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Notes on Software and Documentation 

The experimental settings in chapters 2 was programmed and run by the author using Powersim Studio. 

The experimental settings in chapters 3 and 4 were programmed and run by the author in z-Tree 

(Fischbacher, 2007). The author used Microsoft Office Excel to compile all the experimental results. 

The system dynamics model in chapter 3 was implemented in Vensim DSS. The econometric analyses 

were computed by the author using Stata version 12 and R. 
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Chapter 1. Introduction 

Previous research on behavioral operations has focused on describing decision making biases and 

deriving heuristics that aim to explain those biases in a lineal supply chains (Croson et al., 2014; Sterman 

& Dogan, 2015; Sterman, 1989a) or under a simple newsvendor framework (Bolton & Katok, 2008; 

Schweitzer & Cachon, 2000). However, limited behavioral work has been done on analyzing 

interactions among multiple retailers and on understanding how to take advantage of subjects’ behaviors 

to create policies that lead to better supply chain performance. Following this gap in the behavioral 

operations literature, the main objective I pursue in this thesis is to better understand how different 

factors may independently and in combination influence retailers ordering decisions under different 

supply chain structures (single agent and multi agent), different demand uncertainty (deterministic and 

stochastic), and different interaction among retailers (no interaction, competition and cooperation). I 

developed three different studies that allow me to better understand the main dynamics and biases 

around the ordering decisions in different supply chain structures.  

One of the main topics that I discuss in the first two chapters of the thesis refers to order 

amplifications. Amplifications usually take place in supply chains with tight capacity. Under scarce 

supply, the supplier rations the allocation of available supply to satisfy retailers’ orders, while retailers 

receiving only a fraction of previous orders, amplify future ones in an attempt to secure more units (Lee 

et al., 1997a, 1997b). The amplification of retailers’ orders creates problems such as excessive supplier 

capital investment, inventory gluts, low capacity utilization, and poor service, among others (Armony 

& Plambeck, 2005; Gonçalves, 2003; Lee et al., 1997a; Sterman, 2000). Cisco System’s 2001 inventory 

write-off provides an instructive practical example.  

Behavioral research in order amplification has focused mainly on understanding the biases and 

underperformances presented in a typical serial supply chain (e.g. The Beer Game) (Croson & Donohue, 

2005; Sterman & Dogan, 2015; Sterman, 1989a). However, limited work has been done on analyzing 

(i) the effect of different types and magnitudes of delays, (ii) the interactions among competing retailers, 

and (ii) the effect of different allocation mechanism in subjects’ behavior. 
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In each of the chapters of this thesis, I aim to understand how people make their ordering decisions 

when they assume the role of retailers. Therefore, I created different decision-making-laboratory 

experiments following standard experimental economics protocol (Friedman & Sunder, 1994, 2004; 

Katok, 2011). Initially, I developed a formal model incorporating standard operations management 

processes for (i) supplier’s capacity investment, (ii) retailers’ inventory management, and (iii) final 

customers’ orders. Second, I ran decision making laboratory experiment based on the developed models 

to study how human subjects playing the role of retailers make ordering decisions. Based on subjects’ 

decisions and on the system dynamics, I used econometric methods to analyze the results obtained and 

shed light on the decision patterns used by subjects in the retailer role. Finally, subjects’ decisions were 

compared against some theoretical benchmarks to determine subjects’ performance in each experiment.  

In 0, I analyze order amplification in a single-supplier single-retailer supply chain. In this chapter, 

I used a behavioral experiment to test retailers’ orders under different ordering delays and different 

times to build supplier’s capacity. Results provide (i) a better understanding of the endogenous dynamics 

leading to retailers’ ordering amplification, (ii) a description of subjects’ biases and deviation from 

optimal trajectories, despite subjects have full information about the system structure, and (iii) some 

practical implications and recommendations that may lead to an increase on supply chain performance. 

In Chapter 3, I analyze how the amplification of orders can also take place when there is fierce 

retailer competition and limited supplier capacity. For this study, I built on Armony and Plambeck 

(2005)’s analytical work on the impact of duplicate orders on upstream suppliers’ demand estimation 

and capacity investment. I study how different factors (different time to build supplier capacity, different 

levels of competition among retailers, different magnitudes of supply shortage and different allocation 

mechanisms) may independently and in combination influence retailers’ order in a system with two 

retailers under supply competition. Results show that (i) the bullwhip effect persists even when subjects 

do not have incentives to deviate and that the order amplification do not disappear over time, (ii) subjects 

amplify their orders in an attempt to build an unnecessary safety stock to respond to potential deviations 

from the other retailers, (iii) subjects’ biases do not increase when subjects face systems with higher 

complexity, and (iv) retailers’ underperformance varies with the allocation mechanism used by the 

supplier. 
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In 0 and Chapter 3, I consider a system where retailers need to control their inventory level when 

final customer demand is assumed to follow a known pattern and when retailers had the opportunity to 

store their inventory over time. In Chapter 4, I remove the ability to indefinitely store inventory, due to 

perishability or obsolescence of the product, and I include uncertainty in the final customer demand. 

This problem is commonly known as the newsvendor problem (Arrow et al., 1951). The newsvendor 

problem characterizes situations where a retailer needs to decide how many units to order to the supplier 

to satisfy an uncertain final customer demand. In this case, both leftovers and shortages at the end of the 

selling period are costly. Previous research in behavioral operations on the newsvendor problem has 

focused mainly on describing decision making biases and/or deriving heuristics that aim to explain those 

biases in a single actor problem (Bolton & Katok, 2008; Bostian et al., 2008; Croson & Ren, 2013; 

Schweitzer & Cachon, 2000). However, limited work has been done (i) on analyzing interactions among 

multiple subjects and (ii) on understanding subjects’ behaviors as a way to  create better interaction 

policies that could improve supply chain coordination. I contribute to this literature by experimentally 

exploring the effect of transshipments among retailers in a single-supplier multi-retailer supply chain. 

Specifically, I explore retailers’ orders under different profit (Schweitzer & Cachon, 2000) and 

communication conditions (Ahn et al., 2011). Finally, I integrate analytical and behavioral models to 

improve supply chain performance. Results show that (i) the persistence of common biases in a 

newsvendor problem (pull-to-center, demand chasing, loss aversion, psychological disutility), (ii) 

communication could improve coordination and may reduce demand chasing behavior, (iii) supply chain 

performance increases with the use of behavioral strategies embedded within a traditional optimization 

model, and (iv) dynamic heuristics improve overall coordination, outperforming a simple Nash 

Equilibrium strategy. 
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Chapter 2. Exploring Retailers’ Ordering Decisions under Delays 

(with Paulo Gonçalves and Santiago Arango) 

Abstract 

When final customer demand exceeds available supply, retailers often hedge against shortages by 

inflating orders to their suppliers. While this amplification in orders is clearly described in the literature, 

there is little experimental research quantifying the factors influencing these amplifications. We use an 

experiment to test subjects’ ordering decisions under different ordering and supplier’s capacity 

acquisition delays. Subjects in the experiment display limited ability to process the impact of delays and 

feedback.  The order trajectories follow a pattern of overshoot and subsequent undershoot until reaching 

an equilibrium. However, the initial overshoot is less intense and lasts longer than the optimal behavior, 

when subjects face longer delays. In addition, subjects inflate their orders when the supplier faces longer 

capacity acquisition delays and when orders take longer to be perceived by the supplier. Econometric 

estimates show that the proposed anchoring and adjustment heuristic is a possible heuristic for 

explaining subjects’ ordering behavior. 

Keywords: Order Amplification, Laboratory Experiment, Behavioral Operations, Supply Chain 

Management, Demand Bubbles, System Dynamics. 

2.1. Introduction  

One of the most common and costly problems in supply chains is caused by retailer orders’ amplification 

(Armony & Plambeck, 2005). These amplifications have been captured in the literature as early as 1924, 

when Mitchell described the case of retailers inflating their orders to manufacturers when competing 

with other retailers for scarce supply. He argued “if [retailers] want 90 units of an article, they order 

100, so as to be sure, each, of getting the 90 in the pro rata share delivered” (Mitchell, 1924, p. 645). 

When faced with limited capacity, suppliers typically allocate available supply among retailers. In turn, 

a retailer receiving only a fraction of previous orders, amplifies future ones in an attempt to secure more 

units (Lee et al., 1997a, 1997b). This phenomenon can propagate through the supply chain causing 

orders (and subsequently inventories) to chronically overshoot and undershoot desired levels. These 

fluctuations can lead retailers and suppliers alike to overreact, leading to problems such as excessive 
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supplier capital investment, inventory gluts, low capacity utilization, and poor service (Armony & 

Plambeck, 2005; E & Fine, 1999; Gonçalves, 2003; Lee et al., 1997a; Sterman, 2000). 

Academic interest in the subject has its roots on real and frequent problems faced by businesses 

in diverse industries. For example, in the 1980’s, the computer industry faced shortages of DRAM chips 

in several occasions: orders surged because of retailers anticipation (Li, 1992). Similarly, excessive 

reseller orders for Hewlett-Packard LaserJet printers led to excess inventory and unnecessary capacity 

(Lee et al., 1997a). In 2000, shortages of key components at Cisco caused customer orders amplification, 

leading to overestimated sales forecasts and a strong production capacity expansion through long-term 

contracts with OEMs. Once production capacity became available and delivery delays went back to 

normal, customers canceled duplicated orders, leaving Cisco with significant excess capacity, rigid long-

term contracts and high amount of inventory (Byrme & Elgin, 2002). 

Informed by these industry experiences, our research fits in the growing field of behavioral 

operations management, which analyzes the relationships between operations management and human 

behavior (Croson et al., 2014; Katok, 2011). Previous research in this stream of the literature using the 

Beer Game estimated individual decision rules for subjects’ ordering decisions under complex system 

structure, resulting in costly oscillations and system instability (Sterman, 1989a; Van Ackere et al., 

1993). These results are consistent with those of Croson et al. (2014) also using the Beer Game. Croson 

et al. (2014) also find oscillations and amplification in orders even when demand uncertainty is 

eliminated and subjects have access to a perfect demand forecast. In our study, we conducted some 

experiments to understand the impact that different delays may have on subjects’ ordering patterns. Our 

results also lead to order amplification and oscillation, even though subjects had complete information 

on the structure of the system and final customer demand.  

Our approach for modeling the dynamics of this single-supplier single-retailer supply chain is 

based on a system dynamics model adapted from Gonçalves (2003). Despite other models described in 

the literature (e.g. Sterman (1989b), Barlas and Özevin (2004), Armony and Plambeck, (2005)) could 

also explain the main dynamics of our system, Gonçalves (2003) offers a parsimonious model that could 

be used to represent supplier’s capacity investment and performance. Although Gonçalves’ model 

focuses mainly on the supplier perspective, his model is able to represent the main dynamics and the 
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positive feedbacks presented in industries affected by long delays and the effect of these delays on 

retailers’ orders. Our experimental setting focuses on the dynamics around retailer’s orders. Specifically, 

we analyze retailers’ order amplification, when a retailer faces scarce supply and long delays, and we 

use a decision rule to explain retailers’ decisions. The simple decision rule used in this chapter is based 

on the same anchor and adjustment concept (Tversky & Kahneman, 1974) previously adopted by 

Sterman (1989a, 1989b). Sterman’s rule for ordering uses the demand forecast as the anchor and 

adjustments are made in response to the adequacy of the desired inventory and supply line levels. In our 

decision rule, however, the anchor term captures retailer’s intention to place sufficient orders to meet 

their customers’ orders and the adjustment term closes the gap between retailer’s desired and actual 

backlog of orders. In addition, we assume that the supplier behavior (investment in capacity) follows a 

behavioral heuristic as the one identified by Gonçalves and Arango (2010).  

Our research explores the impact that delays may have on subjects’ ordering decisions. We 

hypothesize subjects’ performance deteriorates with longer retailer ordering delays and supplier capacity 

acquisition delays. Both conditions are consistent with studies by Sterman (1989a, 1989b), Gonçalves 

(2003) or Barlas and Özevin (2004). Our results show that subjects’ orders systematically deviate from 

an optimal order trajectory, experience longer capacity acquisition and ordering delays complicate the 

system, and when subjects’ experience them together it leads to higher costs and lower performance. 

While subjects’ ordering behavior is not optimal, it can be explained econometrically by a simple 

anchoring and adjustment decision rule. These results are also consistent with Yasarcan (2005; 2011), 

where he explains the consequences of ignoring delays as a way of ignoring the supply line and shows 

that the anchor and adjustment decision heuristic, which represents subjects’ behavior, is not optimal 

and that significant delays undermine subjects’ performance.  

This chapter proceeds as follows. The next section describes and analyzes the proposed 

mathematical model. Then we detail a decision-making laboratory experiment based on the proposed 

mathematical model. The following section discusses our results and the impact of ordering and capacity 

acquisition delays on subjects’ performance. Afterwards, we derive an econometric model to analyze 

subjects’ decision rules. Finally, we discuss our main findings. 
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2.2. Model Description 

We build upon a model proposed by Gonçalves (2003) capturing a supply chain with a single supplier 

offering a unique, non-substitutable product to retailers. The emphasis of our analysis is on the ordering 

behavior of a single retailer trying to match products received from its supplier with final customer 

demand. Error! Reference source not found. displays the structure of our supply chain structure. 

 

Figure 2.1. Supply Chain Structure 

Similarly, Figure 2.2 provides an overview of the supplier-retailer model that serves as the basis 

for a laboratory experiment. The hexagon in the middle box represents our variable of interest, retailer’s 

orders, where subjects implement their ordering decisions during the experiments. To model the supplier 

system, we first define the supplier’s backlog of orders (B) as a function of retailer’s orders (RD) and 

supplier shipments (S).  

 SRB D   (2.1) 

Shipments (S) are typically given by the minimum between the desired shipments and the 

available capacity. However, since we are interested in situations characterized by supply shortages, we 

model shipments as always constrained by available capacity (K). 

 S = K (2.2)

The supplier can change capacity (K) over time to adjust to retailer’s demand. The change in 

supplier’s capacity ( K ) is given by a first order exponential smooth between desired shipments (S*) and 

capacity (K), with an adjustment time given by the time to build capacity (K). This formulation captures 

a naïve capacity adjustment process, where the supplier tries to maintain sufficient capacity to satisfy 

retailer demand with a target delivery delay. Finally, desired shipments (S*), given by the ratio of 

Backlog (B) and the Target Delivery Delay (D), capture the shipment rate required to maintain delivery 

delays at the target level for the existing level of backlog. 

SUPPLIER  RETAILER
FINAL 

CUSTOMERS 

Shipments

Orders
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Modeling the change in capacity ( K ) as a first-order exponential smooth of desired shipments 

follows a traditional formulation in system dynamics (Barlas & Özevin, 2004; Gonçalves, 2003).   

Finally, we also measure the retailer’s supply gap, i.e., retailer’s ability to meet final customer 

demand, given by the difference between Cumulative Customer demand (Dr) and Cumulative Shipments 

to Retailer (ES), where:    

 dDr   (2.4)

 SES  (2.5)

 
Figure 2.2. Overview of model structure. 

2.2.1. Cost Objective 

To motivate subjects’ performance, we measure retailer’s total cost (TC) given by two components: (1) 

a Supply Gap Cost (ܥ௚௔௣), given by the summed differences between cumulative customer demand and 

cumulative shipments received from the supplier; and (2) Ordering Cost (ܥ୭), given by the number of 

units the retailer orders to the supplier each period (RD).  
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ܥܶ  ൌ෍ሺܥ௚௔௣ ൅ ௢ሻܥ

்

௧ୀଵ

 (2.6)

 

Where, 

  2Srgap EDC    (2.7)

 2
Do RC    (2.8)

In addition, we assume quadratic cost functions because of three reasons. First, they are 

reasonable approximations to the loss function in many stock management settings (Holt et al., 1960). 

Furthermore, quadratic cost functions allow us to penalize higher deviations. Finally, motivated by the 

work of Diehl and Sterman (1995), we calibrate the cost coefficients using pilot experiments and 

simulations, allowing us to balance the contribution of each of the two terms in the cost function. We 

find that coefficients for  and , of =0.001 and =0.002 (a 1:2 proportion) represent a balanced trade-

off between the ordering and supply gap cost. The higher value of the  coefficient reflects a higher 

sensitivity of the cost function to ordering costs, requiring that subjects be mindful about their ordering 

decisions. The proposed values for  and  allow participants to work with cost magnitudes that are 

manageable and understandable. Appendix 2.1 presents the general units of measure used for each 

variable or parameter of the model. 

2.3. The Experiment  

We use the model described above as a basis for a “management flight simulator” (Senge & Sterman, 

1992; Sterman, 1989b). Subjects play the role of a single retailer, placing orders to a supplier and trying 

to minimize total costs. As in the Beer Game, the experiment starts in dynamic equilibrium, where the 

supplier has sufficient production capacity (100 units/week) to meet total retailer’s demand (100 

units/week) according to the target delivery delay. After the third period (week), the retailer faces a 

sudden increase in final customer orders. This step in the final customer demand is also a common 

approach in the Beer Game. In addition, despite the fact that real world examples do not include 

complete information sharing, subjects in our experiments were informed that customer demand will 

increase in 20% and that the supplier faces a delay to build additional capacity. We give subjects 
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complete demand information because (1) it facilitates the estimation of the heuristic, (2) it avoids 

subject’s need to forecast future demand, and (3) it has been shown (Croson & Donohue, 2003; Croson 

et al., 2014) not to eliminate subject’s underperformance in supply chains. Subjects must decide how 

many units to order from the supplier each week during 35 simulated weeks. Subjects are asked to 

minimize the total accumulated cost (TC) throughout the simulated horizon. An experiment horizon of 

35 simulated periods was selected to ensure sufficient time for the dynamics to unfold.  

2.3.1. Experimental Treatments 

Our experiment explores two characteristics previously identified by Gonçalves (2003) and Gonçalves 

and Arango (2010) affecting the performance of retailer’s decisions. The first one is related to the 

retailer’s ability to get their orders in place, either for internal process of the retailer or for possible 

delays with the supplier to process the orders that they receive: retailer ordering delays (O). The second 

characteristic is related to the ability of the supplier to adjust to the orders that they are receiving: 

supplier capacity acquisition delays (K). We model the retailer ordering delay (O) as a pipeline delay 

and explore the impact of short (O =2) and long (O =3) delays on retailer ordering behavior. In 

addition, supplier capacity acquisition delays (K) are captured as the time constant in the exponential 

smoothing equation. Analogously, we explore the impact of a short (K =1) and long (K =3) time to 

build capacity. We run a full experimental design, with four experimental treatments. The first treatment 

(T1) presents an agile system. This is the system with less dynamics in our experiments, where we 

account for the lowest value in our experimental variables. The forth treatment (T4) is the most 

dynamically complex system (slow system), where our experimental variables take the highest possible 

value. Treatment 2 (T2) presents an agile retailer with a slow supplier, where we combine short retailer 

ordering delay and a long supplier capacity acquisition delay. Finally, Treatment 3 (T3) presents only 

an agile supplier with a slow retailer, where we combine short supplier capacity acquisition delay with 

a long retailer ordering delay. Table 2.1 characterizes each treatment conducted and the number of 

participants (n) in each treatment. 
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2.3.2. Experimental Protocol   

We followed the standard experimental economics protocol (see Friedman & Sunder, 1994, 2004). 

Subjects were fourth and fifth year Industrial and Management Engineering students at the National 

University of Colombia, in the autumn of 2010. Subjects did not have previous experience in any related 

experiment. 

Table 2.1. Experimental treatments 

  Supplier’s Capacity Investment Delay (K) 

  1 3 

Retailer’s Order Decision Delay 

(O) 

2 
Agile System 

(n=20) 

Agile Retailer 

(n=20) 

3 
Agile Supplier 

(n=20) 

Slow System 

(n=20) 

 
Participants were told they would earn a show-up fee of Col$10.000 (approximately US$5) and 

a variable amount contingent on their performance, between Col$0 and Col$30.000 (US$0 - US$15) for 

an overall average payoff of Col$24.000 (US$12). The experiment ran for around one hour and students 

were informed about the duration of the experiment beforehand. The payoff was more than two times 

larger than the opportunity cost for an undergraduate student in a public university in Colombia. The 

students were also given a set of instructions describing the production system, the decisions and the 

goals of the game (shown in detail in Appendix 2.2). 

We ran the experiment with 20 subjects per treatment. Upon arrival, subjects were seated behind 

computers and one of the four treatments was assigned randomly (see Appendix 2.3). Participants were 

allowed to ask questions and test out the computer interface (see Appendix 2.4). All the experiment 

parameters were common knowledge to all participants. We ran the experiment using the computer 

simulation software Powersim-Constructor-2.51®. The software ran automatically and kept record of 

all variables, including subjects’ decisions. Subjects wrote their decisions on a sheet of paper, which 

served as a physical backup of the data. 
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2.3.3. Optimal Simulated Trajectory 

To properly assess subjects’ performance, we compare their ordering behavior with the optimal 

simulated order trajectory in each treatment. These optimal order trajectories are estimated using the 

Solver in Powersim Studio 8 and minimizing the total cost over all periods. Powersim Studio 8 uses an 

optimization method called evolutionary search. Inspired by Darwin's evolutionary theory, the method 

is a goal-seeking process where successive runs take place and where the best inputs from a run are used 

in the next run to generate new inputs to a simulation and try to find the optimum. Figure 2.4 shows 

the behavior of these optimal trajectories (thick continuous line) in each treatment. The optimal ordering 

trajectories are characterized by a large initial order at the moment the demand surges. The magnitude 

of this optimal initial order increases with the complexity (longer delays) of the system. Then, orders 

exponentially decrease with a damped oscillation until settling into equilibrium. The magnitude of the 

damped oscillation increases with system complexity. Finally, optimal orders settle at 120 units per 

week for the rest of the trajectory.  

2.4. Results 

In this section, we present the overall results of our experiments. Our experimental results are based on 

61 subjects (15 in the agile-system treatment, 17 in agile-retailer treatment, 14 in the agile-supplier 

treatment and 15 in the slow-system treatment), chosen among all the subjects after excluding outliers. 

In order to identify outliers in our experiment, we use both qualitative and quantitative analyses. First, 

we identified the subjects that clearly did not understand the system; and then we conducted four 

different quantitative tests to remove the remaining extreme cases. In general, in our quantitative 

identification of outliers, we used different univariate methods as the ones presented by Ben-Gal (2005), 

Croson et. al. (2014) and Sterman and Dogan (2015).  

2.4.1. Subjects’ Order Decisions Behavior 

Subjects received information on the system structure, delays and costs (see Appendix 2.2 for the 

description of the instruction) and then were asked to place orders that would minimize total simulated 

long-run costs. Figure 2.3 shows ordering behavior for four selected subjects (one in each treatment) 

capturing typical behavior of subjects. The results suggest a common pattern: subjects’ orders initially 
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over-shoot, then under-shoot until settling around equilibrium close to 120 units (the final customer 

demand). 

Agile System – P3        Agile Retailer – P1 

   
 

Agile Supplier – P10        Slow System ‐ P3 

 
 

Figure 2.3. Typical experimental results (Pj indicates the subject ID with j=1, … 15). 

Figure 2.3 also shows that subjects in the agile-system and agile-retailer treatments (with shorter 

ordering delays) over-order for shorter periods of time (around 10 weeks) compared with subjects in the 

agile-supplier and slow-system treatments who over-order for longer periods, but displays less 

variability. In the agile-system and agile-retailer treatments, the shorter ordering delays allowed subjects 

to more quickly adjust their orders. To compare overall subject behavior in each treatment with the 

optimal ordering decisions, we compute the average retailer´s orders (AO) for players in each treatment. 

Figure 2.4 suggests that subjects fail to place sufficiently large initial orders, and also fail to reduce them 

quickly toward the equilibrium value. Instead, subjects place orders with magnitudes averaging half of 

the desired initial value, but maintain high orders for a longer period than desired. When subjects finally 

reduce their orders, they do so more than the optimal values. As a result, subjects’ orders fluctuate 

around the optimal trajectory in all treatments. While the pattern presents similarities across treatments, 
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it is also possible to identify differences. The high initial subjects’ orders tend to remain high for a longer 

period in treatments with longer retailer ordering delays (agile-supplier and slow-system treatments). 

Subjects’ decisions are less stable and take longer to settle in the treatment with higher delays (slow-

system treatment). 

Agile System          Agile Retailer 

 
Agile Supplier          Slow System 

 
Figure 2.4. Final customer demand, optimal and average subjects’ orders (AO) in each treatment. 

2.4.2. Subjects’ Cost Performance 

The subjects’ main objective in the experiment was to minimize cumulative costs. Table 2.2 presents 

total cumulative costs per subject and the average, the median, the minimum and the optimal for each 

treatment. A general observation is that most of the subjects perform far from optimal for all treatments. 

The lowest total cost achieved by a subject was 20% higher than the optimal of the treatment, which 

occurred for subject P12 in the agile-retailer treatment. The best performances observed in the other 

treatments were also above optimal costs: 32% above optimal in the agile-system treatment, 37% above 

optimal in the agile-supplier treatment and 95% above optimal in the slow-system treatment.  
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Table 2.2. Total cumulative, average, and optimal costs across treatment for the experiment 

Subject 

Agile 

System ($)

Agile 

Retailer ($)

Agile 

Supplier ($)

Slow 

System ($) 

P1 2,331.95 3,243.45 1,285.69 1,576.23 

P2 16,186.75 10,474.18 6,349.57 1,976.48 

P3 17,921.82 1,313.24 1,439.31 19,297.83 

P4 3,995.25 6,806.07 2,441.01 12,619.97 

P5 845.60 3,017.32 1,407.55 30,220.81 

P6 3,834.15 878.90 2,086.54 4,258.17 

P7 6,805.24 899.15 3,946.30 2,214.28 

P8 25,358.16 14,624.58 2,410.65 1,403.54 

P9 4,056.73 2,712.87 2,958.85 2,294.44 

P10 1,664.46 854.73 1,202.67 2,649.15 

P11 1,511.78 10,944.48 1,106.48 13,445.40 

P12 1,193.47 781.92 885.04 35,200.88 

P13 4,790.34 2,438.42 961.68 1,388.21 

P14 805.86 1,002.29 1,719.34 5,960.91 

P15 27,068.96 2,792.65 16,640.05 

P16 7,144.60
 

P17 5,362.77
 

Average 

(Standard Error) 

7,891.37 

(2344,72)

4,428.92 

(1018,97)

2,157.19 

(396,83)

10,076.42 

(2845,09) 

Median 3,995.25 2,792.65 1,579.33 4,258.17 

Min 805.86 781.92 885.04 1,388.21 

Optimal 610.94 654.99 646.86 712.50 

Min/Optimal 1.32 1.20 1.37 1.95 
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Subjects’ average performances vary from 333% to 1414% higher than the optimal. These results 

are conservative since we have excluded subjects with outlying ordering behavior, who present even 

higher costs (including outliers we get average values of $23,312.73; $6,792.49; $4,724.34 and 

$13,551.26 for treatments 1 to 4 respectively). The lowest optimal costs is observed in the agile-system 

treatment ($610.94) and highest is in the slow-system treatment ($712.50), these results highlight the 

increasing system difficulty when higher delays are introduced producing lower performances. In 

general, subjects’ decisions present higher total cumulative cost in the less agile system (slow-system 

treatment). In addition, results from the agile-retailer and agile-supplier treatments present lower total 

cumulative costs than results from the slow-system, as expected.  However, results in the agile system 

do not completely fit the pattern expected if we think shorter time delays will lead to lower total 

cumulative costs. In this case, both the average and median costs in the agile-system treatment are higher 

than the average and median cost of the agile-retailer and agile-supplier treatments. This could have a 

methodological explanation. For example, we could have improved the experimental design, 

emphasizing higher difference in delays among treatments. Probably, under the lack of large enough 

sample size, the current setup does not allow us to identify significant differences in costs among 

treatments and the potential unexpected results could be given just by a normal increase in the orders’ 

variability or a potential sampling selection problem in one of the treatments (in this case the agile-

system treatment). 

Table 2.3 shows how cost components contribute to optimal and average subjects’ total cost in 

each treatment. These results are robust to changes in cost parameters. The cost breakdown in the 

optimal trajectory suggests that most of the costs are given by the ordering component. Hence, the choice 

of parameters   and   induce optimal orders that minimize the Supply Gap and its associated cost. In 

contrast, the cost breakdown for the subjects’ decisions shows that subjects have difficulties balancing 

supply and demand, placing orders that fail to minimize the Supply Gap. Thus, a disproportionally high 

fraction of the subjects’ costs is due to the Supply Gap cost component. As expected, in the most 

dynamically complex treatment (slow-system treatment), subjects incur the highest proportion of costs 

due to the Supply Gap. These results are also conservative, because if we include outliers, the cost 
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percentage given by the Supply Gap will be higher (76.04% for the agile system, 69.38% for the agile 

retailer, 65.12% for the agile supplier and 82.49% the slow system). This is because the level of 

underperformance was higher in those subjects excluded from the analysis meaning that, their capacity 

to minimize the Supply Gap was even lower.  

Table 2.3. Costs distribution given by Orders and Supply gap 

  

% Cost given  

by Orders 

%Costs given 

by Supply Gap 

% Cost given 

by Orders 

%Costs given  

by Supply Gap 

  Agile System Agile Retailer 

Average 
26.9% 

(21.2%) 

73.1% 

(21.2%) 

32.2% 

(26.4%) 

67.7% 

(26.4%) 

Optimal 95.7% 4.2% 91.1% 8.9% 

  Agile Supplier Slow System 

Average 
41.5% 

(16.3%) 

58.4% 

(16.3%) 

19.6% 

(13.8%) 

80.4% 

(13.8%) 

Optimal 92.5% 7.5% 86.6% 13.4% 

Standard Deviation in parenthesis 

Given the qualitative similarity of the decision patterns and the results shown in this section, one 

might argue that subjects use a heuristic with common features in order to make their orders (Sterman, 

1989a). In the next section, we discuss a specific decision rule and test the accuracy of the rule using 

econometrical analyses. 

2.5. Modeling Decision Rules 

For modeling the subjects’ decision rules, we test the heuristic (equation (2.9)) proposed by Gonçalves 

(2003). Gonçalves modeled retailer’s orders, RD, using an anchor and adjustment heuristic, where the 

retailer anchors its orders on a demand forecast, and then adjust it up or down to maintain orders at a 

desired level. The anchor term captures retailer’s intention to place sufficient orders to meet their 

customers’ orders. The adjustment term closes the gap between retailer’s desired and actual backlog of 

orders within a specific adjustment time. Gonçalves (2003) also assumes that each retailer adopts the 

same heuristic with the model capturing total values for customer demand forecast (d), actual backlog 
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of orders (B), desired backlog of orders (B*), and adjustment time B). Finally, total retailer’s orders are 

non-negative (no cancellations). 

 






 


B
D

BB
dMaxR



*

,0  (2.9)

Where, retailer’s desired backlog of orders (B*) is given by the product of the demand forecast 

(d) and the expected delivery delay to receive orders from the supplier (ED).  

 EDdB *  (2.10)

Now, let’s assume that the expected delivery delay is given by a linear function of the actual 

delivery delay (AD) with slope .This function captures retailer’s delivery delay adjustment, that is, 

when faced with long delivery delays, a retailer sets its expected delivery delay (ED) above the actual 

delivery delay (AD) quoted by the supplier. Longer expected delivery delays (ED) rather than actual 

(AD) leads to higher desired backlog of orders (B*) and higher retailer’s orders.  

 ED = α AD, where α≥1 (2.11)

Where, actual delivery delay (AD) is given by the ratio of the order backlog (B) to shipments (S). 

Substituting equations (2.10) and (2.11) into (2.9), we obtain equation (2.12), which can be used 

as a heuristic to test if retailers’ orders are well represented by an anchoring and adjustment heuristic.  

 











 


B
D

BK
Bd

dMaxR



,0  (2.12)

The system determined by equation (2.12) involves a nonlinearity associated with the ratio of the 

two states: order backlog (B) and capacity (K). As proposed in Gonçalves and Arango (2010), we 

linearize the system using a Taylor series approximation of the ratio of the two states (B/K) around the 

initial backlog (B0) and capacity (K0) and neglect higher order terms (details of the linearization process 

can be found in Appendix 2.5). We get a linear approximation of the anchor and adjustment heuristic, 

which can be tested econometrically: 

 
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


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
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
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D
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D
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0
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






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 (2.13)
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Below, we analyze this linearized heuristic using two different methods. First, in order to test if 

this linearized heuristic represents each subject behavior, we estimate the model coefficients for each 

subject in each treatment using least squares. Second, to test if the linearized heuristic is able to explain 

the general behavior, we structure the data as a panel estimating a single model for all subjects and 

treatments. The panel data estimation increases the efficiency of our estimate and its representativeness. 

 2.5.1. Least Squares Analysis 

To econometrically analyze the model stated in equation (2.13), we first omit the maximum operator 

due to the low incidence of zero decision occurrences (~10%) within each subject’s decisions and then 

we make the following parameter substitutions: 

 
B

Dd
d




 0 ;
0

1 K

d

B

D




   and 
0

0
2 K

Kd

B





  (2.14)

Then equation (2.13) can be re-written as: 

 tijtijtijijDtij BKR   210  (2.15)

Where kij  represents coefficient k, for subject i and treatment j, where  k=0,1,2, i=0,1,…,15 and 

j=1,..., 4, and 
tij is the error term. The parameter values in equation (2.15) suggest that we should expect 

coefficient 0 to be positive  00  , 1 to be negative  01  , and 2 to be positive  02  . A positive 

coefficient for 0 is reasonable since this anchor is the sum of two positive terms. A negative coefficient 

for 1 is also intuitive since a higher value of supplier capacity (K) induces lower orders by the retailer. 

Finally, a positive coefficient for 2 suggests that faced with a large backlog (B) a retailer will order 

more in an attempt to receive what she needs. Substituting the parameter values used in the simulation 

model (D =10,B =4, K0=100,  = 1.1 and d =120), we can obtain estimates for the: 

Table 2.4. Coefficient estimates 

0 1 2 

450 -3.3 0.08 

 

We used the R software to obtain the estimates for the model in equation (2.15). Table 2.5 provides the 

results.  
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Table 2.5. Coefficient estimates of decision rule for each individual for all treatment 
 Agile System Agile Retailer 

Subject 0 1 2 R2 0 1 2 R2

1 120.00† 0.00† 0.00† 0.49 130.07† -2.35† 0.19† 0.16
2 51.82† -2.72† 0.31† 0.18 222.44† -3.32† 0.24† 0.35
3 180.92† -2.48† 0.190 0.12 262.94† -2.14† 0.11† 0.52
4 157.95† -6.96† 0.66† 0.47 159.430 -1.450 0.120 0.04
5 362.94† 2.03† -0.40† 0.75 411.27† -2.94† 0.020 0.21
6 213.21† -1.570 0.060 0.02 300.41† -1.45† 0.010 0.72
7 53.03† -7.56† 0.79† 0.50 325.37† -1.16† -0.040 0.59
8 200.65† -1.000 0.040 0.02 148.17† -1.050 0.080 0.02
9 149.31† -5.85† 0.55† 0.31 132.540 -0.130 0.010 0.00

10 238.34† 0.110 -0.110 0.05 425.83† -1.51† -0.090 0.29
11 145.41† -0.070 -0.020 0.02 269.080 1.590 0.35† 0.11
12 72.64† -6.70† 0.71† 0.52 379.68† -1.99† -0.010 0.79
13 33.340  1.790 -0.070 0.47 127.95† -3.45† 0.19† 0.32
14 209.31† -0.480 -0.020 0.01 199.24† -0.79† 0.020 0.25
15 349.85† -2.460 0.130 0.12 158.76† -2.26† 0.19† 0.13
16     -60.550 2.310 -0.080 0.09
17     175.32† -1.670 0.090 0.07

Average* 178.96 -3.78 0.37 0.46 251.34 -2.12 0.21 0.30
Using 

Average 
Decisions 

182.59† -5.64† 0.52† 0.42 116.51† -2.37† 0.05 0.24

 Agile Supplier Slow System 

Subject 0 1 2 R2 0 1 2 R2

1 251.20† -1.910 0.080 0.05 149.92† -2.09† 0.19† 0.13
2 314.39† 2.170 -0.32† 0.19 321.35† -3.77† 0.20† 0.38
3 266.48† 1.240 -0.220 0.06 22.720 -2.02† 0.25† 0.27
4 196.76† 1.660 -0.240 0.01 285.54† -2.24† 0.14† 0.15
5 493.60† -3.08† -0.020 0.72 233.13† -3.20† 0.23† 0.25
6 212.80† -1.090 0.010 0.03 172.78† -1.300 0.090 0.08
7 92.250 -3.69† 0.45† 0.13 266.71† -0.600 -0.060 0.32
8 213.40† -3.65† 0.29† 0.13 138.830 1.360 -0.21† 0.13
9 174.03† -0.18† -0.050 0.03 78.760 -0.160 0.050 0.04

10 235.47† -3.69† 0.260 0.25 195.82† -4.30† 0.38† 0.57
11 173.55† 1.27† -0.17† 0.40 140.76† -1.76† 0.14† 0.08
12 243.46† -2.88† 0.19† 0.17 173.35† -0.880 0.060 0.10
13 314.00† -1.950 0.040 0.21 9.400 -0.190 0.080 0.01
14 87.71† -3.60† 0.39† 0.20 244.36† -2.04† 0.110 0.11
15    417.05† -0.27 -0.13 0.11 

Average* 244.37 -2.44 0.14 0.20 236.43 -2.68 0.17 0.26
Using 

Average 
Decisions 

317.51† -1.88† 0.03 0.38 145.89† -2.80† 0.25† 0.31

† Significant at 10% level, * Average using significant values, Italics when OLS is used 
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Initially, we estimated the parameters for each subject using Ordinary Least Squares (OLS) and 

then, checked if the OLS assumptions were satisfied. In the cases where all the OLS assumptions were 

satisfied, those parameter estimations were kept. However, in some cases we found significant 

autocorrelation of the error term, which makes the OLS estimator inefficient. In the cases with 

significant autocorrelation of errors, the parameters were re-estimated using Generalized Least Squares 

with an Auto-Regressive model of order 1 (AR(1)) as model for the residuals. Table 2.5 also shows the 

method used in each regression. In addition, residual analyses do not show heteroskedasticity, so it is 

unlikely to bias estimation significantly. 

In general, the estimations satisfied the OLS assumptions in 36% of the cases; in the remaining 

64% of the cases, we had to use GLS. Results show that a high fraction of the estimated models is 

significant. For instance, we found significant values for all three parameters in 38% of all subjects and 

that more than 30% of R2 values are larger than 0.30. Table 2.5 also computes the R2 of the “average 

decision rule” obtained running the model using the average decisions for each treatment (ranging 

between 0.24 and 0.47), which in social sciences are considered as a moderate explanation. However, 

these results are not completely conclusive. While the proposed decision rule is consistent for some of 

our subjects, it is not able to explain subjects’ behavior in other cases. For instance, we have a R2 lower 

than 0.2 in 60% of the cases. This suggests that individuals could be using different strategies to make 

their ordering decisions. Some subjects could be using a rule that combines forecasting and feedback 

structures as proposed by Paich and Sterman (1993) or they could also be following a non-linear 

expectation rule or any classical discrete inventory control rule as presented by Barlas and Özevin 

(2004). However, analyzing the accuracy of these alternative heuristics goes beyond the scope of this 

study. 

In addition, considering the specific results for each coefficient, we observe that the constant β0 

is positive and significant for 83% of all subjects. Coefficient β1 is also consistent with our expectations, 

with negative and significant values for most subjects. More specifically, we find significant values for 

β1 in 53%, 65%, 57%, and 53% of subjects in the agile-system, agile-retailer, agile-supplier and slow-

system treatments, respectively. In addition, most of the signs (83%) of β1 are negative and 62% of them 

are significant. The estimates obtained for coefficient β2 are also as expected with positive values for 
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most subjects (70%), and β2 has significant values for 47%, 35%, 42%, and 53% of subjects in the agile-

system, agile-retailer, agile-supplier and slow-system treatments, respectively. Most of the signs (70%) 

of β2 are positive and 53% of them are significant. Table 2.5 also shows that, after using the least squares 

estimation with the average decisions, most of the parameters are significant (83%) and all of them have 

the right signs. (Our qualitative and quantitative analyses do not change significantly if we include 

outliers.) In addition, the average parameter estimation for each treatment also has the correct signs. 

Finally, running the model used in the experiment with the estimators obtained with each subject, does 

not return a single order for zero units. This result suggests that there is no violation of the non-negativity 

constraint (cancellations were not allowed during the experiment), which supports our estimation 

omitting the maximum operator in equation (2.13). 

Comparing the parameter values for β1 and β2 (Table 2.5) with the expected values obtained using 

the linearized heuristic (Table 2.4), we see that the econometric estimations for β1 and β2 have the proper 

signs. In addition, the estimated value for β1 is fairly close to the value derived by the linearized heuristic 

(-3.3); however, the estimated value found for β2 is farther from the expected one. This result could be 

given by non-significant estimations, due to an expected β2 value that is close to zero (0.08) and a limited 

time series (35 periods). However, if we consider the average of all β2 coefficients (both significant and 

insignificant), we obtain a value of 0.11, which is close to the expected value of β2 (0.08). 

Finally, for a few subjects we find statistically significant estimates for parameters β1 and β2 with 

unexpected signs. This is the case for four players: P5 in the agile-system treatment, P2 and P11 in agile-

supplier treatment, and P8 in the slow-system treatment. These switches in parameter signs could have 

occurred because those subjects were able to place high orders at the very beginning of the experiment, 

when the backlog was relatively low (changing the sign of β2). Then, β1 had to control (at least weakly) 

for the subjects’ order increments presented in the remainder of the experiment. These results could also 

mean that subjects may be using a different decision rule or that they change their decision rule over 

time. Alternatively, subjects could be using a dynamic decision rule as the one presented by Sterman 

and Dogan (2015). 
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To more deeply investigate our understanding of human behavior and the effectiveness of our 

heuristic, we analyze the data using a panel data analysis. This allows us to get information about the 

collective subject behavior, controlling for subjects’ individual effects. 

2.5.2. Panel Data Analysis 

We structure the data from the experiments as a panel to control for omitted variables that vary over 

time but are constant between subjects in each treatment (e.g., temperature, time of the day, day of the 

week, etc.) and to account for individual heterogeneity, controlling for variables that cannot be observed 

or measured (e.g., cultural factors). The panel increases the efficiency of the estimations of the linearized 

model and improves the potential representativeness of the decision rule. 

Before making the panel data analysis, we had to decide whether to use random effects, fixed 

effects, or simple (pooling) least squares. The Breusch Pagan Lagrange multiplier (BP-LM) test helps 

us decide between random effects and a simple regression. After running this test for each treatment, we 

found significant difference across subjects (i.e. panel effect): Prob > Chi2 is 0.00 all for treatments, 

which allows us to conclude that random effects are more appropriate.  

Next, we run a Hausman test to decide between random or fixed effects. This test checks whether 

the unique errors are correlated with the regressors. If the effects are exogenous, random effect is 

efficient, and the fixed effect is just consistent; therefore, we should use random effects. However, if the 

effects are not exogenous, the fixed effect is efficient, and the random effect is biased, we should use 

fixed effects. After running the Hausman test for each treatment as a null hypothesis with the preferred 

model as random effects (and as an alternative to the fixed effects), we found significant differences in 

all treatments: Prob > Chi2 is less than 0.1 (0.00 for the agile-system, agile-supplier and slow-system 

treatments, and 0.095 for the agile-retailer treatment). Hence, we can reject the null hypothesis and adopt 

fixed effects as the appropriate approach. To explain overall subjects’ behavior, we also control for time-

fixed effects. Table 2.6 provides the results of the panel data analysis using Stata. 

The significance test of the model using the statistic F shows that all the p -values are small (p-

values ~0.00) suggesting that the proposed model (of the linearized heuristic) is an acceptable way for 

explaining subjects’ ordering decisions. Table 2.6 also shows the R2 for each treatment. The proposed 

heuristic estimated using the panel data approximation, controlling for the individual effects, explains 
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on average the 25% of the variability in subjects’ behavior. In addition, the heuristic performs better 

explaining subjects’ decision when the retailer’s order decision delay is low (agile-system and agile-

retailer treatments).  

Table 2.6. Coefficient estimates of decision rule for treatment as panel data 

Regressors Agile System Agile Retailer Agile Supplier Slow System

0 (Intercept) 141.97† 186.30† 187.11† 183.13†

1 (Capacity) -3.40† -2.59† -3.28† -1.94†

2 (Backlog) 0.35† 0.21† 0.29† 0.15†

p-value .00 .00 .00 .00

Corr (, B, K) 0.09 -0.06 -0.01 -0.09

R2 (within) 0.25 0.32 0.15 0.26

N° Observations 495 561 462 495

† Significant at 1%  

Furthermore, the three coefficients in all treatments are all highly significant and have the 

expected signs. The 1 coefficients are negative and with the expected value (Table 2.4 & Table 2.6). 

The 2 coefficients are positive for all treatments as expected, however, the estimated values 

overestimate the expected magnitude 2 to 4 times (Table 2.4 & Table 2.6). A possible explanation for 

the overestimation of 2 may be due to the complexity of the task. In particular, subjects overestimate 

2 to compensate for the underestimation they make for 0 (the anchor in the linearized heuristic).  

Additional insight (that we could not do with the cost analyses - see Table 2.2) could be obtained 

now from the parameter estimates. Initially, the 1 estimation in the agile-system treatment (-3.40) and 

the agile-retailer treatment (-2.59) are lower than the estimations in the agile-supplier treatment (-3.28) 

and the slow-system treatment (-1.94), respectively. This could mean that subjects take into account the 

supplier’s capacity investment delay and do not need to inflate their orders when the supplier is able to 

quickly satisfy their orders (K = 1). Similarly, the 1 estimation in the agile-system treatment (-3.40) 

and the agile-supplier treatment (-3.28) are lower than the estimations in the agile-retailer treatment (-

2.59) and the slow-system treatment (-1.94), respectively. This means that subjects are accounting for 
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the effect of their ordering decision delay and they increase their orders when their orders take longer to 

be perceived by the supplier (O = 3). A similar analysis can be done for the effect of 2 and the 

experimental variables in subjects’ ordering decisions. Hence, despite the cost analyses do not show a 

clear consistency on some results (especially for the agile system), the panel estimation allows us to see 

some consistency about how accurately subjects could be making their decisions, taking into account 

the effect of our experimental variables. 

Figure 2.5 summarizes the results obtained in the previous sections. First, we build box-plots 

using the estimated parameters, obtained by least squares, for all subjects in each treatment (Table 2.5). 

Second, we let triangles represent the expected values of the linearized heuristic (Table 2.4). Finally, we 

capture the panel data estimations with circles (Table 2.6). The box-plots show the general ranges and 

distribution for each parameter, indicating whether (or not) they are skewed. In comparing the results, 

it is important to note the different scales for parameters 0, 1 and 2. Overall we note that estimates 

obtained by OLS or GLS, and those obtained by the panel data are similar for all coefficients. However, 

the panel data estimates for 1 are closer to the expected values, and the OLS & GLS estimates for 2 

are closer to the expected values. We also note that subjects underestimate 0 in all treatments, that is, 

econometrically estimated 0 coefficients are lower than the expected values of the linearized heuristic. 

Subjects tend to underestimate 1 (values closer to 0) in all treatments. 

Figure 2.5. Box plots with the coefficient estimations using least squares, expected values (triangle), 

and panel data estimations (circle). 

Figure 2.5 also shows that 63% of the expected values and panel data estimations are between the 

first and third quartile of the individual least square estimations (represented with the boxplots) in all 

treatments (T1: agile system, T2: agile retailer, T3: agile supplier and T4: slow system). This percentage 
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is not higher because the expected values of  are higher than the experimental results, meaning that 

the heuristic is creating an overestimation of the independent parameter. However, the results for 1 

(Capacity coefficient) and 2 (Backlog coefficient) show that the estimated values using the heuristic 

and the panel data analysis are generally with the right sign and also within the expected range. 

Figure 2.6 shows that the AO estimations in the agile-system and agile-supplier treatments (those 

with lower supplier capacity investment delay) present higher variability, increasing the uncertainty in 

parameter estimation. This increase in variability means that when subjects (as retailers) are able to get 

a faster response from their supplier, they present more unpredictable behavior, which affects the 

supplier’s planning. Estimations in the agile-retailer and the slow-system treatments show that subjects 

are more consistent in their decisions, increasing predictability in their behavior. 

Agile System          Agile Retailer 

 
 

Agile Supplier          Slow System 

 
Figure 2.6. Average subjects’ orders (AO), simulation of the proposed heuristic (Heuristic), 

adjusted model with panel parameters (Panel). 

Using the estimators obtained with the panel data analysis (Panel), we inserted and ran them into 

the same model of the experiment. Figure 2.6 shows the behavior of these runs over time. As it was 
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predicted by the goodness of fit estimators, these simulations reflect a moderate explanation of the data, 

seeming to smooth the pattern given by the actual subjects’ behavior (AO). Finally, the heuristic 

proposed in equation (2.12) (Heuristic), with parameter values used in the simulation model (D =10,B 

=4, K0=100,  = 1.1 and d =120), presents a better approximation to the actual subjects’ decisions in all 

treatments. Hence, based on our analysis, the heuristic moderately characterizes the decision making 

rule of some subjects assuming the role of a retailer in a single-supplier single-retailer supply chain. 

2.6. Conclusion  

In this chapter, we developed a laboratory experiment to explore how subjects playing the role of a 

retailer place orders in response to a surge in final customer demand. Subjects must minimize total 

cumulative costs, given by the sum of two cost components: a Supply Gap Cost and an Ordering Cost. 

In the experiment, subjects face two types of delays: retailer ordering delays and supplier’s capacity 

acquisition delays. 

Theoretical Implications 

To establish a normative performance benchmark, we estimated the optimal ordering trajectory for each 

experimental treatment. The optimal trajectory is characterized by a large initial order followed by an 

exponential decrease that undershoots below initial orders and a dampened oscillation into the final 

equilibrium of 120 units per week. The magnitude of the peak in the optimal ordering trajectory varies 

across treatments, increasing with longer system delays. Our selection of cost parameters results in 

optimal trajectories with total costs driven by the ordering component (e.g., 95.7% of the total costs in 

the agile-system treatment) and the retailer’s ability to close any supply-demand gap. 

Our experimental results show that subjects underperform when compared to the optimum, even 

when demand is known and constant and the system begins in equilibrium. This result is consistent with 

previous research (e.g., Croson et al., 2014). In addition, even with full access to system information, 

subjects have limited ability to process and interpret the impact of delays and feedback on the overall 

system behavior, commonly known as misperception of feedback (Sterman, 1989a). Compared to the 

optimal ordering trajectory, subjects fail to place sufficiently large initial orders and fail to reduce them 

quickly toward the equilibrium. Instead, subjects’ orders are lower than the amounts initially required 
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but are kept high for longer than optimal. When subjects’ orders finally are reduced, subjects do so 

excessively, under-ordering below the optimal level. As expected, subject performance differs in each 

treatment, and in particular, it decreases with higher dynamic complexity, consistently with previous 

findings by Diehl and Sterman (1995). The experimental costs provide clues about the sources of 

subjects’ underperformance. In general, cumulative costs are closer to optimal in treatments with shorter 

delays (agile-system, agile-retailer and agile-supplier treatments) and further from the optimal in 

treatments with longer delays (slow-system treatment). However, the cost analysis in the agile-system 

treatment does not completely fit the expected pattern. That is, shorter time delays do not necessarily 

lead to lower total cumulative costs. Comparing the costs associated with subjects’ orders to the optimal 

ones, we observe higher costs, ranging from 333% to 1414%. The lowest subject cost still is 33% higher 

than the optimal. In addition, subjects fail to minimize the supply gap during the experiment, incurring 

high long-term costs. For instance, in the slow-system treatment, the Supply Gap cost accounts for 80% 

of the subjects’ total costs. 

Given their limited processing and cognitive capability, people make decisions translating 

complex information into simple models, either by capturing essential features from problems and not 

considering all the features, or by developing habits and routines (Lazaric, 2000; Simon, 1982). Our 

analysis suggests that the anchoring and adjustment heuristic (Tversky & Kahneman, 1974), which 

Sterman (1989a) identified as representative of subjects’ behavior in the Beer Game, is a simple rule 

that represents the ordering decision of some of our subjects.  

We tested the anchoring and adjustment heuristic using a linearized econometric model as a 

function of supplier capacity and backlog. Results from least squares and panel data suggest that the 

model characterizes 25% of the subjects’ ordering decisions. This also suggests that the proposed 

heuristic is only one possible heuristic explaining subjects’ behavior.  Other heuristics, such as those 

found in Paich and Sterman (1993) and in Barlas and Özevin (2004) could potentially explain the 

decision making process followed by other subjects.  

The resulting econometric models are significant. The coefficients for capacity and backlog in the 

individual regressions are also significant and have the expected signs (negative and positive, 

respectively). In addition, the panel estimation allows us to see some consistency on how subjects place 
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orders. The results suggest that they take into account the effect of supplier’s capacity investment delay 

and ordering decision delay. For instance, subjects do not inflate their orders as much when the supplier 

is able to quickly satisfy their orders (K = 1) and subjects increase their orders when they take longer to 

be perceived by the supplier (O = 3). 

Practical implications 

Our research also provides insights relevant to decision makers interested in the importance of 

improving decision-making and implementing Business Process Redesign (Van Ackere et al., 1993). 

Design can play an important role in production-distribution systems by reducing total costs and 

improving system stability. However, such redesign requires breaking existing habits, understanding 

and carefully evaluating present processes (Van Ackere et al., 1993). Our results suggest that, when 

possible, retailers should try to decrease the delays inherent in their ordering processes. In doing so, 

retailers would reduce the complexity of the system, improve their ordering decisions as well as improve 

their ability to manage mismatches between supply and demand. Hence, shorter ordering delays lead to 

simple systems, which generally yield lower costs. These results are consistent with those of Sterman 

(1989b), Kaminsky and Simchi-Levi (1998), and Gupta et al. (2002). 

In practice, managers should be careful when relying on rules-of-thumb. In our simulated 

experiment, the adopted heuristic performs substantially worse than the optimal, which suggests 

significant opportunity for improvement. Naturally, while heuristics are simple and useful, if they are 

not good enough, they could lead to consistent biases, limited search, and resistance to change (Lazaric, 

2000; Leonard-Barton, 1992).  

Limitations and future research opportunities 

Despite the meaningful discussions presented here, this research has limitations that could be addressed 

in future research. First, the analysis focuses on a simple supply chain where a single subject is making 

ordering decisions and interacting directly with the computer simulation. However, in practice, there is 

not just one retailer; there is competition amongst multiple retailers.  Therefore, it would be interesting 

to study multiple subjects (retailers) interacting amongst themselves and placing orders to the same 

supplier who will allocate the available supply in proportion to orders placed. Different allocation 

mechanisms and cost functions could be explored. It would be interesting to see if the performance 
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during the game using multiple subjects is improved by suggesting a coordination stock as a buffer 

against strategic uncertainty (Croson et al., 2014). 

Future research could also explore possible ways to improve retailers’ decisions either by 

prominently displaying important information, or by providing guidance regarding some heuristics that 

could be followed. For example, subjects could be informed about the improved decision-making 

heuristic introduced by Yasarcan (2011), which creates a stable and fast response in a dynamic behavior 

of the stock, accounting for delayed information. Building on this, such efforts could provide clues to 

the required training managers would need in order to improve their performance in supply chain 

systems. For instance, we could add information sharing as a control variable; hence, we would be able 

to conclude what would be its effect in the supply chain performance (Van Ackere et al., 1993).  

In addition, other (dynamic) heuristics as the ones proposed by Paich and Sterman (1993), Barlas 

and Özevin (2004) or Sterman and Dogan (2015) could be used to test subjects’ behavior under different 

supply chain setting such as retailer competition and to improve the understanding of the decision 

process followed by the outliers. Finally, this research does not directly analyze other relevant dynamics 

like learning effects, where other meaningful implications could be found. 
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Appendix 2.1. Complete Model specifications 
 

Variable, Stock or Parameter Symbol Initial Value Equation Units

Backlog of orders B 1000 )(  SRDtt
  Units

Retailer’s desired backlog of 

orders 

B* 1000 EDd   Units

Expected delivery delay ED 10 α AD  wk

Cumulative Customer Orders RD 100  dt  Units

Cumulative Supplier Shipments SE 100  St  Units

Retailer’s orders DR 100 Decision Variable* Units/wk

Delayed Retailer’s orders DtR 100 )( 0tR D
 Units/wk

Supplier Shipments S 100 K Units/wk

Supplier Capacity K 100  Kt
  Units/wk

Change in Capacity K 0

K

D KB

 /

 
Units/wk/wk

Final Customer Orders d 100 100+step(3,20) Units/wk

Retailer’s total costs TC 10   )C(C ogapt  $

Supply Gap Costs Cgap 0  23102 SR ED    $/wk

Order costs Co 10 23101 DR   $/wk

Supply Gap Cost Coefficient  0.001 0.001  $/Unit2

Order Cost Coefficient  0.002 0.002  $/Unit2

Target Delivery delay D 10 10 wk

Time to build Capacity K 1 or 3 1 or 3 wk

Time Adjust Backlog B 4 4 wk

Retailer’s Order Decision Delay 0 2 or 3 2 or 3 wk

Linear Coefficient α 1.1 1.1 Dimensionless

*The heuristic proposed for the Retailer’s order is shown in equation (2.12) .
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Appendix 2.2. Instructions for T3 – Agile-Supplier Treatment (Translated into English) 
 

INSTRUCTIONS 
PLEASE DO NOT TOUCH THE COMPUTER UNTIL YOU ARE TOLD 

 
Welcome, from this moment you are part of an experiment about decision-making, in which you will 
assume the role of a wholesale manager. Your goal in the game is to minimize cumulative costs at the 
end of the game simulation (50 weeks). According to your performance, you will get cash payment as a 
reward. This money comes from a research project sponsored by the Universidad Nacional de Colombia, 
Sede Medellín. 
Your weekly decision is to define how many units to order to your supplier, with the objective to cover 
all your customer demand (in the experiment, this decision is taken in the cell placed in front of “Order 
decision”). The decision you take will be received by your supplier three weeks after the order is made 
and it will be accumulated in the supplier backlog. The initial production capacity of your supplier is 
1000 units by week. However, the supplier has the ability of changing their capacity according to the 
orders you make: more orders, more investment in capacity. The supplier’s capacity building time is 
one week. If your supplier does not have enough capacity to satisfy your orders, he is going to have 
delivery delays (greater than 10 weeks) and therefore, you will also be delayed with your customers. 
 
You incur costs every week from two components:  
 
1. Ordering Cost (Co):  

 
1000

*1
2

DecisionOrder
CO   

 
With an initial capacity of 100 units, this cost in the first week is $10.000. 
 2. Supply gap cost (Cgap): 

 
1000

*2
2

GapSupply
C gap   

 
With a deficit of 0 units, the cost in the first week is $0. 
  
In this way, the total cumulative cost TC is the sum of these costs during the whole simulation: 

 



T

t
tOtgap CCTC

1
,,

 

Initially, you order 100 units per week, which allows your supplier to maintain a target delivery delay 
of 10 weeks as an initial condition. Recently, novel applications of your product created a surge in 
demand. You estimate the increase in demand to be permanent and in the order of 20 units per week. 
Because you were not attentive to these novel applications, the surge in demand caught you by surprise. 
You notice your deficit is increasing and therefore, you are losing customers and prestige.  
You will begin during 3 weeks deciding 100 units as a learning period. Afterwards, your task is to 
manage the company during the simulation, deciding how much to order to your supplier while 
minimizing the total cumulative cost, TC. 
 
PAYMENT: The payment will be in cash at the end of the experiment. It corresponds to a fixed amount 
for participation of COP$10000 plus a variable amount between COP$0 and COP$30000, depending on 
the TC result. The lower the total cost TC, the greater the payment. 
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NOTE: Please do not share information about the experiment with your peers to avoid losing 
scientific validity of the experiment. 
 

GLOSSARY 
(ABOUT THE RESULTS THAT ARE OBSERVED IN “REPORTS”) 

Operations Section: It gives information about the wholesaler’s system (you). 
 

 
1. Orders that you receive from your final customers. This is the demand that you should cover 
each period. 
2. Units that you need to deliver (if it is negative, it indicates inventory). 
3. Units that arrive every period to the wholesaler (you) from the supplier. Those are the available 
units you have by period to satisfy the demand. 
4. Average delivery-delay time of the orders, counted from the moment you make the order until 
the moment you receive them. The ideal delivery delay is 10 weeks. 
5. It accumulates the difference between the orders made and received by the wholesaler (you) 
over time. Initially you have total accumulated orders of 1000 units, which will be received in 
batches of 100 units during 10 weeks. 

 
Costs Section: It gives information about each cost component. 
 

 
 

6. Cost due to the order decision made each period. 
7. Cost of having inventory or shortage for the final customer ($/week). 
8. Sum of the two cost components every week. 
9. Total accumulated cost incurred during the simulation CT. 
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Appendix 2.3. Experiment Environment 
 

 
 
 

 
Appendix 2.4. Interface of the experiment in Powersim (in Translated into English) 
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Appendix 2.5. Linearization of Heuristic 

Given the system determined by equation (2.12) involves a nonlinearity associated with the ratio of the 

two states: order backlog (B) and capacity (K), we linearize the system. We use a Taylor series 

approximation of the ratio of the two states (B/K) around the initial backlog (B0) and capacity (K0) and 

neglect higher order terms. 
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and since in equilibrium we have that the supplier´s initial supplier capacity (K0) is equal to 

DBK 00  , the linearized form for delivery delays is given by: 
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Substituting S5 in 12, we get: 
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Finally, grouping terms and taking the linear part of K and B, we get a linear approximation of 

the anchor and adjustment heuristic, which can be tested econometrically: 
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Chapter 3. Behavioral Analysis of the Effect of Duplication Orders in 
Single-Supplier Multi-Retailer Supply Chains 

(with Paulo Gonçalves) 

Abstract 

The bullwhip effect, the tendency of subjects to inflate their orders to suppliers to satisfy customers’ 

demand, is a frequent and costly source of instabilities in supply chains. One typical operational cause 

for such problem occurs when there is a horizontal competition among retailers for scarce supply. While 

this operational cause is intuitive, there is little research quantifying the impact it causes in retailers’ 

behavior. In this chapter, we model a one-supplier two-retailer supply chain and we run three different 

behavioral studies to determine how subjects react to different supply chain conditions. We evaluate the 

effect of different duplication probabilities, different supplier’s capacity acquisition delay and different 

steps in final customer demand. Results show that the bullwhip effect persist in a system with two 

competing retailers even when subjects do not have incentives to inflate their orders. A cost analysis 

shows that systems with lower dynamic complexity lead to lower average costs. However, econometric 

results of our decision rule show that when subjects face situations with higher complexity, subject’s 

rational system (System II) is more active, leading to a reduction in the observed biases. Finally, we 

analyze the effect of two different supplier allocation mechanism (proportional and turn-and-earn) on 

supply chain performance. Results show that under identical supply chain structure, neither allocation 

mechanism eliminates order amplifications, but the use of the turn-and-earn allocation mechanism leads 

to a reduction of the bullwhip effect. 

Key words: Bullwhip effect, Allocation mechanism, Duplications, Behavioral analysis 

3.1. Introduction 

The bullwhip effect is a typical supply chain problem that takes place when orders’ variability increases 

as we move up the supply chain. This order variability leads to inefficiencies and instabilities in the 

whole supply chain. This increase in variability means that the variability of final customers’ orders is 

lower than the variability of retailers’ orders, while the variability of retailers’ orders is lower than 

suppliers’ orders, and so on (Croson et al., 2014; Lee et al., 1997a). This pattern of behavior takes place 

because subjects distort the information they received from their immediate downstream customer to 
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the upstream supplier. The distortion of information from customers to suppliers leads to high 

operational inefficiencies such as high inventory levels and unnecessary capital investment. This 

phenomenon is frequently evident in many industries, even when the final consumer demand does not 

vary much (Cachon et al., 2007; Lee et al., 1997b; Sterman, 2000).  

In an attempt to ameliorate the consequences of the bullwhip effect, managers have been 

improving their information systems and organizational relationships to identify and reduce of the main 

causes of the bullwhip effect (Ellram, 2010). In a similar effort to understand this phenomenon, previous 

studies of the bullwhip effect have shown that both operational and behavioral causes can provide 

explanations on its origin (Lee et al., 1997a, 1997b; Sterman, 1989a). The operational causes suggest 

that even if subjects were fully rational, supply chain instability may persist due to the actual structure 

of the system. Lee et al. (1997b) identified four typical operational causes of the bullwhip effect, which 

should be controlled and taken in to account for improving process design. The four operational causes 

are: (i) order batching, (ii) price fluctuations, (iii) rationing and shortage gaming, and (iv) demand 

forecast updating. However, the behavioral causes predict that, due to subjects’ bounded rationality, the 

bullwhip effect will take place even if we control for the four operational causes. Therefore, behavioral 

causes emphasize how limitations in subject’s rationality lead to behavior that diverges from the 

theoretical predictions (Diehl & Sterman, 1995; Schweitzer & Cachon, 2000; Sterman & Dogan, 2015). 

Previous studies have mainly focused in understanding these behavioral deviations by analyzing 

subjects’ behavior in serial supply chains (Croson et al., 2014; Sterman & Dogan, 2015; Sterman, 1989b) 

or in a single-actors systems (Villa et al., 2015; Yasarcan & Barlas, 2005). However, there is scant 

behavioral research on analyzing subjects’ behavior in non-serial supply chains, where analytical 

research in operations management has claimed that the existence of shortages in a system with 

horizontal competition may lead subjects to over-order (Armony & Plambeck, 2005; Gonçalves, 2003; 

Lee et al., 1997a; Sterman, 2000). Similarly, empirical studies have claimed that when we account for 

non-serial and competitive supply chains, in addition to the inflated orders, customers may duplicate 

their orders with certain probability by placing additional orders to multiple retailers. Hence, 

duplications take place in a competitive environment where a customer finds that his retailer is out of 

stock, and therefore, the customer decides to place simultaneous orders to multiple retailers (Armony & 
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Plambeck, 2005). In addition, in an attempt to guarantee higher service levels, retailers’ inventory levels 

may be worsened (increased) as the probability of duplications and retail competition level increases 

(Cachon & Olivares, 2009). Summarizing these points, there is an opportunity to make behavioral 

research considering non-serial supply chains with horizontal competition and duplicated orders from 

final customers, to understand the consequences in retailers’ behavior. 

A well-known example of the consequences of duplications in a real supply chain is the one 

experienced by Cisco Systems in 2001, when the demand for their products increased considerably 

leading to significant stock-outs. Cisco lost more than US$ 2.2 billion in inventory write-offs due 

to the combination of different factors such as stock-outs, long periods to build production capacity and 

an excessive increase in the number of indirect resellers (Adelman, 2001). These factors led final 

customers to duplicate their orders by placing orders to multiple resellers. Therefore, due to the 

horizontal competition among resellers and in an attempt to receive higher allocation of units, resellers 

inflated their orders to the Cisco. This situation led to a misread of the final customer demand and a 

catastrophic drop in Cisco’s net income, which reached a value of US$ -2.7 billion by the third quarter 

of 2001 (Armony & Plambeck, 2005).  

As claimed by (Clark & Scarf, 1960; Scarf, 1959), a supplier should control her inventory under 

demand uncertainty, trying to find out retailer’s ordering policy while learning about final customer 

demand distribution, especially in systems with long delays and high level of retailer aggressiveness for 

scarce resources (Gonçalves & Arango, 2010). Horizontal competition poses an additional challenge to 

suppliers, where in case of stock-outs, they will have to define a specific allocation mechanism to 

distribute the scarce supply among the retailers (Cachon & Lariviere, 1999c).  Allocation mechanisms 

may consider the amount of past orders, or the amount of past sales, or the difference among retailers’ 

orders, among others. However, retailers may order differently depending on the allocation scheme 

chosen by the supplier. Therefore, some specific allocation mechanisms may lead retailers to make 

decisions that are closer to the theoretical predictions, while others may induce retailers to highly deviate 

from the theoretical predictions in an effort to gain a better allocation.  

Motivated by the enormous Cisco’s inventory write off and the analytical model developed by 

Armony and Plambeck (2005), we study how customers’ duplicated orders and cancellations can lead 



54 
 

retailers to make faulty ordering decisions. We investigate the effect of order duplications in the decision 

process and performance of retailers in a decentralized supply chain. The system is composed by (i) one 

supplier, who has a durable production capacity that can be carried over from period to period, and (ii) 

two competing retailers who face a stable and known final customer demand. Initially, we extend 

Armony and Plambeck’s (2005) work by developing a system dynamics model encompassing 

endogenous decision policies for both supplier’s capacity investment and customers’ ordering. This 

formal mathematical model represents the main structure and dynamics of a single-supplier two-retailer 

supply chain. Then, we run three different experimental studies aiming to describe the dynamics and 

biases around ordering decisions. We evaluate the effect of different duplication probabilities, different 

supplier’s capacity acquisition delay, different steps in final customer demand and two different supplier 

allocation mechanisms on supply chain performance.  

Finally, to analyze how subjects’ decisions change based on the specific structure of the system, 

we build on the behavioral models proposed by Croson and Donohue (2005) and Oliva and Gonçalves 

(2005) to create a parsimonious model that can be estimated for subjects in each experiment. Previous 

studies have shown how similar rules are able to highlight the biases presented in subjects’ decisions 

(Bolton & Katok, 2008; Bostian et al., 2008; Croson & Ren, 2013; Schweitzer & Cachon, 2000; 

Sterman, 1989a). However, they do not describe how the main behavioral parameters change by the fact 

that people are facing different operational challenges in a multi-agent system where there is competition 

for scarce supply.  

In the next section, we present our mathematical model by incorporating one supplier and two 

retailers that compete for supply allocation. Then, we describe the main considerations in our 

experimental design. Afterwards, we describe our three experimental studies and discuss the main 

quantitative results of the behavioral rule. Finally, we conclude and provide some insights and 

recommendations. 

3.2. Formal Model 

To create a proper framework that allows us to systematically analyze the effect of retailers’ orders in 

supply chain performance, we build upon the model proposed by Armony and Plambeck (2005) and 

upon the heuristics used by Sterman (Sterman, 1989a; Van Ackere et al., 1993). Our model considers a 
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supply chain of a durable good that can be stored over time. One supplier with two competing retailers 

compose the structure of the supply chain, where retailers face a stationary final customer demand. In 

addition, the final customers may duplicate or cancel orders according to retailer product availability. 

Figure 3.1 shows the general structure of the supply chain, where the dashed lines represent the flow of 

information (actors’ orders) and the solid lines represent the flow of units (shipments). 

 

Figure 3.1. Structure for a single-supplier two-retailer supply chain with order duplications. 

3.2.1. Retailers’ Model 

Our model includes two independent retailers that may compete for scarce supply to satisfy the final 

customer demand. For each retailer i (i=1,2), final customer demand (݋௧,௜) at any time t is initially 

exogenous. However, if a final customer finds out that his retailer is out of stock, he will then place a 

duplicated order with the other retailer (݀௧,௜ି) with a given probability ߙ. Therefore, retailers may 

receive orders both from his own customers and from customers of the other retailer.  The level of on 

hand inventory for each specific retailer (ܫ௧,௜) increases with the number of units received from the 

supplier (ܵ௧,௜) and decreases with the number of units shipped (࢙࢚
 The number of units shipped are a .1 (࢏

function of the units sent to his own final customers (ݏ௧,௜
௜ ) and to the potential units shipped to the other 

retailer’s customers (ݏ௧,௜ି
௜ ) (Equation (3.1)). The total number of units shipped to the final customers 

will be given by the minimum between the on hand inventory (ܫ௧,௜) and the unsatisfied demand (backlog) 

(ܾ௧,௜) (Equation (3.2)). 

As soon as one retailer supplies an initially unsatisfied final customer with his original desired 

amount, the final customer cancels any duplicated order (࢚ࢉ
 which may include cancelations with his ,(࢏,ࢊ

                                                            
1 Variables in bold refer to summation of individual variables. Example: ࢙࢚

࢏ ൌ ௧,௜ݏ
௜ ൅ ௧,௜ିݏ

௜ . 
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own retailer (ܿ௧,௜
ௗ,௜) or with the other retailer (ܿ௧,௜ି

ௗ,௜ ). Furthermore, customers may get upset for not being 

supplied after an average waiting time (߬௪), hence, they will cancel some outstanding orders (࢚ࢉ
 (࢏,࢝

(Equation (3.3)). Therefore, every period the backlog increases with the incoming orders (݋௧,௜) and 

duplicated orders (݀௧,௜ି), and decreases with the shipments (࢙࢚
࢚ࢉ) and cancellations (࢏

 .(Equation (3.4)) (࢏

ሶ௧,௜ܫ  ൌ ܵ௧,௜ െ ࢙࢚
࢏  (3.1)

 ࢙࢚
࢏ ൌ minሺܫ௧,௜ , ܾ௧,௜ሻ (3.2)

࢚ࢉ 
࢏ ൌ ࢚ࢉ

࢏,࢝ ൅ ࢚ࢉ
(3.3) ࢏,ࢊ

 ሶܾ
௧,௜ ൌ ௧,௜݋ ൅ ݀௧,௜ି െ ࢙࢚

࢏ െ ࢚ࢉ
࢏  (3.4)

Notice that the backlog represents the number of outstanding units that each retailer should satisfy 

in the following periods. The orders that could not be supplied accumulate in the respective backlog, i.e. 

the backlog represents the customers’ orders that are waiting to be delivered by the retailer. If a retailer 

has enough inventory, he will be able to supply the orders to both customers. Otherwise, retailers will 

ship the available product to customers in proportion to their share of the backlog and orders received 

from each one of them. Finally, we can define the effective inventory for each retailer (ܴܫ௧,௜) as the 

difference between the on hand inventory and the backlog, so that a positive value for ܴܫ௧,௜ represents 

the existence of on hand inventory; while a negative ܴܫ௧,௜ represents the existence of unsatisfied 

customers. Note that the actual unsatisfied demand at time t is given by the total backlog in that period 

minus the total number of duplications. Therefore, if ܴܫ௧,௜ ൐ 0, for any retailer i, then ࢏,࢚ࢊ ൌ 0.  

3.2.2. Supplier’s Model 

Supplier’s production capacity determines her ability to deliver products to retailers. One of the 

objective of the supplier is to define how to adjust her production capacity (ܭ௧) to satisfy retailers’ orders 

 over time is a function of the available production capacity (࢚ࡿ) Supplier’s shipments to retailers  .(࢚ࡻ)

and the outstanding orders to the retailers (࢚࡮) (Equation (3.5)). Similarly, the number of outstanding 

orders increases with the actual number of retailers’ orders and decreases with the number of shipments 

(Equation (3.6)). 

࢚ࡿ  ൌ minሺ࢚࡮, ௧ሻ (3.5)ܭ
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ሶ࡮  ࢚ ൌ ࢚ࡻ െ (3.6) ࢚ࡿ

To model the way the supplier adjusts her capacity, we follow a simple anchoring and adjustment 

heuristic (Gonçalves, 2003; Sterman, 1989a, 1989b). Initially, no change in capacity is desired, 

therefore, the supplier anchors her change in capacity to zero. Then, the adjustment is given by the gap 

between the actual and desired capacity. The desired capacity is given by an initial forecast about future 

retailers’ orders (ࡻ෡࢚) and an adjustment of the current outstanding orders (ܤ݆݀ܣ௧). Then, the supplier 

compares this desired capacity with her actual capacity to determine the capacity gap and the indicated 

increase/decrease in capacity. Finally, an increase or a decrease in capacity requires a time to 

build/reduce capacity (߬௄). Hence, the heuristic uses this time to divide the capacity gap and find the 

change in capacity over time (ܭ௧ሶ ) (Equation (3.7)).  

 
௧ሶܭ ൌ

ሺࡻ෡࢚ ൅ ௧ሻܤ݆݀ܣ െ ௧ܭ
߬௄

 
(3.7)

The supplier’s production capacity determines her ability to deliver products to retailers (and, 

therefore, to customers), and her estimation of retailers’ orders serves as a basis for her investment on 

production capacity. Therefore, supplier’s forecast about retailers’ orders is updated over time based on 

the last period forecast and the actual retailers’ orders from last period (Equation (3.8)). Finally, the 

 ௧ is computed based on the current outstanding orders and on a desired level of outstanding ordersܤ݆݀ܣ

 ෠௧ is defined as a function of the expected retailers’ orders and on a desiredܤ .(Equation (3.9)) (෠௧ܤ)

coverage period ߬஼ (ܤ෠௧ ൌ ߬஼ ෠ܱ௧). 

 
෡࢚ࡻ
ሶ ൌ

෡࢚ି૚ࡻ െ ૚ି࢚ࡻ

߬௢
 

(3.8)

 
௧ܤ݆݀ܣ ൌ

࢚࡮ െ ෠௧ܤ
߬஻

 
(3.9)

In case of insufficient production capacity, the supplier may distribute her limited production 

capacity following one of the following allocation mechanisms: Proportional (Lee, 1997), or Turn-and-

Earn (Cachon & Lariviere, 1999b; Lu & Lariviere, 2012). Under a Proportional allocation mechanism, 

retailers receive a number of units that is proportional to the outstanding orders to be received: ܵ௧,௜ ൌ

࢚ࡿ ∗ ௧,௜ܤ
࢚࡮
൘ . Under a Turn-and-Earn allocation mechanism, the retailer with higher past sales gets a 
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more favorable allocation. First, the supplier divides her production capacity in two: reserved and 

unreserved capacity. Then, the reserved capacity is guaranteed for the last-period sales leader and it is 

equal to the difference between retailers’ sales, and finally the unreserved capacity is allocated evenly 

among retailers. 

3.3. The Experiment 

We strive to advance knowledge about amplification of retailer’s orders (࢚ࡻ) in a single-supplier multi-

retailer supply chain by running a decision-making laboratory experiment based on the model previously 

developed. In our experiment, each subject assumes the role of one of the two positions of the retailers, 

so that there are two retailers making decisions simultaneously in each system. Subjects place orders to 

an automatized supplier while trying to satisfy the final customer demand. Retailers make decisions for 

35 periods. Every period, retailers’ orders take place after retailers receive the shipment from the 

supplier and the final customer order is fulfilled with the available inventory. We ran three different 

studies with different treatments and we exposed each subject to only one of the treatments. The studies 

help us understand the relative strength of different factors in generating the inflationary ordering 

behavior. Our three studies explore different characteristics previously discussed by Armony and 

Plambeck (2005), Gonçalves (2003), and Oliva and Gonçalves (Oliva & Gonçalves, 2005) affecting 

supply chain stability: probability of customer order duplications, supplier capacity acquisition delay, 

step in final customer demand and supplier’s allocation mechanisms. 

3.3.1. Experimental Protocol 

We followed the standard experimental economics protocol (Friedman & Sunder, 1994, 2004; Katok, 

2011). We ran formal experiments with undergraduate students in management and industrial 

engineering. We ran each experimental treatment with an average of 28 participants. Upon arrival to the 

experiment, subjects were seated behind computers and a partner was assigned randomly. Subjects were 

given a set of instructions describing the production system, the decisions and the goals of the 

experiment. Participants were allowed to ask questions and test out the computer interface (See 

Appendix 3.1). Subjects had full information about the system structure, delays and main parameters. 

To guarantee the independence of experimental results from individual interests, experimental subjects 
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were rewarded according to their performance (Smith’s (1976, 1982) Induced Value theory). Subjects 

knew before the experimentation that they would earn a show-up fee for participating and a variable 

amount contingent on their performance (this payoff was larger than the subjects’ opportunity cost). Our 

mathematical model was inserted into a computer simulation software Z-tree (Fischbacher, 2007) where 

the computer automatically ran the decisions of the supplier and the final customers, while subjects 

make their ordering decisions as retailers. The software kept record of all variables, including subjects’ 

decisions. 

Subjects’ objective was to minimize total costs (TC) during the 35 simulated periods. As in the 

Beer Distribution game (Croson & Donohue, 2005; Sterman, 1989a), we accounted for three different 

cost components (Ordering cost (ܱܥ௧), Inventory cost (ܥܫ௧ሻ, and Backlog cost (ܥܤ௧)). We used quadratic 

costs to penalize higher deviations (Diehl and Sterman, 1995) and we allocated a higher per-unit cost to 

backlogged units than to positive effective inventory to emphasize the cumulative nature and financial 

impact of backlogs (Oliva & Gonçalves, 2005). Finally, the objective function for each subject in the 

experiment can be expressed as: 

 
min ܥܶ ൌ෍ሺܱܥ௧ ൅

ଷହ

௧ୀଵ

௧ܥܫ ൅  ௧ሻܥܤ
(3.10)

Where, 

௧ܥܱ  ൌ 0.01 ∗ ܱ௧
ଶ (3.11)

௧ܥܫ  ൌ 1 ∗ maxሺ0, ௧ܫܴ
ଶሻ (3.12)

௧ܥܤ  ൌ 1.8 ∗ maxሺ0, ሺെܴܫ௧ሻଶሻ (3.13)

In each treatment, the game starts in equilibrium with sufficient supply to meet retailers’ orders. 

This is, the final customer demand starts in 50 units/period for each retailer and the supplier’s capacity 

is equal to 100 units/period. Then, in period 4, retailers face a percentage increase in final customer 

demand (step), such that total expected demand exceeds available supplier capacity. 

3.3.2. Study I: Stationary and known demand under retailer competition 

In this study, we run three treatments that systematically evaluate the effect of the existence of 

probability of duplication and of the step in the final customer demand in subjects’ ordering decisions. 

In the first treatment (T1), we do not allow neither for duplications (= 0) nor for step in the final 
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customer demand (step= 0). In treatment 2 (T2), we use a step of 5 units in the final customer demand 

and we do not allow for duplications (= 0). Finally, treatment 3 (T3) includes both the probability of 

duplications (= 0.1) and the step in the final customer demand (step= 5). In these treatments, we fix 

the supplier capacity acquisition delay (߬௄) to 1 and we use proportional allocation as the allocation 

mechanism that the supplier will use in case of facing excess demand. Table 3.1 characterizes each 

treatment conducted in this study. To run our analyses, we excluded 2 observations from T1, 1 

observation from T2 and 1 observation from T3 because subjects’ behavior in these observations led to 

total cumulative costs that were separated more than three standard deviations from the average 

cumulative cost of the remaining observations. 

Table 3.1. Experimental treatments Study 1 

  
α=0 α=0.1 

߬௄=1 
Step= 0  T1 

Step= 5 T2 T3 

 

Notice that in T1, we mainly use the traditional strategies used in the Beer Game to eliminate the 

first three operational causes of the bullwhip effect (order batching, price fluctuations, shortage gaming), 

and we control for the forth operational cause (demand forecast updating) by using a stationary customer 

demand and informing subjects about the pattern of the final customer demand before the game begins. 

Similarly, in T2 and T3, we control for three of these operational causes but we allow for shortage 

gaming in systems where customers may duplicate (T3) or not (T2) their orders. The main difference 

between this experimental study and prior behavioral studies analyzing ordering decisions is the 

systematic control of the main operational causes of the bullwhip effect in a competitive setting. In some 

previous studies, customer demand was either stochastic or non-stationary and it was unknown to 

participants (Steckel et al., 2004; Sterman, 1989a). In these cases, subjects need to forecast future 

demand, which may lead to the presence of the bullwhip effect due to forecasting errors (F. Chen et al., 

2000; L. Chen & Lee, 2011). In other cases, customer demand was stationary and known by the 

participants, but there was no retailer competition. In these cases, subjects do not follow a simple base 



61 
 

stock policy due to the lack of trust on the other players in their supply chain (Croson & Donohue, 2005; 

Croson et al., 2014; Sterman & Dogan, 2015). This behavior leads to the presence of the bullwhip effect. 

In T1 and T2, the demand is stable and publicly known and there is no probability of duplications, 

therefore, there is no need for safety stock and subjects will minimize their costs by ordering the same 

demand they perceive. Relevant literature in operations management has shown that under horizontal 

competition the presence of shortages can lead retailers to over-order (Armony & Plambeck, 2005; Lee 

et al., 1997b; Sterman, 2000). However, given that the system starts in equilibrium and there is full 

information about the stable final customer demand, there is no incentive to adjust the inventory level 

and the system should remain in equilibrium. Therefore, we do not expect order oscillation. In treatment 

3, there is competition for an initial scarce supply and there is some probability of duplication of the 

final customer demand, which may pose some incentive to the retailer to over-order more than the other 

retailer to get a greater allocation. 

3.3.3. Results Study I 

Table 3.2 shows the average order trajectories, the 95% confidence intervals, and the actual final 

customer demand for each treatment. As in previous behavioral studies (see Gonçalves & Villa, 2016), 

results show a clear underperformance in subjects’ decisions. In this case, subjects initially over-order, 

trying to stock some extra units, then subjects under-order, trying to get rid of excess inventory. This 

behavior leads to oscillations around the final customer demand (50 or 55 units). In T1 and T2, these 

frequent oscillations are contrary to our expectations. Given that there is no probability of duplications 

and that there is full information about system structure, subjects do not need to forecast future final 

customer demand, and they do not have any incentive to deviate from a base-stock strategy. However, 

subjects over-order trying to anticipate a potential deviation from the other retailer, which may leave 

them in a disadvantageous position. In T3, however, we argue that when retailers not only compete for 

supply but also compete for customers, they have more incentives to carry more inventory by amplifying 

their orders (Anupindi & Bassok, 1999; Cachon & Olivares, 2009; Netessine et al., 2001); therefore, 

some oscillations are expected. 

Now, by simple inspection, we can see the increase on orders’ variance as one moves from the 

final customers (solid line) to retailers (dashed line). There is evidence of the existence of the bullwhip 
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effect. To rigorously check for the increase in variance of subjects’ orders, we estimate the standard 

deviation (SD) of subjects’ orders in each experimental treatment (see Table 3.2). These standard 

deviations are significantly higher than zero, which means that the bullwhip effect is statistically 

significant in all treatment conditions (p-values <.01, in all cases). In addition, the standard deviations 

of subjects’ orders on T1 and T3 are significantly higher than in T2 (p-value<.01). This means that (i) 

the inclusion of a small step in the final customer demand could even reduce the bullwhip effect, because 

subjects’ overreaction, that were unexpected in T1, can be ameliorated by the wish to properly respond 

to final customers; and (ii) even a small increment in the probability of duplicated orders make retailers 

over-react. 

Table 3.2. Figures of Average Orders (dashed line) with 95% Confidence Intervals (shaded areas) and 
Customer Demand (solid line) 

 
  α=0.0 α=0.1 

࣎ ࡷ
=

1 

S
te

p
=

 0
 

Average Orders: 48.51 (0.44) 
SD: 15.82 

 

S
te

p
=

 5
 

Average Orders: 53.94 (0.44) 
SD: 12.39 

Average Orders: 53.79 (0.46) 
SD: 14.07 

Standard Errors in parentheses 
 

To understand why participants do not follow the simple base-stock policy in T1, we collected 

participants’ responses using a post-game questionnaire. Some typical responses to the strategies that 

subjects implemented during the experiment are:  

- “I ordered always the demand to avoid inventory and backlog costs” 
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- “I was ordering always 50 units; however, in some cases I ordered more to see how the system 

reacted” 

- “I tried to keep a small inventory and then I tried to balance retailers’ orders with my orders” 

- “I cooperated when the other retailer did it, but if he did not, I over-ordered to get a higher fraction 

of units” 

- “In some periods, I ordered above 50 to build some inventory, and then in some periods I ordered 

below 50”.  

These responses suggest that the combination of different strategies may lead to system instability 

and to the existence of the bullwhip effect, even when the demand is known and stationary. One of the 

main reasons is the desire to have positive inventory. Participants prefer to have extra units to respond 

to potential deviations from the other retailer. This way, if the other retailer deviated from the 

coordinating strategy and they did not receive what they ordered, they would have enough inventory to 

satisfy their observed demand. Another cause of deviation from the base-stock policy is curiosity. A 

simple emotional factor may lead subjects to deviate and affect the general performance of the whole 

supply chain. Finally, another typical reason for amplifications is given by a tit-for-tat strategy. In this 

case, subjects try to cooperate, but in case the other retailer deviated from the coordinating strategy (due 

to curiosity or desire to build some inventory), they would over-order in the following periods, trying to 

penalize the deviation of the other retailer. These results complement previous findings by Croson et al. 

(2013, 2014), Sterman and Dogan (2015), where they argue that subjects deviate from the equilibrium 

because they did not trust their other partners in the supply chain.  

3.3.4. Study II: Duplications and time to build supplier’s capacity under retailer competition 

In this study, we ran a full experimental design with two different levels of three important experimental 

variables: probability of duplication (= 0.1 and = 0.4), time to build supplier capacity (߬௄=1 and 

߬௄=4) and step of the final customer demand (step= 5 and step= 20). Table 3.3 characterizes each 

treatment conducted in this study. As it was used in Study I, final customer demand was stationary and 

known by the participants. We excluded from the analysis the observations that led to total cumulative 

costs that were separated more than three standard deviations from the average cumulative cost of the 

remaining observations. Finally, notice that the results for T3 are the same that we get from Study I. 
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Table 3.3. Experimental treatments Study II 

  α=0.1 α=0.4 

߬௄=1 
Step= 5 T3 T7 

Step= 20 T4 T8 

߬௄=4 
Step= 5 T5 T9 

Step= 20 T6 T10 

 

3.3.5. Simulated trajectory benchmark 

We inserted our mathematical model in Vensim DSS to determine a general strategy that can be used as 

benchmark to assess subject behavior in each treatment. Vensim DSS uses the Powell method as 

optimization method, which allows us to estimate a simulated ordering trajectory that minimizes the 

total cumulative costs of retailers over the 35 simulated periods. Table 3.4 shows the behavior of the 

optimal trajectories for each treatment in comparison with subjects’ average order decisions. The 

trajectories of these benchmarks are characterized by an initial increase in orders, due to the surge in the 

final customer demand. Then, orders settle smoothly into equilibrium with a small oscillation. The 

magnitude and duration of the oscillation increases with the complexity of the system (higher duplication 

probabilities, longer delays, higher step in final customer demand). 

For treatments with higher probability of duplications, we expect higher level of competition 

between symmetric retailers for customers; therefore, we expect a higher level of bullwhip effect 

(Anupindi & Bassok, 1999). Similarly, a higher increase in the final customer demand may lead to a 

higher over-reaction of retailers and to a higher order variability. Finally, longer time to build suppliers’ 

capacity increases the complexity of the system; therefore, higher amplifications are expected 

(Gonçalves & Arango, 2010; Sterman, 2000). However, once subjects reach the equilibrium, there is no 

need for safety stock and subjects will minimize their costs by ordering the demand they perceive. 

Therefore, we do expect some order oscillation at the beginning of the experiment due to the delays and 

competition for an initial scarce supply, which may pose some incentive to the retailer to over-order 

above the other retailer to get a greater allocation. However, we also expect a reduction in this variability 

due to the stationarity of the final customer demand and the ability of the supplier to build capacity. 
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Table 3.4. Figures of Average Orders (dashed line) with 95% Confidence Intervals (shaded areas), 

Benchmark trajectory (solid line)  

  Proportional Allocation 
  α=0.1 α=0.4 

࣎ ࡷ
=

1 

S
te

p
=

 5
 

Average Orders: 53.79 (0.46)  
SD: 14.07 

Average Orders: 54.13 (0.41) 
SD: 11.97 

S
te

p
=

 2
0 

Average Orders: 67.58 (1.12)  
SD: 25.81 

Average Orders: 66.90 (0.73) 
SD: 23.00 

࣎ ࡷ
=

4 

S
te

p
=

 5
 

Average Orders: 53.05 (0.77) 
SD: 21.80 

Average Orders: 52.58 (0.69) 
SD: 21.10 

S
te

p
=

 2
0 

Average Orders: 64.89 (0.76) 
SD: 19.68 

Average Orders: 66.72 (0.83) 
SD: 26.02 
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3.3.6. Results Study II 

Table 3.4 shows the average order trajectories and the 95% confidence intervals for each treatment. We 

observe a higher level of orders and wider confidence intervals in treatments with higher step in the final 

customer demand and longer time to build supplier capacity. During the first three periods, the system 

is in equilibrium given that the supplier is able to satisfy retailers’ orders and retailers are able to satisfy 

customers’ demand on time. Once the final customer demand increases, retailers face a backlog very 

quickly, causing the probability of receiving duplicated orders to increase. The presence of backlog and 

inflated final customer demand lead to an increase in retailers’ orders. With time, the supplier builds 

capacity to meet the increase in retailers’ demand, so that the supplier capacity increases and surpasses 

retailers’ orders. When the supplier capacity is large enough, she is able to satisfy retailers’ demand, and 

with backlogs at the desired levels, final customers can cancel duplicated orders. 

In addition, Table 3.4 shows the average retailers’ orders and standard deviation of subjects’ 

decisions and Appendix 3.2 shows the p-values that evaluate the significance difference of subject 

behavior between experimental treatments. Results show that despite the oscillations in subjects’ 

decisions, the average orders in treatments with the same step in final customer demand are not 

significantly different. This is because subjects can backlog unsatisfied orders until enough capacity 

becomes available, which means that in the long term, retailers will be able to reduce their backlog and 

satisfy their customers’ orders. 

Subjects deviate from optimal trajectories in all treatments. Results show that subjects’ ordering 

behavior fluctuates around the optimal trajectory in all treatments during the whole simulation horizon. 

Taking into account the different treatment variables analyzed in this study, we quantify the effect of 

each experimental variable on retailers’ orders deviations (see Table 3.5). We compared the average 

deviation from the subjects’ orders with respect to the optimal trajectories. Deviations are computed as 

the sum of absolute values of the difference between subjects’ decisions and the optimal ordering 

trajectory. Initially, as shown in Table 3.4, Table 3.5 shows that there is a significant difference between 

subjects decisions and optimal ordering quantities for all experimental variables (all deviations are 

significantly different from zero).  
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Table 3.5. Mean comparisons among treatment variables 

Variable Variable Values Deviation 
p-value 

Difference of Deviations 

Probability of 

duplication 

α=0.1 10.83 
(0.31) 0.06 

α=0.4 11.49 
(0.29) 

Step in 

demand 

Step=5 9.35 
(0.27) 0.00 

Step=20 13.26 
(0.34) 

Time to build 

capacity 

 9.90 1=ࡷ࣎
(0.27) 0.00 

 12.49 4=ࡷ࣎
(0.32) 

Standard errors in parentheses 

Results show that there is significant difference in the level of underperformance when we 

increase the probability of duplications from 0.1 to 0.4 (Diff=0.1-=0.4=-0.66; p-value=.06). In addition, 

higher step in final customer demand and a higher time to build capacity also lead to a significant 

increase in the deviations from the optimal trajectory (Diffstep=5-step=20=-3.91; p-value=.00; Diff=1-=4=-

2.59; p-value=.00).  

Now, in order to understand the effect of these experimental variables on the bullwhip effect, the 

differences in subjects’ behavior should be analyzed in terms of ordering variance and the ability of the 

supplier to respond to retailers’ orders. Therefore, to get a better understanding of the difference in 

subjects’ performance, we need to compare the standard deviations of subjects’ orders among 

treatments. To make a clean comparison among the different treatments, we analyze the standard 

deviation of the difference between subjects’ orders and the optimal trajectories. In this way, we will 

discount the expected variance of the optimal solutions. Table 3.6 shows the standard deviations of these 

deviations from the optimal ordering trajectories in each treatment and Appendix 3.3 shows the p-values 

obtained by performing comparison tests under the hypothesis of equality of standard deviations 

between treatments.  

Results show a switch in the deviations as we increase the time to build suppliers’ capacity. For 

the cases where we have short time to build capacity (߬௄=1), an increase in the probability of 
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duplications lead to less variation in subjects’ orders (p-value<.01 for comparisons of T3 vs. T7 and T4 

vs. T8). However, for the cases where we have long time to build capacity (߬௄=4), there is not decrease 

in the variability of subjects’ orders. For T5 and T9, there is not significant difference (p-value=0.82), 

and for T6 and T10, there is a significant increase in orders’ variability (p-value<.01). 

In addition, as we expected, an increase in the step of the final customer demand leads to a higher 

level of variation in subjects’ orders in three out of four cases. Therefore, more aggressive change in 

final customer demand lead to more unstable retailers’ orders and more instabilities for the whole supply 

chain.  

Finally, due to the stationarity of the final customer demand, the ability of the supplier to build 

capacity and the full information subjects receive about the system, we were expecting a complete 

reduction of the bullwhip effect during the last periods of the experiment. Therefore, we extract the last 

10 periods of the experiments (after 24) of our data and compared them with the first periods (before 

24) to analyze the evolution of the bullwhip effect, i.e. the ordering variance, in these two time frames. 

We chose the last 10 periods, because we expect orders had reached the equilibrium at that moment. 

Table 3.6. Standard deviation of subjects’ orders by experimental treatment 

    Proportional allocation 

 
  α=0.1 α=0.4 

࣎ ࡷ
=

1 

Step=5 

 
All 

Before 24 
After 24 

T3 
12.13 
14.72 
10.78 

T7 
10.14 
9.98 

10.46 

Step=20 

 
All 

Before 24 
After 24 

T4 
20.94 
22.15 
17.06 

T8 
17.67 
18.44 
15.61 

࣎ ࡷ
=

4 

Step=5 

 
All 

Before 24 
After 24 

T5 
17.52 
18.37 
15.39 

T9 
17.65 
17.23 
18.59 

Step=20 

 
All 

Before 24 
After 24 

T6 
15.89 
16.30 
14.88 

T10 
21.33 
22.65 
17.56 
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Table 3.6 shows the estimations of the standard deviations of the deviations of subjects’ decisions 

before and after period 24. Results show a small reduction in the standard deviation in almost all 

treatments (p-values<.01), except in T7 (p-value=.36) and T9 (p-value=.13), where there is not even a 

significant reduction of the order variability.  

3.3.7. Study III: Proportional vs. Turn-and-earn allocation under retailer competition 

Finally, this study explores the effect of different supplier allocation mechanisms on retailers’ orders. 

As previously argued by Cachon and Lariviere (1999c), retailers’ orders depend on the allocation 

mechanism used by the supplier. Therefore, we are interested in analyzing the main behavioral changes 

that may occur when we analyze our system under two different allocation mechanisms: proportional 

(Lee et al., 1997a), and turn-and-earn (Cachon & Lariviere, 1999b). Table 3.7 characterizes the two 

treatments conducted in this study. As it was used in previous studies, final customer demand was 

stationary and known by the participants. In addition, we use T10 as our control group, which means 

that for this study we set α=0.4, ࣎4=ࡷ and Step= 20. Notice that the results for T10 are the same that we 

get from Study II. As in previous treatments, in this study, we excluded two observations from T11 

because these observations lead to total cumulative costs that are separated more than three standard 

deviations from the average cumulative cost of the remaining observations. Proportional allocations is 

probably the most traditional allocation mechanism. In this case, a retailer receives a fraction of 

supplier’s capacity equally to the fraction of his orders with respect to the total orders. However, a 

retailer expecting to get a higher allocation will have an additional incentive to order more units and 

therefore increase the oscillations in subjects’ ordering decisions. On the other hand, turn-and-earn is a 

traditional allocation mechanism widely used in the automobile industry to incentivize sales. In this 

case, the number of units that a retailer receives from the supplier will be a function of the units sold last 

period. Under this sales-based allocation mechanism, retailers do not have an incentive to inflate their 

orders above the observed demand (actual orders plus duplicated orders). Therefore, we expect a 

reduction in subjects’ biases with respect to the proportional allocation. 

Table 3.7. Experimental treatments Study II 

 Proportional Turn-and-earn 
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α=0.4 

 4=ࡷ࣎

Step= 20 

T10 T11 

 

3.3.8. Results Study III 

Table 3.8 shows the average order trajectories, the 95% confidence intervals and the optimal trajectory 

for each treatment in this study. We can see that despite the use of different allocation mechanisms, 

subjects still deviate from the optimal trajectories. However, the turn-and-earn allocation mechanism 

leads to a lower average deviation (8.83) from the optimal trajectory than the proportional allocation 

(13.95). A comparison test between the two average orders shows that there is not significant change in 

the average orders (p-value=.49). This is mainly because we ran the experiment for a long period of 

time, allowing retailers to have enough time to supply any initial unsatisfied customers. Furthermore, 

turn-and-earn leads to a decrease of the bullwhip effect. There is a reduction in the orders’ standard 

deviation (p-value=.01) and, therefore, in the instabilities of the system. This means that even if both 

treatments have exactly the same system structure, having the supplier allocate her capacity using a 

reserved quantity based on previous sales (turn-and-earn), reduces subjects’ incentives to over-order. 

However, this reduction seems to be unconscious because none of the participants’ responses to the 

post-game questionnaire mentions the effect of the allocation mechanism in their ordering strategies. 

Table 3.8. Figures of Average Orders (dashed line) with 95% Confidence Intervals (shaded areas), 

Benchmark trajectory (solid line)  

 Proportional Turn-and-earn 

α
=

0.
4;

 ࣎
ࡷ

=
4;

 S
te

p
=

 2
0 

Average Orders: 66.72 (0.83) 
SD: 26.02 

Average Orders: 65.95 (0.61) 
SD: 15.66 

Standard errors in parentheses 
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So far, we have described the main characteristics of subjects’ ordering behavior and the 

consequences of their decisions in our three studies. Now, we will integrate the three studies to describe 

some general results and we will use an econometrical model to explain subjects’ biases in each 

treatment. 

3.4. General results 

3.4.1. Average Costs 

We analyze the effect of the different experimental variables on subjects’ average cost. Table 3.9 shows 

the average costs separated by experimental variable, when we control for the other variables’ effects. 

In addition, Table 3.9 shows the average ordering, inventory and backlog cost, and the corresponding 

percentage over the total costs for each condition of each experimental variable. Given that subjects 

were informed about the pattern of the final customer demand, we were expecting subjects to keep no 

inventory and no backlog and therefore, to allocate most of their cost to the ordering component. 

However, in none of the conditions the percentage of ordering cost exceeds the 4% of the total costs. 

This situation of not being able to make decisions that lead to the minimization of inventory and backlog 

costs is a clear evidence of subjects’ bounded rationality and may be an explanation to the existence of 

the bullwhip effect. The first section of Table 3.9 shows the effect of duplications on retailers’ costs. It 

shows how including duplications from customers significantly increases the average retailer’s cost. 

There are not significant differences in costs when we compare α=0.1 and α=0.4. However, it seems that 

subjects prefer to make decisions that lead to increase their costs of inventory when they face a low 

probability of duplication, while in case of high probability, most of the costs are due to backlog. This 

result is expected because under the same level of unsatisfied customers, subjects in treatments with 

α=0.4 will face a higher levels of backlog. Higher level of backlogs lead to higher costs and the situation 

is worsen when we account that we are using a quadratic cost function. The second and third sections 

of Table 3.9 show the effect of the step in the final customer demand and of the time to build supplier 

capacity on the average costs. We see that higher values of the step in the final customer demand or 

longer time to build supplier capacity lead to higher total average costs (p-value <.01 in all cases). 

Changing the system structure by having a longer time to build capacity makes the supplier poorly 
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respond to retailers’ orders and therefore retailers place orders that generate significant and costly 

oscillations, which is a typical characteristic of the misperception of the feedback dynamics (Gonçalves 

& Villa, 2016; Sterman, 1989a). In addition, there is a small tendency (probably due to the cost structure) 

of retailers to make ordering decisions that slightly favor backlog costs when retailers face high increases 

in the final customer demand or when they face long time to build supplier’s capacity. Finally, the las 

section of Table 3.9 shows the cost comparison between the two different allocation mechanisms. In 

this case, both systems have the same structure and results show no significant difference on average 

total costs. However, the turn-and-earn allocation leads to a significant reduction of costs due to the 

available inventory (p-value<.01). Probably, subjects realized that over-ordering and keeping inventory 

was not a good strategy because at the end they would receive units from the supplier based on last-

period sales and not on the amount of orders placed. 

Table 3.9. Average, Ordering, Inventory and Backlog cost by experimental variable 

  
Average Costs Ordering Cost Inventory Cost Backlog Costs

P
ro

b
ab

il
it

y 
of

 
d

u
p

li
ca

ti
on

 

α=0.0 685.36 (49.80) 27.10 (0.36) 301.75(28.48) 356.5(42.15)

 4.0% 44.0% 52.0%

α=0.1 2,030.93 (102.42) 37.74 (0.60) 1,112.20 (86.16) 880.95 (61.18)

 1.9% 54.8% 43.4%

α=0.4 2,141.02 (79.92) 41.01 (0.54) 997.11 (62.61) 1,102.90 (54.46)

 1.9% 46.6% 51.5%

S
te

p
 in

 
 d

em
an

d
 

Step=0 921.57 (78.88) 25.39 (0.49) 386.36 (44.81) 509.81 (67.32)

 2.8% 41.9% 55.3%

Step=5 1,638.25 (77.36) 30.62 (0.36) 1,028.2 (65.89) 579.39 (43.86)

 1.9% 62.8% 35.4%

Step=20 2,242.39 (84.72) 47.85 (0.64) 877.98 (64.04) 1,316.60 (60.68)

 2.1% 39.2% 58.7%

T
im

e 
to

 b
u

il
d

 
ca

p
ac

it
y ࣎(47.81) 1,164.60 1=ࡷ 34.41 (0.36) 632.93 (39.38) 497.26 (29.17)

 
3.0% 54.3% 42.7%

(98.34) 2,618.41 4=ࡷ࣎ 40.35 (0.59) 1210.40 (77.93) 1,367.70 (66.51)

 1.5% 46.2% 52.2%

A
ll

oc
at

io
n

 
M

ec
h

an
is

m
 

Proportional 2,781.46 (216.37) 49.78 (1.63) 1,441.00 (198.67) 1290.70 (105.50)

 1.8% 51.8% 46.4%

Turn & Earn 2,787.12 (226.34) 44.47 (0.82) 854.69 (117.72) 1,888.00(205.71)

 1.6% 30.7% 67.7%
Standard errors in parentheses 
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3.4.2. Retailers’ Decision Rule 

We now use a formal decision rule to model retailers’ ordering behavior. We build our decision rule 

based on the model previously proposed by Croson and Donohue (2005). Our decision rule regress the 

orders placed by subjects in period t (ܱ௧,௜), against the initial effective inventory level (ܴܫ௧ିଵ,௜), total 

incoming orders (݋ݐ௧,௜ ൌ ௧,௜݋ ൅ ݀௧,௜ି), cancellations (࢚ࢉ
 ,shipments received from the supplier (ܵ௧,௜) ,(࢏

and retailer’s total outstanding orders (ܤ௧,௜). In addition, following Oliva and Gonçalves (2004), we 

complemented the decision rule by differentiating between positive effective inventory (ܴܫ௧ିଵ,௜
ା ) when 

the inventory (ܫ௧,௜) is higher than the backlog (ܾ௧,௜) and negative effective inventory (ܴܫ௧ିଵ,௜
ି ሻ, when the 

opposite is true. Therefore, the decision rule for a given subject at period t can be expressed by equation 

(3.14). Finally, a max function is included in the decision rule because retailers are not allowed to cancel 

their previously placed orders to the supplier. Therefore, retailers’ orders must be nonnegative. 

ܱ௧,௜ ൌ max	ሺ0, ଴ߚ ൅ ௧ିଵ,௜ܫூܴߚ
ା ൅ ௧ିଵ,௜ܫ௕ܴߚ

ି ൅ ௧,௜݋ݐ௧௢ߚ ൅ ࢚ࢉ௖ߚ
࢏ ൅ ௌܵ௧,௜ߚ ൅ ௧,௜ܤ஻ߚ ൅ ௧,௜ሻ (3.14)ߝ

Notice that equation (3.14) is able to test subjects’ reaction to the main operational variables 

involved in the system as in Sterman (1989a) and Croson et al. (2014). However, equation (3.14) uses a 

more general structure than the one used by Sterman’s (1989a) and Croson’s et al. (2014) model. In 

contrast to their work, our equation tests the independent effect of the main operational variables on 

subjects’ behavior and does not make assumptions about a specific heuristic or anchor used by the 

subjects. Hence, equation (3.14) eliminates any assumption about the type of model subjects use to 

forecast (Croson & Donohue, 2005). 

If subjects were rational and there were no evidence of the bullwhip effect at the retailer level, 

retailers would order exactly the same number of units as the total incoming orders. This means that a 

one-unit increase on total incoming orders from final customers should increase retailers’ orders to 

suppliers by one unit, as well as a one-unit increase in the negative effective inventory (backlog). 

Therefore, we will expect a value of 1 to the parameters ߚ௕ and ߚ௧௢ in our model. Similarly, a one-unit 

increase in the positive effective inventory, in the cancellations, in shipments received from the supplier 

or in the outstanding orders (supply line) should decrease retailers’ orders by one unit. Therefore, we 

would expect a value of -1 for parameters ߚூ, ߚ௖, ߚௌ and ߚ஻.  
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3.4.3. Evaluation of decision rule 

To improve our understanding about how subjects make ordering decision when facing different 

conditions, we used the data obtained from the experiments to estimate the unknown parameters of 

equation (3.14) for each treatment. To estimate these parameters, we relaxed the non-linearity condition 

of the decision rule and we structure the data from the experiments as a panel. This panel estimations 

allow us to control for individual heterogeneity. In addition, to get unbiased estimations, we run a 

Hausman test (H-test) to determine whether it would be better to use random or fixed effects in the 

estimation of our model. This test evaluates whether the effects are exogenous - in which case it would 

be better to use random effects -, or whether the errors are correlated with the regressors - in which case 

it would be better to use fixed effects -. After running the Hausman test for each treatment and assuming 

random effects as the preferred model, we did not find support to our hypothesis (all p-values<0.01 for 

all H-tests). Therefore, we adopt fixed effects for the estimation of our model.  

Table 3.10. Parameter estimations for the decision rule 

Parameter T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

 ࡵࢼ
-0.41 

(0.03) 

-0.38 

(0.04) 

-0.13 

(0.02) 

-0.37 

(0.04) 

-0.22 

(0.02) 

-0.33 

(0.06)

-0.20 

(0.02)

-0.33 

(0.03) 

-0.31 

(0.03) 

-0.30 

(0.03)

-0.19 

(0.03)

 ࢈ࢼ
-0.01 

(0.04) 

0.62 

(0.06) 

-0.22 

(0.13) 

1.13 

(0.25) 

-0.13 

(0.10) 

-0.22 

(0.09)

-0.07 

(0.05)

0.17 

(0.06) 

-0.13 

(0.05) 

0.05 

(0.06)

-0.18 

(0.03)

 - ࢕࢚ࢼ
1.40 

(0.27) 

1.13 

(0.28) 

1.39 

(0.17) 

1.01 

(0.43) 

1.17 

(0.13)

1.12 

(0.14)

1.02 

(0.09) 

0.91 

(0.17) 

1.05 

(0.11)

0.87 

(0.08)

 - - ࢉࢼ
1.29 

(0.50) 

-2.43 

(0.92) 

0.50 

(0.36) 

0.53 

(0.32)

-0.06 

(0.08)

0.06 

(0.11) 

0.16 

(0.09) 

-0.03 

(0.12)

0.20 

(0.06)

 ࡿࢼ
-0.29 

(0.03) 

-0.49 

(0.04) 

-0.12 

(0.04) 

-0.43 

(0.04) 

-0.21 

(0.04) 

-0.26 

(0.05)

-0.07 

(0.04)

-0.21 

(0.04) 

-0.28 

(0.04) 

-0.20 

(0.04)

-0.01 

(0.04)

 ࡮ࢼ
-0.17 

(0.04) 

-0.01 

(0.05) 

0.07 

(0.05) 

-0.01 

(0.06) 

0.20 

(0.04) 

-0.09 

(0.05)

0.32 

(0.05)

-0.18 

(0.05) 

0.03 

(0.04) 

-0.03 

(0.04)

0.17 

(0.04)

 ૙ࢼ
66.67 

(1.86) 

4.91 

(14.29) 

-0.57 

(15.07) 

3.38 

(10.97)

10.49 

(23.10)

5.32 

(8.37)

-2.20 

(7.64)

11.97 

(6.02) 

20.47 

(9.25) 

10.57 

(7.35)

8.04 

(4.89)

Correlation -0.53 -0.32 -0.60 -0.27 -0.41 -0.25 -0.42 -0.40 -0.56 -0.38 -0.43 

F (Wald) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

H-test 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F-Effects 0.06 0.12 0.09 0.27 0.17 0.39 0.00 0.27 0.32 0.12 0.13 

Standard errors in parentheses 
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Finally, notice that our model does not include an independent variable t controlling for any 

potential trends as in the model used by Croson and Donohue (2005). Instead, we test our model for the 

need of time-fixed effects (F-Effects). We perform a simple Wald tests to test the likelihood-ratio of the 

model with and without time-fixed effects. We failed to reject the null hypothesis that all period 

coefficients are jointly equal to zero (p-values>.05 in 10 out of 11 treatments); therefore, there is no 

need to include time fixed-effects. We used Stata 12 to estimate the unknown parameters in each 

treatment. Table 3.10 shows the main parameter estimations and Appendix 3.4 shows a summary of the 

experimental variables used for each experimental treatment, as a reference to the reader to better follow 

the panel data analyses. 

As expected, all the ߚ௧௢ coefficients are positive and close to 1. However, we identify some trends 

on how subjects make their decisions taking into account the orders of the final customers. First, when 

the delay is short (߬௄=1), the coefficients are always higher than 1, signaling the tendency of subjects to 

overreact to final customer demand by inflating their orders up to a 40%, while longer delays allow 

subjects to adjust smoothly their orders to the suppliers according to the their final customer demand. 

Similarly, when the step in the final customer demand increases, retailers’ orders increase. This shows 

a tendency of participants to inflate even more their orders when the demand increases. Also, it seems 

that subjects’ overreact a bit more to the final customers’ orders when they face a lower probability of 

duplications. Probably, the fact that there is high probability of duplications make subjects more aware 

of the existence of phantom orders and therefore they make decisions that are more consistent. Finally, 

as it was expected, the turn-and-earn mechanism reduces the tendency of retailers to over-order. 

However, in this case, retailers prefer to order less units than the amount of units ordered from their 

customers. 

As expected, all the ߚூ coefficients are negative; indicating that for one additional unit of positive 

inventory, the retailers order will decrease. However, the coefficients are significantly higher than -1, 

meaning that the reduction of the orders does not reflect the same amount of the on hand inventory. 

We observe that in general the ߚூ estimations are close to -0.3 in all treatments. However, there 

is a small tendency of the estimations to move toward -1 (the expected value) as the step in the final 
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customer demand moves from 5 to 20. This means that a higher peak in demand gives more incentives 

to subjects to reduce their orders based on their inventory levels. 

We expected the effect of the backlog’s parameter (ߚ௕) to be positive, representing an increase in 

the orders according to the number of units owed to the final customers. However, we found that 6 out 

11 of our estimations have negative values. Although they are not significantly different from zero for 

T1, T3, T5 and T7. This means that subjects fail to properly consider their backlog levels when they 

make ordering decisions. However, there is a small tendency of the estimations to move toward the 

positive region for a short time to build suppliers’ capacity. Finally, we see that the absolute value of 

the estimations of ߚ௕ are significantly different from the estimations of ߚூ, which shows that subjects 

react different to inventory than to backlog. 

We expected the coefficients for the cancellations (ߚ௖) to be negative, i.e. for each unit cancelled, 

we would expect the order to be reduced by one unit as well. Here, there is no effect of cancellations for 

T1 and T2, because there are no duplications. Results show that most of the coefficients are not 

significantly different from zero, especially when subjects face a high level of duplications or long time 

to build suppliers’ capacity. Probably, a higher complexity in the system makes subjects to disregard the 

cancellations coming from their final customers. However, for the simplest treatments (T3 and T4), 

subjects show a mixed behavior. Finally, we see a significant and positive effect of cancellations on 

subjects’ orders when the supplier allocates her constraint capacity using a turn-and-earn strategy. This 

result probably highlights the importance that selling an additional unit has to the retailer, so that facing 

cancellations is unacceptable and they prefer to over-order to avoid future cancellations and potential 

penalizations in the allocation process. 

As expected, all signs for the coefficient of shipments received from the supplier (ߚௌ) are negative. 

This means that retailers reduce their orders as they receive additional units from the supplier. However, 

all of the estimations are significantly higher than -1 (the expected parameter estimation). As a general 

trend, we observe that when the step increases (from 0 to 5, and from 5 to 20), the reduction in the orders 

due to order fulfillment is also bigger. Hence, it seems that the higher step allows for a better recognition 

of the orders being fulfilled, so that subjects reduce their future orders, to avoid having high inventories. 

In addition, the turn-and-earn mechanism gives lower incentives to reduce the orders based on suppliers’ 
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order fulfillment. In fact, this effect is not different from zero. This may happen because turn-and-earn 

makes subjects focus on what they are actually selling, shifting the attention away from the orders 

received. 

We expected the effect of the outstanding orders (ߚ஻) to be negative, representing a decrease in 

the ordering decision according to the supply line, i.e. to the number of units already ordered to the 

supplier but not yet received. However, most of the coefficients (T2, T3, T4, T6, T9, T10) are not 

significantly different from zero, which means that subjects do not consider the outstanding orders they 

have with the supplier when they make ordering decisions. In addition, if subjects were properly 

accounting for the supply line, the estimations for ߚ஻ (outstanding orders) should be equal to ߚூ 

(inventory level). However, estimations show that ߚ஻>ߚூ (closer to zero) in all treatments. This is a clear 

evidence that subjects underweight the supply line (Sterman, 1989). Finally, there is a weak tendency 

in the ߚ஻ parameters that shows that a higher step in the final customer makes subjects more aware of 

the supply line and demand. Therefore, we see lower values (closer to -1) for ߚ஻ in treatments with 

higher step in the final customer demand. 

These results show a high level of subjects’ deviation with respect to the expected behavior. 

However, parameter estimations show that these deviations (biases) are in general reduced when 

subjects face systems with higher complexity (higher step in final customer demand, longer time to build 

supplier’s capacity and higher probability of duplication). These results are also aligned with previous 

physiological studies of dual process theory, where researchers have claimed that subjects’ decisions 

are driven by two independent systems: System I or the automatic system, and System II or the rational 

system. In this case, subjects facing low effort tasks will make decisions mainly driven by System I; 

however, more complex tasks induce conscious judgments and therefore, lower biases (Kahneman, 

2011; Stanovich & West, 2000). At the same time, results from Table 3.9 show that less complex 

systems lead to average costs that are significantly lower than the costs in more complex systems. This 

means that there is a higher penalization of subjects’ underperformance when they are immersed in 

systems that are more complex; therefore, the current reduction of subjects’ biases is not enough to have 

lower costs (or higher performance) if they need to deal with highly complex system dynamics. 

Consequently, in order for subjects dealing with high complexity to get (at least) the same level of 
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performance (costs) than less complex systems, they would need to have a higher reduction of the biases. 

Finally, when comparing systems with the same structure but different supplier allocation mechanism 

(T10 vs. T11), we find that the proportional allocation mechanism makes subjects significantly reduce 

their overall biases but the turn-and-earn allocation leads to a reduction of orders’ variability and, 

therefore, of the bullwhip effect. 

3.5. Conclusions 

This chapter presents a behavioral study of the existence and consequences of the bullwhip effect in a 

non-serial supply chain. We use a simple supply chain composed of one supplier and two competing 

retailers who face a stable and known final customer demand. In an attempt to focus on the main 

behavioral causes leading to an increase in order variability, we built a clean experimental design to 

systematically control for the main operational variables leading to supply chain instability: order 

batching, price fluctuations, rationing and shortage gaming, and demand forecast updating (Cachon & 

Lariviere, 1999a; Lee et al., 1997a).  

Initially, we develop a mathematical model to capture endogenous decision policies for both 

supplier’s capacity investment and customers’ ordering. We evaluate the effect of different duplication 

probabilities, different supplier’s capacity acquisition delay, different strength in final customer demand 

and two different supplier allocation mechanisms on retailers’ ordering decisions. We created three 

different and complementary studies that make significant contributions to previous work on the 

behavioral operations area.  

Results from the first study evidence that the bullwhip effect persists in a system with two 

competing retailers even when subjects do not have incentives to inflate their orders. We show that in a 

system where there is neither positive probability of duplications nor changes in the final customer 

demand and where retailers have full information about the system structure, subjects still deviate from 

an equilibrium strategy. Retailers may deviate from the equilibrium for multiple reasons. They amplify 

their orders in an attempt to build an unnecessary safety stock to respond to potential deviations from 

the other retailer. Alternatively, the deviation could be driven by an emotional factor such as curiosity. 

The desire of subjects to know what would happen should they deviate from the equilibrium, leads to 
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interaction and penalization strategies (e.g. tit-for-tat) between the retailers, which activates unnecessary 

system dynamics that lead to order oscillations and higher overall costs.  

In our second study, we create a full experimental design to evaluate the effect of three different 

experimental variables (duplication probabilities, different supplier’s capacity acquisition delay, 

different strength in final customer demand) in subjects’ performance. Results show that subjects deviate 

significantly from the optimal trajectories in all treatments. These deviations are characterized by a 

continuous fluctuation of subjects’ orders around the optimal trajectory. A cost analysis shows that 

subjects fail to make decisions that allocate most of the cost to the ordering component. In addition, 

systems with lower dynamic complexity (lower duplication probability, shorter time to build capacity 

and smaller step in the final customer demand) lead to lower average costs, while subjects’ low 

performance in systems with higher dynamic complexity is explained by the difficulty of subjects to 

reduce their backlog cost. However, estimations of the parameters of our decision rule show that 

subjects’ biases are reduced when subjects face systems with higher complexity. In more complex 

treatments, for example, subjects are more aware of the supply line. These findings can be explained by 

the concepts of dual process theory. In this case, when subjects face situations with higher complexity, 

their mental System II (rational system) is activated. Therefore, subjects are expected to make more 

rational decisions. In contrast, when facing simpler systems, subjects’ System I (automatic system) plays 

a higher role, leading subjects to make more reactive decisions (Kahneman, 2011; Stanovich & West, 

2000). The results of this study show that the cost function places a higher penalization of subjects’ 

underperformance when they are immersed in systems that are more complex and where higher 

deviations are expected. Given this higher penalization, despite the increased ability of subjects to make 

more rational decisions (System II) when immersed in high complex systems, it is not possible for them 

to achieve the same level of performance (costs) than if they were making decisions in a less complex 

system. To increase their performance (reduce costs), a higher reduction of their biases would be needed. 

An additional finding from our second study is related with the poor ability of subjects to 

eliminate the bullwhip effect. Given that subjects were facing a system with a constant final customer 

demand, with a supplier able to build capacity and with full information about the whole supply chain 

structure, we were expecting a complete reduction of orders’ variability after a long period of time had 
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passed. Results show a small but significant reduction in the order variability for decisions made during 

the last 10 periods of the experiments. However, the bullwhip effect is never completely eliminated. 

These results are also aligned with the findings we discuss in our first study. 

Finally, the third study of this chapter presents a clear contribution of the effect of different 

allocation mechanisms on subjects’ behavior. Results show that the biases leading to the amplification 

of orders are still existent in subjects’ behavior regardless the allocation mechanism used. However, the 

level of subjects’ underperformance may vary from mechanism to mechanism. In this chapter, we 

evaluate the effect of two different allocation mechanisms: one mechanism that encourages retailers to 

compete for supplier’s constraint capacity by making an allocation proportional to the outstanding 

retailers’ orders (proportional allocation) and the other mechanism reduces subjects’ incentives to over-

order by making an allocation based on last-period sales (turn-and-earn). Results show that, under 

identical system structure, the turn-and-earn allocation mechanism leads to a significant reduction of the 

bullwhip effect. This means that having the supplier allocate her capacity using a last previous sales 

(turn-and-earn) reduces subjects’ biases, which is also aligned with previous analytical results (Cachon 

& Lariviere, 1999b; Lu & Lariviere, 2012). However, it is important to notice that the reduction in order 

variability seems not to be a conscious process in subjects mind. We arrived at this conclusion because 

none of the participants’ claimed that their ordering decisions were affected by the allocation mechanism 

used by the supplier. 

This work can be extended in many directions. For example, in this chapter we have considered 

a parsimonious model to study subjects’ behavior; therefore, different decision rules can be used to 

explain these behaviors and try to find mechanisms that may reduce subjects’ biases. Second, there are 

different allocation mechanisms that may be used and tested to determine subjects’ reaction to the 

different kind of incentives offered by each one of them. In addition, it would be ideal to test how 

subject’s behavior would change if we automated the decisions of one of the retailers, so that the 

automatized retailer uses an optimizing strategy. Finally, in our experiment the supplier was automatized 

by the computer. Therefore, it would be interesting to relax this condition and allow an additional subject 

to play the role of the supplier to test what is the preferred allocation strategy followed by the supplier 

and how retailers react to the introduction of a real supplier.   
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Appendix 3.1. Interface of the experiment in Z-tree (in Spanish) 
 

 

 

 

Appendix 3.2.  p-values for comparison of orders’ means for treatments in Study II 

 

 T3 T4 T5 T6 T7 T8 T9 

T4 0.00   

T5  0.00  

T6 0.00 0.0419 0.00  

T7 0.58   

T8  0.59 0.00  

T9   0.65 0.06 0.00  

T10   0.12 0.00 0.87 0.00 
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Appendix 3.3. p-values for comparison of orders’ standard deviations for treatments in Study II 

 

 T3 T4 T5 T6 T7 T8 T9 

T4 0.00       

T5 0.00       

T6  0.00 0.01     

T7 0.00       

T8  0.00   0.00   

T9   0.82  0.00 0.00  

T10    0.00   0.00 
 

 

 

Appendix 3.4. Overall experimental treatments 

  
Proportional  Turn-and-earn 

  
α=0.0 α=0.1 α=0.4 α=0.4 

߬௄=1 

Step= 0 T1    

Step= 5 T2 T3 T7 
 

Step= 20  T4 T8 
 

߬௄=4 
Step= 5  T5 T9 

 
Step= 20  T6 T10 T11 
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Chapter 4. Transshipments in Supply Chains: Beyond the Analytical 
Models 

Abstract 

Behavioral operations studies in inventory management have focused on understanding the decision-

making processes and heuristics that explain subjects’ behaviors in a single actor problem. However, 

interactions among multiple agents has received low attention, despite its importance for the creation of 

better policies that lead to the improvement of real operations. I contribute to this literature by 

experimentally exploring the effect of transshipments on a multi-retailer problem. I consider a system 

composed of one supplier and two symmetric retailers (Newsvendors) at the same echelon level. 

Building on a formal mathematical model, I test whether subjects coordinate through any transshipment 

strategy. I ran different experimental treatments analyzing the effect of different (i) profit conditions, 

(ii) communication strategies and (iii) behavioral best response heuristics. Results show a general 

retailers’ underperformance in all profit conditions (presence of the pull-to-center behavior). However, 

mechanisms like Face-to-Face communication and best response heuristics lead to an increase in supply 

chain coordination.  

Key words: Transshipments, Communication, Newsvendor, Nash Equilibrium 

4.1. Introduction 

The Newsvendor problem is one of the most studied problems within the Operations Management field. 

This problem captures a single-period decision problem, where a manager makes a procurement order, 

a production order, or inventory plan before the realization of an uncertain demand. In this kind of 

problem, both leftovers and shortages are costly (Eeckhoudt et al., 1995; Schweitzer & Cachon, 2000): 

if a manager orders too much, she will have to salvage leftovers or dispose them at a loss; or if she orders 

too little, she will forgo additional profits (Arrow et al., 1951). 

Previous research in Behavioral Operations on the Newsvendor problem has focused mainly on 

describing decision making biases (e.g. pull-to-center behavior, demand chasing, loss aversion) and on 

deriving behavioral models (e.g. anchoring and adjustment, loss aversion) that aim to explain those 

biases in a single-actor problem (Bolton & Katok, 2008; Bostian et al., 2008; Croson & Ren, 2013; 
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Schweitzer & Cachon, 2000). However, limited behavioral extensions have been done to understand its 

applications within a multiple-actor setting.  

In addition, real world problems are characterized by the interaction of multiple actors within a 

modern information technology system that allows both a continuous communication among actors and 

a easy track of goods (Axsäter, 2003). Therefore, a better understanding of the behavioral interactions 

among different agents may improve coordination in a supply chain.  

In this regard, I am interested in understanding the behavioral factors that influence subjects’ 

ordering decision in a multi-retailer setting with transshipments. Transshipments are known as the 

monitored movement of material among multiple locations at the same echelon level (Herer et al., 2006). 

Transshipments are a common practice in many industries (both intra- and interfirm) as a mechanism to 

alleviate the problem of localized demand shocks, which encourages independent retailers to coordinate 

and share their inventories to achieve a better match between supply and demand (Dong & Rudi, 2004; 

Rudi et al., 2001, Sošić, 2006). Therefore, accurate transshipment decisions may improve stock polices, 

reduce costs and create better customer service by gaining a source of supply whose reaction time is 

shorter than the regular supply (Herer et al., 2006).  

I present a mathematical model to characterize a system formed by two identical Newsvendors 

that place decentralized orders to a unique supplier. The supplier has enough capacity to meet 

Newsvendors’ orders, and Newsvendors face the same cost structure and (uncertain) demand 

distribution. Additionally, I ran different behavioral experiments under different product margin 

conditions and different interactions among Humans (behavioral Newsvendor) and Computerized 

heuristics (knowledgeable Newsvendor) to evaluate the effect of Nash Equilibrium, Face-to-Face 

communication, static best response and dynamic best response policies on the supply chain 

performance.  

The rest of the chapter is organized as follows. Sections 2 and 3 present the literature review 

involving a Newsvendor problem with transshipments. I formulate the research questions and provide 

theoretical benchmarks for traditional Newsvendor tasks. Section 4 describes the system of study, 

provides the experimental design, and describes the main results for the main experimental treatments. 

Sections 5 takes advantage of the results from section 4 and the estimation of behavioral models to 
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analyze different practical improvements for a supply chain system with transshipments. Finally, I 

summarize the main results and provide managerial implications and opportunities for future research. 

4.2. Literature Review 

Analytical models of the Newsvendor problem date back to the studies of Edgeworth (1888), who argued 

that the amount of money available in a bank should be properly managed to satisfy uncertain cash 

withdrawals from account holders. Later, Arrow et al. (1951) formalized the model incorporating 

inventory control policies under demand uncertainty. Since then, many scholars in the area of inventory 

management under demand uncertainty have analyzed the Newsvendor problem attempting to introduce 

extensions in various directions. An analytical extension of the Newsvendor problem allowing 

transshipments among multiple retailers seems to be that of Krishnan and Rao (1965), which assumes 

single-period order-up-to policy and equal costs at each retailer location. They show that when the 

locations are identical in their cost parameters, it is optimal for the retailers to stock at an equal fractile. 

Robinson (1990) extends Krishnan and Rao study to the multi-period case and present the optimality 

proofs. Sošić (2006) takes into account the effect of free communication among retailers and creates an 

analytical model assuming that retailers can freely join or leave alliances. Tagaras (1989) defines a set 

of assumptions that lead to "complete pooling". Complete pooling means that if one location has excess 

stock while another location is short, the number of units transshipped will be the minimum of the excess 

and the shortage (Paterson et al., 2011). Rudi et al. (2001) study transshipments between two 

independent Newsvendors and shows that, in general, maximizing the profit of each Newsvendor will 

not lead to the maximization of the whole system. However, Hu et al. (2007) formulate the conditions 

under which the system can be coordinated. These emerging interactions among retailers can be modeled 

as a game among independent actors (Newsvendors), and the game can be analyzed using Nash 

equilibria (Rudi et al., 2001).  

However, the behavioral approaches to study the Newsvendor problem are recent, dating back to 

Schweitzer and Cachon (2000)’s seminal Newsvendor problem laboratory experiment. Experimental 

results show that, despite the Newsvendor problem’s simple structure, individuals systematically deviate 

from the expected profit-maximizing quantity (e.g., Benzion et al., 2008; Bolton & Katok, 2008; Bostian 

et al., 2008). As described by Schweitzer and Cachon (2000), “subjects consistently ordered amounts 
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lower than the expected profit-maximizing quantity for high-profit products and higher than the 

expected profit-maximizing quantity for low-profit products” (p. 418). This systematic bias is known as 

pull-to-center behavior (Bostian et al., 2008). 

Given the pervasiveness of pull-to-center behavior (e.g., De Véricourt et al., 2013; Kremer et al., 

2010; Moritz et al., 2013), additional lab experiments have explored different de-biasing mechanisms. 

For example, motivated by the theory that feedback on foregone options can help learning process 

(Brown, 1951), multiple authors tested the effect of experience and feedback on subjects’ performance 

(Bolton & Katok, 2008). Results show that allowing subjects to make ordering decisions during multiple 

periods and providing individuals with an improved outcome feedback usually leads to ordering 

decisions that are closer to the optimal inventory ordering quantities (Benzion et al., 2008; Bolton & 

Katok, 2008; Bostian et al., 2008).  

Another common bias presented in behavioral experiments of the Newsvendor problem is demand 

chasing. Demand chasing is the propensity of adjusting ordering decisions towards the prior observed 

demand. In their seminal paper, Schweitzer and Cachon (2000) claim that it is more likely that subjects 

adjust their order quantities toward the prior demand realization than not. Benzion et al. (Benzion et al., 

2008) presented the same results even under different demand distributions. Under different profit 

conditions, Moritz et al. (2013) found that subjects with low cognitive reflection scores show stronger 

demand chasing than subjects with high cognitive reflection scores. 

In order to explain subjects’ behavior under different Newsvendor settings, different structural 

models have been proposed and estimated. For example, Bostian et al. (Bostian et al., 2008) explored 

anchoring and adjustment models. Ho et al. (2010) explored a reference dependence model that includes 

asymmetric psychological costs of leftovers and shortages in a multi-location Newsvendor setting. 

Becker-Peth et al. (2013) explored a behavioral model that includes anchoring, loss aversion and mental 

accounting for designing better buyback contracts. These different models help better understand how 

different behavioral factors take place under different situations. 

Previous research in behavioral operations on the Newsvendor problem has focused mainly on 

describing decision-making biases, testing different de-biasing mechanisms and deriving heuristics that 

aim to explain subjects’ decisions in a single actor problem (Croson & Ren, 2013). However, the 
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understanding of the interactions among multiple subjects have been barely studied. A couple of 

exceptions are the research done by Becker-Peth et al. (2013) where they analyze buyback contracts for 

behavioral Newsvendors; and the research done by Ovchinnikov et al. (2015), where they describe the 

behavioral aspects of two Newsvendors under competition.  

Analyzing the interactions and collective action among multiple subjects and understanding 

subjects’ behaviors requires also understanding the difficulty for people to reach common goals (Olson, 

1965). Ostrom (1990, 2000) explains that individuals neither apply nor learn Nash equilibrium strategies 

when they face different kind of dilemmas, but they rather use other types of (behavioral) models, that 

usually lead to non-cooperative behaviors (Cardenas, 2000). However, biases of these behavioral models 

can be reduced by including Face-to-Face communication as a coordination mechanism that creates a 

trusty environment that reduces non-cooperative behaviors (Ahn et al., 2011; Castillo & Saysel, 2005; 

Ostrom, 1998). 

I contribute to the literature of Behavioral Operations by experimentally exploring the effect of 

transshipments on multi-Newsvendor system. Whereas it is likely that the Newsvendor problem with 

transshipments will affect subjects’ ordering decisions compared to single Newsvendor setting, the 

inclusion of subjects’ interactions make it difficult to determine the magnitude and direction of the 

effects of each variable. Therefore, this chapter is exploratory in this regard. 

In particular, the main questions this chapter aims to answer stem from the research gaps briefly 

described above, and can be summarized in: (i) Are Newsvendors, in a transshipment setting, prone to 

the common biases observed in Newsvendor setting? (ii) Are Newsvendors, in a transshipment setting, 

prone to other biased inventory ordering behaviors not previously observed in Newsvendor settings? 

(iii) How previously proposed behavioral models explain ordering behavior in a Newsvendor setting 

with transshipments? (iv) How do different levels of communication among Newsvendors (in a 

transshipment setting) affect inventory-ordering behaviors? (v) How should a Newsvendor strategically 

respond to another Newsvendor strategy? 
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4.3. Analytical Background 

4.3.1. Isolated Newsvendor 

The Newsvendor problem characterizes situations where a manager has to make an inventory decision 

before a realization of an unknown demand occurs, and where both leftovers and shortages are costly 

(Eeckhoudt et al., 1995; Schweitzer & Cachon, 2000).Therefore, the basic Newsvendor problem focuses 

on minimizing the expected cost function given by the following expression:  

ሿܥሾܧ  ൌ ௢ܥ	 න ሺܳ െ ܦሻ݀ܦሻ݂ሺܦ ൅ ௨ܥ න ሺܦ െ ܳሻ݂ሺܦሻ݀ܦ
ஶ

ொ

ொ

଴
 (4.1)

where Q is the Newsvendor ordering decision, f is the probability density function of demand D, 

and Co and Cu are the costs associated with over-ordering and under-ordering, respectively. The first-

order condition of (1) leads to the optimal decision Q* of a classic Newsvendor problem. This optimal 

solution is a base-stock policy that provides a direct relationship between the overage/underage cost 

ratio and the probability of overestimating D at the optimum (Cachon & Lariviere, 1999a). It is well 

known that the optimal inventory order quantity Q* is given by the critical fractile solution: 

 Fሺܳ*ሻ = 
௨ܥ

௢ܥ + ௨ܥ
 (4.2)

where F is the cumulative distribution function of demand. This critical fractile is commonly used 

to classify products; a high-profit product is considered when ܥ௨/(ܥ௨+ܥ௢) ≥ 0.5, and a low-profit 

product is considered when ܥ௨/(ܥ௨+ܥ௢) ≤  0.5 (Schweitzer & Cachon, 2000). 

4.3.2. Newsvendor problem with transshipments 

Of particular interest for this chapter are extensions to Newsvendor problem with transshipments. The 

Newsvendor model provides the basis of most existing literature on transshipment (Rudi et al., 2001). 

The sequence of events in a transshipment problem under complete pooling occur in the following order: 

(i) Newsvendors place orders, (ii) Supplier supplies each Newsvendor orders, (iii) Final customer 

demand takes place, (iv) Demand is satisfied, and (v) Potential transshipments among Newsvendors and 

additional final customer demand satisfaction take place. Figure 4.1 represents the four scenarios that 

both retailers could face during a selling season. The X- and Y- axes represent the potential final 

customer demand faced by each Newsvendor (D1 and D2) and q1 and q2 are the ordering decisions placed 
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by each Newsvendor before the beginning of the selling season. In sector I and II, both Newsvendors 

face surplus and shortage, respectively; hence, transshipments are not feasible. In sector III, some 

transshipment are feasible from one Newsvendor to (completely) satisfy the shortage faced by the other 

retailer. Finally, in sector IV, some transshipments are feasible from one Newsvendor to partially satisfy 

the shortage faced by the other Newsvendor (Krishnan & Rao, 1965; Rudi et al., 2001). 

 

Figure 4.1. Transshipments scenarios 

Now, taking advantage of the optimal solution of a typical Newsvendor problem and the potential 

transshipment scenarios explained in Figure 4.1, I can redefine the Co and Cu for a transshipment 

problem as: 

௢ܥ ൌ ሺܿ െ ܾሻ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൏ ଵሻݍ ൅ ሺݐ െ ݎ ൅ ܿሻ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൏  ଵሻ (4.3)ݍ

௨ܥ ൌ ሺݎ െ ܿሻ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൐ ଵሻݍ ൅ ሺݐ െ ܿ ൅ ܾሻ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൐  ଵሻ (4.4)ݍ

Where, c is the unit cost, b is the salvage value, t is the transshipment cost and r is the unit revenue. 

Integrating these terms into the critical ratio, simplifying and rearranging leads to a critical ratio for a 

Newsvendor problem with transshipments when the locations are identical in their cost parameters 

(Krishnan & Rao, 1965). This gives the best response order quantity of Newsvendor 1 (ݍଵ
∗) as a function 

of ݍଶ (See Appendix 4.1 for further details on this formulation). 

ଵݍ 
∗ ൌ ଵܨ

ିଵ ቆ
ݎ െ ܿ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ ଵݍଵଶሺܨ

∗ ൅ ଶሻݍ
ݐ

ቇ (4.5)

Where F1 and F12 are D1’s and (D1 + D2)’s cumulative density distribution. Equation 3 on Dong 

and Rudi (2004) presents an equivalent expression for equation (4.5) (although they made the 

mathematical deduction directly from a retailers’ profit function). Robinson (1990) proves that this 

retailer problem is piece-wise linearly concave in the order quantities, therefore the problem can be 
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solved using the first order condition of the retailers profit function with respect to the order quantities. 

The solution of this first order condition lead to the critical fractile presented on equation (4.5). To assure 

complete coordination between these two independent and symmetrical Newsvendors, the first best 

orders (the optimal Newsvendor order quantities that maximize the overall system profit) can be 

obtained making the critical fractile of both Newsvendors equivalent (Dong & Rudi, 2004; Krishnan & 

Rao, 1965). Figure 4.2 presents an example of (i) the best response polices for each Newsvendor as a 

function of the decision of the other Newsvendor (e.g., q1*(q2)), and (ii) the Nash Equilibrium (first best) 

solutions. The Nash equilibrium is located where the Newsvendor-1’s best response (q1*(q2)) crosses 

Newsvendor-2’s best response (q2*(q1)).  

  

Figure 4.2. Transshipments best response policy and Nash equilibrium order  

These benchmarks allow comparing the performance of subjects’ ordering decisions in any 

experimental setting. Notice that the Nash equilibrium (q1*(q2*)) does not necessarily coincide with the 

optimal solution obtained for the isolated Newsvendor (ܳ*). 

4.4. Base Case Experiment (BC): Human vs. Human 

This experiment allows investigating if the typical Newsvendor biases (pull-to-center, demand chasing 

and asymmetric reaction to over- and under-ordering) under two profit conditions: low profit (LP) and 

high profit (HP) are still present in a decentralized supply chain composed of one computerized supplier 

and two independent Newsvendors. In this system, the supplier has enough capacity to supply 

Newsvendor’ orders before the final customer demand is known. Newsvendors face the same cost and 

stochastic demand structures and they sell an identical product under a complete pooling policy. Figure 

4.3 shows the structure of the system, where the solid lines indicate product flow and the dashed lines 

indicate the information (orders) flow. 
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Figure 4.3. Structure for a single-supplier multiple-Newsvendor supply chain with 

transshipments  

4.4.1. Design of the BC experiment 

The experiment uses a set of parameters and a design used in previous experiments. Each Newsvendor 

faces a final demand D that follows an uniform distribution D ~ U[1, 100] with integer values. Therefore, 

(D1 + D2)’s cumulative density distribution will be a triangular distribution, which will be easy to 

manage for estimating F12 in equation (4.5). The unit revenue r is 12 $/item. Leftovers at the end of each 

round will be lost (b=0). The unit cost (c) determines the two treatment conditions analyzed: the first 

treatment (T1) considers a unit cost (c) of 2 $ in High Profitability and the second treatment (T2) 

considers a unit cost of 10 $/item in Low Profitability. Transshipment cost (t) is 1$/item, and will be 

assumed by the retailer receiving the items. It is common to fix the transshipment cost using direct 

negotiation between the retailers (Rudi et al., 2001); however, I fixed the transshipment cost in our 

experiments, which allow me to focus in understanding the behavioral aspects of ordering decisions, 

isolating it from the subgame involved in the pricing strategies among the Newsvendors. 

I follow the standard experimental economics protocol to guide the laboratory (Friedman & 

Cassar, 1995; Friedman & Sunder, 2004; Smith, 1982). I implemented the experimental treatments in a 

management flight simulator, using the computer simulation software Z-tree (see Appendix 4.2 for an 

example of the interface designed in this software) (Fischbacher, 2007). For each BC treatment, I 

recruited 32 undergraduate students in management and industrial engineering at the Universidad 

Nacional de Colombia. Participants were told that for their participation in the experiment, they would 

earn a show-up fee of COP$10.000 (approximately US$5) and a variable amount contingent on their 

performance, between COP$0 and COP$30.000 (US$0 - US$15) (Induced Value theory - Smith’s 
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(1976)). Subjects were randomly assigned to treatments following a between-subjects design, i.e. a 

subject takes part in one treatment only, ruling out confounding factors due to order-of-presentation 

effects. Upon arrival, participants were given a set of instructions (see Appendix 4.3 for an example) 

describing the specific experimental treatment and they were allowed to ask questions and to test the 

computer interface, before the official experiment started. Subjects were paired with another subject in 

the room (Human vs. Human), such that both of them were making decisions at the same market and 

with the same (virtual) supplier. Then, a 15-minutes briefing to the participants took place. During the 

briefing section, a moderator read loudly the instructions and then made a small presentation about the 

main features of the system. Then, subjects were asked to answer 10 control questions about different 

scenarios that reflected potential outputs they could face during the official experimental session. After 

the control questions, subjects took few minutes to familiarize with the simulator and understand the 

experiment’s flow.  

After the warm up section, the official experimental session started. Subjects played the role of 

one of the Newsvendors placing orders to the supplier and trying to maximize their cumulative profits 

at the end of the experiment (30 independent periods). Each period, subjects had to choose an order 

quantity q of a general item, which arrived before the start of the next selling period. Transshipments 

among subjects were automatically generated by the system at the end of each period. Subjects had full 

information about the experimental parameters and were able to see a result screen showing full 

information from past periods. This full-information approach tries to simulate the role of access to point 

of sale (POS) information, commonly used in actual supply chains where transshipments are allowed. 

The use of POS data has been demonstrated to improve supply chain performance (Croson & Donohue, 

2003; Lee et al., 1997a). The results screen showed to each subject the information about past orders, 

profits, final customer demands, units discarded, unsatisfied demand and units transshipped from both 

players. 

4.4.2. Analyses and results of the BC experiment 

4.4.2.1. Analytical estimations 

Using the experimental parameters presented in the previous section, the optimal ordering for an isolated 

Newsvendor (ܳ௜
∗) are 83 and 17 units for a high profit and low profit conditions, respectively. Similarly, 
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the standard theory of the Newsvendor problem facing transshipments provide estimations for Nash 

equilibria that let estimate the potential biases on subjects ordering decisions in each treatment. The 

Nash equilibria ordering decision (Nash) are 72 and 28 units for a high profit and low profit conditions, 

respectively. Figure 4.4 presents a summary of the main theoretical estimations. It shows that under both 

high and low profit conditions, the Nash equilibria are located somewhere between the optimal isolated 

Newsvendor Orders ܳ௜
∗ (83 and 17 units) and the mean final customer demand (50 units). This result is 

consistent with Proposition 1 in Dong and Rudi (2004), and the rationale behind this result is that 

transshipments allow a better match between supply and demand, which decreases the need of over- or 

under-ordering, which moves the Newsvendor orders towards the mean. 

 
a)     b) 

Figure 4.4. Optimal isolated Newsvendor orders, best response function and Nash equilibria for 

a) High Profit, and b) Low Profit conditions 

4.4.2.2. Behavioral analyses 

Table 4.1 presents a summary of different performance measures used to evaluate subject’s decisions. 

First, as a means of comparison against the theoretical benchmarks (Nash equilibria), I compute the 

average orders during the 30 experimental periods for all subjects in each experimental treatment. 

Results in both the high (T1) and low (T2) profit conditions show that subjects make ordering decisions 

that are distant to the Nash equilibria. In the high profit condition, subjects order significantly less than 

estimated Nash equilibrium (p-value<.01), and in the low profit condition, subjects order more that the 

estimated Nash equilibrium (p-value<.01).  
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In addition, in order to define a unit of measure that defines the deviations of the decisions made 

by both Newsvendors in a system, I compute the Euclidean distance of subjects’ decisions to the Nash 

equilibrium (Euclidean distance t = ܦܧ௧ ൌ ඥሺݍଵ
∗ሺݍଶ

∗ሻ െ ଵ௧ሻଶݍ ൅ ሺݍଶ
∗ሺݍଵ

∗ሻ െ  ଶ௧ሻଶ ). Table 4.1 shows thatݍ

the average Euclidean distance is significantly higher than zero in both treatments, meaning not only 

that subjects made decisions that are far from optimum (on directions toward the mean final customer 

demand) but also that they do not coordinate among themselves trying to generate average orders that 

are closer to the Nash equilibria. These results evidence the presence of the pull-to-center behavior 

previously encountered in traditional Newsvendor experiments (Bolton & Katok, 2008; Bostian et al., 

2008; Schweitzer & Cachon, 2000). Moreover, in this system – allowing transshipments among multiple 

Newsvendors –, the Euclidean distances do not show difference in performance between the high and 

low profit condition (p-value = 0.92, t =.1063). This means that there is a symmetric deviation towards 

the mean for high and low profit conditions. 

Table 4.1. Performance measures for treatments T1 and T2 

 T1 T2 
 High Profit Low Profit 

Av. Orders 
54.34 
(0.56)a 

46.02 
(0.58) 

Av. Euclidean Distance (ED)  
31.21 
(0.50) 

31.13 
(0.57) 

Av. Transshipments (T) 
0.62 

(0.09) 
0.47 

(0.07) 

Av. Profit – Subjects (P) 
353.17 
(6.77) 

-50.90 
(6.05) 

Av. Units Discarded (UD) 
15.80 
(0.64) 

11.87 
(0.55) 

Av. Customer Satisfaction (CS) 
0.88 

(0.01) 
0.82 

(0.01) 
Standard Errors in parentheses. 

Figure 4.5 shows the average decisions (blue area) for each subject and the Nash equilibria (point 

where the two best response lines cross each other) for the high and low profit conditions. The blue area 

shows that in general the average orders placed by the retailers are closer to the mean demand (red dot) 

than to the Nash equilibrium. 

Table 4.1 also provides descriptive information about the average profits and number of 

transshipments in each specific treatment. In addition, measures of the average units discarded and 

customer satisfaction (measured as the fraction of final customers satisfied) are provided in Table 4.1. 
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As expected, the average units discarded and the average customer satisfaction are higher in a high profit 

condition (T1). This happens because subjects’ average orders in T1 (high profit condition) are higher 

than the mean (expected) demand. Therefore, it is more likely that subjects would be able to satisfy more 

customers at end of each experimental period. 

    

a)      b) 

Figure 4.5. Nash equilibrium, mean demand (red dot) and average retailers’ orders (blue area) 

for a) T1, and b) T2 

Finally, I conduct an econometric analysis using a panel data approach to evaluate how orders 

evolve over time. I test for the presence of demand chasing behavior and the effect of last period’s 

overage and underage on subjects’ decisions. I use a parsimonious model expressing the relation 

between subjects’ decisions (q) and a set of predictors: lagged demand (ܦ௜,௧ିଵ), lagged overage (ܱݒ௜,௧ିଵ) 

and lagged underage (ܷ݊௜,௧ିଵሻ amounts (Ovchinnikov et al., 2015): 

௜௧ݍ  ൌ ଴௜ߚ ൅ ଵߚ ∙ ௜,௧ିଵܦ ൅ ଶߚ ∙ ௜,௧ିଵݒܱ ൅ ଷߚ ∙ ܷ݊௜,௧ିଵ ൅ ௜௧ (4.6)ߝ

Where ߝ௜௧ is the error term, and i and t are indexes for subjects and time, respectively. Analyses 

to the orders’ time series show they are stationary (Phillips-Peron test) and there is no evidence of 

autoregressive processes (based on the analysis of ACF and PACF graphs), therefore no lagged 

dependent variable is required in the model. Moreover, given the random assignment used in 

experiments, there is no expectation to have time-invariant omitted variables between subjects and, thus, 

fixed effects are not necessary. Consequently, and to allow for variation between subjects, I use a 

random effects intercept for the model. Results are shown in Table 4.2. Estimations of parameter ߚଵ are 
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positive and significantly higher than zero in both T1 (p-value<.01, t= 3.49) and T2 (p-value<.01, t= 

3.07), which reflects a clear evidence of demand chasing behavior. This means that subjects anchor their 

decisions in period t based on the observed demand in period t-1. In addition, the magnitude of ߚଶ and 

 ଷ are similar and significant (p-value<.05 in all cases) but their direction is opposite. In this case, theߚ

positive sign on ߚଶ means that the more units were discarded in period t-1, the more units subjects will 

order in period t, probably expecting a higher demand. Similarly, the negative sign on ߚଷ means that the 

more customers were unsatisfied in period t-1, the less units subjects will order in period t.  

The features of the final customer demand distribution could explain this behavior. When subjects 

perceive a low (high) final customer demand, leading to overage (underage) at the end of the period, 

subjects can –erroneously- assume that next period the demand will move on the opposite direction and 

they decide to increase (decrease) their orders. These results are consistent with previous behavioral 

studies on Newsvendor problems (Bolton & Katok, 2008; Bostian et al., 2008; Ovchinnikov et al., 2015).  

Table 4.2. Panel Data estimations for the BC treatments 

 T1 
High Profit 

T2 
Low Profit 

Fixed part  

 ૙ (Intercept)ࢼ
42.51† 
(2.43) 

34.75† 
(2.18) 

 (௧ିଵ	ܦ) ૚ࢼ
0.24† 
(0.04) 

0.26† 
(0.04) 

 (௧ିଵ	ݒܱ) ૛ࢼ
0.11† 
(0.04) 

0.10† 
(0.04) 

 ௧ିଵ)	૜ (ܷ݊ࢼ
-0.16† 
(0.05) 

-0.18† 
(0.05) 

Stochastic part   

Std. Dev. Intercept 5.26 5.11 

Std. Dev. Error 15.85 16.50 

AIC 8098 8171 

Standard Errors in parentheses; † p-value < .01. 
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Based on the results found for these BC treatments, I argue that in the Human vs. Human setting, 

the systematic biases observed in a typical Newsvendor problem would persist in a Newsvendor problem 

with transshipments, both in the high- and low-profit conditions (T1 and T2). 

4.4.2.3. Development of Behavioral Models 

As in any typical Newsvendor setting, subjects in the experiments with transshipments do not make 

ordering decisions following the theoretical model. Therefore, the objective in this section is to use 

different behavioral models that have been used in recent behavioral operations studies to explain the 

deviation observed in subjects’ decisions. I consider three parsimonious behavioral models that allow 

us to explain some features hidden in the data: (i) anchoring toward the mean (e.g., Benzion et al., 2008; 

Bostian et al., 2008), (ii) loss aversion from leftover inventory (e.g., Becker-Peth et al., 2013; Chen & 

Davis, 2014; Davis, 2015), and (iii) psychological disutility (Ho et al., 2010). Given the nature of the 

behavioral models, I assume participants are fully rational and make ordering decisions following their 

individual rather than economical preferences. To adapt each of the behavioral models to the particular 

system, I build on the formal theoretical solution presented in equation (4.5) and then apply algebra to 

determine the specific model structure. 

Anchoring toward the mean: In this model, I set α as the degree of subjects’ mean demand 

anchoring. The model allocates a weight of α (0 ൑ α ൑ 1) to the expected final customer demand μ and 

a weight of (1 - α) to the theoretical solution. Therefore, the closer the value of α to zero, the lower the 

anchoring toward the mean. 

ଵݍ 
∗= ሺ1 - αሻ ∗ 1ܨ

െ1 ቆ
ݎ െ ܿ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ 1ݍ12ሺܨ

∗ ൅ 2ݍ
∗ሻ

ݐ
ቇ+ α μ (4.7)

Loss aversion: In this model, β (൒ 1) is defined as the degree of subjects’ loss aversion towards 

leftover inventory. Building on the behavioral model proposed by Becker-Peth et al. (2013), it is possible 

to redefine equation (4.2) in terms of the loss aversion parameter as:  

 Fሺܳ∗ሻ = 
௨ܥ

௢ܥ + ௨ܥ ൅ ݌ ∗ ሺߚ െ 1ሻ
 (4.8)

Then, using a similar process as the one explained in section 3.2, it is possible to arrive to a loss 

aversion model for a Newsvendor problem with transshipments. In this case, the closer the value of β to 

1, the lower the loss aversion. 



98 
 

ଵݍ 
∗ ൌ ଵܨ

ିଵ ቆ
ݎ െ ܿ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ ଵݍଵଶሺܨ

∗ ൅ ଶݍ
∗ሻ

ݐ ൅ ݌ ∗ ሺߚ െ 1ሻ
ቇ (4.9)

Physiological disutility: In this model, ߜ௢ (൒ 0) and ߜ௨ (൒ 0) represent the psychological per-unit 

cost of over- and under-ordering, respectively. The behavioral model for an isolated Newsvendor 

accounting for these psychological costs is defined as (Ho et al., 2010): 

 Fሺܳ∗ሻ = 
௨ܥ ൅ ௨ߜ

௢ܥ + ௨ܥ ൅ ௢ߜ ൅ ௨ߜ
 (4.10)

Equation (4.11) presents the transformation of a Newsvendor problem with transshipments to a 

behavioral model. If ߜ௢>ߜ௨ (or ߜ௨>ߜ௢), it would evidence the asymmetric effect of over- and under-

ordering on subjects decisions under each profit condition. 

ଵݍ 
∗ ൌ ଵܨ

ିଵ ቆ
ݎ െ ܿ ൅ ௨ߜ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ ଵݍଵଶሺܨ

∗ ൅ ଶݍ
∗ሻ

ݐ ൅ ௢ߜ ൅ ௨ߜ
ቇ (4.11)

4.4.2.4. Estimation of the Behavioral Models 

I used the data of both experimental treatments (T1 and T2) to estimate the parameters of each behavioral 

model because the behavioral parameters are specified to be common across profitability conditions (Ho 

et al., 2010). Then, I can structurally estimate the behavioral parameters following a maximum 

likelihood estimation (MLE) approach (Becker-Peth et al., 2013; Ho et al., 2010; Olivares et al., 2008). 

It is assumed that the order quantities placed by participants have a mean ݍଵ
∗ (defined in each structural 

model) and subjects exhibit errors in their decision that are normally distributed with mean zero and 

standard deviations ߬ு௉ and ߬௅௉ for Treatment 1 (HP) and Treatment 2 (LP), respectively. Equation 

(4.12) shows a representation of the likelihood function used to estimate the behavioral models. 

ଵݍ൫ܮ 
∗|ܿ௜, ,ݐ ,ݎ ܾ, ,࢖ ,ܲܪ߬ ൯ܲܮ߬ ൌ ෑ݃൫ݍ௜; ܿ௜, ,ݐ ,ݎ ܾ, ,࢖ ,ܲܪ߬ ൯ܲܮ߬

௡

௜ୀଵ

 (4.12)

Where g(.) denotes the probability density function for the order quantity ݍ௜ made by an individual 

i given the treatment parameters ܿ௜, ,ݐ ,ݎ ܾ, ,࢖ ߬ு௉, ߬௅௉, where  ࢖ represents the set of behavioral 

parameters in each behavioral model: α, β or ߜ௢ and ߜ௨ (Davis, 2015). 

Table 4.3 presents the estimations for the parameters of each behavioral model. In the first 

behavioral model, the parameter ߙ is significantly different from zero (p-value=.000) and with an 

estimated value close to one. Despite the fact that the Nash equilibrium in both treatments is located in 
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a place between the optimal isolated Newsvendor order and the mean demand, subjects still display a 

strong tendency to anchor their decisions toward the mean demand and place their order far from the 

Nash equilibrium.  

Table 4.3. Structural estimation of Behavioral Models 

Estimators Anchoring Loss 
Aversion 

Physiological 
disutility 

α 
.87† 

(0.01) 
  

β 
 1.026† 

(0.00) 
 

 ࢕ࢾ
  3.08† 

(0.36) 

 ࢛ࢾ
  3.22† 

(.37) 

 ࡼࡴ࣎
17.29† 
(0.55) 

17.32† 
(0.96) 

17.26† 
(0.39) 

 ࡼࡸ࣎
17.74† 
(0.39) 

38.97† 
(0.88) 

17.73† 
(0.55) 

-LL 8496.0 9277.7 8493.1 
Standard Errors in parentheses; † p-value < .01. 

For the loss aversion model, β parameter is significantly higher than 1 (p-value=.000), which is 

the expected value for the theoretical benchmark for a person with a neutral preferences towards losses. 

This means that subjects experience loss aversion from leftovers, even if the strength of the effect is low 

(β close to 1). This low strength of the loss aversion from leftovers can be attributed to the presence of 

transshipments in the system. This is, given that a subject could transship (if needed) some of the leftover 

units to the other Newsvendor at the end of each simulated period, subjects become less afraid of 

leftovers and they order more than what they would have ordered in a system without transshipments. 

For the psychological disutility model, results show that ߜ௨ > ߜ௢ > 0. In each period, every unit 

that subjects could have sold but were not available to supply to the final customer leads to a 

psychological cost of 3.22 points (p-value=.000). Similarly, every unit bought and not sold in each 

period brings a psychological cost of 3.08 (p-value=.000). This means that subjects on average prefer 

to have extra units at the end of each period than having unsatisfied final customer demand. This result 

shows a switch in the direction of the psychological disutility estimations compared with those obtained 

in previous studies where the psychological per-unit cost of over-ordering was lower than the under-
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ordering cost (Ho et al., 2010). This finding about the switch in the importance of the psychological cost 

is consistent with the results explained in the loss aversion model. Subjects prefer to place higher orders 

in case they face a high final customer demand, but if the final customer demand is lower than their 

orders, decision makers still expect to transship some units to the other Newsvendor, incurring in zero 

cost for those transshipped units. Consequently, subjects allocate a higher psychological cost to under-

ordering.   

4.5. Practical improvements to the system 

Adding to the explorative nature of this chapter, this section evaluates two practical strategies that could 

improve decision-makers’ profits in a Newsvendor problem with transshipments. These strategies 

consist of: (i) face-to-face communication (Ahn et al., 2011), and (ii) different behavioral best response 

heuristics (Becker-Peth et al., 2013; Ovchinnikov et al., 2015). In the next subsections, I describe the 

experimental treatments and results of these two practical strategies. 

4.5.1. Communication Experiment (C): Human vs. Human  

Although access to POS data improves supply chain performance, this full information availability does 

not guarantee cooperation among agents. I build on the ideas of Cardenas (2000) and Ostrom (1998) 

and evaluate the effect of face-to-face communication as a mechanism that creates a trusty environment 

for reducing non-cooperative behaviors (Ahn et al., 2011; Castillo & Saysel, 2005). Therefore, I expect 

that the inclusion of face-to-face communication to the BC treatments would reduce the systematic 

biases discussed in the previous section. 

4.5.1.1. Design of the C experiment 

This experiment builds on the results obtained from the BC experiment. I consider a full experimental 

design, with four experimental treatments – two different profit conditions (High and Low) and two 

different kind of communication conditions (No Communication and Face-to-Face Communication). 

Table 4.4 specifies all treatments conducted in this C experiment and the number of subjects used in 

each treatment. 

For the No Communication treatments, I use the data and analyses made in the BC experiments: T1 and 

T2. For the Face-to-Face communication treatments (T3 and T4), I ran a new set of experiments using 
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the same set of parameters used in the BC experiments, which guarantees that the estimation of the first 

best strategies for the high and low profit conditions remain unchanged. 

Table 4.4. Experimental treatments for the C experiment 

 Profit Conditions 

 High Low 

No Communication 
T1 

(n=32) 

T2 

(n=32) 

Face-to-Face Communication 
T3 

(n=28) 

T4 

(n=26) 

 

In addition, I followed an identical experimental protocol and briefing process as the used in the 

BC experiment. However, to facilitate the communication between participants in the same 

experimental market, a small modification in the experimental process was implemented. Upon arrival 

to the experimental session, subjects participating in the same market were sat next to each other to 

allow face-to-face communication. During the experiment, before registering the ordering decisions in 

the computer, subjects were allowed to talk with the other Newsvendor in the market for a minute. This 

minute of communication provides an opportunity for discussing or creating transshipment strategies 

that could work for the benefit of the whole system. Again, the experiment ran during 30 independent 

periods and subjects had full information about the system outputs (demand, orders placed, profits, 

demand unsatisfied, units discarded, etc.) at the end of each period. 

4.5.1.2. Analyses and results of the C experiment 

Table 4.5 presents a summary of the different performance metrics used to evaluate subjects’ biases in 

treatments T3 and T4. Despite subjects in the same experimental market were allowed to communicate 

with each other during the experiment, results in both T3 and T4 show that subjects still make ordering 

decisions that are distant to the Nash equilibria. Both the average orders and the Euclidean distance 

show that the pull-to-center behavior remains. Now, focusing on the effect of communication on 

subjects’ performance, for the high profit treatments (T1 vs. T3) results show that there are not 

significant differences in the average orders (ߤ௤,்ଵ െ ௤,்ଷߤ ൌ .06, ݐ ൌ െ0.711	, ݌ ൌ .48) and average 
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Euclidean distance (ߤா஽,்ଵ െ ா஽,்ଷߤ ൌ 3.44, ݐ ൌ െ.887, ݌ ൌ .38). However, there is an increase in the 

units transshipped (்ߤ,்ଵ െ ଷ்,்ߤ ൌ െ	.26, ݐ ൌ 	െ1.75, ݌ ൌ .07) keeping similar customer satisfaction 

஼ௌ,்ଵߤ) െ ஼ௌ,்ଷߤ ൌ ݐ	00. ൌ 0.11	, ݌ ൌ .91), units discarded (ߤ௎஽,்ଵ െ ௎஽,்ଷߤ ൌ െ.77, ݐ ൌ െ.79	, ݌ ൌ

.43) and average profits (ߤ௉,்ଵ െ ௉,்ଷߤ ൌ 3.44, ݐ ൌ .35	, ݌ ൌ .73). Therefore, it seems that during the 

communication part of the experiment, subjects were able to agree on a strategy where one of them 

places a higher order than the other (higher order variability), so that they can increase the number of 

transshipments but keeping similar average orders. 

Table 4.5. Performance measures for treatments T3 and T4 

 
T3 T4 

 

Communication 

- HP 

Communication - 

LP 

Av. Orders 
54.94 

(0.63) 

41.83 

(0.62) 

Av. Euclidean Distance (ED ) 
31.86 

(0.53) 

21.79 

(0.53) 

Av. Transshipments (T) 
0.88 

(0.12) 

0.69 

(0.11) 

Av. Profit – Subjects (P) 
349.73 

(7.20) 

-36.18 

(6.19) 

Av. Units Discarded (UD) 
16.57 

(0.72) 

9.93 

(0.57) 

Av. Customer Satisfaction (CS) 
0.88 

(0.01) 

0.78 

(0.01) 

Standard Errors in parentheses. 

For the low profit treatments (T2 vs. T4) results show a significant reduction both in the number 

of average orders (ߤ௤,்ଶ െ ௤,்ସߤ ൌ 4.19, ݐ ൌ 4.93	, ݌ ൏ .01) placed by the subjects during the 

experiments and in the Euclidean distance (ߤா஽,்ଶ െ ா஽,்ସߤ ൌ 3.57, ݐ ൌ 4.91, ݌ ൏ .01) to the Nash 

equilibrium. Subjects in the low profit condition also used communication as a way to improve 

coordination and increase the number of units transshipped (்ߤ,்ଶ െ ସ்,்ߤ ൌ .22, ݐ ൌ 	െ1.69, ݌ ൌ .09). 

Contrary to the high profit condition, subjects in T4 were able to increase their average profit (ߤ௉,்ଶ െ

௉,்ସߤ ൌ െ14.72, ݐ ൌ െ1.70	, ݌ ൌ .09) even if they had to forgo a small share of customer satisfaction 
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஼ௌ,்ଶߤ) െ ஼ௌ,்ସߤ ൌ .04, ݐ ൌ 2.75	, ݌ ൌ .01). Thus, for the low profit condition, the use of 

communication has a positive effect on subjects’ performance, reducing the pull-to-center behavior. 

Figure 4.6 shows the distribution of the average orders for each pair of subjects and the Nash 

equilibria for the high and low profit conditions allowing Face-to-Face communication. The blue area 

shows that in general the average orders start to move closer the Nash equilibria compared to the results 

observed in Figure 4.5. In fact, for the low profit condition, Figure 4.6 shows that in some experimental 

markets, subjects were placing average decisions that are really close to the Nash equilibrium. 

  

a)      b) 

Figure 4.6. Nash equilibrium, mean demand (red dot) and average retailers’ orders (blue area) 

for a) T3, and b) T4 

Finally, I test for the presence of demand chasing behavior and the effect of last period’s overage 

and underage on subjects’ decisions when they were allowed to communicate. I use the same 

parsimonious model presented in equation (4.6) and Table 4.6 presents the estimations. For the high 

profit treatment (T3), neither of the ߚ parameter of interest in significant (p-value>.1 in all cases). 

Therefore, the use of communication allowed subjects to make orders in period t that are not anchored 

towards the outputs observed in period t-1. For the low profit treatment (T4), communication among 

subjects allowed a significant reduction on the anchoring towards the last period outputs (ߚଶ,்ଶ െ

ଶ,்ସߚ ൌ .11, ݐ ൌ 1.81	, ݌ ൌ .04); however, in this case, subjects still present (weakly) the biases 

observed in a traditional Newsvendor setting. These results are also consistent with previous studies, 

where there is an asymmetric demand chasing behavior (Bolton & Katok, 2008). 
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Based on the results shown for these C treatments, I argue that including communication in a 

Newsvendor setting with transshipments reduces the systematic biases observed in a typical 

Newsvendor problem, especially for a low profit condition. Communication creates a trusty 

environment that increases the cooperative behavior of subjects, which is aligned with previous 

collective action and communication studies (Ahn et al., 2011; Cardenas, 2000; Castillo & Saysel, 2005; 

Ostrom, 1998). 

Table 4.6. Panel Data estimations for the C treatments 

T3 
High Profit 

T4 
Low Profit 

Fixed part 

 ૙ (Intercept)ࢼ
55.56† 
(2.85) 

36.00† 
(2.44) 

 (௧ିଵ	ܦ) ૚ࢼ
-0.01 
(0.05) 

0.15† 
(0.05) 

 (௧ିଵ	ݒܱ) ૛ࢼ
-0.05 
(0.05) 

0.05 
(0.05) 

 ௧ିଵ)	૜ (ܷ݊ࢼ
0.07 

(0.05) 
-0.12† 
(0.05) 

Stochastic part 
Std. Dev. Intercept 6.49 5.11 
Std. Dev. Error 17.18 16.50 
AIC 7227 8171 

Standard Errors in parentheses; † p-value < .01. 

4.5.2. Best Response Experiments (BR): Human vs. Computer  

In the previous experimental conditions, I was analyzing Human vs. Human experiments, trying to 

understand interactions and behavioral features of subjects’ decisions. In this part of the chapter, I build 

on the work done by Ovchinnikov et al. (2015), the parsimonious model proposed in equation (4.6) and 

the analytical model presented in equation (4.5) to create decision rules that can be used by a 

knowledgeable Newsvendor (in this case the computer) to estimate a best response order quantity. 

Hence, in this case I am proposing a Human (behavioral Newsvendor) vs. Computer (knowledgeable 

Newsvendor) experiments. I design different experimental treatments to analyze different strategies 

followed by the knowledgeable Newsvendor. These strategies are: 
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 Nash-Equilibrium Response: In this case, independently of the behavioral Newsvendor 

decisions, the knowledgeable Newsvendor will always order his individual first best order quantity.  

 Static Best Response: In this case, the experiment will be divided in two parts. In the first part 

(periods 1 to 30), the knowledgeable Newsvendor will use average order quantities obtained in the BC 

experiment together with the analytical model (equation (4.5)) to determine a global but constant 

ordering strategy (General Static Best Response - GSBR). Regardless of the behavioral Newsvendor 

decisions, during this first part of the experiment the knowledgeable Newsvendor will always place this 

GSBR order. In the second part (periods 31 to 60), the knowledgeable Newsvendor will compute the 

average orders placed by the behavioral Newsvendor during first part of the experiment (Human vs. 

GSBR) and, using equation (4.5), will determine a particular strategy for each behavioral Newsvendor 

(Particular Static Best Response - PSBR). Independently of the behavioral Newsvendor decisions, the 

knowledgeable Newsvendor will always place this new order quantity in the second part of the 

experiment. The computer automatically runs the transition from the first part to the second part; 

therefore, subjects do not perceive changes or delays during the experiment. 

 Dynamic Best Response: As in the Static Best Response case, the experiment is divided in two 

parts. In the first part (period 1 to 30), the knowledgeable Newsvendor builds on the results obtained 

from the BC experiments and takes advantage of the estimations obtained for the dynamic model 

(equation (4.6), and Table 4.2) to predict a generic dynamic Newsvendor behavior. After determining 

the behavioral Newsvendor behavior, the knowledgeable Newsvendor uses the analytical model 

(equation (4.5)) to determine a global but dynamic best response strategy (General Dynamic Best 

Response - GDBR) that can be used to estimate its decisions each period. These dynamic decisions are 

updated period by period based on the evolution of the main variables of the system (including the 

behavioral Newsvendor’s decisions). In the second part (periods 31 to 60), the knowledgeable 

Newsvendor uses the information from the first part of the experiment (Human vs. GDBR) to estimate 

the parameters of the dynamic model (equation (4.6)) for each behavioral Newsvendor. Then, using 

the analytical model (equation (4.5)) the knowledgeable Newsvendor determines a particular response 

strategy for each behavioral Newsvendor (Particular Dynamic Best Response - PDBR). This particular 
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strategy is computed period by period based on the evolution of the main variables in the dynamic 

model. 

4.5.2.1. Design of the BR experiment 

As in the C experiment, this design builds on the results obtained from the BC experiment. I consider a 

full experimental design, with eight experimental treatments – two different profit conditions (High and 

Low), the Human vs. Human interaction explained in the BC experiment and three different 

knowledgeable Newsvendor strategies (Nash-Equilibrium, Static Best Response and Dynamic Best 

response). Table 4.7 specifies all treatments conducted in this BR experiment and the number of subjects 

who participated in each treatment. 

Table 4.7. Experimental treatments for the BR experiment 

 Profit Conditions 

 High Low 

BC – Human vs. Human 
T1 

(n=32) 
T2 

(n=32) 

Nash-Equilibrium 
T5 

(n=30) 
T6 

(n=30) 

Static Best Response 
T7 

(n=24) 

T8 

(n=16) 

Dynamic Best Response 
T9 

(n=16) 

T10 

(n=16) 

For the experiments including any strategy of the knowledgeable Newsvendor, I use the same set of 

parameters, experimental protocol and briefing process as the one used in the BC experiment. However, 

in this case subjects in the experiments were not paired with another subject in the room, but they played 

individually in a market where the computer makes the decisions for the second subject (knowledgeable 

Newsvendor). In each treatment, the knowledgeable Newsvendor used a management science strategy 

to predict systematic regularities in the orders of the behavioral partner and built the corresponding 

decision model strategy (based on each treatment condition) to exploit the predictable irrationality of 

the subjects. The subjects in the experiment were thoroughly informed about the experimental setting. 

As in the BC experiment, subjects had full information about the system outputs (demand, orders placed, 

profits, demand unsatisfied, units discarded, etc.) at the end of each period. 
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4.5.2.1. Analyses and results of the BR experiment 

Table 4.8 and Table 4.9 present a summary of the different performance metrics used to evaluate 

subjects’ biases in treatments T5 to T10. In treatments T7 to T10, I separate the estimation in two parts 

(period 1 to 30 and period 31 to 60) to disentangle the effect of the General and Particular Best responses. 

Appendix 4.4 provides all the p-values from the t-tests comparing the performance measures among the 

different experimental treatments.  

High profit treatments: Table 4.8 shows that subjects’ average orders are significantly higher 

(closer to the Nash equilibrium) in T5, T7 and T9 than in T1 (ߤ௤,்ଵ െ  ௤,ሺ்ହ,்଻,்ଽሻ< 0, p-value<.05 inߤ

all cases). This means that assuming any of the proposed strategies for the knowledgeable Newsvendor 

makes the behavioral Newsvendor move his orders toward the Nash equilibrium. This result is also 

supported by the average Euclidean distance, where the distances are significantly closer to the Nash 

equilibrium in T5, T7 and T9 than in T1 (ߤா஽,்ଵ െ  ா஽,ሺ்ହ,்଻,்ଽሻ> 0, p-value<.05 in all cases), especiallyߤ

on the best response treatments (T7 and T9) where the knowledgeable Newsvendor assumes an active 

position in the experiment. Although subjects in the Particular Best Response treatments (PSBR and 

PDBR) seem to place higher average orders than subjects in the General Best Response treatments 

(GSBR and GDBR), these differences are not significant (ߤ௤,்଻ିଵ െ ௤,்଻ିଶߤ ൌ െ1.74,	t = -1.14, p = 

௤,்ଽିଵߤ ;254. െ ௤,்ଽିଶߤ ൌ െ.62,	t = -.79, p = .43). 

For these treatments, where the knowledgeable Newsvendor plays a role in the experiment, I make 

distinctions between the two types of actors (subjects and computer) in some of the performance 

measures. The average Transshipments In (Out) refers to the average number of transshipped units that 

the behavioral Newsvendor received (sent) from (to) the knowledgeable Newsvendor during the 

experiment. Results show that the number of transshipped units received by the behavioral Newsvendor 

(Transshipments In - Ti) are significantly higher in T5, T7 and T9 than in T1 (்ߤ,்ଵ െ  ,௜,ሺ்ହ,்଻,்ଽሻ< 0்ߤ

p-value<.05 in all cases) and the units sent to the knowledgeable Newsvendor (Transshipments Out - 

To) are significantly lower (்ߤ,்ଵ െ  ௢,ሺ்ହ,்଻,்ଽሻ> 0, p-value<.05 in all cases). These results reflect in்ߤ

part the strategies followed by the knowledgeable Newsvendor, who usually takes advantage of the pull-

to-center behavior presented by subjects and place higher ordering decisions. Placing higher orders 

decreases the probability of receiving transshipped units, while raising the probability of having extra 



108 
 

units at the end of the period, which can be send to the behavioral Newsvendor to increase the final 

customer demand satisfied. 

In addition, using any of the proposed strategies leads to higher profits both for the behavioral 

Newsvendor, who is able to satisfy more of his demand due to the units received from the knowledgeable 

Newsvendor, and for the knowledgeable Newsvendor, who takes advantage of subjects’ biases for 

increasing his own profits selling more units. Results indicate that in all cases the knowledgeable 

Newsvendor gets a higher profit than the behavioral Newsvendor (ߤ௉,ሺ்ହ,்଻,்ଽሻ െ -௉௖,ሺ்ହ,்଻,்ଽሻ< 0, pߤ

value<.05 in all cases) and that the average subjects’ profits in T7-2 and T9 are higher than that obtained 

in the Human vs. Human interaction in T1 (ߤ௉,்ଵ െ  ,௉,ሺ்଻ିଶ,்ଽሻ< 0, p-value<.05 in all cases). Finallyߤ

given the increase in the overall orders, the units discarded and the customer satisfaction also increase. 

Table 4.8. Performance measures for treatments T5, T7 and T9 – High Profit Treatments 

 T5 T7-1 T7-2 T9-1 T9-2 

 Nash GSBR PSBR GDBR PDBR 

Av. Orders - Subjects 
59.42 

(0.55) 

57.50 

(0.82) 

59.24 

(0.88) 

57.4 

(0.87) 

58.02 

(0.89) 

Av. Euclidean Distance (ED ) 
16.91 

(0.50) 

28.19 

(0.45) 

27.02 

(0.54) 

26.12 

(0.51) 

25.56 

(0.51) 

Av. Transshipments In (Ti) 
1.24 

(0.11) 

2.47 

(0.22) 

4.15 

(0.29) 

2.66 

(0.26) 

3.44 

(0.29) 

Av. Transshipments Out (To) 
0.04 

(0.02) 

0.02 

(0.01) 

0.11 

(0.04) 

0.08 

(0.04) 

0.01 

(0.01) 

Av. Profit – Subjects (P) 
363.73 

(07.25) 

369.60 

(9.47) 

377.92 

(8.97) 

385.60 

(11.56) 

386.89 

(10.67) 

Av. Profit – Computer (Pc) 
399.64 

(8.56) 

424.56 

(12.96) 

398.39 

(10.97) 

435.33 

(15.41) 

408.48 

(13.88) 

Av. Units Discarded (UD) 
20.11 

(0.70) 

18.96 

(0.89) 

20.89 

(0.89) 

17.62 

(1.00) 

18.68 

(0.99) 

Av. Customer Satisfaction (CS) 
0.92 

(0.01) 

0.89 

(.01) 

0.94 

(.01) 

0.90 

(.01) 

0.94 

(0.01) 

Standard Errors in parentheses. 

Comparing the effect of each of the different knowledgeable Newsvendor strategies on the system 

performance, the Nash equilibrium strategy is the one that provides the lowest average total profit 



109 
 

௉,்ହߤ) ൅  ௉௖,்ହ = 763.37). It seems that sticking to the first best strategy under a high profit condition isߤ

a passive strategy that does not exploit the behavioral aspects of the subject to improve the overall supply 

chain profit. On the other hand, the strategies that provide higher profits for the supply chain are the 

GDBR (ߤ௉,ଽିଵ ൅ ௉,ଽିଵߤ) ௉௖,்ଽିଵ = 820.93) and PDBRߤ ൅  ,௉௖,்ଽିଵ = 795.37). In these two treatmentsߤ

the knowledgeable Newsvendor has a more active role in the market and updates frequently his 

strategies based on the information received from the previous period. However, it seems that creating 

a general dynamic best response policy (GDBR) would be the best option for increasing the average 

individual and overall profits, while dealing with the variability from the behavioral Newsvendor orders 

and the uncertain final customer demand. 

Low profit treatments: Table 4.9 shows the performance measures for treatments T6, T8 and T10. 

In contrast to the high profit treatments, when the knowledgeable Newsvendor uses the Nash-

equilibrium or the GDBS strategies, subjects’ average orders do not have a significant change in 

magnitude compared with the subjects’ orders in T2 (ߤ௤,்ଶ െ  .(௤,்଺,଼்ିଵሻ>0, p-value>.1 in both casesߤ

On the other hand, subjects’ average orders are significantly lower (closer to the Nash equilibrium) in 

T8-2 and T10 than in T2 (ߤ௤,்ଶ െ  ௤,ሺ଼்ିଶ,்ଵ଴ሻ> 0, p-value<.05 in all cases). However, the averageߤ

Euclidean distance is closer to the Nash equilibrium in T6, T8 and T10 than in T1 (ߤா஽,்ଶ െ

 ா஽,ሺ்଺,଼்,்ଵ଴ሻ> 0, p-value<.05 in all cases), this is in part due to the strategic decisions made byߤ

knowledgeable Newsvendor in the experiment. In addition, subjects in the Particular Best Response 

treatments (PSBR and PDBR) place lower average orders than subjects in the General Best Response 

treatments (GSBR and GDBR) (ߤ௤,଼்ିଵ െ ௤,଼்ିଶߤ ൌ 4.39,	t = 4.15, p-value < .01; ߤ௤,்ଵ଴ିଵ െ

௤,்ଵ଴ିଶߤ ൌ 5.12,	t = 4.54, p-value < .01). This can be explained as a simple learning process from one 

stage of the experiment to the other (Benzion et al., 2008; Bostian et al., 2008).  

The analysis of the units transshipped is opposite to the high profit treatments. The number of 

transshipped units received by the behavioral Newsvendor (Transshipments In - Ti) are significantly 

lower in T6, T8 and T10 than in T2 (்ߤ,்ଶ െ  ௜,ሺ்଺,଼்,்ଵ଴ሻ> 0, p-value<.05 in all cases) and the units்ߤ

sent to the knowledgeable Newsvendor (Transshipments Out - To) are significantly higher (்ߤ,்ଶ െ

 ௢,ሺ்଺,଼்,்ଵ଴ሻ< 0, p-value<.05 in all cases). In this low profit condition, the knowledgeable Newsvendor்ߤ
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takes advantage of the pull-to-center behavior presented in the subjects and place lower ordering 

decisions. Placing lower orders reduces the probability of having economical loses at the end of each 

period, and given that the behavioral Newsvendor will place higher orders, the likelihood of receiving 

transshipped units – in the case that at the end of the period part of the demand remains unsatisfied – 

will increase. Similarly, placing lower orders decreases the probability of sending transshipped units to 

the other Newsvendor.  

In addition, when the knowledgeable Newsvendor uses any of the proposed dynamics or static 

strategies, he gets higher average profits than subjects do in treatment T2 (ߤ௉,்ଶ െ -௉௖,ሺ଼்,்ଵ଴ሻ< 0, pߤ

value<.05 in all cases). In these strategies, the knowledgeable Newsvendor takes advantage of subjects’ 

over-ordering for decreasing his orders and reducing the probability of facing economical loses, while 

increasing his profits at the end of each period by selling the units received from the leftover units 

ordered by the behavioral Newsvendor. Moreover, the behavioral Newsvendor increases his profits in 

treatments where the knowledgeable Newsvendor uses strategies for predicting subjects’ behavior 

(PSBR, GSBR, GDBR and PDBR). In these cases, given that the knowledgeable Newsvendor orders 

fewer units, the behavioral Newsvendor is able to get rid of leftover units that would have led to 

economic losses otherwise. In addition, there is a significant improvement in the behavioral Newsvendor 

profit from general to particular best response treatments. This improvement is due to both a learning 

process and to the improvements given by the particular response provided by the knowledgeable 

Newsvendor. Finally, given the decrease in overall orders, the units discarded and the customer 

satisfaction also decrease. 

As in the high profit condition, the Nash equilibrium strategy is a passive strategy that provides 

low benefits to the total profit for the supply chain (ߤ௉,்଺ ൅  ௉௖,்଺ = -21.95). However, the particularߤ

strategies (PSBR and PDBR) are the ones providing higher profits for the supply chain (ߤ௉,଼்ିଶ ൅

௉,ଵ଴ିଶߤ ;௉௖,଼்ିଶ = 20.97ߤ ൅  ௉௖,்ଵ଴ିଶ = 35.43) and especially for the knowledgeable Newsvendorߤ

 In these two treatments, the knowledgeable Newsvendor takes .(௉௖,்ଵ଴ିଶ= 24.58ߤ ;௉௖,଼்ିଶ = 22.98ߤ)

advantage of the understanding of each subject’s behavior to create proper strategies that maximize the 

individual and global profit. Therefore, having a more active role in the market and updating every 
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period the strategies to respond to each Newsvendor is the best option for increasing performance under 

low profit conditions. 

Table 4.9. Performance measures for treatments T6, T8 and T10 - Low Profit Treatments 

 T6 T8-1 T8-2 T10-1 T10-2 

 Nash GSBR PSBR GDBR PDBR 

Av. Orders - Subjects 
45.59 

(0.72) 

43.08 

(0.82) 

38.69 

(0.81) 

45.11 

(0.86) 

39.99 

(0.75) 

Av. Euclidean Distance (ED ) 
20.24 

(0.63) 

25.82 

(0.51) 

22.01 

(0.53) 

26.34 

(0.64) 

21.55 

(0.62) 

Av. Transshipments In (Ti) 
0.04 

(0.02) 

0.003 

(0.00) 

0.05 

(0.02) 

0.02 

(0.01) 

0.03 

(0.01) 

Av. Transshipments Out (To) 
1.84 

(0.17) 

3.23 

(0.30) 

2.50 

(0.24) 

3.81 

(0.37) 

3.64 

(0.32) 

Av. Profit – Subjects (P) 
-44.64 

(7.05) 

-20.53 

(8.64) 

-2.01 

(6.53) 

-14.95 

(8.24) 

10.85 

(5.65) 

Av. Profit – Computer (Pc) 
22.69 

(2.26) 

24.02 

(0.74) 

22.98 

(2.14) 

20.70 

(1.09) 

24.58 

(1.42) 

Av. Units Discarded (UD) 
11.01 

(0.65) 

8.35 

(0.77) 

6.20 

(0.58) 

8.13 

(0.72) 

5.16 

(0.49) 

Av. Customer Satisfaction (CS) 
0.79 

(0.01) 

 0.75 

(0.01) 

0.74 

(0.01) 

0.76 

(0.01) 

0.75 

(0.01) 

Standard Errors in parentheses. 

Figure 4.7 presents the distribution of the average orders for each pair of subjects and the Nash 

equilibria for the high and low profit conditions for treatments T5 to T10. The blue area shows that in 

general the average orders remain close to the Nash equilibria. For the Nash-equilibrium treatments, the 

blue region approaches the Nash equilibria; however, average orders still evidence the presence of the 

pull-to-center behavior. Given the existence of the pull-to-center behavior, the knowledgeable 

Newsvendor realizes that it would be beneficial for the whole system if he places orders that are higher 

(lower) than the Nash equilibrium for the high (low) profit conditions. Notice that in the treatments 

where the knowledgeable Newsvendor use a Particular strategy for each subject (PSBR and PDBR 

treatments), average orders fluctuate around the best response curves (close to the Nash equilibria). In 

fact, for the low profit condition, some systems present average orders that are really close to the Nash 

equilibrium, which leads to improvements in the supply chain overall profits.  
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Figure 4.7. Nash equilibrium, mean demand (red dot) and average retailers’ orders (blue area) T5-T10 
 

Table 4.10. Panel Data estimations for the BR treatments 

  T5 T7-1 T7-2 T9-1 T9-2 
  Nash GSBR PSBR GDBR PDBR 

H
ig

h
 P

ro
fi

t 

Fixed part    

 †૙ (Intercept)  48.90ࢼ
(2.85) 

35.57† 
(3.17) 

44.88† 
(3.78) 

38.28† 
(3.76) 

38.85† 
(3.96) 

 †0.15 (௧ିଵ	ܦ) ૚ࢼ
(0.04) 

0.39† 
(0.05) 

 0.29† 
(.05) 

0.33† 
(0.05) 

0.33† 
(0.05) 

 †0.13 (௧ିଵ	ݒܱ) ૛ࢼ
(0.04) 

0.21† 
(0.05) 

 0.01 
(0.05) 

0.18† 
(0.06) 

0.26† 
(0.06) 

 ௧ିଵ) 0.06	૜ (ܷ݊ࢼ
(0.04) 

-0.17† 
(0.05) 

0.03 
(0.07) 

-0.15† 
(0.06) 

-0.21† 
(0.08) 

Stochastic part      

Std. Dev. Intercept 7.71 7.31 11.67 6.94 8.12 
Std. Dev. Error 14.73 18.68 19.17 16.53 15.82 
AIC 7908 6109 6373 4102 3930 

  T6 T8-1 T8-2 T10-1 T10-2 
  Nash GSBR PSBR GDBR PDBR 

L
ow

 P
ro

fi
t 

Fixed part    

 †૙ (Intercept) 33.02ࢼ
(2.60) 

23.18† 
(2.72) 

27.05† 
(3.04) 

22.72† 
(3.12) 

25.47† 
(2.85) 

 †0.25 (௧ିଵ	ܦ) ૚ࢼ
(0.05) 

.46† 
(0.06) 

0.29† 
(0.05) 

0.53† 
(0.05) 

0.40† 
(0.05) 

 †0.20 (௧ିଵ	ݒܱ) ૛ࢼ
(0.04) 

0.34† 
(0.06) 

0.10 
(0.06) 

0.27† 
(0.06) 

0.15† 
(0.06) 

 †௧ିଵ) -0.12	૜ (ܷ݊ࢼ
(0.05) 

-0.35† 
(0.06) 

-0.16† 
(0.06) 

-0.41† 
(0.06) 

-0.32† 
(0.06) 

Stochastic part      

Std. Dev. Intercept 7.98 1.98 7.75 6.72 7.16 
Std. Dev. Error 19.14 16.37 14.93 14.91 12.68 
AIC 7941 3935 4010 4006 3729 

Standard Errors in parentheses; † p-value < .01. 
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Finally, I test for the presence of demand chasing behavior and the effect of last period’s overage 

and underage on subjects’ decisions in treatments T5 to T10 using the same parsimonious model 

presented in equation (4.6). As in the performance measures, in treatments T7 to T10 I disentangle the 

effect of the General and Particular Best responses by separating the estimation in two parts. Table 4.2 

provides the estimates for the base case experiment and Table 4.10 presents the estimates for treatments 

T5 to T10.  

Overall results show no clear effect of the different strategies followed by the knowledgeable 

Newsvendor on the last-period anchoring biases of the behavioral Newsvendors. In all treatments (T6 

to T10), results show that subjects anchor their decisions in period t based on the observed demands, 

overage and underage units of period t-1. Estimations of parameters ߚଵ, ߚଶ and ߚଷ are in the same 

direction and with similar magnitude (p-value>.05 in -almost- all cases) than the estimations obtained 

in the BC experiment. 

4.6. Conclusions 

This chapter mainly contributes to the field of Operations Management (OM). Within the OM field, the 

Newsvendor problem presents the basics for models of inventory management under demand 

uncertainty (Bolton & Katok, 2008). This chapter responds to recent calls for further experimental 

analyses considering the interactions among multiple subjects in inventory management problems 

(Becker-Peth et al., 2013; Ovchinnikov et al., 2015). I created a multi-agent experiment to evaluate 

different factors and strategies that lead to a reduction of the persistent behavioral biases presented in a 

typical Newsvendor problem with transshipments.  

Initially, I show how Newsvendors, in a transshipment setting, are prone to the common biases 

(pull-to-center behavior, demand chasing) observed in a typical Newsvendor setting. Additionally, I 

built up on the basics of previous studies to derive and evaluate different behavioral models (Anchoring 

toward the mean, Loss aversion and Physiological disutility) that can explain subjects’ biases. 

Estimations show that (i) subjects display a strong tendency to anchor their decisions toward the mean 

demand and place their order far from the estimated Nash equilibrium, (ii) subjects show loss aversion 

from leftovers, and (iii) subjects on average prefer to have extra units at the end of each period than 

having unsatisfied final customer demand. 
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This improved understanding of the Newsvendor behavior allows me to formulate and evaluate 

different strategies that may provide managers with useful information to redesign and improve real 

operations. As a first strategy, I evaluate the effect of Face-to-Face communication as a mechanism that 

creates a trusty environment for reducing non-cooperative behaviors (Ahn et al., 2011; Cardenas, 2000; 

Castillo & Saysel, 2005; Ostrom, 1998), which exist even in systems where agents have access to POS 

data. Inclusion of direct communication, in a Newsvendor problem with transshipments, reduces the 

systematic biases observed in a typical Newsvendor problem. There are significant reductions both in 

the pull-to-center behavior and in the anchoring toward outputs from previous periods. 

In the last part of the chapter, I used a set of Human vs. Computer experiments. This design takes 

advantage of the mathematical deduction for the Newsvendor model with transshipments to formulate 

three different strategies that can be used by a knowledgeable Newsvendor (the computer) to offset the 

behavioral Newsvendor decisions (subjects in the experiment). The three strategies are: Nash-

equilibrium response, Static Best Response and Dynamic Best Response, and both the Static Best 

Response and Dynamic Best Response strategies can be defined for the overall population (General) or 

for each single subject (Particular). Findings show, on one hand, that the strategies followed by the 

knowledgeable Newsvendor take advantage of the behavioral biases existing in subjects’ decisions to 

place orders that increase the average profits for each actor in the supply chain. On the other hand, the 

behavioral Newsvendor usually responds to the knowledgeable Newsvendor in a way that moves the 

systems close to the Nash Equilibrium.  

In addition, results from these managerial strategies suggest that for a knowledgeable 

Newsvendor (or any manager in a real supply chain) placing orders equal to the Nash equilibrium as a 

response to a behavioral Newsvendor (other symmetric manager in a real supply chain) does not bring 

many benefits for the whole supply chain. In contrast, to achieve higher profits while dealing with the 

variability of the behavioral Newsvendor orders and the uncertain final customer demand, a 

knowledgeable Newsvendor should have a more active role in the market. They should create and update 

every period a best response strategy, that allows them to understand the market and make better 

decisions. In particular, for a high profit condition, a knowledgeable Newsvendor could use a general 
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rule (GDBR) to respond to the other behavioral Newsvendors, while for a low profit condition, it would 

be better to generate a specific response rule (PDBR) for each behavioral Newsvendor. 

The main results of this chapter offer practical guidance on how to exploit behaviorally biased 

Newsvendor orders to improve the overall performance in a single-supplier multi-retailer 

(Newsvendors) supply chain, where transshipments among Newsvendor are allowed and the final 

customer demand is uncertain. Therefore, this chapter becomes a building block for behavioral studies 

in inventory management for a system of the described characteristics.  

This work can extended in many directions. First, in this chapter, I have considered a 

parsimonious dynamic model to predict subjects’ behavior; therefore, improvements in the response can 

be obtained by using more accurate models, although the main behavioral conclusion would likely 

remain unchanged. Second, there are different effects of learning that may be useful to understand. For 

example, how does previous experience in an isolated Newsvendor problem matter to the performance 

in a Newsvendor problem with transshipments? Third, I have considered in our experiments a system 

composed by two symmetrical Newsvendors and a supplier with unlimited capacity, therefore, I may 

ask: What would be the effect on subjects’ orders when the system is asymmetric? How would the 

subjects’ decisions change knowing that they may compete for limited capacity? How different types of 

contracts between supplier and Newsvendor may increase overall performance? Forth, in our 

experiments, there are not backorders, transshipment cost is fixed and complete pooling is assumed; 

then, how the inclusion of backorders and the relaxation of the complete pooling assumption would 

change subjects’ behavior? What strategies would subjects use to set transshipment costs? How would 

subjects’ coordinate? What would be the effect of Face-to-Face communication? Finally, our 

experiments consider a system with two independent Newsvendors making decentralized decision; then, 

what would be the effect of centralizing the decision process? 
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Appendix 4.1. Finesse analytical solution for a Newsvendor problem with transshipments 

Taking advantage of the optimal solution of a typical Newsvendor problem (equation (4.2)) and the 

potential transshipment scenarios explained in Figure 1, I use a marginal approach to redefine the Co as 

follows: 

௢ܥ ൌ ሺܿ െ ܾሻ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൏ ଵሻݍ ൅ ሺݐ െ ݎ ൅ ܿሻ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൏  ଵሻ     (3)ݍ

௢ܥ ൌ ሺܿ െ ܾሻ ∗ ൫1 െ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൏ ଵሻ൯ݍ ൅ ሺݐ െ ݎ ൅ ܿሻ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൏  ଵሻ (A1)ݍ

௢ܥ ൌ ሺܿ െ ܾሻ ൅ ሺܾ ൅ ݐ െ ሻݎ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൏  ଵሻ     (A2)ݍ

And ܥ௨ as follows: 

௨ܥ ൌ ሺݎ െ ܿሻ ∗ ܲሺܦଵ ൅ ଶܦ ൐ ଵݍ ൅ ଵܦ|ଶݍ ൐ ଵሻݍ ൅ ሺݐ െ ܿ ൅ ܾሻ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൐  ଵሻ    (4)ݍ

௨ܥ ൌ ሺݎ െ ܿሻ ∗ ൫1 െ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൐ ଵሻ൯ݍ ൅ ሺݐ െ ܿ ൅ ܾሻ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൐  ଵሻ (A3)ݍ

௨ܥ ൌ ሺݎ െ ܿሻ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ ܲሺܦଵ ൅ ଶܦ ൏ ଵݍ ൅ ଵܦ|ଶݍ ൐  ଵሻ     (A4)ݍ

Therefore, equation (4.2) can be redefined for a Newsvendor problem with transshipment as follows: 

Fሺݍଵ∗ሻ = 
௨ܥ

௢ܥ + ௨ܥ
 (A5)

ሺܥ௨ + ܥ௢ሻFሺݍଵ
∗ሻ = ܥ௨ (A6)

ଵ∗ሻݍ௢Fሺܥ  ൌ ௨ሺ1ܥ െ Fሺݍଵ∗ሻሻ (A7)

Incorporating ܥ௢ and ܥ௨: 

ቀሺܿ െ ܾሻ ൅ ሺܾ ൅ ݐ െ ሻݎ ∗ ܲ൫1ܦ ൅ 2ܦ ൐ 1ݍ
∗ ൅ 2ݍ

∗ห1ܦ ൏ 1ݍ
∗൯ቁFሺݍଵ

∗ሻ

ൌ ቀሺݎ െ ܿሻ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗ ܲ൫1ܦ ൅ 2ܦ ൏ 1ݍ
∗ ൅ 2ݍ

∗ห1ܦ ൐ 1ݍ
∗൯ቁ ሺ1 െ Fሺݍଵ

∗ሻሻ (A8)

൮ሺܿ െ ܾሻ ൅ ሺܾ ൅ ݐ െ ሻݎ ∗
ܲ ቀ1ܦ ൅ 2ܦ ൐ 1ݍ

∗ ൅ 2ݍ
∗ & ܦ

1
൏ 1ݍ

∗ቁ

ܲ൫1ܦ ൏ 1ݍ
∗൯

൲Fሺݍଵ
∗ሻ

ൌ ൮ሺݎ െ ܿሻ ൅ ሺݐ ൅ ܾ െ ሻݎ ∗
ܲ ቀ1ܦ ൅ 2ܦ ൏ 1ݍ

∗ ൅ 2ݍ
∗ ܦ	&	

1
൐ 1ݍ

∗ቁ

ܲ൫1ܦ ൐ 1ݍ
∗൯

൲ ൫1 െ Fሺݍଵ
∗ሻ൯ 

(A9)

ቀሺܿ െ ܾሻF൫1ݍ
∗൯ ൅ ሺܾ ൅ ݐ െ ଵܦሻܲሺݎ ൅ ଶܦ ൐ ∗ଵݍ ൅ ଶݍ

∗ & ଵܦ ൏ ଵ∗ሻቁݍ

െ ൬ሺݎ െ ܿሻ ቀ1 െ F൫1ݍ
∗൯ቁ ൅ ሺݐ ൅ ܾ െ ଵܦሻܲሺݎ ൅ ଶܦ ൏ ∗ଵݍ ൅ ଶݍ

∗ & ଵܦ ൐ ଵ∗ሻ൰ݍ ൌ 0 
(A10)
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൬ሺܿ െ ܾሻF൫1ݍ
∗൯ ൅ ሺܾ ൅ ݐ െ ሻݎ ቀF൫1ݍ

∗൯ െ ܲሺܦଵ ൅ ଶܦ ൏ ∗ଵݍ ൅ ଶݍ
∗ & ଵܦ ൏ ଵ∗ሻቁ൰ݍ

െ ൬ሺݎ െ ܿሻ ቀ1 െ F൫1ݍ
∗൯ቁ ൅ ሺݐ ൅ ܾ െ ଵܦሻܲሺݎ ൅ ଶܦ ൏ ∗ଵݍ ൅ ଶݍ

ଵܦ	&	∗ ൐ ଵ∗ሻ൰ݍ ൌ 0 
(A11)

ሺܿ െ ܾሻF൫1ݍ
∗൯ െ ሺݎ െ ܿሻ ቀ1 െ F൫1ݍ

∗൯ቁ ൅ ሺݐ ൅ ܾ െ ሻݎ ቀF൫1ݍ
∗൯ െ 1ݍ12൫ܨ

∗ ൅ 2ݍ
∗൯ቁ ൌ 0 

(A12)

െሺݐ ൅ ܾ െ 1ݍሻF൫ݎ
∗൯ െ ሺݎ െ ܿሻ ൅ 1ݍF൫ݐ

∗൯ ൅ ሺݐ ൅ ܾ െ ሻݎ ቀF൫1ݍ
∗൯ െ 1ݍ12൫ܨ

∗ ൅ 2ݍ
∗൯ቁ ൌ 0 (A13)

െሺݎ െ ܿሻ ൅ ଵݍFሺݐ
∗ሻ െ ሺݐ ൅ ܾ െ ଵݍଵଶሺܨሻݎ

∗ ൅ ଶݍ
∗ሻ ൌ 0 (A14)

1ݍF൫ݐ
∗൯ ൌ ሺݎ െ ܿሻ ൅ ሺݐ ൅ ܾ െ 1ݍ12൫ܨሻݎ

∗ ൅ 2ݍ
∗൯ (A15)

Fሺݍଵ∗ሻ ൌ
ሺݎ െ ܿሻ ൅ ሺݐ ൅ ܾ െ ∗ଵݍଵଶሺܨሻݎ ൅ ଶݍ

∗ሻ
ݐ

 (5)
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Appendix 4.2. Interface of the experiment in Z-tree (in Spanish) 
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Appendix 4.3. Instructions Base Case – High Profit condition (in Spanish) 

DECISIÓN GERENCIAL 
Tiempo disponible: 60 minutos 
 
En esta parte del experimento usted asumirá el papel de gerente de una empresa mayorista que vende 
un artículo específico. Su responsabilidad es decidir cuántas unidades ordenar a su proveedor antes de 
saber cuánto será el verdadero valor de la demanda. 
Sin embargo, usted sabe que la demanda por los artículos durante la temporada de ventas está 
uniformemente distribuida entre 1 y 100 unidades. Es decir, la demanda durante cada temporada de 
ventas puede tomar cualquier valor entre 1 y 100 con una probabilidad de 1/100 (1%) para cada valor. 
Además no existe ninguna relación entre la demanda actual y la demanda pasada. 

 
Usted compra los artículos a su distribuidor a un costo de $2 cada uno, y los vende a sus consumidores 
durante la temporada de ventas a un precio de $12 cada uno.  

 
Por otra parte, usted no es el único mayorista en el mercado. En esta sala hay una persona más que está 
trabajando en su mismo mercado y la cual enfrenta una demanda igual a la suya. De ser posible, usted 
colabora con esta otra persona según las siguientes reglas: 
 

- Los artículos que usted compra antes de que comience la temporada y que no logra 
vender durante ésta (exceso de oferta), usted los traspasa al otro mayorista en caso de que él 
necesite más unidades. En este caso el otro mayorista le pagará a usted los costos iniciales de 
compra ($2/unidad) y él asumirá los costos de traspaso de las unidades traspasadas. 
- Usted deja de ganar $10 por cada artículo que usted no compre antes de que comience 
la temporada y que podría haber vendido durante ésta (exceso de demanda). Sin embargo, en 
caso de que el otro distribuidor cuente con exceso de oferta, usted podrá recibir unidades de él. 
En este caso usted asumirá el costo de compra del artículo ($2/unidad) más un costo de traspaso 
de $1/unidad. 
- Traspasos no serán posibles en el caso que ambos mayoristas cuenten con excesos de 
oferta o exceso de demanda. 
- Todas las unidades no vendidas o no traspasadas al final de cada temporada no implican 
ninguna ganancia para usted, ya que estas unidades simplemente se desechan. 

 
Su objetivo es decidir cuántas unidades ordenar a su proveedor cada período con el fin de maximizar 
las ganancias acumuladas del sistema al final de la simulación (30 temporadas de venta), y de 
acuerdo a su desempeño individual obtendrá un pago en dinero efectivo. 
 
PAGO: El pago de esta parte del experimento será una suma variable entre $0 y $15000 en función de 
las ganancias acumuladas a lo largo de los 35 períodos; a mayor ganancia acumulada mayor pago. 
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Appendix 4.4. p-values for the t-tests comparing the performance measures computed for treatments T1 and T5 to 10 

 

High Profit Treatments 

 Av. Orders Av. Euclidean Distance Av. Transs/ In Av. Transs/ Out 
 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 

T5 .00   .00 .00 .00  

T7-1 .00 .05    .00 .00 .00 .00 .00 .29  

T7-2 .00 .86 .25   .00 .00 .09 .00 .00 .00 .00 .09 .01  

T9-1 .00 .05 .93 .14 .00 .00 .00 .23 .00 .00 .59 .00 .00 .35 .15 .65  

T9-2 .00 .18 .67 .33 .43 .00 .00 .00 .05 .39 .00 .00 .01 .08 .02 .00 .08 .42 .01 .09 
     

 Av. Profit - Subjects Av. Profit - Computer Av. Units Discarded Av. Customer Satisfaction 
 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 T1 T5 T7-1 T7-2 T9-1 

T5 .29   .00 .00 .00  

T7-1 .16 .62    .00 .11 .00 .31 .46 .01  

T7-2 .03 .22 .43   .00 .93 .15 .00 .49 .20 .00 .00 .00  

T9-1 .02 .11 .28 .60 .00 .04 .59 .05 .12 .04 .32 .02 .32 .06 .77 .00  

T9-2 .01 .07 .23 .52 .51 .00 .59 .40 .57 .53 .01 .24 .83 .10 .71 .00 .02 .00 .55 .00 
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Low Profit Treatments 

 
 

Av. Orders Av. Euclidean Distance Av. Transs/ In Av. Transs/ Out 

 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 

T6 .65   .00 .00  .00  

T8-1 .00 .02   .00 .00 .00 .02 .00 .00  

T8-2 .00 .00 .00  .00 .03 .00 .00 .88 .08 .00 .03 .02  

T10-1 .38 .67 .09 .00 .00 .00 .52 .00 .00 .25 .23 .29 .00 .00 .22 .00  

T10-2 .00 .00 .01 .24 .00 .00 .14 .00 .58 .00 .00 .63 .04 .59 .50 .00 .00 .35 .00 .56 
     

 Av. Profit - Subjects Av. Profit - Computer Av. Units Discarded Av. Customer Satisfaction 
 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 T2 T6 T8-1 T9-2 T10-1 

T6 .50   .00 .31  .01  

T8-1 .00 .03   .00 .58 .00 .01 .00 .02  

T8-2 .00 .00 .08  .00 .93 .45 .00 .00 .04 .00 .00 .31  

T10-1 .00 .00 .64 .22 .00 .43 .01 .34 .00 .00 .83 .04 .00 .08 .57 .17  

T10-2 .00 .00 .00 .14 .00 .00 .48 .73 .54 .04 .00 .00 .00 .17 .00 .00 .02 .91 .36 .44 
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Chapter 5. General Conclusions 

This thesis contributes to the literature of Behavioral Operations Management by providing a wide range 

of analysis to understand retailers’ ordering decisions and their implications in the supply chain 

performance. The main objective of this thesis is to better understand how different operational factors 

may independently and in combination influence retailers ordering decisions under different supply 

chain structures (single agent and multi agent), different demand uncertainty (deterministic and 

stochastic), and different interaction among retailers (no interaction, competition and cooperation). I 

developed three different studies that allow me to better understand the main dynamics and biases 

around retailers’ ordering decisions. A summary of each of these three studies is presented below, 

followed by a discussion about future research opportunities.  

5.1. Main Contributions  

One of the main topics that I discuss in Chapter 2 refers to order amplifications. Amplifications usually 

take place in supply chains with tight capacity and long acquisition delays. Under scarce supply, the 

supplier needs to ration the allocation of available supply to satisfy retailers’ orders, while retailers 

receiving only a fraction of previous orders, amplify future ones in an attempt to secure more units (Lee 

et al., 1997a, 1997b). Providing some initial constraints in supplier’s capacity, this study analyzes the 

ordering behavior of a single retailer trying to match products received from its supplier with a 

deterministic and known final customer demand. In this system, retailers had the opportunity to store 

inventory from one selling period to the other.  

I use an experiment to test subjects’ ordering decisions under different ordering and supplier’s 

capacity acquisition delays. Main results from this experiments show that subjects display limited ability 

to process the impact of delays and feedback, even when demand is known and constant and the system 

begins in equilibrium. The order trajectories follow a pattern of overshoot and subsequent undershoot 

until reaching an equilibrium. However, the initial overshoot is less intense and lasts longer than the 

optimal behavior, when subjects face longer delays. In addition, subjects inflate their orders when the 

supplier faces longer capacity acquisition delays and when orders take longer to be perceived by the 

supplier. Similarly, the analysis suggests that a simple anchoring and adjustment heuristic is able to 
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represent the ordering decision process. Finally, this chapter provides insights relevant to decision 

makers interested in the importance of improving decision-making and implementing Business Process 

Redesign (Van Ackere et al., 1993). However, such redesign requires breaking existing habits, 

understanding and carefully evaluating present processes (Van Ackere et al., 1993). Results suggest that 

retailers should try to decrease the delays inherent in their ordering processes. In doing so, retailers 

would reduce the complexity of the system, improve their ordering decisions as well as improve their 

ability to manage mismatches between supply and demand. In addition, managers should be careful 

when relying on rules-of-thumb because these heuristics perform substantially worse than optimal, 

which suggests significant opportunity for improvement. Naturally, while heuristics are simple and 

useful, if they are not good enough, they could lead to consistent biases, limited search, and resistance 

to change (Lazaric, 2000; Leonard-Barton, 1992).  

Chapter 3 presents an extension to Chapter 2 by analyzing the effect of duplicated orders and 

retailers’ competition on the bullwhip effect. I used a system composed by one supplier and two retailers, 

where retailers face a stable and known final customer demand, and the supplier may use two different 

allocation mechanisms. Results show that the bullwhip effect persist even when subjects have no 

incentives to inflate their orders. In addition, this chapter provides three important practical 

contributions: (i) a systems with lower dynamic complexity lead to lower average costs, (ii) when 

subjects face situations with higher complexity, subjects become more rational (activation of System 

II), and (iii) under identical supply chain structure, the use of the turn-and-earn allocation leads to a less 

intense bullwhip effect than a proportional allocation mechanism. 

Finally, the Chapter 4 analyzes retailers’ ordering decisions in situations where retailers need to 

make their decisions under demand uncertainty. I design a study to understand subjects’ behavior in a 

single-supplier multi-retailer supply chain where I allow for transshipments among retailers. This 

chapter experimentally explores the effect of different profit and communication conditions as a way to 

create better interaction policies that may improve supply chain coordination. Results show a general 

retailers’ underperformance in all profit conditions (presence of the pull-to-center behavior). These 

results are similar to the behavioral results observed in a typical newsvendor problem. However, some 
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practical improvements like Face-to-Face communication and the integration of analytical and 

behavioral models lead to a reduction of subjects’ biases and to an increase in supply chain coordination. 

5.2. Future work 

Despite the meaningful discussions presented here, this thesis opens the doors for different extensions 

that could be addressed in future research.  

As a result from Chapter 2, future research could explore possible ways to improve retailers’ 

decisions either by prominently displaying important information, or by providing guidance regarding 

some heuristics that subjects should follow. This process provides clues to the required training that 

managers would need in to improve their decision-making processes. Similarly, other (dynamic) 

heuristics could be used to test subjects’ behavior under different supply chain setting to improve the 

understanding of the decision process followed by the retailers. Finally, it would be desired to directly 

analyze other relevant dynamics (like learning effects) where other meaningful implications could be 

found. 

Chapter 3 also provides some guidance about future research directions. For example, different 

decision rules can be used to explain subjects’ behaviors and try to find mechanisms that may reduce 

subjects’ biases. Also, given that I only evaluate the effect of two different allocation mechanisms on 

subjects behavior, we could potential evaluate subjects’ reaction to the different kind of incentives 

offered by other allocation mechanism. Similarly, it would be ideal to test how would subject behavior 

change if we automate the decisions of one of the retailers and we assume that automatized retailer uses 

an optimizing strategy. Finally, in this experiment the supplier was automatized by the computer, it 

would be interested to relax this condition and allow and additional subject to play the role of a supplier 

and then test what is the preferred allocation strategy followed by the supplier and how retailers react to 

the introduction of a real supplier.  

Finally, Chapter 4 can be extended in many different ways.  First, we observed that there are 

different effects of learning that may require a deeper analysis. For example, how does previous 

experience in an isolated Newsvendor problem matter to the performance in a Newsvendor problem 

with transshipments? In addition, I have considered in these experiments a system composed by two 

symmetrical Newsvendors. Therefore, I can evaluate the effect on subjects’ orders in an assymetrical 
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system where one of the retailers has higher market power. Similarly, these experiments consider a 

system with two independent Newsvendors making decentralized decision; then, what would be the 

effect of centralizing the decision process? Finally, I fixed the transshipment price. However, in practice, 

transshipment prices are usually determined by negotiation between the retailers involved in the 

transaction; they are not set centrally. Therefore, it would be interesting to use laboratory experiments 

to understand how retailers set transshipment prices and how their decisions deviate (or not) from the 

theoretical channel-coordinating benchmarks. In this case, we could even evaluate how the bargaining 

power or the type of negotiation protocol used affects the observed biases. 
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