Analysis and Optimization of Task
Granularity on the Java Virtual Machine

Doctoral Dissertation submitted to the
Faculty of Informatics of the Universita della Svizzera Italiana
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by
Andrea Rosa

under the supervision of

Prof. Walter Binder

August 2018

Dissertation Committee

Prof. Fernando Pedone Universita della Svizzera italiana, Switzerland
Prof. Robert Soulé Universita della Svizzera italiana, Switzerland

Prof. Petr Tuma Charles University, Czech Republic
Prof. Giuseppe Serazzi Politecnico di Milano, Italy

Dissertation accepted on 2 August 2018

Research Advisor PhD Program Director

Prof. Walter Binder Prof. Olaf Schenk

I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been submit-
ted previously, in whole or in part, to qualify for any other academic award; and
the content of the thesis is the result of work which has been carried out since
the official commencement date of the approved research program.

Andrea Rosa
Lugano, 2 August 2018

iii

To Eleonora

iv

Abstract

Task granularity, i.e., the amount of work performed by parallel tasks, is a key
performance attribute of parallel applications. On the one hand, fine-grained
tasks (i.e., small tasks carrying out few computations) may introduce considerable
parallelization overheads. On the other hand, coarse-grained tasks (i.e., large
tasks performing substantial computations) may not fully utilize the available
CPU cores, leading to missed parallelization opportunities.

We focus on task-parallel applications running in a single Java Virtual Machine
on a shared-memory multicore. Despite their performance may considerably
depend on the granularity of their tasks, this topic has received little attention
in the literature. Our work fills this gap, analyzing and optimizing the task
granularity of such applications.

In this dissertation, we present a new methodology to accurately and efficiently
collect the granularity of each executed task, implemented in a novel profiler. Our
profiler collects carefully selected metrics from the whole system stack with low
overhead. Our tool helps developers locate performance and scalability problems,
and identifies classes and methods where optimizations related to task granularity
are needed, guiding developers towards useful optimizations.

Moreover, we introduce a novel technique to drastically reduce the overhead of
task-granularity profiling, by reifying the class hierarchy of the target application
within a separate instrumentation process. Our approach allows the instrumen-
tation process to instrument only the classes representing tasks, inserting more
efficient instrumentation code which decreases the overhead of task detection.
Our technique significantly speeds up task-granularity profiling and so enables
the collection of accurate metrics with low overhead.

We use our novel techniques to analyze task granularity in the DaCapo, Scala-
Bench, and Spark Perf benchmark suites. We reveal inefficiencies related to
fine-grained and coarse-grained tasks in several workloads. We demonstrate
that the collected task-granularity profiles are actionable by optimizing task
granularity in numerous benchmarks, performing optimizations in classes and
methods indicated by our tool. Our optimizations result in significant speedups

\%

Vi

(up to a factor of 5.90x) in numerous workloads suffering from fine- and coarse-
grained tasks in different environments. Our results highlight the importance of
analyzing and optimizing task granularity on the Java Virtual Machine.

Acknowledgements

First of all, I would like to thank my research advisor Prof. Walter Binder for
providing me with the opportunity to pursue my PhD in his group. I thank
Walter for his guidance through the doctoral studies and his support towards the
achievements described in this dissertation. I am also grateful to Dr. Lydia Y.
Chen, who supported by work during the first years of my doctoral studies.

I would like to thank the members of the dissertation committee, including
Prof. Petr Tuma, Prof. Giuseppe Serazzi, Prof. Fernando Pedone and Prof. Robert
Soulé for their valuable comments that improved this dissertation.

I am grateful to the students who contributed to this research and related
topics, in particular Eduardo Rosales, Haiyang Sun, and Samuele Decarli.

I am thankful to all the past and present members of the Dynamic Analysis
Group, with whom I had a pleasure to work at Universita della Svizzera italiana.
In particular, I would like to express my gratitude to Prof. Lubomir Bulej, Prof.
Alex Villazon and Dr. Yudi Zheng for their support and the inspiring and critical
discussions. I also want to thank Sebastiano Spicuglia, whose support has been
fundamental many times at the very beginning of my doctoral studies.

Special thanks go to Elisa and Janine of the faculty’s Dean Office for their
constant administrative support and help.

Finally, I would like to thank Eleonora and my family for their support during
my doctoral studies.

This work has been funded by the Swiss National Science Foundation (project
200021 141002), by the EU commission (contract ACP2-GA-2013-605442) and
by Oracle (ERO project 1332).

vii

viii

Contents

[Contents] ix
(1__Introductionl 1
1.1 Motivation]ot e e 1
1.2 Goals and Challenges|. 3
(1.3 Contributions| i 3
(1.3.1 Task-Granularity Profiling| 4

[1.3.2 Reification of Complete Supertype Information| 4

[1.3.3 Task-Granularity Analysis and Optimization| S5

(1.4 Dissertation Outline| 6
(1.5 Publications| i 6
[2__State-of-the-Art| 9
2.1 Task Granularity|. L 9
[2.1.1 Estimating Task Granularity| 9

[2.1.2 Adapting Task Granularity| 11

[2.1.3 Profiling Task Granularity] 14

2.2 Work-Span Modell L 14
[2.3 Analyses of Parallel Applications|. 15
[2.4 Profilers for Parallel Applications|. 18
[2.5 Reification of Supertype Information| 21

[3 Task-Granularity Profiling| 25
(3.1 Background|. 25
3.1.1 JVMTIand JNI o 25

B.12 DiSLandShadow VM. 26

3.2 TaskModell 27
................................. 27

(3.2.2 Task Granularity|, 28

[3.2.3 Task Submission| 28

Contents

[3.2.4 Task Aggregation|. 28
(3.2.5 Multiple Task Executions| 29
.................................... 29
[3.4 Profiling Methodologyl 31
[3.4.1 Metric Collection|. 31
[3.4.2 Task Aggregation|. 33
[3.4.3 Trace Alignment| 33
[3.4.4 Calling-Context Profiling| 33
3.5 Instrumentationlt e e e e 34
[3.0.1 Data Structures|. o oL 34
[3.5.2 Challenges in Task-Granularity Profiling|. 37
[3.5.3 Instrumentation for Task-Granularity Profiling|. 38
(3.6 Implementation| 41
[3.6.1 Efficient Shadow Stacks|. 42
[3.6.2 Task-Granularity Profiling| 44
[3.6.3 Task-Submission Profiling| 46
[3.6.4 Calling-Context Profiling 46
(3.7 DISCUSSION| . « . v v vt e e e e e e e e 46
3.7.1 Excluded Metrics|. oot 46
[3.7.2 LImMItations| ot vt ittt e e e 47
[3.8 Summary| e 48
Reification of Complete Supertype Information| 51
4.1 Background|. 52
4.1.1 Classloaders|. 52
4.1.2 Reflective Informationl. 53
4.2 MOtIVationl v vt it e e e e e e e 54
[4.2.1 Compile-time Instrumentation| 55
[4.2.2 Load-time In-process Instrumentation| 56
14.2.3 Load-time Out-of-process Instrumentation| 57
[4.2.4 Classloader Namespaces| 58
4.2.5 Our Solution| 59
4.3 _The DiSL Reflection API| 60
4.4 Implementation|, 62
4.4.1 Forced Loading of Supertypes| 64
[4.4.2 Classloader Namespaces| 67
14.4.3 Preprocessing Java Core Classes| 69
4.5 Efficient Task-Granularity Profiling| 71

4.6 Evaluationl @ i e e 73

Xi Contents
[4.6.1 Methodology and Setup| 73

14.6.2 Profiling Overhead and Speedup| 77

[4.6.3 Perturbation|. 79

[4.7 DISCUSSION| . . . v v v vt e e e e e e e e e e e e e e e e 84
4.7.1 Reclamation of Classloader Namespaces| 84

[4.7.2 Preprocessing Classes Outside java.*/. 84

4.7.3 Instrumentation Statel. 85

4.7.4 Checking Classloader IDs|. 85

[4.7.5 Limitations| 85

4.8 Summary|o e e e e e e 86

[5 Task-Granularity Analysis and Optimization| 89
5.1 Analysis|. 89
[5.1.1 Methodology| 89

[5.1.2 Fine-Grained Tasks|. 90

[5.1.3 Coarse-Grained Tasks| 97

(5.2 OptimIzZation| v v v v v e e e e e e e e e e e e 102
.................................. 102

5.2.2 lusearchl 104

[5.2.3 Spark Perf Benchmarks| 105

5.2.4 Evaluation|.............. 107

[5.3 DISCUSSIONl « « v v v v v e e e e e e e e e e e e 113
[5.3.1 Platform-dependent Results| 113

[5.3.2 Optimization of DaCapo and ScalaBench| 114

[5.3.3 CPU Utilization| 114

[0.4 Summary| e e 114
[6__Conclusion| 117
6.1 Summary of Contributions| 117
6.2 Future Work| 119
Bibliography 123
Index] 137

xii

Contents

Chapter 1

Introduction

In this chapter, we introduce the work presented in this dissertation. Section (1.1
motivates the need for analyzing and optimizing task granularity on the Java
Virtual Machine (JVM). Section[1.2]discusses our goals and the related challenges.
Section presents an overview on the contributions made by our work. Sec-
tion [1.4] outlines the structure of the dissertation. Finally, Section [1.5]lists the
scientific publications supporting the work here presented.

1.1 Motivation

Due to technological limitations complicating further advances in single comput-
ing cores (such as the clock rate and the amount of exploitable instruction-level
parallelism), nowadays processors offer an increasing number of cores. While
modern multicore machines provide extensive opportunities to speed up work-
loads, developing or tuning a parallel application to make good use of all cores
remains challenging.

A popular way to speed up application execution in multicore machines is
task parallelism, i.e., dividing the computation to be performed into units of work
called tasks, executing each task in parallel across different computing cores.
Tasks can execute either the same or different code on the same or different
data, and are run by different threads in parallel. This work focuses on task-
paralleﬂ applications running on a single JVM in a shared-memory multicore.
Task parallelism is implemented in many applications running on the JVM, and is
eased by the presence of dedicated frameworks, such as e.g. thread pools [[105]]
and fork-join pools [104]], which significantly lower the programming effort for

!We denote as task-parallel any application resorting to task parallelism.

2 1.1 Motivation

exploiting task parallelism. As a result, task-parallel applications are widespread
nowadays.

A key performance attribute of task-parallel applications is their task gran-
ularity, i.e., the amount of work performed by each spawned task [[72]. Task
granularity relates to the tradeoff between the overhead of a parallel task execu-
tion and the potential performance gain. If the overall computation is divided
into many fine-grained tasks (i.e., small tasks carrying out few computations), the
application can better utilize the available CPU cores, as there are more tasks that
can be distributed among the computing resources. Unfortunately, this solution
may lead to considerable parallelization overheads, due to the cost of creating
and scheduling a large number of tasks and the substantial synchronization and
communication that may be involved between them. Such overheads may be
mitigated by dividing the work into few coarse-grained tasks (i.e., large tasks
performing substantial computations). However, this solution may miss some
parallelization opportunities, as CPU cores may be underutilized due to the lack
of tasks to be executed or due to an unbalanced division of work to tasks.

The performance of task-parallel applications may considerably depend on
the granularity of their tasks. Hence, understanding task granularity is crucial to
assess and improve the performance of task-parallel applications. Despite this
fact, the analysis and optimization of the task granularity for applications running
on the JVM has received little attention in the literature.

While several researchers have proposed techniques to estimate or control
task granularity in task-parallel applications, such techniques present multiple
limitations (such as lack of accuracy [90; 31]] or limited applicability [[1}; 141} 89]),
may rely on asymptotic complexity functions that can be difficult to compute
or provide [[1}; [80], or may need custom systems [22} (144} [76; 83]]. Moreover,
they fall short in highlighting and optimizing performance drawbacks caused by
coarse-grained tasks. Finally, only few of them support the JVM [[90;; [150]].

On the other hand, despite the presence of studies [[48}; [122}; [146]] based
on the work-span modeﬂ [62; 23] to find the maximum speedup theoretically
obtainable for an application by optimizing the longest sequential tasks, such
studies focus mainly on the analysis and optimization of large sequential portions
of workloads, overlooking the overhead caused by fine-grained tasks. Finally,
while numerous authors provide detailed studies on parallel applications running
on the JVM [229 [19}; |67]] or propose profiling tools for different performance

2The work-span model computes the maximum theoretical speedup of a parallel application
by dividing its work (i.e., the time a sequential execution would take to complete all tasks) by
its span (i.e., the length of the longest chain of tasks that must be executed sequentially). More
information on the model is given in Section

3 1.2 Goals and Challenges

attributes [126; [127; (18} 57]], none of them focuses on task granularity. As a result,
task granularity and its performance impact on task-parallel applications running
on the JVM remain largely unexplored yet crucial topics.

1.2 Goals and Challenges

The goal of our work is analyzing and optimizing the task granularity of parallel
applications running on a single JVM in a shared-memory multicore. In particular,
we aim at 1) characterizing the task granularity of task-parallel applications,
2) analyzing the impact of task granularity on the application performance, 3) lo-
cating workloads where suboptimal task granularity causes negative effects on
application performance, and 4) optimizing task granularity in such workloads,
ultimately enabling significant speedups.

Our work faces notable challenges. Task-parallel applications may use tasks
in complex ways. For example, applications may employ nested tasks (i.e., tasks
fully executing in the dynamic extent of another task’s execution), may use
recursion within tasks, or may execute a single task multiple times. While such
practices may be motivated by design principles or code reuse, they significantly
complicate task-granularity profiling, and may lead to incorrect measurements
of task granularity if not handled correctly. Our work identifies patterns where
special care is needed, and employs efficient instrumentation that guarantees
correct and accurate task-granularity profiling.

Moreover, the metrics considered by our study may be susceptible to pertur-
bations caused by the inserted instrumentation code. In particular, such perturba-
tions may alter the collected values of task granularity, thus biasing our results.
While being of paramount importance, minimizing measurement perturbation
is challenging. Our work takes several measures to keep perturbations low, in-
cluding efficient and accurate profiling techniques, instrumentation and data
structures to increase the accuracy of the collected task-granularity profiles.

1.3 Contributions

To enable our goal of analyzing and optimizing the task granularity of task-parallel
applications running on a single JVM, this dissertation makes the following
contributions.

4 1.3 Contributions

1.3.1 Task-Granularity Profiling

We develop a new methodology for profiling the task granularity of applications
running on the JVM. The goals of our methodology are to collect metrics charac-
terizing task granularity, to pinpoint the impact of task granularity on application
performance, to help developers locate performance and scalability problems,
and to guide them towards effective optimizations.

We implement our profiling technique in tgp, a new task-granularity profiler for
the JVM. Our profiler is built upon the DiSL [82]] Java bytecode instrumentation
framework, which ensures the detection of all spawned tasks, including those
in the Java class library (which is notoriously hard to instrument [[13}; 69])@
Our tool enables an accurate collection of task-granularity profiles even for tasks
showing complex patterns, such as nested tasks, tasks executed multiple times,
and tasks with recursive operations.

To enable a detailed and accurate analysis of task granularity, tgp resorts to
vertical profiling [47]] ,lz_r] collecting a carefully selected set of metrics from the whole
system stack, aligning them via offline analysis. Moreover, thanks to calling-context
profiling [15]] ,E] tgp identifies classes and methods where optimizations related to
task granularity are needed, guiding developers towards useful optimizations
through actionable profiles [88]@ Our technique resorts to a novel and efficient
profiling methodology, instrumentation and data structures to collect accurate
task-granularity profiles with low profiling overhead. Overall, our tool helps
developers locate performance and scalability problems related to task granularity.
To the best of our knowledge, tgp is the first task-granularity profiler for the JVM.

1.3.2 Reification of Complete Supertype Information

We introduce a novel approach to decrease the overhead of task detection as
well as the perturbation of the collected task-granularity profiles. Our technique
accurately reifies the class hierarchy of an instrumented application within a sep-
arate instrumentation process, such that complete reflective supertype information

3The Java class library is the set of core classes offered by the Java platform, which can be
used by every application running on a JVM.

4According to Hauswirth et al. [47]], vertical profiling is an approach that collects and correlates
information about system behavior from different system layers. Our work correlates metrics from
the following layers: application, framework, virtual machine, operating system and hardware.

>A calling context is the set of all methods open on the call stack at a specified point during the
execution of a thread.

®According to Mytkowicz et al. [88]), profiles are actionable if acting on the classes and methods
indicated by the profiles yields performance improvements.

5 1.3 Contributions

(RSD), i.e., information about all direct and indirect supertypes of the class under
instrumentation, is available for each class to be instrumented. This information
is usually not available in frameworks performing bytecode instrumentation in a
separate process, causing the framework to instrument many more classes than
those falling in the scope of the analysis and to insert expensive runtime checks
into the instrumentation code, which introduce additional runtime overhead and
increase the perturbation of the measurements performed.

Our technique enables the instrumentation process to instrument only the
classes that are relevant for the analysis, inserting more efficient instrumentation
code which in turns decreases the overhead of task detection as well as the
perturbations of the collected metrics. Moreover, our technique exposes classloader
namespacesﬂ (usually unavailable) to the instrumentation process, allowing the
instrumentation framework to deal correctly with homonym classes defined by
different classloaders.

Our approach results in a new API—the DiSL Reflection API—included in an
extension of the DiSL framework. Evaluation results show that the API leads to
significant speedups (up to a factor of 6.24x) when profiling task-granularity
with tgp, enabling the collection of task-granularity profiles with low overhead.
While we use the API primarily for optimizing tgp, the API is beneficial also for
other type-specific analyses (i.e., those targeting objects of specific types) on the
JVM.

1.3.3 Task-Granularity Analysis and Optimization

We analyze task granularity in two well-known Java benchmark suites, Da-
Capo [[15] and ScalaBench [[123]], as well as in several applications from Spark
Perf [25]], a benchmark suite for the popular Apache Spark [[149] big-data ana-
lytics framework. To the best of our knowledge, we provide the first analysis of
task granularity for task-parallel applications on the JVM. Moreover, we reveal
performance issues of the target applications that were previously unknown.
Our analysis shows that several applications either employ a small number
of coarse-grained tasks that underutilize CPU and result in idle cores, or a large
number of fine-grained tasks suffering from noticeable contention, which leads
to significant parallelization overheads. We identify coarse-grained tasks that can
be split into several smaller ones to better leverage idle CPU cores, as well as
fine-grained tasks that can be merged to reduce parallelization overheads.

"The namespace of a classloader is the set of all classes loaded by the classloader. More
information is given in Section

6 1.4 Dissertation Outline

We use the actionable profiles collected by tgp to guide the optimization of
task granularity in numerous workloads. We collect and analyze the calling con-
texts upon the creation and submission of tasks causing performance drawbacks,
locating classes and methods to modify to perform optimizations related to task
granularity. Our optimizations result in significant speedups (up to a factor of
5.90x) in several applications suffering from coarse- and fine-grained tasks.

1.4 Dissertation Outline

This dissertation is structured as follows:

* Chapter [2|discusses the state-of-the-art in the domain of this dissertation,
i.e., task granularity, work-span model, analysis of parallel applications,
parallel profilers, as well as reification of reflective information.

* Chapter[3|describes our approach to profile task granularity on the JVM. The
chapter presents the metrics collected, our methodology to obtain accurate
task-granularity profiles, as well as the instrumentation logic employed and
its implementation in tgp.

* Chapter [4] details our technique for reifying complete supertype information
in a separate instrumentation process, its implementation in DiSL, and the
DiSL Reflection API. In addition, the chapter shows how our technique can
lower profiling overhead and measurement perturbation for task-granularity
profiling with tgp.

* Chapter [5| describes our task-granularity analysis on the DaCapo, Scal-
aBench, and Spark Perf benchmarks, details our optimizations related to
task granularity, and discusses the achieved speedups.

* Chapter|[f] concludes the dissertation and outlines future research directions
inspired by this work.

1.5 Publications

This dissertation is based on the following conference papers. The work on task-
granularity profiling, analysis, and optimization (Chapters [3| and |5) has been
published at GPCE'16 and CGO’18:

7 1.5 Publications

* Andrea Rosa, Lydia Y. Chen, and Walter Binder. Actor Profiling in Virtual
Execution Environments. In Proceedings of 15th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experiences
(GPCE), pp. 36-46. 2016. Amsterdam, The Netherlands. ACM. DOI:
10.1145/2993236.2993241.

* Andrea Rosa, Eduardo Rosales, and Walter Binder. Analyzing and Opti-
mizing Task Granularity on the JVM. In Proceedings of the 2018 IEEE /ACM
International Symposium on Code Generation and Optimization (CGO), pp.
27-37. Vienna, Austria. ACM. DOI: 10.1145/3168828.

The work on reification of complete supertype information (Chapter|4) has
been published at GPCE’17:

* Andrea Rosa, Eduardo Rosales, and Walter Binder. Accurate Reification
of Complete Supertype Information for Dynamic Analysis on the JVM. In
Proceedings of 16th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (GPCE), pp. 104-116. 2017. Van-
couver, Canada. ACM. DOI: 10.1145/3136040.3136061.

1.5 Publications

Chapter 2

State-of-the-Art

This chapter describes the state-of-the-art in the domain of the dissertation, i.e.,
analysis and optimization of task granularity for task-parallel applications running
in shared-memory multicores. The chapter is organized as follows. Section
presents work related to task granularity. Section describes research efforts
based on the work-span model. Section[2.3|reviews analyses of parallel workloads.
Section[2.4]describes existing profilers for parallel applications. Finally, Section[2.5]
details related frameworks that reify reflective supertype information during
instrumentation.

2.1 Task Granularity

Task granularity has been studied in different domains (such as many-cores [107;
42} |4]], grids [163}; 186 [125];[87]], cloud-based systems [20; [110]] and reconfigurable
architectures [[9]) and for different kinds of workloads (especially distributed
applications [37;/43];[109;[145]]). In this section, we present related approaches for
estimating (Section [2.1.1)), adapting (Section[2.1.2)), and profiling (Section [2.1.3)
task granularity in applications in the scope of the dissertation, i.e., task-parallel
applications running in shared-memory multicores.

2.1.1 Estimating Task Granularity

Several authors focus on estimating the granularity of parallel tasks before they
are spawned at runtime. The main motivation for estimating task granularity is
to predict whether a task would execute significant work before actually creating
it. The estimations can be used by an underlying framework to avoid spawning a

9

10 2.1 Task Granularity

task predicted as very fine-grained (i.e., if the overhead of creating and scheduling
the task is higher than the expected benefits of executing work in parallel).

Acar et al. [[1]] propose oracle scheduling. This technique is based on an
oracle that estimates the granularity of each task declared by developers. Oracle
scheduling requires users to provide the asymptotic complexity of each function.
The technique resorts to profiling information to increase the accuracy of the
estimations. Unfortunately, programs without an easily derivable asymptotic
complexity are less likely to benefit from oracle scheduling, as accurate complexity
functions are fundamental to apply this technique. On the other hand, our analysis
does not rely on asymptotic complexity functions, and thus can better benefit
complex or large applications.

Lopez et al. [[80] describe a static method to estimate task granularity. Their
approach computes cost functions and performs static program transformations
accordingly, such that the transformed program automatically controls granularity.
Their work resorts to static analysis to derive asymptotic cost functions, which may
be hard to compute with high accuracy in large or complex programs. Similar to
oracle scheduling, this technique may yield poor results for real-world workloads,
differently from our work (that does not require any cost function).

Huelsbergen et al. [[51]] present Dynamic Granularity Estimation, a technique
to estimate task granularity by examining the runtime size of data structures.
Their approach relies on a framework composed of a compile-time and a run-time
component. The compile-time component identifies the parallel functions whose
execution time depends on the size of the associated data structures. The dynamic
component approximates the size of the data structures, thus estimating function
execution times, and eventually task granularity. Another approach by Zoppetti
et al. [[152]] estimates task granularity to generate threads executing large enough
tasks, such that the context switching cost is relatively small compared to the cost
of performing the actual computation.

A common limitation of the above techniques is that they fall short in pinpoint-
ing missed parallelization opportunities related to coarse-grained tasks, as they
mainly focus on avoiding the overhead of creating and scheduling fine-grained
tasks. In contrast, our work enables one to identify and optimize performance
drawbacks of both fine- and coarse-grained tasks.

Moreover, they mainly target implicitly parallel languages, i.e., languages
that allow developers to specify parallelism through tasks, but defer the decision
whether a new task is spawned to the runtime framework. Examples of such
languages are Cilk [[40]], Manticore [|39]], Multilisp [[45[], X10 [55], Chapel [24]
and Jade [[116]. Other languages (including JVM languages) may not benefit
from the above techniques. On the other hand, our work focuses on task-parallel

11 2.1 Task Granularity

workloads running on the JVM, where parallelism can be declared explicitly (i.e.,
every task specified by developers is executed at runtime).

2.1.2 Adapting Task Granularity

Several authors aim at finding an optimal level of task granularity, and propose
techniques to adapt the granularity of a task to the optimal value.

Thoman et al. [[141]] present an approach that enables automatic granularity
control for recursive OpenMP [[92]] applications. A compiler generates multiple
versions of a task, each with increasing granularity obtained through task unrolling.
Superfluous synchronization primitives are removed in each version. At runtime,
a framework selects the version to execute according to the size of the task queues.
Cong et al. [[22]] propose the X10 Work Stealing framework (XWS), an open-source
runtime for the X10 parallel programming language. XWS extends the Cilk work-
stealing framework with several features to improve the execution of graph-based
algorithms, including a strategy to adaptively control the granularity of parallel
tasks in the work-stealing scheme, depending on the instantaneous size of the
work queues. Lifflander et al. [[76] present an approach to dynamically merge
tasks in fork-join work-stealing-based Cilk programs. The authors show that their
approach improves spatial locality and sequential overheads by combining many
fine-grained tasks into coarser tasks while ensuring sufficient concurrency for a
locality-optimized load balance.

While the above techniques enable automatic task-granularity adaptation,
they can mainly benefit recursive divide-and-conquer [23]] applications. Other
kinds of applications are less suited to dynamic task-granularity control. On the
other hand, our focus is not limited to recursive divide-and-conquer applications.
Our work highlights inefficiencies and provides optimizations related to task
granularity in a large variety of applications, including those where the above
techniques would yield poor results or cannot be applied.

An alternative approach to adapt task granularities at runtime is lazy task
creation. This technique allows developers to express fine-grained parallelism.
Lazy task creation works best with fork-join tasks. At runtime, when a new task
should be forked, the runtime system decides whether to spawn and execute the
task in parallel or to inline it in the caller (i.e., execute it in the context of the
caller). The latter operation has the effect to increase the granularity of the caller
task. The original implementation by Mohr et al. [83]] spawns a new task only if
computing resources become idle.

Several other techniques are based on lazy task creation. Noll et al. [90]
present a methodology to estimate the optimal parallel task granularity at runtime

12 2.1 Task Granularity

on the JVM. Their approach is based on the notion of concurrent calls, special
language constructs that defer the decision of whether executing concurrent calls
sequentially or concurrently as parallel tasks to the runtime framework, which
can merge two (or more) concurrent calls, hence coarsening task granularity.
Zhao et al. [150] present a similar framework for Habanero-Java [[17], which
is based on static analysis. An alternative implementation for OmpSs [[10] (an
extension of OpenMP) is provided by Navarro et al. [89]], which propose heuristics
that, combined with the profiling of execution metrics, provide information to
the runtime system to decide when it is worth to instantiate a task.

Lazy task creation is less effective in applications that do not make use of fork-
join tasks. On the other hand, our work benefits fork-join tasks as well as other
kinds of construct (such as thread pools or custom task execution frameworks) that
may not benefit from lazy task creation. Moreover, most of the above techniques
rely on profiling to refine their runtime decisions, which may introduce significant
runtime overhead [90]], thus decreasing the benefits of task-granularity adaptation.
On the contrary, the profiling overhead caused by tgp is very low in most of the
analyzed applications. In addition, optimized applications resulting from our
approach do not need to be profiled again to monitor task granularity, in contrast
to the aforementioned techniques that require continuous profiling to enable
task-granularity adaptation.

Another approach to avoid the overhead of creating fine-grained tasks is
to determine the minimum task granularity that makes parallel task execution
worthwhile, i.e., the cut-off. Several authors have proposed different solutions
to determine the cut-off and manage finer task granularities. Duran et al. [[31]]
propose an adaptive cut-off technique for OpenMP Their approach is based on
profiling information collected at runtime to discover the granularity of the tasks
created by the application. Tasks whose granularity is lower than the cut-off are
pruned from the target application to reduce creation and scheduling overhead.
A similar approach is proposed by Iwasaki et al. [[61]] and implemented as an
optimization pass in LIVM [74]], while Bi et al. [11]] present a similar technique for
Function Flow [I36]]. These techniques base their decisions on collected metrics
that can be significantly perturbed, decreasing the accuracy of the proposed
approaches. While also our analysis is based on metrics that can be biased, we
resort to accurate and efficient profiling techniques, instrumentation and data
structures that help reducing measurement perturbation, differently from the
above work.

Wang et al. [[144] propose AdaptiveTC, an adaptive task-creation strategy for
work-stealing schedulers. AdaptiveTC can create three kinds of tasks. A task is
a regular task that is added to a task queue, and is responsible for keeping idle

13 2.1 Task Granularity

threads busy. Tasks can be stolen by idle threads. A fake task is a plain recursive
function that is never added to any task queue. Fake tasks are responsible for
improving performance. Finally, a special task is added to a task queue to indicate
a transition from a fake task to a task. AdaptiveTC adaptively switches between
tasks and fake tasks to achieve better load balancing and performance. The
framework manages task creation so as to keep all threads busy most of the time,
to reduce the number of tasks spawned, and to optimize task granularity.

A limitation of the above technique is that it requires the introduction of
custom constructs in the source code and executes an application on a modified
runtime system, which may be impractical for some programs. Other approaches
previously presented [22;90; 150; 89} (14476} 183} [31;141]] suffer from the same
limitation. In contrast, our analysis targets unmodified workloads (as distributed
by the developers) in execution on standard JVMs. Our work requires neither the
addition of custom constructs nor the use of a modified runtime.

Opsommer [93]] proposes a static technique to adjust task granularity ac-
cording to a metric called attraction. This metric is defined between two tasks
and is proportional to the benefit of aggregating them into a coarser task. This
methodology combines only tasks with an attraction value higher than a certain
threshold. In turn, the threshold is based on task size, amount of communication
involved, and number of forks and joins. This work is based on static analysis,
which may lead to a poor accuracy in estimating the threshold. On the other
hand, our work resorts to dynamic analysis in conjunction to an efficient profiling
technique to measure the granularity of the spawned tasks with higher accuracy.

Ansaloni et al. [[6]] propose deferred methods, a methodology to speed up
dynamic analyses on multicores. Deferred methods postpone the invocation of
analysis methods (often representing fine-grained tasks), aggregating them in
thread-local buffers. When a buffer is full, all the tasks in the buffer are merged
into a single coarser-grained task executed on an idle core, leading to a lower
communication overhead. A similar methodology, called buffered advice [[7] ,E]
target applications based on the aspect-oriented programming model [[71]]. Un-
fortunately, such techniques are ineffective for analysis methods or advice that
must execute synchronously.

Finally, similarly to approaches for estimating task granularity (Section|2.1.1)),
the aforementioned techniques shed no light on the performance drawbacks of
coarse-grained tasks, differently from our work.

! According to the terminology used in aspect-oriented programming (AOP) [[71]], an advice is a
piece of code to be executed whenever a specified point in the execution of a program (called join
point) is reached.

14 2.2 Work-Span Model

2.1.3 Profiling Task Granularity

Profiling task granularity is fundamental to investigate related performance draw-
backs. Some of the aforementioned techniques [90; 89} 31[] profile task granularity
as part of their adaptive strategies. Unfortunately, the resulting profiles are not
made available to the user, and cannot be used to conduct further analysis of task
granularity.

To the best of our knowledge, there are only two profilers for task granular-
ity, apart from ours. Hammond et al. [46]] describe a set of graphical tools to
help analyze task granularity in terms of a temporal profile correlating thread
execution with time. More recently, Muddukrishna et al. [|85]] develop grain
graphs, a performance analysis tool that visualizes the granularity of OpenMP
tasks, highlighting drawbacks such as low parallelism, work inflation and poor
parallelization benefits.

Unfortunately, the above tools collect only a limited set of metrics that does
not allow one to fully understand the impact of task granularity on application
performance. On the other hand, our profiler collects comprehensive metrics
from the whole system stack simultaneously, which aid performance analysts to
correlate task granularity with its impact on application performance at multiple
layers (i.e., application, framework, JVM, operating system, and hardware),
allowing more detailed task-granularity analyses.

Moreover, our profiler incurs only little profiling overhead and provides ac-
tionable profiles, which are used to optimize task granularity in several real-world
applications, unlike the work of Hammond et al. Finally, grain graphs are better
suited for recursive fork-join applications, while tgp targets any task-parallel
application running on the JVM in shared-memory multicores.

2.2 Work-Span Model

The work-span model [|62;23]] is a way to characterize task execution in a parallel
application. The model can be used to determine the maximum theoretical
speedup of a parallel application wrt. a sequential execution. The model compares
two quantities: the work, i.e., the time a sequential execution would take to
complete all tasks, and the span, i.e., the time a parallel execution would take on
an infinite number of processors. The span is also equal to the time to execute
the critical path, i.e., the longest chain of tasks that must be executed sequentially,
which the model considers the main factor limiting speedup. The maximum
theoretical speedup is given by the ratio of the work to the span.

15 2.3 Analyses of Parallel Applications

Several authors rely on the work-span model to locate the critical path of an
application, focusing their optimization effort on it. He et al. propose the Cilkview
scalability analyzer [|48]]. Cilkview analyzes the logical dependencies within an
application to determine its work and span, allowing one to estimate the maximum
speedup and predict how the application will scale with an increasing number of
computing cores. Schardl et al. present Cilkprof [[122[], an extension of Cilkview
that collects the work and span for each call site of the application, to assess how
much each call site contributes to the overall work and span, enabling developers
to quickly diagnose scalability bottlenecks. A main limitation of Cilkprof is that it
runs the profiled application sequentially, resulting in significant slowdown wrt. a
parallel execution of the original application. Both Cilkview and Cilkprof can
only benefit Cilk applications. Yoga et al. propose TaskProf [[146], a profiler that
identifies parallelism bottlenecks and estimates possible parallelism improvements
by computing work and span in task-parallel applications. TaskProf only supports
C++ applications using the Intel Threading Building Blocks (TBB) [[115]] task-
parallel library.

Differently from Cilkview, our profiler does not aim at computing the expected
speedup of the whole program; instead, it aims at locating suboptimal task
granularities. In contrast to both Cilkprof and TaskProf, our profiler requires
neither compiler support nor library modification. Moreover, the overhead of
tgp is significantly lower than the one reported by the authors of all three tools,
allowing the collection of more accurate metrics with less perturbation. Finally,
none of these tools support the JVM.

Overall, the above work detects bottlenecks and predicts speedups by mainly
focusing on the longest tasks of an application (i.e., coarse-grained tasks), paying
little attention to the possible performance drawbacks caused by short tasks (i.e.,
fine-grained tasks). In contrast, our work focuses on both coarse-grained and
fine-grained tasks, enabling the detection of performance problems caused by a
too fine-grained task parallelism.

2.3 Analyses of Parallel Applications

Several researchers have conducted analyses to shed light on the parallel behavior
of an application. While they focus on different aspects of parallel workloads, we
are not aware of any detailed analysis on the granularity of tasks in task-parallel
applications running in shared-memory multicores. In the following text, we
present some major analyses on parallel workloads.

16 2.3 Analyses of Parallel Applications

Dufour et al. [29]] propose dynamic and platform-independent metrics to
describe the runtime behavior on an application running on the JVM in five
areas: size and control structure, data structures, polymorphism, memory use,
and concurrency and synchronization. Apart for understanding program behav-
ior, they use the profiled metrics to guide and evaluate compiler optimizations.
Unfortunately, task granularity is not among the considered metrics. They also
present *J [30]], a profiling tool enabling the collection of the proposed metrics.
Unfortunately, *J introduces excessive runtime overhead and is hardly applicable
to complex workloads, unlike tgp.

Kalibera et al. [67]] present several platform-independent concurrency-related
metrics to enable a black-box understanding on the parallel behavior of Java
applications. With the proposed metrics, they conduct an observational study of
parallel Java workloads, providing more insights on their degree of concurrency,
their scalability, and how they synchronize and communicate via shared memory.
Despite task granularity is a key attribute of parallel workloads, their work does
not shed light on the task granularity of the analyzed applications.

Chen et al. [19] analyze scalability issues of multithreaded Java applications
on multicore systems. Their study pinpoints that lock contention is a strong
limiting factor of scalability, determines that memory stalls are mostly produced
by L2 cache misses and cache-to-cache transfers, and identifies an important
factor causing slowdowns in minor garbage collections. They also highlight the
importance of thread-local allocation buffers to increase cache utilization. While
they target applications running on the JVM, as we do, their analysis overlooks
task granularity as a possible factor causing performance drawbacks. On the
other hand, our work demonstrates that task granularity can significantly impair
application performance if overlooked.

Roth et al. [118]] observe performance factors that are common to most parallel
programs, and propose a hierarchical framework to organize these factors with
the goal of helping users locate scalability issues in parallel applications. The top
of their hierarchy is composed of three key factors: work (i.e., the time spent on
executing computations), distribution (i.e., the overhead caused by distributing
work to processors, idleness or load imbalance), and delay (i.e., the overhead
caused by resource contention or failed transactions). They use their framework
to discover inefficient barrier implementations and improve work distribution in
some PARSEC [[12] applications. Unfortunately, the authors do no consider task
granularity as a performance factor common to many parallel workloads. On the
other hand, our results indicate that task granularity is a crucial performance
attribute of many task-parallel applications, and that optimizing it is of paramount
importance.

17 2.3 Analyses of Parallel Applications

Eyerman et al. [35]] and Heirman et al. [[49] propose speedup stacks to identify
the impact of scalability bottlenecks on the speedup of parallel applications. A
speedup stack is a stacked bar composed of various scaling delimiters. The larger
a delimiter is on the stack, the more it contributes to the application slowdown;
hence, it is likely to yield the largest speedup if optimized. The authors identify
several important scaling delimiters that are represented on the stack: spinning
(time spent spinning on locks and barriers), yielding (time spent due to yielding
on locks and barriers), last-level cache, memory interference, cache coherency,
work imbalance, and parallelization overhead. The work by Eyerman et al. re-
quires custom hardware support to obtain speedup stacks, which may severely
limit their applicability. On the other hand, the methodology used by Heirman et
al. relies on multiple expensive simulations of the analyzed applications which
may be impracticable for large multithreaded programs. Eklov et al. [34] provide
an alternate method to obtain speedup stacks based on standard hardware perfor-
mance counters (HPCs) commonly available in contemporary processors. Their
methodology relies on cache pirating [|33]] to measure application performance as
a function of the amount of shared cache capacity that the application receives.
Unfortunately, the resulting speedup stacks are less comprehensive than those
proposed by Eyerman et al., as they cannot represent scaling delimiters such as
yielding, memory interference, and cache coherency.

While useful for locating which scaling delimiters to optimize, speedup stacks
do not provide insights on how to perform the optimization. On the other hand,
our work enables the collection of actionable profiles, indicating the classes and
methods where optimizations are needed to optimize task granularity. Differently
from the above work, our approach significantly reduces the effort for imple-
menting optimizations, and does not require in-depth knowledge of the target
application. Overall, task granularity is a complementary performance attribute
to those considered by the above techniques, and could be integrated in speedup
stacks to enable a comprehensive performance analysis of parallel workloads.

Du Bois et al. [28] introduce bottle graphs to show the performance of mul-
tithreaded applications. Each thread is represented as a box, with height equal
to the share of the thread in the total application execution time, and width
equal to its parallelism (here defined as the average number of threads that run
concurrently with that thread, including itself). Boxes for all threads are stacked
upon each other. Bottle graphs expose threads representing scalability bottlenecks
as narrow and tall boxes, intuitively pointing developers to the threads with
the greatest optimization potential. The authors use bottle graphs to pinpoint
scalability bottlenecks in Java applications. The same authors propose criticality
stacks [|27]] which relate the running time of a thread to the number of threads

18 2.4 Profilers for Parallel Applications

waiting for its termination. Criticality stacks support the identification of critical
threads, i.e., those making other threads wait on locks or barriers for significant
time. Optimizing critical threads can speed up the whole application. The authors
use criticality stacks to remove parallel bottlenecks, identify the most critical
thread of an application and accelerate it through frequency scaling, and lower
energy consumption.

Both bottle graphs and criticality stacks suffer from limitations similar to
speedup stacks, i.e., they fall short in suggesting to developers how to perform
optimizations. Moreover, the aforementioned approaches target only threads,
while our work focuses on parallel tasksE] allowing finer-grained analyses than
the ones enabled by bottle graphs and criticality stacks.

Kambadur et al. [68]] propose parallel block vectors, which establish a mapping
between static basic blocks in a multithreaded application and the number of
active threads. The mapping is performed each time a basic block executes. The
authors use parallel block vectors to separate sequential and parallel portions of
a program for individual analysis, and to track changes in the number of threads
in execution over time in small code regions. The vectors are generated through
Harmony, an instrumentation pass for the LIVM compiler. While their work al-
lows developers to locate code regions executed by many threads, our approach
enables the identification of the code portions where fine-grained tasks are cre-
ated and submitted, which typically need modifications during task-granularity
optimization.

Overall, unlike the above work, we select metrics to both characterize the
granularity of all spawned tasks accurately and analyze their impact on appli-
cation performance. Moreover, we implement a vertical profiler to collect such
metrics from multiple system layers with low overhead. Finally, some of the
aforementioned authors [|67; [19; 28[] describe the parallel characteristics of the
DaCapo benchmarks [[15]], as we do. Our work is complementary to them, as it
reveals features of such benchmarks that were previously unknown, including
the presence of fine-grained tasks causing significant parallelization overheads,
as well as coarse-grained tasks with suboptimal CPU utilization. Our findings
pinpoint new parallelization opportunities leading to noticeable speedups.

2.4 Profilers for Parallel Applications

In Section [2.1.3] we presented the profiling tools most related to task granularity.
Researchers from both industry and academia have developed several comple-

20ur definition of tasks include threads, as detailed in Sectionm

19 2.4 Profilers for Parallel Applications

mentary tools to analyze diverse characteristics of a parallel application. This
section discusses the major ones. Note that the aforementioned authors focusing
on the work-span model also propose profilers for parallel applications, which we
already discussed in Section

Free Lunch [26]] is a lock profiler for production Java server applications. The
tool identifies phases where the progress of threads is significantly impeded by a
lock, indicating a loss in performance. Free Lunch profiles locks by modifying the
internal lock structures of the JVM. To maintain a low overhead (as required by
analyses performed at production-time), Free Lunch relies on statistical sampling,
which may significantly reduce the accuracy of the tool. On the other hand,
tgp collects metrics without resorting to sampling (apart from CPU utilization),
resulting in more accurate profiles while still guaranteeing low profiling overhead
thanks to efficient instrumentation code and data structures.

THOR [[127] helps developers understand the state of a Java thread, i.e.,
whether the thread is running on a core or is idling. The tool relies on vertical
profiling to trace events across different layers of the execution stack (such as
context switches and lock contention), reconstructing the traces obtained from
different layers through offline analysis. Unfortunately, the overhead and the
measurement perturbation caused by THOR as well as the required memory can
be significant. For this reason, the authors recommend using the tool only for
short periods of time (e.g., 20 seconds), which may be inconvenient for large
or complex workloads. In contrast, our tool does not suffer from this limitation,
and can be used to collect accurate task-granularity metrics even on long-running
workloads.

jPredictor [[18]] detects concurrency errors in Java applications. The tool in-
struments a program to generate relevant events at runtime. The resulting trace is
analyzed by jPredictor through static analysis. The tool can “predict” concurrency
errors, i.e., detect errors that did not occur in an observed execution, but which
could have happened under a different thread scheduling. Unfortunately, the tool
does not detect suboptimal task granularities, thus missing related performance
drawbacks.

Inoue et al. [[57]] propose a sampling-based profiler for parallel applications
running on the IBM J9 virtual machine [54]]. The profiler detects Java-level
events and correlates them with metrics collected by HPCs. Aiming at obtaining
more valuable information from HPCs to understand and optimize the running
application, the tool tracks the calling context of each event received by an HPC.
Our tool uses a similar approach, collecting calling contexts on a JVM and querying
HPCs. However, tgp focuses on the collection of task granularities, while this
work targets other events such as object creation or lock activities.

20 2.4 Profilers for Parallel Applications

HPCToolkit [2] is a suite of tools for the analysis of application performance.
HPCToolkit aims at locating and quantifying scalability bottlenecks in parallel
programs. The suite instruments the binaries of the target application to achieve
language-independency, and relies massively on HPCs. A subsequent work by Liu
et al. [79] enhances the suite to support performance analysis and optimization
on Non-Uniform Memory Access (NUMA) architectures. Similarly to HPCToolKkit,
our approach uses HPCs to collect accurate task-granularity values, and leverages
the presence of different NUMA nodes to bind the execution of the observed
application to an exclusive node, executing other components of tgp on a separate
node. Our approach increases the isolation of the observed application, reducing
performance interference caused by other processes in execution (as the observed
application exclusively utilizes the cores and the memory of its NUMA node),
ultimately increasing the accuracy of the collected metrics. Unfortunately, HPC-
Toolkit is not suitable to characterize task granularity in task-parallel applications
on the JVM.

Kremlin [41] provides recommendations on which regions of a sequential
program can benefit from parallelization. The tool extends critical-path analy-
sis [73]] to quantify the benefit of parallelizing a given region of code, providing
as output a ranked order of regions that are likely to have the largest performance
impact when being parallelized. Kismet [|64] is an extension of Kremlin that
enhances the capability to predict the expected speedup of a code region after
parallelization. To this end, Kismet employs a parallel execution model to com-
pute an approximated upper bound for speedup, representing constraints arising
from hardware characteristics or the internal program structure. Unfortunately,
similarly to profilers based on the work-span model (Section [2.2), such tools do
not allow to discover performance shortcomings caused by fine-grained tasks,
unlike tgp.

SyncProf [[148]] locates portions of code where bottlenecks are caused by
threads suffering from contention and synchronization issues. SyncProf repeatedly
executes a program with various inputs and summarizes the observed performance
behavior with a graph-based representation that relates different critical sections.
SyncProf aids the process of computing the performance impact of critical sections,
identifying the root cause of a bottleneck, and suggesting possible optimization
strategies. Similarly to SyncProf, our approach allows the identification of tasks
incurring significant contention and synchronization, which decrease application
performance. While this tool only targets threads, tgp focuses on every spawned
task, allowing a finer-grained performance analysis.

Other prevailing Java profilers are Health Center [53]], JProfiler [I32]], YourKit
[147], vTune Amplifier [[6Q0], and Mission Control [[106]]. They are optimized

21 2.5 Reification of Supertype Information

for common analyses, such as CPU utilization monitoring, object and memory
profiling, memory-leak detection, and heap walking. However, they fall short in
performing more specific analyses, including task-granularity profiling.

Overall, most of the aforementioned work considers processes or threads as
the main computing entities, providing little information about individual tasks
and their impact on application performance. On the contrary, our work focuses
on tasks, identifying fine- and coarse-grained tasks and enabling the diagnosis
of related performance shortcomings. Moreover, our tool provides actionable
profiles, easing the identification of classes and methods that can benefit from
task-granularity optimizations. Finally, tgp employs efficient instrumentation and
profiling data structures that help reduce profiling overhead and measurement
perturbation, unlike most of the above tools.

2.5 Reification of Supertype Information

The availability of complete and accurate RSI while instrumenting Java classes
allows more efficient type-specific analyses. Unfortunately, most of the existing
instrumentation frameworks for the JVM cannot access RSI or can inspect it
only partially, and may result in analyses with increased runtime overhead and
measurement perturbation. Moreover, frameworks capable of accessing complete
RSI usually cannot offer full bytecode coverageE] and may lead to incomplete
analyses that miss relevant events. In this section, we discuss the limitations of
the major Java bytecode instrumentation frameworks capable of accessing RSI at
instrumentation time.

AspectJ [[70] is a mainstream AOP language and Weaverﬂ In addition to AOB,
AspectJ has been used for various instrumentation tasks. Since version 5, AspectJ
provides a reflection API which is fully aware of the AspectJ type system [[138]].
AspectJ can perform the instrumentation either at compile-time or at load-time.
The AspectJ compile-time weaver resorts to static analysis to precompute the
type hierarchy of an application. Unfortunately, static analysis cannot guarantee
accurate and complete RSI, since information on classloaders and on dynamically
loaded classes is missing. On the other hand, the load-time weaver of AspectJ can
access complete RSI. However, the weaver is unable to instrument classes in the

3Full bytecode coverage is the ability of a framework to guarantee the instrumentation of every
Java method with a bytecode representation.

*We use the term weaver to denote the component of a framework performing the instru-
mentation. We use the term weaving to denote the insertion of instrumentation code into Java
classes.

22 2.5 Reification of Supertype Information

Java class library, resulting in limited bytecode coverageE] This issue is reported
as a major limitation of AspectJ by the authors of the DJProf profiler [112]].

The AspectBench Compiler (abc) [8] is an extensible AspectJ compiler that
eases the implementation of extensions to the Aspect] language and of opti-
mizations. It uses the Polyglot [91]] framework as its front-end and the Soot
framework [[143]] as its back-end for improving code generation. As abc is based
on the compile-time weaver of AspectJ, only limited RSI is available.

Several runtime monitoring and verification tools for the JVM rely on AOP to
weave the monitoring logic into the observed program, such as JavaMOP [66],
Tracematches [[16]], or MarQ [[114]]. These frameworks are based on AspectJ and
suffer from the same limitations. In particular, Tracematches is based on AspectJ’s
compile-time weaver (resulting in limited RSI), while JavaMOP and MarQ rely
on the load-time weaver of AspectJ (resulting in limited bytecode coverage).

RoadRunner [38]] is a framework for composing dynamic analysis tools aimed
at checking safety and liveness properties of concurrent programs. Each analysis
is represented as a filter over a set of event streams which can be chained together.
RoadRunner performs the instrumentation at load-time in the same JVM running
application code. While the framework may access RSI, it suffers from limited
bytecode coverage [[81], similarly to the AspectJ’s load-time weaverﬂ DPAC [|65]]
is a dynamic analysis framework for the JVM. Similarly to DiSL, DPAC performs
the instrumentation at load-time in a JVM running in a separate process. To
the best of our knowledge, DPAC does not provide access to complete RSI at
instrumentation-time. Our approach can benefit frameworks like DPAC, providing
complete RSI in the weaver.

Several bytecode engineering libraries facilitate bytecode instrumentation.
Javassist [[21]] is a load-time bytecode manipulation library that enables structural
reflection, i.e., altering the definition of classes or methods. Javassist provides
convenient source-level abstractions and also supports a bytecode-level API allow-
ing one to directly edit a classfile. ASM [[108]] and BCEL [[128]] provide low-level
APIs to analyze, create, and transform Java class files. Java classes are repre-
sented as objects that contain all the information of the given class: constant pool,
methods, fields, and bytecode instructions. Additionally, ASM supports load-time
transformation of Java classes. Soot [143]] is a bytecode optimization framework
supporting multiple bytecode representations in order to simplify the analysis and

>The load-time weaver of AspectJ prevents the instrumentation of classes in the packages
java.*, javax.x*, and sun.reflect.*. More details are available at https://eclipse.org/
aspectj/doc/released/devguide/1tw-specialcases.htmll

®Classes inside the following packages cannot be instrumented by RoadRunner: java.sx,
javax.*, com.sun.*, org.objectweb.asm.x, sun.*.

https://eclipse.org/aspectj/doc/released/devguide/ltw-specialcases.html
https://eclipse.org/aspectj/doc/released/devguide/ltw-specialcases.html

23 2.5 Reification of Supertype Information

the transformation of Java bytecode. Spoon [[111]] is a framework for program
transformation and static analysis in Java, which reifies the program with respect
to a meta-model. This allows direct access and modification of its structure at
compile-time and allows inserting code using an AOP-based notation.

In contrast to the above frameworks, our approach enables the provision of
accurate and complete RSI at instrumentation time. Thus, type-specific analyses
running on DiSL can benefit from the new DiSL Reflection API to decrease the
profiling overhead while offering full bytecode coverage, resulting in analyses
that are both efficient and complete.

Moreover, the aforementioned frameworks based on compile-time instrumen-
tation [[70; 18); [16; [111]] cannot access complete classloader namespaces while
performing the instrumentation, and may fail to detect and instrument classes
loaded by custom classloaders. On the other hand, our approach allows the
weaver to inspect accurate and complete classloader namespaces, enabling the se-
lective instrumentation of classes loaded by custom classloaders. In addition, our
technique allows DiSL to correctly handle homonym classes defined by different
classloaders, which may cause inaccurate or wrong profiling in other prevailing
instrumentation frameworks due to the lack of completely reified classloader
namespaces in the weaver.

24

2.5 Reification of Supertype Information

Chapter 3

Task-Granularity Profiling

This chapter describes our approach to profile task granularity. Section (3.1|in-
troduces background information on the used frameworks and technologies.
Section presents the model used for identifying tasks and accounting their
granularities. Section (3.3|details the metrics of interest. Section (3.4| discusses our
profiling methodology. Section describes the instrumentation for profiling
task granularity. Section details the implementation of our approach in DiSL.
Section discusses other metrics initially considered and later disregarded, as
well as the limitations of our work. Finally, Section |3.8 summarizes the achieve-
ments presented in this chapter. The profiling technique presented here is fully
implemented in tgp, our novel task-granularity profiler for the JVM.

3.1 Background

Here, we introduce background information on the JVMTI and JNI interfaces
(Section [3.1.1)) and on the DiSL and Shadow VM frameworks (Section|3.1.2)).

3.1.1 JVMTI and JNI

JVMTI (JVM Tool Interface) [98]] is an interface that enables inspecting the state
of a JVM and controlling the execution of applications running on top of it. JVMTI
exposes an API to a native agent (written in C or C++) to be attached to a JVM.
The agent runs in the same process and directly communicates with the JVM it
is attached to. Among the features offered by the interface, a JVMTI agent can
intercept certain events occurring in the observed JVM, such as the loading of a
class (allowing one to modify the final representation of a class before it is linked
in the JVM), the termination of a thread, the shutdown of the observed JVM or

25

26 3.1 Background

the activation of the garbage collector. Moreover, JVMTI supports heap tagging:
agents can assign a unique long value (i.e., a tag) to any object allocated on the
heap, as well as retrieve or unset the tag associated to an object. Untagged objects
have a tag of 0. Agents can also be notified when a tagged object is reclaimed by
the garbage collector, executing custom code when this occurs.

JNI (Java Native Interface) [96]] is a standard interface for writing native
Java methods. Similarly to JVMTI, JNI exposes an API to a native agent, to be
attached to a JVM and executing in the same process. The main purpose of JNI is
enabling Java code to call native code and vice versa. JNI is not available during
the early initialization phase of the JVM (i.e., the primordial phase). Our approach
uses features of JVMTI and JNI to instrument classes and signaling events such
application shutdown to a separate analysis process (the Shadow VM, see below).
In Chapter 4, we will resort to such interfaces to expose reflective supertype
information and classloader namespaces to the instrumentation process.

3.1.2 DiSL and Shadow VM

Our profiling methodology resorts to DiSL to insert profiling code into the observed
application. DiSL [82]] is a dynamic program-analysis framework based on Java
bytecode instrumentation. In DiSL, developers write instrumentation code in the
form of code snippets, based on AOP principles that allow a concise implementation
of runtime monitoring tools. DiSL allows developers to specify where a code
snippet shall be woven through markers (specifying which parts of a method to
instrument, such as method bodies, basic blocks, etc.), annotations (specifying
where a code snippet must be inserted wrt. a marker, e.g., before or after method
bodies), scope (specifying which classes or methods shall be instrumented based
on a pattern-matching scheme), and guards (predicate methods enabling the
evaluation of conditionals at instrumentation-time to determine whether a code
snippet should be woven into the method being instrumented or not).

Code snippets and guards have access to context information provided via
method arguments. Context information can be either static (i.e., static infor-
mation limited to constants) or dynamic (i.e., including local variables and the
operand stack). Dynamic context information can be accessed only by code snip-
pets. DiSL supports also synthetic local variables (enabling data passing between
different code snippets woven into the same method body) and thread-local vari-
ables (implemented by additional instance fields in java.lang.Thread). Both
variables can be expressed as annotated static fields (i.e., @SyntheticLocal and
@ThreadLocal, respectively).

27 3.2 Task Model

DiSL performs the instrumentation in a separate JVM process, the DiSL server.
A native JVMTI agent attached to the observed JVM intercepts classloading,
sending each loaded class to the DiSL server. There, the instrumentation logic
determines which methods to instrument to collect the desired metrics. In-
strumented classes are then sent back to the observed JVM. The DiSL weaver
guarantees full bytecode coverage of an analysis. In particular, DiSL enables the
instrumentation of classes in the Java class library, which are notoriously hard to
instrument [[13}69]].

DiSL offers a deployment setting to isolate the execution of analysis code
from application code, executing analysis code asynchronously with respect to
the application code in a separate JVM process, the Shadow VM [81]]. The
observed application is instrumented using DiSL to emit the events of interests,
which are then forwarded to the analysis executing in the separate Shadow VM
via a native JVMTI agent attached to the observed JVM. This setting avoids
sharing states between the analysis and the observed application, which helps
avoiding various known classes of bugs that may be introduced by less isolated
approaches [|69]]. Moreover, Shadow VM eases proper handling of all thread
lifecycle events, and guarantees that all thread termination events are received
even during the shutdown phase of the JVM. We rely on Shadow VM to both
increase the isolation of analysis code and guarantee that the granularity of
all threads can be detected and registered (even during the shutdown phase),
ensuring complete detection of all spawned tasks.

3.2 Task Model

In this section, we present the task model used by our approach. The model
specifies the entities of interest, defines rules for measuring task granularity, and
outlines tasks requiring special handling.

3.2.1 Tasks

Our work targets tasks created by parallel applications running on a JVM. We
consider only those entities as tasks that are expected to be executed in parallel
with other tasks. Accordingly, we consider as task every instance of the Java inter-
faces java.lang.Runnable (which should be implemented by objects intended
to be executed by a thread), java.util.concurrent.Callable (analogous to
Runnable, with the difference that tasks can declare a non-void return type), and
the abstract class java.util.concurrent.ForkJoinTask (which defines tasks

28 3.2 Task Model

running within a fork-join pool). We use the term task interfaces to collectively
refer to Runnable, Callable, and ForkJoinTask. Java threads themselves are
also considered tasks, as java.lang.Thread implements Runnable.

3.2.2 Task Granularity

Task granularity represents the amount of work carried out by each task. Following
the indication of the Java API [[97], the starting point for the computation of a
task is the method Runnable. run, Callable.call, or ForkJoinTask.exec. We
refer to these methods, as well as all implementations of Runnable. run and
Callable.call and all overriding exec methods in subtypes of ForkJoinTask
as execution methods. When a thread executes a task, it will always call such a
method. Consequently, all code executed in the dynamic extent of an execution
method contributes to the granularity of a task. We use the term task execution to
denote the execution of an execution method (by a thread). We denote a task as
executed if its execution method has been executed until (normal or abnormal)
completion (at least once).

3.2.3 Task Submission

We also detect tasks submitted to a task execution framework, i.e., any subtype of
the interface java.util.concurrent.Executor, such as ThreadPoolExecutor
or ForkJoinPool. A task is submitted if it is passed as argument to a submis-
sion method, i.e., all implementations of methods Executor.execute, Executor-
Service.submit, and methods execute, invoke, and submit in class ForkJoin-
Pool, along with all overriding implementations of such methods in subtypes of
ForkJoinPool. Note that the Java API [[103}; [104]] defines multiples Executor-
Service.submit, ForkJoinPool.execute and ForkJoinPool. submit methods.
We consider all of them as submission methods, along with all their implemen-
tations or overriding methods. We use the term task submission to refer to the
submission of a task to a task execution framework.

3.2.4 Task Aggregation

Some tasks may be nested, i.e., they fully execute within the dynamic extent of
the execution method of another task, which we call outer task. The outer and
nested tasks cannot execute in parallel, as the execution of the outer task cannot
proceed before the execution of the nested task has completed. A nested task is
effectively used as a normal object by the outer task, rather than as a task that

29 3.3 Metrics

could execute in parallel with the outer task. Therefore, we aggregate a nested
task to its outer task, resulting in a single, larger task in the profile. If the outer
task is itself nested, we recursively aggregate it until a not-nested task is foundE]

With the goal of better recognizing the key tasks of an application and studying
their granularity accurately, we do not aggregate any task whose outer task is
a thread (with an exception, see below). This choice is motivated by the fact
that each task necessarily executes in the dynamic extent of a thread; hence,
aggregating tasks to threads would result in a final trace composed only of threads.
The only exception are tasks that are created and sequentially executed by the
creating thread, but not submitted to any task execution framework. Such tasks
indicate code patterns similar to new MyRunnable().run(), where the created
entity is effectively used by the thread as a normal object rather than as a task.
For this reason, we aggregate the entity to the executing thread.

3.2.5 Multiple Task Executions

Finally, a task can be executed multiple times (i.e., its execution method is exe-
cuted to completion more than once). In such tasks, each execution may occur in
a different thread and operate on different data. For these reasons, we treat each
execution as if it was a separate task.

3.3 Metrics

Analyzing task granularity involves understanding its impact on application per-
formance. To this end, we efficiently profile a comprehensive set of metrics from
the whole system stack to provide a deeper understanding of task granularity, the
utilization of CPU cores, and the synchronization between tasks. We employ a
form of vertical profiling [[47]], logically dividing the system into several layers and
collecting metrics from each of them. In the following text, we present the layers
involved in the profiling process and the metrics collected, while subsequent
sections detail our methodology to collect such metrics.

Application Layer For each task, we collect its starting and ending execution
timestamps, as well as the threads which create and execute the task (denoted as
creating thread and executing thread, respectively). The former information allows
us to identify the time intervals where tasks are executed, which enables us to

IFigure [3.3|in Section shows an example of nested and outer tasks.

30 3.3 Metrics

correlate task execution to OS-layer metrics, while the latter is fundamental to
detect tasks created and executed by the same thread (which may be aggregated
according to our task model). Moreover, we track the outer task (if any) of each
task, to enable aggregation of nested tasks following the rules outlined in the task
model. We also collect the type of each task.

In an optional second profiling run, we collect the calling contexts [[5]] upon task
creation, submission, and execution, as well as upon thread start. This information
helps the user identify the classes and methods to target when optimizing task
granularity.

Framework Layer We profile all task submissions, detecting the usage of task
execution frameworks. For each task submission, we track both the submitted task
and the task executor framework the task was submitted to. Since tasks created
and executed by the same thread are aggregated unless submitted (according to
our task model), detecting task submissions is fundamental to ensure correct task
aggregation.

JVM Layer We detect all time intervals when the garbage collector (GC) is active.
GC can significantly alter the collected metrics, particularly those related to the
OS layer. Tracking all GC activities allows us to attribute unexpected metrics
fluctuations to garbage collection. Note that we collect GC activations only for
stop-the-world collections, i.e., collections during which all threads cease to modify
the state of the JVM.

OS Layer We detect the CPU utilization (including both user and kernel com-
ponents) and the number of context switches (CS) experienced by the observed
application. The former allows one to determine whether the CPU is well utilized
by the application, particularly when it is executing coarse-grained tasks. We use
the latter as a measure of contention and synchronization among tasks, as an
excessive number of context switches indicates that tasks executing in parallel
significantly interfere with each other due to the presence of numerous blocking
primitives (including I/0O, synchonization, and message passing).

Hardware Layer We profile the number of reference cycles elapsed during the
execution of each task. A reference cycle elapses at the nominal frequency of the
CPU, even if the actual CPU frequency is scaled up or down. This ensures that
profiling remains consistent for the whole application execution. We use reference
cycles to measure task granularity. This metric well represents the work carried

31 3.4 Profiling Methodology

))

TASK Step 2: TASK

Step I: Task Step 3: |PROFILE ccC

Metric Aggregation Trace
Collection Alignment
I GC CPU CS —

Figure 3.1. Overview of the profiling methodology.

out by a task, as it also accounts for instruction complexity as well as latencies
introduced by cache misses or misalignments. Moreover, reference cycles can be
converted into a temporal value if the nominal frequency of the CPU is known.

3.4 Profiling Methodology

Figure depicts our methodology to profile task granularity. First, our profiler
collects metrics during application execution, producing four different traces
containing information on tasks, stop-the-world GC activations, CPU utilization,
and the amount of context switches observed. After application termination, tgp
performs offline processing in two steps, i.e., task aggregation and trace alignment.
The former step aggregates nested tasks, producing a modified task trace that
complies with our task model, while the latter step aligns and integrates all traces
into a single profile, which enables one to accurately analyze task granularity
and identify the tasks to optimize. As an optional step, tgp profiles the calling
contexts upon the creation, submission and execution of such tasks, aiming at
locating application code to be modified to optimize task granularity. Each of the
above steps is performed separately by different components of tgp. The rest of
this section details the four steps of our methodology.

3.4.1 Metric Collection

Figure shows the different components involved in metric collection. Metrics
collected at the application and framework layers are obtained by instrumenting
tasks and task execution frameworks (as detailed in Sections and [3.6). At
these layers, the metrics are sent to Shadow VM upon collection, which contains
most of the profiling logic and data structures. Our profiler ensures that events
signaling execution start and end are observed in Shadow VM for all executed
tasks.

32 3.4 Profiling Methodology

Layer
...................................) S
Application éf; Observed [I€ >| = DiSL server
Framework Wl application >Lé‘; Shadow VM)
IVM JVMTI """"""" 0 ‘TASK
................................... top .--- - E % To stepz
s pEe
................................... E E % % % To step 3
Hardware PAPI@ HPC ; GCCPU"\ cs 4\

Figure 3.2. Components of the metric collection step.

At the JVM layer, we rely on JVMTI to profile stop-the-world GC activations.
A dedicated agent attached to the observed application subscribes to the events
GarbageCollectionStart and GarbageCollectionFinish exposed by JVMTI,
storing the timestamps where collection starts and finishes, respectively.

At the OS layer, tgp integrates two tools that query Linux performance counters.
We rely on top [77] to acquire CPU utilization, while we resort to perf [113]] to
collect context switches. Both metrics are collected periodically at the minimum
period allowed by the tools (i.e., every ~150ms for the former and every 100ms
for the latter). Each sample taken by top represents the instantaneous CPU
utilization of the system, whereas each measurement performed by perf collects
the amount of context switches experienced by the observed application since
the last measurement.

At the hardware layer, the profiler makes use of HPCs integrated in most
modern processors, which store accurate low-level metrics that can be read
efficiently. We rely on PAPI [56]] to manage HPCs. In particular, PAPI enables one
to access per-thread virtualized counters storing low-level metrics. We use PAPI to
query the reference cycles elapsed during the execution of a task. The activation
and the reading of such counters is governed by the inserted instrumentation
logic (see Sections and [3.6). A dedicated JNI agent enables the management
of the HPCs from the instrumentation code through PAPI.

The metrics are stored in four independent traces. Shadow VM generates a
task trace, including metrics on tasks collected from the application, framework,
and hardware layers. The JVMTI agent responsible to profile stop-the-world
GC activations collects them in a GC trace. Finally, top and perf each store the
measurements in a separate trace, the CPU trace and the CS trace, respectively.

33 3.4 Profiling Methodology

The traces undergo further offline elaboration (i.e., task aggregation and trace
alignment) by other components of tgp.

3.4.2 Task Aggregation

According to our task model, nested tasks may need aggregation. To avoid the
overhead of aggregating nested tasks during application execution, nested tasks
appear as normal tasks in the task trace and are aggregated via an offline analysis
in this step, following the rules described in Section [3.2.4] If a nested task has to
be aggregated, the profiler adds its granularity to the outer task and afterwards
removes the nested task from the trace. The result of this step is a refined task
trace compliant with our task model. This step also filters out from the trace tasks
spawned but not executed.

3.4.3 Trace Alignment

The four traces obtained during metrics collection are produced by indepen-
dent components, each using a different trace format and temporal reference.
Trace alignment is an offline process that produces a single unified profile of the
application behavior suitable to analyze task granularity.

In all traces, each observation is associated with at least one timestamp,
indicating either the starting/ending execution timestamps of a task (task trace),
the start/finish of a garbage collection (GC trace), or the time instant when a
metric was measured (CPU and CS traces). While such timestamps are obtained
by querying a unique high-accuracy clock, the initial temporal reference (i.e., the
zero) in each trace is different, as it may refer to the JVM default origin time [[95]]
(task and GC traces), to the program starting time (CS trace), or to the default
OS-clock starting time [[78]] (CPU trace).

We align traces such that the initial temporal reference in all of them is the
starting time of the observed application. We also filter out observations occurred
when the application was not in execution (e.g., values of CPU utilization obtained
before starting the observed JVM or after its termination). The profile resulting
from this process contains comprehensive information on task granularity, which
can be analyzed by the user to locate tasks to optimize.

3.4.4 Calling-Context Profiling

Finally, calling-context profiling is an optional profiling pass that runs again the
observed application to obtain complete calling contexts. Our approach first

34 3.5 Instrumentation

identifies the types of tasks of suboptimal granularity by analyzing the profile
resulting from trace alignment; then, it obtains the calling contexts upon creation,
submission, and execution of all tasks of such types, to help locate application
code where they are created, submitted, or executed; such code often needs to
be modified to optimize task granularity. In the case of a thread, we also collect
the calling context when it is started (i.e., when its start method is called by
another thread). This information allows tgp to provide actionable profiles, which
enable users to identify the classes and methods to target when optimizing task
granularity. We present our approach to profile calling contexts in Section [3.6.4

3.5 Instrumentation

Here, we detail our approach to instrument tasks and collect their granulari-
ties. First, we discuss the data structures used by our technique (Section|3.5.1)).
Then, we present the main challenges in profiling task granularity (Section [3.5.2).
Finally, we detail our instrumentation approach to accurately account the granu-
larity of each executed task (Section[3.5.3)). To ease the comprehension of our
profiling technique, this section presents our approach by means of abstract data
types and pseudocode. We discuss how our technique can be implemented in
DiSL in Section [3.6/Pl

3.5.1 Data Structures

Task-granularity profiling relies mainly on two data structures. We describe them
by means of abstract data types. In the rest of the chapter, we assume the existence
of types INT, LONG, THREAD, TASK and TEF (the latter representing a task execution
framework). We also assume that each type T has a null value 1 ;, denoting that
the value of a variable or parameter of type T is undefined. We use the notation L
when referring to the null value without considering any specific typeE]

Task Profile

We store information on each spawned task in a Task Profile (TP). Each TP is
associated with exactly one task, storing data related to its creation, submission(s),

2We outline our approach to profile calling contexts in Section We do not provide an
in-depth discussion on such topic because similar instrumentation has been presented in several
related studies and can be easily implemented [[121} [84]).

3Unless otherwise noted, the functions listed in Tables and 3.3|are undefined if any of
their input parameters is L.

35 3.5 Instrumentation

Table 3.1. Main fields and functions defined on a task profile (TP).

Field Description

init Stores metrics collected at task creation.

submit Stores metrics collected at task submission.

exec Stores metrics collected at task execution.

Function Description

registerCreation(TASKta, Creates a new TP tp associated with ta, and
THREAD th) registers th as its creating thread in tp.init.

The operation has no effect if a TP associated
with ta already exists.

registerSubmission(TASKta, Retrieves the TP tp associated with ta and
TEF tef) registers the submission of ta to tef in a new
entry of tp.submit. The function is undefined
if tp is not found.

registerExecution(TASKtd.,rent> Retrieves the TP tp associated with tac, rent,

TASK tagyter» LONGC, LONG tig ., and registers the execution of tagyent in @ neEW

LONG tig,q, THREAD th) tuple of tp.exec. The execution of taren: has
occurred within the execution of task tager,
has taken c cycles, started at time tig,. and
ended at time tig,g. Task ta.,ent has been
executed by thread th. tag,, can be Lrpsk;
in this case, the task is not nested. Otherwise,
taoyter 1S the outer task of tag,ent- The func-
tion is undefined if tp is not found.

and execution(s). A new TP instance must be created along with the creation of
a new task. Since each task has a unique identifier (i.e., a reference to the task
instance), each task can be mapped to the corresponding TP As we will detail in
Section we store all task profiles in the Shadow VM.

Table [3.1] describes the main fields and functions defined on a TP Conceptually,
a TP instance can be represented as a data structure composed of three fields:
init, submit, and exec, which store metrics collected at task creation, submission,
and execution, respectively. The first field stores a reference to the task and to
the thread that created the task. This information is registered in the TP upon
its creation by calling registerCreation. The second field stores an ordered
list of TEF instances, representing the task execution frameworks the task was
submitted to. Each call to registerSubmission appends a new task execution
framework to the list. Finally, exec stores an ordered list of tuples. Each tuple
contains all other metrics collected at the application and hardware layers (see
Section related to a single task execution, apart from calling contexts. Tasks

36 3.5 Instrumentation

Table 3.2. Functions defined on a shadow stack (SS).

Function Description

createSS(T, INTn): .7 Creates ashadow stack that allows the inspection of the top
n elements. The stack can contain only elements of type
T, and is associated to the thread executing the function.
Pushes e n times on the stack. The function is undefined

ifn<1.

push(.775,Te) Pushes element e on the top of the stack 5. The function
is undefined if e = €7.

top (.78, INTi): T Returns the element stored i positions from the top of

the stack §. i = 0 denotes the top of 5. The stack is not
modified by this function. The function can return €.
The function is undefined if i < 0 or i > n.

pop (-7 5) Removes the element at the top of the stack 5. The function
is undefined if such element is €.

executed multiple times have multiple such tuples in their TB one for each task
execution. Function registerExecution stores metrics related to a single task
execution, creating a new tuple at the end of the list.

Apart from being fundamental to analyze task granularity, the information
stored inside task profiles is used in the second and third steps of our profiling
methodology to aggregate nested tasks to their outer task (if needed) and to align
metrics collected from different traces (via the collected timestamps).

Shadow Stack

Our instrumentation technique needs to store information related to executed
methods and to make them available to subsequent callees. As this operation is
done frequently, we define an auxiliary data structure, the Shadow Stack (SS),
to support storing and accessing this kind of information. As we will show in
Section shadow stacks can be efficiently implemented by embedding them
into the frames of the call stack and into thread-local variables, without requiring
any heap-allocated array.

Shadow stacks are similar to an usual parametrized stack, but support access
to several top elements rather than just the top of the stack. We use the notation
1 to denote a shadow stack storing elements of type T and providing access
to the n > 1 top elements. To better highlight shadow stacks, variables used as
shadow stacks in this chapter are overlined (e.g., 5). The functions on shadow
stacks are summarized in Table Upon creation of the data structure (via

37 3.5 Instrumentation

method createSS), one must define the element type T of the stack, and how
many top elements n > 1 it provides access to. Upon creation, n special elements
are pushed onto the stack; we call them empty elements €, of type T, whose value
is always L ;. The empty elements cannot be popped from the stack (hence, the
stack is never empty) and cannot be pushed after stack creation. Elements on the
stack can be inspected with the top operation, which provides access to the top
of the stack as well as to subsequent elements (up to the n— 1" element from the
top). Note that top may return empty elements in case the stack has not been
filled up enough with push operations.

Each shadow stack is thread-local, accessible only by the owning thread. In
each method, there can be at most one push operation for each shadow stack;
such push is only allowed on method entry. For each push, there must be a
corresponding pop on method completion. No other push or pop is allowed.
Consequently, at the end of each method the state of each shadow stack is the
same as upon method entry.

3.5.2 Challenges in Task-Granularity Profiling

Correctly accounting task granularity is complicated by the presence of special
tasks that may lead to wrong profiling if not handled carefully. First, following our
task model, nested tasks may be aggregated to their outer-most task, depending
on their characteristics. To avoid expensive checks in the instrumentation code,
we postpone aggregation of nested tasks to the second step of the profiling
methodology (Section [3.4.2)). This implies that all nested tasks must be correctly
detected at runtime, and their granularity must be accounted accurately. In
particular, the profiler must separate the granularity of the nested task from the
one of the outer task.

Second, an execution method of a task t may present nested calls to one of
t’s execution methods. This situation may occur due to 1) (indirectly) recursive
calls to execution methods (e.g., t.run() calls t.run()), 2) calls to an (over-
ridden) task execution method defined in the superclass (e.g., t.run() calls
super.run()), and 3) nested calls to different execution methods, if t is an
instance of multiple task interfaces (e.g., t.run() calls t.call(), with t being
subtype of both Runnable and Callable). In such tasks, the profiler must de-
termine when task execution is completed, collecting its granularity only at that
moment.

The pseudocode in Figure [3.3| exemplifies the above situations. Suppose that
a, b, and c are three tasks of class A, B, and C, respectively. In turn, the three
classes are subtypes of Runnable, and C is also subtype of B. When the execution

38 3.5 Instrumentation

2 class A implements Runnable {

3 public void run() {...} // execution method of A
4+ }

5

s class B implements Runnable {

7 public void run() {...} // execution method of B
s }

9

10 class C extends B {

1 public void run() { // execution method of C
12 super.run(); // account to current task
13

14 a.run(); // account to a

15 -

16 b.run(); // account to b

17 }

18 }

Figure 3.3. Nested tasks and nested calls to execution methods.

method of c (i.e., c. run) is executed, the execution method defined in B is called
as first operation (line [12)). The profiling logic must ensure that the work (i.e.,
the reference cycles elapsed) executed in the dynamic extent of B. run is still
accounted to the task being executed. Moreover, c calls the execution methods
of two other tasks (a and b) within its execution method (lines and
The work executed in the context of a and b shall be accounted only to a and b,
respectively, and not also to c, so as to avoid counting elapsed cycles multiple
times. We rely on shadow stacks to detect the aforementioned situations, ensuring
accurate accounting of task granularity. Both cases occur often in task-parallel
workloads (including those analyzed in Chapter[5)); hence, it is very important to
detect and handle the above situations correctly, as failure in doing so may lead
to incorrect task-granularity analysis.

3.5.3 Instrumentation for Task-Granularity Profiling

In this section, we present the instrumentation code ensuring correct task-granularity
profiling. Note that our approach to profile task submissions and calling contexts
is described in Sections [3.6.3|and [3.6.4} respectively.

4In this example, a and b are nested tasks, while c is their outer task.

39 3.5 Instrumentation

Table 3.3. Auxiliary functions used in Figure

Function Description
readCycleCounter(THREAD th) : LONG Returns the reference cycles elapsed so far
during the execution of thread th.

thisThread(): THREAD Returns the thread executing this function.

thisTask(): TASK Returns the task currently executed by
thisThread().

getTime(): LONG Returns the current system time (in nanosec-

onds) as a long.

We describe our approach by means of snippets of pseudocode using AOP
notations to express where instrumentation code is inserted. We report the code
in Figure In addition to the functions defined on task profiles and shadow
stacks, we use the auxiliary functions shown in Table To ease the explanation
of our technique, we denote with th and ta the thread and the task in execution,
respectively, and with ot the outer task of ta (which is L,q if ta is not nested).

The instrumentation logic relies on five thread-local variables, four of them
being shadow stacks. All thread-local variables are initialized upon thread creation
(lines[1H8). Code at lines is inserted after the creation of a new task. Here,
the code creates a new TP for the task being created (via registerCreation)
and tracks the thread which created the task. The other code snippets are inserted
before (lines or after (lines each execution method of every task.

To measure task granularity, we query a thread cycle counter at selected points
during thread execution, via readCycleCounter. The counter stores the total
amount of cycles elapsed from the start of th. We use the thread-local variable
Crested—thread tO Store the total granularity of nested tasks executed by th, while
the shadow stack C,.cted—outer tracks the granularity of all nested tasks executed
by ot (excluding ta). To obtain such value, the value of ¢ .ed—thread 1S Pushed
ON Cpested—outer At €xecution method entry (line[18). Note that ¢ egreq—_thread (a0
hence top (Cpected—outer » 0)) i O if ta is not nested.

The purpose of the shadow stack C.,, is to memorize the value of the cycle
counter at execution method entry for later use (line. The other shadow stacks
are used to store the tasks being executed (tasks; line and their execution
starting timestamps (times; line . Following the rules for manipulating shadow
stacks, all stacks are pushed at the beginning of an execution method (lines
and are popped at method end (lines [34437). Note that all shadow stacks
provide access only to the topmost element, with the exception of tasks which
also provides access to one element below the top.

40

3.5 Instrumentation

TL: LONG Cpegted—thread Stores the granularity of nested tasks executed by the thread.

YTZASK tasks stores the tasks in execution.
Y]}ONG Centry stores the value of the thread cycle counter at method entry.

Y]}ONG Crested—outer Stores the granularity of nested tasks executed by the outer task.
yLIDNG times stores the task execution starting timestamp.

1 at threadInitialization() begin

a b~ W N

~N

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28

29
30
31

32
33
34
35
36
37
38

Cnested—thread < 0
tasks « createSS(TASK, 2)

Centry < CreateSS(LONG, 1)
Cnested—outer <~ CreateSS(LONG, 1)

times « createSS(LONG, 1)

end

after taskCreation() begin
\ registerCreation(thisTask(), thisThread())
end

before executionMethod() begin
push (tasks, thisTask())

pUSh (Cnested—outen Cnested—thread)

push(times, getTime())

push (Centry, readCycleCounter(thisThread()))
end

after executionMethod() begin

LONG Chested—task <~ Cnested—thread - LOP (Cnested—outer: 0)
LONG Ccyrrent <= readCycleCounter(thisThread()) - top(Centrys0) - Cnested—task

if top (tasks, 1) = eqpgx then

registerExecution(top(tasks,0), Lrask, Ccurrent> TOP(times,0), getTime(),
thisThread())

Cnested—thread < 0
else if top(tasks,1) # top(tasks,0) then

registerExecution (top(tasks,0), top(tasks,1), ccyrrents tOP (times,0),
getTime(), thisThread())

Cnested—thread <~ Cnested—thread + Ccurrent

end
pop(centry)
pop (times)

pop (Chested—outer)
pop (tasks)

end

Figure 3.4. Instrumentation code to profile task granularity. Thread-local (TL)
variables are reported at the top of the figure. Blank lines are added to ease
line-by-line comparison with Figure

41 3.6 Implementation

The local variable ¢, .qeq—task Stores the total granularity of the nested tasks
executed by ta (line[25). If ta has not executed nested tasks, Cpested—thread 11@S DOt
been modified since the beginning of the execution method; hence, ¢, ¢qted—task = 0
(as the top of C,eqted—outer Stores the value that ¢,cteq—threag Nad at the beginning of
the method, see line [18)). If ta has executed nested tasks, the difference between
Crested—thread aNd tOP (Cpected—outer » 0) Tepresents the granularity of all nested tasks
executed by ta, which is stored in ¢ egredtask- The granularity c . ene Of ta is
computed as the difference between the value of the cycle counter at the end and
at the beginning of the execution method (the latter has been stored in m).
This difference is reduced by the granularity of the nested tasks executed by ta,

stored in C,egred—task (line [26)).

The shadow stack tasks is necessary to identify nested calls to different execu-
tion methods of ta, as well as to determine whether ta is nested. The former case
occurs if top(tasks, 1) = top(tasks, 0) (implying top(tasks, 1) # €r,cx), meaning
that the method being executed has been called by another execution method of
ta. In this case, no specific action is taken, as the execution of ta will be registered
when its outmost execution method completes. On the other hand, ta is nested
if top(ﬁ, 1) # €k A top(ﬁ, 1) # top(ﬁ,o) (lines , which in-
dicates that the method being executed has been called within the execution
method of another task, as the two tasks on the stack are different. In this case,
the profiler registers the execution of ta (line [31)), storing in the TP the objects
representing the task itself ta and the outer task ot (stored in top(tasks,0) and
top(tasks, 1), respectively), the granularity of ta (stored in ¢, ent), the starting
and ending execution timestamps (the former stored at the top of times, the
latter retrievable with getTime) and the current thread th. Moreover, the profiler
adds the granularity of ta to Chesred—thread (lin€[32). Following this mechanism,
the granularity of ot will exclude the cycles elapsed during the execution of the
nested task ta. Finally, the condition top(tasks,1) = eqsx (line indicates
that ta is not nested within any other task. Here, the profiler registers its ex-
ecution (line and resets Cpegred_thread (line [29), such that the granularity of
subsequently executed tasks can be accounted correctly.

3.6 Implementation

Here, we detail how the instrumentation scheme presented in the previous section
is implemented in tgp using DiSL code. First, we discuss how shadow stacks can
be efficiently implemented in DiSL (Section ; then, we detail how our
instrumentation technique can be translated into DiSL code (Section [3.6.2). We

42 3.6 Implementation

also present our approach to profile task submissions (Section [3.6.3)) and calling
contexts (Section (3.6.4)).

3.6.1 Efficient Shadow Stacks

In Java, thread-local shadow stacks can be efficiently embedded within the frames
of the call stack and in thread-local variables. In this section, we present a
translation of the functions defined on shadow stacks (see Table that avoids
heap allocations and leverages synthetic-local and thread-local variables offered
by DiSL.

Table reports the general scheme to translate functions on shadow stacks
to DiSL code, assuming that the preconditions of the functions are met. A shadow
stack ./ § can be implemented with n—1 thread-local variables and one synthetic-
local variable. For n > 2, the thread-local variable s_t1_<i> provides access to
the element top(5, i) (i = [0,n—2]). The element top(5, n—1) is stored
in the synthetic local variable s_s1. Regardless of the size of the shadow stack,
only n — 1 elements are stored in thread-local variables. All other elements are
embedded within the frames of the Java call stack, thanks to the synthetic local
variable. All thread-local variables are initialized to L ;.

Manipulation of the shadow stack can occur only on method entry and exit,
as first (resp. last) instructions executed in the method. At the beginning of
each method that manipulates the stack, a push occurs by copying s_t1_<n—2>
into s_s1, then copying the value of s_t1 _<i>intos_tl <i+ 1> (i =[0,n—3]),
and finally assigning the pushed element to s_t1_0. When the method ends,
it must undo the push operation, by first copying s_t1l_<i + 1> into s_t1_<i>
(i =[0,n—3]), then copying s_s1 into s_t1_<n —2>. For n = 2, a single thread-
local variable suffices (see Table [3.5]), while for n = 1, no thread-local variable is
needed (see Table [3.6]).

For n > 2, an alternative translation of shadow stacks would store variables
s_tl_<i> (i =[0,n—2]) in a single thread-local array s_t1. The array serves as
a ring buffer where the top n — 1 elements are accessible, while elements falling
out from it due to push operations are saved into synthetic local variables. On
method exit, fallen-out elements are restored into the array. This solution would
avoid n data copying operations at each push and pop, at the cost of accessing an
array on the heap, and is likely to be more efficient for large values of n. We do
not show this translation here, because it is not needed in our approach (n < 2).

43 3.6 Implementation

Table 3.4. Translations of shadow-stack functions (general case).

Function Translation to DiSL code
§ = createSS(INTn,T): .7 @ThreadLocal T s_t1.0 = 1;;

@ThreadLocal T s_tl <n—2> = 1.;

@SyntheticLocal T s_s1;
push(S}'s, Te) s_sl = s_tl_<n—2>;

s_tl.<n—2> = s_tl_<n—3>;

s_tl_0 = e;

top(S7s, INTi): T if (i == n—1) return s_sl
else return s_tl_<i>;
pop ('S) s_tl_ 0 = s_tl_1;

s_tl.<n—2> = s_sl;

Table 3.5. Translations of shadow-stack functions (n = 2).

Function Translation to DiSL code

§ = createSS(2,T): .} @ThreadLocal T s_tl = L;;
@SyntheticLocal T s_s1;

push (.75, Te) s_sl = s_t1;
s_tl = e;

top (s, INTi): T if (i == 1) return s_sl;
else return s_tl;

pop (.775) s_tl = s_sl;

Table 3.6. Translations of shadow-stack functions (n = 1).

Function Translation to DiSL code
§ = createSs(1,T): .7} @SyntheticLocal T s_sl;
push(.7;5,Te) s_sl = e;

top (s, INTi): T return s_sl;

1z f
pop (7} §) no action

44 3.6 Implementation

3.6.2 Task-Granularity Profiling

Figure shows the translation of our approach for profiling task granularity
(Figure to DiSL code snippets. The numeric abstract data types used in
Section (i.e., INT and LONG) are translated into the correspondent primitive
types in Java (i.e., int and long, respectively), THREAD and TEF are translated
into Thread and Executor, respectively, while we use Object for representing
TASK, to avoid casts to multiple task interfaces. We consider —1 as null value for
numeric primitive types, and null for all other types.

The annotations @Before and @After specify where the code snippets shall be
woven (i.e., at method beginning or end, respectively), while guards and scopes
specify into which methods the code snippets shall be woven. In particular, the
annotation at line [9] specifies that the code snippet must be applied only to the
constructors of classes being subtype of Runnable, Callable, or ForkJoinTask,
while guard ExecutionMethod (lines and allows the code snippet to
be inserted only in executions methods, according to the definition given in
Section

In the code snippets, we use the class PAPI to query the virtualized cycle
counter of a thread through readCycleCounter. The class executes native code
through a JNI agent to read and manage HPCs via the API provided by PAPI.
Class DynamicContext (provided by DiSL) allows one to retrieve the object cur-
rently being executed (i.e., this) through getThis. Since our instrumentation
guarantees that getThis is only called in a task constructor or execution method,
function thisTask can be translated to a call to getThis. Functions getTime
and thisThread can be translated to calls to System.nanoTime and Thread.
currentThread, respectively, which can be called by any application running on
the JVM.

Operations defined on task profiles are managed by class Profiler. Meth-
ods of class Profiler (i.e., registerCreation and registerExecution) send
the collected metrics to the Shadow VM via the attached JVMTI agent. The
Shadow VM stores and manages all task profiles, implementing the functions as
detailed in Table In particular, the Shadow VM maintains a mapping from
tasks to task profiles, and inserts metrics received upon task creation and execu-
tion into the corresponding task profile, creating it if it does not exist. Moreover,
Shadow VM detects and manages tasks executed multiple times, registering each
execution separately in the task profile. Finally, when the observed application
terminates, the Shadow VM creates a task trace, containing all metrics collected
for each task profile.

>Guard implementation is discussed in Section

45 3.6 Implementation

1
2 @ThreadLocal static long c_nested_thread = 0;
3 @ThreadLocal static Object tasks_tl = null;
4 @SyntheticlLocal static Object tasks_s1;
s @SyntheticlLocal static long c_entry_s1;
6 @SyntheticlLocal static long c_nested_outer_s1;
7 @SyntheticlLocal static long times_sl;
8
9 @After(marker = AfterInitBodyMarker.class, scope = "<init>",
guard = TaskGuard.class)
10 public static void afterTaskCreation(DynamicContext dc) {
11 Profiler.registerCreation(dc.getThis(), Thread.currentThread());
12 }
13
14 @Before(marker = BodyMarker.class, guard = ExecutionMethod.class)
15 public static void beforeExecutionMethod(DynamicContext dc) {
16 tasks_sl = tasks_t1;
17 tasks_tl = dc.getThis();
18 c_nested_outer_sl = c_nested_thread;
19 times_sl = System.nanoTime();
20 c_entry_sl = PAPI.readCycleCounter(Thread.currentThread());
21 }
22
23 @After(marker = BodyMarker.class, guard = ExecutionMethod.class)
24 public static void afterExecutionMethod() {
2s final long c_nested_task = c_nested_thread - c_nested_outer_sl;
26 final long c_current = PAPI.readCycleCounter(
Thread.currentThread()) - c_entry_sl - c_nested_task;
27 1f (tasks_sl == null) {
28 Profiler.registerExecution(tasks_tl, null, c_current, times_sl,
System.nanoTime(), Thread.currentThread());
29 c_nested_thread = 0;
30 } else if (tasks_sl != tasks_tl) {
31 Profiler.registerExecution(tasks_tl, tasks_sl, c_current, times_sl,
System.nanoTime(), Thread.currentThread());
32 c_nested_thread += c_current;
33}
34
35
36
37 tasks_tl = tasks_sl;
38 }

Figure 3.5. DiSL code for task-granularity profiling. Blank lines are added to ease
line-by-line comparison with Figure

46 3.7 Discussion

3.6.3 Task-Submission Profiling

We detect task submission by instrumenting all submission methods (as defined in
Section[3.2.3)). The inserted instrumentation code calls function registerSubmis -
sion to store the task as well as the executor framework the task was submitted to
in a task profile. In all submission methods, the task execution framework is the
object being executed (i.e., this), while the submitted task is the object passed
as first argument. Both objects can be retrieved by querying context information
through methods getThis and getMethodArgumentValue, respectively, both de-
fined in the class DynamicContext provided by DiSL. Similarly to task creation
and execution, the collected metrics are sent to Shadow VM, which registers the
submission in the correspondent task profile.

3.6.4 Calling-Context Profiling

Calling contexts are profiled separately from all other metrics in a separate run
of the observed application. We profile calling contexts by instrumenting all
methods of each loaded class. The full bytecode coverage ensured by DiSL allows
the collection of complete calling contexts, including methods executed inside
Java library classes. Upon method entry, an identifier of the method is pushed
onto a stack-like data structure (on the observed JVM’s heap); upon method
completion, it is popped. The data structure is sent to Shadow VM upon task
creation, submission, execution, or thread start. Our approach allows profiling
complete calling contexts at the price of numerous memory accesses, which may
significantly slow down application execution, biasing the collection of other
metrics. For this reason, we profile calling contexts in a separate application run.

3.7 Discussion

In this section, we present the metrics initially considered in our approach but
later disregarded (Section [3.7.1)), and discuss the limitations of our profiling
methodology (Section [3.7.2)).

3.7.1 Excluded Metrics

The metrics collected by tgp result from a careful selection process considering a
larger set of metrics. Before focusing on reference cycles, we considered other
metrics to represent task granularity: bytecode count, machine-instruction count,
and wall time.

47 3.7 Discussion

Bytecode count (i.e., the number of bytecodes executed by a task) is little
affected by perturbations caused by the instrumentation (as the bytecodes intro-
duced by the instrumentation can be excluded from the count), ensuring accurate
results in the presence of full bytecode coverage; however, it cannot track code
without a bytecode representation (such as native methods), may account byte-
codes that are not executed due to optimizations performed by the JVM’s dynamic
compiler, and represents bytecodes of different complexity with the same unit
(e.g., a complex floating-point division has the same weight as a simple pop).

Similarly to bytecode count, also machine-instruction count (i.e., the number
of machine instructions executed by a task) represents computations of different
complexity with the same unit. Moreover, it cannot track latencies caused by
cache misses or misalignments. Finally, wall time (i.e., the difference between
the ending and starting task-execution timestamps) may include time intervals
where a task is not scheduled, resulting in an overestimation of task granularity.
In contrast, reference-cycle count does not suffer from such limitations.

At the OS layer, we originally considered the number of core migrations
incurred by the observed application. This metric is subsumed by context switches
(a core migration may happen only during a context switch), which can better
show synchronization among tasks. Finally, we considered also the number of
cache misses caused by the observed application. We excluded that metric because
we found it to be little related to task granularity or task contention.

3.7.2 Limitations

Several metrics collected by tgp can be biased by perturbations caused by the
inserted instrumentation code. Besides, instrumentation may influence thread
scheduling. Our profiling methodology takes several measures to keep pertur-
bations low, including: minimal and efficient instrumentation that avoids any
heap allocation; use of low-overhead HPCs; profiling data structures built in a
separate process. Moreover, expensive operations such as task aggregation, trace
alignment, and calling-context profiling are performed after application execu-
tion. These measures result in low profiling overhead and reduce the chances for
significant perturbations, as discussed in Section

Most of the metrics used to analyze task granularity are platform-dependent;
hence, the reproducibility of any task granularity analysis may be limited. How-
ever, the drawbacks of using platform-dependent metrics are well justified by
their efficacy in describing task granularity, CPU utilization, and synchronization
among tasks. While profiling some metrics requires the presence of performance
counters either in the OS (e.g., for measuring context switches) or in the hardware

48 3.8 Summary

(e.g., for measuring reference cycles), such counters are available in most modern
operating systems and processors.

Finally, other processes executing concurrently with the observed application
may interfere with our profiling methodology. In particular, such processes may
increase the CPU utilization of the system (biasing the measurements performed
by top, as the values observed do not refer only to the execution of the observed
application) and the contention on blocking primitives (which may result in
more context switches experienced by the target application wrt. an execution
without concurrent applications). Ensuring that no other computational-intensive
process executes concurrently with the observed application reduces the chances
of experiencing this limitation; we apply this approach in our task-granularity
analysis. Moreover, in environments with multiple NUMA nodes, binding the
execution of the observed JVM to an exclusive node can further reduce the effect
of this limitation. We use this setting when evaluating our approach (Section
and conducting task-granularity analysis (Chapter [5)).

3.8 Summary

In this chapter, we have presented a novel profiling methodology to measure
the granularity of every executed task spawned in a task-parallel application
running on a JVM in a shared-memory multicore. Our profiling technique resorts
to vertical profiling to collect carefully selected metrics from the whole system
stack, aligning them via offline analysis. The collected metrics enable one to
analyze task granularity and its impact on application performance. Moreover,
the calling contexts profiled enable actionable profiles, which indicate classes
and methods where optimizations related to task granularity are needed, guiding
developers towards useful optimizations.

We have implemented our profiling methodology in tgp, a novel task-granularity
profiler for the JVM. Our tool is built on top of the DiSL and Shadow VM frame-
works, which support accurate profiling thanks to full bytecode coverage and
strong isolation of analysis code. Our methodology resorts to efficient data struc-
tures to reduce the profiling overhead, storing most of the collected metrics in a
separate process that executes analysis code asynchronously wrt. application code.
Our instrumentation ensures accurate profiling even in tasks showing complex
patterns, such as nested tasks and tasks with nested calls to execution methods.

The work presented in this chapter demonstrates that our methodology can
collect task-granularity profiles that are both complete (i.e., all tasks spawned
are detected) and accurate (i.e., granularity is correctly accounted to each task).

49 3.8 Summary

However, we have not discussed the efficiency of our methodology, i.e., how much
the application is slowed down by tgp, and to which extent task granularity is
biased by the inserted instrumentation logic. While the data structures used by
our profiler can be efficiently implemented, the instrumentation code needed to
detect tasks and task executor frameworks may significantly increase the overhead
of our profiling approach, which in turn may increase the perturbation of the
collected metrics.

We deal with this issue in the next chapter, which presents a novel methodology
that allows us to efficiently detect tasks and task execution frameworks. The next
chapter also discusses the overhead of tgp and the perturbation of the collected
task granularities.

50

3.8 Summary

Chapter 4

Reification of Complete
Supertype Information

Reflective supertype information (RSI) is useful for many instrumentation-based,
type-specific analyses on the JVM, including task-granularity profiling. If com-
plete RSI is available at instrumentation time, the weaver can access the type
hierarchy of the observed application, instrumenting a class depending on its
supertypes. For example, in task-granularity profiling (when calling contexts are
not collected), only subtypes of Runnable, Callable, and ForkJoinTask should
be instrumented, leaving other classes untouched. If the weaver can access com-
plete RSI of the class under instrumentation, it can check whether one of the task
interfaces is among the supertypes of the class, instrumenting it only in such a
case. On the other hand, if complete RSI is not available during instrumentation,
the weaver may be unable to determine whether the class to be instrumented
falls in the scope of the analysis (e.g., whether the class represents a task). To
guarantee a complete analysis, the weaver may still instrument classes for which
it cannot determine all supertypes, introducing runtime checks (e.g., ensuring
that the receiver of a method call is a subtype of a task interface) to be executed
before the inserted instrumentation code. Unfortunately, such checks can result
in significant overhead and thus can cause serious perturbations of the collected
metrics.

On the one hand, while RSI can be obtained when performing the instru-
mentation within the same JVM executing the observed application, in-process
instrumentation can interfere with the instrumentation of the Java class library,
class loading, and JVM initialization [[13}; [69]. To mitigate these problems, frame-
works performing in-process instrumentation (such as the AspectJ [70] load-time
weaver; see Section often prevent any instrumentation of the Java class

51

52 4.1 Background

library, leading to limited bytecode coverage. On the other hand, performing
the instrumentation in a separate process (like in DiSL [|82]; see Section
can achieve full bytecode coverage, but complete RSI is generally not available,
often requiring expensive runtime checks in the instrumented program. Providing
accurate and complete RSI in the instrumentation process is challenging because
the observed application may make use of custom classloaders and the set of all
loaded classes is generally only known upon termination of an application.

In this chapter, we present a novel technique to accurately reify complete RSI
in a separate instrumentation process. We implement our technique as an exten-
sion of DiSL. Our approach enables type-specific analyses that are both complete
(thanks to full bytecode coverage provided by DiSL) and efficient (thanks to the
provision of RSI in the weaver ensured by our work). We use our technique to
speed up task-granularity profiling with tgp and to reduce measurement pertur-
bations. Thanks to our work, task-granularity profiling introduces only small
overhead in the observed application, also reducing perturbations of the collected
metrics.

The chapter is organized as follows. Section 4.1 introduces background
information. Section motivates the need for our approach. Section 4.3
presents a new API to access complete RSI within the DiSL server. Section (4.4
describes our technique in depth. Section discusses how our approach can
be used in task-granularity profiling, while Section [4.6] shows the benefits of
applying our methodology to tgp (i.e., low overhead and reduced measurement
perturbations). Finally, Section discusses advanced features and limitations
of our approach, while Section summarizes the achievements presented in
this chapter.

4.1 Background

Before presenting our work, we introduce some preliminary information on
classloaders (Section |4.1.1) and reflective information (Section |4.1.2)).

4.1.1 Classloaders

A Java classﬂ is created by loading a binary representation of the class (i.e.,
classfile) using a classloader, which is responsible for locating the corresponding
classfile, parsing it, and constructing a class representation within the JVM. A

n this chapter, we use the term class to indiscriminately refer to both Java classes and
interfaces.

53 4.1 Background

classloader can either be the bootstrap classloader or a user-defined classloaderﬂ
The bootstrap classloader, supplied by the JVM, is responsible for loading the
Java core classes (e.g., the java.x package), while a user-defined classloader
is responsible for loading application classes. All user-defined classloaders are
subtypes of java.lang.ClassLoader. The standard user-defined classloader
used to load the main class of an application (i.e., the application classloader) can
only locate classfiles in the application classpath (specified by the user at JVM
startup). Developers can create their own user-defined classloaders to extend this
behavior. This is needed if an application fetches classfiles from other locations
(such as a remote server) or loads special classes (such as encrypted or dynamically
generated ones).

When a classloader CL is requested to load a class C, it can either load the
class itself or delegate the loading to another classloader. In the former case,
CL is known as the defining classloader of C. Each class has a single defining
classloader. The bootstrap classloader cannot delegate classloading. Normally,
a class C is loaded when another previously loaded class D references it. The
first classloader that attempts loading C is the defining classloader of DE] A class
may be loaded before some of its supertypes. Loading C triggers the subsequent
loading of its direct supertypes (i.e., its superclass and all directly implemented
interfaces) if they are not yet loaded. Due to delegation, it is possible that the
defining classloader of a class is different from the one of its supertypes.

At runtime, a class is determined by its fully qualified name (i.e., the class name,
including the package where the class is defined) and its defining classloader.
Several classes with the same fully qualified name may exist at runtime, provided
that their defining classloaders are different. To this end, classloaders maintain
different namespaces: a classloader is only aware of the classes it has defined
or has delegated loading. Our approach exposes classloader namespaces to an
instrumentation process, ensuring that homonym classes defined by different
classloaders can be handled correctly, and that RSI is always accessible even if a
supertype and a subtype are defined by different classloaders.

4.1.2 Reflective Information

Reflective information refers to any information related to a Java class or method
available at runtime. Developers can obtain reflective information through the

2We use the terminology of the JVM specification [[I01]]. Note that some user-defined class-
loaders are part of the Java class library.

3The use of the Java Reflection API may cause exceptions to this behavior. See the documenta-
tion of java.lang.Class for more information.

54 4.2 Motivation

Java Reflection API [[94]. Any loaded class is represented by an instance of
java.lang.Class, which allows one to inspect reflective information of the cor-
responding class. Our work focuses on reflective supertype information (RSID), i.e.,
complete information about all direct and indirect supertypes of a class. Such infor-
mation could be retrieved by calling Class.getSuperclass and Class.getInter-
faces, which return Class instances corresponding to the direct superclass and
the directly implemented interfaces of a class, respectively. Complete RSI of a
class can be obtained by repeatedly calling these methods on all the supertypes
of the class. This approach only works in the process running the application.

If complete RSI is available at instrumentation-time, the weaver can selectively
instrument a class based on its position in the type hierarchy, enabling more effi-
cient dynamic analyses. Unfortunately, frameworks performing instrumentation
in a separate process cannot access the Class instances of the classes loaded in the
observed application (because such classes are not loaded in the instrumentation
process). Thus, they cannot normally inspect complete RSI. Our approach fills
this gap, making complete RSI available to the instrumentation process.

4.2 Motivation

While RSI can significantly reduce the overhead of type-specific analyses on
the JVM, existing approaches to expose RSI at instrumentation-time suffer from
serious limitations. In the following text, we discuss the limitations of existing
instrumentation techniques in offering full bytecode coverage and accessing RSI,
motivating the need for a new approach. As running example, we consider a
subset of the profiling logic implemented in tgp that instruments the execution
of method run (with no input arguments and return type void) in all subtypes
of java.lang.Runna bleﬂ To correctly determine the classes to instrument, the
weaver has to retrieve complete RSI for each class. We first discuss the benefits
and limitations of implementing such an analysis with prevailing techniques, and
highlight the importance of taking classloader namespaces into account; then,
we outline how our approach overcomes these limitations.

*While we exemplify our approach by considering only Runnable. run for simplicity, the same
observations hold for all other execution and submission methods defined in Section [3.2] as well
as for task constructors.

55 4.2 Motivation

1 public aspect Instrumentation {

2 pointcut exec(): execution(void Runnable+.run());
3 before(): exec() {

4 // Inserted instrumentation code - omitted here

s}
6 }

(a) AspectJ [[70]].

1 @Before(marker = BodyMarker.class, scope = "void run()")
> public static void beforeRunMethod(DynamicContext dc) {
3 if (dc.getThis() instanceof Runnable) { // Inserted

4 // Inserted instrumentation code - omitted here

s}
6 }

(b) DiSL [82].

Figure 4.1. Aspect] and DiSL code for instrumenting method void run() in
every subtype of Runnable.

4.2.1 Compile-time Instrumentation

A possible approach is to implement the analysis with compile-time instrumen-
tation (i.e., replacing existing classfiles with instrumented ones), for example
resorting to the compile-time weaver of the AspectJ AOP framework [70]]. Fig-
ure[4.1)(a) shows the code for implementing the analysis in Aspect]. Compile-time
instrumentation typically resorts to static analysis to derive the type hierarchy of
an application, so as to insert instrumentation code (line 4) only in subtypes of
Runnable. Unfortunately, static analysis cannot guarantee accurate and complete
RSI, as it lacks information about which classes will be loaded at runtime (due
to dynamic class loading). Moreover, it may not handle classloader namespaces
correctly (e.g., it may not process classes loaded by custom classloaders), al-
though classloaders play an important role in many frameworks such as in the
dynamic module system OSGi [[124]]. Such limited RSI may lead to failures in
instrumenting all relevant classes (e.g., every subtype of Runnable), resulting in
an analysis with limited bytecode coverage.

56 4.2 Motivation

4.2.2 Load-time In-process Instrumentation

Another approach is load-time instrumentation, performing the instrumentation
within the observed JVM process (an approach known as in-process instrumenta-
tion). In this setting, instrumentation occurs right after a class has been loaded
(before it is linked by the JVM). Interfaces such as JVMTI [[98]] or those offered
by the Java Instrumentation API [|99]] enable intercepting and instrumenting each
loaded class, including dynamically loaded classes or those defined by custom
classloaders. For example, the Aspect] load-time weaver operates in such a
setting.

While obtaining complete RSI using load-time instrumentation is possible,
such an approach has serious drawbacks. In-process weavers implemented in
Java have access to the classloader used to load a class (provided as argument to a
ClassFileTransformer), and can call Class. forName (passing the classloader
as an argument) to access the Class instances of the direct supertypes; then,
they can use this approach recursively to get the Class instances of all indirect
supertypes.

Unfortunately, this approach may significantly interfere with the instrumenta-
tion of Java classes. Instrumentation code may use classes that are themselves
(to be) instrumented, which may cause infinite recursions (as reported by sev-
eral researchers [[126; [14]] and developers [[136]]). This is a particular concern
when instrumenting classes that are commonly used by weavers implemented
in Java, such as those in the Java class library [[13;|69]. Existing approaches to
avoid infinite recursions when instrumenting the Java class library have serious
drawbacks. One approach is to prevent the instrumentation of the Java class
library altogether, as in the AspectJ load-time weaver. Unfortunately, this solution
results in limited bytecode coverage; for example, subtypes of Runnable inside
the Java class library (such as Thread) cannot be instrumented using the AspectJ
load-time weaver. Another solution is to instrument the Java class library via
class redefinition [[13]]; however, such an approach exacerbates the complexity of
the instrumentation and constrains the instrumentation due to the limitations of
class redefinition (e.g., class redefinition may only replace method bodies and
must not introduce any new methods or fields).

Finally, the above limitations may be prevented by implementing instrumenta-
tion logic using only native code. For example, this can be achieved by attaching
a native-code agent to the JVM using JVMTI, and avoiding any calls into bytecode.
However, this solution would require the implementation of a complex weaver
purely in C/C++, which is extremely tedious and error-prone.

57 4.2 Motivation

4.2.3 Load-time Out-of-process Instrumentation

Another alternative is performing the instrumentation at load-time in a JVM
instance running in a different process (an approach known as out-of-process in-
strumentation). This setting prevents the limitations of in-process instrumentation
outlined above and enables full bytecode coverage. For example, DiSL employs
load-time out-of-process instrumentation and can instrument every loaded class,
including Java core classes.

Unfortunately, the instrumentation process has no access to complete RSI,
because it cannot access the Class instances of the observed application. For
example, the DiSL server receives a byte array upon class loading, containing the
binary representation of the class to be instrumented (as encoded in the classfile).
As a result, the weaver can only inspect the RSI that are contained in the classfile,
i.e., the names of the direct supertypes of a class, while any other information on
the direct and indirect supertypes is missing. While in principle more advanced
weavers may request missing RSI from the observed JVM (which can retrieve
the requested information from the Class instances of the supertypes), some
supertypes of the class under instrumentation may not have been loaded yet,
leading to failures when retrieving reflective information of such classes. To the
best of our knowledge, there is no instrumentation framework resorting to load-
time out-of-process instrumentation which can guarantee complete and accurate
RSI in the instrumentation process.

To implement the target analysis in the absence of complete RSI (while en-
suring full bytecode coverage), the weaver must insert expensive runtime checks
(i.e., using the instanceof operator) in the bytecode of the class under instru-
mentation, to ensure that instrumentation code is executed only in subtypes of
Runnable. Figure [4.T(b) shows a DiSL code snippet implementing the analysis.
The code snippet instructs the weaver to instrument all methods named run (with
no arguments and void return type) of every loaded class (line [1)), executing
instrumentation code (line |4)) only if the current object (i.e., this) is an instance
of Runnable (line The performance penalty introduced by such checks may
be significant, especially if method run is defined in many classes, or if the analysis
targets a constructor, which is present in any loaded class. While guaranteeing
full bytecode coverage, the resulting analysis can be inefficient.

>The snippet shown in Figure (b) could be optimized if the class under instrumentation 1)
is a direct subtype of Runnable, or 2) is a direct subtype of Object and does not implement any
interface.

58 4.2 Motivation

java.lang.Runnable
+run () : void
Classloader A A Classloader
CL1 +run () : void : +run () : void CL2
application custom
classloader 1 T classloader
B B
+run(): void +run() : void

Figure 4.2. Simplified UML class diagram showing an example of homonym
classes defined by different classloaders.

4.2.4 Classloader Namespaces

Classloaders maintain their own namespaces and are unaware of the classes
defined by other classloaders. As a result, two classloaders can define different
classes with the same fully qualified name. This situation can lead to incomplete
instrumentation (i.e., classes in the scope of the analysis are not instrumented)
or wrong instrumentation (i.e., classes not in the scope of the analysis are instru-
mented) if not carefully handled by the weaver.

To better understand this issue, consider the classes shown in Figure and
suppose that all of them are loaded by the application. Classes A and B in the left
part of the figure are located in the classpath and are defined by classloader CL1
(i.e., the application classloader), while those in the right part are located outside
the classpath and are defined by classloader CL2 (i.e., a custom classloader). The
defining classloader of Runnable is the bootstrap classloader, as classes inside the
java.x* package can be loaded only by such classloader [[101]]. To guarantee a
correct analysis, the weaver must ensure that only classes A and B defined by CL2
are instrumented (as they are subtypes of Runnable), leaving untouched those
defined by CL1 (which are not subtypes of Runnable).

Unfortunately, compile-time instrumentation may not process classes loaded
by custom classloaders such as CL2. As a result, it may miss the instrumentation
of A and B loaded by CL2. Moreover, load-time weavers not handling classloader
namespaces properly may fail to distinguish classes with the same fully qualified
name but different defining classloader, treating them as if they were the same

59 4.2 Motivation

class. In such a case, both A and B classes could be instrumented (even though
those defined by CL1 do not fall within the scope of the analysis) or ignored by
the weaver (even though those defined by CL2 should be instrumented).

Moreover, suppose now that our analysis targets subtypes of A rather than
Runnable. A flexible instrumentation framework should provide users a way to
define at instrumentation-time which of the two A classes falls within the scope
of the analysis (e.g., instrument only subtypes of A defined by CL2), such that the
weaver may instrument classes based on their defining classloaders. Both AspectJ
and DiSL do not offer such functionality, requiring the insertion of runtime checks
to retrieve the defining classloader of a class and, if the classloader matches the
one targeted by the analysis, execute instrumentation code.

4.2.5 Our Solution

Our approach reconciles the benefit offered by out-of-process instrumentation (i.e.,
full bytecode coverage) with the provisioning of accurate and complete RSI and
classloader namespaces. We propose a novel technique to accurately reify the class
hierarchy (including classloader namespaces) of the instrumented application
within a separate instrumentation process, such that accurate and complete RSI
is available for each class to be instrumented. Our solution avoids the use of
expensive runtime checks required otherwise, enabling efficient analyses that
guarantee full bytecode coverage. Moreover, our approach correctly deals with
homonym classes defined by different classloaders and allows the developer to
identify classloader namespaces (if desired) when writing dynamic analyses.

We implement our technique in an extended version of DiSL, where the
weaver reifies classloader namespaces. Figure shows the architecture of DiSL
(as in version 2.1, the latest at the time of writing) and our contribution. The
original DiSL does not have access to complete RSI and is unaware of classloader
namespaces, because it cannot access the Class (resp. ClassLoader) instances of
the classes (resp. classloaders) of the observed JVM. As a consequence, it cannot
instrument classes based on their position in the type hierarchy, and treats as equal
classes with the same fully qualified name but different defining classloaders. Our
work tackles this issue, providing complete RSI and classloader namespaces to the
instrumentation process (i.e., the DiSL server). This information can be inspected
by the DiSL server thanks to our new DiSL Reflection API (described in the next
section), which mirrors Class and ClassLoader instances in the observed JVM.
Our technique allows DiSL analyses to reconcile full bytecode coverage with
efficiency.

60 4.3 The DiSL Reflection API

Observed JVM Original
DiSL Server

JVMTI agent |, >
: % :
. Instrumented :
Java Reflection API DiSL Reflection API
— Class — DiSLClass
ClassLoader DiSLClassLoader

Figure 4.3. DiSL architecture. DiSL (version 2.1) cannot access complete RSI
and is unaware of classloader namespaces. Our work introduces the new DiSL
Reflection API, which enables the DiSL server to inspect complete RSI and
classloader namespaces by mirroring Class and ClassLoader instances that can
be obtained with the Java Reflection APl in the observed JVM.

4.3 The DiSL Reflection API

A key feature of our approach is the new DiSL Reflection API, which provides an
interface to access RSI within the DiSL server, as if the server could access the
Java Reflection API in the observed JVM, retrieving the (future) Class instance
corresponding to the class being instrumented (see Figure [4.3). Moreover, our
API allows inspecting classloader namespaces.

Figure summarizes the key classes and methods of the DiSL Reflection
API. The purpose of the classes DiSLClassLoader and DiSLClass is to mirror
their counterparts in the observed application (i.e., ClassLoader and Class,
respectively), such that RSI and classloader namespaces can be inspected from the
DiSL server. Each time a new classloader is used to load a class, the corresponding
instance of DiSLClassLoader is created in the DiSL server. Similarly, when a
class is loaded by the observed application, the server creates the corresponding
DiSLClass.

DiSLClassLoader represents the namespace of the corresponding classloader
within the DiSL server; in particular, it maintains the mapping from fully qualified
class names to the corresponding DiSLClass instances. Thanks to our API, an
instrumentation is able to correctly handle homonym classes defined by different
classloaders. Internally, DiSLClassLoader instances are identified by a unique
ID (line [2). ID O corresponds to the bootstrap classloader, ID 1 corresponds

61 4.3 The DiSL Reflection API

1 public interface DiSLClasslLoader {

2 long getID();

3 DiSLClass forName(String fullyQualifiedClassName);
4+ boolean isBootstraplLoader();

s boolean isApplicationLoader();

9 public interface DiSLClass {

10 String getName();

11 DiSLClassLoader getClassLoader();
12 DiSLClass getSuperclass();

13 Stream<DiSLClass> getInterfaces();
14 Stream<DiSLClass> getSupertypes();

17

18 public class ReflectionContext extends AbstractStaticContext {
19 public DiSLClass thisClass() { ... };

20 .

21 }

Figure 4.4. Classes and methods of the new DiSL Reflection API. Methods not
relevant for the dissertation are omitted.

to the application classloader, while subsequent IDs identify other user-defined
classloaders.

A DiSLClass allows inspecting RSI of a class from the DiSL server. In particu-
lar, it exposes the superclass (line and the directly implemented interfaces
(line of a class. Our approach ensures that when a class is being instrumented,
the corresponding DiSLClass and those of all its supertypes are available. Super-
type information returned by a DiSLClass is fully compliant with the JVM speci-
fication [101]@ DiSLClass also offers the convenience method getSupertypes
to retrieve all (direct and indirect) supertypes of a class, including the class itself
(line [14)).

The DiSL Reflection API is typically used in guards at instrumentation-time.
To this end, our API introduces new context information than can be accessed

5The contracts of the methods getSuperclass and getInterfaces are the same of the
homonym methods in java.lang.Class, with the exception that interfaces are returned us-
ing a Stream rather than an array.

62

4.4 Implementation

Table 4.1. Abstract data types used in Figureand their translation into Java,
C or JNI types.

Type Description Java equivalent C/JNI equivalent
LONG A long integer. long jlong
STRING A string. java.lang.String char x
C A class. java.lang.Class jclass
B. A byte array representing byte[] char *
class c.
L A classloader (Ll; repre- java.lang.ClassLoader jobject
sents the bootstrap class-
loader).
S A list of STRINGs. List<String> char x*x
p An ordered pair class P { typedef struct {
<STRING,LONG>. String name; char xname;
The first element repre- long id; jlong id;
sents a fully qualified class } } P
name; the second element
the ID of a classloader.
S A list of P pairs. List<P> P x

by guards through the ReflectionContext (line[18). In particular, this class
provides the DiSLClass (line of the class currently under instrumentation,
allowing guards to perform their checks based on RSI. We show how to use the
DiSL Reflection API in tgp in Section

4.4

Implementation

The DiSL Reflection API enables efficient analyses thanks to the provisioning of RSI
and classloader namespaces. In this section, we discuss the key implementation
details of our approach, which ensures that such information is always available in
the DiSL server. We first outline the algorithms involved by means of abstract data
types; then, we expand the discussion showing C and Java code. The abstract
data types involved in this section are shown in Table and the functions
defined on them are reported in Table Note that lists are ordered and support
concatenation through the || operator. The notation L, refers to the null value
of type T (see Section[3.5.1)). We consider —1 as null value for LONG (in both

63

4.4 Implementation

Table 4.2. Functions on abstract data types used in Figure () denotes the

empty list.

Function

Description

C code

superclass (B, b): STRING

Returns the fully qualified name of c’s
direct superclass, or lgtrng if ¢ is
java.lang.Object.

interfaces(B. b): .%

Returns the list of fully qualified names
of ¢’s directly implemented interfaces, in
the order they are implemented, or () if
¢ does not implement any interface.

loadClass(STRING s,LI): C

Loads a class with fully qualified name
s using classloader [, returning the cor-
responding java.lang.Class. [can be
1;, denoting the bootstrap classloader.

Figure

classloader(Cc): L

If ¢ is defined by an user-defined
classloader, returns the corresponding
java.lang.ClassLoader. If ¢ is defined
by the bootstrap classloader, returns L ;.

Figure[ﬂ]

id(L1): LONG

Returns 0 if [=1 ;. Otherwise, returns
the unique ID (> 0) associated with [.
If no ID has been associated to [, this
function assigns a unique ID to [before
returning it.

Figure[ﬁ]

instrumentRemotely (B, b,
LONGi, Pp,, & p;): B,

Sends b to the server for instrumenta-
tion, along with the ID of ¢’s defining
classloader (i, which must be > 0) and
information to univocally identify ¢’s su-
perclass (p,, which can be 1, if ¢ is
java.lang.Object) and c’s directly im-
plemented interfaces (p;). Returns the
instrumented byte array of c.

64 4.4 Implementation

Java and C), and null (resp. NULL) for all other types in Java (resp. C)E] In the
following text, we often assume that the server is instrumenting a class cf|

4.4.1 Forced Loading of Supertypes

The DiSL server creates a new DiSLClass when it receives the corresponding
class for instrumentation. To access RSI of c at instrumentation-time (e.g., in
guards), the DiSLClass instances of all the supertypes of c must be available
in the server when c is being instrumented. This implies that every supertype
of ¢ must be instrumented before c itself. Unfortunately, DiSL sends classes to
the server in the same order as they are loaded by the JVM; hence, some of the
supertypes of ¢ may not have been received by the server when instrumenting
c. In such a case, attempts of retrieving RSI at instrumentation-time will fail, as
some required DiSLClass instances are not yet available. We tackle this issue by
modifying the order in which classes are sent to the server for instrumentation,
ensuring that all the supertypes of c are sent before c. To this end, our framework
forces the loading of each supertype of c that has not yet been loaded.

Figure |4.5|reports the algorithm used to force the loading and instrumentation
of C’s supertypes. The algorithm is executed in a callback, invoked when c has been
loaded in the observed JVM (but before the JVM has created a Class representing
c). The callback has access to the byte array representing c as loaded from the
classfile (which can be modified by the DiSL server and cannot be 1), and the
defining classloader of c. First, the algorithm retrieves the fully qualified name
of C’s superclass (line [2) and triggers its loading through the helper function
loadAndGetClassloaderID (line[5), unless c is java.lang.0Object, which has
no superclass [[101]]. In particular, the function asks the JVM to load the supertype
using the defining classloader of c via loadClass (line[17)). This process is then
repeated for each of the interfaces directly implemented by ¢ (lines[8H10). Note
that loadClass triggers the nested execution of the callback in the context of a
supertype of c, resulting in the recursive loading of every supertype of c, including
indirect ones. When the foreach loop terminates (line [13)), every supertype of c
has been loaded and instrumented. At this time, complete RSI of c is available in
the instrumentation process, and the algorithm can send the class to the server
for instrumentation (line[14)).

The above algorithm is implemented in the JVMTI agent attached to the
observed JVM (see Figure [4.3). In particular, the callback and its arguments

7Unless otherwise noted, the functions listed in Table are undefined if any of their input
parameters is L.
8For simplicity, error-handling code is not shown here.

65 4.4 Implementation

input : b original byte array of the loaded class
l defining classloader of the loaded class
output: B, instrumented byte array of the loaded class
1 callback onClassLoad(B, b, L 1) begin
2 STRING s, < superclass(b)
3 P p,—1,
4 if s, # Lgtring then
5 | p, < <s,,loadAndGetClassloaderID(s,,[) >
6 end
7 Z pi<0)
8 < s; < interfaces(b)
9 foreach s; €s; do
10 P p; < <s;,loadAndGetClassloaderID(s;,[) >
11 pi < pi Il (p)
12 end
13 /* Here, all supertypes have been (recursively)
instrumented x*/
14 return instrumentRemotely(b,id(l),p,,p;)

15 end

input :s fully qualified class name of the class to be loaded
l classloader used for initiating the loading of s
output: LONG ID of the defining classloader of the loaded class

16 function loadAndGetClassloaderID(STRING s, L [) begin
17 | return id(classloader(loadClass(s,1)))
18 end

Figure 4.5. Algorithm to force supertype loading and retrieve classloader IDs.

66 4.4 Implementation

1 jclass loadClass(char xs, jobject 1) {

> if (1 == NULL) {

3 return (xjni)->FindClass(jni,s);

4+ }

s jclass loaderClass = (*jni)->GetObjectClass(jni,1);

6 jmethodID methodID = (*jni)->GetMethodID(jni,loaderClass,

7 "loadClass", "(Ljava/lang/String;)Ljava/lang/Class;");

s s = formatName(s); // Replace */’ with *.’

9 jstring className = (*jni)->NewStringUTF(jni,s);

10 return (jclass) (xjni)->CallObjectMethod(jni,1,methodID,className);

Figure 4.6. Native code of loadClass(STRING s, L [): C.

are provided by JVMTI, which allows an agent to be notified and to execute
custom code upon class loadingﬂ Functions superclass and interfaces are
implemented by looking up the byte array representing c at specific indices,
following the class file format [[101[]. Finally, the C code for loadClass is shown
in Figure The purpose of this function is to call 1.loadClass(s) from
native code through JNI, triggering the loading of a class named s by classloader
L (lines[SHIO). Note that no class is loaded if 1 was already requested to load a
class named s, and that 1 can delegate loading to another classloader. Special
handling is needed if 1 is the bootstrap classloader. No object representing the
bootstrap classloader is accessible in Java, thus no JNI calls can be made on 1 (1
is NULL). In this case, we resort to the JNI function FindClass (line[3]), which can
look up and load classfiles located in the classpath using the bootstrap classloader.

According to the JVM specification, all supertypes of ¢ must have been loaded
before c is initialized and used by the observed JVM. Our algorithm does not
load any class that would not be loaded otherwise, resulting in no observable
difference from the application perspective (apart from calls to the classloader
possibly arriving in a slightly different order). Moreover, the JVM would initiate
the loading of the supertypes of c using the same defining classloader of c. Our
algorithm follows the same approach, resulting in no alteration of classloader
namespaces in the observed application.

?See the JVMTI documentation of the ClassFileLoadHook event for more information.
101n all C functions shown in this chapter, the variables jni and jvmti refer to function pointers
offered by the JNI or JVMTI API, respectively.

67 4.4 Implementation

4.4.2 Classloader Namespaces

The design behind DiSL. mandates that the DiSL server be completely independent
from the observed application; thus, any information related to the classes used
by the application must be explicitly sent to the server by the JVMTI agent. The
communication protocol employed by DiSL just sends (to the server) the byte
array of the class to be instrumented, without any classloader information. As a
result, DiSL is unaware of classloader namespaces.

Our approach maintains different classloader namespaces in the DiSL server,
ensuring that homonym classes defined by different classloaders are handled
correctly. While maintaining separate namespaces, the server must ensure that
the DiSLClass of a supertype can be retrieved by a subtype even if the two are
defined by different classloaders. This situation occurs frequently; for example
any application class (loaded by a user-defined classloader) has at least one
supertype (Object) in the java.x package, and classes within java.* can be
loaded only by the bootstrap classloader [[101]]. To handle such cases correctly,
we modify the agent-to-server communication protocol, including additional data
to identify classes univocally. The rest of this section describes the rationale of
our approach and some implementation details.

Retrieving and Sending Classloader Data

Apart from the byte array representing c (needed for instrumenting the class), the
agent in our framework sends (to the server) the defining-classloader ID of c and
complete information (fully qualified name and defining-classloader ID) of all
direct supertypes of c. This information is retrieved during the forced loading of
supertypes, as shown in Figure As soon as a supertype of ¢ has been loaded,
the agent retrieves the ID of its defining classloader (line [17). Note that such
classloader can be different from [in case of classloader delegation. The agent
stores the ID along with the fully qualified name of the supertype just loaded in a
dedicated structure (p,) for the superclass (line [5) or in a dedicated list (p;) for
the interfaces implemented by c (line [11)). When all the supertypes have been
loaded, p, and p; contain all the necessary information to identify each supertype
of c univocally. Such information is then sent to the server (line along with
the defining-classloader ID of c.

Figure reports the C code for retrieving the defining classloader of c. The
purpose of function classloader is to call c.getClassLoader() from native
code (lines through JNI. The call is avoided if c is defined inside the java.x*
package (lines for two reasons: 1) classes inside that package can only

68 4.4 Implementation

1 jobject classloader(jclass c) {

> if (isInJavaPackage(c)) {

3 return NULL;

4+ }

s jclass kUl = (*xjni)->FindClass(jni,"java/lang/Class");
6 jmethodID methodID = (*jni)->GetMethodID(jni,kl,

7 "getClassLoader","()Ljava/lang/ClassLoader;");
s return (xjni)->CallObjectMethod(jni,c,methodID);
9 }

Figure 4.7. Native code of classloader(C c): L.

be loaded by the bootstrap classloader, and 2) the call can occur during JVM
bootstrap (when Java classes are being initialized), interfering with their loading.
In this case, the function returns NULL (to represent the bootstrap classloader).

Finally, Figure details the process of retrieving the ID of classloader [.
The agent makes use of the JVMTI heap tagging feature to assign or retrieve
a unique long tag to/from each classloader, using the tags as IDs. According
to the specification of the DiSL Reflection API, the bootstrap classloader has
ID O (lines [3H5). For all other classloaders, the agent first checks whether the
classloader has already been tagged, returning the corresponding tag in such a
case (lines [6HIO). Otherwise, it tags the classloader with a successive unique
ID (lines[1IHI4), returning the assigned tag. This implementation ensures that
classloaders are tagged in the same order they are used by the JVM, such that the
application classloader has ID 1, while subsequent user-defined classloaders have
successive IDs. The code is atomically executed in a critical section, to avoid any
race condition.

Maintaining Classloader Namespaces

The DiSL server uses the additional data sent by our agent to maintain classloader
namespaces, enabling the inspection of RSI. For each loaded class c, this pro-
cess involves: 1) creating a DiSLClassLoader instance cl corresponding to the
defining loader of c, 2) creating a DiSLClass instance kl corresponding to ¢, and
3) inserting kl into cl.

Figure details the above operations. Note that this process occurs before
c is actually instrumented (line [38)), such that guards can access complete RSI
during the instrumentation of c. First, the server obtains cl, (atomically) creating
it if c is the first class loaded by the classloader (line . Then, the server creates

69 4.4 Implementation

1 static jlong next_tag = 1;
2 jlong id(jobject 1) {
s if (1 == NULL) {

4 return 0;
s}
6 jlong id;

7 (xjvmti)->GetTag(jvmti,1,&id);
s if (id '= 0) {

9 return id;

10 }

n // U still untagged

12 jlong tag = next_tag++;

13 (*jvmti)->SetTag(jvmti, 1, tag);
14 return tag;

Figure 4.8. Native code of id(L) : LONG. The code is atomically executed in
a critical section (not shown here for simplicity).

a new DiSLClass (line using the information received from the agent. A
DiSLClass instance is immutable, since all the information required to completely
represent its state are known at creation time. Upon creation, an implementation
of a DiSLClass (shown as DiSLClassImpl in the figure) needs to obtain the
DiSLClass instances of its supertypes (lines [I3H1€). To this end, the server
queries the defining classloader of each direct supertype for the corresponding
DiSLClass (via method getDiSLClass; lines[20H26]). Due to the forced loading
of supertypes, DiSLClass and DiSLClassLoader lookup is guaranteed to succeed
(apart from the corner cases described in Section[4.4.3). As last step, the server
(atomically) inserts kl into cl (line[37)).

4.4.3 Preprocessing Java Core Classes

The forced loading of supertypes makes RSI available in the DiSL server. This
process relies on JNI to call Java methods from native code (see Figure [4.6).
Unfortunately, JNI is not available during the primordial phase of the JVM, when
the JVM and the core Java classes are being initialized. As a result, the forced
loading of supertypes cannot be ensured for all the Java classes loaded during the
primordial phase of the JVM. This fact can lead to failures when retrieving RSI, if
c is loaded during the primordial phase and one or more supertypes of ¢ have not
been loaded yet. For example, in the JVM used in the evaluation (more details

70 4.4 Implementation

1 class DiSLClassImpl implements DiSLClass {

> final private String className;

3 final private DiSLClasslLoader classloader;
4+ final private DiSLClass superclass;

s final private List<DiSLClass> interfaces =
6 new LinkedList<>();

o DiSLClassImpl(String name, DiSLClassLoader cl, P ps,

10 List<P> pi) {

11 className = name;

12 classloader = cl;

13 superclass = getDiSLClass(ps);

14 for (P p: pi) {

15 interfaces.add(getDiSLClass(p));
16 }

17}

20 DiSLClass getDiSLClass(P p) {

21 if (p == null) {

22 return null;

23 }

24 DiSLClassLoader cl = getClassLoaderFromID(p.id);
25 return cl.forName(p.name);

26}

27

28

29

30 }

31

32

33 byte[] instrument(byte[] b, long i, P ps, List<P> pi) {
34 DiSLClassLoader cl = getOrCreateClassLoader(i);

s String name = parseClassName(b);

36 DiSLClass kl = new DiSLClassImpl(name, cl, ps, pi);

7 insert(cl, kl); // Inserts kl in the namespace of cl
3 ... // Instrument class

39 }

Figure 4.9. Code for maintaining classloader namespaces within the DiSL server.

71 4.5 Efficient Task-Granularity Profiling

in Section |4.6), java.lang.Thread (which implements java.lang.Runnable)
is loaded before Runnable during the primordial phase, leading to failures when
a guard attempts to retrieve RSI of Thread.

Our framework tackles this issue by precomputing the DiSLClass of each
class inside package java.x*. The correctness of our approach is supported by the
fact that all classes inside java.* can be loaded only by the bootstrap classloader
(such that their defining classloader is always known). Precomputing reflective
information of the Java core classes ensures the correct provisioning of complete
RSI, assuming that the Java class library used for the precomputation and the
one of the observed application is the same.

4.5 Efficient Task-Granularity Profiling

In this section, we describe how tgp can leverage reification of RSI to decrease
profiling overhead and the perturbations of the collected task-granularity metrics
caused by the inserted instrumentation code. We focus on task constructors
(which must be instrumented to create a new task profile and register the creating
thread), comparing two implementations of the afterTaskCreation DiSL code
snippet (see Figure lines resorting to runtime checks and to the new
DiSL Reflection API, respectively. Similar observations apply to execution and
submission methods. While this section focuses only on task profiling, the same
approach can be used to recast existing type-specific analyses written in DiSL (such
as actor profiling [[117]]) into more efficient versions using the DiSL Reflection
APL

Figure [4.10|(a) reports the implementation of the code snippet in DiSL 2.1,
where the DiSL Reflection API is not available. The callto Profiler.registerCre-
ation (defined in Table allows the creation of a task profile associated to
a new task. The call should occur when the constructor of a newly created task
terminates. While DiSL allows users to insert instrumentation code at the end of
a constructor (line[1)), the DiSL server has no access to complete RSI, and may
not be able to determine whether the class under instrumentation is a subtype
of a task interface. To guarantee a complete analysis (i.e., to detect all spawned
tasks), DiSL instruments every constructor all loaded classes, adding runtime
checks (lines to ensure that Profiler.registerCreation is called only in
task constructors. While this approach guarantees a complete analysis, execut-
ing runtime checks each time a new object is created can introduce significant
profiling overhead.

72

4.5 Efficient Task-Granularity Profiling

[
o

11

@After(marker = AfterInitBodyMarker.class, scope = "<init>")
public static void afterTaskCreation(DynamicContext dc) {
if (dc.getThis() instanceof Runnable ||

dc.getThis() instanceof Callable<?> ||
dc.getThis() instanceof ForkJoinTask<?>) {
Profiler.registerCreation(dc.getThis(), Thread.currentThread())

(a) Using runtime checks.

@After(marker = AfterInitBodyMarker.class, scope = "<init>",

guard = TaskGuard.class)

public static void afterTaskCreation(DynamicContext dc) {

Profiler.registerCreation(dc.getThis(), Thread.currentThread())

// Executed in the DiSL server at instrumentation-time
public final class TaskGuard {
@GuardMethod
public static boolean guard(ReflectionContext rc) {
return rc.thisClass().getSupertypes().anyMatch(
s -> (s.getName().equals("java.lang.Runnable") ||

s.getName().equals("java.util.concurrent.Callable") ||
s.getName().equals("java.util.concurrent.ForkJoinTask"))

(b) Resorting to the DiSL Reflection API.

Figure 4.10. DiSL code in tgp for instrumenting task constructors.

’

’

73 4.6 Evaluation

Figure[4.10|(b) shows how to recast the above code snippet to leverage the DiSL
Reflection API. Instead of inserting runtime checks in every class, the code snippet
inserts a call to Profiler.registerCreation (line[4) only if the associated guard
(TaskGuard, line |2|) evaluates to true. The guard (executed in the DiSL server to
determine whether a class shall be instrumented) resorts to the DiSL Reflection API
to instrument only task interfaces and their subtypes by retrieving the DiSLClass
of the class being instrumented through the ReflectionContext (line[11)), and
checking whether a task interface is among its supertypes (lines[12H14). Note
that there is no need for the guard to specify the namespace where task interfaces
should be defined, as task interfaces are part of the java.* package, which can
be defined only by the bootstrap classloader. Our approach guarantees that when
a DiSLClass is retrieved (e.g., via ReflectionContext.thisClass), complete
RSI for the class are available in the DiSL server, such that guards can always
determine all supertypes of the class under instrumentation.

Thanks to the provision of RSI and classloader namespaces, DiSL-based analy-
ses running on our framework can avoid slowdowns caused by the execution of
expensive runtime type checks inserted in many loaded classes, as the weaver
can insert instrumentation code only into classes in the scope of the analysis.
Avoiding unnecessary slowdowns is fundamental in tgp, as the metrics profiled
(reference cycles in particular) are very sensitive to perturbations introduced by
the inserted instrumentation code; hence, low profiling overhead is fundamental
to obtain accurate measurements, as discussed in the next section.

4.6 Evaluation

In this section, we evaluate the benefits offered by our approach. We present
the workloads considered in the evaluation and the experimental setup in Sec-
tion[4.6.1] We discuss the overhead of tgp and the speedup enabled by the DiSL
Reflection API in Section Finally, Section [4.6.3]shows that our approach
helps reducing measurement perturbations when profiling task granularity.

4.6.1 Methodology and Setup

We demonstrate the benefits offered by our technique by comparing two versions
of the instrumentation implemented in tgp, i.e., resorting to runtime checks
and using the DiSL Reflection API, respectively. Our evaluation targets multiple
real-world applications running on a single JVM in a shared-memory multicore
machine. In particular, we apply our tool to benchmarks from the DaCapo [15],

74 4.6 Evaluation

ScalaBench [[123]], and Spark Perf [25]] suites. DaCapo and ScalaBench are
composed of well-known JVM workloads written in Java and Scala, respectively,
while Spark Perf is a collection of benchmarks for the popular Apache Spark [[149]]
big-data analytics framework, released by the company responsible for Spark
development.

We use the latest versions of the suites at the time of writing, i.e., DaCapo
version 9.12-MR1 (released in January 2018), ScalaBench version 0.1.0 (released
in February 2012), and the latest build of Spark Perf (dated Decemeber 2015). Fol-
lowing the recommendation of the DaCapo developers,E] we execute benchmark
lusearch-fix in place of lusearchE] Both DaCapo and ScalaBench can be executed
with different input sizes. We use the largest input defined for each workload.
Benchmarks can execute multiple iterations. Each iteration can either be con-
sidered as warm-up or steady-state. We run warm-up iterations until dynamic
compilation and GC ergonomics are stabilized, following the approach described
by Lengauer et al. [[75]]. All other iterations after warm-up are classified as steady-
state. The evaluation presented in this section, as well as task-granularity analysis
and optimization presented in Chapter |5|target only steady-state iterations. Ta-
bles and [4.5]list the workloads considered, along with a brief description,
the input size used (in DaCapo and ScalaBench), and the number of warm-up
iterations (in the last column).

In all workloads, we use the stop-the-world parallel collector [[102]] as GC (i.e.,
the default GC on multicores). Our choice allows filtering out cycles elapsed when
GC is active (which are not related to the execution of application code). We
conduct our evaluation on a server-class machine equipped with two NUMA nodes,
each with an Intel Xeon E5-2680 (2.7 GHz) processor with 8 physical cores and
64 GB of RAM, running under Ubuntu 16.04.03 LTS (kernel GNU/Linux 4.4.0-112-
generic x86_64). When profiling a benchmark, no other computational-intensive
application is in execution on the system, to reduce the perturbation on OS-layer
metrics as discussed in Section Moreover, we pin the observed application
to an exclusive NUMA node (i.e., other processes, including the DiSL server,
Shadow VM, perf, and top run on a different NUMA node). This deployment
setting increases the isolation of the observed application, reducing performance
interference caused by other processes in execution (as the observed application
exclusively utilizes the cores and the memory of its NUMA node). We set up top to
collect CPU utilization only for the NUMA node where the observed application is
executing, such that computational resources used by the DiSL server, Shadow VM,

1gee http://dacapobench.org for more information.
12Results reported on lusearch have been obtained on lusearch-fix.

http://dacapobench.org

75 4.6 Evaluation

Table 4.3. DaCapo [15] workloads considered in the dissertation. Benchmark
description is taken from http://dacapobench.org/benchmarks.html.

Benchmark Description Input # wau.

avrora Simulates a number of programs run on a large 20
grid of AVR microcontrollers.

batik Produces a number of Scalable Vector Graph- large 20

ics (SVG) images based on the unit tests in
Apache Batik.

eclipse Executes some of the (non-gui) jdt perfor- large 20
mance tests for the Eclipse IDE.

fop Takes an XSL-FO file, parses it and formats default 40
it, generating a PDF file.

h2 Executes a JDBCbench-like in-memory bench- huge 10

mark, executing a number of transactions
against a model of a banking application, re-
placing the hsqldb benchmark.

jython Inteprets the pybench Python benchmark. large 20
luindex Uses lucene to index a set of documents; the default 40
works of Shakespeare and the King James
Bible.
lusearch Uses lucene to do a text search of keywords large 20

over a corpus of data comprising the works
of Shakespeare and the King James Bible.

pmd Analyzes a set of Java classes for a range of large 20
source code problems.

sunflow Renders a set of images using ray tracing. large 20

tomcat Runs a set of queries against a Tomcat server huge 10
retrieving and verifying the resulting web-
pages.

tradebeans Runs the daytrader benchmark via a Java huge 10

Beans to a GERONIMO backend with an in
memory h2 as the underlying database.
tradesoap Runs the daytrader benchmark via a SOAP to huge 10
a GERONIMO backend with in memory h2
as the underlying database.
xalan Transforms XML documents into HTML. large 20

http://dacapobench.org/benchmarks.html

76 4.6 Evaluation

Table 4.4. ScalaBench [123] workloads considered in the dissertation. Bench-
mark description is taken from http://www.benchmarks.scalabench.org.

Benchmark Description Input # w.au.

actors Trading sample with Scala and Akka ac- huge 10
tors.

apparat Framework to optimize ABC, SWC, and gargantuan 5
SWF files.

factorie Toolkit for deployable probabilistic mod- gargantuan 5
eling.

kiama Library for language processing. default 40

scalac Compiler for the Scala 2 language. large 20

scaladoc Scala documentation tool. large 20

scalap Scala classfile decoder. large 20

scalariform Code formatter for Scala. huge 10

scalatest Testing toolkit for Scala and Java program- default 40
mers.

scalaxb XML data-binding tool. huge 10

specs Behaviour-driven design framework. large 20

tmt Stanford Topic Modeling Toolbox. huge 10

Table 4.5. Spark Perf [25] workloads considered in the dissertation.

Benchmark Description # w.u.

AlternatinglLeastSquares Runs the ALS algorithm from mllib. 10

ChiSquare Runs the chi-square test from mllib. 60

ClassificationDecisionTree Runs the Random Forest algorithm 20
from mllib.

GaussianMixtureEM Computes a Gaussian mixture model 40
using expectation-maximization.

KMeansClustering Runs K-Means++ algorithm from ml- 35
lib.

LogRegression Runs the logistic regression workload 20
from mllib.

MultinomialNaiveBayes Runs the multinomial naive Bayes al- 20
gorithm from mllib.

PrincipalComponentAnalysis Runs the principal component analysis 20
algorithm.

StreamingWordCount Produces a word frequency histogram 5

from a stream of words.

http://www.benchmarks.scalabench.org

77 4.6 Evaluation

perf, and top are not accounted in the measurements, increasing the accuracy of
the resulting CPU trace. We disable Turbo Boost [59]] and set the CPU governor
to “performance” to disable frequency scaling, such that CPU cores run at the
nominal speed for the whole application execution. In addition, we disable Hyper-
Threading [58]], ensuring that each logical CPU core seen by the OS maps to a
physical CPU core. We use Java OpenJDK 1.8.0_161-b12.

Spark Perf benchmarks are run on Spark version 2.3.0 (compiled with Scala
2.11), set up in local mode on a single machine with as many executors as available
cores. Note that in local mode, all Spark components, including the driver and
all executors, run in a single JVM.

4.6.2 Profiling Overhead and Speedup

In this section, we compare the profiling overhead caused by tgp when using
runtime checks and when resorting to the DiSL Reflection API, evaluating the
speedup enabled by our approach wrt. runtime checks. We present overheads
in the form of overhead factors, defined as the execution time of the observed
application with profiling enabled divided by the execution time of the observed
application with profiling disabled. We show our results in Figure For each
workload, we report the average overhead obtained on 20 steady-state runs. Error
bars indicate 95% confidence intervals.

Overall, the overhead introduced by the DiSL Reflection API is low for most
of the applications. In general, the overhead factor does not exceed 1.04x,
with the following exceptions. In DaCapo (Figure 4.11(a)), avrora incurs an
average overhead of 1.13x. In ScalaBench (Figure 4.11(b)), there are four
benchmarks suffering from higher overhead, i.e., actors (1.34x), scalatest (1.41x),
specs (1.34x), and tmt (1.12x). In Spark Perf (Figure 4.11(c)), the overhead
of GaussianMixtureEM is 1.16x. These overheads are caused by the presence of
many spawned tasks (especially in the ScalaBench applications), whose creation,
submission, and execution are instrumented by tgp.

On the other hand, the overhead caused by runtime checks is always higher
than the one introduced by the DiSL Reflection API, causing significant slowdowns
in many benchmarks. In DaCapo, the workload which is mostly slowed down by
runtime checks is jython (2.36x). In ScalaBench, the slowdown is significant in all
benchmarks, with overheads above 2.00x% in scalac, scaladoc, scalap, scalariform,
and tmt, and above 3.00x in kiama and factorie, which suffers from the highest
slowdown (5.81x). Similarly, runtime checks have a strong negative effect in
Spark Perf, causing overhead factors above 2.00x in Principal ComponentAnalysis,
above 3.00x in ChiSquare, KMeansClustering, and MultinomialNaiveBayes, and

78 4.6 Evaluation

[CIRuntime checks
HIDISL Reflection API

avrora
batik
eclipse
fop

h2
jython

lusearch
pmd
sunflow
tomcat
tradebeans
tradesoap
xalan

2 3 4 5 6 7 8
Overhead factor

(a) DaCapo [15]].

%
=
[
| —
_:l
_:I
[
luindex B2

[——
 —
[D—
| —
—j
[
 E—
[
| E——
D
| E——
| m—
 E——

L

1

actors

apparat

factorie

kiama

scalac

scalap

scaladoc
scalariform

scalatest

scalaxb

specs
tmt !

1 2 3 4 5 6 7 8
Overhead factor

(b) ScalaBench [[123]].

[JRuntime checks
HIDISL Reflection API

AlternatingLeastSquares

ChiSquare

ClassificationDecisionTree

GaussianMixtureEM

KMeansClustering

-

—
Logaegression?

= —

MultinomialNaiveBayes

PrincipalComponentAnalysis

StreamingWordCount

2 3 4 5 6 7 8
Overhead factor

(c¢) Spark Perf [25]].

Figure 4.11. Profiling overhead using the DiSL Reflection API vs. resorting to
runtime checks.

79 4.6 Evaluation

above 4.00x in ClassificationDecisionTree and GaussianMixtureEM, where the
slowdown is maximum (7.25x).

On average, using the DiSL Reflection API incurs a minor slowdown of 1.02x
(DaCapo), 1.11x (ScalaBench), and 1.04x (Spark Perf), whereas runtime checks
cause a non-negligible overhead of 1.26x, 2.40x, and 3.28x, in DaCapo, Scal-
aBench, and Spark Perf, respectively.

Table reports the speedup of tgp resorting to the DiSL Reflection API
wrt. using runtime checks. The values shown are speedup factors, obtained by di-
viding, for each workload, the execution time of the analysis using runtime checks
by the correspondent execution time using the DiSL Reflection API. We also report
95% confidence intervals. As can be read from the table, the DiSL Reflection API
enables significant speedups in most of the workloads. In DaCapo, the highest
speedup can be observed in jython (2.32%). In ScalaBench, our technique leads
to noticeable speedups in most of the workloads, i.e., scalac (2.09x), scaladoc
(2.22x%), scalap (2.16x), scalariform (2.83x%), tmt (2.49x), kiama (3.20x), with
the maximum speedup observed in factorie (5.80x%). Finally, all benchmarks in
Spark Perf benefit significantly from the DiSL Reflection API, with a minimum
speedup of 1.51x (LogRegression), a maximum of 6.24x (GaussianMixtureEM),
and an average speedup factor above 3.00x in several workloads (ChiSquare,
ClassificationDecisionTree, KMeansClustering, and MultinomialNaiveBayes). On
average, the speedup enabled by the DiSL Reflection API is 1.23x in DaCapo,
2.25x in ScalaBench, and 3.12x in Spark, while the maximum is 6.24x (Gaus-
sianMixtureEM). Such high speedups stem from the fact that expensive runtime
checks need to be executed in the constructors of each new object if the DiSL
Reflection API is not used.

Overall, our experimental results show that the DiSL Reflection API can signif-
icantly speed up certain analyses that use runtime checks. In the case of tgp, the
high overhead introduced by runtime checks can jeopardize the accuracy of the
collected task granularities, which are very sensitive to measurement perturba-
tions caused by the inserted instrumentation code. On the other hand, the much
lower overhead introduced by the DiSL Reflection API is less likely to significantly
perturb the collected metrics, enabling more accurate task-granularity analyses,
as discussed in the next section.

4.6.3 Perturbation

The instrumentation code inserted for profiling the metrics of interest causes the
execution of additional computations that are not part of the original observed
application. While this approach is necessary to collect the desired metrics, the

80 4.6 Evaluation

Table 4.6. Speedup enabled by the DiSL Reflection APl wrt. using runtime
checks.

Benchmark Speedup Factor | Benchmark Speedup Factor
DaCapo [15] (& 95% conf.) ScalaBench [123]] (& 95% conf.)
avrora 1.0899 £ 0.0029 | actors 1.2968 £ 0.0060
batik 1.0250 £+ 0.0011 | apparat 1.2205 + 0.0244
eclipse 1.1495 £ 0.0022 | factorie 5.8030 £ 0.0357
fop 1.4941 + 0.0063 | kiama 3.1951 £ 0.0067
h2 1.2236 £ 0.0036 | scalac 2.0901 + 0.0058
jython 2.3218 £ 0.0032 | scaladoc 2.2156 £ 0.0061
[uindex 1.0288 £ 0.0014 | scalap 2.1569 + 0.0056
lusearch 1.0868 £+ 0.0179 | scalariform 2.8282 + 0.0048
pmd 1.0811 £ 0.0018 | scalatest 1.0137 £ 0.0170
sunflow 1.2348 £ 0.0529 | scalaxb 1.4201 £ 0.0037
tomcat 1.0348 £ 0.0011 | specs 1.2872 £ 0.0043
tradebeans 1.1728 £ 0.0032 | tmt 2.4857 + 0.0375
tradesoap 1.1453 £+ 0.0042
xalan 1.1538 £ 0.0015

Benchmark Speedup Factor

Spark Perf [25]] (£ 95% conf.)

AlternatingleastSquares

ChiSquare

1.56989 + 0.0191
3.56443 + 0.0064

4.0370 £ 0.0102
6.2445 + 0.0185
3.3403 £ 0.0134
1.56137 + 0.0068
3.3945 + 0.0193
2.5422 + 0.0060
1.8551 +£ 0.0099

ClassificationDecisionTree
GaussianMixtureEM
KMeansClustering
LogRegression
MultinomialNaiveBayes
PrincipalComponentAnalysis
StreamingWordCount

81 4.6 Evaluation

computations inserted may alter the metrics collected, leading to results that may
not be representative of the original application behavior. Among all metrics
profiled by tgp, reference cycles (used as a measure of task granularity) are
particularly susceptible to perturbations caused by the profiling logic, because the
additional computations inserted by the instrumentation may result in extra cycles
elapsed during the execution of a task, which may be accounted in the granularity
of the task. Reducing the amount of extra cycles elapsed due to instrumentation
code is therefore very important to collect accurate task-granularity profiles.

The goal of this section is to estimate to which extent the DiSL Reflection
API helps reduce the extra cycles introduced in the observed application when
profiling task granularity with tgp. To this end, we measure the total amount
of reference cycles elapsed when executing the observed application in three
settings: 1) without using tgp, 2) using tgp with the DiSL Reflection API, and
3) using tgp resorting to runtime checks. We collect reference cycles by attaching
perf to the observed JVM, using a configuration that enables profiling the amount
of cycles elapsed during program execution, regardless of whether tgp is used. We
do not consider cycles elapsed during garbage collection, as they are not related
to the execution of application code.

To relate the amount of extra cycles introduced by tgp to the cycles originally
elapsed in the target application, we introduce a new metric, the perturbation
factor, defined as the amount of reference cycles elapsed with tgp enabled, divided
by the amount of cycles elapsed with tgp disabled. Note that the purpose of such
metric is not to quantify exactly the (relative) amount of extra cycles inserted by
tgp in the collected task-granularity profiles. An high perturbation factor indicates
that a significant amount of extra cycles have been introduced by the profiling
logic; however, such cycles might not be accounted in the collected task profiles.
On the other hand, a low perturbation factor does not guarantee that the metrics
are perturbed only little, as tgp might overestimate the granularity of some tasks
while underestimating the granularity of some other tasks, without this being
reflected in a high perturbation factor. Moreover, even with a low perturbation
factor, thread scheduling may change in different application runs, and some
computations in the instrumented application may be executed in different tasks
(in comparison to the original application). Finally, attaching perf to collect
reference cycles may itself introduce extra reference cycles in both the original
and instrumented application, perturbing the collected values. In summary, we
use perturbation factors only as indication of the quality of the collected profiles.
High perturbation factors indicate that the collected metrics are likely to be biased.
Low perturbation factors increase our confidence in the results, although they do
not proof the absence of significant measurement perturbations.

82 4.6 Evaluation

avrora
batik
eclipse
fop

h2

[CIRuntime checks
HIDISL Reflection API

jython
luindex

=
= =8
===
=
e
lusearch ==t
pmd B
sunflow EFE===29t |
tomcat B
tradebeans =,
tradesoap it ——y
xalan ==,
|
]

2 3 4 5 6 7
Perturbation factor

(a) DaCapo [15]].

actors

apparat

factorie

kiama

scalac

#

%
scaladoc %

?

?—‘

?ﬂ

scalap

scalariform

scalatest

scalaxb

specs

tmt)

1 2 3 4 5 6 7
Perturbation factor

(b) ScalaBench [[123]].

[JRuntime checks
HIDISL Reflection API

=gl

AlternatingLeastSquares

ChiSquare

ClassificationDecisionTree

GaussianMixtureEM

KMeansClustering

LogRegression

MultinomialNaiveBayes

PrincipalComponentAnalysis

i

StreamingWordCount

1 2 3 4 5 6 7
Perturbation factor

(c¢) Spark Perf [25]].

Figure 4.12. Perturbation factors using the DiSL Reflection API vs. resorting to
runtime checks.

83 4.6 Evaluation

Figure|4.12|summarizes our results. For each workload, we report the average
perturbation factor obtained on 20 steady-state runs. Error bars indicate 95%
confidence intervals. In general, the additional cycles introduced are proportional
to the profiling overhead (Figure[4.11)). This fact highlights that a low profiling
overhead is key to conduct an accurate task-granularity analysis. As shown in the
figure, the DiSL Reflection API is fundamental to reduce measurement perturba-
tions and enable accurate measures on task granularity. Overall, the perturbation
factor related to the DiSL Reflection API is very low for most of the workloads. In
all DaCapo benchmarks (Figure [4.12(a)), the perturbation factor caused by our
technique is close to 1x, with the highest factor observed in luindex (1.03x). In
ScalaBench (Figure [4.12(b))), the only workload where the perturbation factor
is significant is actors (1.28x). This value can be explained by the fact that the
workload of actors is dominated by the creation and execution of millions of
very fine-grained tasks (see Section|5.1.2)), each of them introducing extra cycles
elapsed due to profiling code. Apart from actors, the perturbation factor observed
in all other workloads is below 1.05x. Finally, the only Spark Perf workload
(Figure with a significant perturbation factor is StreamingWordCount
(1.09x), while in all other benchmarks the factor is no higher than 1.03x.

On the other hand, the perturbation factors related to runtime checks are
significant, and higher than the ones introduced by the DiSL Reflection API in
all workloads. In DaCapo, the highest perturbation factor is observed in jython
(2.30x), followed by fop (1.46x). In ScalaBench, the minimum perturbation
factor observed is in apparat (1.30x), the maximum is in factorie (5.80x), while
several benchmarks incur perturbation factors above 2.00x (actors, kiama, scalap,
scalariform, scalatest and tmt). Similarly, runtime checks cause very high per-
turbation factors in Spark Perf, where the observed factors are above 2.00x in 7
benchmarks (out of 9) and above 3.00x in 6 benchmarks. The minimum pertur-
bation factor observed in the suite is 1.33x (AlternatinglLeastSquares) while the
maximum is in GaussianMixtureEM (6.06x%).

On average, profiling task granularity resorting to the DiSL Reflection API
introduces a very low perturbation factor, equal to 1.01x (DaCapo), 1.03x (Scal-
aBench), and 1.02x (Spark Perf), while runtime checks introduce many extra
cycles in the observed application, resulting in perturbation factors in the order
of 1.26x%, 2.41x, and 3.34x in DaCapo, ScalaBench, and Spark Perf, respectively.
Such high factors stem from the need of executing expensive runtime checks in
many methods (in particular, in the constructors of each created object). The DiSL
Reflection API removes the need for such checks, executing profiling code only
in tasks, drastically reducing the amount of extra cycles elapsed, and resulting

84 4.7 Discussion

in collected task-granularity profiles that can more closely represent the original
application behavior.

4.7 Discussion

In this section, we report additional features offered by our approach and discuss
its limitations.

4.7.1 Reclamation of Classloader Namespaces

In the observed application, ClassLoader or Class objects may be reclaimed by
the garbage collector. When this occurs, our approach ensures that the corre-
sponding DiSLClassLoader or DiSLClass instances in the DiSL server can be
reclaimed as well, to avoid a memory leak in the server. To this end, the JVMTI
agent attached to the observed JVM is notified when a tagged Classloader object
has been freed by the garbage collector (via the JVMTI ObjectFree event). As
our agent only tags ClassLoader objects, this event can only be sent upon the
reclamation of a classloader. When the event occurs, the agent signals to the DiSL
server the need for invalidating the namespace of the just freed classloader. In turn,
the server removes any reference to the corresponding DiSLClassLoader and the
DiSLClass instances composing the namespace, such that they will eventually
be reclaimed by the garbage collector of the instrumentation-server JVM.

Freeing up a DiSLClass along with the corresponding DiSLClassLoader is
fully compliant with the Java language specification [[100], stating that a class
can be reclaimed if and only if its defining classloader may be reclaimed (because
classloaders maintain strong references to the loaded classes). As a result, our
agent does not need to tag each Class object and notify the server upon the
reclamation of each of them. While classloader reclamation does not strictly
imply that classes in its namespace have been already reclaimed, they are by no
means reachable by application code and will eventually be reclaimed as well;
hence, it is safe to reclaim the corresponding DiSLClass instances in the DiSL
server.

4.7.2 Preprocessing Classes Outside java. x

Our framework can safely preprocess the Java core classes (i.e., classes inside
the java.x* package) because they are always defined by the bootstrap class-
loader [[101]]. To enable complete RSI, our framework must also preprocess the

85 4.7 Discussion

supertypes of each Java core class; however, some of them fall outside java. *
(for example, we observed the presence of supertypes inside javax.x*, sun.x*, or
com.sun.x*). Our framework ensures a correct preprocessing of such classes, even
if their defining classloader is (in principle) not regulated by the JVM specification.
Indeed, not-yet-loaded supertypes would be loaded during the resolution of the
subtype using the same defining classloader of the subtype. Since the subtype
will always be loaded by the bootstrap classloader (that cannot delegate the
loading), the supertypes will always be loaded by the bootstrap classloader, too.
Consequently, preprocessing supertypes of the Java core classes is compliant with
the JVM specification, even if they are declared outside java. *.

4.7.3 Instrumentation State

The forced loading of supertypes employed in our approach ensures that a subtype
will be instrumented after all its supertypes (except for the classes loaded during
the primordial phase). Thus, custom instrumentation state can be passed from the
instrumentation of a supertype to the instrumentation of a subtype. Our frame-
work enables developers to attach custom instrumentation state to DiSLClass
instances. Instrumentation state eases the propagation of instrumentation-time
information to subtypes, such as properties of a class or bytecode-level statistics.
Note that propagation of the instrumentation state cannot be guaranteed for
classes loaded during the primordial phase, when subtypes may be instrumented
before supertypes (see Section [4.4.3]).

4.7.4 Checking Classloader IDs

Our approach allows instrumenting the subtypes of a class based not only on
its fully qualified name, but also on its defining classloader, by setting up guard
checks against classloaders. In this respect, our approach offers more flexibility
than the AspectJ subtype pattern (the ‘+” operator) that does not allow specifying
the defining classloader.

4.7.5 Limitations

Other analyses making use of the JVMTI heap tagging feature may interfere with
our framework. In particular, such analyses could modify the order in which
classloaders are tagged or could modify the tag of an already-tagged classloader
(JVMTI supports only a single tag per object). Moreover, they could interfere
with the reclamation of classloader namespaces, because the agent may receive

86 4.8 Summary

ObjectFree events even for objects that are not classloaders. Such interference
can be avoided by resorting to a weak-key hash mapﬁ in native code to map
classloaders to IDs, instead of relying on JVMTI heap tagging. This solution would
guarantee a correct assignment of IDs to classloaders. Moreover, it would still
allow namespace reclamation by periodically checking whether a weak reference
to a classloader points to a freed object (via the JNI method IsSameObject),
notifying the server in such a case. On the other hand, this solution is more
complex to implement than resorting to heap tagging, and requires an additional
channel between the agent and the DiSL server (to notify reclaimed classloaders).

While our framework enables the instrumentation of a method m based on
complete RSI of the class where m is defined, it does not guarantee the availability
of RSI for the arguments of m. Similarly, for call sites, RSI for the receiver and
method arguments is not guaranteed available. This limitation arises from the
fact that class loading is forced only for the supertypes of a class being loaded,
but not for types that may occur as method arguments or as receivers of method
calls. Enabling forced loading in the latter cases would likely cause the loading of
more classes than those that would be normally loaded, and may lead to a huge
memory footprint and slow startup due to excessive class loading.

4.8 Summary

In this chapter, we have presented a novel technique to reify the class hierarchy
of an instrumented application within a separate instrumentation process. Our
technique ensures that accurate and complete RSI is available for each class to be
instrumented. RSI is guaranteed available even for classes inside the Java class
library. Thanks to our approach, the instrumentation process can instrument only
the classes that are in the focus of a type-specific analysis, inserting more efficient
instrumentation code. Moreover, our technique exposes classloader namespaces
to the instrumentation process, allowing the instrumentation framework to handle
correctly homonym classes defined by different classloaders.

We have implemented our technique in an extension of the dynamic analysis
framework DiSL. Evaluation results conducted on benchmarks from the DaCapo,
Scalabench, and Spark Bench suites show that our approach significantly speeds
up task-granularity profiling with tgp up to a factor of 6.24x wrt. resorting to
runtime checks. Moreover, our work is fundamental to keep the overall overhead
of tgp low (i.e., below 1.04x in most of the analyzed benchmarks) as well as to
reduce the perturbations of the collected task-granularity profiles, resulting in

13Weak keys can be implemented by creating weak global references in JNI.

87 4.8 Summary

limited perturbation factors (i.e., not exceeding 1.03x-1.05x) in almost every
observed workload. Our approach is also beneficial for other type-specific dynamic
analyses on the JVM.

Overall, our technique enables complete, accurate, and efficient task-granularity
profiling. In the next chapter, we use our profiler (using the DiSL Reflection API)
for characterizing and optimizing task granularity in many task-parallel workloads
running on a JVM in a shared-memory multicore.

88

4.8 Summary

Chapter 5

Task-Granularity Analysis
and Optimization

In this chapter, we use our profiling methodology implemented in tgp to analyze
and optimize the task granularity of various task-parallel applications running on
the JVM. The chapter is organized as follows. Section details our empirical
task-granularity analysis, showing the presence of many fine- or coarse-grained
tasks in several workloads and highlighting opportunities for optimizations. Sec-
tion[5.2| presents our approach to optimize granularity in several tasks that impair
performance, and quantifies the speedup obtained. Section discusses the
limitations of our approach. Finally, Section summarizes our findings and the
achievements presented in this chapter.

5.1 Analysis

In this section, we use tgp to characterize task granularity in multiple task-parallel
benchmarks. We first outline the methodology used for conducting our analysis
(Section [5.1.1)); then, we detail our findings on fine-grained tasks (Section
and on coarse-grained tasks (Section[5.1.3).

5.1.1 Methodology

Our analysis targets task-parallel benchmarks of the latest DaCapo [[15]], Scala-
Bench [[123[], and Spark Perf [25]] suites. We analyze the same workloads used
for the evaluation of the DiSL Reflection API (Section; a comprehensive list is
presented in Tables and The experimental setup and our evaluation
methodology are the same presented in Section [4.6.1] including the version of the

89

90 5.1 Analysis

Table 5.1. Benchmarks spawning fine-grained (FG) or coarse-grained (CG) tasks.

Benchmark # tasks

DaCapo [15] Problematic Task Class spawned CG/FC
avrora avrora.sim.SimulatorThread 26 CG
eclipse java.lang.Thread 468 FG
h2 org.dacapo.h2.TPCC$3 8 CG
lusearch org.dacapo.lusearch.Search$QueryThread 8 CG
pmd net.sourceforge.pmd.PMD$PmdRunnable 570 FG
sunflow org.sunflow.core.renderer.BucketRenderer$BucketThread 8 CG
tomcat org.apache.tomcat.util.net.NioBlockingSelector$BlockPoller$3 200816 FG
tradebeans org.apache.geronimo.samples.daytrader.dacapo.DaCapoTrader 8 CG
tradesoap org.mortbay.jetty.nio.SelectChannelConnector$ConnectorEndPoint 128308 FG
" org.apache.geronimo.samples.daytrader.dacapo.DaCapoTrader 8 CG
g:’;fg:ﬁg: [123] Problematic Task Class spt::::(si CG/FC
actors scala.actors.ActorTask 5197993 FG
apparat scala.actors.ActorTask 122626 FG
tmt scala.concurrent.ThreadRunner$$anon$2 16184 FG
2;23:?:&1([25] Problematic Task Class s:;:::}:; CG/FC
ChiSquare org.apache.spark.executor.Executor$TaskRunner 5 CG
GaussianMixtureEM org.apache.spark.executor.Executor$TaskRunner 35 CG
KMeansClustering org.apache.spark.executor.Executor$TaskRunner 32 CG
LogRegression org.apache.spark.executor.Executor$TaskRunner 45 CG
MultinomialNaiveBayes org.apache.spark.executor.Executor$TaskRunner 14 CG
PrincipalComponentAnalysis org.apache.spark.executor.Executor$TaskRunner 9 CG
StreamingWordCount org.apache.spark.executor.Executor$TaskRunner 1852 FG

workloads and the frameworks considered, the benchmark input size, the number
of warm-up iterations, the GC used, and the environment (i.e., the machine,
its configuration, and the deployment setting) on which the analysis has been
obtained. We use our extended DiSL framework with reification of complete
supertype information enabled (presented in Chapter [4), and the implementation
of guards in tgp resorts to the DiSL Reflection API.

Table reports all benchmarks where we found fine- or coarse-grained
tasks, along with the number of problematic tasks spawned by the application
and their class. All workloads not appearing in the table are either explicitly
labeled as single-threaded in the benchmark documentation (factorie, kiama,
scalap, scalariform and scalaxb) or they have neither coarse- nor fine-grained
tasks (AlternatinglLeastSquares, batik, ClassificationDecisionTree, fop, jython,
luindex, scalac, scaladoc, scalatest, specs and xalan).

5.1.2 Fine-Grained Tasks

We identify fine-grained tasks as large groups of tasks of the same class showing
similarly low granularities. Our analysis reveals that several benchmarks spawn

91 5.1 Analysis

many fine-grained tasks in all the three benchmark suites: eclipse, pmd, tomcat,
and tradesoap (from DaCapo), actors, apparat, and tmt (from ScalaBench) and
StreamingWordCount (from Spark Perf). In the following text, we detail the class
of such tasks and their purpose.

Regarding DaCapo, eclipse runs a series of performance tests for the well-
known Eclipse integrated development environment (IDE) [[139]. As part of the
workload, a ReadManager]l] creates many Thread instances to read the content
(i.e., source code) of different compilation units. The goal of pmd is to analyze
a set of source-code files, detecting errors or bad coding practices. Each file
is processed in parallel by a PmdRunnable, which produces a report containing
the problems found. tomcat requests several pages to an Apache Tomcat [[131]]
web-server, verifying the correctness of the received pages afterwards. Operations
over sockets are managed by the BlockPoller class, which creates many tasks to
add or remove packets from the socket. Tasks responsible for handling packet
removal (of class BlockPoller$3) are particularly fine-grained. Finally, tradesoap
executes the DayTrader [|52]] online stock trading benchmark on the H2 in-memory
database [[44]]. Users execute transactions on the database in different sessions,
coordinated by SOAP messages encapsulated in HTTP packets, which are in turn
managed by the Jetty [[137]] web server. Numerous fine-grained tasks of class
ConnectorEndPoint are used by Jetty to handle HTTP packets. In total, we found
468 fine-grained tasks in eclipse, 570 tasks in pmd, 200 816 tasks in tomcat, and
128 308 tasks in tradesoap.

Regarding ScalaBench, actors and apparat rely on the actor modeﬂ to execute
computations in parallel. Actors are a form of lightweight parallel tasks [3[];
indeed, they are considered as very fine-grained tasks by tgp. Both benchmarks
use an actor implementation provided by the Scala library, where an actor is
an instance of ActorTask (which, in turn, is a subtype of both Runnable and
Callable). Actors are used to test the performance of inter-actor communica-
tion (actors) or to optimize multimedia files (apparat). On the other hand, tmt
uses the Stanford Topic Modeling Toolbox [[140]] to learn a topic model from a
document composed of different records. Each record is processed in parallel by
a ThreadRunner provided by the Scala library. actors and apparat make use of a

!We omit package declaration and outer classes to improve readability. Table reports the
fully qualified class names.

2In the actor model [50]], actors are the atomic elements of a concurrent application. Actors
wait continuously for messages incoming in their mailbox, processing one message at a time.
Depending on the type of the received message, actors can execute different actions, such as
carry on computations, change their state or their defined behavior, create other actors, or send
messages to other actors.

92 5.1 Analysis

large number of tasks, i.e., 5197 993 and 122 626, respectively, while tmt resorts
to 16 184 instances of ThreadRunner.

Finally, StreamingWordCount (from Spark Perf) executes performance tests
on the streaming library of Spark [[134]] by reading a stream of words and pro-
ducing a word frequency histogram. A computation in Spark is divided in several
individual units of execution (called task in the Spark terminology, as explained
in Section[5.2.3), each encapsulated in a Runnable of class TaskRunner. In this
benchmark, the computation is divided in 1 852 small tasks, resulting in 1 852
fine-grained TaskRunner instances detected by tgp.

Figure shows the Cumulative Distribution Function (CDF) of the granular-
ity of tasks outlined above. Among the DaCapo benchmarks (Figure [5.1(a)], the
lowest granularities can be observed in tomcat and eclipse, where ~98% of the
tasks spawned do not execute more than 10* cycles and 10° cycles, respectively.
The low granularities of such tasks are caused by the small size of the compilation
units read (eclipse) and by the few operations needed to remove packets from the
socket (tomcat). Task granularity in tradesoap is around 10° for 90% of the tasks,
a sign that most of the tasks handle small HTTP messages. In pmd, ~75% of the
PmdRunnable objects feature a granularity lower than 107 cycles, and most of
the tasks (98%) execute less than 10® cycles. The granularity of a PmdRunnable
depends on the length and complexity of the file that the task is in charge of
processing. The presence of diverse files in the input set of this benchmark leads
to tasks with different granularities.

In ScalaBench (Figure [5.1(b))), actors and apparat spawn actors of small
granularity. In both benchmarks, the amount of cycles elapsed does not exceed 10°
in ~80% of the actors spawned, sign that most actors executes little computation.
The CDF of tmt shows the presence of two large groups of tasks with similar
granularity, executing ~3-10° cycles (~35% of the tasks) and ~3-107 cycles
(~50% of the tasks), respectively. Similarly to pmd, the granularity of a task in
tmtis proportional to the length and complexity of the record that is assigned to the
task. Finally, the granularity of most of the tasks spawned in StreamingWordCount
(98%) is around 3-10°. Overall, these CDFs pinpoint the presence of large groups
of tasks executing few computations.

In tomcat and actors, fine-grained tasks are spawned and executed for the
whole duration of the benchmark, while in all other applications tasks are used
only for a portion of the total workload. Figure shows the portions of work-
loads that make use of fine-grained tasks. In pmd, tasks are used for the first
~74% of the benchmark execution (measured in wall time) where source code
is loaded and parsed. In the last part, the benchmark executes sequentially,
collecting the reports produced by each PmdRunnable and producing a single

93 5.1 Analysis

091

o o o o o
- N o o N
n

Cumulative Probability
w
I

o
N
\

eclipse
—pmd
—tomcat
| tradesoapy

o
o
\

Lo Ll Lo Lol Lol Lol Lol L

10° 10* 10° 108 107 108 10° 100 10" 10'2
Task Granularity

(a) DaCapo [15]].

o

—_

© o © o o o o
N [6)] (o] ~ (o] ©
I I I I I I

Cumulative Probability
w
I

o
N
\

actors
—apparat
—tmt i
| —StreamingWordCount|

o
o
\

L MNP L Lol Ll d il Ll Ll

10° 10* 10° 10° 107 108 10° 10" 10'" 10"
Task Granularity

(b) ScalaBench and Spark Perf [25]].

- O
[B e e o o 5L e e e o o
N

Figure 5.1. Cumulative Distribution Function (CDF) of the task granularity for
benchmarks spawning fine-grained tasks. The figure shows only the granularities
of fine-grained tasks.

94 5.1 Analysis

pmd

tradesoap A

eclipse 1

StreamingWordCount

apparat

" I H —‘ ’7 H —‘
Not active : : ‘ : : . : :
0 10 20 30 40 50 60 70 80 90 100
Execution Time [%]

Figure 5.2. Portion of workloads where fine-grained tasks are executed. Tasks
are always in execution in benchmarks not reported here (actor and tomcat).

human-readable log file. In tradesoap, tasks are executed once the benchmark
starts processing user transactions. The initial and final parts of the workload
(performing setup or cleaning operations) do not make use of such tasks. Tasks
in eclipse are used only in the central portion of the workload (from ~30% to
~54% of the execution time), when compilation units are read. Fine-grained
tasks in StreamingWordCount are spawned in four distinct time intervals. Most
of the tasks (92%) are executed at the beginning of the workload (i.e., in the
first 12% of the benchmark execution), while other tasks are spawned in short
spikes occurring at the ~27%, ~56% and ~85% of the execution time, where 3%,
3%, and 2% of the remaining tasks are spawned, respectively. Similarly, apparat
spawns most of the tasks (85%) in the first 8% of the workload, while others are
created in a short spike towards the end of the execution. Finally, the tasks in tmt
are executed in different batches (20 in total), each batch consisting of ~800 tasks.
This behavior is due to the benchmark performing several cascading operations
on the same dataset (such as mapping and reductions), each representing a batch.
Each operation spawns new tasks.

Executing many fine-grained tasks in parallel may cause significant interfer-
ence if there is need for synchronization. We measure the interference between
fine-grained tasks by studying the number of context switches (cs) occurred during
benchmark execution, reporting our results in Figure To better relate context
switches experienced with the execution of fine-grained tasks, we highlight the
time intervals where fine-grained tasks are in execution (reported in Figure
with colored regions superimposed to the trends shown in the figure. A region

95 5.1 Analysis

10° S :
0 eclipse —pmd —tomcat—tradesoap
10*

w

0] == E \] :

S10°

=

]

3

£10°

o}

o
10"

ol 1 . . I
10 0 10 20 30 40 50 60 70 80 90 100

Execution Time [%]

(a) DaCapo [[15]]. Data on eclipse, tomcat, and tradesoap has been downsampled to 20%.

5 S :
10 actors —apparat —tmt —StreamingWordCount
104G |
2]
2
S10°
=
]
3
£10°
3
4
o MR
100 | . - . . 1 . I .
0 10 20 30 40 50 60 70 80 90 100

Execution Time [%]

(b) ScalaBench [[123]] and Spark Perf [[25]]. Data on actors and apparat has been downsampled to
10% and 40%, respectively.

Figure 5.3. Context switches over execution time in benchmarks spawning fine-
grained tasks. Measurements sampled during GC have been removed. The
colored regions superimposed to the lines represent the time intervals where
fine-grained tasks are executed (shown in Figure[5.2). Tasks are executed for the
whole duration of the workload in benchmarks with no colored regions.

96 5.1 Analysis

matches only the trend of the same color. The absence of a colored region for a
benchmark denotes that tasks are always in execution in such application.

As shown in the figure, in pmd, eclipse, apparat, and tmt we can observe notice-
able increments in the amount of context switches experienced in the time intervals
where fine-grained tasks are in execution, resulting in an average amount of con-
text switches observed equal to 2 120cs/100ms (pmd), 225cs/100ms (eclipse),
1359¢s/100ms (apparat), and 491cs/100ms (tmt) E] in contrast to the very few
context switches experienced when fine-grained tasks are not executed. Similarly,
the execution of tomcat and actors (where tasks are used for the whole duration of
the workload) results in many context switches occurring throughout benchmark
execution, with an average of 6326¢s/100ms (tomcat) and 24 118cs/100ms
(actors). While contention in StreamingWordCount remains low for most of the
workload execution, we can observe several short time intervals where a sudden
increase of context switches can be observed. Most of these spikes occur in each
time interval where tasks are used, resulting in an average of 3 343cs/100ms.
These observations suggest that in these seven benchmarks fine-grained tasks
significantly interfere with each other, as the execution of fine-grained tasks is ac-
companied by a significant increase in the amount of context switches experienced
by the application, while contention remains low when fine-grained tasks are
not executed. On the other hand, while also the execution of fine-grained tasks
in tradesoap causes a significant increment in the amount of context switches
observed (i.e., from an average of 3 568cs/100ms to 5500cs/100ms), high con-
tention is present before fine-grained tasks are executed, and continues after they
are not used anymore. This behavior suggests that, although fine-grained tasks
increase the amount of context switches experienced by the benchmark, they are
not the only cause of the high contention in tradesoap.

In summary, our analysis reveals that fine-grained tasks in eclipse, pmd, tom-
cat, actors, apparat, tmt, and StreamingWordCount cause significant contention
during their execution. Such contention is highest in actors (experiencing many
context switches throughout benchmark execution) and more modest in eclipse
(due to the lower amount of context switches observed). To reduce the interfer-
ence between fine-grained tasks, they could be merged together into a smaller
number of larger tasks. This optimization is eased by the fact that fine-grained
tasks in several benchmarks process either a single piece of data (e.g., pmd and
tmt) or a small dataset (e.g., eclipse and StreamingWordCount). To improve task
granularity in such workloads, it would be sufficient to assemble data in groups

3Unless otherwise noted, the average amounts of context switches reported in this section
consider only time intervals where fine-grained tasks are in execution.

97 5.1 Analysis

(e.g., in case of pmd and tmt), modifying each task to process a group rather
than a single element (in tmt, this optimization could be applied to tasks within
each batch), or to increase the size of the dataset processed by a single task (e.g.,
in case of eclipse and StreamingWordCount). Section [5.2) confirms the benefit
of such an optimization on pmd and StreamingWordCount. On the other hand,
while also fine-grained tasks in tradesoap interfere with each other, decreasing
such interference may not significantly decrease the contention experienced by
the benchmark, which is caused only partially by fine-grained tasks.

5.1.3 Coarse-Grained Tasks

We observe the presence of coarse-grained tasks in six benchmarks of the Da-
Capo suite (avrora, h2, lusearch, sunflow, tradebeans, and tradesoap) and six
applications from Spark Perf (ChiSquare, GaussianMixtureEM, KMeansCluster-
ing, LogRegression, MultinomialNaiveBayes, and Principal ComponentAnalysis).
Figure shows the CDF of their task granularity. To better see the presence of
coarse-grained tasks in tradesoap, we remove fine-grained tasks from its CDE

In all DaCapo benchmarks (Figure[5.4(a)], the vertical trends in the rightmost
portion of their CDFs (in the shaded region) pinpoint the presence of a small
group of tasks with similar granularity. Moreover, the granularity of such tasks is
several orders of magnitude higher that the one of other tasks spawned by the
benchmarks. Such trends identify coarse-grained tasks, whose average granularity
ranges from ~10° cycles (avrora) to ~10'! cycles (h2). Similar observations can
be made on Spark Perf (Figure [5.4(b)). All benchmarks in the suite feature
similar CDFs, with the presence of few outlier tasks (in the shaded region) with
a granularity significantly higher than the one of other tasks spawned, ranging
from an average of ~3-10% (GaussianMixtureEM and LogRegression) to ~6-10°
(ChiSquare).

All coarse-grained tasks within a benchmark have the same class, whose
purpose is discussed in the following text. The goal of avrora is to simulate the
execution of 26 programs on a grid of AVR microcontrollers. The benchmark
runs each simulation in parallel in a separate SimulatorThread. h2 executes
the TPC-C [[142]] on-line transaction benchmark on H2. Database transactions
are divided into different groups, each of them executed in parallel by a task
of class TPCC$3. lusearch uses the Apache Lucene [[132]] text search engine to
query the presence of keywords over a corpus of data. Queries are divided into
groups, each of them executed in parallel by a QueryThread. sunflow renders
a set of images by dividing subparts of images into independent groups, each
of them processed in parallel by a BucketThread. The purpose of tradebeans

98 5.1 Analysis
—avrora ‘ H
0.9 —h2
lusearch [
0.8 - —sunflow
> —tradebeans
= 0.7 " —tradesoap [—' 7
<]
506 =
o
205
>
Boa J |
>
gos— L
30
0.2 - JJ'J i
0.1- |
O 1 Ll Lo AR I\ il by Ll | L
10? 10° 10% 10° 10° 107 108 10° 10" 10" 10"

Task Granularity

(a) DaCapo [[15]]. The CDF of tradesoap does not include fine-grained tasks.

Cumulative Probability
© © o o o o 9o o o
— N w N [¢)] (o)) ~ oo © —
T T T T

o

108 10% 10°

—_
o
N

]

—

[L

106 107 108
Task Granularity
(b) Spark Perf [25]].

—ChiSquare
GaussianMixtureEM
—KMeansClustering

—LogRegression
—MultinomialNaiveBayes

‘ ‘—Rrinpipglpomponeannalysis

10°

100

10"

10"

Figure 5.4. Cumulative Distribution Function (CDF) of the task granularity for
benchmarks spawning coarse-grained tasks. The shaded region marks the pres-

ence of coarse-grained tasks.

99 5.1 Analysis

Table 5.2. Average CPU utilization for benchmarks spawning coarse-grained
tasks, with 95% confidence intervals. In h2, the values shown are obtained by
considering only measurements sampled when coarse-grained tasks are in execu-
tion. In all benchmarks, measurements sampled during GC are not considered.

Benchmark CPU Util. [%] | Benchmark CPU Util. [%]
DaCapo [[15] (£ 95% conf.) | Spark Perf [25]] (£ 95% conf.)
avrora 9.01 £2.81 | ChiSquare 45,52 + 12.90
h2 18.94 + 0.98 GaussianMixtureEM 18.16 £ 12.47
lusearch 58.34 + 11.31 | KMeansClustering 28.75 + 12.24
sunflow 95.83 +£8.17 | LogRegression 38.33 +£ 10.55
tradebeans 29.81 +£2.19 | MultinomialNaiveBayes 76.11 £ 16.11
tradesoap 44.75 £ 3.569 | PrincipalComponentAnalysis 26.82 + 14.68

is the same of tradesoap (explained in Section [5.1.2)), with the difference that
transactions are executed directly on the server without using SOAP messages. In
both tradebeans and tradesoap, transactions are divided into groups, each of them
carried out in parallel by a DaCapoTrader. Apart from executing transactions,
such tasks are also responsible to populate and tear down the database. Except
avrora, all benchmarks in DaCapo spawn as many coarse-grained tasks as available
CPU cores (i.e., 8 in the machine used for the evaluation). Such tasks are used
throughout benchmark execution, with the exception of h2, where they are not
utilized in the final part of the workload (i.e., the last ~15% of the execution).

Finally, the purpose of each Spark Perf application is to run performance tests
on different algorithms offered by the machine learning library of Spark (ML-
lib [[130]]). All coarse-grained tasks in these benchmarks are of class TaskRunner.
As discussed in Section each TaskRunner encapsulates the execution of
a single task (under Spark terminology). The computation carried out by each
Spark Perf application is divided into a variable number of Spark tasks, result-
ing in diverse instances of TaskRunner spawned, ranging from a minimum of 5
(ChiSquare) to a maximum of 45 (LogRegression), as summarized in Table
Coarse-grained tasks are used during the whole execution of each Spark Perf
benchmark.

Table depicts the average CPU utilization of each benchmark. In most of
them, the CPU is far from being fully utilized, especially in avrora, GaussianMix-
tureEM, and h2 where the average CPU utilization is 9%, 18%, and 19%, respec-
tively. The highest average CPU utilization occurs in sunflow (96%), followed
by MultinomialNaiveBayes (76%). All other benchmarks feature an average
utilization ranging from 27% (PrincipalComponentAnalysis) to 58% (lusearch),

100 5.1 Analysis

pinpointing that a significant portion of the available processing capacity is not
utilized on average. These observations remark that the use of coarse-grained
tasks results in missed parallelization opportunities in most benchmarks (excluded
sunflow and MultinomialNaiveBayes, where the CPU is overall better utilized),
as the applications fail to fully utilize the available computing resources. With the
goal of better utilizing the available CPU cores, such coarse-grained tasks could
be split into multiple tasks with smaller granularity. However, the need for syn-
chronization among tasks may severely limit the benefits of lower task granularity,
as more active tasks may result in more blocking primitives called, increasing the
contention among tasks. To this end, we measure the interference between the
executed tasks by studying the amount of context switches experienced during
benchmark execution.

Figure [5.5] reports our results. Regarding the DaCapo benchmarks (Fig-
ure[5.5(a)), the workloads experiencing less context switches over their execution
are sunflow and lusearch, with an average of 51cs/100ms and 140cs/100ms,
respectively. In contrast, the application mostly affected by context switches is
avrora, with an average of 9 421cs/100ms, suggesting that avrora makes extensive
use of blocking primitives that cause severe contention during task execution.
On the other hand, the much lower amount of context switches experienced by
sunflow and lusearch pinpoints that the interference between their tasks is small.

Regarding tradebeans and tradesoap, these benchmarks are little subjected to
context switches in the first part of the workload (i.e., the first ~31% of execution
in tradebeans, and the first ~5% in tradesoap), but experience a noticeable
increase in the trend in the second part, resulting in an average of 3 948cs/100ms
and 5036c¢s/100ms for tradebeans and tradesoap, respectively. This behavior
is caused by the fact that the first part of the two benchmarks is dominated by
database population (which incurs in low synchronization between tasks), while
the rest is dedicated to the execution of transactions (where contention is higher).
h2 incurs in an average of 441cs/100ms in most of the workload, while this
number drops suddenly in the final part, where tasks are not used, resulting in a
sequential execution that incurs context switches only occasionally.

Finally, all Spark Perf workloads (Figure exhibit a modest amount
of context switches throughout their execution, ranging from an average of
14¢s/100ms (ChiSquare) to a maximum of 97cs/100ms (GaussianMixtureEM),
which indicates small contention occurring between different parallel tasks in the
six Spark applications.

Overall, our analysis suggests that in several benchmarks coarse-grained tasks
could be split into multiple smaller tasks to better leverage the available CPU
and improve application performance. The optimization is eased by the fact

101 5.1 Analysis

Context Switches
o

—_
o
-

L

" L n L | ol P L L I I S S Nt R
0 10 20 30 40 50 60 70 80 90 100
Execution Time [%]

10°

(a) DaCapo [[15]]. Data on tradesoap has been downsampled to 20%. The colored region superim-
posed to the trend of h2 represents the time interval where coarse-grained tasks are executed.

10 F —ChiSquare
GaussianMixtureEM
—KMeansClustering
10%F —LogRegression
B —MultinomialNaiveBayes i
—PrincipalComponentAnalysis |{

103§ E

102

Context Switches

10'E

Ol v v v b P T T T T S T S A T S T SO O SO SO S S S S
100 10 20 30 40 50 60 70 80 90 100

Execution Time [%]
(b) Spark Perf [25]].

Figure 5.5. Context switches over execution time in benchmarks spawning
coarse-grained tasks. Measurements sampled during GC have been removed.

102 5.2 Optimization

that coarse-grained tasks in all benchmarks (except avrora) process independent
groups of data. To improve task granularity, it would be sufficient to divide data in
a higher number of groups of lower size, keeping each group processed by a single
task; we apply such an optimization in Section[5.2] This optimization is likely to
yield major benefits in lusearch, ChiSquare, GaussianMixtureEM, KMeansClus-
tering, LogRegression, and PrincipalComponentAnalysis, where the interference
between tasks is lower and computing resources can be better utilized. A similar
approach could also speed up database population in tradebeans and tradesoap,
where interference between tasks is low. On the other hand, while applying the
proposed approach to other benchmarks is possible, it is less likely that modifying
task granularity there results in noticeable optimizations, as the CPU is already
well utilized in sunflow and MultinomialNaiveBayes, and contention in avrora,
h2, and the second part of tradebeans and tradesoap is significant, which may
overcome the benefits of processing the workload with a higher number of tasks.

5.2 Optimization

Here, we demonstrate the benefits of optimizing task granularity. In the first
part of the section, we show how tgp eases the optimization of task granularity,
focusing on one benchmark where several fine-grained tasks interfere with each
other (pmd; Section and on another benchmark where the presence of
coarse-grained tasks limits the utilization of the available computing resources
(lusearch; Section [5.2.2). Then, we describe our approach to optimize task
granularity in Spark Perf (Section [5.2.3). Finally, we discuss the speedup enabled
by our optimizations (Section [5.2.4).

5.2.1 pmd

As discussed in Section[5.1.2) pmd determines errors and bad coding practices on a
set of 570 source-code files, each processed by a PmdRunnable. Each PmdRunnable
(despite its name, the class implements Callable) receives a single source-code
file to process as an argument to its constructor, producing a report containing
the problems found as object returned from its call method. Our profiler de-
tects that such tasks are submitted to a single ThreadPoolExecutor. Thanks
to calling-context profiling enabled by tgp, we determine the class and method
where the tasks are created and submitted. Figure (a) reports the creation
calling context of PmdRunnable, which shows that such tasks are created in the
method processFiles of the class PMD (line[14). The creation calling context

103 5.2 Optimization

1 Harness.main
» java.lang.reflect.Method.invoke
3 sun.reflect.DelegatingMethodAccessorImpl.invoke

4 sun.reflect.NativeMethodAccessorImpl.invoke

5 org.dacapo.harness.TestHarness.main

6 org.dacapo.harness.TestHarness.runBenchmark

7 org.dacapo.harness.Benchmark. run

8 org.dacapo.harness.Pmd.iterate

9 java.lang.reflect.Method.invoke

10 sun.reflect.DelegatingMethodAccessorImpl.invoke
1 sun.reflect.GeneratedMethodAccessorll. invoke

12 net.sourceforge.pmd.PMD.main

13 net.sourceforge.pmd.PMD.doPMD

14 net.sourceforge.pmd.PMD.processFiles

15 net.sourceforge.pmd.PMD$PmdRunnable.<init>

(a) PmdRunnable (in pmd).

1 Harness.main

2 java.lang.reflect.Method.invoke

3 sun.reflect.DelegatingMethodAccessorImpl.invoke
4 sun.reflect.NativeMethodAccessorImpl.invoke

5 org.dacapo.harness.TestHarness.main

6 org.dacapo.harness.TestHarness.runBenchmark

7 org.dacapo.harness.Benchmark. run

8 org.dacapo.harness.Lusearch.iterate

9 java.lang.reflect.Method.invoke

10 sun.reflect.DelegatingMethodAccessorImpl.invoke
1 sun.reflect.GeneratedMethodAccessorl.invoke

12 org.dacapo.lusearch.Search.main

13 org.dacapo.lusearch.Search$QueryThread.<init>

(b) QueryThread (in lusearch).

Figure 5.6. Creation calling contexts. <init> represents a constructor. We do
not report input arguments for clarity.

104 5.2 Optimization

of all PmdRunnable objects is the same, indicating that all tasks are likely to
be created altogether in a loop-like construct in processFiles. Moreover, the
submission calling contexts of all PmdRunnable objects are equal to their cre-
ation calling context, a sign that a task is submitted right after its creation in
PMD.processFiles.

To optimize task granularity in pmd, we perform the following actions. First,
we modify the implementation of class PmdRunnable, enabling the processing
of multiple source-code files. In particular, we modify the constructor (taking
a list of files as input) as well as its call method (returning a list of reports,
one for each processed file). Second, since the input data is provided to each
task upon its creation, we modify the code where such tasks are created (in
PMD.processFiles). Our modification allows the user to set the number of
tasks spawned (n) through a command-line parameter. Input files are then
clustered in n groups (a group contains approximately 570/n files), each of
them processed by a single task. Third, since each task will now produce multiple
reports, we modify task submission in PMD. processFiles, enabling the collection
of multiple reports upon the completion of each task. Our modifications concern
only task granularity; they do not alter the behavior of the application or the
results produced, involve the modification of only 32 lines of code, and do not
require any specific knowledge of the benchmark.

5.2.2 lusearch

As discussed in Section [5.1.3] lusearch performs a set of queries over a corpus
of data to locate keywords. The benchmark carries out a total of 128 queries.
Such queries are divided into equally-sized groups, each of them processed by
a QueryThread. The benchmark spawns as many QueryThread instances as
available CPU cores. As the name suggests, such tasks subclass Thread. Similarly
to PmdRunnable, all QueryThread instances feature the same creation calling
context (shown in Figure (b)). Moreover, the starting calling contexts of all
QueryThread instances match their creation calling context. This fact indicates
that all threads are created together and started right after creation. Both thread
creation and start occur in method main of class Search (line [12).

Optimizing task granularity in lusearch involves spawning more QueryThread
objects, each of them processing a smaller number of queries. To this end, we
modify lusearch as follows. First, we make QueryThread implement Runnable
rather than subclassing Thread, transforming that class into a lighter-weight
entity that can be scheduled more efficiently. Second, we allow the user to specify
the number of QueryThread instances created by the benchmark. To this end,

105 5.2 Optimization

we modify the code portions inside Search.main responsible to create the tasks.
Finally, we introduce a thread-pool making use of as many threads as available
cores, submitting a QueryThread to such thread-pool right after its creation. This
modification still occurs in Search.main. If more QueryThread instances than
available cores are spawned (as specified by the user), our modifications lead
to a lower number of queries carried our by each QueryThread wrt. the original
application, as queries are equally distributed among all spawned QueryThread
objects. Similarly to pmd, the modifications applied to lusearch are only aimed
at optimizing task granularity (i.e., they do not alter the logic of the benchmark
or the results produced) and involve only 13 lines of code.

5.2.3 Spark Perf Benchmarks

Before describing our optimizations to Spark Perf workloads, we introduce the
scheme used by Spark to divide computations into tasks, which is followed by all
analyzed Spark Perf benchmaks [[129} [119; [120]].

In Spark, each application performs computations on resilient distributed
datasets (RDDs) [[149]. An RDD is an immutable collection of elements that can
be processed in parallel. Regardless of the source of the input set (e.g., local
filesystem, distributed file system, databases, etc.), data must be inserted into
an RDD before being processed. Internally, RDDs are divided into partitions,
representing the portions of data that can be processed in parallel. A partition is
composed of several records, each representing a single data unit.

A Spark application can be seen as a sequence of operations over RDDs.
Operations can either be transformations (which create a new RDD from an
existing one) or actions (which return a value after running a computation on the
RDD). Transformations create a new RDD by transforming partitions of the input
RDD into modified partitions of a new output RDD. If a new partition (in the
output RDD) can be created from records residing in a single partition of the input
RDD, the transformation is classified as narrow. In contrast, transformations that
need to access records scattered in different partitions of the input RDD to create
a single partition of the output RDD are known as wide.

Transformations in Spark are lazy, i.e., they are executed only when invoking
an action. At this time, Spark creates a new job, i.e., a computation whose goal
is to calculate the result requested by the action. To compute the result, Spark
analyzes the transformations on RDDs required to obtain such result, and formu-
lates a workflow of computations consisting of a variable number of stages, each
composed of a collection of tasks executing the same code (expressing transfor-
mations) on different partitions of the RDDs. Additional stages are introduced

106 5.2 Optimization

by Spark when there is a need for repartitioning an RDD. If a job is composed
only of narrow transformations (which do not require repartitioning), the job
will be composed of a single stage. On the other hand, wide transformations
require a repartition of the input RDD, such that all data required to create a new
partition in the output RDD is contained in a single partition of the input RDD.
This repartitioning is called shuffle. Each wide transformation introduces a new
shuffle; thus, a new stage in the job.

The number of tasks in a stage is the same as the number of partitions in the
last RDD in the stage. In general, the number of partitions in an RDD is the same
as the number of partitions in the RDD on which it depends (i.e., the RDD passed
as input to the transformation that produced the RDD)E] The number of partitions
in the RDDs containing the initial data sets (i.e., those created for containing
input data at the beginning of the application) depends on the input format of
the data and the original data source, unless a given partition number is specified
by the user upon RDD creation.

Overall, the final number of tasks into which a Spark application is divided
depends on several variables, such as the number of actions invoked by the
application, the number of wide transformations (hence, stages) a job requires,
and the number of partitions inside each RDD. To optimize task granularity in all
Spark Perf applications (apart from StreamingWordCount), we modify the number
of partitions inside the initial RDD, created at the beginning of the application. In
such benchmarks the initial RDD is created from a textual file stored in the local
filesystem, via the textFile method (defined in SparkContext [[135]]), which
allows setting the desired number of partitions of the RDD as an optional argument.
In the original applications, such an argument is not passed to textFile, resulting
in a default number of partitions being generated by Spark in the RDD (this number
depends on the size and format of the input data). We control the number of
partitions generated by setting this optional argument. Since a different number
of partitions result in a different number of tasks spawned, our approach enables
us to decrease task granularity by increasing the number of partitions of the
RDD (recall that all Spark Perf benchmarks apart from StreamingWordCount
suffer from coarse-grained tasks). While other means of altering the number
of tasks created are available in Spark (such as repartitioning the RDDs after a
transformation, via repartition), they may introduce additional stages that are
not present in the original application, and may increase the execution time of
the application. Our approach enables us to control the number of tasks spawned

*Transformations such as coalesce, union, or cartesian cause exceptions to this behavior,
as reported in the RDD API [[129]].

107 5.2 Optimization

as well as their granularity with minimal modifications to the target applications,
since it requires the modification of a single line of code in each benchmark (to
explicitly set the partition number of the initial RDD).

Differently from all other Spark Perf benchmarks considered in this dissertation,
in StreamingWordCount the input data is received in the form of a continuous
stream of textual data from a socket, leveraging the Spark Streaming API [[134]].
Before being processed, data in the stream is assembled in RDDs as follows. Data
received in a given temporal interval t; is grouped in a block. In turn, all blocks
received in a temporal interval t,, (which must be > t;;) are assembled into a
batch. Spark creates a new RDD for each received batch, and converts each block
inside a batch into a partition of the RDD. Transformations and actions specified
by the application are applied to all RDDs generated, following the scheme for
converting operations to tasks outlined above. StreamingWordCount creates
a new batch (hence, a new RDD) every 100ms, resulting in a high number of
fine-grained tasks to process data inside each partition of the RDDs.

To increase task granularity in StreamingWordCount, we modify the number of
partitions of the RDDs created after each shuffle. Each wide transformation (such
as reduceByKey or join) accepts an optional parameter specifying the desired
number of partitions of the new RDD. If no number is specified, Spark uses the
value of the spark.default.parallelism configuration variable. All wide trans-
formations in StreamingWordCount do not specify any explicit partition number.
Moreover, the application does not set spark.default.parallelism, resulting in
a default number of partitions being generated by Spark in the new RDDs (in local
mode, this is equal to the number of available cores [[133]]). We modify the number
of partitions after each shuffle by explicitly setting spark.default.parallelism.
Since the number of partitions determines the amount and the granularity of the
spawned tasks, our approach allows us to control the number of tasks spawned
by StreamingWordCount by adding a single line of code in the application (to set
the value of spark.default.parallelism).

Similarly to pmd and lusearch, our modifications to Spark Perf workloads
concern only task granularity. They neither modify the behavior of the application
nor the results produced. Moreover, they do not require any specific knowledge
of the benchmark. Finally, they require only minimum modifications (i.e., a single
line of code) on the target application to be implemented.

5.2.4 Evaluation

We execute the modified benchmarks on different environments. Apart from the
machine used for task granularity analysis (Section [5.1)), where applications are

108 5.2 Optimization

set up to use 8 cores on a single NUMA node as described in Section we
use two additional environments: the same machine, where applications are not
bound to run on a single NUMA node (i.e., they can use 16 physical cores), and
an additional machine, equipped with an Intel i7-4710MQ (2.5 GHz) processor
with 4 physical cores, 8 GB of RAM, running under Ubuntu 16.04.4 LTS (kernel
GNU/Linux 4.4.0-116-generic x86_64), with Turbo Boost and Hyper-Threading
disabled, where the governor is set to “performance” to disable frequency scaling.
The version of all other software used is the one described in Section

In each environment, we run the modified workloads in different settings, each
with a different number of tasks spawned. In pmd and lusearch, we start from
the same number of tasks used in the original workloads (i.e., 570 PmdRunnable
objects and as many QueryThread instances as available cores). In each setting,
we iteratively halve the number of PmdRunnable objects used by pmd and double
the number of QueryThread instances employed by lusearch. Our approach
materializes in a progressively higher task granularity in pmd, as each task
processes more files in subsequent settings. Similarly, task granularity in lusearch
becomes smaller as the number of queries processed by each task is halved for
each iteration. In pmd, we continue this process until the benchmark would
spawn less tasks than available CPU cores. In lusearch, we stop adding tasks
when 128 tasks are used (more tasks would not be utilized, since the total number
of queries to be processed is 128).

In all Spark Perf benchmarks (excluding StreamingWordCount), we decrease
task granularity as follows. We start by setting the number of partitions of the
initial RDD to 8 (lower values do not result in a higher number of tasks spawned,
as they are lower that the default number of partitions used by Spark in the
original application). In subsequent runs, we iteratively double the number of
partitions, resulting in a progressively higher number of tasks spawned, each
with decreasing granularity. Note that the final number of TaskRunner objects
created by each application is proportional, but is not equal to the number of
partitions set, as the presence of wide transformations or multiple actions in the
application can cause a much larger number of tasks spawned, as explained in
the previous section. We continue our approach until the execution time of the
modified benchmark is higher than the original one (denoting the presence of
fine-grained tasks causing interference between each other)

The original StreamingWordCount repartitions RDDs at each shuffle in as many
partitions as available cores. We increase task granularity as follows. We start by

>We do not apply the proposed optimization to MultinomialNaiveBayes because the benchmark
well utilizes CPU (as shown in Section|5.1.3)).

109 5.2 Optimization

setting spark.default.parallelism to the number of available cores. In subse-
quent settings, we iteratively halve the value of spark.default.parallelism,
which results in a lower amount of tasks spawned, each with increasing granular-
ity. We continue our approach until spark.default.parallelismis set to 1, or
no speedup can be observed.

Tables and [5.5| report the results of task-granularity optimization on
8 cores, 16 cores and 4 cores, respectively. For each setting, the table reports the
number of tasks spawned and the speedup obtained wrt. the original (unmodified)
workload. Speedup is presented in terms of speedup factors, defined as the
execution time of the original workload divided by the execution time of the
modified workload. The values shown are the average over 20 runs. We also
report 95% confidence intervals. The number of tasks spawned has been measured
with tgp in a separate run (tgp is not active when measuring speedups).

For all benchmarks, we observe significant speedups in all the environments
considered. Regarding DaCapo, employing less tasks with larger granularity in
pmd leads to noticeable speedups, reaching a peak when 9 (in the 8-core and
4-core machine) or 18 tasks (in the 16-core machines) are used. These results
are a sign of a reduced need for synchronization among tasks, resulting in less
contention as well as reduced scheduling overhead. Oppositely, reducing task
granularity in lusearch allows significant speedups, which are maximum when 64
(in the 8-core machine), 32 (in the 16-core machine) or 8 QueryThread objects
(in the 4-core machine) are used. These results suggest that the higher number of
tasks used enables better CPU utilization. Further creating tasks results in lower
speedups, a sign that the synchronization overheads between tasks increases,
jeopardizing the benefits of a better CPU utilization. The maximum speedup
achievable in pmd and lusearch is 1.38x (8-core machine) and 1.33x (16-core
machine), respectively.

Similar observations hold for Spark Perf benchmarks. Decreasing the amount
of tasks spawned in StreamingWordCount yields a maximum speedup of 1.22x
(8-core machine) when 976 tasks are used. All other Spark Perf applications
benefit from task-granularity optimization to a greater extent than the DaCapo
benchmarks and StreamingWordCount, as indicated by the higher speedups
observed. Here, increasing task granularity on the 8-core machine leads to a
progressively higher speedup, reaching peaks above 2.00x in all benchmarks,
and above 3.00x (3.80x) in ChiSquare. Increasing the number of available cores
makes the benefit of optimizing task granularity more evident, with speedups
above 3.00x in all five Spark Perf benchmarks suffering from coarse-grained tasks,
and equal to 5.90x in ChiSquare, sign that tasks in Spark Perf can well exploit
the available computing resources if an optimal number of tasks is used. Task-

110 5.2 Optimization

Table 5.3. Speedup (including 95% confidence intervals) resulting from task
granularity optimization on a 8-core machine. The best result for each benchmark
is highlighted.

pmd (PmdRunnable) lusearch (QueryThread)
Speedup Speedup
tasks (£ 95% conf.) # tasks (£ 95% conf.)
570 Baseline 8 Baseline
285 1.2577 + 0.0085 16 1.0500 £+ 0.0097
143 1.3548 + 0.0136 32 1.0552 + 0.0172
72 1.3597 + 0.0142 64 1.0613 £ 0.0174
36 1.3644 + 0.0089 128 1.0438 £ 0.0117
18 1.3736 + 0.0117
9 1.3799 £+ 0.0094
ChiSquare (TaskRunner) GaussianMixtureEM (TaskRunner)
Speedup Speedup
tasks (& 95% conf.) # tasks (& 95% cont.)
5 Baseline 35 Baseline
9 1.9644 + 0.0047 69 1.7934 + 0.0048
17 3.7961 £+ 0.0694 137 2.2173 £ 0.1083
33 3.2505 £+ 0.0938 273 2.1599 £ 0.0229
65 2.9895 £ 0.0954 545 2.1397 £+ 0.0340
129 2.8045 + 0.0350 1089 1.9778 £ 0.0273
257 2.2582 + 0.0185 2177 1.6650 = 0.0199
513 1.5004 £+ 0.0066
KMeansClustering (TaskRunner) LogRegression (TaskRunner)
Speedup Speedup
tasks (& 95% conf.) # tasks (& 95% conf.)
32 Baseline 45 Baseline
64 1.8196 + 0.0040 89 1.8236 + 0.0046
128 2.7234 £+ 0.0844 220 2.4127 £+ 0.0928
256 2.4808 £+ 0.0536 440 2.1737 £ 0.0279
512 2.0943 £+ 0.0226 814 2.0375 £ 0.0168
1024 1.7579 £ 0.0171 1584 1.7709 + 0.0147
2048 1.3598 + 0.0069 3037 1.4438 + 0.0108
PrincipalComponentAnalysis (TaskRunner) | StreamingWordCount (TaskRunner)
Speedu Speedu
tasks (+ 9p5% col;f.) # tasks (£ 91)5% c01:1f.)
9 Baseline 1852 Baseline
22 2.0475 £+ 0.0305 976 1.2176 £ 0.0113
41 2.0101 £ 0.0476 543 1.0527 + 0.0098
75 1.9527 + 0.0384
145 1.9472 + 0.0465
277 1.8387 + 0.0502
545 1.7668 + 0.0136
1069 1.6269 + 0.0073
2113 1.2963 +£ 0.0135

111 5.2 Optimization

Table 5.4. Speedup (including 95% confidence intervals) resulting from task gran-
ularity optimization on a 16-core machine. The best result for each benchmark
is highlighted.

pmd (PmdRunnable) lusearch (QueryThread)
Speedup Speedup
tasks (& 95% conf.) # tasks (& 95% cont.)
570 Baseline 16 Baseline
285 1.1623 + 0.0286 32 1.3326 + 0.0484
143 1.2340 £+ 0.0372 64 1.2805 £+ 0.0438
72 1.2591 4+ 0.0309 128 1.2682 + 0.0374
36 1.2777 +£ 0.0325
18 1.2955 + 0.0386
ChiSquare (TaskRunner) GaussianMixtureEM (TaskRunner)
Speedu Speedu
tasks (+ 9pS% col;f.) # tasks (£ 91)5% c01:1f.)
5 Baseline 35 Baseline
9 1.8014 + 0.0150 69 1.7791 £ 0.0158
17 3.8854 + 0.0462 137 2.8545 + 0.0336
33 5.8952 £+ 0.1138 273 3.2997 + 0.0938
65 5.8903 £ 0.0922 545 3.0110 £ 0.0343
129 46151 + 0.0622 1089 2.8445 + 0.0410
257 3.1957 £+ 0.0589 2177 2.56317 £ 0.0253
513 2.3752 £+ 0.0380 4353 1.7381 £ 0.0147
1025 1.5354 + 0.0216
KMeansClustering (TaskRunner) LogRegression (TaskRunner)
Speedu Speedu
tasks (G- 9P5% col:lf.) # tasks (£ 9p5% col;f.)
32 Baseline 45 Baseline
64 1.7906 + 0.0115 89 1.8107 £ 0.0106
128 2.8504 £+ 0.0374 220 2.7036 £ 0.0233
256 3.3416 £+ 0.0439 440 3.4413 + 0.0833
512 3.1176 £ 0.0422 814 2.9703 £ 0.0364
1024 2.9112 +£ 0.0276 1584 2.7148 £+ 0.0223
2048 2.3676 + 0.0161 3037 2.3428 + 0.0174
4096 1.7848 + 0.0089 5984 1.7437 £ 0.0188
PrincipalComponentAnalysis (TaskRunner) | StreamingWordCount (TaskRunner)
Speedu Speedu
tasks (+ 9P5% col;f.) # tasks (£ 9p5% c01:1f.)
9 Baseline 3661 Baseline
22 2.1849 + 0.0109 1833 1.0102 + 0.0050
41 3.5418 + 0.1045 986 1.0274 + 0.0060
75 3.3867 £+ 0.0995 b76 1.0703 + 0.0057
145 3.2746 £+ 0.0857 380 1.1345 + 0.0063
277 3.2475 £+ 0.0874
545 3.2371 £+ 0.0246
1069 2.8603 £ 0.0198
2113 2.2715 £ 0.0168
4185 1.7741 £ 0.0122

112 5.2 Optimization

Table 5.5. Speedup (including 95% confidence intervals) resulting from task
granularity optimization on a 4-core machine. The best result for each benchmark
is highlighted.

pmd (PmdRunnable)

lusearch (QueryThread)

Speedup Speedup
tasks (& 95% conf.) # tasks (& 95% cont.)
570 Baseline 4 Baseline
285 1.1568 + 0.0112 8 1.1427 + 0.0284
143 1.2518 £ 0.0277 16 1.1048 £ 0.0263
72 1.2701 +£ 0.0157 32 1.0915 £+ 0.0345
36 1.2894 + 0.0110 64 1.0709 + 0.0349
18 1.3154 +£ 0.0126 128 1.0620 + 0.0293
9 1.3285 £ 0.0122
4 1.2237 + 0.0082
ChiSquare (TaskRunner) GaussianMixtureEM (TaskRunner)
Speedup Speedup
tasks (£ 95% conf.) # tasks (£ 95% conf.)
5 Baseline 35 Baseline
9 1.4685 £+ 0.0067 69 1.3716 + 0.0455
17 1.5185 + 0.0134 137 1.2497 £ 0.0164
33 1.3400 + 0.0241 273 1.2001 + 0.0150
65 1.2736 + 0.0102 545 1.0896 + 0.0121
129 1.1778 +£ 0.0075
KMeansClustering (TaskRunner) LogRegression (TaskRunner)
Speedu Speedu
tasks (+ 9P5% col;f.) # tasks (£ 91)5% c01:1f.)
32 Baseline 45 Baseline
64 1.3797 + 0.0503 89 1.3377 =+ 0.0226
128 1.2780 £+ 0.0500 220 1.2204 + 0.0232
256 1.1826 + 0.0261 440 1.1323 +0.0130
512 1.0381 £+ 0.0390 814 1.0368 £ 0.0117
PrincipalComponentAnalysis (TaskRunner) | StreamingWordCount (TaskRunner)
Speedup Speedup
tasks (£ 95% conf.) # tasks (£ 95% conf.)
9 Baseline 876 Baseline
22 1.0199 + 0.0611 423 1.0393 + 0.0693
41 1.0401 £+ 0.0455

75 1.0366 + 0.0468

113 5.3 Discussion

granularity optimization leads to improved application performance also when a
lower number of cores is available, as indicated by Table On a 4-core machine,
the maximum speedup observable is 1.52x (ChiSquare). The lower speedups
obtained on this environment can be determined by the lower performance of
the used machine (i.e., less computing cores and reduced memory), which may
limit the resources exploitable by an optimized task granularity.

In summary, our evaluation results show that optimizing task granularity can
lead to significant performance improvements, resulting in speedups up to a factor
of 5.90x. Our profiler plays a fundamental role to this end, as it enables one to
locate tasks suffering from too fine- or coarse-grained granularities, and assists
the user in their optimization. In pmd and lusearch, all the classes and methods
modified during task-granularity optimization are directly indicated by tgp, which
avoids the need of manually locating the application code to be modified.

5.3 Discussion

In this section, we discuss the limitations of our approach.

5.3.1 Platform-dependent Results

The workloads analyzed in this chapter may exhibit different behavior on different
environments. The number of coarse-grained tasks spawned in h2, lusearch,
sunflow, tradebeans, and tradesoap is determined by the number of available
CPU cores. On machines where a higher number of cores is available, more tasks
will be spawned, which may result in a reduced task granularity. On the contrary,
task granularity may increase on machines with fewer computing cores.

In addition, a different number of available CPU cores may change the result-
ing CPU utilization. More computing resources may decrease the overall CPU
utilization of the target application, thus increasing the benefits of task-granularity
optimizations, as indicated by the higher speedups obtained on the 16-core ma-
chine (Table[5.4). On the other hand, fewer CPU cores may limit the benefits of
our approach. While we observe such an effect in our evaluation (Table [5.5)), the
presence of significant speedups in all settings remarks that all the considered
workloads suffer from a suboptimal task granularity in all the environments used
for the evaluation.

114 5.4 Summary

5.3.2 Optimization of DaCapo and ScalaBench

Our task-granularity characterization has revealed the presence of optimizable
coarse- or fine-grained tasks in multiple benchmarks of the DaCapo and Scala-
Bench suites. We optimized task granularity in all benchmarks for which our
characterization pinpointed significant optimization opportunities, provided that
benchmark source code is publicly available and can correctly be built. Unfortu-
nately, the source code of ScalaBench applications is either not available or has
missing dependencies that impede a correct build, preventing us from applying
optimizations to actors, apparat and tmt. Moreover, despite the release of a recent
new version of DaCapo (January 2018), which is supposed to ensure that the
source code of all benchmarks compiles correctlyf] several benchmarks still cannot
be built at time of writing. For this reason, we could not validate our findings on
optimizable tasks in tomcat, tradebeans, and tradesoap. While we reported the
issue to the DaCapo developers, no official fix has been proposed or released to
date.

5.3.3 CPU Utilization

Our profiler collects CPU utilization through periodic sampling (every ~150ms).
Hence, we may not detect short peaks of high CPU utilization. This limitation is
intrinsic to the metric collected, as CPU utilization is an instantaneous property
of the system. Nonetheless, we profiled each benchmark multiple times, without
experiencing any noticeable difference in terms of CPU utilization among different
benchmark runs.

5.4 Summary

In this chapter, we have characterized the task granularity of several task-parallel
applications running on the JVM. We applied our task-granularity profiler tgp
(Chapter [3) making use of our new technique to reify complete reflective su-
pertype information at instrumentation-time (Chapter [4) to workloads from the
well-known DaCapo and ScalaBench suites, as well as to benchmarks for the
widely-used Apache Spark big-data analytics framework, contained in a suite of
performance tests (Spark Perf) maintained by the Spark developers.

The accurate profiles collected by tgp allow us to identify, in many workloads,
the presence of coarse-grained tasks that result in idle CPU cores, as well as fine-

6As reported at http://dacapobench.org.

http://dacapobench.org

115 5.4 Summary

grained tasks that incur significant contention. We locate coarse-grained tasks
that can be split into smaller ones to better utilize CPU, as well as fine-grained
tasks that can be merged to reduce parallelization overheads.

We demonstrate that the profiles are actionable by optimizing task granularity
in pmd and lusearch, modifying the classes and methods indicated by tgp through
calling-context profiling. In both cases, only a few lines of code need to be changed.
In addition, we optimize the granularity of tasks causing performance drawbacks
in Spark Perf, modifying only a single line of code in all applications. Our approach
enables significant speedups on multiple diverse environments, up to a factor of
5.90x. Overall, our evaluation results demonstrate the importance of analyzing
and optimizing task granularity on the JVM using a complete, accurate, and
efficient profiling methodology that enables the collection of actionable profiles.

116

5.4 Summary

Chapter 6

Conclusion

Nowadays, dividing work into parallel tasks is a fundamental strategy to exploit
the available computing cores and speed up application execution. Our work
focuses on the JVM, where task-parallel applications are widespread. Task granu-
larity is a fundamental attribute of such applications and may significantly affect
their performance. Hence, understanding task granularity is very important to
assess and improve the performance of task-parallel applications.

This dissertation bridges the gap between the need for a better understanding
of the task granularity for parallel applications running on the JVM and the lack
of dedicated techniques and tools focusing on the analysis and optimization of
task granularity. We present a novel methodology and tool to accurately profile
the granularity of every executed task, which help developers locate performance
problems and guide them towards useful optimizations. We also introduce a
technique that significantly lowers the overhead of task-granularity profiling,
enabling the collection of less perturbed profiles with low overhead. We analyze
task granularity in numerous task-parallel workloads, revealing inefficiencies
related to fine-grained and coarse-grained tasks in many applications. We optimize
the granularity of tasks causing performance drawbacks by modifying the classes
and methods indicated by our tool. Our approach enables significant speedups in
numerous workloads suffering from coarse- and fine-grained tasks in different
environments. Overall, our work pinpoints the importance of analyzing and
optimizing task granularity on the JVM.

6.1 Summary of Contributions
Below, we summarize the contributions of this dissertation.

117

118 6.1 Summary of Contributions

Task-Granularity Profiling We present a new methodology to profile the granu-
larity of all tasks spawned in task-parallel applications running on a JVM. Our
approach enables an accurate collection of task-granularity profiles even for tasks
showing complex patterns, such as nested tasks, tasks executed multiple times,
and tasks with recursive operations, which may cause inaccurate results if not
handled with care. Our technique resorts to vertical profiling to collect carefully
selected metrics from the whole system stack, aligning them via offline analysis.
The collected metrics allow one to analyze task granularity and its impact on ap-
plication performance. Moreover, our approach collects the calling context upon
the creation, submission, and execution of tasks causing performance drawbacks,
yielding actionable profiles indicating the classes and methods where optimiza-
tions related to task granularity are needed, guiding developers towards useful
optimizations.

We implement our profiling technique in tgp, a novel task-granularity profiler
for the JVM, built on top of the DiSL and Shadow VM frameworks, which enable
accurate and complete task-granularity profiling thanks to full bytecode coverage
and strong isolation of analysis code. To the best of our knowledge, tgp is the first
task-granularity profiler for the JVM. We use efficient data structures to reduce
profiling overhead, and apply novel and efficient instrumentation and profiling
techniques to collect complete and accurate task-granularity profiles.

Reification of Complete Supertype Information We propose a novel approach
to optimize type-specific analyses on the JVM. When applied to task-granularity
profiling, our approach reduces the overhead of task detection and the pertur-
bation of the collected task-granularity profiles. Our technique reifies the class
hierarchy of an instrumented application within a separate instrumentation pro-
cess, ensuring that accurate and complete reflective supertype information is
available for each class to be instrumented, including those in the Java class
library. Our approach allows the instrumentation process to instrument only
classes falling in the scope of a type-specific analysis, inserting more efficient
instrumentation code that avoids the execution of many runtime checks, which
typically introduce significant runtime overhead and increase the perturbation of
the collected metrics. Moreover, our technique exposes classloader namespaces to
the instrumentation process, allowing the instrumentation framework to correctly
handle homonym classes defined by different classloaders.

We implement our technique in an extension of the dynamic analysis frame-
work DiSL, and design a new API to allow accessing reflective supertype infor-
mation and classloader namespaces from an instrumentation process. We use

119 6.2 Future Work

our technique to optimize task-granularity profiling on benchmarks from the
DaCapo, ScalaBench, and Spark Perf suites. Evaluation results demonstrate that
our approach can significantly speed up task-granularity profiling with tgp, up to
a factor of 6.24x wrt. resorting to runtime checks. Moreover, our technique is
fundamental to keep the overall profiling overhead low (i.e., below 1.04x) and so
to reduce perturbations of the collected task-granularity profiles (i.e., perturbation
factors not exceeding 1.03x-1.05x) in most of the analyzed applications.

Task-Granularity Analysis and Optimization We apply our optimized profiling
technique to workloads from the DaCapo, ScalaBench, and Spark Perf suites,
characterizing their task granularity thanks to little perturbed metrics obtained
with tgp. To the best of our knowledge, we provide the first analysis on task
granularity for task-parallel applications running on the JVM, revealing previously
unknown performance drawbacks of the analyzed applications. In many work-
loads, we identify the presence of a small number of coarse-grained tasks that
underutilize CPU and result in idle core, and of many fine-grained tasks suffering
from noticeable contention and leading to parallelization overheads. We identify
coarse-grained tasks that can be split into several smaller ones to better leverage
idle CPU, and fine-grained tasks that can be merged to reduce synchronization
and contention.

We use the actionable profiles collected by tgp to optimize task granularity
in numerous workloads. We modify the classes and methods indicated by our
tool through calling-context profiling, implementing optimizations by modifying
only a few lines of code and with limited knowledge of the target application.
Our approach enables significant speedups in numerous workloads suffering from
coarse- and fine-grained tasks (up to a factor of 5.90x) in different environments.
Overall, our evaluation results demonstrate the importance of analyzing and
optimizing task granularity on the JVM using a complete, accurate, and efficient
profiling methodology that enables the collection of actionable profiles.

6.2 Future Work

The work presented in this dissertation opens several future research directions.
Below, we give an overview of new major research opportunities enabled by our
work.

Large-Scale Task-Granularity Analysis and Optimization The optimization re-
sults presented in this dissertation indicate that our work can benefit various

120 6.2 Future Work

task-parallel applications in different fields, including increasingly popular ones
where high performance is crucial, such as machine learning or big-data pro-
cessing. A possible future direction could be to extend the results presented
here by conducting a large-scale characterization of task granularity, performing
related optimizations on a broad range of applications. To this end, one could
integrate tgp into existing frameworks for large-scale dynamic analysis (such as
AutoBench [[151]]), to automatically collect task-granularity profiles from many
publicly available open-source workloads. Moreover, task-granularity analysis
could be performed on multiple environments, including Cloud-based ones. In this
case, identifying metrics suitable to characterize task granularity in the Cloud—
where the applicability of platform-specific metrics (e.g., those collected with
HPCs) may be limited—would be crucial. From the collected data, one could
extract common anti-patterns leading to suboptimal task granularity in different
workloads, deriving guidelines for developers to prevent such anti-patterns in
future releases and in new software.

Automatic Task-Granularity Analysis and Optimization Coaching The charac-
terization and optimization of task granularity presented in this dissertation is
based on manual in-depth analysis of the collected profiles. Future research could
automate this process, reducing the effort for analyzing numerous task-granularity
profiles, especially when applying tgp to a large scale of workloads (as outlined
in the previous paragraph). Thanks to automated task-granularity analysis, one
could derive patterns and anti-patterns to classify task granularity as good or
bad from numerous task-parallel applications. These patterns could be used to
define accurate performance models through machine-learning techniques, to
enable the automatic classification of task granularity (i.e., good or bad) in new
open-source workloads. Thanks to this approach, one could notify developers
about the discovered optimization opportunities, coaching them to achieve the
optimizations by means of the actionable profiles collected by tgp, suggesting
them which code portions should be inspected and modified to optimize task
granularity.

New Task-Parallel Benchmark Suite for the JVM Our work demonstrates that
task granularity is an important performance attribute of task-parallel applica-
tions, representing work carried out by each parallel task. Benchmark suites
are typically used in academia and industry to evaluate the performance of new
tools or techniques. To conduct a comprehensive evaluation, it is important that
applications inside a benchmark suite exhibit enough diversity along several char-

121 6.2 Future Work

acteristics. Unfortunately, existing suites including parallel applications running
on the JVM have not been designed to represent workloads showing enough
diversity in terms of tasks spawned and their granularity. To fill this gap, one
could assemble a new benchmark suite of task-parallel workloads that exhibit
a high diversity of task granularities, selecting benchmark candidates through
task-granularity profiling and analysis with tgp. Moreover, one could compare the
task granularity of the selected benchmarks with the one of established benchmark
suites, including DaCapo, ScalaBench, and Spark Perf, pinpointing the higher
diversity of the task granularity in the chosen workloads.

122 6.2 Future Work

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

U. A. Acar, A. Charguéraud, and M. Rainey. Oracle Scheduling: Controlling
Granularity in Implicitly Parallel Languages. In OOPSLA, pages 499-518,
2011.

L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCTOOLKIT: Tools for Performance Analysis
of Optimized Parallel Programs. Concurr. Comput.: Pract. Exper., 22(6):685—
701, 2010.

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

D. Akhmetova, G. Kestor, R. Gioiosa, S. Markidis, and E. Laure. On the
Application Task Granularity and the Interplay with the Scheduling Over-
head in Many-Core Shared Memory Systems. In CLUSTER, pages 428-437,
2015.

G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance
Counters with Flow and Context Sensitive Profiling. In PLDI, pages 85-96,
1997.

D. Ansaloni, W. Binder, A. Heydarnoori, and L. Y. Chen. Deferred Methods:
Accelerating Dynamic Program Analysis on Multicores. In CGO, pages
242-251, 2012.

D. Ansaloni, W. Binder, A. Villazén, and P Moret. Parallel Dynamic Analysis
on Multicores with Aspect-Oriented Programming. In AOSD, pages 1-12,
2010.

P Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotdk, O. Lhotdk,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: An Extensible
AspectJ Compiler. In AOSD, pages 87-98, 2005.

123

124 Bibliography

[9] S. Banerjee, E. Bozorgzadeh, and N. Dutt. PARLGRAN: parallelism granu-
larity selection for scheduling task chains on dynamically reconfigurable
architectures. In ASPDAC, pages 1-6, 2006.

[10] Barcelona Supercomputing Center. OmpSs Specification. https://pm.
bsc.es/ompss-docs/spec/, 2018.

[11] J. Bi, X. Liao, Y. Zhang, C. Ye, H. Jin, and L. T. Yang. An Adaptive Task
Granularity Based Scheduling for Task-centric Parallelism. In HPCC, pages
165-172, 2014.

[12] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University, January 2011.

[13] W. Binder, J. Hulaas, and P Moret. Advanced Java Bytecode Instrumenta-
tion. In PPPJ, pages 135-144, 2007.

[14] W. Binder, P Moret, E. Tanter, and D. Ansaloni. Polymorphic Bytecode
Instrumentation. Software: Practice and Experience, 46(10):1351-1380,
2015.

[15] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovic,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. The DaCapo Bench-
marks: Java Benchmarking Development and Analysis. In OOPSLA, pages
169-190, 2006.

[16] E.Bodden, L. Hendren, P Lam, O. Lhotak, and N. A. Naeem. Collaborative
Runtime Verification with Tracematches. In RV, pages 22-37, 2007.

[17] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: The New
Adventures of Old X10. In PPPJ, pages 51-61, 2011.

[18] E Chen, T. E Serbanuta, and G. Rosu. jPredictor: A Predictive Runtime
Analysis Tool for Java. In ICSE, pages 221-230, 2008.

[19] K. Y. Chen, J. M. Chang, and T. W. Hou. Multithreading in Java: Per-
formance and Scalability on Multicore Systems. IEEE Transactions on
Computers, 60(11):1521-1534, 2011.

[20] W. Chen, R. E D. Silva, E. Deelman, and R. Sakellariou. Balanced Task
Clustering in Scientific Workflows. In eScience, pages 188-195, 2013.

https://pm.bsc.es/ompss-docs/spec/
https://pm.bsc.es/ompss-docs/spec/

125 Bibliography

[21] S. Chiba and M. Nishizawa. An Easy-to-use Toolkit for Efficient Java
Bytecode Translators. In GPCE, pages 364-376, 2003.

[22] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen.
Solving Large, Irregular Graph Problems Using Adaptive Work-Stealing.
In ICPP, pages 536-545, 2008.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[24] Cray. The Chapel Parallel Programming Language. https://chapel-lang.
org, 2018.

[25] Databricks. Spark Performance Tests. https://github.com/databricks/
spark-perf, 2015.

[26] E David, G. Thomas, J. Lawall, and G. Muller. Continuously Measuring
Critical Section Pressure with the Free-Lunch Profiler. In OOPSLA, pages
291-307, 2014.

[27] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Criticality Stacks:
Identifying Critical Threads in Parallel Programs Using Synchronization
Behavior. In ISCA, pages 511-522, 2013.

[28] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle Graphs:
Visualizing Scalability Bottlenecks in Multi-Threaded Applications. In
OOPSLA, pages 355-372, 2013.

[29] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic Metrics for
Java. In OOPSLA, pages 149-168, 2003.

[30] B. Dufour, L. Hendren, and C. Verbrugge. *J: A Tool for Dynamic Analysis
of Java Programs. In OOPSLA Companion, pages 306-307, 2003.

[31] A. Duran, J. Corbalan, and E. Ayguade. An adaptive cut-off for task
parallelism. In SC, pages 1-11, 2008.

[32] ej-technologies. JProfiler. https://www.ej-technologies.com/
products/jprofiler/overview.html, 2018.

[33] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache Pirating:
Measuring the Curse of the Shared Cache. In ICPP, pages 165-175, 2011.

https://chapel-lang.org
https://chapel-lang.org
https://github.com/databricks/spark-perf
https://github.com/databricks/spark-perf
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html

126 Bibliography

[34] D.Eklov, N. Nikoleris, and E. Hagersten. A Software Based Profiling Method
for Obtaining Speedup Stacks on Commodity Multi-Cores. In ISPASS, pages
148-157, 2014.

[35] S. Eyerman, K. D. Bois, and L. Eeckhout. Speedup Stacks: Identifying
Scaling Bottlenecks in Multi-Threaded Applications. In ISPASS, pages
145-155, 2012.

[36] X. Fan, H. Jin, L. Zhu, X. Liao, C. Ye, and X. Tu. Function Flow: Making
Synchronization Easier in Task Parallelism. In PMAM, pages 74-82, 2012.

[37] R.Ferreira da Silva, T. Glatard, and E Desprez. Controlling fairness and task
granularity in distributed, online, non-clairvoyant workflow executions.
Concurrency and Computation: Practice and Experience, 26(14):2347-2366,
2014.

[38] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis Frame-
work for Concurrent Programs. In PASTE, pages 1-8, 2010.

[39] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly Threaded Parallelism
in Manticore. J. Funct. Program., 20(5-6):537-576, Nov. 2010.

[40] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the
Cilk-5 Multithreaded Language. In PLDI, pages 212-223, 1998.

[41] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: Rethinking and
Rebooting gprof for the Multicore Age. In PLDI, pages 458-469, 2011.

[42] B. R. Gaster and L. Howes. Can GPGPU Programming Be Liberated from
the Data-Parallel Bottleneck? IEEE Computer, 45(8):42-52, August 2012.

[43] P Grubel, H. Kaiser, J. Cook, and A. Serio. The Performance Implication
of Task Size for Applications on the HPX Runtime System. In CLUSTER,
pages 682-689, 2015.

[44] H2. http://www.h2database.com, 2018.

[45] R. H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Compu-
tation. ACM Trans. Program. Lang. Syst., 7(4):501-538, Oct. 1985.

[46] K. Hammond, H.-W. Loidl, and A. S. Partridge. Visualising Granularity in
Parallel Programs: A Graphical Winnowing System for Haskell. In HPFC,
pages 208-221, 1995.

http://www.h2database.com

127 Bibliography

[47] M. Hauswirth, P E Sweeney, A. Diwan, and M. Hind. Vertical Profiling:
Understanding the Behavior of Object-Oriented Applications. In OOPSLA,
pages 251-269, 2004.

[48] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview Scalability
Analyzer. In SPAA, pages 145-156, 2010.

[49] W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout. Using Cycle
Stacks to Understand Scaling Bottlenecks in Multi-Threaded Workloads.
In IISWC, pages 38-49, 2011.

[50] C.Hewitt, P Bishop, and R. Steiger. A Universal Modular ACTOR Formalism
for Artificial Intelligence. In IJCAI, pages 235-245, 1973.

[51] L. Huelsbergen, J. R. Larus, and A. Aiken. Using the Run-time Sizes of
Data Structures to Guide Parallel-Thread Creation. In LSP, pages 79-90,
1994.

[52] IBM. DayTrader. https://www.ibm.com/support/knowledgecenter/
en/linuxonibm/liaag/wascrypt/1l0wscry00_daytrader.htm, 2007.

[53] IBM. Health Center. http://www.ibm.com/developerworks/java/jdk/
tools/healthcenter/, 2018.

[54] IBM. J9 Virtual Machine. https://www.ibm.com/support/
knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/
user/java_jvm.html, 2018.

[55] IBM. The X10 Parallel Programming Language. http://x10-lang.org,
2018.

[56] ICL. PAPL |http://icl.utk.edu/papi/, 2017.

[57] H.Inoue and T. Nakatani. How a Java VM Can Get More from a Hardware
Performance Monitor. In OOPSLA, pages 137-154, 2009.

[58] Intel. Hyper-Threading Technology. https://www.intel.com/content/
www/us/en/architecture-and-technology/hyper-threading/
hyper-threading-technology.html, 2018.

[59] Intel. Turbo Boost Technology 2.0. https://www.intel.com/
content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html, 2018.

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wascrypt/l0wscry00_daytrader.htm
https://www.ibm.com/support/knowledgecenter/en/linuxonibm/liaag/wascrypt/l0wscry00_daytrader.htm
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.0.0/com.ibm.java.lnx.70.doc/user/java_jvm.html
http://x10-lang.org
http://icl.utk.edu/papi/
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html

128 Bibliography

[60] Intel. VTune Amplifier. https://software.intel.com/en-us/
intel-vtune-amplifier-xe, 2018.

[61] S.Iwasakiand K. Taura. Autotuning of a Cut-Off for Task Parallel Programs.
In MCSoC, pages 353-360, 2016.

[62] J.JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional,
1992.

[63] V. Janjic and K. Hammond. Granularity-Aware Work-Stealing for
Computationally-Uniform Grids. In CCGrid, pages 123-134, 2010.

[64] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor. Kismet: Parallel Speedup
Estimates for Serial Programs. In OOPSLA, pages 519-536, 2011.

[65] Y. Jiang, C. Xu, and X. Ma. DPAC: An Infrastructure for Dynamic Program
Analysis of Concurrency Java Programs. In MDS, pages 2:1-2:6, 2013.

[66] D. Jin, P O. Meredith, C. Lee, and G. Rosu. JavaMOP: Efficient Parametric
Runtime Monitoring Framework. In ICSE, pages 1427-1430, 2012.

[67] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A Black-box Approach to
Understanding Concurrency in DaCapo. In OOPSLA, pages 335-354, 2012.

[68] M. Kambadur, K. Tang, and M. A. Kim. Harmony: Collection and Analysis
of Parallel Block Vectors. In ISCA, pages 452-463, 2012.

[69] S. Kell, D. Ansaloni, W. Binder, and L. Marek. The JVM is Not Observable
Enough (and What to Do About It). In VMIL, pages 33-38, 2012.

[70] G.Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In ECOOP, pages 327-353, 2001.

[71] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In ECOOP, pages 220-242,
1997.

[72] C. P Kruskal and C. H. Smith. On the Notion of Granularity. The Journal
of Supercomputing, 1(4):395-408, 1988.

[73] M. Kumar. Measuring Parallelism in Computation-Intensive Scientific/Engi-
neering Applications. IEEE Transactions on Computers, 37(9):1088-1098,
Sep 1988.

https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

129 Bibliography

[74] C. Lattner and V. Adve. LIVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In CGO, pages 75-86, 2004.

[75] P Lengauer, V. Bitto, H. M6ssenbock, and M. Weninger. A Comprehensive
Java Benchmark Study on Memory and Garbage Collection Behavior of
DaCapo, DaCapo Scala, and SPECjvm2008. In ICPE, pages 3-14, 2017.

[76] J. Lifflander, S. Krishnamoorthy, and L. V. Kale. Optimizing Data Locality
for Fork/Join Programs Using Constrained Work Stealing. In SC, pages
857-868, 2014.

[77] Linux man. top(1). https://linux.die.net/man/1/top, 2013.

[78] Linux man. Documentation of CLOCK_MONOTONIC in clock_gettime().
https://linux.die.net/man/3/clock _gettime, 2018.

[79] X. Liu and J. Mellor-Crummey. A Tool to Analyze the Performance of
Multithreaded Programs on NUMA Architectures. In PPoPP, pages 259—
272, 2014.

[80] P Lopez, M. Hermenegildo, and S. Debray. A Methodology for Granularity-
Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, 21(4):715-734, 1996.

[81] L. Marek, S. Kell, Y. Zheng, L. Bulej, W. Binder, P Tama, D. Ansaloni,
A. Sarimbekov, and A. Sewe. ShadowVM: Robust and Comprehensive
Dynamic Program Analysis for the Java Platform. In GPCE, pages 105-114,
2013.

[82] L. Marek, A. Villazén, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL: A
Domain-specific Language for Bytecode Instrumentation. In AOSD, pages
239-250, 2012.

[83] E. Mohr, D. Kranz, and J. Halstead, R.H. Lazy Task Creation: A Technique
for Increasing the Granularity of Parallel Programs. IEEE Transactions on
Parallel and Distributed Systems, 2(3):264-280, 1991.

[84] P Moret, W. Binder, and A. Villazon. CCCP: Complete Calling Context
Profiling in Virtual Execution Environments. In PEPM, pages 151-160,
2009.

https://linux.die.net/man/1/top
https://linux.die.net/man/3/clock_gettime

130 Bibliography

[85] A.Muddukrishna, P A. Jonsson, A. Podobas, and M. Brorsson. Grain Graphs:
OpenMP Performance Analysis Made Easy. In PPoPP, pages 28:1-28:13,
2016.

[86] N. Muthuvelu, I. Chai, E. Chikkannan, and R. Buyya. On-Line Task Granu-
larity Adaptation for Dynamic Grid Applications, pages 266-277. In ICA3PP,
2010.

[87] N. Muthuvelu, J. Liu, N. L. Soe, S. Venugopal, A. Sulistio, and R. Buyya.
A Dynamic Job Grouping-based Scheduling for Deploying Applications
with Fine-grained Tasks on Global Grids. In ACSW Frontiers, pages 41-48,
2005.

[88] T. Mytkowicz, A. Diwan, M. Hauswirth, and P E Sweeney. Evaluating the
Accuracy of Java Profilers. In PLDI, pages 187-197, 2010.

[89] A. Navarro, S. Mateo, J. M. Perez, V. Beltran, and E. Ayguadé. Adaptive
and Architecture-Independent Task Granularity for Recursive Applications,
pages 169-182. In IWOMP, 2017.

[90] A. Noll and T. Gross. Online Feedback-directed Optimizations for Parallel
Java Code. In OOPSLA, pages 713-728, 2013.

[91] N.Nystrom, M. Clarkson, and A. C. Myers. Polyglot: An Extensible Compiler
Framework for Java. In Compiler Construction, pages 138-152, 2003.

[92] OpenMP Architecture Review Board. OpenMP. http://www.openmp.org,
2018.

[93] J. Opsommer. A Taskgraph Clustering Algorithm based on an Attraction
Metric between Tasks. In CompEuro, pages 77-82, 1992.

[94] Oracle. The Reflection API. |https://docs.oracle.com/javase/
tutorial/reflect/, 2015.

[95] Oracle. Documentation of System.nanotime(). https://docs.oracle.
com/javase/9/docs/api/java/lang/System.html, 2017.

[96] Oracle. Java Native Interface. https://docs.oracle.com/javase/9/
docs/specs/jni/index.html, 2017.

[97] Oracle. Java Platform, Standard Edition & Java Development Kit Version
9 API Specification. https://docs.oracle.com/javase/9/docs/api/,
2017.

http://www.openmp.org
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/9/docs/api/java/lang/System.html
https://docs.oracle.com/javase/9/docs/api/java/lang/System.html
https://docs.oracle.com/javase/9/docs/specs/jni/index.html
https://docs.oracle.com/javase/9/docs/specs/jni/index.html
https://docs.oracle.com/javase/9/docs/api/

131

Bibliography

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Oracle. Java Virtual Machine Tool Interface (JVM TI). https://docs.
oracle.com/javase/9/docs/specs/jvmti.html, 2017.

Oracle. Package java.lang.instrument. https://docs.oracle.com/
javase/9/docs/api/java/lang/instrument/package-summary.html,
2017.

Oracle. The Java Language Specification. https://docs.oracle.com/
javase/specs/jls/se9/html/index.html, 2017.

Oracle. The Java Virtual Machine Specification. https://docs.oracle.
com/javase/specs/jvms/se9/html/index.html, 2017.

Oracle. The Parallel Collector. https://docs.oracle.com/javase/9/
gctuning/parallel-collectorl.htm, 2017.

Oracle. ExecutorService. https://docs.oracle.com/javase/9/docs/
api/java/util/concurrent/ExecutorService.html, 2017.

Oracle. ForkJoinPool. https://docs.oracle.com/javase/9/docs/
api/java/util/concurrent/ForkJoinPool.html, 2017.

Oracle. ThreadPoolExecutor. https://docs.oracle.com/javase/9/
docs/api/java/util/concurrent/ThreadPoolExecutor.html, 2017.

Oracle. Java Mission Control. http://www.oracle.
com/technetwork/java/javaseproducts/mission-control/
java-mission-control-1998576.html, 2018.

M. S. Orr, B. M. Beckmann, S. K. Reinhardt, and D. A. Wood. Fine-grain
Task Aggregation and Coordination on GPUs. In ISCA, pages 181-192,
2014.

OW?2 Consortium. ASM. http://asm.ow2.0rg/, 2018.

M. A. Palis, J.-C. Liou, and D. S. L. Wei. Task Clustering and Scheduling for
Distributed Memory Parallel Architectures. IEEE Transactions on Parallel
and Distributed Systems, 7(1):46-55, Jan 1996.

A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R. Butt. CHOPPER:
Optimizing Data Partitioning for In-memory Data Analytics Frameworks.
In CLUSTER, pages 110-119, 2016.

https://docs.oracle.com/javase/9/docs/specs/jvmti.html
https://docs.oracle.com/javase/9/docs/specs/jvmti.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/9/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://docs.oracle.com/javase/specs/jls/se9/html/index.html
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html
https://docs.oracle.com/javase/specs/jvms/se9/html/index.html
https://docs.oracle.com/javase/9/gctuning/parallel-collector1.htm
https://docs.oracle.com/javase/9/gctuning/parallel-collector1.htm
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ExecutorService.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadPoolExecutor.html
https://docs.oracle.com/javase/9/docs/api/java/util/concurrent/ThreadPoolExecutor.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://www.oracle.com/technetwork/java/javaseproducts/mission-control/java-mission-control-1998576.html
http://asm.ow2.org/

132 Bibliography

[111] R. Pawlak. Spoon: Compile-time Annotation Processing for Middleware.
IEEE Distributed Systems Online, 7(11), 2006.

[112] D. J. Pearce, M. Webster, R. Berry, and P H. Kelly. Profiling with AspectJ.
Software: Practice and Experience, 37(7):747-777, 2007.

[113] perf. Linux profiling with performance counters. https://perf.wiki.
kernel.org, 2015.

[114] G. Reger, H. C. Cruz, and D. Rydeheard. MarQ: Monitoring at Runtime
with QEA. In TACAS, pages 596-610, 2015.

[115] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., 1st
edition, 2007.

[116] M. C. Rinard and M. S. Lam. The Design, Implementation, and Evalua-
tion of Jade. ACM Transactions on Programming Languages and Systems,
20(3):483-545, 1998.

[117] A. Rosa, L. Y. Chen, and W. Binder. Actor Profiling in Virtual Execution
Environments. In GPCE, pages 36-46, 2016.

[118] M. Roth, M. J. Best, C. Mustard, and A. Fedorova. Deconstructing the
Overhead in Parallel Applications. In IISWC, pages 59-68, 2012.

[119] Sandy Ryza. How-to: Tune Your Apache Spark Jobs
(Part 1). http://blog.cloudera.com/blog/2015/03/
how-to-tune-your-apache-spark-jobs-part-1/, 2015.

[120] Sandy Ryza. How-to: Tune Your Apache Spark Jobs
(Part 2). http://blog.cloudera.com/blog/2015/03/

how-to-tune-your-apache-spark-jobs-part-2/, 2015.

[121] A. Sarimbekov, A. Sewe, W, Binder, P Moret, and M. Mezini. JP2: Call-site
Aware Calling Context Profiling for the Java Virtual Machine. Sci. Comput.
Program., 79:146-157, Jan. 2014.

[122] T. B. Schardl, B. C. Kuszmaul, I.-T. A. Lee, W. M. Leiserson, and C. E.
Leiserson. The Cilkprof Scalability Profiler. In SPAA, pages 89-100, 2015.

[123] A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. Da Capo Con Scala: De-
sign and Analysis of a Scala Benchmark Suite for the Java Virtual Machine.
In OOPSLA, pages 657-676, 2011.

https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-1/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/

133 Bibliography

[124] Simon Kitching. OSGi Classloading. http://moi.vonos.net/java/
osgi-classloaders/, 2013.

[125] G. Singh, M.-H. Su, K. Vahi, E. Deelman, B. Berriman, J. Good, D. S. Katz,
and G. Mehta. Workflow Task Clustering for Best Effort Systems with
Pegasus. In MG, pages 9:1-9:8, 2008.

[126] E. Tanter, P Moret, W. Binder, and D. Ansaloni. Composition of Dynamic
Analysis Aspects. In GPCE, pages 113-122, 2010.

[127] Q.M. Teng, H. C. Wang, Z. Xiao, P E Sweeney, and E. Duesterwald. THOR:
A performance analysis tool for Java applications running on multicore
systems. IBM Journal of Research and Development, 54(5):4:1-4:17, Sept
2010.

[128] The Apache Software Foundation. BCEL. http://commons.apache.org/
bcel/, 2017.

[129] The Apache Software Foundation. Apache Spark - RDD Pro-
gramming Guide. https://spark.apache.org/docs/latest/
rdd-programming-guide.html, 2018.

[130] The Apache Software Foundation. Apache Spark MLIlib. https://spark.
apache.org/mllib/, 2018.

[131] The Apache Software Foundation. Apache Tomcat. http://tomcat.
apache.org, 2018.

[132] The Apache Software Foundation. Lucene. https://lucene.apache.org,
2018.

[133] The Apache Software Foundation. Spark Configuration. https://spark.
apache.org/docs/latest/configuration.html, 2018.

[134] The Apache Software Foundation. Spark Streaming. https://spark.
apache.org/streaming/, 2018.

[135] The Apache Software Foundation. SparkContext API https:
//spark.apache.org/docs/2.3.0/api/java/org/apache/spark/
SparkContext.html, 2018.

[136] The AspectJ Team. AspectJ Quick Reference - Chapter 5. Pitfalls - Infinite
Loops. http://www.eclipse.org/aspectj/doc/released/progguide/
pitfalls-infinitelLoops.html, 2001.

http://moi.vonos.net/java/osgi-classloaders/
http://moi.vonos.net/java/osgi-classloaders/
http://commons.apache.org/bcel/
http://commons.apache.org/bcel/
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/mllib/
https://spark.apache.org/mllib/
http://tomcat.apache.org
http://tomcat.apache.org
https://lucene.apache.org
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/streaming/
https://spark.apache.org/streaming/
https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/SparkContext.html
https://spark.apache.org/docs/2.3.0/api/java/org/apache/spark/SparkContext.html
http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-infiniteLoops.html
http://www.eclipse.org/aspectj/doc/released/progguide/pitfalls-infiniteLoops.html

134 Bibliography

[137] The Eclipse Foundation. Jetty. http://www.eclipse.org/jetty/, 2016.

[138] The Eclipse Foundation. AjTypeSystem. https://eclipse.org/
aspectj/doc/next/adkl5notebook/reflection.html, 2018.

[139] The Eclipse Foundation. Eclipse. https://www.eclipse.org, 2018.

[140] The Stanford Natural Language Processing Group. Stanford Topic Modeling
Toolbox. https://nlp.stanford.edu/software/tmt/tmt-0.4/, 2010.

[141] P Thoman, H. Jordan, and T. Fahringer. Adaptive Granularity Control in
Task Parallel Programs Using Multiversioning. In Euro-Par, pages 164-177,
2013.

[142] TPC. TPC-C. http://www.tpc.org/tpcc/, 2010.

[143] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P Lam, P Pominville, and V. Sun-
daresan. Optimizing Java Bytecode Using the Soot Framework: Is It
Feasible? In CC, pages 18-34, 2000.

[144] L. Wang, H. Cui, Y. Duan, E Lu, X. Feng, and P-C. Yew. An Adaptive Task
Creation Strategy for Work-Stealing Scheduling. In CGO, pages 266-277,
2010.

[145] G. Xirogiannis. Granularity Control for Distributed Execution of Logic
Programs. In ICDCS, pages 230-237, 1998.

[146] A. Yoga and S. Nagarakatte. A Fast Causal Profiler for Task Parallel Pro-
grams. In ESEC/FSE, pages 15-26, 2017.

[147] YourKit. YourKit. https://www.yourkit.com, 2018.

[148] T. Yu and M. Pradel. SyncProf: Detecting, Localizing, and Optimizing
Synchronization Bottlenecks. In ISSTA, pages 389-400, 2016.

[149] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-
tolerant Abstraction for In-memory Cluster Computing. In NSDI, pages
1-14, 2012.

[150] J. Zhao, J. Shirako, V. K. Nandivada, and V. Sarkar. Reducing Task Creation
and Termination Overhead in Explicitly Parallel Programs. In PACT, pages
169-180, 2010.

http://www.eclipse.org/jetty/
https://eclipse.org/aspectj/doc/next/adk15notebook/reflection.html
https://eclipse.org/aspectj/doc/next/adk15notebook/reflection.html
https://www.eclipse.org
https://nlp.stanford.edu/software/tmt/tmt-0.4/
http://www.tpc.org/tpcc/
https://www.yourkit.com

135 Bibliography

[151] Y. Zheng, A. Rosa, L. Salucci, Y. Li, H. Sun, O. Javed, L. Bulej, L. Y. Chen,
Z. Qi, and W. Binder. AutoBench: Finding Workloads That You Need Using
Pluggable Hybrid Analyses. In SANER, pages 639-643, 2016.

[152] G. M. Zoppetti, G. Agrawal, L. Pollock, J. N. Amaral, X. Tang, and G. Gao.
Automatic Compiler Techniques for Thread Coarsening for Multithreaded
Architectures. In ICS, pages 306-315, 2000.

136 Bibliography

Index

€r, 37
1,34
1., 34

Actor, 91
- model, 91

Agent, 25

AOB 13

Aspect-oriented programming, 13
advice, 13
join point, 13

Class, 52
Classfile, 52
Classloader, 52
application -, 53
bootstrap -, 53
defining -, 53
namespace, 5, 53
user-defined -, 53
Classpath, 53
Context
- information, 26
calling -, 4
Cycle
- counter, 39
reference -, 30

DaCapo, 74
DiSL, 26

137

- server, 27

annotation, 26

code snippet, 26

context information, 26
guard, 26

marker, 26

scope, 26

synthetic local variable, 26
thread-local variable, 26

Empty element, 37

Factor
overhead -, 77
perturbation -, 81
speedup -, 79, 109
Full bytecode coverage, 21
Fully qualified name, 53

Hardware performance counter, 32
Heap tagging, 26
HPC, 32

Instrumentation
compile-time -, 55
in-process -, 56
load-time -, 56
out-of-process -, 57

Iteration
steady-state -, 74

138

INDEX

warm-up -, 74

Java class library, 4
JNIL, 26
JVMTIL, 25

Method
submission -, 28
execution -, 28
Model
actor -, 91
task -, 27
work-span -, 14

Nested
- call, 37
- task, 28
Null value, 34

Overhead factor, 77

PAPI, 32
perf, 32

Perturbation factor, 81

Primordial phase, 26
Profile, 31
actionable -, 4
task -, 34
Profiling

calling context -, 33

vertical -, 4

Reflection API

DiSL -, 60

Java -, 54
Reflective

- information, 53

- supertype information, 5, 54

RSL 5

ScalaBench, 74

Shadow stack, 36

empty element, 37

Shadow VM, 27
Spark, 74

action, 105
batch, 107
block, 107
job, 105

local mode, 77
partition, 105
record, 105

resilient distributed dataset, 105

shuffle, 106

stage, 105

task, 92, 105

transformation, 105
narrow -, 105
wide -, 105

Spark Perf, 74
Speedup factor, 79, 109
Stop-the-world GC, 30

Tag, 26
Task, 1, 27

- execution, 28

- execution framework, 28

- granularity, 2, 28
- interface, 28

- model, 27

- profile, 34

- submission, 28

- trace, 32

-parallel application, 1

-parallelism, 1

coarse-grained -, 2, 97

executed -, 28
fine-grained -, 2, 90
nested -, 28

outer -, 28

139

INDEX

submitted -, 28
tgp, 4
Thread
- cycle counter, 39
creating -, 29
executing -, 29
top, 32
Trace, 31
CPU -, 32
CS -, 32
GC-, 32
task -, 32

Type-specific analysis, 5

Variable
synthetic local -, 26
thread-local -, 26
Vertical profiling, 4

Weaver, 21

Weaving, 21

Work-span model, 2, 14
Critical path, 14
Span, 2, 14
Work, 2, 14

	Contents
	Introduction
	Motivation
	Goals and Challenges
	Contributions
	Task-Granularity Profiling
	Reification of Complete Supertype Information
	Task-Granularity Analysis and Optimization

	Dissertation Outline
	Publications

	State-of-the-Art
	Task Granularity
	Estimating Task Granularity
	Adapting Task Granularity
	Profiling Task Granularity

	Work-Span Model
	Analyses of Parallel Applications
	Profilers for Parallel Applications
	Reification of Supertype Information

	Task-Granularity Profiling
	Background
	JVMTI and JNI
	DiSL and Shadow VM

	Task Model
	Tasks
	Task Granularity
	Task Submission
	Task Aggregation
	Multiple Task Executions

	Metrics
	Profiling Methodology
	Metric Collection
	Task Aggregation
	Trace Alignment
	Calling-Context Profiling

	Instrumentation
	Data Structures
	Challenges in Task-Granularity Profiling
	Instrumentation for Task-Granularity Profiling

	Implementation
	Efficient Shadow Stacks
	Task-Granularity Profiling
	Task-Submission Profiling
	Calling-Context Profiling

	Discussion
	Excluded Metrics
	Limitations

	Summary

	Reification of Complete Supertype Information
	Background
	Classloaders
	Reflective Information

	Motivation
	Compile-time Instrumentation
	Load-time In-process Instrumentation
	Load-time Out-of-process Instrumentation
	Classloader Namespaces
	Our Solution

	The DiSL Reflection API
	Implementation
	Forced Loading of Supertypes
	Classloader Namespaces
	Preprocessing Java Core Classes

	Efficient Task-Granularity Profiling
	Evaluation
	Methodology and Setup
	Profiling Overhead and Speedup
	Perturbation

	Discussion
	Reclamation of Classloader Namespaces
	Preprocessing Classes Outside java.*
	Instrumentation State
	Checking Classloader IDs
	Limitations

	Summary

	Task-Granularity Analysis and Optimization
	Analysis
	Methodology
	Fine-Grained Tasks
	Coarse-Grained Tasks

	Optimization
	pmd
	lusearch
	Spark Perf Benchmarks
	Evaluation

	Discussion
	Platform-dependent Results
	Optimization of DaCapo and ScalaBench
	CPU Utilization

	Summary

	Conclusion
	Summary of Contributions
	Future Work

	Bibliography
	Index

