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Abstract

In recent years we are witnessing a noticeable increment in the usage of new
generation smartphones, as well as the growth of mobile application develop-
ment. Today, there is an app for almost everything we need. We are surrounded
by a huge number of proactive applications, which automatically provide rele-
vant information and services when and where we need them. This switch from
the previous generation of passive applications to the new one of proactive ap-
plications has been enabled by the exploitation of context information. One of
the most important and most widely used pieces of context information is loca-
tion data. For this reason, new generation devices include a localization engine
that exploits various embedded technologies (e.g., GPS, WiFi, GSM) to retrieve
location information. Consequently, the key issue in localization is now the effi-
cient use of the mobile localization engine, where efficient means lightweight on
device resource consumption, responsive, accurate and safe in terms of privacy.
In fact, since the device resources are limited, all the services running on it have
to manage their trade-off between consumption and reliability to prevent a pre-
mature depletion of the phone’s battery. In turn, localization is one of the most
demanding services in terms of resource consumption.

In this dissertation I present an efficient localization solution that includes, in
addition to the standard location tracking techniques, the support of other tech-
nologies already available on smartphones (e.g., embedded sensors), as well as
the integration of both Human Mobility Modelling (HMM) and Machine Learn-
ing (ML) techniques. The main goal of the proposed solution is the provision
of a continuous tracking service while achieving a sizeable reduction of the en-
ergy impact of the localization with respect to standard solutions, as well as the
preservation of user privacy by avoiding the use of a back-end server. This re-
sults in a Smart Localization Service (SLS), which outperforms current solutions
implemented on smartphones in terms of energy consumption (and, therefore,
mobile device lifetime), availability of location information, and network traffic
volume.
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Chapter 1

Introduction

The high potential of smartphones in terms of resources (e.g., battery, mem-
ory, computational power) and availability of embedded sensors and radio in-
terfaces, has opened new perspectives and fueled the creativity of developers,
who came out with an extremely high number of applications. This disserta-
tion focuses on location-based applications, a class of applications of paramount
importance that leverages location data either directly or indirectly. Examples
of these applications range from navigation (e.g., Google Maps) to social (e.g.,
Facebook) applications, and from find-nearby-friends/places/offers to e-Health
applications. The main goal of this dissertation is to investigate a smart and ef-
ficient localization solution for mobile phones that outperforms the state of the
art, improving the trade-off between availability and reliability of the localiza-
tion service while reducing resource consumption (mainly battery usageE]). The
novel contribution of the proposed solution consists of combining human mobil-
ity models and signals from embedded sensors (i.e., accelerometer) to minimize
the need to invoke the localization manager on smartphones, radically reducing
the cost of acquiring location information continuously.

This thesis presents the Smart Localization Service (SLS): an efficient local-
ization strategy for mobile phones. The SLS offers a novel approach to the lo-
calization problem, by combining the smartness of the mobile devices with both
Human Mobility Modelling (HMM) and Machine Learning (ML) techniques. The
SLS approach is based on personalized modelling and optimal location reading.

1. Personalized Modelling: location predictions are performed by modelling
the movements of each specific user among her/his most relevant visited
locations.

! Other resource consumption are taken under consideration for the optimization of the trade-
off with the reliability and accuracy of the service.
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2. Optimal Location Reading: the SLS performs an activity analysis to under-
stand whether a location reading is actually required.

The SLS is self adaptive, i.e., it dynamically adapts to the mobility behavior
of the carrying user and the visited environment.

1.1 Problem Statement

In this dissertation, three main problems related to the localization for mobile
devices, will be addressed: accuracy, resource consumption and privacy issues.
Localization accuracy and availability. The possibility for mobile applications
to integrate location information raises indeed both technological and privacy
issues. Location accuracy is one of the most important problems and also the
most thoroughly investigated in the localization area of research. Each localiza-
tion methodology has a target environment (e.g., generalizing: GPS for outdoor,
WiFi for indoor), but mobile devices incorporate a variety of technologies, giving
the possibility to deal with many environments and, at the same time, relying
on a unique device. As I aim to demonstrate within this work, the accuracy
of those different localization methodologies can be enhanced by merging the
technologies themselves, and by involving other mechanisms in the localization
process. The usage of embedded sensors, the collection and handling of sensed
data and the introduction of a mobility model can enhance the trade-off between
localization accuracy and battery consumption.

Resource consumption. Many restrictions (e.g., memory, battery, processing
power) are imposed by mobile device’s resources. While new generation smart-
phones are powerful enough to perform heavy operations in terms of memory
and processing power, battery consumption is still a concern. Most operating
systems do not deal with battery usage optimization, but provide APIs and allow
designers to smartly manage it (i.e., simply using Google Maps App on an An-
droid phone, implies continued requests for GPS location every one second, even
if not moving; an opportune usage of the embedded sensors would allow the re-
duction of GPS requests, then the reduction of battery consumption). Therefore
the smart usage of mobile capabilities for reducing the battery consumption is
still an open problem. In this thesis I will present a strategy (applied to Android
mobile devices, but easily generalizable to other platforms) to face this issue.
Privacy. The knowledge of context and personal information related to mobile
users allows a range of relevant services, but this mechanism can violate their
privacy. Often users are asked to choose whether to share their own location
information, or not. In the case of acceptance a given level of location privacy
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is ensured; otherwise, the user is not allowed to access the desired service. One
idea to preserve privacy and, at the same time, to be able to access all the desired
services, is for the user to decide the granularity of the shared locations, having
the possibility to choose when, where and how the location should be shared.
It is easy to understand that “shared data cannot be secure”, but this implies
that the device is independent from any back-end server, for all the required
heavy computational tasks. In this dissertation, this issue will be addressed, and
algorithms will be provided to make the mobile device autonomous.
This dissertation addresses and solves the problem of:

providing location information continuously and accurately while ensuring
efficient resource usage and without violating the privacy of the user.

1.2 Motivation: the new generation of Location-Based
Applications

Location information can be considered the basis for many mobile applications,
which provide new services and facilities (B’far [[2004]). Initially, location-based
applications (which provide services based on the user’s geographical location)
were "show me nearby restaurant'-type applications, they were reactive and
mostly client-server focused; users would have asked an application or a system
for information and received a response. The next generation (Shek [2010]),
that is our present and future generation, is more proactive and interactive with
the user, thanks to new push notification mechanisms (Cremonese et al.| [2010]).
For example, users can receive relevant information based on their location,
without the need to manually search for it. This new generation of location-
based applications provides many benefits for users and service providers (i.e.,
GoogleNow).

* The vast amount of data available on the Internet is filtered into relevant
information based on the user’s current context.

* Only relevant information is shown to the users, speeding up decisions
and activities and highlighting information that users may not normally
be aware of (i.e., temporary road closure for traffic).

* The amount of data entry required by the user to access a service is re-
duced, given the integration of embedded sensors (i.e., accelerometer, dig-
ital compass and cameras) data within applications.

* The sharing of location tagged information (i.e., photos and reviews) al-
lows up-to-date localized information to be available to many users.
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Battery Lifetime vs Localization Duty Cycle
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Figure 1.1. Battery Life vs Localization’s Duty Cycle

* Service providers can build models for improving services provided to
users in real-time and over longer term, by collecting and elaborating data
from their movements (i.e., location traces) and combining them with as-
sociated tagged information.

However, an "efficient localization" is critical for many applications, and the ex-
isting solutions are far from being smart and computationally efficient: they
drain phone’s resources, mainly work outdoors (and difficultly in some city’s
scenario) and hardly give a really precise location of the user.

In this thesis I focus mainly on the battery resource of mobile devices. Since
new smartphones are provided with powerful processors and quantity of RAM
which makes them able to perform heavy computations, I exploit this innovative
technology to smartly reduce the usage of more expensive hardware components
(e.g., GPS, WiFi).

Figure shows the average battery lifetime of a smartphone with respect to
the time interval between consecutive location tracking (duty cycle: DC), while
running a location based application (the VibNE] application described in Miluzzo
et al.| [2011]]). I measured the variation of the battery life for different values
of the DC, by using two devices: the HTC NexusOne running Android 2.2, and

21 worked for the design and development of this application during my visiting period at the
Dartmouth College (USA), 2010
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the iPhone4. VibN is a localization service able to profile the social behavior of
people, allowing users to record audio snippets, geo-tag them, and display them
on a map as a way to provide social hotspots insights application. It is composed
by a client and a server side. The VibN client application running on the mobile
device, performs queries to the OS Localization Manager at fixed interval of time
(with fixed DC) and retrieves information about the current location. Without
duty cycling (continuous localization), the battery lifetime of the phone is quite
short: even if for the iPhone it is longer, it does not reach the daily lifespan.
Increasing the duration of the DC, obviously also the lifetime increases: the
increment is logarithmic but the behavior depends on the device and on the
operating system. Being interested in providing a continuous localization service
we can concentrate our reasoning on the first portion of the graph, when the
DC ranges between [0-5] minutes. For both platforms, the gain in lifetime is
between [7-10] hours, which means that performing a location reading every
fixed interval of 5 minutes increases the phone lifetime of almost 10 hours.

GalaxyNexus battery lifetime

100 | \ | —
e continuous
T 80F T ——GPS ON 30sec
S TR —GPS ON-OFF 30sec
& eo- = ~—GPS ON 60sec
8 Sl ——GPS ON-OFF 80sec
§ 40- LY —baseline
=] L
g 20- L 4
0 I i I ameEm I
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Figure 1.2. Battery lifetime for a smartphone Samsung Galaxy Nexus, Android
4.1.1

The dependency between the mobile device lifetime to the localization duty-
cycle is not strictly related to the application mentioned above (VibN), but it can
be generalized to all the location-based applications and services. This is visible
in figure which represents the battery discharge of a Galaxy Nexus device
running Android 4.1.1, while only running a continuous localization service at
different duty cycles (the figure is described more in detail in section [3.3). Also
in this case we can notice the great difference in battery lifetime duration while
performing localization at different frequencies.

This motivates the approach presented in this dissertation which instead of
using a fixed duty cycling, adapts the localization procedure to the actual mobil-
ity behavior of the user. Additionally it complements the reduced frequency of
the location readings - requiring then a reduced amount of resources - with more
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lightweight localization-complementary techniques (e.g., movement prediction
and activity inference).

1.3 State of the Art

Recently, many methods for the efficient resources usage in location-based ap-
plications have been suggested. Gaonkar et al.| [[2008]] presented Micro-Blog,
a participatory sensing application which addresses the challenge of balanc-
ing the competing goals of accurate location coordinates and long battery life.
Since accurate localization cannot come at the cost of unacceptably short bat-
tery lifetime, Micro-Blog strategy consists in unfrequently using more accurate,
but power-hungry localization services (i.e., WiFi). The frequent location read-
ings are performed by using less accurate and therefore more power-efficient
services (i.e., GSM localization). However this approach, while reducing the
energy consumption due to the localization, decreases also the location infor-
mation accuracy.

Abdesslem et al. [2009] proposed SenseLess, which also leverages the differ-
ent energy consumption characteristics of sensors embedded into mobile phones,
to maximise battery life in mobile-sensing applications. It uses the less expensive
sensors more often, thereby enabling the usage of more expensive sensors less
frequently, saving more than 58% of energy when determining a user’s location,
while maintaining the fidelity of the sensed data with respect to a power-hungry
GPS-based system, for a typical indoor and outdoor walk. This approach has
a great impact on the battery consumption, however it strictly depends on the
mobility behavior of the user: for instance, if the user is always moving and
visiting different locations, the amount of energy saved decreases significantly.
As for the previously presented work, also in this case a user mobility learning
procedure could be helpful.

Kjergaard et al.| [2009] designed a system called EnTracked which profiles
how mobile devices consume power, including positioning and communication.
Then, a model is proposed to estimate and predict the system conditions and
mobility of a device. In the EnTracked, the accelerometer is utilized to detect
pedestrian movement in order to activate the GPS module and the UMTS mod-
ule (messages sent to a back-end server) properly. Constandache et al.| [2009]
proposed EnLoc, a solution dealing with localization technologies cost: it is an
energy-efficient localization framework developed to face the unacceptable en-
ergy cost of GPS, used by many mobile phone applications. The framework
characterizes the optimal localization accuracy for a given energy budget, and
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develops prediction based heuristics for real-time use. Both EnTracked and En-
Loc provide a smart user adaptive solution for the energy used by the embedded
sensors while providing a localization service, however their performances are
strictly related to the context. Also for these solutions, a user mobility learning
procedure could improve the energy saving performances.

Kim et al.|[2010] introduced SenseLoc, a solution working with an approach
very similar to the one implemented by the SLS, providing everyday contextual
information abstracting locations as place visits and path travels. Based on user’s
mobility, SensLoc proactively controls active cycles of a GPS receiver, a WiFi
scanner, and an accelerometer. However, this solution is not autonomous and it
depends on back-end server for the computational offloading.

RAPS, presented by Paek et al.| [2010], is a rate-adaptive positioning system
for smartphone applications which uses a collection of techniques to cleverly
determine when to turn on GPS. It estimates user movements using a duty-cycled
accelerometer, and utilizes Bluetooth technology to reduce position uncertainty
among neighboring devices. It also employs celltower-RSS blacklisting to detect
GPS unavailability (i.e., indoors) and avoids turning on GPS in these cases. The
authors demonstrated that the system can increase phone battery lifetime by
more than a factor of 3.8 compared with GPS always on. However, also in this
case, the battery consumption strictly depend on the mobility of the user.

LifeMap, presented by|Chon and Cha| [[2011]], is a smartphone-based context
provider for smartphones, for indoor and outdoor environment. It provides an
advanced location service for mobile users. It uses inertial sensors (accelerom-
eter and digital compass) to perform indoor localization (implementing a step
counter). The information is combined with GPS and Wi-Fi positioning systems,
to generate user context in daily life. The presented system reduces the energy
consumption by using a minimum set of sensors to define context in a given
situation. However, the authors state the need for a technique to minimize the
energy consumption of the solution, by adding to the system a human-centric
location-prediction module.

Bareth and Kupper [2011]] introduced a system which enhances the en-
ergy usage on mobile devices while performing localization: it dynamically de-
activates different positioning technologies and only activates the positioning
method with the least energy consumption (GPS, WiFi, GSM). In this way, the
algorithm can reliably and accurately determine, if the user leaves or enters pre-
defined geographic areas, while preserving valuable energy resources. However
this solution offers an effective localization in terms of energy consumption, at
the price of a decreased accuracy in the information retrieved.

Also (Oshin et al. [2012] presented an algorithm to improve the energy-
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efficiency of GPS based location sensing applications used by smartphones. They
used the embedded smartphone accelerometer to differentiate between two
main users activity: stationary and in-motion. In this way, they activate the ex-
pensive GPS only when needed, that is when the user is moving. Only applying
this simple activity differentiation, they have shown that the battery consump-
tion is decreased significantly. However the mobility context detection algorithm
presented in this work could be further improved by considering a wider set of
user activities.

SensTrack described by Zhang et al.|[2013]], is a location tracking service that
leverages the sensor (acceleration and orientation sensor) hints on the smart-
phone to reduce the usage of GPS. Furthermore it switches to the alternate loca-
tion sensing method based on WiFi when users move indoors. A machine learn-
ing technique is then employed to reconstruct the trajectory from the recorded
location samples, by analyzing the collected data offline. The authors demon-
strated that their approach reduces the usage of GPS and still achieve a high
tracking accuracy. However this system works only for pedestrian movements
and it is quite expensive in terms of energy consumption because it assume a
continuous sampling of the acceleration and orientation sensors.

SmartLoc is a smart localization system, presented in Bo et al.| [2013]], which
aims at improving the localization accuracy when the GPS signal is weak (i.e.,
metropolitan areas) while performing outdoor localization, and at the same time
it reduces the energy consumption for localization by carefully turning on GPS
periodically. To achieve its goal, SmatLoc leverages the lower-power inertial sen-
sors embedded in smartphones, and in particular it uses the accelerometer, the
magnetometer and the gyroscope together with the GPS, to estimate the loca-
tion and the traveling distance, detecting automatically landmarks (e.g., bridge,
traffic lights) and special driving patterns (e.g., turning, uphill, and downhill).
However this solution is only designed for vehicles and is dependent from fixed
landmarks, in order to calibrate the localization when the cumulative error given
by the inertial navigation becomes very high.

Chon et al.| [[2014] present a system called SmartDC, which similarly to the
SLS approach, learns the user mobility behavior with respect to his regular move-
ments among his relevant Pols. The authors implemented a Markov decision
algorithm in order to predict the time duration of a visit to a Pol. In this way
the SmartDC is able to adapt the location reading duty-cycling with respect to
the predictions, minimizing at the same time the localization energy consump-
tion. Although this method achieves very good results (it consumes 81% less
energy than a periodic sensing scheme), it requires a very long time to learn the
residence-time patterns (i.e., it requires three months to reach around 72 + 9%
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predictability) and it does not work without WiFi coverage. Furthermore it has
been validated offline, emulating the SmartDC system over a dataset of real
traces collected by 57 users over four weeks (LifeMap dataset |Chon and Cha
[2011])).

In this dissertation I present the SLS system, which similarly to the related
work presented above, aims at providing a continuous localization service, re-
ducing the required amount of energy with respect to a standard localization
approach. The novelty of the proposed solution with respect to the state of the
art consists in: (i) shortening the bootstrap time to learn the user mobility reg-
ularities and to predict the next visited locations and departures time; (ii) being
adaptive to the current user’s activities (being able to infer the current activity
over a set of four main classes), hence very fast in detecting the change of user’s
visited contexts; (iii) being implemented and deployed on real smartphones and
(iv) being validated not only in an emulated environment (by using datasets of
real traces) but also with real experiments.

In table[1.1]I propose a comparison of the SLS with the previously presented
energy-efficient location-based solutions, in terms of: technologies used for the
localization (e.g., GPS, WiFi, GSM. Bluetooth), sensors usage (e.g., accelerom-
eters and other sensors), dependency on back-end servers (as processing units
and/or databases), and ability to learn and make predictions based on the mov-
ing history, or the capability to learn and predict moving patterns by means of
inertial navigation reasoning (i.e., SmartLoc). Similarly to the state of the art,
also the SLS system aims to reduce the energy consumption of a continuous
localization procedure, however without impacting the accuracy of the localiza-
tion itself and the availability of the service: the system will not only reduce
the location sampling frequency to reduce the battery consumption, but it will
smartly decide when to use the localization technologies provided by the mobile
operating system, according to the user’s history (learned habits and behavior),
and to the current context (self adaptiveness). A further innovative aspect of the
SLS consists on the fact that the system completely runs into the mobile phone,
without relying on a back-end server and without sharing information with other
nodes: this characteristic helps in preserving the privacy of the user which does
not share any sensitive data with any other nodes or server.
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GPS WiFi GSM Bluetooth Sensors Back-end Location

server learning/

prediction

MicroBlog [2008] . . . .

Senseless [2000] | S B BB B
EnTracked [2009] | i T
Enloc [2009] | S S e S
Senseloc [2010] | S e i
Raps po10] | =
LiveMap 20117 | S B DI
Bareth and Kupper [2011] [2011] | S i L AAA
Gshimetal| 2013] o12] | e  E E A,
Senselrack [2013] | Rl . S
smartloc [2013] | R B B i, S
smartDC [2014] | S I e i S
sis | S i S

Table 1.1. 2: Energy-Efficient Location-Based Solutions comparison

1.4 Contributions

The main focus of this thesis consists in reducing the resource consumption,
mainly the battery consumption, due to the localization. However the battery
consumption is not a simple function of the localization duty-cycle (as I already
mentioned in section [1.2), but it depends on multiple aspects: on the platform
(e.g., on the hardware of the mobile device, on the running OS, on its version,
etc.) as well as on its usage (e.g., which applications are running on the mobile,
and with which frequency the user is interacting with them, etc.) and on the
activities of the carrying user. Therefore, the main contribution of this thesis
consists in the study and implementation of a smartly dynamic location duty-
cycling which adapts to the actual movements of the user. This is performed by
SLS, implementing an activity inference algorithm which understands whether
the user is moving and which is the activity performed. In this way, it performs
the localization only when necessary, and adapt the tracking duty cycle to the
inferred activity. Additionally, the SLS incrementally learns the user’s mobil-
ity behavior and adapts the localization duty-cycles to the location prediction
availability: the system performs location prediction instead of a direct location
tracking whenever it is possible.

Thanks to its innovative approach, the SLS is expected to outperforms exist-
ing solutions for mobile phones, in terms of:
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* impact of the service on the overall device’s lifetime and on the computa-
tional load of the device’s processor;

* service’s response time;
* preservation of the user’s privacy.

In terms of privacy, the advantage of moving the localization computational unit
into the mobile device is straightforward (while traditionally it was residing on
the server side).

1.5 The Goal: Solving the Efficient Localization Prob-

lem

The localization problem I aim to address with my work, is just beneath the
application layer: it regards the acquiring of location information by relying on
different technologies, which are not only the standard location tracking tech-
niques used nowadays. Smartphones need battery, memory and computational
power to perform usual operations. Hence, when adding localization to the set
of services provided to the mobile phone’s user, it is crucial to minimize the
impact on the phone’s life and overall performance.

The goal of this thesis is to study a localization solution which includes,
in addition to the standard location tracking techniques, the support of other
technologies, nowadays available on mobile devices; as well as Human Mobility
Modelling (HMM) and Machine Learning (ML) techniques (details in chapters {4}
and [6)), in order to provide a Smart Location Service (SLS) which is expected
to outperform existing solutions for mobile phones (Papandrea and Giordano
[2012], Papandrea and Giordano| [2014], Papandrea| [2012]).

To solve the problem stated in section my goal is to find out a new way to
provide a "broad" localization service exploiting the smartness of these
technologically advanced devices.

In fact, a smart-phone is generally a communication platform, which has
a powerful processor (e.g., ARMv8-A 1.4 GHz dual-core Cyclone CPU for the
Apple’s iPhone6 and an Nvidia Tegra K1 2.3 GHz dual-core Denver CPU for
the HTC Google Nexus9), a great amount of memory (e.g., 2GB RAM for the
Google Nexus9, 1 GB RAM for the iPhone6, 2GB RAM for the HTC One), exten-
sible internal storage capacity (e.g., 16 or 32 GB flash memory storage for the
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Nexus9, 16/64/128 GB flash memory for the iPhone6), sensors embedded (e.g.,
accelerometer, 3-axis gyroscope, digital compass, barometer, proximity sensor,
ambient light sensor, Assisted GPS), different communication interfaces (e.g.,
Wi-Fi 802.11 a/b/g/n/ac, Wi-Fi Direct, 4G, Bluetooth Low Energy, Near Field
Communication) and open operating system (e.g., Android, iOS, Symbian, LiMo,
Openmoko, bada).

All these new generation device characteristics give the opportunity to ap-
proach the localization problem in a smarter way with respect to the past. We
can now merge all the capabilities given by these new technologies to provide a
"smarter localization service". The measure of how much smart this new local-
ization service is, with respect to existing solutions, is evaluated on the basis of
a list of metrics.

1. Impact of the service on the overall device’s life and on the computational
load of the device’s processor.

2. Enhancement on the service’s response time.

3. Enhancement in privacy’s issues derived by moving the localization com-
putational unit, that traditionally is on the server side, into the mobile
device.

Therefore, the evaluation will be performed by means of a comparative study
of the continuous localization service provided by the SLS, with two alternative
solutions.

1. A very simple localization solution, including only well known technolo-
gies, and providing a continuous tracking;

2. A continuous localization service which provide a tracking procedure fairly
comparable to the SLS, but using Google APIs for the user’s Activity Recog-
nition.

The comparative study will not be a merely comparison of the resources
(mainly the energy) used to perform localization, but the evaluation will be
performed considering the trade-off of the energy consumed given a number
of requirements (e.g., accuracy for outdoor, exchanged network traffic, location
availability). Each single module composing the system will be firstly evaluated
independently, and subsequently the whole SLS will be validated by means of a
real experiment.

1.6 Organization of the thesis

The rest of the thesis is structured as follows.
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Chapter [2| presents the SLS system from the functional point of view. It deals
with the SLS system, whose goal is to manage the trade-off between service ac-
curacy and resource usage. The idea behind the proposed system, is to find a
criterion which allows the device to receive a continuous localization service,
without although having to query continuously the localization engine, hence
reducing the resources consumption due to the service. This criterion is driven
by two main logic: the first one is the location prediction performed by mod-
eling the user’s movements; the second one is the context and activity analysis
whereby the device understands whether a query to the localization engine is
actually required. In particular, chapter |2 introduces the system architecture, it
deals with the analytical study of the SLS and introduces the three main modules
which compose the system: the Activity Inference Module, the Learning Module
and the Prediction Module.

Since the main target of this thesis is the energy efficiency of the localization
on the mobile devices, chapter [3]is focused on the importance and the different
methodologies to measure the battery consumption. I present in this chapter the
state of the art in this area, and the two different methodologies adopted in this
thesis, presenting the pros and cons of each approach. At the end of the chapter
I further motivate the work performed for this thesis, by measuring the energy
required by a mobile device while performing different tasks (e.g., localization
by means of GPS, accelerometer sampling).

The next chapters analyze more in detail each single module of the SLS.
Specifically, chapter |4 focuses on the Activity Inference module. It presents the
state of the art on this research area and explains in detail the algorithm imple-
mented by the SLS, comparing it with the related works, and evaluating it.

Chapter[5|focuses on the Learning Module implemented by the SLS. It presents
the state of the art on human mobility modeling and explains in detail the algo-
rithm implemented by this module. It analyzes the regularity of human mobility
with respect to the locations visited and, in particular, it shows the existence
of some patterns according to the relevance of the identified locations. In this
chapter I explain the learning algorithm implemented by the SLS, which in the
first phase was a graph based algorithm, learning information about consecu-
tively visited locations. In a second phase, the algorithm included the timing
feature, and associated the user’s visits to relevant locations with their duration
and probability distribution during the day. This chapter concludes with some
results obtained by analyzing this single module.

Chapter [6] introduces the algorithm implemented by the Prediction module.
It presents the prediction based on the learned location-based and location and
time-based models. Specific results are shown at the end of the chapter, evalu-
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ating the single module.

Chapter |7| presents the complete implementation of the SLS and how the
three previously presented modules work together. The chapter presents also
a validation section where I show the performances of the SLS against a stan-
dard continuous localization service. The validation is performed in terms of
battery lifetime against location availability: I show the difference in lifetime for
the phone running the SLS and the one running the continuous localization ser-
vice, and compare it with the location information availability given by the two
services. Furthermore, I compare the SLS against a modified version of the sys-
tem, whose Inference Module uses the Google Activity Recognition APIs. These
two systems have been compared in terms of mobile phone lifetime, amount of
network traffic exchanged, accuracy of the inference. Moreover, I quantify the
impact of the prediction on the localization, and I calculate the accuracy on the
identification of the Pols, against the ground truth.

Finally, chapter [8|summarizes the work described in this thesis, it provides an
overview of the main findings and results, and it describes the future directions
derived from this work.



Chapter 2

System Overview

In this chapter I present the design of the Smart Localization System: and in
particular, the architecture of the SLS and its approach to the localization prob-
lem presented in the previous chapter (section [2.2). Each module composing
the SLS system will be presented separately, together with the logic which is
behind them (sections|2.2.1]and [2.2.2]). Each module will then be explained in
more details and evaluated in the consecutive chapters. At the end of this chap-
ter (section I present two datasets which have been used to evaluate the
SLS modules, and in particular a trajectories and a continuous location dataset.
The first one contains data basically collected by people moving among different
relevant locations. The second one instead, contains the location data continu-
ously collected by some users during their daily routine, hence it includes both
locations data collected while moving and while visiting relevant locations.

2.1 Introduction

To clarify the main points already mentioned in the first chapter, I briefly sum-
marize here the target working environment of the proposed localization service,
the problems that are addressed, the methodologies used and the improvements
provided.

Working environment. Our system is meant to reside beneath the application
layer (as depicted in figure which represents the system from a functional
point of view, and [2.2) which represents the system from a more technical point
of view), and aims to offer it an optimal localization service, which is in charge
of providing accurate information, as well as, of managing the mobile device
resources. The system is thought for a new generation mobile phone, with a
CPU clock rate on the order of GHz (i.e., 2 GHz or more, for the smartphones

15
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nowadays available on the market) and memory capacity on the order of GB
(i.e., 2GB or more). A set of embedded sensors are available on the platform,
such that it can exploit the data sensed by an accelerometer, a GPS receiver,
WiFi and GSM interfaces, etc. The target working environment for the system
is a broad scenario, which can be thought as the aggregation of almost every
human’s accessible places. The ubiquity of the service and the target platform are
the most crucial sources of challenges.

Addressed problems. The proposed solution address the issues of a continuous
sensing system, which could be expensive in terms of battery consumption and
CPU load, which needs to be responsive and accurate, and has critical security
issues.

Methodologies used and improvements provided. The solution I provide to
address these challenges is a combination of different technologies, which does
not heavily impact on the overall computational load of the phone and whose
portability is characterized by a large scope. The system uses well-known tech-
nologies nowadays adopted by already existing localization services, such as
GPS, WiFi and GSM, (or more specifically, the Localization Manager provided by
mobile Operating Systems: OS-Localization Manager in Figure to retrieve
location information. These technologies are combined with a human mobil-
ity model (HMM Manager in the figure), whose goal is to learn about the users
movements, and to allow the system to make predictions (by means of the Pre-
diction Manager). For each device, the model starts from scratch and is dynam-
ically modified with time. By collecting data, the model incrementally learns
about the user’s habits in everyday movements, and adapts itself to the carry-
ing user. This is done to avoid unnecessary frequent location measurements,
hence worthless battery consumption. The initial phase of incremental learning
may require a significant amount of time, depending on the user behavior. After
this initial phase the system will be able to exploit the learned information in
order to consume less energy. More improvements on the overall system per-
formance can be added by the usage of sensed data, performing inferences and
adjustments on the movements prediction: for example, the accelerometer read-
ings can be used to infer user’s activities; GPS can be used to identify relevant
locations.

More details about the system architecture (Figure [2.2]) will be explained in
the following sections, and in the rest of the thesis.
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Figure 2.1. SLS Functional Structure

2.2 System Overview: the SLS architecture and ap-
proach

The SLS approach is driven by the two criteria presented in the previous chapter:
Personalized Modelling and Optimal Location Reading. The system architecture
(figure[2.2) is introduced by Papandrea and Giordano|[2012]], and includes a set
of managers that collaboratively act to collect sensing and location information,
learn about user’s behavior and support localization with predictiorﬂ The SLS
exploits the human mobility to learn about personal habits and thus performs
prediction based on past user’s behavior. However, as the system performs all
the activities without the need of external data analysis systems, i.e. there is no
data exchange or external data query, it does not incur in privacy issues.

!The tuned data is transmitted from the Learning Manager to the HMM Manager at precise
intervals, not in real time as it is for the communications between the other managers
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Figure 2.2. SLS Architecture

Figure [2.1] gives a functional view of the SLS system. It relies on the tech-
nologies (HW and SW built-in functionalities) provided by the mobile phone,
represented in the figure by general Technology blocks:

* the OS Localization Manager which retrieves location information using
well-known technologies, such as GPS, WiFi and GSM (SmartPhone SW in
the figure).

* the HW technologies, such as the accelerometer (SmartPhone HW in the
figure).

The SLS approach is centered on a reasoning element, the Smart Localization
component, and supported by the following functional modules:

* the SLS Learning and Predicting Modules, which work together to imple-
ment the personalized modelling and movement predictions;

* the SLS Inference Module, which performs the optimized location reading;

The Smart Localization component (SLoc) plays a central role in the SLS ap-
proach, it is the “brain” of the system where all the decisions are taken in order
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to optimize the localization: whether the prediction is satisfactory or there is still
the need to learn about the user by collecting additional location information,
or if it is necessary to query the OS Localization Manager, hence to keep active
the sensing devices. Figure shows the two main states which differentiate
the behavior of the SLS: the inference module triggers the events which char-
acterize the transition from one state to the other. The localization procedure
is performed only when the system is in the “user in movement” state. The high
level flowchart of the SLoc component reasoning, while updating the location
information, is shown in Figure [2.4

The smartness of SLS allows the resource (especially battery) consumption
management. As we illustrated in|[Papandrea and Giordano| [2012], when a real
location based application [Miluzzo et al., 2011]] uses the OS Localization Man-
ager with continuous location tracking (no duty cycling), the battery lifetime
of the phone is quite short. Even if in the future we will have the support of
longer lifetime batteries, the tradeoff between battery consumption and optimal
localization will remain an issue. To achieve optimal localization while reducing
the battery consumption, the SLS approach fosters less frequent location read-
ings complemented by less expensive localization techniques (i.e., movement
prediction).
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2.2.1 Learning and Prediction Modules

In figure we show how the Learning and the Prediction Modules work to-
gether within the SLS: the components involved are the Prediction Manager, the
Mobility Model Manager and the Learning Manager. Each manager supervises
the realization of a specific task, and all together contribute to accomplish the
personalized location prediction of the user. The Learning Manager (LMng) stores
locally the localization data, performs some mining over it and calculates the pa-
rameters which will personalize the prediction model. LMng periodically applies
a clustering algorithrrﬂ over the data and retrieves the set of points of interest
(as explained in the next chapters) and related probabilities which are needed by
the Mobility Modelling Manager (MMMng). While running, by collecting data,
the LMng incrementally learns about the user’s habits and contexts, and allows
the MMMng to adapt the model to the learned information.

The MMMng applies the parameters computed by the LMng in the predic-

2In the final version of the SLS the Pols are retrieved without the need of a clustering algo-
rithms. More details can be found in chapter
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Figure 2.4. SLS Flowchart: when the user is moving, the SLS tries to predict
the location. If this fails, the SLS uses the standard OS tracking techniques.
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tion mobility model; finally, the Prediction Manager (PMng) uses the model for
predicting the next user movements (see chapter[6) and for calculating the pre-
diction error with respect to the real locations, when the user is approaching
it.

Before starting any localization procedure, the SLoc component interrogates
the Prediction Module in order to check if there is any available prediction about
the next movement. If available and reliable (more details about the prediction
reliability are explained in chapter |7, it just takes the prediction as current
position. If no prediction is available, the SLoc triggers the Operating System
Localization manager (OSLMng).

For each device, the SLS starts the Mobility Model from scratch and dynam-
ically modifies its parameters with time to personalize the predictions. Clearly,
during the Start Up phase (from the first run of the system, until the model has
been generated), the localization is performed only using the node’s tracking
technologies (OSLMng), as the SLS still need to personalize the mobility model
to the carrying user.

When the location prediction error value goes below a given threshold, the
bootstrap phase of the prediction model is considered completed. At this point,
the localization procedure starts using the Prediction Module for the localization,
and decreases the triggering frequency of the OSLMng. This personalization of
the model further allows (in addition to "the user is moving?" check) to avoid
unnecessary frequent location measurements, as several habits and contexts are
known, hence it prevents worthless battery usage. In terms of battery consump-
tion, initially the system does not gain anything with respect to other techniques
in literature. The real advantage is visible at the end of the bootstrap phase,
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after which the node starts decreasing the frequency of direct location tracking,
alternating them with predictions.

2.2.2 Inference Module

The Inference Module, as illustrated in Figure is composed by the Sensor
Manager which interacts directly with some mobile phone HW components.
The Sensor Manager (Smng), based on some mining on the data collected
by the sensors, infers the activity of the user and sends back this information to
the SLoc component which decides its actions based on the activity of the user:

1. if the user is static, the SLoc component returns the last tracked location
(the user did not move since the last location reading);

2. if the user is moving, the SLoc component changes the tracking frequency
(interval of time between consecutive location readings) according to the
actual activity of the user.

The purpose of this inference is to reduce the resources usage, by adding
flexibility in the localization procedure. While the user is static, there is no need
to perform location readings, because the location does not change until the
next movement. While the user is moving, according to the kind of movement
the localization procedure may be different, in order to retrieve location data
with similar accuracy: in particular, if the user is moving slowly (i.e., walking),
a less frequent location reading allows the system to track all the movements
of the user, while if the user is moving faster (i.e., travelling on a vehicle) it is
necessary to perform more frequent location reading.
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Differently from traditional approaches in literature, the SLS performs infer-
ences on the user’s activity without the need of a back-end server for the data
elaboration. The activity classification algorithm is lightweight to run efficiently
on the client side.

To identify the user status, the Sensor Manager analyzes the three axis ac-
celerometer data, calculates a set of features over it and applies a classification
algorithm to the features. I selected a set of features which allow the system to
distinguish between different categories of movement:

* not moving (e.g., still or standing),

* moving by foot (e.g., walking, running),

* slow vehicle (i.e., biking) and

* moving with a vehicle (e.g., motorbike, car, bus, train).

The classification algorithm has been chosen in order to optimize the trade-off
between the simplicity of the algorithm itself (which has to run entirely on the
mobile device) and the accuracy of the activity classification: our goal is to ex-
ploit a lightweight classification algorithm which performs a reliable inference,
guaranteeing a limited impact on the mobile device resources usage (more de-
tails in chapter [4)).

The presence of the Inference Module inside the SLS is beneficial because it
allows a reduced energy consumption: inferring the real activity of the users,
the Inference module makes the system self-adaptive and hence able to avoid
unnecessary location readings.

2.3  Dataset

To validate my work I performed the preliminary studies (before the realiza-
tion of the complete system) over two location datasets. Unfortunately, for most
of the publicly available location datasets the data corresponds to trajectories
[Bracciale et al., [2014]], or to WiFi or GSM continuously sampled data [[CRAW-
DAD data set Microsoft/Vanlan (v. 2007-09-14),|2007]], or to data collected in a
small context (e.g., a mall, a university campus) [Rhee et al., 2009; |CRAWDAD
data set cu/cu_wart (v. 2011-10-24),2011] or for a small time (i.e., a conference
scenario). To show the performances of our system and to evaluate our solutions
we need a continuous sampled location dataset collected over a long sampling
duration. Similarly, we need a level of precision that is higher than the one we



24 2.3 Dataset

can obtain with traditional WiFi or GSM technologies. The datasets we used
are: one mainly composed of trajectories (selecting a subset of the data which
presents only few discontinuities), and the second one which consists of contin-
uously sampled location data. In the following by using the term trajectory we
mean a sub-sequence of a continuously sampled location data: trajectories are
discontinuous records of mobility data and consequently they do not cover the
whole sampling period. These datasets have different characteristics in terms
of spatial and temporal distribution of the visited places. However for both of
them we only consider the Pols in terms of geographical places without seman-
tic meaning. We make this decision for two main reasons: firstly to preserve
the privacy of the users (users may have issues revealing why did they visit a
certain location). A second reason is the fact that a Pol is not an exact location,
its dimension (or geographical scope) depends on how the user visits the place:
hence a Pol can be a shopping area where the user roams around (which may
include shops, restaurants, bars,... ), or an office where the user spends most of
her/his time sitting in the same location. By showing the validity of our results
in both cases, we demonstrate its independence of the dataset characteristics.

2.3.1 Trajectories Dataset

As trajectories dataset I used the one collected by the GeoLife project and re-
leased by Microsoft Research Asia (Zheng et al. [[2009, 2008, 2010]). The
dataset consists of a collection of GPS coordinates related to the movements
of 178 people in a period of over 4 years (from April 2007 to October 2011),
and it is widely distributed across over 30 cities of China and even in some
cities located in the USA and Europe. People participating to the experiment
are students, government staff and employees from Microsoft and several other
companies equipped with GPS loggers or GPS-phones. Overall the dataset pro-
vides 17.621 trajectories E] with a total distance of 1,251,654 kilometers and
a total duration of 48,203 hours. With respect to other datasets with mobility
data collected in a limited area or in a particular context, Geolife dataset offers
a high heterogeneity. As a matter of fact, it contains a broad range of users’
outdoor movements, including both everyday routines imposed by working ac-
tivities and free time activities. For my study, which is centered on the locations
visited by the users during their daily lives, the most interesting characteristic of
this dataset is its temporal and spatial fine granularity, as 91% of the GPS tra-

3A GPS trajectory of the dataset corresponds to a set of consecutive location samples (times-
tamp, latitude, longitude, altitude).
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jectory are recorded with a dense representation, every 1 ~ 5 seconds or every
5 ~ 10 meters per location sample. However, the dataset has been built for the
transportation prediction task, and thus does not directly characterize the Points
of Interes Furthermore, if on the one hand the dataset is very rich, on the
other side it exhibits an high level of fragmentation, especially with regard to
features as the effective duration of the trajectories, the data collection period,
the number of trajectories per user, the duration of the gaps between discon-
tinuous trajectories. Indicatively, more than half of the trajectories spans less
than one hour, while about 60% of users collected data for less than a month.
For those reasons, GeoLife dataset requires large pre-processing for reducing the
trajectory points and extracting the visited points. This modification affects also
the suitable number of users and the daily traces, per user, from which we can
extract the Pols.

2.3.2 Continuous Dataset

Although GeolLife represents the most reliable dataset publicly available for our
purpose, even after preprocessing, its nature still remains trajectory centered,
and it differs from a continuously sampled dataset. As opposite to the Microsoft
one, which is a large dataset collected in a metropolitan area, I supervised a
local collection campaign to retrieve a dataset of continuously sampled GPS co-
ordinates, during users’ daily routine, in a small area environment. A real ex-
periment has been conducted to collect traces in the area of Ticino and North
Italy, over a time period of 20 days, from a group of 12 users (Papandrea and
Giordano| [2014]). The data collection system have been installed on the pri-
mary mobile phone of the users, to ensure they continuously carry it with them.
Different devices running several versions of the Android OS (table have
been used to collect data.

The mobile phone sampling service performs a location reading every 60 sec-
onds, and works both outdoor and indoor. The location information is provided
by the Android OS Localization Manager which queries both GPS and Network
(WiFi or GSM) Providers. The service selects the best location information avail-
able at each sampling minute, and stores locally the retrieved data. The service
runs continuously, collecting data 24 hours per day in the best case, for the
whole duration of the experiment. For privacy reasons, we allowed the users to
manually pause the service. Thus, the collected data is not always a 24 hours

“Point of Interest (Pol) is an interesting location for a user, where she/he spends a relevant
amount of time. More details will we presented in section
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Device Model Adroid Version
Samsung Nexus S 4.0.4
HTC Nexus One 2.3.6
HTC Desire Z 2.3.3
Samsung Galaxy I S 2.34
Garmin-Asus nuvifone MP 2.1.1
Samsung GT 19100 2.3.3
LG-P920 2.3.5
HTC Hero 2.1.1
LG-P990 2.3.4
HTC Desire 2.3.7
HTC Sensation 4.0.3
Motorola Milestone BP6X 2.1.1

Table 2.1. Devices Specifications

continuous data, but may present some gaps. Also from this dataset I select a
subset of significant users which have collected a significant amount of data.
More specifically, I selected the users which collected at least 14 relevant days
of data (two weeks), where a relevant day includes at least 6 hours of location
sampling. The resulting number of relevant users considered for my study is 6.

2.4  Conclusion

In this chapter I presented the solution to the localization problem, proposed
in this thesis. I presented each module composing the SLS from the functional
point of view. The Inference module is in charge of exploiting the potentialities
of the accelerometer to enhance the localization procedure, and in particular it
helps the SLS to adapt its behavior according to the actual activity of the carrying
user. The Learning module and the Prediction module exploit the computational
capabilities of the mobile device, and learn information about the mobility habits
of the user, in order to be able to predict the next movements.

All these modules will be better explained in the next chapters: they will be
firstly evaluated separately and independently from the system. At the end of
the thesis the modules will be presented and evaluated as part of the whole SLS
system.



Chapter 3

Analysis of Battery Consumption

3.1 Introduction

In this chapter I present two different methodologies to evaluate the battery
consumption on Android mobile devices. The main purpose of this thesis devel-
opment is to study and to realize a smart methodology for a continuous local-
ization service for mobile devices. Therefore, to be able to evaluate the system
and to show its validity in terms of smart usage of the battery, it is essential to
firstly analyze the measurement possibilities.

Many existing works related to the smart usage of the mobile device’s re-
sources/hardware proposed different solutions for the battery measurement. In
Wang et al.| [2009], the authors measured the sensor power consumption of
their employed mobile devices (Nokia N95) through the Nokia Energy Profiler, a
stand-alone application that allows the monitoring of the running applications’
energy usage in real time. Lin et al.| [2010]] experimentally measured the energy
usage for multiple location modalities on an AT&T Tilt (HTC TyTN II) mobile
phone, removing the battery and supplying the power by means of a Monsoon
Solutions Power Monitor. This approach is very similar to the one implemented
in this thesis, and presented below in section Also Paek et al. [[2010]] used
the Power Monitor device from Monsoon Solutions Inc. for their power mea-
surements and cross-verified them with the Nokia Energy Profiler v1.2 software
tool (they performed their studies with the Nokia N95 smartphone). In [Flipsen
et al. [2012] the authors studied the power breakdown of five different smart-
phones, measuring the power consumption by means of an Agilent N6705A DC
Power Analyser, and emulating the battery with an Agilent Power Analyser and
attaching probes to the battery input pins present on the smartphone. This last
approach is very similar to our implemented one, however for many mobile de-
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vices this methodology is not applicable (for example, for the HTC Google Nexus
One phone), where the device implements a general check of the hardware com-
ponents at the bootstrap: the ah-hoc battery necessary to connect the mobile
phone to the power supply and to the multimeter is not recognized as a compat-
ible component, and the device does not switch on. An interesting approach has
been described by [Ferrari et al.| [2014]] which presented POEM (Portable Open
Source Energy Monitor). This system allows the measurement of the energy
consumption of every single Android application component down to the con-
trol flow level. Their approach is based on the Arduino Leonardo board, which
is basically used to read the current flowing into the mobile device.

All these approaches described in the state of the art are very interesting, and
allows a fine grained measurement of the mobile device energy consumption.
However, they have a common drawback: they are static systems which do not
allow the energy measurement while the mobile device is carried by the user.

I present in this chapter two measurement procedures. These are applied in
the thesis for the battery consumption estimation for both static measurements
and evaluation of mobile scenarios. In section[3.2/T show the difference between
two localization procedures by means of the Android API and their different
impact on the battery resource. In section [3.3]I explain the two battery mea-
surements methodologies I applied while developing and evaluating this thesis,
explaining the pros and cons of both approaches. Finally in section [3.4]I show
the difference in battery consumption for different tasks on the mobile device,
and especially for the tasks performed by the SLS: this evaluation motivates the
SLS reasoning explained in the following chapters of the thesis.

3.2 Differentiation of localization procedures

The localization is an expensive task for a mobile device, in terms of battery
consumption. The amount of battery necessary to localize a user strictly depends
on two factors: on the methodology used to perform the localization and on the
user’s mobility. The study reported on this thesis has been performed by using
Android mobile platforms.

Android offers mainly two data sources to retrieve location information:

* the GPS provider, which requires the line-of-sight to GPS satellites and
retrieves in most of the cases very accurate location data;

* the NETWORK provider, which retrieves a more coarse location informa-
tion exploiting the WiFi and GSM interfaces.
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A third provider has been introduced into the 8th Android API level in 2010:
the PASSIVE provider. This is different for the others: it is a special location
provider which can be used to passively receive location updates from other
applications querying directly the previous listed providers. According to its
nature, the passive provider is not reliable. In fact if there are no other appli-
cations or services performing localization on the device, it will never get any
location information. For this reason, in my work I always used an active local-
ization approach, directly asking for location updates to the GPS and NETWORK
providers.

The Android Localization manager gives the possibility to specify directly the
provider we are interested in, while performing localization. Or alternatively, if
many providers are available, it allows us to specify a set of criteria, and it is
then the Localization Manager which select the one which matches better the
specified criteria, according to the available ones. Specifying a set of criteria
makes the localization procedure strictly dependent on the user’s mobility. For
example, consider we have to perform a regular tracking of a user, reading his
location every 60 seconds for an interval of time of one hour, then the total
number of readings expected is 60 (one per minute). If we specify a set of criteria
to select a suitable localization provider, which includes that the accuracy of the
localization has to be set to fimﬂ we can expect that the provider selected for
this task is the GPS. However the selection of the provider strictly depends on the
current context of the mobile device: if the device is indoor, the finest possible
localization is reached by the NETWORK provider, while if it is outdoor obviously
the finest localization may be retrieved by the GPS provider. This means that,
within 60 location readings, the amount of them performed by the GPS, and
the ones performed by the NETWORK provider depend on the movement of the
user. However, it is guaranteed the number of location updates. If, instead, we
specify the name of the provider, for instance GPS, we will not retrieve updates
in case the user visits indoor locations, or when the GPS is not reachable.

During the experiments performed to evaluate the battery consumption given
by the localization procedure, I always specifies the location required criteria. In
this way I am always sure about the number of location readings performed per
interval of time.

The number of expected location readings is important, as shown in the next
chapters, for the application of a Density Based algorithms on the location data.
In order to apply this algorithm to the location data and to be able to identify
clusters of locations according to their geographical density, it is very important

! Android terminology
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the data distribution to be quite uniform in time.
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Figure 3.1. Localization mechanism

In this section I evaluate two different mechanisms in performing the local-
ization, by means of the Android providers. The Android Operating System, or
more specifically, the Android Localization Manager (middleware between the
real android localization interfaces and the Android third-party applications),
gives the possibility to register for location updates, specifying the querying pe-
riod. In this way the operating system provides the requesting application the
updated location information, at approximately the specified frequency. How-
ever, this procedure is quite expensive in terms of battery consumption, because
the localization procedure is “always-on”: the specified frequency does not im-
pact the localization itself, but affects only the current location notification fre-
quency, which is sent to the requesting application.

To slightly reduce the battery consumption, it is possible to implement an
alternative mechanism, switching ON and OFF the localization procedure, as re-
quired. Figure [3.1] shows the two different localization mechanism: the always-
on on the right, and the on-off localization on the left. This second procedure,
differently from the previous one, sends requests for location updates regularly
at a specified period (T in the figure), and stops the localization as soon as it
received the first location update. As visible from the figure, this second mecha-
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nism has a not predictable response time, in fact, it strictly depends on the user’s
context. If the user is visiting an environment in which the providers are not
easily reachable, the localization updates may need a long delay before being
available, and the battery consumption may be similar or even higher than the
one of the localization always-on procedure.

3.3 Battery consumption measurement

The Android operating system allows the monitoring of the device’s battery level.
In particular, we can evaluate different tasks by measuring the amount of bat-
tery discharged while running them during a fixed interval of time. However
this battery measurement procedure does not give us an accurate evaluation of
the energy used by each specific task, but it gives an idea of the difference in
the amount of required battery. To give an example, I measured the lifetime of
an Android phone, and the corresponding decreasing battery levels, while it was
performing different tasks. Figure shows the battery lifetime of a Samsung
Galaxy Nexus device running the Android operating system, version 4.1.1. The
device is running a continuously localization service, which requests updates in
parallel to both GPS and NETWORK providers. The device is set to its factory
state, and the only third-party service running is the localization-battery mea-
surement application. There is no SIM card (then no connection to any GSM
tower), there is no data traffic exchanged (WiFi enabled but not connected), the
Bluetooth interface is disabled (since it is not necessary for our experiments)
and the device is always static and in the same position for all the measurement
sessions. The device is positioned indoor, but with GPS signal reachable (near
by a window).

The instances shown in the figure represent the device running both Localiza-
tion On-Off and Localization Always-On procedures (respectively GPS ON-OFF
and GPS ON in the legend). For the ON-OFF instances, I applied different duty-
cycles, which correspond to the periods between consecutive location update
requests. To be able to properly evaluate the device lifetime, I show in the fig-
ure also the baseline instance (device not running any localization procedure)
and continuous instance (device running the localization requesting continuous
updates).

As visible from the figure, we can firstly notice that the residual battery de-
creases monotonically, but the slope is not constant. This is caused by the avail-
ability of the GPS signal and by the additional OS activities and running native
services which also have a not negligible impact on the battery life. From this
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measurements we cannot accurately evaluate the energy necessary to perform
each localization methodology. We can just infer that the localization procedure
which implies the switching ON the Localization providers updates periodically,
and switching them OFF immediately after receiving the data, is slightly less
expensive than asking for periodic location updates keeping the localization in-
terfaces always ON. We can also notice the great difference in battery lifetime
duration, when we continuously ask for location updates (with both GPS and
NETWORK providers) and contrarily when we measure the baseline battery us-
age. The baseline, as expected, has the longest battery lifetime since the device
is not performing any particular task, and the only contribution to the battery
usage which is measured is due to the operating system. The same measure-
ments have been performed with other devices in the same conditions and the
obtained results are similar. I decided to report in this section only one example
because it was not possible to average among them: in fact, I used different
platforms running different versions of the Android OS.

As shown above, it is clear that by means of the Android API battery level
monitoring we cannot perform an accurate study of the energy used by the mo-
bile device, while performing a certain tasks. Hence I decided to perform the
energy measurements on the mobile devices by means of an external Multime-
ter.

For the purposes of the energy measurement, I created a circuit as illustrated
in figure and figure The circuits provides power to the Android device
by means of a Power Supply DC (HP E3630A Triple Output DC Power Supply).
In series with the Power Supply and the Smartphone I inserted a Multimeter
(Agilent 34411A Digital Multimeter) to be able to measure the current flowing
in the circuit, hence the current used by the phone.

To be able to insert an Android Smartphone in this circuit I used an ad-
hoc battery-box which plugs the +/- connections of the Power Supply with the
corresponding pin-out of the smartphone (the picture of the ad-hoc battery is
shown in figure [3.4).

The device used to perform the battery measurements by means of the circuit
shown above is the Samsung Galaxy Nexus, running the Android OS version
4.2.1. The voltage provided by the Power Supply is set to 3.7Volt, according to
the device battery specification.

The multimeter inserted in the circuit is able to perform measurements at dif-
ferent sampling intervals. According to its technical specifications, the maximum
sampling frequency we can set for the measurements is 50KHz. Unfortunately,
at this frequency we cannot sample more than 20 seconds of data, because of
the device inner buffer limited dimension.
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Figure 3.2. Circuit for energy measurements

A first study performed with this circuit, aimed to the measurement of the
difference in the amount of information retrieved by setting the multimeter at
different sampling frequencies. I measured the energy used by the mobile device
while performing a continuous localization task (without duty-cycle) querying
only the GPS provider, in an environment where the GPS signal is reachable,
keeping the phone static to a fixed position. The phone is set to its factory
status, no Google account is registered, all the network interfaces are disabled
(WiFi, Bluetooth), and the device is not provided with any SIM card: this way I
measure mainly the energy used by the phone to perform the localization task,
in addition to the baseline energy required by the operating system.

To retrieve the energy used by the localization service implemented on the
mobile device, I firstly measured the current flowing in the circuit for a duration
of 20 seconds [| for different sampling frequencies. I calculated the mean value
of the measured current over the sampling interval:

mean [A]

To calculate the Power I multiply the voltage provided by the Power Supply to
the mean current value:

A

P[W] =Voltage[V]*A Al

mean [

2This duration correspond to the longest possible measurement duration with the largest
sampling frequency
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Figure 3.3. Circuit for energy measurements

This value correspond to the Power drain of the battery performing a specific
task. To finally calculate the Energy consumed over a certain amount of time,
I multiply the Power to the sampling interval duration in hours (in this case
20sec = 0.0056hour).

E[Wh] = P[W]%0.0056[h]

Table contains the Power drain (the mean and standard deviation) re-
lated to the current measured with different sampling frequency.

Sampling frequency || P[mWatt] mean | P[mWatt] standard deviation

______ SOKHz | 2382 | %6 .
______ SKHz 23> | 3l
500 Hz 234.7 2.1

Table 3.1. Power measurement at different sampling frequencies

As visible form the table, the calculated mean power drain is very slightly
affected by the different sampling frequencies of the multimeter. Therefore I
decided to continue with the measurement of the current flowing to the mobile
device, to calculate the Energy consumption, by setting a sampling frequency of
the multimeter equal to 500Hz. This setting will allow longer measurements.



35 3.4 Comparison of the battery consumption for different tasks

Figure 3.4. Ad-hoc battery for energy measurements

3.4 Comparison of the battery consumption for different
tasks

In this section I show the difference in the amount of energy necessary to per-
form different tasks by means of a mobile device. In particular, I measured the
energy necessary to run a localization service, to get data from the embedded
acceleration sample, and finally I compared this measurements with the baseline
energy required by the operating system.

Table 3.2/ shows the mean and standard deviation of the power drain in mil-
liwatt (mWatt) measured by means of the Android device described before.

These measurements strictly depend on the used device, on the hardware of
the embedded sensors and on the Android OS version, hence it may be quite dif-
ferent for other platforms. However, the ratio between the different measures is
quite interesting, and it could be considered valid for many devices. As expected,
the difference in the amount of energy necessary by the phone while being idle
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|| P[mWatt] mean | P[mWatt] standard deviation

_______ GPS ... 247 | .21 .
_Accelerometer(Fastest) | 2100 |} 56
Baseline (screen OFF) 17.6 1.2

Table 3.2. Power drain associated to different tasks

(baseline energy, when the device has the screen off), and the amount necessary
for the other two tasks is quite high. However, the amount of energy necessary
for the GPS localization (GPS receiver signals processing) and the Accelerometer
sampling (at the sampling period of 100Hz) is quite similar. However, the pur-
pose of this study is to provide a motivation for the SLS strategy. As explained
in the next chapters of the thesis, one of the main strategies of the SLS in order
to reduce the energy consumption given by the continuous localization system,
is to use the accelerometer for an activity inference study. The inference will
be performed, in the worst case, sampling the acceleration data for an over-
all duration of 5 seconds, every minute. It means, with a Power consumption of
210mWatt for 5seconds of sampling, the amount of energy used corresponds to
0.294mWh. For the GPS instead, the SLS performs, in the worst case, a location
update every 60 seconds. In case of only GPS provider available, if the location
updates arrives in 5 seconds, with a Power consumption of 234.7mWatt, the
amount of energy used corresponds to 0.326mW h, which is slightly higher than
the amount used for the accelerometer sampling. However, in most of the cases,
the GPS provider need a longer time to get an update, which strictly depends
on the environmental context. To give an idea, in the worst case, if the GPS
needs 60 seconds to retrieve the updated data (it waits for the complete update
period), it requires an amount of energy corresponding to 3.911mWh, which
corresponds to 13 times the energy spent for the accelerometer sampling.

The presented difference in energy consumption reinforce the main open
problem, which motivates this thesis. Given the high cost in terms of energy
consumption associated to the localization, it is clearly necessary the application
of a smart methodology to be able to provide a continuous localization service.
With this study I quantified the amount of energy necessary for the Accelerome-
ter sensor sampling and the GPS reading, quantifying the energy saved in choos-
ing a study on the accelerometer instead of a direct GPS reading. The precise
energy consumption on the GPS reading in a mobile scenario, however, depends
on the visited contexts. For this reason I mentioned the best/worst cases in the
energy evaluation.
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3.5 Conclusions

In this chapter I presented two different methodologies to measure the battery
consumption of a mobile device, to be able to evaluate specific tasks. In particu-
lar, I presented the possibility offered by the Android APIs to monitor the battery
discharge. This methodology is quite portable, because simply logging the time-
stamped battery level changes, it is possible to have a qualitative evaluation of
the dependency between the battery lifetime and the tasks running on the de-
vice. The second methodology presented consists in a quantitative measurement
of the energy used by the device. Applying this methodology, it is important to
set the device such that the main impact on the battery usage is given by the tar-
get task: in fact, this methodology allows the measurement of the overall energy
used by the mobile device.

The main difference between the two methodologies consists in the obtained
results: the first one provides a more qualitative evaluation, while the second
one gives a quantitative measurement of the energy consumption. However,
the second methodology implies the usage of an ad-hoc measurement circuit,
which therefore does not allow the evaluation in scenarios where the device
is moving (carried by a moving user). Therefore, during the development of
my thesis, I applied both the presented methodologies. The second one (ad-
hoc measurement circuit) allowed me to set important parameters for the SLS
systems, and to strengthen this work’s motivation. The first methodology has
been used in the evaluation of the final experiment, when the complete SLS
system was validated against a continuous localization system, in order compare
the battery lifetime, while moving.
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Chapter 4

Activity Inference

To further enhance the mobility model implemented by the SLS and described in
details in chapter|6] I exploit the sensing capabilities of nowadays smart-phones.
My main goal here is to optimize the resources used by the localization pro-
cedure, by interpreting the accelerometer data to dynamically trigger location
readings, according to the users activities. In this chapter I present the Inference
Module, how it works together with the other modules of the SLS and which is
its task inside the system. In section [4.2]1 give an overview of the state of the
art on the field of activity inference, and in particular, I present in section [4.2.1]
the major related works on context recognition, where the sensor data is used to
infer the mobile user’s context with the goal of enhancing a particular service. In
section [4.2.2]I present the related works on activity inference, and in particular
I concentrate on the used methodology and algorithms. In section 4.3|1 present
the two main experiments I performed to collect data for the inference study.
Section [4.4 focus on the raw data collection on the mobile platform, and on the
study about the sensor employed by the Inference module and the sampling rate.
In section [4.5]I explain the decision about the data inference window and subse-
quently, in section [4.6]1 give more details about the classification algorithm: the
activities recognized, the features extracted from the sensors data and the clas-
sification algorithm. Finally, section reports the experiments performed to
evaluate the algorithm implemented by the Inference module, and the measured
performances.

4.1 Introduction

The main task of the Inference Module is to perform activity inference and mo-
bility tracking. Differently from many other existing solutions, the presented

39



40 4.2 State of the Art

algorithm runs locally on the mobile device, thus saving bandwidth and energy
cost for the data transmission, and it is able to recognize various types of activ-
ities with high precision. In this chapter I will present the algorithm used and
its technical precision. Furthermore, at the end of this thesis, in chapter [7]1 will
evaluate the Inference Module in terms of energy saving when inserting it within
the SLS.

4.2  State of the Art

Sensors have been used in quite recent works (Reddy et al.|[2010]; Miluzzo et al.
[[2008]; [Ofstad et al.| [2008]]; Kim et al.| [2010]; Bolliger et al.| [2009]; Bamis
and Savvides| [2010]) to infer the context a user carrying the phone belongs to.
I will present in this section the State of the Art in the research area of activity
inference. The related works are separated in two different sections: in the
first one (section I will present some main existing works on the usage of
sensors as mean to infer the user’s context, with the purpose of enhancing the
localization or other mobile services. In the second section I focus more
on the activity inference methodologies, the sensors used, the algorithms and
features, and the energy constraints.

4.2.1 Context Recognition

Lot of work has been recently done to retrieve information about the phone’s
context and user’s activity, by analysing data retrieved with sensors embedded
into the mobile device, with the purpose of enhancing other services (such as,
localization, daily life monitoring, health care, etc.). In particular, in my work
I am interested in the usage of the activity inference performed by means of
mobile phones, providing context-awareness in localization services and/or ap-
plications.

Ofstad et al. [[2008]] presented a system called AAMPL, whose goal is to
enhance the mobile phone’s context recognition, by adding the analysis of ac-
celerometer signatures to location information. They argue that the physical
location by itself may not be sufficient to define the user’s context, hence they
use the accelerometer data to classify the business category (e.g., restaurant,
fast food, retail store) the user belongs to. The data is collected by a three axis
accelerometer embedded into the phone and placed on the right pant’s pocket
of the user. The classification is done in two separate stages: the first one, per-
formed on the client side, classifies the sitting or standing activity of the user by
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exploiting a Bayesian classifier; the second stage, performed on the server side,
uses a set of three features (percentage of points that are in the standing state,
average variance over all three axes for points in the standing state and amount
of time in seconds) collected in the first stage, to perform the business category
classification, by using a K-Nearest Neighbors classifier.

Miluzzo et al.| [2008]] presented an application called CenceMe, which uses
sensor-enabled mobile phones to combine the inference of the presence of indi-
viduals with sharing of this information through social networking applications.
The personal sensing presence is derived from a two-levels classifier, which runs
both on the client and on the server side. In this case the client side is respon-
sible of the classification of some primitive features (e.g., sound classification,
activity inference, Bluetooth MAC addresses in the phone’s vicinity, GPS read-
ing and random pictures), while the back-end classification returns facts (e.g.,
conversation classifier, social context, mobility model detector, location classi-
fier). What is relevant to my work, is the classification of the activity, resulting
in a Primitive feature. They analyzed the three axis accelerometer data, and in
particular a set of three features evaluated from the raw data (mean, standard
deviation and the number of peaks per unit of time) to classify the user’s activ-
ity (sitting, standing, walking, running). They used a supervised classification
algorithm: after the training phase, they feed the training set to a J48 Decision
Tree algorithms. This algorithm has been demonstrated to be lightweight and
efficient, being able to complete the classification process in less than 1 second.

A transportation mode classifier is also presented by Reddy et al.| [[2010].
The classification system works outdoor and uses accelerometer data in con-
junction with GPS coordinates to identify whether the user is stationary, walk-
ing, running, biking, or in motorized transportation. GPS data provides speed
information, which is then placed in the corresponding range of values, associ-
ated to a transportation mode. Accelerometer data instead, is used when the
activity causes a change in motion: the value of the variance is used to classify
the activity. Also in this case, a time window of 1 second is used for the classifi-
cation process. The features used are, in terms of the three axis accelerometer,
the magnitude of the force vector, and the mean, variance, energy, and Discrete
Fourier Transform energy coefficients, based on this magnitude. The classifi-
cation system consists in two stages: a decision tree followed by a first-order
discrete Hidden Markov Model, and achieves an accuracy level of 93.6%.

Kim et al. [2010] presented in SensLoc a simple movement detection mecha-
nism, where the accelerometer is used in a smart localization service, to find the
opportunities to save energy when the device is stationary. They consider the ac-
celeration magnitude over the three axis to tolerate random orientations of the
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device. When the variance of the magnitude is above a certain threshold, they
consider the opportunity to start the localization mechanism. This service also
uses GPS for path tracking and WiFi for place detection. With this smart system
they reached to consume 13% of the energy than algorithms that periodically
collect coordinates, correctly detecting 94% of the place visits and tracking 95%
of the total travel distance.

Song et al.| [[2013]] proposed a solution for improving indoor localization by
employing sensors embedded into mobile devices. More specifically, they de-
velop a floor localization system for minimizing the delays in emergency call
responses. They used accelerometer, gyroscope and magnetometer to calculate
the vertical displacement of people moving among different floors inside build-
ings, by means of elevator, stairs and escalator.

Table shows explicitly the differences between the main approaches pre-
sented above, in terms of utilized sensor data, activities recognized, algorithms
employed and extracted features; additionally I present a quantitative compara-
tion of the related works in terms of measured recall.

In my work I will also exploit the sensors embedded into mobile devices to
retrieve context information, with the purpose of reducing resources consump-
tion due to localization procedures. Differently form many existing solutions,
the inference task will be performed entirely on the mobile by the SLS, prevent-
ing any privacy issues with the transmission of the user activity information to
other nodes. The evaluation of the proposed solution is then performed measur-
ing not only the accuracy of the algorithm, but more emphasis will be given to
the actual energy saved by the SLS when including the Inference Module within
the system.

4.2.2  Activity Inference

In this section I give an overview of the state of the art in Activity Inference, sum-
marizing the sensors employed, the algorithms used, the learning techniques,
the activities recognised, and the constraints with the energy consumption is-
sues. At the end of this section I will present the open challenges which I will
face with my work.

Activity inference, also known as transportation-mode recognition or activ-
ity recognition, has recently been a very active research area. This research
direction encountered the growing capabilities of recent years mobile devices,
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Sensor Data Activities Algorithms Features Precision
Ofstad 3-axis ac- sitting and Bayesian classifier num point (time), 98.9%
et al.| | celerometer standing (client) and K- standing variance,
[2008] (right pants’ (client), busi- nearest neighbors % standing
pocket) ness category classifier (server)
(server)
Miluzzo | | 3-axis ac- sitting, stand- J48 Decision Tree mean, standard 79%  with
et al.| | celerometer ing, walking, Algorithm (client) deviation, number 1 second
[2008] running of picks per unit of inference
time window
Reddy e s st Bacision Trad GBS oved value 65 70 with
et al.| | celerometer walking, run- + First-Order and mean, stan- 1 second in-
[2010] and GPS ning, biking, Discrete Hidden dard  deviation, ference win-
motorized Markiv Model energy, Discrete dow
transportation Fourier Transform,
energy coefficients
of the acceleration
magnitude
Kimetall | 3-axis ac- static and in threshold compa- variance of the ac- 90% with a
[2010] celerometer movement ration celeration magni- delay of 120
tude sec
e e e sl stationamy, BiserateHidden Differan Ty Ty
et al.| | celerometer walk, bus, Markov Model + mains: statistical
[2013]] train, metro, Instance based (10 features),
tram, car classifier (Adap- time (4 features),
tive Boosting) frequency (11
features), peak
(5 features) and
segment (14
features)

Table 4.1. 2: Energy-Efficient Location-Based Solutions comparison

characterized by impressive computing, networking and sensing powers. As a
consequence, various available mobile markets and many researchers started
providing and developing context-aware applications and services for mobility
tracking and optimization, patient and general health monitoring (Puiatti et al.
[2011]]), smart home applications (Robles and Kim| [[2010]]), etc. The main core
of all these applications consists of an activity inference algorithm, where raw
sensor data is collected and analysed to infer human activities.
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Sensors

Researchers have attempted to use various on-board and external sensors to
identify the current activity of the users (Su et al. [[2014]]). Some of them use
body sensors (i.e., wrist sensors) to identify fine-grained activity, mainly physical
exercises (Keally et al.| [2011]; |[Cheng et al.| [2013]]). Many algorithms employ
GPS only data (Xu et al.|[[2010]; Gonzalez et al.|[[2010]]; Patterson et al.|[2003]]),
accelerometer only data (Yan et al.| [2012]; [Hemminki et al.|[[2013]]; Cheng et al.
[2013]]; Keally et al.[[[2011]]) or both (Reddy et al. [2010]]; Ofstad et al. [[2008]]).
Few solutions use barometer or gyroscope (Jonathan Lester| [2006]; Ustev et al.
[2013]]; Muralidharan et al.| [2014]; Vanini and Giordano| [2013]]), mainly be-
cause of their high energy costs. Some researchers turned their attention to
context information such as GIS data (Stenneth et al.| [[2011]]). This approach is
very well suited for large metropolitan areas, where GPS coverage suffers from
the skyscraper tunneling effect and the GSM cells dimension is reduced.

Algorithms

Many related works use different machine learning classifiers for activity recog-
nition. The most used one is the Decision Tree (Miluzzo et al.| [2008]; |Siirtola
and Roning| [2012]), in fact it is a lightweight algorithm suitable for a resource
constrained mobile platform. Furthermore, this algorithm allows a hierarchical
classification of human activities. Other machine learning algorithms used in
recent works on activity inference are: Decision Tables (Bao and Intille [2004]),
easy to implement but unable to identify hierarchies of activities; K-Nearest
Neighbors (Ustev et al.| [[2013]]),which is similar to Decision Tree in terms of
computational complexity; Hidden Markov model (Jonathan Lester [2006]),
which is a good candidate in capturing the transitions between different activi-
ties; and Support Vector Machines (Anguita et al.| [2012]) which unfortunately
have an higher computational cost.

Learning techniques

Another important issue is where the training of the classifier takes place, if on
a server (offline) or on the smart phone (online). The work of Reddy et al.
[2010] trains the classifier offline, but does the classification of the activities
online. Thus, it does not need to access a server for data processing, hence
it saves energy. PBN (Keally et al. [[2011]) is a sensor-node Android smart-
phone system, where the AdBoost training is performed online. However, the
underlying classifiers used for boosting are trained offline. NuActiv (Cheng et al.
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[2013])) is one of the leaders, where all of the software is implemented online,
even the support vector machine classifier. However, this classifier achieves only
maximum 80% accuracy.

Activities recognised

Another dimension of all existing works is which activities they are targeting.
Some focus on daily routine activities, such as running, sitting, watching TV,
etc.(Miluzzo et al.| [2008]). Others target special sport activities (Keally et al.
[2011]);/Cheng et al.|[[2013]]), while others focus on transportation modes (Hem-
minki et al. [2013[]; |Stenneth et al.|[2011]; Reddy et al.|[2010]; Patterson et al.
[2003]]). Among the works focusing on transportation-mode recognition, there
are further differences. Some target only a very limited set of activities like
still, walk and vehicle (Patterson et al.[[2003]]), also called Simple Activities (Su
et al.| [[2014]), others focus on motorized vehicles and walk only (Reddy et al.
[2010]). Only few of them include more precise transportation modes, such as
metro or tram (Hemminki et al. [2013]).

Energy constraints

Much research has also been focused on making the algorithms energy efficient,
e.g. through reducing the sensors sampling rate and the data processing. In fact,
one of the main issue in activity inference is the sampling rate. Sampling from
the sensors at an high rate provides more information but also it may introduce
more noise and use more energy. However, a low sampling rate requires less
energy but may lead to a loss of information. Special middle-ware for managing
sampling rates and used sensors have been developed (Lu et al. [2010]]; Wang
et al. [[2009]) or adaptive algorithms have been employed (Reddy et al. [2010];
Lim et al. [[2013]]). These efforts have shown to reduce energy consumption,
but it is unclear whether the solutions are usable or not - e.g. whether the
smartphone can survive a typical working day without recharging. For example,
Reddy et al.| [2010] reports a lifetime of approximately 7 hours. On the other
hand, the data processing has been typically offloaded to a server for energy
preservation, which is not necessarily the optimal solution, as it requires network
communication.

Main open challenges

Summarizing, according to the analysis of the state of the art presented above,
activity recognition is a very well studied topic. There exist many algorithms
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which employ different sensors and machine learning algorithms to classify vary-
ing classes of activities. However, a closer look especially on studies where ex-
isting algorithms have been reproduced show us a different picture. There are
still several issues and open challenges.

1. Typically the only reported precision of the algorithms is the recall preci-
sion - i.e. using the same dataset for training and testing. This is a major
issue for many machine learning algorithm. The recall precision is gener-
ally very high, while a user-testing precision, especially in this data domain
typically drops significantly. The user-testing precision is calculated over
an experimental collected dataset, independent from the training dataset,
and the correctness of the inferred activity is defined by the user itself
(i.e., similar activities might be considered equivalent by a user, as for the
case of strolling and walking, and traveling on a bus or on a car). The
only work among the ones presented above, which actually evaluates the
user-testing precision is Hemminki et al. [2013]], where the reported mean
precision of 82.1% is much lower than for others.

2. Which classifier to use? It seems like any would do the job, but differ-
ent classifiers have different properties. Some are able to better gen-
eralize the results and thus achieve higher testing precision, others are
very lightweight and can be easily implemented pervasively. Selecting a
lightweight classifier is crucial.

3. Which activities can be reliably recognized? Many researchers report about
problems differentiating between various walking modes (e.g. running
and walking) or between different motorized vehicles. For example, Hem-
minki et al.| [[2013]] included “train” as recognized transportation mode,
however achieving only 68% precision.

4. Energy efficiency. User-oriented energy efficiency is a major requirement.
This is, the smartphone must survive at least a full working day before
recharge, even with continuous application run.

Considering the main issues introduced above, I present here the “Inference
Module” of the SLS which tackles exactly these open challenges, and implements
a pervasive solution with high accuracy. It uses a lightweight algorithm and
ensures an energy efficient service. In this chapter I will evaluate the accuracy
of the Inference Module in terms of the traditional recall calculation. In chapter
this module will be considered in conjunction with the whole system, and
evaluated in terms of user-oriented precision.
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4.3 Experimental data collection

In this section I present the details about the two datasets used for the devel-
opment and analysis of the Inference Module. In the first part of my work I
performed a preliminary study with a small set of data, to evaluate the feasibil-
ity of the Inference Module, to select a set of sensors involved in the inferential
task, and to identify the set of significant features. This dataset is presented be-
low in section[4.3.1] During a second phase of the SLS development, I performed
a campaign to collect a bigger dataset, involving more people, more devices and
more activities. Finally I used this second dataset to implement the algorithm
adopted by the Inference Module and to test it. Details about this dataset are
reported below in section [4.3.2]

4.3.1 First data collection campaign: feasibility study

A small dataset has been collected, as stated before, for a preliminary study.
This dataset includes acceleration data for 31 minutes, collected by 6 different
people, carrying in total 9 different devices. The users involved in this data
collection have been asked to log their activities while being still, walking, biking
or driving (table [4.2). These users placed their devices in different positions
with respect to their body (i.e., inside the jacket’s pocket, into the hand bag,
in the backpack, etc.). In this way, the dataset allows the implementation of
an inference algorithm which is body-position tolerant, and which is trained by
people with different body movement style.

Sampled Data [minutes] 31
Number of users 6
Number of devices 9
Activities performed still
walking
biking
driving

Table 4.2. Preliminary data-set specifications

4.3.2 Final data collection campaign

After the preliminary study, a bigger data collection campaign has been carried
out, where the purpose was to collect more data, by more people, performing
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a larger variety of activities. The goal was the implementation of the Inference
Module of the SLS, and the analysis of the performances of the activity inference
algorithm, while predicting more specific activities.

The collected dataset includes more than 53 hours of linear acceleration
data, involves 8 users carrying in total 10 different devices, and performing
9 different activities (table . Also in this case, the dataset allows the imple-
mentation of an inference algorithm which is body-position and body-movement
style tolerant. As visible form the table, the activities are divided in 4 groups ac-
cording to their similarities. In fact during my study, this dataset has been used
to implement both the algorithm to infer each specific activities, and also to
predict the group an activity belongs to (more details in section 4.6.1]).

Sampled Data [minutes] | 3197
Number of users | 8
Number of devices | 10
Activities performed | still

motorbike
bus

car

train

Table 4.3. Final data-set specification

4.4 Raw data collection

In this section I will present the data collection phase of the Inference Module.
The related studies about the sensors used and the sampling rate.

4.4.1 Sensors

The Inference Module samples raw data from the mobile device embedded sen-
sors, to perform activity inference. Initially I evaluated the possibility to involve
different sensors, and in particular:
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(a) Device-coordinate system (b) Globe-coordinate system

z

Figure 4.1. Device and Globe coordinate systems

* the acceleration sensor, which measures the acceleration applied to the
device in m/s?, including the force of gravity. This sensor output data is
provided in three components, which correspond to the projection of the
acceleration force on the x, y, and z axes of the device coordinate system

(figure|4.1a);

* the magnetic field sensor, which measures the geomagnetic field strength
along the x, y, and z axes of the device coordinate system;

* the orientation sensor, which measures the rotation of the device along
the x (Pitch), y (Roll) and z (Azimuth) axes of the globe coordinate system

(fig. [4.1b).

After an initial study of the first results obtained by considering the above
mentioned three sensors, I selected the accelerometer as the most suitable sen-
sor for the activity recognition task. The acceleration data used by the SLS is
however, not the raw acceleration sampled by the device, but a derived mea-
sure. In particular, the Inference Module uses the Linear acceleration of the
device, which corresponds to the acceleration force applied to the device, with-
out including the gravitational component: this means that when the device is
still, the linear acceleration vector amplitude is zero. The linear acceleration
typically is implemented by the Android framework as a virtual sensor, applying
a high-pass filter to the raw acceleration data. While sampling data, the Infer-
ence module calculates a set of features over it in order to infer the current user’s
activity.



50 4.4 Raw data collection

2 T T T T T T
s L _
N oL i
1]
Et -
>
2k u
3 1 1 1 1 1 1
6.1975 6.198 6.1985 6.199 6.1995 6.2 6.2005 6.201
x10'®
2 T T T T T T
1L _
&
[%2] - -
£ 0
>_1 N i
_2 1 1 1 1 1 1
6.1975 6.198 6.1985 6.199 6.1995 6.2 6.2005 6.201
x10™3
4 T T T T T T
2+ u
&
[%2] - -
2 0
N, i
-4 1 1 1 1 1 1
6.1975 6.198 6.1985 6.199 6.1995 6.2 6.2005 6.201
time[ns] «1013

Figure 4.2. Linear acceleration raw data along the x, y, z axis of the device
coordinate system, while performing walking activity

4.4.2 Sampling rate

The data collection campaign to build and evaluate the Inference module of the
SLS has been performed by means of Android mobile phones. At the begin-
ning of this thesis development, the available versions of the Android operating
system allowed to specify the sensor sampling rate, not directly declaring the
interval of time between consecutive samples, but selecting one of four different
sampling rate classes:

* DELAY NORMAL: default sampling rate for android applications;

* DELAY UI: rate suitable for updating user interface features;

* DELAY GAME: sampling rate suitable for use in controlling games;
* DELAY FASTEST: fastest possible sampling rate.

Consecutively, newer versions of Androicﬂ introduced the possibility to spec-
ify the interval between consecutive samples, without relying on a fixed sam-
pling class.

!Starting from Android 3.0 Honeycomb (API level 11) available from February 2011



51 4.4 Raw data collection

Since both the Android OS and each device documentation do not provide
precise information about the exact sensor sampling rates, I collected sensor
data from different android phones running different versions of the Android
OS and analysed it. A summary of the devices used is reported in table In
table[4.5]I report the average interval of time between consecutive samples from
the accelerometer sensor, for each sampling rate class, and for different devices

(listed in table [4.4).

| Device num. | Phone Model | Android OS version |

1 Samsung Galaxy S Advance 2.3.6
2 Samsung Google Galaxy Nexus 4.1.1
3 Huawei Ascend P1 4.0.3
4 Samsung Google Nexus S 4.1.2

Table 4.4. Android used devices

Declaring a sampling rate or a sampling class on the Android OS, does not
guarantee the specified sampling rate to be actually applied. The Android OS
tries to sample data in the best case with the rate specified, but this is not always
guaranteed: this means that the data collected has a period between consecutive
samples with a standard deviation different from zero. Furthermore, from the
data reported in table we can notice that the sensor sampling class is not a
discriminant for the real sensor sampling rate, in fact it may depend both on the
hardware and on the OS version.

Avg period [sec]
Sampling rate class | device 1 | device 2 | device 3 | device 4
DELAY NORMAL 0.2 0.2 0.01 0.02
DELAY UI 0.06 0.07 0.01 0.02
DELAY GAME 0.02 0.02 0.01 0.02
DELAY FASTEST 0.01 0.01 0.01 0.02

Table 4.5. Android sampling rate classes

Figure shows the energy used by the accelerometer of a Samsung Google
Galaxy Nexus running the Android OS 4.1.1 (phone number 2 in table 4.4),
while sampling the sensor at different rates. During the energy measurement
phase the devices is set to its factory status and have no other services running
on it, except the sensor sampling one; the WiFi and Bluetooth interfaces and
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GPS localization are off; and the screen is off as well (since it has an high impact
on the energy used by the device itself); the device is not provided with any GSM
SIM card and there is no Google account registered. The specified setting are
important to be able to measure the energy used for the accelerometer sampling,
without any significant impact from different processes.

We measured the energy consumption given by different sensor sampling
rates in order to optimize the trade off between the energy consumption of the
sampling phase and the precision of the activity inference. These energy mea-
surements have been performed by using the ad-hoc circuit presented in section
Data collected at higher rates provides more information of the device’s
movement, however it may introduce more noise. Therefore, since a higher
sampling rate does not always lead to a higher accuracy and, as shown in figure
it is more expensive in terms of energy consumption, in my study all the
experiments are performed by setting a sampling rate equal to

dt, = 0.01sec “4.1)

or, respectively, setting the DELAY FASTEST sampling class for the above men-
tioned device. As we can see in figure the power consumption of the ac-
celerometer sampling decreases monotonically with values of dt, greater than
0,01 sec. For values lower than this threshold (figure [4.3D)), the power consump-
tion remains quite stable. This behavior may be caused by a physical limitation
of the embedded sensor: while the operating system provides us with updates
from the sensor at higher frequencies, the actual sampling from the accelerom-
eter cannot be performed with frequencies higher than the a fixed threshold of
the sensor. This motivates the chosen sampling rate dt,.

4.5 Inference Window Selection

To perform the activity inference, the system collects acceleration raw data and
calculates the features over consecutive averaging sliding windows (figure [4.4).
Moreover, the systems considers overlapping sliding windows to be able to cap-
ture all the activities, ensuring robustness in the prediction. The inference per-
formed is in fact not continuous because it would be expensive in term of com-
putational costs, and at the same time it would provide redundant information.
Instead the inference is discrete and performed at every sliding window. The
overlapping ensures the capability of the Inference Module to account all the
activities, even if they happen across two consecutive inference windows. The
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Power Consumption vs Sampling period, averaged over 1 min, screen off
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Figure 4.3

duration of the inference window affects considerably the inferential study. Ob-
viously the energy necessary for sampling a small time window of data is lower,
however the activity inference performed over a small set of data have a lower
accuracy. On the other hand, considering a very long time window does not al-
ways allow a more accurate inference, in fact it may include more activities and
it has an higher cost for unnecessary more expensive sampling.

In order to select the best value for the sliding window duration, I studied
empirically the trade-off between its complexity in terms of computational time
and the precision of the inferential algorithm. In figure [4.5]1 show the empirical
evaluation of the complexity of the features calculation in terms of computational
time, against the precision of the inferential study, for different dimensions of the
time window. The complexity, the blu line with the standard deviation bars in the
figure, gives an idea of the impact of different sampling windows duration on the
feature calculation computational time. The data has been collected by means of
the device number 2 (in table 4.4), running only the feature calculation service.
The data over which the features are calculated, for different dimensions of the
window, is always the same and is stored locally on the device. As expected, the
computational run-time, as visible in the graph, increases monotonically with
the increment of the time window duration.

The precision has been measured considering a Decision Tree classifier, and
calculating a set of features (mean, standard deviation, peak-peak amplitude,
energy) described in section . For this empirical study we used a dataset
whose specifications are described in section The training of the classi-
fier is performed over a training-subset of the available data, corresponding to
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Figure 4.4. Sliding Window

70% of the corresponding sampling windows, selected randomly. The precision
depicted in figure is calculated over the remaining 30% of the data.

As stated before, the inference is performed by using a sliding window tech-
nique, where consecutive windows slide by half the window duration. Con-
sidering the example represented in figure if the first sampling window
is w; = [0,1) and the sliding time is t, = 0.5sec, the second window will be
w, = [0.5,1.5), the third w; = [1,2), etc.

Complexity[ns]
T
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o
o]
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TimeWindow([s]

Figure 4.5. Accuracy and Complexity of the features calculation, over different
inference window dimensions

From this empirical study, whose results are depicted in figure time win-
dows with a duration in the interval [1-5] seconds have a good trade-off be-
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tween computational run-time and inferential precision. However the accuracy
decreases for time windows larger than 1 second, where the algorithm has to
average the sampled values for a quite long interval of time. Considering time
windows smaller than this value, the algorithm receives a too small quantity
of information, decreasing the accuracy as well. According to these empirical
results, the value used by the SLS for the duration of the inference window is:

t, = Lsec 4.2)

4.6 Activity Classification

In this section I will give more details about the activities recognized by the SLS,
the calculation of the features and the classification algorithm.

4.6.1 Activities recognized

The Activity inference module allows the SLS to change its behavior according
to the current user’s activity. The main idea consists in stopping the localiza-
tion tracking when the user is not moving, and changing the location tracking
frequency according to the user’s activity, whenever in movement. For this rea-
son, the Inference Module recognizes not the specific activity of the user, but its
class. The activity categories recognized by the SLS are separated in four differ-
ent classes which determine the related location tracking frequency class (more
details in chapter[7)).

The dataset collected during the final data collection campaign (described
in section includes a set of 9 different user’s activities. In table I
list the activities collected in the database, and associate to each of them the
corresponding class.

4.6.2 Features Extraction

According to the state of the art, there is an extensive list of features that may
be considered to identify human’s activities, both in time and frequency do-
mains (Su et al.|[2014]]). The selection of the features is challenging, since there
may be situations in which they provide redundant information (Misra and Lim
[2011]]) at an high price, given by the resources consumption: the challenge
consists in the selection of the minimal set of features which enables a reliable
inference of the user’s activity. An initial set of interesting features mainly used
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| Activity Recognized | Activity Class |

still
stand not moving
walk

run moving by foot
bike slow vehicle

motorbike

car

bus fast vehicle
train

Table 4.6. Classes of Activity

in most related works (Kim et al. [[2010]; Miluzzo et al. [2008]]; |Ofstad et al.
[2008]; [Reddy et al.|[2010]) is listed below.

Mean. The mean value of the sampling window, for all the three dimen-
sions of the sensor data vector (X, ¥, z).

Max, Min. The maximum and minimum values of the sampling window,
for the three axes.

Standard deviation and Variance of the sampling window.

Correlation calculated between each pair of axes of the raw data.

Data Magnitude 1/ x? + y? + 22, calculated over the three axis, to tolerate
the random orientation of the device (Kim et al.|[2010]).

Peak-peak amplitude of the sinusoidal wave and Variance of the amplitude.
Discrete Fourier Transform of the raw data.

Signal Energy;

Number of Peaks per time-unit. Frequency of the sinusoidal wave.

Peak regularity. Ratio of the peak amplitude in each coordinate axis di-
vided by the sinusoidal extension in time (time between peak) and its
variance.

Entropy which helps in discriminating activities with similar energy fea-
tures.
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With an initial study described below in the next section, I demonstrated
that only calculating a small set of features over the sensors raw data allows
a straightforward inference of the user activity among predefined categories
(walking, running, driving). This is a first result I obtained in an initial feasibil-
ity study, which was very promising considering the inferential study of the SLS,
which is however interested in the classification of four more general categories
of user’s activities.

Initial feasibility study

In line with the state on the art (Kim et al. [[2010]; Miluzzo et al. [2008]]; Ofstad
et al. [2008]]; Reddy et al. [2010]), I performed some experiments for study-
ing how to differentiate between different human activities. A real experiment
has been run with users collecting sensors data with two different devices (HTC
NexusOne running Android 2.3.6 and a Samsung GT 19100 running Android
2.3.3), while performing three different activities (walking, running, driving).
The data was collected sampling three different embedded sensors: accelerome-
ter, magnetic field and orientation sensor. The average sampling rate (the fastest
possible according to the devices themselves and the versions of the operating
system installed onto the devices) is equal to 25Hz (sampling period of 40 mil-
liseconds). While collecting data the phones have been positioned respectively
into the left and right pockets of the user’s jacket, when the user was walking
and running; instead, while driving, the user positioned the phones into the car
(not attached to the user’s body, then not influenced by the relative movements
of the user inside the car).

Some mining over the sampled data has been performed off-line to under-
stand if it is possible to recognize the user’s activity. A set of features have been
calculated over the data for sliding windows of 5 seconds. I show here some of
the most significant features, which allow a clear differentiation of the user’s ac-
tivity among the three predefined categories: walking, running, driving. In each
figure presented below, the blue line represents the data collected while walk-
ing, the green data has been collected while running, and the red data while
driving.

Figures|4.6aland represent respectively the mean values calculated over
the y and z axis of the accelerometer raw data. Both of them are represented in
ms 2.

Figures [4.7al and [4.7b| represent respectively the standard deviation value
calculated over the y and z axis of the accelerometer raw data.

Finally figure represents the peak-peak amplitude of the accelerometer
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Figure 4.7. Acceleration: standard deviation feature

data on the y axis. This value consists basically on the distance between consec-
utive local maximum and minimum values.

Figures [4.9a and represent respectively the standard deviation and the

average peak-peak amplitude calculated over the magnitude of the acceleration
data. This feature has been considered to tolerate the random position of the
mobile device with respect to the user body. The magnitude of the acceleration

data is defined with the formula 4/ x2 + y2 + 22, where x, y and z are the values
of the raw accelerometer data, over the three axis.

Also some features calculated over the orientation sensor data allow a straight-

forward differentiation of the user activity among the three predefined classes.
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Figure 4.9. Acceleration magnitude

Figures |4.10a], |4.10b| and 4.10c| represent respectively the mean, the standard
deviation and the average peak-peak amplitude value for the orientation raw
data, over the y-axis (pitch in degrees).

Analyzing the figures presented in this section, I can conclude that a straight-
forward inference of the user activity among predefined categories is possible by
simply calculating a small set of features over the sensors’ data. However, this is
only a subset of the significant features calculated in this feasibility study. From
this initial analysis I selected the accelerometer as the most suitable sensor to
perform activity inference. And also a final set of features has been selected for
the Inference Module. A more detailed list of features is presented in the next
section.
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(a) Mean (b) Standard deviation (c) Peak-peak amplitude

Figure 4.10. Orientation sensor (y-axis)

4.6.3 Features Selection

The activity inference analysis is performed entirely on the mobile device, with-
out any support from a beck-end server. This solution brings to an important
advantage: the device is independent from any network connection, hence the
activity inference procedure works also when the telephone is not connected to
the internet. The SLS solution has therefore a challenging requirement: the in-
ference methodology has to be as lightweight as possible, to be run on a device
with a limited battery capacity. As stated above, the activity inference module
is included in the SLS in order to reduce the excessive energy consumption of
the expensive GPS localization. This motivation force us to keep the inferential
study as lightweight as possible.

In order to be able to extract a set of features which allows the system to dis-
tinguish between different users’ activities, the system analyses only the linear
accelerometer data in the three-dimensional space. It considers each accelerom-
eter axis separately (a =< a,,a,,a, >). Furthermore, in order to be able to
tolerate the different positions of the sampling phone related to the user’s body;,
it considers two additional calculated measures: the magnitude of the three-
dimensional accelerometer vector,

la| = ,/a§+a§+a§ (4.3)

and the sum of the scalar components of the acceleration vector, over the three
axis.
s=x+y+z (4.4)

In fact, by using these measures it considers only the intensity of the acceleration
without its vectorial part.
Starting from the set of input data presented above:

{as.a,,a.,lal,s} (4.5)
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the system calculates a set of 30 significant features to perform the activity infer-
ence. Here below I give a detailed explanation of each feature. These features
are calculated for each input data listed above, in equation {4.5

Mean With this feature, the Inference Module calculates the average value of
the linear acceleration raw data for each inference window. Considering a signal
f measured for a limited time window consisting of n samples, the mean value
of the signal is given by the following formula.

1 n
u= E;fl (4.6)

In figure we can see an example of the mean feature calculated over the

acc mean (4) over a sliding window of3sec
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Figure 4.11. Mean of the amplitude on the linear acceleration

forth dimension of the input data (magnitude in equation [4.5), considering an
inference window of 3 seconds. As visible from the figure, the walking and still
activities are clearly distinguishable. Biking and driving are distinguishable from
the other two activities. But it is not possible to differentiate between them by
using only this feature.

Standard Deviation This is the measure of the quantity of signal variation ac-
cording to its mean value. Considering n consecutive samples of a signal f,
measured for a limited amount of time, the standard deviation is given by the
following formula,

1< 5
0= E;(fi_.u) (4.7)
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where u is its mean value. In figure we can see an example of the standard

acc std (7) over a sliding window of3sec
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Figure 4.12. Standard deviation of the z-component on the linear acceleration

deviation feature calculated over the third dimension of the input data (equation
[4.5), considering an inference window of 3 seconds. Differently from the mean
feature, with the standard deviation it is possible to clearly distinguish all the
four activities depicted in the graph.

Signal-to-Noise Ratio This feature compares the intensity of the actual signal
to its noise. Since the Inference Module is calculating this feature over a limited
time interval of the linear acceleration raw data signal, I assume the signal mean
data to be constant over this window, hence it considers the standard deviation
of the signal instead of its noise. This measure is given by the ratio of the signal
mean value, to its standard deviation.

sNr="1 4.8)

o

In figure we can see an example of the signal to noise feature calculated
over the fifth dimension of the input data (equation [4.5), which correspond
to the sum of the scalar components of the linear acceleration, considering an
inference window of 3 seconds. With the signal to noise value it is possible to
distinguish in a very straightforward way the driving and the still activity, from
the other two depicted in the graph.

Peak-Peak Amplitude This feature gives an idea of the signal maximum-minimum
peaks amplitude. To retrieve this feature, I calculate the mean value of the signal
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Figure 4.13. Signal to noise value of the sum of the scalar components of the
linear acceleration

translated, such that the minimum picks correspond to zero.
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In figure we can see an example of the peak-peak feature calculated over

acc peak-peak (19) over a sliding window of3sec
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Figure 4.14. Peak-peak feature calculated on the amplitude of the linear ac-
celeration

the amplitude of the linear acceleration, considering an inference window of 3
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seconds. Also with this feature it is possible to distinguish the walking and still
activities, from the other activities depicted in the graph.

Energy This feature measures the quantity of movement, proportional to the
energy necessary for the movement of the device. Considering a signal f mea-
sured for a limited time window consisting of n samples, the energy value of the
signal is given by the following formula.

— 1 - 2
E—H;fi (4.11)

In figure [4.15| we can see an example of the energy feature calculated on the

acc energy (25) over a sliding window of3sec
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Figure 4.15. Energy calculated on the sum of the scalar components of the
linear acceleration

sum of the scalar components of the linear acceleration, considering an inference
window of 3 seconds. Also this feature allows the distinction of the walking and
still activities from the other ones.

Derivative This feature measures how the raw data signal changes with time:
the Inference Module calculates the punctual derivative of each single raw sen-
sor sample, and average its absolute value over the inference window. Consider-
ing a signal f limited in time, and consisting of n samples, the derivative value
of the signal is given by the following formula.

1 & |df,

12
i=1 dt; 12
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Figure 4.16. Derivative of the x-component of the linear acceleration

In figure [4.16] we can see an example of the derivative feature calculated on
the first dimension of the input data (equation [4.5), which corresponds to the
x-component of the linear acceleration, considering an inference window of 3
seconds. With this feature it is possible to easily distinguish all the four activities
depicted in the picture.

4.6.4 On-Mobile features calculation

Many of the works from the state of the art perform the feature calculation
Server-side. Some other works propose the calculation in two stages, one on the
mobile and the second one on a back-end server, in order to reduce the amount
of data transmitted over the internet. However, this solution may introduce
privacy issues, since information about the current activity of the user is sent
outside of the mobile device. On the other hand, the calculation of the features
is an expensive task in terms of resources usage, and for some complex features
it may be necessary to offload the computation on a server. In the SLS the
calculation of the features is performed entirely on-line to avoid privacy issues,
and the features calculation is lightweight enough to have a limited impact on
the resources usage.

While collecting raw linear acceleration data, the SLS calculates the selected
features (described above in section without storing locally the raw data
itself, in fact it does not need to read the data more than once. The Inference
module temporarily stores locally only the features calculated, which are deleted
as soon as the SLS performs the inference of the user’s activity. The features
calculation implementation is lightweight enough to run on the mobile and does
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not have a strong impact on the resources usage (for both memory and CPU);
there are no features in the frequency domain and the calculation is performed
in an incremental way on the stream of sampled data.

More details about the incremental feature implementation is reported in

Appendix [Al

4.6.5 Classification Algorithm

The Inference Module implements its inferential study adopting a Decision Tree
classifier, in fact according to the state of the art (section [4.2.2)), it is the most
suitable candidate to perform activity inference on the resources constrained
target device.

The training of the Decision Tree is performed off-line. The dataset of labeled
data (accelerometer data while performing known activities) used for training
the algorithm is described in section The two resulting decision trees
have respectively: 255 levels, distinguishing between 4 different activities and
430 levels, distinguishing between 9 different activities (as described in section
4.6.1)).

The Inference Module reads the stream of raw data from the linear accel-
eration sensor periodically. The period depends on the current inferred user’s
activity. At each period, it reads a total amount of 3 seconds of data, which cor-
responds to 5 consecutive overlapping inference windows. For each inference
window, the Inference Module calculates the 30 features and submits them to
the decision tree, to infer the most probable activity of the time window. Consec-
utively a majority study is performed for the 5 inferred activities, and its result is
returned to the SLS as the actual activity of the user. This majority study is per-
formed to tolerate very fast movements of the user, which do not reflect her/his
current activity.

4.7 Experiments and Evaluation

The evaluation of the Inference Module has been performed offline, by using
a dataset of labeled data (described in section . The precision of the in-
ference has been calculated using the same dataset for training and testing the
algorithm. The training phase has been performed selecting randomly 70% of
the data (the random selection has been done on the inference windows), while
the remaining 30% has been used for testing.
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The evaluation has been done in two steps. First of all I evaluated the al-
gorithm, while it was inferring all the 9 activities included in the dataset. The
final results are shown below in figure and table More specifically, fig-
ure |4.17| represents the confusion matrix of the inference, where each element
(i,j) is equal to the percentage of guessing the activity j, given the real activity
is i (it shows, in the diagonal, the probably to predict the correct user’s activity,
per each different activity). Since the data-set which I am using is unbalanced
(the amount of data collected per each class is different), I report in table
the performances of the inference algorithm in terms of Precision, Recall, Accu-
racy, calculated both separately per each activity, and globally for all of them
together. As visible from the table, almost all the activities have a quite high
inference recall value, except for stand and bus. For the stand activity, the main
false negative (FN) errors are performed while predicting “walk, bus, train” in-
stead. This is basically because of the noise in the training data: the collected
data has been labeled as “train”, while standing on the train; in the same way,
the collected data has been labeled as “bus”, while standing on the bus; and it
has been labeled as “walk”, for short standing intervals during the walk activity.
For the bus activity, the main false negative errors are performed while predict-
ing “car” instead. In fact, it is not easy to differentiate between a car and bus by
using uniquely the accelerometer.

Activity | Precision | Recall | Accuracy

still 0.9664 | 0.9712 | 0.9827
stand 0.6952 | 0.6250 | 0.9864
walk 0.9352 | 0.9399 | 0.9723
run 1.0000 | 0.9877 | 0.9999
bike 0.9036 | 0.8827 | 0.9939
motorbike | 0.8789 | 0.8635 | 0.9970
bus 0.6802 | 0.6726 | 0.9498
car 0.8393 | 0.8465 | 0.9327
train 0.9018 | 0.8996 | 0.9713

Global | 0.8930 |0.8930| 0.9762

Table 4.7. Evaluation of the inference algorithm: 9 activities

In a second step, I evaluated the algorithm, while it was learning and infer-
ring the 4 classes of activities (listed in section[4.6.1)). In this case, all the classes
of activities have a high inference recall value. This is mainly explained by the
fact that each class includes a group of similar activities, which corresponds to
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Figure 4.17. Confusion Matrix global for all 9 activities

the main cause of false negative predictions in the previous evaluation. In fact,
in the evaluation with 9 activities, most of the errors were performed while in-
ferring activities in the same class.

Activity || Precision | Recall | Accuracy

Not moving 0.9616 | 0.9529 | 0.9744
Moving by foot | 0.9356 | 0.9375 | 0.9716
Slow vehicle 0.8881 | 0.8798 | 0.9931
Fast vehicle 0.9463 | 0.9518 | 0.9544

Global | 0.9468 |0.9468 | 0.9734

Table 4.8. Evaluation of the inference algorithm: 4 classes of activity

The global precision calculated for the activity inference with 9 activities is
89.3%, while the global precision considering the 4 classes of activities is 94.7%.
Since, as stated before, the dataset is not balanced in the amount of data per
each activity or class of activity, I also calculated the global balanced accuracy
(equation for both cases, and reported it in table In the formula
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Figure 4.18. Confusion Matrix global, four classes of activities

TP stands for True Positives and TN for True Negatives, and FP and FN

correspond respectively to False Positives and False Negatives.

05xTP 0.5xTN
BalancedAccuracy =

+
TP+FN TN+FP

9 Activities | 4 Classes of Activities
0.9406 | 0.9645

Table 4.9. Balanced Accuracy

(4.13)

In chapter[7]I will analyse the activity inference including the majority study,
and evaluate it in terms of user prediction and impact on the SLS overall battery

usage.

4.8 Conclusion

In this chapter I described the algorithm implemented by the Inference Module,
which reads the data sampled by a mobile device embedded sensor, and infers

the activity of the user.
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The algorithm uses the linear acceleration data, sampled with a frequency of
100Hz, and builds an input vector over it. A data input vector is associated to
each sampling window of 1 second, and contains 5 values: the x, y and z scalar
components of the acceleration, the acceleration magnitude, and the sum of the
acceleration scalar components. The algorithm calculates a set of 30 features
over this input vector (mean, standard deviation, signal to noise ratio, peak-
peak amplitude, energy and derivative). These features are then provided to a
Decision Tree algorithm which is trained to identify 9 different activities: still,
stand, walk, run, bike, motorbike, car, bus and train. A second version of this
tree is trained to identify 4 different groups among the activities specified before:
not moving, moving by foot, slow vehicle, fast vehicle.

The algorithm has been evaluated and the resulting balanced accuracy re-
sulted to be 94% while inferring 9 different activities, and 96.4% while inferring
the 4 different classes of activities. The accuracy of the algorithm are comparable
to other solutions presented in the related works. Moreover the inference algo-
rithm does not need the support of a backend server for computing the feature
and for running the algorithm itself. Its performances have been also calculated
according to the user precision, by means of a final experiment presented at the
end of this thesis, and its accuracy outperforms already existing solutions (more
details are reported in chapter (7).



Chapter 5

Learning User Mobility

The mobility model implemented by the SLS is centered onto the concept of
Point of Interest (Pol). A Pol represents a relevant location where the user spends
a considerable amount of time, like home, place of work, a mall. The SLS while
collecting data, analyzes it to understand and to model the movements of the
user among her/his Pols.

In this chapter I explain the location learning process performed by the SLS.
In section [5.3| give a definition of Pol and an explanation of the methodology
applied to identified it. Subsequently we present two consecutive phases of my
work: in the first phase (section the SLS performs its learning procedure
analysing only the collected location data; in the second phase (section |5.4.2)),
the learning procedure includes also the time information.The results related to
these two learning phases are presented in the next chapter, where we describe
the prediction procedures based on the learned models. In section[5.5/and [5.6|1
analyse the identified Pols and divide them in different relevance classes, study-
ing the movements of the user and identifying the features which characterize
the human mobility among the selected classes. The State of the Art about hu-
man mobility modeling and prediction will be presented in the next chapter.

5.1 Introduction

In this chapter I go into the details of the Learning Module (as presented above
in figure of the Smart Localization System. To be able to make predictions
about the user’s movements, the SLS system needs to collect data about visited
locations, and to perform some mining over it. To this aim, the Learning Manager
(introduced in section stores locally the localization data, perform some
mining procedure over it and calculates the parameters which will personalize
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the user prediction model. Thus, while running, by collecting data, the Learning
Manager incrementally learns about the user’s habits and contexts, and adapt
the model to them.

This personalization of the model allows the system to perform location pre-
dictions in order to reduce the localization triggering frequency and to avoid un-
necessary frequent location measurements. In fact, several habits and contexts
of the user are known, hence worthless battery consumption. Clearly, during the
Start Up phase (from the first run of the system, until the model has been tuned)
the localization is performed only using the nodes tracking technologies, as the
SLS still needs to personalize the mobility model to the carrying user. Hence,
in terms of battery consumption, initially the system does not have a significant
gain with respect to already known techniques. The real advantage is visible
at the end of the bootstrap phase, after which the system starts decreasing the
frequency of direct location tracking, alternating them with predictions.

5.2 State of the Art

Recent faster transportation methods have made people mobility very common
for both businesses and daily life. In addition, advances in communications
technology, data analysis and smart infrastructure are enabling to streamline
the transportation strategies, simplifying connections and shortening the com-
muting times. These two aspects together resulted in a high mobility degree for
many people, both for their business or as a lifestyle.

However, despite the higher mobility degree, I argue in this chapter that
visited locations may be classified in three main categories. One of the three
classes includes the places that a person visit more frequently and thus were
a person can be caught with higher probability. However these locations are
limited in number.

Watts and Strogatz| [[1998]] were modeling the famous six-degree property
of Milgram, giving birth to the small world phenomena era: the average path
length for social networks of people was established to be six. |Dunbar| [[1992]]
measured the correlation between neocortical volume and typical social group
size in a wide range of primates and human communities. The author showed
that, because of the limit imposed by neocortical processing capacity, people can
have stable interpersonal relationships with only a limited number of individu-
als. Thus, the Dunbar’s number is the measure of the humans’ social network
size, and is between 100 and 200 individuals (Dunbar| [[1998]). In addition to
the neuro-scientific limits, we can also individuate some physical constraints,



73 5.3 Point of Interest

as our time and interests are finite and therefore we cannot have (strict) social
interaction with the whole world.

Both results concur to give a surprising view of how our social world is small
(connected with small number of hops) and cannot go over certain limits (we
have limited numbers of strong connections). I argue that, similarly, our physical
world is small and cannot go over certain limits (Gonzalez et al. [[2008]]): we can
commute, with small number of hops, between very far places, but the number
of points that we frequently reach is limited. Intuitively, the fact that we can
commute everywhere, with small number of hops is clear, but the fact that our
high interest locations are few is not that evident, especially if we consider the
evolution of our society toward a very dynamic lifestyle.

Thus, regardless the increased attractiveness of a place or the possibility to
reach places more quickly, people will keep on moving around their most rele-
vant points for most of their time. This indicates that clearly those points are the
ones that better represent and characterize our life. Hence human mobility can
be modeled in terms of movements among these locations.

Several related works focused on modeling the human mobility, where peo-
ple are considered as a community and their mobility is driven by social factors
(Zignani [2012]; Musolesi and Mascolo| [[2006]). |Calabrese et al.| [[2010] mod-
eled human mobility by using a probabilistic approach, and in particular by an-
alyzing the person and collective past behavior. Also Gambs et al.| [2012] build
a user mobility model based on the observations of the user’s past mobility be-
havior. Their goal is the location prediction. For this purpose they implement a
Mobility Markov Chain (MMC) algorithm in order to incorporate the n previous
visited locations for next location prediction (where n = 2).

In this chapter I present two probabilistic approaches to build an individual
mobility model, characterized by only the user own data, hence without con-
sidering social factors. I analyze the past movements of the user among the
most relevant points of interest, trying model his mobility behavior given the
regularity of these movements.

5.3 Point of Interest

The user’s mobility model implemented by the SLS is mainly centered into the
concept of Pol. The localization data, while being collected by the Smart Local-
ization component (figure [2.2)of the SLS, is also stored locally to retrieve, with
time, information about user’s specific relevant Pols (e.g., home, work, gym,
club).
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Definition 1. A Pol is a location area relevant for a user (i.e.,where the user spends
a relevant amount of time). Its range in space may be in the order of few meters, if
the location refers to a very specific place (i.e., work office) or larger (e.g., a mall,
a stadium), depending on how the user visits the location.

A clustering algorithm runs periodically over the location points visited by
the user and selects centroids among them, according to the frequency of the
visits and their duration. The results of the clustering procedure is stored into
a User Prediction Graph (5.4.1). The SLS continuously retrieves data and peri-
odically refines the identified clusters by re-executing the clustering algorithm,
introducing the new collected data. This is done to tolerate and take into ac-
count possible changes in the users habits and frequently visited locations.

In the next sections I perform the analysis of the location data and the iden-
tification of the clusters offline, by using the two datasets presented in section

5.3.1 Pols Identification

GPS datasets present many difficulties as concerns the identification of the Pols.
In fact they do not give any information about the interests expressed by the
user, hence the only meaningful property for the Pol identification is the user’s
still activity. Assuming a constant sampling rate for the GPS dataset, the pause
periods and the places visited by users translate in an higher concentration of
recorded points. This way the Pols extraction corresponds to the unsupervised
task of density-based clustering.

DBSCAN (Density Based) (Ester et al.| [1996]) clustering algorithm is a very
good candidate for managing location data, but it is sensitive to € and minPoint
parameters (which represent respectively, the distance radius for defining the
neighborhood of a location point, and the minimum number of points required
inside the neighborhood to define it as a cluster), and it can only handle datasets
which fit in memory. To overcome the parameters problem in my work I decided
to dynamically set the values of both &€ and minPoint (more details in section
[6.2.1). To handle memory problems instead, a good candidate may be the DJ-
Cluster [Zhou et al., |2004], Density-and-Join based algorithm which is a vari-
ation of DBSCAN and focuses on performances issues: in particular, it requires
at most a single scan of the data. Both the algorithms work on the same basis,
hence we use the DBSCAN for offline experiments, and DJ-Cluser for eventual
realtime analysis of the data performed only with the mobile device. Further-
more, for both the algorithms we apply the Euclidean Distance Formula for cal-
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culating distances between locations. When working on a spherical surface, the
great-circle distance between two GPS points is given by the haversine formula.
During the analysis described in this chapter the calculated distances involved
only nearby locations, hence I apply the Euclidean distance formula, which gives
a good approximation of the real great-circle distance and especially is compu-
tationally less expensive for our platform.
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Figure 5.1. DBSCAN neighborhood

The Density based clustering algorithm. For each sampled location point (i.e.,
a raw trace data including time-stamp, latitude and longitude of the user) the
clustering algorithm calculates its neighborhood (Equation [5.1); if the point has
no neighbors it is labeled as NOISE, otherwise the neighboring points are created
as a new cluster, or joined with an existing one if any neighbor belongs to an
existing cluster. The neighbourhood N of a point p includes all points within
distance € from p, and it is considered valid if there are at least m of such points
(minimum number of points).

N(p) ={q € Sl|dist(p,q) < &} (5.1)

Where S is the set of all points, g is any point in the samples, ¢ is the radius of a
circle around p that defines the density, and it holds:

IN(p)| = m (5.2)

The cardinality of N(p) is greater than m in order to be able to consider N(p)
a cluster.
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5.4 User Mobility Learning Algorithm

In this section I present the evolution of the implemented user mobility model.
In a first version, the model is a location based algorithm, learning the mobil-
ity habits of the user referring exclusively to her/his geographical displacements
(section [5.4.1). A second version of the algorithm (which is the final one, im-
plemented by the SLS) is presented in section and takes into account not
only the location but also the timing feature.

5.4.1 Location based Learning Algorithm

The goal of the SLS is to learn relevant information about the user, to optimize
the battery usage when she/he visits very well known places, and to reserve
battery resources for more critical situations, when the user visits unknown lo-
cations. To achieve this goal, by collecting data, the SLS learns about the user
habits and constructs a directional graph: the User Prediction Graph (UPG).

The User Prediction Graph

An example of UPG is depicted in figure |6.4, where each vertex represents a
cluster (a Points of Interest), and the arcs are the connections between consec-
utively visited relevant locations. Both vertexes and arcs are characterized by
weights.

Each node (cluster) i is associated to a value which represents its relevance-
weight: that is the measure of how relevant is a location to the user (more
details in section [5.5.1)). The formula to calculate this value is reported in equa-
tion and corresponds to the ratio between the number of samples collected
which reside into a cluster, divided by the total number of samples. The Pols
which are more frequently visited and for longer periods of time, have high rel-
evance values.

num of samples into cluster i during the clustering period

; 5.3
' total num of samples during the clustering period (5.3)
The value associated to each directed arc (the arc weight) of the graph, is
the probability to move from the source vertex (or Pol) i to the connected one
J. Its value IP;; corresponds to the ratio of the number of moves from node i to

node j over the total number of moves from node i.

num of moves from i toj

= 5.4
" total num of moves from i (5.4



7 5.4 User Mobility Learning Algorithm

In this first learning algorithm, both the arcs and nodes weights depend only
on the current location feature (i.e., the arc probability depends on the current
location of the user in the graph, that means on the current node); in a second
phase, the learning algorithm has been improved introducing the timing fea-
ture: the arc probability changed accordingly, depending instead on the current
location of the user in the graph and also on the current time-stamp (section
5.4.2).

Each vertex in the UPG includes a set of information: latitude and longitude
of the PoI's centroid and its extension in space, average number of visits per
day, average duration of the visit. Also each arc in the graph includes informa-
tion, such as average duration of the movements through the arc and number of
arc crossings. All those information are continuously updated, while collecting
user’s data.

The SLS continuously retrieves data, periodically performs a clustering pro-
cedure over it and refines the set of identified clusters. After identifying the set
of Pols for the window of time over which the clustering procedure has been
run, a Temporary directed Prediction Graph (TPG) is built by the SLS. While the
UPG includes the complete user’s movements history since the beginning of the
learning procedure, this temporary graph only stores data about a limited clus-
tering time window. After each clustering procedure, the last retrieved TPG is
merged into the general UPG in order to keep it updated.

Updating the UPG

Updating the UPG consists in including the last period learned data, as defined
in the TPG, by:

* adding the new Pols, which correspond to unknown locations, visited by
the user for the first time during the last processed window of time;

* updating Pols already known and which have been also visited in the last
clustering period, by modifying their weight, centroid location and space
extension;

* updating the weights on already existing arcs or integrating new arcs,
when new connections between Pols are identified.

The correspondence between Pols is measured in terms of distance between
their centroids, using also in this case the Euclidean Distance formula.

Definition 2. Two Pols correspond to the same location area, if their distance does
not exceed the sum of their respective standard deviation values.
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More formally:
Pol, ~ Pol; &

dist (Pol,, Poly) < (stdpy, +stdp,, ) (5.5)

The standard deviation of a Pol is the average value of its radius: the devi-
ation of the distance from each location point included into the cluster, to its
centroid. The value of the standard deviation is calculated incrementally, while
the location points are included into the cluster, by applying the formula:

o= n (lelz) - (Zixi)z
n(n—1)

where n is the total number of location points belonging to the cluster, and
x; is the distance of Pol; to the cluster’s centroid.

As reported in equation (5.4), the weight associated to each arc is the prob-
ability to move from the current cluster i to the connected one j. The absence of
an arc between two clusters means that the user never visited those two clusters
consecutively. When the results of the last temporary graph are merged onto the
UPG, all the arcs’ values are updated according to a factor a, which smooths the
weights of the old data with respect to the newly integrated one.

(5.6)

P (roving from 0 0) =10 (57555 ) +

aP,q (moving from S to Dy) (5.7)

Assigning a larger weight to the history (past data) with respect to the new
data, leads the learning algorithm to be more impacted by the history of the user.
However, the computation of the predictions does not have to be heavily affected
by very old activities of the user. While performing predictions by means of this
algorithm, error rate is expected to increase in two cases: considering the graph
update, when a very large weight is assigned to the history, and oppositely also
when the same weight is given to the history and to the current data. The best
value of alpha in general is in between these two opposite situations. However,
according to the goal of the prediction algorithm, the model is needed to predict
the next user location when the user visits some Pols with a certain regularity:
that means that not all the known places are interesting for the model, but
among them, only the ones which are visited frequently by the user.

The value associated to each node i represents its relevance-weight, different
from equation 5.3} which was referred to the temporal prediction graph. For the
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UPG this weight is the relevance of the node for the total duration of the learning
period (e.g., a location visited only once but for a long duration, may have an
high weight in the corresponding temporary graph, but a low relevance in the
UPG). The SLS maintains information about the relevance weight of each node
in order to keep the UPG dimension limited, pruning the nodes of the UPG when
they are old and with a very small associated relevance value (this concept will
we recalled in chapter [7, where I will present and evaluate the complete SLS
solution).

5.4.2 Location and Time based Learning Algorithm

The location data alone gives the SLS great but limited information about the
user’s habits. Adding to this data also timing information, helps the system
learning more about the user, and gives the possibility to make better mobility
predictions.

Also the location and time based learning algorithm identifies the Pols using
a Density Based clustering algorithm (as described in section over the
location data, applying the Euclidean Distance formula for calculating distances
between point. This clustering algorithm is applied only to the spacial domain
and results in a set of clusters, which are potentially locations relevant to the user.
However, each cluster embeds information related to the time domain] that is
used in a consecutive analysis. Among the identified Pols it may be possible to
have small clusters (i.e., low density of samples) which correspond to locations
frequently visited by the user, but never for a considerable interval of time. For
example, if the user always drive on the same road from home to work and
backward, and she/he frequently incurs in a point of the road characterized by
traffic jam, that point may become a clusterﬂ To filter out those Pols which are
not relevant for the system prediction purposes, we apply a Temporal Post-Filter
to the identified set of clusters.

Definition 3. A cluster is considered a relevant Pol if and only if it has been visited
by the user for an interval of time equal or greater than a Temporal Threshold.

The value of this threshold has been evaluated empirically (details in section
6.3.1).

After the filtering procedure, the data (pruned by noise samples identified by
the clustering algorithm, and by samples associated to not relevant Pols) is read

'Each point in a cluster is associated with a timestamp.
2The system does not assign any semantic meaning to locations, hence a Pol may be situated
wherever a user spends a relevant amount of time.
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once again in the same order in which it has been sampled (temporal order) and
a set of histograms are built over it. The data histograms represent, per user
and per day, which clusters have been visited and the duration of each visit. For
this analysis the SLS considers the timing values (i.e., duration of a visit) as a
multiple of a small interval of time dt. Hence, on each histogram we memorize
the probability for a generic User, to be in a certain Pol, during a day,, of the
week (e.g., sunday,monday, ...), for every interval of time dt. In fact, the system
associates a probability value to each interval dt of the day. While updating the
history of the user, each daily histogram is updated by means of the following
learning formula:

Py (PoIp | dayp,dt,) =
P4 (Pol, | dayp,dt,) *xa+ (5.8)
isCurrentlyVisited * (1 — a)

Where the possible values for the variable isCurrentlyVisited are {0, 1}, which
correspond respectively to the possibility that the related Pol is currently visited
in that day/dt (value 1) or not (value 0). The old probability to be in PoI, during
dayy, in the time interval dt, is weighted by the variable a, and is summed up to
the (1 — a) value, in turn multiplied by the isCurrentlyVisited variable. The
value of a used during the experiments, has been determined empirically (more
details in section [6.3.1)). Also in this case applies the same reasoning presented
before: assigning a larger weight to the history (past data) with respect to the
new samples, allows the learning algorithm to be more impacted by the history
of the user. However, the computation of the predictions does not have to be
heavily affected by very old activities of the user. Additionally we cannot give
the same weight to the history and to the current data. The best value of a in
general is in between these two opposite situations.

Every time a user collects a sample data, all the PoI’s histograms related to
the corresponding tuple {dayp,dt,} are updated accordingly. At the end of each
day, once the sampled data has been processed, the results of the clustering pro-
cedure and the consecutive time filtering results are represented by a sequence
of actions. Each action refers to a visit to a Pol and is characterized by three
main values:

* cluster id: each Pol is identified by a unique id number, which is used to
retrieve its related information (e.g., centroid’s coordinates, density, stan-
dard deviation of its points’ distance to the centroid);
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Figure 5.2. User’s daily actions: example of sequence of visits to relevant Pols

* start time: starting timestamp of the Pol’s visit;
* end time: ending timestamp of the PoI’s visit.

An example of a daily sequence of actions learned by the system, is repre-
sented in figure In this figure, the user is visiting five different Pols, and
some of them are visited twice in the same day.

A timestamp information is then converted in a tuple < day, time;, > where
day is the corresponding day of the week (e.g., sunday, monday, ...) and timey, is
the index of the interval of time during the day, inside which the timestamp has
its value. For example, considering an interval of time dt equal to 10 minutes,
and a timestamp related to a clock time of 10 : 01 : 00 a.m. (601 minutes from
the beginning of the current day), the corresponding time;, = 60 (number of dt
intervals after the last midnight, 60 * dt).

While the learning phase is executed, the user’s learned history continues be-
ing updated with newly learned location data. Thus, the number of known Pols
increases significantly, even though only a small subset of them have a signifi-
cant probability (relevance for the user). Therefore, the algorithm removes from
the user’s history all those Pols with a global probability lower than a minimum
threshold (more details in chapter (7).

5.5 Pol Classification

In this section, I introduce a classification algorithm of the Points of Interest
visited by a user. This classification allows the definition of a general profile of
user, characterized by the number of visited locations and time spent there. I
present here my experimental approach, starting from real traces and deriving a
statistical evaluation. I use the results to this evaluation to separate the visited
Pols into 3 main classes of relevance: High, Medium and Low Interest Locations
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- HILs, MILs, LILsE] (Giordano and Papandreal [[2012]). I show that, on average,
people visits just few locations (HILs), but they spend there more than 50% of
their time. Also the MILs are low in number, and they are visited for about 10%
of the time, while the remaining points, the ones in the LILs class are visited for
a very short amount of time.

5.5.1 Relevance

After identifying the set of Pols relevant for a user (as described in section|(5.3.1))
I classify the visited Pols according to their relevance to the user itself, this al-
lows the characterization of the user’s mobility within each locations’ class of
relevance. The relevance of a certain location L; is calculated on the mobility
history of each user, and it is defined as:
relevance(L;) = dVL(Ll) (5.9)
dtotal

where d;;(L;) is the number of days a location L; has been visited (one or
more times per day) by the user; the d,.,; is the total number of sampling days,
collected by the user. The relevance of a certain location is, according to the
formula, the percentage of days the user visit this location, over the total number
of days of sampling.

According to relevance values, I show that the Pols associated to each user
can be grouped in 3 classes:

* High Interest Locations (HILs): locations most frequently visited by the
user. It is easy to infer their semantic meaning, and associate them to
home location, work place, gym, etc.

* Medium Interest Locations (MILs): locations of interest for the user, but
visited just occasionally.

* Low Interest Locations (LILs): Pols unlikely visited more than very few
times.

The evaluation of the Pols’ relevance allows a straightforward identification
of these three classes. For example, in figure [5.3|I show a cumulative characteri-
zation of the Pols identified for all the users of the GeolLife dataset, introduced in
section[2.3.1] (I used here the complete dataset, without applying any filter to the

3Called respectively Mostly, Occasionally and Exceptionally Visited Points of Interest - HILs,
MILs, LILs in|Giordano and Papandreal [[2012]]
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Figure 5.3. Pols Relevance

data). In the x-axis we identify 10 bins of relevance spanning form 0% to 100%,
where each of them has a width of 10%. For each interval of relevance I show in
the figure the average percentage of the number of Pols (calculated over all the
users) belonging to the corresponding class. From the figure, it is easily visible
that, on average, 57% of the Pols visited by a user are within the LIL relevance
class: this means that more than half of the Pols seen by each user, are Low
Interest Locations, that the user hardly visits for multiple times, hence locations
with a low relevance value. 6.7% of Pols can be classified within the HIL class
(locations with high relevance value): this gives an idea of the limited number
of locations which are visited by each user almost daily. The identification of the
upper and lower bounds for each of the three classes is strictly related to every
single user; in fact it depends on the user’s mobility style. The next section will
explain how to identify the classes bounds for each user.

5.5.2  Finding classes of relevance

As it has been highlighted by the above discussion, relevance class bounds could
change among the subjects. As a consequence, class bounds cannot be fixed a
priori but claim at an automatically detection algorithm able to adapt to the sin-
gle user mobility pattern. In particular, I adopt an unsupervised approach which
groups the Pols of a single user according to their relevance and maximizes their
separability. The chosen clustering algorithm is the k-means with k = 3 which
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corresponds to the number of classes of Pols. To avoid the problem related to
the initial choice of the centroids, I run 10 replicas of k-means with different
initial seeds and choose the partition that minimizes the within-cluster sums of
point-to-centroid distances, thus maximizing the separability. Figure [5.4] shows
the result of the k-means clustering on a sampled user. The LIL class (purple
box) covers the relevance range from 0.01 to 0.12, the MIL (red box) spans the
range from 0.16 to 0.46 and the HIL class (green line) contains only one Pol
with relevance 0.82.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pols Relevance

Figure 5.4. Three classes of relevance in a sampled user

5.5.3 Data pre-processing

Although GeolLife (section represents the most reliable dataset publicly
available, it was not collected to extract Pols and thus it need some pre-processing
in order to find the most meaningful trajectories to our goal. The need of a pre-
processing phase is dictated by the dataset bias which flavors movements, while
in this study I am basically interested in people which are still while visiting their
Pols. In particular the applied data pre-processing aims at densifying trajectory
points corresponding to the pause phase by a filling heuristic, while removing
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Figure 5.5. ECCDF of the aggregated pause times in the stay-locations.
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points belonging to users’ movements.

Indoor filling Mobility data collected by GPS devices present gaps because GPS
signals are often disrupted inside buildings. This might represent a big problem,
especially if one is interested in detecting the Pols of a user. In fact, in many
cases, buildings or other indoor locations represent the majority of the Pols vis-
ited by a person during the day. To overcome the problem given by missing
records (Lin et al.| [2012]), so to avoid an underestimation of the number of
Pols, I apply the following simple rule.

Indoor filling rule: when the ending and beginning GPS points of a gap are
within a distance of 35 meter and the gap duration is greater than 5 min,
the user is taken as residing at the same location during that time.

This rule also supplies for the situation where the individual enters a build-
ing, or where the individual turns off the GPS device in an indoor place. Practi-
cally, I add as many GPS points equal to the entry point as the duration in sec of
the gap. After the trajectory reconstruction phase, I noticed a big increment of
points, anyway limited by the threshold imposed on the gap duration.

Movement phase reduction A filter has been applied to leave out data which
describes the movements among the Pols a user visits, thus reducing the number
of points to analyze. This way we consider the periods in which a user stays still
in a place, assuming that users manifest their interests by spending an amount of
their time in such places. In order to extract the pause periods and their related
GPS points from the whole individual trace, I apply the heuristic proposed in
[Zignani et al., |2012; |Zignani and Gaito, |2010]], where a similar but smaller
dataset has been analyzed.

If two points p; and p;,,, with timestamps indicated by t(p_), do not satisfy

||Pi+1 —Pil
t(pi+1) —t(p;) =A (5.10)

then we delete p,,, from the original trace, since it belongs to the movement

phase.

Analyzing walking mobility data, I set the threshold to the very low value of
A = 1.3m/s, according to the fact that human walking speed is about 4-5 km/h
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(1.1-1.4 m/s). It seems a reasonable value as generally, while visiting a relevant
location, people do not reach this maximum speed. This way, it is possible to
capture points where a person is still or is moving very slowly inside a small
area. The result of the speed filtering process is a sequence of points that forms
the trajectory S = ((py, t1), ..., (Pn, t,)), Where t; is a timestamp and p; € R?, on
which it is applied the Pols extraction methodology proposed in section[5.3.1}

Users’ selection The point reduction has also effects on the number of users
and the number of days, per user, from which I can extract places of interest.
When analysing the GeoLife dataset, the reduction is mainly due to the fact that
it has been built for the transportation prediction task, and, as a consequence, it
flavors movements. To overcome these limitation, I select the users considering
two properties.

1. Period (in hours) a single day trace spans.

2. Number of days the single user traces cover.

In particular, for each user, I only consider the daily traces that record more than
h hours. On these tracks I count the number of users that have more than d days
of data. In particular, for all the users of the dataset, I filter out all the days of
sampling (data collected within the 24 hours, going form 00:00 AM until 11:59
PM) which have h < 3 hour of sampling. All the remaining days are considered
relevant days. After this first processing, I filter out all the users which collected
less than 20 relevant days of data (d < 20): applying these filters to the GeoLife
dataset, the resulting number of users is 21, over the total number of 178 users.

I apply these values for the users filter parameters, in order to optimize the
trade-off between the importance of having a large number of users, to be able
to generalize our analysis; and the need to deal with sampled data which does
not only correspond to trajectories. For example, only by increasing of one hour
the threshold h I obtained a number of users that is not enough to our goal (10).
Though the analysed dataset is a collection of trajectories, hence only a reduced
subset of collected data fulfill the specified requirements, I am able, also with
this small filtered dataset, to obtain powerful results. Besides, note that the
resulting dataset almost completely spans the original GeoLife period.

Finding Pols

The identification of the Pols in a trajectory dataset is slightly different compared
to the approach we presented in section[5.3.1] which is mainly intended to anal-
yse continuous datasets. In this case we applied a slightly different procedure.
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(c) Sub-Pols issue (d) Compact representation

Figure 5.6. Pols extraction applied to the user 3’s trajectories. In we plot
all the recorded points (raw data). In we show the points resulting from
the application of the pre-processing phase. In the sub-Pols that have to
be grouped in the real Pol (yellow circle). In a compact representation of
user 3’s mobility during a single day.

All the points of the trajectory dataset which belong to the pause phase and
are the starting points to extract the Pols. To reach this goal, I first find the
possible regions of interest via a clustering algorithm and then I detect the real
Pols considering a pause time feature.

The possible regions of interest are identified by introducing the concept of
stay-location L. A stay-location is an area where a person stops, independently
of how long she/he stays there. Let us consider individual traces in order to
extract stay-locations and analyze their properties. Also in this approach, to find
stay-locations I apply the density-based clustering algorithm DBSCAN. The used
parameters are € = 10 mt and minPoint = 2 neighbors (as explained in section
€ represents the maximum distance such that two points are considered
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neighbors, while minPoint is the minimum number of neighbors that a node
must have to be considered in a cluster).

The first results show that in daily movements, there are many stay-locations
where an individual stays for a short amount of time. Many of these stay-
locations are meaningless as they represent small pauses in the movement to-
wards the real destinations, the Pols.

In the following analysis of the dataset I introduce a pause time feature,
setting the threshold ¢ = 5 min, which corresponds to the mean of the pause
distribution in stay-locations, shown in Figure In this analysis I do not con-
sider the sum of the pause times in a stay-location; but only the single values.
The thresholding results in the meaningful Pols, although we observe situations,
such that presented in Figure where there are many sub-Pols of the same
general Pol. To overcome this issue I run a second passage of DBSCAN with a
larger € on the centroids of the sub-Pols detecting the real points of interest.
Thus, the processing has two important effects: a drastic reduction of the num-
ber of stay-locations and the inference of the real Pols.

Aside from finding Pols, the above methodology has the capability to express
human mobility as a compact trace that summarizes the transitions between
Pols and the users’ pause time in them as shown in Figure Adopting this
compact representation in the following section I can analyze some properties
of the human mobility and of the Pols human beings visit during their daily
movements.

5.5.4 Experiments and Results

In this section I present the experimental results of the analysis performed over
the GeolLife data after performing the pre-processing and the analysis of the Pols
and related classes of relevance, described in the previous sections. For each
filtered user, I apply the k-mean algorithm (as explained in section |5.5.2)) to
classify the related Pols in three main classes of relevance (section |5.5.1) and
over these classes I study three main features:

1. the number of Pols which reside within each class of relevance,
2. the percentage of time spent in each class,
3. the average time of the visits to the Pols of the classes.

Figure represents the number of Pols associated to each class of rele-
vance, per user. In the upper plot we can notice the large difference in the
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Figure 5.7. Number of Pols per class of relevance

number of LILs, with respect to the Pols belonging to the other two classes of
relevance (MILs and HILs - which can barely be seen): this is an evidence of the
fact that the user always visits new locations, but only few of them are visited
regularly. In the lower plot, we zoom on the classes MILs and HILs: the number
of MILs is limited and its average value is 4.19; also for the HILs the number per
user is limited, and its average value is 1.76.

As expected, each user has a very small number of preferred locations (HILs)
which are visited daily (e.g., home, work place), and a higher but still limited
number of location of interest (MILs) which are visited with a lower frequency
but regularly (e.g., gym, favorite restaurant, parent’s house).

Figure shows the average visit time to the Pols, according to their class
of relevance. From the figure we notice that for all users, the average visiting
time to LILs is very limited and on average lower than one hour. The average
visiting time for MILs and LILs depends to the mobility style of the user: some
users tend to spend long time in their HILs, other users instead, use to have
very long visits to the MILs. We will talk about the classification of the user’s
behavior below in this section. However, considering the Pols classification, the
HILs and MILs can be considered equally relevant for the user, even if the HILs
are visited more frequently and more periodically than the MILs. The LILs are
instead locations not really important to the user, and where (according to the
figure) she/he spends on average a shorter interval of time.

In Figure we represent a cumulative measure of the percentage of the
total time each user spends visiting Pols belonging to the three different classes
of relevance. According to this figure, a user tends to spend more than half of
the total time in the HILs and the rest of the time is almost equally distributed
between the LILs and the MILs.

The interesting aspect of this analysis is further exploited in Figure
where we show the percentage of the visit time per class, for two different users.
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Figure 5.8. Average visiting time per class of relevance

Figure 5.9. Percentage of the visiting time, per class of relevance (Cumulative)

While always showing the three classes pattern, the behavior of the two users
radically differs. The user 69 has a very creature-of-habit behavior: it spends
close to the 81% of the time in the HILs, and less than 9% in the LILs.

As opposite, user 25 is a globetrotter: the percentage of time spent in the
HILs is below 10% (rounded to 10% in the figure), and the user spends most of
the time in the LILs (close to 73%), even if the average time spent in each LIL is
still significantly smaller than the average time spent in each HIL. This opens for
new research approaches to human mobility based on visited places distribution.

5.6 Key Features in Human Mobility

Starting from the classification of the user’s Pols in classes of relevance, I derive
some features which could drive how a user moves among interesting places.
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User 69

User 25

Figure 5.10. Different types of user mobility: the globetrotter (user 25) and
the creature-of-habit (user 69) behavior derived by the time and number dis-
tribution of Pols.

Specifically, in this part of the work I am not actually interested on the trans-
portation mode a user adopts between different Pols (i.e., which vehicle is used)
or whether she/he tends to repeat some patterns, but only on locations visited
consecutively and their associated relevance classes.

I characterize the users’ mobility according to three different features:

1. the relevance R, accounting for the interest of a user for a Pol,

2. geographical distance Ar between the departure D and the arrival A Pols
during the user’s movement,

3. the transfer time tt between D and A.

The geographical distance has been traditionally chosen as fundamental feature
of mobility studies because it is objective and constant. On the contrary, the
relevance can be a subjective feature and can vary over time, as well as the time
transfer is evidently not constant, as the duration of the same transfer, carried
out under different conditions, can be affected by many factor.

To validate my study I performed the analysis over the two datasets presented
in section both the continuous dataset and the trajectory one. To be able
to use the GeolLife trajectory dataset I performed a pre-processing of the data as
described in the previous section (5.5.3). I used the filling heuristic specified
before (Papandrea et al.[ [[2013]]) to densify the trajectory points corresponding
to the pause phase, while removing points belonging to the users’ movements.
To summarize, I selected from the dataset a subset of significant users who have
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collected at least 20 relevant days of data, where a relevant day includes at least
3 hours of location sampling.

Also for the continuous dataset 1 perform a data filtering, selecting a subset
of significant users which have collected at least 14 relevant days of data (two
weeks), where a relevant day includes at least 6 hours of location sampling. The
resulting number of relevant users I considered for this study is 6. To identify the
users’ relevant Pols, in this case, I only act on the algorithm tuning (Papandrea
and Giordano|[[2014, 2012]).

5.6.1 Feature 1: Relevance

As already discussed in section the relevance of a Pol allows to determine
how likely an individual will move towards that place or return to it according
to her/his history and how the place is important in the user’s daily routine.
The relevance distributions shown in Figure exhibit a power-law behavior,
where a huge number of Pols are visited only few times, while few Pols are
commonly visited and have a very high value of relevance. Thus during a long
observation period the number of preferred and recurrent locations are very
limited.

——Relevance Pols in Trajectories Dataset
-e-Relevance Pols in Continous Mobility Datase

107 10”' 10
Relevance

0

Figure 5.11. Cumulative distribution function of the Pols relevance for both
datasets.

According to the relevance values, we have shown in section (Papandrea
et al. [[2013]]) that the Pols associated to each user can be automatically grouped
in 3 classes: Low Interest Locations (LILs), Medium Interest Locations (MILs) and
High Interest Locations (HILs). Figure shows the histogram of the percent-
age of Pols in the three classes of relevance: as visible from the figure, the Pols
partitioning in classes is common for both the datasets. Of course the LIL is the
widest class due to the distribution of the relevance CDE
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Figure 5.12. Comparison of the relevance class distribution.

5.6.2 Feature 2: Geographical Distance

I measure the geographical distance between the departure Pol D and the arrival
Pol A, by considering their centroids and adopting the haversine formula (Sin-
nott| [[1984]) to incorporate the Earth curvature. A few works in literature (Rhee
et al. [2011]], Gonzalez et al. [[2008]]) have studied the mobility characteristic so
far. They showed that it follows a Pareto distribution with an exponential cut-off
due to the spatial limits of human mobility and suggest that human movements
can be modeled by a Levy-walk process. As it can be seen in Figure the
same kind of distribution can be observed in both datasets up to different geo-
graphical limits (longer tail in the GeoLife Project dataset). As a consequence,
these results validate the previous works that consider only the spatial distance
when describing mobility of human beings.

o Continous Mobility Dataset|
* Trajectories Dataset

CCDF P(X>X)
S

Distance (meter)

Figure 5.13. Complementary cumulative distribution function of the distance
between consecutive Pols for both datasets.

5.6.3 Feature 3: Transfer Time

How far are two Pols apart? Remoteness has always been measured by means
of Pols geographical distance; we observe that distance can also be expressed
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in terms of transfer time, i.e the time needed to move from the departure D
to the arrival Pol A. The transfer time distribution of the dataset, as shown
in Figure |5.14, is also a power-law with a cut-off but it smooths the long tail
of the geographical distance distributions. Specifically, in the spatial case both
distributions coincides unless few points in the tail, however if we consider the
transfer time, people behave differently. In fact the cut-off values are totally
different; about 1.5 hour in the continuous dataset and 4-5 hours in the GeoLife
one.

The impact of this observation is fundamental as it suggests that time and
space do not always match and, in particular, they do not match whenever long
geographical distances are considered. I argue that the shorter tail in the time
distribution is due to the fact that, as opposite to geographical distance distribu-
tion, in the time transfer analysis there are less occurrences of events far from
the mean. It is unusual that people spend more than few hours in commuting
between Pols, while it is not unusual that the Pols are far from each other, but
connected by fast transportation means.

0 T T

2| ?

* Trajectories Dataset
o Continous Mobility Dataset

10° 10’ 10%
Time (min)

Figure 5.14. Complementary cumulative distribution function of the transfer
time between consecutive Pols for both datasets.

5.6.4 Time Transfer and Geographical Distance Correlation

In our daily life, we decide to move towards a particular place if we have enough
time; by contrast, the current mobility analysis is driven only by the geographical
distance. This dichotomy derives from the implicit assumption that time and
distance are strictly related. Although this is roughly true on small scales, it
comes out that this is not perfectly working when the scope of mobility enlarges
to, for instance, metropolitan or regional areas. To shed light on this aspect of
human mobility we have computed the Pearson Correlation Coefficient between
geographical distances and transfer times on both dataset, defined as:
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O-(tt,Ar)
Ott * GAr

PCC(tt,Ar) = (5.11)

where 0, A, is the covariance between the temporal and the geographical
distances respectively, o,, and o ,, indicate their variances.

Dataset PCC
Continuous Mobility Dataset 0.4
Trajectories Dataset 0.1

Table 5.1. Pearson Correlation Coefficient (PCC) between geographical dis-
tances and transfer times on the Trajectories and Continuous Mobility Datasets

As shown by Table when applied to the continuous dataset, the Pearson
Correlation Coefficient is equal to 0.4, which indicates a small/medium degree
of correlation; however, if we consider the GeoLife dataset it is equal to 0.1,
meaning that the two quantities are not correlated. In wider areas the adoption
of different commuting strategies makes lose the proportionality between the
transfer time and the distance, typical of movements in small regions. To deepen
this issue I show in Figure the relation between geographical distance and
transfer time. Considering a displacement typical of the urban/metropolitan
area, we observe that the average transfer time has a sub-linear trend account-
ing for the increasing speed of the different forms of transportation adopted to
contract the geographical distances. This observation strengthen the intuition
that temporal and spatial metrics capture different distances as the second con-
tracts the first one.

+ sample
——mean and standard deviation

. . .
20 25 30

0 15
Distance (km)

Figure 5.15. Relation between the traveled distance and the transfer time. Red
dots presented the sample extracted from the GeolLife dataset and the blue line
represents the mean trend (error bars correspond to the standard deviation).
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Figure 5.16. |5.16a)) and : joint probability distribution of the distance
between consecutive Pols and the relevance classes, P(x < Ar < x+6,class =
C). According to the heat bar, yellow and white squares represent higher
probability. As regards distance we adopt 500 meter bins from 0 to 20 km
(6 =500m). |5.16c and |5.16d} joint probability distribution of the transfer time
between consecutive Pols and the relevance classes P(x < tt < x + §,class =
C). According to the heat bar, yellow and white squares represent higher
probability. In this case, we adopt 20 min bins from 0 to 4 hours (6 = 20min).
[6.16¢] and [5.161 transition probability among relevance classes. Each square
represents the conditional probability to move from a Pol in a class ¢; to a Pol
in a class ¢, P(Cp,,y = C5,Coiq = ¢1). On the x-axis the conditioning variable
C,q and the on the y-axis the conditioned variable C,,,,.
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5.6.5 Transition rules

The human decision to move from a point to another emerges from a complex
decision making process that is influenced by a variety of human and contextual
behavior. To improve the understanding of this process, I want to measure the
impact of relevance, distance and time on the choice to get to a given arrival
Pol A. Let us consider the movements between a departure D and an arrival
A. Each transfer is characterized by the geographical distance between the two
Pols, the transfer time, the class of relevance of the departure Pol D and the class
of relevance of the arrival PoI A.

I start by investigating the impact of the geographical distance on the desti-
nation’s selection process. To this purpose, I specifically analyze human behavior
for the three relevance classes, LIL, MIL and HIL and I group the distance values
in 500m bins. As shown in Figure[5.16aland [5.16b|where the joint probability of
distances and classes is depicted, the behavior is very similar in both datasets. In
all the three relevance classes of destination we note a not monotone decrease of
the visiting probability with a non negligible probability that people move also
toward more distant Pols, as predicted by a Levy-walk process and indicated by
some peaks of brighter color in the right part of the Figures.

A different behavior can be observed when we consider the transfer time
instead of the geographical distance. The visiting probability in the MIL and
HIL is monotonically decreasing (color blur from white to dark brown) with the
temporal distance and reaches values close to zero according to different cut-off
values, as shown in Figure|5.16c¢/and |5.16d} This demonstrates that the transfer
decision process of individuals is driven by the time they need to get to a place,
as people are prone to save their time. This observation advocates a paradigm
shift in the analysis of human mobility: the time, not the distance, is the main
parameter governing human decisions on movements. Furthermore, although not
monotone, the transfer time trend in the LIL is much more smoother than in the
geographical case. In particular we can say that people who want to visit LILs
are willing to spend more time to reach that places, as the highest probabilities
are shifted towards 2-3 hours. This is due to the fact that also a technological
component affects human mobility, as people use different transportation means
for different scale of distances. When people move in small areas, as in the con-
tinuous dataset, the commutation times do not differ much for different type of
transportation. As opposite, when we consider a large area, as in the trajectory
dataset, the commutation times are highly affected by the transportation mean.

Finally, the impact of the class of relevance of the departure Pol is inde-
pendent of the scale of the scenario. As we can note comparing Figure
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and both datasets presents the same characteristic despite the different
geographical areas they span. Even if the conditional probabilities are heavily
affected by the great number of LILs, people commute to/from MILs from/to
HILs, i.e. medium interest locations as pub or hobbies are related to home/work
places (high interest locations). Clearly, even if people have to cover longer
distances, they keep on moving between the places they stay the most (HILs:
home and work), and some other MILs (e.g. gym), and distance affects only the
transitions to LILs.

5.7 Conclusion

In this chapter I described the analysis performed on the trajectories and the con-
tinuous datasets presented in section in order to evaluate a proper learning
methodology for the user’s mobility behavior, and some interesting properties.

A first analysis of the location data resulted in the identification of user’s
relevant Points of Interest. The learning procedure of the user’s mobility model
firstly identifies these Pols and the connection between them, according to the
consecutive visits of the user. A first learning algorithm develops a user pre-
diction graph with this data, to be able to perform next location predictions
according to the current location of the user in the graph. A second learning
algorithm is presented, which includes the timing features, hence allowing the
user’s next location prediction given the location and the time context.

The user mobility is then analyses in order to evaluate the impact of three
different features on the user’s mobility choices. The first feature is the relevance:
how important is a Pol for the user, and how this feature drive the user’s move-
ments. The Pols can be classified according to their relevance value, into three
different classes: HIL, MIL and LIL. According to the analysis described above,
a user tends to have a very limited number of HILs, where it spends most of its
time; instead the number of LIL is very high, and the user tends to spend there
a very limited time. The MIL are also limited in number and the user tends to
visit those Pols regularly but for a short amount of time. The Pols classification is
important for the SLS because it helps in reducing the amount of used storage,
differentiating between important Pol for the mobility prediction model (HILs
and MILs) and not relevant ones (LILs).

The other analyzed features are the geographical distance between pairs of
Pols, and the transfer time between them. The presented analysis reported a
very interesting result. Contrarily to most of the current mobility analysis avail-
able in the State of the Art, where the geographical distance is considered the
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driving feature for the user mobility, I demonstrated above that the transfer time
between Pols is more significant for the user.

More details about the application of the presented models for the user’s
location prediction is presented in the next chapter.

5.8 Remarks

Part of the work presented in this chapter (sections and is the result of
a collaboration with Matteo Zignani, Sabrina Gaito and Gian Paolo Rossi from
the Universitd degli Studi di Milano, which has been published in Papandrea
et al.[[2013] and Zignani et al.| [2014]]. My contributions to the presented work
consists in the continuous dataset collection and analysis, the identification of the
existence of Pol relevance classes (Papandrea and Giordano [2014], Papandrea
and Giordano| [2012]]) and the analysis on the relevance feature on both the
datasets, the continuous and the GeolLife trajectories one.
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Chapter 6

Mobility Prediction

The mobility model implemented by the SLS characterizes the movements of a
user among its Pols. In the following I refer to both the approaches presented
in the previous chapter, to build this user mobility model. In section I
presented the location based mobility model; in this chapter I will use this model
to perform movement predictions using the datasets presented in section
and I show that it allows to learn about the user habits and to perform a quite
good prediction of regular actions. However, this model can be improved, in fact
in section[5.4.2]I introduced the timing parameter to the model, and I will show
in this chapter the better performances of the new model.

6.1 Introduction

A human being, by its nature, needs to have some fixed reference points in life.
These are usually: home/family, work place and some hobbies and leisure ac-
tivities. For this reason, people tend to be repetitive in their behavior, and visit
more frequently few key locations (Isaacman et al.[|[2011]; Zhou et al. [[2007]).
In Isaacman et al.| [2011]], the authors show that it is possible to identify these
reference points and in particular home and work locations, and present as pos-
sible applications of how this information can be used, the calculation of home-
to-work commute.

New technologies are providing enormous possibilities to foster new systems
for following and supporting people in their daily commutes, and several works
in literature tried to capture and model this mobility for: empowering and sim-
plifying new location search, best paths finding [Romoozi et al., [2009]], quality
of service [[Akoush and Sameh, 2007]], reducing the energy consumption of wire-
less network’s communications (Chakraborty et al.| [2006], etc.

101
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Accordingly to this tendency, I start from this observation to build a simple
but powerful learning and prediction model, which can be easily implemented
and used on a mobile device, which allows a user to dynamically update its own
mobility model, in terms of key locations, periodicity at different time-scales,
duration, and it gives the potentiality to self-predict where the user will be next.

Researchers have performed extensive work in the area of mobility predic-
tion, especially in networking communities [Song et al., |2006; [Nicholson and
Noble, 2008]]. The most common approach consists in comparing the current
mobility pattern with historical data, in order to extract similar patterns to pre-
dict next location. Song et al. [2006] used a two-year trace dataset collected
on a campus-wide wireless network, and found that complex prediction models
were at best only negligibly better than the simple ones (i.e., Markov predictor)
in practice. However, since the target environment of the presented thesis is a re-
source constrained environment, a simple prediction model is preferable because
of its low computation overheads and low storage requirements [Nicholson and
Noble, [2008]] (evaluated in chapter|[7)).

An interesting related work is SmartDC, presented by Chon et al. [2014].
The authors applied a simultaneous mobility learning and prediction scheme
to mobile phones, to gradually learn a user’s mobility pattern, and optimize
sensing schedule using the predictable regularity of individual behavior. The
authors implemented two types of location predictor: Markov predictor as a
location-dependent predictor, and nonlinear time series analysis as a location-
independent predictor. The main purpose of this model is to predict the visit-
ing time of a Pols, when the user reaches it. However, this approach requires
a quite long time to learn the user behavior (i.e., it requires three months to
reach around 72 + 9% residence-time predictability). The SLS solution instead
is faster in learning the user mobility regularities and also provides a prediction
algorithm which is location-based, However it is independent from the previ-
ously visited Pols: this allows the SLS to be able to predict the user’s next visited
location also when there is no pattern repetition in the sequence of Pols visited.

While in the SoA some other systems have been presented to predict next
location, many of these techniques are not able to provide accurate predictions
from a spatio-temporal perspective Krumm and Horvitz| [2006]. Scellato et al.
[2011]] presented a location prediction system based on non-linear time series
analysis of the arrival and residence time of a user in relevant places. This
system focuses on the temporal predictability of users presence, when they visit
their most important places.

An interesting work has been presented by [Baumann et al.| [2013]], where
the authors compared a set of 18 different next-place prediction algorithms,
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able to reach a high prediction accuracy, but providing low reliable transition
predictions. A set of performance features are identified and calculated over this
set. They stated that a high average prediction accuracy can be obtained even
by “naive” algorithms which are therefore largely unable to detect transitions
between different places. Finally the authors presented a solution called MA-
JOR whose approach consists in exploiting the 18 algorithms and performing
a majority vote to compute a final prediction, achieving both high prediction
accuracy and reliably predict transitions, at the cost of a higher computational
and memory overhead. Therefore this approach is not a good candidate for
a mobile implementation, when the optimization in resource usage (including
computational and memory costs) is essential. However, the authors focus on an
important point, and in particular on the transition prediction accuracy: in my
work I considered this feature and calculated it for the Location-based algorithm,
where the next-place prediction is based only on the location context (section
) and on the learned transition probabilities; the Location and Time-based al-
gorithm instead is based on the Pols visits repetitiveness of users, in order to
perform next-place predictions.

In my work, the goal is to learn the user’s behavior and to build a proba-
bilistic mobility model, which allows the prediction of the current user’s location
independently from the location visit duration. However, an interesting and in-
novative aspect of this approach is that the model is meant to be built and run
locally on a mobile phone. This opens to a huge number of location based ap-
plications, starting from simple localization Papandrea and Giordano [2012],
which can be run locally without either global knowledge or access to remote
information systems.

The rest of the chapter is structured as follow. Section describes the ap-
plication of the location-based model in the prediction of the user’s next visited
location. Experiments have been performed on the continuous dataset presented
in section and the results are reported in section The time-location
based mobility model introduced in section [5.4.2| is analyzed in more details
here, and applied to the prediction of the user’s location (section [6.3). The
model has been evaluated on the GeolLife trajectories dataset presented in sec-
tion and the results are described in section finally, section [6.3.2]
discuss some open issues and the future work.
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Figure 6.1. Example of Graph’s Section

6.2 Location based model

A preliminary version of the SLS include the location-based model (introduced
in section |5.4.1) to make predictions about the user’s movements by means of
the UPG. To predict the destination of the next movement the SLS calculates the
conditional probability:

PP (moving to node j | current node i) (6.1)

which is the probability of moving to node j, given the current one is node i.
The value of this conditional probability is driven by the probability of the arc
connecting node i to node j. The absence of an arc connecting two nodes, is
equivalent to having an arc with probability equal to zero. Since the probability
of each arc is calculated accordingly to the formula of equation (5.4), the sum
of the probabilities of the outgoing arcs from a node i, is equal to 1.

Referring to the example in Figure a generic source node has n+1 out-
going arcs:

* n arcs directed to known Pols (e.g., locations already visited by the user);

* 1 arc directed to a New Destination node (ND node) representing locations
which are still unknown for the user.

The weight associated to the arc which connects the current node to its ND
node, is related to the transitions done by the user in the history of her/his
movements, from this current node to unknowns nodes. Hence, each node has
a different value associated to its outgoing arc to the ND node.
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The prediction about the next movement, at this phase of the work, do not
include any timing feature (e.g., time of the day in which the user is moving
from one Pol to an other). Clearly, this penalizes the prediction, since time
information is relevant to discriminate among Pols with similar probabilities.
Hence I introduced a new prediction model based on location and time in a
second phase of the SLS development (section [5.4.2)).

6.2.1 Experiment: next movement prediction

I used the continuous dataset presented in to validate the performances of
the proposed prediction method and in particular I focused on how the system
can learn information about the user and about her/his frequently visited loca-
tions, to be able to perform personalized movement predictions. The localization
service of the SLS collects data for 24 hours, and more precisely form 00:00 AM
until 24:00 PM of each day, and, at the end of the day, it processes the data.
Since I am now using for the current analysis the continuous dataset presented
before, I divide the data accordingly in time interval of 24 hours, and I use the
Density Based clustering algorithm (DBScan of WEKA) for identifying the Pols
(section [5.3.1) and construct the daily TPG . I empirically chose the value to
apply to the parameters of the DBSCAN algorithm: i) ¢ (the radius distance of
a neighborhood), ii) minPoints (minimum number of points inside a neighbor-
hood such that it can be considered a cluster). The value of the € parameter
is:

€ =0.001DD (6.2)

where DD stands for decimal degrees. Since, for privacy reasons, each user
involved in the collection of the continuous dataset has been given the possibility
to pause the localization service arbitrarily, the data collected is not always a 24
hours continuous data, but presents some discontinuities. The lack of continuous
data has an impact on the choice of the value to assign to the minPoint DBSCAN
parameter. To face this problem, I empirically defined some thresholds in the
quantity of samples collected during a time period of 24 hours, and associated
them a value for minPoints accordingly (these values are reported in table[6.1).

Performing a clustering analysis on location data without introducing any
temporal feature, may result in identifying also small clusters for areas visited
frequently by the user, but every time for a short temporal interval. For example,
if a user always drive on the same road from home to work and backward, and
she/he frequently incurs in a point of the road characterized by traffic jam, that
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num samples per day | corresponding 6t | minPoint
(720-1440] (12-24] hours 10
(360-720] (6-12] hours 6
(180-360] (3-6] hours 4
(0-180] (0-3] hours 3

Table 6.1. MinPoints values

point may become a clusterﬂ During a first phase of the study [Papandrea and
Giordano, |2012] I introduced an additional parameter to the clustering results:
a threshold value for a posterior filter, to filter out irrelevant clusters identified
by DBScan (section[5.5.3). In the current phase of the work, I face this problem
by introducing a temporal feature in a post clustering analysis.

I use this new feature on the results of the clustering run over the data col-
lected during a 24 hours time period. These results are a set of uncorrelated
Pols, essentially the vertexes of the user temporal prediction graph (TPG). Ap-
plying this new feature consists in adding edges to this graph by reading the
data once again in the order it has been sampled (temporal order). This way
the system reads sequences of consecutive location points belonging to the same
clusters.

Definition 4. When the user is in a generic cluster A, the system identifies a tran-
sition from cluster A to a cluster B, if and only if, it reads minPointsE] consecutive
samples associated to cluster B.

Finally, the graph is further pruned of the vertexes without incoming and
outgoing arcs. At the end of the 24 hours time period, once the related TPG has
been built, it is used to update the global UPG with the information about the
user’s last movements history. Figure [6.2]shows an example of UPG for a User A
of the continuous dataset, after 20 days of data location sampling.

As indicated in Section the model compares the Pols of TPG with the
vertexes of UPG in terms of their euclidean distance and:

* if a Pol,,,, do not correspond to any Polypg, it is added to the UPG, oth-
erwise

!The location based model does not assign any semantic meaning to locations, hence a Pol
may be situated wherever a user spends a relevant amount of time.

2The minPoints value is the same used for the clustering procedure performed in that set of
location data.
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Figure 6.2. UPG’s vertexes of User A, after 20 days

* it is merged to the corresponding Pol ., updating its related values (lati-
tude and longitude of the centroid, spatial extension, weight and density).

Figure shows the growing cardinality of the UPG for different users with
time, for the whole duration of the dataset collection experiment. It is visible
from the figure that the number of Pols in the graph increases considerably dur-
ing the weekends or holidays, while it remains almost stable during working
days. The overall number of Pols for each user tends to grow infinitely with
time. However, the number of real relevant Pols remains limited: this is justified
by the fact that the user tends to always visit new places, but only a few number
of them are really relevant locations which the user visit regularly ([Khetarpaul
et al., 2011}; Papandrea and Giordano, 2012; [Papandrea et al., 2013]). In a sec-
ond phase of my study I faced the need to keep the number of Pols per graph
below a certain threshold, applying a criterion to prune the graph from the not
relevant nodes. Looking at the weights assigned to the vertexes of the UPG,
only few of them have an high value, while most of them are locations visited
sporadically, hence with a small relevance value. A final version of the SLS will
implement a pruning methodology which aims at removing the LILs from the
mobility model data structure, to reduce the storage resource usage. A snapshot
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Figure 6.3. UPG cardinality increasing with time (User A)

of the UPG for User A after 10 days of sampling, is represented in figure |6.4

At each k" day, the system performs predictions about the target locations of
the user’s movements, using the related UPG updated at the end of the (k — 1)
day. The predictions are made using the information learned and stored in the
UPG. As expected, when the user moves toward unknown locations, the system
is unable to perform correct predictions. For this reason, the SLS allows standard
localization techniques for such situations. Also, as the learning phase never
stops and the UPG continues being updated with newly learned data, this effect
gets reduced with time.

I evaluated the error rate of the prediction procedure by measuring the num-
ber of errors over the number of predictions made by the location based model,
when the user is moving from a known Pol, that is a vertex of the UPG.

In this experiment, I decided to give the same relevance to all the samples
while updating the global probabilities, thus to use a = 1/n. In fact, the fac-
tor a is basically used by the update algorithm to give different weights to the
probabilities associated to the arcs of the graph, according to their age. How-
ever, the continuous dataset has been collected within a total duration of only
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20 days, which is a quite short tracking duration to differentiate between old
and new data, hence we decided to give the same weight impact to all the arc
probabilities.

Figure|[6.5shows the prediction error for a sample user, User A, in each stage
of the UPG growth. The number of predictions measured during the experiment
and reported in the figure refers to the number of predictable transactions, going
from a known Pol (a node already present in the UPG) to any other node; the
number of errors is instead the number of wrong predictions. The prediction
performed in this phase of the work is affected by a lack of information: in the
prediction we do not consider the time when the user moves between two Pols.
In numerous situations the system has to make predictions about the next Pol
visited by the user, where all the outgoing arcs from the current Pol have the
same weight (such a situation is visible in figure [6.4]for PoI 0 which is connected
to Pol 3 and Pol 1 with the same weight): time information, in these situations, is

Figure 6.4. UPG of User A: snapshot after 10 sampling days. On each arc it
is reported the number of crossings over it and in each vertex the number of
days it has been visited, over the total number of days since the beginning of
the learning procedure.
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Figure 6.5. Prediction Error for User A

crucial to avoid prediction errors, because the outgoing arcs may have the same
weight but in different times of the day (or of the week, month, year). For this
reason in the second phase of my work I introduce a timing feature (section|6.3)).
In the error evaluation, I consider this factor by increasing the confidence interval
of the prediction. If the user is situated in Pol S, the prediction of the next visited
Pol is among the n reachable Pols with the higher connecting arc weights where
n is the prediction confidence interval. Figure shows the results (related to
User A in figure for n equal to 1 and for n equal to 2 respectively. It is clearly
visible how the error greatly decreases by increasing the confidence interval: this
indicates that, by introducing the time information to situations in which a Pol
has multiple outgoing arcs with the same weight, the error in the prediction
might decrease accordingly.

Figure instead shows the prediction and error rate for a different user
(User D), whose movements are more regular and more repetitive than the ones
already seen for User A. In fact, as we can notice from the figure, the number of
vertexes of the UPG is smaller than the one of the previous user, and the system
is able to perform more predictions since the movements are mostly among the
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same set of regularly visited nodes.

As expected, for both users the number of predictions increases with time.
This is an evidence of the fact that the system learns about the user habits and
becomes able, with time, to predict the movements among learned Pols.

The quantitative measure of the gain in terms of battery consumption is pre-
sented in the following chapter (section [7). I can however give a qualitative
evaluation of the advantage in using the prediction within the SLS.

As an example, I report in table the percentages of predictable transitions
over the total number of user transitions (recall) for both User A and User D
E|: it is clearly visible that the number of predictable transitions for both users
increases in the second half of the experiment, with respect to the first one, even
if we have a limited amount of data. In accordance with what stated above, for
User D the percentage of predictability is higher with respect to User A, because
of the repetitiveness and regularity of his movements. User A instead is a great

3Similar or better percentage were found for all the users.
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Figure 6.6. Prediction Error for User D
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example of globe trotter, introduces above in section[5.5.4]

Considering that the prediction procedure requires a limited number of ac-
cesses to the data stored locally in the UPG, while the localization service re-
quires the usage of expensive technologies, such as GPS, WiFi and GSM, and
considering also the high percentage of predictable transactions (which do not
require the usage of expensive technologies) reported in table I infer that
the advantage in battery consumption is reduced of several order of magnitude.

First half of the | Second half of the
experiment experiment
User A 37% 49%
User D 47% 63%

Table 6.2. Transition Predictability: Recall

Table shows the prediction error percentage values over the total number
of predictions (precision) for the same couple of users. The prediction error per-
centage has a different behavior for the two considered users. For User A, whose
movements are not regular, the error prediction percentage increases from the
first, to the second half of the experiment: this is due to the lack of regularity
in the user movements and to the increasing number of Pols in her/his UPG.
The system frequently has to perform predictions in situation where all the Pols
reachable by the current Pol are connected by arcs with the same weights. In
the case of User D instead, since his movements are more regular, the prediction
error percentage decreases with time.

First half of the | Second half of the
experiment experiment
User A 11% 18%
User D 32% 25%

Table 6.3. Prediction Error: Precision

This analysis also shows that a generic user tends to move among a limited
number of nodes, confirming the study described in section 5.5 even if the num-
ber of Pols of a UPG increases with time, for most of the time her/his movements
are restricted to a very limited set of Pols. This is also visible in figure [6.4 where
after 10 days of learning, User A visited 16 different Pols: 10 of them have been
visited for only 1 day, 4 of them have been visited for 2 days, and only 2 nodes
have been visited for more than 3 days.
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With this analysis I also show that the error performed by the prediction pro-
cedure decreases with time, while the system learns about the user’s behavior.
However, even after an initial learning phase there will be some prediction er-
rors which are mainly caused by two factors: (i) I am not including the timing
factor which is a discriminant in many situations, and (ii) the user can always
visit new locations.

In this last section I assumed that the localization data is correct (the local-
ization procedure performed by the system retrieves the correct locations), and
accordingly, that the clustering procedure identifies the real relevant Pols for
each user. To evaluate the localization procedure I decided to ask for a feedback
from the users which participated to the continuous dataset collection phase (in
fact the dataset has been collected locally, by people working or studying at the
university SUPSI). For privacy reasons we cannot associate a semantic meaning
to the Pols to evaluate their relevance, and nevertheless the semantic meaning
of a certain location cannot give us a proof of its relevance for a certain user.
The applied approach is to ask to each user to confirm or not the relevance of
her/his Pols identified by the system. On average, on the total number of users
involved in the experiment, more than 90% of the Pols identified for each user
is actually a relevant location; the remaining Pols have been identified as loca-
tions where the user spent a significant amount of time, but which cannot be
considered relevant ones (i.e., an highway service area).

However it is difficult to calculate the localization accuracy in terms of the
distance between a “true” location and the one identified by the system, because
of its spatial extension. For example, if a person which uses to go frequently to
the stadium to watch soccer matches, and every time she/he takes a different
spot to sit, the system will identify a relevant cluster associated to the stadium,
whose centroid is somewhere in the middle of the field. The calculated centroid
of the stadium Pol cannot be compared to a real exact location, because the
actual relevant location includes the whole stadium. This justifies our evaluation
methodology based on user’s feedbacks.

6.3 Location and Time based model

In this section I introduce the timing feature to the already presented user’s mo-
bility model. The learning procedure of this model has been presented above
in section Summarizing, each user keeps track of her/his history by up-
dating a Prediction Structure with the actions data learned every 24 hours. This
structure is then used to perform predictions. The SLS stores information about
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the visited Pols into a set of Already Visited Clusters (AVC) and when a new Pol
is visited by the user, it is added to the AVC set.

The Prediction Structure is composed by a set of histograms (one per day)
for each Pol, representing the distribution of the Pols visiting probability during
the days of the week. An example is reported in figure

At each k™" day, the algorithm performs predictions about the user’s current
location, using the Prediction Structure updated at the end of the (k — 1)* day.
The system performs predictions about the current location of the user in two
steps.

1 Firstly it checks the probability of each known Pol for the day,,, .. of the
week, and the dt.,,,.,, £ delayInterval of the day. The delayInterval
parameter is a time interval which let the algorithm tolerate shortly de-
layed predictions (i.e., action predicted few minutes after the real action
occurred, dt., .., + 1), or shortly early predictions (i.e., action predicted
few minutes before the real action occurred, dt . en; — 1). The n most
probable Pols for the current day and time are considered for the predic-
tion. More details are described in section [6.3.11

2 If the history of the user does not include yet any information about the
habitual user’s actions during < day., rent> Ateurrent = delayInterval >,
the system checks the probability of each known Pols for every other days
of the week day; during the same interval of time < day;,dt  rene =
delayInterval >. The daily most probable Pols are selected, but only
the m most frequent ones among them are considered for the prediction
(details about the m parameter are explained in section [6.3.1)).

6.3.1 Experiments and Results

The SLS system is thought to learn from the repetitiveness of the user’s behav-
ior in order to be able to predict habitual actions. Thus, to evaluate its per-
formances, I need a dataset of regular and continuous location samples for a
reasonable number of users. Similarly, the level of precision necessary for the
evaluation is higher than the one we can obtain with traditional WiFi or GSM
technologies. Unfortunately, for most of the available location datasets, the data
corresponds to trajectories, or to WiFi or GSM continuous sampled data.

Therefore, I studied the whole GeoLife dataset presented in section and
selected a limited number of users whose related data presents only few discon-
tinuities. For the selected subset it is easy to recognize the regularity of the user
movements among a limited number of relevant locations.
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The performances of the system are then measured on the basis of how well
it can learn information about the user, and how fast it becomes able to perform
personalized user location predictions.

In order to evaluate the system, firstly I calculated empirically all the pa-
rameters that take part in the algorithms introduced above (in section and

6.3).

* The values assigned to the DBScan clustering algorithm parameters (de-
scribed in section [5.3.1)) are:

¢ =0.001DD (6.3)
minPoints = 10 (6.4)

For both the DBScan parameters, the values have been chosen empirically
considering not only the GeoLife trajectory dataset, but also the continuous
dataset presented in section (Papandrea and Giordano| [2012]).

* After the clustering algorithm has been applied to the sample data, the sys-
tem runs a Temporal post-Filtering procedure (section to distinguish
relevant Pols from the complete set of identified clusters. The empirical
value assigned to the Temporal Threshold parameter, applied for the filter-
ing, is:

TempTh = 10minutes (6.5)

* The unit of time value, which is used to convert the clock timestamp, to
identify a certain interval of time inside the day duration, corresponds to:

dt = 10minutes (6.6)

* For the learning algorithm, the value which characterizes the importance
the system gives to the new data with respect to the historical data is
chosen to be:

a=0.25 (6.7)

Table shows different values of the location prediction error rate (for-
mula for different values of a, for a particular user (User,). For all
the values of a, the predictability rate (formula is constant ad equal
to 88.96%. As clearly visible from the values reported in Table the er-
ror rate increases in two cases: when we assign a very large weight to the
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(1 —a) | error rate%
0.95 13.69
0.90 13.69
0.85 13.42
0.80 13.37
0.75 12.05
0.70 12.32
0.65 12.33

Table 6.4. User,: Prediction Error rate for different values of a

history, and oppositely also when we give the same weight to the history
and to the current data. The best value of a in general is in between these
two opposite situations. This is the reason which lead us to the assigned
value of a. The Prediction Error (error rate) values which appear on ta-
ble corresponds to the rate of the wrong location predictions over the
total number of predictions performed by the system.

o number of prediction errors
PredictionError = — (6.8)
total number of predictions

The empirical choice of the system parameters is also performed on the
basis of its Predictability Rate, which corresponds to the number of pre-
dictable actions over the total number of actions performed by the user.
The system considers unpredictable, the actions performed when the user
moves toward unknown locations or when the movements are to known
locations, during intervals of time when those locations have never been
visited in the past.

) . number of predictable actions
Predictability = - (6.9)
total number of actions

Table reports the values of the Error Rate by applying different values
for n and m to the prediction algorithm. The predictability value does
not change while changing the algorithm’s parameters, and is equal to
88.96%, as already stated before. The values I show in the table are ba-
sically the confidence intervals, and in particular: n is the dimension of
the set of most probable Pols for the current day and time which are con-
sidered for the prediction; and m is the dimension of the weekly most
probable Pols for the current time which are considered for the prediction,
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n | m | error rate%
11 24.18
112 16.80
113 14.67
211 19.43
2|2 13.95
213 12.05

Table 6.5. User,: prediction error rate for different values of m and n, where
a=0.25

when the system still did not learn information about the current day. The
values used during this study are:

n=2, m=3 (6.10)

* The interval of time corresponding to the acceptable delay or early timing
for the activity prediction, corresponds to:

delaylInterval = 2 *dt minutes (20 minutes) (6.11)

I evaluated the performances of the learning and prediction procedures by
measuring the Error rate and the Predictability over the total number of actions
performed daily by the user.

Figure [6.7}up shows the per-day-results of the learning and prediction al-
gorithms run over the data collected by a user (UserA). The figure represents
the number of dt over which the user collected locations data and the learning
algorithm identified actual actions, which correspond to visits to relevant Pols
(blue color in the figure). Against this number we compare the number of dt re-
lated to predictable actions (green color). The red color on the graph represents
the number of dt corresponding to wrong predictions. The lower part of figure
[6.7}down represents the cumulative number of relevant Pols, known by the user
until the corresponding day.

Figures[6.8] [6.9]and [6.10]show the number of Prediction Errors over the num-
ber of Predictable Actions for other users in the dataset (UserB, UserC, UserD).

The Geolife dataset over which I run the experiments, as already mentioned,
has been firstly filtered such that the data selected as appropriate for the evalua-
tion of the system is similar to a continuous sampling dataset. This selection has
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Figure 6.7. Prediction Error and Predictability Rate for User A (a=0.25, n=2,
n=3)

been done on the users: only a small set of them has been considered, despite
the large number of the participants in the collection of this dataset.

To summarize, by running the prediction model over the data related to the
selected users, I applied the following values to the parameters.

{n,m,a} =1{2,3,0.25}
The corresponding error rate, averaged over all the users is:

Error Rate=17.3%
Standard Deviation=5.1%

The predictability rate best value for the available data is:
Predictability Rate=88.96%

The smallest prediction error rate I measured over the whole dataset, is the
one related to the UserA, whose collected traces are very similar to a continuous
sampled dataset. For this and other users I can easily recognize the regularity of
their daily activities and then correctly perform action predictions.

However, in some situations, the system is still not able to predict the ac-
tions of the user. This may occur because of the dataset’s lack of information
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Figure 6.8. Prediction Error and Predictability Rate for User B (a=0.25, n=2

number of time intervals (dt)

know Pols

n=3)

number of time intervals (dt)

know Pols

200

150

100

50

40
30
20
10

160
140
120
100
80
60
40
20

30
20

10

errors  ——
predictions =
actions  —

Ml .|

5 10 15 20 25 30
days

errors ——
predictions s ]

actions s

5 10 15 20 25 30 35 40 45 50
days

Figure 6.9. Prediction Error and Predictability Rate for User C (a=0.25, n=2,

n=3)
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Figure 6.10. Prediction Error and Predictability Rate for User D (a=0.25,
n=2, n=3)

and because of the presence of numerous data gaps. In fact, gaps and missing
information affect the system, which then is not able to learn complete user’s
habits. Therefore, the system can fail to predict correctly the current activity of
the user.

6.3.2 Discussion
History Offset

The prediction, as presented above, is affected by the absence of near history
information. This is a source of error as, while performing predictions, the al-
gorithm uses information learned until the day before, but does not take into
account what happened the same day, or better, few minutes before the pre-
diction. For example, if the algorithm has to predict where the user is at time
10.01.00 a.m. the offset of the history learned for prediction is exactly the time
of the day (10 hours and 1 minute in this example). Considering a near history
consists in setting the offset to a fixed and shorter value (i.e., 30 minutes), hence
the algorithm can adapt its prediction to the very last activities of the user.

A solution to this issue is the implementation of an on-line algorithm which
processes the data as soon as it is sampled and updates the prediction structure
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immediately.

However, the final version of the SLS overcome this problem by adding a
location context to the prediction. The idea is that it performs the prediction of
the next location, knowing which is the current one.

Activity Periodicity

The prediction algorithm also considers the possibility to have user actions with
different periodicity. A common action might be repeated with a period different
from one weekﬂ For example, the user might visit a Pol, every 10 days. Further-
more, the periodicity of the user’s activities might also correspond to multiples
of the Prediction Structure duration (i.e., actions repeated every 3 weeks). In
order to manage this issues, the system introduces two parameters:

* m: the m locations most frequently visited during all the week-days and at
the same interval of time, are also considered in the prediction;

* n: defines the dimension n of the set of locations which are most probably
visited during the current day of the week (for all the weeks in the user’s
history) and the current interval of time.

Acceptable Delay Interval

The regularity of the user’s movements still could contain a factor of unpre-
dictability: for example, a user which starts working every day at 8:00 a.m.,
may be sometimes delayed by the road traffic, and may arrive at her/his work
place during the interval of time [7:40-8:20] a.m. Hence, while evaluating the
error rate of the prediction algorithm, I introduce an other tolerance temporal in-
terval (delaylInterval), which corresponds to the amount of delay or advance
in time which is still considered acceptable for the prediction.

User’s Prediction and Predictability Rate graphs

As it is visible from the figure related to Usery (figure[6.8)), as well as for User,,

User. and Userp (respectively, figures 6.10), at the beginning of the
sampling the algorithm is mostly learning and is not able to perform correct

predictions. At the beginning of the prediction phase, the error rate has a high

4The implemented user’s Prediction Structure duration corresponds to 7 days, from Sunday
to Saturday
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value and it decreases with time, while the system learns about the user’s be-
havior. The cases where we see a larger error rate and/or a lower predictability
factor, mostly corresponds to an increment on the number of Pols known by the
user (visible step in the lower part of the figures); in the other cases, the errors
or unpredictability is caused by the arbitrary of the users which can always visit
new locations, or known locations with a timing different from its regular be-
havior. As expected, for all the users also the number of predictions increases
with time. This is an evidence of the fact that the system learns about the user
habits and become able, with time, to predict the movements among already
known nodes.

6.4 Conclusions

The proposed prediction system for mobile users, might be applied to many
application scenarios. Our main scenario is the optimization of a mobile local-
ization mechanism, the SLS system. The SLS is a smart localization solution for
mobile phones, whose goal is to provide a continuous and ubiquitous localiza-
tion service, reducing the resources utilized with respect to traditional localiza-
tion techniques (e.s., GPS). By using the presented prediction system, the SLS
prevents performing continuous tracking of the mobile user by querying expen-
sive localization provides. This allows SLS to offer a continuous localization ser-
vice by reducing the frequency of those expensive queries, and substituting them
with location predictions, especially when the user performs a limited number of
actions with a certain regularity. Therefore the SLS acquires a certain smartness
by using the presented prediction algorithm, in the evaluation of the resources
usage.

This presented location prediction algorithm can also be used as a stand-
alone system, extracting it from the SLS. It can be used as a context prediction
algorithm where, knowing the location in advance may help in performing smart
and adaptive decisions at the level of the applications (i.e., personalized Apps),
and at the level of the data traffic and network loading.



Chapter 7

SLS Validation

In the previous chapters of this thesis I described in detail and evaluated the
Inference, Learning and Prediction modules of the SLS. In this chapter I will
describe how each module is working together with each other in the Smart Lo-
calization Service, with the purpose of enhancing the usage of battery resources,
while providing continuous localization.

This chapter is structured as follows. In section[7.1]1 provide a summary of
the system, explaining in details how it works and how it incorporates the three
different modules. I explain then the Mobility Learning procedure implemented
by the SLS and the Context based Prediction algorithm, respectively in section
[7.1.1]and |7.1.2] I finally present a final experiment which has been executed to
validate the SLS, and the results obtained in terms of location availability (sec-
tion [7.2.1)), mobile device lifetime (section [7.2.2), network traffic exchanged
(section[7.2.3), impact of the prediction in the localization (section[7.2.4), accu-
racy of the activity and visit inference (section|7.2.5) and in the identification of
the Pols (section[7.2.6). In section|[7.3|I present a quantitative comparative study
of the SLS with respect to two main related works. At the end, in section [7.4]1
provide the final conclusions on the presented work and the obtained results.

7.1 Presentation of the SLLS

The main goal of the SLS is to provide a continuous localization service, adapting
its behavior to the user’s mobility style, hence reducing the energy consumption
costs compared to a standard continuous localization service. To get updated
location data, the SLS periodically performs some reasoning and executes a lo-
cation tracking only when strictly necessary, however guaranteeing continuously
updated information.

123
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The reasoning performed by the SLS has been presented above in section
More in detail: it involves the Inference Module, and consists in inferring
the user’s activity. If the user is not moving the SLS will not perform the local-
ization, otherwise it tries to get a prediction of the user’s next location from the
Prediction Module. If a prediction is not available, or instead if the system can
predict the user’s location but with a reliability which is below a given threshold,
then a location tracking is performed.

To prevent wrong predictions , the SLS never performs more than 3 consec-
utive predictions without checking the actual location of the user. Every time it
performs three consecutive predictions (one every reasoning period), if the user
is still moving, it is forced to execute a real location tracking using the Android
location providers.

When the SLS infers the user is not moving, it stops the location updates,
unless the last location update is older than 2 minutes. In this case, it tries to
get a location update for a maximum duration of 4 consecutive periods in which
the user is not moving. After this interval of time, the SLS stops any location
updates, independently of the time of the last retrieved location information.
This is done to avoid that the system continuously waits for a location update
when the user is visiting an area where both GPS and Network providers are
unavailable (i.e., indoor, basement, etc). Algorithm (1| reports the pseudo-code
of the SLS periodic reasoning.

The SLS infers the user’s activity;
if The user is not moving and (Not moving for at least 5 consecutive periods
or last location update is not older than 2 minutes) then

‘ skip location updates;

else
if prediction available and reliability >= P,;, and number of consecutive

predictions < 3 then
| update the current location with the predicted one;

else
‘ perform location tracking;
end
change the reasoning period according to the current activity;
change the location update period according to the current activity;

end

Algorithm 1: SLS Periodic Reasoning
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The location prediction reliability is given by the probability that a user is
visiting a known location (Pol), at a certain time of a given day of the week. As
already explained in chapters[5|and [6] the users mobility behavior is learned by
the SLS in terms of “regular movements among known Pol”. If a user has an high
probability to be in a certain Pol; at the current time t of the day, and day d of
the week, and the distance between this Pol; and the previous user’s location is
below a give thresholdE] dist,, ,

(P(Pol,|t,d) >= P,,)
and (7.1)
(distance(location;_;,Pol;) <= dist,;)

then the SLS will decide not to perform the location tracking, but to use the
predicted Pol; as the current user’s location. The probability thresholds used for
the reliability study are evaluated empirically and correspond to

P,;, = 40% (7.2)

dist,, = 2000meters (7.3)

The condition about the distance is verified to select a subset of Pols among
the known ones, which are nearby the current user’s location. The SLS then
selects, among them, the Pol with the highest probability, above the defined
threshold P,,. It is important to notice at this point the difference between the
prediction availability threshold (P,;) and the Pol radius,,,, (maximum distance
between coincident Pols): these two distances are different in the sense that, the
second one refers to the Pol spacial dimension, while the first one identifies how
long in advance (in terms of distance) the SLS is able to predict the next visited
Pol. Figure shows an example scenario in which the user (whose location
on the map is identified by a green dot) knows 9 not-coincident Pols (already
visited ones and stored into the prediction data structure): the distance between
these Pols’ centroids is greater than the radius,,,,. The SLS, in order to predict
the user’s next visited Pol, selects the ones located within the dist,, distance;
and among them, it selects the Pol with the higher probability for the related
day/dt.

The period at which the SLS performs the reasoning described above is not
constant, and strictly depends on the current user’s activity. Table contains

!The SLS calculates distances between GPS points by using the Haversine formula
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Figure 7.1. Prediction: example scenario

the values of the adaptive reasoning periods per each inferred activity. If the In-
ference Module cannot retrieve an activity or if the user is inferred to be moving
with a fast vehicle, the SLS will perform the next reasoning after 60 seconds. If
the activity inferred belongs to the class slow vehicle the consecutive reasoning is
triggered after 90 seconds, while if it belongs to the class moving by foot it will
start after 2 minutes. However, if the system infers the user is not moving, the
reasoning period increases every time this activity is consecutively confirmed,
starting from a first period of 2.5 minutes to a maximum value of 10 minutes,
after the fourth consecutive time the system infers the user is not moving. The
activity inference is then performed every 10 minutes until the user is moving
again toward a new location.

Activity || Period [sec]
Not recognized 60
Fast vehicle 60
Slow vehicle 90
Moving by foot 120

Not moving

1°* time 150
2" time 180
374 time 300
from the 4" time 600

Table 7.1. Adaptive reasoning periods
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As already described in section the activity inference is performed by
the SLS by means of a majority study on a set of consecutive windows of sampled
data. Differently from my first experiments (for the training of the decision tree)
the SLS considers 5 consecutive non-overlapping windows, corresponding to 5
seconds of accelerometer sampled data. This way the SLS is able to gather more
information about the user’s movements. The majority study may result in a
“Not recognized” activity, in particular when there is no activity repeated for at
least 3 sliding windows, among the inferred ones. In this case, the SLS performs
its reasoning at its highest sampling frequency: which corresponds to a period
of 60 seconds.

In chapter [5]I described the Learning Module, how it uses the location data
collected to identify the user’s Pols and to learn how the user visits them. For this
purpose, the experiments described in the previous chapters involved the usage
of a Density Based clustering algorithm over the collected location data, to iden-
tify locations relevant to the user. In the final version of the SLS, the Learning
Module implements a different and more lightweight algorithm to understand
and learn the mobility behavior of the user. In fact, given the user’s activity in-
formation provided by the Inference Module, the SLS is able to identify when the
user is visiting a potential Pols. In particular, the SLS identifies a visiting activity
only when the user is not moving (the user is actually still or standing). The
other classes of activities are identified as transitions among Pols. Accordingly,
the SLS stores location information of the user as visits data, only when the user
is still or standing. Therefore the definition of Pol slightly changes with respect
to the one given in section

Definition 5. A Pol is a location where the user spends an amount of time longer
than a fixed threshold, performing very small or no movements.

The threshold in time is:
T,, = Sminutes (7.4)

If a user spends at least T, time in a certain location without moving, the SLS
considers this location area as a Pol, and the user’s activity as a visit to this Pol.

7.1.1 Learning the user’s mobility

The final version of the SLS implements the location and time based learning
algorithm described in section To avoid any impact on the battery con-
sumption, it runs the learning algorithm every time the device is connected to
the charger. The information which are learned by the SLS are
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1. the set of Pols known by the user;
2. the mobility behavior of the user among the known Pols.

Algorithm 2| presents the pseudo code of the learning algorithm implemented
by the SLS.

While running, the SLS collects two set of data:
1. timestamped GPS coordinates of the tracked and predicted locations;
2. timestamped activities of the user.

The Learning Module reads only once the activities data, in the order in which
they have been inferred and it identifies the user’s visits. A Smoothing algorithm
is applied to the activities stream, which eliminates short (in terms of time) gaps
between consecutive visits. If the Inference module infers an activity different
from not moving between two visits, whose duration is shorter than a given
threshold dt,, ;4p, than this activity is considered as noise: it is then discarded
and the two adjacent visits are merged together. The value of this temporal
threshold is:

dtcap = 90seconds (7.5)

After all the user’s visits have been identified in terms of start time and end
time, the Learning Module proceeds with the identification of the related visited
Pols. Per each visit, it selects all the GPS coordinates collected during the visit
duration and calculates their centroid. This calculation is very lightweight in
terms of computational cost and usage of memory, in fact the number of samples
is very limited: these are only collected during the first minutes of the visit;
when the SLS understands the user is not moving, it stops the localization. The
calculated centroid is compared with the already known Pols. If there exist any
already known Pol whose distance to the identified centroid is less than a given
threshold radius,,,, then the centroid and the selected known Pol are merged
together. Otherwise the centroid is considered as a new relevant location for the
user, and the list of known Pol is updated, adding the new one. The distance
threshold between matching Pols corresponds to:

radius,,,, = 150meters (7.6)
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Data: [start time, end time] of the learning period
select the GPS points collected during the interval [start time, end time];
select the activities identified during the interval [start time, end time];
identify the actual visits applying the smoothing algorithm;
/* selected list of visits <start time, end time> */
for visit in visits list do
select the GPS points collected during the visit;
calculate the Centroid;
if the Centroid is near to an already existing Pol then

‘ update the existing Pol;

else
‘ insert a new Pol in the list of known ones;
end
end
/* selected list of visits <start time, end time, PoI> */

update the user mobility model data structure;
identify the list of Low Interest Locations;

if the list of LIL is not empty then
eliminate them from the list of known Pols and from the mobility

model data structure;
end
delete the GPS points related to the learned interval;
delete the activities related to the learned interval,

Algorithm 2: Learning Algorithm applied to a limited interval of time
[start time,end time]

At the end of the described procedure, the learning module retrieved the
list of user’s visits, with the related start time, end time and visited Pol, for the
processed learning interval. This list is then used to update the user’s mobility
model (as already described in section [5.4.2), updating the user’s mobility his-
tory data structure which is stored locally on the device. The dimension of this
data structure is limited, in fact it contains the visit probability per each dt of
the day (144 dt in a day), for each day of the week (1008 dt total in a week),
per each known Pol, only if the related probability is greater than zero. A Pol
visiting probability P(Pol;|day,dt) is greater than zero if and only if the Pol
has been visited at least once, during the given day and time dt. As shown
below, in the validation section (section [7.2.6), the number of Pols is limited,
and especially the number of locations in the classes of HIL and MIL does not
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grow over a certain value (as already demonstrated in Papandrea et al. [[2013]]).
Additionally, among these Pols only few of them are visited for very long time
intervals (HIL). However, only these Pols visited for long intervals of time have
a great impact on the dimension of the mobility history data structure. Storing
only Pols belonging to these classes of relevance, guarantees a limited usage of
storage by the SLS.

After updating the stored user’s mobility model, the Learning Module iden-
tifies the Low Interest Locations (section among the known ones and elim-
inates them form the list of known Pols, and form the mobility behavior data
structure. The Low Interest Locations are identified by analyzing the Pols vis-
iting probabilities distributed during the week. And more in detail, a Pol is
identified as a Low Interest Location if its highest visiting probability is lower
than a give threshold P(PolI),,,, considering all the days of the week, and all
the dt of the day. The value of this threshold is

P(Pol),,,, = 0.08 (7.7)

and corresponds to an interval of time of 4 weeks, without seeing the given
Pol. If a Pol is visited once, and then it is not visited for a duration of four
consecutive weeks, it is classified as LIL. The Low Interest Locations are not
relevant for the purposes of the user’s mobility modeling and prediction, in fact
those are the locations which the user visits sporadically and without regularity.
Hence, eliminating them from the mobility model supports the SLS in reducing
the usage of storage resources without loosing important information about the
mobility behavior of the user.

After the learning procedure, all the stored GPS coordinates and the activities
data related to the processed time period are deleted, to avoid the used storage
dimension to increase monotonically.

Tables and report a summary of all the parameters presented above,
which have been empirically defined and used by the SLS Mobility Model learn-
ing and prediction algorithms.

7.1.2 Location and Time based Prediction

The SLS implements a context-based location prediction algorithm. It predicts
the next user’s location, given the current context in terms of time and location:
“The user is at a certain location (lat,lon) at day dj time t;. Which is the most
probable Pol that is going to be visited at time t; 4, of the same day d;?”. To re-
trieve this information, the system first selects a subset of Pols among the known
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|| Parameter | Value | Definition ||
T, Sminutes minimum visiting time to a Pol
dt cap 90seconds maximum noise time between adjacent visits
radius,,,, | 150meters maximum distance between coincident Pols
P(PoI)in 8% maximum probability of a Low Interest Location
- 3 maximum number of consecutive predictions
- 2minutes maximum delay for a location update

Table 7.2. Learning algorithm’s empirical parameters

| Parameter Value Definition [
P, 40% minimum reliability probability for prediction
dist,, 2000meters | maximum reliability distance for prediction

Table 7.3. Prediction algorithm’s empirical parameters

ones, which are the nearest to the user’s location (location-context evaluation).
Then it performs a time-context evaluation and checks the user’s history, and in
particular the regularity of the user’s visits at day d; of the week, time t;4;

After this evaluation, the SLS decides whether it is able to perform a predic-
tion, and eventually it predicts the next user location. The described context-
based prediction supports the system toward its main goal of reducing the num-
ber of GPS tracking operations.

The location prediction service runs in parallel with the adaptive localization
procedure. The Prediction Module evaluates the possibility to make a predic-
tion periodically, and updates it every dt = 10minutes. At each interval dt
the system checks the actual user’s location and current activity, and updates
accordingly its prediction for the next visited location. This data is provided
to the SLS in the form of candidate prediction < Pol,VisitingProbability >.
The SLS then utilizes this information, stopping the real location tracking, when
appropriate (as described in section|7.1)).

The SLS learning methodology and mobility model allows also a context-
free location prediction. In table [7.4]I report the different levels of predictions
which could be implemented by means of the SLS model. The last two rows of
the table report the actual prediction performed by the SLS. The first two lines
instead represent a context-free location prediction. In fact, the SLS mobility
model allows a location/time user profiling, which identifies the most frequently
visited locations and the time/day those are visited.

Figure represents an example of the mobility history of a user (experi-
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Information Provided | Prediction | Question
time/day Pol, Which Pol will be most likely visited
at a certain time/day?
Pol; time/day | When does the user usually visit Pol;?
current time/day time/day It is monday 10 : 00a.m.,
Pol; when will the user arrive at Pol;?
current time/day time/day It is monday 10:00a.m. and
current location (lat,lon) Pol; the user is at location (lat,lon),
which Pol will the user visit next?
current time/day time/day It is monday 10:00a.m. and
current location (lat,lon) the user is at location (lat,lon),
Pol; is the user going to visit Pol; soon?

Table 7.4. Possible Location Predictions

ment described in section, learned by the SLS. It shows a list of Pols (one per
each plot) and their related visiting probability distributions over a whole day.
As it is visible from the figure, there are two Pols characterized by a long daily-
total visiting time: Pol; and Pol;. Given their relevance calculated at the end of
the experiment, they are classified as High Interest Locations (according tot heir
visiting frequency). Additionally, their distributions probabilities reaches their
maximum values at different times dt of the day: Pol, is mainly visited during
the night, and Pol, is mostly visited during the day. A semantic inference for
these Pols given their visiting probability distribution is then straightforward:
Pol, can be inferred as home location, while Pol, as work locatiorﬂ

Each Pol has a starting probability, in the user mobility data structure, equals
to 0 (hence, basically, it is not present in the related database table). The first
time a Pol is visited, its probability is updated to 0.25, according to the prob-
ability update formula presented in section with time, if the user
visits this Pol regularly, the visiting probability increases monotonically and gets
asymptotic to its maximum value. A Pol probability trend strictly depends on the
regularity of the user in visiting it. In figure[7.3|I represent the visiting probabil-
ity values of a Pol with time, for a specific day day; and time d¢;, given different
moving behavior of the user. Considering on the x-axis, instances of the same
time dt; for the same day day; of consecutive weeks week,, with k = [1,00),
on the y-axis I represent the evolution of the probability value for a given Pol,,:

2While writing this thesis I am currently working on this research direction, with the paper
“On Properties of Human Mobility” under submission to Computer Communications Journal
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Figure 7.2. Probability distribution of the user mobility history for day 3 of
the week (wednesday), after three weeks of learning.

P(Pol,|day;,dt;). Figure represents the probability values for a very regu-
lar behavior of the user: when the user tends to visit regularly Pol, every week,
at the same time of the day < day;,dt; >. The green line shown when the SLS
considers this probability reliable to make a prediction: the SLS could predict
that the user is visiting Pol, at time < day;,dt; > if its probability values are
above the green line. This Pol is then considered as a candidate for the predic-
tion, before the location filtering (the distance from the current location to the
candidate Pol) and the comparation with the other candidates. Figure rep-
resents the probability values for a regular behavior of the user, who visits Pol,
every week, except one. When the user changes sporadically her/his regular
behavior, the probability model is not affected heavily. The probability values
provided by the model are above the reliability threshold (green line) and allow
the SLS to make reliable predictions. If however, the user does not have a regu-
lar behavior in visiting a certain Pol, the probability distribution will not always
allow the SLS to perform predictions. If the user visits a certain Pol only once
(figure [7.3d), after a certain amount of time the SLS removes it from the user’s
mobility history, because not relevant for the mobility model. In the figure, the
red line identifies the probability threshold for the identification of the Low In-
terest Locations: if a Pol has its highest probability value below this threshold,
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it is considered as LIL and eliminates from the mobility model. This procedure
prevents the list of relevant Pols to increase infinitely, because of the number of
LILs, and to keep it updated accounting new and past visiting events. Finally,
figure represents the probability values associated to a user performing reg-
ular visits to a Pol, but with a regularity period different than one week: the user
is in fact visiting a Pol, at time < day;,dt; > every second week. As visible form
the figure, after a certain number of visits (5 visits, with a 2 weeks period) the
SLS starts considering the Pol as reliable per each < day;,dt; >, leaving the
final decision to the distance selection.
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(c¢) Low Interest Location (d) Pol visited every second week

Figure 7.3. P(Polp|day;,dt;) for consecutive weeks, given different mobility
user’s behaviour
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7.1.3 SLS’s working scenario

In order to better understand the SLS’s working scenarios, I will present in this
section an example use case. First of all, it is worth reminding here that SLS
main goal is to provide a continuous localization service reducing the battery
consumption with respect to the already existing solutions. The SLS does not
aim at providing a highly accurate localization service, for example indoor lo-
calization with shop/room -level granularity. It instead provides a smart service
which continuously track the user, utilizing the technologies already available
on mobile phones.

Consider a scenario in which a user is running on his mobile phone a certain
number of location-based applications. All these applications are usually inter-
acting directly with the Operating System to get location information as soon as
this is necessary: this implies that the applications always query directly the GPS
or Network providers to retrieve location data. This is clearly energy expensive,
and this is where the SLS applies his smartness. By using the SLS, the applica-
tions are not interacting anymore with the Operating System, but they query the
SLS for up-to-date location information. The SLS in turn, by learning the move-
ment habits of the user and analyzing his actual activity and context, is able to
provide up-to-date location information without the necessity of a continuous
tracking (then utilizing less energy). The SLS learns how the user is moving,
which are the related Pols where he spends most of his time, when he uses to
visit them, and it calculates what the user is doing (activity performed). All these
information are retrieved and learned by the SLS without the need of a remote
computational support, hence without the need of sending private information
out through the internet.

Hence, the SLS is a real-time user-specific smart location service, which is
able to learn who is the carrying user: it does not only provide location infor-
mation but it performs a user profiling and consequently adapt the performed
localization procedure.

7.2  Validation

Each module of the SLS has been presented in details and evaluated indepen-
dently in the previous chapters. In this section I will present the final experi-
ment [ carried out to validate the complete SLS system. The main contribution
of my work consists in the smart usage of the battery resource while performing
continuous localization with a mobile device. As I already explained in chap-
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ter |3| there are many issues in the battery consumption evaluation, especially
when the measuring scenario involves mobility. The are, in fact, many variables
which may impact the life time of a mobile phone: for example, the device hard-
ware, the operating system version, the activity of the users on the device (i.e.,
amount of phone calls, applications and services running on the phone), the ac-
tive network interfaces (i.e., WiFi, Bluetooth, data connection), the intensity of
the screen’s light, the running services and application, etc. However for this
final experiment, I analyzed the device battery consumption by measuring the
battery discharge with time, while it was providing a continuous localization ser-
vice. Furthermore, the devices used for this experiment are all the same: equal
hardware and operating system version.

For this final experiment I used 3 Galaxy Nexus Google phones from Sam-
sung, running the Android operating system version 4.2.1. Each mobile de-
vice involved in the experiment is set to the factory state and registered with
a Google account (to be able to use the Google services for the localization);
the WiFi interface is enabled (to support the localization) but never connected
to any network and the Bluetooth is disabled (since it is not necessary for the
experiment). Each phone is registered with the same, unique Google account:
this way all the three phones transmit and receive a similar amount of data from
the native Google services.

During this final experiment a user carried with him all the three above men-
tioned devices, for a duration of 22 days, while performing everyday activities.
All the three devices are performing continuous localization, querying the GPS
and Network providers by means of the Android Localization Manager. How-
ever, each of them implements a different localization methodology. More in
detail:

* Phone A is running the SLS (as described above in this chapter) and starts
learning about the carrying user at the beginning of the experiment;

* Phone B is running a Continuous Localization service without learning
procedures, tracking the user’s location every 60 seconds;

* Phone C is running a modified version of the SLS, which does not imple-
ment the activity inference procedure, instead it uses the Activity Recogni-
tion API introduced recently into the Google Play Services.

At the end of each day the user involved in the experiment was actively trigger-
ing the learning procedure, and a copy of each device’s internal database was
stored externally, to be able to perform the offline validation study. The results of
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this experiment are strictly dependent on the user’s activities and on his mobility
behavior. However this validation methodology seems to be the most eligible to
verify the goal fulfillment of the SLS.

The three phones are in the same state as described above (same device, op-
erating system version, Google account registered, first usage after a factory state
reset) and all of them start without knowing anything about the carrying user.
To get updated location data, Phone B queries the Android location providers
periodically. While Phone A and Phone C perform some reasoning periodically
and queries the providers only when strictly necessary, however guaranteeing
updated information. The reasoning performed by the SLS has been presented
above in[2.2.1] and more in details in section Together with these phones,
the user carried with him a fourth device Phone D in order to collect the ground
truth: an application running on this phone allowed the user to keep track of
the performed activities (classes of activity) and the related starting and ending
time; moreover, per each visit to a Pol, the user logged the actual location.

The performances of the phones involved in this validation experiment are
measured in terms of six main parameters.

1. Availability of the location information: all the phones store locally the
tracking location data, to be able to perform an offline evaluation of the
location information availability ﬂ This measure shows the capability of
the SLS to provide continuous location information while performing not
a continuous but an adaptive tracking of the mobile device.

2. Mobile-phone life-time: each device keeps track of the battery drain, storing
the timestamp of the battery consumption with a granularity of 1%. This
measure shows how the SLS improves the battery usage, extending the
lifetime of a phone, while adapting its behavior to the user’s activity and
learning his mobility habits.

3. Amount of network traffic exchanged: each phone stores information about
the total amount of data traffic exchanged (only for the evaluation pur-
poses). With this measure I will compare the performances of the SLS,
against the SLS modified version running the Google Activity Recognition,
with respect to the amount of exchanged network traffic. The SLS does
not need a support from a back-end server, hence it generates a reduced
amount of network traffic which is usually expensive in terms of battery

3This is done only for the purpose of the off-line evaluation, in fact the SLS does not store the
location information
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consumption, and it does not transmit any sensitive information which
could generate some privacy issues.

4. Amount of predicted locations against the number of visits to known Pols.
With this measure we have a quantitative evaluation of the impact of the
prediction on the localization procedure.

5. Accuracy of the Inference performed to identify the user’s activities and vis-
its to Pols. With this measure I am able to compare the performances of
the SLS Inference Module against the Google Activity Recognition service.

6. Pol identification. With this measure I evaluate the capability of the SLS
to identify the correct Pols, comparing them with the collected Ground
Truth. I also measure the growing number of Pols with time, per class of
relevance, in order to estimate the storage resources usage.

7.2.1 Availability of Location Information

The continuity of the location information is an important requirement for a
tracking service. With this work I want to show that it is not necessary to per-
form a continuous localization procedure to ensure continuity in the information
retrieved. The SLS in fact implements a smart usage of the devices embedded
sensors, providing a continuous localization service which adapts its localization
procedures frequency to the actual activity of the user.

In this section I will evaluate the continuity of the location information pro-
vided by the phones involved in the experiment. To perform this evaluation I
will consider the time intervals in which the user is moving, according to the
ground truth. In these time intervals I will verify the location information avail-
ability. During this evaluation I will not consider the intervals of time in which
the user is not moving, because I assume during this time the user’s location
does not change. Figure shows the percentage of time, over the total time
during which the user was performing a moving activity for the whole experi-
ment, in which a location has been stored in the internal database. To calculate
this percentage I considered the total time divided in small time slots of 60 sec-
onds, and I verified per each time interval, if the system stored at least one
location data. As visible from the figure, Phone B which is running a continuous
localization system, does not have a complete coverage. This is mainly caused
by the unavailability of the localization android providers, especially in indoor
environments. Considering PhoneB’s percentage of time for the availability of
the location information as our target (90%), the correspondent percentages
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measured for PhoneA (SLS) and PhoneC (SLS+GoogleAR) have acceptable val-
ues. PhoneA provides a coverage of the location information which correspond
to 82%, this means that for 8% of the time it is not able to provide a location
information, compared to the location availability for Phone B (location infor-
mation available for 91% of the target time). Phone C has a slightly lower value
of location coverage which corresponds to 75%, 15% less than PhoneB (83%
of the target time). We have however to consider that Phone A and Phone C
are sampling the location with 1 minute sampling period only when the user is
moving with a fast vehicle. When moving differently, the location update period
gets longer and the location updates arrive to the system with a lower frequency.
This way, the SLS ensures an always updated location information, but it does
not guaranty one update per minute.

Percentage of time in which the location information is available
T T T

100

Percentage

PhoneA PhoneC PhoneB

Figure 7.4. Availability of the location information
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7.2.2 Mobile device life-time

There are several variables impacting the mobile phone life-time. During this
experiment I tried to limit the number of free variables in this evaluation by
using different instances of the same mobile device at its factory state, running
the same version of the operating system, and registered with the same Google
account. The mobility of the user heavily impact the device lifetime of Phone
A and C, which are running two different versions of the SLS, both adapting
their reasoning to the real user’s activities. Phone A (running the SLS) and C
(running the SLS with Google Activity Recognition) are increasing the location
update frequency while moving fast (fast vehicle) and reducing it while mov-
ing slower (moving by foot), and finally stopping completely the user’s tracking
while not moving. This adaptive sampling increases the device lifetime when the
user is mostly static; while it uses more battery resources when the user is con-
stantly moving. Phone B, instead, implements a continuous localization service
providing periodically a location update, independently from the user’s mobility
behavior.

Assuming the user is always on a fast vehicle, the SLS performs the reasoning
and location tracking at its fastest rate (equal to the location tracking frequency
of Phone B). It will however consume less battery than a continuous localization
system (Phone B), because it performs, when possible, context based location
predictions in place of direct locations tracking. Figure [7.5|represents the aver-
age lifetime of the three phones while running the final experiment. As visible
from the plot, Phone A (SLS) has an average lifetime of 38.1 hours, with a stan-
dard deviation of 3.2 hours; Phone C (SLS+GoogleAR) has an average lifetime
of 34.6 with a standard deviation of 2.2 hours; while Phone B (Continuous Local-
ization) has an average lifetime of 18.6 with a standard deviation of 2.5 hours.
This absolute measured life time strictly depends on the device (hardware) in-
volved in the experiment. However, what is significant from this plot is the ratio
between the average lifetime of each device. Phone A lifetime is more than
twice the lifetime of Phone B: this shows the heavy impact of the location track-
ing on the battery resources. However, also the activity recognition performed
by means of the Google services has a great impact on the battery consumption,
and this is shown by the average lifetime of Phone C, which correspond to 10%
less than Phone A lifetime.

To give an idea about the dependency of the lifetime to the mobility of the
user, I report in figure two examples of lifetime for Phone A and Phone C,
considering two extreme cases of user always still and user mostly moving behav-
iors. In the graph I compare Day A which has the longest total daily moving
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Lifetime [100-10]% battery capacity
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Figure 7.5. Lifetime

duration and Day B during which the user has been always still, visiting the
same Pol for the whole day. In the graph I plot the amount of battery discharged
during these two days, in percentage, by the two phones. As visible from the
figure, both the devices are using more battery during Day A (user mostly mov-
ing) with respect to Day B. Phone C shows a larger difference in the amount of
battery used during the two days: this is explained by the delay of the Google
activity recognition service in sending the activity updates. In fact, by means of
empirical evaluations, the Android activity update time resulted dependent on
the activity itself, very delayed for some activities (more than 10 seconds to get
an update, when the user is not still), and not always successful (returning an
activity not identified result).

Phone B is not adapting its behavior to the user mobility, hence we expect
an almost similar lifetime duration every day. During these specific cases, it dis-
charged completely the battery in around 15hours during Day B, and around
14hours during Day A. This small difference may be caused by the availabil-
ity of the GPS or Network location providers which may impact on the delay
of the location updates (as explained in section for the Localization on-off
mechanism).
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Figure 7.6. Battery discharge during a complete day

7.2.3 Amount of network traffic exchanged

In this section I will show the cumulative amount of traffic exchanged by each
phone during the experiment. As already specified above, in this chapter, each
device is registered with the same Google account, to ensure the comparability
of the data traffic exchanged by each phone from the Android native services.
Transmitting and receiving data traffic has a considerable impact on the battery
resource. The SLS is a stand-alone system which does not need a back-end server
either for the activity inference implementation and for the identification of the
Pols. The autonomy of the system is not only positive in terms of reduction of
the usage of the battery, but also in terms of privacy. Since the SLS processes
all the sensitive user’s data (e.g., the activity and the location) internally, it does
not face any privacy issue which involves the security of the data. All the user’s
sensitive data is not exchanged with any external server, and does not have to
be protected, simply because it is only stored locally into the device, and only
accessible by the SLS process and services.

Focusing on the battery consumption issue, given by the exchanged data
traffic, I measured the cumulative amount of traffic exchanged by each phone
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during the experiment. The result is shown in figure What is shown in this
plot refers to the total amount of data traffic exchanged by each phone, includ-
ing the base network traffic exchanged by the Operating System and running
Android native applications. All the data traffic is referred to the data connec-
tion of the phones, in fact for each of them the WiFi interface is active but there
is no saved wireless network, and the phones did not connect to open networks
automatically. As visible form the figure, all the three phones have a cumulative
amount of traffic exchanged with is more than zero. This is explained by the
localization itself. As already explained above, the location tracking mechanism
implemented by the SLS makes use of the Android GPS and Network providers:
this implies a communication with the Google servers (especially when the Net-
work provider is involved).

As expected from this measurement, Phone C (implementing the SLS+GoogleAR)
has the higher amount of data traffic exchanged, reaching a total amount of
51Mbyte for the whole duration of the experiment. What is really interest-
ing from the figure is the amount of traffic exchanged by the SLS compared
to the Continuous Localization system. The periodic requests to the Android
localization providers performed by Phone B require an higher amount of data
traffic (50Mbyte), with respect to the amount of traffic exchanged by the SLS
(43Mbyte). Interpolating the measurements with a polynomial function of de-
gree 1, Phone A has a slope of 1.18e + 04, while Phone B and Phone C have a
slope of 1.439¢ + 04 and 1.432e + 04 respectively: this shows that the function
associated to the SLS will stay below the other one, hence the amount of network
traffic exchanged by the SLS will always be lower than the traffic exchanged by
the Continuous Localization and the SLS+Google AR.

The high step in the figure, corresponding to the fifth day of sampling, is
caused by the traffic exchanged by the Android native applications running on
the devices (Google email in this case), and requiring traffic for downloading
data (or in general for their periodic updates).

7.2.4 Amount of predicted locations

The location prediction performed by the SLS (both Phone A and Phone C) have
an impact on the battery consumption given by the localization. In fact, when
the user is moving and the system is able to predict the user’s location, the
location tracking is stopped. Since a location tracking involves the GPS and
WiFi interfaces, while the prediction involves only querying a local database, the
second procedure turns to be less expensive in terms of battery consumption.
The impact of the prediction on the overall localization, strictly depends on
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Figure 7.7. Amount of traffic exchanged

the mobility behavior of the user. In section I defined globetrotter the
user spending the majority of the time visiting LILs (Papandrea et al.| [2013]]),
while the creature-of-habit is the user spending most of the time visiting her/his
HILs. For the first user’s category, the SLS location prediction has a very reduced
impact, in fact the user tends to mostly visit new places, hence the visits are
unlikely predictable. However, for the second user’s class (creature-of-habit),
and for users which have a quite regular mobility behavior, the SLS is able to
learn their habits in terms of when and where the user tends to move and to
build a mobility model over it. The prediction performed by the SLS by means
of this mobility model have a significant impact of the localization of this class
of users.

During the experiment, the first two weeks have been used for learning. The
prediction procedure was then performed, during this first phase, considering
the mobility of the users on the previous day of the week (i.e., prediction of
tuesday, performed considering the movements of monday). During this first
phase the probability threshold P,, defined above in section have been
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lowered, allowing early predictions. And in particular, has been set to 0.2. In the
last phase of the experiment, from the third week, the prediction was working
with a week periodicity (i.e., prediction of the movements of monday, according
to the movements performed during the last mondays) as described in section
7.1.2

To give an idea of the impact of the prediction on the localization during this
final experiment, I measured the amount of time per day, the SLS performed
a prediction instead of a direct location tracking. Figure |7.8| shows the total
duration of the localization procedure per day, divided per provider. In the plots,
the portions of the bars in yellow, represent the amount of time the system was
performing a prediction: the portions in green are referred to the localization by
means of the network provider; and the blu refers tot he GPS. As visible form
the figure, the SLS is able to perform predictions already from the second day
of the experiment. The vertical red line shows the separation between the first
part and the second one of the experiment. The difference in the amount of
predicted locations with respect to the direct tracking is not clearly visible, in
fact the regularity of the movements of the involved user allow the system to
perform early predictions, which have a great impact on the localization since
the second day of the experiment. The system is able to predict locations almost
every day, except for very few of them (this is the case when the user is visiting
new places for all the movements of the day). In the figure, the days without
data (no bar in the plot) correspond to the days in which the user was not
moving out from the same Pol.

Figure [7.9] shows the global amount of time, for the whole duration of the
experiment, the SLS used a certain provider, with respect to the total duration
of the localization procedure (when the user is moving). As visible from the
figure, there is a relevant amount of prediction in the overall duration of the
localization. For Phone A, the total amount of predictions is almost the same
as the total amount of locations retrieved by means of the GPS provider (about
40%). While the network provider only contributed with 20% of the retrieved
locations. Phone C instead has an higher amount of location retrieved with
GPS (51%) and a lower number of locations retrieved by means of the network
provider (13%). For the prediction, the amount is similar as for Phone A and
corresponds to 36% of the total localization.

In order to evaluate the reliability of the prediction, I also measured the dis-
tance between the predicted locations and the correspondent locations tracked
by Phone B (continuous localization). This comparation does not give us a mea-
sure of the correctness of the location predictions because the location data
tracked by Phone B cannot be considered as ground truth. In fact, when the
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Figure 7.8. Duration of the localization per day

tracked location is retrieved by means of a network provider, the distance to the
real one may reach the order of kilometers. However, this comparation gives us
an idea of how close are the predicted locations from the best available ones. In
table[7.5]1 report the average distance between the predicted locations of Phone
A and Phone C, compared to the correspondent locations tracked by Phone B by
means of the Android GPS and Network providers respectively. The average dis-
tance between the predicted locations and the tracked ones is around 1.5Km in
the case of tracking with GPS provider, and about 2 or 3 Km in case of tracking
with the Network provider. The standard deviation values are quite high with
respect to the mean values. This is explained by the fact that, the SLS could
potentially start the prediction when the user is actually 2Km away from a Pol,
and it can continue predicting the visit to this Pol while the user moves toward
it, until it reaches a very small distance (distance ~ 0). Therefore we can read
the values in the table as the average distance to the target Pol, at which the SLS
starts predicting the next visiting destination.
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Figure 7.9. Global localization, per provider

Mean [Km] | Standard deviation [Km]
GPS PhoneA 1.607 1.097
PhoneC 1.481 1.098
Network PhoneA 3.001 1.283
PhoneC 1.947 1.641

Table 7.5. Prediction distances to tracked locations

7.2.5 Visit and Activity Inference

The Inference performed by the SLS during this final experiment has been eval-
uated in terms of:

* capability of the system to identify a visit;
* accuracy of the activity inference, according to the classification in not

moving, moving by foot, slow vehicle, fast vehicle.

Visit inference

Table [7.6] and [7.7) represent the confusion matrices related to the data collected
during the experiment by Phone A (running the SLS), and Phone C (running
the modified version of the SLS with Google Activity Recognition) respectively.
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The unit of measure of the values reported in the matrices is the minute. And
in particular, the TP (true positive) is the amount of minutes in which the user
was actually visiting a Pol, and the system correctly inferred a visit. The TN
(true negative) corresponds to the number of minutes in which the user was not
visiting any Pol, and the system inferred correctly the user was not performing a
visit. While FP (false positive) and FN (false negative) correspond to the incor-
rect inference of the system, when respectively the user was not visiting any Pol
and the system inferred a visit, and when the user was really visiting a Pol and
the system inferred he was moving.

ACTUAL\INFERRED Visit Not visit
Visit TP = 28556 | FN = 89
Not visit FP = 738 TN = 1009

Table 7.6. SLS: Confusion Matrix for the Visits identification

ACTUAL\INFERRED Visit Not visit
Visit TP = 28076 | FN = 569
Not visit FP =490 | TN = 1255

Table 7.7. SLS+Google AR: Confusion Matrix for the Visits identification

Since the ground truth has been collected manually, during everyday ac-
tivities, by means of a time scheduling mobile application, there may be some
small delays or anticipations in the logged activities, with respect to the real
performed ones. To overcome this problem, I remove from the ground truth
(only for this evaluation processing) the first and last minute of each activity,
and consequently, also the activities lasting less than 2 minutes.

To be able to compare between the SLS and the modified version of the SLS
with Google AR, I calculated the precision, accuracy and recall values for both
of them (table [7.8). As visible from the table, both devices perform very well
in inferring when the user is visiting a Pol, or not. In many situations the SLS
performs mistaken inferences after the visit to a Pol. In fact, after a visit, when
the user starts moving, the system could identify this mobility change with a
delay of 10 minutes (in the worst case), according to the adaptive reasoning
period values: most of the inference FP are performed during this interval in
which the SLS does not check the activity of the user, and infers the user is still
visiting the last seen Pol, while he is actually already moving away. Moreover,
most of the FN are performed by the SLS when the user is actually visiting a
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Pol, but within this visit he performs moving activities longer than the minimum
dt, cap interval.

In the table the values of Accuracy, Precision and Recall are all very high
(higher than 96%) for both Phone A and Phone C. I report in the table also the
Balanced Accuracy, whose formula is reported in equation Its value is low
compared to the accuracy (for both phones), in fact it depends half on ratio of
correct predictions when the user is performing a visit, and half on the ratio of
the correct predictions while the user is not performing a visit. Since the amount
of time while visiting a Pol is much higher than the time while moving between
them, the balanced accuracy handles this issue and gives to both the cases the
same weight. Its value reported in table is quite low because it is affected by
the low precision in identifying a “not visit”.

0.5%———4+05% ———— (7.8)
TP +FN FP+TN
SLS SLS +
Google AR
Precision 97.5% 98.3%
Recall 99.7% 98.0%
Accuracy 97.3% 96.5%
Balanced Accuracy | 78.8% 84.9%

Table 7.8. Evaluation of the visit’s inference

Activity class inference

The same methodology used for the visits, has been applied to calculate the ac-
curacy of the activity inference. The SLS infers the activity of the user in classes,
as already explained in chapter [4] Tables and represent the confusion
matrices related to the data collected during the experiment by Phone A and
Phone C respectively. Also in this case, the unit of measure for the values re-
ported in the tables is the minute. Since the classes involved in the inference
algorithms are four, I represented in each element (i, j) of the matrices the num-
ber of minutes in which the user was performing activity i and the system was
inferring activity j.

The row corresponding to the slow vehicle activities is composed by all ze-
ros elements, because the user was not performing this activity for the whole
duration of the experiment. For the same reason, in table this activity is
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missing. For the not moving activity, both the devices are performing well: the
accuracy on the identification of this class of activity corresponds to 97.3% for
the SLS and to 97.1% for the Google Activity Recognition. The inference of the
fast vehicle class is less accurate, and it presents many False Negative, inferring
the class Not Moving (hence lowering the recall value). There are two main rea-
sons for these FN. First, the device is often still while being in the car (e.g. at
a traffic light, stuck in the traffic). The second reason is more technical, and in
particular, the main discriminant feature for the differentiation of the fast vehicle
and moving by foot activities is the standard deviation of the amplitude of the
acceleration vector. In many situations, the stability of the car and the driving
at a constant speed, gives an acceleration whose standard deviation is similar to
the still activity. However the balanced accuracy (which takes into account the
imbalanced dataset) has a value of 71.5% for Phone A and 71.6% for Phone C.

The main source of error is given by the moving by foot activity. This class
of activities includes movements like walking and strolling, while the standing
and still activities are included in the not moving class. While collecting the
ground truth it was quite difficult to label the standing activity, which however
was included in the moving by foot class, and the not moving class was used to
label the only still activity. The other main source of FN for this class is the
prediction of fast vehicle for both Phone A and Phone C. The balanced accuracy
for this class correspond to 69.6% for the SLS and 70.7% for the Google Activity
Recognition.

INFERRED | Fast Slow | Moving Not
ACTUAL vehicle | vehicle | by foot | moving
Fast vehicle 363 12 26 419
Slow vehicle 0 0 0 0
Moving by foot 257 19 375 302
Not moving 90 1 19 28460

Table 7.9. SLS: Confusion Matrix for the Activity Inference

In table I also show the Global performances of the two algorithms,
which are very similar in terms of accuracy. It is worth mentioning once here
that the SLS does not require a back-end server to perform the activity inference,
while the Google AR does not work without internet connection. And, further-
more, the SLS response time is shorter than the Google Activity Recognition.
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INFERRED | Fast Slow | Moving Not
ACTUAL vehicle | vehicle | by foot | moving
Fast vehicle 359 0 6 458
Slow vehicle 0 0 0 0
Moving by foot 127 18 362 365
Not moving 11 3 18 28217

Table 7.10. SLS+Google AR: Confusion Matrix for the Activity Inference

7.2.6 Pols identification

In this section I will show the results of the Pols identification analysis. First of
all I will analyze the growing number of Pols for both the devices running the
SLS (Phone A and Phone C) and consecutively I will measure the correctness of
the Pols, calculating the distances with the ones specified in the ground truth.

Cumulative number of new Pols visited by the user

25 T

o
T

Number of Pols

o
T

SLS
SLS+GoogleAR
GT

o

10 15
Number of days

25

Figure 7.10. Cumulative number of new identified Pols

Figure shows the growing number of Pols identified by Phone A (SLS)

and Phone C (SLS + Google AR) for the whole duration of the experiment,
compared with the ground truth. As visible from the figure, the total number of
Pols is constantly increasing, in fact the user tends to always visit new places.
Especially during this experiment which is lasting for a limited amount of time,
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SLS SLS +
Google AR
Not moving Precision 97.5 97.2
Recall 99.6 99.9
Accuracy 97.3 97.1
Balanced Accuracy 79.5 75.7
Moving by foot Precision 89.3 93.8
Recall 39.3 41.5
Accuracy 97.9 98.2
Balanced Accuracy 69.6 70.7
Fast vehicle Precision 51.1 72.2
Recall 44.3 43.6
Accuracy 97.3 97.9
Balanced Accuracy 71.5 71.6
Global Precision 96.2 96.6
Recall 96.2 96.6
Accuracy 98.1 98.3

Table 7.11. Evaluation of the activity’s inference [%]

the system is constantly learning user’s new relevant locations. After a certain
amount of time (which may depend on the mobility category of the user), the
slope of the cumulative number of new Pols decreases.

This Pols learning procedure may result in a massive usage of the storage
resources, and consequently in the increment of the response time for the queries
to the local database. To avoid this problem, the SLS eliminates from its internal
storage the information about Pols which become, with time, not relevant to the
user, the LILs (as explained in section [7.1.2)). Figure gives an idea of the
amount of Pols which belongs to the LILs class (in yellow), at the end of the
experiment. The separation of the Pols in classes has been performed according
to the methodology already explained before, in section As visible from
the figure, the LIL class includes the highest number of Pols, compared to the
other two classes of relevance.

In figure [7.12]1 show the percentage number of Pols, over the complete set
of stored ones, per different values of relevance, at the end of the experiment.
According to the previous figure, we can more clearly see from this graph that
the majority of the Pols (from 64%t081%) have a relevance lower than 10%,
while only less than 5% of the stored Pols have a relevance higher than 90%
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Figure 7.11. Number of Pols per class of Relevance

(HILs). Therefore, this result justifies the SLS solution of deleting the LILs from
the storage, to optimize the storage resource usage.

Table reports the values, calculated for the whole duration of the ex-
periment, about the average daily number of new identified Pols, and the cor-
respondent error. This error is calculated averaging the daily difference of the
number of new identified Pols by either the SLS and the SLS+GoogleAR, with
the correspondent number from the ground truth. In the ground truth, the av-
erage number of new Pols identified per day is 0.95, this means that the user
tends to visit, in average, 0.95 new Pols per day. Both Phone A and Phone C
identify every day a number of new Pols which differs from the ground truth
of 0.54 and 0.63 Pols in average, respectively. This error value is quite high,
considering that it corresponds to 63% of the average for the SLS and to the
56% for the SLS+GoogleAR. To understand this values, I evaluated the error in
the Pols identification by measuring the distance between the wrongly identified
Pols and the correct ones from the ground truth.

I report in table those distances, and in particular: for the correctly
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Figure 7.12. Percentage number of Pols per value of relevance

| SLS | SLS+GoogleAR

Average Number of new Pols 0.86 1.13
Average error in the number of new Pols || 0.54 0.63

Table 7.12. Average per day: number of new Pols and error against the GT

identified Pols, the average distance to the actual corresponding locations form
the GT; for the wrongly identified ones, the distances to the nearest Pols from
the GT. The correctly identified Pols correspond to the ones which lie within a
circle area with radius radius,,,, (whose value is reported in table[7.2)), around
the Pols specified in the ground truth. And the wrongly identified ones, are all
the other Pols which lie outside these circles.

In table[7.13]1 also specify the percentage of correct Pol identification for the
whole duration of the experiment. From the values reported in the table, the SLS
seems to work better than the modified version with Google activity inference.
However, the two systems implement the same procedure for the localization.
The only difference is in the inference of the activity, which drives the changes
to the localization frequency. The lower accuracy of the not moving activity of
the SLS+GoogleAR with respect to the SLS, implies the forcing of the location
tracking for Phone C in situations when, for example, the user is actually still
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and Phone A is not tracking him. In such situations, the user may be still while
visiting an indoor location with GPS not reachable. The only provider available
in this case is the Network one, which typically provides information with an
high error in terms of location extension in space. Phone C could hence localize
the user with an errors in the order of kilometers. This is the basically the reason
for the high average distance for the wrongly identified Pol by Phone C.

For the correctly identified Pols, both Phone A and Phone C perform very
well, identifying Pols with an average distance from the ones in the ground
truth of less than 35meters.

| SLS SLS+GoogleAR
Correctly identified Pols | Percentage of Pols 68% 44%
Average distance | 29.08meters 34.69meters
Wrongly identified Pols | Percentage of Pols 32% 56%
Average distance | 357.95meters | 4613.6meters

Table 7.13. Average distance between identified and actual Pols

To better understand the results presented above, I also measured the total
amount of time spent by the user visiting each Pols’ class of relevance. With this
measure I am able to identify the category of the user running the experiment,
and in particular I am able to understand if he is a globe-trotter or a creature-
of-habit one. Figure shows the result of this measurement for both Phone
A (SLS) and Phone C (SLS+GoogleAR) compared to the ground truth. All the
instances confirm that the user is spending most of his visiting time in Pols be-
longing to the HIL class. Globally, the user spent more than 70% of his visiting
time in the Most Visited Pols, not more than 8% of its visiting time in the Low In-
terest Locations and the remaining time in the Medium Interest Locations. This
is the typical behavior of the creature-of-habit category of users.

7.3 Comparative Study

This section evaluates quantitatively how the SLS outperforms already existing
solutions for efficient localization. Table |7.14| reports the main results achieved
by the SLS, and compares them with two of the most relevant related works
(Chon et al. [2014]]; Kim et al. [2010]).

With respect to a periodic localization procedure, the SLS increases the mo-
bile device lifetime of more than 100%; also the other two solutions contribute
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Figure 7.13. Percentage of the total visiting time per class of relevance

| SLS SmartDC [2014] SensLoc [2010]
lifetime increased
with respect to >100% 81% 87%
periodic tracking
localization coverage 90% 90% 95%
activity computation 80ms 100ms -
complexity 5 windows accelerometer for 95% 5 second accelerometer
(time) (DecisionTree) prediction (Markov) 1 feature
# visit inference accuracy 97.3% 93% 94%
Pol extension range 150m 500m -
WiFi fingerprinting
# Pol identification 68% 76% -
accuracy avg mean error 400m
bootstrap learning 2 weeks 3 months -
time (avg)
backend server no no no
computation offload
implementation on mobile emulation on mobile

Table 7.14. Comparative study results.

to the increment of the battery lifetime compared to a fixed period procedure,
corresponding to more than 80% for both of them. In terms of localization
coverage, and comparing to a periodic localization procedure, all the three pre-
sented approaches perform similarly, being able to localize the user for 90% of
the visited locations. While comparing the complexity of the activity inference
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computation, the SLS outperforms the other solutions, being able to identify the
user’s activity within 80ms, while the other solutions requires more than 100ms.
In terms of accuracy in the user’s visits inference, the SLS achieves 97.3% pre-
cision in the number of visits correctly identified, while the other two solutions
reach a precision of 93% and 94% respectively. The Pol extension range cor-
responds to 150m for the SLS, leading to a Pol identification accuracy of 68%,
with an average distance error of 400m; for the |[Chon et al. [2014] instead, the
Pols identification accuracy reaches 76% while the Pol extension range is larger,
corresponding to 500m. One of the strengths of SLS with respect to the related
works consists in its average time for the learning bootstrap, that is the time the
system needs in order to learn about the user mobility habits, before being able
to reduce the resources usage. For the SLS the bootstrap time corresponds to
2 weeks, while for the |Chon et al. [2014] it reaches 3 months. All the three
compared solutions are built to work on mobile devices, without the support of
any backend server. But only the SLS and the ? have been really implemented
and tested on-mobile; the Chon et al.| [2014] instead have been evaluated on
emulation environment.

7.4 Conclusion

In this chapter I validated the SLS against a continuous localization system. I
performed a real experiment where a user was carrying with him three phones
performing continuous localization for a total duration of 22 days. Each phone
was running different versions of the localization service, and in particular: one
phone was running the SLS system (Phone A), a second phone was running a
continuous localization system with a fixed duty cycle (Phone B), and a third
phone was running a modified version of the SLS running the Google Activity
Recognition instead of the SLS Inference Module (Phone C).

The experiment showed that it is not necessary to perform continuous loca-
tion tracking to ensure continuous location information. In fact, the measured
location availability of Phone B is only 8% more than Phone A and 15% more
than Phone C. However, the mobile device lifetime is strongly improved by using
the SLS. While Phone B has an average lifetime of 18.6hours only performing
the localization (less than a complete day), Phone A and Phone C greatly outper-
form it, with an average lifetime of 38.1 and 34.6 hours respectively. Since the
phones were only running the localization service, in a normal situation when
the phone is mainly used for phone calls, messaging and surfing the internet,
the expected lifetime duration will cover the whole day. This validates the ap-
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proach described in this thesis which aimed at reducing the battery resources
consumption while providing continuous location information.

The measured performances of Phone A and Phone C are comparable in
terms of accuracy of the visits inference, which correspond to 97.3% for Phone
A and to 96.5% for Phone C. Also the inference of the class of activity is com-
parable, the SLS has a global accuracy of 98.1% , while the Google AR reaches
a value equal to 98.3%. However, Phone A is independent from any back-end
server, and in particular the activity inference algorithm may run without in-
terned connection, while Phone C strictly depend on the Google Services. This
factor causes a difference in the amount of network transmitted and received by
the two phones: for instance, for this experiment, Phone A exchanged 14% less
data traffic than Phone C.

Not only the activity inference and the adaptive localization duty-cycling con-
tribute to the reduction of the battery consumption, but also the location pre-
diction performed by the SLS. In fact, almost 40% of the locations retrieved by
Phone A and C are provided by the Prediction Module. Moreover, the SLS per-
forms well in identifying the user’s Pols: it identifies correctly 69% of the Pols
and for the remaining ones, it performs an average error of only 397.25 meters.

Moreover, I measured the impact of SLS in the storage usage, and showed
that the amount of relevant location for the prediction model is very low (total
number of HIL and MIL): 5 Pol for the SLS, over a total amount of 19 identified
Pols. Also, the user involved in the experiment has been classified as a “creature-
of-habit” user, with an amount of 76% of the total time spent visiting his HILs.

Finally, I would like to mention that SLS is a solution without security holes,
all the algorithms are run on the mobile, there is no exchange of information
with other nodes/servers, hence no privacy issues.



Chapter 8

Conclusion and outlook

The main contribution of this dissertation is the design, implementation and
validation of a smart localization solution for mobile devices. Considering
the importance of the location as a context information in many scenarios, this
thesis addressed the issue of the resources consumption due to the localization
service. And in particular, an enhanced localization solution was proposed that
efficiently reduces the overall energy consumption compared to standard local-
ization techniques.

8.1 Summary and conclusions

The research work performed for the development of this thesis follows three
main directions.

8.1.1 Human Mobility

The first research direction is Human Mobility: the key idea was to build a model
which reflects the regularity of the user while visiting her/his relevant Points of
Interest. Being able to model the mobility habits of the user in terms of locations
visited and timing of the visits allows a smarter usage of the mobile devices re-
sources while performing localization. And additionally, it gives the possibility
to classify the user according to his mobility behavior and to predict his regular
movements. In this thesis a user-centric mobility model was proposed based on
the relevance property of the Points of Interest. I show that the Pols relevant
for a user can be divided into three main classes of relevance: High Interest Lo-
cations, limited in number, where the user spends most of the time and which
are visited almost daily; Medium Interest Locations, where the user spends a

159
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relevant amount of time and which are visited frequently; Low Interest Loca-
tions, which are location sporadically visited by the user. The mobility model
presented in this thesis is based on the first two groups of Pols (HIL and MIL),
and in particular on the timing habits of the user while moving among these
Pols. Since the majority of the Pols visited by a user are LILs, the identification
of this class of relevance allows the model to neglect them, and it reduces the
storage usage. Within the SLS solution, the Learning Module is in charge of this
task: it learns the habits of the user in terms of visits to Pols and builds the user
mobility model. The studies performed in this direction of my work leaded to
important results.

* “Only few Pols are really relevant for Human Mobility.”

* “The main parameter governing human decisions on movements is travel
time, and not travel distance.”.

8.1.2 Mobility Prediction

The second research direction of my work is Mobility Prediction and it is strictly
related to the previously described one: modeling the user mobility behavior
gives the possibility to also predict the users movements. In this thesis I imple-
mented a context based location prediction algorithm whose task is to reduce the
direct location tracking procedure while the user performs regular visits to rele-
vant Pols. The main goal of this algorithm is to reduce the usage of the battery
resources while continuously tracking the user. In a final validation experiment
I showed that, for a general user classified as creature-of-habit (hence showing
a regular behavior), the SLS is able to predict the next locations up to 40% of
the time, while the user is moving. This is a relevant result, in fact the major-
ity of users present regularities in their mobility behavior. However this result
strengthens the potential of the proposed algorithm.

8.1.3 Activity Inference

The third direction of this work focuses on Activity Inference, and in particular
I investigated a methodology to adapt the localization duty cycling according
to the activity of the user. The accelerometer sensor was exploited (nowadays
available on almost every smartphone) to retrieve a set of 30 features in order
to infer the activity of the user, among four different classes of activity: not mov-
ing, moving by foot, slow vehicle and fast vehicle. The inferred activity is then
used to change the location tracking duty cycle, reducing it while the user is
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moving fast, and increasing it while the user is moving more slowly; and finally
stopping the location tracking while the user is static. As frequently proposed in
the body of related work, I used the Decision Tree algorithm, which is known to
be very lightweight in terms of resource consumption, hence a good candidate
for running on a mobile platform. The inference algorithm is trained offline,
and it runs completely on the mobile device, without the support of any back-
end server. The benefit is twofold: it prevents any privacy issue raised by the
transmission of private information; and it does not generate any data traffic,
which might be expensive in terms of battery consumption. In the final valida-
tion experiment mentioned above, I measured the performance of the algorithm
and compared it with the Google Activity Recognition service. The measured
accuracy is comparable for both solutions and it corresponds to 98.1% for the
presented algorithm and to 98.3% for the Google implementation. However,
the network traffic exchanged during the experiment has been reduced by al-
most 15% with the SLS inference algorithm, and the localization does not have
security holes while being comparable in terms of performance.

All the three specified directions of my work have been carried out in par-
allel, and they merged in the implementation of the SLS. In the final validation
experiment I have shown that the lifetime of a mobile device may be doubled by
using the SLS as opposed to a traditional continuous localization system, while
losing only less than 10% of the localization coverage.

The remarkable results achieved in this thesis proved that machine learning
and artificial intelligence are very efficient approaches to solve the resource con-
sumption problem associated to the localization. This dissertation paves the way
to further location-based services and optimizations, which will inherently im-
prove the performances of mobile applications, lower their cost and complexity,
and expand their potentials.

8.2 Directions for future research

I list here some interesting research directions that can be addressed to extend
the work presented in this dissertation.

One research topic that can be addressed is the analysis of the user social
behavior. Learning and modeling the user mobility gives the possibility to un-
derstand how the users moves and visits certain locations: for example, how
long a user visits areas in the HIL class, how often he visits locations in the LIL
class, etc. These information about how long and how often a user visits certain
location reference classes could further the understanding of the user’s behavior
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and social category. Some initial results in this direction have been presented in
this dissertation, classifying the mobility behavior of the user in creature-of-habit
and wanderer.

Modeling the mobility behavior of the user in terms of Pols, classes of rele-
vance and visit probability distributions with time gives the inputs to perform a
semantic inference of the visited locations. More specifically, given the regularity
of the human behavior in visiting high interest locations, it is possible to infer
their semantic meaning for the user (e.g., if a certain Pol is home or work place).
Changing the perspective, and analysing the mobility of users from a social point
of view, hence analysing the mobility of the crowd among the socially relevant
Pols, the relevance classes will change their semantic content (e.g., an High-
Interest Location for a single user could be his home, an High-Interest Location
for the crowd could be a popular restaurant). This allows the inference of the
semantic meaning of crowd-relevant Pols, according to their visiting behavior
with time.

The user next-visit prediction algorithm implemented by the SLS allows the
prediction of the user’s movements toward High-Interest Locations and Medium-
Interest Locations. However the SLS is not able to predict visits to Low-Interest
Locations; in fact, by definition, such locations are seldom visited by each indi-
vidual user. Also in this case analysing the mobility of the users from a social
point of view would allow modeling the crowd mobility among those Pols. Lo-
cations that are LILs for a particular user, may be much more relevant for the
crowd, who visits them with a certain regularity.

The version of the SLS developed and analyzed within this thesis does not
provide any query interface between the application layer and the SLS, through
which individual location-based apps could specify specific requirements such as
accuracy and latency. However this is one of the ongoing future work direction.
When providing location information to many applications, the SLS will set its
parameters in order to satisfy the strictest application requirements, specified in
terms of location update frequency and location accuracy. This way, it will be
able to satisfy all the other coarser specifications. This application requirement
tuning is performed by the SLS modifying accordingly the reasoning period (for
the information latency) and the P,, and dist,;, values (for the prediction accu-
racy). However, the SLS will offer a best effort service to the application layer,
in order to adapt its behavior to the actual battery availability.
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Appendix A

On-Mobile Feature Calculation

The SLS applies an Inferential algorithm to understand the movements of the
user. As already explained in the thesis, it collects data from the virtual linear
acceleration sensor and calculates a set of features over it. These features are
then provided to a trained decision tree for the activity inference. To summarize,
the set of features calculated by the system are reported in table

Feature | Symbol | Formula
Mean | p Y
Standard Deviation o \/ % > (fi- u)?
©

Signal to noise ratio | SNR -
Peak-Peak amplitude | P—PA | —>", (f (t;) — f (t))
3t f (0) <f(1).Vi#k
Energy E D Sl

.. 1N\m  |dfi
Derivative d nZi:l dt;

Table A.1. List of features

Since the features are calculated online, it is extremely important to optimize
the computational cost in order to have a reduced battery consumption. While
it is straightforward the calculation of some of these features on the stream of
the data (e.g., mean and energy), for some other features it may be required
a second reading of the samples (e.g. standard deviation and signal to noise
ratio). For example, the definition of the standard deviation reported in the table
requires an a-priori knowledge of the mean value, which implies two passes over
the data. This is not a feasible solution for the SLS online feature calculation,
which need to produce incremental results after each sample becomes available.
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In the following I report the development of the variance definition (applying
the square root operation to the variance we retrieve the standard deviation),
which results in equation It solves the “data double pass” problem since it
allows the calculation of the standard deviation from two running sumes.

1 n
ozzz E (x; — w)* (A.1)
i=1

n

! Z (xlz —2x; U+ uz) (A.2)

n i=1

1< 1< 1<
=) xX2—2u— ) x;+ui-> 1 A3
n; t 'unZ ! 'un; (A-3)

i=1

1o, N
—Zx. —2uu+ p— (A.4)
n < ! n
1< 2 2
—le. — W (A.5)
ni3

In the following I will report the pseudo code of the online calculation of all
the features (algorithm [3). This calculation is applied to all the 5 values of the
data input vector (described in paragraph [4.6.3). To simplify the code, I will
refer to a general stream of data f. Each sample of the data is referred as f;, and
fo is the first sample. The number of samples in the data window is n. As visible
from the algorithm, reading only once the stream data it is possible t calculate
all the 30 features involved in the inference algorithm. This algorithm gives the
possibility to perform the features calculation without storing the sampled data,
hence without impacting the storage resources of the mobile device.
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A= fo;
B = fg;
D = fo;
F =0;
while read f; in the sliding window [f,, f,,] do
B =B+ f?
D = min(D, f;);
— fi=fia].
F=F+ ti_ti—i ?
end
_ A,
u = g)
sigma =/ E — u?;
SNR=&;
P—-PA=u—D;
d=2%;

n

Algorithm 3: Online features calculation
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