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Abstract

According to recent studies, an enormous rise in location-based mobile services

is expected in future. People are interested in getting and acting on the localized

information retrieved from their vicinity like local events, shopping offers, local

food, etc. These studies also suggested that local businesses intend to maximize

the reach of their localized offers/advertisements by pushing them to the maxi-

mum number of interested people. The scope of such localized services can be

augmented by leveraging the capabilities of smartphones through the dissemi-

nation of such information to other interested people.

To enable local businesses (or publishers) of localized services to take in-

formed decision and assess the performance of their dissemination-based local-

ized services in advance, we need to predict the performance of data dissemina-

tion in complex real-world scenarios. Some of the questions relevant to publish-

ers could be the maximum time required to disseminate information, best relays

to maximize information dissemination etc. This thesis addresses these ques-

tions and provides a solution called INDIGO that enables the prediction of data

dissemination performance based on the availability of physical and social prox-

imity information among people by collectively considering different real-world

aspects of data dissemination process.

INDIGO empowers publishers to assess the performance of their localized

dissemination based services in advance both in physical as well as the online

social world. It provides a solution called INDIGO–Physical for the cases where

physical proximity plays the fundamental role and enables the tighter prediction

of data dissemination time and prediction of best relays under real-world mobil-

ity, communication and data dissemination strategy aspects. Further, this thesis

also contributes in providing the performance prediction of data dissemination

in large-scale online social networks where the social proximity is prominent

using INDIGO–OSN part of the INDIGO framework under different real-world

dissemination aspects like heterogeneous activity of users, type of information

that needs to be disseminated, friendship ties and the content of the published

online activities.
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INDIGO is the first work that provides a set of solutions and enables publishers

to predict the performance of their localized dissemination based services based

on the availability of physical and social proximity information among people

and different real-world aspects of data dissemination process in both physical

and online social networks. INDIGO outperforms the existing works for phys-

ical proximity by providing 5 times tighter upper bound of data dissemination

time under real-world data dissemination aspects. Further, for social proximity,

INDIGO is able to predict the data dissemination with 90% accuracy and differ-

ently, from other works, it also provides the trade-off between high prediction

accuracy and privacy by introducing the feature planes from an online social

networks.
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Chapter 1

Introduction

The immense growth of smartphones has enabled to provide ubiquitous reach-

ability to various types of information, enhanced by powerful communication

and computing resources, and intuitive user experience. These mobile devices

have quickly become a part of our everyday lives and the proliferation of these

devices has not just altered the way we communicate and interact, but it has

also led to a significant innovation of services. It has opened a door to a new set

of applications such as location-based advertising, recommendations entertain-

ment, health care etc. and has also made it possible to gather contextual and

personalized information. Recent studies have highlighted an enormous rise in

location-based search, advertisements, and services Google [2015]. People are

usually interested in getting and taking advantage of localized information re-

ceived from their vicinity like local events, shopping offers, local food, transport,

traffic information etc. Further, local businesses also intend to maximize the

reach of their localized offers/advertisements by pushing them to the maximum

number of interested people. The scope of such localized services can be aug-

mented by leveraging the capabilities of smartphones through the dissemination

of such information to other interested people. The effectiveness of such tech-

niques to enable fast and efficient information dissemination has also been sug-

gested in literature Dimatteo et al. [2011]Whitbeck et al. [2011]. The impact of

these localized information gathering and dissemination is two-fold:

• It can help both local businesses (or publishers) to further disseminate their

information to other geographical regions.

• It can bring information close to the people who are not aware of it but

might be interested in it.

Before deploying any new localized offers or advertisements in a given ge-

1
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ographical region, some of the key questions that can arise from the publisher

point of view could be:

• How relevant my localized offer is among people?

• How much time is required to disseminate information to a certain fraction

of interested people?

• Who are the people who can maximize the information dissemination?

For example, if the maximum time to disseminate information to all or frac-

tion of interested people tends to infinity, then the offered service will be useless

due to its inability to spread information to people within a reasonable time limit.

To answer such questions and enable publishers to assess the performance of

their localized service, we need to predict the performance of data dissemination

in such complex mobile networks that exhibit heterogeneous contact patterns

and where the interest of people is a key feature. To predict the performance of

data dissemination realistically and empower local publishers to take informed

decisions about their services, there is a need for the unified model that enables

the prediction of data dissemination under multiple consideration of different

real-world aspects such as heterogeneous and time-varying contact patterns, in-

terests of people, different data dissemination strategies, multiple-simultaneous

contacts among people, data originating from multiple sources etc.. Existing

works do not collectively consider these real-world aspects of data dissemination

and fail to provide a solution to model data dissemination process for different

performance metrics.

In this thesis, I propose a solution called INDIGO, a generalized data dissemi-

nation framework that enables the prediction of data dissemination by collectively

considering the real-world aspects of data dissemination under the availability

of both physical and social proximity information as presented in Physical-Social

proximity table (see Figure 1.1). The physical proximity represents the close-

ness of people in the physical world while social proximity shows their closeness

according to their interests or social network information. As illustrated in Fig-

ure 1.1, data dissemination can happen also without physical proximity infor-

mation in case of online social networks. To tackle this aspect, I further present

a solution to predict the performance of data dissemination in online social net-

works like Twitter where social proximity dominates over the physical proximity

as the part of the INDIGO framework.

Altogether, my thesis proposed a solution called INDIGO that provides solu-

tions in case of availability of physical and social proximity information. INDIGO
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Figure 1.1. Modeling of data dissemination process based on the Physical-
Social proximity information availability. In the presence of physical proxim-
ity information (Type II) or both physical and social proximity information
(Type III), the data gets exchanged in physical networks under broadcast and
interest-driven data dissemination strategy respectively. In case when only so-
cial proximity information is available (Type IV), the data is shared on online
social networks because Type IV users are generally linked with a online social
networks.

covers all aspects of data dissemination, from data exchanging, that happens

when two users physically encounter each other, up to data sharing, which hap-

pens when an user disseminate data to another user via a online social link.

Now-a-days, both dissemination types, data exchanging and data sharing, hap-

pen in a very interleaved way, and it is of paramount importance to consider both

of them while predicting the performance of data dissemination.

1.1 Problem Statement

This thesis focuses on providing a solution to enable pre-deployment perfor-

mance analysis of dissemination-based localized services by predicting the per-

formance of data dissemination under real-world aspects of data dissemination

process considering the availability of physical and social proximity information.

The thesis will be mainly concerned with the following research questions:
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• What real-world aspects should we consider to enable realistic performance

prediction of dissemination-based localized services in case of the availabil-

ity of physical and/or social proximity information?

• How to learn the real interests of people from their mobile devices?

• How to collectively consider and model different real-world mobility and

social (like preferences and interests of people) aspects for performance

prediction of data dissemination process under the availability of both phys-

ical and social proximity?

• Does INDIGO achieve realistic and tighter upper bounds of data dissemi-

nation process for different cases of physical and social proximity?

• What dissemination real-world aspects to consider and how to model data

dissemination in online social networks where social proximity overpowers

the physical proximity?

Therefore, this dissertation solves the problem of:

“providing a solution to predict the performance of data dissemination by col-

lectively considering the real-world aspects of data dissemination process based on

the availability of physical and social proximity among people.”

1.2 Motivation: A solution to predict the performance

of data dissemination

To provide realistic pre-deployment performance prediction of data dissemina-

tion process and empower publishers to assess the performance of their services,

the proposed solution needs to collectively consider the real world-aspect of data

dissemination process for different cases of physical and social proximity infor-

mation avialability. In the case of physical networks where we can have either

physical proximity or both physical and social proximity infomation, existing

works have put a fundamental basis for the performance prediction of data dis-

semination process in mobile networks. The work done so far mainly look at

the physical proximity case while considering mobility patterns of people Groen-

evelt et al. [2005] Mosk-Aoyama and Shah [2008] Pettarin et al. [2011] Peres

et al. [2011] Picu et al. [2012] Passarella and Conti [2013]. In the case of both

physical and social proximity, the real-world aspects are usually modeled by ex-

isting works either by looking at the friendship graph of people or they explicitly
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ask users for their interests across certain topics Hui et al. [2008] Mei et al.

[2011] Ciobanu et al. [2015].

The different approaches taken by all these works fail to provide the real-

istic prediction of data dissemination process and also differ for different data

sets. Therefore, such solutions are neither suitable for publishers nor they pro-

vide a unique solution that collectively considers different key aspects of data

dissemination process such as heterogeneous and time-varying contact patterns,

multiple-simultaneous contacts among people, different data dissemination strate-

gies & data requirements and modeling of data originating from different data

sources Garg and Giordano [2015]. I highlight the importance of some key real-

world aspects (mobility aspects) on data dissemination time and then motivate

the need for a unified solution by showing their impact on data dissemination

time using two benchmark traces used in literature i.e. INFOCOM and MIT con-

tact traces (detailed description of these traces are presented in Chapter 3).

Figure 1.2 shows the occurrence of multiple simultaneous contacts in two

diverse environments INFOCOM Scott et al. [2006c] (conference) and MIT Ea-

gle et al. [2009] (university) at different timeslots. Further, I also calculate the

total number of pairs with distinct contact probabilities in both trace and also

inspects heterogeneity in the contact patterns of people through their dispersion

from each other using Coefficient of Variation (CV). My analysis shows that both

traces contain several distinct contact probabilities (INFOCOM: 687 and MIT:

749) with significant variability (INFOCOM: CV=1.25 and MIT: CV=1.11)1 thus,

highlights the presence of heterogeneous contacts.

Observation 1: Assumption of homogeneous contact probabilities among peo-

ple is not realistic for the performance prediction of data dissemination process due

to significant heterogeneity observed in the contact patterns of people in real world

environments.

Observation 2: The multiple simultaneous contacts occur between different

pairs in different times, therefore, the assumption of sequential contacts while mod-

eling data dissemination does not hold in reality.

In addition to the heterogeneity in contact patterns, I also found the time-

varying contact patterns shown in Figure 1.3. For INFOCOM trace, I calculate

the total number of pair-wise contacts on an hourly basis and for MIT trace I

calculate daily contacts among people for different weeks. In INFOCOM trace, I

1CV > 1 implies high variance and vice versa.
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Figure 1.2. Number of simultaneous contact pairs for different time spans from
INFOCOM and MIT traces.

observe a significant increase in the number of contacts during lunch time and

coffee break. Similarly, from Figure 1.3(b), I observe that during the 3rd month

of MIT trace, the number of contacts during week days are significantly higher

than those during weekends. It happens because in a university environment

people are more likely to meet during weekdays (office hours) as compared to

weekends.

Observation 3: Time and context play an important role in the contact patterns

of people and will impact the performance prediction of data dissemination process.

Finally, to show the impact of heterogeneous mobility and multiple simulta-

neous contacts on data dissemination process, I measure the data dissemination

time under three cases:

1. TReal: Real data dissemination time measured by utilizing contact traces

that exhibits real-world mobility aspects (heterogeneous pair-wise contact

probability and multiple simultaneous contacts among people). I call this

data dissemination time as ground truth.

2. THOMO: Data dissemination time calculated by considering homogeneous

contact probability (mean of all pair-wise contact probabilities) among all

pairs of people.

3. TNSC: Data dissemination time measured without considering multiple si-

multaneous contacts among people.

Figure 1.4 presents the data dissemination time obtained in all three cases

for INFOCOM and MIT trace. Our analysis highlights the impact of multiple si-

multaneous contacts and pair-wise heterogeneous contact probabilities on data
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Figure 1.3. Number of Hourly and Weekly contacts extracted from INFOCOM
and MIT trace. The number of contacts show the impact of time and context
on the contact patterns of people.

dissemination time. We observe that assumption of homogeneous contact prob-

ability underestimates data dissemination time (THOMO) while the assumption of

sequential contacts among people overestimates data dissemination time (TNSC).

Our analysis shows that both assumptions are unable to mimic real data dissem-

ination time (TReal) thus, signifies the importance to collectively consider real-

world mobility aspects.

Observation 4: Multiple simultaneous contacts occur among people in different

environments and needs to be considered to improve the performance prediction of

data dissemination process.
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Figure 1.4. Data dissemination time for all three cases (TReal, THOMO and TNSC)
in INFOCOM and MIT traces.
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Above observations show the importance of collectively considering different

aspects of data dissemination time while predicting their performance. Further-

more, as opposed to existing works, the proposed solution should not always

rely on complete dataset rather it should be able to predict contact patterns and

interests of people for future scenarios where data is unavailable. To enable pub-

lishers to take decision according to their requirement (or service requirement)

and maximize the reach of their localized services, it is also of paramount impor-

tance to provide a solution that predicts data dissemination performance under

difference cases of social and physical proximity considering the above described

real-world aspects. In this thesis, I provide a solution that considers all these as-

pects of data dissemination process and help publishers to take informative deci-

sions according to their requirement. Further, this thesis also takes into account

the data sharing on online social networks by quantifying the different level of

rich information available. The recent works have focused on utilizing differ-

ent set of information like friendship graph, content informationGaluba et al.

[2010]; Petrovic et al. [2011] Myers et al. [2012a] for the case of data dissemi-

nation in online social networks where we only have social proximity information

availability.

1.3 The Goal: A generalized data dissemination frame-

work

In this thesis, I offer a generalized framework called INDIGO to conduct pre-

deployment performance analysis of data dissemination process in a given sce-

narios. INDIGO predicts the performance of data dissemination in multiple di-

mensions by collectively considering different real-world aspects of data dissem-

ination process based on the availability of physical and social proximity. Fur-

ther, INDIGO offers solutions to publishers to access the performance of their

dissemination-based localized services based on the availability of physical and

social proximity information. The contribution of this thesis is summarized as

follows:

• I propose a framework INDIGO that enables the prediction of the perfor-

mance of data dissemination in given scenario based on the availability of

physical and social proximity information for all cases of Physical–Social

proximity table (Type II, III and IV). To the best of my knowledge, IN-

DIGO is the first work that provides solutions to different cases and predict

the performance of data dissemination under different cases of proximity
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by collectively consider different real-world aspects of data dissemination

process.

• INDIGO helps publishers (or local businesses) to estimate the likelihood of

success in their initiatives by providing a solution to conduct pre-deployment

performance analysis of dissemination-based localized services/offers in

physical as well as online social networks.

• INDIGO predicts the performance of data dissemination under real-world

mobility characteristics like heterogeneous and time-varying contact pat-

terns and multiple simultaneous contacts among people in case of the avail-

ability of the physical proximity information. Further, INDIGO also consid-

ers social information such as interests and preferences of people along

with multiple data sources, different user data requirement and data dis-

semination strategies (like broadcast and interest-driven) for the physical

networks case when both physical and social proximity information is avail-

able. Further, in case of social proximity information availability, the real-

world dissemination aspects are the heterogeneous activity of users on on-

line social networks, type of information that needs to be disseminated,

friendship ties and the content of the published online activities.

• INDIGO also provide a machine learning based solution to predict the fu-

ture pair-wise contact patterns of people and it also handles the automatic

learning of real interests of people from the web browsing history of their

Smartphones. In addition to this, it also provides a solution to generate

artificial interests of people in case they are not available in the dataset.

• As opposed to existing works, the evaluation metrics obtained from IN-

DIGO is not only limited to data dissemination time for physical networks.

It can also find the best relays to maximize information spread or to mini-

mize data dissemination time.

• Finally, INDIGO provides a complete solution to conduct pre-deployment

analysis by learning and providing contact patterns, interest profiles under

different data dissemination strategy, data requirements and multiple data

sources for physical networks covering Type II and III.

• The results obtained from INDIGO for Type II and III for both upper bounds

of data dissemination time and best relays are validated using benchmark

traces. Further, I also conducted my own experiments to collect traces from
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two diverse environments, a conference (PerCom 2012) and the univer-

sity of two different countries (MACACO–France and (MACACO–Brazil)

through a dedicated mobile application. The collected university traces

captures both contact and real interests of people from their web browsing

history. To the best of my knowledge, this is the first dataset that captures

interests of people along with their real mobility patterns.

• Finally, INDIGO also provide a machine learning based model to predict the

performance of data dissemination on online social networks where social

proximity plays an important role. In this way, this thesis provide a solution

to fill the gray area of Physical-Social proximity table of Figure 1.1. INDIGO

also introduces multiple feature planes using the set of rich information

available on Twitter dataset according to their complexity to acquire and

privacy intrusiveness.

1.3.1 Use cases of INDIGO

INDIGO aims to provide support for the diverse applications. Some examples are

described below:

Dissemination of local advertisements or social campaign

With the help of INDIGO, local businesses can find the upper bound of time

required to send information to all or a fraction of people based on their interests.

Also by finding the set of best relays, our framework can help publishers to boost

the dissemination of their advertisements and campaigns.

Dissemination of traffic conditions and accidental information

INDIGO can also be useful for broadcasting the information about the traffic

condition and accidental information in a given area. Further, it can also predict

the best relays in the network such that this information would be disseminated

to the maximum number of people in a limited amount of time. Thus, it can help

commuters to take better decision while planning their journey.

Viral marketing on Online Social Networks

INDIGO can be useful to predict the success of a new product, campaign or ad-

vertisement of companies by predicting their dissemination on online social net-

works. The number of times a particular post or tweet is diffused in the network



11 1.4 Contribution

is considered as the key performance indicator to measure the success of such

events2.

1.4 Contribution

The main contribution of this thesis provides a solution to predict the perfor-

mance of data dissemination time for different cases of Physical-Social proximity

table. The thesis covers all cases Type II to Type IV of the Physical-Social proxim-

ity table presented in Figure 1.13. The physical proximity information is driven

by the physical contacts/meeting of people while the social proximity informa-

tion comes under the umbrella of willingness to share information based on their

interests and preferences, friendship ties and their communication on online so-

cial networks. The explanation of different types of information exchange is

presented as follows:

1. Type I: In this case, both physical and social proximity information is not

available therefore, it is very unlikely to exchange information among peo-

ple as we do not have any information about the people in any dimension.

2. Type II: In this case, the physical proximity information among people is

available. In this situation, people are physically closer and can exchange

information under broadcast strategy where the data dissemination is only

driven by physical proximity information.

3. Type III: In this case, both physical and social proximity information is

available in physical networks where social proximity information is con-

sidered using the interests of people. Therefore, in this case, the data dis-

semination will occur under interest-driven strategy where both contacts

and interests of people are modeled for data dissemination.

4. Type IV: In this case, only the social proximity information is available

among people. This case arises when people are connected with each other

through online social networks where physical proximity is not the nec-

essary requirement. Therefore, in this case, the information can only be

shared online via social link using online social networks. Type IV case

2http://www.doz.com/social-media/track-social-media-kpis
3There is no need to consider Type I as it is very unlikely to exchange information in this case

due to low physical as well as social proximity. Moreover, Type I is also a worst case scenario of

Type II and Type IV
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differs than Type III due to the different inherent characteristics of online

social network dataset that differs from physical networks where we have

limited set of information.

INDIGO addresses all cases of Physical–Social proximity table starting from

Type II to Type IV. For Type II, all datasets are required to have information about

the physical proximity information while for Type III case, both physical and

social proximity information of people should be available. To handle social

proximity between people for Type III, INDIGO considers the interests of peo-

ple learned through their Smartphones or they can be created artificially using

the power law distribution. For both Type II and Type III cases, INDIGO pre-

dicts the performance of data dissemination under broadcast and interest-driven

data dissemination strategy respectively along with different real-world aspects.

For broadcast strategy, it gives more emphasis on physical proximity informa-

tion while for the interest-driven case, it models data dissemination process by

contributing higher weight to interests similarity/proximity among people.

Further INDIGO also contributes in providing a solution for the Type IV (or

gray area) case of Physical–Social proximity table by proposing a Machine Learn-

ing based model that predicts the performance of data dissemination on the on-

line social network and show its effectiveness using a large-scale Twitter dataset.

For Type IV, I not only provide a model to predict data dissemination but I also

quantify the impact of the different set of information available on Twitter on the

prediction. Finally, the Type I case modeling is not required because in this case,

people are unlikely to exchange information with each other.

Therefore, the main contribution of this thesis is to provide a solution for

data dissemination considering both data exchange that happens when two users

physical encounters each other, up to data sharing that happens when an user

disseminate a data to another user via online social link.

1.5 Organization of the thesis

The rest of the thesis is structured as follows:

Chapter 2 will present the State of the Art (SOA) for the efforts taken in

literature for different cases of Physical–Social proximity table. I mainly present

the SOA related to the heterogeneous contact patterns for both static and time-

varying, multiple simultaneous contacts, different data requirements, different

data dissemination strategies and multiple data sources. Further, I present the

literature review not only from the data dissemination time point of view but
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I also present the SOA work to find best relays in mobile networks. Finally, I

also highlight the existing work to model data dissemination in online social

networks.

Chapter 3 will present the INDIGO framework by providing the overview of its

different modules, sub-modules, and component for all types of Physical–Social

proximity table. This chapter discusses the usefulness of the modules required to

predict heterogeneous mobility and the prediction of data dissemination for both

broadcast and interest-driven strategy. This Chapter also presents the datasets

considered in the thesis (both the standard set of datasets as well as my collected

datasets) and the performance metrics predicted by INDIGO i.e. upper bound of

data dissemination time and best relays in the network. Finally, this Chapter will

also briefly present the part of the INDIGO framework that tackles data dissemi-

nation for online social networks.

In Chapter 4, I will focus on the Contact Probability Prediction Module of IN-

DIGO that captures the contact and mobility patterns of people for Type II and III

cases. The contact probabilities among people significantly impact the data dis-

semination process, therefore, the prediction of contact probabilities are impor-

tant for INDIGO framework to enable the realistic prediction of the upper bound

of data dissemination time. In this Chapter, I present the prediction methodolo-

gies for both static and time-varying pair-wise contact patterns. For the static

contact patterns prediction I will present the Maximum Likelihood Estimation

method while for time-varying contact probability prediction, I will describe the

Machine Learning based increment learning that uses the Gradient Boosting Ma-

chine (GBM).

In Chapter 5, I will focus on the upper bound of data dissemination time for

contact traces under broadcast data dissemination strategy for both static and

time-varying pair-wise heterogeneous contact probabilities for Type II case. In

this Chapter, I will present a Markov chain based model called DDT-Markov of

INDIGO framework that can realistically predict the upper bound data dissemi-

nation time of multi-contact and multi-source data dissemination process. This

Chapter also shows how DDT-Markov achieves much tighter and realistic upper

bound of data dissemination time by utilizing the exponential cut-off property of

inter-contact time distribution.

Further, in Chapter 6, I will present a more realistic aspect of data dissemina-

tion process i.e. interest-driven data dissemination strategy where people collect

and share information that is interesting to them as opposed to the broadcast ap-

proach that enforces people to receive all information under Type III case. This

Chapter will also present my approach to extract the interests and pair-wise inter-

est similarities among people by utilizing the information retrieval techniques. I
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also present how can we still generate artificial interests of people when interests

are not available in the dataset.

Chapter 7 will focus on another dimension of data dissemination process i.e.

finding the best relays in the network to speed up the information diffusion in the

network by introducing the BROP model for both Type II and III cases. I proposed

the methodology to find the Best Relays for broadcast and interest-driven data

dissemination strategy uses the K-Shell decomposition algorithm that considers

both degree centrality and links weights of each node in the network.

For all Chapters starting from 4 to 7, I validated the results obtained from

each Chapter with all data sets.

In Chapter 8, I will focus on understanding and predict data dissemination

using INDIGO in online social networks to handle the gray area of the Physical-

Social table (Type IV) where only social proximity information is available and

plays a fundamental role. In this Chapter, I will present a novel approach to

predict the data dissemination based on a Gradient Boosting Machine method. I

will also provide the deeper understanding of the diffusion process and quantifies

the impact of the rich set of information available on online social networks by

introducing different feature planes based on their complexity to acquire and

privacy intrusiveness. I validated the proposed model and INDIGO framework

on a large-scale Twitter dataset.

Finally, Chapter 9 summarizes the work described in this thesis with an overview

of the main findings and results. The Chapter will also provide the future di-

rections derived from this work. I have already published some of the results

reported here (9 publications) and have submitted two more papers on the re-

maining results.



Chapter 2

State of the Art

2.1 Introduction

Mobile phones are ubiquitous devices and millions of them are used around the

world. These devices are incorporated with a rich set of sensors. Due to the

sensing and computational capabilities of mobile devices, they are often called

smartphones. The increasing penetration of smart devices and their immense

capabilities have enabled the rise and sharing of localized dissemination based

services, offers, advertising where people can get them from their vicinity and

further disseminate it to other people Ott et al. [2011] Guardian [2015] Google

[2015]. According to these reports, people are not only interested in getting lo-

calized services but the publishers (or local businesses) of such information also

need to take the right decision at the right time before pushing their offers to the

interested people and maximize the reach of their information. To help publish-

ers, there is a need to provide a unified solution to them that model and predicts

the performance of data dissemination under realistic scenarios and different

constraints.

In this Chapter, I will first present a set of people-centric applications in Sec-

tion 2.2. Afterward, I present the literature review of data dissemination under

physical proximity (in Section 2.3) where I will explain data dissemination pro-

cess and also present its different real-world aspects that need to be considered

for realistic performance prediction of data dissemination process. I will present

the related effort done in literature for each aspect of data dissemination pro-

cess and for both performance metrics i.e. data dissemination time and finding

best relays. Finally, I will also present the efforts taken in literature to model

and predict the performance of data dissemination in online social networks in

Section 2.4.

15
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2.2 People-centric localized applications

In any people-centric application, humans become the focal point of gathering

and sharing any information for the benefit of each other. It empowers people to

collect and share data using mobile devices across a set of applications. The con-

cept of localized and people-centric application was initiated from the concept

of Delay Tolerant or Opportunistic Networks where people rely on the device to

device communication in the absence of Internet Conti et al. [2010] Pelusi et al.

[2006] Jones et al. [2007]. Some of the key projects based on the concept of

opportunistic networking are Haggle Scott et al. [2006b], ZebraNet Juang et al.

[2002] and Diverse Outdoor Mobile Environment (DOME) Soroush et al. [2012].

In the ZebraNet project, a mixed team of biologists and computer scientists at-

tached sensor-equipped collars to zebras in Central Kenya, with the purpose of

monitoring the mobility and the social behavior of the animals. The data was

to be collected and stored in the zebra collars, and finally transmitted to the re-

searchers whenever they approached even a small subset of the animals. The

system, including specialized hardware, a lightweight operating system, and a

communication protocol, was designed almost from scratch, based on real-world

constraints specified by the biologists. The DOME is a hybrid testbed for mobile

systems, consisting of two components: DieselNet, a sparse vehicular network of

public buses, and a mesh network of WiFi access points, installed on rooftops and

light poles. Since 2011, DOME is publicly available for experiments, providing

virtual machines on each bus, an experimenter portal for uploading experiments,

as well as various control services (logging, resource allocation etc). DOME was

most notably used to gain valuable insights into mobility and contact patterns

in public transportation. The Haggle project defines an architecture for Oppor-

tunistic Networks formed of smart-phones, allowing both infrastructures as well

as direct peer-to-peer communication. Since smartphones are carried by people,

human mobility, and contact patterns, as well as social relationships are central

to the Haggle architecture. Haggle experiments produced a solid understanding

of human contact patterns and social relationships reflected in these contacts.

Recently, due to the proliferation of mobile devices and their integration with

several sensors has further opened the door for many other advanced large-

scale people-centric sensing applications Abdelzaher et al. [2007] Campbell et al.

[2008]. Some of the examples of such applications are CenceMe Miluzzo and

Lane [2007] which is a personal sensing system that enables members of social

networks to share their sensing presence with their buddies in a secure manner.

Sensing presence captures a user’s status in terms of his activity (e.g., sitting,

walking, meeting friends), mood (e.g., happy, sad), habits (e.g., at the gym, cof-
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fee shop) and surroundings (e.g., noisy, hot). Once the application collects the

sensing presence of a person, it injects this information into the popular social

networking applications such as Facebook, MySpace, and IM (Skype, Pidgin) al-

lowing for new levels of connection and implicit communication between friends

in social networks. The another application is CycleSense Mun et al. [2009]

which is a web-based application designed to give bike commuters feedback on

the quality and safety of their preferred routes and to suggest quality-of-ride in a

particular route. Bike commuters use their mobile devices to gather information

of their biking routes using accelerometer and GPS sensors. Further, they also

share their personal feedback to the particular route in terms of ease of riding,

meeting with other bikers etc. Finally, they upload this information to the central

sever to serve as the recommendation for other interested bikers. Similar to this

application BikeNet is another application that maps the cyclist experience Eisen-

man et al. [2009].

The application called Twimight is developed to be used in the disaster situa-

tions when infrastructure is hardly available or completely wiped off Hossmann

et al. [2011a]. Twimight behaves like a normal Twitter client but when it is set

to "disaster mode", it enables opportunistic communication where tweets spread

epidemically among the people to share the recent information. FireChat is an-

other example of a people-centric message application that share and dissemi-

nate localized information to the different set of people Gardern [2015]. This

application is a proprietary mobile application developed by OpenGarden and

has been successfully deployed during natural disasters including floods in Kash-

mir (April 2015) and Chennai (October 2015), the eruption of volcano Cotopaxi

in Ecuador (August 2015), and hurricane Patricia in Mexico (October 2015)

and massive events like pro-democracy protests in Taiwan (April 2014), Hong

Kong (September 2014), and the visit of the Pope in the Philippines (January

2015) and large festivals in India, Canada and the US. With the help of this

application, people do share information about their local environment. The

sense of localized information is also adopted in the Walt Disney World Resort

in Florida to study the mobility of people and to enable the distribution of park

information (waiting times at different attractions, schedules of street parades

and other performances), mobile advertising, participatory sensing, polling/sur-

veying, and multimedia sharing Vukadinovic and Mangold [2011]. The project

called PROMO (PROximity Marketing sOlution) is one of the recent and relevant

applications that aim to exploit local knowledge Papandrea et al. [2010] Vanini

et al. [2012]. PROMO enables users to receive mobile advertisements depending

on their current location and specific interests. A user connects his/her smart-

phone to nearby Wi-Fi access point and receives offers (and advertisements) from
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shops that are within a certain range. These advertisements are stored in a cen-

tral server and transferred to the user through different Wi-Fi access points. Re-

cently Qualcomm is also introducing the concept of innovative LTE direct device-

to-device technology that enables mobile devices and apps to passively discover

and interact with the world around them in a privacy sensitive and battery effi-

cient manner. Implementation of the LTE Direct ecosystem is underway and it is

going to give a rise to new proximity service opportunities for the entire mobile

industry in social networking, venue services, loyalty services, local advertising,

and much more. Qualcomm [2014].

Finally, apart from physical networks, the localized information like local of-

fers, advertisements, events, new products are also shared on the online social

networks like Twitter, Facebook, Instagram etc. These social networks also serve

as people-centric applications under the avialability of social proximity where

people do gather and share relevant information with each other online. These

sites allow advertisers to identify new topics that are gaining interest or “trend-

ing” rapidly across the platform Du and Kamakura [2012]. Further, these online

social networking sites also allow advertisers to identify users who propagate

these newly trending topics, and to target advertising specifically to them Vayn-

erchuk [2013]. The marketers often try to seed information about their product

or service with such users, hoping they will engage with it and spread it virally

to their peers.

2.3 Data dissemination under physical proximity

2.3.1 What is data dissemination process?

Usually, in data dissemination process, people exchange data when they are in

physical proximity (in contact) Boldrini and Passarella [2013]. These people

store and carry data through their mobility and eventually forward it to others,

thus achieving multi-hop communication despite the lack of end-to-end paths.

The easiest and straightforward process to disseminate data is known as Epidemic

Spreading. It operates as follows: given a piece of information/message m, every

node carrying a copy of m must further replicate the message to every node it

encounters (provided the encountered node does not already have m). Thus,

information will spread almost like an epidemy through the network, with every

node eventually receiving a copy of m. Epidemic spreading is mainly studied in

disease spreading Yoneki [2011] and Delay Tolerant Networks Zhang [2006]. It

is important to note that this basic data dissemination process does not take into
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account data freshness and interests of people during data exchange.

2.3.2 Real-world aspects of data dissemination process

Figure 2.1 presents key aspects of data dissemination process that need to be

considered while predicting the data dissemination performance in a mobile sce-

nario for Type II and III cases of the INDIGO data dissemination framework. The

key aspects (shown in rectangular boxes) are contact patterns among people,

communication among people, different data sources, different data dissemina-

tion strategies, and data requirement of people. Further, I also present specific

topics of these key aspects and represent them through oval boxes. The topics

that have been extensively explored in literature are marked with green color

while less-studied topics that need to be considered to mimic real-world aspects

of data dissemination process are marked with red color. I will now present the

work done in literature for each real-world aspect of data dissemination process.

Contact/Mobility patterns of people

The contact patterns of people significantly impact the rate of data dissemination.

If people meet each other frequently then the data dissemination will be faster

and vice versa. Existing works model the spread of information either under dif-

ferent mobility models like Random Mobility, Random Waypoint etc. Clementi

et al. [2012] or homogeneous pair-wise contact rate among people Groenevelt

et al. [2005]. However, these random movement based mobility models or ho-

mogeneous contact rates among people do not represent the real mobility and

contact patterns of people. Therefore, these models fail to provide a realistic

evaluation of data dissemination process.

The work done in Conan et al. [2007] Lee et al. [2009] Passarella and Conti

[2013] have emphasized to utilize an individual level (pair-wise) distributions of

inter-contact time among people rather than assuming aggregated distribution

of inter-contact time. Further, recent experimental studies Eagle et al. [2009] Fo-

erster et al. [2012] also show the existence of considerable heterogeneity in

node mobility, thus questions the predictions of existing models. The work done

by Picu et al. [2012] Boldrini et al. [2014] have considered fixed pair-wise hetero-

geneous contact rates for the entire duration of time among people and provides

an estimation for the bounds of data dissemination time in opportunistic net-

works. However, in a real-world scenario contact patterns of people vary with

time and context, therefore, we cannot assume fixed pair-wise heterogeneous

contact rates for the entire duration. I also presented the presence and signifi-
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Figure 2.1. Different real-world aspects required for the performance prediction
of data dissemination process in physical networks. A square box represents
a broad aspect and an oval box represents a specific topic. The green color
represents significantly studied topic and red represents a topic that aligned
with real-world scenario.
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cance of heterogeneous and time-varying contact patterns in Chapter 1. Some

of the existing works also consider heterogeneity in terms of space Lee et al.

[2009] and community Hui et al. [2008] Hossmann et al. [2011b]. They assume

that people who are residing in the same geo or social community have same

contact rates and should be able to exchange message with them. These works

are the specific case of heterogeneous contact rates where some pair of people

has same contact rate. However, INDIGO further dive down and consider the

pair-wise contact patterns to identify individual-level contact patterns to enable

much better prediction of data dissemination process.

Further, the time-varying heterogeneous contact probability prediction is still

not addressed in literature even though it represents more realistic aspects of

human mobility. The work done in Gao et al. [2013] has shown that people

show transient contact patterns in different time slots in a day which does not

necessarily be symmetric and can be different for different days. The authors

in Casteigts et al. [2012] have tried to model a mobile network as the dynamic

time-varying graphs with several snapshots at different time intervals. However,

the paper requires complete link information about the network to create dif-

ferent snapshots of the network and also rely on manually finding the time slot

of the time-varying graph. The another work done in this direction predicts the

link quality based on the signal to noise ratio in mesh networks using the match-

ing techniques Farkas et al. [2008]. Recent works have also shown that over a

longer duration, people do exhibit regularity in their mobility patterns Hsu et al.

[2009] Gonzalez et al. [2008] and also show that link prediction can be possi-

ble in context to social and location based networks utilizing Machine Learning

approaches Liben-Nowell and Kleinberg [2007] Scellato et al. [2011] Hawelka

et al. [2015]. The Machine Leaning models are extensively used in social net-

works, location–based traces however they are still not widely employed for con-

tact traces. The work done by Jahanbakhsh et al. [2012] is the first work that

has used a supervised Machine Learning approaches to find the hidden contacts

among people which were not captured during the experiment. Therefore this

work still does not focus on predicting the future contact patterns among people

that vary over time.

Communication among people

In a real-world scenario, at any given time multiple pairs of people can exchange

information with each other and also impacts the performance of data dissem-

ination. Therefore, while predicting data dissemination performance, we also

need to model multiple simultaneous contacts among people. A majority of
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works consider that at any given time, at most only one pair of people can com-

municate with each other thus, discount the impact of multiple simultaneous

contacts on data dissemination performance Picu et al. [2012] Groenevelt et al.

[2005] Clementi et al. [2012]. To the best of my knowledge, this topic is still

not well studied in the literature while modeling data dissemination process in

mobile networks.

Data dissemination strategies

In real-world, people usually exchange information based on their shared in-

terests, context and freshness (time validity of data) and do not simply flood

information Boldrini and Passarella [2013]. Therefore, to predict realistic per-

formance of data dissemination, the consideration of different data dissemina-

tion strategies is essential as it decides how data actually gets disseminated in

a given scenario. Most of the existing works utilize a simple broadcast strategy

while predicting the performance of data dissemination process Groenevelt et al.

[2005] Mosk-Aoyama and Shah [2008] Clementi et al. [2012].

The broadcast strategy also comes under gossip and epidemic protocols. The

gossip protocols are mainly used in a computer–to–computer communication

protocol inspired by the form of gossip seen in social networks Jelasity et al.

[2005]. Further, epidemic protocol models virus propagation to understand the

spread of disease among people Yoneki [2011]. It is also used in the context of

Delay Tolerant Networks to understand information propagation Zhang [2006].

Both Gossip and Epidemic protocols utilize broadcast strategy to exchange gossip

or virus/information through random selection of people. The another stream of

data dissemination strategies is the Peer-to-Peer (P2P) Systems that are operated

in a completely decentralized fashion that means there is only peer-to-peer data

exchange. In this strategy, there is no scope to get data directly from the server.

Also, most of the P2P techniques for data dissemination do not consider inter-

ests of people and other real-world mobility aspects like multiple simultaneous

contacts among the different pair of peers Zhou et al. [2011].

INDIGO differs from these protocols due to the consideration of multiple si-

multaneous contacts among people, multiple data sources, data requirements for

broadcast strategy while it also considers the interests similarities among people.

The Gossip, Epidemic protocols and Peer-to-Peer (P2P) Systems do not consider

these real-world aspects. Further, these strategies only rely on getting data from

peers. In the case of INDIGO, I consider heterogeneous communications i.e. data

can either be received from the central server (directly from the publisher) or it

can be further augmented with the help of peer-to-peer data dissemination pro-
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cess Boldrini and Passarella [2013].

With respect to interest-driven data dissemination, the most closer work that

has been studied in literature is the Publish-Subscribe schemes where some node

(or people) that generate content are termed as publishers, while nodes sub-

scribing to that content are termed as subscribers. Further, there is also a set of

brokers that serve as mediators to provide a publisher’s content to subscribers.

Brokers have complete knowledge of all subscriptions and the content generated

by all publishers Boldrini et al. [2010] Mei et al. [2011] Boldrini and Passarella

[2013] Ciobanu et al. [2015]. In these methods, users explicitly show their in-

terests in certain topics. Asking user interests are neither feasible in long term

nor scalable because it limits the wide range of interests user can express and

their validity over a long time. Further, these works do not enable the automatic

learning of user interests. INDIGO differs from pub/sub systems because people

do not subscribe their interests to publishers. The interests of people and their

importance are learned automatically and updated locally and data is only ex-

changed if interests similarity between two people is high. Further, INDIGO also

do not explicitly select brokers for data exchange however, it is able to detect a

set of best people for publishers to enable faster data dissemination process using

BROP Model. The authors in Zhou et al. [2013] also focus on the incentive-based

data dissemination technique where people exchange information once they re-

ceive some incentive which could be quite useful. This thesis currently does not

focus on such aspect of data dissemination process.

To conclude, in this thesis, I focus on two types of popular data dissemi-

nation strategies: broadcast and interest-driven for both Type II and III cases

respectively. In broadcast strategy, people exchange data only based on their

physical proximity however in the case of interest-driven strategy, data is also

exchanged based on the interests of people where the interests of people are

learned automatically. To the best of my knowledge, in literature interest-driven

data dissemination along with the automatic retrieval of interests is not studied

for the physical networks where contact traces are prominent. Therefore, this

thesis fills this gap not only though the learning and modeling of interest-driven

data dissemination strategy but it also gather the first traces that consists the

contacts of people along with their interests depicted through their on-mobile

web browsing history.

Data requirement

People have different data requirements as some people require to collect only

a fraction of data while others require complete data from the network. For ex-
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ample, information about the parking place is enough for person A, while for

person B information about nearest shopping place is also important. In litera-

ture, most of the work evaluated the performance of data dissemination for the

complete data collection or the maximum amount of data that can be collected in

the network Picu et al. [2012] Boldrini et al. [2014]. In the real-world scenario,

we need to consider different data requirements where people are interested in

the certain fraction of the information. More specifically this case arises for the

interest-driven data dissemination strategy where data is disseminated solely on

the interests of people thus leads to fewer data collection. Once again, INDIGO

fills this gap in the literature by considering different data requirements of people

while predicting the performance of data dissemination.

Data sources

Generally, in a real-world scenario, data can originate from multiple sources. If

we consider our touristic city scenario, people can receive information from mul-

tiple data sources like parking information, event information, advertisements

etc. These data sources send information at different time intervals. Existing

works only consider single data source while evaluating the performance of data

dissemination process Groenevelt et al. [2005] Picu et al. [2012] Boldrini et al.

[2014]. In this thesis, I take into account the impact of multiple data sources

while predicting the performance of data dissemination process.

From the above literature review, I find that most of the existing work fo-

cus on single-∗ scenarios, however, in order to realistically predict data dissem-

ination performance, we need to collectively consider these real-world aspects.

INDIGO fills this gap by providing a generalized data dissemination framework

that enables realistic performance of data dissemination under real-world mobil-

ity, communication and strategy aspects.

2.3.3 Modeling of data dissemination process

The modeling of data dissemination has been first studied theoretically in liter-

ature. The authors of Pettarin et al. [2011] and Peres et al. [2011] present data

dissemination bounds using percolation theory by considering the network as a

dynamic graph. The theoretical results for the upper bound of broadcast time

in context to an information spreading algorithm is presented in Mosk-Aoyama

and Shah [2008] using separable functions by considering both synchronous and

asynchronous model and multiple data sources. The work done in Picu and Spy-

ropoulos [2010] analytically studies the broadcast time for data dissemination
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under multiple data sources using coupon distribution problem Feller [2008].

Some works have modeled the dissemination process as fluid flows using ordi-

nary differential equations (ODEs) Zhang et al. [2007], where the number of

copies in the network is approximated by a continuous-valued function of time

and node meeting rate. These theoretical results provide an extremely high over-

estimation of broadcast time thus, questions their applicability in the real world

environment.

The existing works also model data dissemination process using Markov chains

under random mobility models like Random Mobility, Random Waypoint etc. Groen-

evelt et al. [2005] Clementi et al. [2012]where each Markov state also represents

a number of copies in the network. The above studies consider node mobility as

stochastic and independent identically distributed (IID) process with homoge-

neous node meeting rate λ. However, recent studies Eagle et al. [2009] Foerster

et al. [2012] show that there exists considerable heterogeneity in node mobility,

thus questioning the predictions of existing models. An excellent piece of work

done by authors in Picu et al. [2012] consider heterogeneous node contact rates

and model single source data dissemination process using Markov chains. The

similar work is also done in Boldrini et al. [2014]where the data dissemination is

once again modeled using Markov chain and focusing on the importance of pair-

wise heterogeneous contact patterns of people. The above works neither model

time-varying contact patterns of people nor do they consider other real world

mobility aspects such as multiple simultaneous contacts among people and mod-

eling of their interests. Further, all of the above these models only predicts the

performance of data dissemination from the perspective of data dissemination

time. They also fail to provide tighter upper bound of data dissemination time.

INDIGO is able to model different aspects of mobility, communication and data

dissemination and provide a unified solution by combining different methods

along with Markov chain models.

The other performance prediction dimension that I am considering in this

thesis is finding the best relays in the mobile network to accelerate the data dis-

semination process. Searching for best spreaders in complex networks is stud-

ies across various domains, ranging from the epidemic control Anderson et al.

[1992] Heesterbeek [2000] Pastor-Satorras and Vespignani [2001], viral market-

ing Watts et al. [2007] Leskovec et al. [2007] and social movement to idea prop-

agation Diani and McAdam [2003] Lü et al. [2011] Myers et al. [2012b] Zhang

et al. [2016]. To find the super spreaders in such complex networks, these works

focuses on the network properties using centrality measures like degree central-

ity (or just the degree of a node, i.e. the number of its links), the eigenvector

centrality Bonacich [1987], the betweenness centrality Freeman [1977] etc. Re-
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cently, the another centrality measure based on the notion of K-cores is applied

in many real networks Dorogovtsev et al. [2006] Carmi et al. [2007] Garas et al.

[2010] Basaras et al. [2013] Pei et al. [2014] and shown to be effective in under-

standing network structure and finding influential nodes in the network Batagelj

and Zaveršnik [2011].

One of the major limitation of the above-described centrality measures, in-

cluding the K-core decomposition method, is their design to work on unweighted

graphs. However, in practice, real networks are weighted that describe impor-

tant and well-defined properties of the graph nodes. To handle such complex

networks, the authors in Garas et al. [2012] proposed a weighted K-Shell de-

composition algorithm that takes into account both the degree centrality and

weight measures to find best relays in the network. In the case of INDIGO, I also

utilize the weighted k-Shell decomposition algorithm and propose a methodol-

ogy to model contact strength (physical proximity) and interest similarity (social

proximity) among people as a weighted graph and address the problem of finding

best relays in the network that minimizes the data dissemination time.

I summarize different work done in the direction of data dissemination per-

formance prediction and evaluation metrics considered in Tables 2.1 and 2.2

respectively.

From Tables 2.1 and 2.2, I conclude that existing works do not collectively

consider multiple real-world aspects of data dissemination process and only pre-

dicts the bound of data dissemination time. INDIGO provides a unified solution

and fills the gap of literature by collectively considering real-world aspects of

data dissemination and predicts its performance in multiple dimensions.

2.4 Data dissemination under online social proximity

The data dissemination can also occur in the case of the availability of social

proximity information in online social networks where people acquire informa-

tion and influence each other based on their friendship and interests Chen et al.

[2013]. In this section, I will present the research efforts taken to disseminate

information in online social networks (Type IV) of the INDIGO framework.

Social networks have been studied extensively by social scientists and were

confined to small datasets. Enabled by the Internet and sparked by the recent

advancement of online social networking sites such as Facebook, Twitter and

LinkdIn, research on social networks is witnessing an unprecedented growth due

to the ready availability large-scale social network data. This has also led to the

development of several applications and opened the door for different research
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Table 2.1. Comparison of state of the art with respect to different data dis-
semination aspects.

Heterogeneous

Contact Patterns

Communication

Among People

Data Diss.

Strategies

Data

Sources

Data

Requirement

Static
Time-

Varying

Single

Pair-wise

Multiple

Pair-wise

Broad-

cast

Interest-

driven
Single Multi Full Partial

Picu et al.

[2010]
! × ! × ! × ! ! ! ×

Pettarin et al.

[2011]
! × ! × ! × ! × ! ×

Clementi et al.

[2012]
! × ! × ! × ! × ! ×

Picu et al.

[2012]
! × ! × ! × ! × ! ×

Boldrini et al.

[2014]
! × ! × ! × ! × ! ×

INDIGO ! ! ! ! ! ! ! ! ! !

directions for both businesses and researchers. A rich body of such research is

classified as the analysis of information propagation (or dissemination) in on-

line social networks. Typically this phenomenal is realized by the means of like,

post/message sharing and retweet on social networks like Facebook and Twitter.

A sequence of posts/retweets along the network is called information cascade.

Since in this thesis, I am focusing on the Twitter dataset, therefore, I will present

the literature review related to data dissemination in Twitter.

Although some initial work has been done to model complete diffusion cas-

cades in social media Galuba et al. [2010]; Petrovic et al. [2011], researchers

have recently argued that cascades might be inherently unpredictable, due to the

high number of factors, either internal or external to the network Myers et al.

[2012a], that affect the outcome of diffusion Salganik et al. [2006]; Martin et al.

[2016]. For this reason, predicting the exact pattern of diffusion of a piece of

information starting from a given node in the network remains challenging.

While modeling data dissemination in online social networks, the real world

dissemination aspects are different as compared to the physical networks as the
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Table 2.2. Comparison of state of the art with respect to different data dis-
semination evaluation metrics.

Performance Metrics Validation

Data Dissemination

Time
Best Relays With Real Traces

Picu et al.[2010] ! × !

Pettarin et al.[2011] ! × ×

Clementi et al.[2012] ! × ×

Picu et al.[2012] ! × !

Boldrini et al.[2014] ! × !

INDIGO ! ! !

datasets associated to online social networks differ in characteristics in terms of

different type of rich information. In case of Type IV case, the real-world data

dissemination aspects I considered are: the heterogeneous activity of different

users on online social networks, type of information that needs to be dissem-

inated, friendship ties, associated groups/communities and the content of the

published online activities.

Most of the works in literature are mainly focusing on the analysis of spe-

cific aspects of information diffusion in social networks, such as whether diffu-

sion will grow in future or not Cheng et al. [2014], the impact of content senti-

ment on diffusion Ferrara and Yang [2015], and the effect of features related to

items or users on content popularity Hoang and Lim [2012]; Yang and Counts

[2010]. The work by Yuan and colleagues Yuan et al. [2016] is focused on the

impact of social relationships and tie strength on the probability of diffusion. The

work aims at sorting the friends of a user by their likelihood to retweet or reply

its tweets and, does not specifically address information diffusion. The authors

in Pezzoni et al. [2013] analyzed the impact of temporal features and popularity

indicators on the diffusion. The results indicate that content age and its visibility

in the homepage of the user strongly influence the probability of resharing.

Another research area related to the analysis of single step diffusion is from

the perspective of personalized tweet recommendation. This approach aims to

recommend tweets that could be interesting to the users instead of predicting

whether users will reshare them in the future. On this line of research, Chen

et al. use several features related to users profiles and their similarity, the con-
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tent of tweets, and the social relationships between users to recommend existing

tweets to users Chen et al. [2012]. A similar solution is also proposed by Hong

et al. Hong et al. [2012].

The above works model information diffusion by only predicting the retweet

probability while utilizing some of the features available in the online social net-

work. As opposed to other works, INDIGO framework also take into account

reply for information propagation by predicting the likelihood to reply to a par-

ticular tweet. Since a rich set of information is available on Twitter starting from

users profile to content analysis, therefore, in this thesis, I not only provide a

way to predict data dissemination by predicting the likelihood of retweet and

reply but also quantify the importance of different information by introducing

the concept of feature planes. Existing works in this area mainly tried to predict

information spread by utilizing specific aspects of information like social network

structure, temporal properties, profile features and topical features Galuba et al.

[2010]; Petrovic et al. [2011]; Yang and Counts [2010]; Pezzoni et al. [2013]

but none of them successfully combined all these features together and, more

importantly, they do not quantify the importance of different features for retweet

prediction. I argue that a fundamental knowledge of different feature planes (de-

fined as a group of features with similar cost in terms of privacy and complexity

to acquire), their individual and combined contribution in retweet prediction has

to be analyzed for better prediction of information diffusion. In this way, I not

only address the problem of data dissemination for online social networks but

also enable to reduce the complexity of the model by providing the trade-off be-

tween high prediction accuracy and privacy. Also, the proposed model of INDIGO

framework does not limit the prediction of retweet and reply to tweets that are

generated by the friends of the user rather predicts it for any generic tweet.

2.5 Summary

After describing existing works in the different aspects and types of data dissem-

ination process, it is evident the need for a framework that collectively consid-

ers multiple real-world aspects such as heterogeneous and time-varying contact

patterns, interests of people, different data dissemination strategies, multiple-

simultaneous contacts among people, data originating from multiple sources etc.

for different cases of physical and social proximity. In the next chapters, I will

build on such works to propose my novel data dissemination framework INDIGO

that aims to overcome the limitations highlighted in this Chapter.
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Chapter 3

Overview of INDIGO: A Generalized

Data Dissemination Framework

3.1 Introduction

In this Chapter, I will present different parts and working of the INDIGO frame-

work to predict the performance of data dissemination process for Type II, Type

III and Type IV cases of the Physical–Social proximity table. As presented in Fig-

ure 3.1, INDIGO addresses the availability of both physical and social proximity

information among people for Type II, Type III using the INDIGO–Physical part

for the diverse environments by collectively considering the realistic mobility,

communication and social aspects of people. In both cases, all datasets are re-

quired to have information about the physical proximity of people1. Since the so-

cial proximity information is not available for For Type II case, therefore, INDIGO

models this case under broadcast data dissemination strategy. Further for Type III

case, INDIGO models the social proximity between people through the interests

of people learned through their Smartphones and predicts the performance of

data dissemination under interest-driven data dissemination strategy. For broad-

cast strategy, it gives emphasis on physical proximity while for the interest-driven

case, it models data dissemination process by contributing higher weight to in-

terests similarity/proximity among people. Finally, the INDIGO–OSN part of the

INDIGO framework presents the efforts taken in this thesis for the gray area i.e.

Type IV where social proximity among people plays the fundamental role.

The chapter is structured as follows. In Section 3.2, I will present the brief

overview and working of different modules, sub-modules, and components of IN-

1Type I modeling is not required because in this case, people are unlikely to exchange infor-

mation.

31



32 3.2 Overview of INDIGO for Type II and Type III cases

Figure 3.1. INDIGO data dissemination framework that predicts the perfor-
mance of data dissemination for both physical and online social networks. The
first part (physical networks) of the INDIGO handles Type II and III case of the
Physical-Social proximity table while the second part (online social networks)
handles the gray area i.e. Type IV case of the Physical-Social proximity table.

DIGO for the Type II and III cases. The section mainly cover information about

the dataset considered in this thesis (Section 3.2.1), modules required to predict

heterogeneous mobility (Section 3.2.2), prediction of data dissemination (Sec-

tion 3.2.3) for both broadcast and interest-driven strategy along with the input

parameters given to INDIGO framework. This Section also presents the two per-

formance metrics predicted by INDIGO i.e. upper bound of data dissemination

time and best relays in the network (Section 3.2.6). Section 3.3 will present the

different parts of the INDIGO framework required to predict the performance of

data dissemination for Type IV case. Finally, Section 3.4 concludes the Chapter.

3.2 Overview of INDIGO for Type II and Type III cases

Figure 3.2 outlines different modules, sub-modules, components and sub-components

of the INDIGO–Physical part of INDIGO framework required to model Type II
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Figure 3.2. Overview of the different components and their working of IN-
DIGO framework for Type II and III cases where physical proximity plays the
important role.

and III cases where physical proximity plays the important role. I will provide

the brief overview and working of the each part along with the description of

dataset and inputs required to model data dissemination process.

3.2.1 Contact traces

To model and predict the performance of data dissemination, INDIGO takes ei-

ther the synthetic or real contact traces. From these traces, it predicts the contact

patterns among people and utilizes it for both Type II and Type III cases to model

real-world mobility aspects of people. In this thesis, I consider some standard

and most widely set of contact traces from diverse environment used in liter-

ature i.e. INFOCOM, MIT, and ROLLERNET. Further, during my Ph.D., I also

collected two set of traces PERCOM and MACACO from conference and univer-

sity environment by conducting my own experiments. I will now briefly describe

each contact traces used in this thesis.
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INFOCOM

This contact trace was collected during a conference as a part of the Haggle

project, one of the major projects in the field of opportunistic networking Haggle

[2006]. During Haggle experiments, people were asked to carry an experimental

device called Intel iMotes2 with them at all times Chaintreau et al. [2007]. These

devices log all contacts between experimental devices using a periodic scanning

every 120 seconds via Bluetooth. Each contact is represented by a tuple (MAC

address, start time, and end time). The experiment was conducted during the

IEEE INFOCOM 2005 conference in Miami, where iMotes were carried by 41

attendees for 4 days. I downloaded the contact data of INFOCOM from CRAW-

DAD archive where the anonymized version of the data was available Scott et al.

[2009].

PERCOM

The PERCOM was traces was collected by me during the PerCom 2012 in Lugano,

Switzerland SCAMPI [2012] via Bluetooth discovery. To collect these traces, I co-

developed an Android mobile application called bCards that allows exchanging

digital business cards among people 3. The digital business cards consist par-

ticipant’s professional details like name, affiliation, designation etc. Figure 3.3

presents screenshots of the bCards mobile application deployed to collect PER-

COM traces. Over 55 people participated in data collection by downloading the

application from Google Play Store from different parts of the world. All the par-

ticipants collected Bluetooth contacts with their peers for the duration of 5 days.

The data was stored on the secure server of SUPSI. The participants volunteered

to become part of the data collection in exchange for a smartphone prize at the

end of the conference.

ROLLERNET

The RollerNet experiment conducted to collect contact traces for urban environ-

ment in Paris, France during rollerblading on August 20, 2006. It adopts the

classic approach of logging contacts between participants of the roller tour. The

total duration of the tour was about three hours, composed of two sessions of

80 minutes, interspersed with a break of 20 minutes. The contacts were logged

on 62 volunteers using iMotes and cell phones. Participants with cell phones

2http://wsn.cse.wustl.edu/images/e/e3/Imote2_Datasheet.pdf
3The application is available at Google Play Store

https://play.google.com/store/apps/details?id=supsi.dti.percom&hl=en
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Figure 3.3. Screenshots of bCards Application deployed during PerCom 2012
to collect contact data.

were asked to activate Bluetooth on their cell phones. The iMotes also use

Bluetooth technology and log periodically (every 15 seconds) the encounters

they have with other devices (iMotes or cell phones) RollerNet [2006] Tournoux

et al. [2009]. I downloaded the ROLLERNET data from CRAWDAD Benbadis and

Leguay [2009].

MIT

The MIT data was collected from the University environment as the part of the

Reality Mining project conducted from 2004–2005 at the MIT Media Labora-

tory Eagle and Pentland [2006] Eagle et al. [2009]. The Reality Mining study

followed 94 subjects using mobile phones pre-installed with several pieces of

software that recorded and sent the researcher data about call logs, Bluetooth

devices in proximity of approximately five meters, cell tower IDs, application us-

age, and phone status. Subjects were observed using these measurements over

the course of nine months between September 2004 and June 2005. The 94 sub-

jects of trace included students and faculty from two programs within a major

research institution. Out of these 94 subjects, 68 were colleagues working in the

same building on campus (90% graduate students, 10% staff) while the remain-

ing 26 subjects were incoming students at the university’s business school. The

subjects volunteered to become part of the experiment in exchange for the use

of a high-end smartphone for the duration of the study. The Bluetooth contacts

among subject were logged with the scanning period of 300 secs. I downloaded

this MIT contact data from Reality Mining project Nathan Eagle [2006].
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Figure 3.4. Different sensor data collected using MACACO mobile application.

MACACO

The contact traces described above do not contain information about the social

proximity of people. However, to investigate the accuracy of INDIGO for Type

III case, I require real-world traces that consists both contact patterns and inter-

ests of people. To the best of our knowledge, there are no real-world traces

that contain this type of data, therefore, to fill this gap, I collected our own

data by utilizing our own dedicated mobile application developed as a part of

CHIST-ERA MACACO project in collaboration with project partners in France and

Brazil MACACO [2012]. The application is also available at Google Play Store 4.

The application collect information from different sensors like GPS, accelerome-

ter. Wi-Fi scanning etc. In addition to this, the MACACO application also logs the

web browsing history on user’s smartphone. From this data, I use Wi-Fi scanning

data to create contacts among people (physical proximity) and browsing history

of people to reflect their interests (social proximity) as shown in Figure 3.4.

Our mobile application periodically scans Wi-Fi access points connected to

smartphones of users with a sampling frequency of 5 minutes. To ensure the pri-

vacy of users, our app anonymizes the identity of users and sends collected data

to a secure central server. We deployed our mobile application on 27 volunteers

residing in two different countries France (from April 2015 to May 2015) and

Brazil (from September 2015 to October 2015). Most of the volunteers were

students and staff members of universities whose mobility and interests are cap-

tured through our app that runs in the background of their smartphones. From

4https://play.google.com/store/apps/details?id=fr.inria.macaco&hl=en
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the collected data, I create contact traces by using Wi-Fi scan information in a

manner similar to Conan et al. [2006] Hsu et al. [2007]. I utilize users sessions in

wireless networks by analyzing the time at which a user associates or dissociates

from an access point. Finally, I create a contact between any two volunteers if

they are associated with the same access point within a duration of 30 minutes.

Finally, Table 3.1 summarizes the characteristics of all dataset used in my thesis

to evaluate the applicability and accuracy of INDIGO for Type II and III cases of

the Physical–Social proximity table using INDIGO–Physical.

Table 3.1. Datasets characteristics.

INFOCOM PERCOM ROLLERNET MIT MACACO-

France

MACACO-Brazil

Context
& En-
viron-
ment

Conference
attendees

Conference
attendees

Tourists and vol-
unteers

Campus students
and staff

Students and
staff of different
departments

Staff mem-
bers of same
department

Participants 41 37 62 92 19 8

Time
Span

3 days 3 days 3 hours 9 months 4 Weeks 3 Weeks

Scanning
Interval

120s (Bluetooth) 60s (Bluetooth) 15s (Bluetooth) 300s (Bluetooth) 300s (Bluetooth) 300s (Bluetooth)

Number
of Con-
tacts

22459 66244 89498 81961 39786 26392

3.2.2 Contact Probability Prediction Module

The Contact Probability Prediction Module is responsible for predicting the het-

erogeneous pair-wise contact probabilities among people utilizing the real/syn-

thetic contact traces under both static and time-varying contact patterns. Based

on the Contact Probability Type input parameter (0 for static contact probabilities

and 1 for time-varying contact probabilities), it decides to predict heterogeneous

pair-wise contact probabilities for static or time-varying contact patterns using

it’s Static or Time-varying Components respectively. This module drives the

physical proximity among people for both Type-II and III cases.

Static Component

The Static Component enables the prediction of contact probabilities among

people while considering static pair-wise contact patterns. In this case, it as-

sumes that each pair of people will exhibit same contact patterns during different
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time periods. To predict the static pair-wise heterogeneous contact probabilities

among people, the Static Component first finds the distribution of inter-contact

time for different contact traces followed by employing the Maximum Likelihood

Estimation (MLE) method Scholz [1985]. Using MLE method, it constructs a con-

tact probability matrix between each pair of node and further provides this input

to the Data Dissemination Prediction Module of INDIGO.

Time-varying Component

The Time-varying Component empowers INDIGO to model time-varying con-

tact patterns of people by predicting the pair-wise heterogeneous time-varying

contact probabilities among people. Since the assumption of static contact prob-

abilities do not hold in reality as people do not meet with each other with same

likelihood thus the Static Component cannot capture varying mobility patterns

of people over time. As a result, it does not provide the realistic prediction of

data dissemination process. To predict time-varying contact probabilities, the

Time-varying Component employs a Machine Learning approach that learns the

contact pattern of people over time and generates a contact probabilities matrix

set for different time slots and input it to the Data Dissemination Prediction Mod-

ule of INDIGO framework. However, there are situations where time-varying

cannot be used due to its requirement of the longer dataset. In those cases, IN-

DIGO utilizes the Static component. More details about the Contact Probability

Prediction Module and its components will be presented in Chapter 4.

3.2.3 Data Dissemination Prediction Module

It is the core module of the INDIGO framework to predict the performance of data

dissemination time in two dimensions: tighter upper bound of data dissemina-

tion time and best relays in the network that allows disseminating information

quickly. It receives input from Contact Probability Prediction Module along with

other Input Parameters. The Data Dissemination Prediction Module consists of two

sub-modules Broadcast Sub-Module and Interest-Driven Sub-Module. The

Broadcast Sub-Module is responsible for predicting data dissemination perfor-

mance under broadcast strategy (Type II) while the Interest-Driven Sub-Module

addresses Type III case by considering the interest-driven data dissemination

technique. Both sub-modules predict data dissemination performance for either

static or time-varying contact patterns.
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Broadcast Sub-Module

This sub-module is responsible for predicting the tighter upper bound of data dis-

semination time and best relays in the network for broadcast dissemination strat-

egy using DDT-Markov and BROP components respectively. The DDT-Markov
Component further consists of Data Processor, Markov Model, and Cut-off Es-
timator sub-components to predict upper bound of data dissemination time. The

Data Processor pre-processes different inputs required by the Markov Model that

employs a Markov-chain based model for both static and time-varying contact

patterns. The Cut-off Estimator is responsible for providing the tighter bound

of dissemination time by estimating a Cut-off point α (details of α is provided in

next Chapters). Finally, the BROP component is responsible for finding the best

relays in the network under different broadcast dissemination strategies. To do

this, it utilizes a weighted k-shell decomposition algorithm Garas et al. [2012].

Interest-Driven Sub-Module

The Interest-Driven Sub-Module predicts the tighter upper bound of data dis-

semination time and best relays in the network under interest-driven dissemina-

tion strategy and both contact patterns. Similar to Broadcast Sub-Module, it

also consists DDT-Markov and BROP components. Further, it contains an ad-

ditional component called Interest Learning Component to find the pair-wise

interest similarities between people by learning their interest. In the case of

those traces that do not have social proximity (or interest) information then In-

terest Learning Component also generates synthetic interests of people. Using

the sub-components of DDT-Markov, the Interest-Driven Sub-Module pre-

dicts the tighter upper bound of data dissemination time. The role of BROP
model is same as described in Broadcast Sub-Module except for the additional

consideration of interest similarities among people in best relay estimation.

3.2.4 Input Parameters

To predict the performance of data dissemination, the INDIGO framework takes

several input parameters for both cases: Contact Probability Type, data require-

ment, # of data sources and interest similarity threshold. The Contact Probability

Type is an input to the Contact Probability Prediction Module to decide about the

contact patterns for prediction. For Contact Probability Type value as 0, INDIGO

models data dissemination for static contact probabilities and if the value is 1

then it considers time-varying contact patterns. The default value of Contact



40 3.2 Overview of INDIGO for Type II and Type III cases

Probability Type is 0. The data requirement parameter is used to model the data

dissemination process until the certain fraction of data is collected5. For broad-

cast strategy, we take this value as 1 while for interest-driven strategy, by default

INDIGO provides several upper bounds of data dissemination time to the end

user starting from Cut-off point α to 100% data collection with 5% (or 0.05)

step size. Therefore, we get different upper bounds of data dissemination time

for different data requirements i.e. α, α+ 0.05, α + 0.10.....1% where α is the

Cut-off point estimated through DDT-Markov.

Further, # of data sources is used to model the multi-source data dissemina-

tion by providing the number of data sources and the interest similarity threshold

parameter decides the threshold of interest-similarity beyond which people can

exchange information under the interest-driven strategy. The default parameters

for # of data sources is 10% of total users in the network. However for interest

similarity threshold, INDIGO automatically estimates it though the learned in-

terests of users by calculating the expected value of interest similarities among

people.

3.2.5 Web Browsing History

This input is associated with a dataset to learn the interests of people using

Interest-Driven Sub-Module. The Web Browsing History has the records of

each user’s visited URLs during different time periods.

3.2.6 Data Dissemination Performance

The Data Dissemination Performance stores the prediction of Upper Bound of Data

Dissemination Time and Best Relays performance metrics obtained from the Data

Dissemination Prediction Module of INDIGO framework using DDT-Markov and

BROP component respectively for both cases. Please note that INDIGO focuses

on providing a tighter prediction of data dissemination time.

Data dissemination time measures the time until all or some fraction of people

receive information from multiple data sources and Best Relays enables the faster

spread of information by finding the best nodes in the network to minimize the

data dissemination time. Both metrics described above need to be predicted

under different data dissemination strategies, multiple data sources and different

data requirements of people.

5This is the maximum data requirement. It could be less in case of people leave the network

or they do not meet with each other
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Figure 3.5. Overview of the model of INDIGO framework for Type IV case
where social proximity plays the important role.

3.3 Overview of INDIGO for Type IV case

Figure 3.5 presents the second part of the INDIGO framework that models Type

IV case of the Physical–Social proximity table using INDIGO–OSN part. In this

case, social proximity plays the important role and predicts the performance of

data dissemination in online social networks. The model predicts the perfor-

mance of data dissemination using a multi-plane of features where each plane of

the feature is extracted from the rich dataset of online social network based on

the complexity to acquire and privacy intrusiveness. Using these feature planes

the model uses a Machine Learning based model to predict the performance of

data dissemination time by classifying the likelihood to retweet and reply to a

certain text. More details about the complete process and model are provided in

Chapter 8.

3.4 Conclusions

In this Chapter, I presented the overview of different parts of the INDIGO re-

quired to model and predict the performance of data dissemination process for

Type II, III and IV cases of the Physical–Social proximity table. The first part

INDIGO–Physical is dedicated to model the Type II and III cases where physi-
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cal proximity is prominent and predicts the performance of data dissemination

for two performance metrics i.e. Upper Bound of Data Dissemination Time and

Best Relays. I presented how INDIGO addresses the Type II and Type III cases of

Physical–Social proximity table by using different contact patterns and data dis-

semination strategies. Further, I also presented the brief overview of modeling

of Type IV case using INDIGO–OSN part of the INDIGO framework. I summarize

the key observation from this Chapter as follows:

• INDIGO provides solutions for predicting the performance of data dissem-

ination for Type II, III and IV cases of the Physical–Social proximity table.

• For Type II and Type III cases, INDIGO provides a complete unique solution

INDIGO–Physical that predicts the tight upper bound of data dissemination

time and best relays under real-world aspects of data dissemination pro-

cess.

• INDIGO utilizes five datasets from diverse environments like a conference,

university and urban area called INFOCOM, PERCOM, ROLLERNET, MIT,

and MACACO for Type II and III cases. Out of these 5 traces, 3 are standard

traces while the other 2 (PERCOM and MACACO), I collected during my

Ph.D. from conference and university environment respectively.

• To the best of my knowledge, MACACO trace is the first contact trace that

collects both heterogeneous contacts and interests of people simultane-

ously.

• For Type IV case, INDIGO provides a Machine learning based model that

predicts the performance of data dissemination using multi-plane features.

Currently, INDIGO only uses the Twitter dataset.

The work done in this Chapter are presented at PerCom 2012, EWSN 2015

and Complex Networks Workshop 2016. During EWSN 2015, I also received the

best poster award. In next Chapter, I will present the modeling efforts taken for

Type II and III cases. More specifically, I will present the Contact Probability Pre-

diction Module of INDIGO and show how it predicts the pair-wise heterogeneous

contact probabilities for both static and time-varying contact patterns.



Chapter 4

Prediction of Heterogeneous Contact

Probabilities

4.1 Introduction

In the previous chapter of the thesis, I gave an overview of the INDIGO data

dissemination framework. In this chapter, I will focus on the Contact Probability

Prediction Module of INDIGO that captures the contact and mobility patterns of

people for Type II and Type III cases. The contact probabilities among people

significantly impact the data dissemination process, therefore, the prediction of

contact probabilities are an important input to the Prediction Module of INDIGO

to enable the realistic prediction of the upper bound of data dissemination time.

The Contact Probability Prediction Module performs this task for both static and

time-varying pair-wise heterogeneous contact probabilities. For the static contact

probability prediction between any pair of mobile user and the pair of mobile

user and data source, I utilized Maximum Likelihood Estimation (MLE) method

using either real or synthetic contact traces Picu et al. [2012]. For time-varying

contact probability prediction, I use the increment learning with time and applied

Machine Learning approaches by employing Gradient Boosting Machine (GBM).

Figure 4.1 presents the enlarged view of our Contact Probability Prediction Module

for both static and time-varying contact probabilities prediction.

This chapter is structured as follows. Section 4.2 presents the different chal-

lenges associated in predicting contact probabilities. In Section 4.3, I will present

the method to predict heterogeneous pair-wise contact probabilities under static

case from contact traces. Further, Section 4.4 presents the prediction of time-

varying pair-wise contact probabilities using Machine Learning technique and

also discuss the applicability of model in different contact traces. Finally, I con-
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clude the Chapter with Section 4.5.

Figure 4.1. Enlarge view of Contact Probability Prediction Module for both
static and time-varying contact probability prediction.

4.2 Prediction challenges

The ability to predict heterogeneous contact probabilities among different pair of

people is quite an important problem as it enables the realistic contact patterns of

people as opposed to the most of the works in literature that are either based on

different mobility models Clementi et al. [2012] or homogeneous pair-wise con-

tact rate among people Groenevelt et al. [2005]. The more precise prediction of

heterogeneous contact probabilities among people will be able to provide much

better and tighter prediction of the upper bound of data dissemination time. The

prediction of static heterogeneous contact probabilities among people has drawn

some attention in the literature and some of the work has been in this direction

by utilizing the distribution of inter-contact times Conan et al. [2006] Picu et al.

[2012] Boldrini et al. [2014]. In this thesis, I also adopt the similar approach
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by utilizing the inter-contact time distribution and MLE method as this method

has been outperformed as compared to other methods. Further, the time-varying

heterogeneous contact probability prediction is still not addressed in literature

even though it represents more realistic aspects of human mobility. Some of

the challenges for the prediction of time-varying contact patterns is how do we

find the optimum time slots for contact probability estimation; how do we learn

the patterns of contacts among people and take into account the contact patterns

among people on different days of the week or hours of a day. Since time-varying

contact probability is not well addressed in the literature, therefore, the another

challenge for such prediction is the importance of different parameters (or pre-

dictors) in predicting time-varying heterogeneous pair-wise contact probabilities.

In this Chapter, I address these challenges and discuss different approaches uti-

lized in predicting time-varying contact probabilities.

4.3 Pair-wise static heterogeneous contact probabilities

prediction

In this Section, I present an approach to predict static pair-wise heterogeneous

contact probabilities using Static Component of the Contact Probability Predic-

tion Module shown in Figure 4.1. While considering static pair-wise contact prob-

abilities, I assume that each pair of people will exhibit same contact patterns

during different time periods. INDIGO provides a way to predict static contact

probabilities and enables the prediction of the upper bound of data dissemination

time under heterogeneous static contact patterns. The static contact patterns are

useful for the contact traces with small duration of data. For example, in case of

conferences (INFOCOM Scott et al. [2009], PERCOM SCAMPI [2012]) or urban

area (ROLLERNET Benbadis and Leguay [2009]) traces with small duration, I

can consider static contact patterns among people because variation over time is

negligible.

To predict the static pair-wise heterogeneous contact probabilities among

people and different data sources, Static Component first finds the distribu-

tion of inter-contact time for different contact traces followed by employing the

MLE method. To understand the contact probability prediction using MLE, I first

define contact and inter-contact time.
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Definition 1 (Contact): Under heterogeneous mobility, we define contact between

any two nodes i and j when they come in the communication range of each other

and able to exchange information with each other.

Definition 2 (Inter-contact Time): The time interval ∆Ti j between two successive

contacts of a node pair i, j is defined as inter-contact time.

I define ∆Ti j as follows:

∆Ti j = T m
i j
− T n

i j
(4.1)

Where T m
i j

and T n
i j

present the starting time for the contact of i, j node pair at

two time slots m and n. Figure 4.2 presents the graphical representation of inter-

contact time between node pair i, j where the pair meets at time slot m and n

and the contact ends at time slot m+ k and n+ p.

Figure 4.2. Graphical representation of Inter-contact time between a node pair
i, j when they contact at time slot at time m and n.

4.3.1 Distribution of inter-contact time

To employ Maximum Likelihood Estimation (MLE), I first need to understand

the distribution of inter-contact times between each pair. Inter-contact times

are generally very important to data dissemination time analyses as they deter-

mine the delay of data exchange in a network. Thus, they have been extensively

studied, both via experimental traces and by analyzing simple mobility models.

These studies have concluded that three main distribution types appear in inter-

contact time: the exponential distribution, the power law, and the power law

with exponential cutoff.
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The exponential distribution is considered because of its memorylessness

property, the simplest of the three. As such, it is also the one most often used

both in analyses and in algorithm design and simulation. This distribution is mo-

tivated via the analysis and simulation of simple mobility models, such as random

waypoint or random direction Groenevelt et al. [2005]. However, from experi-

mental traces, the inter-contact times aggregate over all node pairs were found

to be power-law distributed Scott et al. [2006a]. This caused a certain dismay in

the research community as it meant that the average delays in routing and data

dissemination algorithms could potentially be infinite. Nevertheless, a wave of

new analytical studies Karagiannis et al. [2007] Cai and Eun [2009] combined

with closer looks at experimental traces have dismissed these concerns. Cai et al.

showed in Cai and Eun [2009] that, under relatively generic conditions, the pair-

wise inter-contact times have a probability distribution, which is a mixture of a

power law and an exponential (i.e., power-law head and exponential tail). This

has also been confirmed in real-world traces by Karagiannis et al. Karagiannis

et al. [2007], who analyzed the empirical complementary cumulative distribu-

tion functions (CCDFs) of the inter-contacts and defined as follows Picu et al.

[2012]:

Fi j(x) =

!

Ci j.x
−αi j e−βi j x f or x ≥ t

i j
0

1 f or 0 < x < t
i j
0

Where t
i j
0 is the minimum inter-contact time between the i, j node pair and

Ci j = (t
i j
0 )
αi j e

βi j t
i j
0 is a positive normalization constant. The above function is

the combination of a power law distribution and an exponential distribution.

The two inter-contact time distribution parameters α and β represent power law

exponent of inter-contact times of the nodes pair i, j and contact rate of node pair

i, j. To estimate α and β parameters for each node pair i, j, I employ Maximum

Likelihood Estimation (MLE) by utilizing the CCDF function Fi j(x).

4.3.2 Maximum Likelihood Estimation method

The Maximum Likelihood Estimation (MLE) method was introduced in 1921 by

Sir Ronald Fisher and chooses the estimate of the parameter which “makes the

observed data as likely as possible” Scholz [1985]. It is a method of estimating

the parameters of a statistical model given observations, by finding the param-

eter values that maximize the likelihood of making the observations given the
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parameters. In general, for a fixed set of data and underlying statistical model,

the method of maximum likelihood selects the set of values of the model pa-

rameters that maximize the likelihood function. Intuitively, this maximizes the

"agreement" of the selected model with the observed data, and for discrete ran-

dom variables it indeed maximizes the probability of the observed data under

the resulting distribution.

Definition 3: If the sample data is denoted by x, the parameter by θ and the

probability density function by f (x ;θ ) then the maximum likelihood estimate of

θ is that value of θ , θ̂ which maximizes f (x ;θ ).

Maximum likelihood estimates are obtained by maximizing the likelihood us-

ing calculus. Most often we have a random sample of size n from a population

with density function f (x ;θ ). In this case, we have maximum likelihood esti-

mate L(x ;θ ) as :

L(x ;θ ) =
n
∏

k=1

f (xk;θ ) (4.2)

Since the maximum of a function occurs at the same value as the maximum of

the natural logarithm of the function and it will also be easier to maximize with

respect to θ
n
∑

k=1

ln[ f (xk;θ )] (4.3)

Finally, I solve the following equation to estimate θ̂ parameter which is called

the maximum likelihood.

n
∑

k=1

∂ ln[ f (xk;θ )]

∂ θ
= 0 (4.4)

4.3.3 Pair-wise contact probability prediction using Maximum Like-
lihood Estimation

For the contact traces, we estimate contact probabilities utilizing the MLE method

described in Section 4.3.2. In this section, we present the methodology to em-

ploy MLE to predict the contact probability utilizing the inter-contact time CCDF

function Fi j(x) derived in Section 4.3.1.
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Definition 4 (Pair-wise Contact Probability): The pair-wise contact probability pc
i j

between any node-pair, i and j is defined as the likelihood of meeting the given

pair with respect to the contacts with other nodes.

The contact probability is calculated using the contact rate βi j between the

node pair and defined as follows:

pc
i j
=

βi j
∑

1≤=i< j≤N βi j

(4.5)

Where N is the total number of nodes in the network. The contact rate βi j is

estimated using MLE method as follows:

• Calculate the Probability Density Function (PDF) of inter-contact time dis-

tribution for the node pair i and j using CCDF function Fi j(x) of inter-

contact time derived in Section 4.3.1.

fi j(x) =
∂ (1− Fi j(x))

∂ x
(4.6)

• Utilize Maximum Likelihood Estimation to estimate αi j and βi j.

Li j∗ = ln(L(x ;αi j,βi j)) =

N
∑

k=1

ln[ fi j(xk;αi j,βi j)] (4.7)

• Find contact rate parameter βi j.

∂ Li j∗

∂ αi j

= 0,
∂ Li j∗

∂ βi j

= 0 (4.8)

• Finally, estimate the contact probability of pair (i, j) in N node network

using Equation 4.5.
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Likewise, I estimate the heterogeneous contact probabilities between each

pair of nodes and construct the contact probability matrix PC that contains pair-

wise heterogeneous contact probability between each pair of nodes in the network

V .

PC
S
= {pc

i j
} i, j ∈ V (4.9)

Figure 4.3 presents the sample static heterogeneous contact probabilities pre-

dicted from all contact traces considered in this thesis using MLE.

4.4 Pair-wise time-varying heterogeneous contact prob-

abilities prediction

In this Section, I will focus on predicting time-varying pair-wise contact probabil-

ities utilizing the Time-varying Component of the Contact Probability Prediction

Module shown in Figure 4.1. To the best of my knowledge, the work done in liter-

ature only consider the static heterogeneous contact probabilities among people

for data dissemination, however, as discussed in previous Chapter 1 2, the as-

sumption of static contact probabilities do not hold in reality as people do not

meet with each other with same likelihood. For example, people do meet their

colleagues more on weekdays as compared to weekends therefore, one cannot as-

sume the static contact probabilities over time. Further, the assumption of static

contact probabilities does not provide a realistic prediction of data dissemina-

tion process as it cannot capture varying mobility patterns of people over time.

In this thesis, I address the problem of time-varying contact probabilities and pro-

vide a solution to learn contact probabilities of people over time. My approach

is based on Machine Learning methods that meet the challenges described in

Section 4.4.1 by learning the contact patterns of people over time.

4.4.1 A Machine Learning approach

For the time-varying contact patterns case, one of the important challenges is

to automatically find the optimum time slot for different people. One of the

possible solutions is to divide the total contact traces in a fixed time slot followed

by the prediction of contact probabilities using MLE. However, this approach

will not capture the true behavior of human mobility patterns and will always

rely on the availability of complete contact traces which is not always feasible to

collect. The work done in Gao et al. [2013] has shown that people show transient
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(a) Conference Trace–INFOCOM (b) University Trace–PERCOM

(c) University Trace–MIT (d) Crowded Urban Trace–

ROLLERNET

(e) Our Trace–MACACO

Figure 4.3. A sample of heterogeneous pair-wise static contact probabilities
estimated for the diverse environment.
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contact patterns in different time slots in a day which does not necessarily be

symmetric and can be different for different days. Further, recent works have

shown that over a longer duration, people do exhibit regularity in their mobility

patterns Gonzalez et al. [2008] Hsu et al. [2009] and that, in context of social

and location-based networks, Machine Learning approaches can be used for link

prediction Liben-Nowell and Kleinberg [2007] Scellato et al. [2011].

Therefore, to predict time-varying contact patterns, I also adopt Machine

Learning based approach. In this analysis, I consider the MIT and MACACO

trace as they have the contact patterns of people with longer duration. In con-

text to INFOCOM, PERCOM and ROLLERNET traces, where the contact patterns

are random, I rely on the static contact probabilities. Machine Learning approach

enables the automatic learning of heterogeneous contact patterns among people

and also provide us the most important predictors required to predict contact

probabilities under time-varying patterns.

4.4.2 Time-varying contact probability prediction model

Figure 4.4 presents the overall procedure to predict the time-varying contact

probabilities of Time-varying Component of Figure 4.1. After taking the contact

traces as input, the model first process the data for each week and then create

daily features by incremental updating the features of the same day-of-the-week

of the previous week. For example, if we have 2 weeks of data then, I create

features for the Monday of the first week by considering only the data of Monday

while for the Monday of the second week, I upgrade the features of the Monday

of week 1 with the ones of the current Monday (of week 2). Likewise, I create

daily features for all contact traces and learn the daily contact patterns of people

in this manner 1

Feature development

Features define the attribute or properties of the data set. I create features for

each pair of people. For each pair, the features considered in my model are re-

lated to the contact pattern statistics of each person in the pair with others, contact

pattern statistics between the given pair and the inter-contact time patterns statis-

tics and their distribution parameters. In addition to these features, I also have

1Please note that I also tried to create hourly features for each day of each week, however,

the results were not promising thus, shows that such granular contact patterns prediction is quite

difficult to achieve due to sparse contact data. In the case of granular contact datasets, the model

can be further tested hourly basis or another appropriate time slots.
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Figure 4.4. The process to predict time-varying contact probabilities using
Machine Learning Approach.

day of the week as a feature. These features capture the overall contact pattern

of a person with all other people as well as his/her contact pattern with the in-

dividual person of the pair. The contact related features inspect the community

formation and ties of a person with others in the network while the inter-contact

time features to capture the mobility of the person i.e. how often he/she is in-

terested in meeting with other people at different times. Table 4.1 presents all

features extracted from the contact traces extracted for a node pair i, j for a cer-

tain day of the week. The total number of features developed from the datasets

are 50.

XGBoost: A Gradient Boosting Machine method

The contact probability between any pair of people at a given day is a continuous

variable that lies between 0 to 1. Therefore, contact probability prediction can

be seen as a regression problem where the aim of my model is to minimize the

distance between the predicted and the observed value (error). To do this, I ana-

lyzed several Machine Learning methods like Linear Regression Weisberg [2005],

Random Forest Breiman [2001], Support Vector Machines (SVMs) Suykens and

Vandewalle [1999] and Gradient Boosting Machine Friedman [2001]. Out of

all these methods, Gradient Boosting Method (GBM) outperforms for different

samples of contact traces. In Linear Regression method, the error was high as
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Table 4.1. Features Extracted from Contact Traces

Contact Features Total # Contacts of i and j with all people, Descriptive

statistics (mean, median, std, quantiles) of # Contacts of

i and j, # people contacted for i and j, Contact Likelihood

Hourly of i and j

Inter Contact Time (ICT)

Features

Descriptive statistics (mean, median, std, quantiles) of

ICT of i and j with all people, parameters of ICT distribu-

tion for i and j with all people

Node Pair Features Total # Contacts between i and j, Descriptive statistics

(mean, median, std, quantiles) of contact time between

i and j, Descriptive statistics (mean, median, std, quan-

tiles) of ICT between i and j, parameters of ICT distribu-

tion between i and j

Time Features Week Number, Day Number

there the Contact probability and predictor parameter are not linearly related

while Random Forest was not able to provide better prediction method since it’s

a bagging method that mainly relies on the voting or averaging method. In the

case of GBM, its nature of boosting helps to correct the error in each sequence as

it works on sequential methods. Therefore, to predict time-varying contact prob-

abilities among people, I finally considered Gradient Boosting Machine method.

More specifically, I use the XGBoost or “Extreme Gradient Boosting” method.

Gradient Boosting is a supervised machine learning technique for regression

and classification problems, which produces a prediction model in the form of an

ensemble of weak prediction models, typically decision trees. It is a sequential

technique which works on the principle of ensemble and combines a set of weak

learners and delivers improved prediction accuracy. At any instant t , the model

outcomes are weighed based on the outcomes of previous instant t−1. The out-

comes predicted correctly are given a lower weight and the ones miss-classified

are weighted higher. Gradient Boosting algorithms play a crucial role in dealing

with bias and variance trade-off.

Out of these Gradient Boosting algorithms, I choose XGBoost as it uses a more

regularized model formalization to control over-fitting hence gives better perfor-

mance. Further, XGBoost also provides much faster computation for boosted tree

algorithms and makes it more suitable for large contact traces. I highlight some

of the advantages of XGBoost over traditional GBM as follows:
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• Regularization: Standard GBM implementation has no regularization like

XGBoost, therefore it also helps to reduce over-fitting. In fact, XGBoost is

also known as “regularized boosting” technique.

• Parallel Processing: XGBoost implements parallel processing and is amaz-

ingly faster as compared to GBM.

• High Flexibility: XGBoost allows users to define custom optimization ob-

jectives and evaluation criteria. This adds a whole new dimension to the

model and there is no limit to what we can do.

• Handling Missing Values: XGBoost has an inbuilt routine to handle miss-

ing values. XGBoost tries different things as it encounters a missing value

on each node and learns which path to take for missing values in future.

• Tree Pruning: A GBM would stop splitting a node when it encounters a

negative loss in the split. Thus it is more of a greedy algorithm. XGBoost,

on the other hand, makes splits upto the max_depth specified and then

start pruning the tree backward and remove splits beyond which there is

no positive gain. Another advantage is that sometimes a split of negative

loss say -2 may be followed by a split of positive loss +10. GBM would stop

as it encounters -2. But XGBoost will go deeper and it will see a combined

effect of +8 of the split and keep both.

• Built-in Cross-Validation: XGBoost allows a user to run a cross-validation

at each iteration of the boosting process and thus it is easy to get the exact

optimum number of boosting iterations in a single run. This is unlike GBM

where we have to run a grid-search and only a limited values can be tested.

My implementation of Gradient Boosting Method is based on the Python li-

brary XGBoost2. I use the XGBRegressor function of XGBoost to predict the contact

probabilities among people. Further, I tried a set of parameter combinations to

prevent over-fitting using two parameters, eta that determines the learning rate

and the number of rounds i.e. n_estimators. I experimentally set optimum eta

and n_estimators for each trace. I also apply 10-fold cross-validation to select an

appropriate number of rounds based on the mean error rate. From the contact

traces, I predict the contact probabilities incrementally over time. As explained

above, my model first learns the contact patterns among people using the first

week of the data and predicts contact probabilities for the 2nd week. Similarly

2xgboost.readthedocs.io/en/latest/python/python intro.html
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to predict contact probabilities for 3rd week, it learns contact patterns from both

week 1 and week 2 data. Unlike existing XGBoost algorithm that does not work

on time-series testing, I modified the algorithm to enable time-series prediction.

For all traces, the model predicts the daily time-varying pair-wise contact proba-

bilities for different weeks. I present the set of time-varying contact probabilities

PC
T V

predicted for a certain week w having 7 days starting from Monday (1) to

Sunday (7) as follows:

PC
T V
= {PC

da y1
, PC

da y2
......PC

da yk
} i, j ∈ V k ∈ [1, 7] (4.10)

Where,

PC
da yk
= {p

cda yk

i j } i, j ∈ V (4.11)

PC
da yk

represents the contact probability matrix between each pair of users for

a given day da yk of week w and p
cda yk

i j presents the predicted contact probability

value between the pair i, j for the kth day.

Feature selection

Another important aspect of prediction is to find the most important features

that define the target variable (in my case it’s contact probability between any

pair of people). If we have too many features then it might lead to over fitting

and does not provide accurate results for testing data. Therefore, to overcome

this problem I applied different feature selection methods on the training data

and find the set of most important features that contributes most to learning

contact patterns. Out of these important features, I used top-k approach and

gave a different set of features to the prediction model. From our results, we

see that only 20 features (or predictors) are enough to predict time-varying pair-

wise contact probabilities among people. For feature selection, I used one of the

most widely used Recursive Feature Elimination (RFE) technique on the linear

regression model. Given an external estimator that assigns weights to features

(e.g., the coefficients of a linear model), the goal of RFE is to select features by

recursively considering smaller and smaller sets of features. First, the estimator

is trained on the initial set of features and weights are assigned to each one of

them. Then, features whose absolute weights are the smallest are pruned from

the current set features. That procedure is recursively repeated on the pruned

set until the desired number of features to select is eventually reached. I present

the top or most important features used in prediction for both MIT and MACACO

contact traces in next section.
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4.4.3 Results

In this Section, I will present the predicted time-varying contact probabilities

obtained using the Time-varying Component of the Contact Probability Predic-

tion Module of INDIGO. As explained in Section 4.4.1, I present predicted con-

tact probabilities only for MIT and MACACO traces. For both traces, I validate

the time-varying prediction model for one month contact data. For MIT trace,

I divide the month data in 4 weeks and process each week data to create daily

features (described in Section 4.4.2). I call these weeks as MIT-W1, MIT-W2,

MIT-W3 and MIT-W4 respectively. For our own collected MACACO traces from

different countries and groups, I also consider one month contact data where a

maximum number of users make regular and intense use of the wireless network.

The most active month for France and Brazil group were May 2015 and October

2015 respectively. For France trace, there were only three weeks (France-W1,

France-W2, and France-W3) where we have enough contacts of people, there-

fore, I present prediction for France-W2, and France-W3. Similarly, for Brazil

trace, since we had contacts only for 2 weeks, therefore, I present our contact

probabilities prediction results for Brazil-W2 3. Similarly for MACACO traces, I

also process the each week data and create daily features.

After creating daily features, I train the prediction model with the first week

of data for both traces and then test the model by predicting the contact proba-

bilities between different pairs of people for the next week. Likewise, I keep on

predicting contact probabilities for all weeks of both traces. In the case of MIT,

I train the model with MIT-W1 data and subsequently predict the contact proba-

bilities for MIT-W2, MIT-W3, and MIT-W4 respectively. For MACACO France and

Brazil traces, I test my prediction model for France-W2, France-W3, and Brazil-

W2 respectively. Further, I calculate the mean Mean Absolute Percentage Error

(MAPE obtained for each day between the observed and predicted value for all

pair of users. MAPE is a non-scaled error metric that is used as a figure of merit

to identify whether a perdition method is performing well or not. The lower the

MAPE, the better the performance of the model. This measure is easy to under-

stand because it provides the error in terms of percentages. I used this metric

as I wanted to see the absolute error in predicting the contact probabilities that

do not get impacted by the cancellation of positive and negative errors. For the

prediction results I calculated the Mean Absolute Percentage Accuracy (MAPA)

for each day of the week and defined as follows:

3Please note that throughout the thesis, I considered the same month for the validation of our

different results obtained from INDIGO.
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MAPAda yk
= 100−
%1

n

∑ |ActualC P − Predic tedC P|

|ActualC P|

&

∗ 100 (4.12)

Figure 4.5 presents the contact Mean Percentage Accuracy obtained from the

prediction model for both MIT and MACACO traces. From Figure 4.5 we ob-

serve that the proposed model is able to predict time-varying contact probabili-

ties between 80-90% accuracy for MIT and MACACO-France traces. Further for

these two traces, we also observe that as we provide more learning data to the

model predicts better i.e. prediction accuracy increases with increasing days of

the week. For MACACO-Brazil traces, the prediction model is able to achieve

accuracy between 75-80%. This happens because, in MACACO-Brazil trace, we

were not able to get contact patterns for each day of the week due to missing con-

tacts among people or due to the fact that people were not collecting data. From

above results I derive that to provide a satisfactory prediction of time-varying

pair-wise contact patterns, we need at least one week of learning data.

Finally, I also present the important top 20 features for both MIT and MACACO

traces in Figure 4.6. From the feature rank table, we observe that a total number

of contacts among the pair (in Figure, 1 represents the first person and 2 presents

the second person of the pair) is the most important feature followed by the day

of the week. Further, I also observe the contact features of each person in the

pair are also crucial in predicting the time-varying contact probabilities. The

standard deviation of inter-contact time between the pair and also with others

in the network are also important features to enable better prediction accuracy

of contact probabilities.

Finally, to cope up with the scalability issues while deploying this machine

learning based approach, we can first prune those pairs who exhibits very fewer

contacts among them. Further, we can also adopt incremental feature devel-

opment by pre-processing the data in advance to make our model much faster

and enable it to develop on-the-fly features. Finally, the model can be further

fastened to handle the scalability concerns by only developing the features that

came out as important features among different samples of datasets.

4.5 Conclusions

In this Chapter, I presented the Contact Probability Prediction Module of INDIGO.

More specifically, I presented how the Contact Probability Prediction Module pre-

dicts the heterogeneous pair-wise contact probability for both static and time-

varying contact patterns. For static contact patterns, I presented how can we
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(a) MIT (b) MACACO-France

(c) MACACO-Brazil

Figure 4.5. Mean Absolute Percentage Accuracy for predicted time-varying
contact probabilities for different days of the different weeks of MIT,
MACACO-France and MACAO-Brazil taces.
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Figure 4.6. Rank of top 20 obtained from the feature selection using Recursive
Feature Elimination.

utilize the inter-contact time distribution and Maximal Likelihood Estimation

method like Conference and events in an Urban area. Further, I present the

methodology to utilize Gradient Boosting Machine Learning Approach to learn-

ing the contact patterns of people and predict their time-varying day-wise contact

probabilities automatically for contact traces with a longer duration like Univer-

sity environment. To enable time-varying contact probabilities prediction, I cap-

ture contact patterns of people in the form of features mainly related to contacts,

the inter-contact time between a pair and all other people. I present the results

for MIT, MACACO France, and MACACO Brazil traces and showed that my model

is able to achieve a good accuracy with the incremental learning approach. I ob-

serve that as soon as we provide more learning data to the model, the prediction

accuracy increases. I also summarize the key observation from this Chapter as

follows:

• A Gradient Boosting Machine based increment learning approach can en-

able the prediction of future time-varying contact probabilities by learning
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the past contact patterns of people.

• To get reasonable accuracy in contact probability prediction, the model

requires longer contact traces with at least one week of data.

• The total number of contacts among the pair and day of the week con-

tribute greatly for the time-varying contact probability prediction of a pair.

• The proposed time-varying contact pattern prediction provides more real-

istic contact patterns thus can empower INDIGO to provide much tighter

and realistic upper bound of data dissemination time.

The work done in this Chapter has resulted in a publication at ACM MobiOpp

2012, ICT4S 2013 and ACM MobiCom 2015, IEEE Med-Hoc-Net 2015 confer-

ences. In next Chapter, I will present the modeling part of INDIGO for Type II

and Type III cases where social proximity dominates. I will present the modeling

of data dissemination process under the broadcast data dissemination strategy

and will also discuss the utilization of the contact probabilities predicted for both

static and time-varying contact patterns from this Chapter. In next Chapter, I will

also present the impact of time-varying contact pattern while predicting the up-

per bound of data dissemination time.
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Chapter 5

Prediction of Upper Bound of Data

Dissemination Time Under Broadcast

Strategy

5.1 Introduction

In the previous Chapter, I described the prediction of heterogeneous pair-wise

contact probabilities considering both static and time-varying nature of human

mobility. In this Chapter, I will focus on the upper bound of data dissemination

time for contact traces under broadcast data dissemination strategy for both static

and time-varying pair-wise heterogeneous contact probabilities for both Type II.

The broadcast data dissemination strategy under static contact probabilities is ad-

dressed in literature Peres et al. [2011] Picu et al. [2012]Mosk-Aoyama and Shah

[2008] for a single data source. However, the existing works do not consider the

time-varying nature of pair-wise contact probabilities and also do not take into

account the impact of multiple simultaneous contacts and multiple data sources.

In this Chapter, I will present a Markov chain based model called DDT-Markov of

INDIGO framework that can realistically predict the upper bound data dissemina-

tion time of multi-contact and multi-source data dissemination under broadcast

data dissemination strategy by considering the heterogeneous and time-varying

mobility of people. The model takes the pair-wise contact probabilities among

people as an input. I also present how the presented model DDT-Markov achieves

much tighter and realistic upper bound than existing approaches by utilizing the

exponential cut-off property of inter-contact time distribution that impacts the

data gathering process Karagiannis et al. [2007] Garg et al. [2013].

The chapter is structured as follows. In Section 5.2, I will present the de-
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strategy

tailed description of the components required to predict the upper bound of data

dissemination time under the broadcast strategy. Further, in Section 5.3, I will

present the modeling of multi-contact and multi-source data dissemination time

under heterogeneous mobility and broadcast data dissemination strategy. In this

Section, I will also present the first basic data dissemination algorithms to pre-

dict upper bound of data dissemination time using Markov model for both static

and time-varying contact patterns. Further, Section 5.4 will present different

approaches considered in this thesis for the tighter prediction of upper bounds

of data dissemination time. After the explanation of the modeling and tighter

bound approaches, I will present the methodology to create ground truth data

dissemination time and the results obtained from different contact traces in Sec-

tion 5.5. Section 5.6 will present the results obtained for the upper bound of

data dissemination time for contact traces from the diverse environment and du-

ration and also compare our solution with the key existing methods. Finally, I

will conclude the Chapter with Section 5.7.

5.2 Overview of INDIGO framework components required

under broadcast strategy

Figure 5.1 outlines the enlarged view of different components of INDIGO frame-

work required to predict upper bound of data dissemination time under broad-

cast data dissemination strategy for Type II case. To predict the upper bound

of data dissemination time under broadcast strategy, INDIGO considers Con-

tact Probability Prediction Module and DDT-Markov Component of Broadcast

Sub-Module. As explained in previous Chapter 4, the Contact Probability Predic-

tion Module predicts the static and time-varying pair-wise heterogeneous contact

probabilities among people using and/or learning their contact patterns from

the real world or synthetic traces. After the contact probabilities are predicted,

the INDIGO input them to the DDT-Markov Component. With the help of these

modules and components, INDIGO framework predicts the upper bound of data

dissemination time utilizing the Markov chain based model. Table 5.1 presents

different notations used in this Chapter.

5.2.1 Contact Probability Prediction Module

Utilizing the real/synthetic contact traces and Contact Probability Type parameter

(0 for static contact probabilities and 1 for time-varying contact probabilities),

this module predicts the contact probabilities among each pair of people i and
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strategy

Table 5.1. Notations used in INDIGO under broadcast data dissemination
strategy for Type II case.

Notations Description

U , D set of mobile users, set of mobile users selected as data sources

N , M number of mobile users, number of data sources

uj, di mobile user uj ∈ U , data source di ∈ D

G graph of mobile users U and data sources D

V V = U ∪ D, set of all mobile users and data sources

pc
i j

static contact probability between any pair i, j ∈ V , pc
i j
∈ [0, 1]

p
cda yk

i j contact probability between any pair i, j ∈ V , p
cda yk

i j ∈ [0, 1]

for kth day

PC
S

contact probability matrix of all pc
i j

for static pair-wise contact probabilities

PC
T V

set of day-wise contact probability matrices of all pc
i j

for time-varying pair-wise

contact probabilities

PC
da yk

contact probability matrix of all p
cda yk

i j for kth day

α Cut-off point used by Markov model, α ∈ [0, 1]

" overall data collection requirement of all mobile users " ∈ [0, 1]

F F = M ∗ N ∗", final number of messages to collect

msgi distinct message associated to data source di ∈ D

M Listuj
(t) list of all data messages received upto time t by mobile user uj

DAL L(t) list of all data messages collected upto time t by all U mobile users

DF(t) fraction of data collected till time t , DF(t) ∈ [0, F]

S(x) Markov model state with x messages collected by all mobile users

S(F) Markov model’s target state with F messages

PS(x)S(x+h) transition probability to reach S(x + h) from S(h) under static contact probabilities

Pk
S(x)S(x+k)

transition probability to reach S(x + h) from S(h) under time-varying

contact probabilities

∆ time step size of Markov model

Tx maximum time spent in Markov state S(x)

T
upper

dssB predicted upper bound of data dissemination under broadcast

data dissemination strategy

TFGPB maximum time spent Fast Growing Phase

TLT PB maximum time spent Long Tail Phase

T meas
dssB measured data dissemination time from real traces under broadcast

data dissemination strategy

t−, t+ time before and after any time t
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Figure 5.1. An enlarged view of the INDIGO components required to predict
the upper bound of data dissemination time under broadcast data dissemina-
tion strategy for both static and time-varying pair-wise heterogeneous contact
patterns.

j . For static contact patterns (i.e. Contact Probability Type = 0) it constructs a

contact probability matrix PC
S

with static pair-wise heterogeneous contact proba-

bilities pc
i j

between each pair i and j using Equation 4.9 of Chapter 4. Further for

time-varying contact patterns (i.e. Contact Probability Type = 1), it constructs a

contact probability matrix set PC
T V

that contains pair-wise heterogeneous contact

probabilities for each pair in different days p
cda yk

i j (using Equation 4.9 of Chap-

ter 4).

5.2.2 Broadcast Sub-Module

This sub-module come under the Data Dissemination Prediction Module of IN-

DIGO framework (from Figure 3.2 of Chapter 3) and is responsible for predict-

ing the tighter upper bound of data dissemination time for broadcast dissemi-

nation strategy. The core is the DDT-Markov Component that further consists of
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Data Processor, Markov Model and Cut-off Estimator sub-components for the

prediction. The Data Processor pre-processes different inputs required by the

Markov Model and employs a Cut-off point based approach to predict tighter

upper bound of data dissemination time for both static and time-varying contact

patterns. The Markov Model communicates with Cut-off Estimator to estimate

the Cut-off point α that plays a significant role to provide the tighter prediction

of data dissemination time T
upper

dssB (more details of α is provided in next Sec-

tions). The Cut-off point based approach incorporates realistic aspects of human

mobility and communication (i.e. heterogeneous contact patterns and multiple

simultaneous contacts among people) and multiple data sources.

Data Processor

This sub-component processes all inputs coming from Contact Probability Predic-

tion Module for both static and time-varying pair-wise contact probabilities. It

also uses Input Parameters given to the INDIGO framework. The main parameter

for broadcast data dissemination strategy is the # of data sources that enables

multi-source data dissemination. Out of all users, the Data Processor randomly

assigns M users as data sources and marks the rest as N mobile users. Based on

the type of contact probabilities (i.e. static or time-varying), it gives either PC
S

contact probability matrix or PC
T V

contact probability matrix set as an input to

the Markov Model. These contact probability matrix (or matrix set) drives the

mobility and heterogeneous contact patterns for the DDT-Markov Component.

Markov Model

It is a Markov-chain based model that utilizes a Cut-off point based approach

to mimic real-world data gathering process by considering the heterogeneous

mobility patterns of people, multiple simultaneous contacts among people and

data originating from multiple data sources. The Markov Model communicates

with Cut-off Estimator to dynamically estimate the Cut-off point for the tighter

prediction of the upper bound of data dissemination time. Each state S(x) of

the Markov Model represents the total number of messages (x) collected by

mobile users from different data sources. In this way, the Markov Model keeps

on transiting from lower states to higher ones based on the number of messages

collected in the network. The transition from one state to another state is driven

by the mobility and contact patterns of mobile users and data sources. Once all

mobile nodes collect all messages in the network then the Markov Model stops

transiting and remain in the same state also called as an absorbing state. Due
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to this absorbing state, this Markov Model is also called an Absorbing Markov

Chain-based model. The detailed description of data dissemination modeling

using Markov Model is presented in Section 5.3.

Cut-off Estimator

This component is also an integral part of INDIGO framework that contributes

towards the tighter prediction of the upper bound of data dissemination time by

dynamically providing the Cut-off point α value to Markov Model (more detail

in later sections). To calculate α, Markov Model communicates with Cut-off
Estimator by providing the fraction of data collected DF(t) ∈ [0, 1] at time t in

the network at any time step t . Based on this information Cut-off Estimator
measures the change in data fraction between two consecutive steps of Markov

chain and repeats this process until it reaches to a data fraction α beyond which

change in t results in data fraction changes smaller than ε. For any data fraction

DF(t) ∈ [0, 1] at time t and time step size ∆, α can be calculated as:

α :
DF(t +∆)− DF(t)

∆
<< ε,ε= 10−4 (5.1)

5.3 Modeling of multi-contact multi-source data dissem-

ination using Markov chains under broadcast strat-

egy

In this section, I present the modeling of multi-contact multi-source data dis-

semination process for both static and time-varying contact probabilities using

Markov chains from Markov Model. Let us consider the entire network as a graph

G = (V, E) with V = U ∪D where U = {u1, u2, ....., uN} represents N mobile users

and D = {d1, d2, ....., dM} represents M data sources (mobile or static). An edge

(y, z) ∈ E between any two nodes y ∈ V and z ∈ V exists if (and only if) they

can communicate with each other 1. I assume that every data source di ∈ D has a

distinct data message msgi . Further, for broadcast data dissemination strategy, I

assume that each mobile user uj ∈ U is interested in gathering messages from all

data sources. Therefore, the maximum number of messages that can be stored

in the network are F = M ∗ N (each one of the N users could have M data mes-

sages). Every mobile user uj maintains a list M Listuj
(t) = {msgi , i ∈ [1, M]} of

1We assume that the communication between y and z is bi-directional.
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all messages it receives up to time t . All mobile users of network G collect data

in two possible ways (or processes):

• User–User Contact (UUC): When any two mobile users come in contact with

each other and exchange their respective message lists. This process is

similar to epidemic routing.

• User–Data Source Contact (UDSC): When a mobile user encounters a data

source and collects its data message.

Algorithm 1 Data gathering algorithm via UUC process

1: if Any two users uj and uk come in contact at time t with M Listuj
(t−) and

M Listuk
(t−) then

2: Users uj and uk exchange all of their data messages

3: M Listuj
(t+) = M Listuj

(t−)∪M Listuk
(t−)

4: M Listuk
(t+) = M Listuj

(t−)∪M Listuk
(t−)

5: end if

Algorithm 2 Data gathering algorithm via UDSC process

1: if Any user uj with M Listuj
(t−) and any data source di with message msgi come in

contact at time t then

2: Users uj collects data message msgi from di

3: M Listuj
(t+) = M Listuj

(t−)∪msgi

4: end if

It is important to note that any two data sources do not exchange any data

messages among them. I define multi-contact multi-source data dissemination

process as follows:

Definition 1 (Multi-contact Multi-source Data Dissemination under Broadcast):

Given a network G, any user uj ∈ U gathers data message msgi from data source

di ∈ D or further disseminates its messages to other users via UUC process. Any

user uk ∈ U can also directly receive data message msgi using UDSC process. The

data dissemination process continues until all mobile users in the network collect

data from all data sources. It is driven by the mobility of users (and data sources)

and multiple simultaneous contacts among them.

Algorithm 1 and Algorithm 2 present how every user uj ∈ U gathers data at

time t using UUC and UDSC processes. t− and t+ represent the time before and

after t respectively.
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5.3.1 Preliminaries and assumptions

In order to model the mobility of people, the Markov Model utilizes the pro-

cessed contact probabilities matrix obtained from Data Processor for all mobile

nodes and mobile nodes and data sources. Please note that the predicted con-

tact probabilities were provided by the Contact Probability Prediction Module for

either static or time-varying contact pattern settings. In case of static contact

patterns, the contact probability matrix is PC
S

while in case of time-varying con-

tact probabilities, it is given as a set of contact probability matrix PC
T V

consisting

of contact probability matrix for k days i.e. PC
T V
= {PC

da y1
, PC

da y2
......PC

da yk
} where

k ∈ [1, 7] respectively (details were provided in Chapter 4).

To model multiple simultaneous contacts, the Markov Model uses a syn-

chronous time model, where time is slotted commonly across all nodes in the

network. In any time slot, each node in the network G may contact one of its

neighbors according to a random choice that is independent of the choices made

by other nodes. Thus, in synchronous time model, multiple contacts may occur

simultaneously Mosk-Aoyama and Shah [2008]. Before giving a detailed de-

scription of the modeling of data dissemination time using the Markov Model,
I will first present some of the assumptions taken during the modeling process

and the definition of data dissemination time under broadcast data dissemination

strategy.

Assumptions:

• The contact probability matrix PC
S

or any PC
da yk

is doubly stochastic matrix

i.e pc
i j
= pc

ji
i, j ∈ V .

• Number of data sources are very less compared to a number of users2 i.e

M << N .

• Data dissemination time is finite.

• Similar to existing works, I also assume that the duration of contact is small

but sufficient to transfer all data Gao and Cao [2011] Li et al. [2013].

Definition 2 (Data Dissemination Time Upper Bound Under Broadcast): I define

data dissemination time as the time at which all users in the network receive all

(or maximum feasible3) messages from all data sources.

2This assumption is admissible because in a real world scenario, generally, the number of data

sources are less as compared to receivers.
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Consider a matrix DAL L(t) of size N × M that represents a list of all data

messages collected up to time t by N mobile users.

DAL L(t) =

⎡

⎢

⎢

⎢

⎢

⎣

msgu1 d1
msgu1d2

... msgu1dM

msgu2 d1
msgu2d2

... msgu2dM

. . . .

. . . .

msguN d1
msguN d2

... msguN dM

⎤

⎥

⎥

⎥

⎥

⎦

N×M

msguj di
=

!

1 i f msgi ∈ M Listuj
(t)

0 otherwise

∀ j ∈ [1, N], ∀ i ∈ [1, M]

The upper bound of data dissemination time under broadcast strategy T
upper

dssB is

the maximum time slot at which data requirement will be fulfilled and F elements

of matrix DAL L(t) become 1. It is important to note that since I am using Markov

chain based model, the T
upper

dssB will be expressed in event time (number of contact

events or ticks) as opposed to standard wall clock time. I convert this event time

to wall clock time by multiplying it with the beacon interval.4

5.3.2 Prediction of T
upper

dssB using Markov model

Each state S(x), x ∈ [0, F] of the Markov Model represents the total number

of messages (x) collected by mobile users either from different data sources or

through other mobile nodes and can be viewed as data matrix DAL L(t) at time

t , where the number of non-zero elements represent the number of messages

present in a network (starting from 0 to F where F = MN represents the tar-

get state to reach). Figure 5.2 represents one realization of the Markov chain5.

The state transition models the increase in the number of messages in the net-

work and is driven by the probability of transition from one state to another.

The probability of transition PS(x),S(x+h) from any state S(x) to S(x + h) can be

calculated using contact probability matrix PC
S

for static pair-wise contact proba-

bilities while contact probability matrix set PC
T V

for time-varying contact probabil-

ities. The transition probability for both cases is defined in Equation 5.2 and 5.3

respectively.

4Based on scan interval in contact trace.
5There could be several realizations of one state for example when there is 1 message in the

network then it can start with any user and there could be
%

MN
1

&

possible realizations.
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PS(x)S(x+h) =
∑

i∈S(x), j∈S(x+h)

pc
i j

(5.2)

Pk
S(x)S(x+h)

=
∑

i∈S(x), j∈S(x+h)

p
cda yk

i j (5.3)

Where ∀ pc
i j
∈ PC , ∀ p

cda yk

i j ∈ PC
da yk

, ∀ PC
da yk
∈ PC

T V

Where PS(x)S(x+h) presents the transition probability to reach state S(x) to

S(x + h) during static contact patterns case while Pk
S(x)S(x+h)

corresponds to the

transition probability to reach state S(x) to S(x+h) for any kth day i.e. da yk, k ∈
[1, 7] in time-varying contact patterns case. Please note that Pk

S(x)S(x+k)
will vary

according to the predicted contact probabilities at different days obtained through

the Contact Probability Prediction Module. Once we reach the final state S(F), the

transition probability to remain in the same state will be 1 (also called absorb-

ing state). Figure 5.3 represents the sample probability transition matrix P for

N mobile nodes, where each state represents a total number of messages in the

network and S(F) presents the final state of Markov chain.

Figure 5.2. One realization of Markov Model starting from S(0) to S(F). This
realization also shows the jump from S(2) to S(6) due to simultaneous contact
between two mobile users and mobile user and data sources.

Further, the upper bound of data dissemination time T
upper

dssB can be approxi-

mated as the total time spent in each state before reaching the final state S(F) in
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Figure 5.3. The sample transition probability matrix P for our Markov Model

where M and N are the total number of data sources and mobile nodes respec-
tively.

the network. Let Tx be the time spent in each state S(x) before the transition to

any other state. Finally, the T
upper

dssB can be predicted as follows:

T
upper

dssB =

F−1
∑

x=0

Tx (5.4)

Due to multiple simultaneous contacts and multiple data messages, this Markov
Model is not always a 1-step transition chain. For example, let us assume that

we are in state S(2) of Figure 5.2 where two users u1 and u2 have one unique

data message in their respective message list (M Listu1
= {msg1} and M Listu2

=

{msg2}). When they come in contact, message lists M Listu1
and M Listu2

will

be exchanged. Similarly, at the same time users, uN−1 and uN come in contact

with two data sources and update their message lists as M ListuN−1
= {msgM} and

M ListuN
= {msg1} respectively. In this case, we directly jump to state S(6) as

the total number of messages in the network becomes 6. Therefore, in this case,

the time spent in S(3), S(4) and S(5) states is zero. To avoid an overestimated

value of T
upper

dssB , we need not count the time spent in each of these three states.

Thus, multiple simultaneous contacts and multiple data messages from multiple

data sources6 can lead to skipping some states. Therefore, my model finds out

6this is what happens in real scenarios
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and eliminates those states that are never reached (or finds multi-step transition

of Markov chains).

I will now present the working of basic data dissemination algorithm to pre-

dict T
upper

dssB for both static and time-varying contact patterns. The basic algorithm

is similar in both cases however the only difference comes the way contact prob-

abilities are utilized inside the Algorithm.

T
upper

dssB prediction–Static pair-wise contact patterns case:

For the static case, I considered that each pair of people will have the hetero-

geneous fixed contact probability across different time periods. In this case, the

Markov Model only takes a single contact probability matrix PC
S

as an input to

predict the upper bound of data dissemination time, T
upper

dssB . Figure 5.4 presents

the process to predict T
upper

dssB under static contact patterns case. Please note that

static contact probability is the widely used notion of considering mobility pat-

terns of people in literature Peres et al. [2011] Picu et al. [2012] Mosk-Aoyama

and Shah [2008].

Figure 5.4. The process to predict the upper bound of data dissemination time
under static pair-wise contact probabilities.

Utilizing Equation 5.4, I approximate Markov chain and present the basic

algorithm to predict the upper bound of data dissemination time T
upper

dssB in Al-

gorithm 3. In Algorithm 3, I present the method to find total number of steps

required to compute T
upper

dssB in a network G consisting of N mobile users and

M data sources. In the static case, we see that the contact probability between

any pair of people or data source remains static over time. Further, Algorithm 4
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Algorithm 3 Basic Data Dissemination Time algorithm static case

Require: PC
S , M > 0, N > 0, DAL L(t) = 0N×M , MaxRuns,F

Ensure: T
upper

dssB

star tState ← 0

stopState ← F

T
upper

dssB ← 0

while star tState < stopState do

Truns = *

nex tState← star tState + 1

for run= 1 to MaxRuns do

p← star tState

randomly set p elements of matrix DAL L(t) to 1

max Time← getMax TimeStatic(star tState, nex tState, DAL L(t), PC
S )

Truns ← Truns ∪max Time

if max Time = 0 then

nex tState← nex tState + 1

else

star tState ← nex tState

nex tState← nex tState + 1

end if

end for

T
upper

dssB ← TdssB +max(Truns)

end while
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presents maximum time spent in one state i.e time taken to reach nex tState

from star tState required by my basic algorithm. Initially, my model set S(0) as

star tState and utilizes getMax T imeStat ic method utilized in Algorithm 4 to

compute maximum time required to reach nex tstate S(1) for several trials i.e.

MaxRuns (for the better approximation of time spent in each state). If it cannot

reach S(1) due to the non-existence of UUC and UDSC processes for MaxRuns

then, it considers this state as non-reaching and set max Time to reach S(1) from

S(0) as 0. Further, it sets S(2) as nex tstate and computes max Time to reach

S(2) from S(0). Otherwise, if it could reach nex tstate S(1) (i.e max Time ̸= 0)

then, it set star tState as S(1) and next state as S(2)). Likewise, it repeats the

same process until it reaches the final state S(F). UUC and UDSC processes are

modeled using the static pair-wise contact probabilities of matrix PC
S

. Utilizing

PC
S

, star tState, and nex tState, I find max Time spent in each state using the

getMax T imeStat ic method and finally predict the upper bound of data dissem-

ination time T
upper

dssB .

T
upper

dssB prediction–Time-varying pair-wise contact patterns case:

In this section, I present how to predict the upper bound of data dissemination

time when we adopt a realistic aspect of mobility i.e. time-varying contact pat-

terns. For time-varying contact patterns, I utilized contact probability matrix set

PC
T V
= PC

da y1
, PC

da y2
......PC

da yk
where k ∈ [1, 7] given as input through the Data Pro-

cessor of Broadcast Sub-Module. As we have seen in Chapter 4 that prediction

of time-varying contact pattern is significant in those contact traces that exhibits

regular mobility patterns of people over time and collected over a long duration

of time. We also saw in the previous Chapter that we require at least one week

of data to train the model and to obtain good accuracy for contact probabilities.

Based on these observations in Chapter 4, I utilize daily-wise contact probabilities

to predict T
upper

dssB for time-varying contact patterns.

To the best of my knowledge, automatic learning of time-varying contact pat-

tern (through the Contact Probability Prediction Module) and their utilization in

data dissemination process is not taken into account in literature. To address this

issue, I further improve my basic algorithm (Algorithm 3) to model time-varying

contact patterns and predict the upper bound of data dissemination time, T
upper

dssB .

Figure 5.5 presents the process to predict T
upper

dssB under time-varying contact prob-

abilities case. Once the day-wise contact probabilities are predicted through Con-

tact Probability Prediction Module for all nodes in the network, they are given as

an input to the Data Processor that further processes these contact probabilities

for mobile nodes and data sources separately. Afterward, the Data Processor
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Algorithm 4 getMax T imeStat ic(star tState, endState, DAL L(t), PC
S
)

Require: star tState, endState, DAL L(t), PC
S , Max Trials

Ensure: max Time

1: for t r ial = 1 to Max Trials do

2: T = *

3: t = 0

4: repeat

5: x ←, (0,1)

6: t ← t + 1

{Assuming UUC process}

7: if x < 0.5 then

8: r ←, (0,1)

9: for all pairs of users (i, j) : pc
i, j ≥ r do

10: update DAL L(t) based on UUC algorithm

11: end for

12: end if

{Assuming UDSC process}

13: if x > 0.5 then

14: r ←, (0,1)

15: for all user and data source pair (i, k) : pc
i,k ≥ r do

16: update DAL L(t) based on UDSC algorithm

17: end for

18: end if

19: d ← count(DAL L(t)) {total messages stored in DAL L(t)}

20: until d ≤ endState

21: if d = endState then

22: T ← T ∪ t

23: end if

24: end for

25: max Time← max(T )

26: return max Time
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passes the set of probability matrix PC
T V

to the Markov Model.

Figure 5.5. The process to predict upper bound of data dissemination time
under time-varying pair-wise contact probabilities.

Algorithm 5 predicts T
upper

dssB under time-varying contact probabilities and Al-

gorithm 6 computes the maximum time spent in each state while considering the

time-varying contact probabilities i.e. max time taken to reach nex tState from

star tState. Similar to static case, Algorithm 5 also set S(x) as star tState and

utilizes getMax T imeT V method to compute maximum time required to reach

nex tstate S(x +1) for several trials i.e. MaxRuns. In the time-varying case, my

model sends the set of contact probability matrix PC
T V

and the MaxStepsDa y.

The MaxStepsDa y is the maximum steps that can be taken in a day by the

Markov Model and can be calculated as:

MaxStepsDa y = ⌈
24 ∗ 60 ∗ 60

∆
⌉ (5.5)

Where ∆ is the step size of Markov chain determined by the scan interval of

the mobile devices. Using these parameters obtained from Algorithm 5 and UUC

and UDSC processes, the Algorithm 6 finds the maximum time spent in the given

state S(x). To do this, the algorithm first finds the correct contact probability

matrix PC
da yda yNum

for the given da yNum from PC
T V

. Afterward utilizing the specific

day contact probability matrix the algorithm predicts max Time spend in a given

state by using the contact probabilities between any pair of two mobile users

or a pair of mobile user and data source. It is also important to note that if

the total number of steps spent in a given state exceeds the total number of

possible steps i.e. MaxStepsDa y ×
-

-PC
T V

-

- then, our Markov Model restarts from
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the first-day contact probability matrix. Similar to the static case, I also find the

max Time by eliminating those steps that can never be reached. Likewise, the

algorithm repeats the same process utilizing PC
T V

, star tState, and nex tState

and find max Time spent in each state using getMax T imeT V method until it

reaches the final state S(F). Finally, Algorithm 5 predicts T
upper

dssB by summing up

the max time spent in each reachable state.

Algorithm 5 Basic Data Dissemination Time algorithm time-varying case

Require: PC
T V , M > 0, N > 0, DAL L(t) = 0N×M , MaxRuns,MaxStepsDa y,F

Ensure: T
upper

dssB

star tState ← 0

stopState ← F

T
upper

dssB ← 0

while star tState < stopState do

Truns = *

nex tState← star tState + 1

for run= 1 to MaxRuns do

p← star tState

randomly set p elements of matrix DAL L(t) to 1

max Time← getMax TimeT V (star tState, nex tState, DAL L(t), PC
T V , MaxStepsDa y)

Truns ← Truns ∪max Time

if max Time = 0 then

nex tState← nex tState + 1

else

star tState ← nex tState

nex tState← nex tState + 1

end if

end for

T
upper

dssB ← TdssB +max(Truns)

end while

The algorithms (Algorithm 3 and Algorithm 5) discussed above for both static

and time-varying contact pattern cases presents the basic data dissemination al-

gorithm to predict the upper bound of data dissemination time by excluding the

time spent in unreachable states. However, the value of T
upper

dssB obtained by the

summation of maximum time spent in each state (max Time) is not necessar-

ily equal to the maximum time taken to reach S(F) from S(0). Therefore, both

algorithms will overestimate T
upper

dssB .

Since this thesis focuses on providing tighter upper bounds of T
upper

dssB , there-
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Algorithm 6 getMax T imeT V (star tState, endState, DAL L(t), PC
T V

, MaxStepsDa y)

Require: star tState, endState, DAL L(t), PC
T V , Max Trials,da yNum,MaxStepsDa y

Ensure: max Time

1: for t r ial = 1 to Max Trials do

2: T = *

3: t = 0

4: tlocal = 0

5: da yNum= 0

6: repeat

7: x ←, (0,1)

8: t ← t + 1

{Restart from the beginning contact probability if we reach MaxStepsDa y}

9: if tlocal > MaxStepsDa y ×
-

-PC
T V

-

- then

10: tlocal ← 0

11: end if

12: tlocal ← tlocal + 1

{Get PC
da yda yNum

for the given day using tlocal and MaxStepsDa y}

13: PC
da yda yNum

← PC
T V [da yNum]

{Assuming UUC process}

14: if x < 0.5 then

15: r ←, (0,1)

16: for all pairs of users (i, j) : p
cda yNum

i, j ≥ r do

17: update DAL L(t) based on UUC algorithm

18: end for

19: end if

{Assuming UDSC process}

20: if x > 0.5 then

21: r ←, (0,1)

22: for all user and data source pair (i, k) : p
cda yNum

i,k
≥ r do

23: update DAL L(t) based on UDSC algorithm

24: end for

25: end if

26: d ← count(DAL L(t)) {total messages stored in DAL L(t)}

27: until d ≤ endState

28: if d = endState then

29: T ← T ∪ t

30: end if

31: end for

32: max Time← max(T )

33: return max Time
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fore, I further improve the basic data dissemination algorithms by employing

the observations obtained from the real-world data gathering process. In next

Section, I will present different approaches in detail that can be used to provide

a tighter prediction of the upper bound of data dissemination time under the

Broadcast strategy.

5.4 Tighter prediction of T
upper

dssB

In order to achieve a much tighter upper bound for T
upper

dssB , I analyze the frac-

tion of data collected over time in different real-world traces. Figure 5.6 shows

data gathering in three diverse environments Scott et al. [2006c] Eagle et al.

[2009] Tournoux et al. [2009] under broadcast data dissemination strategy: Con-

ference, University, and Crowded Urban. For all environment, we can observe that

initially the rate of data gathering is very fast and after a certain data fraction,

it exhibits a long tail cut-off. This happens because after a while the probability

of getting unique messages from neighboring users reduces or some users have

extremely low contact with rest of the users. Therefore, the time taken to gather

remaining data increases significantly. In addition, the rate of data gathering

depends on the inter-contact time among people that exhibit a long tail cut-off

and also impacts the data gathering process Karagiannis et al. [2007]. I believe

this property also impacts data gathering process. To predict much tighter up-

per bound for T
upper

dssB , I utilize the above property of data gathering process and

divide my analysis in 2-phases, based on the number of states F (or MN).

1. Fast Growing Phase: In this phase, I find expected time required to reach

a certain state S(x) directly from S(0) under broadcast data dissemination

strategy. In this way, I try to mimic the initial fast rate of data gathering

process. I call this expected time as TFGPB .

2. Long Tail Phase: For this phase, I find maximum time spent in each state

starting from state S(x) to final state S(F). In this phase, I calculate maxi-

mum time spent in each state because time spent for collecting the last frac-

tion of data has maximum weight on data dissemination time (as shown

in Figure 5.6) and articulate long tail of data gathering process. I call this

time as TLT PB .

TLT PB =

F
∑

k=x

Tx (5.6)
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(c) Crowded Urban Trace

Figure 5.6. The Fraction of data gathered with respect to time for all mobile
users from all data sources for real-world traces from three diverse environments
under broadcast data dissemination strategy.
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(a) Bisection approach where Fast Growing

Phase starts from S(0) to S(F/2) and Long

Tail Phase starts from S(F/2) to S(F).

(b) α Cut-off point approach where Fast

Growing Phase starts from S(0) to S(α× F)

and Long Tail Phase starts from S(α× F) to

S(F).

Figure 5.7. Tighter prediction of the T
upper

dssB using Bisection and Cut-off point
approach.

Finally, the upper bound of data dissemination time T
upper

dssB can be calculated as:

T
upper

dssB = TFGPB + TLT PB (5.7)

Now the important question arises is how do we determine the optimum state

S(x) that divides the Fast Growing Phase and Long Tail Phase. In order to

set S(x), I considered following two approaches to predict T
upper

dssB is shown in

Figure 5.7(a) and Figure 5.7(b) respectively.

• Bisection approach

• Cut-off point approach

Bisection approach

As the name suggests, this approach assumes that the data dissemination process

is equally divided in Fast Growing and Long Tail Phase and is also used in liter-

ature to theoretically study single source data dissemination time Mosk-Aoyama

and Shah [2008]. In this approach, the Fast Growing Phase goes from state S(0)

to S(F/2) and Long Tail Phase from S(F/2) to S(F) where S(F) presents the tar-

get state. In Fast Growing Phase rapid data collection results in higher number

of messages in the network at each time slot. This phase utilizes Algorithm 3

and Algorithm 5 to predict TFGPB as the time to reach S(F/2) directly from S(0)

(star tState ← S(0) and endState ← S(F/2)) for static and time-varying con-

tact patterns respectively. Further, TLT PB (the time spent by network G in Long
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Tail Phase) that significantly impacts data dissemination time is estimated using

Equation 6.4. For time spent in each of the F/2 states starting from S(F/2) to

S(F) of Long Tail Phase, I calculate max Time using Algorithm 4 and Algorithm 6

(star tState← S(F/2) and stopState← S(F)) respectively for both cases.

Cut-off point approach

The Bisection approach described in the previous section provides much tighter

bound of T
upper

dssB as compared to basic data dissemination algorithm however it is

not necessarily true that the Long Tail phase will always start after 50% of data

collection. Therefore, to further articulate the realistic data gathering process

(observed from Figure 5.6) and to further tighten the upper bound, I utilize the

impact of long tail cut-off on data dissemination time by introducing the Cut-off

point. As seen in Figure 5.6, long tail cut-off contributes higher weight on T
upper

dssB

as compared to the time spend in gathering initial data messages (almost 5.5

times (INFOCOM), 2.5 times (MIT) and 0.7 times in Rollernet as compared to

the time to collect initial data fraction). I believe that the consideration of this

long tail cut-off in our model can provide a much tighter bound of T
upper

dssB because

it closely articulates the real-world data gathering process. For this reason, the

Markov Model utilizes a Cut-off point based approach and define a Cut-off Point

α as follows (also described in Equation 5.1):

Definition 3 (Cut-off Point α): It is a Data Fraction point DF(t) ∈ [0, 1] at time t

beyond which the change in data collection becomes smaller than a very small

value ε and exhibits a long tail over time.

To determine α, the proposed Markov Model communicates with Cut-off
Estimator of the INDIGO framework by sending the fraction of data collected

in current and previous step (for more details refer Cut-off Estimator of Sec-

tion 5.2) and learns it automatically. Once α is determined then, I predict T
upper

dssB

using Equation 6.3. The Fast Growing Phase considers all states till cut-off point

α i.e. from S(0) to S(α× F) and Long Tail phase takes it from S(α× F) to S(F).

Algorithm 7 presents my modified algorithm to predict tighter upper bound for

T
upper

dssB by computing TFGPB and TLT PB individually for both static and time-varying

contact patterns using Algorithm 4 and Algorithm 6 respectively. This algorithm

can also be used for Bisection approach by setting α as 0.5.

Once the Markov Model determines α through Cut-off Estimator, it segre-

gates Fast Growing and Long Tail phase. In Fast Growing phase, the model sets
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Algorithm 7 Cut-off point based approach for prediction of T
upper

dssB for both static

and time-varying contact patterns

Require: PC
S , PC

T V , M > 0,N > 0,DAL L(t) = 0N×M , NumRuns,F ,MaxStepsDa y

Ensure: T
upper

dssB

star tState ← 0

stopState ← F

cuto f f State← 0

TFGPB ← 0, TLT PB ← 0, T
upper

dssB ← 0, α← 0

Truns = *

{estimate α from Cut-off Estimator sub-module}

Set Cut-off point α

cuto f f State← α ∗ F {calculate time for Fast Growing phase}

for i = 0 to NumRuns do

if STAT IC_C P_CASE then

max Time ← getMax TimeStatic(star tState, cuto f f State, DAL L(t), PC ) {For

static contact patterns}

else

max Time← getMax TimeT V (star tState, cuto f f State, DAL L(t), PC
T V , MaxStepsDa y)

{For time-varying contact patterns}

end if

Truns ← Truns ∪max Time

end for

TFGPB ← max(Truns)

Truns = *

{Calculate time for Long Tail phase}

star tState ← cuto f f State

while star tState < stopState do

nex tState← star tState + 1

for i = 0 to NumRuns do

p← star tState

Randomly set p elements of matrix DAL L(t) to 1

if STAT IC_C P_CASE then

max Time ← getMax TimeStatic(star tState, nex tState, DAL L(t), PC ) {For

static contact patterns}

else

max Time← getMax TimeT V (star tState, nex tState, DAL L(t), PC
T V , MaxStepsDa y)

{For time-varying contact patterns}

end if

Truns ← Truns ∪max Time

if max Time = 0 then

nex tState← nex tState + 1

else

star tState ← nex tState

nex tState← nex tState + 1

end if

end for

TLT PB ← TLT PB +max(Truns)

end while

T
upper

dssB ← TFGPB + TLT PB
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star tState as S(0) and cuto f f State as S(α∗F) and predicts (TFGPB) to directly

reach cuto f f State for several runs (i.e. NumRuns using getMax T ime method

described in Algorithm 4 and Algorithm 6 for both static and time-varying contact

patterns. Afterward, it starts Long Tail phase by initializing star tState to S(α∗F)

and nex tstate to S(α ∗ F + 1) and predicts maximum time spent in nex tstate

using Algorithm 4 and Algorithm 6. If the model cannot reach nex tstate due

to non-existence of UUC and UDSC processes then, nex tstate will be marked as

non-reaching and max Time to reach this state will be set to 0. In this case, the

model will again compute max Time by setting nex tstate to S(α ∗ F + 2) while

keeping the same star tState as S(α ∗ F). On the other side, if model could

reach S(α ∗ F + 1) (i.e max Time ̸= 0) then, it sets star tState as S(α ∗ F + 1)

and nex tstate as S(α ∗ F + 2). Likewise, the model repeats the same process

until it reaches final state S(F). Finally, the model computes TLT PB as the sum of

maximum time spent in each reachable state. To get better prediction of T
upper

dssB ,

I run Fast Growing and Long Tail phase for NumRuns.

In this Section, I presented the detailed description of different approaches to

predict the tighter upper bounds of data dissemination time and also presented

how my Markov Model employs the Cut-off point approach to predict T
upper

dssB by

dynamically estimating Cut-off point α using the Cut-off Estimator of INDIGO

framework. In next Sections, I will present the methodology to create real data

dissemination time from contact traces and also present the results obtained from

different real-world contact traces using different approaches in Section 5.6.

5.5 Measured data dissemination time T meas
dssB using real-

world contact traces under broadcast data dissemi-

nation strategy

To compare the performance of upper bound of data dissemination time T
upper

dssB

obtained from INDIGO framework, I simulate the real contact traces and measure

the actual data dissemination time T meas
dssB for each contact trace. Using these

contact traces, I first fill in missing contacts to avoid any inaccurate measurement

of T meas
dssB . For example, due to Bluetooth scanning interval, a device can discover

neighbors only during the Bluetooth scan however, there could be a possibility

that people were still in contact with each other during two consecutive scans.

Finally, I prune the contact traces for isolated users (who do not have any contact

with others).

From the final traces, I randomly select M users as mobile data sources and
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the remaining N mobile users as those who are interested in gathering all data

messages from all selected data sources. I also define a data matrix DAL L(t) and

that store data messages collected by mobile users from different mobile users

and data sources. At each time step, I update matrix DAL L(t) based on whether

a contact happens between two users or a user and data source under broad-

cast data dissemination strategy (using UUC or UDSC described in Section 5.3).

I stop the simulation at time T meas
dssB when all elements of DAL L(t) become 1 or

the contact traces is terminated. During these simulations of real-world contact

traces, I also record the maximum possible fraction DFmax of data that could

be collected in the network by all nodes. To ensure comparable results, I also

set maximum fraction of data collected DFmax and measured data dissemina-

tion time T meas
dss

through emulation of real traces as ground truth for the Markov
Model of INDIGO under broadcast dissemination strategy. Please note that the

T meas
dssB will consist all real aspects of contact patterns i.e. time-varying contact

patterns and multiple simultaneous contacts. Likewise, I create the ground truth

data dissemination time T meas
dssB and will utilize as a benchmark for both static and

time-varying data dissemination modeling.

To capture the impact of diverse environments and to investigate the accu-

racy of INDIGO, I simulate 5 real-world contact traces (the Infocom 2005 trace

(INFOCOM) Scott et al. [2006c], the PerCom 2012 trace (PERCOM) SCAMPI

[2012], the Reality Mining trace (MIT) Eagle et al. [2009] , Crowded urban area

trace collected at roller tour in Paris (ROLLERNET Tournoux et al. [2009]) and,

MACACO traces MACACO [2012]) discussed in Chapter 3.

Further, to understand the impact of contact patterns during different time

intervals and, to show the applicability of my model under different contact pat-

terns, I use segments of contact traces that exhibit opposite behaviors. For con-

ference environment INFOCOM trace, I take 2nd day data when people are most

active and shows high dynamics in their contacts, however for PERCOM trace

I consider the day with less activity (4th day). Through ROLLERNET trace col-

lected from a crowded urban area, I also investigate the impact of short span

data (only for three hours) on the prediction of T
upper

dssB . For university environ-

ment MIT trace, I validate my model for one-month data. Still, in this month,

there is some variance among the weeks, so I use each week contact trace sepa-

rately and call them as MIT-W1, MIT-W2, MIT-W3 and MIT-W4 traces. Finally, for

our own collected MACACO traces collected in different countries and groups, I

also consider the month where a maximum number of users make regular and

intense use of the wireless network. The most active month for France and Brazil

group were May 2015 and October 2015 respectively. Out of the selected months

for France and Brazil and to understand the impact of contact patterns variance
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Table 5.2. Simulation settings and T meas
dssB for maximum data fraction for all

weeks under broadcast data dissemination strategy.

Trace # Mobile

Users

#Data Sources DFmax T meas
dssB (in

secs)

INFOCOM (2nd day) 30 9 1 65251

PERCOM (4th day) 32 9 1 32420

ROLLERNET 50 12 1 1554

MIT-W1 (from 10th month) 51 15 0.9633 581440

MIT-W2 (from 10th month) 57 15 0.9427 604748

MIT-W3 (from 10th month) 61 15 0.9738 596457

MIT-W4 (from 10th month) 64 15 0.9687 605577

MACACO–France–W H 15 4 0.9048 566403

MACACO–France–W L 15 4 0.8095 542396

MACACO–Brazil–W H 6 4 0.80 361425

MACACO–Brazil–W L 6 4 0.78 340460

among different weeks similar to MIT traces, I further segment one-month data

into four weeks and only consider two weeks that exhibit opposite behavior in

terms of contact patterns. For each group, I take the week having the highest

number of contacts and the week having the lowest number of contacts and

call them MACACO–France–W H , MACACO–France–W L, MACACO–Brazil–W H

and MACACO–Brazil–W L for France and Brazil groups respectively. Table 5.2

presents the simulation settings and T meas
dssB for maximum data fraction DFmax col-

lected in all segments of all traces. I will also use the similar settings in the

Markov Model to predict T
upper

dssB through INDIGO framework.

In this Section, I basically presented how did I create the ground truth for

real data dissemination time that can be utilized as a benchmark to predict the

upper bound of data dissemination time for both static and time-varying contact

patterns. In next Section, I will present and discuss the results obtained with my

framework for both contact patterns under broadcast dissemination strategy.
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5.6 Results and Discussion

In this section, I validate the upper bound of data dissemination time T
upper

dssB ob-

tained from my Markov Model of INDIGO framework against the ground truth

data dissemination time, T meas
dssB from real-world traces. For each selected contact

trace segment of each contact trace, INDIGO predicts T
upper

dssB for the maximum

fraction of data collected DF max under both contact patterns and different ap-

proaches described in the previous section i.e. Basic Data Dissemination Algo-

rithm, Bisection, and Cut-off Point approach. For all contact trace segments, the

contact probabilities were predicted through the Contact Probability Prediction

Module and the Cut-off point α was estimated with the help of Markov Model
and Cut-off Estimator sub-components of Data Dissemination Prediction Mod-

ule. Each experiment is repeated 500 times for statistical convergence. Now I

will present the results for T
upper

dssB for both static and time-varying contact proba-

bilities.

5.6.1 Static contact probabilities case

Figure 5.8 presents how well INDIGO is able to predict T
upper

dssB against T meas
dssB . Ta-

ble 5.3 presents the Cut-off points utilized in the Cut-off point approach esti-

mated through the Cut-off Estimator.
From the results, we observe that the Cut-off point approach achieves the

tightest upper bound of data dissemination time T
upper

dssB against T meas
dssB . However,

we can also see a gradual improvement in the accuracy of T
upper

dssB in Bisection

approach as compared to the T
upper

dssB obtained through worst-case or basic data

dissemination upper bound from Algorithm 3.

For INFOCOM trace, the Cut-off point approach of INDIGO achieves the tight-

est upper bound with 3.27% error compared to T meas
dssB . While for Algorithm 3 and

Bisection approach, we observe an error of 49.51% and 13.84% respectively. This

happens because 2nd day of INFOCOM trace exhibits a high probability of contact

among mobile users that significantly impacts the prediction of data dissemina-

tion time for Algorithm 3. Due to high contact rates, the data gets disseminated

quickly in a real world scenario, while Algorithm 3 overestimates T
upper

dssB due to

it’s nature of calculating the maximum time for each possible state transition.

Similarly for another conference environment i.e. PERCOM trace, the Cut-

off point approach outperforms and achieves the tightest upper bound of data

dissemination time T
upper

dssB (with 4.38% an error against T meas
dssB ). We can also ob-

serve that both Algorithm 3 (with an error of 27.51%) and Bisection approach

(with an error of 21.2%) performs similarly. Compared to INFOCOM trace, since



90 5.6 Results and Discussion

(a) INFOCOM (b) PERCOM

(c) ROLLERNET (d) MIT

(e) MACACO

Figure 5.8. Comparison of real data dissemination time T meas
dssB against the upper

bounds of data dissemination time T
upper

dssB predicted using different approaches
for INFOCOM, PERCOM, ROLLERNET, MIT and MACACO traces under
broadcast dissemination strategy and static contact probabilities.
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the contact rate among people is much lower in PERCOM trace, the rate of data

gathering in the real world is also slow. Therefore, the maximum time calculated

for each state in Algorithm 3 has comparatively less error. Due to lesser contact

probabilities among people, the performance of Bisection approach deteriorates

in PERCOM trace (compared to INFOCOM trace).

For ROLLERNET trace (in Figure 5.8(c)) from the crowded urban environ-

ment, we can also see that Cut-off based approach provides the tightest upper

bound of data dissemination time T
upper

dssB with 10% error. However, we can ob-

serve that Algorithm 3 and Bisection approach highly overestimates data dissem-

ination time as compared to T meas
dssB . This happens because in ROLLERNET traces,

people were accumulated for a tour and contact probabilities among people are

very high thus, data quickly get disseminated among people. However, Algo-

rithm 3 overestimates it as it checks maximum time spent in each state. The

data dissemination time calculated by Bisection approach is also high because it

calculates maximum time in last 50% of the states.

Figure 5.8(d) depicts the results obtained from MIT traces for all 4 weeks

(W1 to W4). We can observe that using Cut-off based approach, INDIGO is able

to cope up with long duration contact traces and once again provides tightest

upper bound. We can also see that for the first 3 weeks (MIT-W1 to MIT-W3),

the upper bound T
upper

dssB is almost similar to the contact pattern of people are

relatively identical. However, for the 4th week, due to fewer contacts among

people (semester break at MIT), I obtain much higher T meas
dssB and also the higher

error in upper bound estimation. In MIT traces, we can also notice that T
upper

dssB is

comparatively less tight than INFOCOM and PERCOM traces (error from T meas
dssB

lies between 2% to 10%).

Finally, in Figure 5.8(e), I present the applicability of the INDIGO under

broadcast and static time-varying contact probabilities for our collected MACACO

traces. My results show that the Cut-off approach once again provides the tighter

prediction of T
upper

dssB for both France and Brazil traces and for both weeks. For all

weeks of both groups, we can observe that INDIGO predicts T
upper

dssB within 9-15%

error for Cut-off point approach. Further, we can also see that Algorithm 3 and

Bisection approach overestimates T
upper

dssB similar to MIT traces. More specifically,

we see that for France-W H , for Algorithm 3 upper bounds are much looser as

compared to France-W L. This happens because, in reality, the contact proba-

bility among people is higher while Algorithm 3 estimates maximum time each

step, therefore, the overall time predicted to get much higher as compared to

real data dissemination time.

From the above discussion, I conclude that my Cut-off point approach outper-

forms in all traces for static contact patterns under broadcast data dissemination
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Table 5.3. Cut-off points estimated through Cut-off Estimator for all traces
for Cut-off point based approach.

Trace Cut-off Point

INFOCOM 0.70

PERCOM 0.65

ROLLERNET 0.96

MIT-W1 0.80

MIT-W2 0.85

MIT-W3 0.961

MIT-W4 0.85

MACACO–France–W H 0.9048

MACACO–France–W L 0.70

MACACO–Brazil–W H 0.62

MACACO–Brazil–W L 0.75

strategy. Therefore, we can say that the utilization of α significantly improves the

upper bound of data dissemination time T
upper

dssB and outperforms as compared to

the Bisection and Basic Data Dissemination algorithm. Therefore, in further Sec-

tions, I will only present the results obtained from the Cut-off approach based on

its suitability for the tighter prediction of T
upper

dssB .

5.6.2 Time-varying contact probabilities case

In this Section, I will present the upper bound of data dissemination time T
upper

dssB

under the time-varying contact patterns and broadcast data dissemination strat-

egy using the Cut-off approach. I present the prediction results for those contact

traces those are collected for a longer duration of time and exhibits certain reg-

ularities in the contact patterns among people (detailed description is in Chap-

ter 4). Therefore, for time-varying contact probabilities, I present the results

predicted for MIT and MACACO traces.

Figure 5.9 presents the applicability of INDIGO in predicting T
upper

dssB against

T meas
dssB for the different weeks of MIT and MACACO traces. For MIT trace, the Con-

tact Probability Prediction Module of INDIGO trains the contact probability pre-
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(a) MIT (b) MACACO

Figure 5.9. Comparison of real data dissemination time T meas
dssB against the upper

bounds of data dissemination time T
upper

dssB predicted using Cut-off approach for
different weeks of MIT and MACACO traces under broadcast dissemination
strategy and time-varying contact patterns.

diction model with MIT-W1 contact probabilities that further predicts the contact

probabilities for each pair of people for rest of the weeks. Once the contact prob-

abilities for other weeks of MIT trace are predicted and given as an input to the

DDT-Markov then INDIGO predicts T
upper

dssB for all these weeks and compare it with

T
upper

dssB . Similarly, for MACACO trace, the Contact Probability Prediction Module

trains the model for the first 1-week trace of both France and Brazil and predicts

the contact probabilities for future weeks. For the contact trace of France, there

were only three weeks (W1, W2, and W3) where I had enough contacts of peo-

ple, therefore, I present T
upper

dssB values for W2 and W3. Similarly for Brazil trace,

the enough contacts were available only for 2 weeks of data, therefore, I present

my prediction result for W2 of Brazil traces and use W1 for learning.

From Figure 5.9, we can observe that employing time-varying contact proba-

bilities also provides tighter upper bound of data dissemination time and we can

also observe that error in prediction of T
upper

dssB decreases for subsequent weeks i.e.

prediction error in M I T −W4 < M I T −W3 < M I T −W2. It happens because

of more training data provided to the contact probability estimator model thus

leads to better prediction of contact probabilities. We can also observe the similar

trend in MACACO traces. Further, during the validation of time-varying contact

probabilities on the prediction of T
upper

dssB , we can further observe that estimation

of Cut-off point α also changes from the α of Cut-off approach employed in static

contact patterns case. The change in α is reasonable due to its dynamic estima-
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(a) MIT (b) MACACO

Figure 5.10. Comparison of real data dissemination time T meas
dssB against the up-

per bounds of data dissemination time, T
upper

dssB predicted using Cut-off approach
for different weeks of MIT and MACACO traces under broadcast dissemination
strategy and both static and time-varying contact patterns.

tion obtained from Cut-off Estimator. It happens because the estimation of α is

directly proportional to the rate of data gathering (or fraction of data collected)

that is driven by contact patterns of people.

Further, in Figure 5.10, I altogether present the prediction of T
upper

dssB against

T meas
dssB obtained for both static and time-varying contact probability under broad-

cast data dissemination strategy. The Figure clearly shows that utilization of

time-varying contact patterns provides much tighter upper bound of data dis-

semination time as compared to the static contact patterns. Therefore, with my

approach of time-varying contact patterns prediction and Cut-off point based ap-

proach I achieved realistic and tighter upper bound of data dissemination time

for real-world contact traces against the ground truth T meas
dssB .

Finally, I also compare the results obtained from INDIGO with the state of

the art key contributions for static contact patterns over time under the broad-

cast strategy. For time-varying contact patterns, there is not any significant work

that is comparable to my model and traces. For static contact patterns, the key

contributions I considered are Picu et al. [2012], Shah [2009] and Boldrini et al.

[2014]. The work that is closely related to my thesis is from Picu et al. [2012]

where the authors present an approach to predict the upper bound of data dis-

semination time using the conductance property of contact graphs by considering

heterogeneous mobility. However, the author only focuses on single source and

sequential contact models i.e. they do not consider the impact of multi-contact
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Table 5.4. Error obtained in predicting T meas
dssB from state of the art work as

compare to our approach.

SOA Methods Error for INFOCOM Trace (in

%)

Error for MIT Trace (in

%)

Shah et. al (2009) 200 500

Picu et. al (2012) 15 50

Boldrini et. al (2014) 50 NA

INDIGO 4 10

and multi-source data dissemination on the upper bound of data dissemination

time. For all relevant state of the art works, I present the average error obtained

from their approaches while predicting the upper bound of data dissemination

time T
upper

dssB against the real simulation time T meas
dssB in Table 5.4 and find that IN-

DIGO framework performs much better than the existing approaches also for

static contact patterns case.

5.7 Conclusions

In this Chapter, I presented different approaches to predict the upper bound of

data dissemination time using the Broadcast Sub-Module of INDIGO framework

under broadcast data dissemination strategy for both static and time-varying con-

tact patterns. I presented how the Markov Model employs different approaches

to predict the upper bound of data dissemination time by modeling multi-source

multi-contact data dissemination process as a Markov chain and predicts the up-

per bound of data dissemination time by predicting the maximum time spent in

each state utilizing the contact probabilities among people (either static or time-

varying). I started with the Basic Data Dissemination Algorithm that sums up all

maximum time predicted in transiting from each state of the Markov chain. How-

ever, the results obtained from the Basic Data Dissemination Algorithm did not

serve the purpose to provide tighter bounds of data dissemination time. There-

fore, I further observed the real-world data gathering process and utilize the

exponential cut-off property of inter-contact time distribution that impacts the

data gathering process to provide tighter upper bounds of data dissemination

time. To do this, I divided the data gathering process into two parts i.e. Fast

Growing and Long Tail phase and introduced α Cut-off point that can be dy-
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namically estimated between the communication of Markov Model and Cut-off

Estimator. Finally, I also presented the modified algorithm (Algorithm 7) that

utilizes Cut-off point α to predict the upper bound of data dissemination time for

both static and time-varying contact patterns.

Later on, I presented the upper bounds of data dissemination time obtained

for all real-world contact traces for static contact patterns and for MIT and MACACO

traces with time-varying contact patterns. The reason behind considering only

MIT and MACACO for time-varying contact pattern is because learning of contact

probabilities require the longer duration of contact data that exhibits some regu-

lar patterns. The results for both static and time-varying contact probabilities val-

idate INDIGO framework due to the tighter upper bounds of data dissemination

time predicted from it. Finally, I also showed that consideration of time-varying

contact probabilities further tightens the upper bound of data dissemination time

as they reflect realistic mobility patterns of people. The methodology and results

presented in this Chapter provide a complete modeling that collectively considers

different aspects of mobility contact patterns and can help in providing realistic

and tighter upper bound of data dissemination time under Broadcast Strategy

for Type II case of INDIGO framework. The key findings of this Chapter are:

• To the best of my knowledge, INDIGO is the first work that predicts tighter

upper bound of data dissemination time by collectively considering real

world mobility and communication aspects under the broadcast strategy.

• I identified the long tail Cut-off behavior in data dissemination process and

also proposed a Cut-off approach that predicts the tighter upper bound of

data dissemination time. To the best of my knowledge, this observation

has not been identified before. Such discovery is very important as it has

a strong impact on the dissemination time.

• For static contact patterns, the proposed Cut-off point based approach per-

forms much better as compared to the existing works in literature.

• The Cut-off approach further tightens the prediction using time-varying

contact patterns. Prediction from time-varying contact patterns improves

with time due to more training data.

The work done in this Chapter has resulted in 3 publications at IEEE INFOCOM

2013, ACM HP-MOSys 2013 co-located with MSWim 2013 and IEEE Med-Hoc-

Net 2015 conferences. In next Chapter, I will consider the interest-driven data

dissemination strategy while predicting the upper bound of data dissemination

time for Type III case and also present the methodology to learn interests of
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people and similarity among them. I will also present the second component

of the Data Dissemination Prediction Module i.e. Interest-Driven Sub-Module in

detail.
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Chapter 6

Prediction of Upper Bound of Data

Dissemination Time Under

Interest-driven Strategy

6.1 Introduction

In the previous Chapter, I presented the prediction of the tighter upper bound of

data dissemination time under the broadcast strategy for both static and time-

varying contact patterns. From the results obtained from INDIGO for broadcast

strategy, I found Cut-off based approach as the best performing.

In this Chapter, I will focus on a more realistic aspect of data dissemina-

tion process i.e. interest-driven data dissemination strategy where people col-

lect and share information that is interesting to them as opposed to the broad-

cast approach that enforces people to receive all of the information. Along with

interest-driven data dissemination strategy, I also take into account the heteroge-

neous contact patterns, multiple simultaneous contacts among people and data

originating from multiple data sources. The importance of interest-driven data

dissemination modeling along with heterogeneous mobility is also highlighted

in literature Mei et al. [2011] Ciobanu et al. [2015]. However, these works do

not focus on real interests captured along with user mobility rather they rely on

a publish-subscribe scheme where users explicitly show their interests in certain

topics. Asking user interests are neither feasible in long term nor scalable be-

cause it limits the wide range of interests a user can express and their validity

over a long time. Thus, learning of user interests is a more practical approach

to model interest-driven data dissemination. The interest learning part of this

Chapter is done in collaboration with Telefònica Research during my internship.

99
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interest-driven strategy

This Chapter addresses the different aspects discussed above and presents my

approach to predict the tighter upper bound of data dissemination time under

interest-driven data dissemination strategy by collectively considering different

aspects (heterogeneous mobility patterns both static and time-varying, multiple

simultaneous contacts and interest-driven data dissemination strategy) of data

dissemination using the Interest-Driven Sub-Module of INDIGO framework.

My approach can be utilized for both Type III case of the Physical–Social prox-

imity table where we have both physical and social proximity information. The

physical proximity information is derived from contact patterns while the interest

similarities among people represent their social proximity.The Interest-Driven

Sub-Module utilizes Markov-chain based prediction model that employs the Cut-

off approach using predicted pair-wise contact probabilities and enables auto-

matic learning of web interests of people for tighter upper bounds prediction of

data dissemination time. To the best of my knowledge, INDIGO is the first work

that predicts tighter upper bound of data dissemination time by learning real

interests of people along with heterogeneous mobility aspects.

The chapter is structured as follows. In Section 6.2, I will present the de-

tailed description of the components required to predict the upper bound of data

dissemination time under interest-driven data dissemination strategy. Further,

in Section 6.3, I will present how do we learn the interests of people from their

web browsing history by employing information retrieval techniques. Section 6.4

presents the modified Cut-off approach for interest-driven data dissemination

strategy for static and time-varying contact patterns. Afterward, in Section 6.5,

I present the methodology to create ground truth data dissemination time ob-

tained from different contact traces for interest-driven data dissemination strat-

egy. Section 6.6 presents results obtained from INDIGO for contact traces of

diverse environment and duration. Finally, I conclude the Chapter with Sec-

tion 6.7.

6.2 Overview of INDIGO framework components required

under interest-driven strategy

Figure 6.1 outlines the different components of Interest-Driven Sub-Module

of INDIGO under interest-driven data dissemination strategy. To predict the up-

per bound of data dissemination under interest-driven data dissemination strat-

egy, INDIGO requires the Contact Probability Prediction Module, DDT-Markov Com-

ponent and Interest Learning Component. The pair-wise heterogeneous contact
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patterns are predicted using the Contact Probability Prediction module for both

static and time-varying contact patterns using the real world or synthetic traces

(details are in Chapter 4). INDIGO also learns real interests of people with the

help of Interest Learning Component using their on-mobile web browsing history

and also calculates pair-wise interest similarities between people. Finally, pre-

dicted contact probabilities and interest similarities are given as an input to the

DDT-Markov Component to predict the upper bound of data dissemination time

utilizing the Markov chain based model. Table 6.1 presents the additional math-

ematical notations used for interest-driven data dissemination strategy (for other

common notations please refer Table 5.1 of Chapter 5).

Figure 6.1. Different components of INDIGO required to predict upper bound
of data dissemination time under interest-driven data dissemination strategy.

6.2.1 Contact Probability Prediction Module

The working of Contact Probability Prediction Module and its utility in prediction

of data dissemination time is already described in detail in the previous Chap-

ters 4, 5. Similar to broadcast data dissemination strategy it provides contact
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Table 6.1. Notations used in INDIGO for Type III case.

Notations Description

simi j interest cosine similarity between any pair i, j ∈ V , simi j ∈ [0, 1]

IS interest similarity matrix of all simi j

#(IS) expected value of IS

β interest similarity threshold, β ∈ [0, 1]

uti j utility value (0 or 1) of data exchange between any pair i, j ∈ V

$% utility matrix of all utility values uti j to determine data exchange based on

interests

TFGPI maximum time spent Fast Growing Phase

TLT PI maximum time spent Long Tail Phase

T
upper

dssI predicted upper bound of data dissemination under interest-driven

data dissemination strategy

T meas
dssI measured data dissemination time from real traces under interest-driven

data dissemination strategy

probabilities for each pair of people i and j and Contact Probability Type param-

eter (0 for static contact probabilities and 1 for time-varying contact probabili-

ties). For static contact patterns (i.e. Contact Probability Type = 0) it constructs a

contact probability matrix PC
S

with static pair-wise heterogeneous contact proba-

bilities and for time-varying contact patterns (i.e. Contact Probability Type = 1),

it constructs a contact probability matrix set PC
T V

that contains pair-wise hetero-

geneous contact probabilities for each pair in different days.

6.2.2 Interest-Driven Sub-Module

This sub-module come under the Data Dissemination Prediction Module of IN-

DIGO framework for Type III case (from Figure 3.2 of Chapter 3) and is re-

sponsible for predicting the tighter upper bound of data dissemination time for

interest-driven dissemination strategy by learning the interests of people. It con-

sists of Interest Learning Component to find interest similarities between peo-

ple after learning their interest and DDT-Markov Component that further has Data

Processor, Markov Model, and Cut-off Estimator sub-components. The Data

Processor pre-processes different inputs required by the Markov Model which

is the core of DDT-Markov and employs a Cut-off point based approach to predict

tighter upper bound of data dissemination time for both static and time-varying

contact patterns. The Markov Model communicates with Cut-off Estimator
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to estimate the Cut-off point α that plays a significant role to provide the tighter

prediction. The Cut-off point based approach incorporates realistic aspects of

human mobility (i.e. heterogeneous contact patterns and multiple simultaneous

contacts among people) and data dissemination strategy (i.e. interest-driven

data dissemination as opposed to Broadcast strategy). Now, I will present the

different components of Interest-Driven Sub-Module required to predict the up-

per bound of data dissemination time, T
upper

dssI .

Interests Learning Component

This component of INDIGO plays the most important role in learning interests of

people and in providing the interest similarities between a different pair of peo-

ple. People usually people prefer to receive and share information according to

their interests (interest-driven) rather than receiving every possible information

(broadcast). The Interest Learning Component enables interest-driven data

dissemination by learning real web interests of people from their mobile brows-

ing history. The semantic categories of visited websites like social networking,

news, shopping etc. reflect user’s web interests. In case, the web browsing his-

tory is not available in contact traces then, the Interest Learning Component

synthetically creates the interests of people based on small, medium and weak

ties concept of social networks using power-law distribution. For both cases, to

determine the likelihood to exchange data among people, it calculates cosine

similarity between extracted interests. I will discuss the Interest Learning

Component in detail in next Section.

Data Processor

This component processes all inputs coming from Contact Probability Prediction

Module, Interest-Learning Component and Input Parameters for both static and

time-varying contact patterns. The input parameter for interest-driven data dis-

semination strategy is the # of data sources and data requirement that allows

INDIGO to predict data dissemination time bound for a different fraction of data.

In the case of interest-driven strategy, it is more likely to collect a certain fraction

of data as people will not always be interested to collect complete data frac-

tion. Out of all users, it randomly assigns M users as data sources and marks the

rest as N mobile users. Based on the type of contact probabilities (i.e. static or

time-varying), it gives either PC
S

contact probability matrix or PC
T V

contact proba-

bility matrix set as an input to the Markov Model. Further, the interest similarity

threshold β is calculated as the Expected value of interest similarities matrix IS
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(Please note that β can also be enforced as input to the model). Finally, based

on β and IS, it prepares a Utility matrix $% as follows:

$% = {uti j} ∀ i, j ∈ V (6.1)

uti j =

!

1 i f simi j ≥ β
0 otherwise

Where β = #(IS)

Both PC
S

or PC
T V

and $% will be given as an input to Markov Model where, $%

determines interest-driven data exchange while PC
S

or PC
T V

drives the mobility

and heterogeneous contact patterns for the model. It is important to note that

data message can only be exchanged if a pair of users has utility value as 1. This

signifies the importance of interests similarities in real-world data dissemination

process.

Markov Model

This working of this sub-component is similar to the one used for broadcast

strategy in Chapter 5. It is a Markov-chain based model that utilizes a Cut-

off point based approach to mimic real-world data gathering process by collec-

tively considering different real-world aspects of data dissemination. The Markov

Model communicates with Cut-off Estimator to dynamically estimate the Cut-

off point for the tighter prediction of the upper bound of data dissemination time

(Please refer Chapter 5 for more details). Each state S(x) of the Markov Model

represents the total number of messages (x) collected by mobile users from dif-

ferent data sources and the transition from one state to another state is driven

by the mobility and contact patterns of users, their interest similarities and data

sources. Once all nodes fulfill the data requirement then the Markov Model stops

transiting and remain in the same state (absorbing state).

Cut-off Estimator

This sub-component contributes towards the tighter prediction of the upper bound

of data dissemination time by dynamically providing α value to Markov Model.

Similar to broadcast strategy, it helps in calculating α by communicating the

fraction of data collected in one state transition to Cut-off Estimator from

Markov Model. Based on the fraction of data collected in one state the Cut-off
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Estimator measures the change in data fraction and repeat this process until

it reaches to a data fraction α beyond which change in data fraction becomes

smaller than ε. The calculated α value is communicated back to Markov Model

using Equation 5.1 described in Chapter 5.

6.3 Learning of interests for interest-driven data dissem-

ination

To model interest-driven data dissemination process, we need to understand the

interests of people and also their willingness to share information with each

other. The work done in literature have not considered real interests of people

along with their heterogeneous mobility rather they rely on a publish-subscribe

scheme where users explicitly show their interests in certain topics. Asking user

interests are subjective and not scalable in long term as interests of people changes

over time Boldrini et al. [2008] Mei et al. [2011] Ciobanu et al. [2015]. Thus, a

user interests learning is more practical and effective approach to model interest-

driven data dissemination.

To address this problem, I provide a solution to learn the interests of peo-

ple through their browsing history by extracting the semantic categories of the

websites using Interest-Learning Component of INDIGO. The semantic cat-

egories of visited websites like social networking, news, shopping etc. reflect

user web interests. Different works on online advertisements suggest that user

profiles built from website categories are an efficient method for user interest

profiling Carrascosa et al. [2014]. Our own collected MACACO traces captures

interests of people (on-mobile browsing history) along with their real mobility

patterns (Wi-Fi connectivity). To the best of my knowledge, this is also the first

contact trace that collects both information simultaneously. Further, to ensure

the privacy of volunteers, I anonymize their identity and only utilize website host

to build user interests. I neither use complete URL of the website nor examine

the HTML content of a webpage.

In the case of contact traces that do not capture web browsing history, the

Interest-Learning Component synthetically creates the interests of people by

utilizing the concept of strong, medium, and weak ties computed with the power

law distribution. To do this, it loops over all possible pairs of people and ran-

domly draws K interest weights from a power law distribution. After learn-

ing/creating the interests of people the Interest-Learning Component deter-

mines the likelihood to exchange data among people by calculating the cosine
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similarity of their web or synthetic interests weight vectors.

Figure 6.2. Working of Interest-Learning Component of INDIGO frame-
work using User Interests Learner and Pair-wise Interests Similarities sub-
components from browsing history.

Figure 6.2 presents the working of Interest-Learning Component that contains

two sub-components: User Interests Learner and Pair-wise Interests Similarities.

The User Interests Learner investigates web browsing history from user’s

mobile and finds the hosts associated with each URL. Later, it queries DMOZ1,

a commonly used open directory of websites, to annotate the destination host-

names with semantic tags to obtain web categories of each host. The DMOZ

directory returns a category of multiple hierarchies each host e.g., ”Europe/News

and Media” for host ”bbc.com” or World/Region/Shopping” for host ”amazon.com”.

I take into account the categories of all hierarchies for user’s web interests con-

struction. To learn user interests, I apply Term Frequency Inverse Document Fre-

quency (TF-IDF) weighting scheme and create a term vector for each user that

contains the web category and weight associated with this category Blei et al.

1http://www.dmoz.org/
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[2003]. TF-IDF emphasizes on categories that distinguish a user from others by

considering frequency count of each category (the TF term) and then scaling of

frequencies for commonly used categories across all users (the IDF term). The

IDF term effectively decreases the weight of categories that commonly appear

across different users like higher hierarchy categories that are abstract.

After computing the most important web categories for each user, the Pair-wise

Interests Similarities sub-component creates similarities among each pair

of users in two steps:

1. I first apply Principal Component Analysis (PCA) on the interests vectors

to reduce the dimensionality of these sparse interests term vectors that

use singular vector decomposition to create a smaller set of dimensions.

It’s a popular technique that use singular vector decomposition to create

a smaller set of dimensions by analyzing similarities between original di-

mensions.

2. From reduced interest term vectors, I prepare an Interest Similarity Matrix

IS for all users using cosine similarity.

IS = {simi j} ∀ i, j ∈ V (6.2)

Similarly, Figure 6.3 presents the working of Interest-Learning Component of

INDIGO framework to create the synthetic interests of users using the power law

distribution method. Once the interests of users are created then, the Pair-wise

Interests Similarities computes the pair-wise cosine similarities and pre-

pares the Interest Similarity Matrix IS.

In order to verify the applicability of power law distribution for synthetic

traces and observe the existence of strong, medium and weak ties concept in

web interests, I plot user’s real web interests learned from the MACACO trace

and present the results for sample users in Figure 6.4 for both France and Brazil

group. The plots shown in Figure 6.4 verifies the usefulness of power law distri-

bution and the synthetic interests generated through the Interest-Learning Com-

ponent of INDIGO framework.

I applied the above described approach to the different samples of web brows-

ing history at Telefònica Research. For our contact traces, I only had the browsing

history for our own collected MACACO traces while for other traces (INFOCOM,

PERCOM, ROLLERNET, and MIT) unfortunately, we did not have the web brows-

ing history, therefore, I rely on synthetic interests for such traces. Figure 6.5

presents the sample synthetic interests for MIT trace and real web interests gen-

erated from MACACO trace for both France and Brazil groups.
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Figure 6.3. Working of Interest-Learning Component of INDIGO frame-
work using User Interests Learner and Pair-wise Interests Similarities sub-
components for synthetic web interests using Power Law distribution.

From Figure 6.5, I observe that the Interest-Learning Component also produces

some interests specific to country language. Further, Figure 6.6 presents interest

similarities among volunteers in France and Brazil and shows that on average

volunteers in Brazil group have higher interest similarities as compared to the

France group. This could happen because, in France traces, volunteers range

from students to staff of different departments and age groups while in Brazil

traces most of the people were researchers from the same group.

In next Section, I will present how INDIGO incorporates the interests in the

Cut-off approach to predict the upper bound of data dissemination time for both

static and time-varying contact patterns. Please note that in this Chapter, I will

only use the Cut-off based approach as it was proved as the best approach to pre-

dict the tighter upper bound of data dissemination time in the previous Chapter.
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(a) MACACO–France (b) MACACO–Brazil

Figure 6.4. Distribution of sample user’s web interests for MACACO France
and Brazil groups. This distribution shows the applicability of synthetic web
interests generated through INDIGO framework.

6.4 Tighter prediction of T
upper

dssI using Cut-off approach

Similar to the broadcast scheme, the Interest-Driven Sub-Module also models

the multi-source and multi-contact data dissemination using the Markov chain

based model under interest-driven data dissemination strategy. The Markov-

chain based model utilizes the Cut-off point based approach to mimic real-world

data gathering process. Each state S(x) of our Markov-chain based model repre-

sents the total number of messages (x) collected by mobile users from different

data sources.

6.4.1 Preliminaries

Let us consider a network with V = U ∪ D users where U = {u1, u2, ....., uN}
represents N mobile users and D = {d1, d2, ....., dM} represents M data sources

(mobile or static). We assume that every data source di ∈ D has a distinct data

message msgi . Further, the maximum number of messages gathered by a mobile

user uj ∈ U is determined according to " obtained as an input parameter. By

default, our approach predicts data dissemination bounds for different " from α

to 1 within an interval of 0.05 (α, α+ 0.05, α+ 0.10.....1). Please note that "

represents the maximum fraction of data that needs to be collected by all mobile
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(a) MIT (b) France

(c) Brazil

Figure 6.5. Sample interests for MIT traces (synthetic) and MACACO (web
interests) for France and Brazil groups generated from their web browsing
history using Interest-Learning Component of INDIGO.

users. Further " can also be restricted due to low interests similarities among

mobile users or mobile user and data sources. Therefore, the maximum number

of messages that can be stored in the network are F = M ∗ N ∗ ". Every mo-

bile user uj maintains a list M Listuj
(t) = {msgi ,∀i ∈ [1, M]} of all messages it

receives up to time t according to its mobility and interests. All mobile users U

can collect data directly from data sources or from mobile users using Contact &

Data Gathering process (CDG) described as follows:



111 6.4 Tighter prediction of T
upper

dssI using Cut-off approach

(a) France (b) Brazil

Figure 6.6. Interests similarities between volunteers of France and Brazil
Groups calculated from their web interests profiles.

Definition 1 (Contact & Data Gathering process (CDG): When any two mobile

users or any mobile user or data source come in contact with each other they

exchange their respective message lists if an only if they share similar interests (i.e

utility value is 1).

It is important to note that any two data sources do not exchange any data

messages among them. Finally, I define multi-contact interest-based data dis-

semination process as follows:

Definition 2 (Multi-contact Interest-based Data Dissemination): Any mobile user

uj ∈ U gathers data message msgi from data source di ∈ D or further disseminates

its messages to other users using CDG process. The data dissemination process

continues until all mobile users collect data source messages based on the overall

data requirement ". The mobility of mobile users, their interests similarities,

multiple simultaneous contacts and data sources drives the Multi-contact Interest-

based Data Dissemination.

Algorithm 8 presents how every mobile user uj ∈ U gathers data at time t

using CDG process. t− and t+ represent the time before and after t respectively.

I define data dissemination time as the time at which all users in the network ful-

fills data requirement ". Consider a matrix DAL L(t) of size N ×M that represents
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Algorithm 8 Contact & Data Gathering process (CDG)

1: if Any two users uj and uk come in contact at time t with M Listuj
(t−) and

M Listuk
(t−) then

2: if utuj uk
= 1 then

3: Users uj and uk exchange all of their data messages

4: M Listuj
(t+) = M Listuj

(t−)∪M Listuk
(t−)

5: M Listuk
(t+) = M Listuj

(t−)∪M Listuk
(t−)

6: end if

7: end if

8: if Any user uj with M Listuj
(t−) and any data source di with message msgi come in

contact at time t then

9: if utuj di
= 1 then

10: Users uj collects data message msgi from di

11: M Listuj
(t+) = M Listuj

(t−)∪msgi

12: end if

13: end if

the list of all data messages collected up to time t by N mobile users.

DAL L(t) =

⎡

⎢

⎢

⎢

⎢

⎣

msgu1 d1
msgu1d2

... msgu1dM

msgu2 d1
msgu2d2

... msgu2dM

. . . .

. . . .

msguN d1
msguN d2

... msguN dM

⎤

⎥

⎥

⎥

⎥

⎦

N×M

msguj di
=

!

1 i f msgi ∈ M Listuj
(t)

0 otherwise

∀ j ∈ [1, N], ∀ i ∈ [1, M]

The upper bound of data dissemination time T
upper

dssI is the maximum time slot

at which data requirement will be fulfilled and F elements of matrix DAL L(t)

becomes 1.

6.4.2 Cut-off point approach for static and time-varying contact
patterns

To verify the significance of Cut-off point α under interest-driven data dissem-

ination strategy, I also analyze the fraction of data collected over time under
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(a) INFOCOM Trace (b) MIT Trace

Figure 6.7. The fraction of data gathered with respect to time for all mobile
users from all data sources for real-world traces from two diverse environments
under interest-driven data dissemination strategy.

interest-driven data dissemination strategy from different real-world traces from

diverse environments (conference Scott et al. [2006c] and university environ-

ment Eagle et al. [2009] during different time periods in Figure 6.7). From

Figure 6.7 I observe the pattern similar to broadcast strategy: initially the rate of

the data gathering is faster and after a certain data fraction, it exhibits a long tail

cut-off. This happens because after a while the probability of getting new mes-

sages from neighboring users reduces due to extremely low contact with new

users. In addition, the rate of data gathering depends on the inter-contact time

among people that, after a power law period, exhibits a long tail cut-off Karagian-

nis et al. [2007]. Therefore, the time taken to gather remaining data increases

significantly.

To determine α, the Markov Model communicates with Cut-off Estimator

by sending the fraction of data collected in current and previous step. For ex-

ample in Figure 6.7, the estimated α for INFOCOM and MIT traces are 0.7 and

0.82 respectively. Once α is determined, the Markov Model models sets target

state S(F) according to user data requirement " and predicts T
upper

dssI using the

Fast Growing and Long Tail phases of Cut-off based approach. The time spent in

the Fast Growing and Long Tail phases are TFGPI and TLT PI respectively. TFGPI

represents the maximum time spent in Fast Growing phase (i.e. the maximum

time required to reach directly to cut-off point state S(α∗ F) from S(0)). TLT PI is

the time spent in Long Tail Phase (i.e. maximum time spent in each state starting

from S(α∗ F) to S(F)). Finally, the predicted upper bound of data dissemination
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time T
upper

dssI under interest-driven data dissemination strategy can be defined as

follows using TFGPI and TLT PI :

T
upper

dssI = TFGPI + TLT PI (6.3)

Where,

TLT PI =

F
∑

k=x

Tx (6.4)

Long tail cut-off contributes higher weight to T
upper

dssI as compared to the time

spend in gathering initial data messages and closely resembles the real-world

data gathering process. To transit from one state to another, the Markov Model

computes the transition probability PS(x),S(x+k) to reach S(x + k) from S(x) using

contact probability matrix PC and utility matrix$%. The transition probability for

both static and time-varying cases is defined in Equation 6.5 and 6.6 respectively.

PS(x)S(x+h) =
∑

i∈S(x), j∈S(x+h)

pc
i j
× uti j (6.5)

Pk
S(x)S(x+h)

=
∑

i∈S(x), j∈S(x+h)

p
cda yk

i j × uti j (6.6)

Where ∀ pc
i j
∈ PC

S
, ∀ p

cda yk

i j ∈ PC
da yk

, ∀ PC
da yk
∈ PC

T V
∀ ui j ∈ $%

Where PS(x)S(x+h) presents the transition probability to reach state S(x) to

S(x+h) for static contact patterns case while Pk
S(x)S(x+h)

corresponds to the transi-

tion probability to reach state S(x) to S(x+h) for any kth day i.e. da yk, k ∈ [1, 7]

in time-varying contact patterns case under interest-driven data dissemination

strategy. Once we reach the target state S(F), the transition probability to re-

main in the same state will be 1. Since we also consider multiple simultaneous

contacts among people, our Markov chain can directly jump to any state S(x+n)

from S(x). This procedure helps to provide tighter prediction of T
upper

dssI by elimi-

nating the impact of maximum time spent in each intermediate step.

Algorithm 9 presents our modified algorithm for interest-driven data dis-

semination to predict tighter upper bound for T
upper

dssI by computing TFGPB and

TLT PB individually for both static and time-varying contact patterns using Algo-

rithm 10 and Algorithm 11 respectively. Algorithm 10 and Algorithm 11 present

the methodology to find maximum time (max Time) spent in a state (i.e max-

imum time taken to reach endState from star tState for several runs) under

interest-based data dissemination by utilizing PC
S

and $% for static contact pat-

terns case and PC
T V

for time-varying contact pattern case.
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Algorithm 9 Cut-off point based approach for prediction of T
upper

dssI for both static

and time-varying contact patterns

Require: PC
S , PC

T V , $%, M > 0,N > 0,DAL L(t) = 0N×M , NumRuns,F ,MaxStepsDa y

Ensure: T
upper

dssI

star tState ← 0

stopState ← F

cuto f f State← 0

TFGPI ← 0, TLT PI ← 0, T
upper

dssI ← 0, α← 0

Truns = *

{estimate α from Cut-off Estimator Component}

Set Cut-off point α

cuto f f State← α ∗ F {calculate time for Fast Growing phase}

for i = 0 to NumRuns do

if STAT IC_C P_CASE then

max Time ← getMax TimeStatic(star tState, cuto f f State, DAL L(t), PC ,$%)

{For static contact patterns}

else

max Time← getMax TimeT V (star tState, cuto f f State, DAL L(t), PC
T V , MaxStepsDa y,$%)

{For time-varying contact patterns}

end if

Truns ← Truns ∪max Time

end for

TFGPI ← max(Truns)

Truns = *

{Calculate time for Long Tail phase}

star tState ← cuto f f State

while star tState < stopState do

nex tState← star tState + 1

for i = 0 to NumRuns do

p← star tState

Randomly set p elements of matrix DAL L(t) to 1

if STAT IC_C P_CASE then

max Time ← getMax TimeStatic(star tState, nex tState, DAL L(t), PC ,$)

{For static contact patterns}

else

max Time← getMax TimeT V (star tState, nex tState, DAL L(t), PC
T V , MaxStepsDa y,$)

{For time-varying contact patterns}

end if

Truns ← Truns ∪max Time

if max Time = 0 then

nex tState← nex tState + 1

else

star tState ← nex tState

nex tState← nex tState + 1

end if

end for

TLT PI ← TLT PI +max(Truns)

end while

T
upper

dssI ← TFGPI + TLT PI
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Algorithm 10 getMax T imeStat ic(star tState, endState, DAL L(t), PC
S

,$%)

Require: star tState, endState, DAL L(t), PC
S , $%, NumTrials

Ensure: max Time

1: for t r ial = 1 to NumTrials do

2: T = *

3: t = 0

4: repeat

5: x ←, (0,1)

6: t ← t + 1

{Assuming CDG process, user-user}

7: if x < 0.5 then

8: r ←, (0,1)

9: for all pairs of users (i, j) : pc
i, j ≥ r AND ui j = 1 do

10: update DAL L(t) based on C DG algorithm

11: end for

12: end if

{Assuming CDG process, user-data source}

13: if x > 0.5 then

14: r ←, (0,1)

15: for all user and data source pair (i, k) : pc
i,k
≥ r AND uik = 1 do

16: update DAL L(t) based on C DG algorithm

17: end for

18: end if

19: d ← count(DAL L(t)) {total messages stored in DAL L(t)}

20: until d ≤ endState

21: if d = endState then

22: T ← T ∪ t

23: end if

24: end for

25: max Time← max(T )

26: return max Time
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Algorithm 11 getMax T imeT V (star tState, endState, DAL L(t), PC
T V

, MaxStepsDa y,$%)

Require: star tState, endState, DAL L(t), PC
T V , $%, NumTrials,da yNum,MaxStepsDa y

Ensure: max Time

1: for t r ial = 1 to NumTrials do

2: T = *

3: t = 0

4: tlocal = 0

5: da yNum= 0

6: repeat

7: x ←, (0,1)

8: t ← t + 1

{Restart from the beginning contact probability if we reach MaxStepsDa y}

9: if tlocal > MaxStepsDa y ×
-

-PC
T V

-

- then

10: tlocal ← 0

11: end if

12: tlocal ← tlocal + 1

{Get PC
da yda yNum

for the given day using tlocal and MaxStepsDa y}

13: PC
da yda yNum

← PC
T V [da yNum]

{Assuming CDG process, user-user}

14: if x < 0.5 then

15: r ←, (0,1)

16: for all pairs of users (i, j) : p
cda yNum

i, j ≥ r AND uik = 1 do

17: update DAL L(t) based on C DG algorithm

18: end for

19: end if

{Assuming CDG process, user-data source}

20: if x > 0.5 then

21: r ←, (0,1)

22: for all user and data source pair (i, k) : p
cda yNum

i,k
≥ r AND uik = 1 do

23: update DAL L(t) based on C DG algorithm

24: end for

25: end if

26: d ← count(DAL L(t)) {total messages stored in DAL L(t)}

27: until d ≤ endState

28: if d = endState then

29: T ← T ∪ t

30: end if

31: end for

32: max Time← max(T )

33: return max Time
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Algorithm 9 presents how the Cut-off point approach computes TFGPI and

TLT PI individually to find tighter upper bound for T
upper

dssI for both static and time-

varying contact patterns. Once the Markov Model determinesα through Cut-off

Estimator, it segregates Fast Growing and Long Tail phase. In Fast Growing

phase, the model sets star tState as S(0) and cuto f f State as S(α∗ F) and pre-

dicts (TFGPI ) to directly reach cuto f f State for several runs (i.e. NumRuns using

getMax T ime method described in Algorithm 10 and Algorithm 11). Afterward,

it starts Long Tail phase by initializing star tState to S(α ∗ F) and nex tstate to

S(α ∗ F + 1) and predicts maximum time spent in nex tstate. If the model can-

not reach nex tstate due to the non-existence of CDG process then, nex tstate

will be marked as non-reaching and max Time to reach this state will be set to

0. In this case, the model will again compute max Time by setting nex tstate to

S(α ∗ F + 2) while keeping the same star tState as S(α ∗ F). On the other side,

if model could reach S(α ∗ F + 1) (i.e max Time ̸= 0) then, it sets star tState as

S(α ∗ F + 1) and nex tstate as S(α ∗ F + 2).

Likewise, the model repeats the same process until it reaches final state S(F).

Finally, the model computes TLT PI as the sum of maximum time spent in each

reachable state. As described in previous sections, the Markov Model predicts

T
upper

dssI for different data requirements of the network starting from α to 1 unless

" is provided as an input parameter.

6.5 Measured data dissemination time T meas
dssI using real-

world contact traces under interest-driven data dis-

semination strategy

To the best of my knowledge, in literature, there is no other work addressing

the issue of heterogeneous contact patterns under interest-driven data dissemi-

nation strategy. Therefore, to compare the performance of upper bound of data

dissemination time T
upper

dssI obtained from INDIGO framework, I simulate the real

contact traces and measure the actual data dissemination time T meas
dssI for each

contact trace. I replayed all contact traces and measured T meas
dssI for each trace

under interest-driven data dissemination strategy. To have a comparable per-

formance throughout the thesis, I consider the same segment of traces used in

Chapter 5.

From the final traces, I randomly select M users as mobile data sources and

the remaining N mobile users as those who are interested in gathering data mes-

sages from selected data sources according to different data requirements ". I
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update data matrix DAL L(t) based on the contact patterns observed in real con-

tact traces and interest similarities among each pair of users. At each time step, I

replay contact among a pair of users and impose interest-driven data dissemina-

tion strategy by comparing their interest similarity. If the interest similarity simi j

between a pair of users i and j is above β threshold then the message will be

exchanged. I stop the simulation when network data requirement gets fulfilled

and record time as T meas
dssI . During these simulations of real-world contact traces, I

also record the maximum possible fraction DFmax of data that could be collected

in the network by all nodes. To ensure comparable results, I also set maximum

fraction of data collected DFmax and measured data dissemination time T meas
dss

through emulation of real traces as ground truth for the Markov Model of IN-

DIGO. Please note that the T meas
dssI will consist all real aspects of contact patterns

i.e. time-varying contact patterns, multiple simultaneous contacts, and interests-

driven data exchange. Therefore, I create the ground truth of data dissemination

time T meas
dssI for all traces and utilize it as a benchmark for both static and time-

varying data dissemination prediction.

For all contact traces, in general, the maximum fraction of data collected

is lesser under interest-driven data dissemination strategy as compared to the

broadcast strategy. This observation shows that the interest-driven data dissem-

ination strategy restricts spread of information in most of the weeks (max col-

lected data fraction was less than 100%). The MACACO contact traces along

with real interests also exhibit a similar trend. I observe that for France-W H and

France-W L (the difference in the fraction of data collected is only slightly higher

(5%)) even though France-W H has much higher contact probabilities among peo-

ple as compared to France-W L. Brazil group also produces similar effects as data

fraction collected in Brazil-W H is only 10% higher as compared to Brazil-W L.

The T meas
dssI results for both groups show the importance of interest-driven data

dissemination strategy on data dissemination time. Table 6.2 presents simula-

tion settings and T meas
dssI for maximum data fraction DFmax collected in all weeks.

6.6 Results and discussion

In this section, I validate the upper bound of data dissemination time T
upper

dssI ob-

tained against the ground truth data dissemination time, T meas
dssI under interest-

driven data dissemination strategy from all real-world contact traces. For each

selected contact trace segment of contact traces (same as used in Chapter 5),

INDIGO predicts T
upper

dssI for all data requirements starting from α to DFmax with

5% step size for both contact patterns using Cut-off based approach. For all con-
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Table 6.2. Simulation settings and T meas
dssI for maximum data fraction for all

contact traces under interest-driven data dissemination strategy.

Trace # Mobile

Users

#Data Sources DFmax T meas
dssI (in

secs)

INFOCOM (2nd day) 30 9 0.89 62311

PERCOM (4th day) 32 9 0.99 32420

ROLLERNET 50 12 1 1590

MIT-W1 (from 10th month) 51 15 0.894 599428

MIT-W2 (from 10th month) 57 15 0.826 584668

MIT-W3 (from 10th month) 61 15 0.97 596697

MIT-W4 (from 10th month) 64 15 0.96 603377

MACACO–France–W H 15 4 0.5714 308020

MACACO–France–W L 15 4 0.5238 542396

MACACO–Brazil–W H 6 4 0.50 361425

MACACO–Brazil–W L 6 4 0.40 215638
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tact trace segments, the contact probabilities were predicted through the Contact

Probability Prediction Module and the Cut-off point αwas estimated with the help

of Markov Model and Cut-off Estimator of Interest-Driven sub-module. Fur-

ther, the interest threshold value β is also set by the Data Processor for all

contact traces using #(IS). Based on β , the Data Processor prepares $% and

provide it as an input to Markov Model of INDIGO to model interest-driven data

dissemination strategy. The values for β for INFOCOM, PERCOM, ROLLERNET,

and MIT is set as 0.5, 0.6, 0.6, (W1, W2–0.5, W3, W4–0.4) respectively. Further,

for France and Brazil group of MACACO traces the β is set as 0.3 and 0.5 respec-

tively. From IS matrix, we observe that volunteers in France share fewer interests

as compared to volunteers in Brazil. The difference in interests is primarily be-

cause of the diversity of volunteers in terms of different departments and age

groups. Each experiment is repeated for several runs for statistical convergence.

Now I will present the results for T
upper

dssI for both static and time-varying contact

probabilities for interest-driven data dissemination strategy.

6.6.1 Static contact probabilities case

Figure 6.8 and Figure 6.9 present how well INDIGO is able to predict T
upper

dssI

against T meas
dssI for different contact traces under interest-driven data dissemina-

tion and different data requirements.

From these Figures, we observe that the Cut-off approach once again pro-

vides tighter prediction of T
upper

dssI for all contact traces under interest-driven data

dissemination strategy. In addition to this, we also find the applicability of IN-

DIGO for different data requirements starting from α to DFmax . For conference

environment, we find the error between 4-13% and find comparable results for

both INFOCOM and PERCOM trace and shows the significance of interest-driven

data dissemination strategy. Even though the contact rate in INFOCOM trace

among people is slightly higher than PERCOM still, due to high interest simi-

larities among people, the likelihood to exchange more information increases

in PERCOM whenever people meet with each other. For ROLLERNET trace of

crowded urban environment, we also observe that the Cut-off based approach

provides the tighter upper bound of data dissemination time T
upper

dssB between 11-

13% error. As compared to conference environment, the higher prediction error

in ROLLERNET is due to the overestimation of time spent in Long Tail phase while

in reality people were more quickly disseminating information among each other

as they were accumulated for a city tour.

Figure 6.8(d), 6.8(e),6.8(f),6.8(g) depict the results obtained from MIT traces

for all 4 weeks (MIT-W1 to MIT-W4) and once again shows the applicability of
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(a) INFOCOM–α = 0.65 (b) PERCOM–α = 0.65

(c) ROLLERNET–α = 0.89 (d) MIT-W1–α= 0.87

(e) MIT-W2–α= 0.68 (f) MIT-W3–α= 0.96

(g) MIT-W4–α= 0.943

Figure 6.8. Comparison of real data dissemination time T meas
dssI against the upper

bounds of data dissemination time T
upper

dssI predicted using Cut-off approaches for
INFOCOM, PERCOM, ROLLERNET, and MIT trace under interest-driven
dissemination strategy and static contact probabilities.
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(a) MACACO–France–W H–α = 0.78 (b) MACACO–France–W L–α= 0.50

(c) MACACO–Brazil–W H–α= 0.70 (d) MACACO–Brazil–W L–α = 0.87

Figure 6.9. Comparison of real data dissemination time T meas
dssI against the upper

bounds of data dissemination time T
upper

dssI predicted using Cut-off approaches
for MACACO trace under interest-driven dissemination strategy and static
contact probabilities.

INDIGO for long duration contact traces by providing tighter upper bound of

T
upper

dssI under interest-driven data dissemination strategy. We also observe that

for the first 2 weeks (MIT-W1 to MIT-W2), the upper bound T
upper

dssI is almost sim-

ilar because the contact pattern and interests similarities of people are relatively

identical (prediction error is between 5-16%). However, for the (MIT-W3 to MIT-

W3) week, due to fewer contacts among people (semester break at MIT) and

less interest-similarities, INDIGO obtains higher error in T meas
dssI prediction (error

lies between 11-33%). Similar to broadcast strategy, I also notice that T
upper

dssI is

comparatively less tight in MIT than INFOCOM and PERCOM and ROLLERNET

traces.

Finally, for MACACO traces all weeks of both groups, INDIGO predicts T
upper

dssI

within 5-18% error for all data requirements starting from α to DFmax . For

MACACO–France–W H , it predicts T
upper

dssI within 2-11% error while for MACACO–

France-W L, the prediction of upper bounds gets looser with an error of 2-18%.

This happens due to lower contact probabilities predicted from INDIGO and its
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impact on Long Tail phase of Cut-off point based approach. We also observe sim-

ilar trend in Brazil group with 2-15% and 13-18% error in MACACO–Brazil-W H

and MACACO–Brazil-W L weeks respectively. The impact of interest similarities

are also evident in MACACO trace due to comparable errors obtained in France

and Brazil traces even though Brazil traces exhibits much lower contact probabil-

ities. In the case of France traces, INDIGO realizes high contacts among people

but do not exchange message due to lower interest similarities thus results in

overall increases of T
upper

dssI . However, for Brazil traces it exhibits lower contacts

but a higher number of messages are exchanged due to high interest similarities

among people. For all traces, our results show highest and lowest error at DFmax

and α data requirements respectively. This result once again signifies the impact

of Long Tail phase on data dissemination time because, in the case of α data

requirement, INDIGO only utilizes Fast Growing Phase while for others, it uses

both Fast Growing and Long tail phase.

From the above discussion, I conclude that Cut-off point approach outper-

forms for the other strategy i.e. interest-driven data dissemination strategy for

all traces under static contact patterns and different data requirements. The re-

sults also show the impact of interest similarities on the perdition of T
upper

dssI while

showing the comparable performances for traces exhibiting lower contact prob-

abilities.

6.6.2 Time-varying contact probabilities case

In this Section, I present the results of T
upper

dssI under time-varying contact pat-

terns and interest-driven strategy for MIT and MACACO traces. As explained in

previous Chapters, for time-varying contact probabilities, I only contact traces

collected for a longer duration of time and exhibits certain regularities in their

contact patterns.

Figure 6.10 presents the applicability of INDIGO in predicting T
upper

dssI against

T meas
dssB for the different weeks of MIT and MACACO traces for different data re-

quirements. For MIT trace, INDIGO trains the contact probability prediction

model with MIT-W1 contact probabilities followed by the pair-wise contact prob-

abilities prediction for subsequent of the weeks. Similarly, for MACACO trace,

the Contact Probability Prediction Module trains the model for the 1-week trace

of both France and Brazil and predict the contact probabilities for future weeks.

Once the contact probabilities for other weeks of MIT and MACACO traces are

predicted then INDIGO predicts T
upper

dssI for all these weeks. The value of β are

same for all contact traces as in static contact patterns case.

From Figure 6.10, we can observe that time-varying contact probabilities fur-



125 6.6 Results and discussion

(a) MIT-W2–α= 0.70 (b) MIT-W3–α= 0.96

(c) MIT-W3–α= 0.95 (d) MACACO–France–W2–α = 0.954

(e) MACACO–France–W3 (W H)–α = 0.82 (f) MACACO–Brazil–W3 (W L)–α = 0.89

Figure 6.10. Comparison of real data dissemination time T meas
dssI against the

upper bounds of data dissemination time T
upper

dssI predicted using Cut-off ap-
proaches for MIT and MACACO traces under interest-driven dissemination
strategy and time-varying contact probabilities.
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(a) MIT (b) MACACO

Figure 6.11. Comparison of T meas
dssI against T

upper

dssI predicted using for differ-
ent weeks and maximum data fraction of MIT and MACACO traces under
interest-driven dissemination strategy and both static and time-varying con-
tact patterns.

ther tightens the upper bound of data dissemination time. For MIT traces, the

error lies between 5-15% while for MACACO trace it is between 3-15%. We

also observe the trend similar to broadcast strategy where the error prediction of

T
upper

dssI decreases for subsequent weeks due to more accurate prediction of con-

tact probabilities over time. The results also show increase in α for time-varying

contact patterns case thus decrease in time spent in Long Tail phase and predic-

tion error of T
upper

dssI . The change in α is dynamically estimated by the Cut-off

Estimator.

Finally, to show the comparative results of T
upper

dssI from both static and time-

varying contact patterns, I altogether present the prediction of T
upper

dssI against

T meas
dssI for both contact patterns in Figure 6.11 for the maximum fraction of data

DFmax . The Figure clearly shows that time-varying contact patterns exhibit more

realistic contact patterns of people thus provides much tighter upper bound of

T
upper

dssI as compared to the static contact patterns against the ground truth T meas
dssI .

6.7 Conclusions

In this Chapter, I presented the prediction of the upper bound of data dissem-

ination time using the Interest-Driven Sub-Module of INDIGO framework under

multi-source, multi-contact interest-driven data dissemination for both static and
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time-varying contact patterns for Type III case. I proposed a method to learn the

real interests of people from their browsing history and also a way to create artifi-

cial interests using the Interest-Leaning Component. I also presented the modified

Cut-off based approach in INDIGO that predicts upper bound of data dissemina-

tion time by considering both learned real interests of people from web browsing

history of their Smartphones along with their heterogeneous contact patterns.

The prediction results obtained for the upper bound of data dissemination

time showed the applicability of INDIGO for interest-driven data dissemination

strategy for both static and time-varying contact patterns by providing the tighter

bounds. I validated INDIGO through our real-world traces collected and achieved

tight upper bounds of data dissemination for both types of interests (synthetic as

well as real) and contact patterns. More specifically, I observed that employing

time-varying contact patterns improves the tighter bounds of data dissemination

time as they reflect more realistic contact patterns of people. I also summarize

the key observation from this Chapter as follows:

• To the best of my knowledge, INDIGO is the first work that predicts tighter

upper bound of data dissemination time by learning real interests of people

from web browsing history of their Smartphones along with heterogeneous

mobility aspects. Further to the best of knowledge, the MACACO traces

are the first trace set that captures interests of people along with their real

mobility.

• Similarly to inter-contact time I identify a power-law behavior with a long

tail cut-off that, to the best of my knowledge, has not been identified be-

fore. Such discovery is very important as it has a strong impact on the data

dissemination time.

• I exploit the previous finding by providing tighter upper bound of data

dissemination time by using the Cut-off point based approach for both static

and time-varying contact patterns. Prediction from time-varying contact

patterns improves with time due to more training data.

• Interest-driven data dissemination strategies are effective to restrict the

spread of dissemination as opposed to broadcast strategy because infor-

mation is only disseminated for people with sharing similar interests.

• The use of time-varying contact patterns, instead of static ones, leads to an

increase in α that results in the reduction of the prediction error of T
upper

dssI .

The work done in this Chapter are under submission at IEEE WoWMoM 2017

for modeling of interest-driven data dissemination and the interest-learning part
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done in Telefónica research is under ACM Transaction of Web (TWEB) 2017. Till

now, I have focused on the prediction of the upper bound of data dissemination

time using INDIGO for both Type II and Type III cases. In next Chapter, I will

focus how to find the best relays in the network utilizing the BROP model of

INDIGO for both types and how does it impacts the data dissemination time.



Chapter 7

Estimation of Best Relays Using BROP

Model

7.1 Introduction

In previous Chapters, I presented the modeling and prediction of data dissemi-

nation process for the tighter upper bound of data dissemination time under dif-

ferent dissemination strategy and contact patterns. In this Chapter, I will focus

on another dimension of data dissemination process i.e. finding the best relays

in the network to speed up the information diffusion in the network for Type II

and III cases of physical networks. In this way, INDIGO can help local businesses

to target those people who can spread their local services and advertisements

much quicker while covering more people.

Searching for best spreaders in complex networks is an issue of great signif-

icance for applications across various domains, ranging from the epidemic con-

trol Anderson et al. [1992] Heesterbeek [2000] Pastor-Satorras and Vespignani

[2001], viral marketing Watts et al. [2007] Leskovec et al. [2007] and social

movement to idea propagation Diani and McAdam [2003] Lü et al. [2011] My-

ers et al. [2012b] Zhang et al. [2016]. To find the super spreaders in such com-

plex networks, these works focuses on the network properties using centrality

measures like degree centrality (or just the degree of a node, i.e. the num-

ber of its links), the eigenvector centrality Bonacich [1987], the betweenness

centrality Freeman [1977] etc. Recently, the another centrality measure based

on the notion of K-cores is applied in many real networks Dorogovtsev et al.

[2006] Carmi et al. [2007] Garas et al. [2010] and shown to be effective in under-

standing network structure and finding influential nodes in the network Batagelj

and Zaveršnik [2011].

129
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One of the major limitation of the above-described centrality measures, in-

cluding the K-core decomposition method, is their design to work on unweighted

graphs. However, in practice, real networks have weights that describe important

and well-defined properties between the graph nodes. To handle such complex

networks, the authors in Garas et al. [2012] proposed a weighted K-Shell decom-

position algorithm that takes into account both the degree centrality and weight

measures to find best relays in the network. In the case of INDIGO, the contact

strength (physical proximity) and interest similarity (social proximity) among

people can also be represented as a weighted graph and I need to address the

problem of finding best relays from these weighted graphs. Therefore, to find

the set of Best Relays, INDIGO also utilizes the weighted K-shell decomposition

algorithm for Type II and III cases.

The chapter is structured as follows. In Section 7.2, I will present different

parts and working of BROP Component to find the best relays in the network

under broadcast and interest-driven data dissemination strategy. Further in Sec-

tion 7.3, I will describe the weighted k-shell decomposition algorithm and how

do I use it for broadcast and interest-driven strategy along with their impact

on data dissemination time. Afterward, in Section 7.4, I will discuss the results

obtained from BROP Component for both broadcast and interest-driven data dis-

semination for different traces. Finally, with Section 7.5, I conclude this Chapter.

7.2 Overview of BROP Component

Figure 7.1 and 7.2 presents the detailed view of BROP Component which is

responsible for finding Best Relays in the network under both broadcast and

interest-driven data dissemination strategy. For broadcast strategy, the BROP
Component inputs pair-wise contact probabilities predicted through the Contact

Probability Prediction Module and further finds the Best Relays in the network

by detecting the Core and Non-Core nodes using K-Shell sub-component. The

Core nodes represent the super spreaders of the network while Non-Core nodes

represent those nodes who are not central in the network (more details in next

section). All input given to the K-Shell sub-component is provided by the Data
Processor. In the case of interest-driven data dissemination strategy, (see Fig-

ure 7.2) in addition to contact probabilities, the interest-similarities among peo-

ple learned from the Interest Learning Component are also given as input to the

Data Processor. Once the Core and Non-Core nodes of the network are identi-

fied then, based on the data requirement, # of data sources and interest similarity

threshold, the BROP Component selects different sets of initial data sources and
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finds the optimum set of Best Relays that minimizes the upper bound of data

dissemination time.

Figure 7.1. BROP Component of INDIGO required to find Best Relays under
broadcast data dissemination strategy for Type II case.

7.2.1 Broadcast data dissemination strategy

The working of BROP Component for broadcast data dissemination strategy is

presented in Figure 7.3. In this case, the pair-wise contact probabilities and other

parameters are given as an input to the Data Processor that builds the network by

finding the unique nodes and create a weighted edges wB
i j

between each node pair

i, j using their contact probability pi j. Once the network is built, it is passed on

to the K-Shell sub-component that employs the weighted K-Shell decomposition

algorithm on a network to finds the Core and Non-Core nodes by considering both

node degree and associated weights with other nodes in the network. Further, to

find the best-suited set of Best Relays, the BROP Component communicates with

DDT-Markov Component by sending a set of Core nodes (selected based on the #



132 7.2 Overview of BROP Component

Figure 7.2. BROP Component of INDIGO required to find Best Relays under
interest-driven data dissemination strategy for Type III case.

of data sources) and finds the Best Relay set that minimizes the data dissemination

time for a certain data requirement.

7.2.2 Interest-driven data dissemination strategy

As presented in Figure 7.4, the BROP Component under interest-driven strat-

egy also takes pair-wise contact probabilities as an input along with pair-wise

interest similarities among people obtained through Interest Learning Compo-
nent. To consider the impact of interest-driven data dissemination strategy, the

BROP Component eliminates the edges between those pair of nodes i, j whose

utility value ui j is 0 while the building of network (utility value description is

for interest-driven data dissemination is discussed in detail in Chapter 6). After-

ward, it applies weighted K-Shell decomposition on the network through K-Shell
sub-component and finds the set of Best Relays using DDT-Markov Component of

INDIGO’S Interest-Driven Sub-Module.
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Figure 7.3. Working of BROP Component to find best relays using K-Shell
under broadcast data dissemination strategy.

Figure 7.4. Working of BROP Component to find best relays using K-Shell
under interest-driven data dissemination strategy.

7.3 Weighted K-Shell decomposition algorithm

In this Section, I will give the overview of weighted K-Shell decomposition al-

gorithm used by the BROP Component of INDIGO framework. Weighted K-

Shell decomposition algorithm is an extension of unweighted K-Shell decom-

position algorithm where it considers both degree of a node and the weights

of its links. The traditional K-Shell decomposition method partitions a network

into sub-structures that are directly linked to centrality Alvarez-Hamelin et al.

[2005] Batagelj and Zaveršnik [2011]. This method assigns an integer index, ks,

to each node that is representative of the location of the node in the network,

according to its node degree. Nodes with low values of ks are located to the

periphery of the network while nodes with a high value of ks will reside in the
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center of the network. This way, the network is described by a layered structure

(similar to the structure of an onion), revealing the full hierarchy of its nodes.

The innermost nodes belong to the structure called ”Core” of the network, while

the remaining nodes are placed into more external layers (K-Shells). Figure 7.5

presents the how a network is divided into this K-Shell structure using the K-

Shell decomposition algorithm. In the beginning, the algorithm first recursively

removes all nodes with degree K = 1 from the network and assigns the integer

value ks = 1 to them. This procedure is repeated iteratively until there are only

nodes with degree K ≥ 2 left in the network. Subsequently, it removes all nodes

with degree K = 2 and assigns to them the integer value ks = 2. Again, this pro-

cedure is repeated iteratively until there are only with nodes with degreeK ≥ 3

left in the network, and so on. This routine is applied until all nodes of the

network have been assigned to one of the K-Shells.

The above described original K-Shell decomposition does not consider the

weights of the links. To find the Best Relays in a network, the BROP Component

of INDIGO needs to take into account the physical (contact) and social (interest

similarity) weights among people. Therefore to address this problem, I also ap-

plied weighted K-Shell decomposition algorithm proposed by Garas et al. [2012]

in BROP Component. The weighted K-Shell decomposition algorithm applies the

same pruning routine described earlier, but it is based on an alternative measure

for the node degree. This measure considers both the degree of a node and the

weights of its links. Considering these two measures, the algorithm assigns a

weighted degree, k′
i
for a node i is defined as:

k′
i
=

⎡

⎣kθ
i

.

ki
∑

j

wi j

/γ
⎤

⎦

1
θ+γ

(7.1)

where ki is the degree of node i, and
∑ki

j
wi j is the sum over all its link

weights. The value of θ and γ determines the importance of degree and weights.

The authors of weighted K-Shell decomposition algorithm have considered both

θ and γ values as 1 to give equal importance to degree and weights. Similar

to them, I will also set θ and γ values as 1 for the BROP Component. Finally,

the Core nodes obtained using BROP Component are considered as Best Relays

of the network to enable faster information dissemination in the network. The

BROP Component marks Core and all Non-Core nodes as 0 and 1 respectively.
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Figure 7.5. Illustration of the layered structure of a network obtained using the
k-shell decomposition method. The nodes between the two outer rings include
nodes of shell 1 (ks = 1), while the nodes between the two inner rings compose
shell 2 (ks = 2). The nodes within the central ring called as Core (ks = 3) while
nodes of other outer and middle rings are called as Non-Core nodes (ks = 1, 2).

7.3.1 Impact of Core and Non-Core nodes on data dissemination
time

In this Section, I will present the impact of Core and Non-Core nodes on data

dissemination time for different traces. Figure 7.6 and Figure 7.7 present the

structure of network1 and sample plots of the mean of the data dissemination

times obtained from the different set of Core and Non-Core nodes using BROP

Component.

From Figure 7.6, we observe that both conference environment traces (IN-

FOCOM and PERCOM) have a connected community due to the gathering of

people for the conference event. Further, for the urban environment ROLLER-

NET trace, we observe a complete tight knitted community with high intensity

of contacts. This happens because people were on a city tour and walking alto-

gether. For all weeks of MIT trace, we clearly see two groups: the first one is

the group of researchers in a department and the another one is a set of visit-

ing researchers. For MACACO trace, we also see a community formed from the

1For the sake of convenience, I gave some pseudo name to the nodes in the network.
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(a) INFOCOM, PERCOM and ROLLERNET (b) All weeks of MIT

(c) All weeks of MACACO for both France

and Brazil

Figure 7.6. Contact graph of the network for each trace.
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(a) INFOCOM (b) PERCOM

(c) ROLLERNET (d) MIT

(e) MACACO-France (f) MACACO-Brazil

Figure 7.7. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for maximum data fraction.
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group of students and researchers in the university. From Figure 7.7 depicts the

effectiveness of Best Relays obtained from BROP Component. With the help of

Core nodes (or Best Relays) as initial data sources, the data disseminates faster

in the network. As evident from the Figure, data dissemination time with Core

nodes as starting points is much lower compared to the data dissemination time

when initiating from Non-Core nodes. We also see that, the more the network

is loosely connected, the higher is the gain. For ROLLERNET trace, we do not

see much difference due to closed knit structure where each node is strongly

connected to others in the network. From the above results, we clearly observe

the effectiveness of using the Core Nodes, and thus the importance of using the

weighted K-Shell decomposition algorithm in BROP Component.

7.4 Results and discussion

After demonstrating the effectiveness of the Core Nodes usage, I integrate the

BROP Component into INDIGO, and I quantify the advantage of using it in the

case of data dissemination time till Cut-off point α and max amount of data

DFmax , and I will discuss the reasons behind the different behavior.

Figure 7.8, Figure 7.9, and Figure 7.10 present the impact of Best Relays on

data dissemination time for different contact traces under the broadcast strategy.

Under the broadcast strategy, the Best Relays are obtained only by considering

the contact patterns. In general, we observe that Best Relays are very effective

in reducing the data dissemination time till the Cut-off point as compared to the

time obtained through Non-Core nodes. This happens because when BROP Com-
ponent starts data dissemination with Best Relays (or Core Nodes), they quickly

disseminate information to their bigger ego-network and rapidly reaches to the

Cut-off point data fraction. However, the difference in data dissemination time

using Core and Non-Core reduces when I utilize them for DFmax . This happens

because, in the case of DFmax data requirement, BROP Component also need to

consider the time required to diffuse information to the Non-Core nodes which

lie in the outermost shell of the network (or not well-connected to rest of the

network).

For both conference environment traces, we observe the same trend as de-

scribed above. However, for urban environment ROLLETNET traces, we barely

observe the impact of Best Relays due to its close-knit network structure where

most of the people are very well connected to each other and lie in the core of

the network. Figure 7.9 also present the similar pattern and impact of Best Relays

on all weeks of MIT traces i.e. MIT-W1 to MIT-W4. For the first 2 weeks (MIT-W1



139 7.4 Results and discussion

(a) INFOCOM

(b) PERCOM

(c) ROLLERNET

Figure 7.8. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for Cut-off point and maximum data
fraction for INFOCOM, PERCOM, and ROLLERNET under the broadcast
strategy.
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(a) MIT-W1

(b) MIT-W2

(c) MIT-W3

(d) MIT-W4

Figure 7.9. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for Cut-off point and maximum data
fraction for all four weeks of MIT under the broadcast strategy.
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(a) MACACO-France-W1

(b) MACACO-France-W2

(c) MACACO-France-W3

(d) MACACO-Brazil-W1

(e) MACACO-Brazil-W2

Figure 7.10. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for Cut-off point and maximum data
fraction for all weeks of MACACO-France and MACACO-Brazil under the
broadcast strategy.
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to MIT-W2), Best Relays fastens the data dissemination process by decreasing the

data dissemination time. However, for MIT-W3 and MIT-W4 week, due to fewer

contacts among people (semester break at MIT) we see the limited impact of Best

Relays for DFmax . The similar trend is also observed in both groups of MACACO

trace (from Figure 7.10) of the university environment. From above discussion,

I find that BROP Component is quite effective in reducing the data dissemina-

tion time under the broadcast strategy by suggesting a set of Best Relays in the

network.

The effectiveness of BROP Component is also evident under interest-driven

data dissemination strategy from Figure 7.11, Figure 7.12 and Figure 7.13. Sim-

ilar to broadcast strategy, once again the Best Relays obtained under interest-

driven strategy is more effective for data fraction until Cut-off point as compared

to the maximum fraction of data DFmax . While analyzing the Core and Non-

core nodes achieved from K-Shell decomposition algorithm under interest-driven

strategy, I also found the importance of blending of contact and interest similar-

ity weights. More specifically, I observed the shifting of Core and Non-core nodes

in different shells based on their interest-similarity. I also observed the change in

network and found that interest-driven data dissemination strategy brings those

nodes closer to the core-shell who are more central to the network according to

their interests.

The results obtained for conference environment show pattern similar to the

broadcast strategy. We also observe that for closed knit community like ROLLER-

NET, the shifting of nodes to the core is not evident thus, does not affect the data

dissemination time. For MIT traces, we also observe a similar pattern, however,

for MIT-W2 we observe that for max data fraction, the difference between the

data dissemination time of Core and Non-core shortens. This might occur be-

cause the selected Core nodes are more central to the social proximity but might

not exhibit very high contacts with other nodes of outer shells thus leads to higher

data dissemination time. MACACO traces for both groups also exhibit the pat-

tern similar to broadcast strategy. Finally, for all traces, I also observed that the

mean fraction of data collected by Best Relays is higher ( 20%) than the fraction

of data collected by Non-Core nodes.
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(a) INFOCOM

(b) PERCOM

(c) ROLLERNET

Figure 7.11. Mean data dissemination time obtained from different traces us-
ing Core (Best Relays) and Non-Core nodes for Cut-off point and maximum
data fraction for INFOCOM, PERCOM, and ROLLERNET under the interest-
driven strategy.
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(a) MIT-W1

(b) MIT-W2

(c) MIT-W3

(d) MIT-W4

Figure 7.12. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for Cut-off point and maximum data
fraction for all four weeks of MIT under the interest-driven strategy.
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(a) MACACO-France-W1

(b) MACACO-France-W2

(c) MACACO-France-W2

(d) MACACO-Brazil-W1

(e) MACACO-Brazil-W2

Figure 7.13. Mean data dissemination time obtained from different traces using
Core (Best Relays) and Non-Core nodes for Cut-off point and maximum data
fraction for all weeks of MACACO-France and MACACO-Brazil under the
interest-driven strategy.
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7.5 Conclusions

In this Chapter, I presented the estimation of Best Relays in the network using the

BROP Component of INDIGO for both Type II and III cases. The methodology I

proposed to find the Best Relays for broadcast and interest-driven data dissem-

ination strategy uses the K-Shell decomposition algorithm that considers both

degree centrality and links weights of each node in the network. The results

obtained for Best Relays validates the usefulness of BROP Component for both

data dissemination strategy. I summarize the key observation from this Chapter

as follows:

• K-Shell decomposition algorithm adopted by BROP Component is useful for

both broadcast and interest-driven data dissemination strategy and finding

the set of Best Relays in the network. I also proposed a methodology to

combine both physical and social weights to detect Best Relays.

• The utilization of Best Relays is very effective in reducing the data dissem-

ination time till the Cut-off point.

• For the close-knit community like ROLLETNET, Best Relays does not add

much value in faster information dissemination because most of the people

are very well connected to each other.

• Interest-driven strategy changes the network structure through the shifting

of Core and Non-core nodes in different shells. By giving importance to

social proximity, the nodes with lesser contact and higher interest similarity

can also be one of the important nodes in the network.

In next Chapter, I will focus on the gray area (Type IV) of the physical–social

proximity table where social proximity plays the important role. I will present

my efforts to model data dissemination using online social networks using the

INGIDO–OSN part of the INDIGO framework.



Chapter 8

Data Dissemination Under Online

Social Proximity

8.1 Introduction

In previous Chapters, I presented the modeling and prediction of data dissemi-

nation process through INDIGO framework for Type II and III cases of Physical-

Social proximity table where the presence of physical proximity is the funda-

mental requirement to disseminate information in physical networks (refer Fig-

ure 8.1).

In this Chapter, I will present the INDIGO-OSN part of the INDIGO framework

and will present my efforts to model data dissemination under Type IV (or gray

area) case where we only have availability of the social proximity information.

The best example for Type IV scenario is the data dissemination in online social

networks (OSNs) where the widespread use of social networking sites like Twit-

ter and Facebook allow users to generate and share information anywhere and

anytime thus, allows data dissemination only with the help of social proximity

information. For such cases, even though people do not necessarily encounter

each other but they can still share the information to their friends or followers.

The receiver of a message in such large scale networks has an option either to

relay or forward it to his/her followers. In Twitter, this process is called retweet-

ing and typically users retweet a message if they consider it interesting and worth

sharing with others. A sequence of retweets along the network is called infor-

mation cascade. Due to this process of sharing, a large amount of content is

generated on Twitter and also opened the door for other new research directions

in the field of information spreading, advertising, recommendations and social

data mining. For example, online advertisers can use this information for effi-

147
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Figure 8.1. Type IV case of Physical-Social proximity table where the social
proximity information among people is available. The exchange likelihood of
Type IV is different from the one of Type II and III as in the first case the user
has to choose to exchange, while in Type II and III it can happen without any
action of the user due to an encounter.

cient targeted marketing campaigns. Media companies can learn how to effec-

tively generate buzz for new films or shows. Political groups can also learn who

they should try to influence in order to spread their message as far as possible.

The data dissemination in such scenario can be modeled by predicting the

likelihood to retweet and reply to a given text (or tweet) by a particular user.

As opposed to other works, I also take into account reply for information prop-

agation by predicting the likelihood to reply to a particular tweet. Since a rich

set of information is available on Twitter starting from users profile to content

analysis, therefore, in this thesis, I not only provide a way to predict data dis-

semination by predicting the likelihood of retweet and reply but also quantify

the importance of different information by introducing the concept of feature

planes and model different real-world data dissemination aspects like heteroge-

neous activity of users on online social networks, type of information that needs

to be disseminated, friendship ties and the content of the published online activ-

ities. Existing works in this area mainly tried to predict information spread by

utilizing specific aspects of information like social network structure, temporal

properties, profile features and topical features Galuba et al. [2010]; Petrovic
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et al. [2011]; Yang and Counts [2010]; Pezzoni et al. [2013] but none of them

successfully combined all these features together and, more importantly, they do

not quantify the importance of different features for retweet prediction. I argue

that a fundamental knowledge of different feature planes (defined as a group of

features with similar cost in terms of privacy and complexity to acquire), their

individual and combined contribution in retweet prediction has to be analyzed

for better prediction of information diffusion. In this way, I not only address the

problem of data dissemination for Type IV case but also enable to reduce the com-

plexity of the model by providing the trade-off between high prediction accuracy

and privacy. Also, the proposed model of INDIGO framework does not limit the

prediction of retweet and reply to tweets that are generated by the friends of the

user rather predicts it for any generic tweet.

In next sections, I will first describe the dataset used for Type IV data dissemi-

nation (Section 8.2). Further, I introduce the data dissemination approach using

Machine Learning methods and the feature planes classification in Section 8.3.

Section 8.4 presents the results obtained for different feature planes and validate

my model. Finally, I conclude the Chapter in Section 8.5.

8.2 Dataset description

The dataset used in this work is the data collected from the Twitter activity of a

large sample of about 2 Million users downloaded at IIT-CNR Pisa, 2013 Arn-

aboldi et al. [2013] presented in Figure 8.2. The dataset has been crawled

through Twitter REST API 1, starting from a popular user in the network and

then downloading all the available information about user’s tweets and profile.

Subsequently, the crawler iteratively downloaded same information for all the

followers and friends of each user.

For each user in the dataset, the complete history of their tweets, retweets,

and replies they posted on Twitter up are collected (up to the limit of 3,200 tweets

per user imposed by Twitter REST API). In total, the dataset contains more than

2 Billion tweets, each of which is characterized by creation time, the id of the

creator, textual content, the number of retweets it received, information about

geolocation, and the set of entities it contains such as hashtags, ids of other

users mentioned in the text, URLs, etc. In addition, each tweet also contains

information about possible directed interactions between users. For retweets,

this includes the id of the user who created the original tweet (i.e., the tweet that

has been retweeted) and the creation time of the original tweet. For replies, the

1https://dev.twitter.com/rest/public
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Figure 8.2. The process to collect Twitter data and the type of collected data.

tweet includes the id of the user who replied. The profile data downloaded for

each user includes general user’s information, such as user’s name, description,

geolocation, language, a personal URL, as well as some statistics about user’s

Twitter usage like a total number of tweets created, and the number of followers

and friends.

Figure 8.3(a) depicts the CCDF of the number of tweets created by each user.

It is worth noting that the distribution is truncated around 3,2002 for the limit

imposed by Twitter API. Nonetheless, the number of Twitter users who reach this

limit are roughly 10% of the total number of users in the dataset. This means

that for the majority of people the dataset has the complete history of tweets

they created. In addition, for the users who created more than 3,200 tweets,

the dataset has a large sample of their recent Tweeting history. Figure 8.3(b)

depicts the CCDF of the number of followers and friends per user. Both graphs

show a very long tail, with a very small fraction of users in the dataset reaching

about one million of friends, and more than 20 million followers. This is a typical

aspect of social networks and indicates the validity of our sample.

2For some users, the number of tweets is slightly larger than 3,200 since multiple downloads

during the set-up process of the crawler were performed, which lasted roughly one month. Due

to this for some users, there are additional tweets generated during this month.
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Figure 8.3. Complementary cumulative distribution function of the number of
tweets created and number of friends and followers per user

8.3 Data dissemination prediction methodology

Figure 8.4 presents the overall approach to predict data dissemination in online

social networks using the INDIGO–OSN part of the INDIGO framework. From

the collected Twitter data, I first clean and process the data to create features be-

longing to different planes based on their complexity to acquire and privacy intru-

siveness3. Afterward, for each feature plane, I train and test the Machine Learn-

ing based multi-classification model to predict the data dissemination through

retweet and reply. My approach allows a very effective single step data dissemi-

nation prediction and quantifies the influence of different feature planes on pre-

diction results.

8.3.1 Data cleaning and processing

From the collected dataset, I first process the data to only consider the English

tweets. To do this, I detect English language using the langdetect package of

TextBlob 4 based on NTLK Language Toolkit 5. Out of these English tweets, I

create the ground truth to train the model by annotating them as the tweet,

retweet, and reply where retweet and reply represent data dissemination while

tweet signifies no-dissemination and call them type 0, 1 and 2 respectively. The

data that needs to be disseminated is the text of the tweet. From processed

data set with English tweets, I calculate features over time to capture possible

3The classification of features in different planes is provided according to our understanding

as there is no formal classification of features according to privacy intrusiveness and complexity.
4textblob.readthedocs.io/en/dev/quickstart.html
5http://www.nltk.org/
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Figure 8.4. Methodology to predict data dissemination in online social networks
using different feature planes and multi-classification prediction model.

changes in retweet and reply behaviors with time and generate a time series for

each variable. Further, I aggregate these features in a weekly time window and

store them in an SQLite database separately for each feature plane. The weekly

aggregation was a good trade-off between precision and complexity because with

the daily aggregation the complexity of the model will be too high for such a large

scale data.

8.3.2 Feature Planes

To model a person’s likelihood to retweet and reply, I propose different planes of

features and extract them from Twitter data according to the increased complex-

ity to acquire them and their privacy intrusiveness in INDIGO framework. From

the privacy point of view, we consider how much information do we need to mine

and reveal about a user in order to predict retweet and reply. The consideration

of privacy during Twitter data mining is also highlighted in recent studies Kelley

and Cranshaw [2013] Gan and Jenkins [2015]. Based on these contexts, I pro-
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pose different feature planes starting from profile features to sentiment analysis

of tweets. In this way, I also show the usefulness of rich information available in

the dataset. Figure 8.5 presents different planes of features considered in the pa-

per starting from Profile to Global plane. Please note that in each feature plane, I

also consider features associated to the current Tweet. With Tweet features, I in-

tend to examine the popularity of the original tweet and time sensitivity Petrovic

et al. [2011]. Other Tweet features considered in each plane are the sentiment

of the tweet, the number of embedded mentions and URLs obtained through the

tweet inspection.

Figure 8.5. Feature planes based on the complexity to acquire and privacy
intrusiveness starting from user profile feature to sentiment analysis of tweets.

• Profile Plane: Features associated with this plane are the easiest to ac-

quire using public Twitter API6. From the Twitter profile of a user, I intend

to get information about the user’s account history like the length of user

screen name, availability of URL, user description, and image on his/her

profile. I hypothesize that users with longer account history and rich pro-

file information may be more active on Twitter, therefore, it is more likely

to predict their likelihood to retweet and reply. Additionally, I also capture

social information of the user from their profile by extracting the number of

friends, the number of followers and the number of groups a user is associ-

ated with (listed count). Finally, from user profile I also include the activity

of users through their status counts (how many tweets users has published

6The profile data of a user can be accessed through a single Twitter API call.
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recently) and favorite counts (how many tweets has been marked favorite

by a user) features.

• Social Plane: Features in this plane represent the social ties of a person.

Intuitively, if a person has more friends and followers then he/she has a

higher probability to retweet and reply. Recent works also show that po-

tential of retweeting as an act of friendship and to gain followers Boyd

et al. [2010]. In this context, I process each user’s network of friends and

followers and extract features related to the number of friends, the number

of followers, ratio of a number of friends to the number of followers and,

ratio of a number of non-friends to the number of followers. As compared

to Profile plane features, Social plane features are difficult to acquire and

more privacy intrusive as we look into the entire social network of users.

• Activity Plane: This plane captures all past and recent activities of Twitter

users to predict their willingness to retweet and reply. I assume that if a

person exhibits more activity on Twitter, then it is more likely that he/she

will retweet and reply. I also extract user’s activity with respect to their

friends, followers, and strangers like descriptive statistics for tweets per

follower, friends, and strangers. Activity plane features are even more dif-

ficult to acquire and more privacy intrusive because in this case, we inspect

all tweets of users to extract statistics about their past tweet, retweet and

reply behavior with other users. In this plane, I capture both past and re-

cent activities of users. For past activities, I utilize all available tweets up to

current time while for recent activities I only take into account past month

data (i.e. four weeks).

• Sentiment Plane: The features associated with this plane are the most

computational costly and privacy intrusive as compared to other planes

because, in this case, I inspect the content of each tweet and process them

to find associated positive, negative or neutral sentiment. Similar to Activ-

ity plane features, I also extract all past and recent sentiments of tweets

and also quantify tweet sentiments for friends, followers, and strangers.

To measure the overall sentiment of a set of tweets (or retweets/replies)

in a day, I define sentiment index SI in Equation 8.1 where s+ represents

positive sentiment and s− presents negative sentiment values in a day. To

calculate SI , I perform sentiment analysis only on English tweets from data

set for each user and on day-wise tweets using TextBlob 7. To calculate SI

7textblob.readthedocs.io/en/dev/quickstart.html
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Table 8.1. Feature Set Input For Prediction Model

Feature

Plane

Feature Set

Profile < User I D, Tweet Features, Pro f ileFeatures, TweetT ype >

Social < User I D, Tweet Features, SocialFeatures, TweetT ype >

Activity < User I D, Tweet Features, UserAct ivi t yFeatures, TweetT ype >

Sentiment < User I D, Tweet Features, SentimentFeatures, TweetT ype >

Global < User I D, Tweet Features, Pro f ileFeatures, SocialFeatures,

UserAct ivi t yFeatures, SentimentFeatures, TweetT ype >

values, I only consider tweets whose sentiments can be classified through

TextBlob library. Likewise, I calculate SI values for each day of the tweets

corresponding to each user.

SI =

∑

s+ −
∑

s−
∑

s+ +
∑

s−
(8.1)

• Global Plane: This plane combines all features from Profile, Social, Activ-

ity, and Sentiment planes along with Tweet features. With the help of this

plane, I intend to study the aggregated impact of all feature planes on data

dissemination.

Utilizing the notion of feature planes, I create a final set of features for a given

user and tweet pair < u, tw > to train the prediction model. To create Activity

and Sentiment plane features for< u, tw> pair, I extract data only till the current

time of the tweet tw. Please note that, since the features for Profile and Social

planes do not change with time for a given user, they remain static for a given

< u, tw > pair. Table 8.1 presents the format of feature sets for all planes given

as an input to train the prediction model.

8.3.3 Multi-classification prediction model

The prediction of data dissemination in OSNs can be done by predicting the like-

lihood of a person to retweet and reply a given text (or tweet). Therefore, this

problem is a multi-classification problem where I need to predict retweet, re-

ply (data dissemination occurs) and a tweet (if no data dissemination happens).
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To do this, I employed several Machine Learning methods like Linear Regres-

sion Weisberg [2005], Random Forest Breiman [2001], Support Vector Machines

(SVMs) Suykens and Vandewalle [1999] and Gradient Boosting Machine Fried-

man [2001]. Out of all these methods, Gradient Booting Machine outperforms

for different samples of twitter data. Therefore, to predict data dissemination in

social networks, I finally considered Gradient Boosting Machine method, a su-

pervised machine learning technique for regression and classification problems,

which produces a prediction model in the form of an ensemble of weak predic-

tion models. More specifically, I use the XGBoost or “Extreme Gradient Boosting”

method to classify retweet and reply. The detailed explanation of XGBoost is pre-

sented in Chapter 4.

The implementation of Gradient Boosting Method is based on the Python li-

brary XGBoost 8. To classify retweet, and reply, I utilize multi-class classification

using the softmax objective function. Further, I tried a set of parameter com-

binations to prevent overfitting using three parameters, eta that determines the

learning rate, gamma regulating the sensitiveness to training examples, and the

number of rounds. Based on different experiments, I set eta and gamma as 0.1

and 0 respectively. I also apply 10-fold cross-validation to select an appropri-

ate number of rounds based on the multi-classification error rate. For a given

< u, tw > pair, the prediction model predicts the likelihood of diffusion by clas-

sifying retweet, and reply. If the model predicts retweet and reply for a< u, tw>

pair then, the single-step diffusion will occur otherwise, there will be no diffu-

sion. Differently, from existing solutions, my model enables retweet and reply

prediction for any generic tweet and does not limit the prediction for tweets gen-

erated by someone connected to the user.

8.4 Results and discussion

To show the validity of the model of INDIGO framework and its usefulness of data

dissemination in online social networks, I measure precision and recall obtained

from XGBoost model for the retweet, and reply classification. I split the set of

tweets into a training and a testing set based on the timestamp of the tweets.

The training set consists 60% of all tweets and the remaining 40% of the data

is used to evaluate the prediction quality. I tested the model on two different

samples (Sample 1 and Sample 2) of dataset selected based on different time

intervals with 673,858 and 1,031,116 tweets respectively. Sample 1 data consists

only one-month tweets of users while Sample 2 have all tweets of users for all

8 x g boost.read thedocs.io/en/latest/p y thon/p y thon_int ro.html
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years. For each sample, I tested model accuracy for different planes of features

starting from Profile plane to Global plane. Figure 8.6 presents the precision and

recall obtained from both samples for all feature planes for the dissemination

(retweet, and reply) and no-dissemination classification. Precision and recall

are typical performance metrics used for measuring algorithm performance in

Machine Learning. The Precision is defined as the number of true positives (Tp)

over the number of true positives plus the number of false positives (Fp). The

Recall is defined as the number of true positives (Tp) over the number of true

positives plus the number of false negatives (Fn).

From results, we observe that for both samples, Activity, and Global plane

features outperform and provide retweet, and reply classification with 99% and

82% precision and 99% and 80% recall values. Further, my model is also able

to correctly classify no-diffusion with high precision (99%) and recall (100%)

values. These results show that if we process and mine more information about

users, the model becomes more precise in classifying retweet, and reply. We also

observe that the model performs slightly better ( 2%) in Profile plane as compared

to Social and Sentiment planes. This happens because, in Profile plane, we have

more information about the user in terms of the number of status messages,

association to groups while Social plane only has high-level information about

friends and followers and Sentiment plane only considers sentiment of tweets.

From above results, we observe the importance of the profiles of users and their

activities on Twitter.

The precision and recall obtained using Activity and Global planes are equiv-

alent and show that the maximum precision can be achieved only by consider-

ing user activities on Twitter i.e. Activity plane features. The inclusion of other

feature planes such as Profile, Social, and Sentiment do not further improve pre-

diction results. My results highlight that only with Profile plane features, we can

already achieve very high accuracy, thus my approach can be used to reduce the

complexity of large data processing and the privacy concerning issues. Finally, I

also show the confusion matrix for both sample 1 and 2 in Figure 8.7 and 8.8 re-

spectively. From both confusion matrix, we observe that the prediction model is

able to correctly classify retweets, and reply as well as no diffusion for all planes

thus, confirms the results obtained from Figure 8.6.

Table 8.2 presents the most important features associated with each plane

utilized by our prediction model. From Table 8.2, we observe that Tweet fea-

tures are one of the most important features across all planes. The tweet related

features that contribute the most to precise prediction results are the time of

the tweet, a number of times the tweet has been retweeted (Retweet count) and

length & sentiment of the tweet. Since Tweet features are associated with each
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(a) Sample 1-Precision (b) Sample 1-Recall

(c) Sample 2-Precision (d) Sample 2-Recall

Figure 8.6. Precision and Recall obtained from different models utilizing dif-
ferent planes of features starting from Profile to Global plane.

plane, therefore, we also quantify their impact on model accuracy and observe

that they contribute 30% to the overall model accuracy across all planes. Our

prediction model obtains similar results for both samples (sample 1 one month

data while sample 2 with years of data) across all planes. Therefore, our results

show that only with one-month of the Twitter activity for a set of users is enough

for accurate predictions. This result provides the implications for the amount of

data required for the tweet, retweet, and reply classification and could be utilized

in future diffusion models.
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(a) Profile Plane (b) Social Plane (c) Activity Plane

(d) Sentiment Plane (e) Global Plane

Figure 8.7. Confusion Matrix for Tweet, Retweet, and Reply classification
obtained from our model utilizing different feature planes starting from Profile
to Global for Sample 1.

Compared to other resharing prediction models in the literature, we obtain

sensibly higher accuracy values. For example, the model presented in Hong et al.

[2012], which is, to the best of our knowledge, the only model that can be directly

compared to ours, obtains prediction accuracy lower than 80%. It is also worth

noting that this model limits the prediction to tweets only generated by friends

of the target users, whereas in our model we calculate the likelihood to retweet

or reply a generic tweet, not necessarily generated by someone connected to the

selected user.

Finally, I also validate the applicability of INDIGO’s prediction model for dif-

ferent time periods. To do this, I further group our testing data in the order of

time (hour, day and week) after the last tweet of training data. For example, in

the case of one hour, I only classify tweets that have been generated at max one

hour after the last tweet in training data. Similarly, for days and week, I only

classify those tweets that have been generated till the current day or week. From

the results, we observe that for testing tweets generated up to one day after the

last tweet of training data, the model predicts data dissemination with slightly

higher precision ( 2%) for all planes except Activity and Global planes. In the

case of Activity and Global planes, the precision obtained from the model was
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(a) Profile Plane (b) Social Plane (c) Activity Plane

(d) Sentiment Plane (e) Global Plane

Figure 8.8. Confusion Matrix for Tweet, Retweet, and Reply classification
obtained from our model utilizing different feature planes starting from Profile
to Global for Sample 2.

same across different time periods thus, show the preciseness and applicability

of the model for different time periods and makes my model time independent.

This happens mainly due to our rich dataset and consideration of both recent

and overall past activities of Twitter users and the right features selected from

the Gradient Boosting model.

8.5 Conclusions

In this Chapter, I presented a novel approach to predict the data dissemination

for Type IV of the Physical-Social table where social proximity plays a fundamen-

tal role using the INDIGO–OSN part of the INDIGO framework. I presented a

Gradient Boosting Machine based multi-classification model to predict the data

dissemination by predicting the likelihood to retweet, and reply. I also provide

the deeper understanding of the diffusion process and quantifies the impact of

the rich set of information available on online social networks by introducing

feature planes: Profile, Social, Activity, Sentiment, and Global based on the com-

plexity to acquire and privacy intrusiveness. I validated the proposed model on
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Table 8.2. Important Features For Different Planes

Profile Plane Tweet time, # Followers, Tweet length, Twitter account age, # status messages, #

Friends, Retweet count, Tweet sentiment, Listed Count, Length of user description

Social Plane Tweet time, Ratio of friends and followers, # Friends, Tweet length, # Followers,

Retweet count,Tweet sentiment

Activity Plane Retweet count, Tweet length, Time elapsed since last Retweet, Tweet time, #

Mentions, Tweet sentiment, STD of inter Retweet time, STD of # urls in Retweet,

# Hashtags, Min. of inter Reply time, Mean of inter Tweet time, Time elapsed

since last Tweet, Max. of total Retweets per follower, # Url

Sentiment Plane Tweet time, Tweet length, Retweet count, Tweet sentiment, STD Retweet SI per

follower, STD of Retweet SI, Max. of Retweet SI, Max. Retweet SI per follower,

STD of Reply SI, STD of Tweet S, Entropy of Retweet SI, STD of Tweet SI per

week,Entropy of Retweet SI

Global Plane Retweet count, Tweet length, Time elapsed since last Retweet, Tweet time, #

Mentions, Tweet sentiment, STD of inter Retweet time, STD of # urls in Retweet,

# Hashtags, Min. of inter Reply time, Mean of inter Tweet time, Time elapsed

since last Tweet, Max. of total Retweets per follower, # Url

two different samples of the large-scale Twitter dataset and observe that it out-

performs existing works for all planes by providing higher precision and recall for

both samples. I also summarize the key contributions of this Chapter as follows:

• Proposed a model to provide a deep understanding of data dissemination

by predicting the likelihood to retweet and reply and exploiting the differ-

ent set of features by introducing feature planes. To the best of my knowl-

edge, it is the first work that deeply studies the importance and impact of

different planes of features on retweet and reply prediction.

• I define different planes of features that differ in complexity to acquire and

level of privacy required.

• Differently, from existing solutions, my model enables data dissemination

prediction for any generic tweet and does not limit the prediction for tweets

generated by someone connected to the user.

• Results show high precision for data dissemination prediction for different

planes and also present that user twitter activities feature plane provides

the highest precision. Further, the results presented in this Chapter are also
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seminal to researchers by providing the trade-off between high prediction

accuracy and privacy.

The work done in this Chapter is published at "Complex Networks Workshop,

2015" and is also been selected to submit the extended version of the paper in

Computation Social Networks Journal. This Chapter completes the modeling

and prediction of data dissemination for all cases (starting from Type II to IV)

of the Physical-Social proximity table and shows the effectiveness of the INDIGO

framework solutions across all cases.

8.6 Remarks

The work done in this Chapter is done in collaboration with Valerio Arnaboldi of

IIT-CNR, Pisa.



Chapter 9

Conclusions and Outlook

The main contribution of this thesis is to provide a set of solution to predict the

performance of data dissemination by collectively considering the real-world as-

pects of data dissemination process under different based on the availability of

physical and social proximity information among people. The solutions proposed

in this thesis empowers local businesses or publishers to assess the performance

of their localized dissemination based services in advance both in physical as

well as the online social world. Furthermore, it relieves users from receiving

large amounts of unnecessary data when there is no proximity. As shown in

Figure 9.1 this thesis provides a solution called INDIGO–Physical for the cases

where physical proximity plays the fundamental role (Type II and Type III). It

enables the tighter prediction of data dissemination time and prediction of best

relays under real-world mobility, communication, and data dissemination strat-

egy aspects. Further, this thesis also contributes in providing the performance

prediction of data dissemination in large-scale online social networks where the

social proximity is prominent (Type IV) using INDIGO–OSN part of the INDIGO

framework.

9.1 Summary and conclusions

The research work done in thesis contributed in the following directions.

9.1.1 Modeling and prediction of tighter upper bound of data dis-
semination time under real-world aspects

The first work done in this thesis provides a model that incorporates real-world

mobility, communication, and dissemination strategy aspects for the tighter pre-

163
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Figure 9.1. Solutions provided for Type II, III and IV of Physical–Social prox-
imity table using different parts of INDIGO framework. No solution is required
for Type-I as no exchange of information will happen in this case.

diction of data dissemination time for the cases where physical proximity plays

the fundamental role. This thesis contributes in finding these aspects through

the inspection of several real-world contact traces. The real-world aspects con-

sidered in this thesis are heterogeneous contact patterns (both static and time-

varying), multiple simultaneous contacts among people, broadcast as well as

interest-driven data dissemination strategy, various data requirements, and mul-

tiple data sources. Further, this thesis finds a long tail cut-off pattern in data

gathering process and based on this property it develops a Markov chain based

model called DDT-Markov that predicts the tighter upper bound of data dissem-

ination time using a Cut-off point based approach. DDT-Markov is able to incor-

porate different aspects of data dissemination process under both broadcast and

interest-driven data dissemination. The model is validated on 5 datasets (IN-

FOCOM, PERCOM, ROLLERNET, MIT, MACACO) from 3 diverse environments

(conference, urban area, university). It is able to achieve the tighter upper bound

of data dissemination time within 5-15% error against the ground truth for both

broadcast and interest-driven data dissemination strategy. The main observation

for this part of the thesis is:

“The data dissemination process exhibits a long tail cut-off pattern thus, we can

identify the Cut-off point. The exploitation of such Cut-off point greatly contributes
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towards the tighter prediction of the upper bound of data dissemination time”

9.1.2 Prediction of heterogeneous time-varying contact patterns

The second novel contribution of this thesis is to provide a Gradient Boosting

Machine Learning based model to enable the prediction of the time-varying pair-

wise heterogeneous contact probabilities among people by capturing features

related to their contacts and inter-contact time. The model learns the contact

patterns of people and predicts their future day-wise contact probabilities. The

model was validated on all datasets and achieves reasonable accuracy for contact

datasets with longer duration. This happens because in long-term people exhibit

regular contact patterns thus helps the model to predict accurately based on these

patterns. The contact probability prediction accuracy increases as soon as we

provided more learning data to the model. To get reasonable accuracy in contact

probability prediction, the model requires at least one week of data. The main

observation for this part of the thesis is:

“A supervised machine learning approach can enable the prediction of future

time-varying contact probabilities by learning the past contact patterns of people.”

“Inclusion of time-varying contact probabilities further tightens the upper bound

of data dissemination time.”

9.1.3 Learning of user interests

The third contribution of this thesis to provide a tool to learn the interests of

users from their on mobile web-browsing history. This tool enables the automatic

learning of user interests by finding the semantic categories of the websites us-

ing Term Frequency–Inverse Document Frequency (TF-IDF) weighting scheme.

Using these interests, the tool also finds the interests similarities among each

pair of people. Further, this tool also creates synthetic interests of people for

datasets that do not capture web browsing history by utilizing the concept of

strong medium and weak ties computed with a power law distribution. The

main observation for this part of the thesis is:

“The interest learning tool also produces interests specific to the country lan-

guage.”

“Inclusion of interest similarities among people enables the interest-driven data

dissemination strategy in predicting the upper bound of data dissemination time

and shows that interest-driven data dissemination strategies are effective to restrict

the spread of dissemination as opposed to broadcast strategy because information

is only disseminated to people with sharing similar interests.”
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9.1.4 Collection of traces with mobility and interests

The fourth contribution of this thesis is collect the dataset that contains both

contacts and interests of people. To the best of our knowledge, there were no

real-world traces that contain this type of data. This thesis fills this gap by col-

lecting data by utilizing a dedicated mobile application developed as a part of

CHIST-ERA MACACO project in collaboration with project partners in France

and Brazil. The application is also available at Google Play Store. The appli-

cation collect information from different sensors like GPS, accelerometer, Wi-Fi

scanning along with the on-mobile web browsing history. From this data, I used

the Wi-Fi scanning data to create contacts among people (physical proximity)

and browsing history of people to reflect their interests (social proximity).

“This thesis collects and produces a dataset that captures both physical and social

proximity among people.”

9.1.5 Prediction of best relays for faster data dissemination

The fifth contribution of this thesis is to find the best relays in the network to

maximize the information diffusion or to minimize the data dissemination time.

This thesis proposed a methodology to find the Best Relays for both broadcast

and interest-driven data dissemination strategy by employing a weighted K-Shell

decomposition algorithm that considers both degree centrality and links weights

of each node in the network. The nodes that reside in the Core of the network

were considered as Best Relays while the nodes that are situated near the periph-

ery (or Non-core) of the network were the worst connected nodes. The results

showed the usefulness of Best Relays by reducing the data dissemination time for

both dissemination strategies. More specifically, utilization of Best Relays is very

effective in reducing the data dissemination time till the Cut-off point.

“By giving importance to social proximity, the nodes with lesser contact and

higher interest similarity can also be one of the important nodes in the network,

therefore, under interest-driven strategy the network structure changes through the

shifting of Core and Non-core nodes.”

“For close-knit communities, Best Relays does not improve information dissemi-

nation because most of the people are very well connected to each other.”

All the above described contributions of this thesis are incorporated in the

INDIGO–Physical part of the INDIGO data dissemination framework to provide

a unified solution and to predict the performance of data dissemination for the

upper bound of data dissemination time and detection of best relays under Type

II and III cases of the Physical–Social proximity table.
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9.1.6 Modeling and prediction of data dissemination in online so-
cial networks

The final contribution of this thesis is to provide the prediction of data dissem-

ination in online social networks (Type IV) using the INDIGO–OSN part of the

INDIGO data dissemination framework. To do this, I proposed a Machine Learn-

ing model to provide a deep understanding of data dissemination by predicting

the likelihood to retweet and reply and exploiting the different set of rich features

available in the Twitter dataset. This thesis also introduced and defined multi-

ple planes of features that differ in complexity to acquire and level of privacy

required. The proposed solution also enables the data dissemination prediction

for any generic tweet and does not limit the prediction for tweets generated by

someone connected to the user. The model was validated on a large scale Twit-

ter dataset and results show high precision for data dissemination prediction for

different planes and also show the highest precision for the plane that captures

user’s twitter activities.

“Different feature planes and their accuracy in predicting data dissemination are

seminal to researchers by providing the trade-off between high prediction accuracy

and privacy.”

9.2 Directions for future research

I will now present the future research directions that can be addressed to extend

the work presented in this dissertation.

9.2.1 User profiling and modeling of data dissemination using Lo-
cation Based Social Networks (LBSNs)

The INDIGO framework can be extended to incorporate and model the LBSN

datasets like FourSquare, Gowalla etc. These datasets typically have users check-

in information in different Point of Interests. From these datasets, the physical

proximity among people can be created based on the co-location check-in infor-

mation. Similarly, the social proximity among people can be created by learning

their interests according to the types of places they are visiting. For example,

FourSquare has a category tree consisting 10 types of high-level categories like

Food, Art, Travel, Shopping for each Point of Interest. With the help of this infor-

mation, the profile of a user can be generated. In fact, I have already developed

my own User Profiler for the LBSNs that creates a profile of users across these
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10 categories. A user’s profile represents the preferences or interests of the user

from the perspective of semantic categories of visited places. Once we have both

physical and social proximity information about the users then we can provide it

to the INDIGO to predict the performance of data dissemination in LBSNs. This

extension could be very crucial for the businesses as they can predict in advance

about the usefulness of their offers among their customers and other interested

people. Further, they can also target people based on their learned profiles.

9.2.2 Prediction of user interests from their personality traits

A further extension of my work could be to predict the interests of users based on

their personality traits. In this way, we can classify a set of user interests accord-

ing to their personality traits. This study could be useful to assign real interests

to users rather than creating synthetic interests (in case user’s web browsing his-

tory is not available). Also for this part, I have done an initial research during

my internship at Telefónica Research and found that by capturing the temporal

patterns of mobile usage, we can predict the personality of people and can also

associate their interests with it.

9.2.3 Interests modeling on online social networks using knowledge
graphs

The work done for the prediction of data dissemination in online social net-

works can be further extended by introducing another plane called interests

plane where the interests of Twitter users can be developed by exploiting the

topics from their tweets using Knowledge Graphs. Using these graphs of topics,

we can find the similarity between two users graphs or similarity between the

tweet and a user’s graph and use it as a feature to predict the data dissemina-

tion.

9.2.4 Prediction of complete cascades in online social networks

Another challenging and big extension of the current thesis is the prediction of

complete cascades i.e. the complete flow of information starting from the origi-

nator. The work presented in this thesis only predicts the single step information

diffusion, however, the model proposed in this thesis can be further extended to

predict the complete cascades.
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9.2.5 Usage of INDIGO for Internet of Things

Finally, another extension of INDIGO is to utilize it for Internet of Things (IoT)

where data sources are IoT devices and humans can be the receiver of the in-

formation originating from these devices. INDIGO can be useful to model and

understand the behavior of people in such scenario. Some findings of the work

done in this thesis have also lead to receiving a grant of a CHIST-ERA European

project called UPRISE-IoT1.

The aim of the UPRISE-IoT project is to develop the U-HIDE solution which

will empower the users to understand and make their own decisions regarding

their data, which is essential in gaining informed consent and in ensuring the

take-up of IoT technologies. This will include behavioral models that are build-

ing on the ones developed in the INDIGO framework, to allow profiling the pri-

vacy primitives, mechanisms, and techniques for data dissemination of the IoT

devices.

1http://www.chistera.eu/projects/uprise-iot
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1. K. Garg, S. Giordano and M. Jazayeri "INDIGO: Interest-Driven Data Dis-

semination Framework For Mobile Networks". (Under Submission at IEEE

WoWMoM 2017)

2. K. Garg, V. Arnaboldi and S. Giordano "A Novel Approach to Predict Retweets

and Replies Based on Different Privacy and Complex-Aware Feature Planes",

In Proceedings of The 5th International Workshop of Complex Networks

and their Applications, November 2016, Milan, Italy.

3. S. Vanini, D. Gallucci, K. Garg, S. Giordano, V. Mirata and M. Bettoni "Mod-

eling Social Interactions in Real Work Environments", In Proceedings of

The 6th International Workshop HotPlanet 2015 in conjunction with ACM

MobiCom 2015, September 2015, Paris, France.

4. K. Garg, S. Giordano and M. Jazayeri, "How Well Does Your Encounter-

Based Application Disseminate Information?", In Proceedings of The 14th

IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net

2015), June 2015, Vilamoura, Algarve, Portugal.

5. K. Garg, S. Giordano and A. Förster, "A Study to Understand the Impact of

Node Density on Data Dissemination Time in Opportunistic Networks", In

Proceedings of 2nd ACM Workshop on High Performance Mobile Oppor-

tunistic Systems (HP-MOSys 2013), November 2013, Barcelona, Spain.

6. A. Förster, K. Garg, H. A. Nguyen, and S. Giordano, "On Context Aware-

ness and Social Distance in Human Mobility Traces", in Third International

Workshop on Mobile Opportunistic Networks (MobiOpp 2012), March 2012,

Zurich, Switzerland.

9.4 Other Relevant Publications

9.4.1 Short Papers

1. Kamini Garg, "Data Dissemination Bounds in People-Centric Systems", In

Proceedings of International Conference on Computer Communications

(IEEE INFOCOM), April 2013, Turin, Italy (Student Workshop).
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Computing and Communication Conference (PerCom 2012), March 2012,

Lugano, Switzerland (PhD Forum).

3. A. Hossmann-Picu , Z. Li, Z. Zhao, T. Braun, C. M. Angelopoulos, O. Evan-

gelatos, J. Rolim, M. Papandrea, K. Garg, S. Giordano, A. C. Y. Tossou, C.

Dimitrakakis and A. Mitrokotsa, "Synergistic User↔ Context Analytics", In

Proceedings of The 7th ICT Innovations Conference, October 2015, Ohrid,

R. Macedonia.

9.4.2 Poster and Demos

1. K. Garg, and S. Giordano, "Towards Developing a Generalized Modeling

Framework for Data Dissemination", In Proceedings of the 12th European

Conference on Wireless Sensor Networks (EWSN), Porto, Portugal, Febru-

ary 2015. (Best Poster Award)

2. A. Förster, K. Garg, M. Cabrini and S. Giordano, "Understanding and Opti-

mizing Human Mobility with Smart Phones", In Proceedings of the 1st In-

ternational Conference on ICT for Sustainability (ICT4S), Zurich, Switzer-

land, February 2013.
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