices,” Working Paper.

BIAIS, B., T. FOUCAULT, AND S. MOINAS (2013): “Equilibrium Fast Trading,” Toulouse University Work-
ing Paper.

BLACK, F. (1976): “Studies of Stock Price Volatility Changes,” Proceedings of the Business and Economics
Sections of the American Statistical Association, pp. 177–181.

BLUME, L. E., W. A. BROCK, S. N. DURLAUF, AND R. JAYARAMAN (2013): “Linear Social Interactions
Models,” NBER Working Paper 19212.

BORLAND, L. (2012): “Statistical Signatures in Times of Panic: Markets as a Self-organizing System,”
Quantitative Finance, 12(9), 1367–1379.

BOUGEROL, P., AND N. PICARD (1992): “Strict Stationarity of Generalized Autoregressive Processes,” The
Annals of Probability, 20, 1714–1730.

BOWMAN, A. W., AND A. AZZALINI (1997): Applied Smoothing Techniques for Data Analysis: The Kernel
Approach with S-Plus Illustrations. Oxford University Press.

BOYD, S., AND L. VANDENBERGHE (2004): Convex Optimization. Cambridge University Press.

BROWN, K. C., W. V. HARLOW, AND L. STARKS (1996): “Of Tournaments and Temptations: An Analysis
of Managerial Incentives in the Mutual Fund Industry,” Journal of Finance, 51, 85–110.

CALVO-ARMENGOL, A., E. PATACCHINI, AND Y. ZENOU (2009): “Peer Effects and Social Networks in
Education,” Review of Economic Studies, 76, 1239–1267.

CHAN, L. K. C., N. JEGADEESH, AND J. LAKONISHOK (1996): “Momentum Strategies,” The Journal of
Finance, 51, 1681–1713.

67



CHEN, H., AND G. PENNACCHI (2009): “Does Prior Performance Affect a Mutual Fund’s Choice of Risk?
Theory and Further Empirical Evidence,” Journal of Financial and Quantitative Analysis, 44, 745–775.

DAROLLES, S., AND C. GOURIEROUX (2014): “The Effects of Management and Provision Accounts on
Hedge Fund Returns. Part 1: High-Water Mark Allocation Scheme; Part 2: The Loss Carry Forward
Scheme,” in Advances in Intelligent Systems and Computing, 251, V. Huyun et al. eds, Springer, 23–46
and 47–72.

DAVEZIES, L., X. D’HAULTFOEUILLE, AND D. FOUGÈRE (2009): “Identification of Peer Effects Using
Group Size Variation,” The Econometrics Journal, 12, 397–413.

DE BONDT, W., AND R. THALER (1985): “Does the Stock Market Overreact,” The Journal of Finance, 40,
793–805.

DEMIGUEL, V., L. GARLAPPI, AND R. UPPAL (2009): “Optimal Versus Naive Diversification: How Inef-
ficient is the 1/N Portfolio Strategy?,” Review of Financial Studies, 22, 1915–1953.

EASTERLIN, R. A. (1995): “Will Raising the Incomes of All Increase the Happiness of All?,” Journal of
Economic Behavior and Organization, 27, 35–47.

FRANK, R. (1991): “Positional Externalities,” in "Strategy and Choice. Essays in Honor of T. Schelling" (R.
Zeckhauser ed.), Cambridge MIT Press.

FRANK, R. H. (1999): Luxury Fever: Why Money Fails to Satisfy in an Era of Excess. New York, Free Press.

FREY, B. S., AND A. STUTZER (2002): Happiness and Economics: How the Economy and Institutions
Affect Human Well-Being. Princeton N.J., Princeton University Press.

GABAIX, X., AND A. LANDIER (2008): “Why Has CEO Pay Increased so Much?,” Quarterly Journal of
Economics, 123, 49–100.

GORIAEV, A., T. NIJMAN, AND B. J. M. WERKER (2005): “Yet Another Look at Mutual Fund Tourna-
ments,” Journal of Empirical Finance, 12, 127–133.

GORIAEV, A., F. PALOMINO, AND A. PRAT (2001): “Mutual Fund Tournament: Risk Taking Incentives
Induced by Ranking Objectives,” CEPR Discussion Papers.

HIRSCH, F. (1976): Social Limits to Growth. Cambridge MA, Harvard University Press.

INGERSOLL, J. (1987): Theory of Financial Decision Making. Rowman & Littlefield.

JAGANNATHAN, R., AND T. MA (2003): “Risk Reduction in Large Portfolios: Why Imposing the Wrong
Constraints Helps,” The Journal of Finance, 58(4), 1651–1683.

JEGADEESH, N. (1990): “Evidence of Predictable Behavior of Security Returns,” The Journal of Finance,
45, 881–898.

JEGADEESH, N., AND S. TITMAN (1993): “Returns to Buying Winners and Selling Losers: Implications for
Stock Market Efficiency,” The Journal of Finance, 48, 65–91.

68



KAHNEMAN, D., AND A. TVERSKY (1992): “Advances in Prospect Theory: Cumulative Representation of
Uncertainty,” Journal of Risk and Uncertainty, 5, 297–323.

KHANDANI, A., AND A. LO (2011): “What Happened to the Quants in August 2007? Evidence from Factors
and Transactions Data,” Journal of Financial Markets, 14, 1–46.

LEDOIT, O., AND M. WOLF (2003): “Improved Estimation of the Covariance Matrix of Stock Returns with
an Application to Portfolio Selection,” Journal of Empirical Finance, 10, 603–621.

LEHMANN, B. (1990): “Fads, Martingales, and Market Efficiency,” Quarterly Journal of Economics, 105,
1–28.

MADAN, D., AND E. SENETA (1990): “The Variance Gamma (V.G.) Model for Share Market Returns,”
Journal of Business, 63, 511–524.

MANSKI, C. (1993): “Identification of Endogenous Social Effects: The Reflection Problem,” Review of
Economic Studies, 60, 531–542.

MOSKOWITZ, T., Y. OOI, AND L. PEDERSEN (2012): “Time Series Momentum,” Journal of Financial
Economics, 104, 228–250.

NEUMARK, D., AND A. POSTLEWAITE (1998): “Relative Income Concerns and the Rise in Married
Women’s Employment,” Journal of Public Economics, 70, 157–183.

PASQUARIELLO, P. (2014): “Financial Market Dislocations,” Review of Financial Studies, 27, 1868–1914.

PEARSON, K. (1916): “Mathematical Contributions to the Theory of Evolution, XIX. Second supplement
to a memoir on skew variation,” Philosophical Transactions of the Royal Society, 216, 432.

QUIGGIN, J. (1982): “A Theory of Anticipated Utility,” Journal of Economic Behavior and Organization,
3, 323–343.

SCHWARZ, C. (2012): “Mutual Fund Tournaments: The Sorting Bias and New Evidence,” Review of Finan-
cial Studies, 25, 913–936.

SENETA, E. (2004): “Fitting the Variance-Gamma Model to Financial Data,” Journal of Applied Probability,
41, 177–187.

SILVERMAN, B. W. (1986): Density Estimation for Statistics and Data Analysis. London, Chapman and
Hall.

THANASSOULIS, J. (2012): “The Case of Intervening in Banking Pay,” The Journal of Finance, 67, 849–
895.

VON NEUMANN, J., AND O. MORGENSTERN (1944): Theory of Games and Economic Behavior. Princeton
University Press.

69





Chapter 3

Is Industrial Production Still the Dominant
Factor for the US Economy?

Abstract

We propose a new class of approximate factor models which enable us to study the full spectrum of quarterly
IP sector data combined with annual non-IP sectors of the economy. We derive the large sample properties of
the estimators for the new class of factor models involving mixed frequency data. Despite the growth of ser-
vice sectors, we find that a single common factor explaining 90% of the variability in IP output growth index
also explains 60% of total GDP output growth fluctuations. A single low frequency factor unrelated to man-
ufacturing explains 14% of GDP growth. The picture with a structural factor model featuring technological
innovations is quite different. IP sectors technology shocks do not play a dominant role.

JEL Codes: E23, E32, C32, C38, C55.

Keywords: Approximate Factor Model, Principal Component Analysis, Canonical Correlations, Mixed-
frequency Data, Sectoral Output Growth, Industrial Production, Gross Domestic Product.
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3.1 Introduction

In the public arena it is often claimed that manufacturing has been in decline in the US and most jobs have
migrated overseas to lower wage countries. First, we would like to nuance this observation somewhat. It is
true, as the figure below clearly shows, that the share of the industrial production sector has been in decline
since the late 70’s, which is the beginning of our sample period. However, does size matter? The fact that
the size shrank does not necessarily exclude the possibility that the industrial production sector still is a key
factor, or even the dominant factor, of total US output. We study the validity of this question using novel
econometric methods designed to deal with some of the challenging data issues one encounters when trying
to address the problem.

Figure 3.1: Sectoral decomposition of US nominal GDP.
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The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate the shares of

different sectors available from the website of the US Bureau of Economic Analysis, according to their North American Industry

Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow), Services (red), Government

(green), Construction (white), Others (grey).

When studying the role of the industrial production sector we face a conundrum. On the one hand, we
have fairly extensive data on industrial production (IP) which consists of 117 sectors that make up aggregate
IP, each sector roughly corresponding to a four-digit industry classification using NAICS. These data are
published monthly, and therefore cover a rich time series and cross-section. In our analysis we use the data
sampled at quarterly frequency, for reasons explained later in the paper, and consists of over 16,000 data
points counting all quarters from 1977 until 2011 (end of our data set) across all sectors. On the other hand,
contrary to IP, we do not have monthly or quarterly data about the cross-section of US output across non-IP
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sectors, but we do so on an annual basis. Indeed, the US Bureau of Economic Analysis provides Gross
Domestic Product (GDP) and Gross Output by industry - not only IP sectors - annually. In our empirical
analysis we use data on 42 non-IP sectors. If we were to study all sectors annually, we would be left with
roughly 4000 data points for IP - a substantial loss of information.

Economists have proposed different models to explain how various sectors in the economy interact.
Some rely on aggregate shocks which affect all sectors at once. Foerster, Sarte, and Watson (2011), who use
an approximate factor model estimated with quarterly data, find that nearly all of IP variability is associated
with a small number of common factors - even a single common factor suffices according to their findings.
To what extend does the single common factor which drives the cross-sectional variation of IP sectors also
affect the rest of the economy, in particular in light of the fact that the services sector grew in relative size?
To put it differently, can we maintain a common factor view if we expand beyond IP sectors? Or should we
think about sector-specific shocks affecting aggregate US output? If so, are these IP sector shocks, or rather
services sector ones?

We propose a new class of factor models able to address these key questions of interest using all the
data - despite the mixed sampling frequency setting. Empirical research generally avoids the direct use of
mixed frequency data by either first aggregating higher frequency series and then performing estimation and
testing at the low frequency common across the series, or neglecting the low frequency data and working
only on the high frequency series. The literature on large scale factor models is no exception to this practice,
see e.g. Forni and Reichlin (1998), Stock and Watson (2002a,b) and Stock and Watson (2010). Using the
terminology of the approximate factor model literature, we have a panel consisting of NH cross-sectional
IP sector growth series sampled across MT time periods, where M = 4 for quarterly data and M = 12 for
monthly data, with T the number of years. Moreover, we also have a panel of NL non-IP sectors - such as
services and construction for example - which is only observed over T periods. Hence, generically speaking
we have a high frequency panel data set of size NH × MT and a corresponding low frequency panel data
set of size NL × T. The issue we are interested in can be thought of as follows. There are three types of
factors: (1) those which explain variations in both panels - say gC , and therefore are economy-wide factors,
(2) those exclusively pertaining to IP sector movements - say gH , and finally (3) those exclusively affecting
non-IP, denoted by gL. Hence, we have (1) common, (2) high frequency and (3) low frequency factors. We
use superscripts C, H and L because the theory we develop is generic and pertains to common (C), high
frequency (H) and low frequency (L) factors. The question how to extract common factors from a mixed
frequency panel data set is of general interest and has many applications in economics and other fields. In
fact our analysis covers an even broader class of group factor models, as will be explained shortly, which is
of general interest beyond the mixed frequency setting considered in the empirical application.

The purpose of this paper is to propose large scale approximate factor models in the spirit of Bai and
Ng (2002), Stock and Watson (2002a), Bai (2003), Bai and Ng (2006), and extend their analysis to mixed
frequency data settings. A number of mixed frequency factor models have been proposed in the literature,
although they almost exclusively rely on small cross-sections.1

We approach the problem from a different angle. We start with a setup which identifies factors common

1See for example, Mariano and Murasawa (2003), Nunes (2005), Aruoba, Diebold, and Scotti (2009) Frale and Monteforte
(2010), Marcellino and Schumacher (2010) and Banbura and Rünstler (2011), among others. Stock and Watson (2002b) in their
Appendix A, propose a modification of the EM algorithm of Dempster, Laird, and Rubin (1977) to estimate high frequency factors
from potentially large unbalanced panels, with mixed-frequency being a special case. Moreover, Jungbacker, Koopman, and der
Wel (2011) introduce a computationally efficient EM algorithm for the maximum likelihood estimation of a high-dimensional linear
factor model with missing data.
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to both high and low frequency data panels, the aforementioned gC , and factors specific to the high and low
frequency data. Our approach amounts to writing the model as a grouped factor model. The idea to apply
grouped factor analysis to mixed frequency data is novel and has many advantages in terms of identification
and estimation. In the proposed identification strategy, the groups correspond to panels observed at different
sampling frequencies. While there is a literature on how to estimate factors in a grouped model setting,
there does not exist a general unifying asymptotic theory for large panel data.2 We propose estimators for
the common and group specific factors, and an inference procedure for the number of common and group
specific factors based on canonical correlation analysis of the principal components (PCs) estimators on each
subgroup. The procedure is therefore general in scope and also of interest in many applications other than
the one considered in the current paper. We study the large sample properties of our estimators and inference
procedure as T , NH , NL →∞.

Our empirical application revisits the analysis of Foerster, Sarte, and Watson (2011) who use factor
analytic methods to decompose industrial production (IP) into components arising from aggregate shocks
and idiosyncratic sector-specific shocks. They focus exclusively on the industrial production sectors of the
US economy. We find that a single common factor explains around 90% of the variability in the aggregate IP
output growth index, and a factor specific to IP has very little additional explanatory power. This implies that
the single common factor can be interpreted as an Industrial Production factor. Moreover, more than 60% of
the variability of GDP output growth in service sectors, such as Transportation and Warehousing services, is
also explained by the common factor. A single low frequency factor unrelated to manufacturing, explaining
around 14 % of GDP growth fluctuations, drives the comovement of non-IP sectors such as Construction and
Government. Note the great advantage of the mixed frequency setting - compared to the single frequency
one - in the context of our IP and GDP sector application. The mixed frequency panel setting allows us to
identify and estimate the high frequency observations of factors common to IP and non-IP sectors. With IP
(i.e. high frequency) data only we cannot assess what is common with non-IP. With low frequency data only,
we cannot estimate the high frequency common factors.

We re-examine whether the common factor reflects sectoral shocks that have propagated by way of
input-output linkages between service sectors and manufacturing. A structural factor analysis indicates that
both low and high frequency aggregate shocks continue to be the dominant source of variation in the US
economy. The propagation mechanisms are very different, however, from those identified by Foerster, Sarte,
and Watson (2011). Looking at technology shocks instead of output growth, it does not appear that a common
factor explaining IP fluctuations is a dominant one for the entire economy. A factor specific to technological
innovations in IP sectors is more important for the IP sector shocks and a low frequency factor which appears
to explain variation in information industry as well as professional and business services innovations plays
relatively speaking a more important role. Hence, when it comes to innovation shocks, IP is no longer the
dominant factor.

The rest of the paper is organized as follows. In section 3.2 we introduce the formal model and discuss
identification. In section 3.3 we study estimation and inference on the number of common factors. The large
sample theory appears in section 3.4. Section 3.5 covers the empirical application. Section 3.6 concludes the
paper. Readers who are only interested in the empirical applications can go directly to section 3.5 which starts
with a summary of the novel econometric procedure. Appendix C contains additional material including an
alternative identification strategy for the common factor space, a discussion of some properties of an iterative

2In section 3.2.3 we provide a short review of the literature on group factor models, including recent contributions related to the
topic of the current paper.
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estimator, dataset description, a procedure for the extraction of technology shocks, and additional empirical
results.

3.2 Model specification and identification

We consider a setting where both low and high frequency data are available. Let t = 1, 2, . . . , T be the low
frequency (LF) time units. Each period (t − 1, t] is divided into M subperiods with high frequency (HF)
dates t − 1 + m/M , with m = 1, . . . , M. Moreover, we assume a panel data structure with a cross-section
of size NH of high frequency data and NL of low frequency data. It will be convenient to use a double time
index to differentiate low and high frequency data. Specifically, we let xHim,t, for i = 1, . . . , NH , be the high
frequency data observation i during subperiod m of low frequency period t. Likewise, we let xLit , with i =
1, . . . , NL, be the observation of the ith low-frequency series at t. These observations are gathered into the
NH -dimensional vectors xHm,t, ∀m, and the NL-dimensional vector xLt , respectively.

We have a latent factor structure in mind to explain the panel data variation for both the low and high
frequency data. To that end, we assume that there are three types of factors, which we denote by respectively
gCm,t, g

H
m,t and gLm,t. The former represents factors which affect both high and low frequency data (throughout

we use superscriptC for common), whereas the other two types of factors affect exclusively high (superscript
H) and low (marked by L) frequency data. We denote by kC , kH and kL, the dimensions of these factors.
The latent factor model with high frequency data sampling is:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

(3.2.1)

where m = 1, ...,M and t = 1, ..., T , and ΛHC , ΛH , ΛLC and ΛL are matrices of factor loadings. The
vector xL∗m,t is not observable for each high frequency subperiod and the measurements, denoted by xLt ,
depend on the observation scheme, which can be either flow sampling or stock sampling (or some general
linear scheme). In the remainder of this section we study identification of the model for the case of flow
sampling, corresponding to the empirical application covered later in the paper.3

In the case of flow sampling, the low frequency observations are the sum (or average) of all xL∗m,t in each
high frequency subperiod m, that is: xLt =

∑M
m=1 x

L∗
m,t. Then, model (3.2.1) implies:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLC
∑M

m=1 g
C
m,t + ΛL

∑M
m=1 g

L
m,t +

∑M
m=1 e

L
m,t.

(3.2.2)

Let us define the aggregated variables and innovations xHt :=
∑M

m=1 x
H
m,t, ē

U
t :=

∑M
m=1 e

U
m,t, U = H,L,

and the aggregated factors:

ḡUt :=

M∑
m=1

gUm,t, U = C,H,L.

3The identification with stock sampling is discussed in Appendix 3.7.1. It is worth noting though that any sampling scheme
leading to a representation of the model analogous to the group-factor model in equation (3.2.3) or (3.2.4) - discussed shortly - is
compatible with the identification and estimation strategies of this paper.
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Then we can stack the observations xHt and xLt and write:

[
xHt
xLt

]
=

[
ΛHC ΛH 0
ΛLC 0 ΛL

] ḡCt
ḡHt
ḡLt

+

[
ēHt
ēLt

]
. (3.2.3)

The last equation corresponds to a group factor model, with common factor ḡCt and “group-specific" factors
ḡHt , ḡLt .

To further generalize the setup, and draw directly upon the group-factor structure, we will consider
the generic specification. To separate the specific from the generic case, we will change notation slightly.
Namely, we keep the notation introduced so far with high and low frequency data, temporal aggregation, etc.
for the mixed frequency setting further used in the empirical application and use the following notation for
the generic grouped factor model setting:

[
y1,t

y2,t

]
=

[
Λc1 Λs1 0
Λc2 0 Λs2

] f ct
fs1,t
fs2,t

+

[
ε1,t

ε2,t

]
, (3.2.4)

where yj,t = [yj,1t, ..., yj,Njt]
′, Λcj = [λcj,1, ..., λ

c
j,Nj

]′, Λsj = [λsj,1, ..., λ
s
j,Nj

]′ and εj,t = [εj,1t, ..., εj,Njt]
′,

with j = 1, 2. The dimensions of the common factor f ct and the group-specific factors fs1,t, f
s
2,t are kc, ks1

and ks2, respectively. In the case of no common factors, we set kc = 0, while in the case of no group-specific
factors we set ksj = 0, j = 1, 2.4 The group-specific factors f s1,t and fs2,t are orthogonal to the common factor
f ct . Since the unobservable factors can be standardized, we assume:

E

 f ct
fs1,t
fs2,t

 =

 0
0
0

 , (3.2.5)

and

V

 f ct
f s1,t
f s2,t

 =

 Ikc 0 0
0 Iks1 Φ

0 Φ′ Iks2

 , (3.2.6)

where Φ is the covariance between the group-specific factors.5

3.2.1 Separation of common and group-specific factors

In standard linear latent factor models, the normalization induced by an identity factor variance-covariance
matrix identifies the factor process up to a rotation (and change of signs). Let us now show that, under suitable
identification conditions, the rotational invariance of model (3.2.4) - (3.2.6) allows only for separate rotations
among the components of fs1,t, among those of fs2,t, and among those of f ct . The rotational invariance of

4The case of more than two groups is a relatively straightforward generalization. Note that would also handle situations with
more than two sampling frequencies. In the interest of conciseness, we do not consider this type of generalization in the current
paper.

5In the main body of the text we only highlight some of the key assumptions. In Appendix A section 3.7.2 we provide a detailed
list of the assumptions.
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model (3.2.4) - (3.2.6) therefore maintains the interpretation of common factor and specific factors. More
formally, let us consider the following transformation of the stacked factor process: f ct

fs1,t
fs2,t

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 f̃ ct
f̃s1,t
f̃s2,t

 (3.2.7)

where (f̃ c ′t , f̃s ′1,t , f̃
s ′
2,t)
′ is the transformed stacked factor vector, and the block matrix A = (Aij) is nonsin-

gular.

Definition 1. The model is identifiable if: the data y1,t and y2,t satisfy a factor model of the same type as
(3.2.4) - (3.2.6) with (f c ′t , fs ′1,t , f

s ′
2,t)
′ replaced by (f̃ c ′t , f̃ s ′1,t , f̃

s ′
2,t)
′ only when matrix A is a block-diagonal

orthogonal matrix.

The following proposition gives a sufficient condition for the identification of the model with common and
group-specific factors.6

Proposition 1. If matrices Λ1 =

[
Λc1

... Λs1

]
and Λ2 =

[
Λc2

... Λs2

]
are full column-rank (for Nj large

enough), then the model is identifiable in the sense of Definition 1.

Proof: See Appendix 3.8.1.

Therefore the common factor f ct and the group-specific factors fs1,t, f
s
2,t and the factor loadings Λcj , Λsj , are

identifiable up to a linear transformation, since the variables yj,t are observable. By the same token in the
mixed frequency setting of equation (3.2.3), the aggregated factors ḡCt , ḡHt , ḡLt , and the factor loadings ΛHC ,
ΛLC , ΛH , ΛL, are identified. Once the factor loadings are identified from (3.2.3), the values of the common
and high frequency factors for subperiods m = 1, ...,M are identifiable by cross-sectional regression of the
high frequency data on loadings ΛHC and ΛH in (3.2.1). More precisely, gCm,t and gHm,t are identified by
regressing xHim,t on λHC,i and λH,i across i = 1, 2, ..., for any m = 1, ...,M and any t. Hence, with flow
sampling, we can identify the common factor gCm,t and the high frequency factor gHm,t at all high frequency

subperiods. On the other hand, only ḡLt =

M∑
m=1

gLm,t, i.e. the within-period sum of the low frequency factor,

is identifiable by the paired panel data set consisting of xHt combined with xLt . This is not surprising, since
we have no HF observation available for the LF process.

3.2.2 Identification of the (common) factor space from canonical correlations and directions

In the interest of generality, let us again consider the generic setting of equation (3.2.4) and let kj = kc +ksj ,
for j = 1, 2, be the dimensions of the factor spaces for the two groups, and define k = min(k1, k2). We
collect the factors of each group in the kj-dimensional vectors hj,t:

hj,t :=

[
f ct
fsj,t

]
, j = 1, 2, t = 1, ..., T, (3.2.8)

6See also results in e.g. Schott (1999), Wang (2012), Chen (2010, 2012). Proposition 1 is implied by Proposition 1 in Wang
(2012).
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and the loadings in the kj-dimensional vectors λj,i:

λj,i :=

[
λcj,i
λsj,i

]
, j = 1, 2, i = 1, ..., Nj .

Using these definitions, model (3.2.4) can equivalently be written as:

yj,it = λ′j,ihj,t + εj,it, j = 1, 2, i = 1, ..., Nj , t = 1, ..., T,

We also stack the factors hj,t, j = 1, 2, into the K-dimensional vector ht = (h′1,t, h
′
2,t)
′, with K = k1 + k2.

Moreover, let us express the (K,K)-dimensional matrix V (ht) as:

V (ht) =

[
V11 V12

V21 V22

]
, (3.2.9)

where:

Vj` := E(hj,th
′
`,t), j, ` = 1, 2. (3.2.10)

Let us first recall a few basic results from canonical analysis (see e.g. Anderson (2003) and Magnus and
Neudecker (2007)). Let ρ`, ` = 1, ..., k denote the canonical correlations between h1,t and h2,t. The largest
k eigenvalues of matrices

R = V −1
11 V12V

−1
22 V21, and R∗ = V −1

22 V21V
−1

11 V12,

are the same, and are equal to the squared canonical correlations ρ2
` , ` = 1, ..., k between h1,t and h2,t.

The associated eigenvectors w1,` (resp. w2,`), with ` = 1, ..., k, of matrix R (resp. R∗) standardized such
that w′1,`V11w1,` = 1 (resp. w′2,`V22w2,` = 1) are the canonical directions which allow to construct the
canonical variables from vector h1,t (resp. h2,t). The matrices wj = (wj,1, ..., wj,k), j = 1, 2, are such that
w′jVjjwj = Ik, j = 1, 2. Moreover, if ρ` 6= 0, then

w1,` =
1

ρ`
V −1

11 V12w2,`,

w2,` =
1

ρ`
V −1

22 V21w1,`.

(3.2.11)

Proposition 2. The following hold:
i) If kc > 0, the largest kc canonical correlations between h1,t and h2,t are equal to 1, and the remaining
k − kc canonical correlations are strictly smaller than 1.
ii) Let Wj be the (kj , k

c) matrix whose columns are the canonical directions for hj,t associated with the kc

canonical correlations equal to 1, with j = 1, 2. Then, we have f ct = W ′jhj,t (up to a rotation matrix), for
j = 1, 2.
iii) If kc = 0, all canonical correlations between h1,t and h2,t are strictly smaller than 1.
iv) Let W s

1 (resp. W s
2 ) be the (k1, k

s
1) (resp. (k2, k

s
2)) matrix whose columns are the eigenvectors of matrix

R (resp. R∗) associated with the smallest ks1 (resp. ks2) eigenvalues. Then fsj,t = W s′
j hj,t (up to a rotation

matrix) for j = 1, 2.
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Proof: See Appendix 3.8.2.

Proposition 2 shows that the number of common factors kc, the common factor space spanned by f ct , and
the spaces spanned by group specific factors, can be identified from the canonical correlations and canonical
variables of h1,t and h2,t. Therefore, the dimension kc, and factors f ct and fsj,t, j = 1, 2, (up to a rotation)
are identifiable from information that can be inferred by disjoint principal component analysis (PCA) on
the two subgroups. Note that disjoint PCA on the two subgroups allows us to identify h1,t and h2,t up to
linear transformations. This fact does not prevent identifiability of the common and group-specific factors
from Proposition 2. More precisely, from the subpanel j we can identify the vector hj,t up to a non-singular
matrix Uj , say, j = 1, 2. Under the transformation hj,t → Ujhj,t, the matrices R and R∗ are transformed
such that R → (U ′1)−1RU ′1 and R∗ → (U ′2)−1R∗U ′2. Therefore, the matrices of canonical directions W1

and W2 are transformed such as Wj → (U ′j)
−1Wj , j = 1, 2. Therefore, the quantities W ′jhj,t, j = 1, 2, are

invariant under such transformations.
One may wonder why we do not apply canonical correlation analysis directly to the (aggregated) high and

low frequency data - avoiding the first step of computing PCs since the extra step considerably complicates
the asymptotics and actually entails a novel contribution of the paper. What makes the first step of computing
PCs necessary is the fact that canonical correlations applied to the raw data may not necessarily uncover
pervasive factors.7 One may also wonder why we cannot stack all groups into one panel and apply standard
PCA to estimate common factors as in Bekaert, Hodrick, and Zhang (2009) and Korajczyk and Sadka (2008),
for instance. Unfortunately, this is also not a solution either, as discussed in Boivin and Ng (2006), Goyal,
Pérignon, and Villa (2008), Wang (2012) and Breitung and Eickmeier (2014). In fact, in the case of a
model with kc common factors, a finite number of groups, and a positive number of group-specific factors,
the estimate of the common factor obtained from the first kc principal components of the pooled data is
inconsistent due to the correlation in the residuals terms arising from the group specific factors.

3.2.3 What is new and different?

There already exist a number of papers on group factor models, sometimes also named “multilevel factor
models” or “hierarchical factor models”. Many, rooted in the statistics literature, deal with large T and
finite cross-sections, i.e. N = maxj (Nj) <∞. See for example, Dauxois and Pousse (1975), Krzanowski
(1979), Flury (1984), Flury (1988), Schott (1988), Schott (1991), Schott (1999), Chen and Robinson (1989),
Dauxois, Romain, and Viguier (1993), Gregory and Head (1999), Kose, Otrok, and Whiteman (2008), and
Viguier-Pla (2004). Recently, Bayesian methods for state space models have been applied by Moench and Ng
(2011) and Moench, Ng, and Potter (2013) for relatively large scale hierarchical factor models. Moreover,
Hallin and Liska (2011) extend the estimator based on dynamic PCs to their dynamic factor model with
block structure, which is similar to the grouped factor models studied by the above literature. The main
contribution of Goyal, Pérignon, and Villa (2008) is the extension of the results of the classical statistical
literature on group factor models to the case of approximate group factor models, even if they do not derive
analytical asymptotic results.

Note that one novel contribution of our analysis is to characterize mixed frequency data panel data models
as group factor models. This connection actually eliminates one topic of concern in group factor models -
the so called classification issue - we do not deal with. Namely, in a mixed data sampling setting we know a

7A simple example would be to add an anomalous series to one panel and repeat the series to the other one. The canonical
correlation analysis applied to the raw data will uncover the presence of the anomalous series in both panels.
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priori to which group observations in the panel belong. Some analysis in group factor models assumes that
the researcher has first to figure out the allocation of observations across the different groups.

Our work is most closely related to Chen (2010, 2012), Wang (2012), and Breitung and Eickmeier (2014),
who handle the large dimensional T and N cases. There are gaps in the existing analysis, however, and to
the best of our knowledge there is no comprehensive asymptotic treatment yet of grouped factor models in a
large dimensional setting. Hence, our contribution is to provide a general comprehensive analysis.

It is worth explaining the relationship with the aforementioned existing literature. Wang (2012) and
Breitung and Eickmeier (2014) propose an iterative solution derived from a Least Square (LS) estimation
problem.8 In particular, Wang (2012) derives the first order conditions for a principal component estimator
and describes an iterative PC estimator (see Wang (2012) ). The large sample properties of the iterated PC
estimator are, however, not provided. In addition, we show in defin section 3.9.2 that the iterative procedure
is not operational as the resulting equations do not have a unique solution.

Chen (2010, 2012) computes for different numbers of common and specific factors a modification of Bai
and Ng (2002) information criteria.9 He proves that choosing the number of common and specific factors
by minimizing this new criterion is a consistent selection procedure for the number of common and specific
factors. Let us consider the case with two groups: this procedure tells that the number of common factors
in the two groups corresponds to the number of eigenvalues equal to 2 of the variance covariance matrix of
the stacked pervasive factors (i.e. PCs) extracted in the two groups. Consequently, the common factors can
be estimated using the associated eigenvectors. We provide in Appendix C the identification of the common
factor space from variance-covariance matrix of stacked factors (see Section 3.9.1). Chen (2012) uses this
theory to show how to estimate the common factors, and derives the asymptotic distribution of the estimators
- assuming that their number is known. However, the asymptotic theory for the distribution of the eigenvalues
equal to two is not developed. Our paper fills this gap and provides (1) a comprehensive asymptotic theory
for testing the number of common factors and specific factors, and (2) a large sample theory for the factor
estimates.

More specifically, we provide a theory for the number of canonical correlations equal to one. Note
that if the PCs in the two groups were observed, then the problem of testing for unit canonical correlations
would have a degenerate feature, because it involves testing for deterministic relationships between random
vectors. The estimation errors of the PCs drive the asymptotic distribution of the statistic, with an unusual
convergence rate ofN

√
T .Moreover, we also have to deal with a bias adjustment term, due to a problem akin

to errors in the variables. The positive bias adjustment term re-centers the distribution to yield an asymptotic
Gaussian density. The next section provides the details of these derivations.10

8Similarly, Ando and Bai (2013) suggest and iterative procedure based on the minimization of a least square criterion with a
shrinkage penalty for the estimation of grouped factor models featuring both observable and unobservable factors.

9Similarly, Hallin and Liska (2011) extend the information criteria of Hallin and Liska (2007) for their dynamic factor model
with block structure.

10Using our theory developed in the next sections, it is straightforward to derive the asymptotic distribution for the number of
eigenvalues equal to two of the variance covariance matrix of the stacked PCs. We also note that, the results of our paper could
be used to derive the asymptotic properties of the criteria for the selection of the number of common and group-specific factors in
Goyal, Pérignon, and Villa (2008).
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3.3 Estimation and inference on the number of common factors

In Section 3.3.1 we provide estimators of the common and group-specific factors, based on canonical cor-
relations and canonical directions, when the true number of group-specific and common factors are known.
In Section 3.3.2 we propose a sequential testing procedure for determining the number of common factors
when only the dimensions k1 and k2 are known. The test statistic is based on the canonical correlations be-
tween the estimated factors in each subgroup of observables. In Section 3.3.3 we explain why the asymptotic
results concerning the test statistic and the factors estimators obtained under the assumption that the number
of pervasive factors k1 and k2 in each group is known, remain unchanged when the number of pervasive
factors is consistently estimated. Finally, in Section 3.3.4 we use these results to define estimators and test
statistics for the mixed frequency factor model.

3.3.1 Estimation of common and group-specific factors when the number of common and
group-specific factors is known

Let us assume that the true number of factors kj > 0 in each subgroup, j = 1, 2 is known, and also that the
true number of common factors kc > 0, is known. Proposition 2 suggests the following estimation procedure
for the common factor. Let h1,t and h2,t be estimated (up to a rotation) by extracting the first kj Principal
Components (PCs) from each subpanel j, and denote by ĥj,t these PC estimates of the factors, j = 1, 2.
Let Ĥj = [ĥj,1, ..., ĥj,T ]′ be the (T, kj) matrix of estimated PCs extracted from panel Yj = [yj,1, ..., yj,T ]′

associated with the largest kj eigenvalues of matrix
1

NjT
YjY

′
j , j = 1, 2. Let V̂j` denote the empirical

covariance matrix of the estimated vectors ĥj,t and ĥ`,t, with j, ` = 1, 2:

V̂j` =
Ĥ ′jĤ`

T
=

1

T

T∑
t=1

ĥj,tĥ
′
`,t, j, ` = 1, 2, (3.3.1)

and let matrices R̂ and R̂∗ be defined as:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1

11 V̂12. (3.3.2)

Matrices R̂ and R̂∗ have the same non-zero eigenvalues. From Anderson (2003) and Magnus and Neudecker
(2007), we know that the largest kc eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2

` , ` = 1, ..., kc, are the first kc

squared sample canonical correlation between ĥ1,t and ĥ2,t. We also know that the associated kc canonical
directions, collected in the (k1, k

c) (resp. (k2, k
c)) matrix Ŵ1 (resp. Ŵ2), are the eigenvectors associated with

the largest kc eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length 1 w.r.t. matrix V̂11 (resp. V̂22).
It also holds:

Ŵ ′1V̂11Ŵ1 = Ikc , and Ŵ ′2V̂22Ŵ2 = Ikc .

Definition 2. Two estimators of the common factors vector are f̂ ct = Ŵ ′1ĥ1,t and f̂ c∗t = Ŵ ′2ĥ2,t.

Let matrix Ŵ s
1 (resp. Ŵ s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix collecting ks1 (resp. ks2) eigenvectors as-

sociated with the ks1 (resp. ks2) smallest eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length 1
w.r.t. matrix V̂11 (resp. V̂22). It also holds:

Ŵ s ′
1 V̂11Ŵ

s
1 = Iks1 , and Ŵ s ′

2 V̂22Ŵ
s
2 = Iks2 .
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The estimators of the group-specific factors can be defined analogously to the definition of the common
factors.

Definition 3. Two estimators of the specific factors vector are f̆s1,t = Ŵ s ′
1 ĥ1,t and f̆s2,t = Ŵ s ′

2 ĥ2,t.

Let F̂ c = [f̂ c ′1 , ..., f̂ c ′T ]′ and F̂ c∗ = [f̂ c ∗ ′1 , ..., f̂ c ∗ ′T ]′ be the (T, kc) matrices of estimated common factors,
and F̆ sj = [f̆s ′j,1, ..., f̆

s ′
j,T ]′ be the (T, ksj ), for j = 1, 2, be the matrices of estimated group-specific factors.

Then, F̂ c (resp. F̂ c∗) and F̆ s1 (resp. F̆ s2 ) are orthogonal in sample.
An alternative estimator for the group-specific factors fs1,t (resp. fs2,t) is obtained by computing the first

ks1 (resp. ks2) principal components of the variance-covariance matrix of the residuals of the regression of y1,t

(resp. y2,t) on the estimated common factors.11 More specifically, let Λ̂cj = [λ̂cj,1, ..., λ̂
c
j,Nj

]′ be the (Nj , k
c)

matrix collecting the loadings estimators:

Λ̂cj = Y ′j F̂
c(F̂ c ′F̂ c)−1, j = 1, 2. (3.3.3)

Let ξj,it = yj,it − λ̂c ′j,if̂ ct be the residuals of the regression of yj,t on the estimated common factor f̂ ct , and
let ξj,t = [ξj,1t, ..., ξj,Njt]

′, for j = 1, 2. Let Ξj = [ξj,1, ..., ξj,T ]′ be the (T,Nj) matrix of the regression
residuals, for j = 1, 2.

Definition 4. An alternative estimator of the specific factor vector is f̂s1,t (resp. f̂s2,t), defined as the first ks1
(resp. ks2) Principal Components of subpanel Ξ1 (resp. Ξ2).

We denote by F̂ sj = [f̂s ′j,1, ..., f̂
s ′
j,T ]′ the (T, ksj ) matrix of estimated group-specific factors, corresponding to

the PCs extracted from panel Ξj associated with the largest ksj eigenvalues of matrix
1

NjT
ΞjΞ

′
j , for j = 1, 2.

Then, F̂ c is orthogonal in sample both to F̂ s1 and to F̂ s2 . Moreover, we define Λ̂sj = [λ̂sj,1, ..., λ̂
s
j,Nj

]′ as the
(Nj , k

s
j ) matrix collecting the loadings estimators:

Λ̂sj = Y ′j F̂
s
j (F̂ s ′j F̂ sj )−1 = Ξ′jF̂

s
j (F̂ s ′j F̂ sj )−1, j = 1, 2, (3.3.4)

where the second equality follows from the in-sample orthogonality of F̂ c and F̂ sj , for j = 1, 2.

3.3.2 Inference on the number of common factors based on canonical correlations

Suppose that the number of factors k1 and k2 in each subpanel is known, and hence k = min(k1, k2)
as well, and let us consider the problem of inferring the dimension kc of the common factor space. From
Proposition 2, this dimension is the number of unit canonical correlations between h1,t and h2,t. We consider
the following set of hypotheses:

H(0) =
{

1 > ρ1 ≥ ... ≥ ρk
}
,

H(1) =
{
ρ1 = 1 > ρ2 ≥ ... ≥ ρk

}
...

H(kc) =
{
ρ1 = ... = ρkc = 1 > ρkc+1 ≥ ... ≥ ρk

}
,

...

H(k) =
{
ρ1 = ... = ρk = 1

}
,

11This alternative estimation method for the group-specific factors corresponds to the method proposed by Chen (2012).
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where ρ1, ..., ρk are the canonical correlations of h1,t and h2,t. Hypothesis H(0) corresponds to the case of
no common factor in the two groups of observables Y1 and Y2. Generically, H(kc) corresponds to the case
of kc common factor and k1 − kc and k2 − kc group-specific factors in each group. The largest possible
number of common factors is the minimum between k1 and k2, i.e. k, and corresponds to hypothesis H(k).
In order to select the number of common factors, let us consider the following sequence of tests:

H0 = H(kc) against H1 =
⋃

0≤r<kc
H(r),

for each kc = k, k − 1, ..., 1. We propose the following statistic to test H0 against H1, for any given
kc = k, k − 1, ..., 1:

ξ̂(kc) =

kc∑
`=1

ρ̂`. (3.3.5)

The statistic ξ̂(kc) corresponds to the sum of the kc largest sample canonical correlations. We reject the
null H0 = H(kc) when ξ̂(kc) − kc is negative and large. The critical value is deduced by the large sample
distribution provided in Section 3.4.

3.3.3 Inference on the number of common factors when k1 and k2 are unknown

The tests defined in Section 3.3.2 require the knowledge of the true number of pervasive factors kj > 0 in
each subgroup, j = 1, 2. When the true number of pervasive factors is not known, but consistent estimators
k̂1 and k̂2, say, are available, the asymptotic distributions and rates of convergence for the test statistic ξ̂(kc)
based on k̂1 and k̂2 are the same as those of the test based on the true number of factors. Intuitively, this
holds because the consistency of estimators k̂j , implies that P (k̂j = kj)→ 1 for j = 1, 2, which means that
the error due to the estimation of the number of pervasive factors is (asymptotically) negligible.12

The estimators based on the penalized information criteria of Bai and Ng (2002) applied on the two
subgroups, are examples of consistent estimators for the numbers of pervasive factors. Therefore, in the next
Section 3.4, the asymptotic distributions and rates of convergence of the test statistic and factors estimators
are derived assuming that the true numbers of factors kj > 0 in each subgroup, j = 1, 2, are known.

3.3.4 Estimation and inference in the mixed frequency factor model

The estimators and test statistics defined in Sections 3.3.1 - 3.3.3 for the group factor model (3.2.4) allow
to define estimators for the loadings matrices ΛHC , ΛH , ΛLC , ΛL, the aggregated factor values gUt , U =
C,H,L and the test statistic for the common factor space dimension kC in equation (3.2.3). We denote these
estimators Λ̂HC , Λ̂H , Λ̂LC , Λ̂L, ĝ

U
t , and the test statistic ξ̂(kC). The estimators of the common and high

frequency factor values are:(
ĝCm,t
ĝHm,t

)
=

(
Λ̂′1Λ̂1

)−1
Λ̂′1x

H
m,t, m = 1, ...,M, t = 1, ..., T, (3.3.6)

where Λ̂1 = [Λ̂HC
... Λ̂H ].

12This argument is formalized using similar arguments as, for instance, in footnote 5 of Bai (2003).
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3.4 Large sample theory

In this section we derive the large sample distributions of the estimators of factor spaces and factor loadings,
and of the test statistic for the dimension of the common factor space. We consider the joint asymptotics
N1, N2, T → ∞ under Assumptions 1-8 provided in Appendices 3.7.2 and 3.7.3. From the asymptotic
theory of principal component analysis (PCA) estimators in large panels (see e.g. Bai and Ng (2002), Stock
and Watson (2002a), Bai (2003), Bai and Ng (2006)) we know that:

ĥj,t ' Ĥj

(
hj,t +

1√
Nj

uj,t +
1

T
bj,t

)
, j = 1, 2, (3.4.1)

where bj,t is a deterministic bias term, the matrix Ĥj converges to a non-singular matrix as Nj , T → ∞,
and:

uj,t :=

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
Nj

Nj∑
i=1

λj,iεj,it

=

(
Λ′jΛj

Nj

)−1
1√
Nj

Λ′jεj,t. (3.4.2)

Note that the terms uj,t depend also from the cross-sectional dimension Nj , but for notational convenience,
we omit the index Nj in uj,t. From Assumptions 2 and 5 d) the error terms uj,t are asymptotically Gaussian
as Nj →∞:

uj,t
d−→ N(0,Σu,j), (3.4.3)

where the asymptotic variance is:

Σu,j = Σ−1
Λ,jΩjΣ

−1
Λ,j , (3.4.4)

and

ΣΛ,j = lim
Nj→∞

1

Nj

Nj∑
i=1

λj,iλ
′
j,i, (3.4.5)

Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`Cov(εj,i,t, εj,`,t), j = 1, 2. (3.4.6)

Without loss of generality, let N2 ≤ N1. We assume
√
N1/T = o(1) (Assumption 6), which allows to

neglect the bias terms bj,t/T in the asymptotic expansion (3.4.1). We also assume T/N2 = o(1), which
further simplifies the asymptotic distributions derived in the next section.
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3.4.1 Main asymptotic results for the group factor model

In this section we collect the main results concerning the asymptotic distributions of estimators and test
statistics for the group factor model. Define the matrices:

Ωj,k(h) = lim
Nj , Nk→∞

1√
NjNk

Nj∑
i=1

Nk∑
`=1

λj,iλ
′
k,`Cov(εj,i,t, εk,`,t−h), (3.4.7)

Σu,jk(h) = Σ−1
Λ,jΩjk(h)Σ−1

Λ,k, (3.4.8)

for j, k = 1, 2, and h = ...,−1, 0, 1, ... Matrix Σu,jk(h) is the asymptotic covariance between uj,t and
uk,t−h. Moreover, we have Ωj ≡ Ωj,j(0) and Σu,j ≡ Σu,jj(0), and similarly we define Σu,12 ≡ Σu,12(0) =
Σ′u,21. Let us denote N = min{N1, N2} = N2 the minimal cross-sectional dimension among the two
groups, and µ2

N = N2/N1 ≤ 1. Let µN → µ, with µ ∈ [0, 1]. The boundary value µ = 0 accounts for the
possibility that N1 grows faster than N2.

Theorem 1. Under Assumptions 1 - 6, and the null hypothesis H0 = H(kc) of kc common factors, we have:

N
√
T

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc ΣU,N

}]
d−→ N

(
0,

1

4
ΩU

)
, (3.4.9)

where

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t , (3.4.10)

ΩU = 2
∞∑

h=−∞
tr
{

ΣU (h)ΣU (h)′
}
, (3.4.11)

ΣU (h) = µ2Σ
(cc)
u,11(h) + Σ

(cc)
u,22(h)− µΣ

(cc)
u,12(h)− µΣ

(cc)
u,21(h), (3.4.12)

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 − µNΣ

(cc)
u,12 − µNΣ

(cc)
u,21, (3.4.13)

and the upper index (c, c) denotes the upper-left (kc, kc) block of a matrix.

Proof: See Appendix 3.8.3.

The asymptotic distribution of ξ̂(kc) − kc after appropriate recentering and rescaling is Gaussian. The
convergence rate isN

√
T . The asymptotic expansion of ξ̂(kc)−kc involves a time series average of squared

estimation errors on group factors. Since these estimation errors are of order 1/
√
N , the expected value of

their square will be of order 1/N , originating a recentering term of the second order analogous to an error-
in-variable bias adjustment. Moreover, the averaging over time of the recentered squared estimation errors
allows to apply a root-T central limit theorem for weakly dependent processes, originating a total estimation
uncertainty for the test statistic of order 1/(N

√
T ).

Theorem 2. Under Assumptions 1 - 6 we have:√
N1(Ĥcf̂ ct − f ct )

d−→ N
(

0,Σ
(cc)
u,1

)
, (3.4.14)√

N2(Ĥ∗c f̂ c ∗t − f ct )
d−→ N

(
0,Σ

(cc)
u,2

)
, (3.4.15)√

Nj

[
Ĥs,j f̂sj,t −

(
fsj,t − (F s ′j F c)(F c ′F c)−1f ct

)] d−→ N
(

0, (Σ
(ss)
Λ,j )−1Ω

(ss)
j (Σ

(ss)
Λ,j )−1

)
,(3.4.16)
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for any j, t, where Ĥc, Ĥ∗c and Ĥs,j are non-singular matrices, F c = [f c1 , ..., f
c
T ]′, F sj = [fsj,1, ..., f

s
j,T ]′ and

the upper index (ss) denotes the lower-right (ksj , k
s
j ) block of a matrix.

Proof: See Appendix 3.8.4.

From Theorem 2 a linear transformation of vector f̂ ct (resp. f̂ c∗t ) estimates the common factor f ct at a rate
1/
√
N1 (resp. 1/

√
N2). The variance of the asymptotic Gaussian distribution is the upper-left (c, c) block of

matrix Σu,1 (resp. Σu,2), i.e. the asymptotic variance of the estimation error u1,t (resp. u2,t) for the PC vector
in group 1 (resp. group 2). The estimation error for recovering the common factors from the group PC’s is of
order 1/

√
NT , and therefore asymptotically negligible. The estimator f̂sj,t approximates the residual of the

sample projection of the group-j specific factor on the common factor, up to a linear transformation, at rate
1/
√
Nj .

Let us now derive the asymptotic distribution of the factor loadings estimators.13 Define the matrices:

Φj,i = lim
T→∞

1

T

T∑
t=1

T∑
r=1

E[fj,tf
′
j,r]cov(εj,i,t, εj,i,r), (3.4.17)

Ψj = lim
T→∞

1

T

T∑
t=1

T∑
r=1

E
[
fsj,tf

s′
j,r ⊗ f ct f c′r

]
. (3.4.18)

Theorem 3. Under Assumptions 1 - 6 we have:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

d−→ N
(

0,Φ
(cc)
j,i + (λs′j,i ⊗ Ikc)Ψj(λ

s
j,i ⊗ Ikc)

)
, (3.4.19)

√
T

[(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

]
d−→ N

(
0,Φ

(ss)
j,i

)
, (3.4.20)

for any j, i, where Ĥc and Ĥs,j , j = 1, 2, are the same non-singular matrices of Theorem 2.

Proof: See Appendix 3.8.4.

The factor loadings are estimated at rate
√
T . To get a feasible distributional result for the statistic ξ̂(kc),

we need consistent estimators for the unknown matrices Σ̃cc, ΣU,N and ΩU in Theorem 1. To simplify the
analysis, we assume at this stage that the errors εj,it are uncorrelated across subpanels j, individuals i and
dates t (Assumption 7). 14 Then, we have:

ΣU,N = µ2
NΣ

(cc)
u,1 + Σ

(cc)
u,2 , ΣU (0) = µ2Σ

(cc)
u,1 + Σ

(cc)
u,2 , ΩU = 2tr

{
ΣU (0)2

}
. (3.4.21)

In Theorem 4 below, we replace Σ̃cc, ΣU,N and ΣU (0) by consistent estimators, such that the estimation
error for tr(Σ̃−1

cc ΣU,N ) in the bias adjustment is op(1/
√
T ). Therefore, the asymptotic distribution of the

statistic is unchanged.

13We assume that f̂ct is used for the estimation of the factor loadings. The distribution of the loadings estimators is analogous
when using f̂c ∗t as common factor estimator.

14If the errors are weakly correlated across series and/or time, consistent estimation of ΣU,N and ΩU requires thresholding of
estimated cross-sectional covariances and/or HAC-type estimators.
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Theorem 4. Let Σ̂U = (N2/N1)Σ̂
(cc)
u,1 + Σ̂

(cc)
u,2 , with

Σ̂u,j =

(
Λ̂′jΛ̂j

Nj

)−1(
1

Nj
Λ̂′jΓ̂jΛ̂j

)(
Λ̂′jΛ̂j

Nj

)−1

, j = 1, 2, (3.4.22)

where Γ̂j = diag(γ̂j,ii, i = 1, ..., Nj), and Λ̂j = [Λ̂cj
... Λ̂sj ], where Λ̂cj and Λ̂sj , with j = 1, 2, are the loadings

estimators defined in equations (3.3.3) and (3.3.4), and

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,it, (3.4.23)

where ε̂j,it = yj,it− λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t. Moreover, let Σ̂cc =
1

T

T∑
t=1

f̂ ct f̂
c ′
t be the estimator of Σ̃cc. Then, under

Assumptions 1 - 7, and the null hypothesis H0 = H(kc) of kc common factors, we have:

ξ̃(kc) := N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂−1
cc Σ̂U

}]
d−→ N (0, 1) . (3.4.24)

Proof: See Appendix 3.8.5.

The feasible asymptotic distribution in Theorem 4 is the basis for a one-sided test of the null hypothesis of
kc common factors. If ξ̃(kc) < −1.64, this null hypothesis is rejected at 5% level against the alternative
hypothesis of less than kc common factors.

3.4.2 Main asymptotic results for the mixed frequency factor model

In this section we give the asymptotic distribution for estimators of factor values in the mixed frequency
factor model. The asymptotics is for NH , NL, T → ∞, such that NL ≤ NH ,

√
NH/T = o(1), NL/T =

o(1). Define the matrices:

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M, (3.4.25)

where λ′1,i is the i-th row of the (NH , k
C + kH) matrix Λ1 = [ ΛHC

... ΛH ].

Theorem 5. Under Assumptions 1 - 8 we have:√
NH(ĤcĝCm,t − gCm,t)

d−→ N
(

0, [Σ−1
Λ,1Ω∗Λ,mΣ−1

Λ,1](CC)
)
,(3.4.26)√

NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0, [Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1](HH)

)
,(3.4.27)

for any m, t, where Ĥc and Ĥ1,s are the same non-singular matrices of Theorem 2, ḡC = [ḡC1 , ..., ḡ
C
T ]′,

ḡH = [ḡH1 , ..., ḡ
H
T ]′, ΣΛ,1 = lim

NH→∞

1

NH

NH∑
i=1

λ1,iλ
′
1,i, and indices (CC) and (HH) denote the upper-left

(kC , kC) block and lower-right (kH , kH) block of a matrix, respectively.
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Proof: See Appendix 3.8.6.

From Theorem 5, a linear transformation of vector ĝCm,t, resp. ĝHm,t, estimates the common factor gCm,t,
resp. the residual of the sample projection of the high-frequency factor on the common factor. The estimation
rate is

√
NH . There is no asymptotic effect from the error-in-variable problem induced by using estimated

factor loadings in the cross-sectional regression when T/NH = o(1). The asymptotic distribution of the
estimator ˆ̄gLt of the aggregated low-frequency factor is deduced from Theorem 2.

3.5 Empirical application

It is worth summarizing the procedure underpinning the empirical analysis, for the benefit of the readers who
skipped the previous sections. This is done in a first subsection.

3.5.1 Practical implementation of the procedure

We first assume that kC , kH , kL, the number of respectively common, high and low frequency factors in
equation (3.2.1), are known and all strictly larger than zero. The identification strategy presented in Section
3.2 directly implies a simple estimation procedure for the factor values and the factor loadings, which consists
of the three following steps:

1. PCA performed on the HF and LF panels separately
Define the (T,NH) matrix of temporally aggregated (in our application flow-sampled) HF observ-
ables as XH = [xH1 , ..., x

H
T ]′, and the (T,NL) matrix of LF observables as XL = [xL1 , ..., x

L
T ]′.

The estimated pervasive factors of the HF data, which are collected in (T, kC + kH) matrix ĥH =
[ĥH,1, ..., ĥH,T ]′, are obtained performing PCA on the HF data:(

1

TNH
XHXH′

)
ĥH = ĥH V̂H , (3.5.1)

where V̂H is the diagonal matrix of the eigenvalues of (TNH)−1XHXH′. Analogously, the estimated
pervasive factors of the LF data, which are collected in the (T, kC +kL) matrix ĥL = [ĥL,1, ..., ĥL,T ]′,
are obtained performing PCA on the LF data:(

1

TNL
XLXL′

)
ĥL = ĥLV̂L, (3.5.2)

where V̂L is the diagonal matrix of the eigenvalues of (TNL)−1XLXL′.

2. Canonical correlation analysis performed on estimated principal components
Let ŴC

U be the (kC + kU , kC) matrix whose columns are the canonical directions for ĥU,t associated
with the kC largest canonical correlations between ĥH and ĥL, for U = H,L. Then, the estima-
tor of the (in our application flow sampled) common factor is ˆ̄gCt = ŴC ′

U ĥU,t, for U = H,L and
t = 1, ..., T , and the estimated loadings matrices Λ̂HC and Λ̂C are obtained from the least squares
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regressions of xHt and xLt on estimated factor ˆ̄gCt . Collect the residuals of these regressions:

ˆ̄ξHt = xHt − Λ̂HC ˆ̄gCt ,

ˆ̄ξLt = xLt − Λ̂LC ˆ̄gCt ,

in the following (T,NU ), with U = H,L, matrices:

Ξ̂U =
[

ˆ̄ξU ′1 , ..., ˆ̄ξU ′T

]′
, U = H,L.

Then the estimators of the HF-specific and LF-specific factors, collected in the (T, kU ), U = H,L,
matrices:

ĜU =
[
ˆ̄gU ′1 , ..., ˆ̄gU ′T

]′
, U = H,L,

are obtained extracting the first kH and kL PCs from the matrices:(
1

TNU
Ξ̂U Ξ̂U ′

)
ĜU = ĜU V̂ U

S , U = H,L,

where V̂ U
S , with U = H,L are the diagonal matrices of the associated eigenvalues. Next, the esti-

mated loadings matrices Λ̂H and Λ̂C are obtained from the least squares regression of ξ̂Ht and ξ̂Lt on
respectively the estimated factors ˆ̄gHt and ˆ̄gLt .

3. Reconstruction of the common and high frequency-specific factors
The estimates of the common and HF-specific factors for each HF subperiod, denoted by ĝCm,t and
ĝHm,t, for any m = 1, ...,M and t = 1, ..., T , are obtained by cross-sectional regression of xm,t on the

estimated loadings [Λ̂HC
... Λ̂H ] obtained from the second step.

Inference on the number of common, low and high-frequency specific factors proceeds as follows:

• Suppose that kX := kC + kH and kY := kC + kL, i.e. the numbers of pervasive factors in panels X
and Y , are known (consistent estimators: ICp1 and ICp2 criteria of Bai and Ng(2002)).

• Let k∗ := min(kX , kY ), we develop a test for:

H0 : kC = r against H1 : kC < r,

for any given r = k∗, k∗ − 1, ..., 1.

• We use the statistic defined in equation (3.3.5), namely: ξ̂(r) =
∑r

`=1 ρ̂`, where ρ̂`, ` = 1, ..., r, are
the r largest canonical correlations between ĥH,t and ĥL,t (i.e. the empirical analogs of hH,t and hL,t).
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3.5.2 Data description

The data consists of a combination of IP and non-IP sectors. For industrial production we use the same
data on 117 IP sectoral indices considered by Foerster, Sarte, and Watson (2011), sampled at quarterly
frequency from 1977.Q1 to 2011.Q4.15 These indices correspond to the finest level of disaggregation for the
sectoral components of the IP aggregate index which can be matched with the available sectors in the Input-
Output and Capital Use tables used in the structural analysis in Section 3.5.4. The data for all the remaining
non-IP sectors consist of the annual growth rates of real GDP for the following 42 sectors: 35 services,
Construction, Farms, Forestry-Fishing and related activities, General government (federal), Government
enterprises (federal), General government (state and local) and Government enterprises (state and local).
These LF data are available from 1977 until 2011 and are published by the Bureau of Economic Analysis
(BEA).16 Moreover, as IP is a Gross Output measure, in the structural analysis it is convenient to consider
the yearly growth rates of real Gross Output (GO) for the non-IP sectors. These data are available from 1988
until 2011 and are also published by the BEA. Following the sectoral productivity literature, in the structural
analysis we focus exclusively on the private sectors, and therefore exclude four Government Gross Output
indices, reducing the sample size to 38 non-IP sectors indices. All growth rates refer to seasonally adjusted
real output indices, and are expressed in percentage points.17

Figure 3.2: Growth rates of the Industrial Production and Gross Domestic Product indices
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Figure 3.2 displays the growth rates of the aggregate Industrial Production (dotted (blue) quarterly data) and
15The IP data are available also at monthly frequency. Following Foerster, Sarte, and Watson (2011), we focus only on quarterly

IP data, as they share the main feature of the monthly ones, but are less noisy.
16GDP data are available at quarterly frequency for the aggregate index, but not for sectoral ones. As in the remaining part of the

paper we study comovements among different sectors, we consider the panel of yearly GDP sectoral data.
17A detailed description of the dataset is provided in Appendix C 3.9.3.
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Gross Domestic Product (solid line (red) annual data) indices over the sample period from 1977 until 2011.
The objective of this empirical application is to use our mixed frequency factor model to capture the major
sources of comovement among the sectoral constituents of these two indices, which are the most reliable
measures of US economic activity.

3.5.3 Factors common to all US sectors

We assume that our dataset follows the factor structure for flow sampling as in equation (3.2.2), with xHm,t
and xLt corresponding to respectively quarterly IP and annual non-IP data. Let XH = [xH1 , ..., x

H
T ]′, with

xHt :=
∑4

m=1 x
H
m,t, be the (T,NH) panel of the yearly observations of the IP indices growth rates (computed

as the sum of the quarterly growth rates xHm,t, m = 1, ..., 4 for year t), and let XL = [xL1 , ..., x
L
T ]′ be the

(T,NL) panel of the yearly growth rates of the non-IP indices. Let alsoXHF = [xH1,1, x
H
2,1, ..., x

H
m,t, ..., x

H
4,T ]′

be the (4T,NH) panel of IP indices quarterly growth rates.
We start by selecting the number of factors in each subpanel, which are of dimensions kX = kC + kH

and kY = kC + kL, respectively. We use the ICp2 information criteria of Bai and Ng (2002), and report the
results in Table 3.1. Results for other criteria are in Appendix C 3.9.5.

Table 3.1: Estimated number of factors

XHF XH XL [ XH XL ]

IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011

ICp2 1 2 1 1

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

ICp2 1 1 2 2

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels. SubpanelsXHF
and XH correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels XL and [ XH XL ] correspond to
non-IP data, and the stacked panels of IP and non-IP data, respectively. We use kmax = 15 as maximum number of factors when
computing ICp2.

Table 3.1 corroborates the evidence in Foerster, Sarte, and Watson (2011) suggesting that there is either one
or perhaps two pervasive factors in the IP data (kX = 1 or kX = 2). Likewise, for the non-IP data, we also
find evidence in favor of either one or two pervasive factors (kY = 1 or kY = 2).

Table 3.2: Canonical Correlations and Tests for Common Factors

ρ̂1 ρ̂2 ξ̃(2) ξ̃(1)

0.84 0.06 -3.56 -1.56

IP data: 1977.Q1-2011.Q4, Non-IP data: GDP, 1977-2011. We report the two largest canonical correlations among the PCs com-
puted from each subpanel of IP and non-IP data, and the values of ξ̃(r), the feasible standardized value of the test statistic ξ̂(r), for
the null hypothesis of r = 2 or r = 1 common factors, respectively.
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Table 3.3: Adjusted R2 of regressions on common factors from indices growth rates

Panel A
R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Domestic Product, 1977-2011

common -2.2 -0.5 11.5 28.9 42.9
common, LF-spec. 0.1 9.2 25.4 34.5 60.3
LF-spec. -2.8 -2.3 5.7 15.7 22.4

Observables: IP, 1977.Q1-2011.Q4

common 0.3 4.8 20.3 36.0 60.0
common, HF-spec. 1.1 6.8 28.7 45.3 63.4
HF-spec. -0.7 -0.1 3.0 11.2 23.5

Panel B
R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.0 6.6 28.2 45.6 64.5
common, LF-spec. 2.8 15.2 45.0 63.7 70.8
LF-spec. -4.5 -3.8 3.2 13.4 40.7

Observables: IP, 1988.Q1-2011.Q4

common 0.1 3.5 10.5 29.8 48.2
common, HF-spec. 0.8 7.9 28.2 43.2 65.4
HF-spec. -0.8 2.0 10.0 21.9 33.9

Panel A. The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables, while
those in the last tree lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory variables are
factors estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period
for the estimation of both the factor model and the regressions is 1977-2011. Panel B. The regressions in the first three lines
involve the Gross Output growth rates growth of the 38 non-IP as dependent variables, while those in the last tree lines involve the
growth of the 117 IP indices as dependent variables. The explanatory variables are factors estimated from the same indices using a
mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both the factor model and the
regressions is 1988-2011.

Let us consider the dataset where the HF data are quarterly IP indices, and the LF data are annual GDP non-
IP indices. In order to select the number of common and frequency-specific factors, we follow the procedure
detailed in Section 3.5.1. In Table 3.2 we report the estimated canonical correlations of the first two PC’s
estimated in each subpanel XH and XL, which are used to compute the value of the test statistic ξ̂(r), for
the null hypothesis of r = 2 or r = 1 common factors.18 We note that the first canonical correlation is close
to one, which is consistent with the presence of one common factor in each of the two mixed frequency
datasets considered. The test rejects the null hypothesis r = 2, i.e. the presence of two common factors,
for any significance level, while we cannot reject the null of one common factor with a 5% significance
level. In light of the results in Tables 3.1 and 3.2 we select a model with kC = kH = kL = 1. The
factors are then obtained using the estimation procedure of Section 3.5.1. In Figure 3.3 we plot the estimated
factors from the panels of 42 GDP sectors and 117 IP indices on the entire sample going from 1977 to
2011. All factors are standardized to have zero mean and unit variance, and their sign is chosen so that the
majority of the associated loadings are positive. A visual inspection of the plots in Figure 3.3 reveals that
the common factor in Panel (a) resembles the IP index of Figure 3.2, with a large decline corresponding
to the Great Recession following the financial crisis of 2007-2008 and the positive spike associated to the
recent economic recovery. On the other hand, the LF-specific factor features a less dramatic fall during the
Great Recession, and actually features a positive spike in 2008, followed by large negative values in the
following years. This constitutes preliminary evidence suggesting that some non-IP sectors could feature
different responses to the financial crisis of 2007-2008. The interpretation of factors is easier when they are
used as explanatory variables in standard regression analysis. We start with a disaggregated analysis, and

18We extract the first two PC’s in each subgroup, compute the matrix R̂ as defined in equation 3.3.2 and compute the canonical
correlations as the square root of its two largest eigenvalues.
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Figure 3.3: Sample paths of the estimated common and specific factors
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(a) Common factor
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(b) HF specific factor
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(c) LF specific factor

Panel (a) displays the time series plot of the estimated common factor. Panel (b) displays that of the HF-specific factor and finally
Panel (c) that of the LF-specific factor. The factors are estimated from the panels of 42 non-IP GDP sectors and 117 IP indices using
a mixed frequency factor model with kC = kH = kL = 1. The sample period is 1977.Q1-2011.Q4.

look at the relative importance of the common and frequency specific factors in explaining the variability
across all sectoral growth rates. For each sector in the panel, we regress the index growth rates on (i) the
common factor only, (ii) on the specific factor only, and (iii) on both common and specific factors. In Table
3.3 we report the quantiles of the empirical distribution of the adjustedR2 (denoted R̄2) of these regressions.
In the first and fourth rows of Panels A and B we report the quantiles of R̄2 of the regressions involving
as explanatory variable the common factor only, in the second and fifth rows we report the quantiles of R̄2

when the explanatory variables are the common and frequency-specific factors. Finally, the quantiles of R̄2

in the third and sixth rows refer to regressions where the explanatory variable is the frequency-specific factor
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only.19

From the first three lines of Panel A we observe that adding the LF specific factor to the common factor
regressions for the non-IP indices yields an increment of the median R̄2 around 14%, going from 11.5%
to 25.4%, and for more than 10% of the sectors the R̄2 increases at least by 17%. On the other hand, the
HF-specific factor, when added to the common factor, contributes less to the increments in R̄2 for the IP
sectors. In Panel B we note that for at least half of both the IP and non-IP Gross Output sectoral indices, the
frequency-specific factors contribute to an increase in R̄2 of at least 15% when added to the common factor.
Overall, Table 3 confirms that the common and frequency-specific factors explain a significant part of the
variability of output growth for the majority of the sectors of the US economy. Moreover, the common factor
is pervasive for most of the IP and non-IP sectors alike.

In order to give economic interpretation to the estimated factors, we list in Table 3.4 the top and bottom
ten GDP non-IP sectors in terms of R̄2 when regressed on the common factor only, and both the common
and LF-specific factors. We also report the top and bottom ten GDP non-IP sectors with the highest and
lowest absolute increments in R̄2 when the LF-specific factor is added to the common one.20 From Panel A
we first note that the common factor explains most of the variability of service sectors with direct economic
links to industrial production sectors like Transportation and Warehousing: for instance, Truck Transporta-
tion, Other Transportation & Support Activities, and Warehousing & Storage have an R̄2 of 63%, 43% and
41%, respectively, when regressed on the common factor only. This is a clear indication that the common
factor could be interpreted as IP factor. On the other hand, the common factor is completely unrelated to
Agriculture, forestry, fishing & hunting, most of the Financial and Information services sectors.

Turning to Panel C, we note that the LF-specific factor explains more than 20% of the variability of out-
put for very heterogeneous services sectors like Miscellaneous professional, scientific, & technical services,
Administrative & support services, Legal services, Real Estate, some important financial services like Credit
intermediation, & Related activities, Rental & Leasing Services but also Government (state & local). Inter-
preting these results, we can conclude that the LF-specific factor is completely unrelated to service sectors
which depend almost exclusively on IP output, and is a common factor driving the comovement of non-IP
sectors such as some Services, Construction and Government.

In Table 3.4 we highlight further differences in the dynamics of output growth between the two subsectors
of the financial services industry which are particularly revealing: “Securities” and “Credit intermediation”,
extensively studied by Greenwood and Scharfstein (2013). We find that the subsectors “Funds, trusts, & other
financial vehicles” and “Securities, commodity contracts, & investments” are unrelated to both the common
and LF-specific factors, indicating that their output growth is uncorrelated with the common component
of real output growth across the other sectors of the US economy. In contrast, the “credit intermediation”
industry comoves with the other IP and non-IP sectors.21

Up to this point, we looked at the explanatory power of the factors for sectoral output indices. For both the
non-IP GDP and Gross Output, these indices correspond to the finest level of disaggregation of output growth
by sector. In Table 3.5 we report the results of regressions with aggregated indices instead. In particular,
we regress the output of each aggregate index either on the estimated common factor or the common and
frequency specific factors, and focus on the adjusted R2s of these regressions. It is also important to note

19The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and sixth rows
impose the estimated coefficients of the common and HF-specific factors to be the same for each quarter, as they are estimated as
HF regressions.

20The entire lists of ordered non-IP sectors for the three panels in Table 3.4 is available in Tables 3.17-3.19 in Appendix C.
21See also Tables 3.17 and 3.18 in Appendix C.
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Table 3.5: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors

Panel A Quarterly observations, 1977.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 89.06 5.02 90.26 1.20

Panel B Yearly observations, 1977-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GDP 60.54 8.59 74.21 13.67
GDP - Manufacturing 81.88 -3.03 81.53 -0.35
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -1.26 -2.69
GDP - Construction 44.05 11.22 59.75 15.70
GDP - Wholesale trade 20.35 7.90 30.83 10.48
GDP - Retail trade 30.70 -2.86 28.56 -2.15
GDP - Transportation and warehousing 62.14 -2.95 60.97 -1.17
GDP - Information 12.14 22.28 37.57 25.43
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 21.11 22.53
GDP - Professional and business serv. 30.02 30.21 65.61 35.59
GDP - Educational serv., health care, and social assist. -1.38 18.38 18.18 19.56
GDP - Arts, entert., recreat., accomm., and food serv. 53.51 -2.23 53.70 0.18
GDP - Government -2.12 22.37 20.47 22.59

In the table we report the adjustedR2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected aggregated
sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors (columns R̄2(H) and
R̄2(L)) only, and the common and frequency-specific factors together (column (3)). The last column displays the difference between
the values in the third and first columns. The factors are estimated from the panel of 42 GDP non-IP sectors and 117 IP indices
using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both factor model and
regressions is 1977-2011.

that we also include the GDP Manufacturing aggregate index which is not used in the estimation of the
factors. This will help us with the interpretation of the factors - common and frequency-specific - which we
obtained.

Panel A of Table 3.5 shows that the common factor explains around 90% of the variability in the aggre-
gate IP index. This implies that the common factor can be interpreted as an Industrial Production factor. This
is further corroborated in Panel B where we find an R̄2 around 82% for the regression of the GDP Manufac-
turing Index on the common factor only. As most of the sectors included in the Industrial Production index
are Manufacturing sectors, this result is not surprising, but is still worth noting because, as noted earlier, the
GDP data on Manufacturing have not been used in the factor estimation, in order not to double-count these
sectors in our mixed frequency sectoral panel.22 As expected from the results in Table 3.4, more than 60%
of the variability of GDP of Transportation and Warehousing services index is explained by the common

22A detailed discussion of the difference in the sectoral components of the IP index and the GDP Manufacturing index is provided
in Appendix 3.9.3.
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factor only, and the LF-specific factor has no explanatory power. On the other hand, the HF-specific factor
seems not to be important in explaining the aggregate IP index, as the R̄2 increases only by 1% when it is
added as a regressor to the common factor.23 This suggests that the HF-specific factor is pervasive only for
a subgroup of IP sectors which have relatively low weights in the index, meaning that their aggregate output
is a negligible part of the output of the entire IP sector and, consequently, also the entire US economy.24

Looking at the aggregate GDP index, we first note that even if the weight of Industrial Production sectors
in the aggregate nominal GDP index has always been below 30%, as evident from Figure 3.1, still 60% of its
total variability can be explained exclusively by the common factor which - as shown in Panel A - is primarily
an IP factor. This implies that there must be substantial comovement between IP and some important service
sectors. Moreover, it appears from the first entry in Panel B that a relevant part of the variability of the
aggregate GDP index not due to the common factor is explained by the LF-specific factor (the R̄2 increases
by about 14% to 74%).25 This indicates that significant comovements are present among the most important
sectors of the US economy which are not related to manufacturing. Indeed, Panel B in Table 3.5 indicates
that some services sectors such as Professional & Business Services and Information and Construction load
significantly both on the common and the LF-specific factor, while some other sectors like Finance and
Government load exclusively on the LF-specific factor.26

3.5.4 Structural model and productivity shocks

The macroeconomics literature, with the works of Long and Plosser (1983), Horvath (1998) and Carvalho
(2010), among many others, has recognized that input-output linkages in both intermediate materials and
capital goods lead to propagation of sector-specific shocks in a way that generates comovements across
sectors. An important contribution of the work of Foerster, Sarte, and Watson (2011) is to describe the
conditions under which an approximate linear factor structure for sectoral output growth arises from standard
neoclassical multisector models including those linkages. In particular, they develop a generalized version of
the multisector growth model of Horvath (1998), which allows them to filter out the effects of these linkages,
and reconstruct the time series of productivity shocks using sector data on output growth when input-output
tables for intermediate materials and capital goods are available. We can characterize this as statistical versus
structural factor analysis.

The main objective of this section is to verify the presence of a common factor in the innovations of
productivity for all the sectors (not just IP) of the US economy by means of our mixed frequency factor
model. If a common factor is present also in the productivity shocks, then the factor structure uncovered by
the reduced form analysis of output growth in Section 3.5.3 is not only due to interlinkages in materials and
capital use among different sectors.

We rely on the same multi-industry real business cycle model described in Section IV of Foerster, Sarte,
and Watson (2011) to extract productivity shocks from the time series of the growth rates of the same 117 IP
indices considered in the previous section, and the growth rates of 38 non-IP Gross Output of private sectors,

23See also Table 3.20 in Appendix 3.9.5 for the R̄2 of the regression of all GDP indices on the HF factor only, and all the 3 factors
together.

24These results corroborate the findings of Foerster, Sarte, and Watson (2011), who claim that the main results of their paper are
qualitatively the same when considering either one or two common factors extracted from the same 117 IP indices of our study.

25See the results in Table 3.20 in Appendix C.
26The results change when we look at Finance sector disaggregated in Credit Intermediation, “Securities”, Insurance and Real

estate, as evident in Table 3.4.
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therefore excluding the 4 Government indices considered previously.27 One challenge due to the mixed
frequency nature of our output growth dataset consists in the extraction of mixed frequency technological
shocks. In Appendix C 3.9.4 we explain how to adapt the algorithm proposed by Foerster, Sarte, and Watson
(2011) to estimate technological shocks for our mixed frequency output series. Specifically, the multi-sector
business cycle model that we use to filter out the technological shocks correspond to the “Benchmark” model
considered by Foerster, Sarte, and Watson (2011) in their Section IV, while the data on input-output and
capital use matrices necessary to estimate the model are built from the BEA’s 1997 “use table” and “capital
flow table”, respectively.28 Using the extracted productivity shocks for the IP and non-IP sectors, denoted
ε̂Hm,t and ε̂Lt , respectively, we estimate a mixed frequency factor model with these productivity shock series.
The sample period for the estimation of both the factor model and the regressions is 1989-2011, because the
productivity shocks can not be computed for the first year of the sample (see Foerster, Sarte, and Watson
(2011), especially equation (B38) on page 10 of their Appendix B). For a direct comparison between the
statistical factor model covered in the previous subsection and the structural factor analysis, we need to
first re-estimate our model with one common, one HF-specific and one LF-specific factors on the panels of
growth rates of annual Gross Output non-IP indices (as opposed to the GDP growth indices in Table 3.5) and
the same 117 quarterly sectoral IP indices. The results are reported in Table 3.6.

For the moment we focus exclusively on the shaded areas of Table 3.6, as the non-shaded areas pertain
to the productivity shocks which will be covered later. We expect some difference with the previous results
for at least two reasons. First, the dataset in which the non-IP data are Gross Output indices, refers to shorter
time period going from 1988, instead of 1977, to the end of 2011, as Gross Output indices are not available
before 1988. Second, as the panel in Table 3.6 does not include the four governmental sectors, we expect that
the common and frequency-specific factors may have different dynamics when compared to those extracted
from the panel with GDP non-IP sectors.

We obtain qualitatively similar results, as shown in Table 3.6. There appear to be only two notable
differences with the results reported in Table 3.5. We see an increased importance of the HF-specific factor
in explaining the variability of the IP aggregate index (see Panel A in Table 3.6), at the expense of a lower
explanatory power for the common factor. Moreover, there is also an increased importance of both the
common and LF-specific factors in explaining the total variability of total aggregate output (measured as
total Gross Output, in the first line of Panel B in Table 3.6). Still the common factor explains roughly 65 %
of the variation in the panel of IP data.

What do we learn from the structural analysis with common and frequency-specific factors of produc-
tivity shocks? First, it is remarkable to find that again there is one common factor in productivity shocks.
Indeed, the selection of the number of common factors is performed as in the previous section, and our
testing methodology suggests the presence of one common factor. Therefore we estimate a model for the
productivity innovations with kC = kH = kL = 1.29 As in the previous section, we start with a disaggregated
analysis and look at the relative importance of the new common and frequency specific factors in explaining
the variability of the constituents of the panel of productivity innovations, and the panels of all output growth
rates used for the extraction of the productivity innovation themselves. For each sector, we regress both the
productivity innovations and the index growth rates on the common factor only, on the specific factor only,
and on both common and specific factors. In Table 3.7 we report the quantiles of the empirical distribution

27The exclusion of the public sector from the analysis is a standard choice in the sectoral productivity literature.
28The last year for which sectoral capital use tables have been constructed by the BEA is 1997.
29The values of the penalized selection criteria of Bai and Ng (2002) performed on different subpanels and the test for the number

of common factors are available in Tables 3.22 and 3.23 in Appendix C 3.9.5.
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Table 3.6: Adj. R2 of aggregate IP and selected Gross Output indices growth rates on estimated factors
(shaded) and estimated factors from productivity innovations

Panel A Quarterly observations, 1988.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Industrial Production 63.71 38.32 89.48 25.78
31.21 50.15 77.25 46.05

Panel B Yearly observations, 1988-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GO (all sectors) 68.54 12.20 89.66 21.12
42.17 13.97 57.60 15.43

GO - Manufacturing 86.08 -3.05 88.94 2.86
62.29 -0.20 64.42 2.13

GO - Agriculture, forestry, fishing, and hunting -3.21 3.35 -0.25 2.96
0.96 -4.23 -3.35 -4.31

GO - Wholesale trade 80.82 -3.85 79.97 -0.85
74.73 -3.08 74.74 0.01

GO - Construction 25.30 34.16 67.15 41.84
6.64 20.55 27.78 21.14

GO - Retail trade 64.72 -4.50 63.15 -1.57
47.02 -4.35 45.04 -1.98

GO - Transportation and warehousing 83.82 -4.51 83.22 -0.60
70.42 -2.69 70.58 0.15

GO - Information 33.70 38.59 81.54 47.84
17.78 42.45 61.76 43.98

GO - Finance, insurance, real estate, rental, and leasing 3.37 50.30 59.29 55.92
-4.09 17.55 13.96 18.05

GO - Professional and business services 45.13 21.97 75.48 30.36
25.17 44.89 71.81 46.64

GO - Educational serv., health care, and social assist. -4.19 -1.58 -6.17 -1.98
-4.73 -4.48 -9.66 -4.93

GO - Arts, entert., recreat., accomm., and food serv. 71.06 -3.74 71.90 0.84
55.64 -2.29 55.49 -0.16

In the table we display the adjusted R2, denoted R̄2, of the regressions of growth rates of the aggregate IP index and selected
aggregated sectoral Gross Output non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors
(columns R̄2(H) and R̄2(L))only, and the common and frequency-specific factor together (column (3)). The last column displays
the difference between the values in the third and first columns. The factors are estimated from the panel of 38 Gross Output non-IP
sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation
of both factor model and regressions is 1988-2011.
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Table 3.7: Adjusted R2 of regressions on common factors from productivity innovations

Panel A
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output productivity innovations, 1989-2011

common -3.3 -0.3 11.0 33.6 46.1
common, LF-spec. -2.6 4.8 26.3 45.0 60.7
LF-spec. -4.2 -3.6 -0.1 17.7 33.1

Observables: IP productivity innovations, 1989.Q1-2011.Q4

common -1.0 -0.4 1.5 12.1 22.4
common, HF-spec. -0.6 3.1 13.1 28.4 40.1
HF-spec. -0.7 0.6 6.2 18.7 28.2

Panel B
Adjusted R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: Gross Output, 1988-2011

common -2.4 3.7 21.2 31.5 55.8
common, LF-spec. -0.9 7.8 28.2 56.9 68.0
LF-spec. -4.6 -3.3 1.3 20.6 43.8

Observables: IP,1988.Q1-2011.Q4

common -0.8 0.2 4.5 17.7 34.7
common, HF-spec. 1.2 5.9 25.7 40.8 63.8
HF-spec. -0.3 2.2 14.7 29.2 37.8

Panel A: The regressions in the first three lines involve the productivity innovations of the 38 non-IP sectors as dependent variables,
while the regressions in the last tree lines involve the productivity innovations of the 117 IP indices as dependent variables.
Productivity innovations are computed using the panel of Gross Output growth rates for the LF observables. The explanatory
variables are factors estimated from a mixed frequency factor model with kC = kH = kL = 1, on the panels of productivity
innovations filtered adapting the procedure of Foerster, Sarte, and Watson (2011). The sample period for the estimation of both the
factor model and the regressions is 1989.Q1-2011.Q4. Panel B: The regressions in the first three lines involve the Gross Output
growth rates of the 38 non-IP sectors as dependent variables, while the regressions in the last tree lines involve the growth of the
117 IP indices as dependent variables. The explanatory variables are the same factors used in the regressions of Panel A. The
sample period for the estimation of both the factor model and the regressions is 1989.Q1-2011.Q4. Productivity innovations are
computed using the panel of Gross Output growth rates for the LF observables.

of R̄2 of these regressions.30

Panel A of Table 3.7 confirms that both the common and the frequency-specific factors are pervasive
for the panels of productivity innovations. From the first two rows we note that the common factor alone
explains at least 11% of the variability of half of the non-IP series considered, and this fraction increases to
more than 26 % when the LF-specific factor is added as regressor to the common one. On the other hand,
from the last three rows of we note that for the panels of IP the high frequency specific factor seems to explain
the majority of the variability of the productivity indices, while the explanatory power of the common factor
only seem to be significant only for 50% of the IP sectors. Panel B reports the R̄2 of the regressions of the
GO indices growth rates on the factors estimated on the panels of productivity shocks themselves. Therefore,
they give an indication of the fraction of variability of the indices explained by the common components of
the output growth which is not due to input-output linkages between sectors, as captured by the structural
“Benchmark” of Foerster, Sarte, and Watson (2011). Panel B of Table 3.7 can be compared with Panel B of
Table 3.3. As expected, as part of the comovement among different sectors is due to input-output and capital
use linkages, all the R̄2 in Panel B of Table 3.7 are strictly lower than those in Table 3.3, if we exclude the
negative ones and those very close to zero. For instance the median R̄2 of regressions including the common
only factor for the non-IP sectors decrease from 28% to 21%, and median R̄2 of regressions including the
common and LF-specific factors decreases from 45% to 28%. A similar pattern is observed for the higher
quantiles, and for the IP indices. Overall, Panel B gives a first indication of the presence of commonality in

30The regressions in the second and third rows are restricted MIDAS regressions. The regressions in fourth, fifth and sixth rows
impose the estimated coefficients of the common and HF-specific factors to be the same at each quarter, as they are estimated as HF
regressions.
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the comovement on the majority of the sectors of the US economy even when the output growth rates are
purged of the input-output linkages in both intermediate materials and capital goods.

We conclude the analysis repeating the same exercise of Table 3.6 shaded areas, and regress the Indus-
trial Production and aggregate (mostly non-IP) Gross Output indices growth on the factors extracted from
productivity innovations and look at the adjusted R2s in the non-shaded rows of Table 3.6. From Panel A
we observe that the common extracted from productivity innovations explains around 31% of the variabil-
ity of the aggregate IP index, i.e. around half of the variability explained by the common factor extracted
directly from the output series. Moreover, when the high frequency-specific productivity factor is added as
explanatory variable, the R̄2 increases to 77% which is also significantly smaller than the 89% R̄2 obtained
using as regressors the factors extracted from the output series.31 Hence, the case of a common pervasive
factor in innovation shocks across the entire economy mainly related to IP sector technology shocks is less
compelling. From Panel B we observe that 42% of the variability of the aggregate Gross Output of the US
economy can be explained by the common factor of productivity shocks, and when the factor specific to
non-IP sector is added, the R̄2 grows to 57%.

From this analysis we learn something interesting which Foerster, Sarte, and Watson (2011) were not able
to address since they exclusively examined IP sectors. Overall there is a difference in the explanatory power
of factors in structural versus non-structural factor models - as they found. However, it seems that looking
at technology shocks instead of output, it does not appear that a common factor explaining IP fluctuations
is a dominant factor for the entire economy. A factor specific to technological innovations in IP sectors is
more important for the IP sector shocks and a low frequency factor which appears to explain variation in
information industry as well as professional and business services innovations plays, relatively speaking, a
more important role.

31See in particular Panel A of Table 3.6. This result is in line with the findings of Foerster, Sarte, and Watson (2011) in their
Section IV C.
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3.5.5 Subsample analysis

Our sample covers what is known as the Great Moderation, which refers to a reduction in the volatility of
business cycle fluctuations starting in the mid-1980s. We turn therefore to analyzing subsamples. We start
by selecting the number of pervasive factors in each subpanel, using the ICp2 information criteria, and report
the results in Table 3.8. In Table 3.9 we report the canonical correlation analysis common factor tests. We
consider two subsample configurations: 1984.Q1-2007.Q4 and 1984.Q1-2011.Q4. The former is the Great
Moderation sample considered by Foerster, Sarte, and Watson (2011) whereas the second is an augmented
subsample including the Great Depression. In light of the results in Tables 3.8 and 3.9 we select a model with
kC = kH = kL = 1, for both subsamples. The factors for both datasets are obtained using the estimation
procedure described in Section 3.5.1.32

Table 3.8: Estimated number of factors for different subsamples

XHF XH XL [ XH XL ]

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

ICp2 1 2 1 1

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

ICp2 1 2 1 1

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels and different
sample periods. Subpanels XHF and XH correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels
XL and [ XH XL ] correspond to non-IP data, and the stacked panels of IP and non-IP data, respectively. We use kmax = 15 as
maximum number of factors when computing ICp2.

Table 3.9: Canonical Correlations and Tests for Common Factors

ρ̂1 ρ̂2 ρ̂3 ξ̃(3) ξ̃(2) ξ̃(1)

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

0.81 0.13 - - -6.61 -2.98
0.87 0.57 0.45 -3.15 -2.74 -1.03

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

0.70 0.33 - - -1.67 -1.28

We report the canonical correlations of the first two PCs computed in each subpanel of IP and non-IP data, and the values of ξ̃(r),
the estimated value of the test statistic ξ̂(r), for the null hypothesis of r = 3, 2, 1 common factors, respectively.

32For the shorter sample 1984.Q1-2007.Q4, selecting a model with k1 = k2 = 3 pervasive factors in each subpanel, we reject the
null hypotheses of 3 and 2 common factor, while we cannot reject the null of 1 common factor. Regression results for kC = 1 and
kH = kL = 2 are very similar than those presented in Table 3.10, i.e. for a model with kC = kH = kL = 1 factors, and therefore
are omitted.
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Table 3.10: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H)

Panel A Quarterly observations IP

IP 1984.Q1-2007.Q4 72.48 10.58 80.02 7.54
IP 1984.Q1-2011.Q4 80.11 16.83 88.87 8.76

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

Panel B Yearly observations, 1984-2007

GDP 29.22 39.24 76.71 47.49
GDP - Manufacturing 70.69 -3.85 71.18 0.50
GDP - Agriculture, forestry, fishing, and hunting 0.81 -0.87 0.51 -0.30
GDP - Construction 13.02 50.30 70.39 57.37
GDP - Wholesale trade -4.40 21.36 18.09 22.49
GDP - Retail trade -0.44 58.14 62.65 63.09
GDP - Transportation and warehousing 41.43 11.16 52.02 10.59
GDP - Information -4.37 -4.10 -8.83 -4.46
GDP - Finance, insurance, real estate, rental, and leasing -3.78 -0.60 -4.78 -1.00
GDP - Professional and business services 4.89 56.09 67.06 62.18
GDP - Educational serv., health care, and social assist. -3.81 3.31 -0.20 3.61
GDP - Arts, entert., recreat., accomm., and food serv. 13.66 37.32 57.01 43.35
GDP - Government 0.74 14.51 14.83 14.09

Panel C Yearly observations, 1984-2011

GDP 56.33 14.88 77.87 21.55
GDP - Manufacturing 83.78 -3.85 83.37 -0.41
GDP - Agriculture, forestry, fishing, and hunting -3.64 -2.65 -6.59 -2.95
GDP - Construction 40.54 21.76 68.61 28.07
GDP - Wholesale trade 23.62 10.48 37.71 14.09
GDP - Retail trade 20.70 6.76 30.39 9.69
GDP - Transportation and warehousing 65.17 1.10 67.14 1.97
GDP - Information 6.20 9.23 17.35 11.14
GDP - Finance, insurance, real estate, rental, and leasing -1.95 5.04 3.68 5.64
GDP - Professional and business services 27.59 30.75 64.39 36.80
GDP - Educational serv., health care, and social assist. -0.73 -0.90 -2.00 -1.27
GDP - Arts, entert., recreat., accomm., and food serv. 56.94 1.56 62.97 6.03
GDP - Government 0.50 18.75 19.03 18.53

In the table we report the adjustedR2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected aggregated
sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors (columns R̄2(H) and
R̄2(L)) only, and the common and frequency-specific factor together(column (3)). The last column displays the difference between
the values in the third and first columns. The factors are estimated from the panel of 42 GDP non-IP sectors and 117 IP indices
using a mixed frequency factor model with kC = kH = kL = 1. The sample periods for the estimation of both factor model and
regressions are 1984-2007 (Great Moderation), and 1984-2011.
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In Table 3.10 we report the results of regressions of aggregated version of the indices used for the es-
timation on the same factors considered in the full samples. This allows us to understand if, and to what
extent, the most important sectors of the US economy comoved over the different subsamples. Again, we
regress the output of each aggregate index on the estimated common factor only, the common and frequency
specific factors, and concentrate our attention on the adjusted R2s of these regressions. The results in Table
3.10 indicate that in general there is a deterioration of the overall fit of approximate factor models during the
Great Moderation, i.e. during the sample starting in 1984 and ending 2007 – a finding also reported by Foer-
ster, Sarte, and Watson (2011) – and that the common factor plays a lesser role during the Great Moderation.
According to the results in Panel A, the common factor only explains roughly 72 % of the variation across
IP sectors, but interestingly when the financial crisis is added to the Great Moderation subsample, we see
again a pattern closer to the full sample results reported in the previous subsection. This also transpires from
Panels B and C, when examining the total GDP variations projected on the common factor. During the Great
Moderation the common factor only explained around 30 %, which goes to 56 % when we add the Great
Depression. The other patterns, i.e. the exposure of the various subindices, appear to be similar to those in
the full sample.

3.6 Conclusions

Panels with data sampled at different frequencies are the rule rather than the exception in economic applica-
tions. We develop a novel approximate factor modeling approach which allows us to estimate factors which
are common across all data regardless of their sample frequency, versus factors which are specific to subpan-
els stratified by sampling frequency. To develop the generic theoretical framework, we cast our analysis into
a group factor structure and develop a unified asymptotic theory for the identification of common and group-
or frequency-specific factors, for the determination of the number of common and specific factors, for the
estimation of loadings and the factors via principal component analysis in a setting with large dimensional
data sets, using asymptotic expansions both in the cross-sections and the time series.

There are a plethora of applications to which our theoretical analysis applies. We selected a specific ex-
ample based on the work of Foerster, Sarte, and Watson (2011) who analyzed the dynamics of comovements
across 117 industrial production sectors using both statistical and structural factor models. We revisit their
analysis and incorporate the rest, and most dominant part of the US economy, namely the non-IP sectors
which we only observe annually.

Despite the generality of our analysis, we can think of many possible extensions, such as models with
loadings which change across subperiods (i.e. periodic loadings) or loading which vary stochastically or
feature structural breaks. All these extensions are left for future research.
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3.7 Appendix A: Identification with stock sampling and assumptions

3.7.1 Identification: stock sampling

In the case of stock sampling, the low frequency observations of xL∗m,t in the factor model (3.2.1) are the
values of xL∗M,t, i.e. xLt = yL∗M,t. Then, the model for the observable variables becomes:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLCg
C
M,t + ΛLg

L
M,t + eLM,t.

We stack the observations xm,t and yt of the last high frequency subperiod and write:[
xHt
xLt

]
=

[
ΛHC ΛH 0
ΛLC 0 ΛL

] gCM,t

gHM,t

gLM,t

+

[
eHM,t

eLM,t

]
. (3.7.1)

This equation corresponds to a group factor model, with common factor gCM,t and “group-specific" factors
gHM,t, g

L
M,t. Therefore, the factor values gCM,t, f

H
M,t, f

L
M,t, and the factor loadings ΛHC , ΛLC , ΛH , ΛL, are

identifiable up to a sign as proved in Section 3.2.1 (see also results in e.g. Schott (1999), Wang (2012), Chen
(2010, 2012)).

Once the factor loadings are identified from (3.7.1), the values of the common and high frequency factors
for subperiods m = 1, ...,M − 1 are identifiable by cross-sectional regression of the high frequency data on
loadings ΛHC and ΛH in (3.2.1). More precisely, gCm,t and gHm,t are identified by regressing xHim,t on λHC,i
and λH,i across i = 1, 2, ..., NH , for any m = 1, ...,M − 1 and any t. To summarize, with stock sampling,
we can identify the common factor gCm,t and the high frequency factor gHm,t at all high frequency subperiods.
We cannot estimate gLm,t, for m < M, as only gLM,t is identified by the last paired panel data set consisting
of xHM,t combined with xLt . This is not surprising, since we have no HF observation available for the LF
process.

3.7.2 Assumptions: group factor model

Let ‖A‖ =
√
tr(A′A) denote the Frobenius norm of matrix A. Let kF = kc + ks1 + ks2, and define the

kF -dimensional vector of factors: Ft = [ f c ′t , fs ′1,t , f
s ′
2,t ]′, and the (T, kF ) matrix F = [ F ′1, ..., F

′
T ]′. We

make the following assumptions:

Assumption A. 1. The unobservable factor process is such that F ′F/T = ΣF + Op(1/
√
T ) as T → ∞,

where ΣF is a positive definite (kF × kF ) matrix defined as:

ΣF =

 Ikc 0 0
0 Iks1 Φ

0 Φ′ Iks2

 . (3.7.2)

Assumption A. 2. The loadings matrices Λ1 =

[
Λc1

... Λs1

]
and Λ2 =

[
Λc2

... Λs2

]
are full column-rank,

for N1, N2 large enough. The loadings λj,i are such that:

Λ′jΛj

Nj
= ΣΛ,j +O

(
1√
Nj

)
, j = 1, 2, (3.7.3)
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where ΣΛ,j := lim
Nj→∞

(
Λ′jΛj

Nj

)
is a p.d. (kj , kj) matrix, for j = 1, 2.

Assumption A. 3. The error terms (ε1,it ε2,it)
′ are weakly dependent across i and t, and such thatE[εj,it] =

0.

Assumption A. 4. There exists a constant Cε such that E[ε4
j,it] ≤ Cε for all j, i and t.

Assumption A. 5. a) The variables Ft and εj,is are independent, for all i, j, t and s.
b) The processes {εj,it} are stationary, for all j, i.
c) The process {Ft} is stationary and weakly dependent over time.
d) For each j and t, as Nj →∞, it holds:

1√
Nj

Nj∑
i=1

λj,iεj,it
d→ N(0,Ωj), (3.7.4)

where Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

Nj∑
`=1

λj,iλ
′
j,`E[εj,itεj,`t].

Assumption A. 6. The asymptotic analysis is for N1, N2, T → ∞ such that N2 ≤ N1, T/N2 = o(1),√
N1/T = o(1).

The following Assumption 7 simplifies the derivation of the feasible asymptotic distribution of the statistic
used to test the dimension of the common factor space kc.

Assumption A. 7. The error terms εj,it are uncorrelated across j, i and t, and εj,it ∼ (0, γj,ii).

Assumption 7 is a stronger condition than Assumptions 3 and 5 b). Moreover, under Assumption 7, the

matrix Ωj in Assumption 5 d) simplifies to Ωj = lim
Nj→∞

1

Nj

Nj∑
i=1

λj,iλ
′
j,iγj,ii .

3.7.3 Assumptions: mixed frequency factor model

Let λ′1,i be the i-th row of the (NH , k
C+kH) matrix Λ1 = [ ΛHC

... ΛH ]. We make the following assumption:

Assumption A. 8. The variables λ1,i and ei,Hm,t are such that:

1√
NH

NH∑
i=1

λ1,ie
i,H
m,t

d→ N(0,Ω∗Λ,m), (3.7.5)

where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t), m = 1, ...,M. (3.7.6)
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3.8 Appendix B: Proofs of Propositions, Theorems and Lemmas

3.8.1 Proof of Proposition 1

By replacing equation (3.2.7) into model (3.2.4), we get[
y1,t

y2,t

]
=

[
Λc1A11 + Λs1A21 Λc1A12 + Λs1A22 Λc1A13 + Λs1A23

Λc2A11 + Λs2A31 Λc2A12 + Λs2A32 Λc2A13 + Λs2A33

] f̃ ct
f̃s1,t
f̃s2,t

+

[
ε1,t

ε2,t

]
.

(3.8.1)

This factor model satisfies the restrictions in the loading matrix appearing in equation (3.2.4) if, and only if,

Λc1A13 + Λs1A23 = 0, (3.8.2)

Λc2A12 + Λs2A32 = 0. (3.8.3)

Equations (3.8.2) and (3.8.3) can be written as linear homogeneous systems of equations for the elements of
matrices [A′13 A

′
23]′ and [A′12 A

′
32]′:[

Λc1
... Λs1

] [
A13

A23

]
= 0, and

[
Λc1

... Λs2

] [
A12

A32

]
= 0.

Since
[
Λc1

... Λs1

]
and

[
Λc2

... Λs2

]
are full column rank, it follows that

A13 = 0, A23 = 0, (3.8.4)

A12 = 0, A32 = 0. (3.8.5)

Therefore, the transformation of the factors that is compatible with the restrictions on the loading matrix in
equation (3.2.4) is:  f ct

fs1,t
fs2,t

 =

 A11 0 0
A21 A22 0
A31 0 A33

 f̃ ct
f̃s1,t
f̃s2,t

 .
We can invert this transformation and write:

f̃ ct = A−1
11 f

c
t ,

f̃s1,t = A−1
22 f

s
1,t −A−1

22 A21A
−1
11 f

c
t ,

f̃s2,t = A−1
33 f

s
2,t −A−1

33 A31A
−1
11 f

c
t .

The transformed factors satisfy the normalization restrictions in (3.2.6) if, and only if,

Cov(f̃s1,t, f̃
c
t ) = −A−1

22 A21A
−1
11 (A−1

11 )′ = 0, (3.8.6)

Cov(f̃s2,t, f̃
c
t ) = −A−1

33 A31A
−1
11 (A−1

11 )′ = 0, (3.8.7)

V (f̃ ct ) = A−1
11 (A−1

11 )′ = Ikc , (3.8.8)

V (f̃s1,t) = A−1
22 (A−1

22 )′ +A−1
22 A21A

−1
11 (A−1

11 )′A′21(A−1
22 )′ = Iks1 , (3.8.9)

V (f̃s2,t) = A−1
33 (A−1

33 )′ +A−1
33 A31A

−1
11 (A−1

11 )′A′31(A−1
33 )′ = Iks2 , (3.8.10)
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Since the matrices A11, A22 and A33 are nonsingular, equations (3.8.6) and (3.8.7) imply

A21 = 0, and A31 = 0. (3.8.11)

Then, from equations (3.8.8) - (3.8.10), we get that matrices A11, A22 and A33 are orthogonal.
Q.E.D.

3.8.2 Proof of Proposition 2

From equation (3.2.6) we have

R =

(
Ikc 0
0 ΦΦ′

)
and R∗ =

(
Ikc 0
0 Φ′Φ

)
.

MatrixR is block diagonal, and the upper-left block Ikc has eigenvalue 1 with multiplicity kc. The associated
eigenspace is {(ξ′, 0′)′, ξ ∈ Rkc}. The lower-right block ΦΦ′ is a positive semi-definite matrix, and its
largest eigenvalue is ρ̃2, where ρ̃2 = sup

{
ξ′1ΦΦ′ξ1 : ξ1 ∈ Rks1 , ‖ξ1‖ = 1

}
< 1 is the first squared canonical

correlation of vectors fs1,t and fs2,t. Therefore, we deduce that the largest eigenvalue of matrix R is equal to
1, with multiplicity kc, and the associated eigenspace, denoted by Ec, is spanned by vectors (ξ′, 0′)′, with
ξ ∈ Rkc . Let S1 be an orthogonal (kc, kc) matrix, then the columns of the (k1, k

c) matrix

W1 =

(
S1

0ks1×kc

)
are an orthonormal basis of the eigenspace Ec. We have:

W ′1h1,t = S′1f
c
t . (3.8.12)

Analogous arguments allow to show that the largest eigenvalue of matrix R∗ is equal to 1, with multiplicity
kc and that the associated eigenspace , denoted by E∗c , is spanned by vectors (ξ∗ ′, 0′)′, with ξ∗ ∈ Rkc . Let
S2 be an orthogonal (kc, kc) matrix. Then, the columns of the (k2, k

c) matrix

W2 =

(
S2

0ks2×kc

)
are an orthonormal basis of the eigenspace E∗c . We have:

W ′2h2,t = S′2f
c
t , (3.8.13)

which yields parts i) and ii).
When there is no common factor, the matrix R becomes R = ΦΦ′, and matrix R∗ becomes R∗ = Φ′Φ.

By the above arguments, the largest eigenvalue of matrix R, which is equal to the largest eigenvalue of
matrix R∗, is not larger than ρ̃2, where ρ̃2 < 1 is the first squared canonical correlation between the two
group-specific factors. This yields part iii).

Finally, we prove part iv). We showed that the lower-right block ΦΦ′ of matrix R is a positive semi-
definite matrix and all its ks1 = k1 − kc eigenvalues are strictly smaller than one. These are also eigenvalues
of matrix R. Let us denote the space spanned by the associated ks1 eigenvectors of matrix R by Es,1. This
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space is spanned by vectors (0′, ξ̃′)′ with ξ̃ ∈ Rks1 . We note that, by construction, the vectors (0′, ξ̃′)′ are
linearly independent of the vectors (ξ′, 0′)′ spanning the eigenspace Ec. Let Q1 be an orthogonal (ks1, k

s
1)

matrix, then the columns of matrix

W s
1 =

(
0kc×ks1
Q1

)
are an orthonormal basis of the eigenspace Es,1. We have:

W s′
1 h1,t = Q′1f

s
1,t. (3.8.14)

Analogously, we have that the lower-right block Φ′Φ of matrix R∗ is a positive semi-definite matrix and
all its ks2 = k2 − kc eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R∗.
Let us denote the space spanned by the associated ks2 eigenvectors of matrix R∗ by Es,2. This space is
spanned by vectors (0′, ξ̃∗′)′ with ξ̃∗ ∈ Rks2 . We note that, by construction, the vectors (0′, ξ̃∗′)′ are linearly
independent of the vectors (ξ∗′, 0′)′ spanning the eigenspace E∗c . Let Q2 be an orthogonal (ks2, k

s
2) matrix,

then the columns of matrix

W s
2 =

(
0kc×ks2
Q2

)
are an orthonormal basis of the eigenspace Es,2. We have:

W s′
2 h2,t = Q′2f

s
2,t. (3.8.15)

Q.E.D.

3.8.3 Proof of Theorem 1

Asymptotic expansion of R̂

In order to derive the asymptotic distribution of the test statistic ξ̂(kc) defined in equation (3.3.5), and com-
mon factor estimator introduced in Definition 2, we consider a perturbation of matrix R̂ and its eigenvalues
and eigenvectors. More precisely, the perturbation of the eigenvalues will allow us to derive the asymptotic
distribution of the test statistic ξ̂(kc), while the perturbation of the eigenvectors will allow us to derive the
asymptotic distribution of the common factor estimator.

The canonical correlations and the canonical directions are invariant to one-to-one transformations of the
vectors ĥ1,t and ĥ2,t (see, among others, Anderson (2003)). Therefore, without loss of generality, for the
asymptotic analysis of the estimator of the dimension of the common factor space statistic ξ̂(kc), we can set
Ĥj = Ikj , j = 1, 2, in approximation (3.4.1). Moreover, under Assumption 6 the bias term is negligible, and
we get:

ĥj,t ' hj,t +
1√
Nj

uj,t, j = 1, 2. (3.8.16)
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By using approximation (3.8.16), and N2 = N , N1 = N/µN
2, we have:

V̂12 =
1

T

T∑
t=1

ĥ1,tĥ
′
2,t

' 1

T

T∑
t=1

(
h1,t +

1√
N
µNu1,t

)(
h2,t +

1√
N
u2,t

)′
= Ṽ12 + X̂12,

where:

Ṽ12 =
1

T

T∑
t=1

h1,th
′
2,t,

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN
TN

T∑
t=1

u1,tu
′
2,t. (3.8.17)

Similarly:

V̂jj =
1

T

T∑
t=1

ĥj,tĥ
′
j,t

' 1

T

T∑
t=1

(
hj,t +

1√
Nj

uj,t

)(
hj,t +

1√
Nj

uj,t

)′
= Ṽjj + X̂jj (3.8.18)

= Ṽjj

(
Id+ Ṽ −1

jj X̂jj

)
, j = 1, 2, (3.8.19)

where:

Ṽjj =
1

T

T∑
t=1

hj,th
′
j,t, j = 1, 2, (3.8.20)

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t, (3.8.21)

X̂22 =
1

T
√
N

T∑
t=1

(h2,tu
′
2,t + u2,th

′
2,t) +

1

TN

T∑
t=1

u2,tu
′
2,t. (3.8.22)

Therefore, we get:

R̂ '
(
Id+ Ṽ −1

11 X̂11

)−1
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Id+ Ṽ −1

22 X̂22

)−1
Ṽ −1

22

(
Ṽ21 + X̂21

)
.
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Let us expand R̂ at first order in the X̂j,k = Op

(
1√
NT

)
. By using (Id + X)−1 ' Id −X for X ' 0, we

have:

R̂ '
(
Id− Ṽ −1

11 X̂11

)
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Id− Ṽ −1

22 X̂22

)
Ṽ −1

22

(
Ṽ21 + X̂21

)
' Ṽ −1

11 Ṽ12Ṽ
−1

22 Ṽ21

−Ṽ −1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂12Ṽ
−1

22 Ṽ21 − Ṽ −1
11 Ṽ12Ṽ

−1
22 X̂22Ṽ

−1
22 Ṽ21 + Ṽ −1

11 Ṽ12Ṽ
−1

22 X̂21.

Defining the following quantities:

Ã = Ṽ −1
11 Ṽ12, (3.8.23)

B̃ = Ṽ −1
22 Ṽ21, (3.8.24)

R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 = ÃB̃, (3.8.25)

Ψ̂∗ = −X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21, (3.8.26)

Ψ̂ = Ṽ −1
11 Ψ̂∗, (3.8.27)

we get the asymptotic expansion of matrix R̂:

R̂ = R̃+ Ψ̂ +Op

(
1

NT

)
. (3.8.28)

Matrix R̃ and its eigenvalues and eigenvectors

Let us now compute matrix R̃ and its eigenvalues, that are ρ̃2
1, ..., ρ̃

2
k1

, i.e. the squared sample canonical
correlations of vectors h1,t and h2,t, under the null hypothesis of kc > 0 common factors among the 2
groups of observables. Since the vectors h1,t and h2,t have a common component of dimension kc, we know
that ρ̃1 = ... = ρ̃kc = 1 a.s.. Using the notation:

Σ̃cc =
1

T

T∑
t=1

f ct f
c′
t ,

Σ̃cj =
1

T

T∑
t=1

f ct f
s′
j,t , Σ̃jc = Σ̃′cj , j = 1, 2,

Σ̃jj =
1

T

T∑
t=1

fsj,tf
s′
j,t , j = 1, 2,

Σ̃12 =
1

T

T∑
t=1

fs1,tf
s′
2,t ,

we can write matrices Ṽjj , with j = 1, 2, and Ṽ12 as:

Ṽjj =

(
Σ̃cc Σ̃c,j

Σ̃j,c Σ̃jj

)
, j = 1, 2, (3.8.29)

Ṽ12 =

(
Σ̃cc Σ̃c,2

Σ̃1,c Σ̃12

)
= Ṽ ′21. (3.8.30)
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By matrix algebra we get:

Ṽ −1
11 =

[
Σ−1
∗ −Σ̃−1

∗ Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11

]
, (3.8.31)

where

Σ̃∗ = Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c. (3.8.32)

From assumption 1, we have:

Σ̃c1 = Op(1/
√
T ), (3.8.33)

Σ̃cc = Ikc +Op(1/
√
T ), (3.8.34)

Σ̃11 = Iks1 +Op(1/
√
T ), (3.8.35)

Σ̃22 = Iks2 +Op(1/
√
T ), (3.8.36)

Σ̃12 = Φ +Op(1/
√
T ), (3.8.37)

which imply:

Σ̃∗ = Σ̃cc +Op(1/T ), (3.8.38)

Σ̃−1
∗ = Σ̃−1

cc +Op(1/T ), (3.8.39)

−Σ̃−1
∗ Σ̃c1Σ̃−1

11 = −Σ̃−1
cc Σ̃c1Σ̃−1

11 +Op(1/T ),

= −Σ̃c1 +Op(1/T ), (3.8.40)

Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11 = Op(1/T ). (3.8.41)

Substituting results (3.8.38) - (3.8.41) into equation (3.8.31) we get:

Ṽ −1
11 =

[
Σ̃−1
cc −Σ̃c1

−Σ̃1c Σ̃−1
11

]
+Op(1/T ). (3.8.42)

Equation (3.8.31) allows to compute Ã :

Ã = Ṽ −1
11 Ṽ12

=

[
Σ̃−1
∗ −Σ̃−1

∗ Σ̃c1Σ̃−1
11

−Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃−1

11 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11

] [
Σ̃cc Σ̃c2

Σ̃1c Σ̃12

]
=

[
Ikc Ãcs
0 Ãss

]
, (3.8.43)
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where:

Ãcs = Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12 = Op

(
1√
T

)
, (3.8.44)

Ãss = −Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c2 + Σ̃−1

11 Σ̃12 + Σ̃−1
11 Σ̃1cΣ̃

−1
∗ Σ̃c1Σ̃−1

11 Σ̃12

= Σ̃−1
11 Σ̃12 +Op

(
1

T

)
= Φ +Op

(
1√
T

)
. (3.8.45)

Remark 1. Matrices Ṽ12 and Ṽ11 have the same first kc columns, therefore also matrices Ṽ −1
11 Ṽ12 and

Ṽ −1
11 Ṽ11 = Ik1 have the first kc columns, which implies:

Ṽ −1
11 Ṽ12 =

[
Ikc ∗
0 ∗

]
.

Let us compute:

Ṽ −1
22 =

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

]
, (3.8.46)

where

Σ̃∗2 = Σ̃cc − Σ̃c2Σ̃−1
22 Σ̃2c.

Equation (3.8.46) allows to compute B̃ :

B̃ = Ṽ −1
22 Ṽ21

=

[
Σ̃−1
∗2 −Σ̃−1

∗2 Σ̃c2Σ̃−1
22

−Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃−1

22 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c2Σ̃−1

22

] [
Σ̃cc Σ̃c1

Σ̃2c Σ̃21

]
=

[
Ikc B̃cs
0 B̃ss

]
, (3.8.47)

where:

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 = Op

(
1√
T

)
, (3.8.48)

B̃ss = −Σ̃−1
22 Σ̃2cΣ̃

−1
∗2 Σ̃c1 + Σ̃−1

22 Σ̃21 + Σ̃−1
22 Σ̃2cΣ̃

−1
∗ Σ̃c2Σ̃−1

22 Σ̃21

= Σ̃−1
22 Σ̃21 +Op

(
1

T

)
= Φ′ +Op

(
1√
T

)
. (3.8.49)

Finally, using results (3.8.43) and (3.8.47) we can compute:

R̃ = ÃB̃ (3.8.50)

=

(
Ikc Ãcs
0 Ãss

)(
Ikc B̃cs
0 B̃ss

)
=

(
Ikc R̃cs
0 R̃ss

)
, (3.8.51)
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where

R̃cs = B̃cs + ÃcsB̃ss = Op(1/
√
T ), (3.8.52)

R̃ss = ÃssB̃ss

= Σ̃−1
11 Σ̃12Σ̃−1

22 Σ̃21 +Op (1/T )

= ΦΦ′ +Op(1/
√
T ). (3.8.53)

The eigenvalues of matrix R̃ are ρ̃2
1 = ... = ρ̃2

kc = 1 > ρ̃2
kc+1 ≥ ... ≥ ρ̃2

k1
. The eigenvectors associated with

the first kc eigenvalues are spanned by the columns of matrix:

Ec
(k1×kc)

=

[
Ikc

0

]
. (3.8.54)

Define:

Es
(k1×(k1−kc))

=

[
0

Ik1−kc

]
. (3.8.55)

We note:

Ik1 =
[
Ec

... Es

]
,

so that the columns of matrices Ec and Es span the space Rk1 . The estimators of the first kc canonical
correlations are such that ρ̂2

` , with ` = 1, ..., kc are the kc largest eigenvalues of matrix R̂. We derive their
asymptotic expansion using perturbations arguments.

Perturbation of the eigenvalues and eigenvectors of matrix R̂

Under the null hypothesis H(kc), let Ŵ ∗1 be a (k1, k
c) matrix whose columns are eigenvectors of matrix R̂

associated with the eigenvalues ρ̂2
` , with ` = 1, ..., kc. We have:

R̂Ŵ ∗1 = Ŵ ∗1 Λ̂, (3.8.56)

where:

Λ̂ = diag(ρ̂2
` , ` = 1, ..., kc), (3.8.57)

is the (kc, kc) diagonal matrix containing the kc largest eigenvalues of R̂. We know from the previous
subsection that the eigenspace associated with the largest eigenvalue of R̃ (equal to 1) has dimension kc

and is spanned by the columns of matrix Ec. Since the columns of Ec and Es span Rk1 , we can write the
following expansions:

Ŵ ∗1 = Ec Û + Esα, (3.8.58)

Λ̂ = Ikc + M̂, (3.8.59)
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where Ec and Es are defined in equations (3.8.54) and (3.8.55), Û is a (kc, kc) nonsingular matrix, M̂ =
diag(µ̂1, ..., µ̂kc), and α is a (k1− kc, kc) matrix, with α, µ̂1, ..., µ̂kc converging to zero as N1, N2, T →∞.
Substituting the expansions in equations (3.8.28) and (3.8.56) we get:

(R̃+ Ψ̂)(Ec Û + Esα) ' (Ec Û + Esα)(Ikc + M̂),

which implies:

R̃Ec Û + R̃Esα+ Ψ̂Ec Û + Ψ̂Esα ' Ec Û + Esα+ Ec ÛM̂ + EsαM̂.

By using R̃Ec = Ec, and keeping only the terms at first order, we get:

R̃Esα+ Ψ̂Ec Û ' Esα+ Ec ÛM̂. (3.8.60)

Pre-multiplying equation (3.8.60) by E′c, we get:

E′cR̃Esα+ E′cΨ̂Ec Û ' ÛM̂

⇔ M̂ ' Û−1
(
R̃csα+ Ψ̂cc Û

)
, (3.8.61)

where we use the fact that Û is non-singular and

Ψ̂cc = E′cΨ̂Ec.

Pre-multiplying equation (3.8.60) by E′s, we get:

E′sR̃Esα+ E′sΨ̂Ec Û ' α
⇔ α ' R̃ssα+ Ψ̂sc Û , (3.8.62)

where

Ψ̂sc = E′sΨ̂Ec.

This implies:

α ' (Ik1−kc − R̃ss)−1Ψ̂sc Û . (3.8.63)

Substituting the first order approximation of α from equation (3.8.63) into equation (3.8.58) we get:

Ŵ ∗1 '
(
Ec + Es(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û . (3.8.64)

The normalized eigenvectors corresponding to the canonical directions are:

Ŵ1 = Ŵ ∗1 · diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. (3.8.65)

Substituting the first order approximation of α from equation (3.8.63) into (3.8.61), we get the first order
approximation of matrix M̂ :

M̂ ' Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û . (3.8.66)
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Substituting the first order approximation of M̂ from equation (3.8.66) into (3.8.59), matrix Λ̂ can be ap-
proximated as:

Λ̂ ' Ikc + Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û .

Note that this first order approximation holds for the terms in the main diagonal, as matrix Λ̂ has been defined
to be diagonal, and the out-of-diagonal terms are of higher order. Up to higher order terms we have:

Λ̂1/2 ' Ikc +
1

2
Û−1

[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

]
Û ,

which implies:

kc∑
`=1

ρ̂` = tr(Λ̂1/2)

= kc +
1

2
tr
[
Û−1

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û
]

+Op

(
1

NT

)
,

= kc +
1

2
tr
[
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

]
+Op

(
1

NT

)
, (3.8.67)

by the commutative property of the trace.

Asymptotic distribution of
∑kc

`=1 ρ̂`.

Equation (3.8.67) can be written as:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ψ̂Ec

}
+Op

(
1

NT

)
= kc +

1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ṽ −1

11 Ψ̂∗Ec

}
+Op

(
1

NT

)
. (3.8.68)

Substituting equation (3.8.27), we get:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{[
Ikc

... R̃cs(I(k1−kc) − R̃ss)
−1

]
Ṽ −1

11

[
Ψ̂∗cc
Ψ̂∗sc

]}
+Op

(
1

NT

)
(3.8.69)

where:

Ψ̂∗cc =
[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

]
(11)

, (3.8.70)

Ψ̂∗sc =
[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

]
(21)

, (3.8.71)
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with M(ij) denoting the block in position (i, j) of matrix M . As matrices R̃ and B̃ have the same structure

[ Ec
... ∗ ], we have:

Ψ̂∗cc =
[
−X̂11 + X̂12 − B̃′(X̂22 − X̂21)

]
(11)

, (3.8.72)

Ψ̂∗sc =
[
−X̂11 + X̂12 − B̃′(X̂22 − X̂21)

]
(21)

. (3.8.73)

Moreover as B̃′ =
[
Ikc 0

B̃′cs B̃′ss

]
, equation (3.8.72) further simplifies to:

Ψ̂∗cc =
[
−X̂11 + X̂12 − X̂22 + X̂21

]
(11)

. (3.8.74)

Equations (3.8.73) and (3.8.74) allow to perform the asymptotic expansion of terms Ψ̂∗sc and Ψ̂∗cc, respec-
tively. Let us compute the asymptotic expansions of the terms X̂11, X̂12, X̂22 and X̂21. Vectors uj,t, with
j = 1, 2, can be partitioned into the kc-dimensional vector u(c)

jt and the ksj -dimensional vector u(s)
jt :

ujt =

[
u

(c)
jt

u
(s)
jt

]
, j = 1, 2 , (3.8.75)

and from Assumption 5 we can express Σu,j , j = 1, 2, as: 33

Σu,j = E[ujtu
′
jt] = E

[
u

(c)
jt u

(c)′
jt u

(c)
jt u

(s)′
jt

u
(s)
jt u

(c)′
jt u

(s)
jt u

(s)′
jt

]
=

[
Σ

(cc)
u,j Σ

(cs)
u,j

Σ
(sc)
u,j Σ

(ss)
u,j

]
, j = 1, 2 . (3.8.76)

We also define:

Σu,12 := E[u1tu
′
2t] := E

[
u

(c)
1t u

(c)′
2t u

(c)
1t u

(s)′
2t

u
(s)
1t u

(c)′
2t u

(s)
1t u

(s)′
2t

]
=

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]
, (3.8.77)

and

Σu,21 = Σ′u,12. (3.8.78)

From equation (3.8.21) we have:

X̂11 =
µN

T
√
N

T∑
t=1

(h1,tu
′
1,t + u1,th

′
1,t) +

µ2
N

TN

T∑
t=1

u1,tu
′
1,t

=
µN

T
√
N

T∑
t=1

([
f ct
fs1t

] [
u

(c)′
1t u

(s)′
1t

]
+

[
u

(c)
1t

u
(s)
1t

] [
f c′t fs′1t

])

+
µ2
N

TN

T∑
t=1

[
u

(c)
1t

u
(s)
1t

] [
u

(c)′
1t u

(s)′
1t

]
=

µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])
+
µ2
N

TN

T∑
t=1

[
u

(c)
1t u

(c)′
1t u

(c)
1t u

(s)′
1t

u
(s)
1t u

(c)′
1t u

(s)
1t u

(s)′
1t

]
,

33Matrix Σu,j is the asymptotic variance of uj,t as Nj →∞. We omit the limit for expository purpose.
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and from assumption 5 b) we have:

X̂11 =
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])
+
µ2
N

N
E

[
u

(c)
1t u

(c)′
1t u

(c)
1t u

(s)′
1t

u
(s)
1t u

(c)′
1t u

(s)
1t u

(s)′
1t

]

+
µ2
N

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
1t − E[u

(c)
1t u

(c)′
1t ] u

(c)
1t u

(s)′
1t − E[u

(c)
1t u

(s)′
1t ]

u
(s)
1t u

(c)′
1t − E[u

(s)
1t u

(c)′
1t ] u

(s)
1t u

(s)′
1t − E[u

(s)
1t u

(s)′
1t ]

])

=
µN√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
1t + u

(c)
1t f

c′
t f ct u

(s)′
1t + u

(c)
1t f

s′
1t

fs1tu
(c)′
1t + u

(s)
1t f

c′
t fs1tu

(s)′
1t + u

(s)
1t f

s′
1t

])

+
µ2
N

N

[
Σ

(cc)
u,1 Σ

(cs)
u,1

Σ
(sc)
u,1 Σ

(ss)
u,1

]
+

µ2
N

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
1t − Σ

(cc)
u,1 u

(c)
1t u

(s)′
1t − Σ

(cs)
u,1

u
(s)
1t u

(c)′
1t − Σ

(sc)
u,1 u

(s)
1t u

(s)′
1t − Σ

(ss)
u,1

])
.(3.8.79)

Analogously, from (3.8.22) we have:

X̂22 =
1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + u

(c)
2t f

c′
t f ct u

(s)′
2t + u

(c)
2t f

s′
2t

fs2tu
(c)′
2t + u

(s)
2t f

c′
t fs2tu

(s)′
2t + u

(s)
2t f

s′
2t

])

+
1

N

[
Σ

(cc)
u,2 Σ

(cs)
u,2

Σ
(sc)
u,2 Σ

(22)
u,2

]
+

1

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 u

(c)
2t u

(s)′
2t − Σ

(cs)
u,2

u
(s)
2t u

(c)′
2t − Σ

(sc)
u,2 u

(s)
2t u

(s)′
2t − Σ

(ss)
u,2

])
.

(3.8.80)

From equation (3.8.17), the term X̂12 results to be:

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN
TN

T∑
t=1

u1,tu
′
2,t

=
1

T
√
N

T∑
t=1

([
f ct
f s1t

] [
u

(c)′
2t u

(s)′
2t

]
+ µN

[
u

(c)
1t

u
(s)
1t

] [
f c′t fs′2t

])

+
µN
TN

T∑
t=1

[
u

(c)
1t

u
(s)
1t

] [
u

(c)′
2t u

(s)′
2t

]
=

1√
TN

(
1√
T

T∑
t=1

[
f ct u

(c)′
2t + µNu

(c)
1t f

c′
t f ct u

(s)′
2t + µNu

(c)
1t f

s′
2t

fs1tu
(c)′
2t + µNu

(s)
1t f

c′
t fs1tu

(s)′
2t + µNu

(s)
1t f

s′
2t

])
+
µN
N

[
Σ

(cc)
u,12 Σ

(cs)
u,12

Σ
(sc)
u,12 Σ

(ss)
u,12

]

+
µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12 u

(c)
1t u

(s)′
2t − Σ

(cs)
u,12

u
(s)
1t u

(c)′
2t − Σ

(sc)
u,12 u

(s)
1t u

(s)′
2t − Σ

(ss)
u,12

])
. (3.8.81)

Finally we have:

X̂21 = X̂ ′12

=
1√
TN

(
1√
T

T∑
t=1

[
u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t u

(c)
2t f

s′
1t + µNf

c
t u

(s)′
1t

u
(s)
2t f

c′
t + µNf

s
2tu

(c)′
1t u

(s)
2t f

s′
1t + µNf

s
2tu

(s)′
1t

])
+
µN
N

[
Σ

(cc)
u,21 Σ

(cs)
u,21

Σ
(sc)
u,21 Σ

(22)
u,21

]

+
µN

N
√
T

(
1√
T

T∑
t=1

[
u

(c)
2t u

(c)′
1t − Σ

(cc)
u,21 u

(c)
2t u

(s)′
1t − Σ

(cs)
u,21

u
(s)
2t u

(c)′
1t − Σ

(sc)
u,21 u

(s)
2t u

(s)′
1t − Σ

(ss)
u,21

])
. (3.8.82)
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We can now compute directly term Ψ̂∗cc. From equation (3.8.74), we get:

Ψ̂∗cc (3.8.83)

=
[
−X̂11 + X̂12 − X̂22 + X̂21

]
(11)

,

=
1√
TN

(
1√
T

T∑
t=1

[
−µNfct u

(c)′
1t − µNu

(c)
1t f

c′
t + fct u

(c)′
2t + µNu

(c)
1t f

c′
t − fct u

(c)′
2t − u

(c)
2t f

c′
t + u

(c)
2t f

c′
t + µNf

c
t u

(c)′
1t

])

+
1

N
[−µ2

NΣ
(cc)
u,1 − Σ

(cc)
u,2 + µNΣ

(cc)
u,12 + µNΣ

(cc)
u,21]

+
1

N
√
T

(
1√
T

T∑
t=1

[
−µ2

N [u
(c)
1t u

(c)′
1t − Σ

(cc)
u,1 ] + µN [u

(c)
1t u

(c)′
2t − Σ

(cc)
u,12]− [u

(c)
2t u

(c)′
2t − Σ

(cc)
u,2 ] + µN [u

(c)
2t u

(c)′
1t − Σ

(cc)
u,12]

])

= − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

])
. (3.8.84)

Using the limit µN → µ, we get:

Ψ̂∗cc = − 1

N
E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

])

+op

(
1

N
√
T

)
. (3.8.85)

Before computing Ψ̂∗sc and substituting it into equation (3.8.69), we note that some of the terms of this equa-
tion can be further simplified. Let us consider the asymptotic expansion of the following term of equation
(3.8.69): [

Ikc
... R̃cs(I(k1−kc) − R̃ss)

−1

]
Ṽ −1

11 .

Using equation (3.8.42), we get:[
Ikc

... R̃cs(Ik1−kc − R̃ss)−1

]
Ṽ −1

11

=

[
Ikc

... R̃cs(Ik1−kc − R̃ss)−1

] [
Σ̃−1
cc −Σ̃c1

−Σ̃1c Σ̃−1
11

]
+Op

(
1

T

)
=

[
Σ̃−1
cc − R̃cs(Ik1−kc − R̃ss)−1Σ̃1c

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1Σ̃−1
11

]
+Op

(
1

T

)
=

[
Σ̃−1
cc

... − Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1

]
+Op

(
1

T

)
, (3.8.86)

where the last equality follows form the fact that R̃cs = Op(1/
√
T ), Σ̃1c = Op(1/

√
T ) and Σ̃11 = Ik1 +

Op(1/
√
T ). Note that equation (3.8.86) can be further simplified, considering the asymptotic expansion of
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term R̃cs. Let us consider the different terms in the equations of R̃cs and R̃ss:

R̃cs = B̃cs + ÃcsB̃ss, (3.8.87)

R̃ss = ÃssB̃ss, (3.8.88)

where:

Ãcs = Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12, (3.8.89)

Ãss = Σ−1
11 Σ̃12 +Op

(
1

T

)
, (3.8.90)

B̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21, (3.8.91)

B̃ss = Σ̃−1
22 Σ̃21 +Op

(
1

T

)
. (3.8.92)

Substituting equations (3.8.89) - (3.8.92) into equations (3.8.87) and (3.8.88) we get:

R̃cs = Σ̃−1
∗2 Σ̃c1 − Σ̃−1

∗2 Σ̃c2Σ̃−1
22 Σ̃21 +

[
Σ̃−1
∗ Σ̃c2 − Σ̃−1

∗ Σ̃c1Σ̃−1
11 Σ̃12

] [
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃c1

[
Iks1 − Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21

]
+Op

(
1

T

)
, (3.8.93)

and

R̃ss =

[
Σ̃−1

11 Σ̃12 +Op

(
1

T

)][
Σ̃−1

22 Σ̃21 +Op

(
1

T

)]
= Σ̃−1

11 Σ̃12Σ̃−1
22 Σ̃21 +Op

(
1

T

)
. (3.8.94)

Therefore we have:

R̃cs = Σ̃c1(Ik1−kc − R̃ss) +Op

(
1

T

)
, (3.8.95)

which implies :

−Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1 = Op

(
1

T

)
. (3.8.96)

Equation (3.8.96) and Ψ̂∗sc = Op

(
1√
NT

)
, together with the assumption

√
N/T = o(1), imply:[

−Σ̃c1 + R̃cs(Ik1−kc − R̃ss)−1
]

Ψ̂∗sc = op

(
1

N
√
T

)
. (3.8.97)

Therefore, substituting results (3.8.84), (3.8.86), and (3.8.97) into equation (3.8.69), and rearranging terms,
we get:

kc∑
`=1

ρ̂` = kc − 1

N

1

2
tr
{

Σ̃−1
cc E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′]

}
− 1

N
√
T

1

2
tr

{(
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

])}

+op

(
1

N
√
T

)
. (3.8.98)
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From the definition of matrix ΣU,N we have;

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′] = ΣU,N . (3.8.99)

Moreover, let us define:

Ut := µu
(c)
1t − u

(c)
2t . (3.8.100)

Definition (3.8.100) together with the commutativity and linearity properties of the trace operator allow to
write the fourth term in the r.h.s. of equation (3.8.98) as:

tr

{
1√
T

T∑
t=1

[
(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′ − E[(µu

(c)
1t − u

(c)
2t )(µu

(c)
1t − u

(c)
2t )′]

]}

=
1√
T

T∑
t=1

{
U ′tUt − E(U ′tUt)

}
. (3.8.101)

Equations (3.8.99) and (3.8.101) allow to write equation (3.8.98) as:

kc∑
`=1

ρ̂` = kc − 1

2N
tr
{

Σ̃−1
cc ΣU,N

}
− 1

2N
√
T

(
1√
T

T∑
t=1

[
U ′tUt − E(U ′tUt)

])
+ op

(
1

N
√
T

)
.

(3.8.102)

By a CLT for weakly dependent data we have:

1√
T

T∑
t=1

[
U ′tUt − E(U ′tUt)

] d−→ N (0,ΩU ) , (3.8.103)

where:

ΩU = lim
T→∞

V

(
1√
T

T∑
t=1

U ′tUt

)
=

∞∑
h=−∞

Cov(U ′tUt, U
′
t−hUt−h). (3.8.104)

From equation (3.8.103) we get that the asymptotic distribution of
kc∑
`=1

ρ̂`, under the hypothesis of kc common

factors in each group is:

N
√
T

[
kc∑
`=1

ρ̂` − kc +
1

2N
tr
{

Σ̃−1
cc ΣU

}]
d−→ N

(
0,

1

4
ΩU

)
. (3.8.105)

To conclude the proof, let us derive the expression of matrix ΩU in equation (3.4.11). For this purpose, note
that vector (U ′t , U

′
t−h)′ is asymptotically Gaussian for any h:(

Ut
Ut−h

)
d→ N

(
ΣU (0) ΣU (h)
ΣU (h)′ ΣU (0)

)
. (3.8.106)

We use the following lemma.
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Lemma 1. Let the (n, 1) random vector x and the (m, 1) random vector y be such that(
x
y

)
∼ N

(
Ωxx Ωxy

Ω′xy Ωyy

)
, (3.8.107)

and let A and B be symmetric (n, n) and (m,m) matrices, respectively. Then:

i) V [x′Ax] = 2tr
{

(AΩxx)2
}
,

ii) Cov(x′Ax, y′By) = 2tr
{
AΩxyBΩ′xy

}
.

Proof of Lemma 1: For point i), see Theorem 12 p. 284 in Magnus and Neudecker (2007). Point ii) is a
consequence of point i) applied to vectors x, y and (x′, y′)′, see also Theorem 10.21 in Schott (2005).

From Lemma 1 we get (asymptotically):

Cov(U ′tUt, U
′
t−hUt−h) = 2tr

{
ΣU (h)ΣU (h)′

}
, (3.8.108)

and the conclusion follows.
Q.E.D.

3.8.4 Proof of Theorems 2 and 3

Asymptotic distribution of f̂ ct and f̂ c ∗t

Equation (3.8.64) and Ψ̂sc = Op

(
1√
NT

)
imply:

Ŵ ∗1 = Ec Û +Op

(
1√
NT

)
. (3.8.109)

Recall from equation (3.8.65) that the normalized eigenvectors corresponding to the canonical directions are:

Ŵ1 = Ŵ ∗1 D̂,

where D̂ = diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. Then, we get:

f̂ ct = Ŵ ′1ĥ1,t

= D̂Û ′E′c
(
h1,t +

1√
N1

u1,t

)
+Op

(
1√
NT

)
= D̂Û ′

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
. (3.8.110)

Therefore the estimated factor can be written as:

f̂ ct = Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)
+Op

(
1√
NT

)
, (3.8.111)

where Ĥ−1
c = D̂Û ′. Equation (3.8.111) implies:√

N1

(
Ĥcf̂ ct − f ct

)
= u

(c)
1,t + op(1)

d−→ N
(

0,Σ
(cc)
u,1

)
.

The derivation of the asymptotic distribution of
√
N2

(
Ĥ∗c f̂ c ∗t − f ct

)
obtained from the canonical direction

Ŵ2 is analogous, and therefore is omitted.
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Asymptotic distribution of λ̂cj,i

Let us derive the asymptotic expansion of the loading estimator λ̂cj,i = (F̂ c′F̂ c)−1F̂ c′yj,i, where yj,i is the
i-th column of matrix Yj . From equation (3.8.111) we can express F̂ c = [f̂ c1 , ..., f̂

c
T ]′ as:

F̂ c =

(
F c +

1√
N1

U
(c)
1

)(
Ĥ−1
c

)′
+Op

(
1√
NT

)
= F c

(
Ĥ−1
c

)′
+

1√
N1

U
(c)
1

(
Ĥ−1
c

)′
+Op

(
1√
NT

)
, (3.8.112)

where U (c)
1 = [u

(c)
1,1, ..., u

(c)
1,T ]′. Equation (3.8.112) implies:

F̂ cĤ′c − F c =
1√
N1

U
(c)
1 +Op

(
1√
NT

)
. (3.8.113)

Then, denoting with ξj,i the i-th column of matrix Ξj , we get:

λ̂cj,i = (F̂ c′F̂ c)−1F̂ c ′yj,i

= (F̂ c′F̂ c)−1F̂ c ′
(
F cλcj,i + F sj λ

s
j,i + εj,i

)
= (F̂ c′F̂ c)−1F̂ c ′

[(
F c − F̂ cĤ′c + F̂ cĤ′c

)
λcj,i + F sj λ

s
j,i + εj,i

]
= Ĥ′cλcj,i + (F̂ c′F̂ c)−1F̂ c ′εj,i

+(F̂ c′F̂ c)−1F̂ c ′
(
F c − F̂ cĤ′c

)
λcj,i + (F̂ c′F̂ c)−1F̂ c ′F sj λ

s
j,i, j = 1, 2. (3.8.114)

We first note that

F̂ c′F̂ c

T
=

1

T
Ĥ−1
c

(
F c +

1√
N1

U
(c)
1

)′(
F c +

1√
N1

U
(c)
1

)
(Ĥ−1

c )′ +Op

(
1√
NT

)
= Ĥ−1

c

F c′F c

T
(Ĥ−1

c )′ +
1√
N1

Ĥ−1
c

U
(c)′
1 F ct
T

(Ĥ−1
c )′

+
1√
N1

Ĥ−1
c

F c′U
(c)
1

T
(Ĥ−1

c )′ +
1

N1
Ĥ−1
c

U
(c)′
1 U

(c)
1

T
(Ĥ−1

c )′ +Op

(
1√
NT

)
= Ĥ−1

c

F c′F c

T
(Ĥ−1

c )′ +Op

(
1√
NT

)
,

where we use
1√
T
F c′U

(c)
1 = Op(1),

1

T
U

(c)′
1 U

(c)
1 = Op(1) and T/N1 = o(1). We also have:

(
F̂ c′F̂ c

T

)−1

= Ĥ′c
(
F c′F c

T

)−1

Ĥc +Op

(
1√
TN

)
. (3.8.115)

Equations (3.8.112) and (3.8.113) allow to compute:

1

T
F̂ c ′

(
F c − F̂ cĤ′c

)
' − 1

T
√
N1
Ĥ−1
c F c ′U

(c)
1 − 1

N1T
Ĥ−1
c U

(c) ′
1 U

(c)
1

= Op

(
1√
NT

)
, (3.8.116)
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and:
1

T
F̂ c ′εj,i = Ĥ−1

c

(
1

T
F c′εj,i +

1

T
√
N1

U
(c)′
1 εj,i

)
= Ĥ−1

c

1

T
F c′εj,i +Op

(
1√
NT

)
. (3.8.117)

We also have:
1

T
F̂ c ′F sj = Ĥ−1

c

(
1

T
F c′F sj +

1

T
√
N1

U
(c)′
1 F sj

)
= Ĥ−1

c

1

T
F c′F sj +Op

(
1√
NT

)
. (3.8.118)

Substituting approximations (3.8.115) - (3.8.118) into equation (3.8.114) we get:

λ̂cj,i ' Ĥ′cλcj,i + Ĥ′c
(
F c′F c

T

)−1 1

T
F c ′εj,i

+Ĥ′c
(
F c′F c

T

)−1 1

T
F c ′F sj λ

s
j,i +Op

(
1√
NT

)
.

The last equation implies:
√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

= ϕj,i +Kjλ
s
j,i + op(1), (3.8.119)

where:

ϕj,i =

(
F c′F c

T

)−1 1√
T
F c ′εj,i, (3.8.120)

Kj =

(
F c′F c

T

)−1 1√
T
F c ′F sj . (3.8.121)

Since (F c ′F c/T )−1 = Ikc + op(1), the r.h.s. of equation (3.8.119) can be rewritten to get:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

=
1√
T

T∑
t=1

f ct (εj,it + fs ′j,tλ
s
j,i) + op(1) ≡ wcj,i + op(1). (3.8.122)

Then, since the errors and the factors are independent (Assumption 5 a)) , a CLT for weakly dependent data
yields equation (3.4.19).

Asymptotic distribution of f̂sj,t and λ̂sj,i

Let us now derive the asymptotic expansion of term f̂sj,t. We start by computing the asymptotic expansion of
the regression residuals yj,it − f̂ c ′t λ̂cj,i:

yj,it − f̂ c ′t λ̂cj,i = fs ′j,tλ
s
j,i + εj,it −

(
f̂ c ′t λ̂cj,i − f c ′t λcj,i

)
= fs ′j,tλ

s
j,i + εj,it −

[(
f ct +

1√
N1

u
(c)
1,t

)′(
λcj,i +

1√
T
ϕj,i +

1√
T
Kjλ

s
j,i

)
− f c ′t λcj,i

]
' g′j,tλ

s
j,i + ej,it, (3.8.123)
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where:

gj,t := fsj,t −
1√
T
K ′jf

c
t = fsj,t − (F s ′j F c)(F c ′F c)−1f ct , (3.8.124)

ej,it := εj,it −
1√
T
f c′t ϕj,i. (3.8.125)

Then, the residuals yj,it − f̂ c ′t λ̂cj,i satisfy an approximate factor structure with factors gj,t and errors ej,it.
From asymptotic theory of the PC estimators in large panels, we know that:

√
N
[
Ĥs,j f̂sj,t − gj,t

]
= v∗sj,t + op(1), j = 1, 2, (3.8.126)

where Ĥs,j , j = 1, 2, is a non-singular matrix and:

v∗sj,t =

(
Λs′j Λsj
Nj

)−1
1√
Nj

Λs′j ej,t

=

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it −
(

Λs′j Λsj
Nj

)−1
1√
NT

Nj∑
i=1

λsj,if
c′
t

(
1√
T

T∑
r=1

f crεj,ir

)

=

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it + op (1) .

Therefore we have

√
N
[
Ĥs,j f̂sj,t − (fsj,t − (F s ′j F c)(F c ′F c)−1f ct )

]
= vsj,t + op(1), j = 1, 2, (3.8.127)

where vsj,t =

(
Λs′j Λsj
Nj

)−1
1√
Nj

Nj∑
i=1

λsj,iεj,it, which proves equation (3.4.16).

From asymptotic theory of the PC estimators in large panels, we also know that the following result must
hold for the loadings estimator of factor model (3.8.123):

√
T

[(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

]
= w∗sj,i + op(1), j = 1, 2 (3.8.128)
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where Ĥs,j , j = 1, 2 are the same non-singular matrices in equation (3.8.126), and

w∗sj,i =
1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)
ej,it,

=
1√
T

T∑
t=1

(
fsj,t +

1√
T
K ′jf

c
t

)(
εj,it −

1√
T
f c′t ϕj,i

)
,

=
1√
T

T∑
t=1

f sj,tεj,it −
1

T

T∑
t=1

fsj,tf
c′
t ϕj,i

+K ′j
1

T

T∑
t=1

f c′t εj,it −K ′j
1

T
√
T

T∑
t=1

f ct f
c′
t ϕj,i

=
1√
T

T∑
t=1

f sj,tεj,it + op(1), (3.8.129)

since
1

T

T∑
t=1

fsj,tf
c′
t = op(1). Therefore, we get:

√
T

[(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

]
=

1√
T

T∑
t=1

fsj,tεj,it + op(1) ≡ wsj,i + op(1), (3.8.130)

which yields equation (3.4.20).
Q.E.D.

3.8.5 Proof of Theorem 4

Theorem 4 follows from Theorem 1 since we have:

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+ op(1/

√
T ), (3.8.131)

tr
{

Σ̂2
U

}
= tr

{
ΣU (0)2

}
+ op(1). (3.8.132)

These expansions are proved next.

Asymptotic expansion of Σ̂−1
cc

Substituting the expression of f̂ ct from equation (3.8.111) into Σ̂cc =
1

T

T∑
t=1

f̂ ct f̂
c′
t we get:

Σ̂cc =
1

T

T∑
t=1

Ĥ−1
c

(
f ct +

1√
N1

u
(c)
j,t

)(
f ct +

1√
N1

u
(c)
j,t

)′ (
Ĥ−1
c

)′
+Op

(
1√
NT

)
= Ĥ−1

c Σ̃cc

(
Ĥ−1
c

)′
+Op

(
1√
NT

)
.
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This implies:

Σ̂−1
cc = Ĥ′cΣ̃−1

cc Ĥc +Op

(
1√
NT

)
. (3.8.133)

Asymptotic expansion of Σ̂U

i) Asymptotic expansion of
Λ̂′jΛ̂j

Nj

To derive the asymptotic expansion of matrix Λ̂′jΛ̂j/Nj , it is useful to write the matrix versions of the quan-
tities defined in equations (3.8.122) and (3.8.130). Stacking the loadings λ̂cj,i in matrix Λ̂cj = [λ̂cj,1, ..., λ̂

c
j,N ]′

we get:

Λ̂cj =

[
Λcj +

1√
T
Gcj

]
Ĥc + op

(
1√
T

)
,

where

Gcj =
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)
(3.8.134)

=
1√
T
ε′jF

c + Λsj

(
1√
T

T∑
t=1

fsj,tf
c′
t

)
. (3.8.135)

Similarly, stacking the loadings λ̂sj,i in matrix Λ̂sj = [λ̂sj,1, ..., λ̂
s
j,N ]′ we get:

Λ̂sj =

[
Λcj +

1√
T
Gsj

]
Ĥj,s + op

(
1√
T

)
,

where

Gsj =
1√
T
ε′jF

s
j . (3.8.136)

By gathering these expansions, we get:

Λ̂j '
(

Λj +
1√
T
Gj

)
Ûj , j = 1, 2, (3.8.137)

where

Gj =
[
Gcj

... Gsj

]
, (3.8.138)

Ûj =

[
Ĥc 0

0 Ĥs,j

]
. (3.8.139)
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We start by computing the asymptotic expansion of
Λ̂′jΛ̂j
Nj

. From Assumptions 1, 2 and 5 we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' 1

Nj
Λ′jΛj +

1

N
√
T

(
Λ′jGj +G′jΛj

)
+

1

NT
G′jGj .

(3.8.140)

Let us compute the asymptotic expansion of
1

N
√
T

Λ′jGj :

1

Nj

√
T

Λ′jGj =
1

Nj

√
T

[
Λc′j G

c
j Λc′j G

s
j

Λs′j G
c
j Λs′j G

s
j

]
. (3.8.141)

Using equation (3.8.134) we get:

1

Nj

√
T

Λc′j G
c
j =

1

Nj

√
T

Λc′j

[
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]
=

1

NjT
Λc′j ε

′
jF

c +
1

NjT
Λc′j Λsj

(
F s′j F

c
)

=

(
Λc′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
, (3.8.142)

Using analogous arguments and equation (3.8.136), we get:

1

Nj

√
T

Λs′j G
c
j =

(
Λs′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t +Op

(
1√
NjT

)
, (3.8.143)

1

Nj

√
T

Λc′j G
s
j =

1

Nj

√
T

Λc′j ε
′
jF

s = Op

(
1√
NjT

)
, (3.8.144)

1

Nj

√
T

Λs′j G
s
j =

1

Nj

√
T

Λs′j ε
′
jF

s = Op

(
1√
NjT

)
. (3.8.145)

The last four equations imply:

1

Nj

√
T

Λ′jGj =


(

Λc′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0(

Λs′j Λsj
Nj

)
1

T

T∑
t=1

fsj,tf
c′
t 0

+Op

(
1√
NjT

)

=

[ (
Λ′jΛ

s
j

Nj

)
1

T

T∑
t=1

fsj,tf
c′
t

... 0(kj×ksj )

]
+Op

(
1√
NjT

)
. (3.8.146)
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Using analogous arguments, we have:

1

NjT
Gc′j G

c
j =

1

NjT

[
1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]′ [ 1√
T
ε′jF

c + Λsj

(
1√
T
F s′j F

c

)]
= op

(
1√
T

)
(3.8.147)

and

1

NjT
G′jGj = op

(
1√
T

)
. (3.8.148)

Substituting (3.8.146) and (3.8.148) into equation (3.8.140) we get:

1

Nj

[
Λj +

1√
T
Gj

]′ [
Λj +

1√
T
Gj

]
' ΣΛ,j +

1√
T

(
L1,j + L′1,j

)
+Op

(
1√
N

)
(3.8.149)

where

L1,j =

[ (
Λ′jΛ

s
j

Nj

)(
1√
T
F s′j F

c

)
... 0(kj×ksj )

]
. (3.8.150)

Therefore we have:

Λ̂′jΛ̂j

Nj
= Û ′j

[
ΣΛ,j +

1√
T

(
L1,j + L′1,j

)]
Ûj + op

(
1√
T

)
. (3.8.151)

ii) Asymptotic expansion of Γ̂j

The approximations in Propositions 2 and 3 allow to compute the asymptotic expansion of ε̂j,it:

ε̂j,it = yj,it − λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t
= εj,it −

[
λ̂c ′j,if̂

c
t − λc ′j,if ct

]
−
[
λ̂s ′j,if̂

s
j,t − λs ′j,ifsj,t

]
' εj,it −

[(
λcj,i +

1√
T
wcj,i

)′(
f ct +

1√
N1

u
(c)
1,t

)
− λc ′j,if ct

]
−

[(
λsj,i +

1√
T
wsj,i

)′(
fsj,t −

1√
T
K ′jf

c
t +

1√
Nj

vsj,t

)
− λs ′j,ifsj,t

]

' εj,it −
(

1√
N1

λc ′j,iu
(c)
1,t +

1√
T
wc′j,if

c
t

)
−

(
1√
Nj

λs ′j,iv
s
j,t +

1√
T
ws′j,if

s
j,t

)
+λs ′j,i

1√
T
K ′jf

c
t . (3.8.152)

Since T/Nj = o(1), we keep only the terms of order 1/
√
T in equation (3.8.152), and we get:

ε̂j,it = εj,it −
1√
T

(
wc′j,if

c
t + ws′j,if

s
j,t

)
+ λs ′j,i

1√
T
K ′jf

c
t + op

(
1√
T

)
. (3.8.153)
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From the definition of wcj,i in Proposition 3 we get:

wc′j,if
c
t =

1√
T

(
T∑
r=1

εj,irf
c′
r

)
f ct + λs′j,iK

′
jf
c
t , (3.8.154)

which implies:

ε̂j,it = εj,it −
1√
T

(
w̃c′j,if

c
t + ws′j,if

s
j,t

)
+ op

(
1√
T

)
, (3.8.155)

where:

w̃cj,i =
1√
T

T∑
r=1

f crεj,ir. (3.8.156)

Equation (3.8.153) allows us to compute:

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,it

' 1

T

T∑
t=1

[
εj,it −

1√
T

(
w̃c′j,if

c
t + ws′j,if

s
j,t

)]2

=
1

T

T∑
t=1

ε2
j,it −

2

T
√
T

T∑
t=1

εj,it
(
w̃c ′j,if

c
t + ws ′j,if

s
j,t

)
+

1

T 2

T∑
t=1

(
w̃c ′j,if

c
t + ws ′j,if

s
j,t

)2
. (3.8.157)

Using
1√
T

T∑
t=1

εj,itf
c
t = Op(1) and

1√
T

T∑
t=1

εj,itf
s
j,t = Op(1) we get:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,it +Op

(
1

T

)
, (3.8.158)

which implies:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,it + op

(
1√
T

)
= γj,ii +

1√
T
wj,i + op

(
1√
T

)
, (3.8.159)

where

wj,i =
1√
T

T∑
t=1

(ε2
j,it − γj,ii) = Op(1), (3.8.160)

from Assumptions 4 and 7. Therefore, we have:

Γ̂j ' Γj +
1√
T
Wj . (3.8.161)

where Γj = diag(γj,ii, i = 1, ..., N) and Wj = diag(wj,i, i = 1, ..., N), for j = 1, 2.
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iii) Asymptotic expansion of
1

Nj
Λ̂′jΓ̂jΛ̂j

Let us define

Ω̂∗j :=
1

Nj

(
Λj +

1√
T
Gj

)′
Γ̂

(
Λj +

1√
T
Gj

)
=

1

Nj

(
Λj +

1√
T
Gj

)′(
Γj +

1√
T
Wj

)(
Λj +

1√
T
Gj

)
=

1

Nj
Λ′jΓjΛj + Ω̂∗j,I + Ω̂∗j,II + Ω̂∗j,III + Ω̂∗ ′j,II + Ω̂∗ ′j,III + Ω̂∗j,IV + Ω̂∗j,V , (3.8.162)

where

Ω̂∗j,I =
1

Nj

√
T

Λ′jWjΛj = Op

(
1√
NT

)
, (3.8.163)

Ω̂∗j,III =
1

NjT
Λ′jWjGj = Op

(
1

T

)
, (3.8.164)

Ω̂∗j,IV =
1

NjT
G′jΓjGj = Op

(
1

T

)
, (3.8.165)

Ω̂∗j,V =
1

NjT
√
T
G′jWjGj = Op

(
1

T
√
T

)
. (3.8.166)

Moreover, similarly as for (3.8.146) we have:

Ω̂∗j,II =
1

Nj

√
T

Λ′jΓjGj

=

[
1

Nj
Λ′jΓjΛ

s
j

(
1

T

T∑
t=1

fsj,tf
c′
t

)
... 0(kj×ksj )

]
+ op

(
1√
T

)
, (3.8.167)

=
1√
T

[ (
1

Nj
Λ′jΓjΛ

s
j

)(
1√
T
F s ′j Fc

)
... 0(kj×ksj )

]
+ op

(
1√
T

)
, (3.8.168)

=
1√
T
L2,j + op

(
1√
T

)
, (3.8.169)

(3.8.170)

where

L2,j =

[ (
1

N
Λ′jΓjΛ

s
j

)(
1√
T
F s ′j Fc

)
... 0(kj×ksj )

]
.

Collecting the previous results, using T/N = op(1), and defining Ω∗j = limN→∞
1
NΛ′jΓjΛj we get:

Ω̂∗j =
1

N
Λ′jΓjΛj +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
= Ω∗j +

1√
T

(
L2,j + L′2,j

)
+ op

(
1√
T

)
. (3.8.171)
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Substituting equation (3.8.137) into
1

Nj
Λ̂′jΓ̂jΛ̂j , and using equation (3.8.171) we get:

Ω̂j = Û ′jΩ̂∗j Ûj

= Û ′j
[
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
Ûj + op

(
1√
T

)
, j = 1, 2. (3.8.172)

iv) Asymptotic expansion of Σ̂U

The estimator of Σu,j is given in equation (3.4.22). Equation (3.8.151) allows to compute the asymptotic

approximation of

(
Λ̂′jΛ̂j

Nj

)−1

:

(
Λ̂′jΛ̂j

Nj

)−1

' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

. (3.8.173)

Substituting equations (3.8.173) and (3.8.172) into equation (3.4.22), we get:

Σ̂u,j ' Û−1
j

[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
×
[
Σ−1

Λ,j −
1√
T

Σ−1
Λ,j

(
L1,j + L′1,j

)
Σ−1

Λ,j

](
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
I − 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,j

] [
Ω∗j +

1√
T

(
L2,j + L′2,j

)]
×
[
I − 1√

T
Σ−1

Λ,j

(
L1,j + L′1,j

)]
Σ−1

Λ,j

(
Û ′j
)−1

' Û−1
j Σ−1

Λ,j

[
Ω∗j +

1√
T

(
L2,j + L′2,j

)
− 1√

T
Ω∗jΣ

−1
Λ,j

(
L1,j + L′1,j

)
− 1√

T

(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
×Σ−1

Λ,j

(
Û ′j
)−1

,

which implies:

Σ̂u,j = Û−1
j Σu,j

(
Û ′j
)−1

+
1√
T
Û−1
j L3,j

(
Û ′j
)−1

+ op

(
1√
T

)
,

where

L3,j = Σ−1
Λ,j

[(
L2,j + L′2,j

)
− Ω∗jΣ

−1
Λ,j

(
L1,j + L′1,j

)
−
(
L1,j + L′1,j

)
Σ−1

Λ,jΩ
∗
j

]
Σ−1

Λ,j . (3.8.174)

From equation (3.8.139) we have:

Σ̂U = µ2
N Σ̂

(cc)
u,1 + Σ̂

(cc)
u,2

= Ĥ−1
c

[
µ2
NΣu,1 + Σu,2

](cc) (Ĥ′c)−1
+

1√
T
Ĥ−1
c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1
+ op

(
1√
T

)
= Ĥ−1

c ΣU,N

(
Ĥ′c
)−1

+
1√
T
Ĥ−1
c

(
µ2
NL3,1 + L3,2

)(cc) (Ĥ′c)−1
+ op

(
1√
T

)
. (3.8.175)
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This expansion, the convergence ΣU,N → ΣU (0) and the commutative property of the trace, imply equation
(3.8.132).

Asymptotic expansion of tr
{

Σ̃−1
cc Σ̂U

}
Results (3.8.133) and (3.8.175), and the commutative property of the trace, imply:

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+

1√
T
tr
{

Σ̃−1
cc

(
µ2
NL3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
.

Noting that L3,j = Op(1), for j = 1, 2, and recalling that Σ̃cc = Ikc +Op(1/
√
T ) and µN = µ+ o(1), the

last equation can be further simplified to

tr
{

Σ̂−1
cc Σ̂U

}
= tr

{
Σ̃−1
cc ΣU,N

}
+

1√
T
tr
{(
µ2L3,1 + L3,2

)(cc)}
+ op

(
1√
T

)
. (3.8.176)

Let us compute L3,j explicitly. From equation (3.8.150) we get:

L1,j =


(

Λc′j Λsj
N

)(
1√
T
F s ′j F c

)
0(kc×ksj )(

Λs′j Λsj
N

)(
1√
T
F s ′j F c

)
0(ksj×ksj )


=

 ΣΛ,j,cs

(
1√
T
F s ′j F c

)
0

ΣΛ,j,ss

(
1√
T
F s ′j F c

)
0

+Op

(
1√
N

)

= ΣΛ,j

[
0(kc×kc) 0(kc×ksj )

K ′j 0(ksj×ksj )

]
+Op

(
1√
N

)
. (3.8.177)

Equation (3.8.177) implies:

Ω∗jΣ
−1
Λ,jL1,j = L2,j +Op

(
1√
N

)
. (3.8.178)

Substituting results (3.8.177) and (3.8.178) into equation (3.8.174) we get:

L3,j = −Σ−1
Λ,j

[
Ω∗jΣ

−1
Λ,jL

′
1,j + L1,jΣ

−1
Λ,jΩ

∗
j

]
Σ−1

Λ,j

= −Σu,jL
′
1,jΣ

−1
Λ,j − Σ−1

Λ,jL1,jΣu,j +Op

(
1√
N

)
. (3.8.179)

Moreover, noting that:

Σ−1
Λ,jL1,j =

[
0(kc×kc) 0(kc×ksj )(

1√
T
F s ′j F c

)
0(ksj×ksj )

]
+Op

(
1√
N

)
, (3.8.180)

we get:

Σ−1
Λ,jL1,jΣu,j =

[
0(kc×kc) 0(kc×ksj )

∗ ∗

]
+Op

(
1√
N

)
. (3.8.181)
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Equation (3.8.181) implies:

(L3,j)
(cc) = Op

(
1√
N

)
. (3.8.182)

Finally, substituting result (3.8.182) into equation (3.8.176), equation (3.8.131) follows.
Q.E.D.

3.8.6 Proof of Theorem 5

Let us re-write the model for the high frequency observables xHm,t, where m = 1, ...,M , and t = 1, ..., T in
equation (3.2.1) as:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

= Λ1gm,t + eHm,t,

= Λ̂1Û−1
1 gm,t −

(
Λ̂1Û−1

1 − Λ1

)
gm,t + eHm,t, (3.8.183)

where gm,t = [ gC ′m,t

... gH ′m,t ]′, Λ1 = [ΛHC
... ΛH ] = [Λc1

... Λs1], Λ̂1 = [Λ̂HC
... Λ̂H ] = [Λ̂c1

... Λ̂s1], and Û1 has been

defined in equation (3.8.139). Let us also define the estimator ĝm,t = [ ĝC ′m,t

... ĝH ′m,t ]′ as in equation (3.3.6):

ĝm,t =

[
ĝCm,t

ĝHm,t

]
=
(

Λ̂′1Λ̂1

)−1
Λ̂′1x

H
m,t, m = 1, ...,M, t = 1, ..., T. (3.8.184)

Substituting equation (3.8.183) into equation (3.8.184), and rearranging terms, we get:

ĝm,t = Û−1
1 gm,t −

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t +

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1e

H
m,t.

(3.8.185)

From equations (3.8.150) and (3.8.151) we have:

Λ̂′1Λ̂1

NH
= Û ′1ΣΛ,1Û1 +Op

(
1√
T

)
,

which implies: (
Λ̂′1Λ̂1

NH

)−1

= Û−1
1 Σ−1

Λ,1

(
Û ′1
)−1

+Op

(
1√
T

)
. (3.8.186)

From equations (3.8.134) - (3.8.138) we get:

Λ̂1Û−1
1 − Λ1 ' 1√

T
G1, (3.8.187)
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where

G1 =

[
Gc1

... Gs1

]
, (3.8.188)

with

Gc1 =
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)
, (3.8.189)

Gs1 =
1√
T
ēH′ḡH , (3.8.190)

ēH =
[
ēH1 , ..., ē

H
T

]′, ḡC =
[
ḡC1 , ..., ḡ

C
T

]′ and ḡH =
[
ḡH1 , ..., ḡ

H
T

]′. Moreover, we have:

Λ̂1 ' Λ1Û1 +
1√
T
G1Û1. (3.8.191)

From equations (3.8.187) and (3.8.191) it follows:

1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
' 1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′ 1√
T
G1

=
1

NH

√
T
Û ′1Λ′1G1 +

1

NHT
Û ′1G′1G1. (3.8.192)

Equations (3.8.186) and (3.8.192) allow to express the second term in the r.h.s. of equation (3.8.185) as:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂′1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

1

NH

√
T

Λ′1G1gm,t + Û−1
1 Σ−1

Λ,1

1

NHT
G′1G1gm,t.

(3.8.193)

From equation (3.8.146) we have:

1

NH

√
T

Λ′1G1 =

[ (
Λ′1ΛH
NH

)
1

T

T∑
t=1

ḡHt ḡ
C′
t

... 0(k1×kH)

]
+Op

(
1√
NHT

)
, (3.8.194)

where k1 = kC + kH . From equation (3.8.188) we have:

1

NHT
G′1G1 =

1

NHT

[
Gc′1G

c
1 Gc′1G

s
1

Gs′1 G
c
1 Gs′1 G

s
1

]
. (3.8.195)

Equation (3.8.189) implies:

1

NHT
Gc′1G

c
1 =

1

NHT

[
1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]′ [ 1√
T
ēH′ḡC + ΛH

(
1√
T
ḡH′ḡC

)]
=

1

NHT 2
ḡC′ēH ēH′ḡC +

1

NHT
√
T
ḡC′ēHΛH

(
1√
T
ḡH′ḡC

)
+

1

NHT
√
T

(
1√
T
ḡH′ḡC

)′
Λ′H ē

H′ḡC +
1

NHT

(
1√
T
ḡH′ḡC

)′
Λ′HΛH

(
1√
T
ḡH′ḡC

)
= Op

(
1

T

)
, (3.8.196)
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where the last equality follows from the assumption T/NH = o(1). Equation (3.8.196) and the assumption√
NH/T = o(1) imply:

1

NHT
Gc′1G

c
1 = op

(
1√
NH

)
. (3.8.197)

Similar arguments applied to the other blocks of the matrix in the r.h.s. of (3.8.195) yield:

1

NHT
G′1G1 = op

(
1√
NH

)
. (3.8.198)

Substituting equations (3.8.194) and (3.8.198) into equation (3.8.193) we get:(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t ' Û−1

1 Σ−1
Λ,1

(
Λ′1ΛH
NH

)(
1

T

T∑
t=1

ḡHt ḡ
C′
t

)
gCm,t + op

(
1√
NH

)
.

(3.8.199)

Let us now focus on the third term in the r.h.s. of equation (3.8.185). From equation (3.8.191) we have:

1

NH
Λ̂′1e

H
m,t '

1

NH

(
Λ1Û1 +

1√
T
G1Û1

)′
eHm,t

= Û ′1
1

NH
Λ′1e

H
m,t + Û ′1

1

NH

√
T
G′1e

H
m,t. (3.8.200)

The second term in the r.h.s. of equation (3.8.200) can be written as:

1

NH

√
T
G′1e

H
m,t =

1

NH

√
T

[
Gc′1 e

H
m,t

Gs′1 e
H
m,t

]
. (3.8.201)

Using equation (3.8.189) we get:

1

NH

√
T
G′1e

H
m,t =

1

NHT
ḡC′ēHeHm,t +

1

NH

√
T

(
1√
T
ḡC′ḡH

)
Λ′He

H
m,t

= Op

(
1√
NHT

)
. (3.8.202)

Equation (3.8.190) implies:

1

NH

√
T
Gs′1 e

H
m,t =

1

NHT
ḡH′ēHeHm,t = Op

(
1√
NHT

)
. (3.8.203)

Substituting results (3.8.202) and (3.8.203) into equations (3.8.201) and (3.8.200) we get:

1

NH
Λ̂′1e

H
m,t = Û ′1

1

NH
Λ′1e

H
m,t +Op

(
1√
NHT

)
. (3.8.204)

Substituting results (3.8.186), (3.8.199), and (3.8.204) into equation (3.8.185), and rearranging terms we get:

Û1ĝm,t − gm,t = −Σ−1
Λ,1

(
Λ′1ΛH
NH

)(
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
.(3.8.205)
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Let us denote the last kH columns of matrix ΣΛ,1 as Σ
(· s)
Λ,1 . The term

Λ′1ΛH
NH

in equation (3.8.205) can be

written as:

Λ′1ΛH
NH

= Σ
(· s)
Λ,1 +

1

NH

NH∑
i=1

λ1,iλ
′
H,i − Σ

(· s)
Λ,1

= Σ
(· s)
Λ,1 +Op

(
1√
NH

)
, (3.8.206)

where the last equality follows from Assumption 2. Equation (3.8.206) implies:

Σ−1
Λ,1

(
Λ′1ΛH
NH

)
=

[
0(kC×kH)

IkH

]
+Op

(
1√
NH

)
. (3.8.207)

Substituting equation (3.8.207) into equation (3.8.205) we have:

Û1ĝm,t − gm,t = −

[
0(kC×kH)

IkH

](
1

T
ḡH′ḡC

)
gCm,t + Σ−1

Λ,1

1

NH
Λ′1e

H
m,t + op

(
1√
NH

)
.(3.8.208)

Recalling the expression of Û1 from equation (3.8.139):

Û1 =

[
Ĥc 0

0 Ĥs,1

]
, (3.8.209)

from equation (3.8.208) we get the asymptotic expansions:

ĤcĝCm,t − gCm,t '
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

, (3.8.210)

Ĥ1,sĝ
H
m,t − gHm,t ' −

(
1

T
ḡH′ḡC

)
gCm,t +

[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

, (3.8.211)

where
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](C)

and
[
Σ−1

Λ,1

1

NH
Λ′1e

H
m,t

](H)

denote the upper kC rows, resp. the lower kH rows,

of vector Σ−1
Λ,1

1

NH
Λ′1e

H
m,t. Since ḡC′ḡC/T = IkC + op(1), we can rewrite equation (3.8.211) as:

Ĥ1,sĝ
H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1gCm,t) ' [Σ−1

Λ,1

1

NH
Λ′1e

H
m,t]

(H). (3.8.212)

From Assumption 8 we have:

1√
NH

Λ′1e
H
m,t

d−→ N(0,Ω∗Λ,m), (3.8.213)

where

Ω∗Λ,m = lim
NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(ei,Hm,t, e

`,H
m,t). (3.8.214)
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Equations (3.8.210) and (3.8.213) imply:√
NH

(
ĤcĝCm,t − gCm,t

)
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](CC)
)
.

Similarly, equation (3.8.212) and (3.8.213) imply:√
NH

[
Ĥ1,sĝ

H
m,t − (gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1)gCm,t

]
d−→ N

(
0,
[
Σ−1

Λ,1Ω∗Λ,mΣ−1
Λ,1

](HH)
)
.

(3.8.215)

Q.E.D.

3.9 Appendix C: Additional results

3.9.1 Identification of the common factor space from variance-covariance matrix of stacked
factors

Let us normalize the principal components such that V (hj,t) = Ikj , j = 1, 2.

Lemma 2. Let ht = [h′1,t h
′
2,t]
′, be a random vector, such that V11 = V (h1,t) = Ik1 , V22 = V (h2,t) = Ik2 ,

V12 = Cov(h1,t, h2,t) and let V (ht) be the variance-covariance matrix of ht:

V (ht) =

[
Ik1 V12

V21 Ik2

]
.

Let r = rank(V21), with r ≤ k1. Then, matrix V (ht) has 2r eigenvalues 1 ± ρ`, ` = 1, ..., r, with
multiplicity 1, corresponding to the non-zero canonical correlations, ρ` 6= 0, and the eigenvalue 1 with
multiplicity k1 + k2 − 2r. The eigenvectors of V (ht) associated with the eigenvalues 1± ρ`, ` = 1, ..., r are

v±` =

[
w1,`

±w2,`

]
, ` = 1, ..., r,

where w1,` (resp. w2,`), are the normalized eigenvectors of R = V12V21 (resp. R∗ = V21V12), associated
with eigenvalues ρ2

` .

From Proposition 2 and Lemma 2 we get the next corollary.

Corollary 1. i) The number kc of common factors is equal to the multiplicity of the eigenvalue 2 of matrix
V (ht). ii) Let W be the (k1 + k2, k

c) matrix whose columns are the orthonormal eigenvectors associated

with the kc eigenvalues of V (ht) equal to 2. Then, f ct =
1√
2
W ′ht (up to a one-to-one transformation).

We note that Corollary 1 is analogous to Proposition 3.1 in Chen (2012).

Proof of Lemma 2: Let ρi, i = 1, ..., k1, be the canonical correlations between h1,t and h2,t. From Anderson
(2003) and Magnus and Neudecker (2007), ρ2

i corresponds to the i-th ordered eigenvalue of matrix R =
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V12V21. Let 1 + µ, say, be an eigenvalue of matrix V (ht), and Z = [Z ′1 Z
′
2]′ ∈ RK be the associated

(normalized) eigenvector. We have:

V (ht)Z = (1 + µ)Z .

Rewriting matrix V (ht) as:

V (ht) = IK +

[
0 V12

V21 0

]
, (3.9.1)

we get: [
0 V12

V21 0

] [
Z1

Z2

]
= µ

[
Z1

Z2

]
. (3.9.2)

The last equation implies:

V12Z2 = µZ1, (3.9.3)

V21Z1 = µZ2, (3.9.4)

and:

V12V21Z1 = µ2Z1, (3.9.5)

V21V12Z2 = µ2Z2. (3.9.6)

If Z1 6= 0, then µ2 is an eigenvalue of V12V21, i.e. a squared canonical correlation, and if Z2 6= 0, then µ2

is an eigenvalue of V21V12. From assumption rank(V21) = r, r ≤ k1, there are r canonical correlations
different from zero: ρ1 ≥ ... ≥ ρr > 0. Let w1,`, ` = 1, ..., r, be the associated eigenvectors of R = V12V21,
and w2,`, ` = 1, ..., r the corresponding eigenvectors of R∗ = V21V12. Then, the scalars

µ`,± = ±ρ`, ` = 1, ..., r,

and the vectors

v±` =

 w1,`

± 1

ρ`
V21w1,`

 =

[
w1,`

±w2,`

]
(3.9.7)

solve equation (3.9.2). Here, we use
1

ρ`
V21w1,` = w2,`, from property (3.2.11). Thus, 1±ρ` are eigenvalues

of V (ht) associated with eigenvectors v±` , with ` = 1, ..., r.
Let us now consider the solutions of equation (3.9.2) with µ = 0. We have:

V12Z2 = 0, (3.9.8)

V21Z1 = 0. (3.9.9)

From rank(V12) = r, with r ≤ k1 ≤ k2, the null space of matrix V12 is (k2 − r)-dimensional. Let the
columns of the (k2, k2 − r) full column rank matrix Z̃2 span the (k2 − r)-dimensional space of solutions
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of equation (3.9.8). Similarly, let the columns of the (k1, k1 − r) full column rank matrix Z̃1 span the
(k1 − r)-dimensional space of solutions of equation (3.9.9). Define the (k1 + k2, 2(k2 − r)) matrix:

Z̃0 =

[
Z̃1 Ok1×(k2−k1) −Z̃1 Ok1×(k2−k1)

Z̃2 Z̃2

]
.

Any column of this matrix is a solution of (3.9.2) with µ = 0. Since matrices Z̃1 and Z̃2 are full column rank,
the column rank of matrixZ0 is 2(k1−r)+(k2−k1) = k1+k2−2r. Therefore, there are k1+k2−2r linearly

independent eigenvectors of
[

0 V12

V21 0

]
associated with the eigenvalue 0. These vectors are eigenvectors

of V (ht) associated with the eigenvalue 1.
Q.E.D.

Proof of Corollary 1: From Lemma 2, V (ht) has eigenvalue 2 if, and only if, there is a canonical correlation
equal to 1. Part i) follows from Proposition 2 i). Moreover, from Proposition 2 and Lemma 2 the columns

of matrix W =
1√
2

[
W1

W2

]
are orthonormal eigenvectors of V (ht) associated with eigenvalue 2, since

W ′W =
1

2
(W ′1W1 + W ′2W2) = Ikc . Finally,

1√
2
W ′ht =

1

2
(W ′1h1,t + W ′2h2,t) =

1

2
(S′1 + S′2)f ct , from

(3.8.12) and (3.8.13), which implies part ii).
Q.E.D.

3.9.2 Estimator based on fixed point iteration

In this Appendix we consider the estimator for group factor models based on the Least Squares (LS) method
suggested by Wang (2012). The estimator uses fixed point iteration to solve the first-order conditions (FOC).
We discuss here some issues concerning the uniqueness of the fixed point.

The group factor model is:

Y1 = F cΛc ′1 + F s1 Λs ′1 + ε1, (3.9.10)

Y2 = F cΛc ′2 + F s2 Λs ′2 + ε2. (3.9.11)

The estimators of factor values and factor loadings are defined by minimizing the LS criterion

Q =
2∑
j=1

Tr[(Yj − F cΛc ′j − F sj Λs ′j )′(Yj − F cΛc ′j + F sj Λs ′j )], (3.9.12)

w.r.t. arguments F c, F sj , Λcj , Λsj , j = 1, 2, subject to the constraints:

F c ′F c/T = Ikc , F s ′j F sj /T = Iksj , F c ′F sj = 0, j = 1, 2. (3.9.13)

The first-order conditions (FOC) for this constrained minimization problem yield the following eigenvalue-
eigenvector problems (see the proof at the end of the appendix):

• F sj is the T × ksj matrix of standardized eigenvectors of matrix

MF c(YjY
′
j /N)MF c (3.9.14)

associated with the ksj largest eigenvalues, for j = 1, 2,
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• F c is the T × kc matrix of standardized eigenvectors of matrix

MF s(Y1Y
′

1/N + Y2Y
′

2/N)MF s (3.9.15)

associated with the kc largest eigenvalues,

whereMF c = IT −F c(F c ′F c)−1F c ′ andMF s = IT −F s(F s′F s)−1F s ′, with F s = [F s1 F s2 ]. The eigen-
vectors are normalized such that F c ′F c/T = Ikc , F s ′j F sj /T = Iksj , for j = 1, 2, and satisfy automatically
the identification restrictions F c ′F sj = 0, for j = 1, 2.

Wang (2012) suggests to solve the FOC by an iterative procedure. Given an estimate F̃ c, the estimate
F̂ sj is computed by the spectral decomposition of the matrix in (3.9.14) with F c = F̃ c, for j = 1, 2. The
estimate F̂ s = [F̂ s1 F̂

s
2 ] is used to compute the matrix in (3.9.15), whose spectral decomposition yields a new

estimate F̂ c. This procedure defines the (stochastic) mapping F̃ c → Ψ(F̂ c).
Let us now investigate the properties of the mapping Ψ. For this purpose we consider the setting with

scalar factors, i.e. kc = ks1 = ks2 = 1, and the next assumption.

Assumption A. 9. a) The errors are ε1 = ε2 = 0, and the true factor values are such that F c ′F c/T =
F s ′j F sj /T = 1, F c ′F sj = 0, for j = 1, 2. b) F s ′j F sj = 0, j = 1, 2.

Assumption 9 defines a specific realization of the errors and the factors. In part a), we shut down the errors
to mimic the large N,T , setting where the impact of the idiosyncratic shocks vanishes. The factor values
match in sample the theoretical normalization restrictions. For expository purpose, we assume that the
group-specific factors are orthogonal, and part b) matches this condition in sample.

Proposition 3. Under Assumption 9, any vector F̃ c, that is a linear combination of F c, F s1 , F s2 (true factor
values), is a fixed point of the mapping Ψ (up to a sign change).

Proof of Proposition 3: Define the T × 3 matrix H = [F c F s1 F s2 ]. Under Assumption 9 we have
H ′H/T = I3, and the data can be written as Y1 = H[Λc1 Λs1 0]′ and Y2 = H[Λc2 0 Λs2]′. Then, we get:

Y1Y
′

1/N = H

 Λc ′1 Λc1/N Λc ′1 Λs1/N 0
Λs ′1 Λc1/N Λs ′1 Λs1/N 0

0 0 0

H ′ ≡ HΠ1H
′.

Similarly, we have Y2Y
′

2/N = HΠ2H
′ for a suitable 3 × 3 matrix Π2, and Y1Y

′
1/N + Y2Y

′
2/N = HΠH ′

with Π = Π1 + Π2.
Now, let

F̃ c = F cβ1 + F s1β2 + F s2β3 = Hβ,

where β = (β1, β2, β3)′ is such that β′β = 1. Then:

MF̃ c = IT −
1

T
F̃ cF̃ c ′

= IT −
1

T
Hββ′H ′ = MH +

1

T
HMβH

′,
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where Mβ = I3 − β(β′β)−1β′ = I3 − ββ′. Thus, the matrix in (3.9.14) corresponding to F̃ c can be written
as:

MF̃ c(YjY
′
j /N)MF̃ c = (MH +

1

T
HMβH

′)HΠjH
′(MH +

1

T
HMβH

′)

= HMβΠjMβH
′.

The eigenvector associated with the largest eigenvalue of matrix HMβΠjMβH
′ is in the column space of

H:
F̂ sj = Hαj ,

where the 3 × 1 vector αj is the normalized eigenvector of matrix MβΠjMβ associated with the largest
eigenvalue, j = 1, 2. In particular, αj is orthogonal to β, j = 1, 2. The vectors α1 and α2 are not collinear
(verify this).

Let F̂ s = [F̂ s1 F̂
s
2 ] = Hα, where α = [α1 α2]. The matrix in (3.9.15) corresponding to F̂ s is

MF̂ s(Y1Y
′

1/N + Y2Y
′

2/N)MF̂ s = HMαΠMαH
′.

The eigenvector F̂ c of this matrix associated with the largest eigenvalue is F̂ c = Hγ, where γ is the eigen-
vector of matrix MαΠMα associated with the largest eigenvalue. This implies that γ is orthogonal to α1 and
α2, and thus is collinear to β. By normalization we have either γ = β, or γ = −β. Thus, either F̂ c = F̃ c, or
F̂ c = −F̃ c. Q.E.D.

Proof of the FOC for the constrained minimization (3.9.12)-(3.9.13): The Lagrange multipliers for the
identification restrictions (3.9.13) are zero. The FOC for the factor loadings under the constraints yield:

Λcj = Y ′jF
c(F c ′F c)−1,

Λsj = Y ′jF
s
j (F s ′j F sj )−1, j = 1, 2.

From these equations, the residuals are

Yj − F cΛc ′j − F sj Λs ′j = (IT − PF c − PF sj )Yj , j = 1, 2,

where PF c = F c(F c ′F c)−1F c ′ = IT −MF c and PF sj = F sj (F s ′j F sj )−1F s ′j = IT −MF sj
. From the

orthogonality F c ′F sj = 0 in (3.9.13), matrices MF c and MF sj
commute, and matrices

IT − PF c − PF sj = MF sj
MF c = MF cMF sj

, j = 1, 2,

are idempotent. Thus, the concentrated LS criterion becomes:

Q =
2∑
j=1

Tr[Y ′jMF cMF sj
Yj ]. (3.9.16)

From the constraints (3.9.13) and the commutative property of the trace, the concentrated LS criterion can
be rewritten as:

Q =
2∑
j=1

Tr[MF sj
MF cYjY

′
jMF c ]

=

2∑
j=1

Tr[MF cYjY
′
jMF c ]−

2∑
j=1

1

T
Tr[F s ′j MF cYjY

′
jMF cF

s
j ].
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For j = 1, 2, the minimization of this concentrated criterion w.r.t. F sj is equivalent to the maximization of
Tr[F s ′j MF cYjY

′
jMF cF

s
j ]. Under the constraint F s′F sj /T = Iksj , this problem is solved by the matrix of

normalized eigenvectors of matrix MF cYjY
′
jMF c associated with the ksj largest eigenvalues.

Similarly, from the constraints (3.9.13) and the commutative property of the trace, the concentrated LS
criterion (3.9.16) can be rewritten as:

Q =
2∑
j=1

Tr[MF cMF sj
YjY

′
jMF sj

]

=
2∑
j=1

Tr[MF sj
YjY

′
jMF sj

]−
2∑
j=1

1

T
Tr[F c ′MF sj

YjY
′
jMF sj

F c]

=

2∑
j=1

Tr[MF sj
YjY

′
jMF sj

]− 1

T
Tr[F c ′MF s(

2∑
j=1

YjY
′
j )MF sF

c].

The minimization of this concentrated criterion w.r.t. F c is equivalent to the maximization of
Tr[F c ′MF s(

∑2
j=1 YjY

′
j )MF sF

c]. Under the constraint F c ′F c/T = Ikc , this problem is solved by the
matrix of normalized eigenvectors of matrix MF s(

∑2
j=1 YjY

′
j )MF s associated with the kc largest eigenval-

ues. Q.E.D.
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3.9.3 Dataset description

High Frequency dataset: Industrial Production sectors

Our high frequency dataset includes the same 117 sectors constituting the aggregate Industrial Production in-
dex considered by Foerster, Sarte, and Watson (2011) for the years 1977-2011. This sample period coincides
with the maximum number of years for which the data for the 42 non-Industrial Production sectors of our
low frequency panel were available and therefore - differently from Foerster, Sarte, and Watson (2011) - we
do not consider the entire time series available for IP data starting in 1972. We download the monthly level
of the 117 IP indices from Board of Governors of the Federal Reserve System (FED)34. From these raw data,
which are indices of real output, we compute the corresponding quarterly growth rates.

The 117 sectors roughly corresponds to a four-digit industry in the North American Industry Classifica-
tion System (NAICS) for year 2002, which is the finest level of disaggregation allowing to match the sectors
to the input-output and capital use tables used to calibrate the structural models. The IP Sectors are classified
by the FED according in the following subsectors: Manufacturing, Mining and Utilities. Manufacturing
comprises those industries included in NAICS definition of manufacturing plus the logging and newspaper,
periodical, book, and directory publishing industries that have traditionally been considered manufacturing,
and is divided in Durable, Nondurable and Other manufacturing. Durable manufacturing includes three-
digit NAICS codes 321, 327, 331-337, and 339. Nondurable manufacturing includes three-digit NAICS
codes 311-316 and 322-326. Other manufacturing includes NAICS codes 1133 and 5111. Mining includes
three-digit NAICS codes 211-213. Utilities include electric utilities and natural gas distribution, correspond-
ing to NAICS codes 2211 and 2212.35 We refer to Foerster, Sarte, and Watson (2011), and especially to their
Appendix A, for a list of the names of the 117 sectors, and the methodology used to approximate the missing
data for some sectors.

Low Frequency dataset: non-Industrial Production sectors

The US Bureau of Economic Analysis (BEA) publishes at yearly frequency the growth rates for the real
Gross Domestic Product and real Gross Output for all the sectors of the US economy, not only for the sectors
included in the IP index. We use the Release Date November 13, 2012 dataset as downloaded for the BEA
website36. The period 1977-2011 coincides with the maximum number of years for which the data for the
42 non-Industrial Production sectors in our low frequency panel were available at the date of download of
the dataset. 37 Our original BEA dataset includes the time series for the output growth rates of 65 mutually
exclusive sectors constituting the entire US economy, for the sample period 1977-2011. These sectors are
aggregates of either 2 or 3 digits 2002 NAICS codes. Out of these 65 sectors, 19 are Manufacturing sectors
(NAICS 2002 codes: 31-33), 3 are Mining sectors (NAICS 2002 codes: 211-213) and one is Utilities (NAICS
2002 code: 22). These 23 sectors are all included in the IP dataset, and therefore are excluded from our LF
panel to avoid duplication of sectors in the two panels. The IP sectors Logging, Newspaper Publishers
and Periodical, Book, and Other Publishers (NAICS 1133, 5111, 5112) are subsectors of the 2 BEA sectors

34See http://www.federalreserve.gov/releases/G17/default.htm .
35For a detailed description of the IP constituents see http://www.federalreserve.gov/releases/g17/About.

htm .
36See http://www.bea.gov/industry/gdpbyind_data.htm .
37Time series for 22 aggregates of our 42 sectors are also available form the BEA website since 1947, and time series for a more

disaggregated version of our 42 indices, but only for Gross Output, is available only from 1997.

144



Publishing industries (includes software) and Forestry, fishing, and related activities. We keep these 2 sectors
in the the low frequency panel. Therefore our non-IP low frequency panel includes the 42 sectors listed in
Table 3.11 together with the corresponding NAICS 2002 codes.

Table 3.11: List of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes

Farms 111, 112
Forestry, fishing, and related activities 113, 114, 115
Construction 23
Wholesale trade 42
Retail trade 44, 45
Air transportation 481
Rail transportation 482
Water transportation 483
Truck transportation 484
Transit and ground passenger transportation 485
Pipeline transportation 486
Other transportation and support activities 487, 488, 492
Warehousing and storage 493
Publishing industries (includes software) 511, 516
Motion picture and sound recording industries 512
Broadcasting and telecommunications 515, 517
Information and data processing services 518, 519
Federal Reserve banks, credit intermediation, and related activities 521, 522
Securities, commodity contracts, and investments 523
Insurance carriers and related activities 524
Funds, trusts, and other financial vehicles 525
Real estate 531
Rental and leasing services and lessors of intangible assets 532, 533
Legal services 5411
Computer systems design and related services 5415
Miscellaneous professional, scientific, and technical services 5412-5414, 5416-5419
Management of companies and enterprises 55
Administrative and support services 561
Waste management and remediation services 562
Educational services 61
Ambulatory health care services 621
Hospitals and nursing and residential care facilities 622, 623
Social assistance 624
Performing arts, spectator sports, museums, and related activities 711, 712
Amusements, gambling, and recreation industries 713
Accommodation 721
Food services and drinking places 722
Other services, except government 81
Federal Government - General government -
Federal Government - Government enterprises - (includes 491)
State and Local Government - General government -
State and Local Government - Government enterprises -
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In Table 3.12 we report names of the sectors corresponding to the aggregated version of the yearly
indices used in Tables 3.5, 3.6, 3.7, and in the analogous Tables in the subsample analysis, together with
their corresponding first or first two NAICS 2002 codes. The yearly growth rates of these real aggregated
indices are downloaded directly by the BEA website.

Table 3.12: List of aggregates of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes

GDP / GO (all sectors) all sectors included
Manufacturing 31, 32, 33
Agriculture, forestry, fishing, and hunting 11
Construction 23
Wholesale trade 42
Retail trade 44, 45
Transportation and warehousing 48, 49 (except 491)
Information 51
Finance, insurance, real estate, rental, and leasing 52, 53
Professional and business services 54
Educational services, health care, and social assistance 6
Arts, entertainment, recreation, accommodation, and food services 7
Government - (includes 491)

3.9.4 Filtration of structural productivity shocks from mixed frequency output growth data.

In this section we propose an adaptation of the methodology proposed by Foerster, Sarte, and Watson (2011)
to estimate mixed-frequency technological shocks from the time series of quarterly Industrial Production
growth rates, and yearly non-IP Gross Output growth rates for all the sectors described in the previous
section.

Foerster, Sarte, and Watson (2011) consider a multi-industry real business cycle model, with an economy
characterized byNH distinct sectors. As they consider only IP sectors, they work with quarterly observations
of measures of output growth. The generic sector j, with j = 1, ..., NH produces at quarter t, a certain
quantity Yjt of good j, using labor, capital and intermediate goods. The novelty in the model consists in
the fact that both capital goods and intermediate goods used by a certain sector are other sectors’ output,
generating interconnections among the outputs of all sectors. One of the assumptions in the model is that
the N -dimensional vector At collecting the productivity indices of the N sectors follows a random walk
process:

ln(At) = ln(At−1) + εt,

where εt is the NH -dimensional vector of productivity (or technological) innovations. The authors specify
the utility function of a representative agent defined on the consumption of theNH goods and labor allocated
to each sector, and solve the utility maximization problem of the representative agent, after specifying the
goods and investments production technologies, the low of motion of capital stock and the resource con-
straints. In their Appendix B they show that “the deterministic steady state of the model continues to be
analytically tractable” even with a large number of sectors. The log-linearization of the equilibrium equa-
tions, obtained using the results of King and Watson (2002), produce an approximation of the model’s first
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order conditions and resource constraints around the steady state, yielding a vector ARMA(1,1) model for
quarterly sectoral output growth NH -dimensional vector Xt = [∆ lnY1t, ...,∆ lnYNt]

′:

(I − ΦL)Xt = (Π0 + Π1L)εt, (3.9.17)

where L is the lag operator, and Φ, Π0, Π1 are N ×N matrices that depend only on the model parameters,
the input-output matrix Γ and the sectoral investment matrix Θ, also named “capital use” matrix. The input-
output and capital use matrices are constructed using the BEA’s 1997 “use table” and “capital flow table”,
which are available for the NH = 117 IP sectors studied by Foerster, Sarte, and Watson (2011). As the time
series of Xt is observable, the VARMA(1,1) model (3.9.17) can easily be used to compute ε̂t as a filtered
version of Xt:

ε̂t = (Π0 + Π1L)−1(I − ΦL)Xt. (3.9.18)

Let us now consider our mixed-frequency data settings, where Xq
H,t is the NH -dimensional vector of

growth rates of Industrial Production, for the NH = 117 IP sectors of our empirical analysis, for the generic
quarter q = 1, 2, 3, 4 in year t. Let also XY

H,t be the vector of the yearly growth rates for the same 117
IP sectors, for the generic year t. Moreover let XL,t be the NL-dimensional vector of growth rates of the
NL = 38 non-IP sectors also considered in our empirical analysis. The high frequency technological shocks

ε̂X,qt are obtained as a filtered version of the time series of stacked vectors
[
Xq
H,t, XL,t

]′
:

[
ε̂X,qt

ε̃Yt

]
= (Π̃0 + Π̃1L)−1(I − Φ̃L)

[
4 ·Xq

H,t

XL,t

]
, (3.9.19)

for each q = 1, 2, 3, 4. The idea is to consider the LF time series of Xq
H,t as an approximation for the

yearly growth rate of Industrial Production. Note that as there are 4 quarters in a year, we have 4 possible
proxies for the yearly growth rates of IP. This allows us to have an approximation of εX,qt the high frequency
productivity innovation for each quarter quarter q. Finally, the low frequency technological shocks ε̂Yt are

obtained as a filtered version of the time series of stacked vectors
[
XY
H,t, XL,t

]′
:

[
ε̃X,qt

ε̂Yt

]
= (Π̃0 + Π̃1L)−1(I − Φ̃L)

[
XY
H,t

XL,t

]
, (3.9.20)

i.e. we use the actual yearly growth rates of IP sectors as an input of the filtering algorithm. When we filter
productivity innovations as in equation (3.9.19) and (3.9.20), we are implicitly assuming the same structural
model for our economy as the one described by Foerster, Sarte, and Watson (2011). Moreover, filtering from
equations (3.9.19) and (3.9.20) is feasible because matrices Π̃0, Π̃1, and Φ̃ are functions of Γ̃ and Θ̃, which
are the input-output and capital use matrices for both IP and non-IP sectors, also available for the year 1997
from the BEA. In particular, we note that the 117 × 117 matrices Γ and Θ are the upper-left blocks of the
155× 155 matrices Γ̃ and Θ̃, respectively.

3.9.5 Additional Empirical results

In this section we report additional empirical results.
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Table 3.13: Estimated number of factors: results for ICp1 information criterion

XHF XH XL [ XH XL ]

IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011

ICp1 2 2 1 2

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

ICp1 1 2 15 2

The number of latent pervasive factors selected by the ICp1 information criteria is reported for different subpanels and different
sample periods. Subpanels XHF and XH correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels
XL and [ XH XL ] correspond to non-IP data, and the stacked panels of IP and non-IP data, respectively. We use kmax = 15 as
maximum number of factors when computing ICp1.

Table 3.14: Eigenvalues of the variance-covariance matrix of the stacked PC’s

1st eig. 2nd eig. 3rd eig. 4th eig.

IP data: 1977.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1977-2011

1.84 1.06 0.93 0.15

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

1.81 1.11 0.80 0.19

In this table we report the eigenvalues of the sample variance-covariance matrix of the stacked PC’s estimated in each subpanel of
IP (XH ) and non-IP data (XL). We extract the first 2 PC’s in each subgroup, and compute the variance-covariance matrix of these
4 stacked PC’s.

We find an eigenvalue close to two for both datasets, which is consistent with the presence of one com-
mon factor in each of the two mixed frequency datasets considered.
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Figure 3.4: Trajectories of the estimated common and LF-specific factors.
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The Figure displays the time series of estimated values of the common factor (blue circles), the LF-specific factor (red squares) and
the HF-specific factor (green rotated squares). For each year we represent the LF factor as 4 squares corresponding to the 4 quarters,
assuming the same value. The factors are estimated from the panel of real output growth rates of 42 GDP sectors and 117 industrial
production indices, using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of the
factor model is 1977.Q1-2011.Q4.

Table 3.15: Correlation matrix of the estimated factors, computed at low frequency.

ˆ̄gCt ˆ̄gHt ˆ̄gLt

ˆ̄gCt 1.0000

ˆ̄gHt -0.0425 1.0000

ˆ̄gLt -0.0486 -0.1473 1.0000

In the table we display the correlation matrix of the stacked vector of estimated factors (ˆ̄gCt , ˆ̄g
H
t , ˆ̄g

L
t ). The factors are estimated from

the panel of 42 GDP sectors and 117 industrial production indices using a mixed frequency factor model with kC = kH = kL = 1.

The sample period for the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.
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Table 3.16: Correlation matrix of the estimated common, HF-specific and LF-specific factors: quarterly
observations.

ĝC1,t ĝC2,t ĝC3,t ĝC4,t ĝH1,t ĝH2,t ĝH3,t ĝH4,t ˆ̄gLt

ĝC1,t 1.00 0.75 0.41 0.20 0.12 -0.38 -0.53 -0.29 0.28
ĝC2,t 0.75 1.00 0.77 0.30 0.35 0.11 -0.41 -0.26 -0.05
ĝC3,t 0.41 0.77 1.00 0.66 0.40 0.23 -0.19 -0.03 -0.35
ĝC4,t 0.20 0.30 0.66 1.00 0.34 -0.03 0.11 0.43 -0.16

ĝH1,t 0.12 0.35 0.40 0.34 1.00 0.56 0.44 0.41 -0.01
ĝH2,t -0.38 0.11 0.23 -0.03 0.56 1.00 0.65 0.47 -0.27
ĝH3,t -0.53 -0.41 -0.19 0.11 0.44 0.65 1.00 0.79 -0.12
ĝH4,t -0.29 -0.26 -0.03 0.43 0.41 0.47 0.79 1.00 -0.06

ˆ̄gLt 0.28 -0.05 -0.35 -0.16 -0.01 -0.27 -0.12 -0.06 1.00

In the table we display the correlation matrix of the stacked vector of estimated factors (ĝC1,t, ĝ
C
2,t, ĝ

C
3,t, ĝ

C
4,t, ĝ

H
1,t, ĝ

H
2,t, ĝ

H
3,t, ĝ

H
4,t, ˆ̄g

L
t ).

The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indices using a mixed frequency fac-

tor model with kC = kH = kL = 1. The sample period for the estimation of both the factor model and the regressions is 1977-2011.
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Figure 3.5: Adj. R2 of the regression of yearly sectoral GDP growth rates on estimated factors.
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(a) Adjusted R2 of the regression of yearly sectoral GDP
growth on the common factor.
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(b) Adjusted R2 of the regression of yearly sectoral GDP
growth on the common and LF-specific factors.

In Panel (a) we show the histogram of the adjusted R2, denoted R̄2, of the regressions of the yearly growth rates of sectoral GDP
indices on the estimated common factor. In Panel (b) we show the histogram of the adjusted R2 of the regressions of the same
growth rates on the estimated common and LF-specific factors. The factors are estimated from the panel of 42 GDP sectors and 117
industrial production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation
of both the factor model and the regressions is 1977-2011.
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Figure 3.6: Adj. R2 of the regression of sectoral IP growth rates on estimated factors.
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(a) Adjusted R2 of the regression of quarterly industrial
production growth on the common factor.
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(b) Adjusted R2 of the regression of quarterly industrial
production growth on the common and HF-specific factors.

In Panel (a) we show the histogram of the adjusted R2, denoted R̄2, of the regressions of the quarterly growth rates of the industrial
production indices on the estimated common factor. In Panel (b) we show the histogram of the adjusted R2 of the regressions of the
same growth rates on the estimated common and HF-specific factors. The factors are estimated from the panel of 42 GDP sectors
and 117 industrial production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the
estimation of both the factor model and the regressions is 1977-2011.
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Table 3.17: Adjusted R2 of the regression of yearly sectoral GDP growth on the common factor.

Sector R̄2

Truck transportation 63.10
Accommodation 62.43
Construction 44.05
Other transportation and support activities 43.31
Administrative and support services 42.69
Other services, except government 42.53
Warehousing and storage 40.95
Air transportation 31.58
Retail trade 30.70
Amusements, gambling, and recreation industries 29.17
Government enterprises (federal) 28.91
Rail transportation 24.84
Performing arts, spectator sports, museums, and related activities 22.63
Publishing industries (includes software) 22.02
Computer systems design and related services 21.24
Food services and drinking places 20.59
Wholesale trade 20.35
Miscellaneous professional, scientific, and technical services 16.98
Waste management and remediation services 14.79
Social assistance 12.91
General government (federal) 11.97
Government enterprises (state & local) 11.10
Real estate 10.39
Legal services 10.19
federal Reserve banks, credit intermediation, and related activities 9.74
Educational services 3.97
Rental and leasing services and lessors of intangible assets 2.81
Broadcasting and telecommunications 1.24
Ambulatory health care services 1.01
Farms 0.93
Hospitals and nursing and residential care facilities 0.64
Management of companies and enterprises -0.45
Funds, trusts, and other financial vehicles -1.23
Motion picture and sound recording industries -1.68
Pipeline transportation -1.74
Information and data processing services -1.84
Transit and ground passenger transportation -2.05
General government (state & local) -2.12
Forestry, fishing, and related activities -2.33
Water transportation -2.94
Securities, commodity contracts, and investments -2.99
Insurance carriers and related activities -3.03

In the table we display the adjustedR2, denoted R̄2, for the time series regressions of each of the of 42 GDP sectors on the estimated
common factor. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indices using a mixed
frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both factor model and regressions is
1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table 3.18: Adjusted R2 of the regression of yearly sectoral GDP growth on the common and LF-specific
factors.

Sector R̄2

Miscellaneous professional, scientific, and technical services 66.67
Administrative and support services 62.63
Truck transportation 62.51
Accommodation 61.48
Construction 59.75
Warehousing and storage 52.53
Government enterprises (STATES AND LOCAL) 45.78
Other services, except government 41.75
Other transportation and support activities 41.71
Government enterprises (federal) 37.78
Legal services 34.51
Social assistance 32.82
Rental and leasing services and lessors of intangible assets 32.32
Wholesale trade 30.83
Performing arts, spectator sports, museums, and related activities 30.49
federal Reserve banks, credit intermediation, and related activities 30.05
Air transportation 29.81
Retail trade 28.56
Real estate 28.53
Computer systems design and related services 27.07
Amusements, gambling, and recreation industries 27.02
Publishing industries (includes software) 23.85
Rail transportation 23.68
General government (STATES AND LOCAL) 22.78
Food services and drinking places 21.67
Motion picture and sound recording industries 21.10
Hospitals and nursing and residential care facilities 17.47
Broadcasting and telecommunications 14.46
Waste management and remediation services 14.24
Pipeline transportation 14.13
General government (federal) 11.11
Transit and ground passenger transportation 9.18
Ambulatory health care services 7.76
Management of companies and enterprises 7.52
Funds, trusts, and other financial vehicles 6.15
Information and data processing services 1.96
Educational services 1.35
Insurance carriers and related activities 0.36
Water transportation -0.64
Farms -1.87
Forestry, fishing, and related activities -5.31
Securities, commodity contracts, and investments -5.99

In the table we display the adjustedR2, denoted R̄2, for the time series regressions of each of the of 42 GDP sectors on the estimated
common and LF-specific factors. The factors are estimated from the panel of 42 GDP sectors and 117 industrial production indices
using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both factor model and
regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table 3.19: Change in adjusted R2 of the regression of yearly sectoral GDP growth on the common factor
and the LF-specific factors vs. the regression on the common factor only.

Sector change in R̄2

Miscellaneous professional, scientific, and technical services 49.69
Government enterprises (STATES AND LOCAL) 34.69
Rental and leasing services and lessors of intangible assets 29.52
General government (STATES AND LOCAL) 24.90
Legal services 24.32
Motion picture and sound recording industries 22.77
federal Reserve banks, credit intermediation, and related activities 20.31
Administrative and support services 19.95
Social assistance 19.91
Real estate 18.14
Hospitals and nursing and residential care facilities 16.84
Pipeline transportation 15.87
Construction 15.70
Broadcasting and telecommunications 13.23
Warehousing and storage 11.58
Transit and ground passenger transportation 11.23
Wholesale trade 10.48
Government enterprises (federal) 8.87
Management of companies and enterprises 7.98
Performing arts, spectator sports, museums, and related activities 7.87
Funds, trusts, and other financial vehicles 7.39
Ambulatory health care services 6.76
Computer systems design and related services 5.83
Information and data processing services 3.80
Insurance carriers and related activities 3.39
Water transportation 2.30
Publishing industries (includes software) 1.83
Food services and drinking places 1.07
Waste management and remediation services -0.54
Truck transportation -0.60
Other services, except government -0.78
General government (federal) -0.86
Accommodation -0.96
Rail transportation -1.16
Other transportation and support activities -1.59
Air transportation -1.77
Retail trade -2.15
Amusements, gambling, and recreation industries -2.15
Educational services -2.62
Farms -2.80
Forestry, fishing, and related activities -2.98
Securities, commodity contracts, and investments -3.00

In the table we display the difference in the adjusted R2 (R̄2) from the regressions of each industrial production index growth on
the common and LF-specific estimated factors and on the HF factor only. The factors are estimated from the panel of 42 GDP
sectors and 117 industrial production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period
for the estimation of both factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS
regressions.
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Table 3.20: Adj. R2 of selected GDP and IP indices growth rates on the estimated factors

Panel a. Yearly observations, 1977-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L+H)

PANEL a) LF observations
GDP 60.54 8.59 -2.04 73.39 12.85
GDP - Manufacturing 81.88 -3.03 0.22 82.90 1.02
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -0.85 -2.16 -3.59
GDP - Construction 44.05 11.22 -2.84 58.70 14.64
GDP - Wholesale trade 20.35 7.90 -2.94 29.77 9.41
GDP - Retail trade 30.70 -2.86 2.67 33.71 3.00
GDP - Transportation and warehousing 62.14 -2.95 0.19 61.95 -0.19
GDP - Information 12.14 22.28 -3.03 36.53 24.39
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 -2.19 18.58 20.00
GDP - Professional and business services 30.02 30.21 -1.98 64.52 34.50
GDP - Educational services, health care, and social assistance -1.38 18.38 -0.60 16.25 17.63
GDP - Arts, entert., recreat., accommodation, and food serv. 53.51 -2.23 -0.50 57.00 3.49
GDP - Government -2.12 22.37 -2.95 18.96 21.08

In the table we display the adjustedR2, denoted R̄2, of the regression of growth rates of selected HF and LF indices on the common
factor (column R̄2(C)), the specific HF and LF factors (columns R̄2(L) and R̄2(H)) and on these three factors together (column
(4)). The last column displays the difference between the values in the fourth and the first columns, i.e. the increment in the adjusted
R2 when both specific factors are added as a regressors to the common factor.
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Figure 3.7: Regression of LF and HF indices on estimated factors.
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(a) HF Index: Industrial Production Index growth.
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(b) LF Index: Aggregate GDP Index growth.
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(c) LF Index: GDP-Construction Index growth.
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(d) LF Index: Prof. and Busn. Serv. Index growth.

Each panel displays the time series of the growth rate an observed index (solid line) and its fitted value obtained from a regression
on the common factor (dotted line). Fitted values from a regression on multiple factors (dashed line) are also displayed. In the first
panel we regress the IP index on both the common and HF-specific factors, in the second panel we regress the aggregate GDP Index
(LF) on ˆ̄gCt , ˆ̄gHt and ˆ̄gLt . In the third panel and fourth we regress the growth rates of the LF Construction Index and of Professional
and Business Services Index, respectively, on both the common and LF-specific factors. In the fourth we regress the growth rates
of Professional and Business Services Index on the common and LF-specific factors. The first, second and fourth indices reported
in the panels are aggregates of the indices used to estimate the factors. The factors are estimated from the panel of 42 GDP sectors
and 117 industrial production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the
estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.
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Table 3.22: Estimated number of factors

εX,HF εHX εLX [ εHX εLX ]

IP data: 1989.Q1-2011.Q4. Non-IP data: Gross Output, 1989-2011

ICp1 1 1 15 1
ICp2 1 1 1 1

In this table we report the number of latent pervasive factors selected by the ICp1 and ICp2 information criteria on different
subpanels. Subpanels εX,HF and εHX correspond to productivity innovations of IP data sampled at quarterly and yearly frequency,
respectively. Panels εLX and [ εHX εLX ] correspond to to productivity innovations of non-IP data, and the stacked panels of to
productivity innovations of IP and non-IP data, respectively. We use kmax = 15 as maximum number of factors when computing
ICp1 and ICp2.

In Table 3.23 we display the estimated eigenvalues of the variance-covariance matrix of the stacked PC’s
estimated in each subpanel εHX and εLX .

Table 3.23: eigenvalues of the variance-covariance matrix of the stacked PC’s

1st eig. 2nd eig. 3rd eig. 4th eig.

IP data: 1988.Q1-2011.Q4. Non-IP data: Gross Output, 1988-2011

1.93 1.28 0.72 0.07

We report the eigenvalues of the the variance-covariance matrix of the first two stacked PCs computed in each subpanel of IP and
non-IP productivity innovations.
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Table 3.24: Adj. R2 of selected Gross Output indices on factors estimated from indices growth rates

Panel a. Yearly observations, 1988-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L+H)

PANEL a) LF observations
GO (all sectors) 68.54 12.20 -3.66 90.95 22.41
GO - Manufacturing 86.08 -3.05 -0.45 94.81 8.73
GO - Agriculture, forestry, fishing, and hunting -3.21 3.35 5.91 5.85 9.06
GO - Construction 25.30 34.16 -4.30 66.04 40.74
GO - Wholesale trade 80.82 -3.85 -4.41 78.97 -1.85
GO - Retail trade 64.72 -4.50 9.50 79.78 15.06
GO - Transportation and warehousing 83.82 -4.51 -4.49 82.80 -1.02
GO - Information 33.70 38.59 -4.50 80.62 46.91
GO - Finance, insurance, real estate, rental, and leasing 3.37 50.30 -3.12 59.08 55.71
GO - Professional and business services 45.13 21.97 -2.33 75.88 30.76
GO - Educational services, health care, and social assistance -4.19 -1.58 0.56 -6.00 -1.81
GO - Arts, entert., recreat., accommodation, and food serv. 71.06 -3.74 -4.47 70.50 -0.56

In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indices on the common factor (column
R̄2(C)), the specific HF and LF factors (columns R̄2(L) and R̄2(H)) and different combinations of these three factors (column (4)). The last
column displays the difference between the values in the fourth and first column, i.e. the increment in the adjusted R2 when the specific factors
are added as a regressors to the common factor. Factors are estimated from the panel of 38 non-IP sectors and 117 industrial production indices
considered by Foerster, Sarte, and Watson (2011), using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the
estimation of both the factor model and the regressions is 1988-2011.
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Table 3.25: Adj. R2 of selected Gross Output indices on factors estimated from productivity innovations
(contemporaneous values only)

Panel a. Yearly observations, 1989-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L+H)

PANEL a) LF observations
GO (all sectors) 42.17 13.97 5.40 79.84 37.67
GO - Manufacturing 62.29 -0.20 13.40 91.84 29.55
GO - Agriculture, forestry, fishing, and hunting 0.96 -4.23 4.61 4.22 3.25
GO - Construction 6.64 20.55 0.82 42.14 35.50
GO - Wholesale trade 74.73 -3.08 -1.46 79.39 4.66
GO - Retail trade 47.02 -4.35 25.68 76.76 29.74
GO - Transportation and warehousing 70.42 -2.69 3.01 81.72 11.29
GO - Information 17.78 42.45 -2.82 74.21 56.42
GO - Finance, insurance, real estate, rental, and leasing -4.09 17.55 -0.36 24.36 28.45
GO - Professional and business services 25.17 44.89 -4.34 79.57 54.40
GO - Educational services, health care, and social assistance -4.73 -4.48 -1.87 -11.24 -6.51
GO - Arts, entert., recreat., accommodation, and food serv. 55.64 -2.29 -0.74 60.66 5.02

Panel b. Quarterly observations, 1989.Q1-2011.Q4

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C +H)

PANEL c) HF observations
Industrial Production 31.21 50.15 77.25 46.05

In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indices on the common factor
(column R̄2(C)), the specific HF and LF factors (columns R̄2(L) and R̄2(H)) and different combinations of these three factors (column (4)).
Only contemporaneous values of the factors are used as regressors. The last column displays the difference between the values in the fourth and
first column, i.e. the increment in the adjusted R2 when the specific factors are added as a regressors to the common factor. Factors are estimated
from the panels of productivity innovations of 38 non-IP sectors and 117 industrial production indices using a mixed frequency factor model with
kC = kH = kL = 1. The sample period for the estimation of both the factor model and the regressions is 1988-2011 because the productivity
shocks can not be computed for the first year of the sample (see Foerster, Sarte, and Watson (2011), especially their equation (B38) on page 10 of
their Appendix B).
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Table 3.26: Adj. R2 of selected Gross Output indices on factors estimated from productivity innovations
(contemporaneous values and first lag)

Panel a. Yearly observations, 1990-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L+H)

PANEL a) LF observations
GO (all sectors) 42.09 12.39 57.42 84.99 42.90
GO - Manufacturing 61.02 2.42 63.69 92.34 31.33
GO - Agriculture, forestry, fishing, and hunting -0.23 -5.19 -0.22 -7.52 -7.29
GO - Construction 11.35 21.18 35.99 54.99 43.64
GO - Wholesale trade 74.13 -1.50 59.86 84.78 10.64
GO - Retail trade 55.17 -8.95 59.99 82.78 27.61
GO - Transportation and warehousing 71.66 10.46 71.68 88.28 16.63
GO - Information 21.87 41.54 23.39 83.94 62.07
GO - Finance, insurance, real estate, rental, and leasing -2.16 14.83 3.08 21.62 23.78
GO - Professional and business services 37.79 46.62 31.84 82.58 44.78
GO - Educational services, health care, and social assistance -10.37 -10.06 -2.20 -17.33 -6.95
GO - Arts, entert., recreat., accommodation, and food serv. 59.11 15.31 62.66 70.32 11.21

Panel b. Yearly observations, 1990-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L)

PANEL b) LF observations
GO (all sectors) 42.09 12.39 54.12 12.02
GO - Manufacturing 61.02 2.42 60.54 -0.48
GO - Agriculture, forestry, fishing, and hunting -0.23 -5.19 -5.92 -5.69
GO - Construction 11.35 21.18 20.03 8.69
GO - Wholesale trade 74.13 -1.50 75.58 1.44
GO - Retail trade 55.17 -8.95 51.76 -3.41
GO - Transportation and warehousing 71.66 10.46 69.56 -2.09
GO - Information 21.87 41.54 66.72 44.85
GO - Finance, insurance, real estate, rental, and leasing -2.16 14.83 7.41 9.57
GO - Professional and business services 37.79 46.62 73.22 35.42
GO - Educational services, health care, and social assistance -10.37 -10.06 -22.67 -12.30
GO - Arts, entert., recreat., accommodation, and food serv. 59.11 15.31 54.99 -4.13

Panel c. Quarterly observations, 1990-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C +H)

PANEL c) HF observations
Industrial Production (Q) 35.89 63.22 77.69 41.81

In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indices on the common factor (column
R̄2(C)), the specific HF and LF factors (columns R̄2(L) and R̄2(H)) and different combinations of these three factors (column (4)). Both the
contemporaneous and the lagged values (only lag 1 is included) of the factors are used as regressors. The last column displays the difference between
the values in the fourth and first column, i.e. the increment in the adjusted R2 when the specific factors are added as a regressors to the common
factor. Factors are estimated from the panels of productivity innovations of 38 non-IP sectors and 117 industrial production indices using a mixed
frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both the factor model and the regressions is 1990-2011
because the productivity shocks can not be computed for the first year of the sample (see Foerster, Sarte, and Watson (2011), especially their equation
(B38) on page 10 of their Appendix B).
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Figure 3.8: Autocorrelation functions of the estimated common and specific factors.
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(a) Common factor: autocorrelation function.
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(b) HF factor: autocorrelation function.
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(c) LF factor: autocorrelation function.

Panel (a) displays the autocorrelation function of the estimated values of the common factor. Panel (b) displays the autocorrelation
function of the estimated values of the HF factor. Panel (c) displays the autocorrelation function of the estimated values of the LF
factor. The horizontal lines are asymptotic 95% confidence bands. The factors are estimated from the panel of 42 GDP sectors and
117 industrial production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the
estimation of the factor model is 1977.Q1-2011.Q4.
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3.9.6 Granularity analysis

In this section we perform a Granularity analysis in line with Foerster, Sarte, and Watson (2011) and Gabaix
(2011).

Quarterly IP Index

Table 3.27: Share weight decomposition of Industrial Production quarterly index.

Series 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 5.7 7.9 3.6 9.7

(1/N)
∑
xit 7.3 9.9 4.2 13.7∑

(w̄i − (1/N))xit 2.2 3.3 1.5 2.9∑
(wit − w̄i)xit 1.0 1.0 0.5 2.1

Entries are the sample standard deviations of the quarterly growth rates of the quarterly Industrial Production index growth (gt) and
its components. Percentage points are at annual rates. The table corresponds to Table 1 in Foerster, Sarte, and Watson (2011).

Table 3.28: Average pairwise correlations of sectoral Industrial Production indices.

1977-2011 1977-1983 1984-2007 2008-2011

0.21 0.25 0.12 0.34

Entries are the average pairwise sample correlations of the quarterly growth rates of the 117 industrial production indices considered
in the paper. The table corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table 3.29: Standard deviation of Industrial Production indices growth with and without sectoral covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With Sectoral covariation 5.6 7.8 3.5 9.5
Without Sectoral covariation 1.9 2.5 1.6 2.5

B. Using Equal (1/N) Share Weights

With Sectoral covariation 7.3 9.9 4.2 13.7
Without Sectoral covariation 1.9 2.7 1.4 2.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and N−1∑xit

(Panel B). The entries labeled “without sectoral covariation” are computed as:
√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2, where hit = wit in

panel A and hit = N−1 in panel B. Percentage points are at annual rates. The table corresponds to Table 3 in Foerster, Sarte, and
Watson (2011).
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Annual GDP sectoral indices (all)

Table 3.30: Share weight decomposition of annual GDP index.

Series(GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 2.1 2.6 1.4 2.3

(1/N)
∑
xit 2.7 3.4 1.7 5.2∑

(w̄i − (1/N))xit 0.9 1.0 0.8 1.8∑
(wit − w̄i)xit 0.4 0.2 0.2 1.2

Entries are the sample standard deviations of the annual growth rates of annual GDP index growth (gt) and its components. The
index is constructed using weights of nominal GDP. The table corresponds to Table 1 in Foerster, Sarte, and Watson (2011).

Table 3.31: Average pairwise correlations of all GDP sectoral indices.

1977-2011 1977-1983 1984-2007 2008-2011

0.18 0.29 0.11 0.19

Entries are the average pairwise sample correlations of the annual growth rates of the all 61 GDP sectoral indices. The table
corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table 3.32: Standard deviation of GDP sectoral indices growth with and without sectoral covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With Sectoral covariation 2.0 2.6 1.4 2.3
Without Sectoral covariation 0.8 0.9 0.7 1.0

B. Using Equal (1/N) Share Weights

With Sectoral covariation 2.7 3.4 1.7 5.2
Without Sectoral covariation 1.2 1.1 1.0 1.9

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and N−1∑xit

(Panel B). The entries labeled “without sectoral covariation” are computed as:
√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2, where hit = wit in

panel A and hit = N−1 in panel B. The table corresponds to Table 3 in Foerster, Sarte, and Watson (2011).
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Annual IP sectors in GDP sectoral indices

Table 3.33: Share weight decomposition of IP sectors in GDP annual indices.

Series(GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 4.5 5.8 3.5 7.6

(1/N)
∑
xit 5.3 6.9 3.4 10.9∑

(w̄i − (1/N))xit 1.2 0.9 1.1 2.2∑
(wit − w̄i)xit 1.6 0.6 0.4 4.8

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (gt) created from the
IP sectors in GDP indices. The index is constructed using weights of nominal GDP. The table corresponds to Table 1 in Foerster,
Sarte, and Watson (2011).

Table 3.34: Average pairwise correlations of all IP sectors in GDP indices.

1977-2011 1977-1983 1984-2007 2008-2011

0.35 0.48 0.27 0.29

Entries are the average pairwise sample correlations of the annual growth rates of the 19 IP sectors in GDP sectoral indices. The
table corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table 3.35: Standard deviation of IP sectors in GDP sectoral indices growth with and without sectoral
covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With Sectoral covariation 4.5 5.8 3.5 7.6
Without Sectoral covariation 2.7 2.6 2.3 3.9

B. Using Equal (1/N) Share Weights

With Sectoral covariation 5.3 6.9 3.4 10.9
Without Sectoral covariation 2.8 2.9 1.9 5.3

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and N−1∑xit

(Panel B). The entries labeled “without sectoral covariation” are computed as:
√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2, where hit = wit in

panel A and hit = N−1 in panel B. The table corresponds to Table 3 in Foerster, Sarte, and Watson (2011).
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Annual non-IP sectors in GDP sectoral indices

Table 3.36: Share weight decomposition of non-IP sectors in GDP annual indices.

Series(GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 1.7 2.1 1.3 1.9

(1/N)
∑
xit 2.1 2.6 1.3 3.4∑

(w̄i − (1/N))xit 0.9 0.5 1.0 1.5∑
(wit − w̄i)xit 0.2 0.3 0.2 0.2

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (gt) created from the
non-IP sectors in GDP indices. The index is constructed using weights of nominal GDP. The table corresponds to Table 1 in Foerster,
Sarte, and Watson (2011).

Table 3.37: Average pairwise correlations of all non-IP sectors in GDP indices.

1977-2011 1977-1983 1984-2007 2008-2011

0.18 0.32 0.10 0.21

Entries are the average pairwise sample correlations of the annual growth rates of the 42 non-IP sectors in GDP sectoral indices
considered in the paper. The table corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table 3.38: Standard deviation of non-IP sectors in GDP sectoral indices growth with and without sectoral
covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With Sectoral covariation 1.7 2.1 1.3 1.9
Without Sectoral covariation 0.9 0.9 0.8 0.9

B. Using Equal (1/N) Share Weights

With Sectoral covariation 2.1 2.6 1.3 3.4
Without Sectoral covariation 1.2 0.9 1.1 1.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and N−1∑xit

(Panel B). The entries labeled “without sectoral covariation” are computed as:
√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2, where hit = wit in

panel A and hit = N−1 in panel B. The table corresponds to Table 3 in Foerster, Sarte, and Watson (2011).
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Figure 3.9: Standard deviations of quarterly growth rates of sectoral Industrial Production indices.
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(a) 1977.Q1-2011.Q4
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(b) 1977.Q1-1983.Q4
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(c) 1984.Q1-2007.Q4

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16
P
er
ce
n
t

(d) 2008.Q1-2011.Q4

Each panel displays the histogram of the standard deviations of quarterly growth rates of sectoral IP indices. Percentage points are
at annual rates. The graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile

(a) 1977.Q1-2011.Q4 10.77 14.19 19.71
(b) 1977.Q1-1983.Q4 10.60 15.92 25.29
(c) 1984.Q1-2007.Q4 8.32 11.48 16.71
(d) 2008.Q1-2011.Q4 14.40 18.91 25.65
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Figure 3.10: Standard deviations of annual growth rates of NON-IP sectoral GDP indices.
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(d) 2008-2011

Each panel displays the histogram of the standard deviations of the annual growth rates of the 42 non-IP sectoral GDP indices. The
graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile

(a) 1977-2011 3.92 4.91 6.39
(b) 1977-1983 3.65 4.89 7.05
(c) 1984-2007 3.22 4.31 6.19
(d) 2008-2011 3.22 5.47 8.39
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Figure 3.11: Share weight decomposition of quarterly IP index.
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The figure displays the Share weight decomposition of quarterly IP index growth rates. Percentage points are at annual rates. This
figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds to

∑
witxit (i.e. the aggregate

IP index). The bold dash-dotted line corresponds to
∑

(1/N)xit. The thin solid line corresponds to
∑

(wi − (1/N))xit. The thin
dotted line corresponds to

∑
(wit − wi)xit.
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Figure 3.12: Share weight decomposition of annual GDP index.
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The figure displays the Share weight decomposition of annual GDP index. The index is constructed using weights (wit) of nominal
GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds to

∑
witxit

(i.e. the aggregate real GDP index). The bold dash-dotted line corresponds to
∑

(1/N)xit. The thin solid line corresponds to∑
(wi − (1/N))xit. The thin dotted line corresponds to

∑
(wit − wi)xit.
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Figure 3.13: Share weight decomposition of annual IP sectors in GDP indices.
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The figure displays the Share weight decomposition of annual GDP index of IP sectors. The index is constructed using weights
(wit) of nominal GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds to∑
witxit (i.e. the aggregate real GDP index for IP sectors). The bold dash-dotted line corresponds to

∑
(1/N)xit. The thin solid

line corresponds to
∑

(wi − (1/N))xit. The thin dotted line corresponds to
∑

(wit − wi)xit.
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Figure 3.14: Share weight decomposition of annual non-IP sectors in GDP indices.
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The figure displays the Share weight decomposition of annual GDP index of of non-IP sectors . The index is constructed using
weights (wit) of nominal GDP. growth rates. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold
solid line corresponds to

∑
witxit (i.e. the aggregate real GDP index for non-IP sectors). The bold dash-dotted line corresponds to∑

(1/N)xit. The thin solid line corresponds to
∑

(wi − (1/N))xit. The thin dotted line corresponds to
∑

(wit − wi)xit.
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Chapter 4

Indirect Inference Estimation of Mixed
Frequency Stochastic Volatility State Space
Models using MIDAS Regressions and
ARCH Models

Abstract

We examine the relationship between MIDAS regressions and the estimation of state space models applied
to mixed frequency data. While in some cases the binding function is known, in general it is not, and there-
fore indirect inference is called for. The approach is appealing when we consider state space models which
feature stochastic volatility, or other non-Gaussian and nonlinear settings where maximum likelihood meth-
ods require computationally demanding approximate filters. The stochastic volatility feature is particularly
relevant when considering high frequency financial series. In addition, we propose a filtering scheme which
relies on a combination of reprojection methods and nowcasting MIDAS regressions with ARCH models.
We assess the efficiency of our indirect inference estimator for the stochastic volatility model by comparing
it with the Maximum Likelihood (ML) estimator in Monte Carlo simulation experiments. The ML estimate
is computed with a simulation-based Expectation-Maximization (EM) algorithm, in which the smoothing
distribution required in the E step is obtained via a particle forward-filtering/backward-smoothing algorithm.
Our Monte Carlo simulations show that the Indirect Inference procedure is very appealing, as its statistical
accuracy is close to that of MLE but the former procedure has clear advantages in terms of computational ef-
ficiency. An application to forecasting quarterly GDP growth in the Euro area with monthly macroeconomic
indicators illustrates the usefulness of our procedure in empirical analysis.

JEL Codes: C15, C31, C53, E37.

Keywords: Indirect Inference, Reprojection, Mixed-frequency Data, State Space Model, Stochastic Volatil-
ity, GDP Forecasting.
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4.1 Introduction

Econometric models that take into account the unbalanced nature of datasets have attracted substantial at-
tention recently. Policy makers and practitioners alike need to assess in real-time the current state of the
economy, with at best mixed frequency data at their disposal. For example, one of the key indicators of
macroeconomic activity, the Gross Domestic Product (GDP), is released quarterly, while a range of leading
and coincident indicators is timely available at a monthly or even higher frequency. Hence, we may want to
construct a forecast of the current quarter GDP growth (a so called nowcast) based on the available higher
frequency information.

Econometric models with mixed frequency data can be classified into two broad classes: (1) likelihood-
based involving latent processes and (2) purely regression-based. The former category consists primarily
of state space models, studied by Harvey and Pierse (1984), Harvey (1989), Zadrozny (1990), Bernanke,
Gertler, and Watson (1997), Mariano and Murasawa (2003), Mittnik and Zadrozny (2005), Aruoba, Diebold,
and Scotti (2009), Ghysels and Wright (2009), Kuzin, Marcellino, and Schumacher (2011), among others.
The regression-based methods involve Mixed Data Sampling (MIDAS) regressions; see e.g. Ghysels, Santa-
Clara, and Valkanov (2006), Andreou, Ghysels, and Kourtellos (2010). As one considers high frequency
data, the issue of time-varying volatility becomes increasingly relevant. Dealing with stochastic volatility
(SV) in state space models is doable but poses challenges both statistical and computational in nature. One
possibility is to consider Bayesian approaches in this context, as done by Carriero, Clark, and Marcellino
(2013) and Marcellino, Porqueddu, and Venditti (2015). However, when it comes to classical inference one
typically relies on the Expectation-Maximization (EM) algorithm to compute numerically the ML estimate
in a model with unobservable variables (Dempster, Laird, and Rubin (1977)). The likelihood function of the
model involves a large-dimensional integral with respect to the latent factor paths as the latent factors appear
in the conditional mean and volatility of the high frequency data series. This integral representation of the
likelihood is impractical for the computation of the ML estimate.

If the objective is to estimate state space models with mixed frequency data - of which there are many
examples - featuring stochastic volatility, using classical inference methods, is there perhaps a simpler way to
do so? This is the contribution of our paper. We introduce indirect inference estimation procedures proposed
by Gouriéroux, Monfort, and Renault (1993), Smith (1993) and Gallant and Tauchen (1996), to estimate the
models of interest using MIDAS regressions augmented with ARCH-type models as well as mixed frequency
Vector Autoregressive (VAR) models (see e.g. Ghysels (2014)) as auxiliary models. Same frequency data
settings are a special case of mixed frequency ones. The analysis in this paper is therefore also applicable to
standard state space models. Moreover, the idea of estimating SV-type models using ARCH-type auxiliary
models has a long history starting with Engle and Lee (1999) and Pastorello, Renault, and Touzi (2000).
Our paper combines insights from the literature on SV models with those from the mixed frequency data
literature.

It is worth noting that in some specific cases we know the binding function between the state space
model and the implied MIDAS regression, as discussed in Bai, Ghysels, and Wright (2013). However, these
cases are rather too simple to be practical, so that the use of indirect inference is a natural way to tackle
the unknown binding function. The methods we propose are fairly easy to implement and involve auxiliary
model-based estimators involving MIDAS regressions combined with ARCH specifications for the errors. In
addition, we filter latent variables, given observables, using reprojection methods proposed by Gallant and
Tauchen (1998).

We compare the two estimation methods, namely (1) Maximum Likelihood (ML) and (2) indirect infer-
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ence, via Monte Carlo simulations. To implement the former method in the mixed frequency SV model, we
consider a simulation-based estimator relying on the EM algorithm. The smoothing distribution required in
the Expectation step is computed via a particle forward-filtering/backward-smoothing algorithm. We com-
pare the two estimation methods on the basis of (a) statistical criteria - mean/bias/quantiles of sampling
distributions, (b) filtering accuracy - both conditional mean and volatility and (c) computational time. Our
results show that there are clear advantages in terms of computational time to the new indirect inference
procedure put forward in this paper, while the losses in statistical efficiency compared to MLE are very lim-
ited. Even in the linear Gaussian case, we find our indirect inference methods remarkably accurate, when
compared to the standard MLE based on the Kalman filter.

The paper is organized as follows. Section 4.2 introduces state space models with mixed frequency data
and stochastic volatility. Section 4.3 defines our indirect inference estimator. This section covers the linear
Gaussian state space model with mixed frequency data as a special case of the general specification, and
discusses its relation with MIDAS regressions. This link yields useful insights to define the auxiliary model
for indirect inference in the general SV case. Section 4.3 also describes the estimation of the SV model
with ML via a simulation-based EM algorithm. Section 4.4 discusses filtering via reprojection, followed by
Section 4.5 which reports the results of an extensive Monte Carlo study. Section 4.6 presents an empirical
application of our model to the problem of forecasting at short horizons Euro-area quarterly GDP growth
using monthly macroeconomic indicators. The dataset is the same as the one considered in the empirical
study of Marcellino, Porqueddu, and Venditti (2015). Section 4.7 concludes the paper.

4.2 State Space Models with mixed frequency data and stochastic volatility

There is a burgeoning literature on nowcasting using either MIDAS regressions or state space models, see e.g.
Mariano and Murasawa (2003), Nunes (2005), Giannone, Reichlin, and Small (2008), Aruoba, Diebold, and
Scotti (2009), Marcellino and Schumacher (2010), Andreou, Ghysels, and Kourtellos (2013) and Banbura
and Modugno (2014), among others. Recent surveys include Andreou, Ghysels, and Kourtellos (2011),
Foroni and Marcellino (2013) and Banbura, Giannone, Modugno, and Reichlin (2013), where the latter
paper has a stronger focus on more complex Kalman filter-based factor modeling techniques.

State space models have been widely used in econometrics as well as other scientific disciplines, in
particular engineering where the Gaussian state space model and its Kalman filtering algorithm originated.1

A key starting point is that observations are driven by some latent process. Moreover, it is also assumed that
data are contaminated by measurement errors. To accommodate the mixed frequency sampling scheme, we
adopt a time scale expressed in a form that easily represents such mixtures. We will focus on small values
of m, the number of high frequency subperiods, such as for example m = 3 for monthly data sampled every
quarter. We consider a dynamic model for the latent factors as follows:

Assumption 1. Let (F ) be a nf × 1 dimensional vector process satisfying

Ft+j/m =

p∑
l=1

ΦlFt+(j−l)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m− 1, (4.2.1)

where Φl are nf ×nf matrices, the eigenvalues of the autoregressive matrix in the stacked AR(1) representa-
tion lie inside the unit circle, and (η) is an i.i.d. zero mean Gaussian error process with diagonal covariance

1The econometric literature on the topic is vast, see e.g. Harvey (1989), Hamilton (1994), among others.
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matrix Ση = diag(σ2
i,η, i = 1, . . . , nf ). Finally, the number of factors nf , is assumed to be known.

We have two types of data: (1) time series sampled at a low frequency (LF) - every integer date t, and (2)
time series sampled at high frequency (HF) - every t + j/m, with j = 0, . . . ,m−1. Bai, Ghysels, and Wright
(2013) make two convenient simplifications which depart from generality. First, they assume that there is
only one low-frequency process and call it yt, and second, consider the combination of only two sampling
frequencies. We will proceed with the same simplifications and also assume - for the sake of simplicity - that
there is only one high-frequency series, denoted xt+j/m. It is fairly easy to extend the methods proposed in
this paper to cases involving multiple low and high frequency series - which we will not cover explicitly.

If the low-frequency process were observed at high frequency, it would relate to the factors as follows:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m ∀t, j = 0, . . . ,m− 1, (4.2.2)

where y∗ denotes the process which is not directly observed and γ1 is a nf × 1 vector of factor loadings.
The error process u1,t+j/m has an AR(k) representation:

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m, (4.2.3)

where the lag operator L1/m applies to high-frequency data, i.e. L1/mut ≡ ut−1/m. The observed low-
frequency process y relates to the process y∗ via a linear aggregation scheme:

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m (4.2.4)

where yt is equal to the cumulator variable yct for integer t, and is not observed otherwise. The above scheme,
also used by Harvey (1989) and Nunes (2005), covers both stock and flow aggregation. We get the case of
a stock variable by setting Ψj = 1(j 6= 0,m, 2m...) and λj = 1(j = 0,m, 2m, ...), where 1(.) denotes the
indicator function. If we pick instead Ψj = 1(j 6= 1,m+ 1, 2m+ 1, ...) and λj = 1/m for all j, then we get
a flow variable.

The high frequency process xt+j/m relates to the factors as follows:

xt+j/m = γ′2Ft+j/m + u2,t+j/m ∀t, j = 0, . . . ,m− 1, (4.2.5)

where γ2 is a nf × 1 vector and:

d2(L1/m)u2,t+j/m = ε2,t+j/m, d2(L1/m) ≡ 1− d12L
1/m − . . .− dk2L

k/m. (4.2.6)

As usual in latent factor models, factor loadings γ1, γ2 and the parameters of the factor dynamics are subject
to identification restrictions.

The standard approach is to assume that the innovation processes (εk) are i.i.d. Gaussian with mean
zero and variance σ2

εk
, for k = 1, 2. Indeed, the literature typically ignores the presence of time-varying

volatility, yet the high frequency data often involve financial and other series which feature conditional
heteroskedasticity. This means that the state space models are no longer Gaussian. There is a substantial
literature on non-Gaussian state space models tailored for the analysis of financial returns data (see e.g.
Ghysels, Harvey, and Renault (1996), Shephard (2005) and references therein). The type of models of
interest to us are rather state space models with stochastic volatility in measurement equations. Hence,
our analysis relates more directly to recent work by Clark (2011), Carriero, Clark, and Marcellino (2012),
Carriero, Clark, and Marcellino (2013), or Marcellino, Porqueddu, and Venditti (2015).
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We augment equations (4.2.5)-(4.2.6) for high frequency data with time-varying volatility:

ε2,t+j/m ∼ N (0, ht+j/m), (4.2.7)

where the log volatility follows a Gaussian autoregressive process:

lnht+j/m = c+ ρSV lnht+(j−1)/m + ξt+j/m, ξt+j/m ∼ i.i.N (0, ν2
2), (4.2.8)

and parameter ρSV is smaller than 1 in absolute value. We obtain a SV-type volatility specification without
common factor structure.

While our analysis relates to recent work by Marcellino, Porqueddu, and Venditti (2015), among others,
as noted before, there are also subtle but important differences. In their model the factor process features
stochastic volatility. Instead, in equation (4.2.7) we assume that the measurement error features stochastic
volatility. When dealing with low frequency macroeconomic series exposed to factors, we think it is more
appropriate to assume that those factors do not feature volatility clustering, while the high frequency se-
ries are conditionally heteroskedastic. Ideally one could consider models where SV is featured in both the
observation and state equations. We leave this as a topic for future research.

Assumptions 1 and 2 (below) define the parametric models of interest in this paper. We denote by θ the
vector of unknown parameters in these models.

Assumption 2. The observable processes (y) and (x) are such that:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m,

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m,

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m,

yt = yct ,

xt+j/m = γ′2Ft+j/m + u2,t+j/m,

d2(L1/m)u2,t+j/m = h
1/2
t+j/mε2,t+j/m, d2(L1/m) ≡ 1− d12L

1/m − . . .− dk2L
k/m,

lnht+j/m = c+ ρSV lnht+(j−1)/m + ξt+j/m, ∀t, j = 0, . . . ,m− 1

where |ρSV | < 1, and (ε1), (ε2), (ξ) are mutually independent i.i.d. Gaussian processes, with distributions
N (0, σ2

ε1), N (0, 1), N (0, ν2
2) respectively, and independent of process (η).

4.3 Indirect Inference estimation

Estimating via Maximum Likelihood (ML) the mixed frequency models with SV presented in the previous
section is rather involved. Indeed, the likelihood function involves a large-dimensional integral with respect
to the latent factors path. This integral representation of the likelihood is impractical for computation of the
ML estimate, and numerical filtering techniques are necessary.

In this section we introduce indirect inference estimation methods - proposed by Gouriéroux, Monfort,
and Renault (1993), Smith (1993) and Gallant and Tauchen (1996) - to estimate the mixed frequency SV
models. Indirect inference can be used to estimate virtually any model from which it is possible to simulate
data. This obviously includes state space models. Indirect inference estimation in fact involves two types of
models - a model of interest already specified in the previous section - and an auxiliary model which is easy
to estimate. Both models are linked - in terms of parameter spaces - by a binding function.
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4.3.1 Linear setting with known binding function

To explain our estimation approach it is worth starting with a setting where the binding function is known.
This setting is provided by a linear state space model with Gaussian errors. This model is a special case of
the general specification in Assumptions 1 and 2 when there is no SV.2 In this linear state space model, the
Kalman filter can be applied for prediction and filtering. Bai, Ghysels, and Wright (2013) show that for a
model with a single latent factor (nf = 1) having a AR(1) dynamics and persistence parameter ρ, andm = 3
as for instance for a monthly/quarterly mixture of data, one obtains (see Appendix 4.10.2 for details):

E
[
yt+h|IMt

]
= ρ3hκ3,1

∞∑
j=0

ϑjyt−j + ρ3h
∞∑
j=0

ϑjx(θx)t−j (4.3.1)

where IMt denotes the information in the available low and high frequency data up to time t, ϑ = [(ρ −
ρκ1)(ρ− ρκ2)(ρ− ρκ3)], and κi, κ3,i are steady state Kalman gain parameters. Moreover, one has:

x(θx)t ≡ [κ3,2 + (ρ− ρκ3)κ2L
1/3 + (ρ− ρκ3)(ρ− ρκ2)κ1L

2/3]xt (4.3.2)

which is a parameter-driven low-frequency process composed of high-frequency data aggregated at the quar-
terly level.

The above equation relates to the multiplicative MIDAS regression models considered by Chen and
Ghysels (2010) and Andreou, Ghysels, and Kourtellos (2013). In particular consider the following ADL-
MIDAS regression:

yt+h = βy

Ky∑
j=0

wj(θy)yt−j + βx

Kx∑
j=0

wj(θ
1
x)jx(θ2

x)t−j + εt+h (4.3.3)

where wj(θy), wj(θ1
x) follow an exponential Almon scheme and

x(θ2
x)t−j ≡

m−1∑
k=0

wk(θ
2
x)Lk/mxt−k/m

also follows an exponential Almon scheme.3 Provided that ρ > 0, equation (4.3.1) is a special case of this
model with Ky = Kx = ∞, wj(θy) ∝ exp(log(ϑ)j), wj(θ

1
x) ∝ exp(log(ϑ)j) and wk(θ2

x) ∝ exp(θ2
x,1k +

θ2
x,2k

2) where θ2
x,1 and θ2

x,2 are parameters that solve the equations:

log{(ρ− ρκ3)κ2/κ3,2} = θ2
x,1 + θ2

x,2,

log{(ρ− ρκ3)(ρ− ρκ2)κ1/κ3,2} = 2θ2
x,1 + 4θ2

x,2. (4.3.4)

Equations (4.3.3) and (4.3.4) implicitly define a binding function between the parameters of the state space
model and those of the MIDAS regression. Note, however, that the mapping under-identifies the parameters

2It corresponds to the parameter constraints ν2 = 0 and ρSV = 1.
3The constructed low-frequency regressor is estimated jointly with the other (MIDAS) regression parameters. Hence, one can

view x(θ2x)t−j as the best aggregator that yields the best prediction. This ADL-MIDAS regression involves more parameters than
the usual specification involving only one polynomial.

182



of the state space model if we rely on a standard multiplicative MIDAS regression scheme. Moreover, the
mapping is only valid for a single factor state space model with i.i.d. measurement errors. What do we
do for multi-factor models or single factor models with autoregressive errors? Bai, Ghysels, and Wright
(2013) show that MIDAS regressions still provide very accurate approximations, although there is no exact
(underidentified) mapping.

4.3.2 Auxiliary models: U-MIDAS and ARCH

A departure from the setup in Bai, Ghysels, and Wright (2013) is that we replace equation (4.3.3) with a
U-MIDAS - meaning unrestricted MIDAS - specification suggested by Foroni, Marcellino, and Schumacher
(2013), namely:

yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

mK̃x∑
j=0

γjxt−j/m + εt+1. (4.3.5)

Note that we estimate K̃y + mK̃x + 2 parameters (not including intercept and residual variance). When m
is small, as shown by Foroni, Marcellino, and Schumacher (2013), we are able to estimate these parameters
with reasonable precision using sample sizes typically encountered in economic applications. One attractive
feature of U-MIDAS mispecification is the fact that estimation is numerically straightforward, as it can be
performed by OLS.

Suppose we collect all the parameters of the U-MIDAS regression into the vector φ ∈ Φ. Assuming
dim(θ) ≤ dim(φ) ≡ K̃y + mK̃x + 4 we may be able to identify and estimate the parameters via indirect
inference.4

Since the models of interest feature SV, we can consider as auxiliary models the following U-MIDAS
regressions augmented with ARCH errors:

yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

mK̃x∑
j=0

γjxt−j/m + εt+1, εt+1 ∼ N (0, σ2
t+1)

σ2
t = ω +

p∑
k=1

αkε
2
t−k (4.3.6)

which has the advantage of being simple to implement as it only involves a linear regression specification
with ARCH(p) errors. The idea for this auxiliary model is that heteroskedasticity in the high frequency data
affects the residuals of the reduced form MIDAS regressions. Obviously, the ARCH model in the above
equation is only estimated at low frequency, and therefore the ARCH effects may not be particularly strong.

4.3.3 Auxiliary models: mixed frequency VAR and ARCH

The auxiliary U-MIDAS regressions considered in the previous subsection do not fully exploit all features
of the data since the link between latent factors and high frequency data is not being taken into account. In
this subsection we remedy to this shortcoming by considering mixed frequency VAR models. It is worth
noting from the start that there might be some confusion about the characterization of mixed frequency VAR

4Note that we added a constant and residual variance in the MIDAS regressions parameter count.
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models. The analysis below serves two purposes: (1) it generalizes the U-MIDAS setup discussed so far and
(2) it enables us to consider a suitable approach for state space models with stochastic volatility.

A number of authors, including Zadrozny (1988), Zadrozny (1990) and more recently Kuzin, Marcellino,
and Schumacher (2011), Schorfheide and Song (2013), among others, start from a latent high frequency VAR
process, namely:

(
y∗t+(j+1)/m

xt+(j+1)/m

)
= C0 +

kmax∑
k=1

Ck

(
y∗t+(j+1−k)/m

xt+(j+1−k)/m

)
+

(
εy∗t+(j+1)/m

εxt+(j+1)/m

)
(4.3.7)

where y∗t+j/m is defined in equation (4.2.2). The above latent VAR model is related to observables via a
measurement equation and therefore cast in state space framework with missing observations.

State space models are, using the terminology of Cox (1981), parameter-driven models whereas VAR
models are, using again the same terminology, observation-driven models as they are formulated exclusively
in terms of observable data. Ghysels (2014) introduces a class of observation-driven mixed frequency VAR
models which provides an alternative to commonly used state space models involving latent processes. In
addition, the mixed frequency VAR model is a multivariate extension of MIDAS regressions.

The mixed frequency VAR considered by Ghysels (2014), tailored towards the current application, can
be written as follows:


xt+1

...
xt+1+(m−1)/m

yt+1

 = C̃0 +

K̃max∑
k=1

C̃k


xt+1−k

...
xt+1−k+(m−1)/m

yt+1−k

+


ε1
t+1
...

εmt+1

εyt+1

 . (4.3.8)

Hence, it involves a VAR of dimension m + 1 (with single high and low frequency series) where the high
and low frequency data for low frequency period (quarter, say) t are stacked into a vector whose dynamics
is described by a linear multivariate autoregressive structure. Note, that elements of the matrices C̃k now
describe within-period (intra-quarterly) time series dependencies.5 The stacking implies that, if we read
across a particular row of the mixed frequency VAR, we have high frequency processes predicted by past
high and low frequency series and vice versa.

The unrestricted VAR model in equation (4.3.8) includes (m + 1) + K̃max(m + 1)2 + m(m + 1)/2
parameters which can be estimated by OLS. Ghysels (2014) proposes a parsimonious parametrization which
can be estimated by Maximum Likelihood, at the expense of a higher computational cost, as the likelihood
has to be maximized numerically either using classical or Bayesian techniques. Therefore, this restricted
VAR is not suitable as auxiliary model, because of the heavy computational cost.

A parsimonious auxiliary model, which ensures computational speed for indirect inference estimation,
can be obtained by considering an AR model for the high frequency data, which can be easily estimated by
OLS. The following model will be used as the auxiliary model in our Monte Carlo simulation exercise for

5Most notably Granger causal patterns as discussed in Ghysels, Hill, and Motegi (2014), Ghysels, Hill, and Motegi (2016), Götz
and Hecq (2014a) and Götz and Hecq (2014b).
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DGPs without SV:


yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

m(K̃x+1)−1∑
j=0

γjxt−j/m + ζyt+1

xt+(j+1)/m = c0 +

m(K̃x+1)∑
k=1

ckxt+(j+1−k)/m + ζxt+(j+1)/m

. (4.3.9)

The first equation of this auxiliary model corresponds to the U-MIDAS specification in equation (4.3.5),
while the second equation is an AR of order m(K̃x + 1) specified on the high frequency (HF) data only.
The second equation can be obtained from one of the equations for the HF observables of a structural mixed
frequency VAR model, where the high frequency variables do not depend explicitly on the lagged low fre-
quency ones (see Ghysels (2014)). Model (4.3.9) can be estimated by OLS, and the correlation between the
innovations ζyt+1 and ζxt+(j+1)/m, which can only be computed at low frequency, could be included as an
auxiliary parameter to estimate, or can be set to zero.

In order to handle the DGP with SV, we can add ARCH-type augmentations to the auxiliary models. In
particular, the complete auxiliary model used in the Monte Carlo simulation for DGPs with SV is:



yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

m(K̃x+1)−1∑
j=0

γjxt−j/m + ζyt+1

xt+(j+1)/m = c0 +

m(K̃x+1)∑
k=1

ckxt+(j+1−k)/m + ζxt+(j+1)/m, ζxt+(j+1)/m ∼ N (0, σxt+(j+1)/m)

σxt+(j+1)/m = ω +

p∑
k=1

αk(ζ
x
t+(j+1−k)/m)2

(4.3.10)

where the errors ζx and ζy can be correlated.

4.3.4 Estimation via Indirect Inference

The parameter vectors for the auxiliary model will be denoted respectively φMi for the U-MIDAS specifica-
tion appearing in equation (4.3.6), and φV for the mixed frequency VAR model in equation (4.3.8) in general
- and more specifically in equation (4.3.10). Given a sample of size Tm we obtain OLS estimates φ̂Mi

Tm and
φ̂VTm.

We simulate mixed frequency data with the state space model in Assumptions 1 and 2, given a particular
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structural parameter value θ, by drawing S independent samples of size TSm from the model:

Fs,t+j/m(θ) =

p∑
l=1

Φl(θ)Fs,t+(j−l)/m(θ) + ηs,t+j/m(θ)

lnhs,t+j/m(θ) = c(θ) + ρSV (θ) lnhs,t+(j−1)/m(θ) + ξs,t+j/m(θ)

y∗s,t+j/m(θ) = γ1(θ)′Ft+j/m(θ) + us,1,t+j/m(θ)

d1(L1/m, θ)us,1,t+j/m(θ) = εs,1,t+j/m(θ)

ycs,t+j/m(θ) = Ψjy
c
s,t+(j−1)/m(θ) + λjy

∗
s,t+j/m(θ)

ys,t(θ) = ycs,t(θ)

xs,t+j/m(θ) = γ2(θ)′Fs,t+j/m(θ) + us,2,t+j/m(θ)

d2(L1/m, θ)us,2,t+j/m(θ) = hs,t+j/m(θ)1/2εs,2,t+j/m(θ)

∀t = 1, . . . , TS , j = 0, . . . ,m− 1, s = 1, . . . , S, (4.3.11)

where innovation processes ηs(θ), εs,1(θ), εs,2(θ) and ξs(θ) are independent i.i.d. processes with Gaussian
distributionsN (0,Ση(θ)),N (0, σ2

ε1(θ)),N (0, 1),N (0, ν2
2(θ)). Given the S simulated samples, we compute

the following estimators:

• The Indirect Inference (II) estimator of Gouriéroux, Monfort, and Renault (1993) and Smith (1993),
using the U-MIDAS auxiliary model, denoted by θ̂IIMi

TmS ;

• The II estimator of Gouriéroux, Monfort, and Renault (1993) and Smith (1993), using the mixed
frequency VAR auxiliary model, denoted by θ̂IIVTmS .

The II estimators for auxiliary models Mi and V are obtained via:

θ̂IIMi
TmS = arg min

θ

(
φ̂Mi
Tm −

1

S

∑
s

φ̂Mi
Tm,s(θ)

)′
ΩMi

(
φ̂Mi
Tm −

1

S

∑
s

φ̂Mi
Tm,s(θ)

)
(4.3.12)

and:

θ̂IIVTmS = arg min
θ

(
φ̂VTm −

1

S

∑
s

φ̂VTm,s(θ)

)′
ΩV

(
φ̂VTm −

1

S

∑
s

φ̂VTm,s(θ)

)
(4.3.13)

respectively, with φ̂Mi
Tm,s(θ) and φ̂VTm,s(θ) being the U-MIDAS and VAR auxiliary model parameter esti-

mates for generated sample s and structural parameter value θ, and ΩMi and ΩV being (optimal) weighting
matrices.

Assumptions 1-2 and standard regularity conditions (see e.g. Gouriéroux and Monfort (1997)) imply that
the indirect inference estimators are consistent and asymptotically normal as T and S →∞:

√
Tm(θ̂ESTTmS − θ0)→d N (0, V EST ) (4.3.14)

for EST ≡ IIMi and IIV respectively, where θ0 denotes the true value of the structural parameter.
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4.3.5 EM algorithm for mixed frequency SV model

We assess the efficiency of our indirect inference estimators for the SV model with mixed frequency data by
comparing their performances with that of the Maximum Likelihood (ML) estimator in a Monte Carlo exper-
iment (see Section 4.5). Due to the latent factor processes (F ) and (h) in the dynamics of the data, the likeli-
hood function of the model involves a large-dimensional integral with respect to the latent factors path. This
integral representation of the likelihood is impractical for computation of the ML estimate. We consider in-
stead a simulation-based estimator relying on the Expectation Maximization (EM) algorithm. The smoothing
distribution required in the Expectation step is computed via a particle forward-filtering/backward-smoothing
algorithm.6 In this section we describe the main steps of the procedure, and refer to Appendix B for the de-
tailed definition of the estimation algorithm.

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute numerically the
ML estimate in a model with unobservable variables (Dempster, Laird, and Rubin (1977)). Let Yt =
(yt, xt−j/m, j = 0, 1, ...,m − 1)′ be the vector of stacked observable variables (measurements) and ft =
(Ft−j/m, ht−j/m, j = 0, 1, ...,m− 1)′ the Markov vector of stacked latent factors, for t = 1, ..., T . The EM
algorithm relies on the complete-observation log-likelihood function, that is the log of the joint density of
observable and unobservable variables in the structural model:

L∗(θ) = log `(YT , fT ; θ)

=
T∑
t=1

log h(Yt|Yt−1, ft; θ) +
T∑
t=1

log g(ft|ft−1; θ),

where YT denotes the history of Yt up to T , and similarly for fT and ft. Here, h is the measurement density
and g is the transition density in the state space representation (see Appendix 4.11.2 for the expression of
L∗(θ) in the mixed-frequency SV model). Let θ̂EM,(i)

Tm be the estimate of parameter θ at iteration i of the EM
algorithm. The update i→ i+ 1 consists of two steps:

1. Expectation (E) step. Compute function Q(θ|θ̃), with θ̃ = θ̂
EM,(i)
Tm , where:

Q
(
θ|θ̃
)

= Eθ̃
[
L∗(θ)|YT

]
and Eθ̃

[
·|YT

]
denotes the expectation w.r.t. the conditional distribution of fT given YT for parameter

value θ̃.

2. Maximization (M) step. Compute the estimate for iteration i+ 1 as:

θ̂
EM,(i+1)
Tm := arg max

θ
Q
(
θ|θ̂EM,(i)

Tm

)
.

The iteration is performed until a criterion for numerical convergence of the estimate is met, and θ̂ML
Tm =

θ̂
EM,(∞)
Tm . The details for the E-step and the M-step in the mixed frequency SV model are provided in

Appendix 4.11.3.
6Other approaches have been proposed in the literature to implement the MLE in nonlinear state space models with SV and could

be adapted to our mixed frequency framework, for instance the Monte Carlo ML approach in Sandmann and Koopman (1998).
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The E-step in the EM algorithm requires the smoothing distribution of the unobservable factor path for
given parameter value θ̃ to compute the conditional expectation Eθ̃

[
·|YT

]
. This smoothing distribution can-

not be characterized analytically for a nonlinear state space specification as the mixed frequency SV model.
We approximate the smoothing distribution via a large sample of draws from it, called particles. The smooth-
ing algorithm we adopt uses a sample of particles from the filtering distribution as an input. Specifically, for
the E-step of the i-th iteration in the EM algorithm, we generate samples fs,(i)t+j/m = (F

s,(i)
t+j/m, h

s,(i)
t+j/m)′,

s = 1, ..., S, from the filtering distribution of the latent factors at each date t + j/m, for parameter value
θ̂
EM,(i)
Tm . For this task we use a sequential algorithm based on the auxiliary particle filter method running from

the first sample date to the last sample date. We refer to Pitt and Shephard (1999) for the auxiliary particle fil-
ter; see also e.g. Douc, Moulines, and Olsson (2009), Carvalho, Johannes, Lopes, and Polson (2010), Doucet
(2010), Lopes and Tsay (2011), Creal (2012), Kantas, Doucet, Singh, Maciejowski, and Chopin (2015) for
recent developments and applications. The algorithm is described in detail in Section B.4.2. Then, we use
a backward algorithm to generate sample paths (f̃

s,(i)
t+j/m,∀t, j), s = 1, ..., S, from the smoothing distribu-

tion; see e.g. Kim and Stoffer (2008) and Godsill, Doucet, and West (2004). Appendix 4.11.4 provides the
detailed simulation procedure. The sample paths (f̃

s,(i)
t+j/m,∀t, j), s = 1, ..., S, are approximate draws from

the distribution of (ft+j/m, ∀t, j) given YT for parameter value θ̂EM,(i)
Tm when the number of particles S is

large. We use averages across these sample paths to approximate the conditional expectation Eθ̃
[
·|YT

]
for

θ̃ = θ̂
EM,(i)
Tm .

4.4 Filtering via reprojection and nowcasting

State space models do not only involve parameter estimation but also filtering of the latent states, for which
the Kalman filter is the standard scheme in the linear Gaussian case. In this section we present alternative
methods which easily extend to, say, the non-Gaussian case involving stochastic volatility. Our approach
relies on the reprojection method of Gallant and Tauchen (1998) to produce filtering estimates of the latent
factors.

The procedure is fairly simple to implement. Let θ̂ESTTmS be the parameter estimate obtained by one of the
Indirect Inference estimators introduced in Section 3.4. We start again with simulating a long sample of size
T reprojm, say, from the model of interest as in equation (4.3.11), using parameter value θ = θ̂ESTTmS . Then,
the simulated sample is used to estimate a specification for the conditional expectation of the latent factors
given the observable data. Finally, the estimated specification for this conditional expectation is applied to
the original sample of observations y, x, and used as a filter.

To develop further insight in the methodology, we start with the Gaussian case (the model in Assumptions
1 and 2 without SV, i.e. with ρSV = 1 and ν2 = 0). Next, we discuss the filtering algorithm for the non-
Gaussian case with stochastic volatility.

In a Gaussian linear state space model, the conditional expectation of the latent factor given the mea-
surements is linear (see equation (4.10.15) in Appendix A). In our mixed frequency setting, in analogy to
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equation (4.3.5), this remark suggests estimating a U-MIDAS regression on the simulated sample:

Ft+j/m(θ̂ESTTmS) = b0(θ̂ESTTmS) +

K̃y∑
k=0

bk(θ̂
EST
TmS)yt−k(θ̂

EST
TmS)

+

mK̃x∑
k=0

ck(θ̂
EST
TmS)xt+(j−k)/m(θ̂ESTTmS) + εt+j/m(θ̂ESTTmS)

t = 1, 2, ..., T reproj , j = 0, 1, ...,m− 1, (4.4.1)

which amounts to regressing latent factors onto observables. Note that the observables have a nowcasting
feature, i.e. contemporaneous period t + j/m high frequency data is used. Once we have the parameters of
the above regression, we can apply the scheme to observed data y and x and therefore use it as a filter. We
denote by F̂t+j/m|t+j/m(θ̂ESTTmS) the reprojection factor values.

Likewise, the mixed frequency VAR framework of Ghysels (2014) could be modified to perform the task
as filter, namely we run the system of regressions:

C̄(θ̂ESTTmS)


Ft+1(θ̂ESTTmS)

...
Ft+1+(m−1)/m(θ̂ESTTmS)

yt+1(θ̂ESTTmS)

 = C̃0(θ̂ESTTmS) +

K̃max∑
k=1

C̃k(θ̂
EST
TmS)


xt+1−k(θ̂

EST
TmS)

...
xt+1−k+(m−1)/m(θ̂ESTTmS)

yt+1−k(θ̂
EST
TmS)



+


ε1t+1(θ̂ESTTmS)

...
εmt+1(θ̂ESTTmS)

εyt+1(θ̂ESTTmS)

 (4.4.2)

where C̄(θ̂ESTTmS) is a lower triangular matrix to accommodate nowcasting - see Ghysels (2014) for further
details. Here again, once we estimate the system of equations over a long simulated sample, we can treat the
resulting estimates as weights for a filtering scheme.

In the nonlinear state space model with stochastic volatility, the conditional expectation of the latent
factors given the current and past values of the observable variables is no more linear in the conditioning
variables. Therefore, in such framework the regressions in (4.4.1) and (4.4.2) do not provide exact filters
(up to a truncation of the number of lags). However, we can interpret these regressions as numerically
feasible linear approximations of the unknown exact filter for the latent factor F in the conditional mean. A
second-order approximation is obtained by including quadratic terms in low and high frequency observations.
Similar approximate filters can be developed for the stochastic volatility factor h. In this case, the filter can
be based on squared measurement errors. For instance, in a model without AR effects in the measurement
errors at high frequency (to simplify), we can run the regression:

ht+j/m(θ̂ESTTmS) = d̄0 +

K̃u∑
k=0

d̄k(u2,t+(j−k)/m(θ̂ESTTmS))2 + εut+j/m(θ̂ESTTmS), (4.4.3)

possibly including also higher-order terms.
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In the linear Gaussian case, we can make direct comparisons of the filters based on reprojection with
the Kalman filter in order to gauge the reliability of the proposed method. In the non-Gaussian case
with stochastic volatility, a benchmark for comparison is obtained by first estimating the model by Monte
Carlo EM as described in Section 3.5, and then compute the filtered factor value f̂t+j/m|t+j/m(θ̂ML

Tm ) =

[F̂t+j/m|t+j/m(θ̂ML
Tm ), ĥt+j/m|t+j/m(θ̂ML

Tm )]′, say, by averaging the particles f st+j/m, with s = 1, ..., S, from

the filtering distribution for parameter value θ̂ML
Tm . We perform these comparisons in the Monte Carlo simu-

lations presented in Section 5. There, we keep the reprojections quite simple in fact, namely we implement
the filter for F in equation (4.4.1) in both the Gaussian and stochastic volatility settings, and we use a filter
for volatility factor h based on squared residuals such as (4.4.3) in the latter setting. These filters could be
improved upon by considering the setup in equation (4.4.2), and adding higher-order terms in the SV case.

4.5 Monte Carlo Simulations

We conduct a Monte Carlo simulation to appraise the small and large sample properties of the indirect
inference procedures proposed in earlier sections. A first subsection covers the design of the simulations. A
second subsection covers the Gaussian state space model where the Kalman filter and maximum likelihood
are the natural benchmarks. In a final subsection we consider non-Gaussian cases with stochastic volatility,
where we compare our indirect inference procedure with a simulation-based EM algorithm.

4.5.1 Design

We consider three designs for the MC experiments. In all of them we have m = 3, corresponding to - for
instance - a mixture of monthly and quarterly data, and stock sampling of the low frequency variable. In the
first MC design, we consider a linear Gaussian state space model. The DGP has a single Gaussian AR(1)
latent factor process (nf = 1), and Gaussian AR(1) measurement errors for both the high and low frequency
data, with the same persistence parameter.

DGP 1: Single factor linear Gaussian state space model

The data (y) and (x), and the single latent factor (F ), are such that:

Ft+j/3 = ρFt+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ2Ft+j/3 + ux,t+j/3,

ux,t+j/3 = d · ux,t+(j−1)/3 + σxεx,t+j/3, t = 1, ..., T, j = 0, 1, 2,

where the low frequency variable y is stock-sampled, and (η), (εy) and (εx) are mutually independent i.i.d.
standard Gaussian processes. The true values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1. We
consider two values for the persistence of the latent factor, that are ρ = 0.5 and ρ = 0.9.

The number of structural parameters in DGP1 is 6. In each Monte Carlo simulation, we draw from this
DGP samples of sizes T = 100 (corresponding to 25 years of quarterly data), T = 200 and T = 500. We
perform 1000 Monte Carlo repetitions. On each simulated sample we compute the Indirect Inference (II)
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estimator θ̂IIVTmS of Gouriéroux, Monfort, and Renault (1993) and Smith (1993) as described in Section 3.4,
and the associated reprojections F̂t+j/m|t+j/m(θ̂IIVTmS) as described in Section 4. The auxiliary model is a
U-MIDAS regression for the low frequency data with K̃x = K̃y = 3 and an AR(9) process for the high
frequency data (see equation (4.3.9)). This auxiliary model has 30 parameters and yields an overidentifed II
setting. Instead of running S simulations from the DGP of length T , we simulate a unique long path, i.e. we
set S = 1 and TS = 50000. Moreover, we use the identity weighting matrix. The reprojection of the latent
factor is computed by regression on a simulated sample of size T reproj = 100000.

In this linear Gaussian state space model, the MLE estimator of the model parameters θ̂ML
Tm and the

Kalman filter of the latent factor values - which we denote F̂t+j/m|t+j/m(θ̂ML
Tm ) - serve as the natural bench-

mark. We compute the Kalman filter and the ML estimates using the algorithm presented in Appendix A.
In the second Monte-Carlo design, the DGP is a two-factor linear state space model (nf = 2). The two

latent factors follow independent AR(1) processes, with same autoregressive parameter.

DGP 2: Two-factor linear Gaussian state space model

The data (y) and (x), and the bivariate latent factor (F ), are such that:

Ft+j/m =

[
ρ 0
0 ρ

]
Ft+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ′1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ′2Ft+j/3 + ux,t+j/3,

ux,t+j/3 = d · ux,t+(j−1)/3 + σxεx,t+j/3, t = 1, ..., T, j = 0, 1, 2,

where the low frequency variable y is stock-sampled, and (η), (εy) and (εx) are mutually independent i.i.d.
Gaussian processes, with distribution N (0, I2) for (η), and distribution N (0, 1) for (εy) and (εx). The true
values of the parameters are ρ = 0.9, γ1 = (1, 0.2)′, γ2 = (0.2, 1)′, d = 0, σy = σx = 1.

The number of structural parameters in DGP2 is 8. The sample sizes are T = 100, T = 200 and
T = 500. We compute the II estimator θ̂IIVTmS of Gouriéroux, Monfort, and Renault (1993) and Smith (1993)
and the associated reprojections F̂t+j/m|t+j/m(θ̂IIVTmS) with the same auxiliary model and the same simulation
length as for DGP1. We also compute the MLE θ̂ML

Tm and the Kalman filter estimates F̂t+j/m|t+j/m(θ̂ML
Tm )

with the algorithm in Appendix A.
The third DGP is a mixed frequency state space model with stochastic volatility. This DGP features a

single Gaussian AR(1) factor in the mean of high frequency and low frequency observables (nf = 1). The
measurement error of the low frequency variable is a Gaussian AR(1) process. The measurement error of
the high frequency variable is a conditionally heteroskedastic process.

The number of structural parameters in DGP3 is 8. The SV specification for the high frequency in-
novations in equations (4.5.1) and (4.5.2) is a reparametrization of the one proposed in equations (4.2.7)
and (4.2.8). This specification is analogous to the one used by Monfardini (1998), Marcellino, Porqueddu,
and Venditti (2015) and Clark (2011), among others. In particular, here h is the log volatility process, and
is normalized to have mean zero. In this parameterization, both latent factors have a linear autoregressive
dynamics.
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DGP 3: Stochastic volatility model

The data (y) and (x), and the scalar latent factors (F ) and (h), are such that:

Ft+j/3 = ρFt+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ2Ft+j/3 + σx exp

{
1

2
ht+j/3

}
εx,t+j/3, (4.5.1)

ht+j/3 = ρSV ht+(j−1)/3 + ν · ξt+j/3, t = 1, ..., T, j = 0, 1, 2, (4.5.2)

where the low frequency variable y is stock-sampled, and (η), (εy), (εx) and (ξ) are mutually independent
i.i.d. standard Gaussian processes. The true values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1,
ρSV = 0.95, ν = 0.3. We consider two values for the persistence of the latent factor in the conditional mean,
that are ρ = 0.5 and ρ = 0.9.

Again, the sizes of the simulated samples are T = 100, T = 200 and T = 500. We have tried different
auxiliary models for the indirect inference procedure, including GARCH(1,1) for the squared high frequency
residuals, an AR(10) model on the logarithm of the squared high frequency residuals and an AR(10) model
on the logarithm of the squared high frequency observables (similarly as in Monfardini (1998)). Barigozzi,
Halbleib-Chiriac, and Veredas (2014) show that the GARCH(1,1) model is the best auxiliary model for es-
timating a stochastic volatility model with Indirect Inference, in the sense that it provides the best trade-off
between efficiency and estimation noise. The GARCH(1,1) auxiliary model reduces, however, the com-
putational speed of the indirect inference estimator, as it requires estimation via maximum likelihood. We
therefore prefer an AR-ARCH specification in the auxiliary model, since this allows for estimation via a sim-
ple two-step approach based on OLS regressions. Specifically, we compute the indirect inference estimator
θ̂IIVTmS of Gouriéroux, Monfort, and Renault (1993) and Smith (1993) as described in Section 3.4, using the
auxiliary model in equation (4.3.10), with K̃x = K̃y = 4 in the U-MIDAS regression for the low frequency
data, and an AR(9)-ARCH(10) specification for the high frequency data.7 We compare the distribution of
our indirect inference estimator with the distribution of the MLE in the Monte Carlo simulations. In the
nonlinear state space model of DGP 3, we implement the MLE via a simulation-based EM algorithm as
described in Section 4.3.5 (see Appendix B for the detailed algorithm).

4.5.2 Monte Carlo results in the linear Gaussian state space model

Tables 4.1 through 4.3 report the results for the linear Gaussian state space models in DGP1 and DGP2. For
each combination of DGP parameters and sample size, we provide the results of the Indirect Inference (II)
procedure for parameter estimation and filtering of the latent factor path. As a benchmark, we also provide
the estimation and filtering results using the Maximum Likelihood (ML) procedure based on the Kalman

7 In this paper we do not consider the moment matching procedure of Gallant and Tauchen (1996). However, adopting their
procedure, which is computationally even more attractive, could make the use of GARCH-type auxiliary models more attractive. As
the Gallant-Tauchen procedure is based on the score, it would not require iterated ML estimates (see for instance, Sentana, Calzolari,
and Fiorentini (2008)).
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filter.8

In Table 4.1, we consider DGP1 where the single latent factor process is mildly persistent with autocor-
relation ρ = 0.5. The finite sample performance of the II estimator is remarkably good. First, it has only
a small bias for most configurations. Second - as expected - the ML estimator based on the Kalman filter
is more efficient, but the efficiency loss of the II estimator is rather limited. The bias of both the II and
MLE is more pronounced for parameter σy, that is the volatility of the low frequency measurement error.
For this parameter, the efficiency loss of the II estimator compared to MLE is a bit larger. As expected, the
dispersions of the estimators decrease with the sample size T . Moreover, the reprojection procedure provides
rather accurate estimates of the latent factor values. Indeed, the average correlation between true and filtered
factor values is about 0.80 for all sample sizes, which is close to the performance of the Kalman filter.

In unreported MC results we compared the performance of the above II estimator - which uses the U-
MIDAS/AR auxiliary model for high/low frequency data - with the performance of the II estimator using
only the low-frequency U-MIDAS specification as auxiliary model. The II estimator of the standard deviation
parameter for the high-frequency data σx based on the low-frequency U-MIDAS auxiliary model has a large
bias. As shown in Table 4.1, this problem does not arise when we include high-frequency data in the auxiliary
model via the mixed frequency VAR specification. These findings confirm the intuition that using data at
both frequencies provides a more informative auxiliary model.

In Table 4.2, the autocorrelation of the latent factor in DGP1 is set equal to ρ = 0.9. Both the ML and
II estimators have smaller dispersions in this MC design compared to Table 4.1. This effect is due to the
more favorable signal-to-noise setting when ρ is changed from 0.5 to 0.9 in our parameterization of the DGP.
Indeed, with ρ = 0.9 the factor has a larger unconditional variance relative to the noise variance, which is
fixed across the two cases. Hence, the signal-to-noise ratio is larger for the DGP in Table 4.2 compared to
Table 4.1.

In Table 4.3 we report the simulation results for DGP2, which features two latent factors, with loadings
equal to γ1 = (1.0, 0.2)′ and γ2 = (0.2, 1.0)′. Compared to the one-factor case in Tables 4.1 and 4.2,
the loadings are estimated rather precisely, with the dispersion of the loadings equal to 0.2 being larger
than that of the loadings equal to 1.0. Also in this case we find that the II estimator has a very good
performance, with the exception of the estimator of the low frequency volatility σy, which has a bias of
around 20% for small sample sizes (T = 200, 100), and a large dispersion. Nevertheless, the reprojection
procedure produces accurate estimates of both factors. As expected, the factor which loads mainly on the
high frequency observables (that is F2) is estimated more precisely (average correlation with the true factor
equal to 0.88 for T = 100) than the factor which loads mainly on the low frequency observables (average
correlation with the true factor equal to 0.74 for T = 100).

Overall, the results in Tables 4.1 through 4.3 are remarkably impressive, since they show that the per-
formance of the II procedure is rather close to the efficient benchmark in the linear Gaussian state space
model.

4.5.3 Monte Carlo results for the state space stochastic volatility model

We now consider the more challenging state space model with stochastic volatility in DGP3. Tables 4.4 and
4.5 report the results of Monte Carlo simulations comparing the II estimator with the MLE (implemented

8All Monte Carlo simulations in Section 5 have been performed using Matlab 7.10.0 (R2010a) on a laptop with a 1.60 GHz
processor and 4 GB RAM. Optimization problems involved in parameter estimation have been solved using the Matlab procedure
‘fminunc’.
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via a simulation-based EM algorithm) for sample sizes T = 500 and T = 200 respectively. These tables
compare the two estimation methods on the basis of (a) statistical criteria - mean/bias/quantiles of sampling
distributions, (b) filtering accuracy - both for conditional mean and volatility factors, and (c) computational
time. Compared to the linear Gaussian state space model in DGP1, the structural model now has two ad-
ditional parameters, which are the autoregressive coefficient ρSV and the volatility parameter ν of the log
stochastic volatility process. A first encouraging finding is that the estimation results for parameters γ1, γ2,
ρ, d, σy, σx are comparable to those of the Gaussian state space model displayed in Tables 4.1 and 4.2,
with slightly larger dispersions in Tables 4.4 and 4.5, as expected. The latter effect is more pronounced for
parameter d, the autoregressive coefficient of the low frequency measurement error, for both the II estimator
and the MLE. The stochastic volatility parameters ρSV and ν are estimated with rather small biases. Note
that sample size T = 200 corresponds to 600 high frequency observations, and for such sample sizes the
estimation of ARCH and SV specifications can be inaccurate, even in absence of latent factors in the mean.
Yet, comparing the distributions of II and ML estimates, we observe that also in the stochastic volatility case
the efficiency loss of the former estimator is limited.

It is worth noting that the reprojection method provides rather accurate estimates of the latent factor
values also in the stochastic volatility model. Results are less good for the log volatility factor (average
correlation between estimated and true factor values equal to 0.55 for sample size T = 500 in the design
with ρ = 0.5). This result is not surprizing, because there is no obvious choice for the transformations
of the observable variables, whose linear combination provides the best approximation of the conditional
expectation of the volatility factor in this nonlinear state space model. In Tables 4.4 and 4.5 we use current
and past values of log squared high frequency residuals, but other choices could yield better results.

The II procedure provides a substantial reduction in computational time compared to the simulation-
based EM procedure used to obtain the ML estimates. For instance, the computation of the II estimates for
one Monte Carlo repetition in the stochastic volatility design with ρ = 0.5 and sample size T = 200 takes on
average about 18 minutes, against the 24 minutes required on average for the ML estimates. The difference
is larger with sample size T = 500, for which the average computational times are 16 minutes for II and
61 minutes for ML. Here, the computational time for the II procedure is less than 21 minutes in 75% of the
MC replications, while the computational time for ML is more than one hour in more than 25% of the MC
replications. Sample sizes such as T = 500 or even larger are often encontered in financial datasets, if the
lower frequency is weekly or monthly.

To summarize the findings of the MC simulations with the stochastic volatility design, the II procedure
offers a substantial gain in computational time compared to the ML procedure implemented via Monte Carlo
EM, while the cost in terms of efficiency loss is limited.
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4.6 Empirical study

We present an empirical application of our model to the problem of forecasting at short horizons the Euro-
area quarterly GDP growth using monthly macroeconomic indicators.

4.6.1 Data and model specification

The dataset is the same as the one considered in the empirical study of Marcellino, Porqueddu, and Venditti
(2015).9 The data consists of the quarterly GDP growth rates for the Euro-area (GDP) observed from 1991-
Q1 to 2011-Q1, and the monthly observations for the same period, i.e. from 1991-M1 to 2011-M3, for the
following 8 macroeconomic indicators: (1) the aggregate European Industrial Production index for all sectors
of the European economy: IP, (2) the European Industrial Production index for “Pulp and Paper sector”: IP-
Pulp/Paper, (3) the Germany IFO Business Climate Index: IFO, (4) the Euro-area Economic Sentiment
Index: ESI, (5) the Euro-area Composite Purchasing Manager Index: PMI, (6) the bilateral dollar-euro
exchange rate, measured as year-on-year percentage growth: EXC, (7) the difference between 3-month and
10-year US Treasury bond yield: SPR, and (8) the University of Michigan consumer sentiment index for
the US: MICH. In line with the empirical study of Bai, Ghysels, and Wright (2013), we consider the first
difference of the series (3) to (8) to induce stationarity, and we normalize all series by their full sample mean
and standard deviation.10

We estimate the mixed-frequency stochastic volatility model defined as DGP 3 in Section 4.5 and the
linear Gaussian factor model defined as DGP 1 on eight different pairs of mixed frequency observables.11

In each model we include GDP as the low frequency observable, and one of the eight monthly indicators
listed above as the high frequency variable. We assume the presence of one high frequency latent factor
(nf = 1), and that the observed quarterly GDP is the sum of three unobservable monthly growth rates:
yt = y∗t + y∗t−1/3 + y∗t−2/3. Thus, we have m = 3 and the low frequency variable is flow sampled. We
estimate the SV model by the Indirect Inference (II) procedure, using the same auxiliary model as in the MC
simulations of Section 4.5, and deploy the II estimates in the reprojection procedure to filter the latent factors.
We estimate the Gaussian state space model without SV by adapting the Kalman filter for periodic state space
models proposed in Bai, Ghysels, and Wright (2013) to accommodate flow sampling (see Appendix C).

4.6.2 Estimation and in-sample explanatory power

Before performing the forecasting exercise, we discuss the estimation results of the models for the entire
data sample ending in 2011-Q1. In Table 4.6 we report the values of the R2 of the regression of both GDP
and the five monthly indicators (1)-(5) on the filtered values of the latent factor F in each model.12 For
all five considered models, the factor explains a substantial fraction of the variability of both the GDP and

9We thank M. Marcellino, M. Poqueddu and F. Venditti for sharing their dataset with us.
10Augmented Dickey-Fuller tests failed to reject the null hypothesis of a unit root for series (3) to (8).
11Differently from the specification of DGP 1 in Section 4.5, we allow the autoregressive parameters dx and dy of the idiosyncratic

error terms ux and uy to be different.
12The regression of GDP on the factor is a special type of MIDAS regression, in which we regress the value of GDP growth at

the end of quarter t on the sum of the filtered values of the factor in the months of the same quarter:

yt = y∗t + y∗t−1/3 + y∗t−2/3

= γ1(Ft + Ft−1/3 + Ft−2/3) + uy,t + uy,t−1/3 + uy,t−2/3.
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the respective HF monthly indicator. For the factor model with stochastic volatility estimated with the IP
indicator, the common factor explains 74% of the variability of GDP and 48% of Industrial Production. When
the factor model without SV is estimated on the same data, the explanatory power of the common factor for
GDP is slightly higher, as the R2 increases to 82%. On the other hand, the explanatory power for GDP
(resp. the HF indicator) of the factor extracted using the IFO and ESI survey indices, are higher (resp. lower)
for the SV model than for the linear Gaussian one.13 The factor extracted using the IP-Pulp/Paper index
explains only 11% of the variability of this HF index for both models, but this is not surprising as the Pulp
and Paper sector represents a small fraction of the total Industrial Production. Moving to the estimation of
our model using the EXC, SPR and MICH indicators, both in the full sample and in the shorter subsamples
considered in the forecasting exercise below, the regressions produce loadings of the HF observables on the
factor close to zero, and a filtered factor uncorrelated with the corresponding HF variable, with no forecasting
power for GDP. For this reason we report only results for the five monthly indicators (1)-(5). It should be
noted that our mixed frequency model admits only the contemporaneus impact of the common latent factor
on the HF variable, and the impact of the factor values within a quarter on the flow-sampled LF variable. It
could be that more general specifications, such as a factor model in which the observables load on more lags
of the latent factor - on the last 12 months, for instance - might be more appropriate to assess the forecasting
power for the European GDP of the 2 US macroeconomic indicators SPR and MICH, and the Euro-dollar
exchange rate EXC.14

Figures 4.1 to 4.5 display the time series of the observable variables used to estimate the factor models,
and the filtered mean and stochastic volatility factor paths obtained via reprojection, corresponding to HF
indicators (1) to (5). Visual inspection of the estimated factor paths F̂ in Panels (c) of the five figures reveal
commonalities across models, like the major drop and the successive rebound following the financial crisis
of 2008. Nevertheless, the relative size of this drop appears to be more pronounced for the two IP series than
for IFO, ESI and PMI.15 The trajectories of the filtered stochastic volatility factor are represented in Panels
(d) of Figures 4.1 to 4.5. For all but one of the monthly indicators, the estimated idiosyncratic volatility
factor oscillates around zero before 2008 and then increases to values larger than 1.5, indicating that the
idiosyncratic volatility of the monthly macroeconomic series more than doubled during the recent financial
crisis.16 Only the IP-Pulp/Paper idiosyncratic volatility shows a different behavior, being much larger in the
first half of the sample, than in the second one. We stress that we do not impose any dependence structure
between the mean factor F and the stochastic volatility factor h specific to each HF series, and this fact might
be relevant for the situations like the one of the IP-Pulp/Paper monthly indicator in which the large drop of
the mean factor in 2009, corresponding to the drop in DGP, is not associated with a spike in the volatility of
the high frequency index.

On the other hand, each high frequency indicator is regressed only on the contemporaneous value of the factor. In Table 4.6 we
report R2 instead of the values of the loadings of the factor on observables, as they are more easily interpretable.

13These results are robust to the choice of the starting point of the estimation algorithms, which did not show convergence
problems for the series reported in the tables.

14See Marcellino, Porqueddu, and Venditti (2015), in particular Section B of their online Appendix, for an example of a richer
dependence structure between the observables and the factor. Nevertheless, this result is not surprising as the loadings of EXC, SPR
and MICH on their common latent factor summarizing the current state of the business cycle, are much smaller - in absolute value -
than the loadings of the other five macroeconomic indicators.

15As the estimated loadings of the latent factor F on the observables have positive signs, a drop in the factor is associated with a
drop in both GDP and the monthly indicator in the same quarter.

16Indeed, the value of volatility exp(0.5 · ht) increases from 1 to more than 2.1, when factor ht goes from 0 to 1.5.
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4.6.3 Forecasting

As the in-sample estimates of our five factor models are different, we expect the models to have different
forecasting power for the GDP. Similarly to Marcellino, Porqueddu, and Venditti (2015), we perform an
out-of-sample forecasting exercise where at the end of each quarter we estimate the models with and without
stochastic volatility, and use them to forecast GDP up to an horizon ofH = 4 quarters ahead of the estimation
sample final date. The first estimation window is from 1991-Q1 to 2005-Q4, and is recursively expanded
up to 2010-Q4. In Table 4.7 we report the Root Mean Squared Forecasting Errors (RMSFE) as ratios to
the RMSFE of a forecasting model assuming constant growth of the GDP. An entry below one in Table
4.7 indicates that the factor model outperforms the naive constant growth benchmark. This choice allows
us to have comparable results across different models, forecasting horizons, but also with the results of
(Marcellino, Porqueddu, and Venditti, 2015, Figures 8 and 9).

We immediately note that the forecasting ability of all models, relative to the naive benchmark, is limited
to short horizons up to 2 quarters ahead. Indeed, all the RMSFE ratios reported in Table 4.7 are very close
to, or even larger than, 1 for forecasting horizons H = 3, 4 quarters. Note that Marcellino, Porqueddu,
and Venditti (2015) report the RMSFE ratios for a maximum of 7 months ahead, and that the RMSFE for 6
months (i.e. H = 2 quarters) is always very close to 1 for all their models. For the factor models estimated
using the aggregate Industrial Production index, in Table 4.7 the linear Gaussian model seems to outperform
the model incorporating SV when used to forecast GDP at 1 quarter horizon, as the RMSFE ratio for the
latter model is 0.7, which is smaller than the value slightly below 0.8 reported by both our SV model, and
by Marcellino, Porqueddu, and Venditti (2015) for all their specifications. On the other hand, the results are
completely different when considering the 1 quarter ahead forecasting accuracy of our SV models estimated
on the IFO and ESI indexes (RMSFE around 0.7 for H = 1, and 0.9 for H = 2, in both models), which
clearly outperform our models without SV (only the IFO model has a RMSFE lower than 1, equal to 0.9
for H = 1) and the model of Marcellino, Porqueddu, and Venditti (2015) (RMSFE around 0.8 for H = 1,
and around 1.0 for H = 1) at both 1 and 2 quarters ahead horizons. Finally, the models estimated on IP-
Pulp/paper and PMI show some forecasting power at 1 quarter horizon, yet with larger RMSFE compared to
all models discussed above.

Overall, the results of this empirical exercise demostrate the importance of considering stochastic volatil-
ity when estimating mixed frequency factor models both for the in-sample explanatory power of the extracted
factors, which might be important when constructing coincident indexes of the economy as in Marcellino,
Porqueddu, and Venditti (2015), and for the out-of sample predictive ability of the estimated model. More-
over, the estimation of our SV models on GDP (LF series) and only one monthly macroeconomic indicator
(HF series) showed, that the forecasting accuracy of the different macroeconomic variables can be different
across different variables, horizons and model specifications.

There is scope for even further improvements - despite the fact that some of our models already out-
perform the approach suggested by Marcellino, Porqueddu, and Venditti (2015) - using the same data and
sample configurations. In our approach, we followed Bai, Ghysels, and Wright (2013) who focused exclu-
sively on bivariate specifications, whereas Marcellino, Porqueddu, and Venditti (2015) build one joint model
for the eight series considered. We have in principle 8 forecasts obtained from the paired bivariate models
- with some outperforming and some mostly at par with the single large model they consider. In light with
Andreou, Ghysels, and Kourtellos (2013) we could further improve the forecasting output by constructing
forecast combinations of our 8 predictions - ultimately producing a single combination forecast. Since the
scope of our paper is not to produce the best forecasting model, but rather show the possibilities of estimat-
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ing and implementing state space models with SV using a new indirect inference approach, we refrain from
adding these further improvements.

Finally, the procedures we implemented lend themselves easily to nowcasting simply by adopting a
MIDAS with leads regression approach - see Andreou, Ghysels, and Kourtellos (2013) for further details.
As noted in Section 4.4, this is only done at the reprojection stage. Hence, the model parameter estimates
suffice to run another simulation to obtain the nowcasting models.

4.7 Conclusions

We proposed a fairly simple and remarkably accurate indirect inference estimation procedure for state space
models with either Gaussian errors or stochastic volatility. We consider a mixed frequency data setting as
it is a typical situation where stochastic volatility is relevant due to the use of high frequency data. We
confined our attention to settings involving only a single high and low frequency data series. Yet, the meth-
ods can easily be extended to more series of either type as the mixed frequency VAR auxiliary model can
straightforwardly accommodate such settings. A more challenging extension involves larger values of m -
the differences in low and high frequencies. The use of U-MIDAS regressions makes our approach extremely
computationally attractive due to the use of OLS. With larger values of m we know that U-MIDAS becomes
over-parameterized. While regular MIDAS regressions are a feasible alternative - they require non-linear
estimation and are therefore less appealing. It should also be noted that we only covered indirect estimation
procedures. It would also be fairly straightforward to apply the moment matching procedure of Gallant and
Tauchen (1996) instead. As is well known, this would make our procedures potentially computationally even
more attractive, while maintaining the same asymptotic properties. This would also broaden the potential set
of auxiliary models, including GARCH and EGARCH, as the Gallant and Tauchen (1996) procedure is based
on the empirical score and does not require repeated ML estimates. An interesting extension in this regard
would be to use the criteria introduced by Barigozzi, Halbleib-Chiriac, and Veredas (2014) for choosing the
best auxiliary model.

Last but not least, it should be noted that we assumed that the number of factors is known. In practice,
one should of course also consider testing for the number of factors. There is a considerable literature on
testing for the number of factors. In terms of testing, it is worth noting that the indirect inference procedures
should not pose any additional issues in terms of testing the number of factors. See in particular Guay and
Scaillet (2003) who study a hypothesis testing problem quite similar to determining the number of factors -
namely involving unidentified parameters under the null - in the context of indirect inference.
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4.8 Tables of Chapter 4

Table 4.1: MC simulations for the single-factor linear Gaussian state space model (persistence parameter of
the latent factor ρ = 0.5)

MLE Indirect Inference
T = 500 (Kalman filter) (Auxiliary model: U-MIDAS / AR)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.99 -0.01 0.94 0.98 1.06 0.98 -0.02 0.86 0.97 1.10
γ1 1.01 0.01 0.94 1.00 1.06 1.00 0.00 0.90 0.97 1.05
ρ 0.50 0.00 0.48 0.50 0.52 0.50 0.00 0.47 0.50 0.54
d -0.01 -0.01 -0.07 0.01 0.05 -0.02 -0.02 -0.10 0.01 0.07
σx 1.00 -0.00 0.92 1.01 1.07 0.99 -0.01 0.87 1.04 1.15
σy 0.95 -0.05 0.90 0.99 1.06 0.91 -0.09 0.87 1.02 1.11
corr(F̂ , F ) 0.80 - 0.79 0.80 0.81 0.78 - 0.78 0.79 0.80

T = 200

γ2 0.99 -0.01 0.86 1.01 1.12 0.94 -0.06 0.75 0.93 1.09
γ1 1.03 0.03 0.91 1.02 1.13 1.01 0.01 0.85 0.94 1.16
ρ 0.50 -0.00 0.45 0.50 0.54 0.51 0.01 0.45 0.51 0.58
d -0.03 -0.03 -0.13 -0.00 0.09 0.00 0.00 -0.13 0.05 0.14
σx 0.97 -0.03 0.84 1.00 1.12 1.00 0.00 0.85 1.07 1.23
σy 0.86 -0.14 0.79 0.97 1.05 0.79 -0.21 0.50 1.00 1.12
corr(F̂ , F ) 0.79 - 0.78 0.80 0.81 0.77 - 0.75 0.78 0.79

T = 100

γ2 0.97 -0.03 0.82 0.96 1.12 0.89 -0.11 0.69 0.85 1.11
γ1 1.01 0.01 0.88 0.99 1.11 0.92 -0.08 0.69 0.89 1.11
ρ 0.50 -0.00 0.43 0.50 0.59 0.51 0.01 0.40 0.54 0.67
d -0.04 -0.04 -0.20 0.01 0.11 -0.01 -0.01 -0.21 0.07 0.18
σx 0.95 -0.05 0.77 1.00 1.16 0.98 -0.02 0.76 1.11 1.26
σy 0.81 -0.19 0.67 0.94 1.08 0.84 -0.16 0.54 1.05 1.17
corr(F̂ , F ) 0.78 - 0.75 0.78 0.81 0.75 - 0.73 0.76 0.78

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the ML (left) and Indirect Inference (II, right)

estimators in 1000 MC replications. The data generating process is DGP1 in Section 5.1, corresponding to a mixed frequency linear

state space model with a single AR(1) latent factor, m = 3, and stock sampling of the low frequency variable. The true values of

the parameters are γ1 = γ2 = 1, ρ = 0.5, d = 0, σy = σx = 1. The simulated samples have size T = 500 (top), T = 200

(middle), T = 100 (bottom). The auxiliary model for the indirect inference estimator is a U-MIDAS regression for low frequency

data with K̃x = K̃y = 3 and an AR(9) model for the high frequency data (see equation (4.3.9)), with the correlation between the

errors of the two equations as a free auxiliary parameter. The Indirect Inference estimator uses a single long simulated sample of

the structural model (S = 1 and TS = 50000) and an identity weighting matrix. We also compute the mean and 25%, 50%, 75%

quantiles of the sample correlation between the estimated and true factor paths. The estimated factor paths are obtained by Kalman

filter with the ML estimate (left) and the reprojection method with the II estimate (right), using T reproj = 100000.
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Table 4.2: MC simulations for the single-factor linear Gaussian state space model (persistence parameter of
the latent factor ρ = 0.9)

MLE Indirect Inference
T = 500 (Kalman filter) (Auxiliary model: U-MIDAS / AR)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 1.00 -0.00 0.98 1.00 1.02 0.98 -0.02 0.94 0.97 1.02
γ1 1.00 -0.00 0.96 1.00 1.03 0.98 -0.02 0.91 0.98 1.04
ρ 0.90 0.00 0.89 0.90 0.91 0.90 0.00 0.87 0.91 0.93
d -0.00 -0.00 -0.03 -0.00 0.03 0.02 0.02 -0.02 0.02 0.07
σx 1.00 -0.00 0.96 1.00 1.03 1.02 0.02 0.98 1.04 1.08
σy 0.99 -0.01 0.96 1.00 1.03 1.03 0.03 0.97 1.04 1.10
corr(F̂ , F ) 0.95 - 0.94 0.95 0.95 0.94 - 0.94 0.94 0.95

T = 200

γ2 1.01 0.01 0.96 1.00 1.05 0.95 -0.05 0.87 0.95 1.02
γ1 1.00 -0.00 0.96 1.00 1.05 0.95 -0.05 0.85 0.96 1.02
ρ 0.90 -0.00 0.88 0.90 0.91 0.90 0.00 0.85 0.91 0.95
d -0.01 -0.01 -0.08 -0.00 0.06 0.03 0.03 -0.04 0.04 0.12
σx 0.99 -0.01 0.94 0.98 1.04 1.03 0.03 0.97 1.05 1.11
σy 0.99 -0.01 0.93 0.99 1.05 1.05 0.05 0.95 1.09 1.18
corr(F̂ , F ) 0.95 - 0.94 0.95 0.95 0.94 - 0.94 0.94 0.95

T = 100

γ2 0.99 -0.01 0.94 0.99 1.06 0.92 -0.08 0.79 0.90 1.02
γ1 0.99 -0.01 0.94 0.98 1.05 0.89 -0.11 0.77 0.86 1.00
ρ 0.89 -0.01 0.87 0.90 0.91 0.89 -0.01 0.81 0.92 0.99
d -0.02 -0.02 -0.11 -0.01 0.09 0.05 0.05 -0.16 0.09 0.23
σx 0.98 -0.02 0.91 0.99 1.05 1.03 0.03 0.89 1.09 1.20
σy 0.98 -0.02 0.90 0.97 1.08 1.13 0.13 0.99 1.19 1.29
corr(F̂ , F ) 0.94 - 0.93 0.94 0.95 0.93 - 0.92 0.93 0.94

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the ML (left) and Indirect Inference (II, right)

estimators in 1000 MC replications. The data generating process is DGP1 in Section 5.1, corresponding to a mixed frequency linear

state space model with a single AR(1) latent factor, m = 3, and stock sampling of the low frequency variable. The true values of

the parameters are γ1 = γ2 = 1, ρ = 0.9, d = 0, σy = σx = 1. The simulated samples have size T = 500 (top), T = 200

(middle), T = 100 (bottom). The auxiliary model for the indirect inference estimator is a U-MIDAS regression for low frequency

data with K̃x = K̃y = 3 and an AR(9) model for the high frequency data (see equation (4.3.9)), with the correlation between the

errors of the two equations as a free auxiliary parameter. The Indirect Inference estimator uses a single long simulated sample of

the structural model (S = 1 and TS = 50000) and an identity weighting matrix. We also compute the mean and 25%, 50%, 75%

quantiles of the sample correlation between the estimated and true factor paths. The estimated factor paths are obtained by Kalman

filter with the ML estimate (left) and the reprojection method with the II estimate (right), using T reproj = 100000.
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Table 4.4: MC simulations for the stochastic volatility model (sample size T = 500)

Indirect Inference MLE
ρ = 0.5 (Auxiliary model: U-MIDAS/AR-ARCH) (Monte Carlo EM)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.97 -0.03 0.88 0.97 1.05 0.89 -0.11 0.86 0.89 0.92
γ1 0.95 -0.05 0.87 0.94 1.01 1.07 0.07 1.02 1.06 1.12
ρ 0.51 0.01 0.47 0.51 0.55 0.52 0.02 0.51 0.53 0.54
d -0.01 -0.01 -0.27 -0.02 0.29 -0.04 -0.04 -0.28 0.00 0.21
σy 0.95 -0.05 0.89 1.00 1.09 0.83 -0.17 0.75 0.84 0.91
σx 1.05 0.05 0.94 1.07 1.18 0.93 -0.07 0.91 0.94 0.96
ρSV 0.95 0.00 0.93 0.96 0.97 0.94 -0.01 0.93 0.94 0.95
ν 0.25 -0.05 0.19 0.25 0.31 0.29 -0.01 0.28 0.29 0.29
corr(F̂ , F ) 0.74 - 0.72 0.74 0.75 0.79 - 0.78 0.79 0.80
corr(ĥ, h) 0.55 - 0.51 0.55 0.59 0.74 - 0.71 0.74 0.77
Comp. time (min) 15.89 - 9.01 14.69 20.94 61.05 - 38.49 54.11 78.05

ρ = 0.9

γ2 0.96 -0.04 0.91 0.96 1.00 0.97 -0.03 0.96 0.97 0.98
γ1 0.95 -0.05 0.90 0.96 1.01 1.00 -0.00 0.98 1.00 1.02
ρ 0.91 0.01 0.89 0.91 0.93 0.90 0.00 0.89 0.90 0.91
d 0.00 0.00 -0.26 -0.05 0.38 -0.05 -0.05 -0.34 0.00 0.22
σy 0.97 -0.03 0.90 0.99 1.07 0.88 -0.12 0.81 0.88 0.95
σx 1.08 0.08 1.02 1.08 1.16 0.86 -0.14 0.82 0.87 0.91
ρSV 0.94 -0.01 0.93 0.95 0.97 0.95 -0.00 0.94 0.95 0.96
ν 0.26 -0.04 0.19 0.25 0.32 0.29 -0.01 0.28 0.29 0.29
corr(F̂ , F ) 0.93 - 0.92 0.93 0.93 0.95 - 0.95 0.95 0.96
corr(ĥ, h) 0.51 - 0.47 0.51 0.56 0.75 - 0.72 0.76 0.79
Comp. time (min) 13.87 - 9.05 12.32 16.86 60.27 - 35.67 54.86 81.67

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the Indirect Inference (II, left) and ML (right)

estimators in 200 MC replications. The data generating process is DGP3 in Section 5.1, corresponding to a mixed frequency

stochastic volatility model with a single AR(1) latent factor in the mean, an AR(1) log SV process, m = 3, and stock sampling of

the low frequency variable. The true values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1, ρSV = 0.95, ν = 0.3.

The autoregressive coefficient of the factor in the mean is ρ = 0.5 in the upper panel and ρ = 0.9 in the lower panel. The

simulated samples have size T = 500. The auxiliary model for the II estimator is a U-MIDAS regression for low frequency data

with K̃x = K̃y = 4 and an AR(9) − ARCH(10) model for the high frequency data (see equation (4.3.10)), with the correlation

between the errors of the two equations as a free auxiliary parameter. The II estimator uses a single long simulated sample of

the structural model (S = 1 and TS = 50000) and an identity weighting matrix. The MLE is computed by Monte Carlo EM,

using a particle forward-filtering backward-smoothing algoritm in the E step (see Appendix B for the detailed algorithm). We also

compute the mean and 25%, 50%, 75% quantiles of the sample correlation between the estimated and true paths of the mean and

volatility factors. The estimated factor paths are obtained by the reprojection method with the Indirect Inference estimate (left),

using T reproj = 100000, and by the average across the particles of the filtering algorithm with the ML estimate (right). Finally, we

report the mean and 25%, 50%, 75% quantiles of the computational time (in minutes) for obtaining the parameter estimates and the

filtered factor paths in a single simulation.
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Table 4.5: MC simulations for the stochastic volatility model (sample size T = 200)

Indirect Inference MLE
ρ = 0.5 (Auxiliary model: U-MIDAS/AR-ARCH) (Monte Carlo EM)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.99 -0.01 0.81 0.96 1.14 0.90 -0.10 0.86 0.91 0.94
γ1 0.88 -0.12 0.75 0.86 0.96 1.07 0.07 1.01 1.07 1.13
ρ 0.50 0.00 0.44 0.51 0.60 0.52 0.02 0.49 0.52 0.56
d -0.05 -0.05 -0.35 -0.06 0.19 -0.03 -0.03 -0.31 0.00 0.27
σy 0.96 -0.04 0.90 1.06 1.17 0.81 -0.19 0.71 0.82 0.92
σx 1.03 0.03 0.90 1.09 1.24 0.94 -0.06 0.92 0.95 0.98
ρSV 0.94 -0.01 0.93 0.96 0.99 0.94 -0.01 0.92 0.94 0.96
ν 0.23 -0.07 0.08 0.22 0.34 0.29 -0.01 0.28 0.29 0.29
corr(F̂ , F ) 0.72 - 0.69 0.73 0.76 0.79 - 0.77 0.79 0.81
corr(ĥ, h) 0.54 - 0.48 0.55 0.61 0.73 - 0.67 0.74 0.79
Comp. time (min) 18.23 - 12.17 15.41 22.88 24.76 - 13.11 21.84 33.52

ρ = 0.9

γ2 0.92 -0.08 0.84 0.93 1.00 0.97 -0.03 0.96 0.98 0.99
γ1 0.89 -0.11 0.79 0.89 0.98 1.00 0.00 0.98 1.00 1.03
ρ 0.91 0.01 0.87 0.92 0.95 0.90 -0.00 0.89 0.90 0.91
d 0.04 0.04 -0.25 -0.04 0.48 -0.01 -0.01 -0.28 0.00 0.28
σy 1.03 0.03 0.88 1.06 1.18 0.87 -0.13 0.78 0.88 0.98
σx 1.13 0.13 0.99 1.14 1.25 0.89 -0.11 0.85 0.91 0.95
ρSV 0.93 -0.02 0.92 0.96 0.99 0.94 -0.01 0.92 0.94 0.96
ν 0.22 -0.08 0.10 0.21 0.30 0.29 -0.01 0.28 0.29 0.29
corr(F̂ , F ) 0.92 - 0.91 0.92 0.93 0.95 - 0.95 0.95 0.96
corr(ĥ, h) 0.51 - 0.46 0.52 0.58 0.74 - 0.70 0.74 0.80
Comp. time (min) 16.45 - 12.11 14.19 19.94 22.50 - 11.50 18.33 32.10

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the Indirect Inference (II, left) and ML (right)

estimators in 200 MC replications. The data generating process is DGP3 in Section 5.1, corresponding to a mixed frequency

stochastic volatility model with a single AR(1) latent factor in the mean, an AR(1) log SV process, m = 3, and stock sampling of

the low frequency variable. The true values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1, ρSV = 0.95, ν = 0.3.

The autoregressive coefficient of the factor in the mean is ρ = 0.5 in the upper panel and ρ = 0.9 in the lower panel. The

simulated samples have size T = 200. The auxiliary model for the II estimator is a U-MIDAS regression for low frequency data

with K̃x = K̃y = 4 and an AR(9) − ARCH(10) model for the high frequency data (see equation (4.3.10)), with the correlation

between the errors of the two equations as a free auxiliary parameter. The II estimator uses a single long simulated sample of the

structural model (S = 1 and TS = 50000) and an identity weighting matrix. The MLE is computed by Monte Carlo EM, using a

particle forward-filtering backward-smoothing algoritm in the E step (see Appendix B for the detailed algorithm). We also compute

the mean and 25%, 50%, 75% quantiles of the sample correlation between the estimated and true paths of the mean and volatility

factors. The estimated factor paths are obtained by the reprojection method with the II estimate (left), using T reproj = 100000,

and by the average across the particles of the filtering algorithm with the ML estimate (right). Finally, we report the mean and 25%,

50%, 75% quantiles of the computational time (in minutes) for obtaining the parameter estimates and the filtered factor paths in a

single simulation.
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Table 4.6: In-sample R2 of GDP and HF indicator on latent factor

Stochastic volatility Gaussian state space
(Indirect Inference) (Kalman filter)

HF Indicator R2(GDP ) R2(HF indicator) R2(GDP ) R2(HF indicator)

(1) Industrial Production 0.74 0.48 0.82 0.50
(2) Industrial Production - Pulp/paper 0.69 0.11 0.80 0.11
(3) Business Climate - IFO 0.56 0.43 0.42 0.65
(4) Economic Sentiment Index 0.48 0.71 0.36 0.86
(5) PMI Composite 0.49 0.46 0.80 0.04

This table reports the R2 for the regressions of both GDP and the monthly indicators on the filtered values of the latent factor F for

different mixed frequency models. We estimate the mixed-frequency stochastic volatility model defined as DGP 3 in Section 4.5

and the linear Gaussian state space model defined as DGP 1 with different pairs of mixed frequency observables. In each model,

GDP is the low frequency (quarterly) observable, and is treated as a flow sampled variable. The table reports results for 10 different

models, which differ for the high frequency (monthly) observable and the presence/absence of stochastic volatility. Columns 2 and

3 (resp. 4 and 5) display the R2 for the regression of the GDP and the HF observable on the filtered values of F obtained from the

models with (resp. without) stochastic volatility. We estimate the SV models via Indirect Inference using the same auxiliary models

as in the MC simulations of Section 4.5. The mean and volatility factors are filtered by reprojection. We estimate the Gaussian state

space model by adapting the Kalman filter for periodic state space models proposed in Bai, Ghysels, and Wright (2013), see Section

C. All models are estimated on the full data sample from 1991-Q1 to 2011-Q1.
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Table 4.7: Root Mean Squared Forecasting Error (RMSFE) for GDP

Stochastic volatility Gaussian state space
(Indirect Inference) (Kalman filter)

Forecast horizon H Forecast horizon H
(Quarters ahead) (Quarters ahead)

HF Indicator 1 2 3 4 1 2 3 4

(1) Industrial Production 0.79 1.00 1.12 1.16 0.70 1.02 1.06 1.06
(2) Industrial Production - Pulp/paper 0.83 1.30 1.00 1.05 0.80 1.02 1.03 1.02
(3) Business Climate - IFO 0.68 0.89 0.98 1.02 0.91 1.12 1.14 1.08
(4) Economic Sentiment Index 0.70 0.92 1.01 1.04 1.00 0.98 0.97 0.97
(5) PMI Composite 0.92 0.99 0.99 0.99 0.78 1.00 1.01 1.02

This table reports the Root Mean Squared Forecasting Error (RMSFE) for GDP in different mixed frequency models. The RMSFE

is reported as the ratio to the RMSFE of the naive forecasting model assuming constant GDP growth rate. We consider the mixed-

frequency stochastic volatility model defined as DGP 3 in Section 4.5 and the linear Gaussian state space model defined as DGP 1

with different pairs of mixed frequency observables. In each model, GDP is the low frequency (quarterly) observable, and is treated

as a flow sampled variable. The table reports the forecasting results for 10 different models, which differ for the high frequency

(monthly) observable and the presence/absence of stochastic volatility. To produce the forecasts, the models are estimated on the

estimation window, and then used for prediction up to 4 quarters ahead of the estimation final date. The first estimation window is

from 1991-Q1 to 2005-Q4, and is recursively expanded up to 2010-Q4. Columns 2 to 5 (resp. 6 and 9) display the RMSFE ratios

at horizons H = 1, 2, 3, 4 quarters ahead for the models with (resp. without) stochastic volatility. We estimate the SV models via

Indirect Inference using the same auxiliary models as in the MC simulations of Section 4.5. We estimate the Gaussian state space

model by adapting the Kalman filter for periodic state space models proposed in Bai, Ghysels, and Wright (2013), see Section C.
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4.9 Figures of Chapter 4

Figure 4.1: Time series of observables and estimated factors: stochastic volatility model estimated on GDP
and IP.
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(b) Monthly IP index.
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(c) Estimated common factor F̂ .
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(d) Estimated SV factor ĥ.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and the (standardized)

monthly growth rate of aggregate European Industrial Production index. These series are used to estimate the mixed frequency

state space model with stochastic volatility specified as DGP 3 in Section 5, with flow sampling of the low frequency variable. The

sample is from 1991-Q1 to 2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ.

The parameters of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Figure 4.2: Time series of observables and estimated factors: stochastic volatility model estimated on GDP
and IP - Pulp/Paper.
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(b) Monthly IP - Pulp/Paper index.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and the (standardized)

monthly growth rate European Industrial Production index for “Pulp and Paper sector”. These series are used to estimate the mixed

frequency state space model with stochastic volatility specified as DGP 3 in Section 5, with flow sampling of the low frequency

variable. The sample is from 1991-Q1 to 2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors

F̂ and ĥ. The parameters of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC

simulations of Section 5. The factors are filtered by reprojection.
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Figure 4.3: Time series of observables and estimated factors: stochastic volatility model estimated on GDP
and IFO.
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(b) Monthly IFO index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and the monthly (standardized

first difference of) Germany IFO Business Climate index. These series are used to estimate the mixed frequency state space model

with stochastic volatility specified as DGP 3 in Section 5, with flow sampling of the low frequency variable. The sample is from

1991-Q1 to 2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The parameters

of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of Section 5. The

factors are filtered by reprojection.

208



Figure 4.4: Time series of observables and estimated factors: stochastic volatility model estimated on GDP
and ESI.
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(b) Monthly ESI index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and the (standardized first

difference of) monthly Euro-area Economic Sentiment Index. These series are used to estimate the mixed frequency state space

model with stochastic volatility specified as DGP 3 in Section 5, with flow sampling of the low frequency variable. The sample

is from 1991-Q1 to 2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The

parameters of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Figure 4.5: Time series of observables and estimated factors: stochastic volatility model estimated on GDP
and PMI.
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(b) Monthly PMI index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and the (standardized first

difference of) monthly Euro-area Composite Purchasing Manager Index. These series are used to estimate the mixed frequency

state space model with stochastic volatility specified as DGP 3 in Section 5, with flow sampling of the low frequency variable. The

sample is from 1991-Q1 to 2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ.

The parameters of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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4.10 Appendix A: Linear state space models with mixed frequency data

In this Appendix we summarize some results from Bai, Ghysels, and Wright (2013) concerning linear state
space models with mixed frequency data. These results are useful to obtain the binding function linking our
structural state space model and the auxiliary MIDAS regressions when the structural model does not feature
SV (see Section 4.3.1). They also provide the Kalman filter algorithm for ML estimation of the structural
model without SV used in the MC simulations (see Section 4.5).

4.10.1 Model setup

The linear state space model presented in Section 3.1 can be summarized as follows. The latent factor F
follows a V AR(p) process:

Ft+j/m =

p∑
l=1

ΦlFt+(j−l)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m− 1. (4.10.1)

The low frequency data is related to factors as follows:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m ∀t, j = 0, . . . ,m− 1, (4.10.2)

with u1,t+j/m having an AR(k) representation:

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m, (4.10.3)

and the lag operator L1/m applying to high-frequency data, i.e. L1/mut ≡ ut−1/m. The observed low-
frequency process y relates to the latent process y∗ via a linear aggregation scheme:

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m (4.10.4)

where yt is equal to yct for integer t, and is not observed otherwise. The high frequency process xt+j/m
relates to the factors as follows:

xt+j/m = γ′2Ft+j/m + u2,t+j/m ∀t, j = 0, . . . ,m− 1, (4.10.5)

where:

d2(L1/m)u2,t+j/m = ε2,t+j/m, d2(L1/m) ≡ 1− d12L
1/m − . . .− dk2L

k/m. (4.10.6)

This model corresponds to a restricted version of the specification in Assumptions 1 and 2 with ρSV = 1 and
ν2 = 0.

4.10.2 State space representation and Kalman filter

The above equations yield a periodic state space model with measurement equation:

Y j
t = Zjαt+j/m

{ Y j
t = (yt, xt)

′ j = 0

Y j
t = xt+j/m 0 < j ≤ m− 1

, (4.10.7)
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where

Z0 =

[
γ′1
γ′2

O2×nf (p−1) I2 O2×2(k−1)

]
Zj =

[
γ′2 O1×nf (p−1) 1 O1×2(k−1)

]
for 0 < j ≤ m− 1 and state vector

αt+j/m =
(
F ′t+j/m, . . . , F

′
t+(j−p+1)/m, u

′
t+j/m, . . . , u

′
t+(j−k+1)/m

)′
where ut+j/m = (u1,t+j/m, u2,t+j/m)′.

The transition equation is:
αt+j/m = Rαt+(j−1)/m +Qζt+j/m (4.10.8)

where

R =


Φ1 . . .Φp−1 Φp Onf×2(k−1) Onf×2

I(p−1)nf O(p−1)nf×nf O(p−1)nf×2(k−1) O(p−1)nf×n
O2×(p−1)nf O2×nf D1 . . . Dk−1 Dk

O2(k−1)×(p−1)nf O2(k−1)×nf I2(k−1) O2(k−1)×2



Q =


Inf Onf×2

O(p−1)nf×nf O(p−1)nf×2

O2×nf I2

O2(k−1)×nf O2(k−1)×2


Di = diag(dli, l = 1, 2) and ζt+j/m = (η′t+j/m, ε1,t+j/m, ε2,t+j/m)′. Let Σζ denote the variance-covariance
matrix of ζt+j/m.

The above state space model is periodic as it cycles to the data release pattern that repeats itself every m
periods. Such systems have a (periodic) steady state (see e.g. Assimakis and Adam (2009)). If we let Pj|j−1

denote the steady state covariance matrix of αt+j/m|t+(j−1)/m, then the equations:

Pj+1|j = QΣζQ
′ +RPj|j−1R

′ −RPj|j−1Z
′
j [ZjPj|j−1Z

′
j ]
−1ZjPj|j−1R

′ j = 0, . . . ,m− 2

P0|−1 = QΣζQ
′ +RP2|1R

′ −RP2|1Z
′
j [ZjP2|1Z

′
j ]
−1ZjP2|1R

′ j = m− 1 (4.10.9)

must be satisfied and Pj|j−1 = Pj+m|j+m−1, ∀ j. The periodic steady state Kalman gain is therefore:

Kj|j−1 = Pj|j−1Z
′
j [ZjPj|j−1Z

′
j ]
−1 (4.10.10)

with Kj|j−1 ≡ Kj+m|j−1+m, ∀ j. Let us define the information set IMt+j/m as the linear space generated by

{Y j
t+(j−k)/m|k ≥ 0}. When we define the extraction of the state vector as:

α̂(t+j/m)|(t+j/m) = E[αt+j/m|IMt+j/m] (4.10.11)

the filtered states are:

α̂(t+j/m)|(t+j/m) = Aj|j−1α̂t+(j−1)/m|t+(j−1)/m +Kj|j−1Y
j
t (4.10.12)
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where Aj|j−1 = R−Kj|j−1ZjR and Y m
t = Y 0

t+1.
Suppose we are interested in predicting at low-frequency intervals only, namely α̂(t+k)|t, for k integer

valued, using all available low and high-frequency data. First we note that:

α̂(t+k)|(t+k) = [Ãm1 ]kα̂t|t +
m∑
i=1

k∑
j=1

[Ãm1 ]k−jÃmi+1Ki|i−1Y
i
t+j−1 (4.10.13)

where

Ãij =

{ Ai|i−1Ai−1|i−2 . . . Aj|j−1 i ≥ j

I i < j

Expression (4.10.13) can be obtained via straightforward algebra - see Assimakis and Adam (2009). Given
Assumption 1, all the eigenvalues ofAj|j−1, j = 1, . . . , m−1, are inside the unit circle, as are the eigenvalues
of the product matrices {Ãij} (see again Assimakis and Adam (2009)). This implies that we can rewrite
(4.10.13) as:

α̂t|t =
∞∑
j=0

m∑
i=1

[Ãm1 ]jÃmi+1Ki|i−1Y
i
t−j (4.10.14)

=

∞∑
j=0

[Ãm1 ]jKm|m−1

(
yt−j
xt−j

)
+

∞∑
j=0

m−1∑
i=1

[Ãm1 ]jÃmi+1Ki|i−1xt−1−j+i/m

from which forecasts can easily be constructed as Et[yt+h] = Z0,1R
mhα̂t|t, where Z0,1 denotes the first row

of the matrix Z0. When factor F is scalar with autoregressive coefficient ρ, and m = 3, the latter equation
yields equation (4.3.1) in Section 3.1.

4.10.3 ML estimation

To proceed to maximum likelihood estimation, let θ ∈ Θ be the parameter vector governing the parameters
of the state space model, i.e. θ = ((γi)

2
i=1, (Ψi)

p
i=1, (Di)

k
i=1,Σζ) (accounting for identification constraints).

Consider the vector Y j
t defined for j = 0, . . . , m− 1, in equation (4.10.7) and the information set IMt+j/m in

equation (4.10.11). Then:

Y j
t+(j+1)/m|I

M
t+j/m; θ ∼ N (µt+(j+1)/m(θ),Σt+(j+1)/m(θ)) (4.10.15)

with µt+(j+1)/m(θ) ≡ Zj+1(θ)α̂t+(j+1)/m|t+j/m(θ) and

Σt+(j+1)/m(θ) ≡ Zj+1(θ)′Pt+(j+1)/m|t+j/m(θ)Zj+1(θ) +Q(θ).

The value of the log likelihood for a sample of size Tm is then:

T∑
t=1

m−1∑
j=0

log `(Y j
t+(j+1)/m|I

M
t+j/m; θ) = −Tm

2
log (2π)− 1

2

T∑
t=1

log |Σt+(j+1)/m(θ)|

−1

2

T∑
t=1

m−1∑
j=0

(Y j
t+(j+1)/m − µt+(j+1)/m)′(Σt+(j+1)/m(θ))−1(Y j

t+(j+1)/m − µt+(j+1)/m(θ)) (4.10.16)

213



We denote the estimator that maximizes this log likelihood function by θ̂ML
Tm . Standard regularity conditions

imply that as T →∞ : √
Tm(θ̂ML

Tm − θ0)→d N (0, VML), (4.10.17)

where θ0 denotes the true parameter value.
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4.11 Appendix B: Estimation of the mixed-frequency SV model by Monte
Carlo EM algorithm

In this Appendix we describe a Monte Carlo Expectation Maximization (EM) algorithm for estimation of the
state space model with mixed frequency data and stochastic volatility (see Section 3.5). In this algorithm,
the smoothing distribution of the latent factors necessary in the Expectation step is obtained using a Forward
Filtering-Backward Smoothing simulation-based procedure.

4.11.1 Model Setup

In this appendix we only consider models with unidimensional observables yt and xt+j/m, and unidimen-
sional latent factors Ft+j/m and ht+j/m. The generalization to multivariate observables and latent factors is
relatively straightforward, at the expense of a more involved notation. We consider a model with autocorre-
lated innovations uy,t+j/m and stock sampled LF variables y∗t+j/m :

y∗t+j/m = γ1Ft+j/m + uy,t+j/m, (4.11.1)

xt+j/m = γ2Ft+j/m + ux,t+j/m, (4.11.2)

Ft+j/m = ρFt+(j−1)/m + ηt+j/m, (4.11.3)

ht+j/m = ρSV ht+(j−1)/m + νξt+j/m, (4.11.4)

uy,t+j/m = d uy,t+(j−1)/m + σyεy,t+j/m, (4.11.5)

ux,t+j/m = σx exp{1

2
ht+j/m}εx,t+j/m, (4.11.6)

(ηt+j/m, ξt+j/m, εy,t+j/m, εx,t+j/m)′ ∼ i.i.N (0, I4), (4.11.7)

y∗t+j/m is stock-sampled at j = 0. (4.11.8)

We focus on the setting with m = 3 as in the Monte-Carlo analysis of Section 5.
In Section B.2 we derive the state space representation of the SV model in low frequency. In Section

B.3 we describe the E-step and the M-step of the EM algorithm. In Section B.4 we provide the simulation-
based procedure to obtain the smoothing distribution of the latent factor process required in the E-step of
the EM algorithm. Throughout this Appendix, `(·) denotes the (conditional) density of the indicated random
variables.

4.11.2 State space representation

We derive a state space representation of model (4.11.1)-(4.11.8) in low frequency. For this purpose, we
define the vector of stacked measurements Yt and the vector of stacked latent factors ft as follows:

Yt := (yt, xt, xt−1/3, xt−2/3)′,

ft :=

[
F̃t
h̃t

]
, F̃t :=

 Ft
Ft−1/3

Ft−2/3

 , h̃t :=

 ht
ht−1/3

ht−2/3

 .
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Measurement density

Let us first derive the distribution of Yt given Yt−1 and ft. From equations (4.11.1)-(4.11.8) we get:

Yt = ΓF̃t + ut, (4.11.9)

where

ut := (uy,t, ux,t, ux,t−1/3, ux,t−2/3)′, Γ :=


γ1 0 0
γ2 0 0
0 γ2 0
0 0 γ2

 .
To derive the dynamics of innovation ut, we use that equation (4.11.5) and backward iteration imply uy,t =
d3uy,t−1 + σy(εy,t + dεy,t−1/3 + d2εy,t−2/3). This equation can be written as:

uy,t = d3uy,t−1 + σy
√

1 + d2 + d4 ε∗y,t, ε∗y,t ∼ i.i.N (0, 1), t = 1, 2, ..., T,

where (ε∗y,t) is independent from (εx,t−j/3), (ηt−j/3) and (ξt−j/3). Thus, innovation process (ut) is such
that:

ut = Aut−1 +Btε̃
∗
t , (4.11.10)

where

ε̃∗t =


ε∗y,t
εx,t
εx,t−1/3

εx,t−2/3

 , A =


d3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Bt =


σy
√

1 + d2 + d4 0 0 0
0 σx exp{1

2ht} 0 0
0 0 σx exp{1

2ht−1/3} 0

0 0 0 σx exp{1
2ht−2/3}

 .
Equations (4.11.9) and (4.11.10) imply:

Yt −AYt−1 = ΓF̃t −AΓF̃t−1 +Btε̃
∗
t ,

and thus:

Yt =


yt
xt
xt−1/3

xt−2/3

 =


d3yt−1 + γ1(Ft − d3Ft−1)
γ2Ft
γ2Ft−1/3

γ2Ft−2/3

+Btε̃
∗
t .

From the last equation we get the measurement distribution:

Yt | Yt−1, ft ∼ N



d3yt−1 + γ1(Ft − d3Ft−1)
γ2Ft
γ2Ft−1/3

γ2Ft−2/3

 , B2
t

 , (4.11.11)
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and the measurement density:

`(Yt|Yt−1, ft; θ) =
1√

(2π)4 σ2
y (1 + d2 + d4) (σ2

x)3 exp{ht + ht−1/3 + ht−2/3}

× exp

{
− [yt − d3yt−1 − γ1(Ft − d3Ft−1)]2

2(1 + d2 + d4)σ2
y

− (xt − γ2Ft)
2

2σ2
x exp {ht}

−
(xt−1/3 − γ2Ft−1/3)2

2σ2
x exp

{
ht−1/3

} −
(xt−2/3 − γ2Ft−2/3)2

2σ2
x exp

{
ht−2/3

} }
=: h(Yt|Yt−1, ft; θ). (4.11.12)

The measurement density depends on the past measurement Yt−1, and on the current and past factor values
ft, ft−1.

Transition density

Let us now derive the distribution of ft given Yt−1 and ft−1. From equations (4.11.3)-(4.11.4) and being
(ηt+j/3), (ξt+j/3) independent Gaussian White Noise processes, we have:

`(ft|Yt−1, ft−1; θ) = `(ft|ft−1; θ) = `(F̃t|F̃t−1; θ)`(h̃t|h̃t−1; θ).

Thus, process (ft) is exogenous and first-order Markov, with transition density:

g(ft|ft−1; θ) = g(F̃t|F̃t−1; θ) g(h̃t|h̃t−1; θ)

= g(Ft|Ft−1/3; θ) g(Ft−1/3|Ft−2/3; θ) g(Ft−2/3|Ft−1; θ)

×g(ht|ht−1/3; θ) g(ht−1/3|ht−2/3; θ) g(ht−2/3|ht−1; θ),

where:

g(Ft−j/3|Ft−(j+1)/3; θ) =
1√
2π

exp

{
−

(Ft−j/3 − ρFt−(j+1)/3)2

2

}
, (4.11.13)

g(ht−j/3|ht−(j+1)/3; θ) =
1√

2πν2
exp

{
−

(ht−j/3 − ρSV ht−(j+1)/3)2

2ν2

}
, (4.11.14)

for j = 0, 1, 2.

The likelihood function

The density of (YT , fT ), conditioning on Y0 and f0, is:

`(YT , fT ; θ) =
T∏
t=1

`(Yt|Yt−1, ft; θ)`(ft|Yt−1, ft−1; θ) =
T∏
t=1

h(Yt|Yt−1, ft; θ) g(ft|ft−1; θ).
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The likelihood function `(YT ; θ), conditioning on y0 and f0, is obtained by integrating out the path of the
unobservable factor:

`(YT ; θ) =

∫
`(YT , fT ; θ)dfT

=

∫
...

∫ T∏
t=1

{h(Yt|Yt−1, ft; θ) g(ft|ft−1; θ)}
T∏
t=1

dft.

The large-dimensional integral with respect to the factor path makes this expression of the likelihood function
intractable for the computation of the Maximum Likelihood (ML) estimate. The EM algorithm defined in the
next section relies instead on the so-called complete-observation log-likelihood function, i.e., the log-density
function of both the observable and unobservable variables:

L∗(θ) := log `(YT , fT ; θ)

=
T∑
t=1

log h(Yt|Yt−1, ft; θ) +
T∑
t=1

log g(ft|ft−1; θ)

=
T∑
t=1

log h(Yt|Yt−1, ft; θ)

+
T∑
t=1

2∑
j=0

[
log g(Ft−j/3|Ft−(j+1)/3; θ) + log g(ht−j/3|ht−(j+1)/3; θ)

]
. (4.11.15)

Substituting equations (4.11.12), (4.11.13) and (4.11.14) into equation (4.11.15) we get:

L∗(θ) = −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2

+

T∑
t=1

[yt − d3yt−1 − γ1(Ft − d3Ft−1)]2

(1 + d2 + d4)σ2
y

+

T∑
t=1

2∑
j=0

{
ht−j/3 +

(xt−j/3 − γ2Ft−j/3)2

σ2
x exp

{
ht−j/3

} + (Ft−j/3 − ρFt−(j+1)/3)2

+
1

ν2
(ht−j − ρSV ht−(j+1)/3)2

})
, (4.11.16)

up to an additive constant.
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4.11.3 The EM algorithm

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute numerically the ML
estimate in a model with unobservable variables (Dempster, Laird, and Rubin (1977)). Let θ̂(i) ≡ θ̂EM,(i)

Tm be
the estimate of parameter θ at iteration i of the EM algorithm. The update i→ i+ 1 consists of two steps:

1. Expectation (E) step. Compute function Q(θ|θ̃), with θ̃ = θ̂(i), where:

Q
(
θ|θ̃
)

:= Eθ̃
[
L∗(θ)|YT

]
=

T∑
t=1

Eθ̃
[
h(Yt|Yt−1, ft; θ)|YT

]
+

T∑
t=1

2∑
j=0

Eθ̃
[
log g(Ft−j/3|Ft−(j+1)/3; θ) + log g(ht−j/3|ht−(j+1)/3; θ)|YT

]
,

and Eθ̃
[
·|YT

]
denotes the expectation w.r.t. the conditional distribution of fT given YT for parameter

value θ̃.

2. Maximization (M) step. Compute the estimate for iteration i+ 1 as:

θ̂(i+1) := arg max
θ∈Θ

Q
(
θ|θ̂(i)

)
.

The iteration is performed until numerical convergence of the estimate is achieved.
We detail below the E-step and the M-step of the EM algorithm for the SV model with mixed frequency.

The E-step

Let us compute explicitly Q
(
θ|θ̃
)

, with θ̃ = θ̂(i), for model (4.11.1)-(4.11.8). From (4.11.16), we have:

Q
(
θ|θ̃
)

:= Eθ̃
[
L∗(θ)|YT

]
= −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2 +

T∑
t=1

2∑
j=0

Eθ̃
[
ht−j/3|YT

]
+

1

(1 + d2 + d4)σ2
y

T∑
t=1

Eθ̃
[
(yt − d3yt−1 − γ1(Ft − d3Ft−1))2

∣∣YT ]
+

1

σ2
x

T∑
t=1

2∑
j=0

{
Eθ̃
[
(xt−j/3 − γ2Ft−j/3)2e−ht−j/3

∣∣YT ]
+Eθ̃

[
(Ft−j/3 − ρFt−(j+1)/3)2

∣∣YT ]
+

1

ν2
Eθ̃
[
(ht−j/3 − ρSV ht−(j+1)/3)2

∣∣YT ]}),
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up to an additive constant. The last equation can be expressed as:

Q
(
θ|θ̃
)

= −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2

+

T∑
t=1

2∑
j=0

Eθ̃
[
ht−j/3|YT

]
+

1

(1 + d2 + d4)σ2
y

T∑
t=1

{
(yt − d3yt−1)2

−2γ1

(
Eθ̃
[
Ft|YT

]
yt − d3

(
Eθ̃
[
Ft−1|YT

]
yt + Eθ̃

[
Ft|YT

]
yt−1

)
+ d6Eθ̃

[
Ft−1|YT

]
yt−1

)
+γ2

1

(
Eθ̃
[
F 2
t

∣∣YT ]− 2d3Eθ̃
[
FtFt−1|YT

]
+ d6Eθ̃

[
F 2
t−1

∣∣YT ])}
+

1

σ2
x

T∑
t=1

2∑
j=0

{
x2
t−j/3Eθ̃

[
e−ht−j/3

∣∣YT ]− 2γ2xt−j/3Eθ̃
[
Ft−j/3e

−ht−j/3
∣∣YT ]

+γ2
2Eθ̃

[
F 2
t−j/3e

−ht−j/3
∣∣∣YT ]

+Eθ̃

[
F 2
t−j/3

∣∣∣YT ]− 2ρEθ̃
[
Ft−j/3Ft−(j+1)/3

∣∣YT ]+ ρ2Eθ̃

[
F 2
t−(j+1)/3

∣∣∣YT ]
+

1

ν2
Eθ̃

[
h2
t−j/3

∣∣∣YT ]− 2ρSV Eθ̃
[
ht−j/3ht−(j+1)/3

∣∣YT ]+ ρ2
SV Eθ̃

[
h2
t−(j+1)/3

∣∣∣YT ]}).
(4.11.17)

From equation (4.11.17) we note that the estimation step requires the smoothing distribution of the factor
path, in order to compute the conditional expectations Eθ̃

[
·|YT

]
. As an exact smoother is not available, in

Section 4.11.4 we propose a recursive particle smoother to compute Eθ̃
[
·|YT

]
.
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The M-step

By maximizing function θ → Q
(
θ|θ̃
)

, for θ̃ = θ̂(i) in equation (4.11.17), we get the following estimates of

the model parameters collected in vector θ̂(i+1):

γ̂2 =

∑T
t=1

∑2
j=0Eθ̃

[
Ft−j/3e

−ht−j/3
∣∣YT ]xt−j/3∑T

t=1

∑2
j=0Eθ̃

[
F 2
t−j/3e

−ht−j/3
∣∣∣YT ] ,

σ̂2
x =

1

3T

T∑
t=1

2∑
j=0

(
Eθ̃

[
e−ht−j/3

∣∣∣YT ]x2
t−j/3 − 2γ̂2Eθ̃

[
Ft−j/3e

−ht−j/3
∣∣∣YT ]xt−j/3

+ γ̂2
2Eθ̃

[
F 2
t−j/3e

−ht−j/3
∣∣∣YT ]),

ρ̂ =

∑T
t=1

∑2
j=0Eθ̃

[
Ft−j/3Ft−(j+1)/3

∣∣YT ]∑T
t=1

∑2
j=0Eθ̃

[
F 2
t−(j+1)/3

∣∣∣YT ] ,

ρ̂SV =

∑T
t=1

∑2
j=0Eθ̃

[
ht−j/3ht−(j+1)/3

∣∣YT ]∑T
t=1

∑2
j=0Eθ̃

[
h2
t−(j+1)/3

∣∣∣YT ] ,

ν̂2 =
1

3T

T∑
t=1

2∑
j=0

(
Eθ̃

[
h2
t−j/3

∣∣∣YT ]− 2ρ̂SVEθ̃
[
ht−j/3ht−(j+1)/3

∣∣YT ]
+ ρ̂2

SVEθ̃

[
h2
t−(j+1)/3

∣∣∣YT ]),
and:

(γ̂1, d̂, σ̂y) = arg min
γ1,d,σy

[
T log(1 + d2 + d4) + T log σ2

y +
1

(1 + d2 + d4)σ2
y

T∑
t=1

{
(yt − d3yt−1)2

−2γ1

(
Eθ̃
[
Ft|YT

]
yt − d3

(
Eθ̃
[
Ft−1|YT

]
yt + Eθ̃

[
Ft|YT

]
yt−1

)
+ d6Eθ̃

[
Ft−1|YT

]
yt−1

)
+γ2

1

(
Eθ̃
[
F 2
t

∣∣YT ]− 2d3Eθ̃
[
FtFt−1|YT

]
+ d6Eθ̃

[
F 2
t−1

∣∣YT ])}]. (4.11.18)

The estimates γ̂2, σ̂2
x, ρ̂, ρ̂SV , ν̂2 of the parameters in the M-step are available in closed form, therefore they

do not contribute any substantial computational cost. The parameters γ̂1, d̂ and σ̂y, are estimated solving
numerically the minimization problem in equation (4.11.18), with a negligible computational cost compared
that of the filtering and smoothing algorithms proposed in the next Section 4.11.4.

4.11.4 Sequential particle filtering and smoothing algorithms

The E-step in the EM algorithm involves the smoothing distribution of the latent factors paths to compute
the conditional expectation Eθ̃

[
·|YT

]
. As an exact smoother is not available for our nonlinear SV model,
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we propose a sequential backward smoothing algorithm to approximate these conditional expectations. The
smoothing algorithm requires, at each date t − j/3, for t = 1, ..., T and j = 0, 1, 2, samples from the
filtering distribution of the latent factors. For this reason we start with the description of the sequential
filtering algorithm based on simulation, before describing the smoothing algorithm. The filtering algorithm
proposed in the next section is based on Appendix A.1 in Kim and Stoffer (2008), in particular see their
pages 816, 817, 828 and 829, and the references therein, mainly Kitagawa (1996) and Kitagawa and Sato
(2001). The idea is to approximate the filtering distribution by a sample of S draws (“particles”) from it, with
S large. This requires an algorithm to draw from the specific distributions of our model. At the E-step of the
i-th iteration of the EM algorithm, the estimate of the model parameter θ̂(i) is available from the previous
iteration (i− 1)-th.

In this Section, it is convenient to write the model in state space at high frequency. Let τ = t− j/3, for
t = 1, ..., T and j = 0, 1, 2. The measurement is Yτ = (yτ , xτ )′ if τ = t, and Yτ = xτ if τ = t − j/3,
j = 1, 2. The latent factor is fτ = (Fτ , hτ )′. The transition equation can be written as:

fτ =

[
Fτ
hτ

]
=

[
ρ 0
0 ρSV

] [
Fτ−1/3

hτ−1/3

]
+

[
ητ
ξτ

]
,

[
ητ
ξτ

]
∼ i.i.N

([
0
0

]
,

[
1 0
0 ν2

])
.

(4.11.19)

Sequential filtering based on importance sampling

We propose an algorithm to obtain the samples fs,(i)τ =
[
F s,(i)τ , hs,(i)τ

]′
, with s = 1, ..., S, from the filtering

distribution of the latent factors for parameter value θ̂(i), denoted as `
(
fτ |Yτ ; θ̂(i)

)
, for any τ . The following

steps constitute the filtering algorithm based on importance sampling with resampling:

1. Start at the first date τ = t− j/3 = 0 by drawing a sample fs,(i)0 , for s = 1, ..., S, from the stationary

distribution of fτ for parameter value θ̂(i), denoted `
(
fτ ; θ̂(i)

)
:

`
(
fτ ; θ̂(i)

)
∼ N

0,

 1
1−ρ̂(i),2 0

0 ν̂(i),2

1−ρ̂(i),2SV

 . (4.11.20)

2. At date τ = t− j/3 ≥ 1/3, let the input be an approximation of the filtering distribution
`
(
fτ−1/3

∣∣Yτ−1/3; θ̂(i)
)

via particles fs,(i)τ−1/3, for s = 1, ..., S.

(a) Generate a sample f0,s,(i)
τ , s = 1, ..., S, from `(fτ |Yτ−1/3; θ̂(i)). We use fτ | fτ−1/3, Yτ−1/3 ∼

g
(
·| fτ−1/3

)
where g is the transition density (see Section B.2.2).

Hence, we draw f
0,s,(i)
τ from g

(
·| f s,(i)τ−1/3

)
. This is achieved by the following steps:

(a.1)
Generate independent random numbers:

ηs,(i)τ ∼ N (0, 1), ξs,(i)τ ∼ N (0, ν̂(i),2),
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for s = 1, ..., S.
(a.2)
Compute

f0,s,(i)
τ =

[
F

0,s,(i)
τ

h
0,s,(i)
τ

]
=

[
ρ̂(i) 0

0 ρ̂
(i)
SV

][
F
s,(i)
τ−1/3

h
s,(i)
τ−1/3

]
+

[
η
s,(i)
τ

ξ
s,(i)
τ

]
,

for s = 1, ..., S.

(b) Generate a sample from the filtering distribution `(fτ |Yτ ; θ̂(i)). We use `(fτ |Yτ ; θ̂(i))

∝ `
(
Yτ |Yτ−1/3, fτ ; θ̂(i)

)
`(fτ |Yτ−1/3; θ̂(i)) and the importance sampling principle. Compute

the weights:

ws,(i)τ ∝ l
(
Yτ |Yτ−1/3, f

0,s,(i)
τ ; θ̂(i)

)

=



1√
(2π)2σ̂

(i),2
y σ̂

(i),2
x exp{h0,s,(i)

t }

× exp

{
− [yt−d3yt−1−γ̂(i)

1 (F
0,s,(i)
t −d3F 0,s,(i)

t−1 )]2

2σ̂
(i),2
y

− (xt−γ̂(i)
2 F

0,s,(i)
t )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
t

}} τ = t,

1√
2πσ̂

(i),2
x exp{h0,s,(i)

τ }
exp

{
− (xt−j/3−γ̂

(i)
2 F 0,s,(i)

τ )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
τ

} } τ = t− j/3, j = 1, 2,

for s = 1, ..., S.
Then, generate f s,(i)τ = [F

s,(i)
τ , h

s,(i)
τ ]′ by resampling from f

0,s,(i)
τ = [F

0,s,(i)
τ , h

0,s,(i)
τ ]′ with

weights ws,(i)τ , for s = 1, ..., S.

This filtering algorithm is straightforward to implement for our model because it only requires (i) to
simulate from the state transition density and (ii) evaluate the measurement density. In unreported Monte
Carlo experiments, we find that the direct application of this filtering algorithm produces, in a non negligible
fraction of the MC replications, degenerate filtered distribution of the latent factors. This degeneracy problem
has been solved by modifying the algorithm presented in this section as an auxiliary particle filter algorithm,
similarly as Pitt and Shephard (1999). See, among others, Douc, Moulines, and Olsson (2009), Carvalho,
Johannes, Lopes, and Polson (2010), Doucet (2010), Lopes and Tsay (2011), Creal (2012), Kantas, Doucet,
Singh, Maciejowski, and Chopin (2015), and the reference therein, for a more extensive description of
auxiliary particle filter. In Section 4.11.4 we describe the auxiliary particle filter used to produce the MC
results in the main body of this paper.

Sequential filtering based on auxiliary particle filter

The following steps constitute our auxiliary particle filter:

1. Start at the first date τ = t− j/3 = 0 by drawing a sample fs,(i)0 , for s = 1, ..., S, from the stationary

distribution of fτ for parameter value θ̂(i), denoted `
(
fτ ; θ̂(i)

)
and given in (4.11.20).

2. At date τ = t− j/3 ≥ 1/3, let the input be an approximation of the filtering distribution
`
(
fτ−1/3

∣∣Yτ−1/3; θ̂(i)
)

via particles fs,(i)τ−1/3, for s = 1, ..., S.
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(a) Generate auxiliary particles f̄s,(i)τ =
[
F̄
s,(i)
τ , h̄

s,(i)
τ

]′
, where F̄ s,(i)τ = ρ̂(i)F

s,(i)
τ−1/3 and h̄

(i)
τ =

ρ̂
(i)
SV h

s,(i)
τ−1/3, i.e. F̄ s,(i)τ = E

[
Fτ |Fτ−1/3 = F

s,(i)
τ−1/3; θ̂(i)

]
and h̄s,(i)τ = E

[
hτ |hτ−1/3 = h

s,(i)
τ−1/3; θ̂(i)

]
.

(b) The auxiliary particles are used to define weights and resample from the old particles fs,(i)τ−1/3.
Specifically, compute the weights:

w̌s,(i)τ ∝ `
(
Yτ |Yτ−1/3, f̄

s,(i)
τ ; θ̂(i)

)

=



1√
(2π)2σ̂

(i),2
y σ̂

(i),2
x exp{h̄s,(i)t }

× exp

{
− [yt−d3yt−1−γ̂(i)

1 (F̄
s,(i)
t −d3F̄ (i)

t−1)]2

2σ̂
(i),2
y

− (xt−γ̂(i)
2 F̄

s,(i)
t )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
t

}} τ = t,

1√
2πσ̂

(i),2
x exp{h̄s,(i)τ }

exp

{
− (xτ−γ̂(i)

2 F̄ s,(i)τ )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
τ

}} τ = t− j/3, j = 1, 2

,

for s = 1, ..., S. Generate particles f̌s,(i)τ−1/3 = [F̌
s,(i)
τ−1/3, ȟ

s,(i)
τ−1/3]′ by resampling f

s,(i)
τ−1/3 =

[F
s,(i)
τ−1/3, h

s,(i)
τ−1/3]′ with weights w̌s,(i)τ , s = 1, ..., S.

(c) Generate a sample from `(fτ |Yτ−1/3; θ̂(i)). We use fτ | fτ−1/3, Yτ−1/3 ∼ g
(
·| fτ−1/3

)
. We draw

f
0,s,(i)
τ from g

(
·| f̌s,(i)τ−1/3

)
. This is achieved by:

(c.1)
Generate independent random numbers:

ηs,(i)τ ∼ N (0, 1), ξs,(i)τ ∼ N (0, ν̂(i),2),

for s = 1, ..., S.
(c.2)
Compute

f0,s,(i)
τ =

[
F

0,s,(i)
τ

h
0,s,(i)
τ

]
=

[
ρ̂(i) 0

0 ρ̂
(i)
SV

][
F̌
s,(i)
τ−1/3

ȟ
s,(i)
τ−1/3

]
+

[
η
s,(i)
τ

ξ
s,(i)
τ

]
,

for s = 1, ..., S.

(d) Compute the weights:

ws,(i)τ ∝
`
(
Yτ |Yτ−1/3f

0,s,(i)
τ ; θ̂(i)

)
`
(
Yτ |Yτ−1/3, f̄

s,(i)
τ ; θ̂(i)

)

=



√
exp{h̄s,(i)τ }√

exp{h0,s,(i)
τ }

exp

{
− [yt−d3yt−1−γ̂(i)

1 (F
0,s,(i)
t −d3F 0,s,(i)

t−1 )]2

2σ̂
(i),2
y

− (xt−γ̂(i)
2 F

0,s,(i)
t )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
t

}}
× exp

{
+

[yt−d3yt−1−γ̂(i)
1 (F̄

s,(i)
t −d3F̄ s,(i)t−1 )]2

2σ̂
(i),2
y

+
(xt−γ̂(i)

2 F̄
s,(i)
t )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
t

}} τ = t,√
exp{h̄s,(i)

τ−1/3
}√

exp{h0,s,(i)
τ }

× exp

{
− (xτ−γ̂(i)

2 F 0,s,(i)
τ )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
τ

} +
(xτ−γ̂(i)

2 F̄ s,(i)τ )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
τ

}} τ = t− j/3, j = 1, 2,
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Generate fs,(i)τ = [F
s,(i)
τ , h

s,(i)
τ ]′ by resampling from f

0,s,(i)
τ = [F

0,s,(i)
τ , h

0,s,(i)
τ ]′ with weights

w
s,(i)
τ , for s = 1, ..., S.

Sequential smoothing with importance sampling

Any EM algorithm requires the computation of the smoothing distribution of the latent factor path only once
at each iteration i. In our specific case, we need to compute only some moments of the smoothing distribution
of the latent factor path. Specifically we need to sample from the smoothing distribution of the factors at

each high frequency date τ = t − j/3, with t = 1, ..., T , and j = 0, 1, 2. Let f̃s,(i)τ =
(
F̃ s,(i)τ , h̃s,(i)τ

)′
,

with s = 1, ..., S, be a sample from the smoothing distribution of the latent factors at time τ , obtained using
the estimated model parameters θ̂(i), i.e. during the i-th iteration of the EM algorithm. Then, the conditional
expectationsEθ̃

[
·|YT

]
of the E-step for θ̃ = θ̂(i) can be approximated by sample averages of the S particles.

The smoothing algorithm is based on Appendix A.2 in Kim and Stoffer (2008) and the reference therein,
mainly Godsill, Doucet, and West (2004), and is free from degeneracy. It uses the particles of the filtering

distribution as input. Specifically, let f s,(i)τ =
(
F s,(i)τ , hs,(i)τ

)′
, with s = 1, ..., S, be draws from the filtering

distribution `
(
fτ |Yτ ; θ̂(i)

)
for date τ = t − j/3, j = 0, 1, 2 (see Section B.4.2). The following steps

constitute the backward sequential smoothing algorithm. For any s = 1, ..., S:

1. Start at the last date τ = T , and draw f̃
s,(i)
T from set {f r,(i)T , r = 1, ..., S} with equal weights 1/S.

In other words, we obtain one draw from the filtering distribution `
(
fT |YT ; θ̂(i)

)
at the last sample

date.

2. For any date τ , from τ = T − 1/3 to τ = 0:

(a) Compute the weights:

w
r,(i)
τ,τ+1/3 ∝ g(f̃

s,(i)
τ+1/3|f

r,(i)
τ ; θ̂(i)),

for r = 1, ..., S.

(b) Draw f̃
s,(i)
τ from {f r,(i)τ , r = 1, ..., S} with probability weights {wr,(i)τ,τ+1/3, r = 1, ..., S}.

At the end of the smoothing algorithm we have S simulated paths {(f̃s,(i)0 , f̃
s,(i)
1/3 , ..., f̃

s,(i)
T ), s = 1, ..., S}

from the smoothing distribution `
(
f0, f1/3, ..., fT

∣∣YT ; θ̂(i)
)

. Note that the second step of our backward
sequential smoothing algorithm requires only (i) a sample from the filtering distribution which is already
available from the filtering algorithm, and (ii) to be able to evaluate the transition density.

Stopping rule

For the Monte Carlo EM algorithm to converge to the MLE estimate, the number of particles S needs to
increase with the number of EM iterations, see for instance Olsson, Cappé, Douc, and Moulines (2008),
Neath (2013) and the references therein. Moreover, a rule needs to be set in order to stop the algorithm and
assess its convergence. We follow the same procedure of Kim and Stoffer (2008). On the basis of the work
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of Chan and Ledolter (1995), Kim and Stoffer (2008) start the EM algorithm with a small value of S to save
computing time, at the end of each EM iteration compute ε - the estimated change in log-likelihood with
respect to the previous EM iteration - and increase S when ε is below a certain small lower bound. The EM
algorithm in our paper is implemented starting with a number of particles S = 500, then the value of S is
increased to 1000 as soon as ε < 0.10 for a certain iteration, then S is increased to 1500 when ε < 0.05,
and finally the algorithm is stopped at the first iteration in which ε < 0.01. The values of ε and S, together
with the stopping rule, were calibrated in preliminary unreported MC experiments. See Kim and Stoffer
(2008) and Chan and Ledolter (1995) for an in-depth analysis of this procedure and the concept of “Relative
Likelihood”.
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4.12 Appendix C: Linear state space model with one flow sampled low fre-
quency variable

In this Appendix we show one way to adapt the measurement and transition equations of the linear state space
model with mixed frequency data in Bai, Ghysels, and Wright (2013), for the case of one low frequency
variable which is flow sampled. This adaptation is necessary to implement the Kalman filter algorithm for
ML estimation of the structural model without SV used in the empirical application of Section 4.6.

4.12.1 Model setup

The linear state space model without SV considered in the empirical application in Section 4.6 has one flow
sampled low frequency variable yt, with t = 1, ..., T , m = 3 high frequency subperiods and a single latent
factor (i.e. nf = 1). The latent factor follows an AR(1) process:

Ft+j/3 = Φ1Ft+(j−1)/3 + ηt+j/3 t = 1, . . . , T, j = 0, 1, 2, (4.12.1)

where Φ1 is a scalar parameter to be estimated. Latent process y∗ is related to the factor as follows:

y∗t+j/3 = γ1Ft+j/3 + u1,t+j/3 t = 1, . . . , T, j = 0, 1, 2, (4.12.2)

with u1,t+j/3 having an AR(1) representation:

u1,t+j/3 = d1u1,t+(j−1)/3 + ε1,t+j/3. (4.12.3)

The observed low-frequency process y is flow sampled, i.e. it relates to the latent process y∗ in the following
way:

yt = y∗t + y∗t−1/3 + y∗t−2/3, t = 1, .., T, j = 0, 1, 2. (4.12.4)

The high frequency process xt+j/3 relates to the factor as follows:

xt+j/3 = γ2Ft+j/3 + u2,t+j/3 t = 1, . . . , T, j = 0, 1, 2, (4.12.5)

where:
u2,t+j/3 = d2u2,t+(j−1)/3 + ε2,t+j/3. (4.12.6)

The innovations (η), (ε1), (ε2) are mutually independent i.i.d. Gaussian processes, with distributions
N (0, 1), N (0, σ2

ε1) and N (0, σ2
ε2).

4.12.2 State space representation and Kalman filter

The above equations yield a periodic state space model with measurement equation:

Y j
t = Zjαt+j/m

{ Y j
t = (yt, xt)

′ j = 0

Y j
t = xt+j/m j = 1, 2

, (4.12.7)

for t = 1, ..., T , where

Z0 =

[
γ1 γ1 γ1 1 1 1 0
γ2 0 0 0 0 0 1

]
,
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Zj =
[
γ2 0 0 0 0 0 1

]
, j = 1, 2,

and state vector:

αt+j/3 =
(
Ft+j/3, Ft+(j−1)/3, Ft+(j−2)/3, u1,t+j/3, u1,t+(j−1)/3, u1,t+(j−2)/3, u2,t+j/3

)′
.

The transition equation is:

αt+j/m = Rαt+(j−1)/3 +Qζt+j/3, t = 1, .., T, j = 0, 1, 2, (4.12.8)

where

R =



Φ1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 d1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 d2


, Q =



1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1


,

ζt+j/m = (ηt+j/m, ε1,t+j/m, ε2,t+j/m)′, and Σζ = diag(1, σ2
ε1 , σ

2
ε2) denotes the variance-covariance matrix

of ζt+j/m. Then, the Kalman filter algorithm presented in Appendix A can be performed after replacing
matrices Z0, Zj , R, Q and Σζ by the new definitions.
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